Functionalization of α - and β -Amino C–H Bonds using Cooperative Catalysis

Yuyang Zhang

A thesis submitted to the Faculty of the department of chemistry in partial fulfillment of the requirements for the degree of Master of Science

Boston College Morrissey College of Arts and Sciences Graduate School

May, 2020

© Copyright 2020 Yuyang Zhang

Functionalization of α - and β -Amino C–H Bonds using Cooperative Catalysis

Yuyang Zhang

Advisor: Masayuki Wasa, Ph.D.

Abstract

Cooperative catalysis has been developed for transformations where at least two reactants are activated in situ by acid or base sensitive catalysts to form the reactive species and subsequent bond formation leads to desired product. This thesis focuses on the development of α -amino C–H alkynylation and β -amino C–H deuteration through the use of cooperative catalysts. In the alkynylation reaction, N-alkylamines and trimethylsilyl substituted alkynes were used to synthesize propargylamines by the cooperative actions of Lewis acid catalysts, $B(C_6F_5)_3$ and copper complex. The reaction between in situ generated iminium ion and copper alkyne complex afforded the product. The method is applicable to the late-stage functionalization of bioactive amine drug molecules and has been shown to tolerate different functional groups on trimethylsilyl-substituted alkynes. In addition, an enantioselective and diastereoselective version of the method was also developed through the use of chiral copper complex. In the second part, selective deuteration of β -amino C–H bonds of various acylic and cyclic alkyl amines will be introduced. B(C₆F₅)₃ and Brønsted base work cooperatively to afford enamine and deuterated ammonium ion as reactive intermediate. Deuteration of enamine at the β -position and hydride reduction at the α position gave the selectively deuterated products. Acetone- d_6 was the found to be the optimal source of deuterium. This method was able to incorporate deuterium atoms up to 99% and can be applied in a gram scale reaction without compromising the yield or dincorporation level.

TABLE OF CONTENTS

List of Figures	vi
List of Tables	vii
List of Schemes	viii
List of Abbreviations	ix
Acknowledgements	xi
Chapter One: Introduction to Cooperative Catalysis	1
1.1 Cooperative acid/acid catalysis	3
1.2 Cooperative acid/base catalysis	5
1.3 Cooperative base/base catalysis	7
1.4 Cooperative catalysis and hydrogen bonding catalysis	9
1.5 Cooperative catalysis and photoredox catalysis	11
1.6 Conclusion	13
Chapter Two: α -C–H Alkynylation of <i>N</i> -Alkylamines by Cooperative A	Actions of
B(C ₆ F ₅) ₃ and Organocopper Complex: Applications in Late-Stage Func	tionalization and
Stereoselective Synthesis	
2.1 Introduction	14
2.2 Background.	20
2.3 Development of alkynylation reaction	21
2.3.1 Discovery	21
2.3.2 Optimization.	
2.3.3 Catalytic cycle	
2.4 Evaluation of substrates	27
2.4.1 <i>N</i> -aryl substituted amines	
2.4.2 Trialkylamines	
2.4.3 Functionalization of <i>N</i> -containing drug molecules	29
2.4.4 Scope of alkynes	
2.4.5 Application towards enantioselective transformation	
2.5 Further derivatization	

2.6 Conclusion	35
2.7 Experimental data	36
2.7.1 General information	36
2.7.2 Experimental procedures and characterization of substrates and products	37
2.7.3 NMR spectral data	86

Chapter Three: Catalytic Deuterium Incorporation within Metabolically Stable β -Amino C–H Bonds of Drug Molecules

LIST OF FIGURES

Fig 1.1 Classification of catalytic systems involving two catalysts

Fig 2.1 Examples of propargyl amines in bioactive molecules

Figure 2.2 $B(C_6F_5)_3$ -Catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes

Fig 2.3 Proposed catalytic cycle

Figure 3.1 Proposed catalytic cycle for deuteration

LIST OF TABLES

- Table 2.1 Evaluation of alcohols
- Table 2.2 Optimization table
- Table 2.3 Alkynylation of N-aryl amines
- Table 2.4 Alkynylation of trialkylamines

Table 2.5 Alkynylation of N-containing drug molecules

- Table 2.6 Scope of alkynes with benzhydryl fluoxetine derivative
- Table 2.7 Evaluation of chiral organocopper complexes
- Table 2.8 Ph-PyBOX ligand evaluation
- Table 2.9 Enantio- and diastereo-selective alkynylation of amines
- Table 3.1 Evaluation of Brønsted bases
- Table 3.2 Evaluation of solvents
- Table 3.3 Evaluation of reaction temperature
- Table 3.4 Evaluation of deuterium sources
- Table 3.5 Evaluation of equivalence of acetone- d_6
- Table 3.6 Evaluation of loading of Lewis acid catalyst
- Table 3.7 Control experiments with Lewis acids
- Table 3.8 Deuteration of acyclic β -amino C–H bonds
- Table 3.9 Deuteration of cyclic β -amino C–H bonds

LIST OF SCHEMES

Scheme 1.1 Enantioselective Rh-/Pd- catalyzed allylic alkylation by Ito

Scheme 1.2 Enantioselective conjugate cyanation by Jacobsen

Scheme 1.3 Enantio- and diastereodivergent α -allylation of α -substituted aliphatic aldehydes by Carreira

Scheme 1.4 Enantioselective ring opening of epoxides by fluoride anion by Doyle

Scheme 1.5 oxa-Michael-Mannich reaction by Xu

Scheme 1.6 Enantioselective silyl protection of alcohols by Hoveyda and Snapper

Scheme 1.7 Enantioselective oxidopyrylium-based [5+2] cycloaddition by Jacobsen

Scheme 1.8 Desymmetrization of meso-diamines by Seidel

Scheme 1.9 Enantioselective intermolecular α -alkylation of aldehydes by MacMillan

Scheme 1.10 Anti-Markovnikov fluorination by Nicewicz

- Scheme 2.1 Enantioselective α -amino C–H activation by Rh-prolinate catalyst by Davies
- Scheme 2.2 Enantioselective α -amino acylation by Rovis
- Scheme 2.3 Enantioselective Negishi cross-coupling by Fu
- Scheme 2.4 Enantioselective thioamide directed α -amino C–H arylation by Yu
- Scheme 2.5 Formation of FLP consisting of iminium ion and borohydride
- Scheme 2.6 B(C₆F₅)₃ and magnesium complex catalyzed alkylation through α -amino C–H activation

Scheme 2.7 Enantioselective α -amino C–H alkynylation of tetrahydroisoquinolines

- Scheme 2.8 Initial alkynylation reaction
- Scheme 2.9 Reaction with silicon substituted alkyne

Scheme 2.10 CuAAC reaction with fluoxetine derivative

Scheme 2.11 Removal of benzhydryl group

Scheme 3.1 α - and β - Deuteration of amines using Ru-based catalyst

Scheme 3.2 Deuteration of amines by photoredox catalysts

Scheme 3.3 Oxidative β -amino C–H alkylation by Kanai

- Scheme 3.4 C-H activation of aliphatic amines by Gaunt
- Scheme 3.5 Generation of enamine, and borohydride and ammonium ion

LIST OF ABBREVIATIONS

Å angstrom Ac acyl acac acetylacetonate ADHD attention-deficit/hyperactivity disorder Anth anthracene aq. aqueous Boc tert-butoxycarbonyl BOX bisoxazoline Bn benzyl bpy bipyridine Bu butyl Cbz carboxybenzyl CFL compact fluorescent light cod cyclooctyldiene Ci Curie Cp cyclopentyl Cy cyclohexyl DART direct analysis in real time dba dibenzylideneacetone DBU 1,8-diazabicyclo[5.4.0]undec-7-ene DCE 1,2-dichloroethane DCM dichloromethane DIPEA N,N-diisopropylethylamine DMAP 4-dimethylaminopyridine DMF dimethylformamide DMSO dimethylsulfoxide DPEphos bis[(2-diphenylphosphino)phenyl]ether dppe 1,2-bis(diphenylphosphino)ethane dr diastereomeric ratio

ee enantiomeric excess equiv equivalence er enatiomeric ratio Et ethyl FLPs frustrated Lewis pairs glyme dimethoxyethane h hour HAT hydrogen atom transfer Hex hexyl HPLC high-performance liquid chromatography *i*-Bu isobutyl *i*-Pr isopropyl LC/MS liquic chromatography/mass spectrometry LED light-emitting diode *m*- meta Me methyl Mes mesityl M.S. molecular sieve NHC N-heterocyclic carbene NMP *N*-methyl piperidine NMR nuclear magnetic resonance NOESY nuclear Overhauser effect spectroscopy *n*-Pent *n*-pentyl *p*- para Ph phenyl pK_a negative base-10 logarithm of the acid dissociation constant (K_a) of a solution PMP 1,2,2,6,6-pentamethylpiperidine Pr propyl PyBOX bis(oxazolinyl)pyridine QUINAP [1-(1-isoquinolinyl)-2-naphthyl]diphenylphosphine

SET single electron transfer

t-Bu tert-butyl

TBAF tetrabutylammonium fluoride

TBME *tert*-butylmethyl ether

TBS *tert*-butyldimethylsilyl

Tf trifluoromethanesulfonyl

TFA trifluoroacetic acid

THF tetrahydrofuran

TMEDA tetramethylethylenediamine

TMS trimethylsilyl

s-Bu sec-butyl

Xantphos 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene

ACKNOWLEDGEMENT

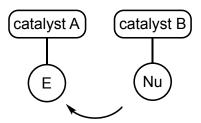
I would like to thank Prof. Masayuki Wasa for giving me the opportunity to study in his group. I would also like to thank Prof. James Morken and Prof. Marc Snapper for being on my committee and reviewing my thesis.

I thank my mentor, Jessica Chan, and other senior students in the group, Yejin Chang, Min Cao, Ahmet Yesilcimen and Zeyu Huang for their help in chemistry as well as support and guidance beyond chemistry. I thank my classmates Bochao Zhang and Mohan Gao for their companionship in this lab. It has been a pleasure to work with these people.

Lastly, special thanks go to my parents for the strongest support that one could ever get.

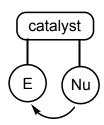
CHAPTER ONE: Introduction to Cooperative Catalysis

Cooperative catalysis describes a catalyst system where there can be two distinct catalysts that activate both the nucleophile and electrophile independently and synergistically;¹ this is also known as "dual catalysis"² or "synergistic catalysis"³ (Fig 1.1A). Cooperative catalysis can be found in nature, where enzymes work with co-catalysts to facilitate the synthesis of small molecules.


Cooperative catalysis should be distinguished from bifunctional catalysis, cascade catalysis and double activation catalysis (Fig 1). In a general bifunctional catalyst system, a single catalyst contains both acidic and basic functional groups, which can activate different substrates independently and bring the nucleophile and electrophile into proximity to promote the bond formation (Fig 1.1B). A cascade catalyst system often times describes a sequential activation of substrate by two or more catalysts (Fig 1.1C). A starting material first undergoes reaction with a catalyst to form an intermediate, which then undergoes a following reaction with another catalyst to form a second intermediate and regenerate the first catalyst. The second intermediate will react with the other coupling partner to form the desired compound and release the latter catalyst. Double activation catalysis describes a system where two different catalysts activate the same substrate simultaneously to form the reactive intermediates, which then leads to subsequent bond forming reactions (Fig 1.1C).³

¹ Schindler, C.; Jacobsen, E. N. Science **2013**, 340, 1052–1052.

² Sammis, G. M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 32, 9928–9929.


³ Allen, A. E.; MacMillan D. W. C. Chem. Sci. 2012, 3, 633-658.

A. Cooperative catalysis (dual catalysis, synergistic catalysis)

C. Cascade catalysis

B. Bifunctional catalysis

D. Double activation catalysis

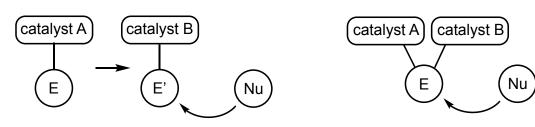


Fig 1.1 Classification of catalytic systems involving two catalysts

For the catalysts and substrates to work cooperatively, there are three major points to overcome. First, the catalysts must not quench each other, such as forming tight acid and base ion pairs, or cannot undergo ligand exchange, which could deactivate the catalysts. Second, the catalyst cannot have overlapping functions so that they can react with the according substrates independently to deliver the respective intermediates that will produce the desired product. Lastly, the substrates cannot be so reactive that they react with each other without activation by the catalyst and may lose stereoselectivity.⁴

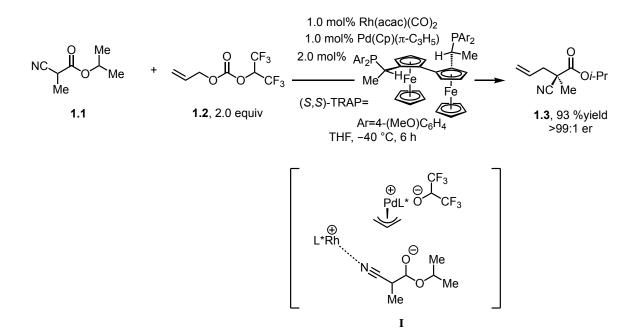
Some additional underlying challenges include turning over the catalysts efficiently. Since both substrates require activation independently, the concentration of the intermediates is low in the reaction mixture. Furthermore, when performing stereoselective reactions using cooperative catalyst systems, it is important that the non-stereoselective processes or epimerization can be suppressed so that enantioselectivity is not affected.

Some selected examples using cooperative acid/acid, acid/base, and base/base catalyst systems will be introduced. In addition, reactions that incorporate hydrogen bonding

⁴ Romiti, F.; del Pozo, J.; Paioti, P. H. S.; Gonsales, S. H.; Li, X.; Hartrampf, F. W. W.; Hoveyda, A. H. J. Am. Chem. Soc. **2019**, 141, 17952–17961

catalysis and photoredox catalysis in a cooperative catalyst system will also be briefly discussed.

1.1 Cooperative acid/acid catalysis

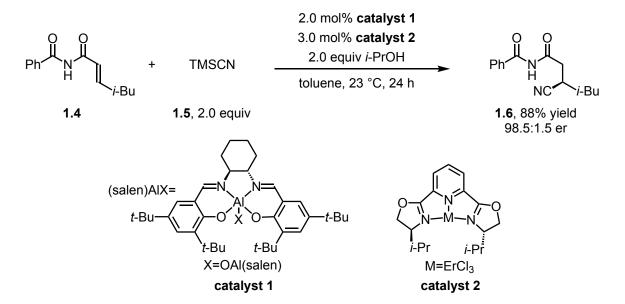

Lewis acids and Brønsted acids can be combined to achieve more efficient reactions with higher reactivity, selectivity, and/or broader substrate scope through the design of catalyst systems.⁵ One of the common activation modes of Lewis acid activation is coordination to carbonyl groups, which enhances the acidity of the α -proton and leads to various transformations.

The Ito group reported an enantioselective allylic alkylation of activated nitriles catalyzed by Rh-/Pd-complexes (Scheme 1.1).⁶ Ester 1.1 and allyl carbamate 1.2 with 1.0 mol% of Rh(acac)(CO)₂, 1.0 mol% of Pd(Cp)(π -C₃H₅), and (S,S)-TRAP ligand in THF at -40 °C gave allyl ester 1.3 in 93% yield and >99:1 er. This reaction is an example where both the metal ligand complexes are chiral, but only one controls enantioselectivity. The Rh-TRAP ligand complex activates cyanopropionate 1.1, forming enolate intermediate I as the electrons from ester are delocalized onto the complex while coordinating with rhodium. The palladium catalyst forms π -allyl species with allyl carbonate 1.2 through decarboxylative oxidative addition while releasing CO₂ and alkoxide. The Pd-allyl complex is then attacked by the enolate intermediate to form the C–C bond. Through mechanistic studies, it was found that the Pd-TRAP complex promotes the reaction but has no influence on the enantioselectivity, as no product formed when only Rh-catalyst was used but only racemic product was observed when only palladium catalyst was used. This can be easily explained that the nucleophile attacks the allyl complex anti to palladium. Another interesting note is that $(CF_3)_2CH$ carbonate **1.2** was used because if an ethoxide was released from the allyl carbonate, it is basic enough to deprotonate the ester 1.1, which influenced enantioselectivity, while the released $(CF_3)_2CHO^-$ is less basic because of

⁵ Yamamoto, H.; Futatsugi, K. Angew. Chem., Int. Ed. 2005, 44, 1924–1942.

⁶ Sawamura, M.; Sudoh, M.; Ito, Y. J. Am. Chem. Soc. 1996, 118, 3309-3310.

electron withdrawing effect from CF_3 groups and has more affinity to rhodium atom because of its soft character.

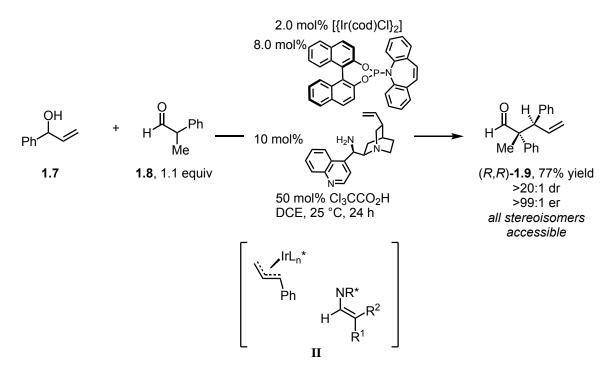


Scheme 1.1 Enantioselective Rh-/Pd- catalyzed allylic alkylation by Ito

The Jacobsen group reported a highly enantioselective conjugate cyanation of unsaturated imides, where both metal complexes are required for high efficiency and enantioselectivity (Scheme 1.2).⁷ Unsaturated imide **1.4** and TMSCN **1.5** undergoes cyanation to form enantioenriched cyanide product **1.6** with 2.0 mol% of aluminum based **catalyst 1** and 3.0 mol% of erbium based **catalyst 2**, 2.0 equiv of isopropanol in toluene at 23 °C. From previous method of cyanation addition to saturated imide, it was found that the reactive species involves a homobimetallic pathway, in which the catalyst activates both cyanide and the saturated imide. **Catalyst 1** alone could not catalyze the reaction, since it cannot activate cyanide. An additional chiral catalyst, **catalyst 2**, was therefore designed and found to be more efficient for activation of cyanide. With the two catalysts activating each substrate independently and cooperatively, the reaction time was reduced from 26-48 h to 8-14, loading of TMSCN was lowered from 2.5-4.0 equiv to 2.0 equiv, and total

⁷ Sammis, G.M.; Danjo, H.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 9928–9929.

catalyst amount decreased from 15 mol% to 7.0 mol%. From mechanistic studies, initial rate of reaction has first order dependence on both catalysts, indicating that both catalysts are involved in the rate-determining step. Changing either ligand on each metal from chiral to achiral gives product with lowered er, which suggests that both catalysts are also involved in asymmetric induction.

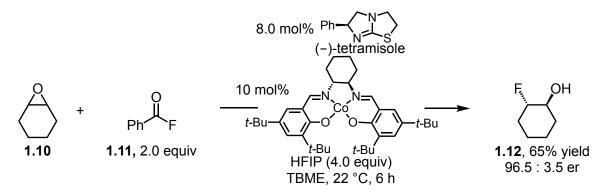

Scheme 1.2 Enantioselective conjugate cyanation by Jacobsen

1.2 Cooperative acid/base catalysis

The Carreira group reported an enantio- and diastereodivergent α -allylation of α substituted aliphatic aldehydes with the use of Ir-phosphoramidite complex and cinchonaalkaloid derived primary chiral amine, forming χ , δ -unsaturated aldehyde **1.9**.⁸ Allyl alcohol **1.7** and 1.1 equiv of aldehyde **1.8** with 2.0 mol% of Iridium salt and 8.0% of chiral (P, olefin) ligand, 10 mol% of cinchona alkaloid-derived chiral primary amine, 50 mol% of trichloroacetic acid in DCE at 25 °C obtained product (*R*,*R*)-**1.9** in 77% yield with >20:1 dr and >99:1 er. Each chiral catalyst is responsible for activation of one substrate and controls enantioselectivity at different position independently. Without one of the catalysts, the reaction would not proceed. The iridium catalyzed reaction forms the branched product by having the nucleophile attack the more substituted side of the allyl complex. During the

⁸ Krautwald, S.; Sarlah, D.; Schafroth, M.A.; Carreira, E.M. Science 2013, 340, 1065–1068.

C–C bond forming step, the π -allyl Ir complex from a secondary allylic alcohol and enamine intermediate from aldehyde condense onto primary amine are both planar (II), which minimizes the match and mismatch effect. By changing the combination of chiral and achiral (P, olefin) ligand on iridium and the primary amine, it was found that the amine controls stereochemistry at the α - position and the iridium complex controls the β -position. By switching to the pseudo enantiomer of primary amine, the opposite enantiomer at α position was observed. Using the opposite enantiomer of P/olefin ligand, the opposite enantiomer at β -position was observed. In each case, high enantioselectivity and high diastereoselectivity were obtained.

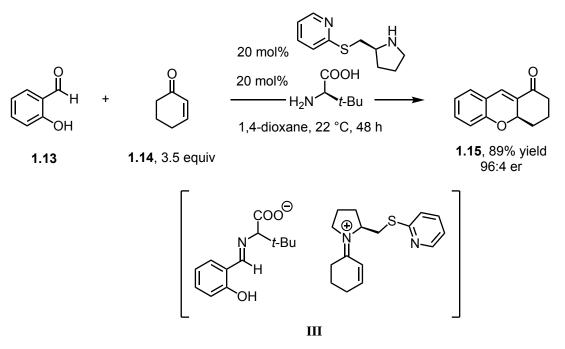


Scheme 1.3 Enantio- and diastereodivergent α -allylation of α -substituted aliphatic aldehydes by Carreira

Doyle and coworkers reported an enantioselective ring opening of epoxides by fluoride anion with chiral (salen)-Co complex and chiral amine (–)-tetramisole co-catalysts (Scheme 1.4).⁹ Epoxide **1.10** and 2.0 equiv of benzoyl fluoride **1.11** with 8.0 mol% of (–)-tetramisole and 10 mol% of cobalt-salen complex and 4.0 equiv of HFIP in TBME at 22 °C

⁹ Kalow, J. A.; Doyle, A. G. J. Am. Chem. Soc. 2010, 132, 3268-3269.

afforded fluoro-alcohol in 65% yield and 96.5:3.5 er. The amine generates HF from benzoyl fluoride **1.11** and HFIP. Reactions with only amine or only cobalt Lewis acid catalyst gave low conversion and low enantioselectivity. When both catalysts are used, the enantiomeric excess increased from <5 to 54%. A matched/mismatched effect was observed for chiral amine and chiral (salen)-Co complex. Only when using the right enantiomers of both catalysts, the optimal ee was observed.

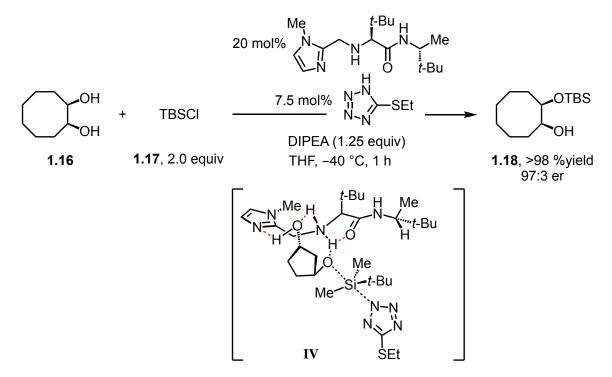


Scheme 1.4 Enantioselective ring opening of epoxides by fluoride anion by Doyle

1.3 Cooperative base/base catalysis

Reactions catalyzed by two bases are less common. In 2009, the Xu group reported an oxa-Michael-Mannich reaction to access tetrahydroxanthenones by the use of catalytic pyrrolidine and *tert*-Leucine (Scheme 1.5).¹⁰ Salicylic aldehyde **1.13** and α,β -unsaturated cyclohexanone **1.14** with 20 mol% of (*S*)-2-((pyrrolidin-2-ylmethyl)thio)pyridine and 20 mol% of *tert*-Leucine in 1,4-dioxane at 22 °C gave tetrahydroxanthenones in 89% yield and 96:4 er. Salicylic aldehyde **1.13** forms imine through condensation with tert-Leucine; cyclohexanone **1.14** condenses onto pyrrolidine to form iminium ion. Imine and iminium form the ion pair, intermediate **III**, then undergoes the enantioselective oxa-Michael addition and intramolecular Mannich reaction. After hydrolysis to afford the product. Without either amine, the reaction did not proceed, only trace amount of products were obtained and enantioselectivities were not obtained. Unfortunately, the authors did not demonstrate the specificity for amine activation.

¹⁰ Xia, A. -B.; Xu, D. -Q.; Luo, S. -P.; Jiang, J. -R.; Tang, J.; Wang, Y. -F.; Xu, Z. -Y. *Chem. Eur. J.* **2010**, *16*, 801–804.



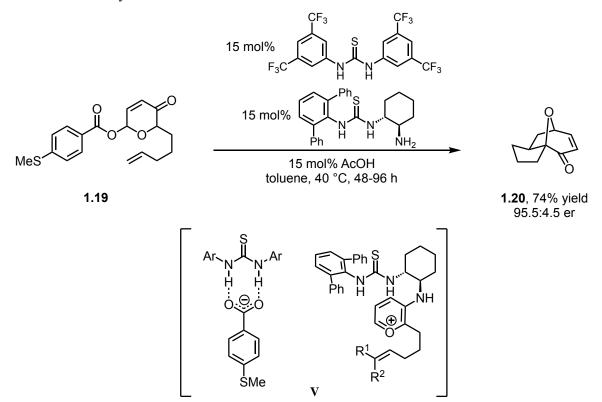
Scheme 1.5 oxa-Michael-Mannich reaction by Xu

In 2013, the Hoveyda and Snapper group reported a catalytic enantioselective mono silyl protection of diols and triols promoted by two heterocyclic Lewis base catalysts. Diol **1.16** was treated with 2.0 equiv of TBSCl **1.17** with 20 mol% of an amino acid derived polypeptide catalyst, 7.5% of 5-ethylthiotetrazole, and 1.25 equiv of DIPEA in THF at -40 °C in 1 h to give mono-protected alcohol **1.18** in >98% yield and 97:3 er (Scheme 1.6).¹¹ In this transformation, although two catalysts are structurally similar, they have different functions and are both required for it to proceed with high efficiency and enantioselectivity through hydrogen bonding interactions with the diol substrate (**IV**). To avoid steric repulsion and less effective action of the diol, the smaller side on diol is proposed to position closer to the polypeptide catalyst to reveal one of the enantiotopic alcohol groups. Deprotonated 5-ethylthiotetrazole, generated by DIPEA, acts as the nucleophilic co-catalyst (**IV**). The high-energy highest occupied molecular orbital caused by neighboring heteroatoms and a sterically accessible site for displacement of a chloride make it reactive towards silyl chlorides. Less basic DIPEA does not interact with alcohol

¹¹ Manville, N.; Alite, H.; Haeffner, F.; Hoveyda, A. H.; Snapper, M. L. Nat. Chem. 2013, 5, 768-774.

substrates. Instead, it can help to quench the HCl generated from the silvlation to regenerate the polypeptide catalyst.

Scheme 1.6 Enantioselective silyl protection of alcohols by Hoveyda and Snapper

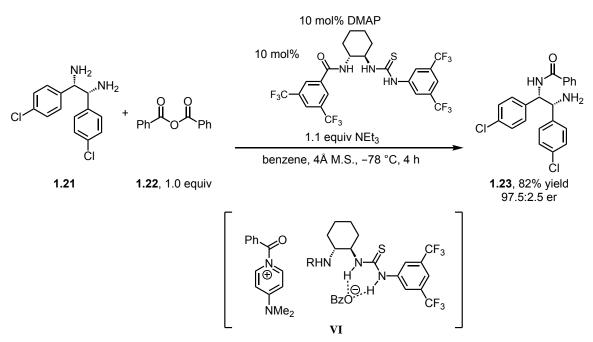

1.4 Cooperative catalysis and hydrogen bonding catalysis

There are many examples of cooperative catalysis where one of the substrates is activated by hydrogen bonding interactions. Some well-known hydrogen bonding catalysts include thiourea, squaramide, phosphoric acid, etc. are combined with other catalyst to achieve various transformations.

The Jacobsen group reported an enantioselective oxidopyrylium-based [5+2] dipolar cycloaddition reaction in 2011 (Scheme 1.7).¹² *p*-Thiomethylbenzoyl substrate **1.19** with 15 mol% of achiral thiourea and 15 mol% of primary aminothiourea and 15 mol% of acetic acid in toluene at 40 °C affords the cyclized product **1.20** in 74% yield and 95.5:4.5 er. This is an example where an additional co-catalyst improves both the yield and enantioselectivity of product. The achiral thiourea serves as anion abstractor, which abstracts the aryl carboxylate leaving group from **1.19** to afford pyrylium intermediate **V**.

¹² Burns, N. Z.; Witten, M. R.; Jacobsen, E. N. J. Am. Chem. Soc. 2011, 133, 14578–14581.

Subsequent intramolecular [5+2] cycloaddition affords the desired product **1.20**. Initially, when a chiral thiourea catalyst and stoichiometric triethylamine were used, no stereoselectivity was observed. When a bifunctional thiourea containing a primary amine was used, low enantioselectivity was observed (37% yield, 60.5:39.5 er). Through systematic screening, it was found that addition of achiral thiourea improve both the yield and enantioselectivity and acetic acid as co-catalysts also help to enhance the yield. Mechanistic investigation showed that either aminocarbazole, or diamine or tertiary aminothiourea catalysts could not generate the product with high yield and enantioselectivity.

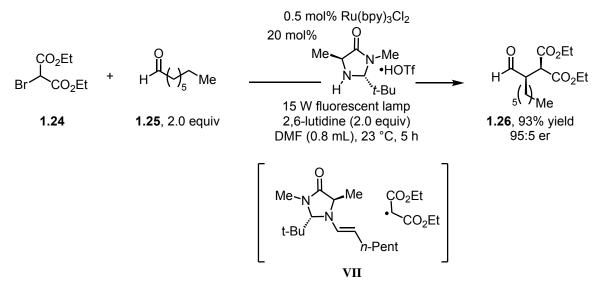


Scheme 1.7 Enantioselective oxidopyrylium-based [5+2] cycloaddition by Jacobsen

Another example of involving hydrogen bonding catalysis was demonstrated by Seidel in 2011 (Scheme 1.8).¹³ A catalytic desymmetrization of *meso*-diamines was shown through enantioselective monobenzoylation of diamine **1.21** by using anhydride **1.22** and catalyst combination of 10 mol% of DMAP and 10 mol% of a thiourea based chiral anion

¹³ De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 14538-14541.

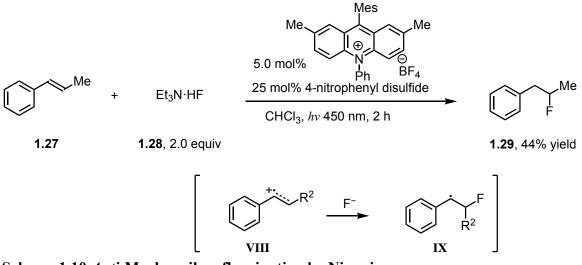
receptor with 1.1 equiv of triethylamine in benzene at -78 °C to afford product **1.23** in 82% yield and 97.5:2.5 er. Both catalysts are required for the reaction to take place with high yield, without either catalyst, the product was obtained with diminished yield and enantioselectivity. The two catalysts have to work cooperatively to form a tight ion pair **VI**, from which the benzoyl anion is delivered enantioselectively to the amine.


Scheme 1.8 Desymmetrization of meso-diamines by Seidel

1.5 Cooperative catalysis and photoredox catalysis

Photoredox catalysis provides radical intermediates, which can also be useful intermediates in cooperative catalysis. The MacMillan group reported an enantioselective intermolecular α -alkylation of aldehydes with alkyl bromides using photoredox catalyst Ru(bpy)₃Cl₂ and secondary amine catalyst (Scheme 1.9).¹⁴ Alkyl halide **1.24** and 2.0 equiv of aldehyde **1.25** with 0.5 mol% of ruthenium-based catalyst and 20 mol% of secondary amine catalyst 2.0 equiv of 2,6-lutidine under 15 W fluorescent lamp in DMF at 23 °C gave product **1.26** in 93% yield and 95:5 er. The Ru-based catalyst, through SET, reduces alkyl bromide to form an electron deficient alkyl radical (VII). At the same time, secondary amine catalyst and the aldehyde forms a reactive enamine intermediate (VII). Subsequently,

¹⁴ Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77-80.


the SOMOphilic enamine adds to alkyl radical to furnish the product **1.26**. The two catalysts do not have overlapping functions and generate individual reactive species to allow C–C bond formation.

Scheme 1.9 Enantioselective intermolecular *a*-alkylation of aldehydes by MacMillan

An *anti*-Markovnikov addition of Brønsted acidic nucleophiles of chorides, fluorides, phosphoric acid and sulfonic acid to styrene derivatives was reported by Nicewicz using an acridinium based organo-photoredox catalyst and hydrogen atom donor catalyst (Scheme 1.10).¹⁵ Styrene **1.27** and Et₃N·HF **1.28** undergoes fluorination with 5.0 mol% of photoredox catalyst, 9-mesityl-10-methylacridinium, and 25 mol% of 4-nitrophenyl disulfide under 450 nm radiation in chloroform. The excited photoredox catalysts, through photoinduced electron transfer, generates alkene radical cation **VIII**. Nucleophilic fluorides from Et₃N·HF **1.28**, in this case, attacks the *anti*-Markovnikov position to afford benzylic radical **IX**. Thiophenol, from consecutive steps of homolytic cleavage of disulfide, reduction and protonation, transfers hydrogen radical to afford the final product. Both catalysts contribute to the regioselectivity observed here. If both catalysts are excluded from the reaction, halogenation was observed only at the α -position. No other side products in this reaction was obtained. Without the use of disulfide, the reaction did not proceed.

¹⁵ Wilger, D. J.; Grandjean, J-M. M.; Lammert, T. R.; Nicewicz, D. A. Nat. Chem. 2014, 6, 720–726.

Scheme 1.10 Anti-Markovnikov fluorination by Nicewicz

Many other transformations using the concept of photoredox catalysis in combination with other catalysts have also been developed.¹⁶

1.6 Conclusion

In this short overview of cooperative catalysis, various reactions using different acid/acid, acid/base, and or base/base cooperative catalyst combination have been briefly introduced. As the field of cooperative catalysis develops, hydrogen bonding catalysis as well as photoredox catalysis are incorporated to provide different mode of activation. Cooperative catalyst system gives more access to otherwise less reactive intermediates and thus opened more possible reaction pathways. Yet, the inherent challenge of mutual quenching among catalysts and substrates still prevents the discovery of general methods and subsequently apply in synthesis of useful compounds.

¹⁶ a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. *Nat. Rev. Chem.* **2017**, *1*, 0052; b) Prier, C. K.; Rankic, D. A.; MacMilan, D. W. C. *Chem. Rev.* **2013**, *113*, 5322–5363; c) Milligan, J. A.; Phelan, J. P.; Badir, S. O.; Molander, G. A. *Angew. Chem., Int. Ed.* **2019**, *58*, 6152–6163.

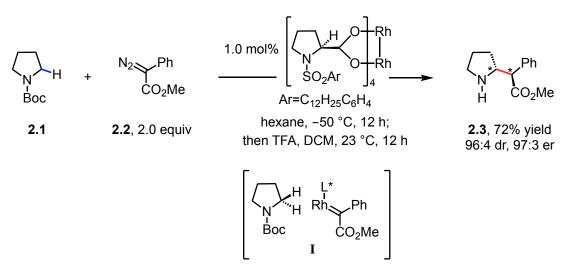
CHAPTER TWO α -C–H Alkynylation of *N*-Alkylamines by Cooperative Actions of B(C₆F₅)₃ and Organocopper Complex: Applications in Late-Stage Functionalization and Stereoselective Synthesis

2.1 Introduction

Development of efficient and selective C–C bond forming reactions is important in organic synthesis.¹ Substitution reactions, nucleophilic additions and Friedel-Crafts reactions represent some of the traditional methods to build complexity through the formation of C–C bonds.² Over the years, scientists have developed transition metal catalyzed reactions for C–C bond formation, one of which being cross coupling reactions. However, it sometimes requires prefunctionalization or preactivation of the starting materials, which will need at least one step synthesis before using and generates stoichiometric amount of metal salt byproduct. Therefore, the route involving direct C–H bond activation and subsequent C–C bond formation is more attractive.³

Various methods of α -amino C(sp³)–H bond activation by transition metal complexes have been reported by different groups.⁴ Here are some selected examples by different activation modes.

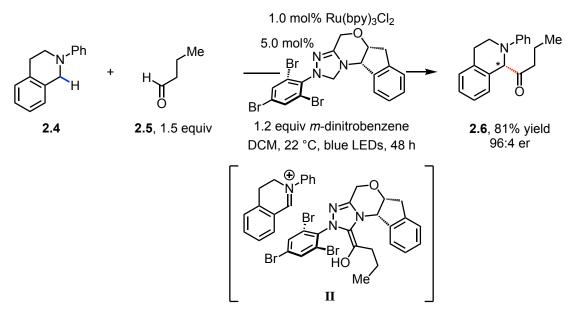
The Davies reported an enantioselective C–H activation by the use of Rh-based catalyst (Scheme 2.1).⁵ *N*-Boc protected cyclic amine **2.1** and methyl phenyldiazoacetate **2.2** with the use of 1.0 mol% of Rh prolinate catalyst through rhodium-carbenoid insertion intermediate **I** afford the alkylated product **2.3** in 72% yield, 96:4 dr and 97:3 er. Even though high diastereoselectivity and enantioselectivity were achieved, the reaction required a Rh dimer catalyst and a diazo compound for the generation of carbene.


¹ Corey, E.J.; Cheng, X.M. *The Logic of Chemical Synthesis;* John Wiley & Sons: New York, **1989**; pp 1–91.

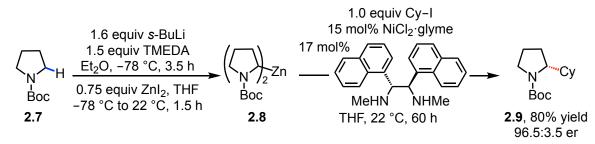
² Fleming, I. *Pericyclic Reactions*; Oxford University Press: New York, **1999**; pp 1–89.

³ Li, C-J. Acc. Chem. Res. 2009, 42, 335-344.

⁴ a) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. *Science* 2016, *352*, 1304–1308; b) McQuaid, K. M.; Sames, D. J. *J. Am. Chem. Soc.* 2009, *131*, 402–403; c) Murarka, S.; Deb, I.; Zhang, C.; Seidel, D. J. *J. Am. Chem. Soc.* 2009, *131*, 13226–13227; d) Campos, K. R. *Chem. Soc. Rev.* 2007, *36*, 1069–1084; e) Osberger, T. J.; Rogness, D. C.; Kohrt, J. T.; Stepan, A. F.; White, M. C. *Nature* 2016, *537*, 214–219; f) Chen, W.; Ma, L.; Paul, A.; Seidel, D. *Nat. Chem.* 2018, *10*, 165–169; g) Davies, H. M. L.; Manning, J. R. *Nature* 2008, *451*, 417–424.

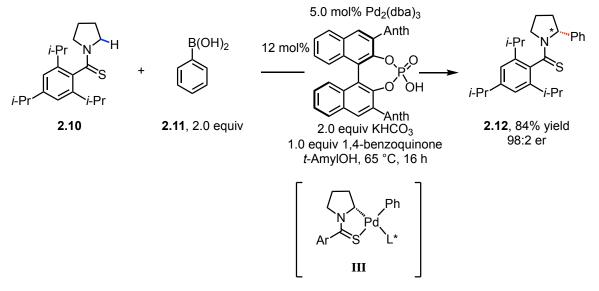

⁵ Davies, H. M. L.; Venkataramani, C.; Hansen, T.; Hopper, D. W. J. Am. Chem. Soc. **2003**, *125*, 6462–6468.

Scheme 2.1 Enantioselective α -amino C–H activation by Rh-prolinate catalyst by Davies


In 2006, Rovis reported an enantioselective α -acylation of tertiary amines facilitated by the combination of photoredox catalysis and NHC catalysis (Scheme 2.2).⁶ *N*-Phenyl tetrahydroisoquinoline **2.4** and butanal **2.5** gave acylated product **2.6** in 81% yield and 96:4 er with the use of 1.0 mol% of Ru(bpy)₃Cl₂, 5.0 mol% of an aminoindanol-derived NHC, and 1.2 equiv of weak organic oxidant *m*-dinitrobenzene under blue LED in 48 h. Single electron oxidation by [Ru(bpy)]³⁺, from excited [Ru(bpy)]²⁺, followed by hydrogen atom abstraction generates iminium ion (II). Interactions between the NHC catalyst and the aldehyde substrate result in a Breslow intermediate (II), which can undergo subsequent nucleophilic attack to the iminium ion to afford the product. The scope of the reaction is limited to *N*-aryl tetrahydroisoquinolines and alkyl aldehydes. In addition, the reaction takes 48 h to only give moderate yield.

⁶ DiRocco, D. A.; Rovis, T. J. J. Am. Chem. Soc. 2012, 134, 8094-8097.

Scheme 2.2 Enantioselective *a*-amino acylation by Rovis

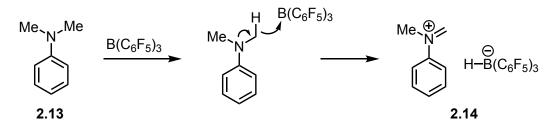

Fu reported a catalytic enantioselective Negishi cross-coupling of α -zincated *N*-Boc pyrrolidine with secondary halides in 2013.⁷ The organozinc reagent **2.8** is first prepared by lithiation of *N*-Boc pyrrolidine **2.7** with 1.6 equiv of *s*-BuLi and 1.5 equiv of donor ligand TMEDA and then followed by addition of 0.75 equiv of ZnI₂ at -78 °C. It is then subjected to 1.0 equiv of cyclohexyl iodide with 15 mol% of NiCl₂·glyme and 17 mol% of chiral diamine ligand in one pot to form alkylated product **2.9** in 80% yield and 96.5:3.5 er. Although the reaction can be performed in one pot, it needs preparation of organozinc reagent by the use of volatile dangerous lithium reagent in cryogenic conditions to only give 0.75 equiv of the desired compound. Furthermore, the Nigeishi cross-coupling step needs high catalyst loading and long reaction time.

Scheme 2.3 Enantioselective Negishi cross-coupling by Fu

⁷ Cordier, C. J.; Lundgren, R. J.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 10946–10949.

Yu reported an enantioselective thioamide directed α -amino C–H arylation by the use of Pd-based catalyst and chiral phosphoric acid in 2017 (Scheme 2.4).⁸ Thioamide **2.10** and 2.0 equiv of phenyl boronic acid **2.11** were treated with 5.0 mol% Pd(dba)₃, 12 mol% of chiral phosphoric acid, 2.0 equiv of KHCO₃, and 1.0 equiv of 1,4-benzoquinone to afford arylated product **2.12** in 84% yield and 98:2 er. The palladium ligand complex forms a fivemembered palladacycle with thioamide **2.10** (**III**). Although high regioselectivity is achieved by directing group, the starting material requires an additional step to synthesize and the removal of directing group needs two steps, reduction of S=C to CH₂ and debenzylation, to reveal the amine.

Scheme 2.4 Enantioselective thioamide directed *a*-amino C–H arylation by Yu


These transformations, although provide α -functionalized amines, either require the use of precious transition metal-based catalysts, such as (Rh, Ru, or Pd), or need stoichiometric amount of dangerous lithium reagent. In addition, they often require long reaction time, as shown in the case of Rovis and Fu, 48 and 60 h respectively.

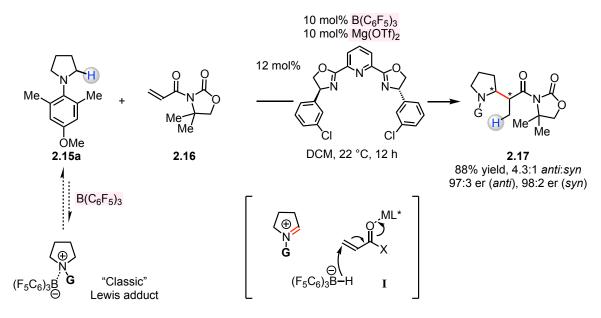
There were no good general methodd for the functionalization of α -amino C–H bonds. We wanted to develop a new catalyst system, where we could achieve catalytic α -amino C–H functionalization with the use of more economical catalyst and mild condition.

⁸ Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. Nat. Chem. 2017, 9, 140-144.

Cooperative catalyst systems have been developed over the years, which circumvents pre-activation from using stoichiometric transition metals.⁹ These catalysts are capable of activating the nucleophile and electrophile precursors independently and simultaneously as discussed in Chapter One. Through covalent and non-covalent interactions, the catalyst brings the two substrates in close proximity and thus enhances the rate of reaction. However, self-quenching of the acidic and basic functional groups in from the catalyst and substrates is one of its major limitations. The use of weak acid or base catalyst can only activate highly base or acid sensitive substrates, which further limits the scope of transformation. The approach of incorporating the concept of Frustrated Lewis pairs (FLP) into cooperative catalysts, which consists of a Lewis acid and Lewis base pair, can help to overcome mutual quenching due to steric hindrance.

FLP has been demonstrated that it can activate unreactive small molecules, such as H₂, CO, and CO₂.¹⁰ Furthermore, in 2002, the group of Basset has shown that B(C₆F₅)₃ can abstract hydride from α -amino position on dimethylaniline **2.13** to give an ion pair of iminium and borohydride **2.14** (Scheme 2.5).¹¹

Scheme 2.5 Formation of FLP consisting of iminium ion and borohydride

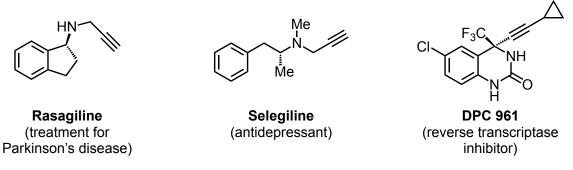

Our group was inspired by this chemistry and developed an α -amino alkylation reaction by the use of achiral and chiral Lewis acid catalysts, which function cooperatively

 ⁹ a) Cooperative Catalysis: Designing Efficient Catalysts for Synthesis; Peters, R., Ed.; Wiley-VCH: New York, **2015**. b) van den Beuken, E. K.; Feringa, B. L. *Tetrahedron* **1998**, *54*, 12985–13011. c) Yamamoto, H.; Futatsugi, K. *Angew. Chem., Int. Ed.* **2005**, *44*, 1924–1942. d) Matsunaga, S.; Shibasaki, M. *Chem Commun.* **2014**, *50*, 1044–1057. e) Trost, B. M.; Bartlett, M. J. *Acc. Chem. Res.* **2015**, *48*, 688–701. f) Wang, M. H.; Scheidt, K. A. *Angew. Chem., Int. Ed.* **2016**, *55*, 14912–14922.

 ¹⁰ a) Stephan, D. W. J. Am. Chem. Soc. 2015, 137, 10018–10032. b) Stephan, D. W.; Erker, G. Angew. Chem., Int. Ed. 2015, 54, 6400–6441. c) Stephan, D. W. Science 2016, 354, aaf7229. d) Ashely, A. E.; O'Hare, D. Top. Curr. Chem. 2012, 334, 191–218.

¹¹ Millot, N.; Santini C.C.; Fenet, B.; Basset, J. M. Eur. J. Inorg. Chem. 2002, 3328–3335.

(Scheme 2.6).¹² *N*-aryl pyrrolidine **2.15a** and α,β -unsaturated compound **2.16** with 10 mol% mold of B(C₆F₅)₃, 10 mol% of Mg(OTf)₂ and 12 mol% of chiral PyBOX ligand generate alkylated product **2.17** in 88% yield, 4.3:1 *anti:syn*, 97:3 er (*anti*), and 98:2 er (*syn*). The catalyst combination can avoid formation of "classic" Lewis acid adduct with a sterically hindered amine and generate iminium ion and borohydride by B(C₆F₅)₃-catalyzed hydride abstraction at the α -amino position. The iminium ion is then coupled with an in situ generated boron enolate from α,β -unsaturated compound to afford the α -alkylated amine in an enantioselective manner.


Scheme 2.6 B(C₆F₅)₃ and magnesium complex catalyzed alkylation through α -amino C–H activation

Since it has been shown that an iminium intermediate can be generated efficiently and $B(C_6F_5)_3$ can work cooperatively with a Lewis acid metal complex, we envisioned the development of various transformations with different nucleophilic coupling partners.

¹² Shang, M.; Chan, J. Z.; Cao, M.; Chang, Y.; Wang, Q.; Cook, B.; Torker, S.; Wasa, M. *J. Am. Chem. Soc.* **2018**, *140*, 10593–10601.

2.2 Background

Propargylamines are one of the commonly found moieties in pharmaceuticals such as these molecules shown in Fig. 2.1.¹³ Intermediates containing propargyl amines are as well useful for the synthesis of bioactive molecules.¹⁴

Fig 2.1 Examples of propargyl amines in bioactive molecules

Enantio-enriched propargylamines are commonly synthesized through addition of organometallic alkyne complexes to preformed imines or by a three-compounent coupling reactions.¹⁵ However, because of poor electrophilicity of imines comparing to aldehydes, aryl or other electron rich protecting groups, such as *p*-methoxyphenyl, tosyl, or diphenylphosphinoyl, among others, are installed to activate imines. Furthermore, strongly basic, stoichiometric nucleophilic metal alkynyl species generated from organolithium, Grignard reagent, or LDA, are used, which are incompatible with base sensitive substrates and difficult to control enantioselectivity.

A solution to a more general method with broader scope of substrate would be incorporating more reactive iminium intermediate and generation of nucleophilic metal alkynyl species in situ from suitable metal precursors. In 2004, the Li group reported an enantioselective alkynylation to the benzylic α -amino C–H of *N*-phenyl


 ¹³ a) Chen, J.J.; Swope, D. M. J. Clin. Pharmacol. 2005, 45, 878–894. b) Birks. J.; Flicker, L. Cochrane Database of Systematic Reviews 2003, Issue 1. Art. No.: CD000442. DOI: 10.1002/14651858.CD000442. c)
 Li, S.; Ma, J. A. Chem Soc Rev. 2015, 44, 7439-48.

¹⁴ a) Ermolat'ev, D. S.; Bariwal, J. B.; Steenackers, H. P. L.; De Keersmaecker, S. C. J.; Van der Eycken, E. V. *Angew. Chem., Int. Ed.*, **2010**, *49*, 9465–9468. b) Arshadi, S.; Vessally, E.I Edjlali, L.; Hosseinzadeh-Khanmiri, R.; Ghorbani-Kalhor, R. Beilstein J. Org. Chem. **2017**, *13*, 625–638.

¹⁵ a) Friestad, G.K.; Mathies, A.K. *Tetrahedron* **2006**, *63*, 2541–2569. b) Yamada, K.; Tomioka, K. *Chem. Rev.* **2008**, *108*, 2874–2886. c) Zani, L.; Bolm, C. *Chem. Commun.* **2006**, 4263–4275. d) Trost, B. M.;

Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963–983. e) Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Chem. Rev. 2017, 117, 14091–14200.

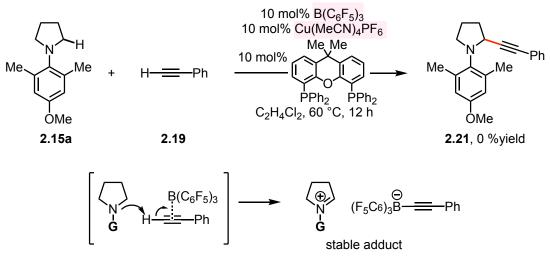
tetrahydroisoquinolines **2.18** with phenylacetylene **2.19** by the use of Cu^I-PyBOX complex with stoichiometric external oxidant *t*-BuOOH (Scheme 2.4).¹⁶ However, this method and other similar strategies are confined to the use of activated tetrahydroisoquinoline structure and phenylacetylenes, producing moderate yield and enantioselectivity in long reaction hours.

Scheme 2.4 Enantioselective *α*-amino C–H alkynylation of tetrahydroisoquinolines

Given these limitations, we envision a more general method that does not require the use of external oxidant and targets α -amino C–H bonds from trialkyl amines to synthesize propargyl amines. Since α -amino C–H bonds of bioactive *N*-alkylamines constitute over 50% of the top selling commercial drugs, and estimated that 26% of all drugs and agrochemicals contains trialkyl amine moieties, ¹⁷ we would like our method to be applicable to such existing well streamlined molecules. The alkyne unit on bioactive molecules can serve as a handle for late-stage diversification.^{9e} Catalytic coupling of α -amino C(sp³)–H bonds and alkyne is an attractive strategy to provide propargylamines.

2.3 Development of Alkynylation Reaction

2.3.1 Discovery

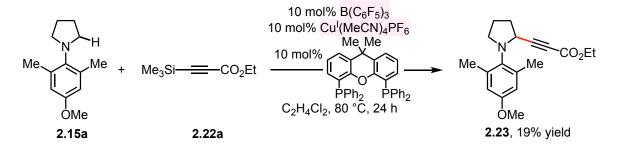

From our previously discussed section 2.1 (Scheme 2.6), iminium ion can be generated in situ through cooperative actions of sterically hindered amine and $B(C_6F_5)_3$, which affords an electrophile. On the other hand, copper ligand complex is known to form nucleophilic copper alkynyl species with terminal alkyne. We hypothesized that if we were

¹⁶ Li, Z.; Li, C.-J. Org. Lett. 2004, 18, 2982–2985.

¹⁷ a) Roughley, S. D.; Jordan, A. M. *J. Med. Chem.* **2011**, *54*, 3451–3479. b) Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. *Chem. Soc. Rev.* **2016**, *45*, 546–576.

to make the two catalytic systems compatible, they might work cooperatively, and a C–C bond forming reaction might occur to afford propargyl amines.

The initial reaction was carried out with *N*-aryl pyrrolidine **2.15a**, which is known to generate iminium ion efficiently, and phenylacetylene **2.19**, known to form copper alkynyl species was reacted with 10 mol% of B(C₆F₅)₃, 10 mol% of Cu(MeCN)₄PF₆ and 10 mol% of Xantphos at 60 °C in C₂H₄Cl₂ (Scheme 2.8). After 12 hours, the reaction did not give the desired product. We reasoned that terminal alkyne can also interact with the sterically hindered amine and B(C₆F₅)₃ to form a stable adduct (Scheme 2.8), previously shown by Stephan, preventing the desired alkynylation reaction to proceed.¹⁸ The iminium ion generated in situ is much shorter lived than the ones generated from tetrahydroisoquinolines, which is stabilized by the extended conjugated aromatic system. The shorter-lived iminium ion therefore has less probability to interact with the nucleophile that requires longer formation time.


Scheme 2.8 Initial alkynylation reaction

2.3.2 Optimization

Next, we hypothesized that if we were to use a disubstituted alkyne that could transmetalate with copper, the desired copper alkynyl complex could also be afforded. From Hiyama-Denmark cross coupling, it is known that silicon transmetalates with copper efficiently. We found that with trimethylsilyl substituted alkyne **2.15a** under similar

¹⁸ Dureen, M. A.; Stephan, D. W. J. Am. Chem. Soc. 2009, 131, 24, 8396–8397.

reaction conditions, the desired C–C bond forming product was generated in 19% yield. (Scheme 2.9)

Scheme 2.9 Reaction with silicon substituted alkyne

Potentially, similar to cross coupling reactions in general, homocoupling or desilylation reaction is happening faster than the C–C bond formation, leading to low yield of the desired compound. We hypothesized that $B(C_6F_5)_3$ could be interacting with silane from the reaction mixture. If $B(C_6F_5)_3$ is released faster, giving copper species less time to react with itself, the side reactions could be minimized.

In 2000, the Yamamoto group reported that catalytic $B(C_6F_5)_3$ and stoichiometric amount of silane can reduce alcohols to alkanes and form silanols as byproducts.¹⁹ This could be a potential method to decompose silane generated byproducts and release $B(C_6F_5)_3$. The proposed catalytic cycle to turnover $B(C_6F_5)_3$ and trimethylsilane is shown in Fig 2.2. $B(C_6F_5)_3$ and trimethylsilane form intermediate **I**. Addition of alcohol gives intermediate **II** and then after release of trimethylsilanol, it affords carbocation and borohydride intermediate **III**. Lastly, alkane is produced as the product and $B(C_6F_5)_3$ is released to turn over the catalytic cycle.

¹⁹ Gevogyan, V.; Rubin, M.; Benson, S.; Liu, J-X.; Yamamoto, Y. J. Org. Chem. 2000, 65, 6179–6186.

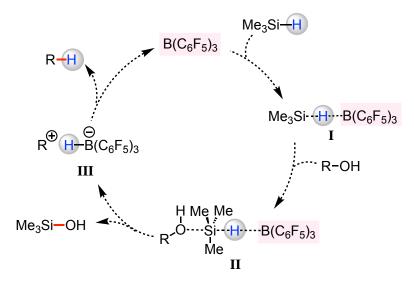
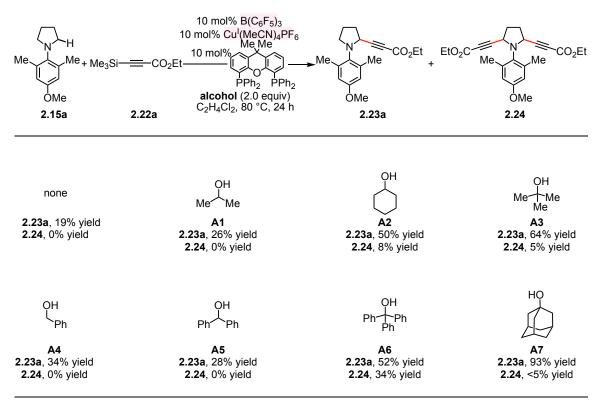



Figure 2.2 B(C₆F₅)₃-Catalyzed reduction of alcohols and cleavage of aryl and alkyl ethers with hydrosilanes

Different alcohols were evaluated to see if it would influence the yield of product. As the sterics increased from isopropanol A1 to *t*-BuOH A3, the yield of mono product 2.23a increased from 26% to 64%. Higher yield from *t*-BuOH than isopropanol could be explained by the generation of a more stable carbocation from *t*-BuOH. Benzylic carbocations are more stabilized than alkyl carbocations through delocalization through phenyl rings. Phenyl substituted alcohols were then tested: benzyl alcohol A4 afforded 34%, benzhydrol A5 28% and triphenylmethanol A6 gave 52% yield of 2.23a and 34% yield of 2.24. Adamantol A7 produced 93% of 2.23a and <5% yield of 2.24 (Table 2.1).

Table 2.1 Evaluation of alcohols

When temperature is lowered to 60 °C, triphenylmethanol A6 gave higher yield than adamantol A7, with 52% of 2.23a and 34% of 2.24 (Table 2.2, entry 1). Lowering the loading of triphenylmethanol to 1.0 equivalent reduces the amount of di-addition product and reducing the reaction time further reduced the formation of 2.24 (<5%), giving 2.23a in 90% yield (Table 2.2, entry 2 and 3). Reducing the amount of catalyst loading gave lower yields of the product (Table 2.2, entry 4). No product was observed without catalyst, or when less hindered BF₃ or less Lewis acidic BPh₃ were used (Table 2.2, entries 5-7).

Me Me OMe 2.15a	10 mol% E = 10 mol% Cul(10 mol% C	$MeCN)_{4}PF_{6}$ Me Me Me Me Me Me Me Me	CO ₂ Et EtO ₂ C	Me OMe 2.24
entry	Lewis acid (mol%)	equiv of Ph ₃ COH	yield 2.23a	1 (%) 2.24
1	B(C ₆ F ₅) ₃ (10)	2	52	34
2	B(C ₆ F ₅) ₃ (10)	1	83	15
3*	B(C ₆ F ₅) ₃ (10)	1	90	<5
4	B(C ₆ F ₅) ₃ (5)	1	81	<5
5	none	1	0	0
6	BF ₃ ·OEt ₂ (10)	1	0	0
7	BPh ₃ (10)	1	0	0

* Reaction mixture was stirred for 12 h

Table 2.2 Optimization table

2.3.3 Proposed catalytic cycle

From the above results, our proposed catalytic cycle is presented in Fig 2.3. $B(C_6F_5)_3$ could receive a hydride from *N*-alkylamine **2.15**, giving iminium and borohydride ion pair (I). Cu(I)-complex could coordinate with trimethyl substituted alkyne **2.22**. Transmetalation between copper and silicon affords copper alkynyl species and release of trimethylsilane, which is then quenched by triphenylmethanol to give trimethylsilanol and triphenylmethane following cycle proposed in Fig 2.2. Subsequently, C–C bond formation between iminium and copper alkynyl complex (III) affords product **2.14** and regenerate the catalysts to close the catalytic cycle.

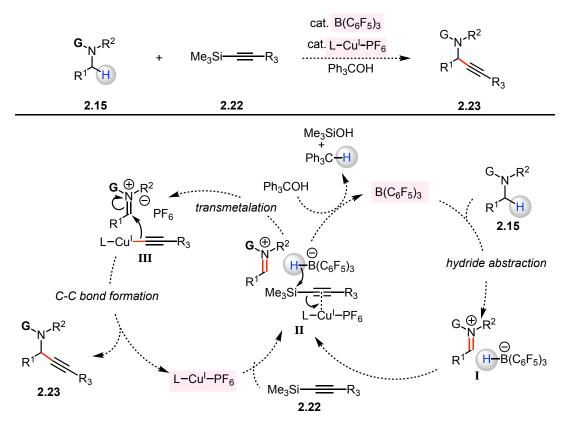


Fig 2.3 Proposed catalytic cycle

- 2.4 Evaluation of Substrates
- 2.4.1 N-aryl substituted amines

Different cyclic and acyclic *N*-aryl substituted substrates were subjected under the same reaction conditions (Table 2.3). *N*-aryl pyrrolidines derivatives afforded products **2.23a** and **2.23b** in 90% yield and 77% yield respectively, and *N*-aryl azepane **2.15c** gave 77% yield of isolated product. Acyclic *N*-aryl substrate **2.15d** generated the mono-addition product **2.23d** in 90% yield, with less than 5% yield of di-addition product. For *N*-ethyl and *N*-benzyl substituted *N*,*N*-arylmethyl substrates, alkyne predominantly adds to *N*-methyl site, giving **2.23e** in 42% yield and **2.23f** in 70% yield.

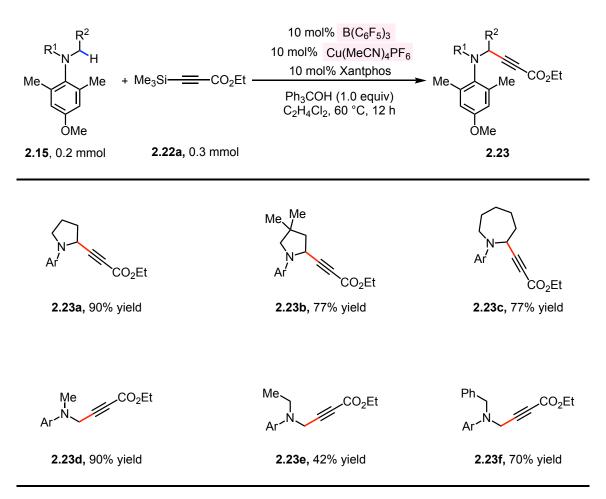


Table 2.3 Alkynylation of N-aryl amines

2.4.2 Trialkylamines

We wanted to perform alkynylation on trialkylamines, because eventually we would like to apply our methods to N-containing drug molecules. When Xantphos was used as the ligand for trialkylamines, it gave 11-28% yield of propargylamines (Table 2.4). Dppe was identified to be the optimal ligand after evaluation. We reasoned that since these trialkylamines are more sterically hindered than *N*-aryl amines, a more flexible ligand dppe is required than the more structurally more rigid ligand Xantphos. With dppe, **2.23g** is obtained in 76% yield. Noticeably, larger groups around the amine gives higher yield of product, **2.23h** with benzyl substituent (86% yield) and **2.23i** with benzhydryl substituent (97% yield) (Table 2.4).

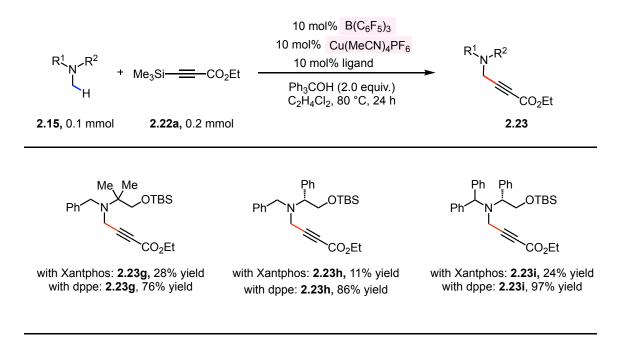


Table 2.4 Alkynylation of trialkylamines

2.4.3 Functionalization of N-containing drug molecules

Butenafine **2.15j** and trimebutine **2.15k** can be alkynylated in 76% yield and 71% yield respectively. Secondary amine drug molecules are protected with benzhydryl groups, derivatives of atomoxetine **2.15l**, nortriptyline **2.15m**, duloxetine **2.15n**, and sertraline **2.15o** to give the desired product in 56% to 74% yield (Table 2.5). Ether, ester, thiophene, and chlorides are tolerated in this reaction condition.

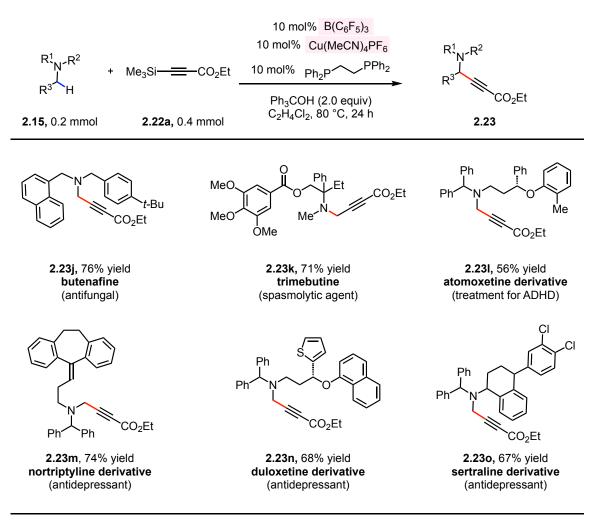
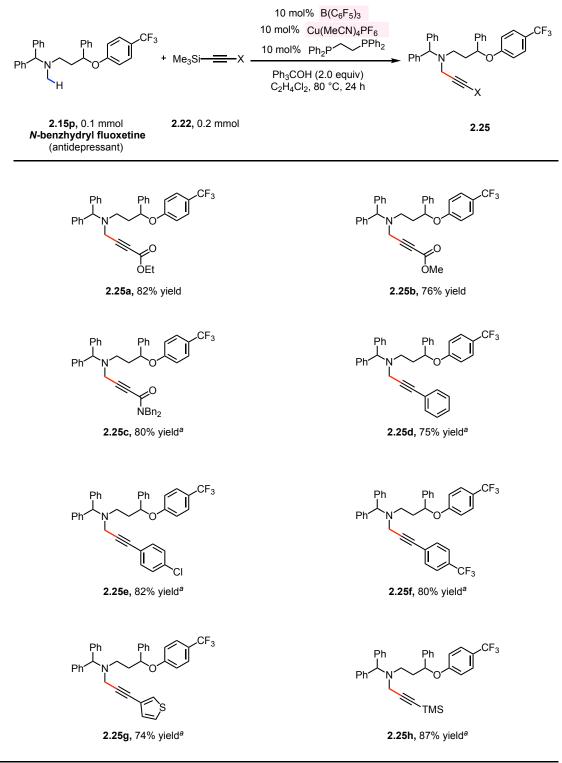



Table 2.5 Alkynylation of N-containing drug molecules

2.4.4 Scope of alkynes

Using benzhydryl protected fluoxetine **2.15p**, we explored the scope of alkynes (Table 2.6). Ethyl ester, methyl ester, and amide are all tolerated and gave up to 80% yield (**2.25a**, **2.25b**, **2.25c**). The reaction of **2.15p** with ethyl ester alkyne **2.22a** could be scaled up to 1.0 g, giving alkynylated product **2.25a** in 93% yield after 48 h. Phenyl substituted (**2.25d**), as well as, electron rich chloro- (**2.25e**) and electron deficient trifluoromethyl groups (**2.25f**) are compatible with the system, generating the corresponding product with 75-82% yield. 2-Thiophene alkyne and trimethylsilyl substituted alkyne generated **2.25g** in 74% and **2.25h** 87% yield.

^a (S)-Ph-PyBOX was used as the ligand

Table 2.6 Scope of alkynes with benzhydryl fluoxetine derivative

2.4.5 Application towards enantioselective transformation

Chiral ligands of different scaffolds were screened (Table 2.7). Bis-phosphine ligands (L1-L3) gave (*S*)-2.23a in 61-89% yield, but the enantioselectivity is low, with the highest 45:55 er. Bis-oxazoline ligands of different backbones (L4-L6) were then tested. PyBOX ligand L6 gave the highest yield, 84% and highest er, 82:18.

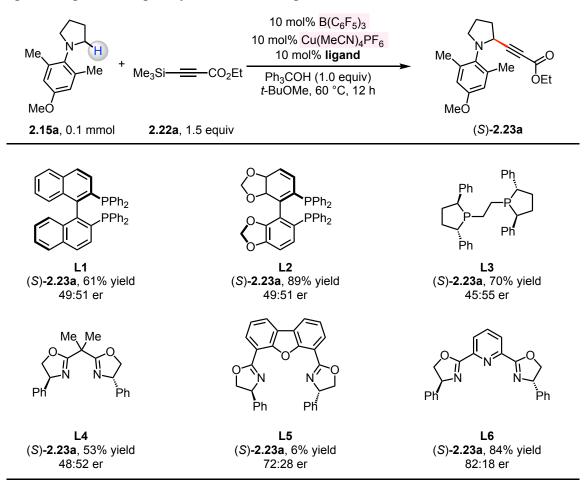


Table 2.7 Evaluation of chiral organocopper complexes

Since Ph-PyBox gave promising enantioselectivity, different substituents on the aromatic ring were then explored to see if it would influence the selectivity (Table 2.8). *meta*-Dimethyl substituted ligand L7 gave (S)-2.23a in 89% yield and 90:10 er. *meta*-Substituted electron withdrawing trifluoromethyl ligand L8 gave lowered yield (54%) and er (80:20). The yield and er improved significantly when more sterically more hindered 2,6-bis((S)-4- (3,5-dimethylphenyl)-4,5-dihydrooxazol-2-yl)pyridine (L9) was used, 75%

yield and 95:5 er. However, with more sterically hindered *meta,meta*-diethylphenyl- (L10) or more electron donating *meta,meta*-dimethoxyphenyl- (L11) substituted ligands showed diminished yield and enantioselectivity.

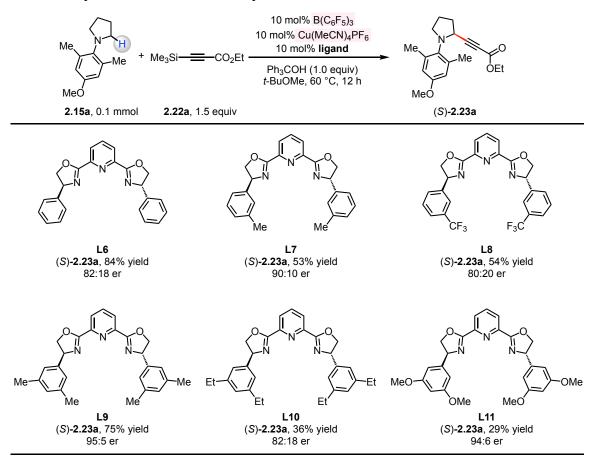


Table 2.8 Ph-PyBOX ligand evaluation

Using the optimal chiral ligand in combination with our conditions, various *N*-alkyl amines were tested for stereoselective alkynylation (Table 2.9). *N*-aryl pyrrolidines (**2.17a** and **2.17b**) and *N*-aryl azepane (**2.17c**) generated products in 64-75% yield and 95:5 to 93:7 er, while giving less than 5% di-alkynylated products. Only one regioisomer was observed for **2.17b**. The reaction of **2.6a** and **2.13a** could be scaled up to 1.0 mmol, with catalyst combination of 5.0 mol% of B(C₆F₅)₃, 5.0 mol% of Cu(MeCN)₄PF₆ and 5.0 mol% of L9 in 72 h, affording **2.17a** in 95% yield and 95:5 er. α -Benzylic C–H bond could also be activated, giving product **2.17d** in 45% yield and 84:16 er. Alkynylation occurs at less

sterically hindered position for pyrrolidine with subsituents, giving **2.17e** and **2.17f** in 66% yield and 6.3:1 *trans:cis* and 64% yield and 11.8:1 *trans:cis*.

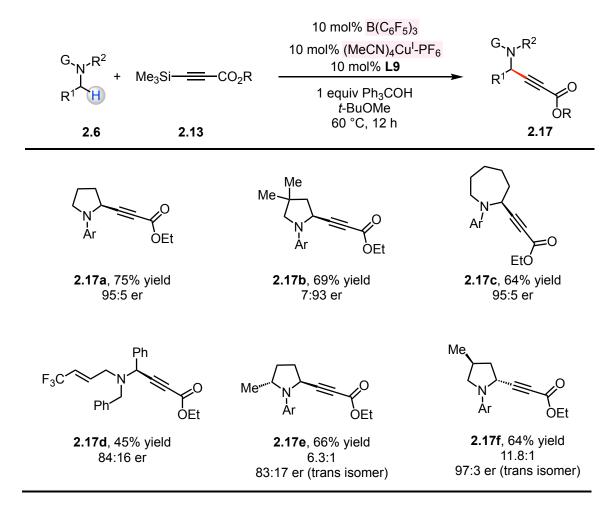
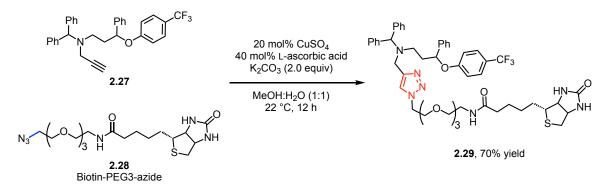
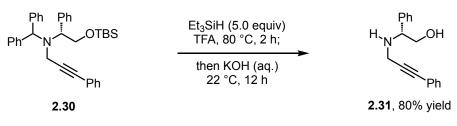



Table 2.9 Enantio- and diastereo-selective alkynylation of amines


2.5 Further derivatization

Alkynylated product **2.25h** was treated with TBAF to remove trimethylsilyl group to expose the terminal alkyne **2.27**. It could be then subjected to Click reaction with biotin-PEG3-azide **2.28** to afford the triazole product **2.29** in 70% yield (Scheme 2.10).

Scheme 2.10 CuAAC reaction with fluoxetine derivative

Removal of benzhydryl group is demonstrated with propargyl amine **2.30** (Scheme 2.11). It is removed by using triethylsilane under acidic conditions, followed by basic work up. Under acidic conditions, TBS is also removed to afford the amino alcohol **2.31** in 80% yield.

Scheme 2.11 Removal of benzhydryl group

2.6 Conclusion

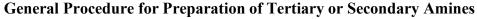
In summary, we have achieved alkynylation of α -amino C–H bonds by developing a cooperative catalyst system that avoids the use of stoichiometric, strong basic metal reagents or precious metal catalyst. We further applied our methods to late-stage functionalization of a range of N-containing drug molecules. The enantioselective variation of this transformation was also pursued. With our optimal ligand, we were able to achieve moderate to high enantioselectivity and high diastereoselectivity while not compromising the yield of reaction. Our cooperative catalyst system shows functional group tolerance of alkenes, esters, amides, ethers, as well as halogens, which are Lewis acids sensitive. Potentially, this catalyst system will provide the framework for future development in the late-stage stereoselective α -funcitonalization of bioactive amines.

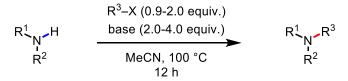
2.7 Experimental data

2.7.1 General information

General experimental procedures. All reactions were performed in standard, dry glassware fitted with rubber septa under an inert atmosphere of nitrogen unless otherwise described. Stainless steel syringes or cannulae were used to transfer air- and moisture-sensitive liquids. Reported concentrations refer to solution volumes at room temperature. Evaporation and concentration *in vacuo* were performed using house vacuum (ca. 40 mm Hg). Column chromatography was performed with SiliaFlash® 60 (40–63 micron) silica gel from Silicycle. Thin layer chromatography (TLC) was used for reaction monitoring and product detection using pre-coated glass plates covered with 0.25 mm silica gel with fluorescent indicator; visualization by UV light ($\lambda_{ex} = 254$ nm) or KMnO₄ stain.

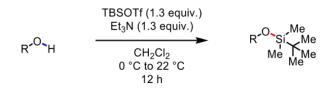
Materials. Reagents were purchased in reagent grade from commercial suppliers and used without further purification, unless otherwise described. Amines and trimethylsilyl propiolate compounds were prepared according to the procedures reported previously.¹ H₂O, in synthetic procedures, refers to distilled water. Tris(pentafluorophenyl)borane, Cu(MeCN)₄PF₆, Xantphos, and 1,2-bis(diphenylphosphino)ethane were purchased from TCI and used without further purification. Chiral ligands **L4-7**, **L10**, and **L14-19** were prepared according to the literature procedures.⁵⁻⁸


Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and protondecoupled carbon nuclear magnetic resonance (¹³C {¹H} NMR) spectra were recorded at 25 °C (unless stated otherwise) on Inova 600 (600 MHz), Varian Unity/Inova 500 (500 MHz) or Oxford AS400 (400 MHz) spectrometers at the Boston College nuclear magnetic resonance facility. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to 0 ppm. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent. The peak positions are quoted to one decimal place unless they are indistinguishable. The solvent peak was referenced to 77.0 ppm for ¹³C for CDCl₃.

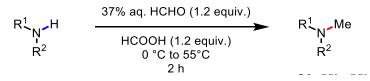

¹ (a) Chang, Y.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang, B.; Chan, J. Z.; Wasa, M. J. Am. Chem. Soc. **2019**, *141*, 14570–14575. (b) Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. **2018**, *57*, 7196–7199. (c) Kraihanzel, C. S.; Losee, M. L. J. Org. Chem. **1968**, *33*, 1983–1986.

Benzotrifluoride was used as an external standard for ¹⁹F NMR and referenced to 63.7 ppm. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). Infrared spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer. Data are represented as follows: frequency of absorption (cm⁻¹).

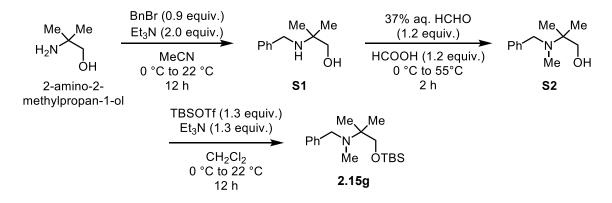
High-resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) at the Mass Spectrometry Facility, Boston College. Chiral HPLC analyses were carried using Agilent 1200 series instruments and Shimadzu chromatograph with Daicel CHIRALPAK® columns or Daicel CHIRALCEL[®] columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 µm).


2.7.2 Experimental Procedures and Characterization of Substrates and Products

Amines S1, 2.15I-p and 2.15s-t were prepared by alkylation of the corresponding primary or secondary amines. To a solution of amine (1.0 equiv) and K_2CO_3 or Et_3N (2.0–4.0 equiv) in MeCN was added alkyl halide (R³–X; 0.9–2.0 equiv). The reaction mixture was allowed to stir at 100 °C for 12 h. Upon completion (determined by TLC), H₂O was added and the organic material was extracted with EtOAc (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The desired amine products were obtained after purification by flash silica gel column chromatography.


General Procedure for TBS Protection of Alcohols

Substrates 2.23g and S3 were prepared by TBS protection of alcohols. To a solution of alcohol in CH_2Cl_2 at 0 ° C, Et_3N (1.3 equiv) and TBSOTf (1.3 equiv) were added in a


dropwise manner. After the addition, the reaction mixture was allowed to warm to 22 ° C and stirred for 12 h. Upon completion (determined by TLC), H₂O was added and the organic material was extracted with CH_2Cl_2 (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The desired silyl ether products were obtained after purification by flash silica gel column chromatography.

General Procedure for N-Methylation of Secondary Amines

Substrates S2, 2.15h, and 2.15i were prepared by *N*-methylation of secondary amines. A solution of amine and formaldehyde (37% aq. solution, 1.2 equiv) was cooled to 0 °C. To the reaction mixture was added formic acid (1.2 equiv) in a dropwise manner. The reaction mixture was allowed to warm to 55 °C and stirred for 2 h. Upon completion (determined by TLC), the reaction mixture was cooled to 0 °C, NaOH (1.0 M aq. solution) was added until the aqueous layer was alkaline. The organic material was extracted with Et₂O (3 x 20 mL). The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. The desired amine products were obtained after flash silica gel column chromatography.

Procedure for Preparation of *N*-Benzyl-1-((*tert*-butyldimethylsilyl)oxy)-*N*,2dimethyl-propan-2-amine (2.15g)

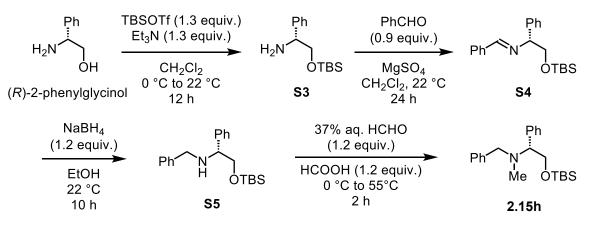
2-(Benzylamino)-2-methylpropan-1-ol (S1)

2-(Benzylamino)-2-methylpropan-1-ol was prepared following **General Procedure for Preparation of Secondary Amines** using 2-amino-2-methylpropan-1-ol (69 mmol). The amine product **S1** was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes = 1:1) as a colorless oil (9.0 g, 73% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 - 7.30 (m, 3H), 7.26 (d, *J* = 1.0 Hz, 2H), 3.69 (s, 2H), 3.35 (s, 2H), 1.15 (d, *J* = 1.0 Hz, 6H).

2-(Benzyl(methyl)amino)-2-methylpropan-1-ol (S2)

2-(Benzyl(methyl)amino)-2-methylpropan-1-ol was prepared following **General Procedure for** *N*-**Methylation of Secondary Amines** using 2-(benzylamino)-2methylpropan-1-ol (20 mmol). The amine product **S2** was obtained after purification by flash silica gel column chromatography (EtOAc:Et₃N:hexanes = 20:1:79) as a colorless oil (2.0 g, 50% yield).


¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (d, *J* = 1.8 Hz, 1H), 7.26 - 7.20 (m, 4H), 3.52 (s, 2H), 3.44 (s, 2H), 2.09 (s, 3H), 1.13 (s, 6H).

N-Benzyl-1-((*tert*-butyldimethylsilyl)oxy)-*N*,2-dimethylpropan-2-amine (2.15g)

N-Benzyl-1-((*tert*-butyldimethylsilyl)oxy)-*N*,2-dimethylpropan-2-amine **2.15g** was prepared following **General Procedure for TBS Protection of Alcohols** using 2-(benzyl(methyl)amino)-2-methylpropan-1-ol (10 mmol). The amine product **2.15g** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:9) as a colorless oil (3.0 g, 95% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 - 7.24 (m, 4H), 7.24 - 7.17 (m, 1H), 3.63 (s, 2H), 3.56 (s, 2H), 2.15 (s, 3H), 1.11 (s, 6H), 0.91 (s, 9H), 0.06 (s, 6H).

Procedure for Preparation of (*R*)-*N*-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-*N*-methyl-1-phenylethan-1-amine (2.15h)

(R)-2-((tert-Butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S3)

(*R*)-2-((*tert*-Butyldimethylsilyl)oxy)-1-phenylethan-1-amine was prepared following **General Procedure for TBS Protection of Alcohols** using (*R*)-2-amino-2-phenylethan-1-ol (60 mmol). The amine product **S3** was obtained after purification by flash silica gel column chromatography (Et₃N:hexanes = 1:19) as a colorless oil (14.0 g, 93% yield).

¹**H NMR** (500 MHz, CDCl₃) δ 7.31 - 7.21 (m, 4H), 7.19 - 7.13 (m, 1H), 3.98 (dd, *J* = 8.4, 3.9 Hz, 1H), 3.63 (dd, *J* = 9.8, 3.9 Hz, 1H), 3.43 (dd, *J* = 9.8, 8.3 Hz, 1H), 0.81 (s, 9H), - 0.07 (d, *J* = 1.6 Hz, 6H).

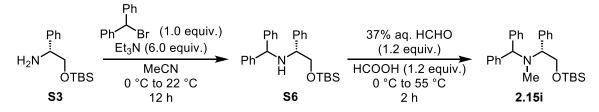
(*R*,*R*)-*N*-(2-((*tert*-Butyldimethylsilyl)oxy)-1-phenylethyl)-1-phenylmethanimine (S4)

To a solution of amine **S1** (33 mmol, 1.1 equiv.) and benzaldehyde (30 mmol, 1.0 equiv.) in CH_2Cl_2 , was added MgSO₄. The reaction mixture was allowed to stir for 24 h at 22 °C. Upon completion (determined by TLC), the unpurified mixture was filtered over a pad of Celite and rinsed with CH_2Cl_2 . The organic layer was concentrated *in vacuo*, and the product obtained was directly used without further purification.

¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.76 - 7.65 (m, 2H), 7.49 - 7.37 (m, 2H), 7.37
- 7.28 (m, 3H), 7.28 - 7.21 (m, 2H), 7.20 - 7.12 (m, 1H), 4.33 (dd, *J* = 8.6, 4.4 Hz, 1H), 3.86 - 3.68 (m, 2H), 0.73 (s, 9H), -0.10 (s, 3H), -0.16 (s, 3H).

(R)-N-Benzyl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S5)

To a solution of imine S4 (30 mmol, 1.0 equiv.) in EtOH, was added NaBH₄ (36 mmol, 1.2 equiv.) at 0 °C. The reaction mixture was allowed to stir for 10 h. Upon completion (monitored by TLC), the reaction mixture was diluted with H₂O, and extracted with EtOAc (3 x 20 mL). The combined organic layers were then dried (MgSO₄), filtered, and concentrated *in vacuo*. The amine product S5 was obtained after purification by flash silica gel column chromatography (Et₃N:hexanes = 1:50) as a colorless oil (10 g, 98% yield).


¹**H NMR** (500 MHz, CDCl₃) δ 7.34 - 7.27 (m, 2H), 7.24 (ddd, *J* = 7.9, 6.7, 1.6 Hz, 2H), 7.22 - 7.15 (m, 5H), 7.13 (td, *J* = 6.9, 1.7 Hz, 1H), 3.71 (dd, *J* = 9.2, 4.0 Hz, 1H), 3.65 (d, *J* = 13.5 Hz, 1H), 3.56 (dd, *J* = 10.0, 4.0 Hz, 1H), 3.51 - 3.42 (m, 2H), 0.78 (d, *J* = 1.8 Hz, 9H), -0.06 - -0.12 (m, 6H).

(*R*)-*N*-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-*N*-methyl-1-phenylethan-1-amine (2.15h)

(R)-N-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-N-methyl-1-phenylethan-1-amine was prepared using **General Procedure for** N-**Methylation of Secondary Amines** using (R)-N-benzyl-2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (21 mmol). The amine product **2.15h** was obtained after purification by flash silica gel column chromatography (EtOAc: Et₃N: hexanes 20:1:79) as a colorless oil (6.8 g, 93% yield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 - 7.34 (m, 3H), 7.34 - 7.28 (m, 5H), 7.28 - 7.24 (m, 1H), 7.24 - 7.18 (m, 1H), 4.07 (dd, *J* = 10.4, 6.1 Hz, 1H), 3.94 - 3.85 (m, 1H), 3.70 - 3.56 (m, 2H), 3.45 (d, *J* = 13.5 Hz, 1H), 2.19 (s, 3H), 0.83 (s, 9H), -0.06 (d, *J* = 7.9 Hz, 6H); $[\alpha]^{25}_{D} = 1.6^{\circ}$ (*c* 1.0, CH₂Cl₂).

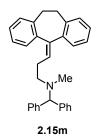
Procedure for Preparation of (*R*)-*N*-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-*N*-methyl-1-phenylethan-1-amine (2.15i)

(R)-N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (S6)

(*R*)-*N*-Benzhydryl-2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethan-1-amine was prepared using **General Procedure for Preparation of Secondary Amines** using (*R*)-2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethan-1-amine (46 mmol). The amine product **S6** was obtained after purification by flash silica gel column chromatography (Et₃N:hexanes = 1:19) as a colorless oil (9.5 g, 49% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.38 - 7.25 (m, 7H), 7.22 (t, *J* = 6.7 Hz, 6H), 7.19 - 7.10 (m, 2H), 4.62 (s, 1H), 3.68 (dd, *J* = 8.5, 3.7 Hz, 1H), 3.61 (dd, *J* = 9.2, 2.3 Hz, 2H), 0.85 (s, 9H), -0.05 (d, *J* = 11.4 Hz, 6H); $[\alpha]^{25}_{D} = 6.8^{\circ}$ (*c* 1.0, CH₂Cl₂).

(*R*)-*N*-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-*N*-methyl-1-phenylethan-1-amine (2.15i)

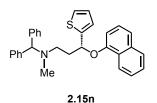

(R)-N-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-N-methyl-1-phenylethan-1-aminewasprepared using General Procedure for N-Methylation of Secondary Amines using(R)-N-benzhydryl-2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethan-1-amine(24 mmol).The amine product 2.15i was obtained after purification by flash silica gel columnchromatography (EtOAc:Et₃N: hexanes 20:1:79) as a colorless oil (10.1 g, 98% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (ddd, *J* = 11.6, 8.2, 1.3 Hz, 4H), 7.34 - 7.29 (m, 6H), 7.25 - 7.19 (m, 4H), 7.17 - 7.12 (m, 1H), 4.80 (s, 1H), 4.06 (dd, *J* = 9.7, 5.9 Hz, 1H), 3.98 - 3.89 (m, 2H), 2.13 (s, 3H), 0.85 (s, 9H), -0.03 (d, *J* = 6.5 Hz, 6H).

(R)-N-Benzhydryl-N-methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine (2.15l)

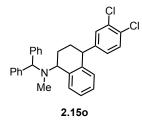
(*R*)-*N*-Benzhydryl-*N*-methyl-3-phenyl-3-(*o*-tolyloxy)propan-1-amine was prepared following **General Procedure for Preparation of Tertiary Amines** using (*R*)-*N*-methyl-3-phenyl-3-(o-tolyloxy)propan-1-amine (1.5 g, 5.9 mmol), (2-bromoethyl)benzene (1.2 equiv.) and K₂CO₃ (1.2 equiv.). The amine product **2.151** was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes = 1:19) as a colorless oil (2.0 g, 82%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.37 (d, *J* = 7.6 Hz, 2H), 7.29 (d, *J* = 4.4 Hz, 6H), 7.23 (t, *J* = 7.3 Hz, 3H), 7.15 (t, *J* = 6.7 Hz, 1H), 7.10 - 7.05 (m, 4H), 6.95 (t, *J* = 7.8 Hz, 1H), 6.75 (t, *J* = 7.5 Hz, 1H), 6.58 (d, *J* = 8.2 Hz, 1H), 5.25 (dd, *J* = 8.9, 3.7 Hz, 1H), 4.33 (s, 1H), 2.72 - 2.65 (m, 1H), 2.48 (ddd, *J* = 12.6, 8.1, 4.5 Hz, 1H), 2.18 (s, 3H), 2.17 - 2.11 (m, 1H), 2.08 - 2.00 (m, 4H).



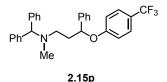
N-Benzhydryl-3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-N-

methylpropan-1-amine (2.15m)


N-Benzhydryl-3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine was prepared following **General Procedure for Preparation of Tertiary Amines** using 3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine (4.3 g, 16 mmol), (bromomethylene)dibenzene (1.2 equiv.) and K₂CO₃ (2.0 equiv.). The amine product **2.15m** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:19) as a colorless oil (6.5 g, 91%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.5 Hz, 5H), 7.23 (s, 4H), 7.19 (d, *J* = 1.0 Hz, 2H), 7.17 – 7.10 (m, 5H), 7.07 (d, *J* = 7.4 Hz, 1H), 7.03 (d, *J* = 4.1 Hz, 1H), 5.82 (t, *J* = 7.5 Hz, 1H), 4.31 (s, 1H), 3.30 (s, 2H), 2.94 (s, 1H), 2.72 (s, 1H), 2.46 (s, 2H), 2.31 (d, *J* = 7.4 Hz, 2H), 2.07 (s, 3H).

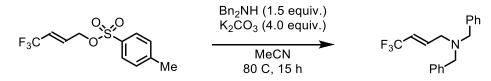
(*R*)-*N*-Benzhydryl-*N*-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1amine (2.15n) (*R*)-*N*-Benzhydryl-*N*-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine was prepared following **General Procedure for Preparation of Tertiary Amines** using (*R*)-*N*-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine (0.9 g, 2.9 mmol), (bromomethylene)dibenzene (1.2 equiv.) and K₂CO₃ (2.0 equiv.). The amine product **2.15n** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:4) as a colorless oil (1.2 g, 90%).


¹**H NMR** (500 MHz, CDCl₃) δ 8.09 (s, 1H), 7.76 (d, *J* = 7.9 Hz, 1H), 7.51 – 7.42 (m, 1H), 7.42 – 7.30 (m, 4H), 7.30 – 7.09 (m, 7H), 7.04 – 6.94 (m, 4H), 6.94 – 6.88 (m, 1H), 6.88 – 6.81 (m, 1H), 5.75 (s, 1H), 4.35 (s, 1H), 2.76 – 2.65 (m, 1H), 2.61 – 2.51 (m, 1H), 2.51 – 2.38 (m, 1H), 2.32 – 2.16 (m, 4H).

N-Benzhydryl-4-(3,4-dichlorophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalen-1amine (2.150)

N-Benzhydryl-4-(3,4-dichlorophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalen-1-amine was prepared following **General Procedure for Preparation of Tertiary Amines** using 4-(3,4-dichlorophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalen-1-amine (2.9 g, 6.0 mmol), (bromomethylene)dibenzene (1.2 equiv.) and K₂CO₃ (2.0 equiv.). The amine product **2.150** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:4) as a colorless oil (1.4 g, 49%).

¹**H** NMR (600 MHz, CDCl₃) δ 8.19 – 8.13 (m, 1H), 7.56 (td, J = 7.1, 6.3, 1.5 Hz, 4H), 7.38 – 7.33 (m, 1H), 7.29 (ddt, J = 7.9, 4.3, 2.0 Hz, 3H), 7.26 – 7.23 (m, 2H), 7.16 (dtd, J = 17.5, 7.2, 1.4 Hz, 3H), 7.08 (d, J = 1.9 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.79 (dt, J = 8.2, 1.9 Hz, 1H), 4.73 (d, J = 1.6 Hz, 1H), 4.08 – 3.99 (m, 2H), 2.04 (d, J = 1.7 Hz, 3H), 1.91 (q, J = 5.0, 4.5 Hz, 2H), 1.76 – 1.65 (m, 1H), 1.65 – 1.58 (m, 1H).

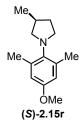


N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine (2.15p)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine was prepared following **General Procedure for Preparation of Tertiary Amines** using *N*methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine (2.8 g, 9.0 mmol), (bromomethylene)dibenzene (1.2 equiv.) and K₂CO₃ (2.0 equiv.). The amine product **2.15p** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:9) as a colorless oil (3.0 g, 70%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.38 – 7.33 (m, 2H), 7.29 (dtd, J = 7.3, 5.7, 4.7, 1.6 Hz, 6H), 7.23 (td, J = 7.5, 1.7 Hz, 3H), 7.19 – 7.14 (m, 1H), 7.12 – 7.07 (m, 3H), 6.84 – 6.79 (m, 2H), 5.34 – 5.29 (m, 1H), 4.35 (s, 1H), 2.71 (dt, J = 13.9, 7.5 Hz, 1H), 2.39 (dt, J = 12.2, 5.9 Hz, 1H), 2.18 (d, J = 1.6 Hz, 3H), 2.13 (dd, J = 13.8, 7.2 Hz, 1H), 2.08 – 1.99 (m, 1H); ¹⁹**F NMR** (564 MHz, CDCl₃) δ -61.51.

Procedure for Preparation of (*E*)-*N*,*N*-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine (2.15q)



(E)-N,N-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine (2.15q)

(*E*)-*N*,*N*-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine was prepared following the literature previously reported.² To a solution of (*E*)-4,4,4-trifluorobut-2-en-1-yl 4-methylbenzenesulfonate (7.0 g, 25 mmol) and K₂CO₃ (13.8 g, 100 mmol) in MeCN (100 mL) was added dibenzylamine (7.4 g, 37.5 mmol). The reaction mixture was then allowed to stir at 80 °C for 15 hours. Upon completion (determined by TLC), the reaction mixture was filtered and concentrated *in vacuo*. The amine product **2.15q** was obtained after

purification by flash silica gel column chromatography (EtOAc:hexanes = 1:20) as a colorless oil (5.9 g, 77%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.29 (m, 8H), 7.28 – 7.22 (m, 2H), 6.51 – 6.30 (m, 1H), 5.85 (ddt, J = 15.8, 6.5, 1.7 Hz, 1H), 3.59 (s, 4H), 3.26 – 3.03 (m, 2H); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -63.97 (d, J = 6.1 Hz).

(S)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine ((S)-2.15r)

(*S*)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine was prepared following **General Procedure for Preparation of Tertiary Amines** using 4-methoxy-2,6-dimethylaniline (1.65 g, 10.9 mmol), (*S*)-1,4-dibromo-2-methylbutane (0.9 equiv.) and K₂CO₃ (2.0 equiv.). The amine product (*S*)-2.15r was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:19) as a colorless oil (1.8 g, 82%). ¹H NMR (600 MHz, CDCl₃) δ 6.57 (s, 2H), 3.75 (s, 3H), 3.26 – 3.21 (m, 1H), 3.21 – 3.17 (m, 2H), 2.79 (t, *J* = 7.5 Hz, 1H), 2.39 (dt, *J* = 8.5, 6.8 Hz, 1H), 2.23 (s, 6H), 2.12 – 2.02 (m, 1H), 1.59 (dd, *J* = 11.9, 8.1 Hz, 1H), 1.11 (d, *J* = 6.7 Hz, 3H); $[\alpha]^{25}_{D} = 19.5^{\circ}$ (*c* 0.25, 1.55 methyloxid) and the state of the state

 CH_2Cl_2).

General Procedure for Preparation of 3-(Trimethylsilyl)propiolates

$$Me_{3}Si = H \qquad \begin{array}{c} 1) EtMgBr (3.0 M in THF) \\ \hline THF, 0 \ ^{\circ}C, 30 \ min \\ 2) \\ CI \\ \hline R \\ 0 \ ^{\circ}C, 3 h \end{array} \qquad Me_{3}Si = \begin{array}{c} O \\ R \\ R \end{array}$$

3-(Trimethylsilyl)propiolates **2.22a-c**, **2.22i** were prepared according to the literature procedure.⁴ To a solution of ethynyltrimethylsilane (20 mmol) in THF (20 mL) was added ethylmagnesium bromide (3.0 M solution in THF) in a dropwise manner at 0 °C. The reaction mixture was allowed to stir for 30 min. The corresponding chloroformate (30 mmol) in THF (30 mL) was added dropwise and the reaction mixture was allowed to stir at 0 °C for 3 h. Upon completion (determined by TLC), H₂O (50 mL) was added and the

organic material was extracted using Et_2O (3 x 20 mL). The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The desired alkyne products were obtained after purification by flash silica gel column chromatography.

2.22a

Ethyl 3-(trimethylsilyl)propiolate (2.22a)

Ethyl 3-(trimethylsilyl)propiolate was prepared according to **General Procedure for Preparation of 3-(Trimethylsilyl)propiolates** using ethyl chloroformate. The propiolate **2.22a** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:99) as a colorless oil (2.7 g, 80%).

¹**H NMR** (400 MHz, CDCl₃) δ 4.23 (q, *J* = 7.2 Hz, 2H), 1.31 (td, *J* = 7.1, 0.9 Hz, 3H), 0.25 (s, 9H).

2.22b

Methyl 3-(trimethylsilyl)propiolate (2.22b)

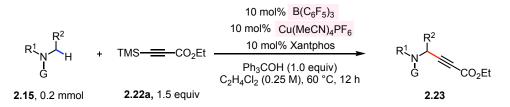
Methyl 3-(trimethylsilyl)propiolate was prepared according to **General Procedure for Preparation of 3-(Trimethylsilyl)propiolates** using methyl chloroformate. The propiolate **2.22b** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:99) as a colorless oil (2.6 g, 83%).

¹H NMR (600 MHz, CDCl₃) δ 3.77 (s, 3H), 0.25 (s, 9H).

2.22a

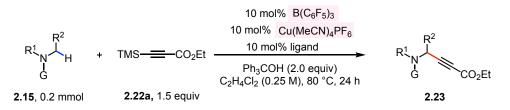
N,*N*-Dibenzyl-3-(trimethylsilyl)propiolamide 2.22c)

N,*N*-Dibenzyl-3-(trimethylsilyl)propiolamide was prepared according to General Procedure for Preparation of 3-(Trimethylsilyl)propiolates using *N*,*N*-

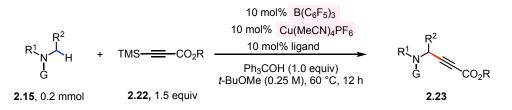

dibenzylcarbamoyl chloride. The propiolate **2.22c** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:99) as a colorless oil (3.3 g, 51%). ¹H NMR (500 MHz, CDCl₃) δ 7.41 - 7.19 (m, 10H), 4.67 (s, 2H), 4.50 (s, 2H), 0.21 (s, 9H).

Benzyl 3-(trimethylsilyl)propiolate (2.22i)

Benzyl 3-(trimethylsilyl)propiolate was prepared according to **General Procedure for Preparation of 3-(Trimethylsilyl)propiolates** using benzyl chloroformate. The propiolate **2.22i** was obtained after purification by flash silica gel column chromatography (Et₂O:hexanes = 1:99) as a colorless oil (3.9 g, 84%).


¹**H** NMR (500 MHz, CDCl₃) δ 6.81 (s, 2H), 5.11 (hept, J = 6.2 Hz, 2H), 1.29 (d, J = 6.3 Hz, 12H).

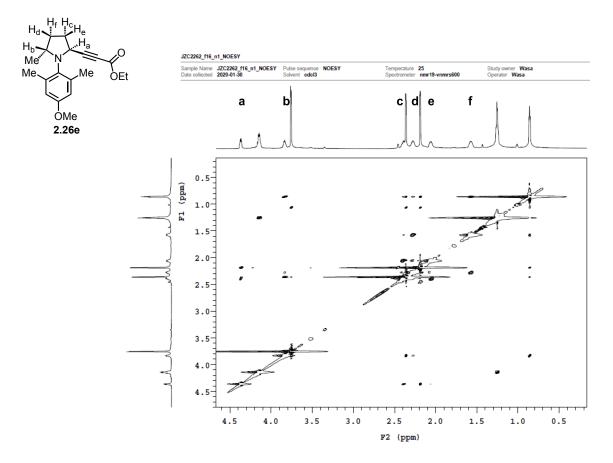
General Procedure A for α -C-H Alkynylation of *N*-Alkylamines Catalyzed by B(C₆F₅)₃ and Organocopper Complex


An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added Cu(MeCN)₄PF₆ (0.02 mmol), Xantphos (0.02 mmol), and C₂H₄Cl₂ (0.4 mL) under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at 22 °C, then ethyl 3-(trimethylsilyl)propiolate **2.22a** (0.3 mmol), triphenylmethanol (0.2 mmol), amine **2.15** (0.2 mmol), B(C₆F₅)₃ (0.02 mmol, 10 mol%), and C₂H₄Cl₂ (0.4 mL) were added to the vessel. The reaction mixture was allowed to stir at 60 °C for 12 h. Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with CH₂Cl₂. The combined organic material was then concentrated *in vacuo*. The propargylamine product was purified and isolated by silica gel column chromatography.

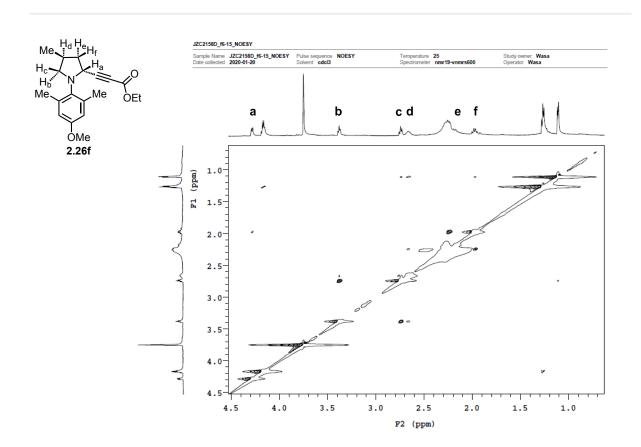
General Procedure B for α -C-H Alkynylation of *N*-Alkylamines Catalyzed by B(C₆F₅)₃ and Organocopper Complex

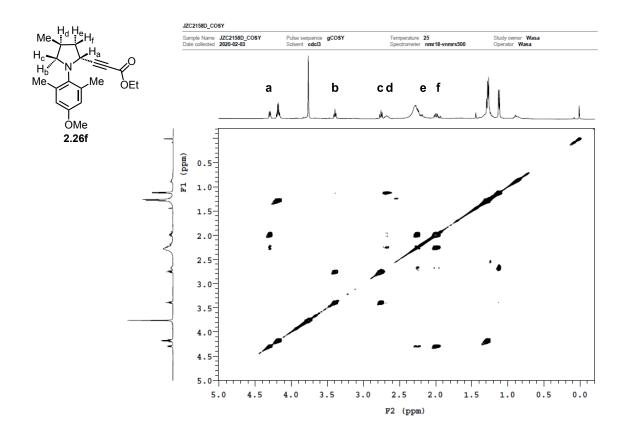
An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added Cu(MeCN)₄PF₆(0.02 mmol), ligand (1,2-bis(diphenylphosphino)ethane or (*S*)-PhPyBOX, 0.02 mmol), and C₂H₄Cl₂ (0.4 mL) under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at 22 °C, then (trimethylsilyl)propiolate **2.22** (0.4 mmol), triphenylmethanol (0.4 mmol), amine **2.15** (0.2 mmol), B(C₆F₅)₃ (0.02, 10 mol%), and C₂H₄Cl₂ (0.4 mL) were added to the vessel. The reaction mixture was allowed to stir at 80 °C for 24 h. Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with CH₂Cl₂. The combined organic material was then concentrated *in vacuo*. The propargylamine product was purified and isolated by silica gel column chromatography.

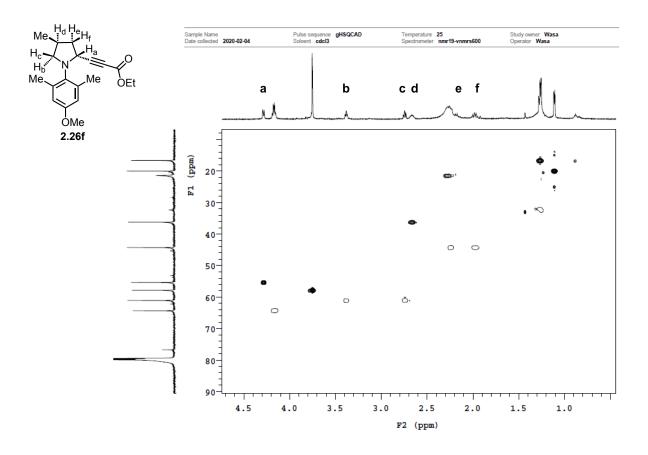
General Procedure C for Stereoselective α-C-H Alkynylation of *N*-Alkylamines Catalyzed by B(C₆F₅)₃ and Organocopper Complex



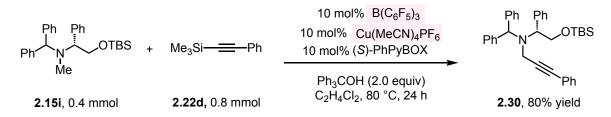
An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added Cu(MeCN)₄PF₆ (0.02 mmol), (*S*)-(3,5-dimethylphenyl)PyBOX (0.02 mmol), and *t*-BuOMe (0.4 mL) under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at 22 °C, then (trimethylsilyl)propiolate **2.22** (0.3 mmol), triphenylmethanol (0.2 mmol), amine **2.15** (0.2 mmol), B(C₆F₅)₃ (0.02 mmol, 10 mol%), and solvent (0.4 mL) were added to the vessel. The reaction mixture was allowed to stir at 60 °C for 12 h. Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with Et₂O. The combined organic material was then concentrated *in vacuo*. The


propargylamine product was purified isolated by silica gel column chromatography. The er values were determined by HPLC analysis of the isolated product.


Determination of Relative Configuration

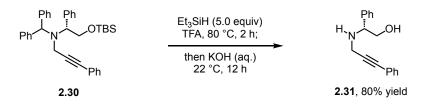

We carried out the following 2D NMR studies in order to determine relative configuration of enantioenriched products **2.26e**, **2.26f**.

The relative configuration of the major diastereomer of **2.26e** was assigned to be *trans*.



The relative configuration of the major diastereomer of 2.23r was assigned as trans.

Procedure for Preparation of Propargylamine 2.30

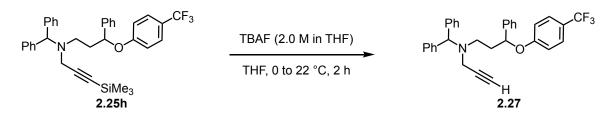

(*R*)-*N*-Benzhydryl-*N*-(2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethyl)-3-phenylprop-2-yn-1-amine (2.30)

An oven-dried sealed tube equipped with a magnetic stir bar was used. To the sealed tube were added $Cu(MeCN)_4PF_6$ (0.04 mmol), (*S*)-PhPyBOX, 0.04 mmol), and $C_2H_4Cl_2$ (0.4 mL) under nitrogen atmosphere. The mixture was allowed to stir for 20 minutes at 22 °C, then (trimethylsilyl)propiolate **2.22d** (0.8 mmol), triphenylmethanol (0.8 mmol), amine **2.15i** (0.4 mmol), B(C_6F_5)_3 (0.04 mmol, 10 mol%), and C_2H_4Cl_2 (0.4 mL) were added to

the vessel. The reaction mixture was allowed to stir at 80 °C for 24 h. Upon completion, the unpurified reaction mixture was filtered through a short plug of Celite and rinsed with CH_2Cl_2 . The combined organic material was then concentrated *in vacuo*. The propargylamine product was purified and isolated by silica gel column chromatography (1:9 CH_2Cl_2 :hexane) to afford **2.30** as a colorless oil (170.2 mg, 80% yield).

¹**H NMR** (600 MHz, CDCl₃) δ 7.69 – 7.58 (m, 6H), 7.47 – 7.33 (m, 12H), 7.33 – 7.24 (m, 2H), 5.40 (s, 1H), 4.38 (dd, J = 10.2, 5.1 Hz, 1H), 4.34 (dd, J = 10.2, 7.3 Hz, 1H), 4.30 (dd, J = 7.2, 5.1 Hz, 1H), 3.75 (d, J = 1.4 Hz, 2H), 0.92 (s, 9H), 0.08 (s, 3H), 0.02 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 142.6, 142.4, 140.5, 131.5, 128.9, 128.6, 128.5, 128.38, 128.35, 128.07, 128.06, 127.9, 127.7, 127.03, 126.95, 126.9, 123.7, 87.7, 84.4, 69.2, 63.4, 62.8, 37.0, 25.9, 18.2, -5.45, -5.47; **IR** (neat) 3057, 3025, 2924, 2852, 1597, 1488, 1451, 1251, 1095, 835, 813, 744, 699 cm⁻¹; **HRMS** (DART) m/z Calcd for C₃₆H₄₂NOSi (MH⁺): 532.3030; found: 532.3023; [*α*]*25_D* = –25.1° (*c* 1.0, CH₂Cl₂).

Procedure for Deprotection of N-Benzhydryl Group

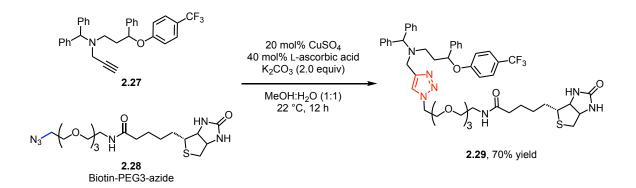


(R)-2-Phenyl-2-((3-phenylprop-2-yn-1-yl)amino)ethan-1-ol (2.31)

(*R*)-2-Phenyl-2-((3-phenylprop-2-yn-1-yl)amino)ethan-1-ol was prepared according to the literature procedure.¹¹ To a solution of **2.30** (100 mg, 0.2 mmol) in TFA (1.5 mL) was added triethylsilane (0.14 mL, 0.9 mmol). The mixture was allowed to stir at 80 °C for 2 h. The mixture was cooled to 22 °C and KOH (1.0 M, aq.) was added in a dropwise manner until the solution was alkaline. The reaction mixture was allowed to stir at 22 °C for 12 h. CH₂Cl₂ (5 mL) was added and the organic material was extracted with CH₂Cl₂ (3 x 5 mL). The combined organic layers were combined, dried (MgSO₄), filtered, and concentrated *in vacuo*. The amine product **2.31** was obtained after purification by flash silica gel column chromatography (EtOAc:hexanes = 8:2) as a colorless solid (36.2 mg, 80%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.38 – 7.33 (m, 4H), 7.32 – 7.26 (m, 4H), 4.06 (dd, J = 8.3, 4.4 Hz, 1H), 3.78 (dd, J = 10.9, 4.4 Hz, 1H), 3.68 – 3.60 (m, 2H), 3.45 (d, J = 17.0 Hz, 1H), 2.42 – 2.12 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 139.70, 131.63, 128.66, 128.21, 128.03, 127.81, 127.57, 123.09, 87.29, 83.71, 66.79, 63.22, 36.72; **IR** (neat) 3288, 3056, 2914, 2847, 1488, 1451, 1329, 1026, 754, 690, 526 cm⁻¹; **HRMS** (DART) m/z Calcd for C₁₇H₁₈NO (MH⁺): 252.1383; found: 252.1379; [*α*]25_D = 199.1° (*c* 1.0, CH₂Cl₂).

Procedure for Removal of Trimethylsilyl Group



N-Benzhydryl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)prop-2-yn-1amine (2.27)

To a solution of **2.25h** (228 mg, 0.4 mmol) in THF (10 mL) was added TBAF (1.0 mL, 2.0 M in THF) at 0 °C. The reaction mixture was allowed to stir for 2 h at 22 °C. Upon completion (determined by TLC), the reaction mixture was concentrated *in vacuo*. The amine product **2.27** was obtained after purification by flash silica gel column chromatography (Et₂O:hexane = 1:99) as a colorless solid (200 mg, 99% yield).

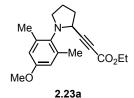
¹**H** NMR (600 MHz, CDCl₃) δ 7.42 (dd, J = 8.4, 3.5 Hz, 4H), 7.34 – 7.30 (m, 2H), 7.28 (d, J = 5.9 Hz, 4H), 7.23 (t, J = 7.7 Hz, 3H), 7.20 – 7.10 (m, 2H), 7.06 (q, J = 7.0, 6.4 Hz, 3H), 6.80 (d, J = 8.4 Hz, 2H), 5.26 (d, J = 3.8 Hz, 1H), 4.68 (s, 1H), 3.44 (qd, J = 17.7, 2.4 Hz, 2H), 2.86 – 2.65 (m, 2H), 2.17 (s, 1H), 2.16 – 1.94 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 143.9, 142.6, 142.5, 141.4, 130.0, 129.4, 128.7, 128.6, 128.52, 128.48, 128.44, 128.38, 128.28, 128.25, 128.00, 127.96, 127.93, 127.92, 127.83, 127.80, 127.7, 127.4, 127.24, 127.15, 127.1, 126.96, 126.92, 126.68, 126.65, 126.63, 126.60, 126.3, 125.8, 125.6, 125.5, 125.4, 123.6, 122.6 (q, J = 32.7 Hz), 121.8, 115.7, 78.2, 77.8, 73.5, 72.2, 56.8, 46.4, 39.1, 36.8; ¹⁹F NMR (470 MHz, CDCl₃) δ -61.34; IR (neat) 3298, 3060, 3025, 2924, 2831, 1700, 1612, 1515, 1491, 1326, 1250, 1110, 1066, 834, 700 cm⁻¹; HRMS (DART) Calcd for C₃₂H₂₉NOF₃ (MH⁺): 500.2196; found: 500.2183.

Procedure for Organocopper-Catalyzed Alkyne Azide Click Reaction

N-(2-(2-(2-(2-(4-((Benzhydryl(3-phenyl-3-(4-

(trifluoromethyl)phenoxy)propyl)amino)methyl)-1*H*-1,2,3-triazol-1yl)ethoxy)ethoxy)ethyl)-5-((4*R*)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4yl)pentanamide (2.29)

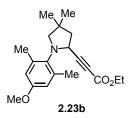
N-(2-(2-(2-(2-(4-((Benzhydryl(3-phenyl-3-(4-


(trifluoromethyl)phenoxy)propyl)amino)methyl)-1*H*-1,2,3-triazol-1yl)ethoxy)ethoxy)ethyl)-5-((4R)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4yl)pentanamide was prepared according to the literature procedure.¹²

To a solution of alkyne **2.27** (100 mg, 0.2 mmol) in MeOH (2.0 mL) was added K₂CO₃ (55 mg, 0.4 mmol), CuSO₄ (6.4 mg, 0.04 mmol), Biotin-PEG3-azide (98 mg, 0.22 mmol), *L*-ascorbic acid (14.1 mg, 0.08 mmol), and H₂O (2.0 mL). The reaction mixture was then allowed to stir for 12 h. Upon completion (determined by TLC), the reaction mixture was concentrated *in vacuo* to remove the organic solvent. EtOAc (3 x 5 mL) was used to extract the organic material. The combined organic layers were dried (MgSO₄), filtered, and concentrated *in vacuo*. The amine product **2.29** was obtained after purification by flash silica gel column chromatography (MeOH:CH₂Cl₂ = 1:99) as a colorless solid (132 mg, 70%).

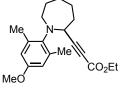
¹**H NMR** (600 MHz, CDCl₃) δ 7.46 – 7.36 (m, 4H), 7.36 – 7.30 (m, 2H), 7.30 – 7.26 (m, 3H), 7.24 (t, *J* = 7.8 Hz, 4H), 7.19 (q, *J* = 7.2, 6.1 Hz, 4H), 6.77 (d, *J* = 8.5 Hz, 2H), 6.64 (s, 1H), 6.57 (s, 1H), 5.63 (s, 1H), 5.23 (dd, *J* = 8.5, 4.2 Hz, 1H), 4.78 (s, 1H), 4.42 (dtt, *J*

= 14.3, 10.5, 5.2 Hz, 3H), 4.26 (dd, J = 7.8, 4.7 Hz, 1H), 3.94 – 3.74 (m, 4H), 3.54 (d, J = 7.2 Hz, 8H), 3.51 (t, J = 5.2 Hz, 2H), 3.40 (t, J = 5.2 Hz, 2H), 3.10 (td, J = 7.3, 4.5 Hz, 1H), 2.85 (dd, J = 12.7, 4.9 Hz, 1H), 2.77 – 2.68 (m, 2H), 2.63 (ddd, J = 12.9, 7.7, 4.6 Hz, 1H), 2.18 (t, J = 7.5 Hz, 2H), 2.12 (dtd, J = 14.5, 7.6, 7.0, 3.8 Hz, 2H), 1.78 – 1.56 (m, 4H), 1.46 – 1.34 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 173.2, 164.0, 160.5, 144.8, 142.2, 141.6, 141.30, 128.6, 128.5, 128.4, 128.34, 128.31, 128.26, 128.1, 127.6, 127.07, 127.00, 126.96, 126.62, 126.60, 126.57, 126.55, 125.7, 125.5, 125.3, 123.5, 122.4 (q, J = 32.5 Hz), 121.9, 115.6, 77.8, 77.2, 77.0, 76.9, 76.8, 70.6, 70.5, 70.4, 70.3, 70.0, 69.9, 69.8, 69.5, 65.8, 61.7, 60.1, 55.6, 50.0, 46.1, 44.9, 40.4, 39.1, 36.1, 35.9, 35.9, 30.3, 29.6, 29.6, 28.2, 28.0, 25.5, 15.2; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -61.44; **IR** (neat) 3287, 2921, 2863, 1698, 1612, 1451, 1325, 1250, 1109, 1066, 835, 734, 701 cm⁻¹; **HRMS** (DART) m/z Calcd for C₅₀H₆₁F₃N₇O₆S (MH⁺): 944.4278; found: 944.4342.


Experimental Data for Products

Ethyl 3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propiolate (2.23a)

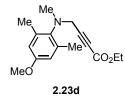
1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **2.23a** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23a** was obtained as a colorless liquid (54 mg, 90%).


¹**H NMR** (500 MHz, CDCl₃) δ 6.58 (s, 2H), 4.27 (ddd, J = 7.8, 3.5, 1.3 Hz, 1H), 4.17 (qd, J = 7.2, 1.3 Hz, 2H), 3.75 (s, 3H), 3.43 – 3.31 (m, 1H), 3.09 (q, J = 6.9 Hz, 1H), 2.47 – 2.22 (m, 6H), 2.22 – 2.10 (m, 3H), 2.09 – 1.94 (m, 1H), 1.27 (td, J = 7.2, 1.4 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.15, 153.86, 135.89, 113.60, 90.83, 73.94, 61.66, 55.16, 52.31, 51.03, 33.83, 25.68, 18.89, 13.99; **IR** (neat) v 2967, 2837, 2224, 1707, 1599, 1476, 1366,1244, 1153, 1067, cm⁻¹; **HRMS** (DART) Calcd for C₁₈H₂₄NO₃ (MH⁺): 302.1751; found: 302.1755.

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine (2.23b)

1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine **2.23b** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23b** was obtained as a colorless liquid (51 mg, 77%).

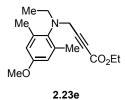
¹**H NMR** (600 MHz, CDCl₃) δ 6.57 (s, 2H), 4.41 (dd, J = 9.0, 3.8 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.07 (d, J = 7.9 Hz, 1H), 2.95 (d, J = 7.8 Hz, 1H), 2.37 (s, 5H), 2.19 (dd, J = 12.5, 9.0 Hz, 2H), 1.98 (dd, J = 12.5, 3.9 Hz, 1H), 1.37 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.15 (d, J = 1.0 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.17, 153.83, 135.35, 113.68, 90.96, 74.30, 64.52, 61.63, 55.15, 51.92, 47.01, 39.12, 27.77, 27.24, 13.98; **IR** (neat) v 2954, 2864, 2228, 1707, 1601, 1465, 1243, 1094, 1023, 751 cm⁻¹; **HRMS** (DART) Calcd for C₂₀H₂₈NO₃ (MH⁺): 330.2063; found: 330.2069.



Ethyl 3-(1-(4-methoxy-2,6-dimethylphenyl)azepan-2-yl)propiolate (2.23c)

1-(4-Methoxy-2,6-dimethylphenyl)azepane **2.23c** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23c** was obtained as a colorless liquid (51 mg, 77%).

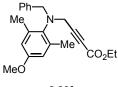
¹**H NMR** (500 MHz, CDCl₃) δ 6.57 (d, J = 13.4 Hz, 2H), 4.18 (d, J = 7.1 Hz, 2H), 4.06 (d, J = 2.7 Hz, 1H), 3.75 (s, 3H), 3.32 (d, J = 9.1 Hz, 1H), 3.08 (d, J = 11.1 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 3H), 2.19 (d, J = 1.5 Hz, 1H), 1.95 – 1.85 (m, 2H), 1.85 – 1.79 (m, 1H), 1.79 – 1.70 (m, 2H), 1.57 (s, 2H), 1.28 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 156.53, 153.77, 141.76, 139.19, 137.94, 114.13, 113.64, 90.92, 75.66, 61.65, 55.17, 53.81, 51.31, 35.68,


31.91, 29.33, 25.25, 20.14, 19.65, 14.01; **IR** (neat) v 2926, 2845, 2221, 1707, 1598, 1474, 1309, 1240, 1065, 853 cm⁻¹; **HRMS** (DART) Calcd for $C_{20}H_{28}NO_3$ (MH⁺): 330.2063; found: 330.2061.

Ethyl 4-((4-methoxy-2,6-dimethylphenyl)(methyl)amino)but-2-ynoate (2.23d)

4-Methoxy-*N*,*N*,2,6-tetramethylaniline **2.23d** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23d** was obtained as a colorless liquid (50 mg, 90%).

¹**H NMR** (500 MHz, CDCl₃) δ 6.54 (s, 2H), 4.23 (q, J = 7.1, 1.5 Hz, 2H), 3.89 (s, 2H), 3.74 (s, 3H), 2.88 (s, 3H), 2.29 (s, 6H), 1.31 (t, J = 7.1, 1.5 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.81, 153.63, 140.96, 138.67, 113.62, 86.13, 75.59, 61.84, 55.18, 44.75, 40.06, 19.36, 14.00; **IR** (neat) v 2933, 2228, 1707, 1598, 1480, 1309, 1244, 1155, 1060, 855 cm⁻¹; **HRMS** (DART) Calcd for C₁₆H₂₂NO₃ (MH⁺): 276.1594; found: 276.1609.

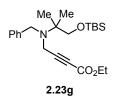


Ethyl 4-(ethyl(4-methoxy-2,6-dimethylphenyl)amino)but-2-ynoate (2.23e)

N-Ethyl-4-methoxy-*N*,2,6-trimethylaniline **2.23e** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23e** was obtained as a colorless liquid (24 mg, 42%).

¹H NMR (500 MHz, CDCl₃) δ 6.56 (s, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.92 (s, 2H), 3.76 (s, 3H), 3.21 (q, *J* = 7.2 Hz, 2H), 2.30 (s, 6H), 1.31 (t, *J* = 7.1 Hz, 3H), 1.04 (t, *J* = 7.2 Hz, 3H);
¹³C NMR (126 MHz, CDCl₃) δ 156.84, 153.66, 139.52, 139.27, 113.62, 86.75, 77.25,

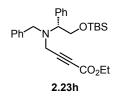
77.00, 76.75, 75.51, 61.80, 55.17, 47.18, 42.98, 19.62, 14.28, 14.01; **IR** (neat) v 2933, 2230, 1707, 1598, 1490, 1309, 1254, 1120, 1060, 840 cm⁻¹; **HRMS** (DART) Calcd for $C_{17}H_{24}NO_3$ (MH⁺): 290.1751; found: 290.1755.



Ethyl 4-(benzyl(4-methoxy-2,6-dimethylphenyl)amino)but-2-ynoate (2.23f)

N-Benzyl-4-methoxy-*N*,2,6-trimethylaniline **2.23f** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure A**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23f** was obtained as a colorless liquid (51 mg, 72%).

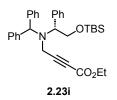
¹**H NMR** (500 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.28 – 7.23 (m, 1H), 6.57 (s, 2H), 4.28 (s, 2H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.78 (s, 2H), 3.76 (s, 3H), 2.34 (s, 6H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.81, 153.51, 140.56, 138.98, 138.48, 128.96, 128.35, 127.22, 113.94, 86.27, 76.12, 61.83, 57.48, 55.20, 41.47, 19.98, 14.01; **IR** (neat) v 2927, 2841, 2230, 1708, 1598, 1479, 1312, 1245, 1065, 855 cm⁻¹; **HRMS** (DART) Calcd for C₂₂H₂₆NO₃ (MH⁺): 352.1907; found: 352.1895.



Ethyl 4-(benzyl(1-((*tert*-butyldimethylsilyl)oxy)-2-methylpropan-2-yl)amino)but-2ynoate (2.23g)

N-Benzyl-1-((*tert*-butyldimethylsilyl)oxy)-*N*,2-dimethylpropan-2-amine **2.23g** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column

chromatography (Et₂O:hexanes = 1:19), **2.23g** was obtained as a colorless liquid (61 mg, 76%).


¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (dt, *J* = 6.6, 1.1 Hz, 2H), 7.32 – 7.27 (m, 2H), 7.24 – 7.20 (m, 1H), 4.23 (q, *J* = 7.2 Hz, 2H), 3.91 (s, 2H), 3.60 (s, 2H), 3.51 (s, 2H), 1.31 (t, *J* = 7.1, 0.8 Hz, 3H), 1.23 (s, 6H), 0.91 (s, 9H), 0.06 (s, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 153.61, 140.27, 128.43, 128.23, 126.86, 87.60, 76.67, 69.73, 61.76, 58.62, 58.61, 51.40, 36.66, 30.33, 25.87, 22.94, 18.22, 14.06; **IR** (neat) v 2949, 2855, 2221, 1708, 1463, 1364, 1237, 1092, 840, 774 cm⁻¹; **HRMS** (DART) Calcd for C₂₃H₃₈NO₃Si (MH⁺): 404.2615; found: 404.2610.

Ethyl (*R*)-4-(benzyl(2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethyl)amino)but-2ynoate (2.23h)

(*R*)-*N*-Benzyl-2-((*tert*-butyldimethylsilyl)oxy)-*N*-methyl-1-phenylethan-1-amine **2.23h** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23h** was obtained as a colorless liquid (78 mg, 86%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 (d, J = 7.5 Hz, 2H), 7.37 – 7.20 (m, 8H), 4.26 (q, J = 7.1, 2.1 Hz, 2H), 3.94 (dd, J = 7.3, 4.9 Hz, 2H), 3.82 (d, J = 2.0 Hz, 1H), 3.74 (d, J = 2.1 Hz, 1H), 3.70 – 3.60 (m, 2H), 3.37 – 3.28 (m, 1H), 1.34 (t, J = 2.0 Hz, 3H), 0.83 (s, 9H), - 0.09 (d, J = 5.7, 2.1 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 153.58, 141.14, 138.81, 128.87, 128.46, 128.30, 128.25, 127.39, 127.10, 84.49, 77.84, 67.60, 65.97, 61.87, 55.06, 39.14, 25.81, 18.16, 15.27, 14.09, -5.66; **IR** (neat) v 2923, 2853, 2222, 1709, 1458, 1365, 1239, 1095, 870, 698 cm⁻¹; **HRMS** (DART) Calcd for C₂₇H₃₈NO₃Si (MH⁺): 452.2615; found: 452.2612; $[\alpha]^{25}_{D} = 36.7^{\circ}$ (*c* 0.2, CH₂Cl₂).

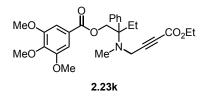
Ethyl (*R*)-4-(benzhydryl(2-((*tert*-butyldimethylsilyl)oxy)-1-phenylethyl)amino)but-2ynoate (2.23i)

(R)-N-Benzhydryl-2-((tert-butyldimethylsilyl)oxy)-N-methyl-1-phenylethan-1-amine

2.23i was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23i** was obtained as a colorless liquid (102 mg, 97%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.52 – 7.46 (m, 4H), 7.42 (dt, *J* = 8.1, 1.1 Hz, 2H), 7.35 – 7.14 (m, 9H), 5.23 (s, 1H), 4.24 – 4.06 (m, 5H), 3.55 (s, 2H), 1.31 (t, *J* = 7.1, 3H), 0.82 (s, 9H), -0.04 (d, *J* = 20.0, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 153.41, 141.98, 139.74, 128.67, 128.53, 128.47, 128.44, 128.37, 128.09, 127.22, 127.13, 86.44, 76.59, 69.17, 63.09, 62.85, 61.54, 36.57, 25.84, 18.18, 14.04; **IR** (neat) v 3026, 2930, 2855, 2224, 1708, 1456, 1362, 1243,1095, 837 cm⁻¹; **HRMS** (DART) Calcd for C₃₃H₄₂NO₃Si (MH⁺): 528.2928; found: 528.2922; [α]²⁵_D = -16.2° (*c* 0.8, CH₂Cl₂).

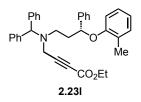
CO₂Et


2.23j

Ethyl 4-((4-(*tert*-butyl)phenyl)(naphthalen-1-ylmethyl)amino)but-2-ynoate (2.23j) 4-(*tert*-Butyl)-*N*-methyl-*N*-(naphthalen-1-ylmethyl)aniline 2.23j was reacted with ethyl 3-(trimethylsilyl)propiolate 2.22a following General Procedure B using 1,2bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography

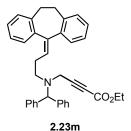
(Et₂O:hexanes = 1:19), **2.23j** was obtained as a colorless liquid (63 mg, 76%).

¹**H NMR** (500 MHz, CDCl₃) δ 8.21 (d, J = 7.4 Hz, 1H), 7.86 – 7.80 (m, 1H), 7.77 (d, J = 8.2 Hz, 1H), 7.55 – 7.45 (m, 3H), 7.40 (dd, J = 8.6, 6.6 Hz, 1H), 7.36 – 7.27 (m, 4H), 4.30 (q, J = 7.2 Hz, 2H), 4.15 (s, 2H), 3.78 (s, 2H), 3.35 (s, 2H), 1.37 (t, J = 7.1 Hz, 4H), 1.30 (s, 9H); ¹³**C NMR** (126 MHz, CDCl₃) δ 153.55, 150.33, 135.08, 133.94, 133.72, 132.48,


128.88, 128.39, 128.34, 127.83, 125.75, 125.66, 125.25, 125.16, 124.88, 83.56, 78.32, 62.00, 57.67, 56.19, 40.88, 34.48, 31.36, 14.09; **IR** (neat) v 2957, 2825, 2220, 1707, 1597, 1509, 1239, 1107, 1050, 791 cm⁻¹; **HRMS** (DART) Calcd for $C_{28}H_{32}NO_2$ (MH⁺): 414.2428; found: 414.2429.

2-((4-Ethoxy-4-oxobut-2-yn-1-yl)(methyl)amino)-2-phenylbutyl 3,4,5trimethoxybenzoate (2.23k)

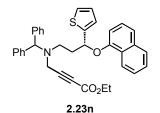
2-(Dimethylamino)-2-phenylbutyl 3,4,5-trimethoxybenzoate **2.23k** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:2), **2.23k** was obtained as a colorless liquid (69 mg, 71%).


¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.40 – 7.33 (m, 2H), 7.29 – 7.22 (m, 1H), 7.18 (d, *J* = 1.4 Hz, 2H), 4.89 (dd, *J* = 12.1, 1.3 Hz, 1H), 4.74 (dd, *J* = 12.0, 1.3 Hz, 1H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.89 (s, 3H), 3.82 (s, 6H), 3.63 (d, *J* = 17.6 Hz, 1H), 3.48 (d, *J* = 17.6 Hz, 1H), 2.63 (s, 3H), 1.95 – 1.78 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 2H), 0.69 (t, *J* = 7.3 Hz, 4H); ¹³**C NMR** (126 MHz, CDCl₃) δ 165.82, 153.45, 152.89, 142.29, 141.67, 128.17, 127.34, 126.92, 124.84, 106.78, 86.22, 75.49, 65.68, 64.81, 61.78, 60.82, 56.06, 42.13, 35.82, 30.05, 13.90, 8.52; **IR** (neat) v 2939, 2231, 1709, 1586, 1498, 1331, 1239, 1123, 1006, 756 cm⁻¹; **HRMS** (DART) Calcd for C₂₇H₃₄NO₇ (MH⁺): 484.2330; found: 484.2322.

Ethyl (R)-4-(benzhydryl(3-phenyl-3-(o-tolyloxy)propyl)amino)but-2-ynoate (2.23l)

(*R*)-*N*-Benzhydryl-*N*-methyl-3-phenyl-3-(*o*-tolyloxy)propan-1-amine **2.231** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.13a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.231** was obtained as a colorless liquid (58 mg, 56%).

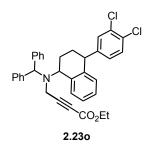
¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.35 – 7.13 (m, 10H), 7.07 (qt, J = 5.7, 1.3 Hz, 4H), 6.94 (td, J = 7.8, 1.8 Hz, 1H), 6.75 (td, J = 7.4, 1.1 Hz, 1H), 6.57 – 6.52 (m, 1H), 5.19 (dd, J = 9.2, 3.4 Hz, 1H), 4.66 (s, 1H), 4.25 (q, J = 7.1 Hz, 2H), 3.63 – 3.50 (m, 2H), 2.86 – 2.77 (m, 2H), 2.13 (dddd, J = 19.3, 9.2, 7.5, 5.6 Hz, 1H), 2.02 (s, 3H), 2.02 – 1.95 (m, 1H), 1.34 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 155.87, 155.86, 153.40, 142.33, 142.26, 142.24, 130.48, 128.64, 128.57, 128.54, 127.91, 127.88, 127.72, 127.37, 127.20, 127.15, 127.05, 126.41, 125.57, 120.00, 112.28, 77.97, 76.87, 72.55, 61.93, 47.26, 39.52, 37.16, 16.34, 14.06; **IR** (neat) v 3025, 2933, 2831, 2220, 1707, 1594, 1490, 1240, 1049, 749 cm⁻¹; **HRMS** (DART) Calcd for C₃₅H₃₆NO₃ (MH⁺): 518.2689; found: 518.2691.



Ethy l4-(benzhydryl(3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5ylidene)propyl)amino)but-2-ynoate (2.23m)

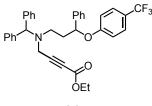
N-Benzhydryl-3-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-ylidene)-*N*-methylpropan-1-amine **2.23m** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:4), **2.23m** was obtained as a colorless liquid (79 mg, 74%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.45 – 7.39 (m, 4H), 7.30 – 7.22 (m, 5H), 7.22 – 7.12 (m, 7H), 7.10 – 7.02 (m, 2H), 5.84 (t, J = 7.5, 1.5 Hz, 1H), 4.67 (s, 1H), 4.27 (q, J = 7.1, 1.5 Hz, 2H), 3.47 – 3.19 (m, 4H), 2.97 (s, 1H), 2.67 (t, J = 7.2 Hz, 3H), 2.30 (q, J = 7.2 Hz, 2H), 1.36 (t, J = 7.1, 1.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 153.44, 143.77, 142.40,


141.22, 139.94, 139.32, 137.01, 129.96, 128.95, 128.58, 128.50, 128.48, 128.20, 128.00, 127.88, 127.41, 127.14, 126.98, 125.96, 125.76, 83.73, 77.82, 72.31, 61.92, 50.32, 39.28, 33.75, 31.98, 27.63; **IR** (neat) v 3020, 2922, 2836, 2224, 1707, 1484, 1448, 1365, 11243, 751 cm⁻¹; **HRMS** (DART) Calcd for $C_{37}H_{36}NO_2$ (MH⁺): 526.2740; found: 526.2751.

Ethyl (*R*)-4-(benzhydryl(3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl)amino)but-2-ynoate (2.23n)

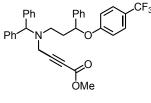
(*R*)-*N*-Benzhydryl-*N*-methyl-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propan-1-amine **2.23n** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.23n** was obtained as a colorless liquid (76 mg, 68%).


¹**H** NMR (600 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.3 Hz, 1H), 7.40 (dd, *J* = 19.1, 7.8 Hz, 4H), 7.27 (dt, *J* = 25.2, 7.3 Hz, 5H), 7.17 (q, *J* = 5.5 Hz, 2H), 7.01 – 6.91 (m, 4H), 6.89 (t, *J* = 4.4 Hz, 1H), 6.81 (d, *J* = 7.6 Hz, 1H), 5.69 (dd, *J* = 8.5, 4.3 Hz, 1H), 4.67 (s, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.59 (d, *J* = 4.6 Hz, 2H), 2.86 (d, *J* = 7.7 Hz, 2H), 2.49 – 2.11 (m, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 153.30, 145.27, 142.27, 141.98, 134.53, 128.65, 128.47, 127.86, 127.67, 127.28, 127.22, 126.98, 126.51, 126.23, 125.58, 125.14, 124.59, 124.44, 122.22, 120.46, 106.43, 83.39, 78.05, 73.88, 72.48, 61.94, 53.39, 47.09, 39.67, 37.18, 14.04; **IR** (neat) v 3055, 2926, 2837, 2220, 1707, 1579, 1453, 1243, 1092, 702 cm⁻¹; **HRMS** (DART) Calcd for C₃₆H₃₄NO₃S (MH⁺): 560.2254; found: 560.2239.

Ethyl 4-(benzhydryl(4-(3,4-dichlorophenyl)-1,2,3,4-tetrahydronaphthalen-1yl)amino)but-2-ynoate (2.230)

N-Benzhydryl-4-(3,4-dichlorophenyl)-*N*-methyl-1,2,3,4-tetrahydronaphthalen-1-amine **2.230** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.230** was obtained as a colorless liquid (76 mg, 67%).

¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (d, J = 8.1 Hz, 1H), 7.72 – 7.56 (m, 4H), 7.42 – 7.07 (m, 10H), 6.85 (dd, J = 69.9, 8.1 Hz, 2H), 5.31 – 5.17 (m, 1H), 4.28 – 4.11 (m, 3H), 4.05 (s, 1H), 3.53 (s, 2H), 2.06 (t, J = 12.1 Hz, 1H), 2.00 – 1.75 (m, 3H), 1.27 (t, J = 7.1, 3.2 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 153.30, 147.15, 142.24, 139.04, 138.62, 132.19, 130.67, 129.99, 129.86, 128.83, 128.69, 128.18, 128.08, 127.90, 127.57, 127.37, 127.33, 126.99, 86.25, 77.53, 69.11, 61.74, 57.80, 43.38, 36.16, 30.34, 17.46, 13.97; **IR** (neat) v 3023, 2931, 2860, 2221, 1706, 1592, 1459, 1241, 1117, 1052 cm⁻¹; **HRMS** (DART) Calcd for C₃₅H₃₂NO₂Cl₂ (MH⁺): 568.1805; found: 568.1799.

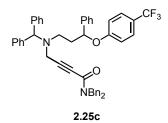

2.25a

Ethyl 4-(benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)but-2ynoate (2.25a)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column

chromatography (Et₂O:hexanes = 1:19), **2.25a** was obtained as a colorless liquid (94 mg, 82%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.39 (m, 4H), 7.35 – 7.22 (m, 10H), 7.18 (tt, J = 7.4, 1.5 Hz, 1H), 7.14 – 7.04 (m, 3H), 6.83 – 6.77 (m, 2H), 5.28 – 5.19 (m, 1H), 4.67 (s, 1H), 4.26 (q, J = 7.2, 2.4 Hz, 2H), 3.64 – 3.50 (m, 2H), 2.88 – 2.78 (m, 1H), 2.78 – 2.68 (m, 1H), 2.19 – 2.08 (m, 1H), 2.04 – 1.94 (m, 1H), 1.34 (t, J = 7.2, 2.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ160.52, 153.37, 142.13, 142.08, 141.17, 128.76, 128.64, 128.54, 127.93, 127.76, 127.28, 127.13, 126.65 (d, $J_{CF} = 3.3$ Hz), 125.62, 124.41 (d, $J_{CF} = 271.1$ Hz), 122.69 (q, $J_{CF} = 32.7$ Hz), 115.69, 83.29, 78.04, 77.73, 72.47, 61.96, 46.91, 39.52, 36.81, 14.03; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -61.53; **IR** (neat) v 3028, 2930, 2834, 2221, 1708, 1612, 1513, 1451, 1324, 1246, 1114 cm⁻¹; **HRMS** (DART) Calcd for C₃₅H₃₃NO₃F₃(MH⁺): 572.2407; found: 572.2402.

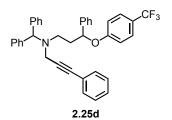

2.25b

Methyl 4-(benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)but-2ynoate (2.25b)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with methyl 3-(trimethylsilyl)propiolate **2.22b** following **General Procedure B** using 1,2-bis(diphenylphosphino)ethane as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.25b** was obtained as a colorless liquid (76 mg, 68%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.46 – 7.37 (m, 4H), 7.36 – 7.21 (m, 9H), 7.18 (tt, J = 7.1, 1.5 Hz, 1H), 7.12 – 7.05 (m, 3H), 6.80 (d, J = 8.4 Hz, 2H), 5.23 (dd, J = 9.1, 3.6 Hz, 1H), 4.66 (s, 1H), 3.80 (s, 3H), 3.57 (d, J = 10.6 Hz, 2H), 2.88 – 2.67 (m, 2H), 2.20 – 1.95 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 160.51, 153.76, 142.11, 142.05, 141.15, 128.77, 128.66, 128.55, 127.91, 127.79, 127.75, 127.30, 127.15, 126.65 (d, $J_{CF} = 3.8$ Hz), 125.62, 124.41 (d, $J_{CF} = 271.3$ Hz), 122.69 (q, $J_{CF} = 32.5$ Hz), 115.69, 83.74, 77.72, 72.49, 53.39,

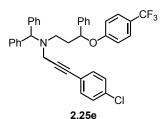
52.66, 46.91, 39.49, 36.81; ¹⁹F NMR (470 MHz, CDCl₃) δ -61.50; IR (neat) v 3028, 2946, 2832, 2226, 1713, 1513, 1445, 1324, 1249, 1114 cm⁻¹; HRMS (DART) Calcd for C₃₄H₃₁NO₃F₃ (MH⁺): 558.2251; found: 558.2246.



4-(Benzhydryl(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)amino)-N,N-

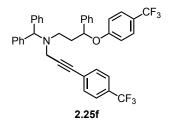
dibenzylbut-2-ynamide (2.25c)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with *N*,*N*-dibenzyl-3-(trimethylsilyl)propiolamide **2.22c** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:4), **2.25c** was obtained as a colorless liquid (116 mg, 80%).


¹**H NMR** (600 MHz, CDCl₃) δ 7.40 (d, J = 8.0 Hz, 4H), 7.35 (t, J = 7.5 Hz, 3H), 7.31 (d, J = 6.8 Hz, 1H), 7.27 (d, J = 7.4 Hz, 4H), 7.23 (t, J = 9.3 Hz, 7H), 7.17 (t, J = 7.5 Hz, 2H), 7.15 – 7.10 (m, 3H), 7.06 (t, J = 7.3 Hz, 1H), 7.01 (t, J = 7.4 Hz, 2H), 6.75 (d, J = 8.4 Hz, 2H), 5.16 (dd, J = 9.0, 3.7 Hz, 1H), 4.78 – 4.65 (m, 2H), 4.55 (q, J = 14.8 Hz, 2H), 4.46 (s, 1H), 3.61 (q, J = 18.3 Hz, 2H), 2.75 – 2.57 (m, 2H), 2.13 – 1.90 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 160.46, 154.70, 142.13, 142.06, 141.10, 136.21, 135.96, 129.01, 128.75, 128.71, 128.57, 128.47, 128.01, 127.78, 127.72, 127.59, 127.24, 127.20, 127.06, 126.64 (d, $J_{CF} = 3.0$ Hz), 125.58, 124.39 (d, $J_{CF} = 271.1$ Hz), 122.66 (q, $J_{CF} = 32.7$ Hz), 115.65, 87.72, 78.90, 77.68, 72.64, 51.30, 46.89, 46.46, 39.64, 36.84; ¹⁹**F NMR** (470 MHz, CDCl₃) δ - 61.48; **IR** (neat) v 3028, 2925, 2830, 2221, 1628, 1324, 1245, 1162, 1113, 700 cm⁻¹; **HRMS** (DART) Calcd for C₄₇H₄₂N₂O₂F₃ (MH⁺): 723.3193; found: 723.3167.

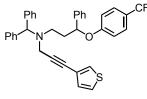
N-Benzhydryl-3-phenyl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)prop-2yn-1-amine (2.25d)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with trimethyl(phenylethynyl)silane **2.22d** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:49), **2.25d** was obtained as a colorless liquid (86 mg, 75%).


¹**H NMR** (500 MHz, CDCl₃) δ 7.53 – 7.38 (m, 6H), 7.37 – 7.14 (m, 13H), 7.08 (d, J = 6.6 Hz, 3H), 6.81 (d, J = 8.4 Hz, 2H), 5.30 (dd, J = 9.0, 3.8 Hz, 1H), 4.74 (s, 1H), 3.72 – 3.56 (m, 2H), 2.91 – 2.70 (m, 2H), 2.24 – 2.00 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 160.63, 142.75, 142.66, 141.41, 131.73, 128.72, 128.50, 128.43, 128.28, 128.05, 127.91, 127.70, 127.07, 126.95, 126.64 (d, $J_{CF} = 3.1$ Hz), 125.68, 124.45 (d, $J_{CF} = 271.5$ Hz), 123.32, 122.59 (q, $J_{CF} = 32.6$ Hz), 115.72, 85.86, 84.16, 77.88, 72.55, 46.67, 39.98, 36.89; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -61.49; **IR** (neat) v 3060, 2927, 2829, 2096, 1513, 1491, 1324, 1249, 1162, 1114, 698 cm⁻¹; **HRMS** (DART) Calcd for C₃₈H₃₃NOF₃ (MH⁺): 576.2509; found: 576.2504.

N-Benzhydryl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-amine (2.25e)

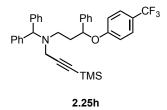
N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with trimethyl((4-(trifluoromethyl)phenyl)ethynyl)silane **2.22e** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.25e** was obtained as a colorless liquid (106 mg, 82%).


¹**H NMR** (500 MHz, CDCl₃) δ 7.57 (dd, J = 8.4, 4.1 Hz, 2H), 7.48 (dd, J = 8.1, 4.1 Hz, 2H), 7.43 (ddd, J = 13.0, 8.0, 4.1 Hz, 4H), 7.35 (tt, J = 4.9, 2.2 Hz, 2H), 7.29 (d, J = 4.8 Hz, 4H), 7.28 – 7.22 (m, 3H), 7.19 (td, J = 7.1, 4.4 Hz, 1H), 7.10 (p, J = 5.2 Hz, 3H), 6.81 (dd, J = 9.0, 4.0 Hz, 2H), 5.30 (dt, J = 8.5, 4.0 Hz, 1H), 4.73 (d, J = 4.2 Hz, 1H), 3.73 – 3.60 (m, 2H), 2.97 – 2.70 (m, 2H), 2.25 – 2.00 (m, 2H); ¹³**C NMR** (126 MHz, CDCl₃) δ 160.59, 142.57, 142.45, 141.33, 132.38, 132.17 (d, $J_{CF} = 293.4$ Hz), 129.83 (q, $J_{CF} = 32.6$ Hz), 128.76, 128.57, 128.49, 128.01, 127.88, 127.77, 127.19, 127.07, 126.67 (d, $J_{CF} = 2.9$ Hz), 125.69, 125.22 (d, $J_{CF} = 2.8$ Hz), 124.19 (d, $J_{CF} = 211.0$ Hz), 122.68 (q, $J_{CF} = 32.5$ Hz), 115.70, 87.12, 84.62, 77.86, 72.64, 46.77, 40.04, 36.86; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -61.45, -62.75; **IR** (neat) v 3027, 2931, 2829, 1612, 1513, 1450, 1322, 1249, 1116, 701 cm⁻¹; **HRMS** (DART) Calcd for C₃₉H₃₂NOF₆ (MH⁺): 644.2383; found: 644.2365.

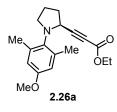
N-Benzhydryl-3-(4-chlorophenyl)-*N*-(3-phenyl-3-(4(trifluoromethyl)phenoxy) propyl)prop-2-yn-1-amine (2.25f)

N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with ((4-chlorophenyl)ethynyl)trimethylsilane **2.22f** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.25f** was obtained as a colorless liquid (98 mg, 80%).

CDCl₃) δ -61.50; **IR** (neat) v 3055, 2928, 2832, 2223, 1707, 1608, 1488, 1245, 1113, 701 cm⁻¹; **HRMS** (DART) Calcd for C₃₈H₃₂NOF₃Cl (MH⁺): 610.2119; found: 610.2125.



N-Benzhydryl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(thiophen-3-yl)prop-2-yn-1-amine (2.25g)


N-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with trimethyl(thiophen-3-ylethynyl)silane **2.22g** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:49), **2.25g** was obtained as a colorless liquid (86 mg, 74%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (dt, J = 8.9, 5.0 Hz, 4H), 7.38 (d, J = 2.9 Hz, 1H), 7.34 (dd, J = 6.2, 3.4 Hz, 2H), 7.29 (t, J = 3.4 Hz, 4H), 7.25 (ddq, J = 9.9, 7.1, 4.3, 3.5 Hz, 4H), 7.18 (dt, J = 7.8, 3.8 Hz, 1H), 7.08 (dt, J = 8.8, 4.2 Hz, 4H), 6.81 (dd, J = 8.8, 2.5 Hz, 2H), 5.30 (dd, J = 9.1, 3.9 Hz, 1H), 4.72 (s, 1H), 3.62 (q, J = 17.8 Hz, 2H), 2.80 (ddt, J = 50.2, 12.0, 6.5 Hz, 2H), 2.12 (dt, J = 55.1, 12.1 Hz, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 160.62, 142.73, 142.62, 141.41, 130.03, 128.73, 128.50, 128.42, 128.33, 128.04, 127.90, 127.71, 127.07, 126.94, 125.68, 126.65 (d, J = 3.6 Hz), 124.69 (d, J = 267.9 Hz), 122.59 (d, J = 32.9 Hz), 122.27, 115.70, 83.75, 80.78, 77.83, 72.49, 46.64, 39.99, 36.88; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -61.41; **IR** (neat) v 3026, 2929, 2829, 2166, 1514, 1450, 1324, 1249, 1114, 700 cm⁻¹; **HRMS** (DART) Calcd for C₃₆H₃₁NOF₃S (MH⁺): 582.2073; found: 582.2074.

N-Benzhydryl-*N*-(3-phenyl-3-(4-(trifluoromethyl)phenoxy)propyl)-3-(trimethylsilyl) prop-2-yn-1-amine (2.25h) *N*-Benzhydryl-*N*-methyl-3-phenyl-3-(4-(trifluoromethyl)phenoxy)propan-1-amine **2.15p** was reacted with 1,2-bis(trimethylsilyl)ethyne **2.22h** following **General Procedure B** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.25h** was obtained as a colorless liquid (99 mg, 87%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.41 (dd, J = 20.0, 8.2 Hz, 4H), 7.32 – 7.27 (m, 6H), 7.23 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 7.5 Hz, 2H), 7.10 – 7.05 (m, 3H), 6.80 (d, J = 8.4 Hz, 2H), 5.25 (dd, J = 9.2, 3.4 Hz, 1H), 4.64 (s, 1H), 3.42 (q, J = 17.9 Hz, 2H), 2.80 – 2.66 (m, 2H), 2.13 – 1.98 (m, 2H), 0.20 (s, 9H); ¹⁹**F NMR** (470 MHz, CDCl₃) δ -61.50; **IR** (neat) v 3059, 2951, 2848, 2160, 1612, 1324, 1250, 1116, 840, 700 cm⁻¹; **HRMS** (DART) Calcd for C₃₅H₃₇NOF₃Si(MH⁺): 572.2591; found: 572.2579.

Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)pyrrolidin-2-yl)propiolate (2.26a)

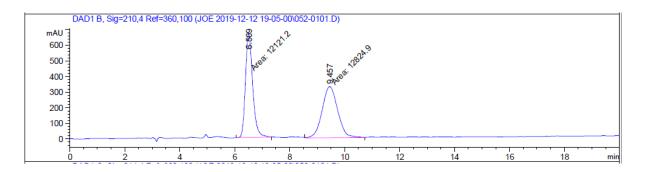
1-(4-Methoxy-2,6-dimethylphenyl)pyrrolidine **2.15a** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure C**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.26a-(S)** was obtained as a colorless liquid (45 mg, 75%). The absolute configuration of **2.26a-(S)** was assigned as (S).

¹**H** NMR (500 MHz, CDCl₃) δ 6.58 (s, 2H), 4.27 (ddd, J = 7.8, 3.5, 1.3 Hz, 1H), 4.17 (qd, J = 7.2, 1.3 Hz, 2H), 3.75 (s, 3H), 3.43 – 3.31 (m, 1H), 3.09 (q, J = 6.9 Hz, 1H), 2.47 – 2.22 (m, 6H), 2.22 – 2.10 (m, 3H), 2.09 – 1.94 (m, 1H), 1.27 (td, J = 7.2, 1.4 Hz, 3H); ¹³**C** NMR (151 MHz, CDCl₃) δ 157.15, 153.86, 135.89, 113.60, 90.83, 73.94, 61.66, 55.16, 52.31, 51.03, 33.83, 25.68, 18.89, 13.99; **IR** (neat) v 2967, 2837, 2224, 1707, 1599, 1476, 1366,1244, 1153, 1067, cm⁻¹; **HRMS** (DART) Calcd for C₁₈H₂₄NO₃ (MH⁺): 302.1751; found: 302.1755; $[\alpha]^{25}_{D} = 76.2^{\circ}$ (*c* 1.0, CH₂Cl₂); **HPLC** (Chiralcel OJ-H; 95:5 hexane:isopropanol, 1.0 mL/min; **2.26a-(S):** tr = 6.5 min (major), 9.5 min (minor); 95:5 er.

```
Acq. Operator : SYSTEM Seq. Line : 1

Acq. Instrument : Wasa_LC1 Location : 52

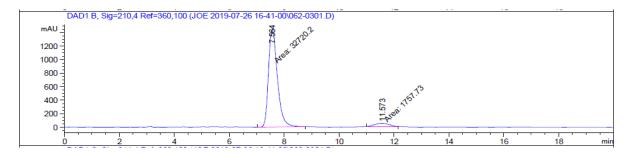
Injection Date : 12/12/2019 7:06:12 PM Inj : 1


Inj Volume : 4.000 µl

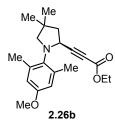
Method : C:\Chem32\1\Data\JOE 2019-12-12 19-05-00\column4 5%IPA 95% hexane 30min-1.

OmL.M (Sequence Method)

Last changed : 12/12/2019 7:05:05 PM by SYSTEM


Method Info : Column4 60min-1% iPrOH 99% hexane-1.0mL
```

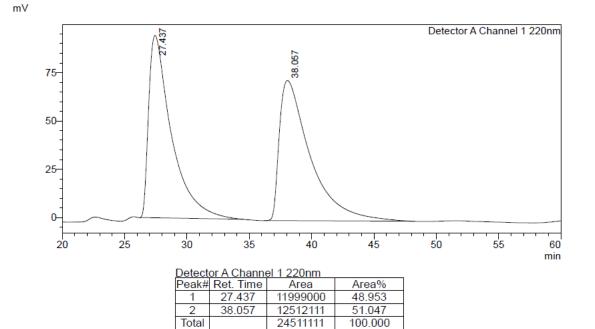

Signal 2: DAD1 B, Sig=210,4 Ref=360,100


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	6.509	MM	0.3045	1.21212e4	663.55304	48.5896
2	9.457	MM	0.6531	1.28249e4	327.28235	51.4104

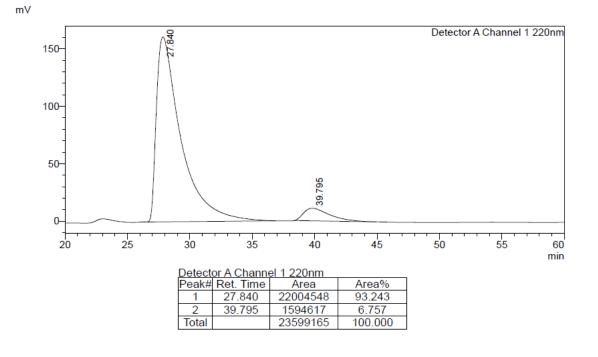
Acq. Operator	: SYSTEM Seq. Line : 3				
Acq. Instrument	: Wasa_LC1 Location : 62				
Injection Date	: 7/26/2019 5:44:53 PM Inj : 1				
	Inj Volume : 4.000 µl				
Method	: C:\Chem32\1\Data\JOE 2019-07-26 16-41-00\column4 5%IPA 95% hexane 30min-1.				
	OmL.M (Sequence Method)				
Last changed	: 7/26/2019 4:41:04 PM by SYSTEM				
Method Info : Column4 60min-1% iPrOH 99% hexane-1.0mL					

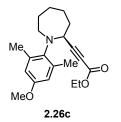
Signal 2: DAD1 B, Sig=210,4 Ref=360,100

				Area [mAU*s]	Height [mAU]	
1	7.564	MM	0.3774	3.27202e4	1445.16772	94.9019
2	11.573	MM	0.6270	1757.73438	46.72317	5.0981



Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)-4,4-dimethylpyrrolidin-2yl)propiolate (2.26b)


1-(4-Methoxy-2,6-dimethylphenyl)-3,3-dimethylpyrrolidine **2.15b** was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure C**. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.26b** was obtained as a yellow oil (45 mg, 69%). The absolute configuration of **2.26b** was assigned in analogy to **2.26a-(***S***)**.


¹**H NMR** (600 MHz, CDCl₃) δ 6.57 (s, 2H), 4.41 (dd, J = 9.0, 3.8 Hz, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.75 (s, 3H), 3.07 (d, J = 7.9 Hz, 1H), 2.95 (d, J = 7.8 Hz, 1H), 2.37 (s, 5H), 2.19 (dd, J = 12.5, 9.0 Hz, 2H), 1.98 (dd, J = 12.5, 3.9 Hz, 1H), 1.37 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.15 (d, J = 1.0 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.17, 153.83, 135.35, 113.68, 90.96, 74.30, 64.52, 61.63, 55.15, 51.92, 47.01, 39.12, 27.77, 27.24, 13.98; **IR** (neat) 2954, 2864, 2228, 1707, 1601, 1465, 1243, 1094, 1-23, 751 cm⁻¹; **HRMS** (DART) Calcd for C₂₀H₂₈NO₃ (MH⁺): 330.2063; found: 330.2069; $[\alpha]^{25}_{D} = 20.5^{\circ}$ (*c* 0.3, CH₂Cl₂); **HPLC** (Chiralpak AY-3; 99.9:0.1 hexane:isopropanol, 0.3 mL/min; **2.26b:** tr = 27.4 min (major), 38.1 min (minor); 93:7 er.

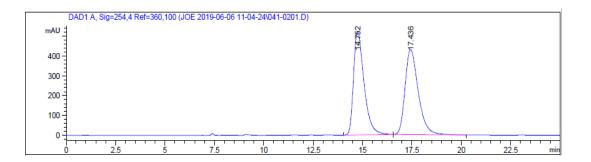
Sample Name	: 8c_ee4_JZC2101A_AY-3_2-10		
Sample ID	: 8c ee4 JZC2101A AY-3 2-10		
Data Filename	: 8c ee4 JZC2101A AY-3 2-10.lcd		
Method Filename	: 99.9 0.1 60min 0.3mL.lcm		
Batch Filename	: batch8.lcb		
Vial #	: 1-25	Sample Type	: Unknown
Injection Volume	: 4 uL		
Date Acquired	: 2/11/2020 3:40:02 AM	Acquired by	: System Administrator
Date Processed	: 2/12/2020 4:33:05 PM	Processed by	: System Administrator
		-	-

Ethyl (S)-3-(1-(4-methoxy-2,6-dimethylphenyl)azepan-2-yl)propiolate (2.26c)

1-(4-Methoxy-2,6-dimethylphenyl)azepane 2.15c reacted with ethvl 3was (trimethylsilyl)propiolate 2.22a following General Procedure C. After purification by column chromatography (Et_2O :hexanes = 1:19), **2.26c** was obtained as a colorless liquid (42 mg, 64%). The absolute configuration of **2.26c** was assigned in analogy to **2.26a-(S)**. ¹**H NMR** (500 MHz, CDCl₃) δ 6.57 (d, J = 13.4 Hz, 2H), 4.18 (d, J = 7.1 Hz, 2H), 4.06 (d, J = 2.7 Hz, 1H), 3.75 (s, 3H), 3.32 (d, J = 9.1 Hz, 1H), 3.08 (d, J = 11.1 Hz, 1H), 2.42 (s, 3H), 2.29 (s, 3H), 2.19 (d, J = 1.5 Hz, 1H), 1.95 - 1.85 (m, 2H), 1.85 - 1.79 (m, 1H), 1.79- 1.70 (m, 2H), 1.57 (s, 2H), 1.28 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 156.53, 153.77, 141.76, 139.19, 137.94, 114.13, 113.64, 90.92, 75.66, 61.65, 55.17, 53.81, 51.31, 35.68, 31.91, 29.33, 25.25, 20.14, 19.65, 14.01; **IR** (neat) v 2926, 2845, 2221, 1707, 1598, 1474, 1309, 1240, 1065, 853 cm⁻¹; **HRMS** (DART) Calcd for C₂₀H₂₈NO₃ (MH⁺): 330.2063; found: 330.2061; $[\alpha]^{25}_D = 30.1^\circ$ (c 1.0, CH₂Cl₂); **HPLC** (Chiralcel OJ-H; 98.5:1.5 hexane:isopropanol, 0.5 mL/min; **2.26c:** tr = 14.8 min (major), 17.4 min (minor); 95:5 er.

```
Acq. Operator : SYSTEM Seq. Line : 2

Acq. Instrument : Wasa_LC1 Location : 41


Injection Date : 6/6/2019 11:37:23 AM Inj : 1

Inj Volume : 4.000 µl

Acq. Method : C:\Chem32\1\Data\JOE 2019-06-06 11-04-24\column4 1.5%IPA 98.5% hexane 60min

-0.5mL.M

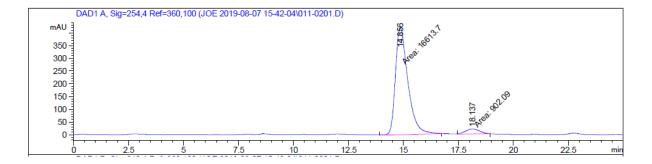
Last changed : 6/6/2019 11:04:28 AM by SYSTEM
```


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	010
1	14.752	BB	0.5570	1.92070e4	522.36609	49.2058
2	17.436	BB	0.7122	1.98270e4	428.21890	50.7942

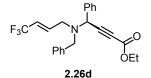
```
Acq. Operator : SYSTEM Seq. Line : 2

Acq. Instrument : Wasa_LC1 Location : 11


Injection Date : 8/7/2019 4:14:59 PM Inj : 1

Inj Volume : 4.000 µl

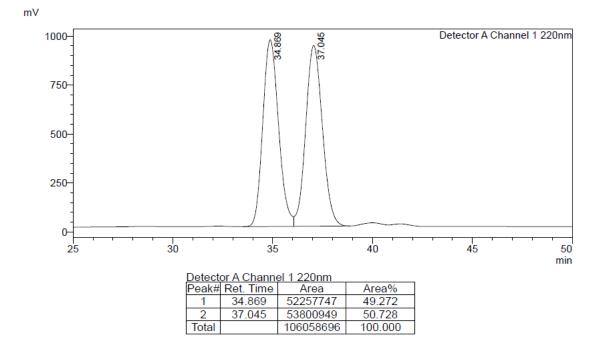
Acq. Method : C:\Chem32\1\Data\JOE 2019-08-07 15-42-04\column4 1.5%IPA 98.5% hexane 30min


-0.5mL.M

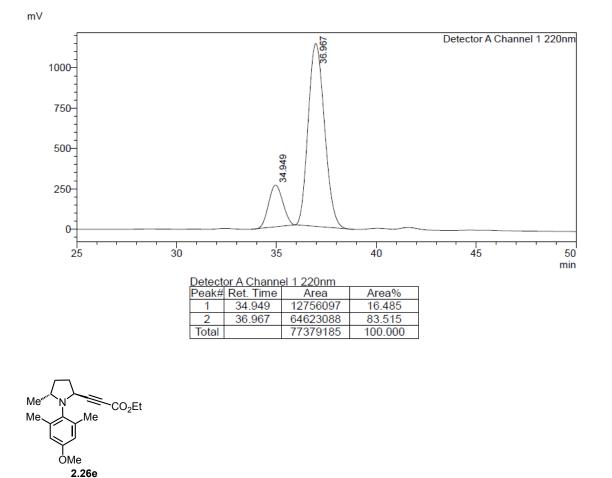
Last changed : 8/7/2019 3:42:08 PM by SYSTEM
```

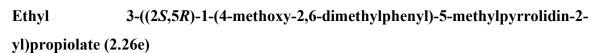

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	00
1	14.856	MM	0.6745	9.39466e4	2321.40063	95.4662
2	18.137	MM	0.6770	4461.63379	109.84474	4.5338



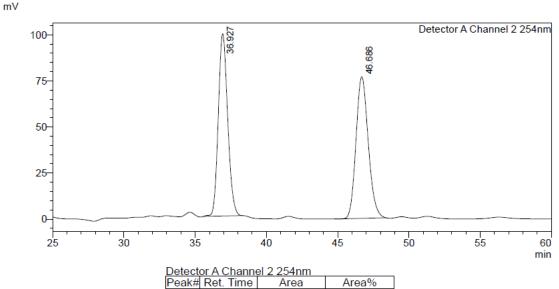
Ethyl (*S*,*E*)-4-(benzyl(4,4,4-trifluorobut-2-en-1-yl)amino)-4-phenylbut-2-ynoate (2.26d)


(*E*)-*N*,*N*-Dibenzyl-4,4,4-trifluorobut-2-en-1-amine was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure C** using (*S*)-PhPyBOX as the ligand. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.26d** was obtained as a colorless liquid (36 mg, 45%).

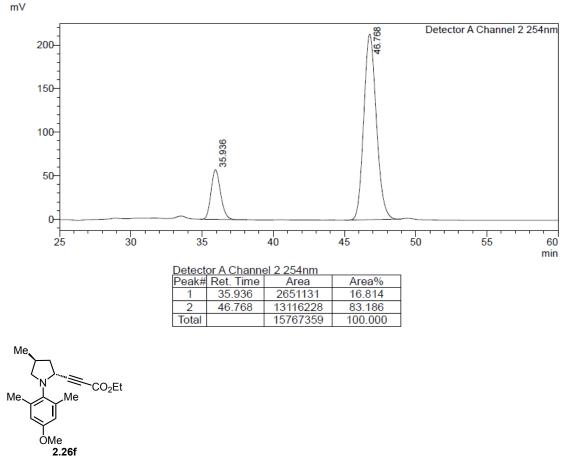

¹**H NMR** (600 MHz, CDCl₃) δ 7.56 (dt, J = 8.1, 1.1 Hz, 2H), 7.40 – 7.31 (m, 7H), 7.31 – 7.25 (m, 1H), 6.33 (dddd, J = 15.8, 7.5, 4.2, 2.1 Hz, 1H), 5.94 – 5.84 (m, 1H), 4.87 (s, 1H), 4.32 (q, J = 7.1 Hz, 2H), 3.83 (d, J = 13.5 Hz, 1H), 3.54 (d, J = 13.5 Hz, 1H), 3.28 (dq, J = 15.6, 3.2 Hz, 1H), 3.21 – 3.14 (m, 1H), 1.38 (t, J = 7.1 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 153.38, 137.94, 136.46, 128.85, 128.82, 128.66, 128.58, 128.51, 128.37, 128.24, 127.92, 127.59, 127.16, 123.67, 121.89, 120.38 (q, J = 33.9 Hz), 82.79, 80.53, 62.25, 58.25, 56.30, 55.43, 52.91, 50.63, 14.08; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -64.07, -64.08, -64.08, -64.09, -64.09, -64.10; **IR** (neat) v 2925, 2222, 1711, 1492, 1450, 1242, 1119, 749, 698 cm⁻¹; **HRMS** (DART) Calcd for C₂₃H₂₃NO₂F₃ (MH⁺): 402.1675; found: 402.1667; [α]²⁵_D = -45.3° (*c* 1.0, CH₂Cl₂); **HPLC** (Chiralcel AD-H; 99.5:0.5 hexane:isopropanol, 0.3 mL/min; **2.26p:** tr = 34.9 min (minor), 37.0 min (major); 2.17:16 er.

Sample Name Sample ID Data Filename	: 8e_rac3_JZC2017H2_AD-H_0.3mL : 8e_rac3_JZC2017H2_AD-H_0.3mL : 8e_rac3_JZC2017H2_AD-H_0.3mL	_	
Method Filename	: 995_05_60min_03mL.lcm		
Batch Filename	: batch9.lcb		
Vial #	: 1-4	Sample Type	: Unknown
Injection Volume	: 4 uL		
Date Acquired	: 2/9/2020 5:43:00 PM	Acquired by	: System Administrator
Date Processed	: 2/10/2020 9:51:53 AM	Processed by	: System Administrator

Sample Name Sample ID	: 8e_ee3_JZC2187BC_n1n1_AD-H : 8e_ee3_JZC2187BC_n1n1_AD-H				
Data Filename	: 8e_ee3_JZC2187BC_n1n1_AD-H_0.3mL.lcd				
Method Filename	: 995_05_60min_03mL.lcm	-			
Batch Filename	: batch9.lcb				
Vial #	: 1-5	Sample Type	: Unknown		
Injection Volume	: 4 uL				
Date Acquired	: 2/9/2020 6:43:34 PM	Acquired by	: System Administrator		
Date Processed	: 2/10/2020 9:40:28 AM	Processed by	: System Administrator		



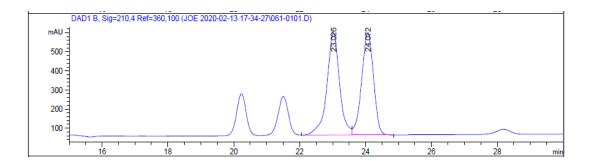
1-(4-Methoxy-2,6-dimethylphenyl)-2-methylpyrrolidine was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure C**. The *trans:cis* ratio was determined to be 6.3:1 by ¹H NMR analysis of the unpurified reaction mixtures. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.26e** was obtained as a yellow oil (42 mg, 66%). The relative configuration of **2.26e** was assigned by NOESY analysis as described in SI Section 3.


¹**H NMR** (600 MHz, CDCl₃) δ 6.58 (d, J = 1.2 Hz, 2H), 4.37 (dd, J = 7.7, 4.1 Hz, 1H), 4.15 (qd, J = 7.1, 0.8 Hz, 2H), 3.84 (q, J = 6.1 Hz, 1H), 3.76 (s, 3H), 2.43 – 2.37 (m, 1H), 2.36 (s, 3H), 2.32 – 2.25 (m, 1H), 2.19 (s, 3H), 2.09 – 2.02 (m, 1H), 1.61 – 1.55 (m, 1H), 1.25 (d, J = 0.9 Hz, 3H), 0.86 (d, J = 6.2 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 156.76, 153.75, 140.20, 139.66, 133.55, 113.85, 113.17, 90.98, 74.59, 61.65, 55.20, 55.11, 52.16, 33.15, 31.40, 20.31, 19.89, 19.04, 13.99; **IR** (neat) v 2956, 2222, 1705, 1597, 1471, 1368, 1234, 1152, 1065, 852 cm⁻¹; **HRMS** (DART) Calcd for C₁₉H₂₆NO₃ (MH⁺): 316.1907; found: 316.1905; $[\alpha]^{25}_{D} = 12.1^{\circ}$ (*c* 0.3, CH₂Cl₂); **HPLC** (Chiralpak AD-H; 99.7:0.3 hexane:isopropanol, 0.3 mL/min; **2.26e:** tr = 36.9 min (minor), 46.7 min (major); 83:17 er.

Peak#	Ret. Time	Area	Area%
1	36.927	4524255	49.641
2	46.686	4589671	50.359
Total		9113925	100.000

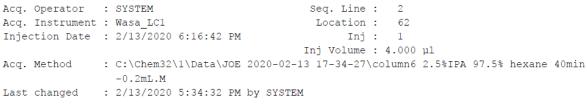
Sample Name	: 8b_ee2_JZC2264_f9_AD-H_inst4_(0.3mL						
Sample ID	: 8b_ee2_JZC2264_f9_AD-H_inst4_(: 8b_ee2_JZC2264_f9_AD-H_inst4_0.						
Data Filename	: 8b_ee2_JZC2264_f9_AD-H_inst4_0.3mL.lcd							
Method Filename	: 99.7 0.3 60min 0.3mL.lcm							
Batch Filename	: batch9.lcb							
Vial #	: 1-21	Sample Type	: Unknown					
Injection Volume	: 20 uL							
Date Acquired	: 2/13/2020 7:34:16 PM	Acquired by	: System Administrator					
Date Processed	: 2/13/2020 8:34:17 PM	Processed by	: System Administrator					

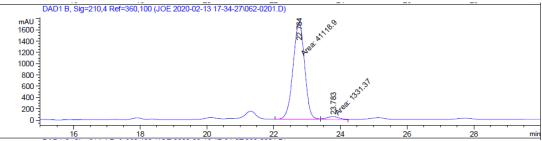
Ethyl 3-((2*R*,4*S*)-1-(4-methoxy-2,6-dimethylphenyl)-4-methylpyrrolidin-2-


yl)propiolate (2.26f)

(*S*)-1-(4-Methoxy-2,6-dimethylphenyl)-3-methylpyrrolidine was reacted with ethyl 3-(trimethylsilyl)propiolate **2.22a** following **General Procedure C**. The *trans:cis* ratio was determined to be 11.8:1 by ¹H NMR analysis of the unpurified reaction mixtures. After purification by column chromatography (Et₂O:hexanes = 1:19), **2.26f** was obtained as a colorless liquid (40 mg, 64%). The relative configuration of **2.26f** was assigned by NOESY, COSY, and HSQC analysis (see SI Section 3).

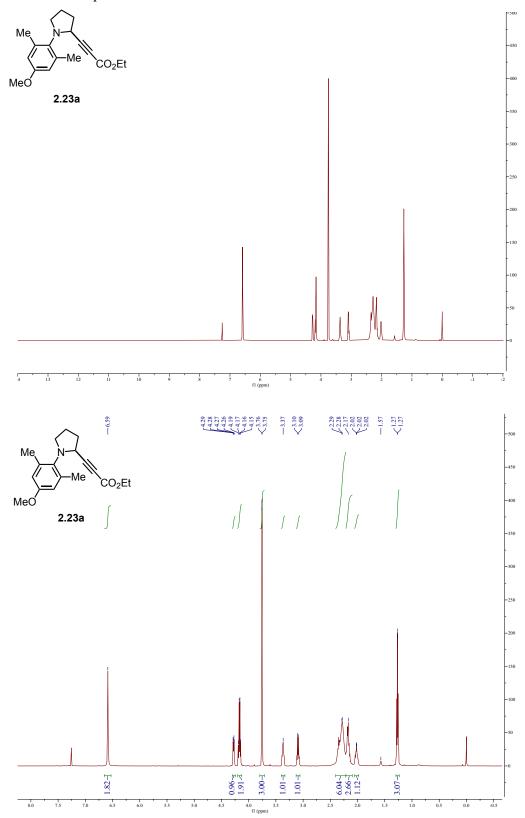
¹**H NMR** (600 MHz, CDCl₃) δ 6.58 (s, 2H), 4.29 (dd, J = 8.6, 1.8 Hz, 1H), 4.17 (qd, J = 7.1, 1.0 Hz, 2H), 3.75 (d, J = 1.0 Hz, 3H), 3.38 (t, J = 7.2 Hz, 1H), 2.74 (dd, J = 8.8, 7.8 Hz, 1H), 2.71 – 2.62 (m, 1H), 2.42 – 2.18 (m, 7H), 2.03 – 1.94 (m, 1H), 1.27 (td, J = 7.1, 0.9 Hz, 3H), 1.11 (dd, J = 6.5, 0.9 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.14, 153.93, 135.78, 113.60, 91.17, 74.06, 61.66, 58.42, 55.19, 52.71, 41.62, 33.57, 18.79, 17.34, 14.01;

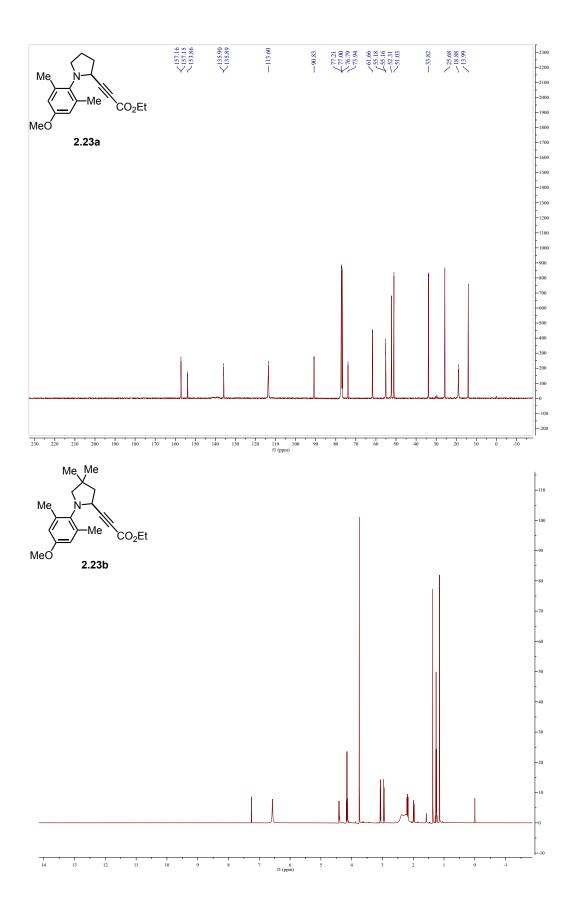

IR (neat) v 2954, 2924, 1708, 1601, 1484, 1465, 1244, 1154, 1066 cm⁻¹; HRMS (DART) Calcd for C₁₉H₂₆NO₃ (MH⁺): 316.1907; found: 316.1904; $[\alpha]^{25}_D = 63.0^\circ$ (*c* 0.2, CH₂Cl₂); HPLC (Chiralpak IA; 97.5:2.5 hexane:isopropanol, 0.2 mL/min; **2.26f:** tr = 23.0 min (major), 24.0 min (minor); 97:3 er.

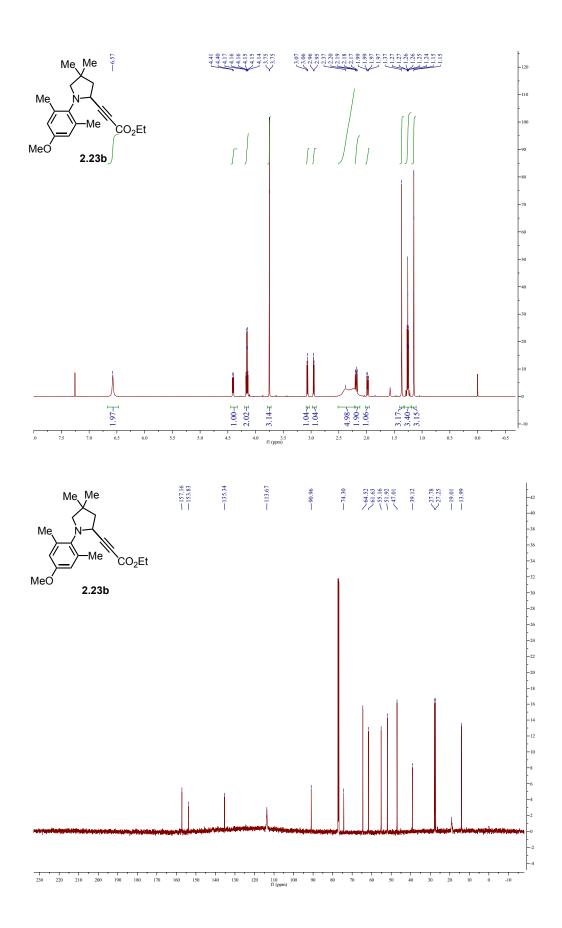

Acq. Operator : SYSTEM Seq. Line : 1 Acq. Instrument : Wasa_LC1 Location : 61 Injection Date : 2/13/2020 5:35:45 PM Inj : 1 Inj Volume : 4.000 µl Acq. Method : C:\Chem32\1\Data\JOE 2020-02-13 17-34-27\column6 2.5%IPA 97.5% hexane 40min -0.2mL.M Last changed : 2/13/2020 5:34:32 PM by SYSTEM

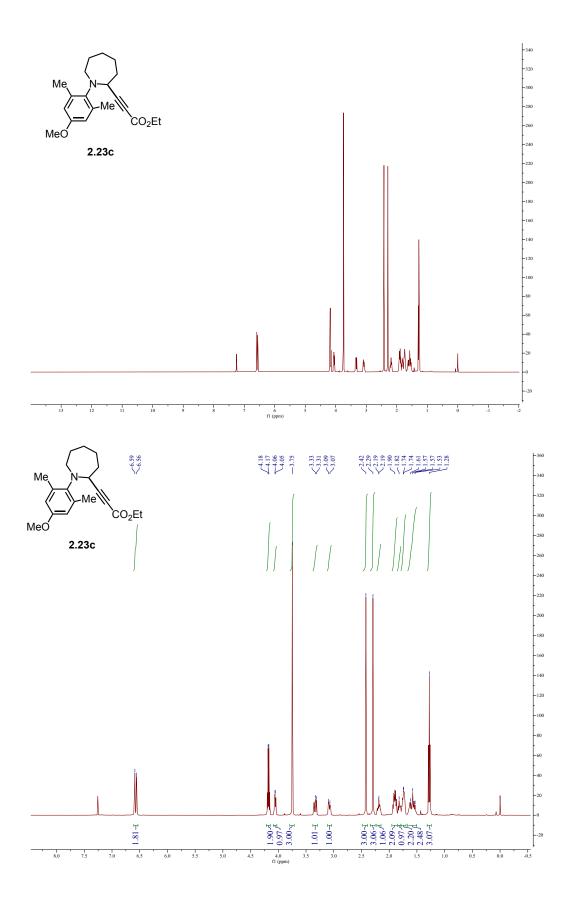
Signal 2: DAD1 B, Sig=210,4 Ref=360,100

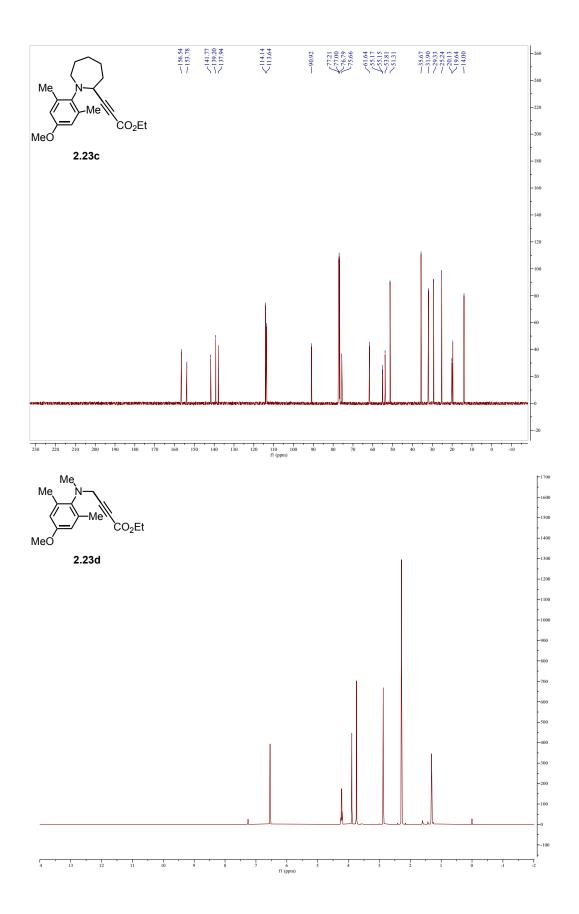
Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	oto
		-				
1	23.026	VV	0.4035	1.44252e4	536.82739	51.7382
2	24.072	VB	0.3885	1.34559e4	536.65869	48.2618

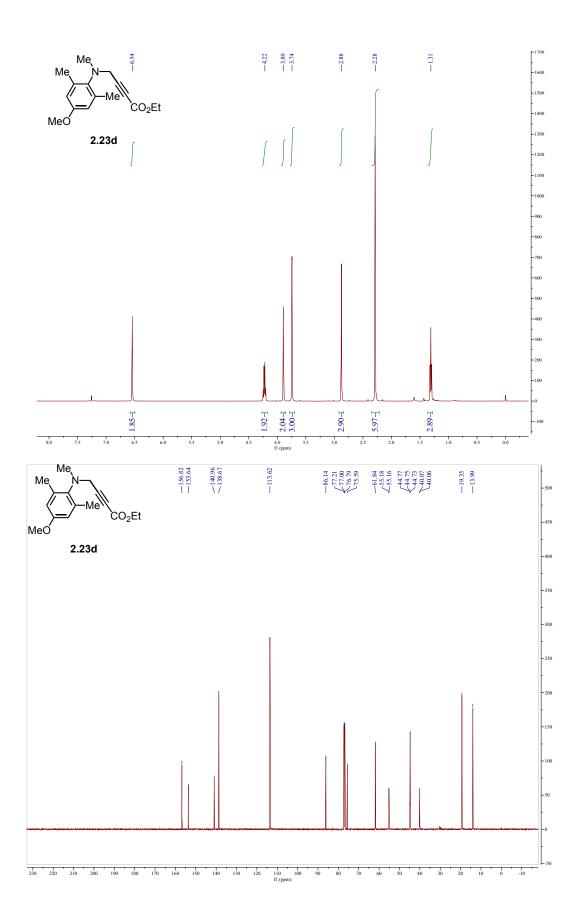


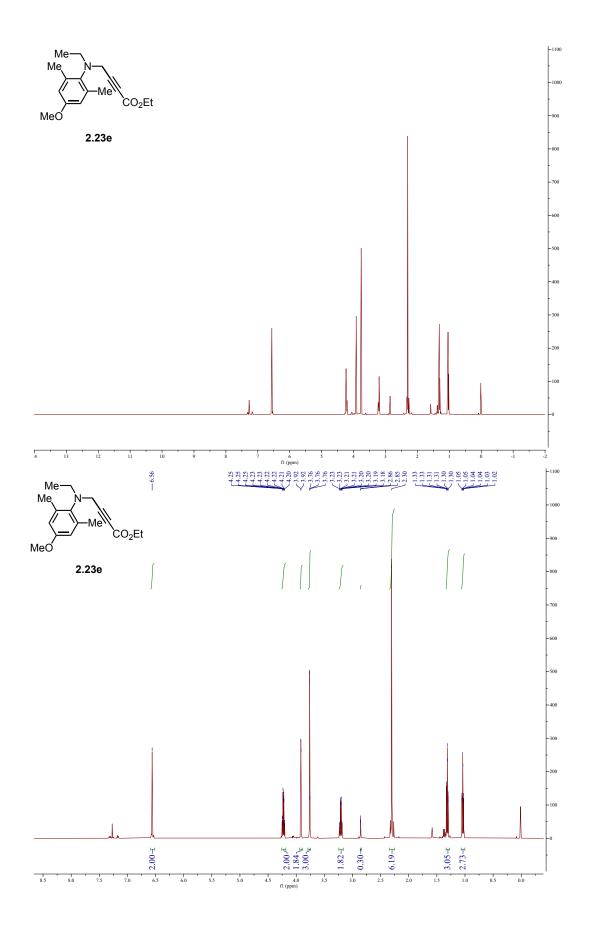


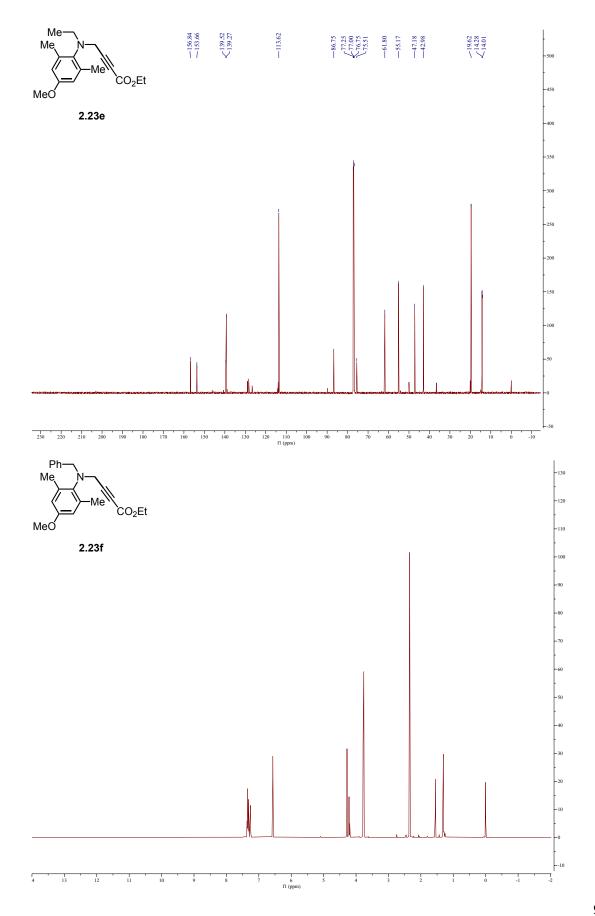

Signal 2: DAD1 B, Sig=210,4 Ref=360,100

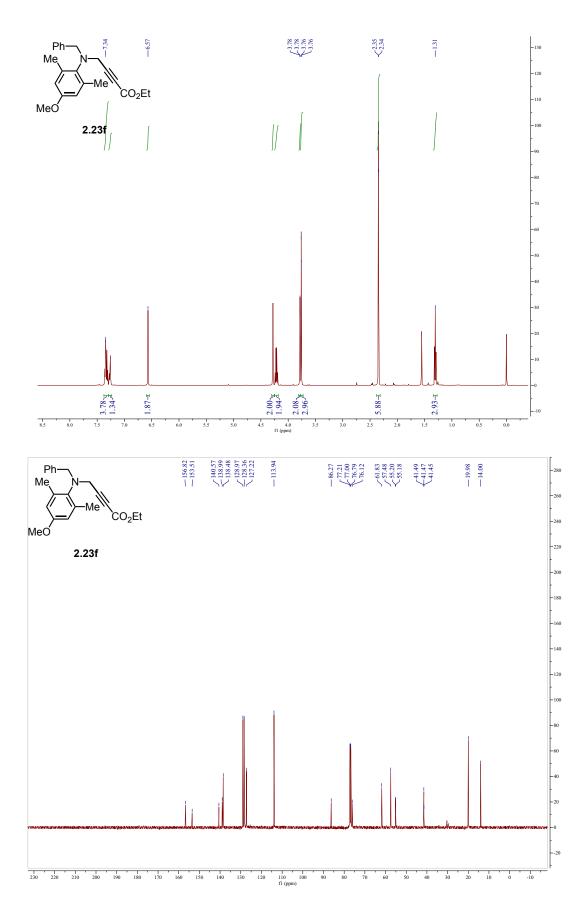

Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
1	22.764	MM	0.3995	4.11189e4	1715.43152	96.8637
2	23.783	MM	0.4273	1331.37109	51.93531	3.1363

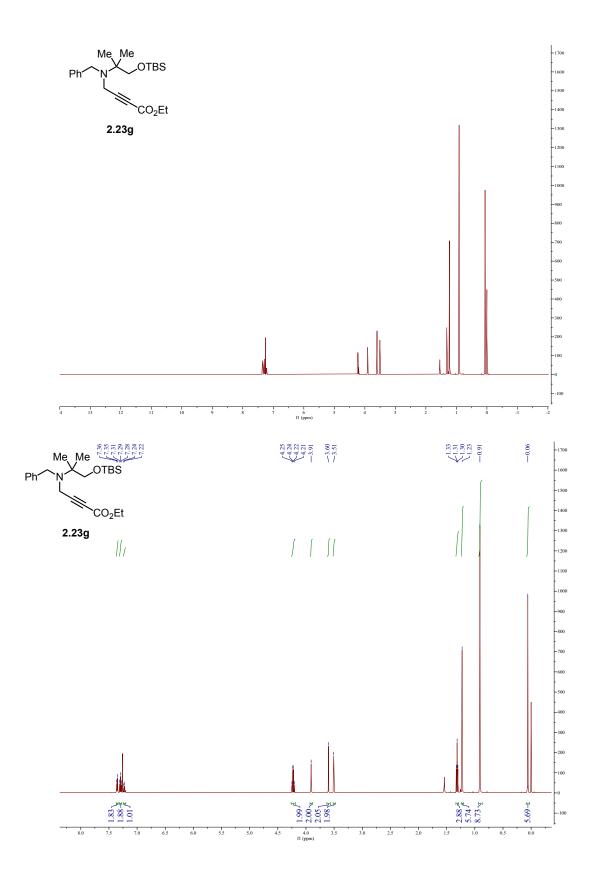

2.7.3 NMR Spectral Data

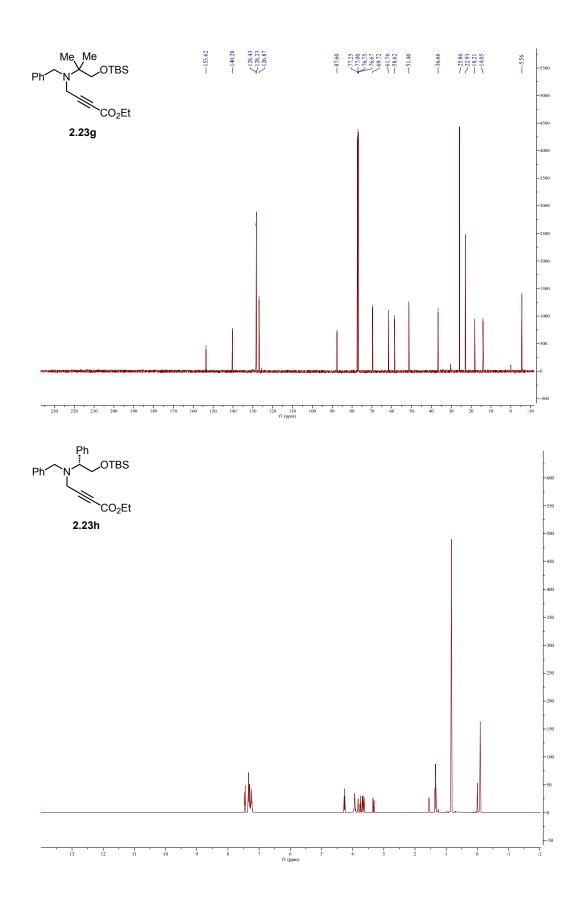


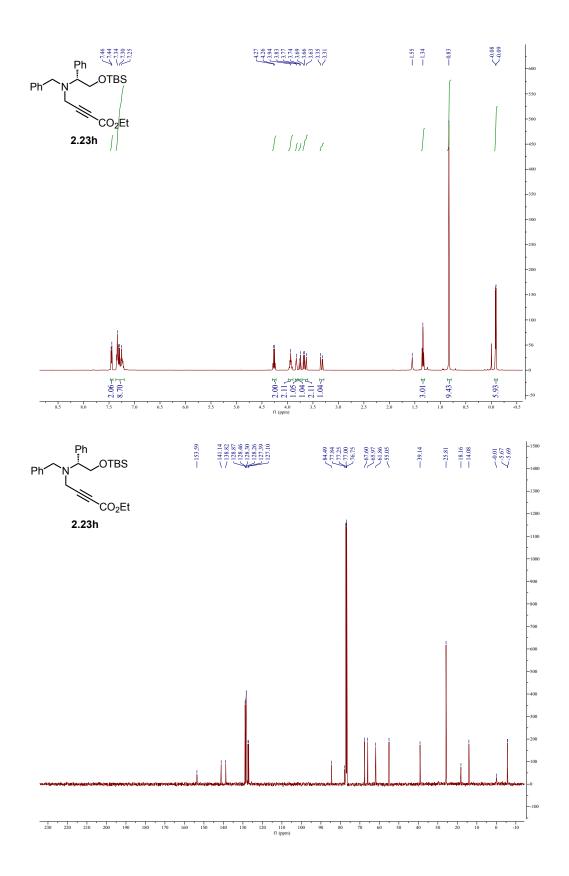


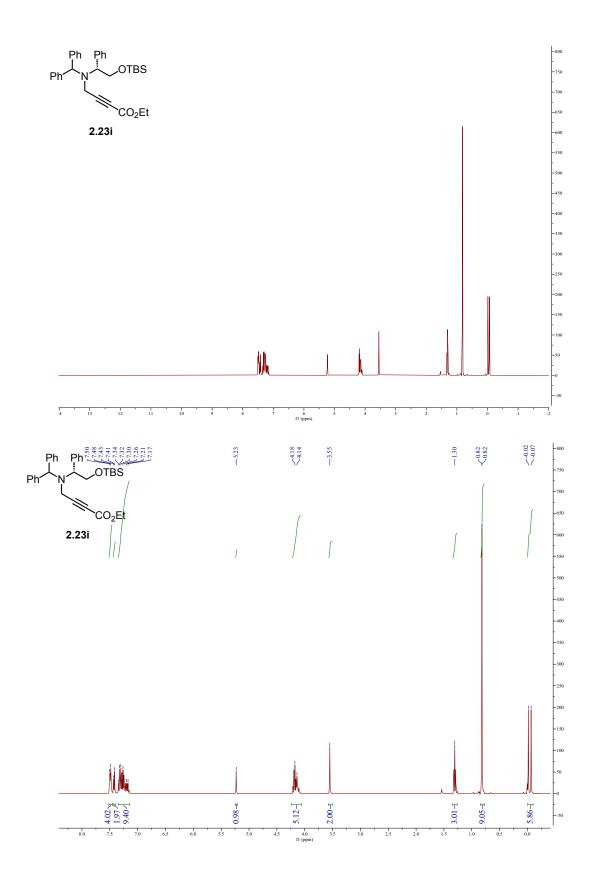


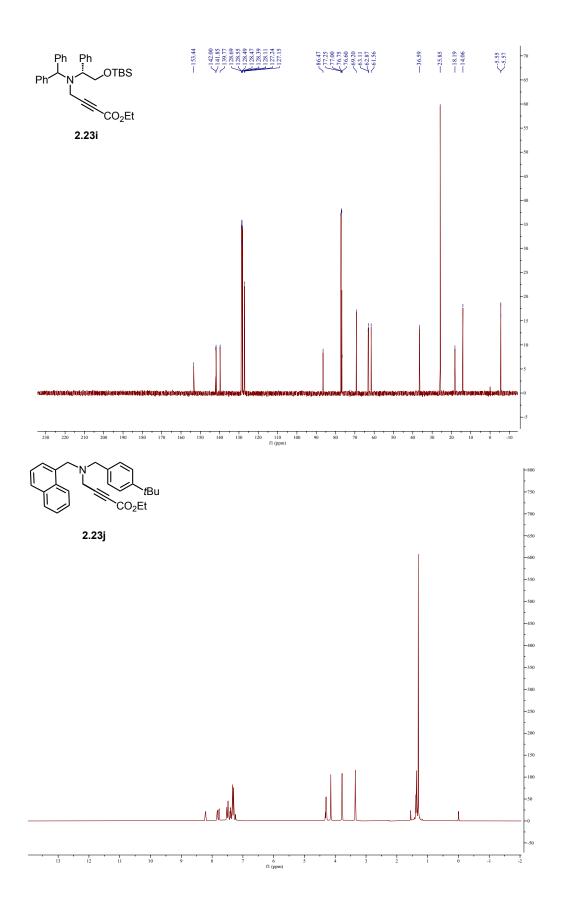


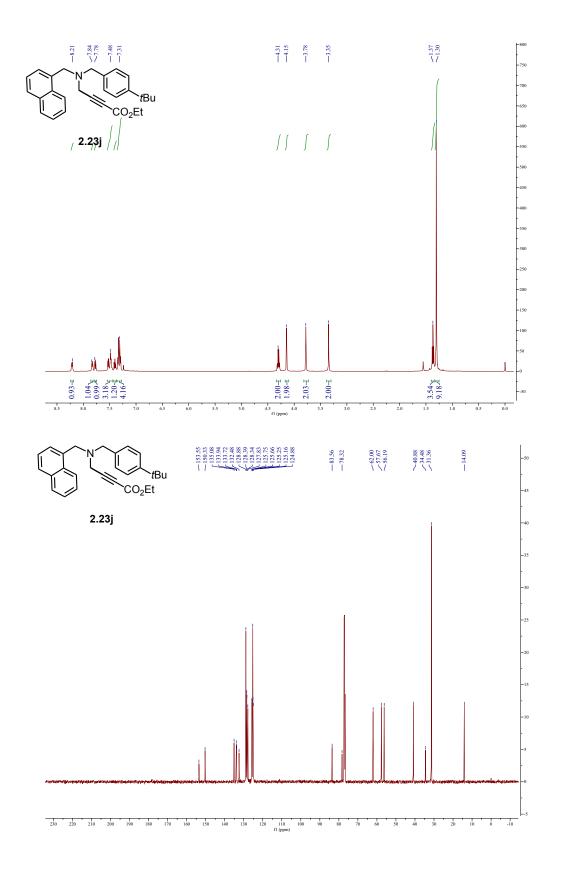


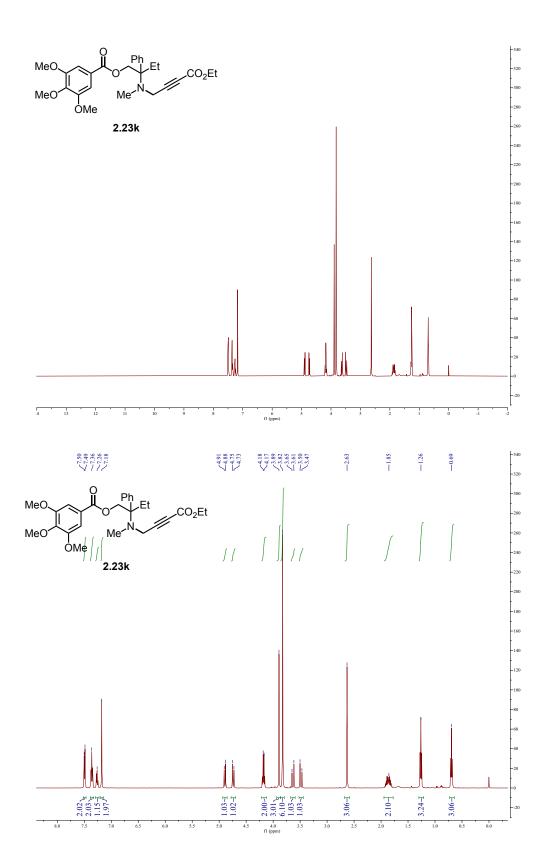


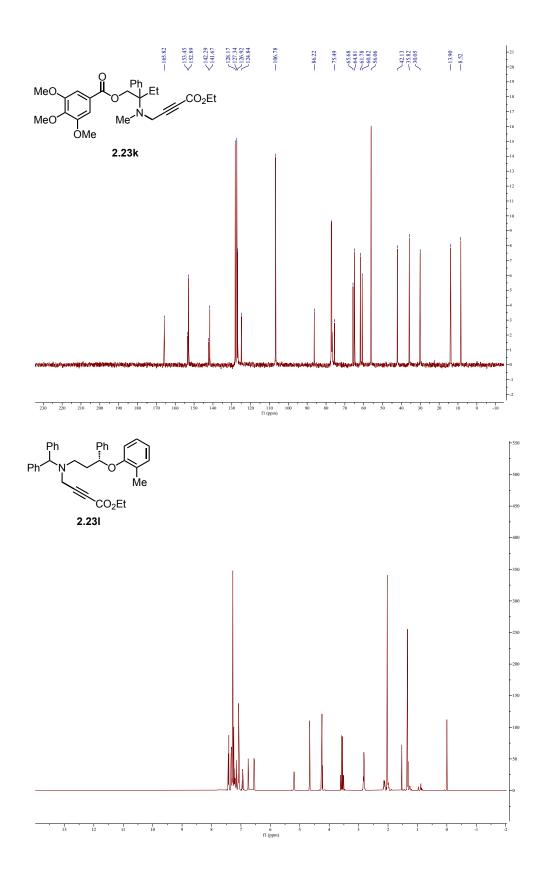


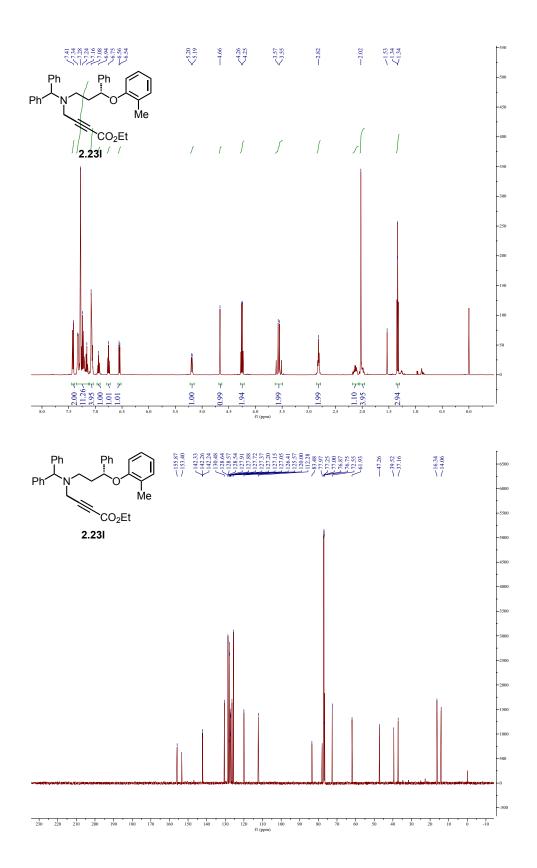


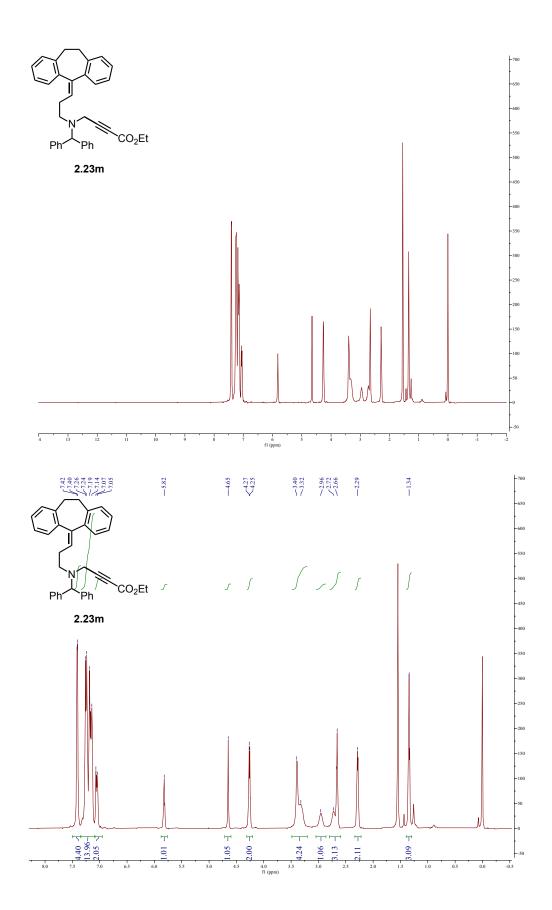


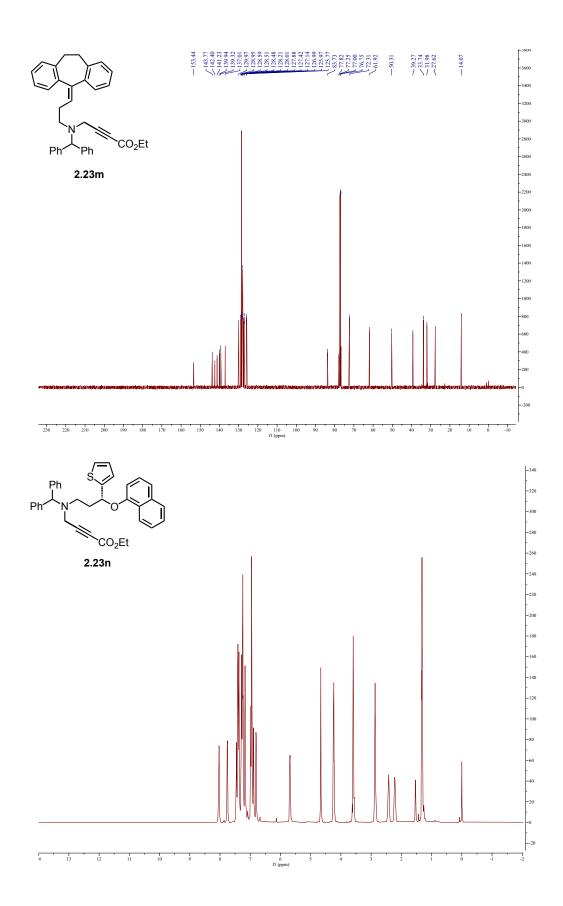


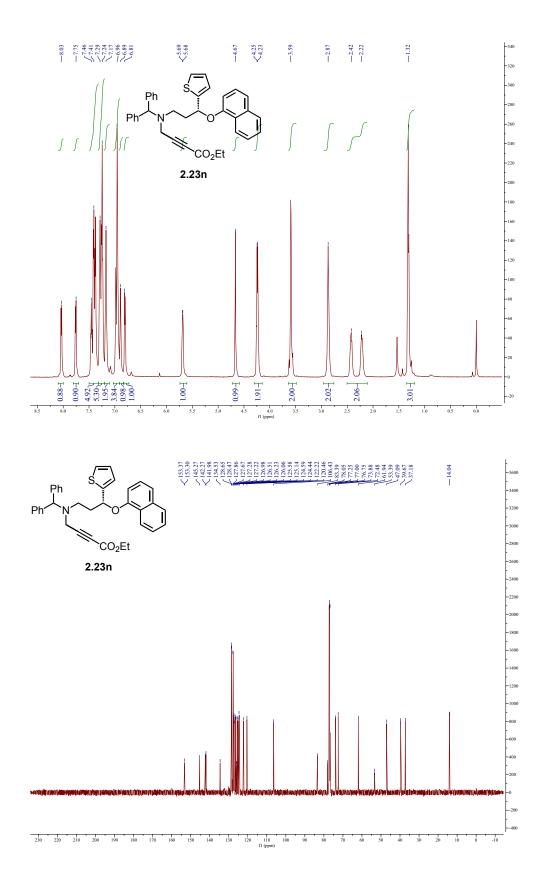


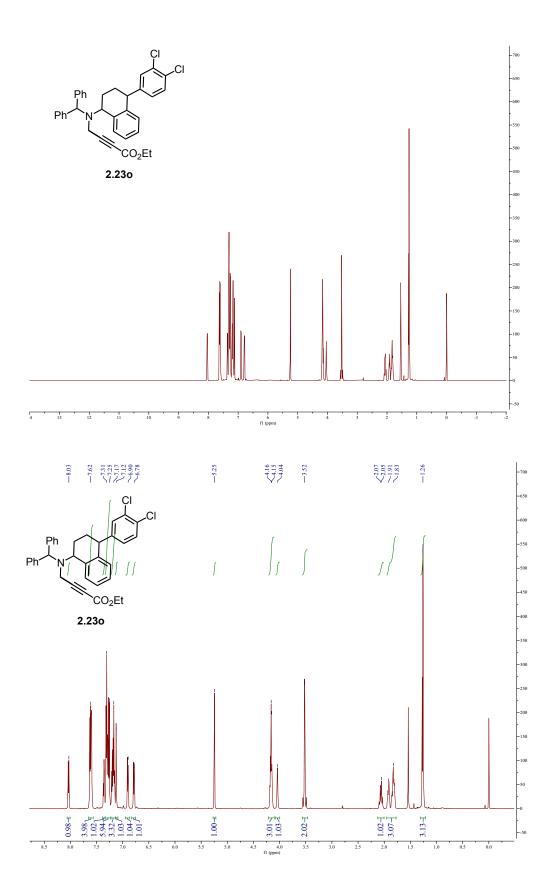


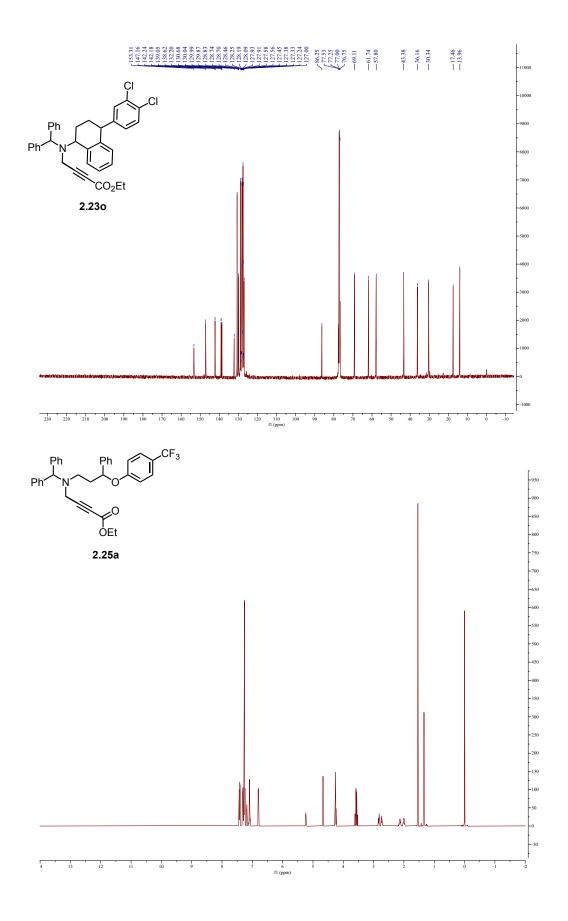


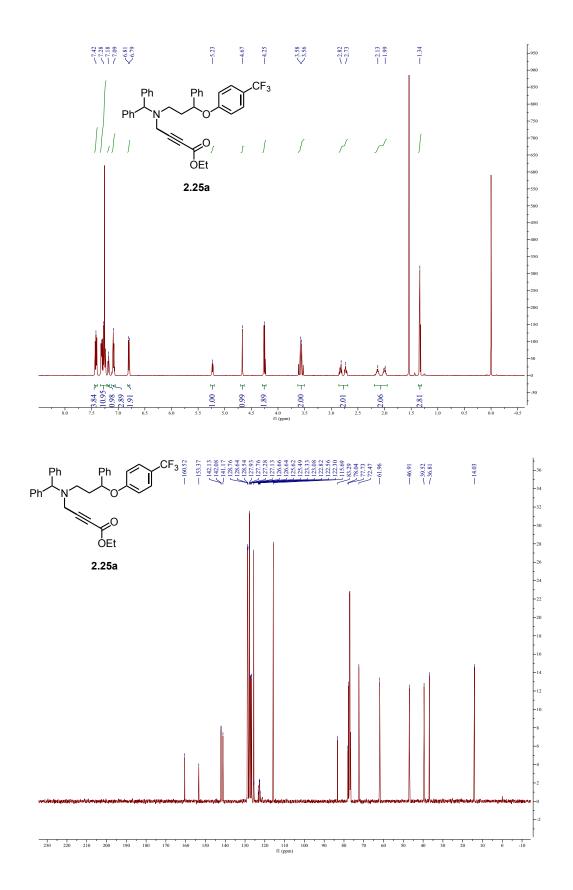


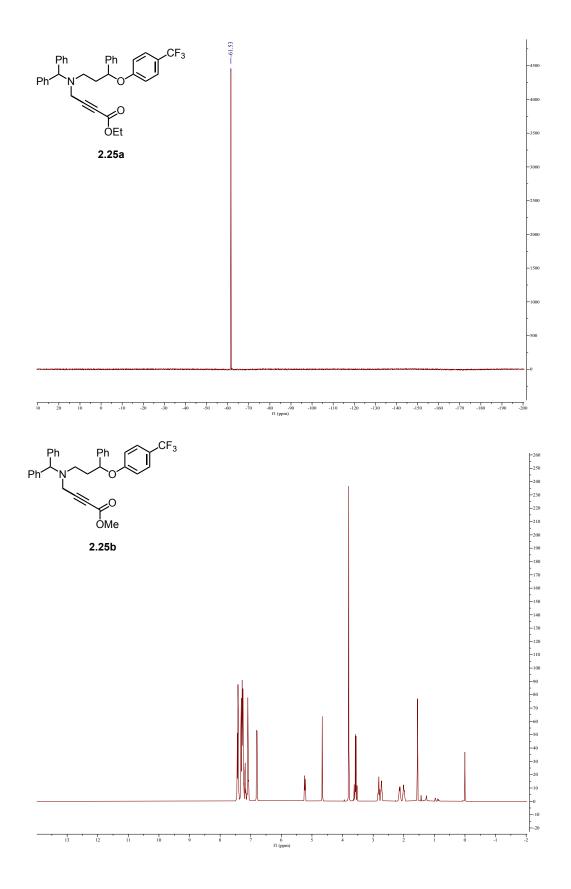


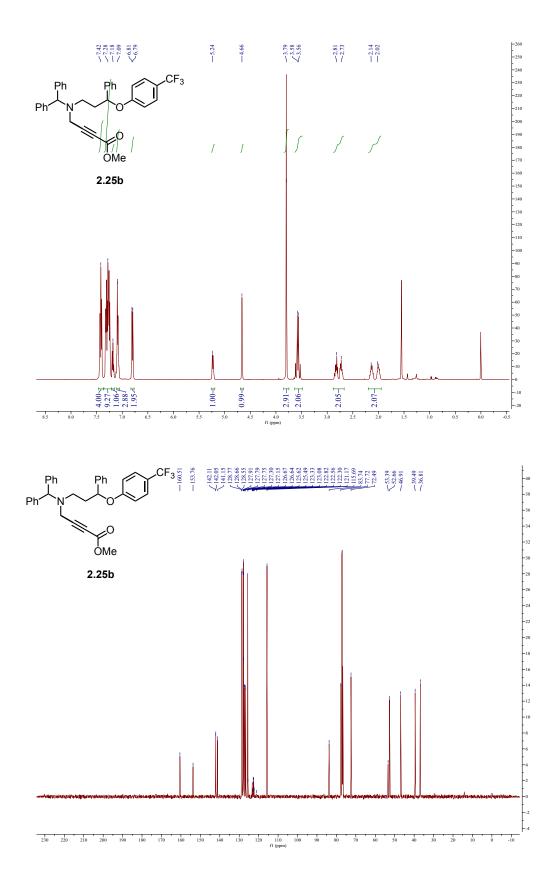


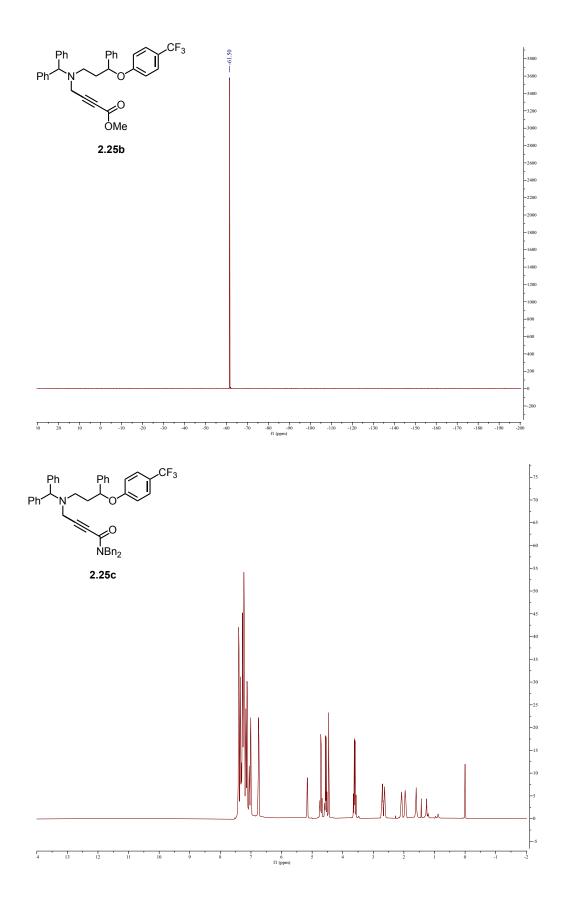


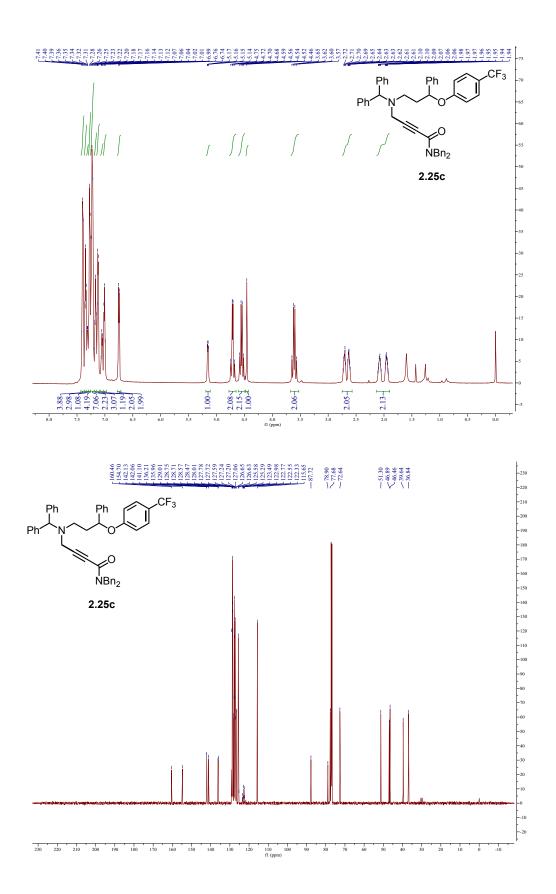


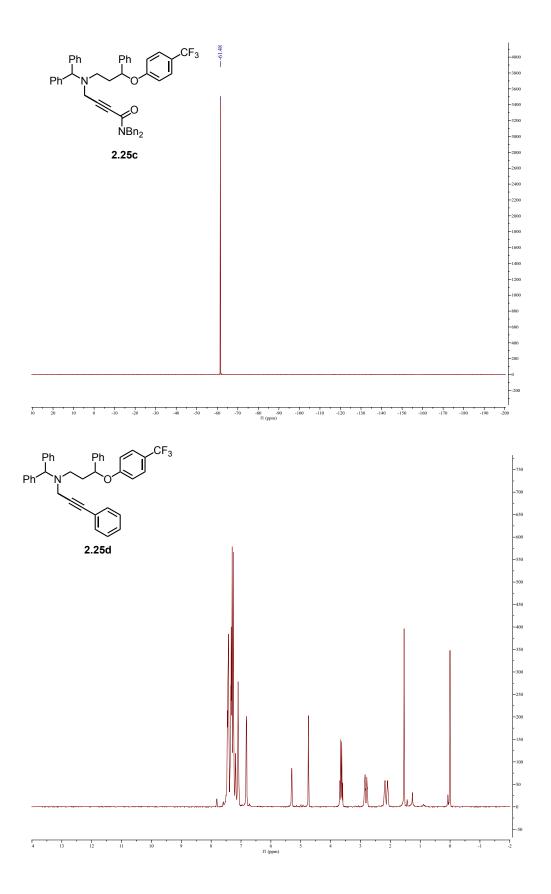


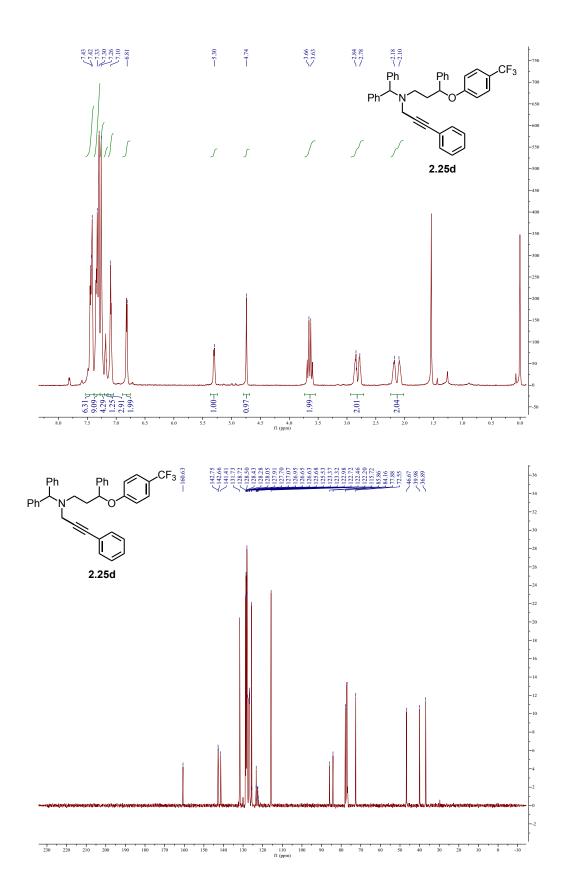


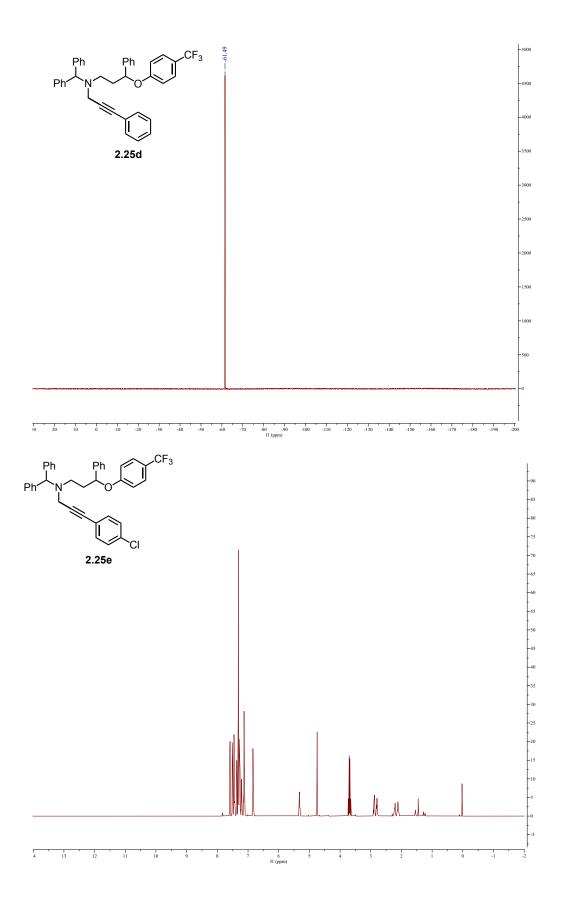


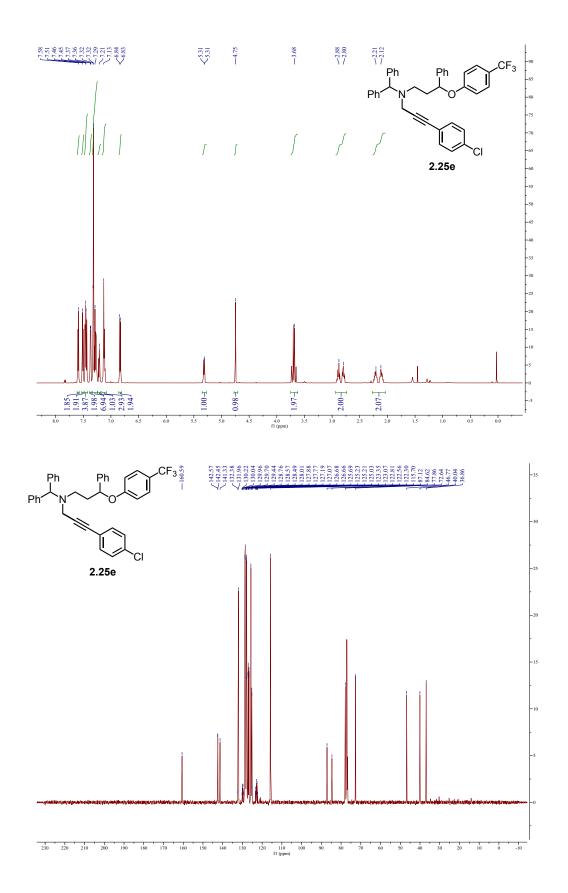


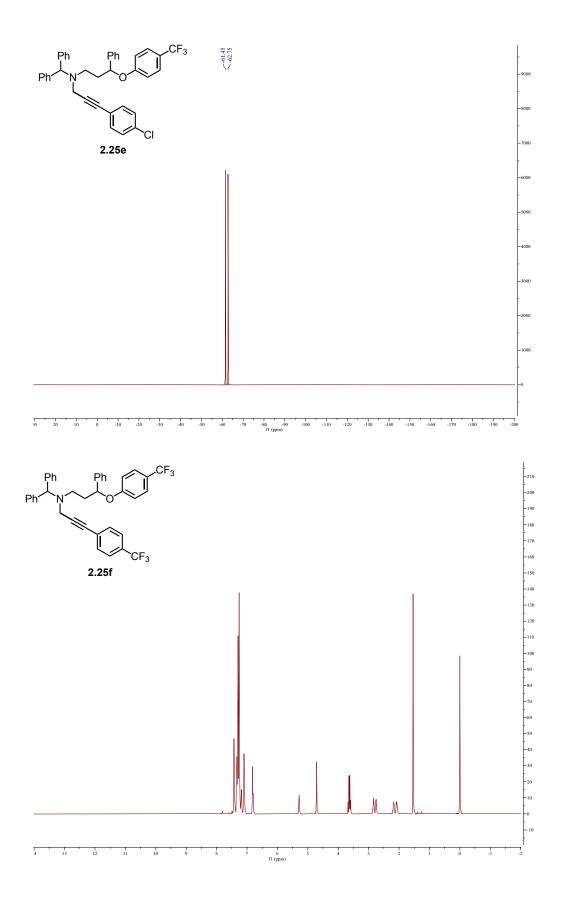


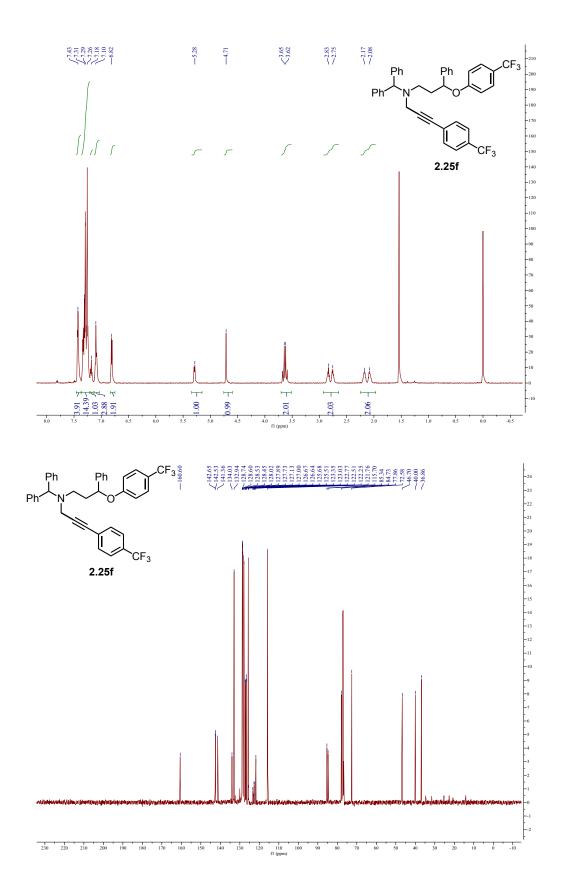


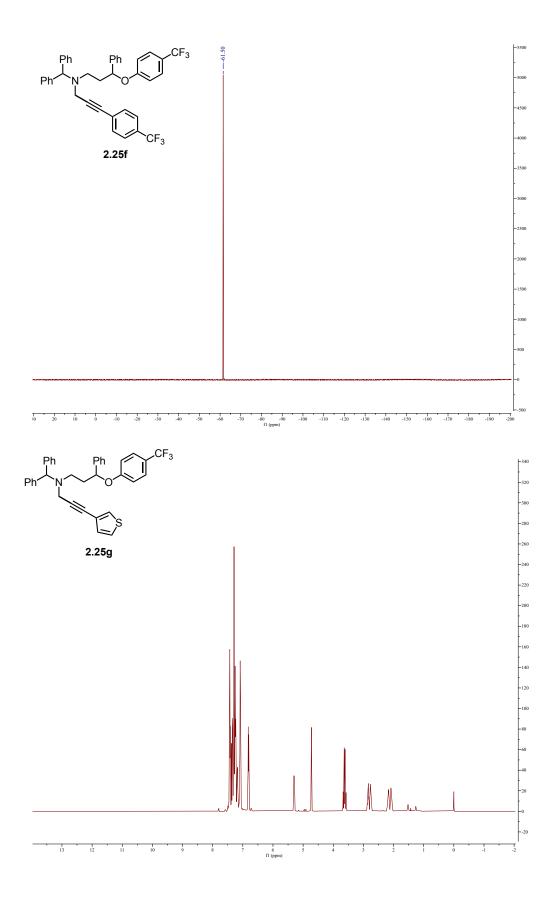


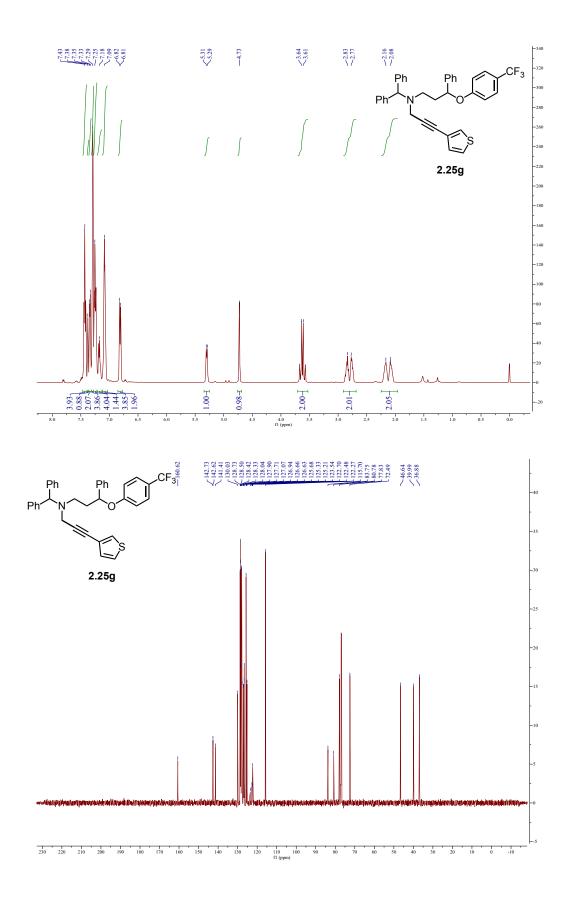


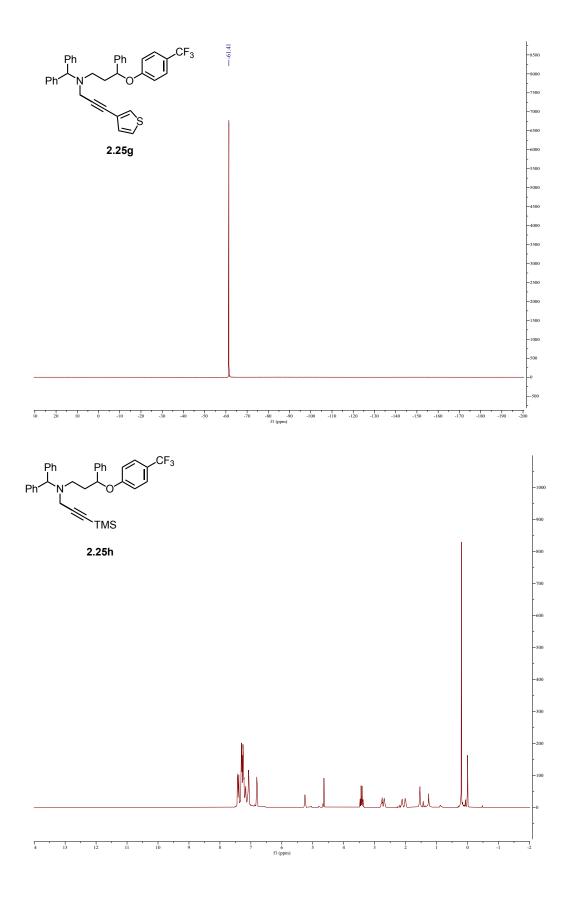


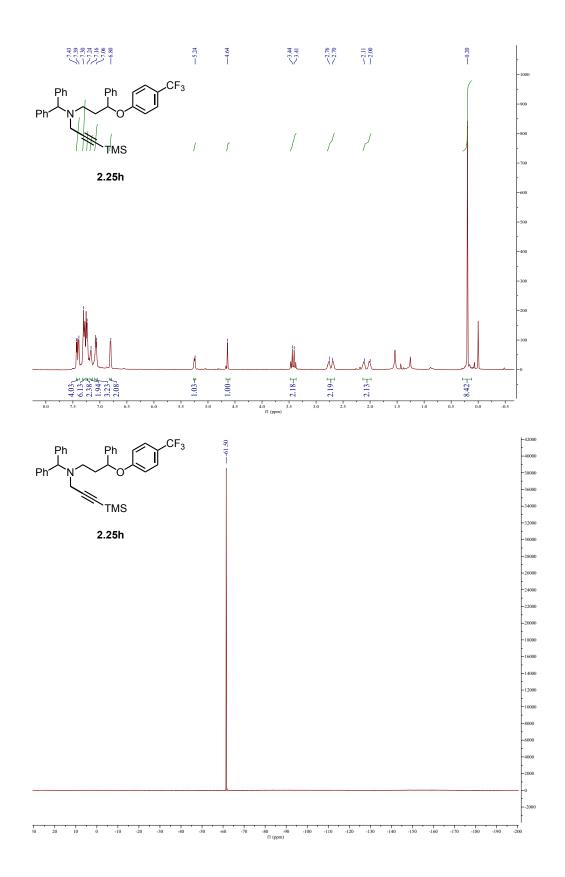


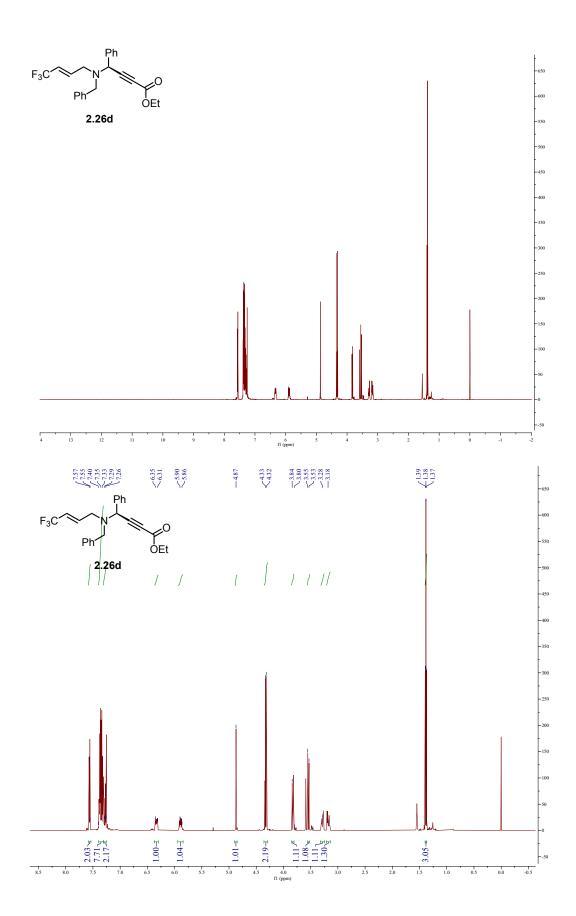


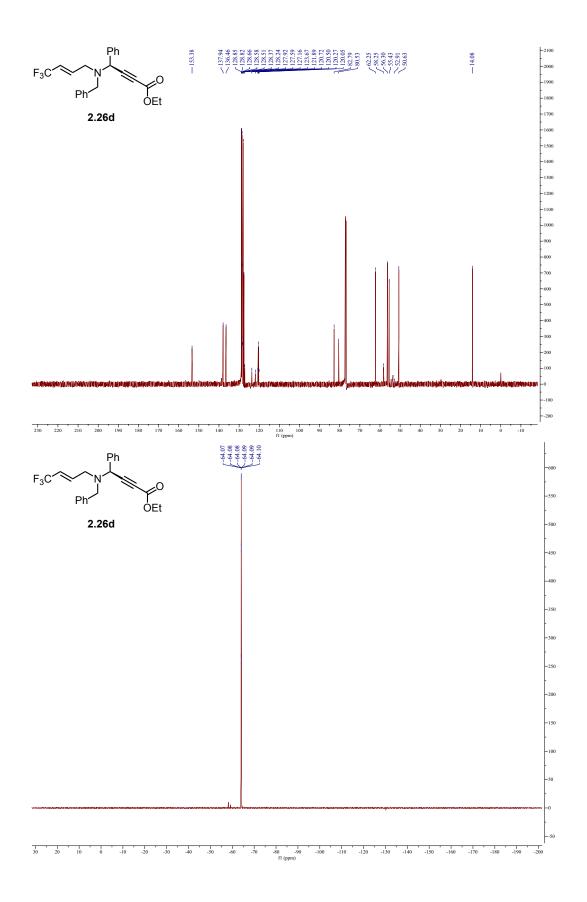


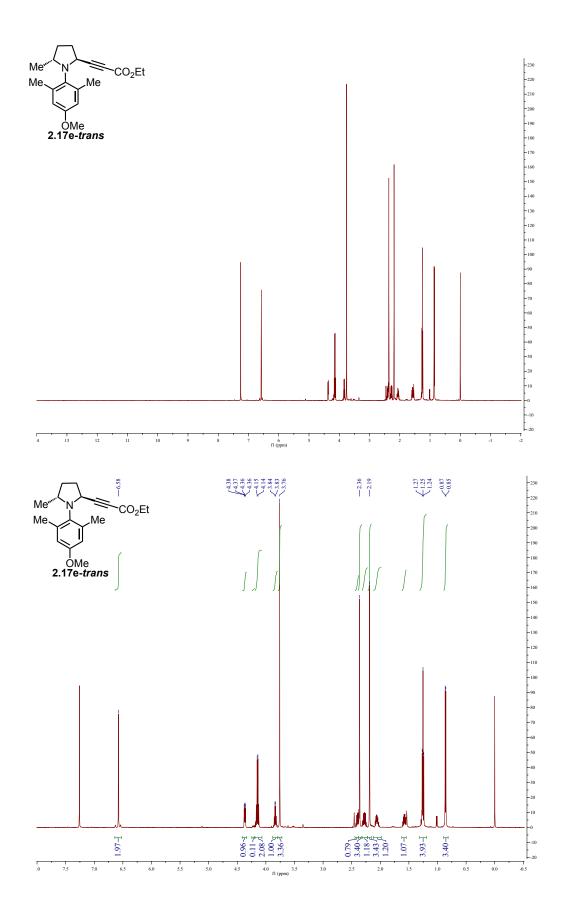


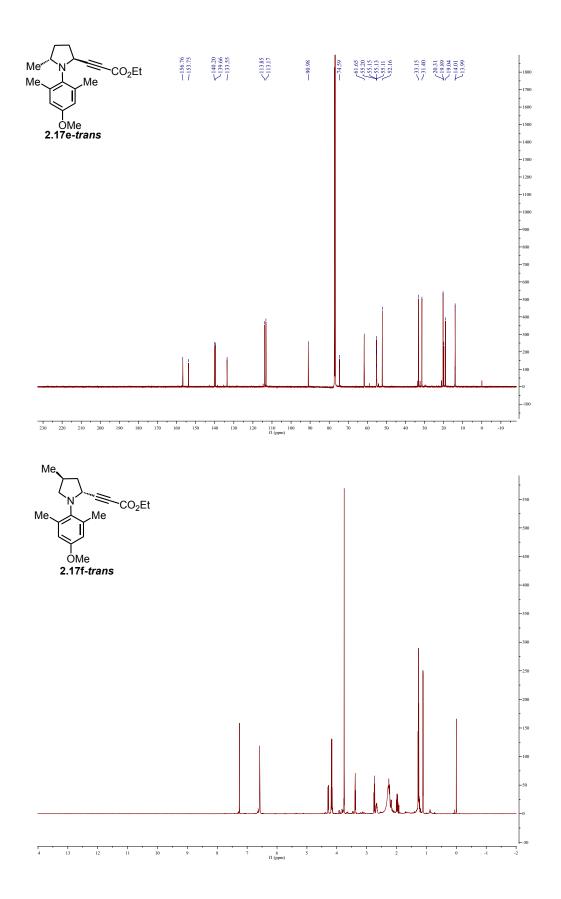












CHAPTER THREE Catalytic Deuterium Incorporation within Metabolically Stable β -Amino C–H Bonds of Drug Molecules

3.1 Introduction

Deuterium, the isotope of hydrogen, was discovered by Harold Urey and was awarded the Nobel Prize in 1934 "for his discovery of heavy hydrogen".¹ It has natural abundance of 0.0156% on Earth, which makes it a rare resource.² Deuterium has a smaller molar volume by 0.140 cm³/mol per atom compared to hydrogen, which makes it less lipophilic ($\Delta \log P_{oct}$ = -0.006), and potentially shows a slightly different pKa.³ C–D bonds are shorter than C–H bonds by 0.005 Å given that deuterium is heavier than hydrogen atom. The ground state vibrational energy of deuterium is lower than that of hydrogen and so does the ground state energy. Therefore, deuterium is more stable in oxidative processes, because the energy required from ground state to transition state will also be larger for C–D bonds than that of C–H bonds.⁴

There has been an increasing demand of deuterated bioactive molecules for their importance in determining the outcome of bioactive molecules and metabolites, including fields such as drug discovery and development, toxicology, pharmacology, food science, etc.⁵ It is mainly used for three purposes. The first one is application in LC/MS. When the mass difference between the internal standard and the material tested is larger than 4 m/z, the separation between the corresponding peaks is obvious, and so it can give quantitative determination. Secondly, it could be used in kinetic isotope studies to establish reaction order and clarify the mechanism of a transformation. Lastly, molecules tagged with deuterium could act as a tracer. The intermediates and product could be identified after isolation.

¹ O'Leary, D. Nat. Chem. 2012, 4, 236.

² Established by the internationally accepted Vienna Standard Mean Ocean Water (VSMOW). Rosman, K.

J. R.; Taylor, P. D. P. Pure Appl. Chem. 1998, 70, 217–235.

³ Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591.

⁴ Pirali, T.; Serafini, M.; Cargnin, S.; Genazzani, A. A. J. Med. Chem. 2019, 62, 5276–5297.

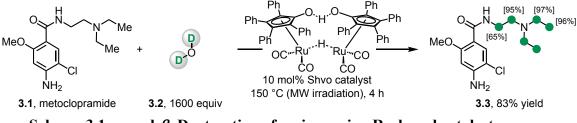
⁵ Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. Angew. Chem., Int. Ed. 2007, 46, 7744–7765.

In particular, deuterated molecules have been widely used in examining absorption, distribution, metabolism and excretion (ADME) properties of drug candidates. They have the unique benefits of retaining the pharmacologic profile of physiologically active compounds. ⁶ In some cases, it was discovered that deuterated drugs give better performance than its hydrogenated version for less prone to epimerization or decomposition.³

3.2 Background

Since C–D bonds have higher stabilization that C–H bonds, researchers have been investigating on methods to incorporate deuteriums into bioactive compounds. Preparation of deuterium/tritium incorporated molecules generally is classified into two types: conventional multistep synthesis starting with deuterated materials or hydrogen isotope exchange (HIE).⁷ The classical approach usually starts with deuterium sources, such as D₂O or D₂. It can be time and resources consuming as it requires multiple steps of synthesis and purification.⁷ The second method, HIE, direct exchange of hydrogen with deuterium, is more efficient and effective.⁵ HIE reaction targeting C(sp³)–H bonds on bioactive amines is an interesting topic of study, given that *N*-alkylamine units can be found in over 50% of the top selling commercial drugs.⁸

Regioselectivity in deuterium incorporation is important, depending on the purpose of the tag. Putting deuteriums at a labile position could invalidate a study focused on tracing a bioactive molecule, as heavy water is generated as the byproduct through metabolic systems and excreted as waste, causing mass imbalance.⁹ The β -position of amines, on the other hand, is more inert compared with α -C–H bond. Therefore, it will be less affected during the metabolic processes, which will leave the starting molecule with the tag intact. The β -C–H bond of *N*-alkylamines is also versatile, presenting in many bioactive molecules and enantioselective catalysts.

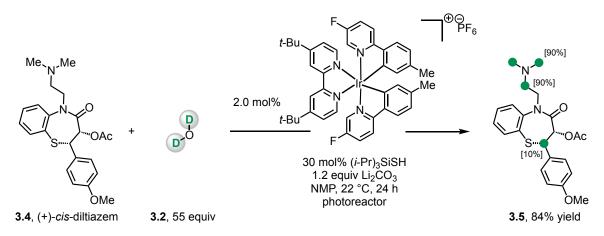

⁶ Harbeson, S. L.; Tung, R. D. MedChem. News 2014, 2, 8-22.

⁷ Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. Angew. Chem., Int. Ed. 2018, 57, 3022–3047.

⁸ McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ. 2010, 87, 1348–1349.

⁹ Penner, N.; Klunk, L. J.; Prakash, C. Biopharm. Drug Dispos. 2009, 30, 185–203.

Current state of the art catalytic amine deuteration method involves the use of transition metal catalysts. The Beller group reported an α - and β -amino C–H deuteration of metoclopramide and two other structurally related drug molecules promoted by the use of Ru-based Shvo catalyst with high level of incorporation and high yield (Scheme 3.1).¹⁰ Metoclopramide **3.1** was treated with 1600 equiv of D₂O with 10 mol% of Shvo catalyst under microwave irradiation at 150 °C to give deuterated product with 83% yield and from 65-97% of *d*-incorporation at α - or β - amino C–H bonds. However, the catalyst loading is high, and the method has contrived substrate scope. Functional groups, such as ketones and olefinic double bonds, are at risk of hydrogenation under their standard reaction conditions. Furthermore, primary and secondary aliphatic amines lead to dimerization side reactions.

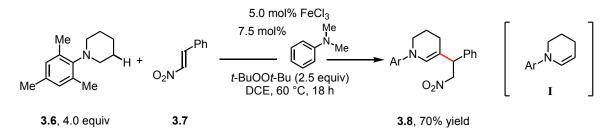


Scheme 3.1 α - and β - Deuteration of amines using Ru-based catalyst

Another example reported by the MacMillan group involves the use of photoredox catalyst.¹¹ (+)-*Cis*-diltiazem **3.4** and 55 equiv of D₂O reacted with 2.0 mol% of Ir-based catalyst, 30 mol% of (i-Pr)₃SiSH, and 1.2 equiv of Li₂CO₃ in NMP in a photoreactor at 22 °C to afford deuterated product with 84% yield and 90% deuterium incorporation at α -amino C–H bonds and 10% at C–H adjacent to sulfur. Their method can incorporate deuterium or tritium onto cyclic and acylic *N*-alkylamine containing drug molecules using Ir-based photoredox catalyst with moderate to high level of incorporation and yield. However, at labile positions other than α -amino C–H bonds, such as C–H adjacent to oxygen or sulfur atoms, low level of deuterium incorporation was also observed.

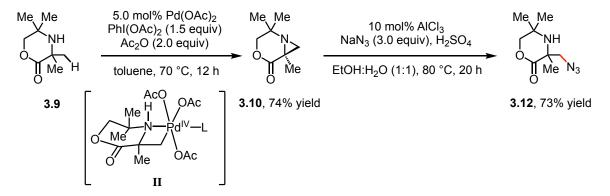
¹⁰ Neubert, L.; Michalik, D.; Bahn, S.; Imm, S.; Neumann, H.; Atzrodt, J.; Derdau, V.; Holla, W.; Beller, M. *J. Am. Chem. Soc.* **2012**, *134*, 12239–12244.

¹¹ Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N. R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. *Science* **2017**, *358*, 1182–1187.



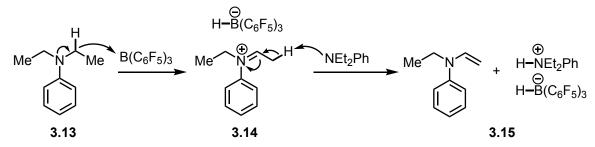
Scheme 3.2 Deuteration of amines by photoredox catalysts

In these methods, they use readily accessible deuterium source, D₂O and can be applicable to commercial amine drug molecules with high level of *d*-incorporation and high yield. However, the development for regioselective β -deuteration of amines is still lacking. Activation of the inert β -position of *N*-alkyl amines is also difficult, as the β -amino C–H bond is less hydridic comparing to the α -amino C–H bond. A transformation that could target poorly activated β -position of amines, which contain acid and base sensitive functional groups, without the use of precious metal-based catalysts and using readily accessible deuterium sources, is challenging. Synthesis of functionalized β -amino C–H bond requires multiple steps and direct functionalization has only a few examples.


In 2013, the Kanai group reported an oxidative β -amino C–H alkylation catalyzed by FeCl₃ (Scheme 3.3).¹² Mesityl protected amine **3.6** and alkene **3.7** gave 70% of alkylated enamine product **3.8** with 5.0 mol% of FeCl₃, 7.5% of DMAP, and 2.5 equiv of *tert*-butyl peroxide in DCE at 60 °C. FeCl₃ and *tert*-butyl peroxide generates amino radical, which is then transformed to iminium ion by the loss of hydrogen radical to form *tert*-butanol. Another tert-butoxide deprotonates at the β -position to afford the reactive enamine intermediate **I**. This method is applicable to cyclic amines of different ring sizes and with oxygen or sulfur containing heterocylces with 44-91% yield. Only three examples of acyclic amines were reported with 32-64% yield.

¹² Takasu, N., Oisaki, K., Kanai, M. Org. Lett. 2013, 15, 1918–1921.

Scheme 3.3 Oxidative β-amino C–H alkylation by Kanai


In 2014, the Gaunt group reported a C–H activation of aliphatic amines by the use of palladium-based catalysts (Scheme 3.4).¹³ Amino lactone **3.9** with 5.0 mol% of Pd(OAc)₂, 1.5 equiv of phenyliodine diacetate, and 2.0 equiv of acetic anhydride in toluene at 70 °C afforded aziridine product **3.10** in 74% yield. The aziridine product 3.10 could be subjected to ring opening reactions. With 10 mol% of AlCl₃ and 3.0 equiv of NaN₃ and H₂SO₄ in EtOH:H₂O (1:1) at 80 °C gave azide **3.12** in 73% yield. Palladium activates the β -amino C–H bond and forms a four membered palldium(IV) cycle (**II**). The ring opening reaction can tolerate different heteroatom nucleophiles. However, this transformation has limited substrate scope where most substrates are lactones and contain the geminal dimethyl group and only achieved moderate yield in long reaction times. It is also wasteful to perform a two-step reaction that uses transition metal-based catalyst and stoichiometric amount of oxidizing agent.

Scheme 3.4 C-H activation of aliphatic amines by Gaunt

¹³ Gaunt, M. J. et al. Nature 2014, 510, 129–133.

Our group has studied various transformations involving the concept of FLP. Based on our previous studies, we wanted to develop a selective β -amino C–H deuteration method without the use of precious metal-based catalysts. As discussed in Chapter I introduction, B(C₆F₅)₃ is able to generate iminium intermediate in situ. The iminium ion can be deprotonated by a Brønsted base at the β -position to afford an enamine intermediate. The Basset group reported that B(C₆F₅)₃ abstracts hydride first from diethyl aniline **3.13** to generate iminium and borohydride intermediate **3.14**.¹⁴ Then, another molecule of diethylaniline **3.13** can act as a base to deprotonate the β -position of iminium to afford enamine and an ion pair of ammonium and borohydride **3.15**.

Scheme 3.5 Generation of enamine, and borohydride and ammonium ion

The reactive enamine could serve as a nucleophile to react with different electrophilic deuterium sources. Here, we report a catalytic method using the concept of FLP that selectively deuterates β -amino C–H bond of acyclic and cyclic bioactive amines.

3.3 Proposed catalytic cycle and optimization

In this transformation, $B(C_6F_5)_3$ and amine work cooperatively. NR₃ could be an amine additive, the amine starting material **3.16**, and/or the amine product **3.18**. $B(C_6F_5)_3$ receives a hydride from amine **3.16** first to form iminium and borohydride (**I**). An amine can subsequently deprotonate the iminium at the β -position to form an enamine, a borohydride and an ammonium (**II**). At the same time, $B(C_6F_5)_3$ and amine can dedeuterate acetone- d_6 **3.17a** to form deuterated ammonium ion and boroenolate (**III**). After ion pair exchange,

¹⁴ Millot, N.; Santini C.C.; Fenet, B.; Basset, J. M. Eur. J. Inorg. Chem. 2002, 3328–3335.

deuteration at β -position and hydride reduction at α -position could take place to give the β -deuterated amine product and regenerate the catalyst.

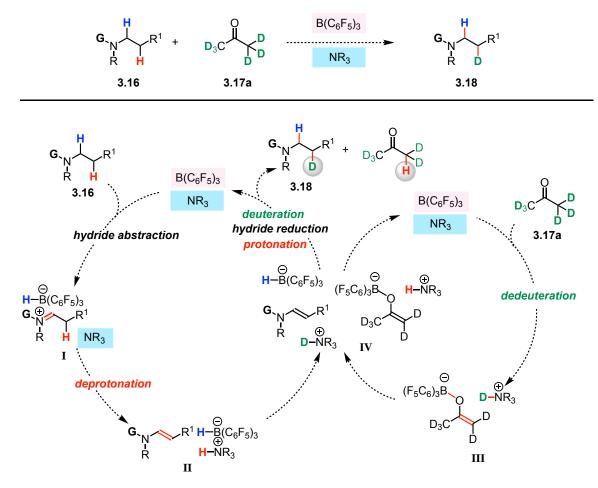


Figure 3.1 Proposed catalytic cycle for deuteration

3.3.1 Evaluation of catalyst combination

First, the catalyst combination of a suitable Brønsted base and B(C₆F₅)₃ was explored for reaction between 0.1 mmol of verapamil **3.16a** and acetone- d_6 (6.8 equiv) **3.17a** to generate **3.18a**. Amine additives with different basicity were tested as a Brønsted base cocatalyst. Trialkyl amines, including NEt₃, NBn₃, and PMP, gave **3.18a** in >90% yield with 17-34% of deuterium incorporation at β -amino position (Table 3.1, entries 1-3). However, when more basic DBU was used, no deuteriums were incorporated (Table 3.1, entry 4). When the reaction was performed without base, we observed 21% deuterium incorporation at C2 and 35% at C4 (Table 3.1, entry 5). This result led us to the conclusion that **3.16a** and/or **3.18a** can act as a Brønsted base in the reaction mixture. An external base catalyst, therefore, is not required.

MeO MeO H H Me H MeO	$\begin{bmatrix} \\ \end{bmatrix} \qquad D_3C CD_3$	5.0 mol% B(C ₆ F ₅) ₃ 10 mol% Brønsted base toluene (0.25 M) 125 °C, 1 h	MeO MeO C2 MeO MeO MeO
3.16a , 0.1 mm verapamil	ol 3.17a , 0.68 mmol		3.18a
entry	entry Brønsted base		rporation (%) ^a
		[C2]	[C4]
1	NEt ₃	17	26
2	NBn ₃	20	34
3	PMP	16	26
4	DBU	0	0
5	none	21	35

^ad-incorporation rate was determined by ¹H NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard

Table 3.1 Evaluation of Brønsted bases

3.3.2 Evaluation of solvents

Non-polar solvents in general give higher *d*-incorporation, 90% and 92% with toluene and 84% and 91% with benzene (Table 3.2, entries 1 and 2). When halogenated solvents, dichloroethane (78% and 90%) and chloroform (71% and 85%), the reaction was slightly less efficient (Table 3.2, entries 3 and 4). Ether solvents resulted in low level of deuterium incorporation (Table 3.2, entries 5 and 6). Diethyl ether gave 14% and 24% *d*-incorporation at C2 and C4 respectively, and THF with less than 5% at both positions. Toluene was chosen as the optimal solvent.

	H H + MeO HeO		10 mol% B(C ₆ F ₅) ₃ ► solvent (0.25 M) 150 °C, 1 h	MeO MeO C2 MeO MeO MeO MeO	∖ ∙ <i>i-</i> Pr
3.16a , 0.1 r verapan		3.17a , 0.68 mmol		3.18a	
entry solvent		d-inc	corporation (%) ^a		
			[C2]	[C4]	
1	toluene		90	92	
2	benzene		84	91	
3	CICH ₂ CH ₂ CI		78	90	
4	CHCl ₃		71	85	
5	Et ₂ O		14	24	
6	THF		<5	<5	

Table 3.2 Evaluation of solvents

3.3.3 Evaluation of temperature

As the reaction temperature was increased, the level of deuterium incorporation increased. At 100 °C, less than 7% of deuteriums were incorporated at both C2 and C4 (Table 3.3, entry 1). At 150 °C, 80-85% *d*-incorporation was reached (Table 3.3, entry 3). At the reaction temperature of above 150 °C, the change in the level of deuterium incorporation did not increase any higher. To minimize the energy input and to avoid decomposition of molecules at elevated temperature, 150 °C was chosen as the optimal reaction temperature.

MeO H H Me H H MeO MeO 3.16a, 0.1 mmol verapamil	•N − <i>i</i> -Pr + D ₃ C CD ₃ − 3.17a, 0.68 mmol	2.5 mol% B(C ₆ F ₅) ₃ toluene (0.25 M) temperature °C, 1 h	MeO MeO C2 MeO MeO MeO MeO 3.18a
entry	temperature		rporation (%) ^a
		[C2]	[C4]
1	100	<5	7
2	125	21	35
3	150	80	85

Table 3.3 Evaluation of reaction temperature

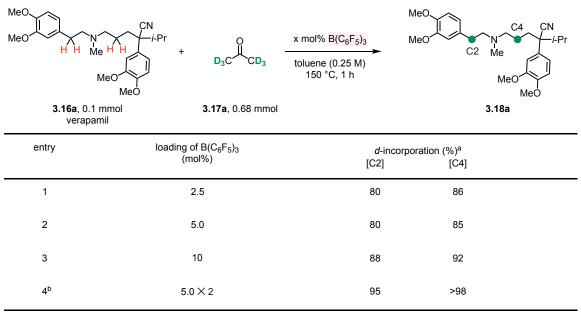
3.3.4 Evaluation of deuterium source

Different sources of deuteriums were tested using the same catalyst system. When using the same equivalence of deuterium sources, acetone- d_0 3.17a provided the greatest number of deuteriums per molecule, and it was found to be the most efficient source of deuteriums. Acetophenone- d_3 3.17b, although it can potentially form a more stabilized intermediate IV (see Fig. 3.1) comparing to acetone- d_6 3.17a, generated product with lower level of deuterium incorporation (Table 3.4, entry 2). Cyclohexanone- d_4 3.17c was also found to be less efficient, giving 45% and 50% at C2 and C4 respectively (Table 3.4, entry 3). Deuterated alcohol (MeOD 3.17d, isopropanol-d₈ 3.17e, t-BuOD 3.17f) could also serve as deuterium source in this reaction, but they show inferior level of *d*-incorporation of the product (Table 3.4, entries 4-6). t-BuOD 3.17f gave the highest level of incorporation at the same equivalence among the alcohol sources. We wondered if the same number of deuteriums were added as acetone- d_6 , it would affect the level of incorporation. However, we found that the reaction did not proceed as we increased the amount of t-BuOD (Table 3.4, entry 7). One of the potential reasons could be excess alcohol coordinating with borane Lewis acid and preventing it to undergo hydride abstraction to form intermediate I (see Fig. 3.1).

	e H H + MeO H H + MeO MeO mmol mil	D source 3.17	10 mol% B(C ₆ F ₅) ₃ toluene (0.25 M) 150 °C, 1 h	MeO MeO C2	C4 CN i-Pr Me MeO MeO 3.18a
entry	D source		equiv of 2 (D/molecule)	d-incorpo [C2]	ration (%) ^a [C4]
1	0 D₃C CD₃ 3.17a		6.8 (40.8)	90	92
2	Ph CD ₃ 3.17b		6.8 (20.4)	79	71
3	3.17c		6.8 (27.2)	45	50
4	CH₃OD 3.17d		6.8 (6.8)	14	20
5	(CD ₃) ₂ CDOD 3.17e		6.8 (6.8)	17	21
6	<i>t</i> -BuOD 3.17f		6.8 (6.8)	63	58
7	<i>t</i> -BuOD 3.17f		40.8 (40.8)	0	0

Table 3.4 Evaluation of deuterium sources

3.3.5 Evaluation of equivalence of acetone- d_6


With 2.5 mol% of Lewis acid catalyst, the reaction showed that as the equivalence of acetone- d_6 increases from 2.0 to 6.8, the level of incorporation increased (Table 3.5, entries 1-3). However, with 10 equiv of acetone- d_6 , the level of incorporation was slightly lowered at C2 position (Table 3.5, entry 4). Excess amount of acetone may favor the formation of boron enolate intermediate and slowing down the formation of iminium ion through hydride abstraction.

MeO H H Me H MeO	$H + D_3 C + C + D_3 C + C + C + C + C + C + C + C + C + C $	2.5 mol% B(C ₆ F ₅₎₃ toluene (0.25 M) 150 °C, 1 h	MeO MeO C2 MeO MeO MeO
3.16a , 0.3 mmo verapamil	i 3.17a		3.18a
entry equiv of 3.17a		d-incorporation (%) ^a	
		[C2]	[C4]
1	2.0	47	60
2	4.0	72	82
3	6.8	80	86
4	10	70	85

Table 3.5 Evaluation of equivalence of acetone-d₆

3.3.6 Evaluation of catalyst loading

We attempted to lower the catalyst loading of B(C₆F₅)₃. With 2.5 mol% or 5 mol% the level of incorporation decreased to 80-86% (Table 3.6, entries 1-2). 10 mol% of B(C₆F₅)₃ was found to be the most efficient, showing 88-92% of deuterium incorporation (Table 3.6, entry 3). Furthermore, an alternative method was found that subjecting the reaction to 5 mol% of B(C₆F₅)₃ and resujecting to the same reaction condition after isolation of deuterated product gave higher level of *d*-incorportion, 95% at C2 and >98% at C4 (Table 3.6, entry 4).

^ad-incorporation rate was determined by ¹H NMR analysis of unpurified reaction mixtures with mesitylene as the internal standard; ^bCondition: verapamil(1, 0.2 mmol), acetone-d₆ (2, 1.36 mmol), B(C₆F₅)₃ (5 mol%), toluene (0.8 mL), under N₂, 150 °C, 1 h. Isolated and purified 3 was reacted with acetone-d₆(2, 1.36 mmol), B(C₆F₅)₃ (5 mol%), toluene (0.8 mL), under N₂, 150 °C, 1 h.

Table 3.6 Evaluation of loading of Lewis acid catalyst

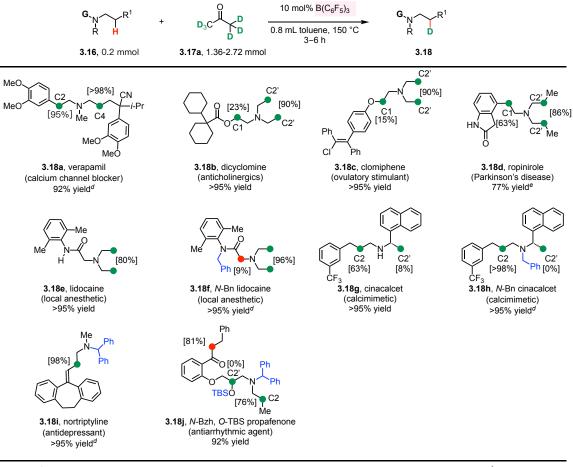
3.3.7 Control experiments

Without any Lewis acid, the reaction did not proceed (Table 3.7, entry 1). No deuterium incorporation was observed when less hindered BF₃ or less Lewis acidic BPh₃ were used (Table 3.7, entries 2 and 3).

MeO H H Me H H MeO MeO MeO MeO MeO MeO MeO MeO MeO		5.0 mol% Lewis acid toluene (0.25 M) 150 °C, 1 h	MeO MeO C2 MeO MeO MeO 3.18a	
entry Lewis acid		<i>d</i> -incorporation (%) ^a		
		[C2]	[C4]	
1	none	0	0	
2	BF₃·OEt₂	0	0	
3	3 BPh ₃		0	
4	4 B(C ₆ F ₅) ₃		92	

Table 3.7 Control experiments with Lewis acids

3.4 Scope of Amine Substrates


3.4.1 Acyclic amines

Deuteration of various acyclic bioactive amines was shown to be effective. Some Lewis acid sensitive functional groups were found to be intact while selective deuteration took place at β -position of amines. Cyano (**3.16a**), ester (**3.16b**), amide (**3.16d-3.16f**) and ketone (**3.16j**) were tolerated under the reaction conditions and gave corresponding products **3.18a-3.18j** in 77 to >95% yield and with high regioselectivity of labeling. Deuteration also occurred at acidic α -carbonyl C–H bonds for ropinirole **3.16d** and propafenone derivative **3.16j** based on analysis of ¹H NMR of crude reaction mixture. Yet, during purification, the α -carbonyl C–D of **3.18d** underwent hydrogen deuterium exchange.

Different electronics and steric hindrance around β -amino C–H affected the level of deuterium incorporation. Verapamil, **3.16a**, showed higher level of deuterium incorporation at non-benzylic site C4 (>98%) than benzylic position C2 (95%). This observation could be explained by that the substrate or the product is acting as the Brønsted base, which is very bulky, it has less steric hindrance when approaching C4 where the

adjacent unit is methylene versus from the C2 side with an adjacent aryl ring. The effect is more prominent when temperature is lowered (see Table 3.3, entries 1 and 2). For dicyclomine **3.16b**, 90% at C2' was deuterated, while at C1, adjacent to ester, only 23% was observed. Similar trend of decreased *d*-incorporation was noted for clomiphene **3.16c** with 90% at C2' but 15% at α -aryloxy C1. On ropinirole **3.16d**, benzylic position (C2', 86%) and β -position of *N*-propyl group (C1, 63%) showed different level of *d*incorporation.

Protecting groups of amines and alcohols could help to achieve higher level of incorporation. Lidocaine, **3.16e**, underwent 80% of deuterium incorporation. If the acidic amide N–H were to be protected by benzyl group, **3.16f** was deuterated more efficiently with 96% *d*-incorporation and deuteration of α -carbonyl was observed (9%) due to increased acidity of α -proton from benzyl group. The secondary amine containing cinacalcet **3.16g**, without protecting group gave **3.18g** with 63% at C2 and 8% at C2', but if protected with benzyl group, deuterium is exclusively installed at C2 with >98%. Lowered deuterium incorporation level at C2' than C2 could be because hydride abstraction from a tertiary C–H is more difficult from secondary C–H at C2. Deuteration of less sterically hindered secondary amines, nortriptyline **3.16i** and propafenone **3.16j**, without protecting groups was inhibited. With *N*-benzhydryl protected **3.16i** and **3.16j**, the corresponding products were obtained. *O*-TBS protection of alcohol on propafenone **3.16j** was effective, giving 76% at less hindered C2 and 0% at more sterically hindered C2' position.

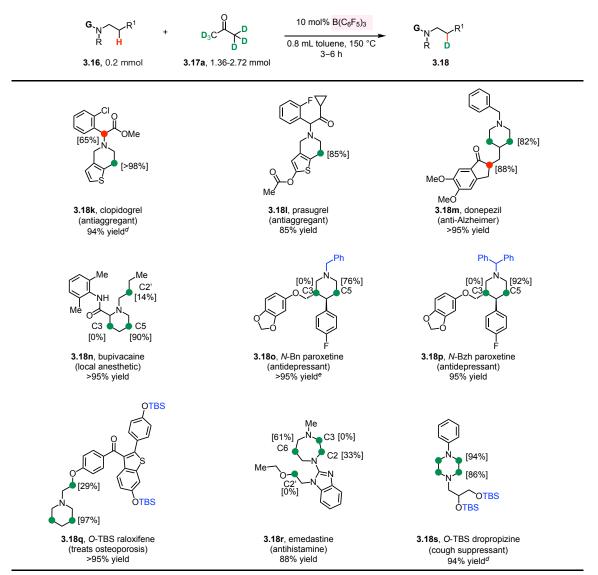

^aConditions:*N*-alkylamine (**3.4**, 0.2 mmol), acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (10 mol%), toluene (0.8 mL), under N₂, 150 °C, 3 h. ^bYield of isolated and purified product. Deuterium incorporation level was determined by 1H NMR analysis of the isolated and purified product. ^cGreen label indicates sites that are beta to N. Red label is used for any other sites that undergo deuteration. Blue color indicates protecting groups. ^dConditions:*N*-alkylamine (**3.4**, 0.2 mmol), acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), under N₂, 150 °C, 3 h. After the filtration of the crude reaction mixture through a pad of silica gel and removal of volatiles, acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), under N₂, 150 °C, 3 h. The reaction was carried out in two batches, using 10 mol% of B(C₆F₅)₃ in the first batch and 5.0 mol% in the second.

Table 3.8 Deuteration of acyclic β-amino C–H bonds^{*a,b,c*}

3.4.2 Cyclic amines

A wide variety of cyclic amine drug molecules were then tested (Table 3.9). Heterocycles, such as peperidine (**3.16k-q**), 1,4-diazepane (**3.16r**), piperazine (**3.16s**), thiophene (**3.16k** and **3.16l**), indanone (**3.16m**), benzodioxole (**3.16o** and **3.16p**), benzothiophene (**3.16q**), and benzoimidazole (**3.16r**) were tolerated, affording the corresponding products in 85-95% yield. Both β -amino C–H bonds and enolizable α -carbonyl C–H bonds from clopidogrel **3.16k**, prasugrel **3.16l**, and donepezil **3.16m** were deuterated. However, during purification, α -keto C–D was converted back to C–H on **3.18l**.

The α -amide C–H on bupivacaine **3.16n** is less acidic, and therefore was untouched. Labelling of β -amino C–H is more efficient on cyclic amines than non-cyclic ones as shown with bupivacaine **3.18n** (90% at C3 and 14% at C2') and raloxifene **3.28q** (97% vs 29%). Steric hindrance of protecting groups affected *d*-incorporation. *N*-benzyl protected paroxetine **3.18o** showed 76% *d*-incorporation at C5, while with more hindered *N*-benzhydryl group **3.18p**, 92% deuterium was incorporated at C5. In addition, C5 was exclusively deuterated while tertiary C3–H remained untouched, because hydride abstraction from tertiary hindered C–H at C3 is more difficult than from less hindered secondary C–H at C5. Only C2 (33%) and C6 (61%) on emedastine **3.16r** were found to be labelled. The guanidine type structure in the molecule could potentially make the adjacent α -amino C–H less electron rich, making hydride abstraction more difficult. *O*-TBS protected dropropizine **3.16s** was deuterated for all eight possible hydrogens, with 94% and 86% *d*-incorporation.

⁶Conditions:*N*-alkylamine (**3.4**, 0.2 mmol), acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (10 mol%), toluene (0.8 mL), under N₂, 150 °C, 3 h. ^bYield of isolated and purified product. Deuterium incorporation level was determined by 1H NMR analysis of the isolated and purified product. ⁶Green label indicates sites that are beta to N. Red label is used for any other sites that undergo deuteration. Blue color indicates protecting groups. ^dConditions:*N*-alkylamine (**3.4**, 0.2 mmol), acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), under N₂, 150 °C, 3 h. ⁴Ter the filtration of the crude reaction mixture through a pad of silica gel and removal of volatiles, acetone-d₆ (**3.5a**, 1.36 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL) were added under N₂, and then heated at 150 °C, 3 h. The reaction was carried out in two batches, using 10 mol% of B(C₆F₅)₃ in the first batch and 5.0 mol% in the second.

Table 3.9 Deuteration of cyclic β-amino C–H bonds^{*a,b,c*}

3.5 Conclusion

In summary, we developed an efficient catalytic method for regioselective deuterium labeling of β -amino C–H bonds. The method is applicable to a broad scope of acyclic and cyclic amines, demonstrated through the deuteration of various commercially available amine drug molecules. Lewis acid sensitive functional groups, such as cyano, ester, amide, and ketone, were tolerated under the reaction condition. Protection of amines and alcohols resulted in improved *d*-incorporation level.

3.6 Experimental

3.6.1 General Information

General Experimental Procedures. All reactions were performed in standard, ovendried glassware fitted with rubber septa under an inert atmosphere of nitrogen unless otherwise described. Stainless steel syringes or cannulas were used to transfer air- and moisture-sensitive liquids. Reported concentrations refer to solution volumes at room temperature. Evaporation and concentration *in vacuo* were performed using house vacuum (ca. 40 mm Hg). Column chromatography was performed with SiliaFlash[®] 60 (40-63 micron) silica gel from Silicycle. Thin layer chromatography (TLC) was used for reaction monitoring and product detection using pre-coated glass plates covered with 0.25 mm silica gel with fluorescent indicator; visualization by UV light ($\lambda_{ex} = 254$ nm) or KMnO₄ stain.

Materials. Reagents were purchased in reagent grade from commercial suppliers and used without further purification, unless otherwise described. Amines were prepared according to the procedures reported previously.¹. Tris(pentafluorophenyl)borane was purchased from TCI and used without further purification. Acetone- d_6 was purchased from Cambridge Isotope Laboratory and used without further purification. H₂O, in synthetic procedures, refers to distilled water.

Instrumentation. Proton nuclear magnetic resonance (¹H NMR) spectra and protondecoupled carbon nuclear magnetic resonance (¹³C {¹H} NMR) spectra were recorded at 25 °C (unless stated otherwise) on Inova 600 (600 MHz) or Varian Unity/Inova 500 (500 MHz) or Oxford AS400 (400 MHz) spectrometers at the Boston College nuclear magnetic resonance facility. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to 0 ppm. Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon

¹ (a) Heinz, C.; Lutz, J. P.; Simmons, E. M.; Miller, M. M.; Ewing, W. R.; Doyle, A. G. J. Am. Chem. Soc. **2018**, *140*, 2292–2300. (b) Sun, Y-H.; Sun, T-Y.; Wu, Y-D.; Zhang, X.; Rao, Y. Chem. Sci. **2016**, *7*, 2229–2238. (c) Banwell, M. G.; Coster, M. J.; Harvey, M. J.; Moraes, J. J. Org. Chem. **2003**, *68*, 613–616. (d) Park, C. M.; Kim, S. Y.; Park, W. K.; Choi, J. H.; Seong, C. M. Bioorg. Med. Chem. Lett. **2010**, *20*, 5221–5224. (e) Liu, L-L.; Yeung, K-S.; Yu, J-Q. Chem. Eur. J. **2019**, *25*, 2199–2202. (f) Nicolaou, K. C.; Claiborne, C. F.; Nantermet, P. G.; Couladouros, E. A.; Sorensen, E. J. J. Am. Chem. Soc.**1994**, *116*, 4, 1591–1592.

resonances of the solvent. The peak positions are quoted to one decimal place unless they are indistinguishable. The solvent peak was referenced to 77.0 ppm for ¹³C for CDCl₃. Benzotrifluoride was used as an external standard for ¹⁹F NMR and referenced to -63.7 ppm. Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz).

Infrared spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer. Data are represented as follows: frequency of absorption (cm⁻¹).

Optical rotations were measured using a 1 mL cell with a 5 cm path length on a Rudolph Research Analytical Autopol IV Polarimeter. Infrared spectra were recorded on a Bruker FT-IR Alpha (ATR mode) spectrophotometer. Data are represented as follows: frequency of absorption (cm⁻¹). High-resolution mass spectrometry was performed on a JEOL AccuTOF-DART (positive mode) at the Mass Spectrometry Facility, Boston College.

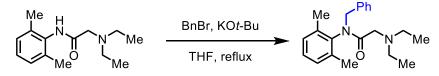
Determination of Deuterium Content. The amount of incorporated deuterium in a sample was quantified by mass spectrometry and by the decrease of ¹H NMR integral intensities at the specified positions compared to the starting material. Integral intensities were calibrated against hydrogen signals that do not undergo H/D-exchange. Mass spectrometry quantification was performed by subtraction of the mean molecular masses of the product and substrate isotopologue clusters in order to eliminate the contribution of the natural isotope abundance to the total mass. The mean molecular masses were calculated as the sum of the relative signal intensities of a given isotopologue multiplied with the corresponding m/z values derived from the mass spectrum.

3.6.2 Experimental Procedures and Characterization Data

General Procedure for the Free-Basing Amine Salts

To a 250-mL Erlenmeyer flask was added amine salt and DCM. 2 M NaOH (*aq.*) was added dropwise to the stirred solution until pH paper indicated that the aqueous layer is basic. The aqueous layer was extracted with DCM and the combined organic layers were dried with MgSO₄, filtered, and concentrated *in vacuo*. The resulting amine was used without further purification.

General Procedure A for the Alkylation of Amines^{1c}

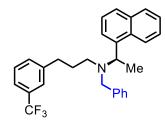

$$\begin{array}{ccc} R^{1} & H & R^{3} - X, K_{2} CO_{3} \\ \hline & & & \\ R^{2} & MeCN, 100 \ ^{\circ}C & R^{2} \end{array} \xrightarrow{R^{1} R^{3}}$$

Amines **3.16h**, **3.16i** and **3.16o** were prepared by the alkylation of secondary amines. To a solution of amine (1.0 equiv.) and K_2CO_3 (5.0 equiv.) in MeCN was added alkyl halide (1.5 equiv.). The reaction mixture was then allowed heated to 100 °C for 12 hours. Upon completion (monitored by TLC), H₂O was added and the organic material was extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The unpurified product mixture was subjected to silica gel chromatography.

General Procedure B for the Alkylation of Amines^{1d}

$$\begin{array}{ccc} R^{1}_{N} H & \xrightarrow{R^{3}-X, Et_{3}N} & \xrightarrow{R^{1}_{N}R^{3}} \\ R^{2} & \text{MeCN, 0 °C then 22 °C} & \xrightarrow{R^{2}_{N}R^{3}} \end{array}$$

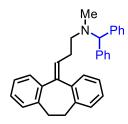
Amines **3.16j** and **3.16p** were prepared by the alkylation of secondary amines. To a solution of amine (1.0 equiv.) and alkyl halide (1.1 equiv.) in MeCN, Et₃N (3.0 equiv.) was added at 0 °C. The reaction mixture was then warmed up to 22 °C and allowed to stir for 12 hours. Upon completion (monitored by TLC), H₂O was added and the organic material was extracted with EtOAc. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The unpurified product mixture was subjected to silica gel chromatography.



N-Bn lidocaine (3.16f)

N-Bn lidocaine was prepared following a known procedure.^{1b}To a solution of lidocaine (3.0 g, 12.8 mmol) in THF (45 mL) was added benzyl bromide (1.8 mL, 15.4 mmol). To the reaction mixture, KO*t*-Bu (2.9 g, 25.6 mmol) was then added portionwise and the reaction mixture was allowed to stir at reflux for 48 hours. The reaction mixture was then

cooled and concentrated *in vacuo* to remove THF. To the mixture was added H_2O and was extracted with EtOAc. The combined organic layers were then dried over MgSO₄, filtered, and concentrated *in vacuo*. The unpurified product mixture was then subjected to silica gel column chromatography (MeOH:DCM = 1:99) to afford **3.16f** as a yellow liquid (2.5 g, 60%).


¹**H NMR** (600 MHz, CDCl₃) δ 7.25 – 7.16 (m, 5H), 7.12 (d, J = 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 2H), 4.73 (s, 2H), 2.80 (s, 2H), 2.57 (q, J = 7.1 Hz, 4H), 1.87 (s, 6H), 0.91 (t, J = 7.1 Hz, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 170.64, 138.99, 137.10, 136.31, 128.92, 128.18, 127.97, 127.49, 54.60, 51.68, 47.36, 17.83, 11.96; **IR** (neat) 2964, 2926, 1653, 1466, 1453, 1400, 1385, 1258, 1242, 1195, 1078, 773, 743, 699 cm⁻¹.

N-Bn cinacalcet (3.16h)

N-Bn cinacalcet was prepared following a General Procedure A for the Alkylation of Amines using cinacalcet hydrochloride (1.0 g, 2.5 mmol) and benzyl bromide. The unpurified product mixture was then subjected to silica gel column chromatography (EtOAc:hexanes = 1:4) to afford **3.16h** as a colorless liquid (0.9 g, 82%).

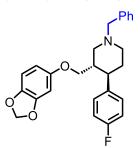
¹**H NMR** (600 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.35 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 6H), 7.12 (s, 1H), 6.96 (d, J = 7.4 Hz, 1H), 4.75 – 4.62 (m, 1H), 3.72 (d, J = 13.8 Hz, 1H), 3.63 (d, J = 13.8 Hz, 1H), 2.60 (s, 2H), 2.33 (d, J = 14.0 Hz, 1H), 2.26 (d, J = 13.9 Hz, 1H), 1.53 (d, J = 6.8 Hz, 5H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.40, 140.62, 140.01, 134.02, 132.14, 131.58, 130.47, 130.22, 128.97, 128.54, 128.43, 128.05, 127.61, 126.74, 125.33, 125.28, 125.00, 124.85, 124.56, 122.30, 56.36, 55.77, 49.79, 33.22, 28.99, 14.33; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.40 (d, J = 3.0 Hz); **IR** (neat) 2968, 2939, 1492, 1327, 1160, 1120, 1072, 797, 778, 699 cm⁻¹.

N-Bzh nortriptyline (3.16i)

N-Bzh nortriptyline **3.16i** was prepared following a General Procedure A for the Alkylation of Amines using nortriptyline hydrochloride (2.0 g, 6.7 mmol) and (bromomethylene)dibenzene. The unpurified product mixture was then subjected to silica gel column chromatography (Et₂O:hexanes = 1:49) to afford **3.16i** as a yellow liquid (2.2 g, 77%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.35 (d, J = 7.6 Hz, 4H), 7.23 (dd, J = 8.3, 6.9 Hz, 5H), 7.20 – 7.09 (m, 7H), 7.09 – 7.05 (m, 1H), 7.02 (dd, J = 5.3, 3.8 Hz, 1H), 5.82 (t, J = 7.5 Hz, 1H), 4.31 (s, 1H), 3.30 (s, 2H), 2.94 (s, 1H), 2.71 (s, 1H), 2.46 (d, J = 8.7 Hz, 2H), 2.32 (dd, J = 15.7, 8.4 Hz, 2H), 2.07 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 143.20, 143.17, 141.43, 140.13, 139.35, 137.02, 129.92, 129.80, 129.02, 128.51, 128.32, 127.94, 127.26, 126.90, 126.74, 125.93, 125.67, 75.59, 54.98, 40.21, 33.74, 32.01, 27.21; **IR** (neat) 3061, 3020, 1485, 1451, 1278, 1079, 756, 743, 704 cm⁻¹.

O-TBS propafenone

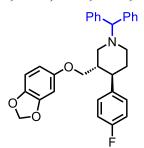

O-TBS propafenone was prepared following the known procedure.^{1e} To a solution of propafenone HCl (2.0 g, 5.29 mmol) in DCM at 0 °C, imidazole (5.0 equiv.) was added, followed by the dropwise addition of TBSCl (1.3 equiv.). After the addition, the reaction mixture was allowed to warm to 22 °C and stirred for 12 hours. Upon completion (monitored by TLC), H₂O was added and the organic material was then extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in*

vacuo. The unpurified product mixture was subjected to silica gel column chromatography (MeOH:DCM = 1:19) to afford *O*-TBS propafenone as a colorless liquid (2.0 g, 83%).

N-Bzh, *O*-TBS propafenone (3.16j)

N-Bzh, *O*-TBS **3.16j** propafenone was prepared following the General Procedure B for the Alkylation of Amines using *O*-TBS propafenone (2.0 g, 4.4 mmol) and (bromomethylene)dibenzene. The unpurified product mixture was subjected to silica gel column chromatography (Et₂O:hexanes = 1:19) to afford **3.16j** as a colorless liquid (2.2 g, 81%).

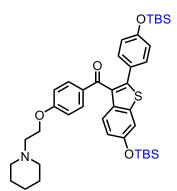
¹**H** NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 9.5 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.25 (m, 6H), 7.14 (dt, J = 15.4, 7.7 Hz, 9H), 7.03 – 6.92 (m, 2H), 4.82 (s, 1H), 4.18 (dd, J = 9.5, 3.8 Hz, 1H), 4.10 (dd, J = 9.5, 3.3 Hz, 1H), 3.92 (d, J = 4.3 Hz, 1H), 3.36 – 3.16 (m, 1H), 3.08 – 2.99 (m, 1H), 2.98 – 2.84 (m, 2H), 2.79 (dd, J = 13.5, 9.0 Hz, 1H), 2.55 (dd, J = 13.5, 4.7 Hz, 1H), 2.45 (d, J = 6.0 Hz, 2H), 1.43 (d, J = 7.4 Hz, 2H), 0.79 (s, 9H), 0.71 (t, J = 7.3 Hz, 3H), -0.06 (s, 3H), -0.09 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 201.22, 158.19, 142.06, 141.67, 141.51, 133.30, 130.45, 128.78, 128.68, 128.44, 128.26, 128.21, 128.15, 128.12, 126.91, 126.88, 125.68, 120.47, 112.33, 71.18, 70.47, 69.93, 54.23, 54.02, 45.40, 30.03, 25.71, 19.40, 17.92, 11.74, -4.67, -4.83; **IR** (neat) 2953, 2926, 1671, 1595, 1578, 1469, 1248, 1110, 838, 752, 698 cm⁻¹.



N-Bn paroxetine (3.160)

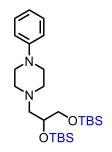
N-Bn paroxetine **3.160** was prepared following the General Procedure A for the Alkylation of Amines using paroxetine hydrochloride (3.0 g, 8.2 mmol) and benzyl bromide. The unpurified product was subjected to silica gel column chromatography (EtOAc:hexanes = 1:9) to afford **3.160** as a white solid (2.9 g, 84%).

¹**H** NMR (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 4H), 7.25 (s, 1H), 7.16 (dd, J = 8.6, 5.5 Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 6.61 (d, J = 8.4 Hz, 1H), 6.31 (d, J = 2.5 Hz, 1H), 6.10


(dd, J = 8.5, 2.5 Hz, 1H), 5.87 (s, 2H), 3.64 (d, J = 13.1 Hz, 1H), 3.59 – 3.50 (m, 2H), 3.44 (d, J = 6.9 Hz, 1H), 3.04 – 2.96 (m, 1H), 2.55 – 2.42 (m, 1H), 2.27 – 2.14 (m, 1H), 2.12 – 2.01 (m, 2H), 1.90 – 1.73 (m, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.44, 160.50, 154.41, 148.10, 141.51, 139.86, 139.84, 138.27, 129.19, 128.85, 128.79, 128.20, 127.00, 115.40, 115.24, 107.80, 105.60, 101.03, 97.99, 69.65, 63.40, 57.61, 53.83, 44.12, 42.19, 34.39; ¹⁹F NMR (470 MHz, CDCl₃) δ -116.71 (d, J = 7.5 Hz); **IR** (neat) 2912, 1602, 1506, 1485, 1221, 1181, 1132, 1036, 933, 831, 781, 738 cm⁻¹.

N-Bzh paroxetine (3.16p)

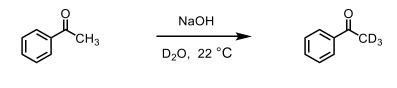
N-Bzh paroxetine **3.16p** was prepared following the General Procedure B for the Alkylation of Amines using paroxetine hydrochloride (3.0 g, 8.2 mmol), (bromomethylene)dibenzene. The unpurified product was subjected to silica gel column chromatography (Et₂O:hexanes = 1:9) to afford **3.16p** as a white solid (3.5 g, 86%).


¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.35 (m, 4H), 7.28 (t, *J* = 7.5 Hz, 4H), 7.17 (dt, *J* = 8.5, 6.4 Hz, 5H), 6.96 (t, *J* = 8.6 Hz, 2H), 6.57 (d, *J* = 8.5 Hz, 1H), 6.21 (d, *J* = 2.5 Hz, 1H), 6.01 (dd, *J* = 8.5, 2.5 Hz, 1H), 5.85 (d, *J* = 0.9 Hz, 2H), 4.37 (s, 1H), 3.50 (dd, *J* = 9.5, 2.9 Hz, 1H), 3.38 (dd, *J* = 9.5, 6.7 Hz, 1H), 3.23 (dd, *J* = 11.4, 2.9 Hz, 1H), 3.08 – 2.89 (m, 1H), 2.47 (dd, *J* = 11.6, 4.2 Hz, 1H), 2.22 (s, 1H), 2.06 – 1.81 (m, 3H), 1.77 (d, *J* = 3.6 Hz, 1H); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.46, 160.52, 154.29, 148.07, 142.81, 142.78, 141.51, 140.07, 140.04, 128.90, 128.84, 128.44, 128.43, 128.09, 127.94, 126.89, 115.39, 115.22, 107.78, 105.74, 101.04, 98.13, 76.11, 69.60, 55.96, 52.49, 44.23, 42.49, 34.64; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -116.74 (ddd, *J* = 14.0, 8.9, 5.3 Hz); **IR** (neat) 2912, 1506, 1485, 1466, 1336, 1268, 1222, 1037, 815, 705 cm⁻¹.

*O***-TBS raloxifene (3.16q)**

O-TBS raloxifene **3.16q** was prepared following the known procedure.^{1e} To a solution of raloxifene HCl (2.0 g, 3.9 mmol) in DCM at 0 °C, imidazole (5.0 equiv.) was added, followed by the dropwise addition of TBSCl (2.6 equiv.). After the addition, the reaction mixture was allowed to warm to 22 °C and stirred for 12 hours. Upon completion (monitored by TLC), H₂O was added and the organic material was then extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The unpurified product mixture was then subjected to silica gel column chromatography (MeOH:DCM = 1:49) to afford **3.16q** as a colorless liquid (2.0 g, 73%).

¹**H NMR** (500 MHz, CDCl₃) δ 7.73 (d, *J* = 8.8 Hz, 2H), 7.56 (s, 1H), 7.32 – 7.22 (m, 3H), 6.89 (s, 1H), 6.73 (d, *J* = 8.9 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 4.05 (t, *J* = 6.0 Hz, 2H), 2.72 (t, *J* = 6.0 Hz, 2H), 2.47 (s, 4H), 1.58 (p, *J* = 5.6 Hz, 4H), 1.46 – 1.39 (m, 2H), 1.01 (s, 9H), 0.93 (s, 9H), 0.23 (s, 6H), 0.12 (s, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 193.12, 162.88, 156.08, 153.49, 143.31, 139.86, 134.51, 132.29, 130.60, 130.45, 130.33, 126.79, 123.98, 120.25, 119.24, 114.01, 112.07, 66.14, 57.70, 55.06, 25.92, 25.71, 25.63, 24.13, 18.24, 18.19, -4.36, -4.48; **IR** (neat) 2927, 2891, 1596, 1464, 1255, 1164, 943, 909, 837, 780 cm⁻¹.

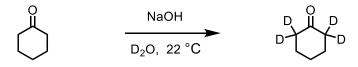


O-TBS dropropizine (3.16s)

O-TBS dropropizine **3.16s** was prepared following the known procedure.^{1e} To a solution of dropropizine (1.2 g, 5.0 mmol) in DCM at 0 °C, Et₃N (2.6 equiv.) was added, followed by the dropwise addition of TBSOTf (2.6 equiv.). After the addition, the reaction mixture was allowed to warm to 22 °C and stirred for 12 hours. Upon completion (monitored by TLC), H₂O was added and the organic material was then extracted with DCM. The combined organic layers were dried over MgSO₄, filtered, and concentrated *in vacuo*. The unpurified product mixture was then subjected to silica gel column chromatography (MeOH:DCM = 1:99) to afford **3.16s** as a colorless liquid (1.6 g, 69%).

¹**H NMR** (600 MHz, CDCl₃) δ 7.25 (dd, J = 8.8, 7.2 Hz, 2H), 6.95 – 6.88 (m, 2H), 6.83 (d, J = 7.3 Hz, 1H), 3.80 (d, J = 5.1 Hz, 1H), 3.61 (dd, J = 10.0, 5.7 Hz, 1H), 3.53 (dd, J = 10.0, 5.6 Hz, 1H), 3.17 (t, J = 5.0 Hz, 4H), 2.72 – 2.64 (m, 2H), 2.64 – 2.57 (m, 2H), 2.50 (dd, J = 13.0, 4.8 Hz, 1H), 2.38 (dd, J = 13.0, 6.1 Hz, 1H), 0.90 (d, J = 5.1 Hz, 18H), 0.09 (d, J = 7.5 Hz, 6H), 0.06 (d, J = 1.8 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 151.46, 129.03, 119.44, 115.86, 71.76, 66.18, 61.99, 54.25, 49.15, 25.99, 25.92, 18.37, 18.19, -4.44, -4.49, -5.26, -5.34; **IR** (neat) 2925, 2853, 1598, 1500, 1460, 1229, 1107, 1082, 989, 829, 772 cm⁻¹.

Preparation of α -Deuterated Ketone Substrates



acetophenone

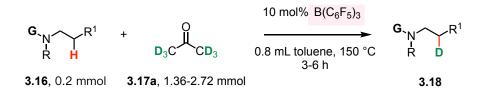
acetophenone-d₃

Acetophenone-d₃

Acetophenone-d₃ **3.17b** was synthesized following the known procedure ². Acetophenone (5.8 g, 48 mmol), NaOH (0.16 g, 4.0 mmol) and D₂O (32 mL) was allowed to stir at 22 °C for 24 hours under nitrogen. The reaction mixture was diluted with diethyl ether. The aqueous layer was extracted with diethyl ether. The combined organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The unpurified product mixture was subjected to silica gel column chromatography using hexanes as elute to afford the acetophenone-d₃ as colorless liquid (4.9 g, 97%D, 84% yield). The spectroscopic data matched those reported by Zhou.²

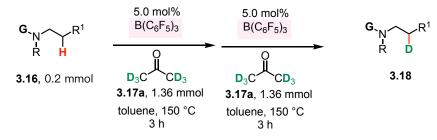
cyclohexanone

cyclohexa-1-one-2,2,6,6,-d₄

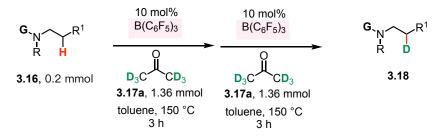

Cyclohexan-1-one-2,2,6,6-d4

Cyclohexan-1-one-2,2,6,6-d4 **3.17c** was synthesized following the known procedure⁹⁸. Cyclohexanone (5.2 mL, 50 mmol), NaOH (0.16 g, 1.0 mmol) and D₂O (32 mL) was allowed to stir at 22 °C for 24 hours under nitrogen. The reaction mixture was diluted with diethyl ether. The aqueous layer was extracted with diethyl ether. The combined organic layer was dried over MgSO₄, filtered and concentrated *in vacuo*. The unpurified product mixture was distilled (40 mmHg, 40 °C) to afford the cyclohexan-1-one-2,2,6,6-d₄ as colorless liquid (4.0 g, 95%D, 78% yield). The spectroscopic data matched those reported by Chang³.

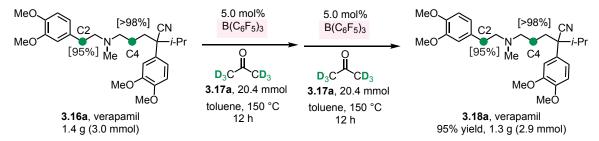
² Lei, C.; Yip, Y. J.; Zhou, J. S. J. Am. Chem. Soc. 2017, 139, 6086-6089.

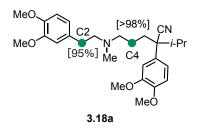

³ Chang, D.; Li, T.; Li, L.; Jakowski, J.; Huang, J.; Keum, J. K.; Lee, B.; Bonnesen, P. V.; Zhou, M.; Garashchuk, S.; Sumpter, B. G.; Hong, K. *Macromolecules* **2018**, *51*, 9393–9404.

General Procedure A for the β -Deuteration of N-Alkylamines


To a 15 mL oven-dried pressure vessel was added amine **3.16** (0.2 mmol), $B(C_6F_5)_3$ (10 mol%), toluene (0.8 mL), and acetone- d_6 **3.17a** (1.36 mmol, 6.8 equiv.) under a nitrogen atmosphere. The reaction mixture was allowed to stir for 3 hours at 150 °C. Upon completion, the reaction mixture was concentrated *in vacuo* and purified by silica gel column chromatography.

General Procedure B for the β -Deuteration of N-Alkylamines

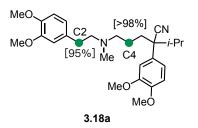

To a 15 mL oven-dried pressure vessel was added amine **3.16** (0.2 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), and acetone- d_6 **3.17a** (1.36 mmol, 6.8 equiv.) under a nitrogen atmosphere. The reaction mixture was allowed to stir for 3 hours at 150 °C. After the purification by silica gel column chromatography and removal of volatiles, B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), and acetone- d_6 **3.17a** (1.36 mmol, 6.8 equiv.) were added under a nitrogen atmosphere and was allowed to stir for 3 hours at 150 °C. Upon completion, the reaction mixture was concentrated *in vacuo* and purified by silica gel column chromatography.

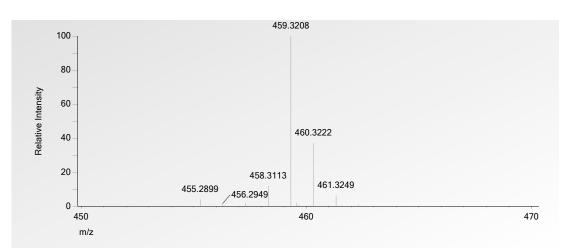

To a 15 mL oven-dried pressure vessel was added amine **3.16** (0.2 mmol), B(C₆F₅)₃ (10 mol%), toluene (0.8 mL), and acetone- d_6 **3.17a** (1.36 mmol, 6.8 equiv.) under a nitrogen atmosphere. The reaction mixture was allowed to stir for 3 hours at 150 °C. After the purification by silica gel column chromatography and removal of volatiles, B(C₆F₅)₃ (5.0 mol%), toluene (0.8 mL), and acetone- d_6 **3.17a** (1.36 mmol, 6.8 equiv.) were added under a nitrogen atmosphere and was allowed to stir for 3 hours at 150 °C. Upon completion, the reaction mixture was concentrated *in vacuo* and purified by silica gel column chromatography.

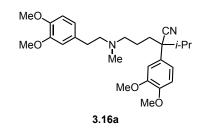
Procedure for Scale-Up Reaction

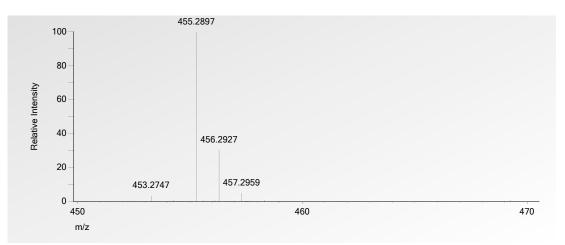
To a 100 mL oven-dried Schlenk flask was added amine **3.16a** (3.0 mmol), B(C₆F₅)₃ (5.0 mol%), toluene (12 mL), and acetone- d_6 **3.17a** (20.4 mmol, 6.8 equiv.) under a nitrogen atmosphere. The reaction mixture was allowed to stir for 12 hours at 150 °C. After the purification by silica gel column chromatography and removal of volatiles, B(C₆F₅)₃ (5.0 mol%), toluene (12 mL), and acetone- d_6 **3.17a** (20.4 mmol, 6.8 equiv.) were added under a nitrogen atmosphere and was allowed to stir for 12 hours at 150 °C. Upon completion, the reaction mixture was concentrated *in vacuo* and purified by silica gel column chromatography (MeOH:DCM = 1:49) to afford **3.18a** as a yellow liquid (1.29 g, 95%).

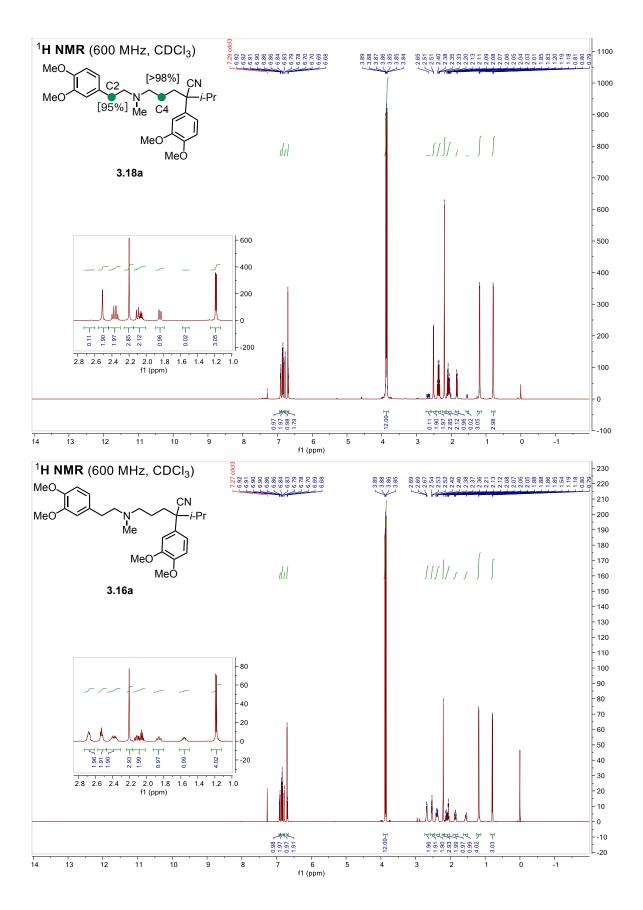
3.6.3 Analytical Data and NMR Spectral Data

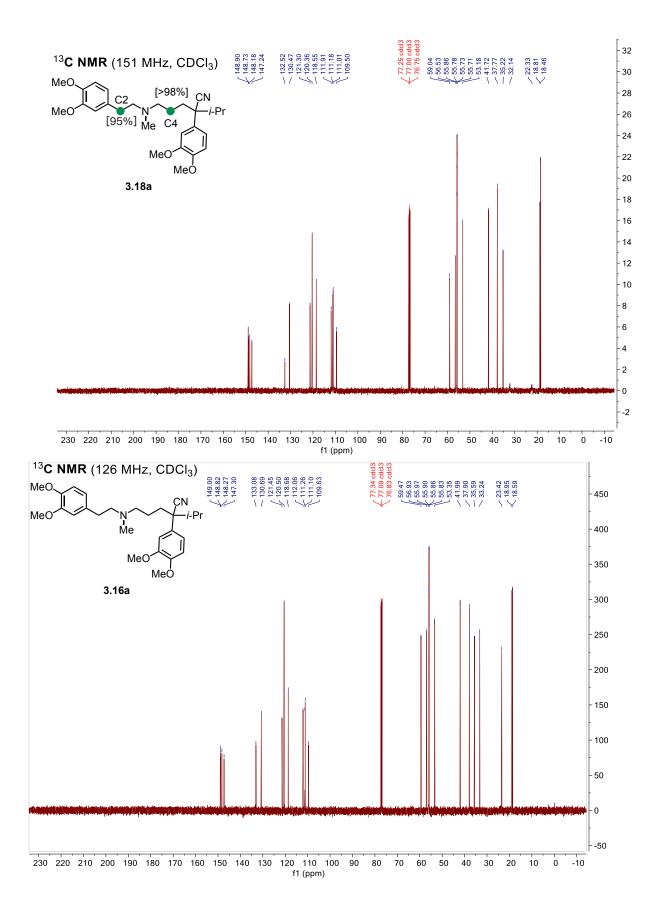


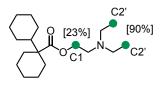

Verapamil, 3.18a

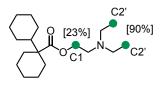

Verapamil **3.16a** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (MeOH:DCM = 1:49), **3.18a** was obtained as a yellow liquid (84 mg, 92%).

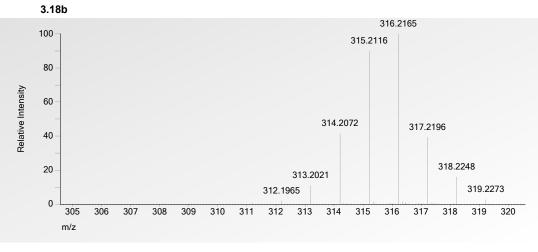

Deuterium incorporation: 3.86 D/molecule (¹H NMR), 4.11 D/molecule [HRMS (DART)]

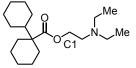

¹**H NMR** (600 MHz, CDCl₃) δ 6.91 (dd, J = 8.4, 2.2 Hz, 1H), 6.88 – 6.81 (m, 2H), 6.79 (d, J = 7.9 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 3.94 – 3.76 (m, 12H), 2.73 – 2.60 (m, 0.11H, 95%D), 2.56 – 2.46 (m, 2H), 2.44 – 2.29 (m, 2H), 2.20 (s, 3H), 2.15 – 1.99 (m, 2H), 1.84 (d, J = 13.7 Hz, 1H), 1.58 – 1.49 (m, 0.02H, 99%D), 0.79 (d, J = 6.7 Hz, 3.05H, 98%D); ¹³**C NMR** (151 MHz, CDCl₃) δ 148.90, 148.73, 148.18, 147.24, 132.52, 130.47, 121.30, 120.36, 118.55, 111.91, 111.18, 111.01, 109.50, 59.04, 56.53, 55.86, 55.78, 55.73, 55.71, 53.18, 41.72, 37.77, 35.22, 32.14, 22.33, 18.81, 18.46; **IR** (neat) 2933, 1512, 1460, 1411, 1258, 1237, 1162, 1141, 1024, 804, 764 cm⁻¹.



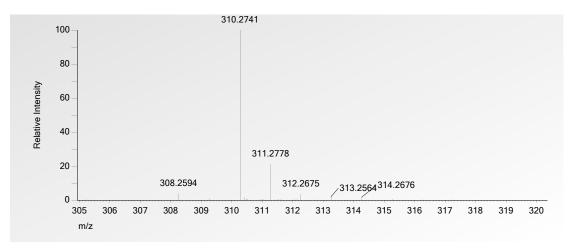


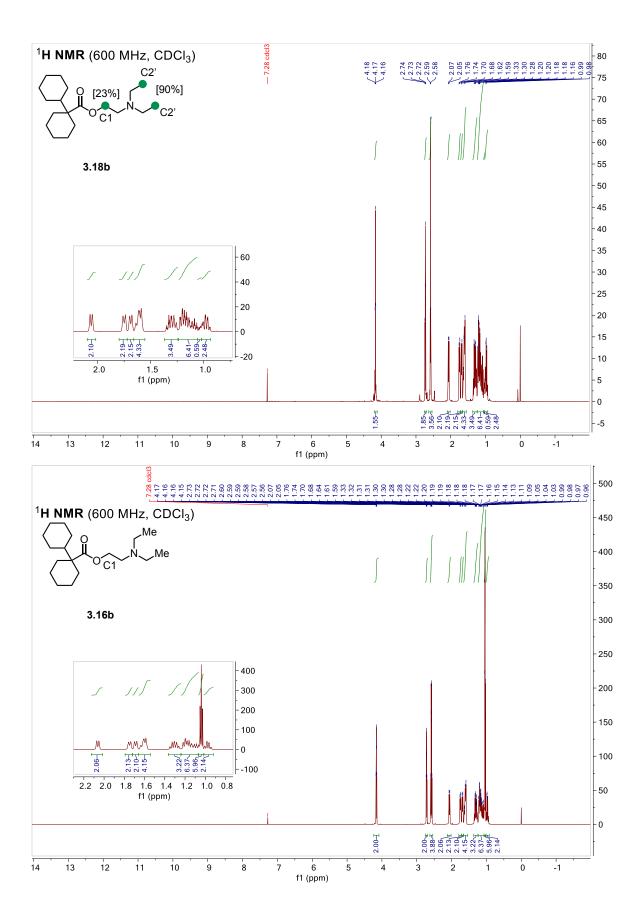

3.18b

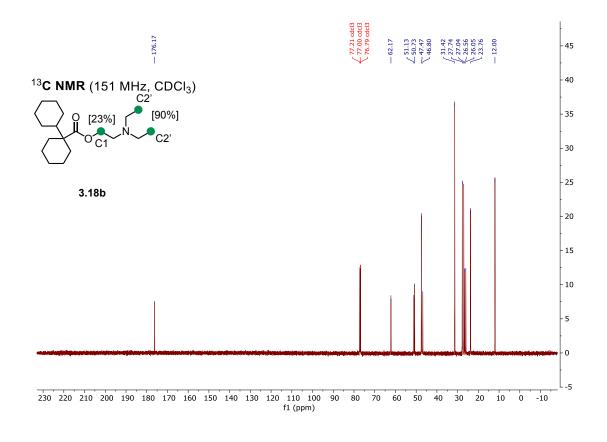

Dicyclomine, 3.18b

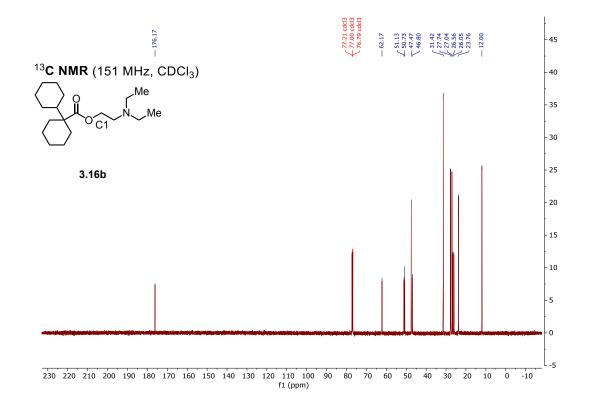

Dicyclomine **3.16b** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:49), **3.18b** was obtained as a colorless liquid (60 mg, 97%).

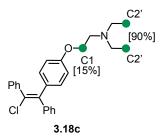
Deuterium incorporation: 5.86 D/molecule (¹H NMR), 5.50 D/molecule [HRMS (DART)]

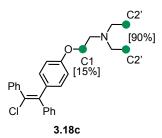

¹**H NMR** (600 MHz, CDCl₃) δ 4.17 (t, J = 6.3 Hz, 1.55H, 23%D), 2.73 (t, J = 6.5 Hz, 2H), 2.58 (d, J = 7.0 Hz, 4H), 2.06 (d, J = 12.4 Hz, 2H), 1.75 (m, 2H), 1.69 (d, J = 12.9 Hz, 2H), 1.66 – 1.54 (m, 4H), 1.37 – 1.24 (m, 3H), 1.23 – 1.06 (m, 6H), 1.06 – 1.02(m, 0.59H, 90%D), 1.02 – 0.93 (m, 2H); ¹³**C NMR** (151 MHz, CDCl₃) δ 176.15, 77.21, 77.00, 76.79, 62.02, 51.08, 50.73, 47.30, 46.79, 31.45, 31.40, 27.78, 27.74, 27.03, 26.55, 26.04, 26.00, 23.75, 11.21; **IR** (neat) 2923, 2850, 1720, 1449, 1207, 1194, 1171, 1156, 1125, 1101, 1049 cm⁻¹.

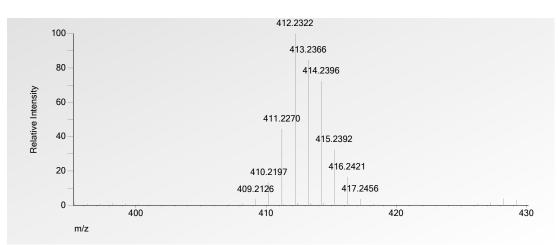


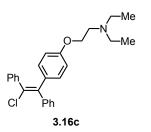


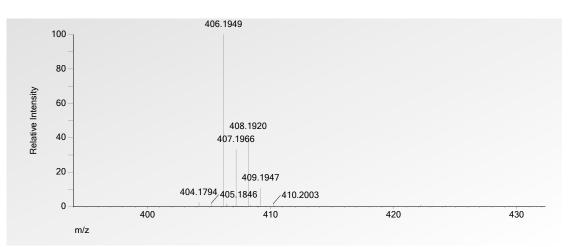


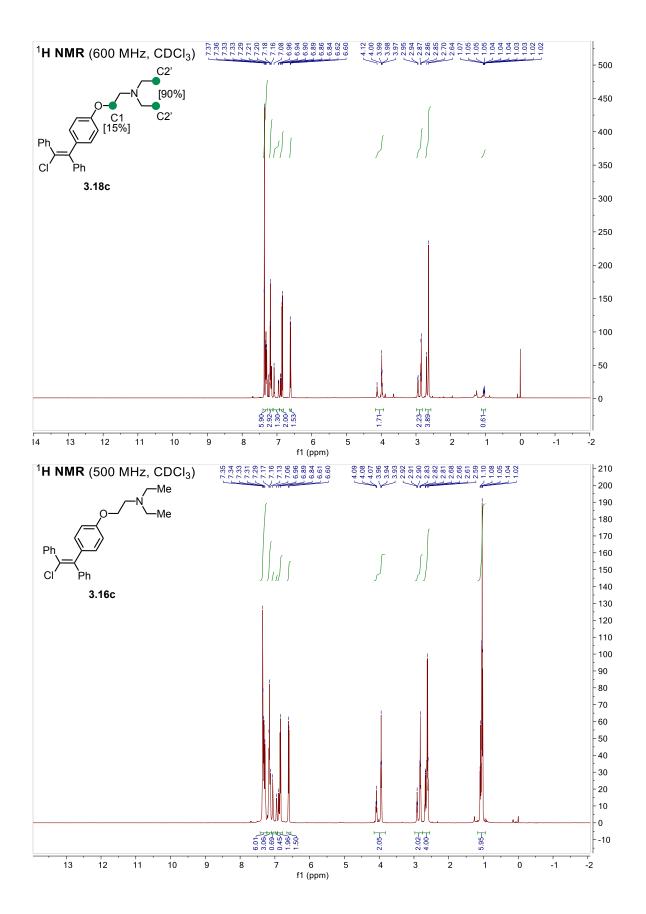

3.16b

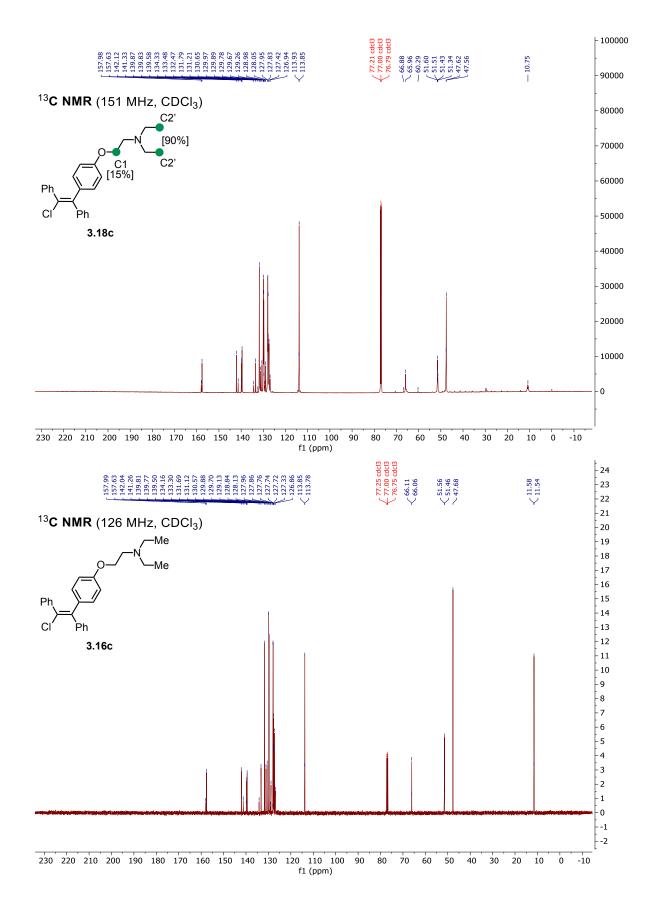


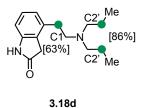

Clomiphene, 3.18c


Clomiphene **3.16c** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:19), **3.18c** was obtained as a colorless liquid (78 mg, 96%).


Deuterium incorporation: 5.70 D/molecule (¹H NMR), 6.89 D/molecule [HRMS (DART)]

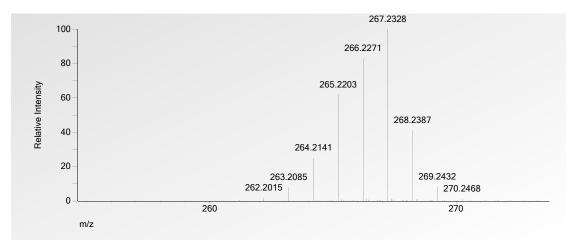

¹**H NMR** (600 MHz, CDCl₃) δ 7.44 – 7.26 (m, 6H), 7.22 – 7.13 (m, 3H), 7.11 – 6.93 (m, 1H), 6.87 (dd, J = 26.9, 8.7 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 4.16 – 3.93 (m, 1.71H, 15%D), 3.00 – 2.81 (m, 2H), 2.67 (d, J = 34.3 Hz, 4H), 1.13 – 0.98 (m, 0.61H, 90%D); ¹³**C NMR** (151 MHz, CDCl₃) δ 157.98, 157.63, 142.12, 141.33, 139.87, 139.83, 139.58, 134.33, 133.48, 132.47, 131.79, 131.21, 130.65, 129.97, 129.89, 129.78, 129.67, 129.26, 128.98, 128.05, 127.95, 127.83, 127.42, 126.94, 113.93, 113.85, 66.88, 65.96, 60.29, 51.60, 51.51, 51.43, 51.34, 47.62, 47.56, 10.75; **IR** (neat) 2940, 2806, 1603, 1505, 1244, 1174, 1153, 1029, 758, 745, 695 cm⁻¹.

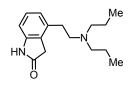




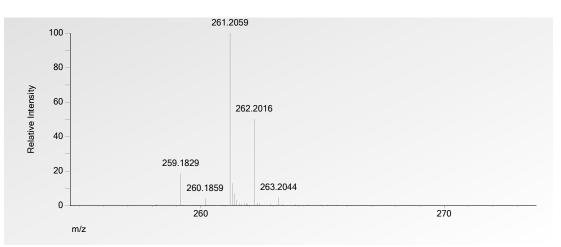
3.180

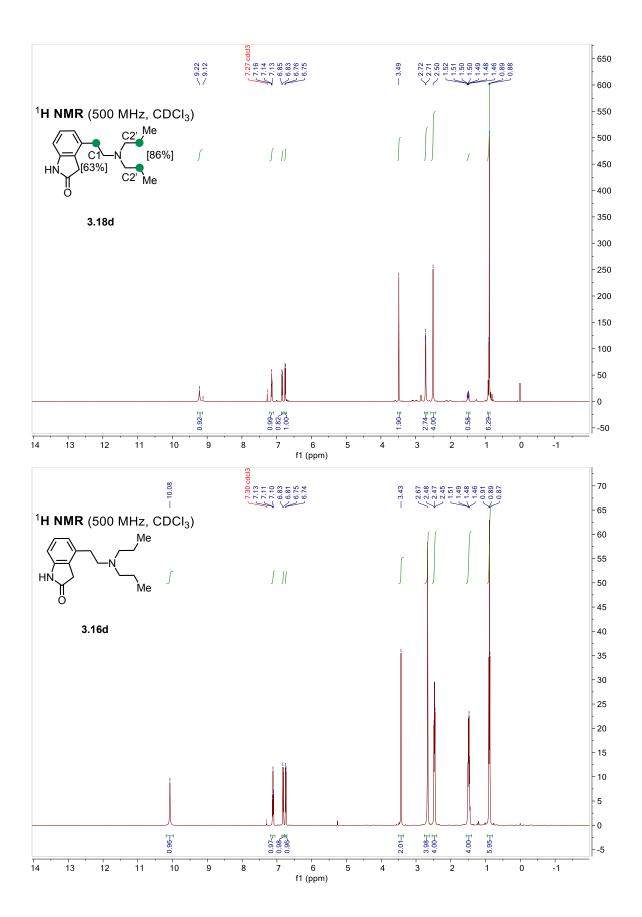
Ropinirole, 3.18d

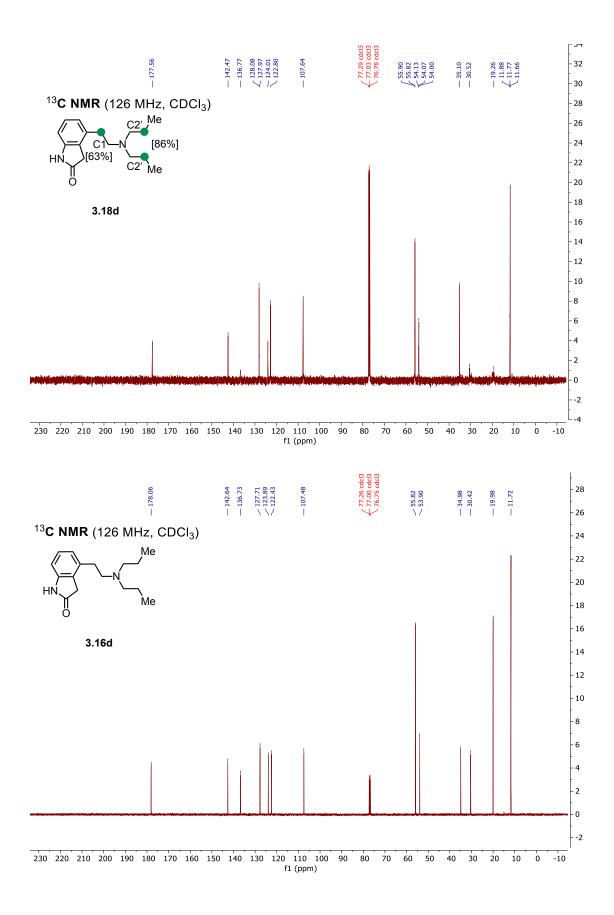

Ropinirole **3.16d** was reacted with acetone- d_6 **3.17a** following the General Procedure C. After purification by column chromatography (MeOH:DCM = 1:24), **3.18d** was obtained as a white solid (40 mg, 77%).

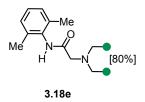

Deuterium incorporation: 4.70 D/molecule (¹H NMR), 5.24 D/molecule [HRMS (DART)]

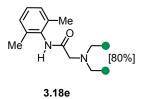
¹**H NMR** (500 MHz, CDCl₃) δ 9.22 (s, 1H), 7.14 (t, J = 7.7 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 3.49 (s, 2H), 2.71 (d, J = 5.1 Hz, 2.74H, 63%D), 2.50 (s, 4H), 1.55 – 1.44 (m, 0.58H, 86%D), 0.89 (d, J = 8.5 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 177.56, 142.47, 136.77, 128.08, 127.97, 124.01, 122.80, 107.64, 55.90, 55.82, 54.13, 54.07, 54.00, 35.10, 30.52, 19.26, 11.88, 11.77, 11.66; **IR** (neat) 2952, 2928, 2799, 1701, 1615, 1601, 1453, 1254, 762, 719 cm⁻¹.

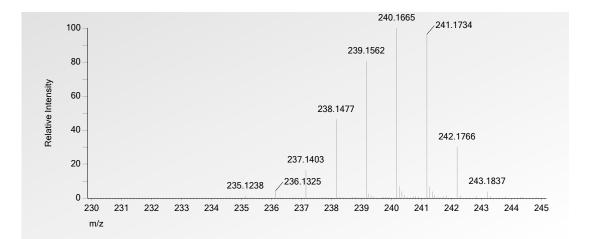


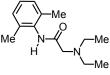

3.18d



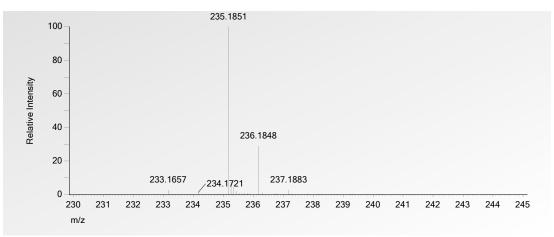


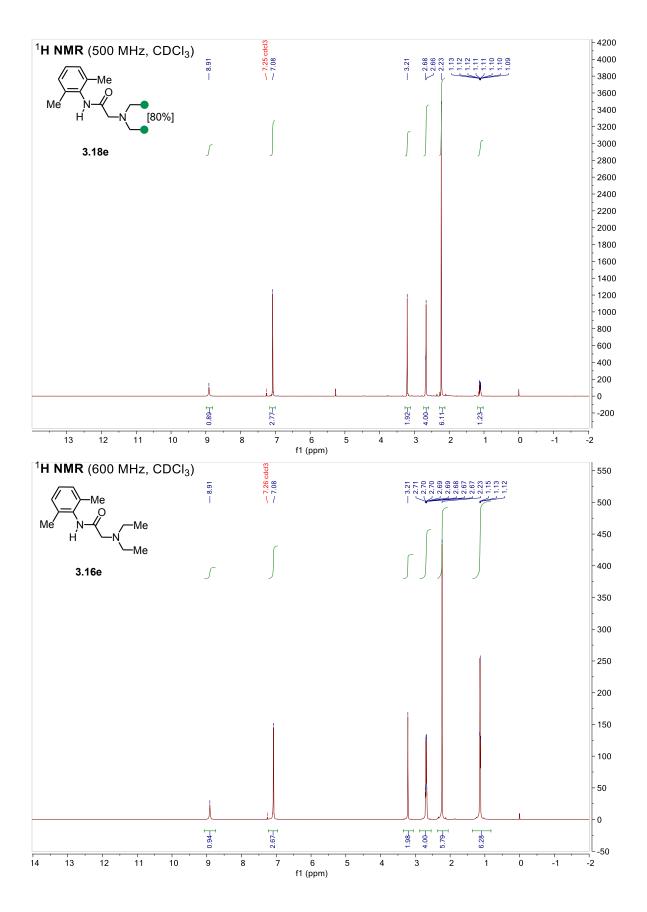


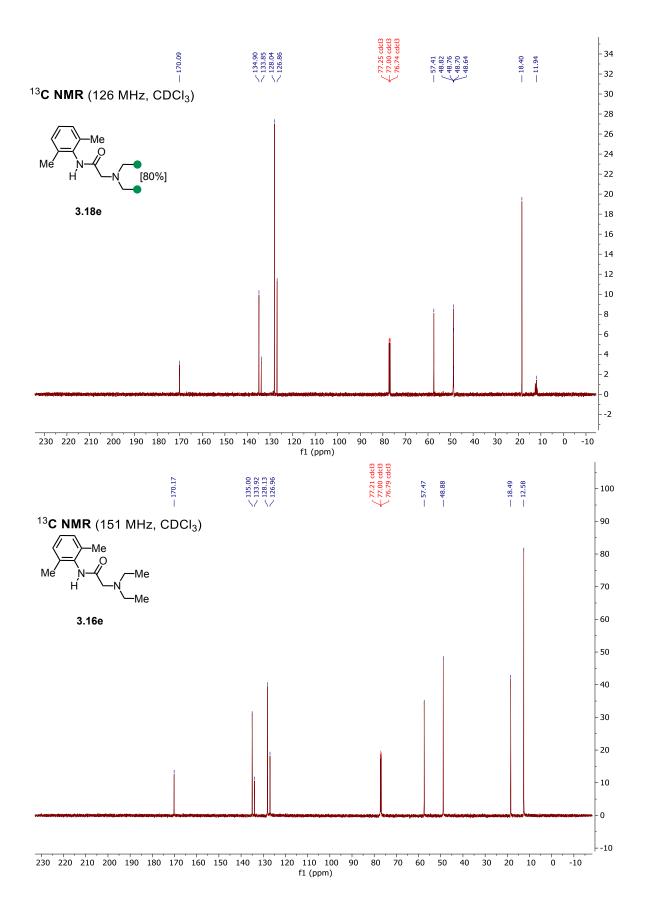

Lidocaine, 3.18e

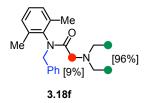

Lidocaine **3.16e** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:49), **3.18e** was obtained as a white solid (46 mg, 99%).

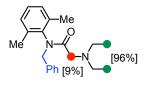
Deuterium incorporation: 4.80 D/molecule (¹H NMR), 4.78 D/molecule [HRMS (DART)]

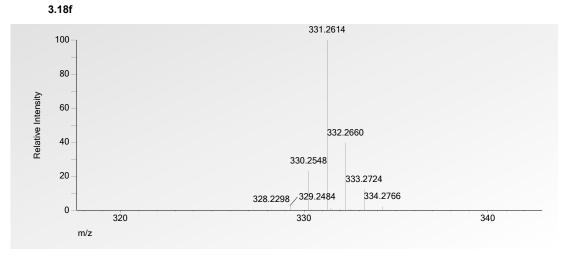

¹**H NMR** (500 MHz, CDCl₃) δ 8.91 (s, 1H), 7.08 (s, 3H), 3.21 (s, 2H), 2.77 – 2.54 (m, 4H), 2.23 (s, 6H), 1.23 – 1.01 (m, 1.23H, 80%D); ¹³**C NMR** (126 MHz, CDCl₃) δ 170.09, 134.90, 133.85, 128.04, 126.86, 57.41, 48.82, 48.76, 48.70, 48.64, 18.40, 11.94; **IR** (neat) 3265, 2936, 2818, 2219, 1684, 1491, 1284, 1163, 1051, 767 cm⁻¹.

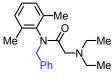




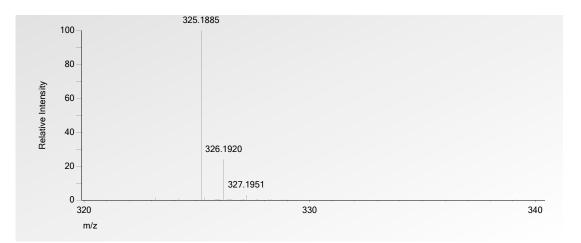


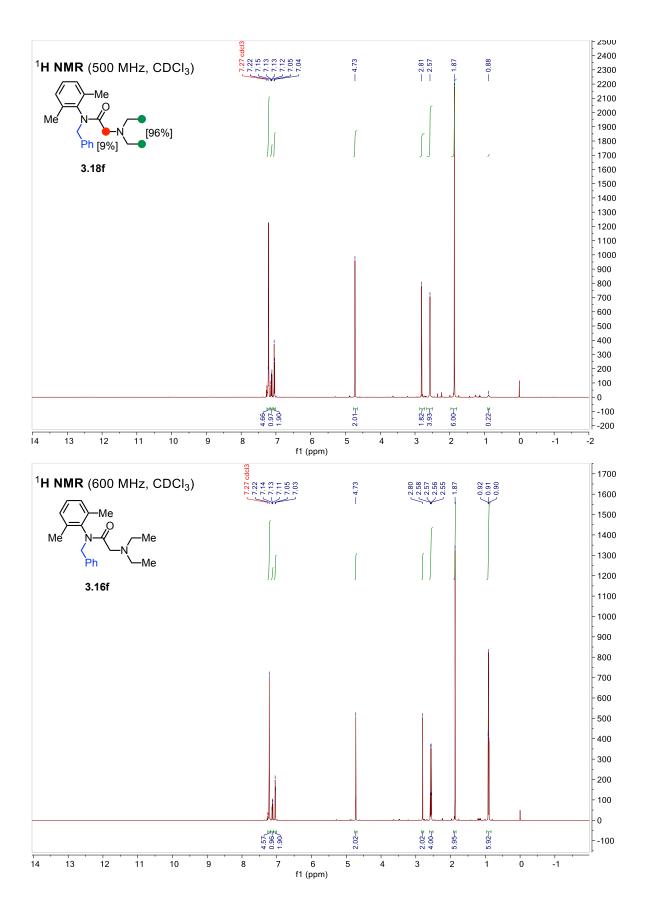


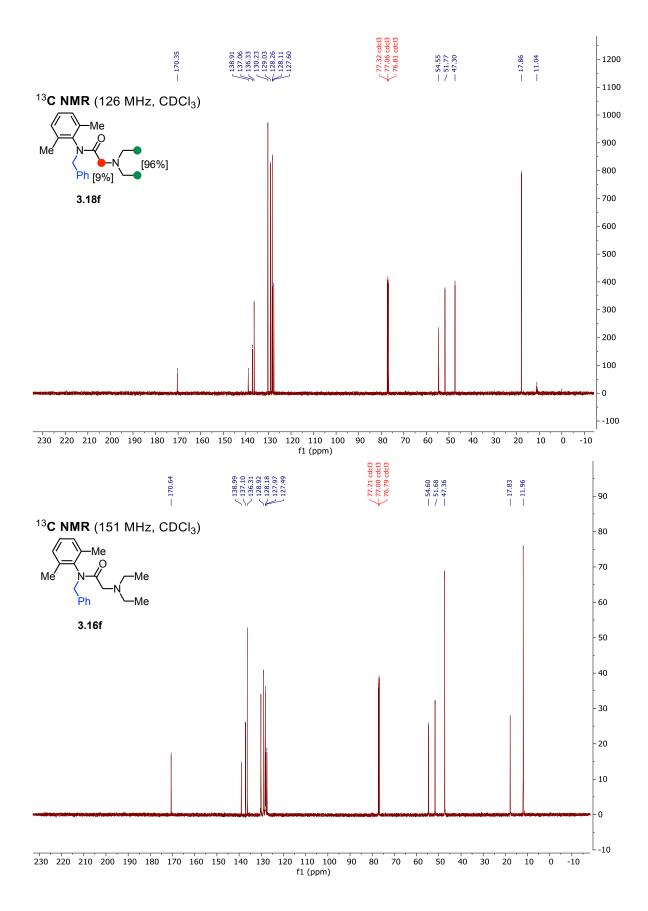

N-Bn lidocaine, 3.18f

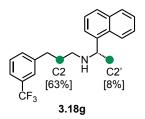

N-Bn lidocaine **3.16f** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (MeOH:DCM = 1:49), **3.18f** was obtained as a yellow liquid (62 mg, 96%).

Deuterium incorporation: 6.18 D/molecule (¹H NMR), 6.26 D/molecule [HRMS (DART)]

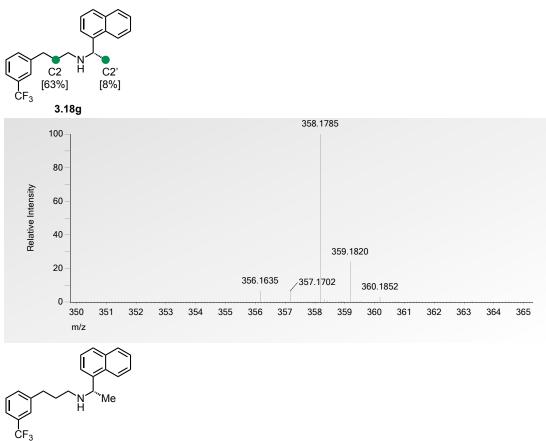

¹**H** NMR (500 MHz, CDCl₃) δ 7.22 (s, 5H), 7.13 (dd, J = 8.0, 7.0 Hz, 1H), 7.04 (d, J = 7.6 Hz, 2H), 4.73 (s, 1.82H, 9%D), 2.81 (s, 2H), 2.57 (s, 4H), 1.87 (s, 6H), 0.88 (s, 0.22H, 96%D); ¹³**C** NMR (126 MHz, CDCl₃) δ 170.35, 138.91, 137.06, 136.33, 130.23, 129.03, 128.26, 128.11, 127.60, 54.55, 51.77, 47.30, 17.86, 11.04; **IR** (neat) 2926, 1650, 1460, 1400, 1242, 1141, 1078, 773, 743, 700 cm⁻¹.



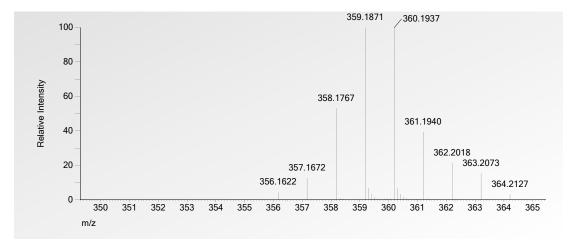


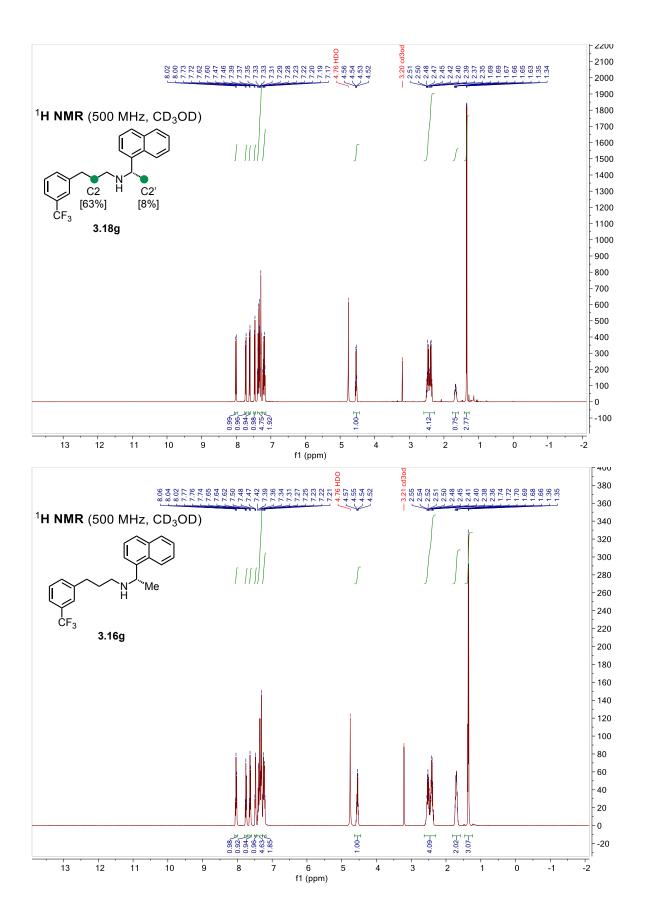


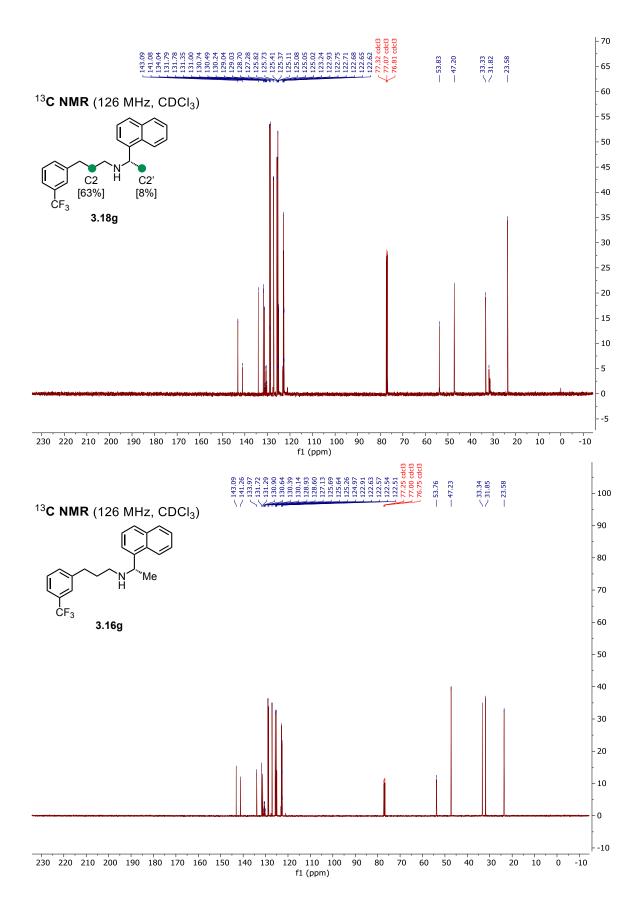
3.16f

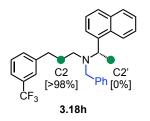


Cinacalcet, 3.18g

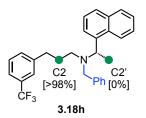

Cinacalcet **3.16g** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:19), **3.18g** was obtained as a yellow liquid (69 mg, 97%).

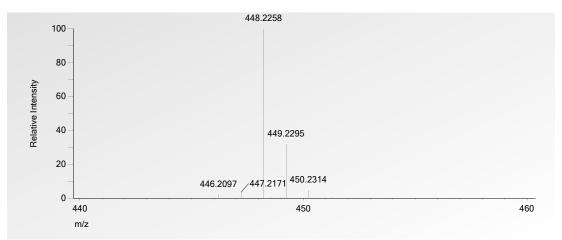

Deuterium incorporation: 1.50 D/molecule (¹H NMR), 1.52 D/molecule [HRMS (DART)]

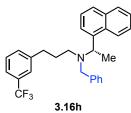

¹**H NMR** (500 MHz, CD₃OD) δ 8.01 (d, J = 8.5 Hz, 1H), 7.72 (d, J = 8.1 Hz, 1H), 7.61 (d, J = 8.2 Hz, 1H), 7.47 (d, J = 7.2 Hz, 1H), 7.40 – 7.26 (m, 5H), 7.20 (dt, J = 16.2, 7.6 Hz, 2H), 4.54 (q, J = 6.5 Hz, 1H), 2.43 (ddd, J = 38.2, 16.0, 8.0 Hz, 4H), 1.75 – 1.57 (m, 0.75H, 63%D), 1.34 (d, J = 6.7 Hz, 2.72H, 8%D); ¹³C **NMR** (126 MHz, CDCl₃) δ 143.09, 141.08, 134.04, 131.79, 131.78, 131.35, 131.00, 130.74, 130.49, 130.24, 129.04, 129.03, 128.70, 127.28, 125.82, 125.73, 125.41, 125.37, 125.11, 125.08, 125.05, 125.02, 123.24, 122.93, 122.75, 122.71, 122.68, 122.65, 122.62, 53.83, 47.20, 33.33, 31.82, 23.58; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -62.47; **IR** (neat) 2923, 1448, 1326, 1198, 1160, 1119, 1072, 798, 777, 701, 659 cm⁻¹; $[\alpha]^{25}$ _D = +19.1° (c = 1.0, CH₂Cl₂ labeled), $[\alpha]^{25}$ _D = +28.3° (c = 1.0, CH₂Cl₂ unlabeled).

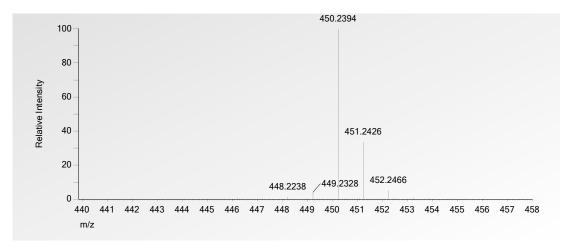


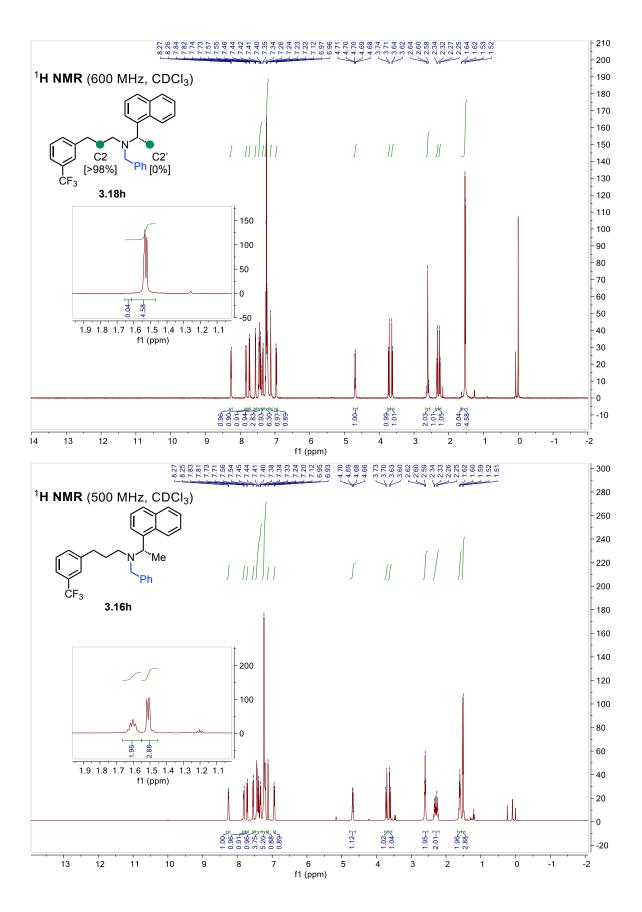
3.16g

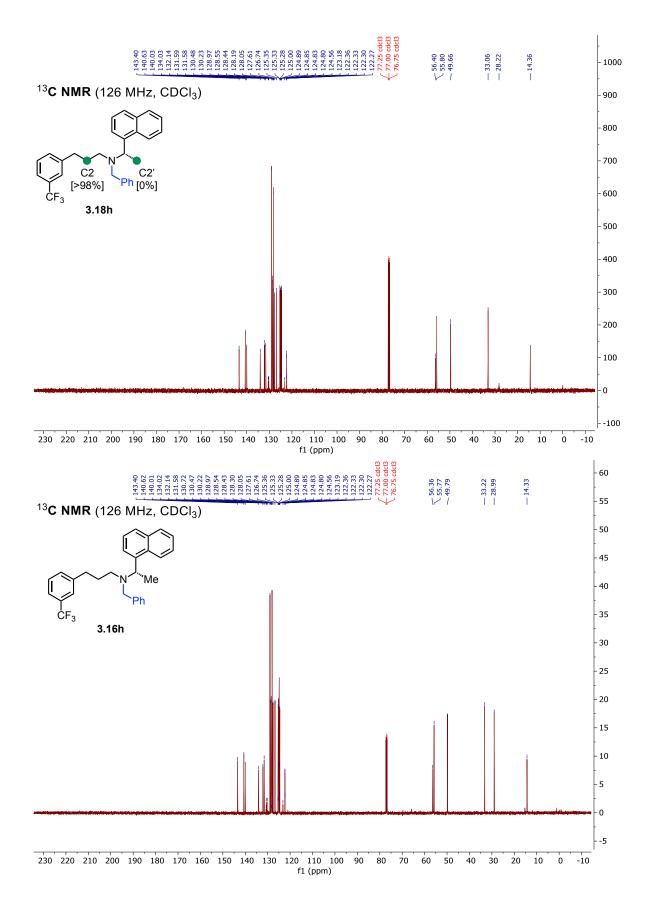


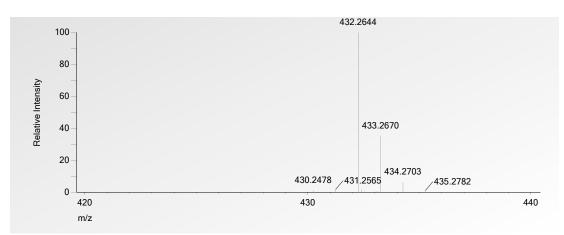

N-Bn cinacalcet, 3.18h

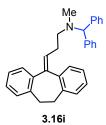

N-Bn cinacalcet **3.16h** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18h** was obtained as a yellow liquid (88 mg, 98%).

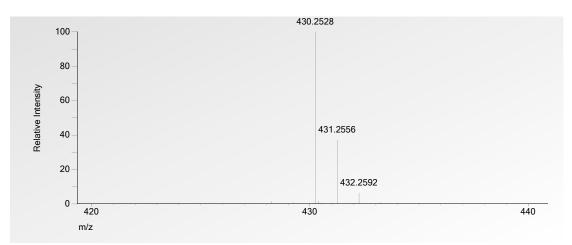

Deuterium incorporation: 1.99 D/molecule (¹H NMR), 2.28 D/molecule [HRMS (DART)]

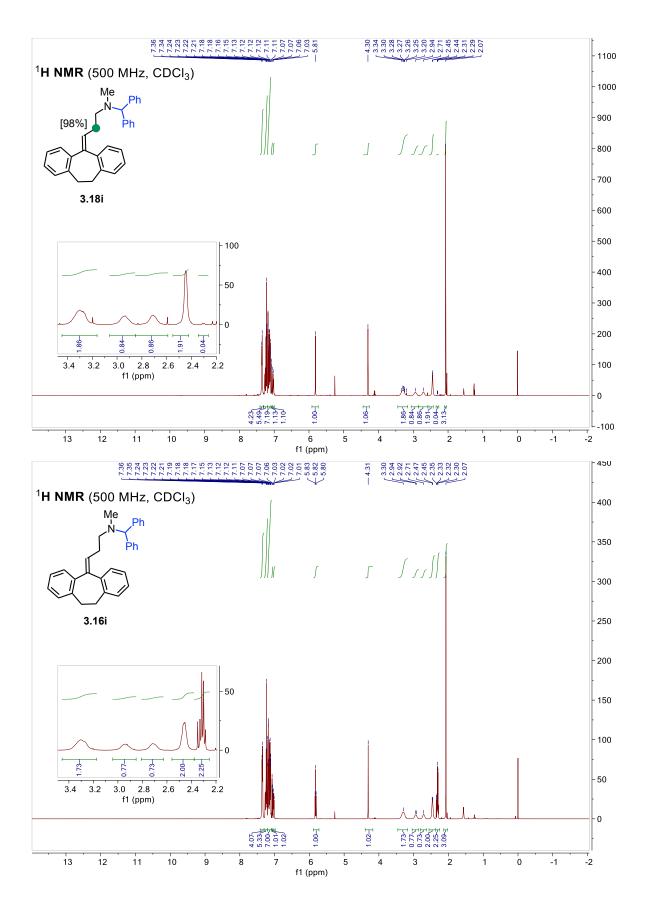

¹**H** NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 7.7 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.50 – 7.38 (m, 3H), 7.35 (d, J = 7.6 Hz, 1H), 7.24 (t, J = 7.8 Hz, 6H), 7.12 (s, 1H), 6.96 (d, J = 7.4 Hz, 1H), 4.75 – 4.62 (m, 1H), 3.72 (d, J = 13.8 Hz, 1H), 3.63 (d, J = 13.8 Hz, 1H), 2.60 (s, 2H), 2.33 (d, J = 14.0 Hz, 1H), 2.26 (d, J = 13.9 Hz, 1H), 1.63 (d, J = 6.3 Hz, 0.02H, >98%D), 1.53 (d, J = 6.8 Hz, 3H); 1³C NMR (126 MHz, CDCl₃) δ 143.40, 140.63, 140.03, 134.03, 132.14, 131.59, 131.58, 130.48, 130.23, 128.97, 128.55, 128.44, 128.19, 128.05, 127.61, 126.74, 125.35, 125.33, 125.28, 125.00, 124.89, 124.85, 124.83, 124.80, 124.56, 123.18, 122.36, 122.33, 122.30, 122.27, 56.40, 55.80, 49.66, 33.06, 28.22, 14.36; ¹⁹F NMR (564 MHz, CDCl₃) δ -62.49; **IR** (neat) 2858, 1449, 1331, 1197, 1159, 1118, 1097, 797, 778, 733, 699 cm⁻¹; [*α*]²⁵ D = -28.5° (c = 1.0, CH₂Cl₂ labeled), [*α*]²⁵ D = -39.2° (c = 1.0, CH₂Cl₂ unlabeled).

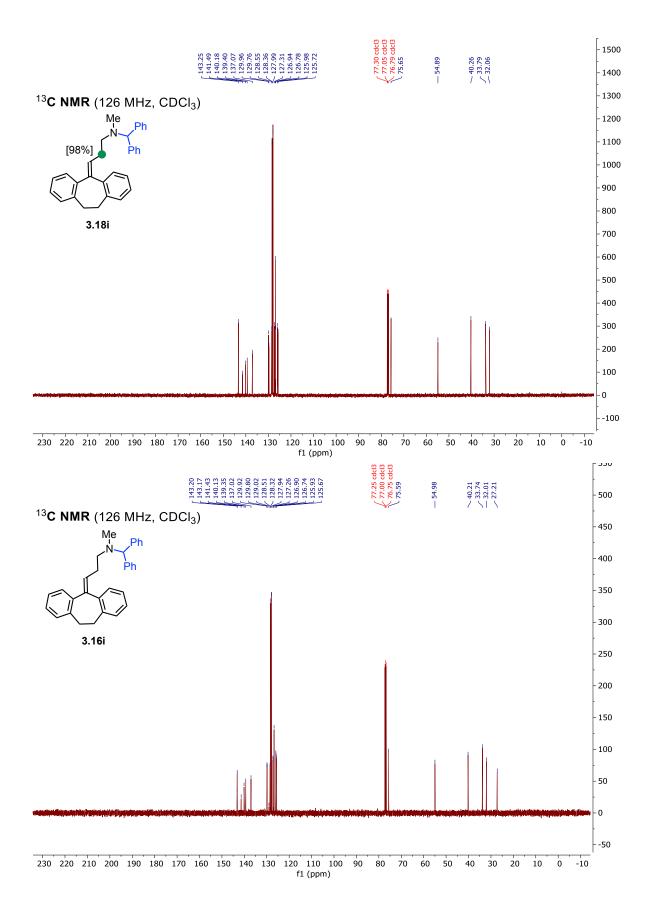


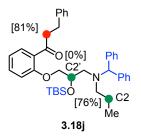

N-Bzh nortriptyline, 3.18i

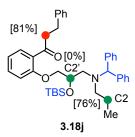

N-Bzh nortriptyline **3.16i** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18i** was obtained as a yellow liquid (83 mg, 96%).

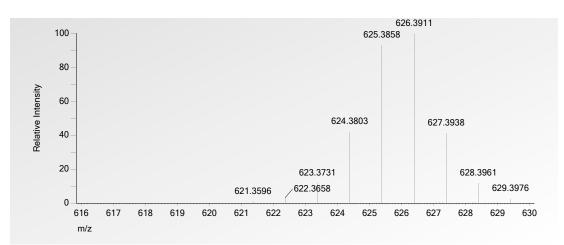

Deuterium incorporation: 1.96 D/molecule (¹H NMR), 2.34 D/molecule [HRMS (DART)]

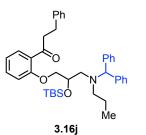

¹**H** NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 7.6 Hz, 4H), 7.22 (dd, *J* = 8.4, 6.8 Hz, 5H), 7.20 – 7.09 (m, 7H), 7.09 – 7.04 (m, 1H), 7.03 (s, 1H), 5.81 (s, 1H), 4.30 (s, 1H), 3.27 (dt, *J* = 32.1, 23.1 Hz, 2H), 2.94 (s, 1H), 2.71 (s, 1H), 2.44 (d, *J* = 5.3 Hz, 2H), 2.30 (d, *J* = 7.5 Hz, 0.04H, 98%D), 2.07 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 143.25, 141.49, 140.18, 139.40, 137.07, 129.96, 129.76, 128.55, 128.36, 127.99, 127.31, 126.94, 126.78, 125.98, 125.72, 75.65, 54.89, 40.26, 33.79, 32.06; **IR** (neat) 3020, 2784, 1485, 1451, 1265, 1028, 1012, 924, 756, 742, 704 cm⁻¹.

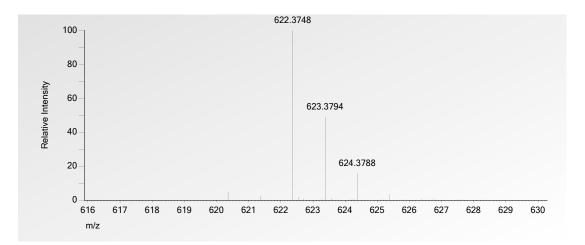


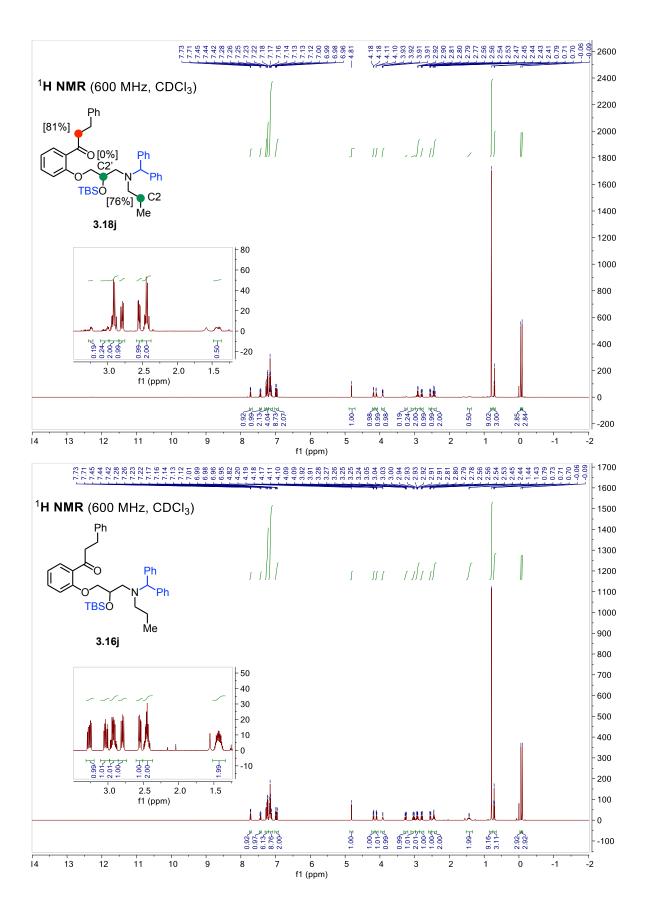


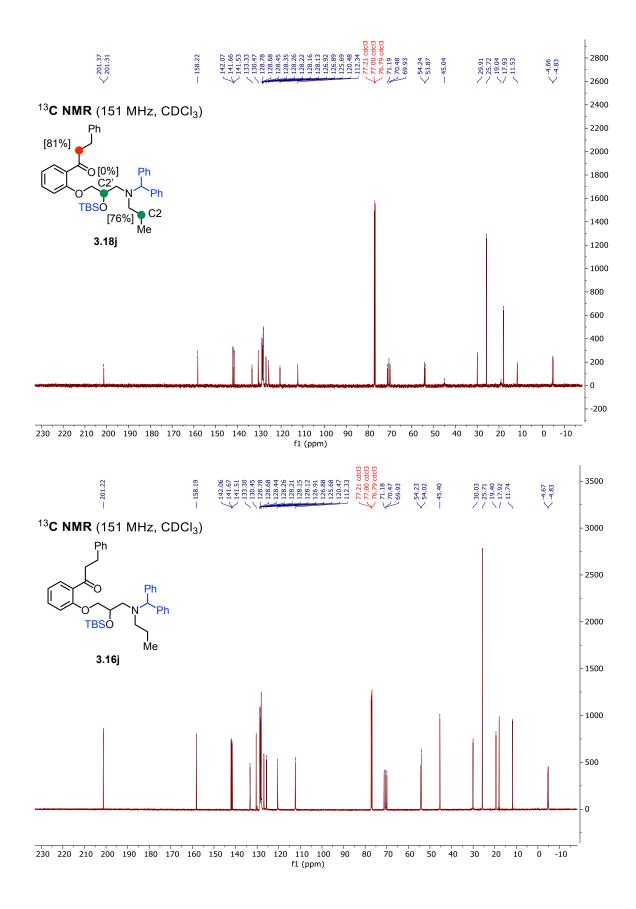


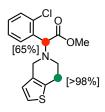

N-Bzh, O-TBS propafenone, 3.18j

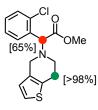

N-Bzh, *O*-TBS propafenone**3.16j** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18j** was obtained as a yellow liquid (114 mg, 92%).


Deuterium incorporation: 3.14 D/molecule (¹H NMR), 3.51 D/molecule [HRMS (DART)]

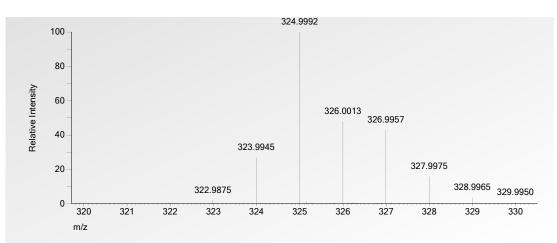

¹**H** NMR (600 MHz, CDCl₃) δ 7.72 (d, J = 9.4 Hz, 1H), 7.47 – 7.40 (m, 1H), 7.27 (d, J = 7.1 Hz, 2H), 7.23 (d, J = 7.6 Hz, 4H), 7.20 – 7.08 (m, 9H), 6.99 (dd, J = 15.9, 8.8 Hz, 2H), 4.81 (s, 1H), 4.18 (d, J = 3.8 Hz, 1H), 4.11 (d, J = 3.3 Hz, 1H), 3.92 (dd, J = 8.7, 4.3 Hz, 1H), 3.35 – 3.18 (m, 0.19H, 81%D), 3.11 – 2.97 (m, 0.24H, 76%D), 2.91 (d, J = 11.4 Hz, 2H), 2.79 (dd, J = 13.5, 8.9 Hz, 1H), 2.55 (dd, J = 13.5, 4.6 Hz, 1H), 2.51 – 2.38 (m, 2H), 1.50 – 1.35 (m, 0.50H, 76%D), 0.79 (s, 9H), 0.75 – 0.66 (m, 3H), -0.06 (s, 3H), -0.09 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 201.37, 201.31, 158.22, 142.07, 141.66, 141.53, 133.33, 130.47, 128.78, 128.68, 128.45, 128.35, 128.26, 128.22, 128.16, 128.13, 126.92, 126.89, 125.69, 120.48, 112.34, 71.19, 70.48, 69.93, 54.24, 53.87, 45.04, 29.91, 25.72, 19.04, 17.93, 11.53, -4.66, -4.83; **IR** (neat) 2950, 2926, 1669, 1595, 1470, 1293, 1248, 1113, 833, 747, 699 cm⁻¹.

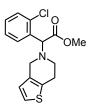




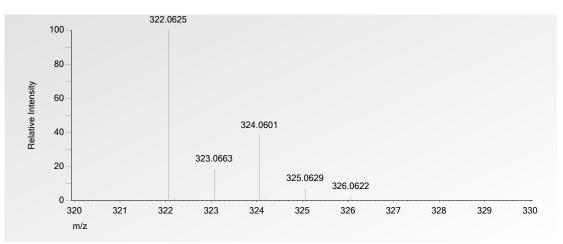

3.18k

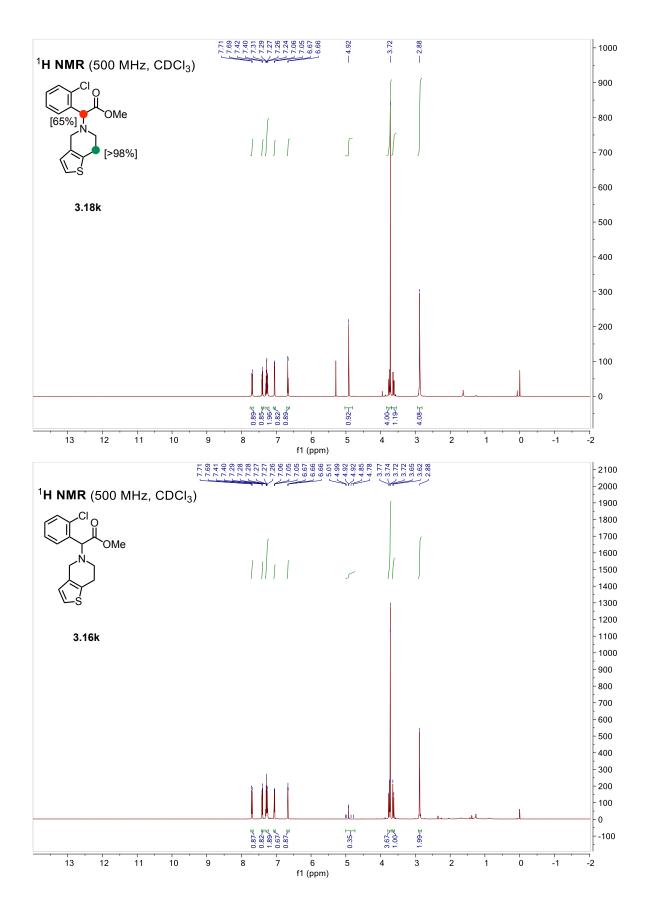
Clopidogrel, 3.18k

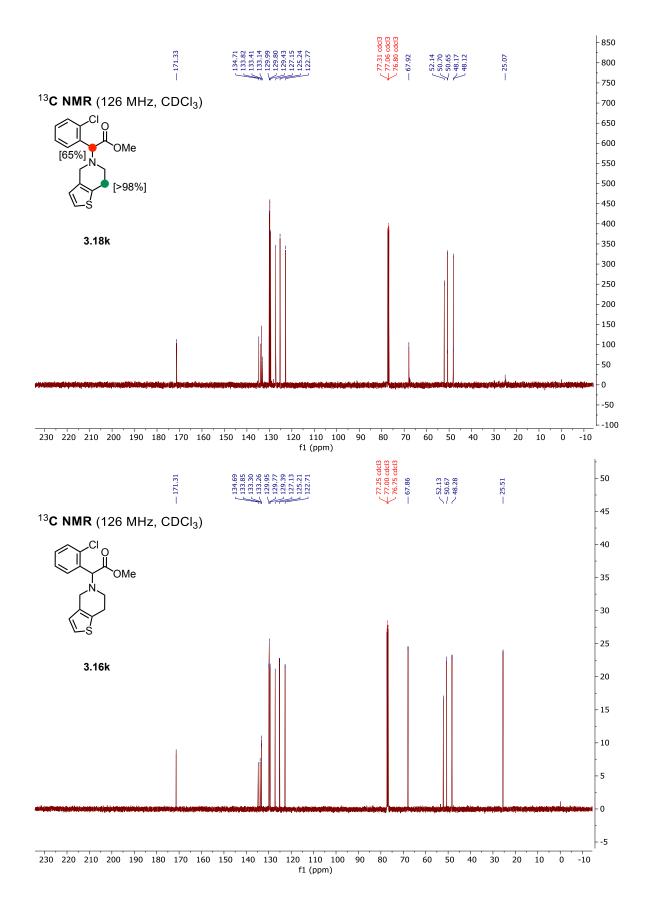

Clopidogrel **3.16k** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18k** was obtained as a colorless liquid (61 mg, 94%).

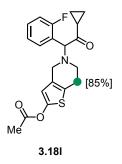

Deuterium incorporation: 2.65 D/molecule (¹H NMR), 2.88 D/molecule [HRMS (DART)]

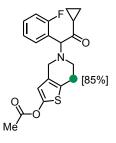
¹**H NMR** (500 MHz, CDCl₃) δ 7.70 (d, J = 7.4 Hz, 1H), 7.40 (d, J = 7.5 Hz, 1H), 7.36 - 7.18 (m, 2H), 7.11 - 7.00 (m, 1H), 6.75 - 6.59 (m, 1H), 4.92 (d, J = 2.0 Hz, 0.35H, 65%D), 3.79 - 3.70 (m, 4H), 3.63 (d, J = 14.2 Hz, 1H), 2.88 (s, 2.00H, >98%D); ¹³**C NMR** (126 MHz, CDCl₃) δ 171.33, 134.71, 133.82, 133.41, 133.14, 129.99, 129.80, 129.43, 127.15, 125.24, 122.77, 67.92, 52.14, 50.70, 50.65, 48.17, 48.12, 25.07; **IR** (neat) 2947, 1735, 1469, 1431, 1245, 1140, 1105, 1064, 752, 704 cm⁻¹; $[\alpha]^{25}$ D = 0.7° (c = 1.0, CH₂Cl₂ labeled), $[\alpha]^{25}$ D = 15.0° (c = 1.0, CH₂Cl₂ unlabeled).



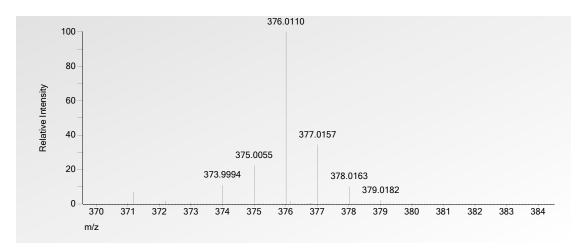

3.18k

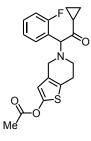




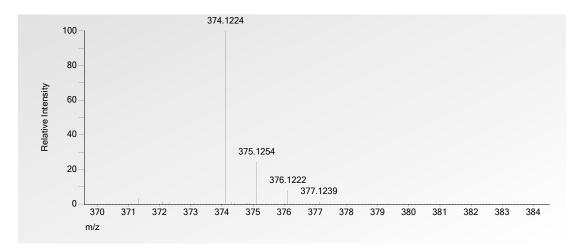


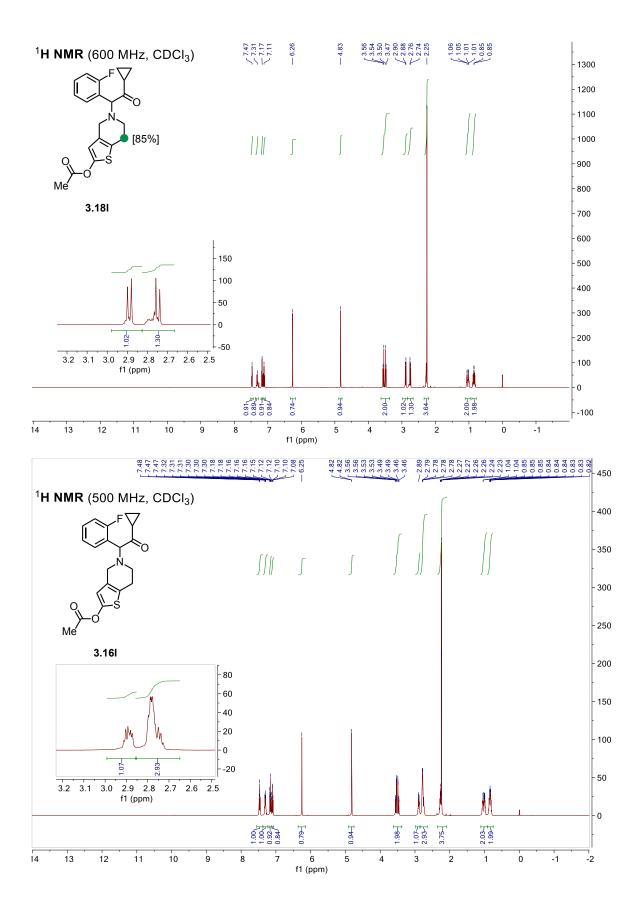
Prasugrel, 3.18l

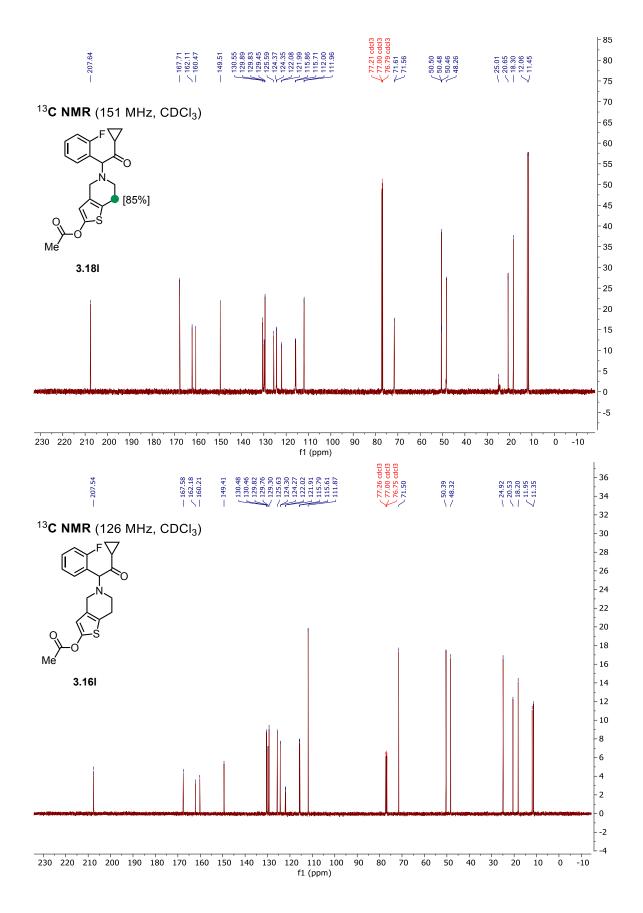

Prasugrel **3.16l** was reacted with acetone- d_6 **3.17a** following the General Procedure C. After purification by column chromatography (Et₂O:hexanes = 1:19), **3.18l** was obtained as a white solid (64 mg, 85%).

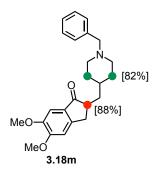

Deuterium incorporation: 1.70 D/molecule (¹H NMR), 1.99 D/molecule [HRMS (DART)]

¹**H NMR** (600 MHz, CDCl₃) δ 7.47 (s, 1H), 7.31 (s, 1H), 7.17 (s, 1H), 7.11 (s, 1H), 6.26 (s, 1H), 4.83 (s, 1H), 3.63 – 3.43 (m, 2H), 2.89 (d, J = 11.5 Hz, 1H), 2.75 (d, J = 11.4 Hz, 1.30H, 85%D), 2.25 (s, 4H), 1.03 (dd, J = 26.7, 2.8 Hz, 2H), 0.85 (d, J = 2.7 Hz, 2H); ¹³C **NMR** (151 MHz, CDCl₃) δ 207.64, 167.71, 162.11, 160.47, 149.51, 130.55, 129.89, 129.83, 129.45, 125.59, 124.37, 124.35, 122.08, 121.99, 115.86, 115.71, 112.00, 111.96, 71.61, 71.56, 50.50, 50.48, 50.46, 48.26, 25.01, 20.65, 18.30, 12.06, 11.45; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -114.68 – -118.69 (m); **IR** (neat) 1776, 1758, 1698, 1486, 1454, 1369, 1191, 1086, 1037, 1008, 903, 759 cm⁻¹.

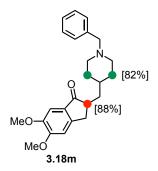


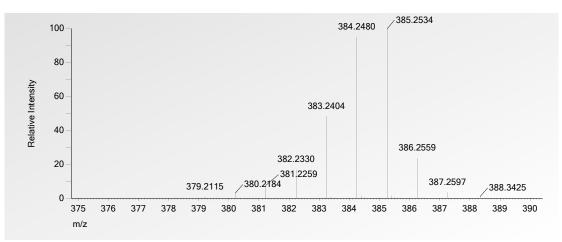


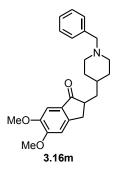


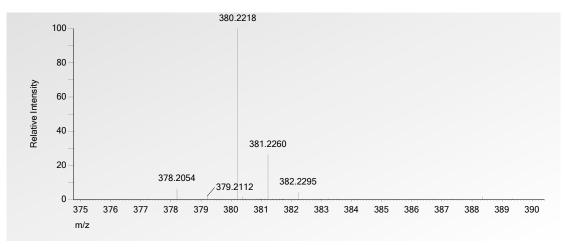


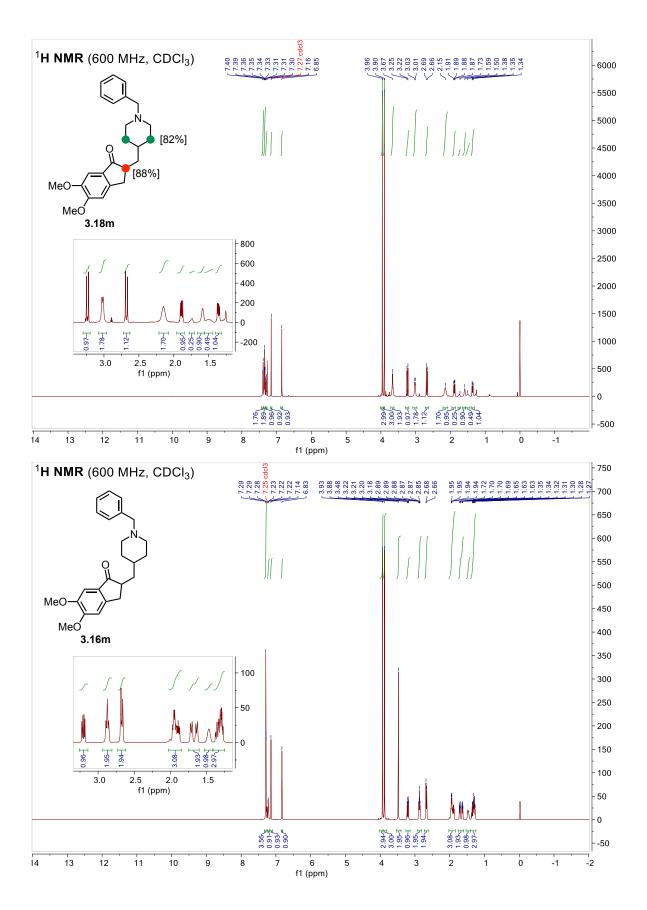
3.16I

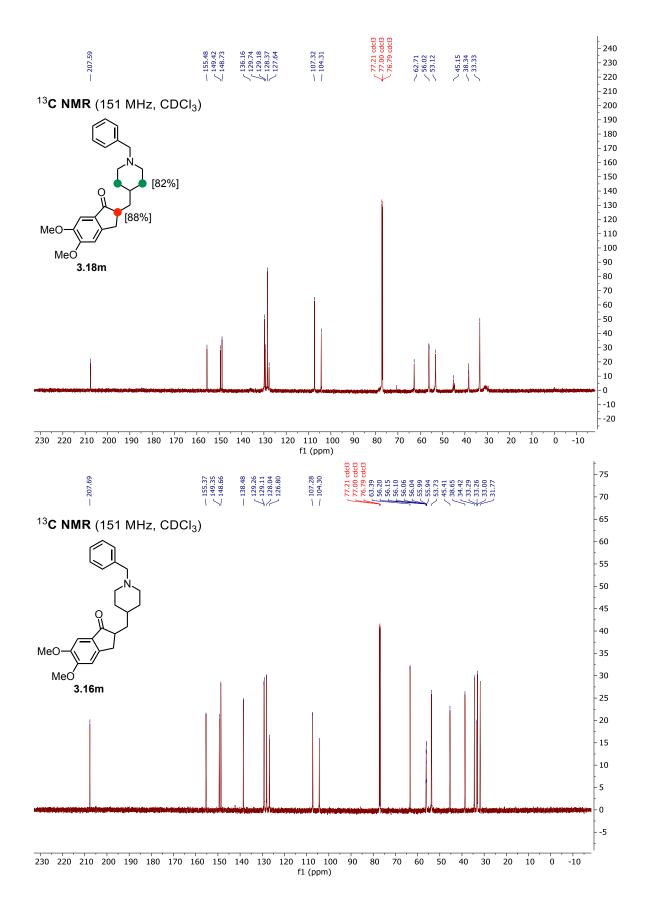


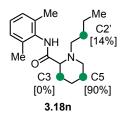

Donepezil, 3.18m

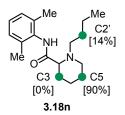

Donepezil **3.16m** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:49), **3.18m** was obtained as a white solid (74 mg, 98%).

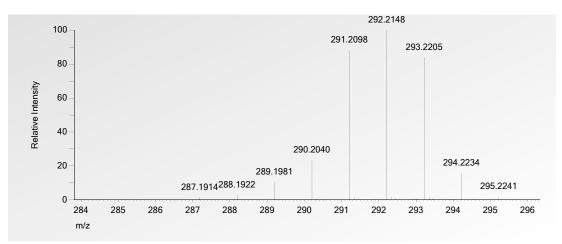

Deuterium incorporation: 5.04 D/molecule (¹H NMR), 4.17 D/molecule [HRMS (DART)]

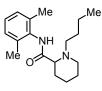

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (d, J = 7.5 Hz, 2H), 7.34 (t, J = 7.4 Hz, 2H), 7.30 (d, J = 7.1 Hz, 1H), 7.16 (s, 1H), 6.85 (s, 1H), 3.96 (s, 3H), 3.90 (s, 3H), 3.67 (s, 2H), 3.24 (d, J = 16.9 Hz, 1H), 3.02 (d, J = 10.6 Hz, 2H), 2.68 (d, J = 16.9 Hz, 1.12H, 88%D), 2.15 (s, 2H), 1.89 (dd, J = 13.8, 7.6 Hz, 1H), 1.78–1.70 (m, 0.25H, 88%D), 1.59 (s, 1H), 1.56–1.44 (m, 0.49H, 75%D), 1.43 – 1.32 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 207.59, 155.48, 149.42, 148.73, 136.16, 129.74, 129.18, 128.37, 127.64, 107.32, 104.31, 62.71, 56.02, 53.12, 45.15, 38.34, 33.33; **IR** (neat) 2913, 1691, 1590, 1499, 1454, 1310, 1269, 1247, 1218, 1114, 727 cm⁻¹.



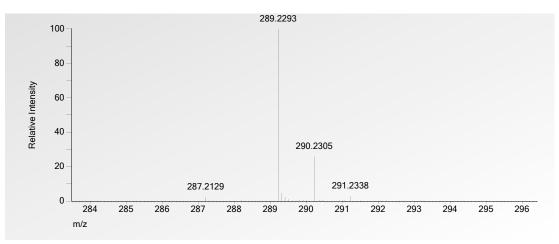


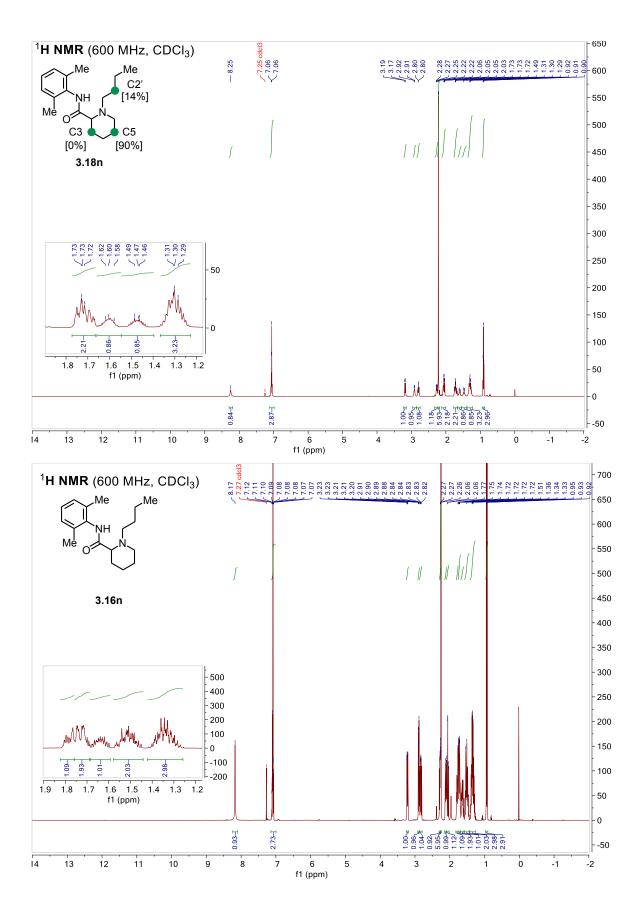


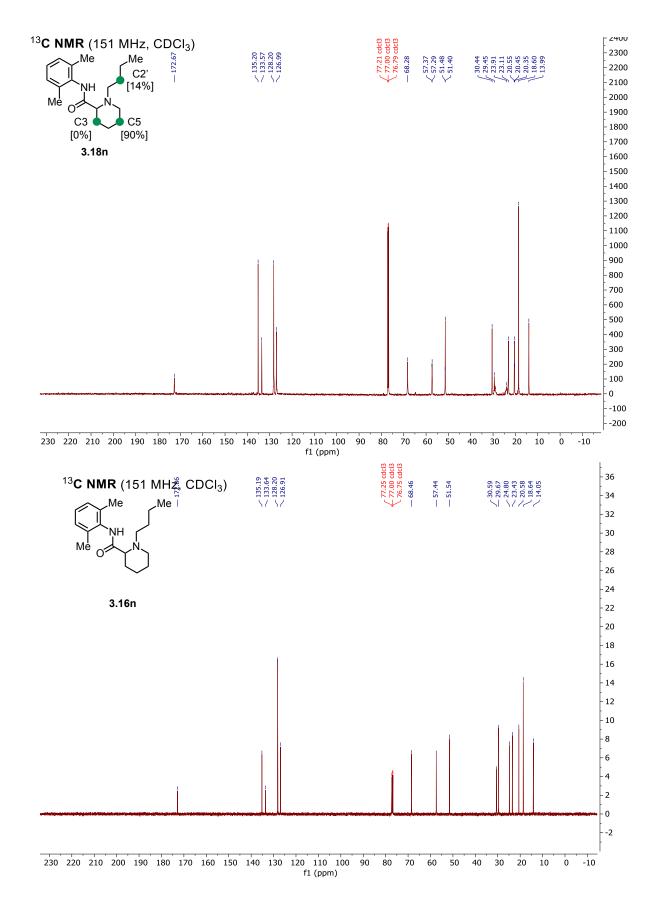

Bupivacaine, 3.18n

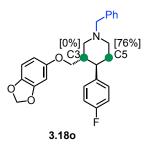

Bupivacaine **3.16n** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:49), **3.18n** was obtained as a white solid (55 mg, 96%).

Deuterium incorporation: 2.08 D/molecule (¹H NMR), 2.83 D/molecule [HRMS (DART)]

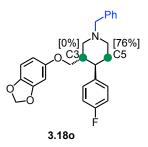

¹**H NMR** (600 MHz, CDCl₃) δ 8.25 (s, 1H), 7.06 (d, J = 5.5 Hz, 3H), 3.18 (d, J = 11.6 Hz, 1H), 2.92 (d, J = 9.3 Hz, 1H), 2.86 – 2.74 (m, 1H), 2.31 – 2.17 (m, 7H), 2.11 – 2.01 (m, 2H), 1.77 – 1.66 (m, 2.2H, 80%D), 1.65 – 1.54 (m, 0.86H, 14%D), 1.54 – 1.39 (m, 0.85H, 15%D and >98%D), 1.41 – 1.24 (m, 3H), 0.91 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (151 MHz, CDCl₃) δ 172.67, 135.20, 133.57, 128.20, 126.99, 68.28, 57.37, 57.29, 51.48, 51.40, 30.44, 29.45, 23.91, 23.11, 20.55, 20.45, 20.35, 18.60, 13.99; **IR** (neat) 3224, 2952, 2927, 2855, 1650, 1513, 1463, 1228, 1097, 764 cm⁻¹.

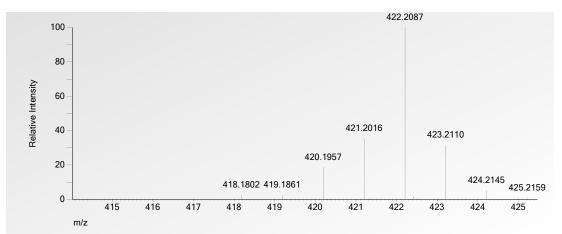


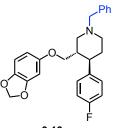




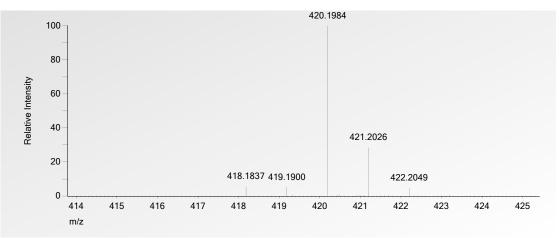
3.16n

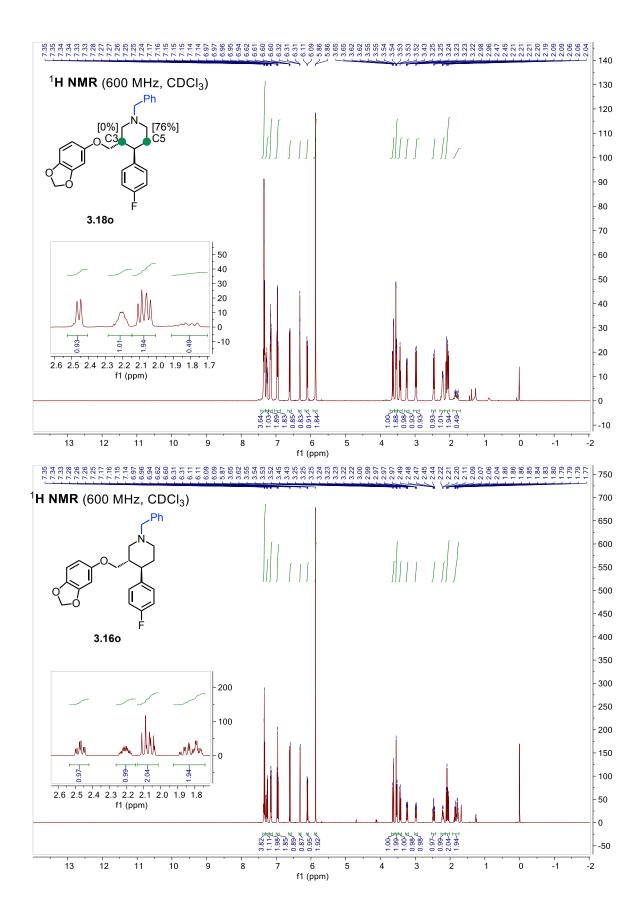


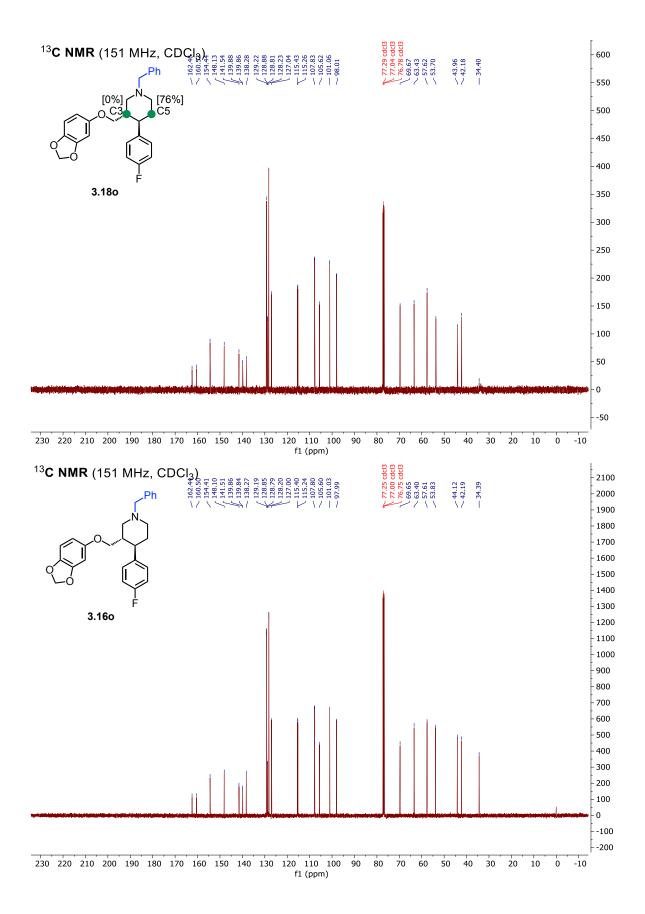

N-Bn paroxetine, 3.180

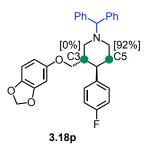

N-Bn paroxetine **3.160** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18o** was obtained as a white solid (82 mg, 98%).

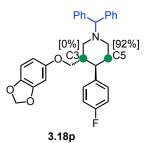
Deuterium incorporation: 1.52 D/molecule (¹H NMR), 1.85 D/molecule [HRMS (DART)]

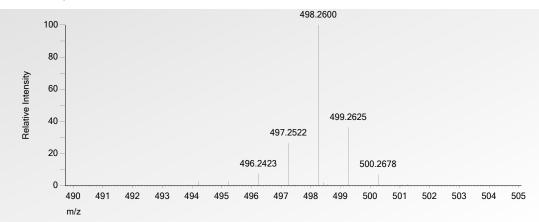

¹**H NMR** (500 MHz, CDCl₃) δ 7.44 – 7.30 (m, 4H), 7.30 – 7.21 (m, 1H), 7.15 (ddd, J = 7.1, 5.3, 2.7 Hz, 2H), 7.04 – 6.87 (m, 2H), 6.61 (dd, J = 8.5, 1.6 Hz, 1H), 6.31 (t, J = 2.1 Hz, 1H), 6.10 (d, J = 8.5 Hz, 1H), 5.86 (d, J = 1.7 Hz, 2H), 3.64 (dd, J = 13.2, 1.6 Hz, 1H), 3.59 – 3.49 (m, 2H), 3.43 (s, 1H), 3.31 – 3.17 (m, 1H), 2.97 (d, J = 11.2 Hz, 1H), 2.46 (d, J = 11.1 Hz, 1H), 2.20 (dd, J = 7.5, 3.3 Hz, 1H), 2.14 – 2.00 (m, 2H), 1.92 – 1.73 (m, 0.49H, 76%D); ¹³C NMR (151 MHz, CDCl₃) δ 162.46, 160.52, 154.44, 148.13, 141.54, 139.88, 139.86, 138.28, 129.22, 128.88, 128.81, 128.23, 127.04, 115.43, 115.26, 107.83, 105.62, 101.06, 98.01, 69.67, 63.43, 57.62, 53.70, 43.96, 42.18, 34.40; ¹⁹F NMR (564 MHz, CDCl₃) δ -116.68 (td, J = 8.8, 4.5 Hz); **IR** (neat) 2895, 2799, 1506, 1486, 1466, 1451, 1222, 1181, 1090, 1037, 830, 744, 705 cm⁻¹; [α]²⁵ _D = -27.3° (c = 1.0, CH₂Cl₂ labeled), [α]²⁵ _D = -44.9° (c = 1.0, CH₂Cl₂ unlabeled).



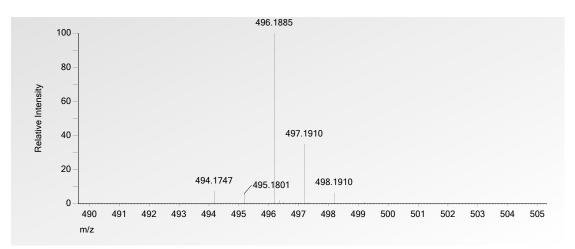


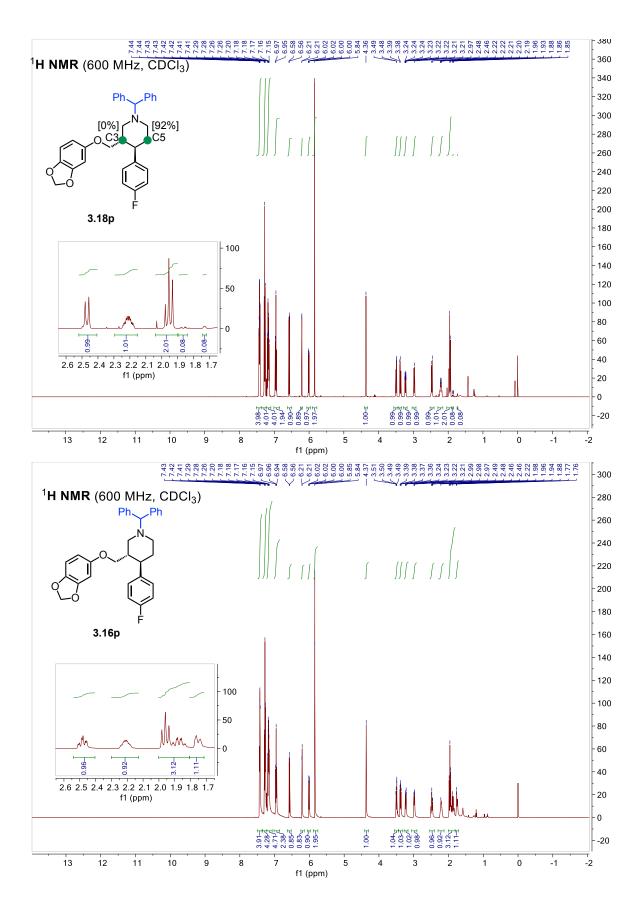


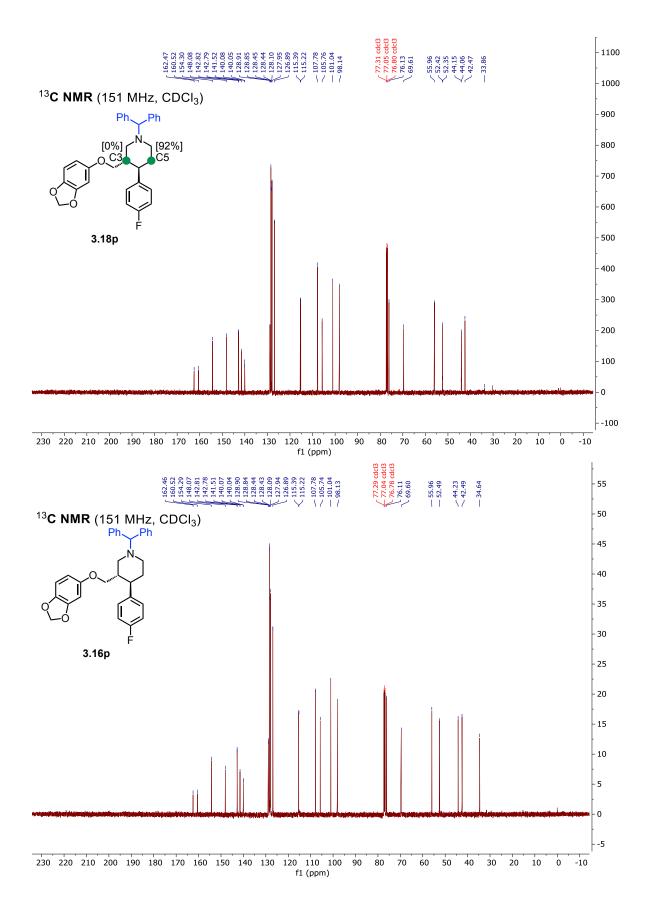


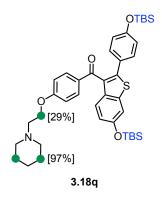

N-Bzh Paroxetine, 3.18p

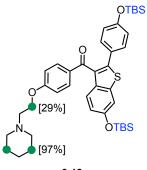

N-Bzh paroxetine **3.16p** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (Et₂O:hexanes = 1:9), **3.18p** was obtained as a colorless liquid (94 mg, 95%).


Deuterium incorporation: 1.88 D/molecule (¹H NMR), 2.09 D/molecule [HRMS (DART)]

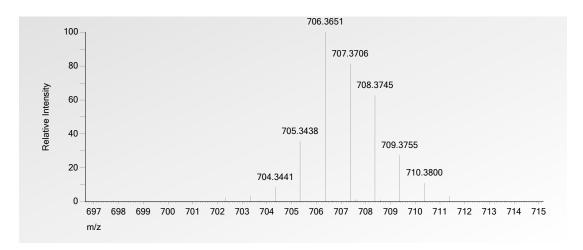

¹**H NMR** (500 MHz, CDCl₃) δ 7.52 – 7.37 (m, 4H), 7.28 (t, J = 7.7 Hz, 4H), 7.23 – 7.08 (m, 4H), 6.96 (d, J = 8.7 Hz, 2H), 6.57 (d, J = 8.4 Hz, 1H), 6.21 (d, J = 2.4 Hz, 1H), 6.01 (dd, J = 8.5, 2.5 Hz, 1H), 5.84 (s, 2H), 4.36 (s, 1H), 3.49 (d, J = 2.9 Hz, 1H), 3.39 (d, J = 6.8 Hz, 1H), 3.23 (ddd, J = 11.4, 3.6, 2.1 Hz, 1H), 2.97 (s, 1H), 2.47 (d, J = 11.2 Hz, 1H), 2.21 (dt, J = 7.2, 3.5 Hz, 1H), 1.94 (d, J = 11.3 Hz, 2H), 1.89 – 1.84 (m, 0.08H, 92%D), 1.75 – 1.71 (m, 0.08H, 92%D); ¹³**C NMR** (126 MHz, CDCl₃) δ 162.47, 160.52, 154.30, 148.08, 142.82, 142.79, 141.52, 140.08, 140.05, 128.91, 128.85, 128.45, 128.44, 128.10, 127.95, 126.89, 115.39, 115.22, 107.78, 105.76, 101.04, 98.14, 76.13, 69.61, 55.96, 52.42, 52.35, 44.15, 44.06, 42.47, 33.86; ¹⁹**F NMR** (564 MHz, CDCl₃) δ -116.80 (tt, J = 8.8, 5.2 Hz); **IR** (neat) 2895, 2799, 1506, 1486, 1466, 1222, 1182, 1037, 830, 705 cm⁻¹; [α]²⁵ _D = -36.5 ° (c = 1.0, CH₂Cl₂ labeled), [α]²⁵ _D = -43.4° (c = 1.0, CH₂Cl₂ unlabeled).

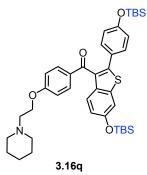


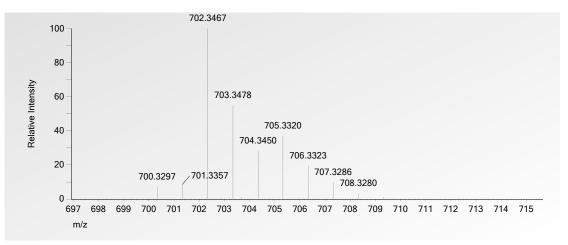


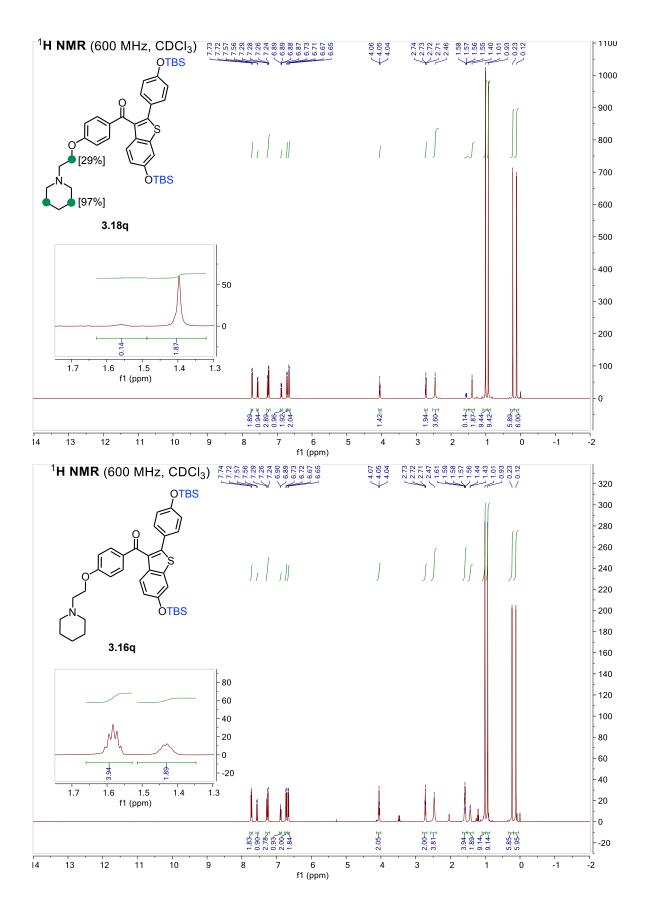


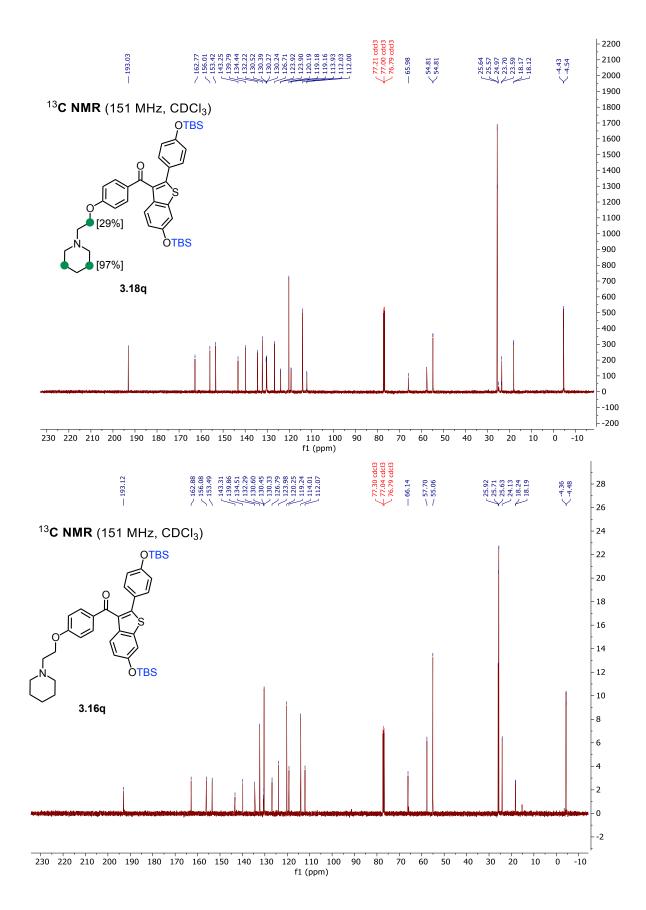
O-TBS raloxifene, 3.18q

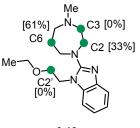

O-TBS raloxifene **3.16q** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:49), **3.18q** was obtained as a yellow liquid (136 mg, 97%).

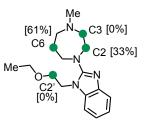

Deuterium incorporation: 4.46 D/molecule (¹H NMR), 5.08 D/molecule [HRMS (DART)]


¹**H NMR** (600 MHz, CDCl₃) δ 7.72 (d, *J* = 8.9 Hz, 2H), 7.57 (d, *J* = 8.7 Hz, 1H), 7.33 - 7.22 (m, 3H), 6.88 (dd, *J* = 8.8, 2.2 Hz, 1H), 6.72 (d, *J* = 9.0 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 4.05 (s, 1.42H, 29%D), 2.77 – 2.70 (m, 2H), 2.46 (s, 4H), 1.62 – 1.51 (m, 0.14H, 97%D), 1.40 (s, 2H), 1.01 (s, 9H), 0.93 (s, 9H), 0.23 (s, 6H), 0.12 (s, 6H); ¹³**C NMR** (151 MHz, CDCl₃) δ 193.03, 162.77, 156.01, 153.42, 143.25, 139.79, 134.44, 132.22, 130.52, 130.39, 130.27, 130.24, 126.71, 123.92, 123.90, 120.19, 119.18, 119.16, 113.93, 112.03, 112.00, 65.98, 54.81, 54.81, 25.64, 25.57, 24.97, 23.70, 23.59, 18.17, 18.12, -4.43, -4.54; **IR** (neat) 2927, 1595, 1463, 1252, 1164, 939, 907, 827, 779, 734 cm⁻¹.

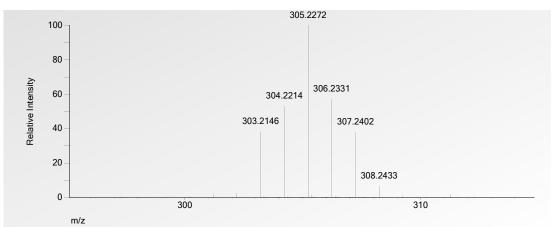


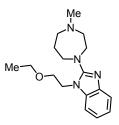




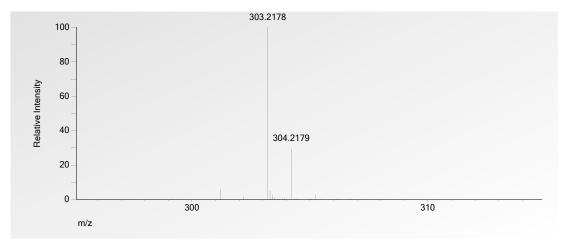

3.18r

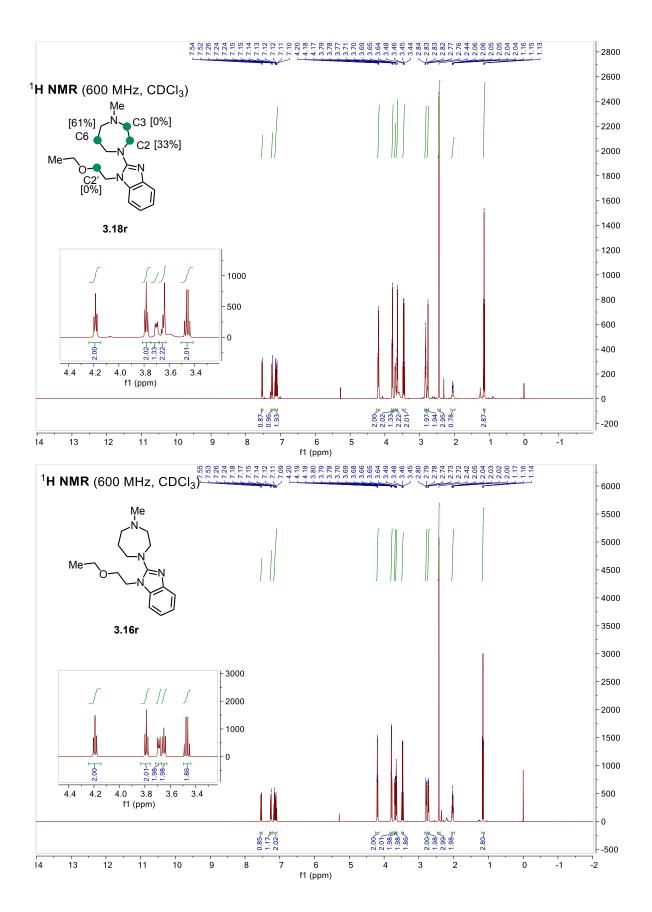
Emedastine, 3.18r

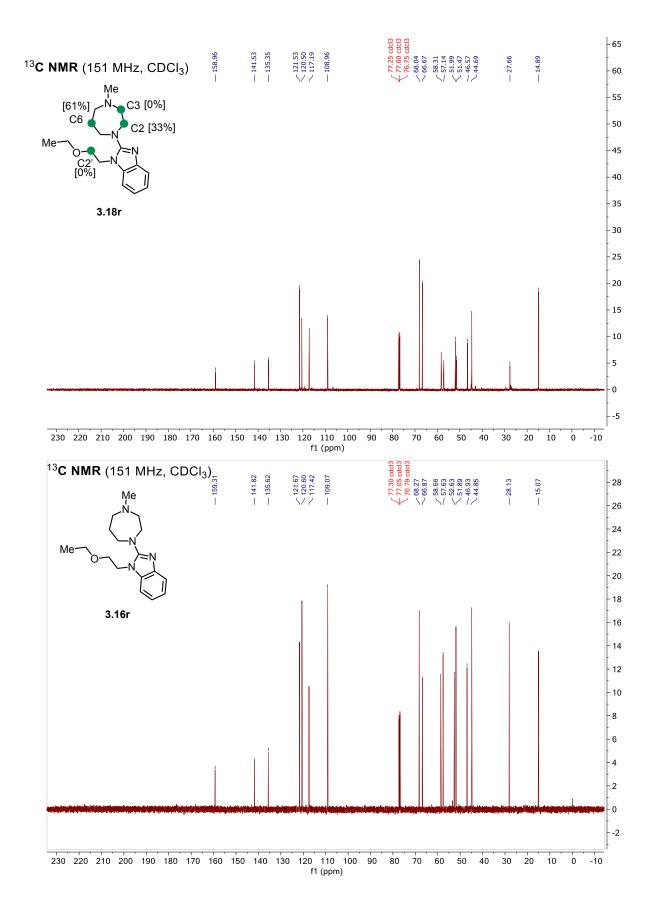

Emedastine **3.16r** was reacted with acetone- d_6 **3.17a** following the General Procedure A. After purification by column chromatography (MeOH:DCM = 1:15), **3.18r** was obtained as a colorless liquid (53 mg, 88%).

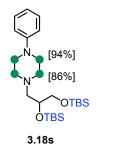

Deuterium incorporation: 1.88 D/molecule (¹H NMR), 2.03 D/molecule [HRMS (DART)]

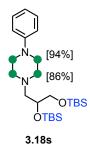
¹**H NMR** (500 MHz, CDCl₃) δ 7.53 (d, J = 7.4 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.13 (ddd, J = 15.5, 7.6, 1.4 Hz, 2H), 4.19 (t, J = 6.0 Hz, 2H), 3.78 (t, J = 6.0 Hz, 2H), 3.74 – 3.68 (m, 1.33H, 33%D), 3.64 (d, J = 6.1 Hz, 2H), 3.46 (q, J = 7.0 Hz, 2H), 2.86 – 2.80 (m, 2H), 2.76 (d, J = 5.6 Hz, 2H), 2.44 (s, 3H), 2.10 – 1.98 (m, 0.78H, 61%D), 1.15 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.11, 141.68, 135.51, 121.69, 120.66, 117.34, 109.12, 68.20, 66.83, 58.47, 57.30, 52.15, 51.62, 46.73, 44.84, 27.81, 15.05; **IR** (neat) 1522, 1460, 1405, 1375, 1349, 1283, 1115, 1045, 1009, 761, 741cm⁻¹.

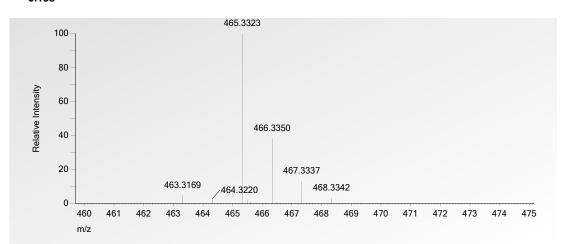


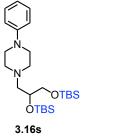


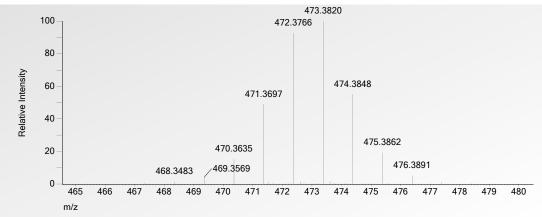


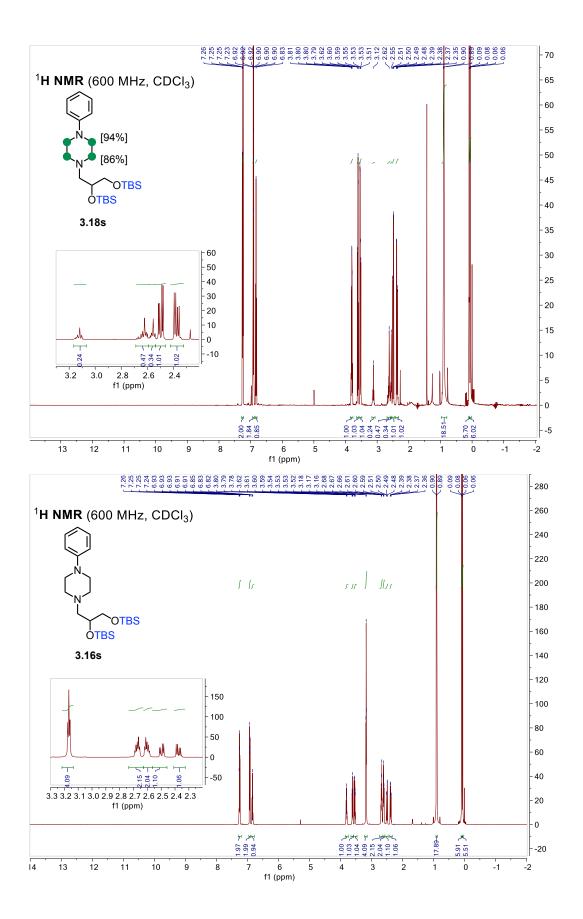





O-TBS dropropizine, 3.18s


O-TBS dropropizin*e* **3.16s** was reacted with acetone- d_6 **3.17a** following the General Procedure B. After purification by column chromatography (MeOH:DCM = 1:99), **3.18s** was obtained as a yellow liquid (87 mg, 94%).


Deuterium incorporation: 6.96 D/molecule (¹H NMR), 7.61 D/molecule [HRMS (DART)]


¹**H NMR** (500 MHz, CDCl₃) δ 7.25 (dd, J = 8.8, 7.3 Hz, 2H), 6.91 (dt, J = 7.8, 1.0 Hz, 2H), 6.83 (s, 1H), 3.80 (dd, J = 6.0, 4.9 Hz, 1H), 3.66 – 3.57 (m, 1H), 3.53 (dd, J = 10.0, 5.6 Hz, 1H), 3.12 (s, 0.24H, 94%D), 2.62 (s, 0.47H, 77%D), 2.55 (s, 0.34H, 83%D), 2.50 (dd, J = 13.0, 4.7 Hz, 1H), 2.37 (dd, J = 13.0, 6.1 Hz, 1H), 0.90 (d, J = 4.3 Hz, 18H), 0.09 (d, J = 6.1 Hz, 6H), 0.06 (d, J = 1.6 Hz, 6H); ¹³**C NMR** (126 MHz, CDCl₃) δ 151.51, 129.08, 119.39, 115.79, 71.87, 66.21, 61.95, 53.18, 48.27, 26.03, 25.95, 18.40, 18.22, -4.41, -4.46, -5.23, -5.31; **IR** (neat) 2925, 2853, 1598, 1499, 1250, 1091, 1003, 830, 810, 773, 753, 689 cm⁻¹.

