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With the fast development of society, the demand for batteries has been increasing 
dramatically over the years. To satisfy the ever-increasing demand for high energy density, 
different chemistries were explored. From the first-generation lead–acid batteries to the 
state-of-the-art LIBs (lithium ion batteries), the energy density has been improved from 40 
to over 200 Wh kg–1. However, the development of LIBs has approached the upper limit. 
Electrode materials based on insertion chemistry generally deliver a low capacity of no 
more than 400 mAh/g. To break the bottleneck of current battery technologies, new 
chemistries are needed. Moving from the intercalation chemistry to conversion chemistry 
is a trend. The conversion electrode materials feature much higher capacity than the 
conventional intercalation-type materials, especially for the O2 cathode and Li metal anode. 
The combination of these two can bring about a ten-folds of energy density increase to the 
current LIBs. Moreover, to satisfy the safety requirements, either using non-flammable 
electrolytes to reduce the safety risk of Li metal anode or switch to dendrite-free Mg anode 
is a good strategy toward high energy density batteries. 

First, to enable the conversion-type O2 cathode, a wood-derived, free-standing 
porous carbon electrode was demonstrated and successfully be applied as a cathode in Li-
O2 batteries. The spontaneously formed hierarchical porous structure exhibits good 
performance in facilitating the mass transport and hosting the discharge products of Li2O2. 
Heteroatom (N) doping further improves the catalytic activity of the carbon cathode with 
lower overpotential and higher capacity.  

Next, to solve the irreversible Li plating/stripping and safety issues related with Li 
metal anode, we introduced O2 as additives to enable Li metal anode operation in non-
flammable triethyl phosphate (TEP) electrolyte. The electrochemically induced chemical 
reaction between O2- derived species and TEP solvent molecules facilitated the beneficial 
SEI components formation and effectively suppressed the TEP decomposition. The 
promise of safe TEP electrolyte was also demonstrated in Li-O2 battery and Li-LFP battery.  

If we think beyond Li chemistries, Mg anode with dendrite-free property can be a 
promising candidate to further reduce the safety concerns while remaining the high energy 
density advantage. Toward the end of this thesis, we developed a thin film metal–organic 
framework (MOF) for selective Mg2+ transport to solve the incompatibility issues between 
the anode and the cathode chemistry for Mg batteries.
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Chapter 1. Introduction 

Energy storage is an important part of the modern society. Various energy storage systems    

such as thermal, mechanical and pumped hydropower have created well-organized powder 

supply networks and brought an incredible amount of convenience in our daily lives. 

However, with the development of the society, the current systems are not efficient enough 

to manage today’s ever-evolving energy grid. Batteries, as fast-growing energy storage 

technologies with rapid response, low cost, long lifetime and high power advantages, are 

showing great potential to solve the problem. In the past two centuries, different types of 

batteries have been commercialized such as lead–acid, nickel–cadmium, nickel–metal 

hydride and lithium ion batteries (LIBs), etc. Among them, LIBs, are the most promising 

one for the use of portable devices and even electric vehicles. The LIBs have improved the 

energy density from 40 Wh kg–1 of the first-generation lead–acid batteries to 240 Wh kg–

1 and 640 Wh L–1 in the past 150 years1. Nevertheless, the fast growth rates of energy 

densities of LIBs have approached the upper limit in the recent years, with only 7–8% per 

year2. The major limiting factor is the energy densities of electrode materials, typically 

graphite as anode material (capacity 372mAh g-1) and metal oxide as intercalation cathode 

materials (capacity < 200 mAh g-1)3.   

To satisfy the ever-increasing demand for high energy density batteries, new 

chemistries and materials are under explored. For the cathode materials, switching from 

low capacity intercalation cathodes to high capacity conversion cathodes (sulfur and O2) is 

an efficient and attractive method.  For the anode materials, Li metal is always regarded as 
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the “Holy Grail” electrode with an ultra-high capacity of 3860 mAh g–1 and the lowest 

negative electrochemical potential of −3.040 V vs the standard hydrogen electrode 1. The 

combination of the lithium metal anode and conversion cathode can bring about a ten-folds 

of energy density increase to the current LIBs3. 

Besides high energy density, safety is also a pursuit for future battery development. 

However, there always been compromises between energy and safety, i.e. materials with 

higher energy density generally features higher safety risk, especially the anode materials 

for lithium ion/metal batteries. The dendrite formation issue is much more severe when the 

graphite anode is substituted with the lithium metal, which greatly inhibited the 

commercialization of the new batteries4. To solve the problem, either using non-flammable 

electrolyte or looking for anode features non-dendritic growth feathers is a feasible method. 

Mg metal, exactly fits in the gap of this area and features both high energy density and 

safety advantages, showing promising potentials as the anode material for the next 

generation battery technologies.  

1.1 Promises and challenges of Li-O2 batteries 

With the ever-increasing demand of the energy, replacing the current electrode materials 

of LIBs with higher energy density ones attracts more and more attention. Numerous prior 

researches have done on the conversion-type cathode materials, especially on O2 which 

features an ultra-high theoretical energy density of 3,505 Wh kg−1 (ten times higher than 

the LIBs) and also low price since it is highly abundant in the air5.  



 3 

The aprotic Li-O2 battery is operated based on the reversible formation and 

decomposition of Li2O2.  Schematic representation of the aprotic Li-O2 batteries is shown 

in Figure. 1-1. During the discharge process, O2 diffuses into the porous electrolyte and 

get reduced at the cathode surface to O22−, combining with the Li+ (oxidized from lithium 

metal at the anode side) in liquid electrolyte to form the discharge product: 2Li+ + O2 + 

2e− ↔ Li2O2.  The reversed process happens during the charge process, when the Li2O2 is 

decomposed at the cathode surface, releasing O2 and Li+ to the electrolyte:  Li2O2↔ 2Li+ + 

O2 + 2e−. Over the past twenty years, researchers have put a lot of effort in enabling 

practical Li-O2 batteries. However, it is revealed that the challenges come from all 

components of the cells, including parasitic reactions happening at anode, electrolyte and 

cathode. These critical issues have greatly limited the further development of Li–

O2 batteries into commercialization. 

 
 

Figure 1-1. Schematic operation of the rechargeable Li-O2 batteries. Reprinted with 

permission from Ref [6] . Copyright (2010) American Chemical Society. 
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1.1.1   Challenges with the Li anode 

 
The anode material commonly used for the Li-O2 batteries is the lithium metal instead of 

the graphite. The high capacity Li metal featured (3860 mA h g−1) perfectly matches the 

high O2 cathode capacity, so as to fully achieve the battery capacities.  However, the use 

of such high reactive anode with low redox potential can easily lead to side reactions with 

electrolyte and O2. Here the interfacial reactions between anode and electrolyte is the key. 

In the state-of-the-art LIBs, carbonate electrolytes are typically used, with compact solid 

electrolyte interface (SEI) formed from initial reactions of electrolyte/anode to prohibit 

further parasitic reaction at the interface and enable long time cycling. Nevertheless, things 

are quite different when switching to Li metal anode. The SEI formed at the Li/carbonate 

electrolytes interface is poor, which leads to the continuous parasitic reactions and battery 

failure eventually. That is the reason why ether based electrolyte such as DME 

(dimethoxyethane) and TEGDME (tetraethylene glyco dimethyl ether) are usually used in 

the Li-O2 batteries for laboratory-level tests because of the high stability against 

nucleophiles. However, the improvement is limited. The SEI formed on Li surface is still 

much poorer than that on graphite in LIBs. The overall battery performance is far from 

practical targets.  

Another issue related to the Li anode comes from the parasitic reaction with O2. As 

the batteries need to be operated in an O2 saturated environment, the direct contact between 

Li and O2 can easily happen, which leads to redox reactions that produce reduced oxygen 

species such as superoxide (e.g., O2.−). The reactive superoxide species will extract H from 

the organic electrolyte molecules and attack the Li anode7. Generally, the initial reactions 
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happened at the anode/electrolyte interface tend to be self-limiting so to form a stable SEI. 

However, in Li-O2 batteries, the above reactions turn out to be continuous during the 

repeated battery cycling process due to the poor quality of the SEI layer and also due to the 

dendritic growth of Li. Previous researches preliminarily proved that the abundant surface 

LiOH/Li2O species on Li metal resulted in the anode failures8. However, recent years there 

were different opinions coming out on this topic and new evidence showing the benefited 

role of O2 in terms of the Li protection9. The detailed failure mechanism of the Li anode in 

Li-O2 battery system needs to be further explored. 

Besides the parasitic reactions induced by either electrolyte or O2, there is also 

intrinsic problem with Li metal anode which is the dendrite formation. The non-uniform 

deposition of Li during plating brings about safety concerns and could possibly lead to the 

thermal runaway and even battery explosion. More will be discussed later in Section 1.2. 

 

1.1.2   Challenges with the electrolyte 

The commonly used electrolyte in aprotic Li-O2 batteries are ether-based electrolytes. 

There are also some reports on DMSO (dimethyl sulfoxide), amide and ionic liquid ones.  

However, none of these existing electrolyte are stable enough for long-time Li-O2 battery 

cycling. The electrolytes decomposition comes from both the cathode side and anode side: 

1) The ORR (oxygen reduction reaction) and OER (oxygen evolution reaction) at the 

cathode will generate reactive oxygen species (e.g., O2.−, Li2O2, and Li2−xO2), which will 

attack the solvent molecules. 2)  Solvent continuously decomposed on the Li anode surface.  

The reactive oxygen species induced electrolyte decomposition can be further divided into 

four categories: (1) nucleophilic attacks, (2) auto‐oxidation, (3) acid–base reactions, (4) 
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proton‐mediated reactions7, as shown in Figure 1-2.  The nucleophilic attacks by O2.− to 

the C=O group in carbonate electrolyte were proved to be the major reason for the battery 

failure in the early studies. Even for ethers and DMSO electrolytes that show better stability 

against nucleophilic attacks than carbonates, the decomposition still cannot be fully 

eliminated. The auto-oxidation decomposition usually happens in the ether-based 

electrolytes. Both O2.− and O2 can promote the α‐H abstraction of the ether molecules, 

releasing protons and accelerating the electrolyte decomposition process.  The acid-base 

reactions were proved to happen in the DMSO and PYR14TFSI ionic liquid electrolytes. 

The α-H in DMSO can be easily deprotonated by superoxides and peroxides. Also, the β‐

H elimination decomposition pathway was found in PYR14TFSI ionic liquid though the 

acid–base reactions. The proton-mediated degradation can easily happen when H2O 

impurity exists, which acts as the proton source to participate in the electrolyte 

decomposition through different reactions, accelerating the battery failure process7.  
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Figure 1-2.  Electrolyte decomposition pathways in Li-O2 batteries. Reprinted with 

permission from Ref.[7] Copyright (2016) John Wiley and Sons. 

The poor SEI generated on Li anode surface will lead to continuous electrolyte 

decomposition. Li metal shows a highly reductive property with an extremely low redox 

potential (−3.040 V versus standard hydrogen electrode). Most of the solvent/salt 

molecules will be easily reduced on the Li surface, forming byproduct such as Li2O, 

Li2CO3 and some organic species.  For a good SEI, the compact byproducts covered on 

anode functions as a protective layer to inhibit the further decomposition of the electrolyte 

and enables stable anode operation during battery cycling. However, as Li metal itself is 

not a proven anode, cracks generate on the SEI during the Li plating/stripping process. 

Electrolyte will continuously react with Li to form large amount of byproduct, which not 

only increases the internal resistance but also promotes the degradation of electrolytes. The 

anode and SEI engineering is crucial to solve the problem. This part will be discussed later 

in Section 1.2. 

 1.1.3   Challenges with the cathode 

Among all the challenges influencing the performance of a Li-O2 battery, cathode problems 

are always regarded as the most critical ones, at least for the current stage of the Li-O2 

battery development. Key challenges with the cathode include: 1) The poor stability of 

cathode materials towards the reactive oxygen species (e.g., O2.−, Li2O2, and Li2−xO2) 

generated during cycling. 2) Sluggish oxygen reaction kinetics (ORR and OER) at cathode. 

All those problems will finally result in the low capacity, low round-trip efficiency, and 

quick degradation of the battery performance. 
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Carbon is the most widely used material as cathode for aprotic Li-O2 batteries due 

to the low cost and high conductivity10. More importantly, the various porous structures of 

different carbon materials provide abundant templates for cathode engineering, including 

surface area improvement and microstructural optimization. Ideally, the physical integrity 

and chemical stability of carbon cathode should be maintained during the ORR/OER 

cathode chemistries. However, the degradation of carbon cathode was found to be a 

common phenomenon in the previous researches, finally leading to the poor cycling 

performance of Li-O2 batteries11. The evolution of reaction products (including the volume 

expansion upon Li2O2 deposition in discharge and O2 gas releasing in charge) during 

cycling can lead to structural destruction of the carbon11. Moreover, the oxidation of carbon 

towards the reactive oxygen species generated undesirable products such as Li2CO3. The 

gradually increased passivation layer during cycling will increase the over-potential for 

Li2O2 deposition and decomposition, eventually results in low energy efficiency, low 

round-trip efficiency and quick degradation of battery performance12. 

Besides the physical and chemical stability issue related with the porous carbon 

material, its poor catalytic activity towards OER and ORR is also problematic. The sluggish 

kinetic will greatly increase the over-potential of Li2O2 decomposition during the charge 

process. The high voltage (when charging above 3.5 V vs. Li+/Li) can accelerate the carbon 

and electrolyte decomposition in the presence of active oxygen species (see Figure 1-3). 

As a result, more Li2CO3 will be generate on the cathode surface during cycling, which 

further slows down the kinetics and pushes up the over-potential12. The byproduct 

accumulation is regarded as the major failure reason for the Li-O2 batteries at current stage.  
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Figure 1-3. Schematic illustrations of the byproduct deposition and over potential 

increase during Li-O2 battery charge process. Reprinted with permission from Ref.[12] 

Copyright (2012) American Chemical Society. 

Tremendous efforts have been put into this area to solve the cathode problems. To 

strengthen the mechanical stability of the porous carbon, carbon materials with higher 

mechanical stability were explored. For example, the ordered mesoporous carbon 

nanofiber arrays were proved to be an efficient cathode material by providing sufficient 

macro sized void spaces to buffer the volume change during the Li2O2/O2 conversion 

chemistries13.    Surface protection layer such as FeOx was also applied to isolate the carbon 

cathode from peroxide and superoxide species, improving its chemical stability towards 

oxidation14.  These cathode stability enhancement strategies always went along with the 

catalyst design to solve the problem of sluggish oxygen reaction kinetics at cathode. So far, 

various catalysts have been proven to be effective to promote the cathode chemistries and 

lower the over potential. Noble metals such as Pt, Pd, Ru and Ir have been widely used in 

the Li-O2 batteries to enhance the catalytic activity. For example, a Ru-rich multimetallic 
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catalytic systems was applied on the carbon cathode, showing much lower overpotential 

and prolonged cycle life for Li-O2 battery demonstration15. Other catalysts such as Co3O4, 

MnO2, and nitrogen various doped carbons were also explored as good catalysts to promote 

the cathode chemistries16. 

Though various strategies have demonstrated the possibility of solving the 

challenges of carbon cathode, it is still far away from achieving practical usage. Even with 

OER/ORR catalyst decorations, the cathode surface is always dominated  by carbon due to 

its much higher surface area than that of the catalyst11. The parasitic reactions and 

byproduct accumulation still happen. One way to solve the intrinsic problem induced by 

carbon is to substitute it with the non-carbon materials. For example, TiSi2 nanonet was 

reported as a high surface area, conductive material suitable as the new cathode support. 

Moreover, compared with the widely used carbon support, the TiSi2 nanonet is 

advantageous in that it does not show measurable reactivity toward reaction intermediates 

such as superoxide ions. Combining with the catalyst modification with Ru nanoparticles, 

the new cathode system Ru-nanoparticles-decorated TiSi2 nanonet showed a superior 

cyclability of more than 100 cycles in Li-O2 batteries17. 

1.2 Toward practical lithium-metal anode 

As the LIBs is reaching their limit because of the low capacities of electrode materials, Li 

metal anode, with highest theoretical specific capacity (3860 mAh g−1) and low potential 

(− 3.04 V vs. the standard hydrogen electrode) has become a promising candidate for the 
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next-generation battery design.  Actually, early in the 1970s, primary LMBs was employed 

in cardiac pacemakers and successfully extended the battery life to ten years18. However, 

to achieve broader applications for energy storage as well as more cost-effective and 

environmentally friendly, secondary batteries, i.e. rechargeable batteries are needed. 

Nevertheless, the commercializing of lithium metal batteries (LMBs) has been greatly 

hindered by the irreversible plating/striping and severe safety issues with the lithium metal 

anode1, as shown in Figure 1-4. Due to the extremely high reactivity of lithium metal, the 

electrolyte decomposition will be spontaneously happened on the Li surface, forming a SEI 

layer. Ideally, the SEI will function as a protection layer to avoid the direct contact between 

Li and electrolyte for a stable cycling of the battery, similar to where in LIBs. However, 

different from the intercalation-type graphite anode with a small volume change of ~10%19 

, the “hostless” nature of Li anode brings about an infinite volume change during cycling. 

The SEI on Li surface can hardly remain crack-free during the cycling with huge volume 

change. Continuous reaction between newly exposed Li metal and the electrolyte will lead 

to battery failure either from electrolyte/Li depletion or the accumulation of dead lithium20.  

The safety concerns mainly come from the dendrite formation. Under electrochemical 

condition during the charge process, Li tends to deposit as a sharp, dendritic form rather 

than smooth and uniform ones, which could lead to the short-circuit and even explosion of 

the LMBs batteries.   
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Figure 1-4. Schematic of Li metal anode failure mechanisms in rechargeable batteries. 

Reprinted with permission from Ref.[1] Copyright (2017) American Chemical Society. 

Although the origin of Li dendrite is not fully understood yet, a variety of 

mechanisms have been proposed.  For the initial nucleation of Li plating, the most well-

accepted theory is the space-charge model, which was proposed by Chazalviel in 1990s21. 

Under a high current density, the anion concentration near the electrode surface drops to 

zero in a dilute solution.  The anion depletion creates a large space charge and electric field, 

leading to ramified growth of Li. The tip-induced nucleation theory further explained the 

self-enhancing feature of the dendrite growth22. The local electric field at the tips of the 

protuberances is larger than that around the smooth part. The gathered Li+ will facilitate 

the growth of Li metal at the tips, thus resulting in inhomogeneous deposition and 

formation of mossy/dendritic Li22. . There are generally two directions for the Li metal 

anode stabilization: dendrite suppression and volume change minimization.  
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1.2.1   Anode engineering of the lithium metal batteries  

To solve the dendrite problem, more robust SEIs were designed on Li anode surface prior 

to the battery cycling. The “artificial SEI” generally features high mechanical stability to 

suppress the dendrite growth underneath. For example, a uniform Li3PO4 protection layer 

coated on Li was demonstrated to be effective for restraining Li dendrite growth and 

reducing the interfacial parasitic reactions. The high chemical and mechanical stability of 

Li3PO4 ensured its functionality as a good SEI for long-time bulk Li cycling for over 200 

cycles23. Other coating materials such as Al2O324 , LiF 25and organic polymers for example 

PDMS(poly(dimethylsiloxane)26 were also used as the artificial SEI for Li anode. Besides 

the physical protection layer, researchers also tried the chemically pretreatment for Li 

anode before usage. For instance, Yi Cui et al. fabricated a robust pinhole-free-Li3N 

artificial SEI layer on Li metal surface through the reaction between clean molten lithium 

foil and pure nitrogen gas. The pre-coating of Li3N with high chemical and mechanical 

stability can efficiently restrain the restrain the dendrite growth and suppress the interfacial 

resistance induced by Li/electrolyte reactions27.  

To address the volume change issue, two approaches were proposed. One is to use 

very thin Li with a thickness less than 20 μm. The second approach is to develop a stable 

and conductive Li host that can be used to minimize the volume changes or 

‘swelling/shrinking’ of Li during cycling, and effectively reduce the local current density28. 

Following the guidance, different host materials have been introduced to solve the problem.  

Pre-storing Li into the anode host can not only reduce the volume change, but also maintain 

the high-energy-density advantage. For example, layered rGO (reduced-graphene oxide) 

was proved to be a stable host for Li with good lithium affinity. Good lithiophilicity ensures 
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the strong binding between Li and the materials’ surface, which is critical for achieving 

both uniform molten Li infusion low Li nucleation barrier in battery cycling. With a pre-

designed rGO interlayer space confinement, the Li–rGO composite anode successfully 

achieved a small electrode dimensional change (∼20%) during cycling with stable SEI29. 

Other than carbon host materials, metals (Cu, Ni, etc.) are also demonstrated to be 

functional Li hosts. Zhang et al. designed a Li–Ni composite anode by infusing molten Li 

into a metallic Ni foam host.  The well-confined Li enabled the low electrode dimension 

change and dendrite‐free deposition30. 

 

1.2.2   Electrolyte design of the lithium metal batteries  

Electrolyte components have been proven to influence the Li metal anode stability in two 

ways: 1) Affect the Li+ flux distribution and Li metal deposition on electrode.  2) Affect 

the SEI properties, including uniformity, compositions and morphology.  

To avoid dendrite formation, various additives were applied to the electrolyte to 

rearrange the Li plating. For example, Cs+ was introduced to the carbonate electrolyte and 

successfully changed the morphology of the deposited Li from needle-like dendrites to 

mirror-like films.  According to the tip-induced dendrite growth model, Li tends to be 

deposited around the tips rather than on smooth regions of the anode due to the stronger 

electrical field. However, the adsorbed additive cations with a reduction potential lower 

than Li+ will accumulate around the tip to form an electrostatic shield. This positively 

charged shield will repel incoming Li+ while forcing Li+ deposition to adjacent regions of 

the anode until a smooth deposition layer is formed31. Zhou et. al also demonstrated the 

utilization of MOF (metal-organic framework) modified electrolyte in regulating the Li+ 
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deposition. The microporous MOF skeletons can restrict the 

TFSI− ((bis)trifluoromethanesulfonylimide) anion transport to achieve a homogeneous Li+ 

flux near the electrode surface, avoiding the local inhomogeneities of Li deposition32.  

The reason why the electrolyte components can help stabilize Li metal through 

tuning SEI can be explained from two aspects: 1) Artificial SEI with better mechanical and 

chemical stability has been proved to be a good strategy to suppress the dendrite growth. 

Different from the ex-situ formed artificial SEI as described in Section 1.2.1, the SEI 

induced by electrolyte engineering are usually in-situ formed, which brings convenience 

to the industrial manufacturing of batteries. The presence of additives can either generate 

inorganic-rich SEI with high mechanical strength or polymeric outer layer with high 

flexibility or both which are beneficial to the uniform Li deposition33.  2) The heterogeneity 

of the SEI on Li is believed to be one of the reasons for the uneven Li deposition. The 

native SEI on Li without any special modification generally consists of multicomponent 

inorganic (including oxide, carbonate, fluoride) and organic phases formed by parasitic 

reactions between Li and the electrolyte33. The inhomogeneous current density distribution 

can lead to inhomogeneous lithium metal crystal nucleation and growth34. Although there 

are still debates on this topic, evidences have shown the distribution of SEI components 

indeed have a significant influence on the SEI functions. Mono-component SEI design can 

be a potential strategy to enable the long-time Li anode operation.  

Among all the SEI inorganic components, LiF has always be regarded as the most 

beneficial one because of the high mechanical strength, low solubility, wide 

electrochemical window and low Li diffusion barrier. A number of studies have been 

focused on building a LiF-rich SEI by electrolyte engineering. For example, Zhang et al. 
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reported the fluoroethylene carbonate (FEC) additives in carbonate electrolytes can form a 

LiF‐rich SEI on the surface of Li metal, obtaining a uniform morphology of Li 

deposits35. In recent years, people also found the high salt concentration electrolytes play 

an important role in affecting the SEI composition. In a traditional dilute electrolyte (~1M), 

all salts are well dissolved and solvated to form solvent-separated ion pairs. The SEI layers 

are formed from solvent reduction, i.e. the solvent-derived SEI and the components of SEI 

film are mainly derived from the decomposition products of solvents in electrolytes. When 

the salt concentration increases, cations and anions/solvents will be stronger and the 

content of free-state solvent molecules will decrease. As a result, anions are predominantly 

reduced and decomposed to form a salt-derived SEI36.  Recently, lithium 

bis(fluorosulfonyl)imide (LiFSI) and LiTFSI have been explored for high concentration 

electrolytes. The rigid LiF-rich SEI derived from the anion decompositions can not only 

provides tight isolation of Li metal from the electrolyte corrosion, but also enables fast Li 

diffusion for low polarization and uniform Li deposition37.  

1.3 Mg batteries: High energy density with high safety 

When it comes to the practicability of batteries, safety is always a critical factor. As 

mentioned in Section 1.2, Li metal anode features great promises in energy density but fails 

to meet the safety requirements. Strategies such as electrode host/surface engineering and 

electrolyte modification provide opportunities to reduce the safety risk, but cannot 

completely rule it out. In this circumstance, Mg anode emerged as a promising candidate 
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to achieve both high energy density and high safety targets. With the low potential (−2.37 

V vs. SHE), high theoretical volumetric capacity (3833 mAh cm−3), high abundance in the 

earth crust and dendrite-free metal deposition properties, Mg stands out to be a more 

attractive anode material than Li for the next-generation battery technologies38. Among all 

the advantages, dendrite-free property is the most important one, which distinguished Mg 

as an intrinsically safe anode.  

The electrochemically deposited Mg metal was first studied in 2011 by Masaki 

Matsui39. It was found by SEM (scanning electron microscope) that the magnesium 

deposits did not show a typical dendritic morphology as the Li did. Later in-situ imaging 

studies also support the phenomenon. For instance, Zheng et al. observed a uniform, 

smooth thin film of Mg deposition with no dendritic growth though the in-situ TEM 

(Transmission electron microscopy)40. Wan et al. also observed the dendrite-free Mg 

deposition by in situ AFM (atomic force microscopy)41. Although the origin of the 

dendrite-free growth of the electrochemical deposited Mg is still not clear, some 

hypotheses were proposed based on theoretical calculations. For example, Matsui et al. 

reported a DFT (Density Functional Theory) study on the electrochemical deposition 

process of Mg, they found the free energy difference between crystals with different shapes 

was more significant for Mg than for Li due to the stronger bonding between Mg atoms. 

So the electrochemical deposition of Mg was more preferable to form high dimensional 

morphologies instead of 1D dendrite42. Jäckle et al. also reported that Mg exhibits 

low diffusion barriers and favors high-coordinated configurations. These properties might 

contribute to the dendrite-free growth43.  

https://www-sciencedirect-com.proxy.bc.edu/science/article/pii/S0378775310021336?via%3Dihub#!
https://www-sciencedirect-com.proxy.bc.edu/science/article/pii/S0378775310021336?via%3Dihub#!
https://www-sciencedirect-com.proxy.bc.edu/topics/engineering/atomic-force-microscopy
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The future of Mg anode is bright, but the reality is struggling. Mg batteries are still 

facing many challenges at current stage, as shown in Figure 1-5. The sluggish Mg2+ 

transport through solids induces challenges to different part of the battery system: 1) The 

high charge density of divalent Mg2+ induces strong interactions between Mg2+ and the 

host material. The slow kinetics of the Mg2+ intercalation and de-intercalated greatly 

hindered the utilization of intercalation-type cathode materials. 2)  Sluggish Mg2+ transport 

through the passivation layer on Mg anode surface. Due to the low redox potential of anode 

materials, the spontaneous electrolyte decomposition on the anode is difficult to completely 

avoid. In LIBs, the surface passivation layer, i.e. SEI layer serves as a physical barrier to 

protect the anode from further reacting with electrolyte but still enables fast Li+ transport. 

However, due to the high charge density, Mg2+ cannot be transported though the surface 

layer formed from electrolyte decomposition. This is the major reason why Mg anode fails 

in the conventional carbonate electrolytes. 3) Sluggish Mg2+ transport through solids also 

creates huge difficulties in the solid state electrolyte development. The extreme low ionic 

conductivity (< 10-8 S/cm) of Mg2+ in the inorganic materials cannot support the practical 

battery operation. To solve the above issues and enable practical Mg batteries, new 

materials were explored for both cathodes and electrolytes. 
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Figure 1-5. Schematic illustration of key challenges of Mg batteries. 

 

1.3.1    From intercalation cathodes to conversion cathodes 

Over the past twenty years, tremendous work has been devoted to the discovery of 

intercalation cathodes for reversible Mg2+ intercalation/de-intercalation. Chevrel-Mo6S8 

was proved to be the most promising one. However, the low energy density of Mo6S8 (77 

Wh/kg or 400Wh/l) really hindered its practical application44. To achieve higher energy 

density, conversion-type electrodes became alternative candidates. In addition, since the 

conversion cathodes are operated based on direct redox reactions instead of intercalation 

chemistry, which could potentially enable fast cathode kinetics. Pioneering work on the 

conversion cathode for Mg batteries have been demonstrated in recent years, such as Mg-

Br245, Mg-O246, Mg-I247 and Mg-S48.  However, the cathode engineering or structure design 

is often not the key issue at the current stage. As the surface passivation issue creates great 

challenges to electrolyte choice, the first and most critical step to enable the conversion 
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cathode is to find a suitable electrolyte with wide electrochemical window and stable to 

both the oxidation-vulnerable Mg anode and reduction-vulnerable conversion cathodes.  

1.3.2    Toward electrolyte with wide electrochemical window 

Due to the severe passivation problem of Mg, conventional electrolyte with high anodic 

stability (> 4.0V vs. Mg2+/Mg) cannot be used. New electrolyte development is a crucial 

step for Mg batteries. Both the solvent and the salt need to be carefully evaluated as either 

of them can strongly passivate the Mg surface if not chosen appropriately. Grignard reagent 

(RMgX, where R is an alkyl or aryl group, and X is Cl or Br) was first chosen to be a 

promising salt for reversible Mg anode operation because of the high cathodic stability49. 

However, it cannot be directly used in batteries either because of the strong reductive 

property.  

To extend the anodic stability of Grignard reagents, Aurbach et al. developed the 

first generation Mg battery electrolyte system in 2000 by dissolving Mg(AlCl2BuEt)2 in 

THF (Tetrahydrofuran) solvent. The new electrolyte successfully achieved a near 100% 

efficiency reversibility for Mg plating/stripping49. More importantly, the solutions showed 

an electrochemical window of ca. 2.5 V vs. Mg2+/Mg, capable of supporting cathode 

materials with low voltage. Later, the APC (all phenyl complex) electrolyte was developed 

by mixing AlCl3 with PhMgCl in THF, which greatly extended the electrolyte anodic 

stability up to 3.2V vs. Mg2+/Mg50. This is also the most widely used electrolyte system for 

Mg batteries up to date. However, the applications of APC electrolytes are only limited to 

intercalation cathodes. The nucleophilic salts are not compatible with the highly oxidative 

conversion cathodes such as S, Br2 or O2.  
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On the way to non-nucleophilic electrolyte for Mg batteries, various new salt or 

salt-combinations were explored. For example, HMDSMgCl (hexamethyldisilazide 

magnesium chloride) with AlCl3 in THF was synthesized by Muldoon et al. The non-

nucleophilic electrolyte resulted in a dramatic improvement in the anodic stability of ca. 

3.2V vs. Mg2+/Mg and was proven to be chemically compatible with the electrophilic S 

cathode51. Other non-nucleophilic electrolyte such as MACC (Magnesium Aluminum 

Chloride Complex)52, Mg(TFSI)2/MgCl2/DME electrolytes48 were also explored for 

conversion cathodes.  However, the electrochemical window of current electrolyte systems 

is still far from satisfying. The ethereal solvents based electrolytes generally provide an 

anodic stability of < 3.5V vs. Mg2+/Mg, which is not enough for practical conversion 

cathode operation owing to the kinetic overpotential requirements. In response to this 

challenge, Xia et al. proposed a new strategy to separate electrolytes for the anode and 

cathode in Mg-Br2 batteries (see Figure 1-6)45. At the cathode side, ionic liquid with high 

anodic stability (> 3.7V vs. Mg2+/Mg) was used for B2 cathode. At the anode side, ethereal 

electrolyte was used to enable reversible stripping and plating of Mg. A porous glass frit 

was used in between to separate the catholyte and anolyte. Together, this strategy achieved 

stable Mg-Br2 battery operation for > 20 cycles45. 
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Figure 1-6. Design principle of the Mg-Br2 battery. Reprinted with permission from 

Ref.[45] Copyright (2016) Elsevier Ltd. 

Ban et al. demonstrated another strategy to broaden the electrochemical window of 

electrolytes by using an artificial interphase for Mg protection. The artificial interphase 

was formed from a Mg2+-conducting polymeric film consisting thermal-cyclized 

polyacrylonitrile and Mg(CF3SO3)2 (Mg trifluoromethanesulfonate). The strategy rescued 

the “Mg incompatible” high-voltage carbonate electrolytes for reversible Mg 

plating/stripping53.  
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Chapter 2.  Wood derived porous carbon electrodes for Li-O2 batteries 

[This chapter is adapted with permission from “Jingru Luo, Xiahui Yao, Lei Yang, Yang 

Han, Liao Chen, Xiumei Geng, Vivek Vattipalli, Qi Dong, Wei Fan, Dunwei Wang, Hongli 

Zhu, Free-Standing Porous Carbon Electrodes Derived from Wood for High-Performance 

Li-O2 Battery Applications. Nano Res. 2017, 10 (12), 4318–4326. 

https://doi.org/10.1007/s12274-017-1660-x. ” Copyright 2017 Springer Nature.] 

 

Electrode materials with porous structures, particularly hierarchical pores, are highly 

coveted for energy applications such as fuel cells 1, 2, batteries 3, 4 and (super) capacitors 5, 

6.  Of these materials, porous carbon is perhaps the most commonly used owing to its 

relatively high electrical conductivity, good chemical stability, low cost and the non-toxic 

nature 7, 8.  However, most commercially available carbon materials are in particulate forms 

with typical sizes ranging between nanometers and microns 9, presenting challenges in 

assembling them for desired connectivity and mechanical strength for practical 

applications.  One strategy to address this issue is to introduce polymeric additives as 

binders which help hold the particles together 10.  While widely implemented in many 

commercially successful systems, such approach does introduce unintended consequences.  

For example, the addition of these inactive materials inadvertently adds to the weight and 

volume of devices 11 (e.g., batteries) and complicate the manufacturing processes 12.  

Moreover, the additives sometimes introduce unexpected side effects that are detrimental 

to the operation of energy conversion and storage devices 13.  The problem can be especially 

acute for emerging technologies such as Li-O2 batteries.  For instance, poly (vinylidene 

https://doi.org/10.1007/s12274-017-1660-x
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difluoride) (PVdF) as a binder plays a critical role in the success of Li-ion batteries, but it 

has been reported unstable with respect to superoxide species that are ubiquitous in Li-O2 

batteries 14, 15.  Furthermore, there have been studies showing that the binders used in the 

cathode may limit O2 diffusion by blocking the pores and reduce the active surface area for 

Li2O2 deposition 16, 17.  These negative issues connected to the particulate nature of carbon 

can in principle be solved by using free-standing carbons that are much larger in their 

macro scale dimensions but feature pores of similar sizes in the micro and meso scale 18.  

Indeed, efforts toward this direction have been proposed and promising preliminary results 

have been reported 19-24.  For instance, Zhang et al. 20 developed a free-standing palladium-

modified hollow spherical carbon cathode, which endows good performance in Li-O2 

batteries.  Shao-Horn et al. 21 reported a hierarchical functionalized multiwalled carbon 

nanotube/graphene structure as self-standing electrodes for the positive electrode of lithium 

ion batteries.  The electrodes achieved a thickness up to tens of micrometers and a relatively 

high density (> 1 g cm−3).  

Within the context of free-standing carbon with micro and meso scale pores, wood 

provides an ideal platform in that it offers macro scale structural integrity while presenting 

hierarchical pores inherent to its natural formation mechanism 25.  When properly 

carbonized, the structural integrity and the porous nature can be preserved, yielding a 

carbon scaffold unique in its mechanical strength and structures 26.  Inspired by this 

consideration, here we present a free-standing porous carbon derived from the Yellow Pine 

27. To exploit the utilities of the structured pores in wood enabled by microfibers and 

tracheids during growth, we applied the resulting carbon as a cathode for Li-O2 batteries, 

where transport of a multitude of species is of critical importance 28.  Take the discharge 
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process as an example.  O2 (from the gas phase) is reduced, the products of which bind 

with Li+ (from the liquid phase) to form Li2O2 (as a solid). The process requires the 

transportation of O2 from the headspace of the battery, Li+ from the anode side through the 

electrolyte and electrons from the cathode 29.  The concerted transportation of these three 

components calls for high surface area for large capacity, good electrical conductivity for 

high current density and sufficiently large pores to prevent clogging 30.  All these 

requirements can be simultaneously met by wood-derived carbon. The channels and pores 

formed from the well-oriented microfibers and tracheids can serve as routes through which 

facile Li+ and O2 diffusion is ensured.  Preserving the inherent structure of wood provides 

adequate mechanical strength for the carbon to be used as a free-standing electrode without 

excessive fabrication, eliminating the need for binders or conductive additives.  

Furthermore, we explore the facile doping of carbon by N during the carbonization process 

for enhanced O2 reduction reaction (ORR) activities 31, 32, which is critically important to 

the Li-O2 battery operations. 

 

 
Figure 2-1. The preparation of wd-C/wd-NC and its application in Li-O2 batteries.  The 
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wood was first cut into rectangular pieces and baked at 240°C for 12 h in ambient air.  For 

wd-C, the resulting sample was transferred to a tube furnace under Ar atmosphere for full 

carbonization at 900 °C for 2 h.  For N-doped carbon (wd-NC), the carbonization was 

carried out at 800 °C with anhydrous NH3 for 2 h.   

 

2.1  Experimental 

2.1.1    Material preparation 

The pristine wood was obtained from Yellow Pine. The carbonization was carried out in 

two steps. As shown in Figure 2-1, the wood was first cut into rectangular pieces and baked 

at 240 °C for 12 h in ambient air.  The resulting sample was then transferred to a tube 

furnace under Ar atmosphere (30 sccm) for full carbonization at 900 °C for 2 h to obtain 

wood-derived carbon (wd-C) 33. 

For N-doped carbon (wd-NC), the carbonization was carried out at 800 °C with 

anhydrous NH3 (Airgas, 75 sccm) for 2 h.  The wd-NC was carbonized at 800 °C but not 

900 °C because wood was found to react with NH3 severely.  The wd-C (and wd-NC) was 

further vacuum dried at 150 °C for at least 12 h in the antechamber before transferring into 

the glovebox (Mbraun, MB20G, with O2 and H2O concentrations < 0.1 ppm).  All carbon 

samples were used directly without further processing with the areal density of 19 mg/cm2 

at the thickness of 1 mm.  
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2.1.2    Material characterization 

 
Scanning electron microscopy (SEM) was collected on a JEOL 6340F microscope 

operating at 15 kV.  Raman spectra were acquired using a micro-Raman system (XploRA, 

Horiba) with an excitation laser of λ=532 nm. The surface area and pore volume 

information was obtained by N2 adsorption/desorption experiments carried out on an 

automatic gas sorption analyzer (Autosorb iQ, Quantachrome) at 77 K.  For XPS analysis 

of the carbon electrode after Li-O2 operations, the cell was transferred to an O2-tolerant Ar-

filled glove box (H2O level < 0.1 ppm, MBraun), where it was disassembled to extract the 

cathodes.  The cathodes were further washed with pure anhydrous dimethoxyethane (DME, 

anhydrous grade, Sigma-Aldrich) 3 times to remove trapped salts.  Afterwards, the cathode 

was vacuumed to remove solvents and then transferred to the XPS (K-Alpha, Thermo 

Scientific) vacuum chamber with minimal exposure to ambient air (< 1 min). X-ray 

diffraction data was obtained on a PANalytical X'Pert Pro diffractometer with air-tight 

sample holder without exposing the sample to ambient air. Mechanical test was performed 

with a Discovery HR-1 hybrid rheometer. All samples tested were of the same dimensions 

(9mm×8mm×3mm). 

 

2.1.3    Electrochemical characterization 

LiClO4 (99.99%, battery grade, Sigma-Aldrich) was first baked at 130 °C in the 

antechamber of the glovebox and then dissolved in DME to obtain a 0.1 M electrolyte 

solution. Customized SwagelokTM type cells were assembled in the glove box with Li 

metal (380 µm in thickness, Sigma-Aldrich) as the anode, 2 Celgard 2400 film as the 
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separator, and 0.1 M LiClO4 (100 to 200 µL) as the electrolyte. The assembled batteries 

were then transferred to the O2-tolerant Ar-filled glove box and O2 (ultrahigh purity, 

Airgas) was purged into the cell to replace Ar. Electrochemical characterizations were 

conducted using an electrochemical station (Biologic, VMP3). 

2.2  Results and discussion 

The free-standing nature of the wd-NC with good structural integrity can be visualized in 

Figure 2-2 (a).  The mechanical properties of the resulting carbon were characterized by 

the engineering compression test. The ultimate loading stress before fracturing was 

reported in Figure 2-2(b) and Figure 2-3. As a comparison, commercial Vulcan carbon 

powder was fabricated into similar size and shape but was bonded by 5 % of PVdF, which 

is commonly used as cathode in literature 34. As seen in Fig. 1b, wd-NC bore the highest 

loading stress of 860 kPa.  It clearly suggests that wd-NC features mechanical stability 

suitable for free-standing electrode applications. 
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Figure 2-2. (a) Digital photos showing the structural integrity of freestanding wd-NC 

cathode; (b) Mechanical test showing the comparison between wd-NC, wd-C and Vulcan 

carbon. wd-NC can bear the highest loading stress of 860 kPa. 

 

Figure 2-3. Compression tests show the ultimate loading stress of wd-NC, wd-C and 

Vulcan C. As a comparison, commercial Vulcan carbon powder was fabricated in to similar 

size and shape bonded by 5 % of PVdF.  The sudden drop of the curves stands for the 

physical crush of the samples. The wd-NC can bear the highest loading stress of 860 kPa, 

which ensures a good mechanical stability of the wd-NC as a free-standing electrode. 

 
During the first step of pre-carbonization, 67 % weight loss was measured as a 

result of dehydration and evaporation of small molecules. An additional 50 % weight loss 

was observed during the second step (i.e., the total weight the carbonized product is ca. 17 

% of the original wood). However, for wd-NC, the resulting substrate was measured as 

11% of the original weight of the parent wood, as opposed to 17 % in the process without 

N-doping. The additional weight loss is a result of the reactions between the carbon and 
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NH3 to form HCN, C2H2, CH3NH2 and CH3C≡N 35. This process serves as an activation of 

the carbon material by enlarging the surface area and enlarging volumes. Though some 

carbon is consumed in the process, the structural integrity of the wd-NC remains identical 

to wd-C. The microstructure of the resulting carbons was further characterized by SEM. 

From the comparison among wd-C (Figure 2-4 (a)), wd-NC (Figure 2-4 (b)) and pre-

carbonized wood (Figure 2-5), the diameters of the channels are in a similar range of 10 ~ 

50 μm.  

 
 

Figure 2-4.  SEM images showing the microstructure of wd-C and wd-NC samples.  (a) 

&(b) Top view of wd-C and wd-NC, respectively.  (c) The hierarchical pore structure of 

wd-NC.   (d) The inter-channel pores on the walls of wd-NC.  
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Figure 2-5. SEM image of pre- carbonized carbon. The porous structure is similar to that 

of wd-C and wd-NC. The pre-carbonized wood also features similar porous structure to 

wd-C and wd-NC.  Due to the incompleteness of carbonization (and hence poor 

conductivity), the sample charged severely under SEM observations, resulting in the 

bright spots as shown in the figure. 

However, the micropore volumes of the two samples differed, as shown in Table 

2-1. wd-NC reached a pore volume of 0.36 cm3/g, 10 times larger than wd-C.  This 

difference can be explained by the reaction between carbon and NH3 as mentioned above, 

which creates more pores inside carbon.  Figure 2-4(c) shows that the hierarchical pore 

structure inherent to the parent wood remained intact, where channels enabled by aligned 

microfibers penetrating through the full thickness of the substrate to form interconnected 

pathways desired for mass transport in applications such as Li-O2 batteries.  In Figure 2-

4(d), a side-view image of the channel walls reveals the inter-channel pores on the walls 

of the carbon with the average diameter of 2 μm.  This inter-channel pores are expected to 

further facilitate mass transport by providing additional pathways in the event of pore 

clogging at the ends of the channels.  

Table 2-1 Summary of BET surface area and pore volume for wd-NC and wd-C samples.  
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a The data of Vulcan carbon from literature values was provided for comparison. (Energy 
Environ. Sci. 2012, 5, 8608-8620.)  
 

Raman spectra and X-ray photoelectron spectra (XPS) were obtained to confirm 

the carbonization of wood and N doping. From the Raman spectra (Figure 2-6(a)), the two 

peaks corresponding to the D band at ~1330 cm-1 and G band at ~1590 cm-1 36 were 

prominent for both wd-C and wd-NC samples, whereas pristine wood sample featured 

severe fluorescence effect under illumination.  The disappearance of the fluorescent 

behavior in the two carbon samples indicates the complete conversion from wood to 

carbon.  The slightly higher D/G ratio of wd-NC sample indicates slightly poorer 

crystallinity of the sample.  While the difference may be reflected on the conductivity and 

stability of the cathode materials, the effect is expected to be insignificant.  

 The N content of wd-NC was further characterized by XPS. Figure 2-6(b) revealed 

the existence of carbon species in the form of C-C, C-N, C-O and C=O bonding. Semi-

quantitative elemental analysis from XPS yielded 8% of N content on the surface of N-

doped carbon and 9% O species. By comparison, XPS characterization of wd-C did not 

show any N signal (Figure 2-7).  Further examinations of the N 1s spectrum (Figure 2-

6(c)) revealed the chemical environment of doped N. The most prominent form appears to 

be pyridinic N as represented by the peak with a binding energy of 398.2 eV 37. This 

binding environment has been previously reported as the most active for the oxygen 

reduction reactions (ORR). For example, Guo et. al. 32 have shown that carbon atoms next 

to pyridinic N are the active sites for O2 adsorption, which is the initial step of ORR. In the 
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same XPS spectrum (Figure 2-6(c)), there is also a second peak corresponding to pyrrolic 

N at 400.7 eV. This is consistent with N substituting O in the 5-membered ring of the 

carbon precursor 37. This analysis suggests that doped N has the potential to improve the 

ORR activity. More on this will be discussed later in this article.  

 
Figure 2-6. Raman and XPS characterization confirming the carbonization and N 

doping of wd-NC (a) The two Raman peaks corresponding to the D band at ~1330 cm-1 

and G band at ~1590 cm-1 of carbon are prominent for both wd-C and wd-NC samples.  (b) 

XPS spectrum of C 1s electrons revealing the bonding environment of C in wd-NC.  (c) 

XPS spectrum of N 1s electrons confirming the N doping in wd-NC and showing the 

chemical environment of N. The most prominent component is the pyridinic N with the 

binding energy of 398.2 eV. 
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Figure 2-7. XPS characterization of wd-C indicated no N content on the wd-C surface. 

(a) C1s spectrum of wd-C; (b) N1s spectrum of wd-C. 

 
Next, we studied the electrochemical activity of wood-derived freestanding carbon 

by building it into Li-O2 batteries as a cathode material.  First, we compared the 

performance of wd-NC with wd-C to investigate the effect of hetero-atom (N atoms) on 

Li-O2 battery performance.  As shown in Figure 2-8, the discharge capacity for wd-NC 

was 1.86 mAh/cm2, ca. 5 times higher than wd-C (0.38 mAh/cm2).  The value is 

comparable to particulate carbon cathodes bonded by polymers (1~10 mAh/cm2).  The 

discharge potential increased from 2.55 V (wd-C) to 2.70 V (wd-NC) as calculated from 

the plateau value of the discharge profile. 

This phenomenon can be explained by the intrinsically high catalytic activity of N 

doped carbon, which is supported by previous experimental and computational works 32, 

38.  The NH3 doping process can also further activate carbon by creating more micropores 

and enlarging the surface area. More significantly, the average recharge potential decreased 

from 4.20 V to 3.45 V, suggesting the discharge product may have more intimate contact 

with the cathode for more facile decomposition of Li2O2. Overall, the average overpotential 

of the charge/discharge process decreased from 1.65 V to 0.75 V with a capacity increase 

of 5 times for wd-NC.  The remarkable performance improvement further highlights the 

positive effects of N doping. 
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Figure 2-8. Voltage profiles of wd-NC and wd-C as cathodes with the same current density 

of 0.08 mA/cm2 (4 mA/g). Compared with wd-C, the average roundtrip overpotential of 

wd-NC decreased from 1.65 V to 0.75 V and the areal capacity increased by 5 times. 
 

To demonstrate the practicability of the freestanding wd-NC cathode, we next 

characterized the test Li-O2 battery cell at different charging/discharging rates. As shown 

in Figure 2-9(a) and Figure 2-10, with the current density varying between 0.04 mA/cm2 

and 0.20 mA/cm2, the discharge voltage plateau decreased from 2.75 V to 2.40 V, and the 

charge voltage plateau increased from 3.3 V to 4.4 V. This observation indicates that N 

doping facilitates the ORR kinetics more effectively than it does the OER. Galvanostatic 

cycling tests were carried under a constant current density of 0.08 mA/cm2 (with the 

capacity being limited at 1.5 mAh, or 70% depth of full discharge). As presented in Figure 

2-11, for the first 20 cycles the battery exhibited a stable discharge plateau of 2.5 V.  

However, the energy efficiency decreased from 70% to 60% after 5 cycles. Such poor 

stability of carbon cathode has been observed by other authors and us. We have shown 

previously that passivating carbon cathode or decorating it with catalysts or both could 

improve the cycling performance by reducing parasitic chemical reactions 30. 
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Figure 2-9. Rate capability and cycling performance of wd-NC. (a) With the current 

density increased from 0.04 mA/cm2 to 0.20 mA/cm2, the discharge voltage plateau 

decreased from 2.75 V to 2.40 V, and the charge voltage plateau increased from 3.3 V to 

4.4 V, indicating N doping facilitates the ORR kinetics more effectively than it does the 

OER.  (b) Galvanostatic cycling tests under a constant current density of 0.08 mA/cm2 and 

70% depth of full discharge (Absolute capacity each cycle: 1.5 mAh).  The average 

voltages and energy efficiency for each cycle was plotted against the cycle number. The 

energy efficiency decreased from 70% to 60% after 5 cycles and remained stable onward. 
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Figure 2-10. Rate capability of wd-NC.  With the current density increases from 

0.04mA/cm2 to 0.20 mA/cm2, the discharge plateau decreased from 2.75 V to 2.40 V, and 

the charge plateau increased from 3.3 V to 4.4 V, indicating the N doping facilitates the 

ORR kinetics more than the OER. Each discharge / charge plateau at different current 

density was normalized to the same capacity. 

 

 

Figure 2-11. Cycling performance of wd-NC with a limited discharge capacity of 

1.5mAh at a current density of 0.08mA/cm2. Representative cycle profiles of the 1st, 2nd, 

5th, 10th, 13th, 18th, 20th cycles are color coded and shown for clarity. Within 20 cycles the 

battery showed a stable discharge plateau at around 2.5V, which indicated a reasonable 

cyclability of the wd-NC. However, the average recharge voltage increased from 3.5V to 

4.0V, which resulted in the decrease of energy efficiency. 

Our next task for this body of work was to analyze the discharge and recharge 

products.  This task is of paramount importance because proving the electrochemical 
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characteristics are indeed connected to Li2O2 formation/decomposition is critical.  For this 

purpose, we conducted X-ray diffraction (XRD) characterization.  As shown in Figure 2-

12(a), the XRD pattern unambiguously confirmed the formation of Li2O2 upon discharge. 

The peaks at 32.8 ̊ and 34.8 ̊ match the documented diffraction peaks of Li2O2 (JCPDS 74-

0115). A shifted by-product peak of Li2CO3 at 31.5 ̊ was also observed in the same XRD 

spectrum.  The slight shift (-0.3 ̊ ) than standard pattern (JCPDS 87-0729) is common for 

solution derived sample 39, relating with the solvation of Li+. XPS spectra were also 

collected to verify the composition of Li2O2 (Figure 2-12(b)&(c)).  After discharge, the 

peaks at 55.0 eV (Li 1s) and 531.8 eV (O 1s) increased dramatically, indicating the 

formation of Li2O2. After recharge, much less O 1s signal at 534.0 eV and Li 1s signal at 

55.0 eV were observed, indicating the decomposition of Li2O2 40.  
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Figure 2-12. Li2O2 detection.  (a) X-ray diffraction patterns of wd-NC before discharge 

(bare), after the 1st cycle discharge (discharged) and the 1st cycle recharge (recharged). 

The peaks at 32.8 ̊ and 34.8 ̊ in the discharged sample match the documented diffraction 

peaks of Li2O2 (JCPDS 74-0115).  (b) & (c) XPS spectra of Li 1s and O 1s confirming 

the formation and decomposition of Li2O2.  After discharge, the peaks at 55.0 eV (Li 1s) 

and 531.8 eV (O 1s) increased dramatically, indicating the formation of Li2O2. After 

recharge, much less O 1s and Li 1s signal were observed, indicating the decomposition of 

Li2O2. 

Scanning electron micrographs (SEM) as shown in Figure 2-13 further support the 

Li2O2 formation/decomposition. The surface of pristine wd-NC was smooth and clean 

(Figure 2-13(a)). After discharge, Li2O2 particles were observed to accumulate both inside 

the pores and on the surface of the carbon walls (Figure 2-13(b)). After full recharge, those 

particles disappeared (Figure 2-13(c)).  The SEM images together with the XRD and XPS 

results provide strong support that Li2O2 formation and decomposition was connected to 

the discharge and recharge electrochemical characteristics.  The quantitative product 

detection of Li2O2 by idometric titration method was not successful in this study 30, 41.  This 

is due to the large surface area and tortuosity of our free standing wood-derived N-doped 

carbon, which leads to strong adsorption of iodine. 
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Figure 7 SEM image confirming the formation and decomposition of Li2O2. (a) Clean 

surface of the bare wd-NC. (b) After discharge, Li2O2 particles were observed to 

accumulate on the surfaces of wd-NC. (c) After full recharge, the Li2O2 particles were 

decomposed and the surface of the wd-NC was revealed. 

 2.3  Conclusion 

In summary, we have investigated a new nitrogen-doped free-standing porous carbon 

material as a promising cathode material for Li-O2 battery. This material takes advantage 

of the spontaneously formed hierarchical porous structure derived from wood.  The 

structure is expected to facilitate both mass transport and discharge product storage.  

Moreover, we introduced heteroatom (N) doping to further improve the catalytic activity 

of the carbon cathode for lower overpotential and higher capacity.  We have 

unambiguously confirmed the initial electrochemical process to be the desired reactions of 

Li2O2 formation and decomposition.  The free standing nature and mechanical strength of 

wood derived carbon makes it possible to eliminate the need for additional current collector 

and binders, improving the overall energy density and reducing possible parasitic chemical 

reactions. Also, the renewability of wood with this unique structure could potentially 

provide a cost-effective route as porous electrode for large-scale mass production.  Further 

effort to improve the cell performance can be anticipated by protecting the carbon surface 

using strategies that have been demonstrated by us and others previously. 
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Chapter 3.  Enabling lithium metal anode in nonflammable phosphate electrolyte  

 
[This chapter is adapted from a paper to be submitted, “Haochuan Zhang,† Jingru Luo,† 

Miao Qi, Qi Dong, Nicholas Dulock, Christopher Povinelli, Nicholas Wong, Dunwei 

Wang, “Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with 

Electrochemically-Induced Chemical Reactions”.] 

 

Safety is of paramount importance to modern electrochemical energy storage devices.  For 

state-of-the-art Li-ion batteries, a common failure mechanism is understood to start with 

uneven plating of Li on the anode, which leads to the formation of dendrites that short the 

circuit1–4.  The flammable nature of the common electrolytes exacerbates the problem and, 

hence, the often-dramatic fashion in which batteries fail.  Concerns over the safety issue 

have been a key roadblock that limits the development of new battery technologies.  For 

instance, the promises held by new cathode chemistries, such as Li-S and Li-O2 batteries, 

could not be materialized unless the anode is of high-capacities, which can only be 

delivered by Li metals.  To this end, being able to safely use Li metal as the anode has 

broad appeals, thanks to its low electrochemical potential and unparalleled capacity5.  In 

recognition of these concerns and opportunities, significant research attention has been 

attracted to study how to greatly increase the capacity of batteries without compromising 

safety by, for example, enabling Li metal or employ non-flammable electrolytes or both.  

Researchers have examined what has worked extremely well in state-of-the-art Li-ion 

batteries and found that the initial electrochemical reactions between the anode (graphite) 
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and the electrolyte (typically organic carbonate-based solutions) hold the key.  As a result 

of the initial electrochemical reactions, a thin layer of complex compositions comprised of 

inorganic and organic Li salts (i.e., the solid-electrolyte interphase layer, or SEI) serve to 

permit only Li+ to pass, so as to suppress uncontrolled Li platting that can short the circuit2.  

The SEI also limits runaway “dead” Li, which have been suggested as a culprit for capacity 

losses.  Inspired by this understanding, researchers have tested a number of approaches on 

forming a SEI on Li metal similar to that on graphite.  For instance, fluoroethylene 

carbonate (FEC) and LiNO3 have proven effective as additives in introducing LiF-rich and 

Li3N-rich SEI for stable Li operations, respectively6,7.  Separately, coating of reactive 

polymer composites has been shown to enable the formation of self-repairing SEI for high-

efficiency cycling in lean electrolyte conditions8.  These exciting progresses 

notwithstanding, the prior demonstrations were carried out in electrolytes that are 

flammable.  The safely concerns connected to the flammability of the electrolyte remain 

outstanding.  It is, therefore, important to correct the deficiency by exploring Li/electrolyte 

reactions in non-flammable electrolytes.  Our project is conceived within this context, with 

the goal of enabling the formation of a stable SEI to permit operations of Li metal in non-

flammable media. 

Great attention has already been attracted to replicate stable SEI formation on Li 

anode in nonflammable electrolytes.  With all other parameters equal, being able to replace 

flammable electrolytes with nonflammable ones should readily improve the safety of 

batteries.  Guided by this idea, a number of solvents have been tested, and organic 

phosphates (e.g., triethyl phosphate or TEP) stand out.  This is because the P atoms can act 

as trapping agents for hydrogen radicals that play critical roles in initiating combustion 
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chain reactions9.  Indeed, prior studies have shown that TEP could serve as a flame 

retardant to reduce the flammability of the conventional electrolytes.  Direct utilization of 

TEP for Li-ion batteries, however, exhibited a multitude of problems, including speculated 

TEP insertion into graphite and rapidly increasing interface resistance on Li metal9.  To 

circumvent these issues, approaches such as adding nitrate salts or relying on the 

decomposition of salts but not solvents have been proposed and proven promising10,11.  

Inspired by these prior efforts, we hereby report a radically new approach.  Our strategy 

involves promoting new chemical reaction pathways.  It takes advantage of the unique 

reactivity between electrochemically reduced O2 species and TEP, which enables the 

formation of a stable and effective SEI directly on Li anode.  The reaction mechanism is 

supported by the detection of the corresponding products both in the electrolyte and the 

SEI.  When tested in a symmetric Li||Li cell, >300 cycles of repeated Li plating and 

stripping was achieved at a current density of 0.5 mA·cm-2; when tested in a Li-O2 

prototypical cell, the system showed comparable performance as in a flammable, ether-

based electrolyte.  Similar strategy worked equally well for prototypical Li-ion batteries, 

too.  The approach represents a new direction in addressing the critical safety concerns for 

high-capacity electrochemical energy storage technologies. 



 51 

3.1  Experimental  

3.1.1    Materials preparation 

TEP (99.98%, Sigma-Aldrich) was dried with 4 Å molecular sieves prior to use. DME 

(99.99%) was purchased from BASF and used directly. LiTFSI (> 99.95%), LiClO4 

(99.9%), Li ribbon (> 99.9%) and polytetrafluoroethylene (PTFE, 60 wt% aq.) were 

purchased from Sigma-Aldrich. LiFePO4 (LFP, active material density: 120 g/m2, single 

sided) was purchased from MTI. Three-dimensionally ordered mesoporous (3DOm) 

carbon was prepared according to the procedure reported by Fan et al.12.  The O2 electrode 

was prepared by drop-casting method. 3DOm carbon was firstly mixed with PTFE binder 

and then well dispersed in isopropyl alcohol (IPA) in a 95:5 mass ratio. The prepared 

solution was then drop casted onto the carbon paper substrate repeatedly to achieve a 

specific weight loading (1.0 ± 0.1 mg). Since the carbon paper area is ca. 1.0 cm2, the 

density loading of 3DOm carbon is ca. 1.0 mg/cm2. All electrodes were dried in a vacuum 

oven for 2 days at 150ºC before battery assembly. The TEP-electrolyte was prepared by 

dissolving 1M LiTFSI into TEP.  

3.1.2    Materials characterization 

Scanning electron microscopy (SEM) was collected on a JEOL 6340F microscope 

operating at 10 kV. XX-ray photoelectron spectroscopy (XPS) was carried out on a K-

Alpha+ XPS (Thermo Scientific) with an Al X-ray source (incident photon energy 1486.7 
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eV). Infrared (IR) spectra were recorded on a Bruker Alpha attenuated total reflectance 

infrared spectrometer. 1H NMR spectra were collected on a Varian Unity INOVA 

spectrometers (500 MHz, or 600 MHz) with chemical shifts reported in ppm. Impedance 

spectra were recorded by using a ModuLab® XM potentiostat. The EIS data were 

measured by a 25 mV perturbation from 1MHz to 0.1 Hz. Raman spectra were acquired 

using a micro-Raman system (XploRA, Horiba) with an excitation laser of λ=532 nm. 

3.1.3   Electrochemical characterization 

Customized SwagelokTM type cells were assembled in the glove box (Mbruan, O2 and 

H2O < 0.1 ppm) with Li metal as the anode, 2 Celgard 2400 film as the separator, and 1 M 

LiTFSI in TEP (200 µL) as the electrolyte. The assembled batteries were then transferred 

to the O2-tolerant Ar-filled glove box and O2 (ultrahigh purity, Airgas) was purged into the 

cell to replace Ar. Electrochemical characterizations were conducted using an 

electrochemical station (Biologic, VMP3). Cyclic Voltammetry (CV) study of Li metal 

reversibility in TEP electrolytes was conducted in the Li||Cu cell with a scan rate of 0.4 

mV/s. Long-term cycling test of Li metal in TEP electrolyte was conducted in the Li||Li 

cell for at a current density of 0.5 mA·cm-2. CV measurement for O2 chemistry evaluation 

in TEP electrolyte was conducted with a three-electrode system with a glassy carbon as 

working electrode, two Li metal as counter and reference electrode separately.  
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3.2  Results and discussion 

Our first task was to establish a baseline of TEP electrochemical behaviors when Li is used 

as an electrode.  For this purpose, we prepared 1M Li bis(trifluoromethanesulfonyl)imide 

(LiTFSI) in TEP as an electrolyte and constructed a two-electrode Li||Cu cell that is 

typically used in the literature for similar studies.  In this configuration, Cu serves as the 

working electrode, and Li is used as both the counter and reference electrodes.  As shown 

in Figure 3-1, three reduction peaks were observed at ca. 1.4 V, 1.2 V and 0.5 V (vs. Li/Li+; 

unless noted, all potentials hereafter are relative to this reference) in the first cycle of cyclic 

voltammetry (CV) scan.  Of them, the peak at 0.5 V was ascribed to the reduction of TEP9; 

the peaks at 1.4 V and 1.2 V may report on the reduction of TEP or TFSI- . The dominating 

reduction wave past 0 V is due to Li plating onto the Cu working electrode.  On the reverse 

scan, an oxidation peak at ca. 0.1 V was observed, corresponding to the stripping of the 

newly plated Li.  The broad peak at >1.0 V is believed to be due to re-oxidation of SEI 

components13.  Notably, these redox features were quickly suppressed upon repeated CV 

scans, and they were barely visible after only 5 cycles (Figure 3-1(a)).  This feature 

suggests that the Li plating/stripping in TEP-based electrolyte as observed in the initial CV 

scan is highly irreversible.  Correspondingly, when tested in a symmetric Li||Li cell, the 

system exhibited a rapid increase of the plating and stripping overpotentials (Figure 3-

1(c)).  By the 5th cycle, the plating overpotential already reached -0.75 V, and stripping 

overpotential reached 1 V.  At this point, we considered the test cell has failed.  The 

phenomenon as reported here is consistent with prior reports on TEP electrochemical 

behaviors when used directly for Li plating and stripping studies10.  It highlights the 
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challenges of using TEP as a non-flammable electrolyte for safe operations of Li 

electrodes. Next, we introduced O2 to the system and observed dramatic improvements.  

As shown in Figure 3-1(b), the first difference we noticed was the appearance of a new, 

broad reduction peak at ca. 1.8 V in the Li||Cu cell in the presence of O2.  Presumably, this 

peak corresponds to the reduction of O2.  While the other reduction features of the first 

scan were similar to those without O2, the oxidation peak was indeed more pronounced 

upon the first reverse scan, reporting a greater recovery of plated Li (ca. 65%) when tested 

in O2 than without O2 (ca. 55%).  The most striking difference, however, was how the cell 

behaved upon repeated CV scans.  The Li stripping and platting features were by and large 

preserved at the 5th cycle (Figure 3-1(b)), although the broad peak corresponding to O2 

reduction was now absent.  Arguably, the Li stripping peak appeared to be enhanced in 

comparison to that in the first cycle.  These observations led us to conclude that the initial 

(electrochemical) reactions on the surface of Cu working electrode in O2-containing TEP 

electrolyte have resulted in an SEI that favors subsequent Li plating and stripping.  To 

further test this understanding, we next performed cycling tests in a symmetric Li||Li cell.  

At a current density of 0.5 mA·cm-2, no apparent increase of the overpotentials (<120 mV) 

for both plating and stripping of Li was observed after 300 cycles (Figure 3-1(c)), at which 

point the experiment was artificially terminated.  Similar results were reproduced for two 

more times.  The excellent cycling performance is comparable to the best reported results 

using approaches such as high-concentration TEP electrolytes or with nitrate salt additives.  
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Figure 3-1. Electrochemical performance of TEP electrolyte with or without O2. CV study 

of Li||Cu cell with a scan rate of 0.4 mV/s (a) without O2 and (b) with O2; (c) Voltage 

profiles of Li||Li cell for long-term cycling test at a current density of 0.5 mA·cm-2, limited 

capacity of 0.5mAh/cm2. 

How the simple addition of O2 greatly improves the Li striping and platting 

behaviors in TEP-based electrolyte is exciting but also intriguing.  To understand the 

results, we examined the structure of the Cu electrode after the initial plating of Li by 

scanning electron microscope (SEM).  As shown in Figure 3-2, with the presence of O2, a 

relatively uniform and compact layer of Li with granular microstructures was observed.  

The grain size was up to 10 μm in diameters.  Recent studies have alluded that a desired 

structure of electrochemically plated Li should retain an even microstructure with large 

granular sizes and minimum tortuosity; otherwise the loss of "dead” Li would be significant 
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and, hence, low Coulombic Efficiencies (CE)14.  That we observed such structures by 

simply adding O2 to the TEP electrolyte is highly encouraging.  In stark contrast, a layer 

of loose and spikey Li was observed in TEP without O2, which are typical for Li platting 

without proper protections of an SEI.  Inspired by the prior reports, we hypothesize that 

the introduction of O2 has dramatically changed the SEI formation in TEP.   

Figure 3-2. Morphology of deposited Li on Cu electrode. SEM images of plated electrodes 

(a) (b) without O2 and (c) (d) with O2. Scale bars: 5µm. 

As shown in Figure 3-3, the presence of O2 may lead to at least 3 possible reactions 

on the anode surface: (i) promoted decomposition of TFSI- anions by reduced O2; (ii) 

formation of Li2O on the anode surface; and (iii) electrochemically induced chemical 

reactions between TEP solvent and O2 species.  These considerations are made with the 

assumption that electrochemical reduction of O2 precedes these surface chemical reactions, 

which is supported by the broad O2 reduction peak in the CV scan (Figure 3-1(b)).   
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Figure 3-3. Schematic of reaction mechanisms. (a) Three possible reactions on the anode 

surface; (b) Detailed mechanism of hypothesis (iii), electrochemically induced chemical 

reactions between TEP solvent and O2 species to form the Li3PO4 or poly-phosphate 

species. 

Next, we examined the first possibility that concerns anion decomposition.  

Recently, there has been a surge of publications on using high-concentration electrolytes, 

especially FSI-/TFSI--containing ones, to enable reversible Li metal plating/stripping15.  

These approaches are based on the premise that the electrolyte decomposition could 
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produce LiF-rich SEI’s that are beneficial for Li plating/stripping.  To measure the 

compositions of the SEI, we collected X-ray photoelectron spectra (XPS) on the Cu 

working electrode after Li plating.  No measurable increase of LiF contents was observed 

(Figure 3-4).  Given that the TFSI- concentration is relatively low (1 M), the first 

possibility of TFSI- decomposition as the main reason for the dramatic increase of the 

cycling performance is highly unlikely.   

 

Figure 3-4. XPS F1s spectra of the Li samples after plating Li on the Cu working electrode. 

(a) with O2 and (b) without O2. 

To further support this conclusion, we conducted similar cycling experiments as 

those shown in Figure 3-1(c) but with 1 M LiClO4 (in TEP) as the support electrolyte 

(Figure 3-5).  The presence of O2 clearly exhibited similar effects on enabling the cycling 

of the symmetric Li||Li test cell.  Taken as a whole, the evidence clearly ruled out the first 

possibility as shown in Figure 3-3(a).  
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Figure 3-5. Cycling performance of Li||Li cell with 1 M LiClO4 in TEP electrolyte at a 

current density of 0.5 mA·cm-2. 

Second, the possibility of Li2O formation on the anode was considered.  Given the 

presence of O2 and the low electrochemical potentials of Li oxidation, it is highly 

conceivable that Li2O may form on the anode.  Recent studies have shown that Li2O could 

play a positive role as a component in the SEI16.  To test this possibility, we carried out 

control experiments by pre-forming Li2O on Li using two different methods.  In the first 

method, we sought to form Li2O ex situ by soaking a Li foil in O2-staturated TEP. 

Afterwards, the treated Li foil was used as the working electrode in a symmetric Li||Li cell 

for cycling test.  Without O2 in the TEP electrolyte, the cell failed within 4 cycles (Figure 

3-6(a)).  Similarly, Li foil treated with dry O2 exhibited Li2O formation but did not show 

improvement in cycling tests (Figure 3-6(b)).  This set of experiments suggest that ex situ 

Li2O does not enable Li plating/stripping in TEP.   
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Figure 3-6. Cycling performance of Li||Li cell in LiTFSI-TEP electrolyte with different 

ex-situ formed Li2O at a current density of 0.5 mA·cm-2. (a) ex-situ Li2O formed by 

soaking a Li foil in O2-staturated TEP (b) ex-situ Li2O formed by treating Li foil with dry 

O2. 

One may argue that in situ formed Li2O by electrochemistry is necessary for the 

purpose.  To address this concern, we employed the second method of promoting Li2O 

formation in a Li||Li cell in an ether-based electrolyte (1M LiTFSI in Tetraethylene glycol 

dimethyl ether (TEGDME)). After 5 cycles of repeated plating and stripping, a Li2O-rich 

SEI was formed on Li surface.  The Li foil was then removed from the test cell and washed 

with 1,2-dimethoxyethane (DME).  A new test cell was assembled with TEP as the support 

electrolyte.  Without O2, the cell failed quickly after 5 cycles, too (Figure 3-7).  Taken 

together, we concluded that the reaction between O2 and Li cannot account for the observed 

improvement. 
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Figure 3-7. Cycling performance of Li||Li cell in LiTFSI-TEP electrolyte with in-situ 

formed Li2O at a current density of 0.5 mA·cm-2. 

With the first two possibilities excluded, we are now guided to understand the 

improvement as a result of the unique reactions between TEP solvent and O2 species under 

electrochemical conditions.  Close examinations of Figure 3-1(b) reveal that O2 is reduced 

at potentials <2.2 V during the first cycle.  As the most likely species of the first electron 

transfer during oxygen reduction reaction (ORR) in an aprotic electrolyte, O2•− is a 

nucleophile.  It can substitute the ethoxy group of TEP via the SN2 mechanism, as has been 

reported in the literature17.  Subsequent electron transfer and O-O bond dissociation are 

expected to lead to the production of Li3PO4 or other poly-phosphate products.  The 

hypothesized reaction pathways are illustrated schematically in Figure 3-3(b).  If the 

mechanism holds true, we would expect the release of Li ethoxide (LiOCH2CH3) as a by-

product of the first step SN2 reaction.  Indeed, 1H nuclear magnetic resonance (NMR) 

spectra clearly confirmed this expectation, where the peak at 3.71 ppm chemical shift may 
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be assigned to CH3-CH2-O-Li (Figure 3-8(a)).  The relatively low intensity of the signals 

is due to the low contents of the by-products.  A number of reasons contribute to this fact.  

First, as shown in Figure 3-1(b), the electrochemically induced decomposition of TEP is 

only significant during the initial CV scans.  By the 5th cycle, the reduction wave due to 

ORR is no longer measurable.  As is true for other functional SEI formation, the reaction 

is self-limiting in nature.  Second, the scale of the reaction is small.  This is not only because 

the small size of the electrode (<1 cm2), but also because the relative thinness of the SEI, 

which is desired for battery applications.  Importantly, no LiOCH2CH3 was detected in the 

absence of O2.  The direct decomposition of TEP under electrochemical condition without 

O2 is expected to lead to the formation of organolithium compounds (e.g. lithiated 

phosphates) and inorganic lithium salts (e.g. LiOH), which are poor Li+ conductors.  We 

next studied the SEI by IR.  It is observed in Figure 3-8(b) that the introduction of O2 

clearly suppressed the formation of chemicals that give rise to IR peaks at 1048 and 1226 

cm-1.  According to the literature, they correspond to the stretching of ester group (P-O-R) 

and P=O, respectively, in organo-phosphorous species18.  The absorption peaks in the range 

between 1400-1800 cm-1 correspond to the C-H bending and C=C/C=O stretching, which 

may result from direct decomposition of TEP solvent18. The distinct peak at 952 cm-1 

reports on the P-O stretching in orthophosphates (PO43-) or metaphosphates (PO3-)18.  This 

set of data suggests that direct TEP decomposition produces organo-phosphorous species; 

the introduction of O2 alters the reaction pathways to promote the formation of phosphates.   
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Figure 3-8. (a) NMR spectra of electrolyte solution after cycling; (b) IR spectra of 

deposited Li on Cu electrode. 

 
It has been reported that Li-conducting Li3PO4 SEI layer with a high Young's 

modulus can effectively suppress side reactions between Li and the electrolyte19; it also 

limits Li dendrite growth.  Moreover, a dense layer of poly-phosphates is expected to 

prevent direct decomposition of TEP, in a similar fashion how poly-carbonate in the SEI 

enables the operation of graphite electrode.  We are, therefore, inspired to understand the 

effects as follows.  Electrochemically reduced O2 leads to the unique decomposition of 

TEP to yield a thin layer of SEI rich in Li phosphate and polyphosphates.  Such an SEI 

exhibits desired electrical and mechanical properties to regulate Li plating.  The net result 

is that the plated Li is dense and free of dendrites.  The stark difference of the plated Li for 

TEP with and without O2 (Figure 3-2) strongly support this hypothesis.  To further validate 

the conjecture, we performed electrochemical characterization by electrochemical 

impedance spectroscopy (EIS).  Here, the Li||Li cell was examined as a function of the 

cycling history.  It is seen in Figure 3-9 that the initial charge transfer resistance was 

similar for cells with or without O2 (ca. 300 Ω).  After only 1 cycle of Li plating/stripping, 

the resistance increased dramatically (to ca. 1900 Ω) for the cell without O2; in stark 
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contrast, that for the cell with O2 did not change significantly.  The comparison highlights 

that direct decomposition of TEP under electrochemical conditions is highly detrimental to 

Li plating/stripping, consistent with prior reports that organolithium compounds (e.g. 

lithiated phosphates) and inorganic lithium salts (e.g. LiOH) are poor Li+ conductors20.  In 

fact, the measured resistance would increase to ca. 2700 Ω after 10 cycles for a cell without 

O2, making it not meaningful to further characterize the cell.  The increase of the charge 

transfer resistance as measured by EIS is consistent with the rapid rise of the overpotentials 

as shown in Figure 3-1(c).  By comparison, repeated plating/stripping of Li in TEP with 

O2 gradually decreased the charge transfer resistance to ca. 250 Ω after 40 cycles.   

 

Figure 3-9  EIS results of interfacial resistance during cycling in the Li||Li symmetric 

cells. (a) without O2, (b) with O2. 

While further research will likely be needed to further reduce the contact resistance 

for practical applications, the results are encouraging as they are comparable with other 

literature reports studying Li metal as an anode, particularly in non-flammable phosphate 

electrolytes.  Most encouragingly, the nature of the reaction is such that the resistance 

actually decreases over cycling, strongly suggesting that a favorable SEI is formed, as is 

true in other functional SEI formation processes.  To the best of our knowledge, this is the 
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first time that a unique electrochemically-induced electrolyte decomposition pathway is 

proposed.  The mechanism not only enriches the knowledge on the complex reactions that 

enable the formation of “good” SEI, but also serves as a facile approach to enable the 

utilization of an otherwise difficult to implement electrolyte.  Next, we explored the utility 

of the as-formed SEI in protecting Li metal as an anode in Li-O2 and Li-ion batteries. 

Given the involvement of O2 in the above-identified processes, the first prototypical 

battery we sought to test was Li-O2 batteries with TEP as an electrolyte.  Due to the poor 

performance of the anode, earlier attempts toward this end have concluded that organic 

phosphate-based electrolyte was not compatible with Li-O2 batteries.   To prove that the 

system indeed works, we first studied the electrochemical behaviors of the system in a 

three-electrode configuration, where glassy carbon was used as the working electrode, and 

a Li ribbon was used as the counter and reference electrodes.  As shown in Figure 3-10(a), 

the reduction wave took off at ca. 2.6 V, corresponding to the O2 → Li2O2 reaction; on the 

reverse scan, the oxidation wave was observed starting from ca. 3.0 V, corresponding to 

the O2 evolution reaction.  The redox features in TEP electrolyte resemble those in ether-

based electrolytes, which are well established for Li-O2 battery operations.  Importantly, 

these electrochemical features were absent without O2, strongly suggesting that they report 

on reversible O2 reduction and evolution in a TEP electrolyte, which is desired but has not 

been reported previously.  Then we fabricated a Li-O2 full cell for galvanostatic tests.  

Three dimensionally ordered mesoporous carbon (3DOm) was used as the cathode to take 

advantage of its good performance for such applications, especially its stability against 

oxidation21.  As shown Figure 3-10(b), more than 10 cycles of discharge and recharge 

were achieved at a current density of 250 mA/gcarbon in TEP electrolyte.  The cycling 
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performance is comparable to that in the more popularly studied 1,2-dimethoxyethane 

(DME) electrolyte under similar test conditions21.  

 

Figure 3-10. (a) CV measured on a glassy carbon working electrode with or without O2; 

(b) The voltage profiles of the 3DOm carbon electrode during cycling under constant 

current (250 mA/gcarbon) with a cutoff capacity of 500 mAh/gcarbon; (c) Charge-discharge 

profile of Li||LFP cells with or without O2; (d) Cycling performance of Li||LFP cells with 

or without O2. 

 To confirm that the electrochemical features indeed report on the formation and 

decomposition of Li2O2 as the discharge product, the morphology of deep-discharged 

cathode was studied by SEM.  Figure 3-11 shows that a representative toroidal structure 

was observed, consistent with literature reports where fast kinetics favors toroid 

formation22.  
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Figure 3-11 SEM image of Li2O2 on cathode after discharge. 

 The Raman spectrum in Figure 3-12 also proved Li2O2 as the discharge product.  

It is worthy highlighting that the results were obtained by using Li metal as the anode 

without special protections.  This is the first time that a non-flammable phosphate 

electrolyte is demonstrated for the operation of Li-O2 batteries.  It opens up the door to 

constructing safe Li-O2 batteries that could offer high energy densities to fully actualize 

the potentials held by this new chemistry. 

 
 

Figure 3-12  Raman spectrum shows the Li2O2 on cathode after discharge. 
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With exciting results on Li-O2 batteries established, we next tested whether the 

same strategy works for Li-ion batteries.  For this purpose, a full battery consisting of 

LiFePO4 (LFP) as the cathode and a Li metal as the anode was fabricated.  Stark differences 

were readily observed in the voltage-capacity profiles as shown in Figure 3-10(c) with and 

without O2.  The presence of O2 promoted the formation of functional SEI on the Li anode 

and established stable charge and discharge plateaus at 3.55 V and 3.30 V, respectively, 

during the first cycle.  No stable discharge plateau was observed on the cell without O2, 

which quickly worsened even further afterwards, and the cell has practically failed on the 

5th cycle.  Figure 3-10(d) shows that the Li||LFP battery can realized more than 170 

reversible cycles with capacity retention of 82% by introducing O2 as additives. These 

experiments further demonstrate that our strategy can be utilized to promote the 

development of Li metal anode in Li-ion batteries and make non-flammable TEP 

electrolyte as a promising candidate. 

 

3.3  Conclusion 

In conclusion, we demonstrate that O2 as additives can enable Li metal anode operation in 

non-flammable TEP electrolyte. The significantly different cycling performance and 

deposited Li morphology results from the electrochemically induced chemical reaction 

between O2 species and TEP solvent molecules, which leads the Li-compatible SEI 

formation and effectively suppresses the TEP decomposition. The promise of safe TEP 

electrolyte was also demonstrated in Li-O2 battery and Li-LFP battery. In the future, more 
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characterization work need to be done to further reveal the details of secondary reaction 

happened in the electrolyte and how SEI components regulate Li plating/stripping 

behavior. With better understanding of the system, modification of TEP electrolyte can 

serve as a promising safe choice to meet the requirements of practical application of Li 

metal anode. 
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Chapter 4.  Metal-Organic Framework thin film for selective Mg2+ transport 

[This chapter is adapted with permission from “Luo, J.; Li, Y.; Zhang, H.; Wang, A.; Lo, 

W.-S.; Dong, Q.; Wong, N.; Povinelli, C.; Shao, Y.; Chereddy, S.; Wunder, S.; Mohanty, 

U.; Tsung, C.-K.; Wang, D. A Metal–Organic Framework Thin Film for Selective Mg2+ 

Transport. Angewandte Chemie International Edition 2019, 58 (43), 15313–15317. 

https://doi.org/10.1002/anie.201908706.” Copyright (2019) John Wiley and Sons.] 

 

In the quest for post‐Li‐ion battery electrochemical energy storage technologies, Mg‐

battery stands out for its low cost and no dendritic growth upon plating.1 Indeed, recent 

years have witnessed a growing body of reports on realizing the full potential of Mg 

batteries.2 This exciting progress notwithstanding, existing demonstrations face important 

issues, the most significant of which concerns the incompatibility of the anode and the 

cathode chemistries.2c, 3 That is, the types of electrolytes and chemical reactions desired for 

the anode reactions are often incompatible with those for the cathode and vice versa. 

Considering the Mg‐S battery as an example, for successful practical conversion at the 

cathode, high potentials (for example, >3.5 V vs. Mg/Mg2+) are often needed owing to the 

kinetic overpotential requirements,4 but electrolytes that could be used for such processes 

(for example, organic carbonate‐based ones), would form an inert passivation layer on the 

Mg anode, which would greatly increase the overpotentials for Mg striping and 

plating.5 Conversely, chemicals such as Grignard reagents enable facile Mg stripping and 

plating on a Mg anode but would react with S to form phenyl disulfide and biphenyl 

sulfide.3a Similar issues were encountered in emerging Mg‐Br2 and Mg‐O2 batteries as 
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well.2c, 2e While some potentially promising solutions have been proposed, using, for 

example, non‐nucleophilic electrolytes such as Mg(TFSI)2 (where TFSI is 

bis(trifluoromethanesulfonyl)imide),4, 6 Mg/AlClx complexes7 and(HMDS)2Mg+AlCl3 (w

here HMDS stands for bis(trimethylsilyl) amine) in ethereal solvents,8 these electrolytes 

either suffer from poor stability with the Mg anode or severely corrode current 

collectors.3b A broadly applicable strategy to solve this issue is needed to push the field 

forward. 

One solution to this problem lies in a separator that permits selective Mg2+ transport 

but separate the anolyte and the catholyte,2c so as to greatly broaden the choices for each 

respective chemical process (Figure 4-1). Solid‐state electrolytes9 and polymer 

electrolytes10 have been explored to serve as such separators. However, they either feature 

extremely low room temperature conductivity of 10−12–10−8 S cm−1,9c or the lack of durable 

selectivity due to, for example, the structural changes caused by the swelling of the 

polymers,11 which made them less than ideal for practical applications. 

A third class of materials that have been explored for the purpose of selective ionic 

transport is metal–organic frameworks (MOFs).12 MOFs feature well‐defined porous 

structures that could be ideal for selective ionic transport.13 Indeed, MOFs have been 

exploited for the transport of protons (H+),14 Li+,15 and Na+,16 and promising results have 

been published.17 Just within the context of Mg2+ transport, MOFs have been examined by 

Long et al. and Dinca et al., separately.15c, 17b, 18 Mg2+ conductivity up to 2.5×10−4 

S cm−1 has been reported.18 Nevertheless, these pioneering studies often employed pressed 

pellets of MOF powders to bring the fundamental understanding; except in rare cases where 

low resistance was specifically reported,18 pressed pellets often featured resistances 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0002c
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(>5,000 Ω) that are too high for practical applications. Furthermore, there are inevitable 

gaps between adjacent particles in a pressed pellet, which makes it exceedingly difficult to 

understand the true behavior of MOFs as selective ionic conductors.19 Clearly, there is a 

need to fill the gap in research on selective Mg2+ transport by MOFs. Herein we show that 

this need may be met by MOF thin films, which were synthesized on a membrane that can 

be readily utilized.20 It also eliminates interparticle gaps that are abundant in pressed 

pellets. Such a feature may become important in the future because it would enable studies 

on the inherent ionic transport properties of MOFs without confounding factors such as 

inadvertent transport through the gaps. 

 
Figure 3-1. Schematic illustration of how MOF film may be used in a hybrid battery for 

selective transport of Mg2+, where Mg metal serves as the anode and a high-potential Mg-

storage  materials (e.g., S or O2) as the cathode.  The incompatible anolyte and catholyte 

(with high anodic stability) could be separated by a MOF membrane.  
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4.1  Experimental procedures 

Chemicals and materials: MgCl2, dimethoxyethane(DME), bis(2-methoxyethyl) ether 

(diglyme) and propylene carbonate (PC) (all anhydrous grade) were purchased from 

Sigma-Aldrich. Mg metal (Ribbon, ≥99% trace metals basis, Sigma-Aldrich) was scraped 

by a blade to remove the surface passivation layer before usage.  Mg(TFSI)2 was purchased 

from Solvionic. Magnesium nitrate hexahydrate (Mg(NO3)2·6H2O, Sigma-Aldrich, 99%), 

2,5-dihydroxyterephthalic acid (Alfa Aesar, 98%), acetic acid (Sigma-Aldrich, ≥ 99.7%), 

sodium hydroxide (Alfa Aesar, 97.0%), dimethylformamide (DMF, Alfa Aesar, 98%), 

dimethyl sulfoxide-D6 (DMSO-D6; D, 99.9%, Cambridge Isotope Laboratories, Inc.), 

difluoroacetic acid (Sigma-Aldrich, ≥ 97.0%), hydrochloric acid (Fisher), were used 

without further purification unless otherwise stated.  Ultrapure deionized water (DI H2O, 

18.2 ΜΩ) was used for aqueous solution preparation. Free-standing anodic aluminum 

oxide wafers (size: 13 mm, thickness: 100 µm, pore size: 80 nm in diameter) were 

purchased from Inredox Materials Innovation. 

Instrumentation: Scanning electron microscopy (SEM) was performed on a JEOL JSM-

6340F and JEOL JSM-7001Fscanning electron microscope. Powder X-ray diffraction 

(PXRD) patterns were collected on a Bruker D2 diffractometer with Cu Kα radiation 

(λ=1.5418 Å).  AJA International Orion 8 sputter deposition system was applied to make 

substrate.  An adhesive layer of Ti or Cr with 5 nm was firstly sputtered on Si wafer, and 

then a thin layer of Au with 50 nm was sputtered.  1H NMR and 19F NMR spectra were 

collected on a Varian Unity INOVA spectrometers (500 MHz, or 600 MHz) with chemical 

shifts reported in ppm.  Mg plating/stripping and CV measurements were performed in an 
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Argon glovebox (Mbraun, O2 and H2O <0.1 ppm) at room temperature and data collected 

on a VMP3 BioLogic potentialstat. Impedance spectra were recorded by using a 

ModuLab® XM potentiostat. The EIS data were measured by a 25 mV perturbation from 

1MHz to 0.1 Hz. The atomic force microscopy (AFM) measurement was performed using 

ezAFM equipment (Nanomagnetic Instruments), with BM-10 Bench Top Vibration 

Isolation Platform (Minus K Technology). The images were taken with 512x512 Pixel 

resolution. 

Mg-MOF-74 thin film synthesis: The substrate was washed by acetone, methanol and 

isopropanol by sonication in sequence before use. In an autoclave, substrate (1 cm x 1 cm) 

was placed on a cuboid teflon holder (1 cm x 1 cm x 1 cm).  50 µL of precursor solution, 

made by dissolving 2,5-dihydroxyterephthalic acid (0.0606 mmol), magnesium nitrate 

hexahydrate (0.545 mmol), acetic acid (0.303 mol) and sodium hydroxide (0.439 mmol) in 

the 13 mL mixture of DMF, ethanol and water (volume ratio: 1:1:1), was added on the 

substrate. 4 mL mixture of DMF, ethanol and water (volume ratio: 12:1:1) was added in 

autoclave, which would not reach the substrate. Then the autoclave was sealed and put in 

the oven that was preheated to 100°C for 24 h. Then the as-synthesized film was taken out 

washed by DMF and methanol.  

Mg-MOF-74/AAO: The synthesis of MOF-74/AAO was similar to the synthesis MOF-74 

thin film on Au/Si.  An AAO substrate was washed with methanol before use.  75 µL of 

precursor solution (same as MOF-74 thin film) was added on the AAO. The following 

methods are the same as the synthesis of MOF-74 thin film. 

Solvent Exchange and Activation of Mg-MOF-74 thin film: Sample was soaked in 

methanol and change with fresh methanol every 3 h.  The solvent exchange continues two 



 76 

days. And then the sample was placed under 150 °C in vacuum oven for 3 d before any 

measurements. 

Electrochemical measurements:  The exposed portion of the Au contact was connected 

to a wire using silver paste.  Silver paste was cured at 80 °C for 30 min.  The surface was 

further covered by an insulating epoxy resin but leaving a small area (3 mm in diameter) 

of MOF exposed.  The epoxy resin was cured at 80 °C for 15 min. 

For Fc measurements, 1 mM Fc was dissolved in 10 mL acetonitrile with 0.1 M TBAP6F 

as the supporting electrolyte.  Mg-MOF-74/Au was used as the working electrode (exposed 

area was ~3 mm in diameter).  FTO (Fluorine-doped tin oxide) was used as counter 

electrode (~1 cm2 immersed into the solution).  Ag/AgCl was used as the reference 

electrode.  In glove box, cyclic voltammograms were conducted with a scan rate of 50 

mV/s.  The voltage range was -0.3 V– 0.5 V vs. Ag/AgCl. 

For CoTPP measurements, 1 mM CoTPP was dissolved in 10 mL DMSO with 0.1 M 

TBAP6F as the supporting electrolyte. Mg-MOF-74/Au was used as working electrode. 

FTO was used as counter electrode (~1 cm2 immersed into the solution).  Pt was used as 

reference electrode.  CV scans were conducted with a scan rate of 50 mV/s. The voltage 

range was -1.0 V – 1.0 V vs. Pt.  

Conductivity measurements: The Mg salts were filled into the MOF-74 thin film by 

electric field. The Mg-MOF-74/Au was employed as working electrode and it was exposed 

to in 0.25 M Mg(TFSI)2 / 0.5 M MgCl2 /DME liquid electrolyte with applied potential (-

0.5 V) for 4h to uptake Mg2+ before usage (two Mg stripes were used as the counter 

electrode and the reference electrode, respectively). A Swagelok cell was used in the EIS 

measurement. The Au blocking electrode was connected to the cell with silver paste.  The 
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Cu foil was used as the other blocking electrode with a contact area of ca. 0.5 cm2. A thin 

layer of Mg2+-conducting ion-gel electrolyte (prepared in a 90/10 weight ratio of 

EMIMTFSI ionic liquid and methyl cellulose with 0.25M Mg(TFSI)2 salt) was placed 

between Cu and Mg-MOF-74 to ensure the contact.  An alternating current (AC) voltage 

was applied between the two electrodes with the frequencies varying between 0.1 Hz and 

1 MHz.  After the EIS measurement, the Mg-MOF-74/Au electrode was taken out and 

etched by 0.5 M HCl for 2 h to fully dissolve the Mg-MOF-74 layer.  After drying, the 

electrode was subjected to the same EIS measurements with only the ion-gel electrolyte in 

between the two blocking electrodes.  All cell assemblies were performed in a glovebox 

(Mbruan, O2 and H2O < 0.1 ppm) at room temperature. 

The conductivities at different temperature were obtained by same method as described 

above.  The Swagelok cell was rested at the certain temperature for over 2 hours before the 

EIS measurement. The temperature ranged from 25°C to 65°C.  The activation energy (Ea) 

was calculated using the equation σT = σo exp(−Ea/kBT), where σT is the conductivity, σo is 

the pre-exponential parameter, T is absolute temperature, Ea is the activation energy, 

and kB is the Boltzmann constant.  

The EIS data of MOF/AAO was measured with two stainless steel as blocking electrodes 

in H-cell with dual electrolytes. The contact area is 0.196 cm2. An AC voltage was applied 

between the two blocking electrodes with the frequencies varying between 0.1 Hz and 1 

MHz.   

Mg asymmetric cell measurements: Three different Mg stripes were used as the working 

electrode, the counter electrode and the reference electrode, respectively.  MgCl2 (0.1 M) 

and AlCl3 (0.1 M) were dissolved in DME as the anolyte.  Mg(TFSI)2 (0.1 M) was 



 78 

dissolved in diglyme as the catholyte.  The volumes of the electrolytes were both 2 mL in 

each chamber.  The two electrolytes were separated by a Mg-MOF-74 /AAO membrane. 

All electrochemical measurements were performed in a glovebox (Mbruan, O2 and H2O < 

0.1 ppm) at room temperature. 

Solvent (Diglyme and PC)/TFSI- blocking capability measurements: 0.1 M Mg(TFSI)2 

dissolved in PC was placed on one side of the Mg-MOF-74/AAO separator in an H-cell.  

Pure diglyme was placed on the other side of the H-cell with Mg-MOF-74/AAO placed 

between as a separator.  For NMR analysis on the diglyme side, 20 L solvent was taken 

out.  Then it was mixed with 600 L DMSO-D6 and 3 L F2CHCOOH (as a comparison 

in 19F NMR). For the NMR analysis on the PC side, 20 µL solvent was taken out and mixed 

with 600 µL DMSO-D6. 

4.2  Results and discussion 

In this work, we chose Mg‐MOF‐74 as a study platform.21 With parallel 1D hexagonal 

pores of single‐type apertures about 13 Å in diameter, Mg‐MOF‐74 consists of 

coordinatively unsaturated Mg2+ cations as the inorganic building blocks.22 These open 

metal sites can potentially coordinate with multidentate anions and solvent molecules to 

facilitate Mg2+ transport.15a, 18 To examine the conductivity and selectivity of 

Mg2+ transport in Mg‐MOF‐74, we used a wet‐chemistry approach to grow a thin film (ca. 

202 nm) on a Si wafer sputtered with a thin Au layer (ca. 50 nm) that served as a conductive 

contact (Figure 4-2).  

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0021
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Figure 4-2. (a) Top-view and (b) cross-sectional SEM images of Au-coated Si wafer. Scale 

bars: 1μm. 

X‐ray diffraction (XRD) patterns of the resulting film showed two characteristic 

peaks that could be assigned to (210) and (300) of Mg‐MOF‐74, in good agreement with 

the simulated data (Figure 4-3 (c)). The morphology of the film was observed by scanning 

electron microscopy (SEM). As shown in Figure 4-3 (c), uniform coverage of the film was 

achieved. The cross‐sectional side view configuration revealed that the film was uniform 

across the viewing field with a thickness of about 202 nm on a thin layer of Au (Figure 4-

3(b)). The uniformity of the film was also characterized by atomic force microscopy 

(AFM; Figure 4-4), where the root mean square roughness (Rq) was calculated as 4.40 

nm. 

 
 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0001
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Figure 4-3. Structural characterization of the Mg-MOF-74 thin film. (a) Top-view SEM 

image.  Scale bar: 1 μm. (b) Cross-section SEM image of Mg-MOF-74 film on a Si wafer 

sputtered with a thin Au layer (ca. 50 nm).  Scale bar: 1 μm.  (c) XRD patterns of MOF-74 

thin film and a comparison with simulated data. 

 

Figure 4-4. Top-view AFM image of Mg-MOF-74 thin film on Au.  

Next, the electrochemical properties of the MOF thin film were studied. Our first 

goal was to show that the coverage of the resulting Mg‐MOF‐74 thin film on Au‐coated Si 

was complete, and the film was crack‐free. For this purpose, Co tetraphenylporphyrin 

(CoTPP) was employed as a probe redox specie, which is 19 Å in diameter,23 larger than 

the pore of Mg‐MOF‐74 at 13 Å. As expected, a featureless cyclic voltammogram (CV) 

between −1.0 and +1.0 V (vs. Pt reference; see the Supporting Information for 

experimental details) was recorded. In stark contrast, the same electrolyte would yield two 

pairs of distinct redox peaks on a bare Au electrode (Figure 4-5(a)), corresponding to the 

reversible CoI↔CoII and CoII↔CoIII conversion, respectively.2e This set of data showed 

that our film is crack‐free and electronically insulating. When the redox specie was 

switched to ferrocene, whose diameter is 6.6 Å,24 a clean pair of redox peaks characteristic 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0023
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0002
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0002e
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0024
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of the FeII↔FeIII conversion were observed (Figure 4-5(b)). Together with the CoTPP 

experiments, the data supported that Mg‐MOF‐74 permits size‐selective transport of 

ions/molecules. 

 
 

Figure 4-5. Electrochemical properties of the Mg-MOF-74 thin film.  (a) Cyclic 

voltammograms in 1 mM CoTPP or (b) 1 mM ferrocene with bare gold substrate or MOF-

74 film on Au-coated Si.  (c) Electrochemical impedance spectra measured on Au with and 

without MOF with the magnified view (inset) at the high frequency end.  

To further understand the behavior of Mg‐MOF‐74 as a candidate for selective 

Mg2+ transport, we carried out electrochemical impedance spectroscopic (EIS) 

experiments using a solid|ion‐gel25 hybrid cell as schematically illustrated in Figure 4-6. 

Here a hybrid cell was chosen for convenience, so that a reliable contact can be made with 

the MOF thin film without shorting the circuit. An alternating current (AC) voltage was 

applied between the two electrodes with the frequencies varying between 0.1 Hz and 1 

MHz.  

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0002
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0025
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Figure 4-6. The cell configuration of the conductivity measurement. 

As can be seen from Figure 4-5(c), the high‐frequency intersection of the Nyquist 

plot with the x axis reported on the bulk ionic resistance of the materials. And the Bode 

plots in Figure 4-7 also showed the impedance plateau at high frequency that was 

characteristic of bulk ion conduction.  

 

Figure 4-7. Bode plots of MOF thin film at room temperature.  
 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0002
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Without the Mg‐MOF‐74, the value was 13.4 Ω, corresponding to the ionic 

resistance of the ion gel and the resistance of the whole setup; with Mg‐MOF‐74, a 

resistance of 25.6 Ω was recorded. The difference (ca. 12 Ω) was attributed to the resistance 

of the thin Mg‐MOF‐74 film. Given that the film thickness was 202 nm (Figure 4-3(b)) 

and using the measured cross‐sectional area of 0.52 cm2, we calculated the conductivity as 

about 3.17×10−6 S cm−1. It is in the same range as reported previously, where the MOF‐74 

was used as a solid electrolyte (1.58×10−6 S cm−1).18 It is also worth noting that the value 

reported previously was measured on pressed pellets which were rich in voids between 

grains. To what extent these gaps and voids contribute to the measured conductivity will 

require further research to understand. Our CoTPP electrochemical study showed that our 

measured values have no such contribution. We are, therefore, confident that the 

normalized resistivity represents the inherent properties of Mg‐MOF‐74. The activation 

energy of the Mg‐MOF‐74 thin film was 0.53 eV (Figure 4-8). 

 
Figure 4-8. Arrhenius plots of the Mg-MOF-74 thin film. 

 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0018
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With the inherent transport properties understood, our next task was to examine 

whether Mg‐MOF‐74 permits selective Mg2+ transport. An asymmetric cell as depicted in 

Figure 4-9 was employed. It consisted of a Mg strip as the anode, a mixture of 

MgCl2 (0.1 m), AlCl3 (0.1 m) and DME as the anolyte, and another Mg strip as the cathode 

with Mg(TFSI)2 (0.1 m) in bis(2‐methoxyethyl) (diglyme) as the catholyte. The two 

electrodes were separated by a film made of Mg‐MOF‐74 directly grown on an anodized 

aluminum oxide (AAO) porous support via the same wet‐chemistry procedure. Here AAO 

served as a non‐conductive porous support to provide the needed mechanical strength to 

the MOF thin film. To accurately measure the potentials of the working electrode (that is, 

the anode), we also introduced a third Mg strip in the working electrode chamber as a 

reference. In operating this cell, our goals were threefold. First, we expected to test whether 

Mg2+ can be transported through the Mg‐MOF‐74 thin film reliably under electrochemical 

conditions. Second, we hoped to study whether the Mg‐MOF‐74 thin film was effective in 

blocking solvent molecules from crossing over. Third, we wished to monitor whether the 

anions (for example, TFSI−) could be blocked by Mg‐MOF‐74. 

 
 

Figure 4-9. Schematics of the 3-electrode cell configuration. 
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As shown in Figure 4-10, the Mg plating process took place at about −0.15 V (vs. 

Mg2+/Mg; unless noted, all potentials are relatively to this reference), whereas the potential 

for Mg stripping was ca. 0.10 V. These electrochemical features are comparable to 

literature reports in similar electrolytes.7 In contrast, the overpotential was ca. 0.5 V with 

a bare AAO as a separator. The increased overpotential could come from severe crossover 

of TFSI− from catholyte to anolyte which would passivate the Mg electrode.3b, 26 

 

Figure 4-10. Mg plating/stripping data as measured in an asymmetric cell with Mg-MOF-

74/AAO as the separator. The Mg plating process took place at ca. -0.15 V (vs. Mg2+/Mg), 

whereas the potential for Mg stripping was ca. 0.10 V (vs. Mg2+/Mg). 

 
 The cycled Mg working electrodes were characterized by SEM. As shown in 

Figure 4-11, the morphologies of cycled Mg were similar in cells either with bare AAO or 

with MOF/AAO separator. However, the surface components varied according to the X‐

ray photoelectron spectroscopy (XPS) spectra (Figure 4-12). Compared with the 

MOF/AAO system, the cycled Mg working electrode with the bare AAO separator 

contained more MgCO3, MgF2, N and S components that were likely owing to 

TFSI− decomposition.27 This evidence proved that the Mg electrode was less passivated by 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0007
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0003b
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0026
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0027
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TFSI− with the MOF/AAO separator than with only the AAO separator, leading to lower 

overpotentials in the Mg plating/stripping experiments, which is desired.  

 
 

Figure 4-11. SEM images of the Mg working electrodes (in anolyte chamber). (a) Pristine 

Mg electrode; (b) Mg electrode after cycling in cell with bare AAO; (c) Mg electrode after 

cycling in cell with MOF/AAO. 
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Figure 4-12. XPS spectra of cycled Mg working electrodes with bare AAO (top) and 

MOF/AAO (bottom). (a) Mg 1s, (b) C 1s, (c) F 1s, (d) N 1s, (e) S 2p and (f) O 1s. The 

cycled Mg working electrode with bare AAO separator showed contained MgCO3 and 

MgF2 components which were not shown in the spectra of cycled Mg electrode with 

MOF/AAO separator.  

The asymmetric cell with Mg‐MOF‐74/AAO as separator operated for over 100 

cycles with a low overpotential of <0.3 V, as shown in Figure 4-13(a). This set of 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0003
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experiments proved that Mg‐MOF‐74 as a stand‐alone membrane provides adequate 

Mg2+ transport to support repeated striping/plating of Mg in a glyme‐based electrolyte 

system and good TFSI− blocking capability under electrochemical conditions. It is noted 

that the Mg‐MOF‐74/AAO platform used to obtain these results can be further optimized. 

For instance, the overall resistance of the Mg‐MOF‐74/AAO membrane was higher than 

what one would expect from a thin Mg‐MOF‐74 film (for example, that shown in Figure 

4-2( a),(b)) as shown in Figure 4-14. This may be due to the inadvertent penetration of 

Mg‐MOF‐74 into the pores of AAO (Figure 4-15). While addressing this issue is beyond 

the scope of this work, we envision that the deficiency could be readily corrected by using 

different porous substrates. 

 
 

Figure 4-13. Properties of Mg-MOF-74 as a membrane in a practical electrochemical cell.  

(a) Electrochemical features of Mg plating/stripping in an asymmetric cell (see main text 

for details of the experimental conditions).  Current density: 0.05mA/cm2.  Each 

plating/stripping cycle lasted 2 h.  (b) Negligible solvent (PC) crossover was measured 

when Mg-MOF-74 film was used as a separator (red); the crossover was significant when 

bare AAO was used (blue). 

 
 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0001
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Figure 4-14. Electrochemical impedance spectra measured of MOF/AAO(red) and bare 

AAO (blue) with the magnified view (inset) at the high frequency end.  The resistance of 

the MOF film grown on AAO was calculated as 327 Ω, given 0.196 cm2 of the contact 

area, the 64.1 Ω·cm2 resistance was 10 times higher than the MOF thin film grown on Au 

which was 6.4 ·cm2. The large resistance possibly came from the penetration of MOF 

into the pores of AAO which increased the overall film thickness. 

 
 
 

 
 

Figure 4-15. (a) Cross-sectional SEM images of bare AAO and (b)Mg-MOF-74 coated 

AAO. Scale bars: 1μm. 
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Next, we tested the capability of the Mg‐MOF‐74 thin film in blocking the two key 

species in a mixed‐electrolyte battery system, namely the counter ions and the solvent 

molecules. Such a selectivity is critically important, especially for reduction‐vulnerable 

compounds that are used to support the cathode chemistry but are not compatible with Mg 

(for example, TFSI− or ClO4−). To verify the solvent/ion blocking capability of the Mg‐

MOF‐74 film, reduction‐vulnerable electrolyte with 0.1 m Mg(TFSI)2 in propylene 

carbonate (PC)5 was placed on one side of the Mg‐MOF‐74/AAO separator in an H‐cell 

with an anode‐compatible solvent, pure bis(2‐methoxyethyl) ether (diglyme), on the other 

side. The amount of solvent (PC and Diglyme)/TFSI− passing through Mg‐MOF‐74/AAO 

on both sides was measured by nuclear magnetic resonance (NMR) spectroscopy. As 

shown in Figure 4-13 (b), the Mg‐MOF‐74/AAO separator blocked PC for 4 days with no 

PC signal detected in 1H NMR spectra on the diglyme side; the mol ratio of PC to diglyme 

was 0.58 % after 28 days. By comparison, the 1H NMR signal of PC was detected after 

only 30 min when bare AAO was used as the separator (Figure 4-16(a)), and the mol ratio 

of PC to diglyme quickly reached 50 % within 24 h. The TFSI− anion blocking capability 

is shown in Figure 4-16, as well, where the 19F NMR data showed no detectable signals 

owing to TFSI− for up to 28 days. Similar blocking capability for diglyme was also 

observed (Figure 4-17 & 4-18). It is surprising that the MOF‐74 can block solvent and 

anions while allowing the transport of large size molecules, ferrocene. One possible 

explanation is that the abundant open metal sites could potentially play an important role, 

as they are able to bind to the Lewis basic sites on the solvent and anions, limiting their 

mobility. 

https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-bib-0005
https://onlinelibrary-wiley-com.proxy.bc.edu/doi/full/10.1002/anie.201908706#anie201908706-fig-0003
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Figure 4-16. Selected regions of 1H NMR (left side) and 19F NMR (right side) spectra for 

the PC/TFSI- selectivity measurements of bare AAO (blue) and Mg-MOF-74/AAO (red) 

at (a), 30 min, (b), 3 h, (c) & (d), 24 h, and (e) & (f), 28 d. 
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Figure 4-17. Blocking capability measurements for diglyme with bare AAO (blue line) 

and MOF-74 on AAO (red line) as separators in H-cell. Diglyme could be completely 

blocked by MOF-74 within 5 days. The mole ratio of diglyme to PC was only 0.27% after 

20 days. As a sharp contrast, the mole ratio of diglyme to PC reached 28% within one day. 
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Figure 4-18. Selected regions of 1H NMR spectra for the diglyme selectivity measurements 

of bare AAO (blue) and Mg-MOF-74/AAO (red) at (a), 30 min, (b), 3 h, (c) & (d), 24 h, 

and (e) & (f), 28 d. 
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4.3 Conclusion 

In summary, we have demonstrated that Mg‐MOF‐74 thin films can be readily synthesized 

on different supports for selective Mg2+ transport. The thin film was confirmed to be 

electronically insulating but facile in allowing for Mg2+ transport. When directly grown on 

a Au blocking electrode, a room‐temperature resistance of 6.4 Ω cm2 and an ionic 

conductivity of 3.17×10−6 S cm−1 were measured. When loaded onto an AAO support, the 

MOF/AAO could be used as a stand‐alone membrane for electrochemical Mg striping and 

plating in an asymmetric cell configuration. Successful cycling of over 100 cycles with a 

low overpotential (<0.3 V) at a current density of 0.05 mA cm−2 was obtained. Control 

experiments proved that the Mg‐MOF‐74 thin films were effective in blocking the solvents 

(for example, PC) and the anions (for example, TFSI−) from crossing over between the 

anolyte and the catholyte. Taken as a whole, this is a promising material for Mg‐battery 

operations where incompatible chemicals are employed for the anode and chemical 

chemistries is demonstrated. 
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Chapter 5. Summary 

In summary, the thesis showed a clear path toward high energy density batteries through 

electrode and electrolyte design. 

To enable the conversion-type O2 cathode, we have investigated a new nitrogen-

doped free-standing porous carbon material as a promising cathode material for Li-O2 

battery in the first part of this thesis. This material takes advantage of the spontaneously 

formed hierarchical porous structure derived from wood.  The structure is expected to 

facilitate both mass transport and discharge product storage.  Moreover, we introduced 

heteroatom (N) doping to further improve the catalytic activity of the carbon cathode for 

lower overpotential and higher capacity.  We have unambiguously confirmed the initial 

electrochemical process to be the desired reactions of Li2O2 formation and decomposition.  

The free standing nature and mechanical strength of wood derived carbon makes it possible 

to eliminate the need for additional current collector and binders, improving the overall 

energy density and reducing possible parasitic chemical reactions. Also, the renewability 

of wood with this unique structure could potentially provide a cost-effective route as porous 

electrode for large-scale mass production.   

In the second part of this thesis, we focused on the Li metal anode and came up 

with a strategy to resolve conflicts between the battery safety and high energy density. We 

demonstrated that O2 as additives can enable Li metal anode operation in non-flammable 

TEP electrolyte. The significantly different cycling performance and deposited Li 

morphology results from the electrochemically induced chemical reaction between O2 

species and TEP solvent molecules, which leads the Li-compatible SEI formation and 
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effectively suppresses the TEP decomposition. When tested in a symmetric Li||Li cell, 

>300 cycles of repeated Li plating and stripping was achieved at a current density of 0.5 

mA·cm-2; when tested in a Li-O2 prototypical cell, the system showed comparable 

performance as in a flammable, ether-based electrolyte.  Similar strategy worked equally 

well for Li-LFP batteries, too.  The approach represents a new direction in addressing the 

critical safety concerns for high-capacity electrochemical energy storage technologies. 

One alternative strategy to satisfy both the high energy density and the safety 

requirements is the utilization of dendrite-free Mg anode. In the third part of this thesis, we 

developed a thin film metal–organic framework (MOF) for selective Mg2+ transport to 

solve the incompatibility issues between the anode and the cathode chemistry for Mg 

batteries. We have demonstrated that Mg‐MOF‐74 thin films can be readily synthesized on 

different supports for selective Mg2+ transport. The thin film was confirmed to be 

electronically insulating but facile in allowing for Mg2+ transport. When directly grown on 

a Au blocking electrode, a room‐temperature resistance of 6.4 Ω cm2 and an ionic 

conductivity of 3.17×10−6 S cm−1 were measured. When loaded onto an AAO support, the 

MOF/AAO could be used as a stand‐alone membrane for electrochemical Mg striping and 

plating in an asymmetric cell configuration. Successful cycling of over 100 cycles with a 

low overpotential (<0.3 V) at a current density of 0.05 mA cm−2 was obtained. Control 

experiments proved that the Mg‐MOF‐74 thin films were effective in blocking the solvents 

(for example, PC) and the anions (for example, TFSI−) from crossing over between the 

anolyte and the catholyte. Taken as a whole, this is a promising material for Mg‐battery 

operations where incompatible chemicals are employed for the anode and chemical 

chemistries is demonstrated. 


