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Abstract

This dissertation consists of two chapters. Both are centered around the theory and design

of markets, in which the use of money is prohibited and/or strongly undesirable. In my

first chapter, I study multi-object assignment problems. Here, the assignment of gradu-

ate students to teaching assistant positions over the course of two semesters, serves as an

illustrative application. In my second chapter, I propose an alternative way to distribute

asylum seekers among European member states based on the preferences of both sides.

Chapter 1: Multi-Object Assignment: Booster Draft

In my first chapter, I ask the question of how to divide among a set of n individuals a set

of n × m indivisible objects without using monetary transfers, in a way that is efficient,

incentive compatible, and ex-post fair. A well known impossibility result shows that the only

mechanisms that are both incentive compatible and efficient are dictatorship mechanisms. I

fill a gap in the literature by describing a novel mechanism that is both incentive compatible

and fair in the responsive preference domain. The mechanism is inspired by booster drafts

used in competitive card game tournaments. The idea is to arbitrarily divide the set n×m



objects into m “boosters” (sets) of size n and specify a priority order for each such booster.

Afterwards the individuals pick objects from the boosters in order of priority. The outcome

of the booster draft mechanism can be improved if additional knowledge about a particular

market is incorporated into the creation of boosters. I point out a special case of multi-

object assignment problems, motivated by the allocation of teaching assignments among

graduate students. In this domain the creation of the boosters is straightforward. Indeed,

at the Boston College economics department, graduate students are assigned exactly one

fall and one spring semester task over the academic year. Here the optimal way of creating

boosters is to group up all spring teaching assignments in one booster and all fall semester

assignments in the other. In this case the balanced booster draft is not only strategy-

proof and fair, but also weakly efficient (dominance efficient). Moreover, for this restricted

assignment domain I characterize the set of all booster drafts as any (strongly) strategy-

proof, neutral and non-bossy mechanism. In the final part of the paper I take a closer look

at the teaching assistant assignment problem, using date on the submitted rankings over

semester-tasks by graduate students. The simulation exercise provides additional evidence

that the proposed mechanism is a sensible practical solution. In particular, I show that for

a simple measure of welfare students prefer a balanced booster draft to a serial dictatorship

mechanism if they are mildly risk averse.
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Chapter 2: An Alternative Asylum Assignment

The 2015 refugee crisis has demonstrated the necessity of revising the current European

asylum system. As an alternative, I propose to take into account preferences of asylum

seekers as well as preferences of member states. Asylum seekers indicate how long they

are willing to wait for their asylum application for any given member state, allowing them

to avoid overburdened member states by opting for “less popular” member states. Within

the market design literature, this is the first paper proposing to match asylum seekers as

opposed to refugees. In other words, its stays much closer to the template of the Common

European Asylum System.

From a theoretical perspective, it turns out that the asylum seeker framework can be for-

mulated as an application of the well-known matching with contracts model by Hatfield

and Milgrom (2005a). This simplifies the analysis a great deal, as matching with contracts

is a well studied framework within the matching/market design literature. I show that

the standard cumulative offer mechanism (Gale and Shapley, 1962a; Hatfield and Kojima,

2010a) is asylum seeker incentive compatible and leads to stable outcomes, using the fact

that the proposed choice functions have a completion satisfying substitutability and the law

of aggregate demand Hatfield and Kominers (2016). Moreover, stability implies two sided

Pareto efficiency, giving consideration to both preferences of member states and asylum

seekers.
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Chapter 1

Booster Draft Mechanism for

Multi-Object Assignment

1.1 Introduction

In this paper, we study the multi-object assignment problem. That is, m × n indivisible

objects have to be distributed among n individuals, without the use of monetary transfers.

Examples include the assignment of shifts to interchangeable workers, players to sport

teams, courses to students, and teaching assignments to graduate students. We introduce

a new mechanism, which stands out in terms of simplicity and strategy-proofness, that is,

it will be always optimal for individuals to reveal their true preferences. The mechanism is

inspired by the following multi-object assignment process used in Magic: The Gathering, a
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Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

competitive trading card game:1

In a booster draft, players each receive three booster packs

of 15 cards. After being seated around a table, each player

simultaneously opens one booster pack, selects a single card, and

then passes the rest over to the next player. After all players

have drafted fifteen cards, they each open their second pack, and

drafting continues, sometimes in reverse order during the second

pack (MTGWiki, 2019).

We formalize an algorithm that captures the essential elements of the mechanism described

above. As input, individuals report rankings over the available objects. In a first step, the

objects are arbitrarily divided into m sets of size n, and a separate priority order for each

set determines the sequence in which objects are picked. In line with the motivation, we

refer to these sets as “boosters.” Following his/her reported ranking, the individual whose

turn it is to select from a given booster adds the best available object to his/her collection.

Once all objects are distributed, a final allocation is reached. Fixing the objects within

each booster as well ass the corresponding priority orders the algorithm induces a function

from rankings to allocations, which we refer to as a booster draft (BD) mechanism. More

precisely, we introduce a class of mechanisms, as every design of boosters and priorities

1Magic: The Gathering (MTG) was the first commercially successful trading card game, developed by
Richard Garfield and published in 1993 by Wizards of the Coast (https://company.wizards.com/). Analogous
to a sports drafts, MTG introduced a play mode in which players draft cards from a common pool. Afterwards
every player builds a deck using a subset of the drafted cards. Only then do players compete against each
other with their constructed decks. There are countless other online/offline trading card games featuring a
booster draft-inspired play-mode.
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Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

yields a distinct BD mechanism.

We start by analyzing how well BD mechanism perform if used for a general multi-object

assignment problem. Postponing the details to a later part of the introduction, we show

that any BD mechanism is strategy-proof in the “responsive” preference domain.2 To ensure

that individuals cannot benefit from manipulation, we need them to pick at most once from

every booster, therefore we restrict the sets to be of size n. Moreover, responsiveness ensures

that an individual does not want to change its earlier picked objects, based on the objects

received later on. Furthermore, we show that any “balanced” booster drafts satisfies a

reasonable notion of fairness.3 It is well known that in the multi-object environment, there

does not exist any mechanism simultaneously satisfying strategy-proofness, efficiency, and

fairness. Therefore, we cannot ensure that the outcomes of the BD mechanisms will be

efficient.

Following these observations, in the second part of the paper, we take a market design

perspective, exploiting additional restrictions on preferences and allocations for specific

markets, in order to improve the outcome of the BD mechanism. Paying attention to detail,

we ask how to design the underlying boosters and priority orders. We focus our attention on

the assignment of teaching positions to graduate students, in which a restriction is placed on

the set of feasible allocations. Specifically, at the economics department under consideration,

2Responsiveness requires that an individual will always prefer a higher ranked object to a lower ranked
one regardless of any other items in his/her possession.

3Balanced BD mechanisms place the following restriction on the priority orders: For any pair of indi-
viduals i and j, i has lower priority than j in at most half of the available boosters, rounded down if there
is an odd number of boosters, i.e., dm

2
e.
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Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

graduate students are supposed to work as a teaching assistant for exactly one fall and one

spring semester course.4 Here, the optimal way of creating boosters is to group up all

spring teaching assignments in one booster and all fall semester assignments in the other.

In this case, the balanced booster draft is not only strategy-proof, but also (weakly) efficient

and fair. More generally, we describe the partition-restricted assignment domain, i.e., any

multi-object assignment problem for which there exists an exogenous partition of objects,

such that any two objects within the same set cannot be obtained by the same individual.

As before, the creation of boosters for running the BD algorithm is no longer arbitrary, but

naturally follows the exogenously given partition. In theorem 1, we characterize the set of

all “partition-consistent” BD mechanism for this domain. In particular, given the standard

requirements of non-bossiness and neutrality any strategy-proof mechanism must fall into

the category of booster draft mechanisms.5 We conclude that in any partition-restricted

multi-object assignment problem, the balanced BD mechanism arises as a natural candidate

to be employed. How to create boosters for other multi-object assignment problems remains

an open question.

In the third part of the paper, we take a closer look at the assigning of graduate students to

teaching positions. We use 2018 data on the preferences of graduate students, at a particular

economics department, to simulate assignments under the balanced BD mechanism. That

4One relevant rational for the requirement is the following: As many graduate students in the economics
department are international students, their visa status (F1) allows them to work up to 20 hours per week,
preventing them from fulfilling the work-requirement for two positions in the same semester, without violating
their visa regulations.

5Non-Bossiness requires that no individual can influence the allocation of another individual without
affecting its own allocation, while neutrality states that the mechanism should be immune to a relabeling of
the object.
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Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

is, at the end of the academic year, students separately rank all the fall and spring semester

tasks. Before the start of the new academic year, an assignment is created based on the

submitted rankings. For the simulation, students are randomly ordered and pick their

preferred fall semester assignments one after another. Then the initial random order is

reversed and students pick their spring semester assignments in the same fashion. The BD

mechanism outperforms the actual assignment in that year, both in terms of efficiency and

fairness. Moreover, simulating the outcome of serial dictatorship as an alternative, we show

that the BD mechanism reaches comparable outcomes in terms of efficiency, while achieving

higher fairness.6 This discussion concludes the main part of the paper. We belief that an

additional strength of the booster draft lies in its simplicity. Therefore, in the remainder,

we evaluate in which sense the BD rule’s non-manipulability is simple to grasp, following

the concept of obvious strategy-proofness.7 We now will discuss some of the previously

omitted definitions and ideas in more detail.

Running the BD mechanism, every individual reports a simple order/ranking over the avail-

able objects.8 As strategy-proofness, efficiency, and fairness are all formulated in terms of

individuals preferences, we first need to establish a link between the reported order over

objects and the underlying preferences. In particular, consider the following partial order,

6Under a serial dictatorship, for any two students A and B, one of them is going to choose all his/her
objects before the other. The mechanism is simple to implement, efficient, and strategy-proof and has
therefore often been used in practice. An important shortcoming is that serial dicatorships lead to very
unfair allocations, especially if individuals value similar objects.

7In practice strategy-proofness is not always strong enough. People sometimes will try to manipulate a
mechanism, failing to recognize its strategy-proofness. Li (2017) introduces the strengthening of strategy-
proofness called obvious strategy-proofness that addresses the issue.

8For any preference relation, we refer to the ranking of singleton sets as the “underlying simple order.”
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Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

which we refer to as a dominance relation: Given a simple order over objects, for any two

(same size) sets A and B, A dominates B if for every object in B there is a concomitant

object in A that is (weakly) preferred to the one in B. In lemma 1, we show that if A is

preferred to B by set-wise domination, then the same holds true for the actual preferences.

This connection allows us to analyze which properties the BD mechanism satisfies.

A mechanism is strategy-poof if an individual cannot obtain a better outcome by submit-

ting a untruthful ranking over objects. The BD mechanism is strategy-proof, as the final

allocation is (weakly) set-wise dominating any other outcome obtainable by submitting an

different ranking. The idea behind the fairness concept is as follows: Pick a final allocation

and suppose individual i prefers individual j’s bundle to his/hers. Let us sequentially re-

move the best object from j’s and the worst object from i’s assignment, following i’s simple

order. At some point, i (weakly) prefers her reduced bundle to j’s reduced bundle. A mech-

anism is k envy-free, if the maximum number of pairs of objects that have to be removed

to eliminate envy for any individual i over the bundle of any j, at any possible allocation,

is equal to k. The larger k is, the higher the envy of an individual. The maximum envy

under the balanced BD mechanism is equal to half of the obtained objects rounded up.

Efficiency requires that for any final allocation, no other allocation of objects makes every-

one weakly and at least one individual strictly better off. We relax efficiency to dominance

efficiency, ruling out that all individuals can be made better off in terms of set-wise domi-

nance. In proposition 4 we show that an allocation is dominance efficient if and only if there

6



Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

does not exist any “exchange-cycles” between a subset of individuals, s.t. everyone gives

and receives exactly a single object, and everyone is better off after the trade takes place.

However, our weakened efficiency criteria does not rule out that swapping a combination of

objects, some deemed better and some worse than the ones exchanged, can lead to a more

desired allocation for all involved parties. The BD mechanism violates dominance efficiency

in the standard responsive domain. We also show that in the standard responsive prefer-

ence domain no mechanism can simultaneously satisfy envy-freeness for half of the objects,

dominance strategy-proofness, and dominance efficiency.9 As discussed previously, we can

avoid the impossibility result by incorporating market specific restrictions. For instance,

we show that in the partition-restricted assignment domain the BD mechanism satisfies

dominance efficiency on top of strategy-proofness and envy freeness for half of the objects.

Finally, we ask whether the BD mechanism is implementable via an extensive form game

in an obviously strategy-proof (OSP) way. A mechanism is OSP implementable if there

exists an extensive form game that yields the same outcome as the proposed mechanism

with the added restriction that, at any information set in which an individual is called

to play, the best outcome under truthful play is weakly preferred to any possible history

reachable from the same information set. The BD mechanism is not OSP implementable.

We introduce a weakening of OSP called dominance obvious strategy-proofness (DOSP),

that limits the attention to outcome pairs comparable by set-wise domination. Unlike the

9Dominance strategy-poofness is a weakening of strategy-proofness, requiring that no individual can
manipulate the mechanism, s.t. his/her assignment (strictly) improves under the dominance relation. Hence,
this notion allows for some manipulations to take place.
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standard responsive domain, the BD mechanism is DOSP implementable in the partition-

restricted domain, providing additional evidence that the BD mechanism is a strongly viable

candidate for the restricted multi-object assignment problems. We continue by discussing

the relevant literature.

1.2 Related Literature

A series of impossibility results have pointed out that any efficient and strategy-proof mech-

anism is a serial dictatorship (Pápai, 2001; Klaus and Miyagawa, 2002; Ehlers and Klaus,

2003). We add a new impossiblity result to the literature, showing that even weaker ver-

sions of fairness, strategy-proofness, and efficiency cannot be simultaneously satisfied by a

mechanism.

Initially, we are interested in strategy-proof mechanisms that are also fair. Related to

this, Moulin (2019) provides a comprehensive survey of the long-standing literature on

fair division problems. Our definition of envy-freeness is adapted from Budish (2011),

although we modify their definition to account for the possibility of distributing bads,

as well extending it, allowing for the removal of an arbitrary number of objects.10 For

practicality, we let individuals report simple orders over objects. We then have to establish

a link between the reports of individuals and their preferences across sets of objects. This

10Suppose for example that only non-disposable bads are distributed. Hence removing a bad from the
bundle of individual j will only increase the envy of individual i. In this case one should remove the worst
object from i’s bundle instead. We take care of both cases by always removing the best object from j and
the worst object from i simultaneously. Aziz et al. (2018) have a similar definition based on removing a
single good on each side. Moreover, instead of considering 1 envy-freeness, we allow for an arbitrary k.

8
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approach relates to Brams and Fishburn (2000), Brams, Edelman and Fishburn (2003), and

Edelman and Fishburn (2001).

In the second part of the paper, we take a market design perspective. We exploit the addi-

tional structure specific markets impose on preferences and or final allocations, to adjust our

mechanism to the problem at hand. This has been done before for multi-unit assignment

problems, in the context of course allocation at business schools (Sönmez and Ünver, 2010;

Budish, 2011; Budish and Cantillon, 2012).11 Budish (2011) provides a solution to the more

general combinatorial assignment problem, introducing the approximate competitive equi-

librium from equal incomes (ACEEI) mechanism. Efficiency and strategy-proofness of the

ACEEI mechanism rely on the market being large enough such that people become price

takers. Unfortunately, ACEEI cannot be obtained in a constructive way (Othman, Sand-

holm and Budish, 2010; Budish et al., 2016). This might cause legitimacy issues (Bo and

Li, 2019), as its not possible to publicly implement the outcome of ACEEI. Related to this,

Li (2017) points out that if a mechanism is hard to understand in practice, some individuals

will employ dominated strategies, even if the mechanism is strategy-proof. An additional

appeal of the BD mechanism lies in its simplicity. The discussion of the dominance obviously

strategy-proofness, relates to the small body of literature on obviously strategy-proofness

(Li, 2017; Zhang and Levin, 2017; Ashlagi and Gonczarowski, 2018; Pycia and Troyan, 2018;

Troyan, 2016).

11The multi-unit assignment problem is a slight variation to on the multi-object assignment problem, in
which several units of the same object are available, e.g., representing the number of available seats for each
course. None of the results we present depend on the absence of multiple copies of objects. We ignore it to
reduce the notation, as it does not give any additional insight.

9



Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

In general, our research relates to the larger field of matching theory started by Gale and

Shapley (1962a). In particular, the characterization result draws from Svensson (1999) and

Hatfield (2009), while the responsiveness preference assumption is based on Roth (1985).

Finally, the assignment of graduate students to teaching assignments falls into the category

of applied matching problems (Abdulkadiroglu and Sönmez, 2003a; Sönmez and Switzer,

2013a; Delacrétaz, Kominers and Teytelboym, 2019). We are not aware that this particular

application has been discussed in any previous literature.

1.3 Model

A multi-object assignment problem is a triple 〈I,O,%〉, where

1. I is a finite set of |I| = n individuals,

2. O is a finite set of |O| = m× n objects with m ≥ 2, and

3. %= (%i)i∈I a list of preferences over sets of objects 2O.

We want to distribute all the available objects among the individuals. An allocation

A = (Ai)i∈I gives every individual i ∈ I a subset of objects Ai ∈ 2O. An allocation is

feasible if for any two distinct individuals i, j ∈ I with i 6= j, their assignments do not

overlap Ai ∩ Aj = ∅, and all objects are distributed
⋃
i∈I Ai = O. Let A denote the set of

all feasible allocations. Every individual has a preference relation %i over sets of objects.12

12For any O′, O′′ ∈ 2O with O′ % O′′ but O′′ 6% O′ we write O′ �i O
′′, similarly for any O′, O′′ ∈ 2O with

O′ % O′′ but O′′ % O′ I write O′ ∼i O
′′.

10



Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

Slightly abusing notation %i denotes preferences over sets of objects as well as allocations,

such that A %i A
′ if and only if Ai %i A

′
i. The underlying assumption is that individuals

only care about their own assignment.

From individual i’s perspective, an object o is a good if receiving the object is preferred

to not receiving it, i.e., {o} �i ∅. The empty-set, ∅, represents an empty assignment.

Conversely, an object is a bad if not receiving it is preferred to receiving it, i.e., ∅ �i {o}.

For simplicity, we focus on the case where everyone agrees whether objects are good or bad.

Formally, we have {o} %i ∅ if and only if {o} %j ∅ for all j ∈ I and hence ∅ �i {o} if and

only if ∅ �j {o} for all j ∈ I. Preferences over objects are responsive. The idea is that if

an individual prefers object o to another object o′ then we can infer, no matter what other

objects O′ ⊂ O the individual possesses, that {o}∪O′ is preferred to {o′}∪O′. I.e., for any

o, o′ ∈ O and O′ ⊂ O \ {o, o′} we have that O′ ∪ {o} %i O
′ ∪ {o′} if and only if {o} %i {o′}.

Likewise, a good is always desirable, while a bad makes an individual always worse off, i.e.,

for any o ∈ O and O′ ⊂ O \ {o} we have O′ ∪ {o} �i O′ if and only if {o′} �i ∅. Finally,

we restrict our attention to preferences that strictly rank any pair of singletons. That is for

any o, o′ ∈ O with o 6= o′ either {o} �i {o′} or {o′} �i {o}.

1.3.1 Submitted Rankings and the Booster Draft Mechanism

As it is impractical to ask individuals for their full preference relation over all sets of objects,

throughout the analysis, we let each individual report a strict simple order Pi over the

11



Chapter 1 Booster Draft Mechanism for Multi-Object Assignment

available objects O, with the associated simple order Ri.
13 The set of possible rankings

for any i ∈ I is denoted as Pi, and represents all possible ways one can order the available

objects O. P = (Pi)i∈I denotes a list of simple orders for every individual i ∈ I with P

representing the set of all possible lists. For a given preference relation �i over 2O we say

Pi is the associated simple order over O if for all o, o′ ∈ O we have that o Pi o
′ if and

only if {o} �i {o′}. That is, the associate simple order ranks all the objects in the same

way as the underlying preference relation.14

Even though it is not possible to infer the whole preference relation %i over 2O from the

associated simple order Pi over O, the responsiveness assumption lets us compare some sets

by element-wise dominance. To express this relationship, we define a partial order ≥i over

2O based on a simple order Pi. We will refer to the partial order ≥i as the dominance

relation. The idea is that two sets of objects are comparable if for every object in one

set we can find a weakly preferred concomitant object in the other set. Formally, let

o′i,l = {o ∈ O′ : |{o′ ∈ O′ : o′ Ri o}| = l} be the lth best object in subset O′ ∈ 2O following

simple order Pi. Then, for any two subsets O′, O′′ ∈ 2O of equal size |O′| = |O′′| = m′, we

have O′ ≥i O′′ if and only if o′i,l Ri o
′′
i,l for all l ∈ {1, . . . ,m′}.15 In the following we show

13The strict simple order Pi is transitive, asymmetric, and complete. The associated simple order Ri is
transitive, antisymmetric and strongly complete. Strong completeness implies reflexiveness and is therefore
not listed under the properties of a simple order. Simply put, unlike Pi which is asymmetric, Ri also
compares any object with itself. Otherwise both relations ranks every pair in the same way. See Roberts
(1985) for an excellent overview on binary relations and their properties. Finally as every person agrees
whether an object is a good or a bad, together with requiring every object to be assigned to someone, it is
sufficient to let individuals rank O as opposed to O ∪ {∅}.

14Note that Pi is a strict simple order (transitive, asymmetric, and complete) as �i strictly ranks all pairs
of singleton sets in a transitive way. Moreover, the associated simple order Pi is uniquely determined for
each preference relation �i, while multiple (responsive) preference relations �i are consistent with any given
simple order Pi.

15A partial order is a reflexive, antisymmetric, and transitive binary relation (Roberts, 1985). We use
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that if the dominance relation ≥i based on Pi rank two sets of objects, then it does so in

the same way as the responsive preference relation with the same associated simple order

Pi.

Lemma 1. Let %i be any responsive preference relation over 2O with associated simple

order Pi, and ≥i the corresponding dominance relation. For any O′, O′′ ∈ 2O if O′ ≥i O′′

then O′ %i O
′′.

Proof. Suppose we have O′, O′′ ∈ 2O with O′ = {o′i,1, . . . , o′i,m′} ≥i O′′ = {o′′i,1, . . . , o′′i,m′}.

As O′ ≥i O′′ we have o′i,1 R1 o′′i,1 as well as {o′i,1} %i {o′′i,1}. Using responsiveness for

{o′′i,2, . . . , o′′i,m′} ⊆ O \ {o′i,1, o′′i,1} and {o′i,1} %i {o′′i,1} we get {o′i,1, o′′i,2, . . . , o′′i,m′} %i O
′′ =

{o′′i,1, o′′i,2, . . . , o′′i,m′}. Replacing one-by-one o′′i,k by o′i,k for all k ∈ {2, . . . ,m′} and in-

voking responsiveness we get O′ = {o′i,1, o′i,2, . . . , o′i,m′} %i . . . %i {o′i,1, o′′i,2, . . . , o′′i,m′} %i

{o′′i,1, o′′i,2, . . . , o′′i,m′} = O′′. By transitivity of %i we reach the conclusion that O′ %i O
′′.

We now go back to the question of how to distribute the available objects. That is, we are

interested in finding a simple mechanism ψ : P → A that selects an allocation A ∈ A for

any reported list of orderings P ∈ P.

O′ >i O′′ to denote that O′ ≥i O′′ but O′′ 6≥i O′′. Similarly we use O′ =i O′′ whenever O′ ≥i O′′ and
O′′ ≥i O

′′, where given our assumptions on preferences in this case the two sets O′ and O′′ must be identical.
For any i ∈ I and any ranking Pi ∈ Pi respectively P̂i ∈ Pi we will use %i respectively %̂i to denote any

responsive preference consistent with order Pi respectively P̂i and ≥i respectively ≥̂i for the dominance
relation based on Pi respectively P̂i. To reduce notation, we only define the dominance relation for of equal
size, which will be sufficient for our purpose.

13
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Booster Draft (BD) Algorithm

Step 000.

Let the set of objects O be arbitrarily partitioned into m boosters of equal size {O1, . . . , Om}

with |Ok| = n for all k ∈ {1, . . . ,m}. Moreover construct m different priority for every

booster {f1, . . . , fm}.16

Step 1 ≤ t ≤ n+ 11 ≤ t ≤ n+ 11 ≤ t ≤ n+ 1.

For k ∈ {1, . . . ,m} following the priority orders let any person i ∈ I claim her most

preferred object according to Pi among remaining ones in any booster Ok where her priority

is fk(i) = t.

In each of the m buckets there are (n − t) objects left. If there are no objects left the

algorithm terminates and every person gets assigned her claimed objects.

For those interested we next discuss a short example, illustrating our mechanism.

Example 1. Family Heirloom Assignment Problem

Let the set of n = 3 individuals, respectively siblings, be I = {i, j, k}. The available objects

areO = {Armchair, Bagpipe, Clock, Diamond-ring, Earings, Fine wine} with n×m = 2×3.

Moreover, individual i reports Pi : D - B - A - C - F - E, individual j Pj : B - A - C -

E - F - D, while individual k reports Pk : B - D - E - F - A - C. Figure 1.1 illustrates

the functioning of the described booster draft algorithm, with boosters O1 = {A,B,C},

O2 = {D,E, F}, and priority orders f1 : i − j − k, f2 : k − j − i. Even though we have

not yet formally introduced the definition, this example portrays a balanced booster draft.

14
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It can be easily verified that the final allocation in this case is Ai = {B,E}, Aj = {A,E},

and Ak = {C,D}.

1.3.2 Properties of the Booster Draft mechanism

We evaluate mechanisms along three dimensions, whether they are manipulable by sub-

mitting untruthful rankings, the efficiency of their outcome, and how fair their assignment

is ex post. We start by defining the requirement that individuals should not be able to

get a better outcome by misrepresenting their true preferences. A simple mechanism ψ is

strategy-proof if for all i ∈ I,Pi, P̂i ∈ Pi, and P−i ∈ P−i we have ψi(P ) %i ψi(P̂i, P−i).

Intuitively, we can think of Pi as the truthful report and P̂i as a possible lie. Strategy-

proofness requires that the outcome under a truthful report must be (weakly) preferred

to any possible outcome associated with a lie. In order to show that the BD mechanism

is strategy-proof we proof the following stronger property: A mechanism ψ is strongly

strategy proof if for all i ∈ I, Pi, P̂i ∈ Pi, and P−i ∈ P−i we have ψi(P ) ≥i ψi(P̂i, P−i).

The logic is the same as before, but we require that the outcome is (weakly) preferred under

the associated dominance relation ≥i. Together with lemma 1, strong strategy-proofness

implies strategy-proofness.

Proposition 1. The BD mechanism is strongly strategy proof.

Proof. Suppose by contradiction that there exist ψi(P ) 6≥i ψi(P ′i , P−i). Then there exists

at least one bucket k ∈ {1, . . . ,m} such that ψki (P ′i , P−1) Pi ψ
k
i (P ). But as P−i is fixed
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all individuals with higher priority will pick identical items in bucket k independent of i

reporting Pi or P ′i , so i gets to choose from the same set of remaining objects. Hence we

have that the obtained item under Pi is weakly preferred to any item obtained by reporting

another simple order, i.e. ψki (P ) Ri ψ
k
i (P ′i , P−i) for all k ∈ {1, . . . ,m} contradicting the

initial statement.

Corollary 1. The BD mechanism is strategy proof.

We move on, defining the (ex post) fairness of an outcome. For j 6= i and an outcome of a

mechanism ψ(P ) ∈ A let ψ(P )kj,i = {o ∈ ψ(P )j : |{o′ ∈ ψ(P )j : o′ Ri o}| ≤ k} denote the set

of objects obtained from ψ(P )j by removing the best k objects according to Pi. Similarly

let ψ(P )ki,i = {o ∈ ψ(P )i : |{o′ ∈ ψ(P )i : o′ Ri o}| ≥ m− k + 1} denote the set obtained by

removing the worst k objects from ψ(P )i following the ranking Pi. We say that mechanism

ψ is kkk-envy free if for all P ∈ P and for all i, j ∈ I we have ψ(P )ki,i %i ψ(P )kj,i. That is, for

any individual i that prefers her bundle to another persons bundle j, we can always remove

the best k objects from j’s bundle and the k worst objects from i’s bundle to eliminate i’s

envy. Note that if both bundles contain only goods, it would be sufficient to remove only k

object from j’s bundle to eliminate envy of i. Likewise if both bundles only contain bads we

could only remove k objects from i’s bundle. By removing both simultaneously we do not

need to pay attention whether we remove goods or bads. Naturally, envy-freeness is more

demanding the smaller the chosen k. We restrict our attention to a subset of BD mechanism

that equalize the priorities across individual as much as possible across the available buckets.
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That is, for any two individuals i, j ∈ I, we have that i has higher priority than j is at most

half of the boosters - rounded up. Formally, a BD mechanism is a balanced booster draft

mechanism if for all i, j ∈ I we have |k ∈ {1, . . . ,m} : fk(i) < fk(j)}| ≥ bm2 c. Let us next

state the trivial observation that the set of balanced booster drafts is always non-empty,

followed by proposition 3, stating that balanced booster drafts are dm2 e envy-free.

Proposition 2. The set of balanced BD rules is non-empty.

Proof. We simply show this by construction for any m boosters. Fix any priority order f1.

For all i ∈ I let f2(i) = n+ 1−f1(i), i.e. f2 reverses the order of priority of f1. For all odd

k ∈ {1, 3, . . . } let fk = f1 and for all even k ∈ {2, 4, . . . } let fk = f2. For any i, j ∈ I if i

has a lower priority in all odd (even) priorities than j, i has higher priority than j in all even

(odd) priorities, hence it directly follows that |k ∈ {1, . . . ,m} : fk(i) < fk(j)}| ≥ bm2 c.

Proposition 3. The balanced BD mechanism is dm2 e envy-free.

Proof. Consider the outcome of any balanced booster draft mechanism ψ(P ) where some i

envies j. Let Ki = {k ∈ {1, . . . ,m} : fk(i) < fk(j)} denote the set of all bucket where i

has higher priority than j. Note that every object obtained by i in these buckets must be

weakly preferred to any object obtained by j, and hence we have:

⋃
k∈Ki

Ok ∩ ψ(P )i ≥i
⋃
k∈Ki

Ok ∩ ψ(P )j

Moreover, following Pi, the set obtained by removing the m−|Ki| worst objects from ψ(P )i,
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denoted by ψ(P )
m−|Ki|
i,i , must weakly dominate the set

⋃
k∈Ki

Ok ∩ ψ(P )i. Similarly, the

set obtained from removing the best m− |Ki|, denoted by ψ(P )
m−|Ki|
j,i , objects form ψ(P )i

must be weakly dominated by
⋃
k∈Ki

Ok ∩ ψ(P )j , and hence:

ψ(P )
m−|Ki|
i,i ≥i ψ(P )

m−|Ki|
j,i

Note that balancedness implies that |Ki| ≥ bm2 c, i.e. for all i, j ∈ I we have |k ∈ {1, . . . ,m} :

fk(i) < fk(j)}| ≥ bm2 c. From this it follows directly that the lower bound on envy for each

individual i is m−|Ki| = m−bm2 c = dm2 e. By lemma 1 we have ψ(P )
m−|Ki|
i,i ≥i ψ(P )

m−|Ki|
j,i

implying ψ(P )
m−|Ki|
i,i %i ψ(P )

m−|Ki|
j,i , which concludes the proof.

The last criteria concerns efficiency. We say that a simple mechanism ψ is Pareto efficient

if for each preference profile P ∈ P there does not exist a different allocation A ∈ A s.t.

everyone prefers the allocation to the outcome under the mechanism, i.e., Ai %i ψ(P )i for

all i ∈ I and Ai �i ψ(P )i for at least some i ∈ I. Following the same logic, we introduce a

weaker notion of efficiency, requiring that no allocation can make everyone better off under

the dominance relation. A mechanism rule ψ is dominance efficient if for each P ∈ P

there does not exist an allocation A ∈ A s.t. Ai ≥i ψ(P )i for all i ∈ I and Ai >i ψ(P )i for

at least some i ∈ I.

We show that dominance efficiency rules out that any number of individuals can trade single

objects with each other and all benefit from the exchange. A (feasible) single object

trade, under allocation A, is a sequence of individual-object pair (i1, o1), (i2, o2), . . . , (ik, ok)
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with o1 ∈ Ai1 , . . . , ok ∈ Aik such that i2 receives o1, i3 receives o2, so on and so forth, until i1

receives ok. An efficient single object trade requires that all individual are strictly better

off after the trade takes place, i.e., Ai1 ∪{ok}\{o1} �i1 Ai1 , . . . , Aik ∪{ok−1}\{ok} �ik Aik .

We show the following characterization result.

Proposition 4. Under responsive preferences, an allocation A is dominance efficient if and

only if there are no efficient single object trades at A.

Unfortunately, the increased fairness of the BD rule comes at the cost of loosing efficiency,

even in its weaker form.

Proposition 5. The BD mechanism is not dominance efficient.

Proof. We proceed by counterexample. Let I = {1, 2} and O = {o1, o2, o3, o4}. Let ψ be the

draft mechanism with O1 = {o2, o3}, O2 = {o1, o4} and priority order f1 : 1, 2 and f2 : 2, 1,

where we list individuals in order of assigned priority. Suppose the reported ranking is

P1 : o1, o2, o3, o4 and for individual 1 and P2 : o2, o1, o4, o3 for individual 2. It can easily

be checked that the draft mechanism assigns ψ(P )1 = {o2, o4} for individual 1 respectively

ψ(P )2 = {o1, o3} for individual 2. Consider the outcome A obtained by both individuals

switching their assignments, i.e. A1 = ψ(P )2 and A2 = ψ(P )1. As A1 >1 ψ(P )1 and

A1 >ψ (P )2 the draft mechanism is not dominance efficient.

As a final remark, we show an impossibility result via counterexample, illustrating that no

mechanism can fulfill weak versions of efficiency, fairness and strategy-proofness. We define
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our weakening of strategy-proofness, allowing only manipulations in which an individual

gets at least one object that is strictly better. A mechanism ψ is dominance strategy

proof if there does not exist P−i ∈ P−i and Pi, P̂i ∈ Pi s.t. ψi(P̂i, P−i) ≥i ψi(P ).

Proposition 6. In the responsive preference domain, there does not exist a simple mecha-

nism that is dominance strategy-proof, dominance efficient, and dm2 e envy-free.

In the appendix, we point out two mechanisms from the literature, one 1-envy free and

dominance efficient but manipulable (Harvard business school mechanism) and the other

efficient and strategy-proof but k envy-free (serial dictatorship).

1.4 Partition-Restricted Assignment Domain -

Characterization

Intuitively, the arbitrary creation of boosters for the booster draft, leads to a lack of effi-

ciency. Likewise, ex-post fairness suffers from the same problem to a lesser degree. But, if

additional information about the specific features of the underlying multi-object assignment

problem, is incorporated into the construction of boosters, these issues can be mitigated

or even avoided. Of course that only works if there is additional structure to be exploited.

Going back to our illustrative family heirloom example, suppose that we have n siblings and

3 × n family heirlooms, consisting of n expensive, n medium priced, and n cheap objects.

Moreover, everyone prefers the expensive objects to medium priced, and these to cheap

ones, but individuals potentially have different valuations within the three categories. In
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that case, we get a dominance efficient outcome if the objects are grouped together ac-

cording to their value, and the outcome of the booster draft is 1-envy free. In this simple

example we use additional structure on preferences to build boosters.

For this section, our motivation is based on the assignment of graduate students to teaching

positions. Here, students are required to work for exactly one course in each semester,

placing a restriction on the allowed allocations. More general, we are given an exogenous

partition of objects, in which every individual can be assigned at most one object from

every set of the partition.

The partition-restricted multi-object assignment domain is a multi object assign-

ment problem 〈I,O,�〉 subject to the constraint that every person can be assigned at

most one object from every set Ok for a exogenous give partition (Ok)k∈{1,... ,m}. For

example, we can think of {1, . . . ,m} as different time periods for m sets of tasks that

have to be carried out, but individuals are not able to work on simultaneously on tasks

within the same period. Here, �= (�i)i∈I is a list of preferences over schedules

S = {O′ ∈ 2O : |Ok ∩ O′| ≤ 1 for every k ∈ {1, . . . ,m}}. A feasible, restricted allo-

cation A = (Ai)i∈I is a feasible allocation A ∈ A s.t. Ai ∈ S for all i ∈ I. Let B denote the

set of restricted allocations, clearly B ⊂ A. Hence, we refer to this as the partition-restricted

assignment domain. For the partition consistent booster draft, the m booster are sim-

ply (Ok)k∈{1,... ,m}. Similarly to before, preferences are responsive if for all k ∈ {1, . . . ,m},

and o, o′ ∈ Ok, as well as O′ ∈ S such that O′ ∩ Ok = ∅ we have {o} ∪ O′ �i {o′} ∪ O′ if
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and only if {o} �i {o′}.

Given the restriction, individuals no longer need to indicate their preferences across different

sets. Therefore, we require every individual i ∈ I to submit a list of m rankings Pi =

(P 1
i , . . . , P

m
i ) where P ki is a simple order over Ok. For individual i ∈ I, the set of possible

messages is Pi. P = (Pi)i∈I is a list of orders for every individual, with the set of all

such message profiles being P. We slightly adjust the definition of the dominance relation,

i.e. the partial order connecting the reported rankings with the preferences. We say P ki

is the underlying ranking over Ok if for all o, o′ ∈ Ok we have that o P ki o′ if and only if

{o} �i {o′}. Let o′k = O′ ∩ Ok be the best object simultaneously in subset O′ ∈ S and

Ok. For any two subsets O′, O′′ ∈ S with |O′| = |O′′| = m, we have O′ ≥i O′′ if and only

if o′k Ri o
′′
k for all k ∈ {1, . . . ,m}. The relation between the original preferences %i of an

individual i ∈ I and the dominance relation ≥i based on the submitted order Pi remains

unchanged. For those interested we moved the exact statement to the appendix.

In the restricted multi-object assignment domain the draft mechanism is dominance effi-

cient. Moreover, we characterize the set of booster draft mechanism as the set of strongly

strategy-proof, non-bossy and neutral mechanisms. Formally non-bossiness and neutrality

are defined as follows. First, a simple mechanism ψ is non-bossy if ψi(P ) = ψi(P̂i, P−i)

then ψ(P ) = ψ(P̂i, P−i). Secondly, let π : O → O be a permutations s.t. for all o ∈ Ok

we have π(o) ∈ Ok. We permute a list of simple orders P , denoted by πP , as follows: For

all k ∈ {1, . . . ,m} and o, o ∈ Ok we have o π[P ki ] o′ if and only if π−1[o] P ki π−1[o′]. We
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say a choice rules ψ is neutral if for all k ∈ {1, . . .m}, for all i ∈ I, and for all possible

permutations we have π[ψ(P )ki ] = ψ(πP )ki . Lemma 2 is adapted from Svensson (1999), but

we need strong strategy-proofness for the result to go through.

Lemma 2. Let ψ be a non-bossy and strongly strategy-proof mechanism. Consider Pi, P̂i ∈

Pi and P−i ∈ Pi. Suppose for all Ai ∈ Ai s.t. ψi(P ) ≥i Ai we have ψi(P )≥̂iAi. Then

ψ(P ) = ψ(P̂i, P−i).

Proof. By strong strategy-proofness we have ψi(P ) ≥i ψi(P ′i , Pi) .

By the assumption of the lemma we have ψi(P )≥̂iψi(P ′i , Pi)

Using strong strategy-proofness again we get ψi(P̂i, Pi)≥̂iψi(P ).

Combining the second and third line we get ψi(P̂i, Pi) = ψi(P ) as this is the only indifference

case under the dominance relation ψi(P̂i, Pi)=̂iψi(P ).

By non-bossiness it directly follows that ψ(P ) = ψ(P̂i, P−i).

The set of all identical preference profiles is defined as I = {P ∈ P : P kj =

P ki for all i, j ∈ I and for all k ∈ {1, . . . ,m}}. Considering only identical preference pro-

files, we show that neutrality strongly restricts the way in which individuals can be assigned

objects.

Lemma 3. Let ψ be a neutral mechanism. For every identical preference profile P ∈ I,

k ∈ {1, . . . ,m}, and l ∈ {1, . . . , n} the same individual ikl ∈ I is assigned the lth best choice

in Ok according to preference P .
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Proof. Consider the outcome of a neutral mechanism ψ for any two identical preference

profile P ∈ I and P̂ ∈ I. Let us define the lth best choice in Ok under the identical

preference profile P as well as P̂ : For all l ∈ {1, . . . , n} and k ∈ {1, . . . ,m}, let okl denote

o ∈ Ok s.t. |{o′ ∈ Ok : o′ Rk o}| = l respectively ôkl denote o ∈ Ok s.t. |{o′ ∈ Ok :

o′ R̂
k
o}| = l. Consider the individual ikl that is assigned okl under P , i.e. ψ(P )k

ikl
= okl .

We want to show that the same individual gets the lth best choice in Ok under any other

identical preference profile ψ(P̂ )k
ikt

= ôkl . Consider the following permutation π̂ defined for

all k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} as π̂(okl ) = ôkt . For this particular permutation the

following holds true:

Claim 1. We have that π̂(P k) = P̂ k for all k ∈ {1, . . . ,m}.

Suppose not, then for some l′ < l there exists ôkl′ P̂
k ôkl such that ôkl π[P k] ôkl′ . Note that

the permuted preference ôkl π[P k] ôkl′ is equivalent to the original preference over permuted

outcomes π̂−1[ôkl ] P
k π̂−1[ôkl′ ]. But using our defined permutation, this implies okl P

k okl′ for

l′ < l leading to a contradiction.

By neutrality and claim 1 we get π̂[ψ(P )k
ikl

] = ψ((π̂[P ]))k
ikt

= ψ(P̂ )k
ikt

. Moreover by the

definition of the permutation π̂ we have π̂[ψ(P )k
ikl

] = π̂[okl ] = ôkl . Combining both leads the

desired conclusion that the same individual gets the lth best object in set Ok for any two

identical preference profiles ψ(P̂ )k
ikt

= ôkl .

Lemma 3 shows that for identical preference profiles any neutral mechanism can be obtained
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through a BD mechanism. Note that, in the partition-restricted domain the standard serial

dictatorship mechanism is a booster draft where the same individual has the highest priority

everywhere, followed by an individual having the second highest priority everywhere and

so on and so forth. It remains to be shown, what happens for arbitrary preference profile.

We will invoke lemma 2 to show that for any P ∈ P \ I there exists an identical preference

profile P ∈ I leading the same outcome.

Theorem 1. In the partition-restricted assignment domain with responsive preferences a

simple mechanism ψ is strongly strategy proof, non-bossy, and neutral if an only if ψ is a

BD choice rule. The outcome of the BD choice rule is dominance efficient.

Proof. It is obvious that the BD mechanism is strongly-strategy proof (see proposition 1),

neutral and non-bossy.

We now show that any strongly strategy proof, non-bossy, and neutral simple mechanism

ψ is booster draft. Apply ψ to the subset of identical preference profiles I. By lemma 3 for

each k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} we can uniquely identify an individual ikl ∈ I that

is assigned her t-th choice in Ok according to preference P . Formally the outcome of the

BD mechanism is defined for all k ∈ {1, . . . ,m} recursively from highest to lowest priority

individuals as ψki (P ) = {o ∈ Ok : o Ri o
′ for all o′ ∈ Ok \

⋃
j∈{j∈I:fk(j)<fk(i)} ψ

k
j (P )}.

Indeed assigning the individuals priorities in the same order they obtain the objects from

each booster we get that ψki (P ) = okt for all l ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. Therefore

for each identical preference profile I the outcome of any neutral mechanism ψ is obtained
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by a booster draft mechanism.

It remains to be shown for any other preference profile that is not identical across agents.

Consider a preference profile P̂ ∈ P\I and construct an identical preference profile P ((̂P )) ∈

I from it as follows: For any Ok with k ∈ {1, . . .m} the preference P k order ranks individual

i11’s first choice highest, and individuals it1 first choice among the remaining objects in Ok

as t-th highest for t ∈ {2, . . . , n}.

By lemma 2 we can move all agents preferences one-by-one from the constructed identical

preference profile P ((̂P )) back to the initial preference profile P̂ without changing the

outcome of the mechanism. Hence for any preference profile the outcome of any neutral,

strongly strategy-poof and non-bossy mechanism is a booster draft mechanism.

Finally we show that the outcome of the booster draft mechanism in this domain dominance

efficient. Suppose by contradiction there exists Ai ≥i ψ(P )i for all i ∈ I holding strictly

for at least one individual. Ai ≥i ψ(P )i means that Aki R
k
i ψ(P )i for all k ∈ {1, . . . ,m}

and for all i ∈ I holding stickily for at least some k and i. If there are multiple, pick the

first basket k and the first agents that gets a strictly better object in k. As all agents with

higher priority in Ok get the same items as before Aki is still available and therefore we have

ψ(P )ki R
k
i A

k
i contradicting Aki P

k
i ψ(P )i.

The subset of balanced booster draft mechanism is m
2 envy-free. As a robustness check for
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the theorem, note that the result no longer holds in the unrestricted multi-object assignment

problem.

As mentioned, in the partition-restricted assignment domain the serial dictatorship mech-

anism is a special case of the (non-balanced) BD mechanism, which is not true for the

responsive domain. So the result doesn’t go through for the unrestricted problem, as there

exists a mechanism that is strongly strategy-proof, non-bossy and neutral outside the set

of BD mechanism.

1.5 Teaching Assignments for Graduate Students

In this section, we take a closer look at the teaching assignment problem, which is an example

of the previously described partition-restricted assignment domain. The data consists of the

rankings submitted by graduate students in economics at Boston College for the academic

year 2018, as well as the final assignment made for that year. Analogous to our theoretical

part, everyone separately ranked the available positions for each semester and was assigned

a single teaching position for both the fall and spring semester.17 We simulate the outcome

of the balanced booster draft (BD) as well as the serial dictatorship (SD) for 10000 different

priority orders, while the actual assignment (AA) remains unchanged. As in the theoretical

17For each semester, graduate students give their preferences over ta (teaching assistant) principles, ta
statistics, ta econometrics, lab (laboratory) stats, lab econometrics, tf (teaching fellow) principles, and tf
statistics. In our data 5 out of 37 students made special arrangements with a specific professor or got a
fellowship that freed them of work for one semester. In those cases, we always assigned them their pre-
arragned positions before assigning positions to the remaining students based on their reported rankings.
As the was a new person in charge of the assignment for 2018 and it was unknown how reported rankings
would translate into the final assignment, it is reasonable to expect that graduate students reported their
rankings truthfully.
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part we want to analyze the different assignments in terms of efficiency and fairness.

For fairness, we care about the percentage of students envying at least one other student,

who was given a strictly better assignment in both semesters (2 Envy). For completeness,

we also show the percentage of remaining students envying at least on student for his or

her assignment in one semester (1 Envy), and the percentage of students getting their two

top choices (Envy 0). Figure 2 shows that the balanced booster draft mechanism avoids “2

Envy” altogether, and therefore outperforms serial dictatorship where “2 Envy” is roughly

15%, as well as the actual assignment where “2 Envy” reaches almost 30%.
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Figure 1.2: Envy

For efficiency figure 3 depict the percentage of individuals that get at least one strictly better

and one weakly better assignment in both semesters under one outcome relative to another.
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The actual assignment in that year is unsatisfactory in terms of efficiency compared to

the two alternatives. On the other hand there is no noticeable difference between serial

dictatorship and the balanced booster draft mechanism.

BD better AA Indifferent AA better BD Undetermined

0

0.5

1
Comparison BD and AA

BD better SD Indifferent SD better BD Undetermined

0

0.5

1
Comparison BD and SD

SD better AA Indifferent AA better SD Undetermined

0

0.5

1
Comparison SD and AA

Figure 1.3: Efficiency

Finally, following Budish and Cantillon (2012), we consider the average rank, i.e., a simple

measure of welfare to compare the tree alternatives. For example, if a graduate student is

assigned her first choice in one semester and her third choice in the other, her rank is four.

We then simply average across all students for a given final allocation. Again the results

are consistent with the previous analysis in that both serial dictatorship and the booster

draft have an average rank of 3.21, while the average rank for the actual assignment is 4.72.

Moreover, the balanced booster draft leads to a lower dispersion in terms of rank compared
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the serial dictatorship.
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Figure 1.4: Distribution Average Rank

We conclude that if individuals are mildly risk-avers their will prefer the (random) balanced

booster draft to the (random) serial dictatorship.

1.6 Dominance Obvious S-P

Following the idea of obviously strategy-proofness introduced by Li (2017), we give some

insight in which sense the BD mechanism can be implemented as a extensive form game that

is easy to understand. In other words, we think an additional strength of the booster draft

lies the mechanisms simplicity. This turns out to be important in practice, as mentioned in

the literature review.
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As in the previously, I is the set of individuals, A is the set feasible allocations, and each

individual i has a preference relation %i over the outcomes, which we will sometimes refer

to as the type of an agent. Preferences are responsive, and assignments are either made in

the partition-restricted or the unrestricted domain. A type profile %= (%i)i∈I specifies a

preference relation for each person, and the set of all type profiles is denoted by %I .

Consider an extensive game form where each terminal history z results in some outcome

g(z) ∈ A. For ease of presentation we focus on the special case of deterministic games with

finite preference, finite outcomes sets, and complete information.18 G denotes the set of all

such game forms, with representative element G. Table 1 depicts useful notation.

Name Notation Representative Element

histories H h
initial history h∅
terminal histories Z z
outcome resulting from z g(z)
individual called to play at h i(h)
information sets for agent i Ii Ii
actions available at Ii A(Ii) a(Ii)

Table 1.1: Notation Extensive Form Games

A strategy Si for agent i chooses an action Si(Ii) ∈ A(Ii) at every information set. A

strategy profile S = (Si)i∈I specifies a strategy for each agent, and S denotes the set of

all strategy profiles. A type-strategy profile function T :%I→ S specifies a strategy

profile for every type profile. Any persons type-strategy depends only on her own type.

T (%i) ∈ Si refers to the strategy assigned to type %i. Let zG(h, S) be the terminal histories

18In a complete information games every information set is a singleton.
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that results in game form G when starting from h and play proceeding according to S.

For a given extensive form game G and a particular type %i, strategy Si is weakly dom-

inant if ∀S′i and ∀S−i we have g(zG(h∅, Si, S−i)) %i g(zG(h∅, Si, S−i)). Similarly we can

define the stronger requirement of an obviously strategy-proof strategy profile. For this we

first need to introduce some additional notation. For two distinct strategies Si and S′i, an

information set is in the set of earliest points of departure Ii ∈ α(Si, S
′
i) if it is on the

path of play under both Si and S′i, and both strategies choose the same action at all earlier

information sets but select a different action at Ii. Furthermore let ZG(Ii, Si) denote the set

of reachable terminal histories by playing strategy Si when starting from information

set Ii in game G. Given G and %i, Si is obviously dominant if ∀S′i and ∀Ii ∈ α(Si, S
′
i)

there does not exist z′ ∈ ZG(Ii, S
′
i) and z ∈ ZG(Ii, Si) such that g(z′) %i g(z).19

A mechanism is a function ψ :%I→ A from type profiles to assignments. A solution

concept C(·) maps any game G into a subset of strategy profiles C(G) ⊆ S satis-

fying the solution concept C. An extensive form game together with a type strategy

profile function (G,T ) is said to C-implement a mechanism ψ if ∀ %∈%I we have

T (%) ∈ C(G) as well as ψ(%) = g(zG(h∅, T (%))). Similarly ψ is C-implementable if there

exist (G,T ) that satisfy the above requirements. In particular a type-strategy profile

T (%) ∈ SP (G) is in the set of strategy proof (SP) profiles if for all i ∈ I, T (%i) is

weakly dominant. A type-strategy profile T (%) ∈ OSP (G) is in the set of obviously

19Unlike the original definition, our version of obvious dominance is slightly modified, allowing to consider
preferences that do not compare all available options in A.
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strategy-proof (OSP) profiles if for all i ∈ I, T (%i) is obviously dominant. Unfor-

tunately the booster draft mechanism is not implementable in a obvious strategy-proof way.

Proposition 7. In the restricted and unrestricted assignment domain with m ≥ 2, n ≥ 2

the balanced BD mechanism is not OSP implementable.

We weaken the concept of obvious strategy-proofness, by specifying a subset of pairwise

comparisons between outcomes, an individual “pays attention to”. The more comparisons

can be made, the closer the definition is to standard OSP. Here we focus on our dominance

relation, though we provide a more general definition, for an arbitrary partial order, in

the appendix. Given G and (%i, ≥), Si is dominance obviously dominant if ∀S′i and

∀Ii ∈ α(Si, S
′
i) there does not exist z′ ∈ ZG(Ii, S

′
i) and z ∈ ZG(Ii, Si) such that g(z′) >i g(z).

A type-strategy profile T (%) ∈ DOSP (G) is in the set of dominance obviously strategy-

proof (DOSP) profiles if for all i ∈ I, T (%i) is dominance obviously dominant.

Proposition 8. In the unrestricted domain BD is not DOSP implementable. In the

partition-restricted assignment domian the balanced BD mechanism is DOSP imple-

mentable.

Returning to our original motivation, we note that the extensive form game specified by

the card version of the booster draft mechanism actually obviously dominance strategy-

proof implements the BD mechanism. In other words it provides us with an additional

explanation why drafting rules might be easy to understand pointing to their prevalence in
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practice.

1.7 Conclusion

We have introduced the booster draft mechanism, a new allocation scheme for the multi-

object assignment problem, inspired by existing drafting procedures in competitive card

games. In the responsive preference domain, the BD mechanism is strategy-proof and

envy-free equal to half of the objects, but it is neither dominant efficient nor dominance

obvious strategy-proof implementable. In the partition-restricted assignment domain, any

neutral, non-bossy, and strongly strategy-proof simple mechanism is a BD mechanism.

Moreover, the subset of balanced BD is dominance efficient, strategy-proof, envy-free equal

to half of the object, and dominance obvious strategy-proof implementable. We discuss

a practical application in the partition-restricted assignment domain, the assignment of

graduate students to teaching assistant positions. The simulated assignments support the

claims made in the theoretical argument of the paper.
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Chapter 2

An Alternative Approach to Asylum

Assignment

2.1 Introduction

When arriving in the European Union, an asylum seeker has to launch an application for

protection in a single member state. If successful, the person will be granted refugee status

or subsidiary protection by the country that examined the asylum claim. The responsible

member state cannot be chosen freely. Under the Common European Asylum System

(CEAS), most asylum seekers are required to lodge their application for protection in the

country in which they initially set foot, following the principle of first entry outlined in the

Dublin Regulation (European Commission, 2016b).
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The Dublin Regulation has been heavily criticized for many shortcomings. It places a

disproportionate burden on countries located at the border of the European Union. Its

complex bureaucratic approach leads to delays and disputes over responsibility. Its strict

no-choice approach incentivizes asylum seekers to engage in illegal secondary movements to

reach preferred member states (European Commission, 2016b).

We propose an alternative way of determining responsibility for asylum claims, based on the

preferences of asylum seekers and priorities of member states with the intent of improving

the outcome for both sides. In line with current practices, we allow member states to

keep control over their eligibility determination process, and restrict protection seekers to

a single application for asylum.1 Upon initial registration, asylum seekers have to submit

their preferences to the local authorities, and a centralized clearing house determines a

responsible member state, based on the available information. Compared to the current

system, this gives more autonomy to asylum seekers as well as more control to member

states over whom to accept.2 Our proposal is conceptually different from the previous

literature as the responsible member state is identified prior to any decision on the asylum

application. An obvious advantage of our approach is that its implementation requires

relatively few adjustments in the underlying Common European Asylum System.

1As pointed out by Jones and Teytelboym (2017a), implementing a centralized system will lead to a
harmonization of eligibility procedures and refugee status determination decisions.

2Member states would be required to rank protection seekers, and criteria could be chosen freely as long
as they don’t interfere with article 14 of the European Convention on Human Rights (Jones and Teytelboym,
2017a), which prohibits discrimination on any ground such as religion or race (European Council of Human
Rights, 2013). For example, in 2015, the former premier minister of Britain, David Cameron, announced the
acceptance of up to 20’000 refugees from Syria, prioritizing vulnerable children and orphans (BBC, 2015b).
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In practice, member states often fail to guarantee a person’s right to have her asylum

claim handled within a reasonable time frame, as required by the Charter of Fundamental

Rights of the European Union (Beck, Mole and Reneman, 2014).3,4 We partially circumvent

this problem by asking asylum seekers to express their preferences over potential time

frames for the completion of their asylum applications, allowing them ceteris paribus to

avoid overburdened member states with significant higher wait times. Moreover, explicitly

scheduling a time period opens up the possibility of assigning member states to asylum

seekers prior to their arrival on European territory. Contrary to the criteria of first entry,

this provision makes our proposal compatible with the idea of humanitarian visas, enabling

asylum seekers to reach the state in which they will apply for asylum safely and legally

(Neville and Rigon, 2016).5

In our framework, member states commit to processing a minimum number of asylum ap-

plications during each time period. This burden-sharing quota ensures that every asylum

seeker is accommodated by some member state, as guaranteed by the Charter of Fundamen-

3We assume that the limited capabilities of member states to process asylum applications can be reason-
ably approximated by bureaucratic capacity constraints representing the total number of asylum applications
that a European country is responsible for handling within a given time frame. As an example, over 11,000
people per month applied for asylum in Italy in 2016, and on average between 6,000 and 8,000 were processed
every month. In Greece, around 62,000 people were waiting to have their asylum applications processed,
while each month, fewer than 1,000 asylum decisions were being made, with more than that number of
asylum seekers arriving (Open Society Initiative, 2016).

4The guideline for the time to handle a standard asylum claim is six months, and member states are
required to inform asylum seekers when the process takes longer. A statement of the approximate date of
completion of an asylum claim does not imply an obligation to handle the claim in the given time frame
(Beck, Mole and Reneman, 2014). In the theoretical part we implicitly assume that member states will
be able to handle asylum applications on time. Moreover, within reasonable bounds, the bureaucratic
constraints should be dictated by the European Union as opposed to be freely chosen by member states.

5Humanitarian visas would allow asylum seekers to avoid the dangerous journey across the Mediterranean
sea, which has caused more than 15’000 deaths since 2014 (Jilani, 2018).
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tal Rights of the European Union (European Commission, 2016b). We do not take a stance

on how quotas are determined, keeping our proposal compatible with various policies, such

as tradable refugee quotas (Moraga and Rapoport, 2014), or the burden sharing rule based

on a country’s size and GDP outlined in the newest iteration of the Dublin (IV) Regulation

(European Commission, 2016b). Naturally member states can accept more asylum seekers

than they have committed to. Therefore countries unwilling to enter an agreement can

nonetheless take part in the centralized matching system.6

We present a dynamic model, where at any point in time the asylum seekers present in the

system are composed of some exogenously newly arrived individuals and existing asylum

seekers waiting for their asylum claim to be processed. We require member states to commit

to previously made assignments, which is in line with the “one-time determination” policy

proposed by the European Commission.7 In our case this leads to asylum seekers being

assigned exactly once upon initial participation in the matching algorithm. It turns out

that even if one develops independently a model to fit in the asylum seeker framework, it

can be formulated as an application of the well-known matching with contracts model by

Hatfield and Milgrom (2005b). This simplifies the analysis a great deal, as matching with

contracts is a well studied framework within the matching literature. We show that the

6For example, in 2015 the Hungarian, Czech Republic, Slovakian and Polish prime ministers have rejected
the idea of quotas for EU nations (BBC, 2015a). At the same time Slovakia, Poland, and the Czech Republic
announced that if they had to accept refugees they would allow Christian refugees (Wasik and Foy, 2015).

7“The Regulation introduces a rule that once a Member State has examined the application as Member
State responsible, it remains responsible also for examining future representations and applications of the
given applicant. This strengthens the new rule that only one Member State is and shall remain responsible
for examining an application and that the criteria of responsibility shall be applied only once.” European
Commission (2016a)
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standard cumulative offer mechanism is strategy-proof and leads to stable outcomes, using

the fact that our proposed choice functions have a completion (Hatfield and Kominers,

2016) satisfying substitutability and the law of aggregate demand. We implicitly assume

that priorities reflect member states preferences, and interpret stability as an equilibrium

concept taking into account preferences of asylum seekers, while giving more control to

member states over who to accept. In particular, stability avoids situations where an

asylum seeker prefers her claim to be handled by a member state other than the one to

which she is assigned under the asylum system, and the more desirable member state is

willing to accept her. This requirement is clearly violated under the Dublin Regulation, as

assignments are made without any consideration of preferences from either side.8 Strategy

proofness implies that it is in every asylum seeker’s best interest to state their preferences

truthfully, as there are no gains from manipulation. For this result the commitment of

member states to previous made arrangements is crucial. On the other side, the outcome is

manipulable only by over-demanded member states. We do not consider this to be an issue.

In particular, member states preferences reflect the will of the political parties, which are

in charge of formulating a priority system. In any European member state political parties

belong to the legislative, while the bureaucrats mandated with the implementation of the

asylum process are part of the executive, and hence are thought of as being neutral and

independent of any influence by the legislative.

8In 2015, the Germany government allowed all Syrian refugees that made it to German soil to apply for
asylum in Germany. This suspended the Dublin Regulation, as most of the Syrian refugees were assigned
a different responsible member state following the principle of first entry (Hayden, 2015). It should also be
noted that several months later Germany stopped its initial proposal after being overwhelmed by the sheer
number of arriving asylum seekers (Harding, 2015).
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2.2 Literature

To the best of our knowledge Schuck (1997) was the first to focus directly on the management

of refugee flows, taking the suffering of refugees and the root causes of their flights as

tragically given. He proposed that each state bears a share of responsibility for temporary

protection and permanent resettlement of refugees based on a quota, and all governments

can pay another to fulfill their obligations.9

Moraga and Rapoport (2014) developed this idea further, proposing a system whereby states

trade quotas multilaterally without exchange of money. They envisioned this approach for

the resettlement of longstanding refugees, as well as for refugees and asylum seekers within

the European union (Fernández-Huertas Moraga and Rapoport, 2015). Furthermore, they

were the first to explicitly mention the possibility of combining a quota system with a

matching mechanism.

Jones and Teytelboym (2016, 2017a,b) informally discussed in great detail how the methods

of matching could be applied to improve or replace practices currently in place. They

distinguish between the global refugee match, on an international level, and the local refugee

match, on a community level within a country. The latter was rigorously analyzed by David

Delacretaz, Alexander Teytelboym and Scott Kominers (2016), leading to the introduction

of a new framework for matching with multidimensional constraints. Moreover, Trapp et al.

(2018) develop a software tool that assists a resettlement agency in the United States with

9More recently burden sharing quotas have also found their way into the current 4th iteration of the
Dublin Regulation (European Commission, 2016b).
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matching refugees to their initial placements. Similarly to David Delacretaz, Alexander

Teytelboym and Scott Kominers (2016), Andersson et al. (2018) proposed a dynamic model

of assigning refugees to localities based on types. To the best of our knowledge, we are the

first to provide a theoretical model for the international refugee match and to introduce

wait times. Furthermore, our proposed matching is conceptually different from those of

previous studies in that it requires any assignment to be made prior to the determination

of refugee status.

As pointed out by Jones and Teytelboym (2017a,b) in the international context, due to the

“thickness” of the market, the refugee problem can be reasonably modeled as a standard

school choice problem (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003b).

In other words, we do not need to be concerned whether an asylum seeker in our model

represents an individual or a family. In general the asylum seeker problem falls into the

category of application-focused matching problems, like the matching of residents with

hospitals (Roth, 1984), or of cadets with military branches (Sönmez and Switzer, 2013b).

The latter relates to our paper in that the cadet branch assignment problem turns out

to fit the matching with contract model (Hatfield and Milgrom, 2005b), and illustrates

the practical importance of the unilateral substitutability condition (Hatfield and Kojima,

2010b). Showing the relevance for hidden substitutability (Hatfield and Kominers, 2016)

in a practical problem is an important contribution of our paper. Our set-up bears some

similarities to the German entry-Level labor market for lawyers application proposed by

Dimakopoulos, Heller et al. (2015), as both make use of designating wait times. But while
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our model is dynamic, they look at a single period. Moreover, one can check that hidden

substitutability (Hatfield and Kominers, 2016) will suffice for their set-up, without imposing

any monotonicity assumption on preferences over waiting times.

In our model the choice functions of member states violate the unilateral substitute con-

dition (Hatfield and Kojima, 2010b) and law of aggregate demand (Hatfield and Milgrom,

2005b), but there exists a completion of the choice function that satisfies substitutability

(Hatfield and Milgrom, 2005b; Kelso Jr and Crawford, 1982) and the law of aggregate de-

mand. Therefore, this paper is part of a small body of literature using or directly applying

this result (Aygun and Turhan, 2016; Hassidim, Romm and Shorrer, 2017; Yenmez, 2018).

We utilize the irrelevance of rejected contracts conditions (Aygün and Sönmez, 2013) to

show that stability implies our version of two-sided efficiency and employ the widely used

cumulative offer mechanism (Hatfield and Kojima, 2010b), originally introduced as deferred

acceptance algorithm by Gale and Shapley (1962b).

Finally, our work is related to a large literature on assigning people to tasks in operation

research (Pentico, 2007), as well as dynamic matching problems (Kotowski et al., 2015;

Kurino, 2014; Ünver, 2010), where our dynamic set-up is most similar to Pereyra (2013),

who discusses the placement of teachers with tenure.

In section 3, the model is introduced, followed by a discussion of the choice functions of

member states, as well as the solution concepts used and the cumulative offer mechanism

to find a solution. Section 4 provides conclusions of the study. All proofs together with an
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illustrative two period example can be found in the appendix.

2.3 The Asylum Seeker Matching Problem

In the following we outline the dynamic asylum seeker problem. In regular time intervals

member states rank all newly arrived individuals, while the asylum seekers submit their

preferences over combinations of processing times and member states. Afterwards asylum

seekers are assigned to member states and wait times based on the information provided

by both sides. In accordance with the CEAS, asylum seekers are restricted to a single

application for protection, making it a many-to-one matching problem. European countries

keep control over their asylum application process but are required to make an asylum

decision in the agreed upon time period. When considering how many applications to accept

they are constrained by their bureaucratic capacity, representing the maximum number of

asylum claims that can be handled in a given time period. We think of these capacities

as not being chosen freely by the countries, but rather dictated to them by the relevant

authorities. To ensure individuals rights to have their asylum application examined, member

states take part in a burden sharing agreement sufficiently large to encompass all incoming

asylum seekers. With these considerations in mind, we are now ready to formally introduce

the model.

44



Chapter 2 An Alternative Approach to Asylum Assignment

2.3.1 The Model

A dynamic asylum seeker matching problem goes on for some finite time periods T ,

where

1. N = (Nt)t∈T are the sets of newly arriving asylum seekers each period, with A =⋃
t∈T Nt,

2. M is the finite set of member states,

3. W = T ∪ {w̄} is the set of period in which asylum decisions can be concluded, with

w̄ representing any period after |T | and Wt = {s ∈ T : s ≥ t} ∪ {w̄},

4. q = (qt,m)t∈T,m∈M is a list of burden sharing quotas with
∑

m∈M qt,m ≥ |Nt| for all

t ∈ T ,

5. r = (rm,w)m∈M,w∈W represents the number of asylum claims a member state is re-

quired/able to process in a given period with rm,w̄ ≥ |A| for all m ∈M ,

6. P= (Pa)a∈A is a list of preference rankings over (M ×W ) ∪ {∅},

7. >= (>t,m)t∈T,m∈M is a list of priorities for every period, where >t,m orders Nt ∪{∅}.

To encompass waiting times we use a matching with contracts framework. A contract

x = (a,m,w) ∈ X = (A×M ×W )∪{∅} specifies an asylum seeker a ∈ A, a member state

m ∈M , and a time by which an asylum decision will be made w ∈W . Given a contract x, let

a(x) represent the asylum seeker, m(x) the member state, and w(x) the wait time specified

in contract x. For every subset of contracts X ′ ⊆ X we use X ′a = {x ∈ X ′ : a(x) = a} to
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denote the set of contracts asylum seeker a is part of, where equivalent notation is used for

member states as well as wait times. A(X ′) = {a ∈ A : a(x) = a for some x ∈ X ′} denotes

the asylum seekers specified in set X ′ ⊆ X again equivalently defined for member states

and wait times.

As this is a dynamic model we need to keep track of the current asylum seeker population, as

well as any assignment made in a previous period. For all t ∈ T we let At = Et +Nt denote

the set of all asylum seekers present at the beginning of period t consisting of existing

asylum seekers Et awaiting a decision and the newly arrived asylum seekers Nt not

currently assigned to any member state. A period ttt allocation Yt ⊆ Xt = At ×M ×Wt

is a set of contract with |Yt,a| ≤ 1 for all a ∈ At, and |Yt,m,w| ≤ rm,w for all m ∈ M and

w ∈ Wt.
10 Let Yt denote the set of all period t allocations. In words, a period t allocation

specifies for every current asylum seekers a responsible member states and a wait time, while

ensuring that no bureaucratic capacity is violated. We set Y0 = ∅, respectively Y0 = {∅},

while the period 1 the set of existing asylum seekers is empty E1 = ∅ and for all t ∈ T with

t ≥ 2 and any Yt−1 ∈ Yt−1 we have Et = {a ∈ A : w(Yt−1,a) ≥ t}. Therefore looking at the

previous period allocation any agent that is still awaiting her decision is an existing asylum

seeker. Note that they will use up some bureaucratic capacity rm,w reducing the new asylum

seekers that can be processed in the same time. For completeness we say that a dynamic

allocation is a sequence of period t allocations Y = (Yt)t∈T , where Y ≡ Y1 × . . .× Y|T |.

10The set of contracts available at a particular point in time t is Xt = At ×M ×Wt ⊆ X, where any
subset of these contracts is denoted by X ′t ⊆ Xt.
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Every asylum seeker has a strict preference relation Pa over M ×W , with weakly preferred

written as Ra. It is implicitly assumed that asylum seekers preferences do not change over

time. Given an asylum seeker a ∈ A and an allocation Yt with Yt,a = {(a,m,w)} we refer

to the pair (m,w) as the assignment of applicant a under Yt. Slightly abusing notation we

will use Pa for preferences over contracts as well as assignments.11

2.3.2 Choice Function

We define member states behavior in each period using a choice function based on the

corresponding priorities. A choice function Cm,t(X
′
t|Yt−1) ⊆ X ′t simply gives a subset of

accepted contracts for any possible selection of options X ′t ⊆ Xt. We requires member

states to commit to any previously accepted contract, and to not accept asylum seekers

they are not responsible for, introducing a dependence on the allocation of the previous

period. We next outline the choice functions, while a more rigorous definition can be found

in the appendix. A choice function Ct,m(X ′t|Yt−1) ⊆ X ′t determines the set of selected

contracts as follows:

11For any y, z ∈ Xt we have y Ra z if and only if (m(y), w(y)) Ra (m(z), w(z)) respectively for any
Yt, Y

′
t ∈ Yt we say Yt Ra Y ′t if and only if Yt,a Ra Y ′t,a.
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Step 0.

- Accept all contracts accepted in the previous period X ′t,m ∩ Yt−1.

- Reject all other contracts available previously X ′t,m∩Xt−1\Yt−1, and all contracts

specifying different member states X ′t \X ′t,m.

Step j ≥ 1. Consider all contracts of the highest priority applicant aj among the

remaining. If there is no such asylum seeker the algorithm stops.

a) If ∅ >t,m aj and there are already at least qt,m contracts specifying newly arrived

asylum seekers accepted the algorithm stops.

b) Otherwise (if possible) accept exactly one contract specifying aj for which the

maximum bureaucratic capacity rm,w has not yet been reached, and reject all

other contract involving aj . (Assume the lowest feasible waiting time contract

is chosen.)

If the member state has multiple contracts with the same individual at most one contract

for which the bureaucratic capacity has not been filled yet is picked. For convenience we

assume that the contract with the lowest waiting time available is accepted. We note that

this assumption is not relevant for the obtained results. In fact any other order in which a

contract for the same asylum seeker is chosen will suffice, and the order could also depend

on previously accepted contracts during the algorithm describing the choice function. We

let C = (Ct)t∈T denote the list of all choice functions, where Ct= (Ct,m)m∈M is a list of

period t choice function.
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2.3.3 Cumulative Offer Mechanism, Stability, Strategy-Proofness,

Efficiency

We will present some standard properties adjusted to our dynamic framework. A direct

mechanism ϕ is a function ϕ : P × C → Y selecting a sequence of allocations for each

profile of preferences and choice functions. We use ϕt(P,C) ∈ Yt to denote the assignment

Yt induced by mechanism ϕ, when P ∈ P is the reported preference profile and C are the

choice function based on the priorities >. A direct mechanism is dynamically (asylum

seeker) strategy proof (for asylum seekers) if there does not exist a ∈ A, Pa, P̂a ∈ Pa,

P−a ∈ P−a and C ∈ C such that ϕt(P̂a, P−a, C) Pa ϕt(P,C). This is a standard requirement

making truth-telling a dominant strategy, an no asylum seeker can get a better outcome by

submitting an incorrect preference relation. Its worth noting that we have defined strategy

proofness only for a subclass of mechanisms where asylum seekers submit a preference once.

Theoretically new preferences could be elicited every period even though this would hardly

be practical.

An allocation Y = (Yt)t∈T is dynamically stable if for all t ∈ T we have

i) Yt,a Pa ∅ for all a ∈ At,

ii) Ct,m(Yt|Yt−1) = Yt,m for all m ∈M ,

iii) and there does not exist a pair a ∈ A, m ∈ M , and a contract x ∈ Xt \ Yt such that

x Pa Yt,a and x ∈ Ct,m(Yt ∪ {x}|Yt−1).
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As previously discussed our main aim it to have an strategy-proof and stable assignment

process, as stability takes into account asylums seekers preference as well as member states

priorities. In particular stability (almost) implies the following notion of efficiency. An

allocation Y = (Yt)t∈T is two sided efficient if there does not exist an allocation Y ′ =

(Y ′t )t∈T with Y ′ 6= Y s.t. Y ′t,a Ra Yt,a for all a ∈ A and t ∈ T and Ct,m(Y ′t ∪Yt|Y ′t−1) = Y ′t−1.

We going to apply the asylum seeker optimal stable algorithm, which was first introduced

by Gale and Shapley (1962b) and adapted to the matching with contracts by Hatfield and

Kojima (2010b).

For t = T the outcome ψct (P,C) of the asylum seeker proposing cumulative offer algorithm

ψc is defined as follows:

Step k ≥ 1.

- If there exists at least a single applicant a ∈ At currently not being assigned a member

state, let one of them propose her preferred contract according to Pa that has not yet

been rejected, xk ∈ Xt \Xk
t . Set Xk+1

t = Xk ∪ {xk} where X0 = ∅. Member state

m = m(xk) holds all contracts in Ct,m(Xk
t |Y t−1) and rejects all other contracts in

Xk
t \ Ct,m(Xk

t |Y t−1).

- Otherwise the process terminates with ψct (P,C) =
⋃
m∈M Ct,m(XK

t |Y t−1).

Our main result of this paper is as follows:

Theorem 2. The outcome of the asylum seeker proposing cumulative offer mechanism ψc

is dynamically stable and dynamically (asylum seeker but not member state) strategy-proof

and two-sided efficient.
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As mentioned, we do not consider the lack of strategy proofness for member states a deal

breaker, as the division of power between legislative and executive is designed to naturally

address the issue at hand. In the next subsection we will discuss our main result. For those

interested we provide a simple 2 period example of our model in the appendix, illustrating

the deferred acceptance algorithm.

2.3.4 Conditions on Choice Functions

We introduce a condition on choice functions for the dynamic model, ensuring that asylum

seekers can not switch contracts over time as they are awaiting their status determination,

requiring member states to commit to any previously made allocation. A choice function

Ct,m(·|Yt−1) satisfies one-time determination if x ∈ Ct,m(X ′t|Yt−1) for all x ∈ X ′t,m∩Yt−1,

and x 6∈ Ct,m(X ′t|Yt−1) for all x ∈ X ′t,m ∩ Xt−1 \ Yt−1. In our results this requirement is

only used for strategy proofness as it is not necessary for stability. Intuitively without

commitment asylum seekers can be accepted by member states that previously rejected

them, creating an incentive to rank long wait time contracts higher. Similarly asylum seekers

could be excluded from a contract to which they were assigned in a previous period, due

to newly arriving asylum seekers, which incentives them to rank short wait time contracts

higher than under their true preferences. Both reasons make one-time determination a

crucial condition for strategy proofness in our dynamic set-up.

We now move on to standard conditions for showing that the outcome of the cumulative offer

mechanism is stable and strategy-proof. Hence we refrain from discussing them detail. For
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all t ∈ T we say a choice function Ct,m(·|Yt−1) satisfies the law of aggregate demand if for

X ′t ⊆ Xt and x ∈ Xt\X ′t we have |Ct,m(X ′t∪{x}|Yt−1)| ≥ |Ct,m(X ′t|Yt−1)|. A choice function

Ct,m(·|Yt−1) is substitutable if there does not exist X ′t ⊆ Xt and x, z ∈ Xt \X ′t such that

x 6∈ Ct,m(X ′t ∪ {x}|Yt−1) and x ∈ Ct,m(X ′t ∪ {x, z}|Yt−1). A choice function Ct,m(·|Yt−1)

satisfies the irrelevance of rejected contracts condition if for all X ′t ⊆ Xt and x ∈ Xt\X ′t

we have x 6∈ Ct,m(X ′t ∪ {x}|Yt−1) implies Ct,m(X ′t ∪ {x}|Yt−1) = Ct,m(X ′t|Yt−1).

Lemma 4. Consider any direct mechanism ψ(P,C) producing a stable allocation. When-

ever the choice functions Ct,m ∈ C satisfy irrelevance of rejected contracts the outcome

satisfies two sides efficiency.

Our choice functions do not satisfy substitutability nor the law of aggregate demand. In the

following counterexample we again assume that the lowest available waiting time contract is

chosen if there are multiple contracts available specifying the same asylum seeker. We note

that it is straightforward to construct an equivalent violation for any other order in which

a member state might select a contract when multiple are available for the same individual.

Example 2. Consider the set of contracts Xt = {(a1,m1, t), (a1,m1, t +

1), (a2,m1, t), (a2,m1, t + 1), . . . }, where a1, a2 ∈ Nt and m1 ∈ M . For the choice

function Ct,m1(·|Yt−1) assume qt,m1 = 2, rm1,t = rm1,t+1 = 1, and a1 >t,m1 a2.

To see that the choice function violates substitutability consider X ′t = {(a1,m1, t + 1)},

x = (a2,m1, t + 1), and z = (a1,m1, t). We have that x 6∈ Ct,m1(X ′ ∪ {x}|Yt−1) but
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x ∈ Ct,m1(X ′t ∪ {x, z}|Yt−1).12

Similarly to find a violation of the law of aggregate demand consider X ′t =

{(a1,m1, 2), (a2,m1, 1)} and x = (a1,m1, 1). Then we have |Ct,m1(X ′t)| = |X ′| >

|Ct,m1(X ′t ∪ {x})| = |{x}|. 13

We show that there exists a completion (Hatfield and Kominers, 2016) of our proposed choice

function that satisfies the desired properties. We formally state the concept of completion,

before establishing the lemma which we use to prove theorem 2. A completion of a

choice function Ct,m(·|Yt−1) is a choice function C ′t,m(·|Yt−1) such that for all X ′t ⊆ Xt,

either C ′t,m(X ′t|Yt−1) = Ct,m(X ′t|Yt−1), or there exist distinct x, x′ ∈ C ′t,m(X ′t|Yt−1) that are

associated with the same asylum seekers, i.e. a(x) = a(x′).

Lemma 5. The choice function Ct,m(·|Yt−1) satisfies irrelevance of rejected contracts and

has a completion C ′t,m(·|Yt−1) satisfying substitutability and the law of aggregate demand

(and irrelevance of rejected contracts).

Both lemmas are used to establish theorem 2. Lemma 5 establishes that there exists a

completion satisfying substitutability and the law of aggregate demand used to establish

strategy-proofness and stability. Moreover, using lemma 4, the outcome satisfies our defi-

nition of two sided efficiency.

12The choice function also violates the weaker unilateral substitutes condition Hatfield and Kojima
(2010b), which toghether with the law of aggregate demand is sufficient for stability and agent strategy
proofness. A choice function Ct,m1(·|Yt−1) is unilateral substitutable if there does not exist X ′t ⊆ Xt and
x, z ∈ Xt \X ′t such that a(x) 6∈ A(X ′t) and x 6∈ Ct,m1(X ′t ∪ {x}|Yt−1) but x ∈ Ct,m1(X ′t ∪ {x, z}|Yt−1). This
example is also a violation of the unilateral substitutability condition as a(x) 6∈ A(X ′t).

13Dimakopoulos, Heller et al. (2015) use a similar example for the lawyer match.
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2.4 Conclusion

The Dublin Regulation leads to an inefficient European Asylum System. As an alternative,

we propose to match asylum seekers to member states based on their preferences and mem-

ber states priorities improving the outcome on both sides, while not interfering with member

states control over their eligibility determination process. An important observation is that

the independently developed asylum seeker framework can be modeled as an application

of the matching with contracts model. We set up a dynamic model and show that the cu-

mulative offer mechanism is stable, (asylum seeker) strategy proof, and two sided efficient.

The key is to recognize that there exists a completion of the proposed member state choice

function that satisfies the law of aggregate demand and the substitutability condition. This

illustrates the practical importance of the hidden subsitutability framework. Moreover, for

dynamic stategy-proofness we need member states to commit to all contracts signed in ear-

lier periods. This aligns with the European Unions demand that the responsible member

state is determined only once upon initial arrival of an asylum seeker. We suggest that the

asylum seeker problem might be a fruitful area for future research, as we abstracted away

from many complexities that are not present in the standard school choice framework.
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Multi-Object Assignment: Booster Draft

A.1 Mathematical Appendix

A.1.1 Section 3

Proposition 4: Characterization Dominance Efficiency

Proof. We start with the if-statement. Suppose that it does not hold, then the allocation

A is dominance efficient, but there exists a efficient single object trade. One can easily

confirm that, under responsive preferences a single object trade (i1, o1), (i2, o2), . . . , (ik, ok)

makes every individual involved {ii, . . . , ik} better off under the dominance relation, i.e.,

Ai1∪{ok}\{o1} >i1 Ai1 , . . . , Aik∪{ok−1}\{ok} >ik Aik . Hence carrying out the trade makes

all individual in the trade strictly better of under the dominance relation while everyone
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else is indifferent, contradicting that A is dominance efficient.

Next consider the only-if-statement. Suppose it is does not hold, then there exists no

efficient single object trade at A, but A is not dominance efficient. Let A′ be an allocation

that is dominant efficient relative to A and consider the following argument.

Step 0. Pick any individual i for which A′ >i A and call it ik. Pick the best object o ∈ A′ik \Aik

and call it ok−1. This object must have been assigned to a different person under A.

Call that person ik−1 and go to the next step.

Step t. Consider individual ik−t. Pick the best object o ∈ A′ik−t
\ Aik−t

and call it ok−t−1.

This object must have been assigned to a different person under A. If the individual

is in {ik−t+1, . . . , ik} we found a efficient single object trade, starting from the original

distribution A, and hence reach a contradiction. Otherwise call that person ik−t−1

and go to the next step.

As the set of individuals is finite we reach a contradiction after a finite number of steps.

Every person in the circle get his/her best object among new ones.

Proposition 6: Impossibility Result

Counterexample. Let I = {i, j} and O = {o1, o2, o3, o4}. Suppose ψ is a dominance strategy-

proof, dominance efficient and dm2 e = 1 envy-free mechanism. We abbreviate rankings Pi

as 1234i to represent o1 Pi o2 Pi o3 Pi o4. Similarly for an allocation A with Ai = {1, 2}

and Aj = {3, 4} we simply write (12, 34).
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Case 1: ψ(1234i, 1234j) = (12, 34)

This outcome violates dm2 e = 1 pick envy freeness. We have that j envies i’s assignment as

{12} >j {34} and even after removing the best object from i and the worst form j the envy

prevails as {1, 2} \ {1} >j {3, 4} \ {4}, respectively {2} >j {3}.

Case 2: ψ(1234i, 1234j) = (34, 12)

The reasoning is symmetric to the one in case 1.

Case 3: ψ(1234i, 1234j) = (24, 13)

Observation 1: ψ(1234i, 3214j) = (14, 23). Individual j can always change her preference

from 3214j to 1234j and get {1, 3}. This leaves us already with only two possible outcomes

of the mechanism either (24, 13) or (14, 23). Given dominance efficiency we must have

ψ(1234i, 3214j) = (14, 23) as {1, 4} ≥i {2, 4} and {2, 3} ≥j {1, 3}.

Observation 2: ψ(1234i, 2341j) = (14, 23). By observation 1, any other outcome would

violate dominance strategy proofness as j can switch back to 3214j and enforce her best

outcome {2, 3}.

Observation 3: ψ(2314i, 1234j) 6= (34, 12). This follows by dominance strategy profness

at otherwise i would be better of under preferences consistent with 2314i to report 1234i

instead and get {2, 4} instead of {3, 4}.

Observation 4: ψ(2314i, 2341j) has no outcome is consistent with the required criteria.

- Naturally (14, 23) and (23, 14) are both violating 1 envy freeness, as i respectively j
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get their worst two objects.

- By dominance strategy proofness we can rule out (34, 12). For this we need to note

that by observation 3 we have ψ(2314i, 1234j) 6= (34, 12), and therefore fixing i’s

ranking no other preference of j can ever give her the outcome {1, 2}.

- Using observation 2 and the same logic we can rule out (12, 34) and (13, 24) as

ψ(1234i, 2341j) = (14, 23), fixing j’s ranking we can never have that i gets {1, 3}

or {1, 2}.

- This leaves us with ψ(2314a, 2341b) = (24, 13). Consider (12, 34) which can be reached

by letting i and j trade o1 and o4 making both strictly better off and hence violating

dominance efficiency.

This leads to the conclusion that no dominance strategy-proof, dominance efficient, and 1

pick envy free can every assign ψ(1234a, 1234b) = (24, 13).

Case 4: ψ(1234i, 1234j) = (13, 24)

We can symmetrically follow the previous reasoning of case 3.

Case 5: ψ(1234a, 1234b) = (23, 14)

Observation 1: ψ(2341a, 1234b) = (23, 14). This simply follows from dominance strategy

proofness as under 2341a we have (23, 14) = ψ(1234a, 1234b) >a ψ(2341a, 1234b) 6= (23, 14).

Observation 2: ψ(2341a, 2314b) has no outcome is consistent with the required criteria.

- Outcomes (14, 23) and (23, 14) are both violating 1 envy freeness.
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- Outcome (12, 34) is dominated by (24, 13) similarly (13, 24) is dominated by (34, 12),

hence both would violate dominance efficiency.

- The last two possible outcomes violate dominance strategy proofness as under 1234j

we have (34, 12) or (24, 13) = ψ(2341a, 2314b) >j ψ(2341a, 1234b) = (23, 14).

This leads to the conclusion that no dominance strategy-proof, dominance efficient, and

dm2 e = 1 envy free mechanism can every assign ψ(1234a, 1234b) = (23, 14).

Case 6: ψ(1234a, 1234b) = (14, 23)

We can symmetrically follow the previous reasoning of case 5.

Case 1-6 together conclude the proof as regardless of what we assign ψ(1234a, 1234b) we

find a contradiction with at least one required property.

Serial Dictatorship and Harvard Business School Mechanism

Fixing a single priority order serial dictatorship algorithm is formally defined by the follow-

ing algorithm:

SD Algorithm

Step 1 ≥ t ≤ n.

There are m × n −m × (t − 1) objects left. Following the priority orders let person i ∈ I

with priority f−1(i) = t pick her k most preferred objects among the remaining objects.

Similarly we can define the Harvard Business School mechanism via the following algorithm.
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This algorithm is based on two priority orders fodd and feven that have reverse priority, i.e.

fodd(i) = n− feven(i).

HBS Algorithm

Step 1 ≥ t ≤ n×m.

There are m× n− (t− 1) objects left. The priority order used is changed all n steps from

fodd to feven and back. Following the appropriate priority order f ∈ {fodd, feven} let person

i ∈ I with priority f−1(i) = t pick her most preferred object among the remaining objects.

It is well know that serial dictatorship is efficient and strategy-proof, but is unsatisfactory

in terms of ex-post fairness. The HBS algorithm on the other hand is 1 envy-freeness and

dominance efficiency but fails even the weaker notion of dominance strategy proofness. We

summarize these results for the responsive preference domain in the following propositions.

Efficiency

Proposition 9. HBS is dominance efficient. SD is pareto efficient (among all outcomes

giving each individual exactly m objects) and hence dominance efficient. BD is not domi-

nance efficient.

Proof. HBS is dominance efficient. Let ψ(P ) be the outcome of the HBS mechanism.

Suppose to the contrary that there exists an assignment A s.t. Ai ≥i ψi(P ) for all i ∈ I and

Ai >i ψi(P ) for at least some i ∈ I, It is obvious that when ordering the objects in ψi(P )

following Pi we get that the object in lth place ψli = {o ∈ ψi(P ) : |{o′ ∈ ψi(P ) : o′ Ri o}| = l}
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for l ∈ {1, . . . , k} is the lth object picked under the HBS mechanism. As Ai ≥i ψi(P ) for

every object ψli assigned at each step of the HBS mechanism there exists an object oli Ri ψ
l
i

with oli = {o ∈ Ai : |{o′ ∈ Ai : o′ Ri o}| = l}. Consider the first step of the HBS mechanism

where oli Pi ψ
l
i. Note that as P is a simple order, all previous objects must have been

identical oli = ψli. This leads to a contradiction as the object ψli assigned under the HBS

mechanism must be the best available object following Pi but there exists oli Pi ψ
l
i.

HBS is not pareto efficient. Let I = {1, 2} and O = {o1, o2, o3, o4}. Suppose the reported

ranking is Pi : o1, o2, o3, o4 for i = 1, 2. Under fodd : 1, 2 and feven : 2, 1, the outcome

under the HBS mechanism is ψ1(P ) = {o1, o4} and ψ2(P ) = {o2, o3}. Note that preferences

%1: {o2, o3}, {o1, o4} and %2: {o1, o4}, {o2, o3} are both consistent with the reported order

P1 respectively P2 as the relative ranking between the two bundles cannot be inferred

from the reported simple order under responsive preferences. Therefore assignment A with

A1 = {o2, o3} and A2 = {o1, o4} pareto dominates the outcome ψ(P ).

SD is pareto efficient. It is well known that serial dictatorship is efficient and therefore

dominance efficient. Note that the highest priority person i1 with f−1(i1) = 1 gets her m

best objects. Under responsiveness of Pi1 the bundle containing the best m objects is the

best set in {O′ ∈ 2O : |O′| = m}. Conditional on this the second highest priority person

i2 with f−1(i2) = 2 gets her best m objects among the remaining object. As we can never

change i1’s assignment to another assignment containing m objects without making her

worse off we can never changes i2’s assignment as well. Following this argument for the
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remaining individual we can conclude that there cannot exist an allocation assigning every

person weakly better bundle of size m.

SD is not pareto efficient under any assignment. Let I = {1, 2} and O = {o1, o2, o3, o4}.

Suppose the reported ranking is Pi : o1, o2, o3, o4 for i = 1, 2. Suppose that for 1 we have

that {o2, o3, o4} �1 {o1, o2} while for 2 we have {o1} �2 {o2, o3, o4}.

For example u1 and u2 are additive utility functions of individual 1 and 2 where u1 :

100, 99, 98, 88 and u2 : 100, 3, 2, 1. Where u1({o2, o3, o4}) = 285 > u1({o1, o2}) = 199 and

u2({o1}) = 100 > u1({o2, o3, o4}) = 6.

Under priority order f : 1, 2 the outcome of m-serial dictatorship is ψ(P ) with ψ(P )1 =

{o1, o2} with ψ(P )2 = {o3, o4} which is Pareto dominated by A with A1 = {o2, o3, o4} with

A2 = {o1}.

Envy Freeness

Proposition 10. HBS is 1 envy-free. BD is dm2 e envy-free. And SD is m-pick envy free.

Proof. HBS. 1 envy freeness follows directly from the algorithm. Consider any pair of

individuals i, j ∈ I. Under the reported preference profile Pi person i always prefers her

first picked item to person j’s second picked item, her second picked item to person j’s third

picked item, and so on and so forth. Hence under any allocation of the draft mechanism we

get that that oki Pi o
k+1
j for l ∈ {1, . . . ,m− 1} which implies 1 envy-free.

SD. Let ψ denote the serial dictatorship mechanism. We have that |ψi(P )| = |ψ(P )j | = m
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for any two assignments. Consider two individual with identical simple orders. It follows

that the one with lower priority will have m objects all worse that the higher priority

individual. Hence by removing m items from any two sets we end up with ∅ ≥i ∅.

Strategy Proofness

Proposition 11. BD and SD are both strongly strategy-proof. The HBS mechanism is not

dominance strategy proof.

Proof. HBS. Let I = {1, 2} and O = {o1, o2, o3, o4}. Suppose true preference are P1 :

o1, o2, o3, o4 for individual 1 respectively P2 : o2, o3, o4, o1 for individual 2. Take priority

orders fodd : 1, 2 and feven : 2, 1, then under the HBS mechanism ψ and true rankings we

get ψ1(P1, P2) = {o2, o3} and ψ2(P1, P2) = {o1, o4}. But there is a profitable manipulation

for 1 by picking the more popular object first P̂1 : o2, o1, o3, o4 leading ψ1(P̂1, P2) = {o1, o2}

and ψ2(P̂1, P2) = {o3, o4}. Its easy to check that ψ1(P̂1, P2) >1 ψ1(P̂1, P2) and hence

violating even dominance strategy proofness.

SD is strategy-proof. Let φ denote the serial dictatorship mechanism. Is is well known that

the serial dictatorship mechanism is strategy proof. The highest priority agent i1 ∈ I with

f−1(i1) = 1 obtains the best m objects. Under responsiveness of Pi1 the bundle containing

the best m objects is the best set in {O′ ∈ 2O : |O′| = m}. As any outcome for i1 under the

serial dictatorship is in the set {O′ ∈ 2O : |O′| = m} we have ψ(P )i1 %i ψ(Pi1 , P
′
i1

)i1 for all

Pi1 , P
′
i1
∈ Pi1 . The second highest priority agent i2 ∈ I with f−1(i2) = 2 obtains the best
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m object among the remaining ones and hence can never be better off by misrepresenting

using an analogous argument Following this argument step by step for every individual

leads us to the desired conclusion.

A.1.2 Section 4

The following is a restatement of lemma 1, adjusted to the partition-responsive domain.

Lemma 6. Let %i be any responsive preference relation over 2O with underlying ranking

Pi, and ≥i the corresponding dominance relation. For any O′, O′′ ∈ S if O′ ≥i O′′ then

O′ %i O
′′.

Proof. Suppose we have O′, O′′ ∈ S with O′ = {o′1, . . . , o′m} ≥i O′′ = {o′′1, . . . , o′′m}. As

O′ ≥i O′′ we have o′1 R1 o
′′
1 as well as {o′1} %i {o′′1}. Using responsiveness for {o′′2, . . . , o′′m}∩

{o′1, o′′1} = ∅ and {o′1} %i {o′′1} we get {o′1, o′′2, . . . , o′′m} ≥i O′′ = {o′′1, o′′2 . . . , o′′m′}. Re-

placing one-by-one o′′k by o′k for all k ∈ {2, . . . ,m} and invoking responsiveness we get

O′ = {o′1, o′2, . . . , o′m} %i . . . %i {o′1, o′′2, . . . , o′′m′} %i {o′′1, o′′2, . . . , o′′m′} = O′′. By transitivity

of %i we reach the conclusion that O′ %i O
′′.
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A.1.3 Section 7

Proposition 7: Not OSP

Proof. Following proposition 2 (pruning principle) in Li (2017), we can restrict attention

to “minimal” extensive form games, where no histories are off the path of play. It is also

sufficient to show that a sub-function ψ is not OSP-implementable. Take agents {1, 2} ⊆ I

and objects {a, b, c, d} ⊆ O with {a, b} ⊆ O1 and {c, d} ⊆ O2 with priority orders f1(1) <

f1(2) and f2(2) < f2(1). Consider the following subset %{1,2}⊂%N for the partition-

restricted assignment domain.

%1: {a, c} �1 {b, c} �1 {a, d} �1 {b, d} (A.1)

%2: {a, c} �2 {a, d} �2 {b, c} �2 {b, d} (A.2)

Take any G pruned with respect to the truthful strategy profiles, such that G OSP-

implements ψ for domain %{1,2}. Consider some history h at which i(h) = 1 with a

non-singleton action set. If OSP holds this cannot come before any non-singleton action

history with i(h) = 2. Suppose not, then if 1 chooses an action corresponding to a Pa b

her worst payoff is {a, d} while her best payoff under an action corresponding to b Pa a is

{b, c} �1 {a, d}. Similarly consider some history h at which i(h) = 2 with a non-singleton

action set. This cannot come before any such history with i(h) = 1. Suppose not, then if

2 chooses an action corresponding to c Pa d her worst payoff is {b, c} while her best payoff
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under an action corresponding to d Pa d is {a, d} �2 {b, c}. So all action sets of 1 and 2

must be singletons and G does not OSP-implement the BD rule.

Partial Order SP, OSP, WGSP

Slightly abusing notation, a partial order function D :%I→ DI is a consistent way to

assign a subset of pairwise comparisons D(%i) ⊆%i to each type. Given G and (%i, D),

Si is partial order obviously dominant with respect to D if ∀S′i and ∀Ii ∈ α(Si, S
′
i)

there does not exist z′ ∈ ZG(Ii, S
′
i) and z ∈ ZG(Ii, Si) such that g(z′) B(%i) g(z). A type-

strategy profile T (%) ∈ OSPD(G) is in the set of partial order obviously strategy-proof

(PoOSP) profiles if for all i ∈ I, T (%i) is partial order obviously dominant with respect

to D.

Similarly we can define the standard concepts of strategy proofness and weak group

strategy proofness for a particular partial order. For the partial order profile ≥= (≥i)i∈I

a type-strategy profile T (%) ∈ SPD(G) is in the set of partial order strategy-proof

(PoSP) profiles if there does not exists an %∈%I , individual i ∈ I with deviation strategy

Ŝi 6= T (%i) such that g(zG(h∅, Ŝi, T (%) \ T (%i))) B(%i) g(zG(h∅, T (%))). For the partial

order profile ≥= (≥i)i∈I a type-strategy profile T (%) ∈WGSPD(G) is in the set of partial

order weakly group-strategy-proof (PoWGSP) profiles if there does not exists a

coalition I ′ ⊆ I, type profile %∈%I , deviating strategies Ŝ = (Ŝi)i∈I′ , non coalition strate-

gies T (%)\ Ŝ such that for all i ∈ I ′ we have g(zG(h∅, Ŝ, T (%)\ Ŝ)) B(%i) g(zG(h∅, T (%))).
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Proposition 12. If T (%) ∈ OSPD(G) with respect to D then T (%) ∈ WGSPD′(G) with

respect to the same partial order D′ = D.

Proof. Suppose T (%) 6∈ WGSPD(G). Then there exists coalition I ′ with types (%i)i∈I′

that can deviate to strategy Ŝ = (Ŝi)i∈I′ where all i ∈ I are strictly better off following the

partial order ≥. Along the resulting terminal history, there is a first agent i ∈ I ′ in the

coalition to deviate from T (%i) to Ŝi. That first deviation happens at some information set

Ii ∈ α(T (%i), Ŝi). We have for h ∈ Ii and S′−i = (T (%) \ Ŝ) ∪ (Ŝ \ {Ŝi}) that

g(zG(h, Ŝi, S
′
−i)) B(%i) g(zG(h, T (%)))

We reach a contradiction as T (%) 6∈ OSPD(G) as there exists an earliest point of departure

at which a preferred history following the partial order is reachable.

Proposition 8: DOSP

We fist show that in the standard domain the balanced BD mechanism is not DOSP imple-

mentable. We show that the mechanism is not DWGSP(G) implementable, and hence by

proposition 12, in the previous appendix subsection, not DOSP implementable.

Proposition 13. In the responsive preference domian for m ≥ 2 the balanced BD mecha-

nism is not DWGSP(G) implementable.

Proof. Let I = {1, 2} and O = {o1, o2, o3, o4} without loss of generality let the partition
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of objects into packages be O1 = {o1, o2} and O2 = {o3, o4} as well as f1(1) > f1(2) and

f1(2) > f1(1). Suppose agent 1’s type %1 produces the following simple order preference

P1 : o3, o1, o2, o4 respectively agent 2’s type the simple order P2 : o1, o3, o4, o2.

The BD mechanism leads A1 = {o1, o4} for individual 1 and A2 = {o2, o3} for individual 2.

Now consider the manipulation corresponding to P̂1 :: o3, o2, o1, o4 and P̂3 :: o4, o1, o2, o3.

The BD mechanism leads A1 = {o2, o3} for individual 1 and A2 = {o1, o4} for individual 2.

This is strictly better for both 1 and 2 following the dominance relation as for individual 1

we have o3 P1 o1, o2 P1 o4 and while for individual 2 we have o1 P2 o3, o4 P2 o2.

Corollary 2. In the responsive preference domain, if ψ is a balanced BD mechanism and

m ≥ 2, then there does not exist G ∈ G that DOSP-implements ψ.

We now show the second part, i.e. that in the restricted domain the Balanced BD is DOSP

implementable.

Note that the BD rule is a simple mechanism that treats all types with the same underlying

simple order as identical. We will think of the problem as having a mechanism from ψ :

P → A and specifying a type-strategy profile function T : P → S.

Proof. Define the extensive form game G as follows. Take the buckets {O1, . . . , Om} and

the corresponding priority orders {f1, . . . , fm}. The set of players is I. The set of actions

at each information set A(Ii) is to claim a single available object. For histories of length

|h| ∈ [1, n − 1] the player at each node is identified by the priority order f1. Similarly for
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any history of length |h| ∈ [kn, (k+ 1)n− 1] the player P (h) is defined by the priority order

fk. The terminal histories give every agents the set of object the person claimed at each

step of the path leading to z.

Define the type strategy T (Pi) for each type �i corresponds to a simple order Pi over

individual objects. In particular T (Pi) is simply to take the best object available at each

information set where a agent is called to play following the simple order Pi. Its straight

forward to see that ψ(P ) = g(zG(h∅, T (P ))) where ψ is the outcome of the BD mechanism.

We want to show that T ∈ DOSP (G) for all i and for all %i, Ti(%i) is obviously dominance

relation dominant. Suppose to the contrary that there exists i ∈ I such that for some S′i and

Ii ∈ α(Si, S
′
i) there exists z′ ∈ ZG(Ii, S

′
i) and z ∈ ZG(Ii, Si) with g(z′) ≥ (Pi) g(z). So for

all k ∈ {1, . . .m} we have that g(z′)i ∩Ok Ri g(z)i ∩Ok. This implies that at Ii the object

obtained under the two strategies differs Si(Ii) 6= S′i(Ii) where S′i(Ii), S
′
i(Ii) ∈ Ok′ ⊆ Ok for

some k ∈ {1, . . .m}. But we know that under the type strategy Si(Ii) Ri S
′
i(Ii) holding

strictly as Si(Ii) 6= S′i(Ii), i.e. Si(Ii) Pi S
′
i(Ii) contradicting that the assignment under S′i

dominates the assignment under Si as g(z)i ∩Ok Pi g(z)i ∩Ok.

A.2 Illustration Algorithms

We schematically depict the described algorithms for eight object and four individual. In

line with the original inspiration, the objects are represented by cards. Moreover, we invite

the observer to interpret the depicted square as a tabletop with the individual 1,2,3, and 4
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sitting around that table.

1 2

34

1 2

34

1 2

3

1 2

34

1 2

34

Figure A.1: Schematic Depiction Serial Dictatorship
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Figure A.2: Schematic Depiction Harvard Business School Mechanism
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Figure A.3: Schematic Depiction Booster Draft Mechanism
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Appendix B

An Alternative Approach to Asylum

Assignment

B.1 Proofs

The original choice function Ct,m(X ′t|Yt−1) ⊆ X ′t is defined as follows:

Step 0.

- Accept all contracts specified in the previous period allocation X
1
t = X ′t,m∩Yt−1.

- Reject all contracts specifying different member states and all contracts available

but not specified in the previous period allocation X1
t = (X ′t \ X ′t,m) ∪ (X ′t,m ∩

Xt−1 \ Yt−1).

- This leaves us with X1
t ≡ X ′t \ (X1

t ∪X
1
t ). Go to step 1.

Step j ≥ 1. Consider all contracts Xj
t,aj

of the highest priority applicant among the

remaining |{a ∈ A(Xj
t ) : a ≥t,m aj}| = 1. If Xj

t,aj
= ∅ the algorithm stops and

Ct,m = (X ′t|Yt−1) = X
j
t .

a) If ∅ >t,m aj and there are already at least |Xj
t \X

1
t | ≥ qt,m contracts specifying

newly arrived asylum seekers accepted the algorithm stops.

b) Otherwise consider arg minx∈Xt,aj
= w(x) ∈ W (Xt,aj ) such that rm,w(x) > |X

j
t |.

If it exists then X
j+1
t = X

j
t ∪{x} and Xj+1

t = Xj
t ∪Xt,aj \{x}, otherwise X

j+1
t =

X
j
t and Xj+1

t = Xj
t ∪Xt,aj . Go to the next step with Xj+1

t ≡ X ′t\(X
j+1
t ∪X1

j+1).
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The modified choice function C ′t,m(X ′t|Yt−1) ⊆ X ′t is defined as follows:

Step 0.

- Accept all contracts specified in the previous period allocation X
1
t = X ′t,m∩Yt−1.

- Reject all contracts specifying different member states and all contracts available

but not specified in the previous period allocation X1
t = (X ′t \ X ′t,m) ∪ (X ′t,m ∩

Xt−1 \ Yt−1).

- This leaves us with X1
t ≡ X ′t \ (X1

t ∪X
1
t ). Go to step 1.

Step j ≥ 1. Consider all contracts Xj
t,aj

of the highest priority applicant among the

remaining |{a ∈ A(Xj
t ) : a ≥t,m aj}| = 1. If Xj

t,aj
= ∅ the algorithm stops and

C ′t,m = (X ′t|Yt−1) = X
j
t .

a) If ∅ >t,m aj and there are already at least |Xj
t \X

1
t | ≥ qt,m contracts specifying

newly arrived asylum seekers accepted the algorithm stops. If Xj
t,aj

= ∅ the

algorithm stops.

b) Otherwise consider arg minx∈Xt,aj
= w(x) ∈ W (Xt,aj ) such that rm,w(x) > |X

j
t |.

If it exists then X
j+1
t = X

j
t ∪ {x} and Xj+1

t = Xj
t , otherwise X

j+1
t = X

j
t and

Xj+1
t = Xj

t ∪Xt,aj . Go to the next step with Xj+1
t ≡ X ′t \ (Xj+1

t ∪X1
j+1).

Lemma 5

Claim. C ′t,m(·|Yt−1) is a completion of Ct,m(·|Yt−1).

Proof. We have to show that for any X ′t ⊆ Xt, whenever there do not exist two con-

tracts x, x′ ∈ C ′t,m(X ′t|Yt−1) specifying the same asylums seeker a(x) = a(x′) we must have
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C ′t,m(X ′t|Yt−1) = Ct,m(X ′t|Yt−1). We proceed by induction. Slightly abusing notation we

refer to a step of C ′t,m(X ′t|Yt−1) as all the steps where contracts Xj
t,aj

of the same agent are

considered, while Ct,m(X ′t|Yt−1) the original choice function does this in a single step.

Base Step: We have X
1′
t = X

1
t and X1′

t = X1
t at the end of step 0.

By definition X
1′
t = X ′m,t ∩ Yt−1 = X

1
t , and X1′

t = (X ′t \X ′m,t)∪ (X ′m,t ∩Xt−1 \ Yt−1) = X1
t .

Inductive Step. Suppose X
j′
t = X

j
t and Xj′

t = Xj
t at the end of step j − 1. If no two

contracts of the same applicant are accepted under C ′t,m(X ′t|Yt−1), then X
j+1′
t = X

j+1
t as

well as Xj+1′
t = Xj+1

t at the end of step j.

We have Xj′
t = X ′t \ (X

j
t ∪ X

j
t ) = Xj

t . It directly follows that the same contract must be

chosen at j under both choice functions as {a ∈ A(Xj′
t ) : a ≥t,m aj for all a ∈ A(Xj′

t )} =

{a ∈ A(Xj
t ) : a ≥t,m aj for all a ∈ A(Xj

t )} and hence identifies the same agent, while

arg minx∈X′t,aj
= w(x) ∈ W (X ′t,aj ) such that rm,w(x) > |X

j′
t | identifies the same waiting

time as arg minx∈Xt,aj
= w(x) ∈ W (Xt,aj ) such that rm,w(x) > |X

j
t |. Therefore X

j+1
t =

X
j
t ∪ {x} = X

j+1
t .

As no two contracts of the same applicant are accepted under C ′t,m(X ′t|Yt−1) all contracts

Xt,aj \ {x} must be rejected. Hence also the second part of the inductive claim holds

Xj+1′
t = Xj′

t = Xj
t ∪Xt,aj \ {x} = Xj+1

t . This concludes the proof. Let J be the final step

of the algorithm, then C ′t,m(X ′t|Yt−1) = X
J
t = Ct,m(X ′t|Yt−1).

Note that it is not necessary that the lowest available waiting time contract is chosen for
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the results to go through. It is easy to see that our choice functions can be modified,

allowing for any rule that chooses a particular contract for the current asylum seeker under

consideration. All we need for the results to go through is that the modified choice function

has the exact same decision rule. In particular let Rt,m be any order of contracts Xt \Xt−1

such that if a(x) >t,m a(y) then xRt,my. Let the contract of any asylum seeker chosen

at any step be the highest ranked contract according to Rt,m under both the original and

the modified choice function. It is straightforward to see that with slight modifications the

same proofs works for these more general choice functions.

Claim. Ct,m(·|Yt−1) and C ′t,m(·|Yt−1) both satisfy irrelevance of rejected contracts.

Proof. We want to show if x 6∈ Ct,m(X ′t ∪ {x′}|Yt−1) then that Ct,m(X ′t ∪ {x′}|Yt−1) =

Ct,m(X ′t|Yt−1). We use induction, while the argument is similar to the previous proof.

Consider the algorithm for Ct,m(X ′t|Yt−1) and Ct,m(X ′t ∪ {x}|Yt−1). We use X1
t to denote

the initial set of contract for the former and X1′
t for the latter when also x′ is in the choice

set, and similarly for all other variable used during the algorithm.

Base Step: We have X
1′
t = X

1
t and X1′

t \ {x} = X1
t at the end of step 0.

By definition X
1′
t = (X ′t,m ∪ {x}) ∩ Yt−1 = X ′t,m ∩ Yt−1 = X

1
t , where the second equality

follows from the fact that x is not accepted by definition. Similarly X1′
t \{x} = [((X ′t∪{x})\

(X ′t∪{x})t,m)∪((X ′t,m∪{x})∩Xt−1\Yt−1)]\{x} = (X ′t\X ′t,m)∪((X ′t,m)∩Xt−1\Yt−1) = X1
t .

Note that unlike the previous proof we now use the original choice function definition twice,

once for the set X ′t and once for X ′t ∪ {x} where x′ will be rejected.
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Inductive Step. Suppose X
j′
t = X

j
t and Xj′

t \ {x} = Xj
t at the end of step j − 1. Then we

have X
j+1′
t = X

j+1
t as well as Xj+1′

t \ {x} = Xj+1
t at the end of step j.

As x′ is never chosen, it directly follows that the same contract must be chosen at j under

both choice functions as {a ∈ A(Xj′
t ) : a ≥m,t aj for all a ∈ A(Xj′

t )} = {a ∈ A(Xj
t ) : a ≥m,t

aj for all a ∈ A(Xj
t )} and hence identifies the same agent, while arg minz∈X′t,aj

= w(z) ∈

W (X ′t,aj ) such that rm,w(z) > |X
j′
t | identifies the same waiting time as arg minz∈Xt,aj

=

w(z) ∈W (Xt,aj ) such that rm,w(z) > |X
j
t |. Therefore X

j+1
t = X

j
t ∪ {x} = X

j+1
t .

We have Xj+1′
t \ {x′} = Xj′

t ∪X ′t,aj \ {x, x
′} = Xj

t ∪Xt,aj \ {x} = Xj+1′
t .

This concludes the proof, since the exact same contracts are chosen under both choice

functions irrelevance of rejected contracts is satisfied.This concludes the proof. Let J be the

final step of the algorithm, then Ct,m(X ′t∪{x′}|Yt−1) = X
J
t = Ct,m(X ′t|Yt−1). An analogous

argument can be made for the modified choice function under C ′t,m(X ′t ∪ {x}|Yt−1) and

C ′t,m(X ′t|Yt−1) when x′ is rejected.

Claim. C ′t,m(·|Yt−1) satisfy both the law of aggregate demand and subsitutability.

Proof. Law of aggregate demand.

By construction of C ′t,m(·|Yt−1) a contract x can only be rejected if overall qt,m contracts are

accepted or if rm,w higher priority contracts with the same wait time are accepted. Hence

the chosen set can never shrink as the set of available contracts grows.

Subsitutability.

Suppose to the contrary that there exists exist X ′t ⊆ Xt and x, z ∈ Xt \ X ′t such that

78



Appendix B An Alternative Approach to Asylum Assignment

x 6∈ C ′t,m(X ′t ∪ {x}|Yt−1) and x ∈ C ′t,m(X ′t ∪ {x, y}|Yt−1). As we already showed z has to be

accepted as C ′t,m(·|Yt−1) satisfies the irrelevance of rejected contracts condition. If x was

originally rejected because qm higher contracts were accepted, then this still holds when z

is accepted. Similarly if x was rejected because there were rm,w(x) higher priority contracts

this still holds true when z gets accepted. Hence once a contract is rejected from a set X ′t

the contract will be rejected from any larger set.

Lemma 4

Proof. Recall that an allocation Y = (Yt)t∈T is two sided efficient if there does not exist

an allocation Y ′ = (Y ′t )t∈T with Y ′ 6= Y s.t. Y ′t,a Ra Yt,a for all a ∈ A and t ∈ T and

Ct,m(Y ′t ∪Yt|Y ′t−1) = Y ′t−1. We will show that any such dynamic allocation will be the same

as the original stable dynamic allocation whenever the choice functions satisfy irrelevance

of rejected contracts.

Base step. We show that Y ′1 = Y1.

Suppose by contradiction that Y ′1 6= Y1 then at least one asylum seeker gets assigned a

strictly preferred contract Y ′1,a Pa Y1,a. In particular consider m ∈ M and all contracts

that are different {x1, . . . , xk} = Y ′1,m \ Y1,m, by efficiency we have x Pa Y1,a for all x ∈

{x1, . . . , xk}. Pick any x ∈ {x1, . . . , xk}, note that Y0 = Y ′0 = ∅ and hence by stability

and two-sided efficiency we have x Pa Y1,a and x ∈ X1 \ Y1 implying x 6∈ C1,m(Y1 ∪ {x}|∅).

By irrelevance of rejected contracts we have C1,m(Y1 ∪ {x1}|∅) = C1,m(Y1|∅) = Y1 and

similarly C1,m(Y1 ∪ {x1, x2}|∅) = C1,m(Y1 ∪ {x2}|∅) = C1,m(Y1|∅) = Y1. Following this
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reasoning for the remain {x3, . . . , xk} we get C1,m(Y1 ∪ {x1, . . . xk}|∅) = C1,m(Y1) = Y1,

and therefore C1,m(Y1 ∪ {x1, . . . xk}|∅) = C1,m(Y1 ∪ (Y ′1 \ Y1)|∅) = C1,m(Y ′1 ∪ Y1)|Y ′0) = Y1

a contradiction except if Y1 = Y ′1 .

Induction step. If Y ′t−1 = Yt−1 then Y ′t = Yt.

The induction argument is identical to the base step argument. Concluding the proof as we

reach a contradiction with Y ′ 6= Y .

Theorem 2

Proof. Dynamically stable.

By lemma 5 there exists a completion C ′t,m(·|Yt−1) of the choice function Ct,m(·|Yt−1) that

is substitutable, and satisfies the law of aggregate demand. Therefore, together with lemma

5 we have that theorem 2 is a corrollary of theorem 1-3 of Hatfield and Kominers (2016).

These three theorems show that the outcome of the cumulative offer process is stable and

strategyproof for asylum seekers under the original choice function profile (Ct,m)m∈M .

Dynamically strategy-proof.

Consider any a ∈ Nt′ Pa, P̂a ∈ Pa, P−a ∈ P−a and C ∈ C s.t. ϕt(P̂a, P−a, C) Pa ϕt(P,C),

where t′ ≤ t. As previously for t = t′ the proof is a corollary of Theorem 1-3 of Hatfield

and Kominers (2016). For t > t′ by one-time determination of the choice functions we

have ϕt,a(P̂a, P−a, C) = ϕt,a(P,C) and therefore ϕt(P,C) Ra ϕt(P̂a, P−a, C) contradicting
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ϕt(P̂a, P−a, C) Pa ϕt(P,C). As this holds for an arbitrary a ∈ Nt′ it holds for all a ∈ A =⋃
t∈tNt concluding the proof.

Two sided efficiency directly follows from lemma 4 as the outcome is dynamically stable

and by lemma 5 the original choice function Ct,m(X ′t|Yt−1) satisfies irrelevance of rejected

contracts.

Finally, we provide a counter-example, showing the outcome would be manipulable by

over-demanded member states. Consider the following (static) problem where bureaucratic

capacities are not binding: M = {m1,m2}, A = {a1, a2, a3}, Pa1 : m1 −m2, Pa2 : m2 −m1,

Pa3 : m1−m2, >m1 : a1−a2−a3−∅, >m2 : ∅a3−a2−a1, and qm1 = qm2 = 1. Its easy to check

that the outcome of the cumulative offer mechanism is Ym1 = {(a1,m1, w), (a3,m1, w)} and

Ym2 = {(a2,m1, w)}. The report >̂m1 : a1 − a2 − ∅ − a3 gives member state m1 a better

outcome, as Ym1 = {(a1,m1, w), (a2,m1, w)} and Ym2 = {(a3,m1, w)}.

B.2 Illustrating Example

Example 3 (Asylum Seeker Problem). The matching algorithm is run in two periods

T = {1, 2}. Initially three asylum seekers arrive N1 = {a1, a2, a3}, and two more in the

next period N2 = {a4, a5}. There are only two member states M = {m1,m2}, and the

relevant wait time follows the calendar time W = {1, 2, w̄}. We present burden sharing and

bureaucratic capacities as follows:
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q =


1 2

m1 1 1

m2 2 1

 r =


1 2 w̄

m1 1 1 5

m2 1 2 5


Finally preferences for asylum seekers, and priorities for member states are listed next:

Pa1 : (m1, 2)− (m2, 2)−∅

Pa2 : (m2, 1)− (m1, 1)−∅

Pa3 : (m1, 1)− (m2, 1)−∅

Pa4 : (m1, 2)− (m2, 2)−∅

Pa5 : (m1, w̄)−∅

>1,m1 : a1 − a2 −∅− a3

>1,m2 : ∅− a3 − a2 − a1

>2,m1 : a4 −∅− a5

>2,m2 : a5 − a4 −∅

Period 111

The set of contracts X1 = A1 ×M ×W1, where A1 = {a1, a2, a3} and W1 = {1, 2, 3}. We

informally describe how the cumulative offer mechanism reaches an outcome, letting the

lowest subscript applicant, currently not holding a contract, propose at the beginning or

each step.

Start. The initial set of proposed contracts is empty, X0
1 = ∅.
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m1

rm1;1

q1;m1

m2

q1;m2

a1

a2

a3

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 1. Asylum seeker a1 proposes her first choice x1 = (a1,m1, 2). X1
1 = {x1} and

the contract is tentatively accepted by member state m1, i.e. x1 ∈ C1,m1(X1
1 |∅) as the

member state has committed to take at least one asylum seeker and the bureaucratic

capacity for wait time 2 is sufficiently large.

a2

a3

a1

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 2. Asylum seeker a2 proposes her first choice x2 = (a2,m2, 1). X2
1 = {x1, x2}

and the contract is tentatively accepted by member state m2, for the same reasons as

previously, hence x2 ∈ C1,m2(X2
1 |∅).

a3

a1 a2

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 3. Asylum seeker a3 proposes her first choice x3 = (a3,m1, 1). X3
1 = {x1, x2, x3}

and the contract is rejected as x3 6∈ C1,m1(X2
1 |∅) as ∅ >1,m1 a3 and the member state

m1 has already tentatively accepted q1,m1 = 1 applications.
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a1 a2

a3

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 4. Asylum seeker a3 proposes her second choice x4 = (a3,m2, 1). X4
1 =

{x1, . . . , x4} and the contract is tentatively accepted by member state m2. At the

same time it triggers a rejection of contract x2 as x2 6∈ C1,m2(X4
1 |∅) as the available

bureaucratic quota r1,m2 = 1 and therefore insufficient for handling both applications

in the desired time.

a1 a3

a2

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 5. Asylum seeker a2 proposes her second choice x5 = (a2,m1, 1). X5
1 =

{x1, . . . , x5} and the contract is accepted by member state m1 even though its fair

burden is already fulfilled, i.e. x5 ∈ C1,m1(X5
1 |∅) as a2 >1,m1 ∅ and the asylum

seekers can be processed within the specified time.

a1 a3a2

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

End. As everyone is tentatively assigned a contract the algorithm stops and every
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tentative assigned contract becomes permanently assigned, producing the period 1

allocation ψc1(P,C) = {(a1,m1, 2), (a2,m1, 1), (a3,m2, 1)}.

a1 a3a2

m1

rm1;1

q1;m1

m2

q1;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Period 222

The set of contracts X2 = A2 ×M ×W2, where E2 = {a1}, A2 = N2 ∪ E2 = {a1, a4, a5}

and W1 = {2, 3}.

Step 1. All member state decision now depend on the previous period assignment

ψc1(P,C) = Y1 = {(a1,m1, 2), (a2,m1, 1), (a3,m2, 1)}. To be consistent we require

asylum seeker a2 to proposes her (relabeled) contract x1 = (a2,m1, 1) again, which is

now the only contract that will be accepted by any member state. Set X1
2 = {x1}.

a1

a3a2

a4

a5

m1

rm1;1

q2;m1

m2

q2;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 2. Asylum seeker a4 proposes her first choice x2
2 = (a4,m1, 2), and X2

2 = {x1, x2}

and the contract is rejected by member state m1, i.e. x2 6∈ C2,m1(X2
2 |Y1) as m1 has

already committed to process a1, and is unable to process both in the given time

frame.
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a1

a5

a4

m1

rm1;1

q2;m1

m2

q2;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 3. Asylum seeker a4 proposes her second choice x3 = (a4,m2, 2). X3
2 =

{x1, x2, x3} and the contract is accepted by m2, i.e. x3 ∈ C2,m2(X3
2 |Y1) as m2 has

committed to take at least one asylum seeker, and the bureaucratic capacity for the

wait time 2 is sufficient.

a1 a4

a5

m1

rm1;1

q2;m1

m2

q2;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Step 4. Asylum seeker a5 proposes her second choice x4 = (a5,m1, 3). X3
2 =

{x1, . . . , x4} and the contract is accepted, i.e. x4 ∈ C2,m1(X3
2 |Y1) following the same

reasoning as the previous step. Note that as q2,m1 = 1 is defined in terms of newly

arrived asylum seekers, a1 does not count towards the member states current burden

share.

a1 a4a5

m1

rm1;1

q2;m1

m2

q2;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::
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End. As everyone is tentatively assigned a contract the algorithm stops and produces

the allocation ψc2(P,C) = {(a1,m1, 2), (a4,m2, 2), (a5,m1, w̄)}.

a1 a4a5

m1

rm1;1

q2;m1

m2

q2;m2

rm1;2

rm1;w̄

rm2;1

rm2;2

rm2;w̄::: :::

Overall the asylum seeker proposing mechanism produced ψc : (P,C) →

(Y1, Y2) with Y1 = {(a1,m1, 2), (a2,m1, 1), (a3,m2, 1)} and Y2 =

{(a1,m1, 2), (a4,m2, 2), (a5,m1, 3)}. This finally dynamic allocation is dynami-

cally (asylum seeker) strategy proof, stable, and two sided efficient by theorem

2.
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