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ABSTRACT

Complex plasma systems have been studied for a long time. In this thesis we

focus on a quasi-2D layer system. In fact, most experimental studies of complex

plasmas are based on 2D systems, because it is easy to use camera to record the in-

plane movement of particles. Unfortunately, due to the finite confining strength,

the system is not a strictly 2D layer, it is a quasi-2D layer. We firstly studied the

density profile of such a quasi-2D system by density functional theory(DFT). From

the density profile research result, we found that the system can form a trilayer

structure with proper parameters. Then we studied the dynamical properties of

a trilayer system, and for simplicity, we only studied an ideal three layer model,

both in liquid and lattice case. In lattice case, we firstly searched the stable lattice

structure at different inter-layer distance. Then we used lattice sites summation to

construct the dynamical matrix and solve the dispersion relation. For liquid case,

we did the theoretical prediction for the collective dispersion by quasi localized

charge approximation(QLCA), then we extracted the collective mode information

from the molecular dynamics(MD) simulation. The QLCA and MD results were

compared and discussed. The reason for the previous gap discrepancy problem is

discovered.

ii



ACKNOWLEDGEMENTS

Firstly, I would like to thank the physics department for giving me financial

support for my PhD study. I would like to thank my thesis advisor Gabor Kalman,

who introduced a good research topic to me. The discussions with Gabor made

my research result better and better. I would like to thank Peter Hartmann, who

provided me all the simulation data. His data is very accurate and reliable. I

thank Peter for his volunteer travel to Boston for attending my defense. I also

want to thank Zoltan Donko, who gave me a lot of suggestions on paper writing. I

am thankful for the financial assistance from the SCCS conference and I also thank

professor Bonitz for his help. I thank professors Kempa, Bakshi and Herczynski

for being the committee members for my thesis. I thank Jane, Nancy and Scott’s

assistance in the past years.

This work has been partially supported by the National Science Foundation(NSF)

under Grant PHY-1613102 and PHY-1740203. I thank the fund support from

NSF.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Strongly coupled plasma . . . . . . . . . . . . . . . . . . . . 1
1.2 Molecular dynamics simulation . . . . . . . . . . . . . . . . 4

II. Density Profile of Quasi-2D layer . . . . . . . . . . . . . . . . 5

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 System description . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Mean field theory . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Density functional theory with HNC approximation . . . . . 12

2.4.1 Direct correlation function for a uniform system
with HNC . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Density profile comparison between MD and HNC 17
2.5 Peaks in liquid profile and lattice structure . . . . . . . . . 22

III. Trilayer lattice system: structure and dynamcis . . . . . . . 27

3.1 Stable lattice structure at different interlayer distance . . . 27
3.2 Lattice dispersion and eigenvectors . . . . . . . . . . . . . . 34

3.2.1 Dispersion for trilayer triangle lattice . . . . . . . 35
3.2.2 Dispersion for trilayer square lattice . . . . . . . . 40
3.2.3 Eigenvector analysis . . . . . . . . . . . . . . . . . 42

IV. QLCA and MD comparison for trilayer liquid system . . . 51

4.1 QLCA prediction . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Extracting collective mode information from MD data . . . 62

iv



4.2.1 Current correlation function and VAF . . . . . . . 62
4.2.2 Extracting collective mode information . . . . . . 66

4.3 QLCA and MD result comparison . . . . . . . . . . . . . . 67
4.3.1 More about the current correlation function . . . . 73

4.4 Current correlation function at small d . . . . . . . . . . . . 77
4.4.1 When k → 0 and d→ 0 in a trilayer system . . . . 83

4.5 Current correlation function in trilayer lattice . . . . . . . . 86
4.5.1 Particle motion under harmonic oscillation model 88
4.5.2 1D chain lattice . . . . . . . . . . . . . . . . . . . 90
4.5.3 Current correlation function in 1D chain lattice . . 93
4.5.4 Disordered trilayer lattice . . . . . . . . . . . . . . 100

4.6 N dependence of the envelope . . . . . . . . . . . . . . . . . 104
4.7 Why the envelope equals the VAF? . . . . . . . . . . . . . . 107
4.8 More about VAF . . . . . . . . . . . . . . . . . . . . . . . . 108

V. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

v



LIST OF FIGURES

Figure

1.1 Temperature-density phase diagram(From Zoltan) . . . . . . . . . 2

1.2 Schematic graph for dusty plasma equipment . . . . . . . . . . . . 3

2.1 Density profile comparison between the MD simulation and the
MF approximation. Γ = 4, κ = 0.4, t=0.1 . . . . . . . . . . . . . . 9

2.2 Density profile comparison between the MD simulation and the
MF approximation, Γ = 8, κ = 0.4, t=0.2 . . . . . . . . . . . . . . 10

2.3 Density profile comparison between the MD simulation and the
MF approximation, Γ = 16, κ = 0.4, t=0.1 . . . . . . . . . . . . . 10

2.4 Density profile comparison between the MD simulation and the
MF approximation, Γ = 64, κ = 0.4, t=0.2 . . . . . . . . . . . . . 11

2.5 Density profile comparison between the MD simulation and the
MF approximation, Γ = 64, κ = 0.4, t=0.4 . . . . . . . . . . . . . 11

2.6 c(r) with different density. In the legend box, the first(blue) line
is Yukawa potential κ = 0.4, From the second to the last line, they
are calculated direct correlation functions with Γ = 64, κ = 0.4.
The density for each line is 0.001, 0.01, 0.1, 1, 10, in the unit of
1/a3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 g(r) with different density. In the legend box, from the first to
the last line, they are calculated pair distribution functions with
Γ = 64, κ = 0.4. The density for each line is 0.001, 0.01, 0.1, 1,
10, in the unit of 1/a3. . . . . . . . . . . . . . . . . . . . . . . . . 15

vi



2.8 c(r) with different Γ. In the legend box, the first(blue) line is
Yukawa potential κ = 0.4, From the second to the last line, they
are calculated direct correlation functions with density 0.02(in
unit of 1/a3), κ = 0.4. The Γ for each line is 2, 16, 32, 64,
128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 g(r) with different Γ. In the legend box, from the first to the last
line, they are calculated pair distribution functions with density
0.02(in unit of 1/a3), κ = 0.4. The Γ for each line is 2, 16, 32, 64,
128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10 density profile comparison between HNC and MD . . . . . . . . . 17

2.11 density profile comparison between HNC and MD . . . . . . . . . 17

2.12 density profile comparison between HNC and MD . . . . . . . . . 18

2.13 density profile comparison between HNC and MD . . . . . . . . . 18

2.14 density profile comparison between HNC and MD . . . . . . . . . 19

2.15 density profile comparison between HNC and MD . . . . . . . . . 19

2.16 density profile comparison between HNC and MD . . . . . . . . . 20

2.17 density profile comparison between HNC and MD . . . . . . . . . 20

2.18 density profile comparison between HNC and MD . . . . . . . . . 21

2.19 density profile with different Γ . . . . . . . . . . . . . . . . . . . . 22

2.20 density profile with different Γ . . . . . . . . . . . . . . . . . . . . 23

2.21 density profile with different Γ . . . . . . . . . . . . . . . . . . . . 24

2.22 density profile with different Γ . . . . . . . . . . . . . . . . . . . . 25

2.23 Number of layers with different trapping strength, Γ = 512, κ = 0.4 26

2.24 Number of layers with different trapping strength, Γ = 724, κ = 1.0 26

3.1 Rhombic unit cell(left), rectangle unit cell(right) . . . . . . . . . . 28

3.2 Unshifted and shifted lattice structure, both top and side view . . 28

vii



3.3 phase diagram with different interlayer distance . . . . . . . . . . 29

3.4 phase diagram with different interlayer distance . . . . . . . . . . 29

3.5 phase diagram with different interlayer distance . . . . . . . . . . 30

3.6 phase diagram map plot with different interlayer distance and
different κ. The red zone is triangle, the dark blue zone is the
shifted rhombic, the green zone is rectangle, the light blue zone is
square. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Original lattice summation energy from different layers combination 32

3.8 Correlation energy from different layers combination . . . . . . . . 32

3.9 MD snapshot for particle distribution in a trilayer system with
interlayer distance d = 0.9 . . . . . . . . . . . . . . . . . . . . . . 33

3.10 staggered trilayer triangle lattice structure . . . . . . . . . . . . . 35

3.11 trilayer triangular lattice structure . . . . . . . . . . . . . . . . . . 36

3.12 Reciprocal lattice: red line is for the whole projected single layer
lattice, black line is for each sublattice as well as the total trilayer 36

3.13 Lattice dispersion for trilayer triangle lattice . . . . . . . . . . . . 37

3.14 Lattice dispersion for single triangle lattice . . . . . . . . . . . . . 38

3.15 Lattice dispersion for single triangle lattice . . . . . . . . . . . . . 38

3.16 Lattice dispersion for trilayer triangle lattice, interlayer distance
is 0.2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.17 Lattice dispersion for trilayer triangle lattice, interlayer distance
is 3.0a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.18 Gap formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.19 top view of overlapping trilayer square lattice structure . . . . . . 41

3.20 Lattice dispersion for trilayer square lattice, interlayer distance is
1.5a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3.21 Lattice dispersion for trilayer square lattice, interlayer distance is
1.5a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.22 Displacement visualization of the eigenvecotors, interlayer dis-
tance is 1.5a, ϕ is the propagation angle in k space respect to
kx axis, the length of the arrows means its magnitude, the black,
red, green corresponds to layer 1-middle,2-upper,3-lower . . . . . . 43

3.23 Displacement visualization of the eigenvecotors, interlayer dis-
tance is 1.5a, ϕ is the propagation angle in k space respect to
kx axis, the length of the arrows means its magnitude, the black,
red, green corresponds to layer 1-middle,2-upper,3-lower . . . . . . 43

3.24 Displacement visualization of the eigenvecotors, interlayer dis-
tance is 1.5a, ϕ is the propagation angle in k space respect to
kx axis, the length of the arrows means its magnitude, the black,
red, green corresponds to layer 1-middle,2-upper,3-lower . . . . . . 44

3.25 Displacement visualization of the eigenvecotors, interlayer dis-
tance is 1.5a, ϕ is the propagation angle in k space respect to
kx axis, the length of the arrows means its magnitude, the black,
red, green corresponds to layer 1-middle,2-upper,3-lower . . . . . . 44

3.26 Displacement visualization of the complex eigenvecotors . . . . . . 47

3.27 Displacement visualization of the complex eigenvecotors . . . . . . 48

3.28 Displacement visualization of the complex eigenvecotors . . . . . . 49

3.29 Displacement visualization of the complex eigenvecotors . . . . . . 50

4.1 Inter/intra-layer pair distribution functions for Γ = 160, (a) d =
3.0, (b) d = 1.5, (c) = 0.5, (d) d = 0.2, note that the g23(r →
0) > 1 at larger d value and g23(r → 0) → 0 at smaller d value .
In (a), g11 and g22 nearly overlap; In (d), g11 and g12 nearly overlap 55

4.2 The same as Fig. 4.1 for Γ = 10 . . . . . . . . . . . . . . . . . . . 56

4.3 Six types of eigenvector, the length of each arrow represents the
displacement of each layer, from 1 to 6, they are: AT,AL,MT,ML,ST,SL 57

4.4 QLCA dispersion of six modes for d = 0.2 . . . . . . . . . . . . . . 60

4.5 QLCA dispersion of six modes for d = 1.0 . . . . . . . . . . . . . . 60

ix



4.6 QLCA dispersion of six modes for d = 3.0 . . . . . . . . . . . . . . 61

4.7 Avoided crossing between A and M modes dispersion curves for
Γ=160, d = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 S mode dispersion curves for Γ=160, d = 0.5, each mode is always
along a continuous line. The real crossing indicates S mode doesn’t
entangle with other two modes. . . . . . . . . . . . . . . . . . . . 62

4.9 peaks profile in longitudinal current correlation function, Γ=160,
d=3.0, ka = 0.32032, the letter A, M, S label the corresponding
mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.10 peaks profile in longitudinal current correlation function, Γ=160,
d=0.2, ka = 0.32032, . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.11 peaks profile in transverse current correlation function, Γ=160,
d=0.2, ka = 0.32032, . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.12 A mode dispersion comparison between MD and QLCA Γ=10,
d = 0.2, 0.5, 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.13 A mode dispersion comparison between MD and QLCA Γ=10,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.14 A mode dispersion comparison between MD and QLCA Γ=160,
d = 0.2, 0.5, 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.15 A mode dispersion comparison between MD and QLCA Γ=160,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.16 M mode dispersion comparison between MD and QLCA Γ=160,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.17 S mode dispersion comparison between MD and QLCA Γ=160,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.18 M mode dispersion comparison between MD and QLCA Γ=10,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.19 S mode dispersion comparison between MD and QLCA Γ=10,
d = 1.5, 2.0, 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.20 T current correlation function Γ=160, d = 1.5 . . . . . . . . . . . 74

x



4.21 Current correlation function comparison between the liquid and
lattice phase for d = 1.5. Left: T11 from liquid system with Γ =
160; Right: T11 from trilayer overlapping square lattice system. . 75

4.22 Current correlation function comparison between the liquid and
lattice phase for d = 1.5. Left: T11 from liquid system with Γ =
160; Right: L11 from trilayer overlapping square lattice system. . 75

4.23 Current correlation function comparison between the liquid and
lattice phase for d = 1.5. Left: T22 from liquid system with Γ =
160; Right: T22 from trilayer overlapping square lattice system. . 76

4.24 particle snapshot for trilayer liquid system at Γ = 160, d = 1.5 . . 76

4.25 T current correlation function Γ=160, d = 0.2 . . . . . . . . . . . 77

4.26 L11, L12 at d=0.2, Γ=160 . . . . . . . . . . . . . . . . . . . . . . 78

4.27 L22, L23 at d=0.2, Γ=160 . . . . . . . . . . . . . . . . . . . . . . 78

4.28 T11, T12 at d=0.2, Γ=160 . . . . . . . . . . . . . . . . . . . . . . . 79

4.29 T22, T23 at d=0.2, Γ=160 . . . . . . . . . . . . . . . . . . . . . . . 79

4.30 L11, L12 at d=0.2, Γ=10 . . . . . . . . . . . . . . . . . . . . . . . 80

4.31 L22, L23 at d=0.2, Γ=10 . . . . . . . . . . . . . . . . . . . . . . . 80

4.32 T11, T12 at d=0.2, Γ=10 . . . . . . . . . . . . . . . . . . . . . . . 81

4.33 T22, T23 at d=0.2, Γ=10 . . . . . . . . . . . . . . . . . . . . . . . 81

4.34 envelope in L at low Γ, Γ = 10, the envelope is k dependent . . . . 85

4.35 a plot of equation 4.40, the legend box is the k value for each line,
its tendency coincides with our MD data . . . . . . . . . . . . . . 85

4.36 projected top view of an trilayer liquid at Γ = 160, d=0.2, the red
circle is middle layer, the green triangle is the top layer, the blue
square is bottom layer. . . . . . . . . . . . . . . . . . . . . . . . . 86

4.37 L current correlation function intensity map for an ordered trilayer
lattice at Γ = 1000, d=0 . . . . . . . . . . . . . . . . . . . . . . . 87

xi



4.38 T current correlation function intensity map for an ordered tri-
layer lattice at Γ = 1000, d=0. Notice: T in our simulation is
calculated by choosing ky and vx. . . . . . . . . . . . . . . . . . . 88

4.39 1D chain lattice, each unit cell contains just one particle . . . . . 90

4.40 disperion for 1D chain with one particle in each unit cell, black
dash line is the Brillouin zone boundary . . . . . . . . . . . . . . . 91

4.41 1D chain lattice, each unit cell contains three particle . . . . . . . 92

4.42 disperion for 1D chain with three particle in each unit cell,black
dash line is the Brillouin zone boundary . . . . . . . . . . . . . . . 92

4.43 k1 = −k2, they correspond to the same frequency(yellow dash line) 94

4.44 k1 + k2 = 0, k1 + k′2 = 2π
3

, k1 + k′′2 = 4π
3

, they correspond to the
same frequency(yellow dash line) . . . . . . . . . . . . . . . . . . . 96

4.45 Top view of a trilayer lattice, along the black and red lines, you
can only see one type of particles . . . . . . . . . . . . . . . . . . 98

4.46 peak comparison between T11 and T12 from a trilayer staggered
triangle lattice, d=0, Γ = 1000, both are real part. ka = 0.54912.
Left: T11; Right: T12 . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.47 peak comparison between real part and imaginary part of T12 from
a trilayer staggered triangle lattice, d=0, Γ = 1000, ka = 0.54912.
Left: real; Right: imaginary . . . . . . . . . . . . . . . . . . . . . 99

4.48 comparison of the real part(left) and imaginary part(right) of L12,
full profile picture, the simulation data is from disordered trilayer
system. Γ = 1000, d=0. In the legend box, it is the ka value for
each line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.49 The same as Fig 4.48 but a zoomed in profile picture. . . . . . . . 102

4.50 comparison of the real part of L11(left) and L12(right), full profile
picture. the simulation data is from disordered trilayer system.
Γ = 1000, d=0. In the legend box, it is the ka value for each line. 103

4.51 the comparison between envelope(left) and VAF(right). The en-
velope is obtained from T11 − T12. In the legend box, it is the ka
value of each line. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



4.52 N dependence of the envelope’s amplitude for trilayer triangular
lattice, d=0, Γ = 1000 . . . . . . . . . . . . . . . . . . . . . . . . 105

4.53 N dependence of the envelope’s amplitude for trilayer triangular
lattice, d=0, Γ = 1000 . . . . . . . . . . . . . . . . . . . . . . . . 105

4.54 the VAF for single layer lattice at Γ = 1000, the Fourier transfor-
mation is done without any window function. . . . . . . . . . . . . 108

A.1 density profile with some stationary point . . . . . . . . . . . . . . 114

xiii



CHAPTER I

Introduction

1.1 Strongly coupled plasma

Plasma is a system with mobile charged particles. One component plasma(OCP)

is a simple model, where each charged particle carries charge Q, with a neutraliz-

ing and uniform background. If the background is polarizable, due to the Debey

screening, the particle interaction becomes Yukawa potential.

Suppose each particle carries charge q, a is the Wigner-Seitz radius, defined

by πa2ns = 1(2D) or 4π
3
a3ns = 1(3D). We define coupling parameter as

Γ = βq2/a (1.1)

which represents the ratio between the charge-charge interaction and the kinetic

energy. The strongly coupled domain Ichimaru (1982) is characterized by Γ� 1.

Fig. 1.1 shows the temperature-density phase diagram.

Dusty plasma Shukla and Eliasson (2009); Morfill and Ivlev (2009)is a good

example of strongly coupled system. It was studied in astrophysics Goertz (1989),

such as the planet ring. Later, people also discovered the dusty plasma in chip

fabrication process, where the dusty plasma is contamination Selwyn et al. (1989).

The dusty plasma is also created in laboratory. The Coulomb crystallization of
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Figure 1.1: Temperature-density phase diagram(From Zoltan)

2



Figure 1.2: Schematic graph for dusty plasma equipment

dusty plasma was predicted by Ikezi (1986). In 1994, the dusty plasma crystal

was observed by Chu and I (1994); Hayashi and Tachibana (1994); Thomas et al.

(1994).

Because we can visualize the trajectory of dusty particles, it provides a very

good way to study the dynamics of strongly coupled system.

Fig 1.2 is the schematic graph for dusty plasma equipment. In a chamber,

there is argon gas flowing through it. The argon gas is discharged by high fre-

quency(13.56MHz) AC electric field between the two planar electrodes. When

we drop some dusty particles into the chamber, due to the smaller mass and

higher mobility of the electrons, the dusty particle can absorb a large amount of

electrons(thousands of electrons). Then the negatively charged dusty particles,

together with the positive argon ions background, forms a new plasma system.

The dusty particles’ position can be visualized by a camera.

The dynamics of 2D Wigner crystal was studied in Bonsall and Maradudin

(1977). Bilayer system was studied as early as 1981Das Sarma and Madhukar

(1981). A multilayer system is a good model to study multi-component system.
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1.2 Molecular dynamics simulation

Molecular dynamics simulation is a good way to study bulk fluid system. The

system is initialized with N particles’ positions and velocities. Divide the time into

discrete steps, we can update the position and velocity values step by step. After

enough time steps, we do statistical measurement on some physical variables we are

interested. People usually use Verlet algorithm to implement the MD simulation.

ri(t+ ∆t) = ri(t) + ∆tṙi(t) +
∆t2

2
r̈i(t) +O(∆t3) (1.2a)

ri(t−∆t) = ri(t)−∆tṙi(t) +
∆t2

2
r̈i(t)−O(∆t3) (1.2b)

Add the two equations in Eq 1.2, we can have

ri(t+ ∆t) ≈ −ri(t−∆t) + 2ri(t) +
∆t2

m
Fi(t) (1.3)

Fi(t) is the total force acting on particle i at time t. When we predict a particle’s

trajectory, we don’t need its velocity information(except the first step). The error

for ri(t) is in the order of ∆t4. If we subtract the two equation in Eq 1.2, we can

have

ṙi(t) ≈
1

2∆t
[ri(t+ ∆t)− ri(t−∆t)] (1.4)

The error for ṙi(t) is ∆t2.

The particles’ positions are in a cubic box, with periodic condition. This brings

us some limitation when we measure the current correlation function. If the size

of the box is L, the smallest k we can have is proportional to 1
L

. Because the box

is parallel to the X or Y axis, we can only measure the dispersion propagating

along the kx and ky direction rather than an arbitrary angle.

In this thesis, all the MD simulation work was done by Peter Hartmann.
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CHAPTER II

Density Profile of Quasi-2D layer

2.1 Background

Dusty plasma has been studied experimentally for a long time, mostly in a 2D

system. Because we can use a camera to track the movement of each particle. The

2D system is formed by some confinement along the Z direction. Unfortunately,

no matter how strong the confinement is, the particles still have some freedom to

oscillate along Z direction. So the system cannot be exactly 2D, we call it a quasi-

2D system. Then an interesting problem arises, with finite confinement, what is

the density profile along the Z direction? In this chapter, we will discuss about

how to solve the density profile. The density profile under spherical confinement

has been studied in papers (Wrighton et al., 2009; Bruhn et al., 2011; Bonitz et al.,

2006). Totsuji et al. (2001) studied the radial density distribution for a 2D Yukawa

lattice.

2.2 System description

We consider a quasi-2D system of charged particles, interacting through a

Yukawa potential, infinite in the x and y directions where the particles can move

freely, and confined by a harmonic trapping potential in the z direction. Let ns be
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the projected surface density of the quasi 2D layer, a characteristic parameter for

a given system, then a is the Wigner-Seitz radius, πa2ns = 1. We now introduce

the customary (nominal) coupling parameter as

Γ = βq2/a (2.1)

q is the charge carried by each particle. Eq 2.1 is exact for Coulomb interaction.

For Yukawa interaction, the effective coupling Γeff(κ) < Γ. The strongly coupled

domain is characterized by Γ� 1.

The Yukawa interaction potential and the harmonic trapping potential are,

respectively

ϕ(r) = q2 e
−κr

r
, and V (z) =

mω2z2

2
(2.2)

With the 2D plasma frequency ω2
p = 2πq2ns/(ma) we can as well define the

parameter t characterizing the strength of the trapping potential, as

t2 =
ω2

ω2
p

=
mω2a

2πq2ns
=
mω2a3

2q2
(2.3)

The behavior of a system with a given Yukawa potential (i. e. κ) is completely

determined by these two parameters. Both the equilibrium properties and the

dynamics of the system have been studied by Molecular Dynamics (MD) simula-

tion and by theoretical analysis. Here we report on the equilibrium studies. The

MD simulations trance the trajectories of 10 000 particles in an external trapping

potential defined by V (z) and periodic boundary conditions in x and y in a cubic

simulation domain. Initial positions are assigned to the particles based on a sim-

ple initial barometric estimate. Inter-particle forces are summed for all particles

within a radius of R ≈ 44a for each particle. Before conducting any measurements

the system is given enough time (approximately of 4 000 plasma oscillation cycles)
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to reach equilibrium during the initial thermalization phase using the velocity

back-scaling thermostat. This is verified by observing the temperature stability

after the thermaization is turned off. During the measurements data is collected

and averaged over approx. 2 000 plasma oscillation cycles (100 000 time-steps).

2.3 Mean field theory

If we consider one test particle in the layer, the total potential it feels is U(z),

according to the canonical ensemble, the density distribution is n(z) ∝ e−βU(z)

n(z) =
N

πR2

e−βU(z)∫∞
−∞ e

−βU(z)dz
(2.4)

where the N is the total number of particles, the R is radius of the surface area

we consider.

U(z) =
mw2z2

2
+

∫
n(r′)

e−κ(|r−r′|)

|r− r′|
dr′ (2.5)

From Eq.2.5 we can see that U(z) is a functional of n(z), combine Eq 2.4 and Eq

2.5, we can solve n(z) iteratively. The iterative steps are in the following way:

1. Choose an initial density profile n0(z), normally we use the density profile

where particles have no interaction, it is simply Gaussian.

2. Substitute the n0(z) into Eq 2.5, we get a potential profile U0(z).

3. Substitute U0(z) into Eq 2.4, we can get a new density profile n1(z).

4. Go back to the first step utill the density profile converges. In order to

get converged solution, the density profile is updated in such a way n(z) =

αn0(z) + (1− α)n1(z), 0 < α < 1, we choose α = 0.98

Before we process, we rescale some variables, r̃ = r/a, βU = ΓŨ , κa = κ̃,

ñ(z̃) = a3n(z)
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ñ(z̃) = a3n(z)

= a3 N

πR̃2a2

e−ΓŨ(z̃)∫∞
−∞ e

−ΓŨ(z̃)dz̃a

= ns
e−ΓŨ(z̃)∫∞

−∞ e
−ΓŨ(z̃)dz̃

(2.6)

where we used ns = N
πR̃2 = 1

πa2
.

βU(z) = ΓŨ(z̃) = Γ(
mω2a3

2q2
z̃2 +

∫
ñ(r̃′)

e−κ̃(|r̃−r̃′|)

|r̃− r̃′|
dr̃′) (2.7)

From Eq 2.7 we have

Ũ(z̃) = t2z̃2 +

∫
ñ(r̃′)

e−κ̃(|r̃−r̃′|)

|r̃− r̃′|
dr̃′ (2.8)

Because the quasi-2D layer has cylindrical symmetry, we can do the angular inte-

gral analytically.

Ũ(z̃) = t2z̃2 + 2πns

∫ R̃
0
ρ̃dρ̃

∫∞
−∞ e

−ΓŨ(z̃) e−κ̃(
√

(z̃−z̃′)2+ρ̃2)√
(z̃−z̃′)2+ρ̃2)

dz̃′∫∞
−∞ e

−ΓŨ(z̃)dz̃
(2.9)
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Set
√

(z̃ − z̃′)2 + ρ̃2 = x,

∫ R̃

0

ρ̃dρ̃

∫ ∞
−∞

e−ΓŨ(z̃) e
−κ̃(
√

(z̃−z̃′)2+ρ̃2)√
(z̃ − z̃′)2 + ρ̃2)

dz̃′

=
1

2

∫ R̃

0

d((z̃ − z̃′)2 + ρ̃2)

∫ ∞
−∞

e−ΓŨ(z̃) e
−κ̃(
√

(z̃−z̃′)2+ρ̃2)√
(z̃ − z̃′)2 + ρ̃2)

dz̃′

=
1

2

∫ √(z̃−z̃′)2+R̃2

|z̃−z̃′|
d(x2)

∫ ∞
−∞

e−ΓŨ(z̃) e
−κ̃x

x
dz̃′

=

∫ √(z̃−z̃′)2+R̃2

|z̃−z̃′|
e−κ̃xd(x)

∫ ∞
−∞

e−ΓŨ(z̃)dz̃′

=

∫ ∞
−∞

e−ΓŨ(z̃) 1

κ̃
(e−κ̃|z̃−z̃

′| − e−κ̃
√

(z̃−z̃′)2+R̃2
)dz̃′

(2.10)

Now let’s compare the density profile from the MFT and the MD simulation.

In the following text, we will omit the wave sign, but keep in mind, they are always

rescaled variables.

Figure 2.1: Density profile comparison between the MD simulation and the MF
approximation. Γ = 4, κ = 0.4, t=0.1
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Figure 2.2: Density profile comparison between the MD simulation and the MF
approximation, Γ = 8, κ = 0.4, t=0.2

Figure 2.3: Density profile comparison between the MD simulation and the MF
approximation, Γ = 16, κ = 0.4, t=0.1
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Figure 2.4: Density profile comparison between the MD simulation and the MF
approximation, Γ = 64, κ = 0.4, t=0.2

Figure 2.5: Density profile comparison between the MD simulation and the MF
approximation, Γ = 64, κ = 0.4, t=0.4

From the Fig 2.1 to Fig 2.3, we can see that MF result has a good agreement

with the MD result when Γ is small or t is small. At larger Γ, from Fig 2.4 and

2.5, the MF reslt is completely wrong. In fact the MF can only lead to monotonic

density profile on one side of z axis. The mathematical proof is in appendix A.
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Why MF fails in high Γ or high particle density cases? If we look at Eq 2.7,

when we calculate the Yukawa interaction potential, |r̃− r̃′| can be close to zero.

However, in a real physical system, the probability that two particles can touch

each other is almost zero, normally, in liquid, we have pair distribution function

where g(r → 0)→ 0. Only at idea gas limit, two particles can be infinitely close,

then MF can give precise description.

2.4 Density functional theory with HNC approximation

In order to solve the density profile profile at strongly coupled phase, we need

improve our model. Based on Hansen’s book (Hansen and McDonald , 2013)(Eq

4.3.16), we have

n(r) ∝ exp

[
−βV (r) +

∫
∆n(r′)c0(|r− r′|;n0) dr′

]
. (2.11)

where n0 is density of a uniform reference system. ∆n(r) = n(r)−n0, the c0(r;n0)

is the direct correlation function for this reference system. Eq 2.11 is derived from

density functional method by minimizing the grand potential energy. It can also

be found in book Henderson (1992). Becasue
∫
c0(|r− r′|;n0)n0dr′ is constant for

a given reference system. It doesn’t affect the density profile. Then we can rewrite

Eq 2.11 as

n(r) ∝ exp

[
−βV (r) +

∫
n(r′)c0(|r− r′|;n0) dr′

]
(2.12)

Here the n(r) is only z dependent, we will write it as n(z). Formally, Eq 2.12 is

the same as the formula in MF method. We just define a new total potential

Unew(z) =
mw2z2

2
− 1

β

∫
n(r′)c0(|r− r′|;n0) dr′ (2.13)
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Compared with Eq 2.5, the new density functional method just replaces the

Yukawa potential by − 1
β
c0(|r− r′|;n0). We can use the same algorithm in MF to

get the density profile. The only information we need to proceed the calculation

is the direct correlation function c0(|r− r′|;n0).

2.4.1 Direct correlation function for a uniform system with HNC

In this section, we will try to obtain the direct correlation function for a uniform

system with hyper-netted chain(HNC) approximation Rowlinson (1965). Accord-

ing to the Ornsteiin-Zernike(OZ) equation

h(r) = c(r) + n0

∫
c(|r− r′|)h(r′) dr′ (2.14)

This is an integrl equation associating two functions h(r) and c(r). It shows that

the pair correlation function can be constructed by the direct correlation function

The h(r) is the pair correlation function. It is also related to the pair distribution

function g(r)

h(r) = g(r)− 1 (2.15)

In order to sovle c(r), we have to get another realtionship between c(r) and g(r),

which is the HNC closure

g(r) = exp[−βϕ(r) + h(r)− c(r)] (2.16)

where the ϕ(r) is the particle interaction potential, it is Yukawa in this chapter.

Combine Eq 2.14 and Eq 2.16, we can solve both g(r) and c(r) simultaneously.

As we all know, when r → 0, g → 1, h → 0, it means −βϕ(r) = c(r), at idea

gas limit, g(r) ≡ 1, it goes back to the MF approximation.

When solve the g(r) and c(r) in real and Fourier space iteratively, the algorithm
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is based on Springer et al. (1973).

Figure 2.6: c(r) with different density. In the legend box, the first(blue) line is
Yukawa potential κ = 0.4, From the second to the last line, they are
calculated direct correlation functions with Γ = 64, κ = 0.4. The
density for each line is 0.001, 0.01, 0.1, 1, 10, in the unit of 1/a3.
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Figure 2.7: g(r) with different density. In the legend box, from the first to the
last line, they are calculated pair distribution functions with Γ = 64,
κ = 0.4. The density for each line is 0.001, 0.01, 0.1, 1, 10, in the unit
of 1/a3.
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Figure 2.8: c(r) with different Γ. In the legend box, the first(blue) line is Yukawa
potential κ = 0.4, From the second to the last line, they are calculated
direct correlation functions with density 0.02(in unit of 1/a3), κ = 0.4.
The Γ for each line is 2, 16, 32, 64, 128.

Figure 2.9: g(r) with different Γ. In the legend box, from the first to the last line,
they are calculated pair distribution functions with density 0.02(in
unit of 1/a3), κ = 0.4. The Γ for each line is 2, 16, 32, 64, 128.
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2.4.2 Density profile comparison between MD and HNC

Figure 2.10: density profile comparison between HNC and MD

Figure 2.11: density profile comparison between HNC and MD
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Figure 2.12: density profile comparison between HNC and MD

Figure 2.13: density profile comparison between HNC and MD
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Figure 2.14: density profile comparison between HNC and MD

Figure 2.15: density profile comparison between HNC and MD
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Figure 2.16: density profile comparison between HNC and MD

Figure 2.17: density profile comparison between HNC and MD
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Figure 2.18: density profile comparison between HNC and MD

From the figures above, we can see there is good agreement between HNC

and MD result for Γ=16, 32, 64. Due to the new version of density functional

method, we no longer have just monotonic profile. For Γ = 128, there is significant

discrepancy, but the main tendency does match.

In the DFT calculation, the largest Γ values we can use is about 300, bigger

Γ can’t lead to convergence of integral equation Eq 2.12. From Fig 2.18, we can

see that at Γ = 512, the system is already like a multilayer crystal, our calculated

density profile doesn’t match the MD result perfectly, but it still can predict the

number of peaks and the position of the peaks.

In 2014, Matheus Girotto et al. (2014) published a paper with the same topic,

they did apply the HNC approximation, but in a different manner, They calculated

the correlation energy based on local density approximation (LDA). In that paper,

the κ is 2, the comparison provided is either in lower gamma or lower trapping

strength, which means the Γeff is not very strong.
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2.5 Peaks in liquid profile and lattice structure

In last section, we see that when t is small and gamma is large, the density

profile develops some small fluctuations, at very large Γ, it becomes sharp peak.

These fluctuation in the density profile is easy to understand between a single

and double-peak profile. Because the total potential energy contains two parts:

the charge-charge interaction potential and trapping potential. The former one

requires all the particles spread as far as possible, the latter one forces all the

particles to condense around the z = 0 region. Under the competition of the two

mechanism, the double-peak profile can happen.

Figure 2.19: density profile with different Γ
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Figure 2.20: density profile with different Γ
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Figure 2.21: density profile with different Γ
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Figure 2.22: density profile with different Γ

From Fig 2.19 to Fig 2.22, we can see that the small fluctuations and the sharp

peaks have the same position. At very large Γ, the system has already crystallized,

each peak represents a single layer of lattice. Based on this, we can know that

the fluctuation peaks in a liquid density profile just comes from the melting of a

multi-layer lattice. It is easy to predict the number of peaks in a given density

profile. In a lattice system, the average interparticle distance in each layer should

be comparable with the interlayer distance.

Assume there are N layers, each layer is a square lattice, then the square side

length xN =
√
πN , the inter-layer distance is dN = w

N−1
, where the w is the

distance between the two outermost peaks. Starting from N=2, we compare xN

and dN , when xN > dN , we stop, the N where we stop is the predicted the number
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of layers(see Fig 2.23 and Fig 2.24). In (Totsuji et al., 1997), they calculated the

total energy of the system with different number of layers, including the particle

interaction and the trapping energy. For a given trapping potential, we can always

find an optimal N. The essential of the two methods are the same.

Figure 2.23: Number of layers with different trapping strength, Γ = 512, κ = 0.4

Figure 2.24: Number of layers with different trapping strength, Γ = 724, κ = 1.0

Experimental result Teng et al. (2003) shows the similar density profile in a

quasi-2D system. Bonitz’s (Chapter 10.7 in Bonitz (2010)) MD simulation work

for both harmonic and soft-box trap also shows the similar density profile when

varies the trapping strength. At high Γ, such shell formation in density profile is

quite general, not only for planar system here, but also for spherical and cylindrical

system.
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CHAPTER III

Trilayer lattice system: structure and dynamcis

3.1 Stable lattice structure at different interlayer distance

As we have seen in the last chapter, with proper confining strength and coupling

parameter, we can create a trilayer structure. Some simulation works (Klumov

and Morfill , 2008) have confirmed it. Here we will try to study the properties of a

trilayer system. For simplicity, we assume each particle only has X-Y displacement.

We firstly study the stable lattice structure with different interlayer distance. We

assume each layer has the same kind of lattice structure, due to the symmetry, the

unit cell is ether rhombic or rectangle, here we can tune two parameters, rhombic

angle and the aspect ratio. Originally, we put both the top layer and bottom layer

at the geometric center of the middle layer(unshifted), then we can shift the top

and bottom layer along a symmetric axis with opposite directions, hence we have

another tuned parameter, shift value.

We define the Wigner-Seitz radius based on πa2ns = 1, a is the w-s radius,

ns is the projected surface density. In this chapter, all the interlayer distance d

values are in the unit of a if there is no further notification.

For a given lattice, we calculate the Yukawa interaction energy from all the

other neighbor sites within a given radius. The total energy is Etotal = 3E1 +

2E2 +E3, E1 is the energy within each layer, E2 is the energy between the nearest
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Figure 3.1: Rhombic unit cell(left), rectangle unit cell(right)

Figure 3.2: Unshifted and shifted lattice structure, both top and side view
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layers, E3 is the energy between the top and bottom layers.

We set a value for the interlayer distance. Then compare the energy from

different types of lattice, the one with lowest energy is the optimal lattice.

Figure 3.3: phase diagram with different interlayer distance

Figure 3.4: phase diagram with different interlayer distance
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Figure 3.5: phase diagram with different interlayer distance

Figure 3.6: phase diagram map plot with different interlayer distance and different
κ. The red zone is triangle, the dark blue zone is the shifted rhombic,
the green zone is rectangle, the light blue zone is square.

According to the phase diagram in Fig 3.3 to Fig 3.4, at low kappa, the phase
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transition is: staggered triangle→ shifted rhombic→ square→ unshifted rhombic

→ staggered triangle; at high kappa, the phase transition is : staggered triangle

→ shifted rhombic → unshifted rectangular → square → unshifted rhombic →

staggered triangle; Based on the well-known result that the stable state of a single

layer Yukawa lattice is hexagonal, and a single layer hexagonal lattice can be

decomposed into three hexagonal lattices, so when the interlayer distance is small,

we should always get a staggered triangle lattice. At very large interlayer distance,

since the coupling between layers is very weak, we can treat each of them like a

single layer, so it also must be a triangular lattice. Lowen studied the layered

structure transition under slit confinement for Coulomb Oguz et al. (2009a) and

Yukawa Oguz et al. (2009b) system, experiment on colloids system Oguz et al.

(2012) was also explored. The trilayer square lattice phase was confirmed in these

works.

Whether the lattice distribution is shifted or unshifted can be characterized

by the correlation energy, which is the difference between total energy and the

Hartree energy. The Hartree part EH can be calculated analytically.

EH = 2πn

∫ ∞
0

e−κ
√
r2+d2

√
r2 + d2

rdr

=
2nπ

3κ
e−κd

(3.1)

rescale the energy in the unit of 1
a
, we will get EH = 2

3κ̃
e−κ̃d̃.
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Figure 3.7: Original lattice summation energy from different layers combination

Figure 3.8: Correlation energy from different layers combination

Form Fig 3.7 and Fig 3.8, we can see that when the correlation enregy of E3

becomes positive, it corresponds to the unshifted lattice. This makes sense as

positive correlation energy means attraction between particles.
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Figure 3.9: MD snapshot for particle distribution in a trilayer system with inter-
layer distance d = 0.9

In the previous section, we have found the optimal lattice at a certain interlayer

distance. But whether it is stable, we still don’t know, the collective mode dis-

persion can provide useful evidence to check the stability. In next section, we will

study the in-plane collective mode dispersion. In fact, the real lattice structure

should be based on the MD result rather than our theoretical prediction. Because

we made some assumption. For example, we assumed the Bravais lattice unit

cell, we assumed there is the same structure in both middle layer and top/bottom

layers. From Fig 3.9 we can see that we get a weird structure like snakes, this

is why in Fig 3.3, we get very messy phase transition behavior, since our model

violates the reality, our prediction is not reliable in the region 0.5 < d < 1. We

will not do the dispersion calculation for this region in the next section.
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3.2 Lattice dispersion and eigenvectors

In order to obtain the collective mode dispersion, we need the dynamical matrix

M ij
µν , here, i, j is 1(middle),2(top),3(bottom); µ, ν is x, y. So the dynamical matrix

is a 6×6 matrix.

M ij
µν(
~k) = δij

∑
m=1,2,3

Simµν (0)− Sijµν(~k) (3.2)

Sijµν(
~k) =

∑
n

∂2ϕij(~rn)

∂µ∂ν
ei
~k~rn (3.3)

∑
n

means the lattice summation from all the sites within a given radius. The

structure of dynamical matrix is in the form


M11 M12 M13

M21 M22 M23

M31 M32 M33

 where each sub-

block is

M ij
xx M ij

xy

M ij
yx M ij

yy

 The dynamical matrix is always Hermitian. It always has

real eigenvalues. If our lattice is stable, all the eigenvalues must be positive, or else,

some eigenvalue in some k range may be negative. Here we show the dispersion

result from two types of lattice: staggered triangle, overlapped square. Note: All

the dispersion graphs are generated with very fine cut of k value, the step for k is

0.0002, so we can clearly see how the lines direct to at a cross point.

Since the matrix has six dimensions, its eigen problem can only be solved by

numerical calculation. Here we use the Eigen C++ library to do the computation.

When we display the six dispersion lines. We distinguish it by line continuity.

We start to generate the w(k) values from k = 0.0001, we assign w(k) label from

1 to 6 based on the value of w(k). For each label, we make sure the eigenvectors

from w(k) to w(k + ∆k) has the least change. More specifically, suppose we have

six eigenvectors ~vn at k and another six eigenvectors ~v′n at k + ∆k, if ~vi · ~v′j ≈ 1,
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we know ~vi and ~v′j belong to the same dispersion curve.

3.2.1 Dispersion for trilayer triangle lattice

Let’s firstly study the dispersion for a trilayer triangular lattice, which is the

stable structure when interlayer distance is close to zero or very large. Fig 3.10

shows the lattice structure. From its top view, each unit cell contains three par-

ticles(one from each layer). In Fig 3.11, each black triangle represents a unit cell.

Its lattice structure is the same as that from each sublayer. But if you treat all

the particles in the same symbol, the trilayer lattice becomes a single layer trian-

gular lattice, which is different from the one of each sublayer, there is π
3

rotaion

difference. Fig 3.12 shows the reciprocal lattice of total and sub lattices.

Figure 3.10: staggered trilayer triangle lattice structure
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Figure 3.11: trilayer triangular lattice structure

Figure 3.12: Reciprocal lattice: red line is for the whole projected single layer
lattice, black line is for each sublattice as well as the total trilayer
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Figure 3.13: Lattice dispersion for trilayer triangle lattice

Fig 3.13 is the dispersion for different principle angles. Generally, for two

arbitrary angles ~k, if θ1 + θ2 = π or 2π, their dispersion plots are the same. Based

on Fig 3.10, because all the partiles are the same, we know that the dispersion

from θ and θ + π
3

are the same. Fig 3.14 and 3.15 shows the lattice dispersion for

a single triangle lattice Sullivan et al. (2006), which is part of that calculated as

trilayer.
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Figure 3.14: Lattice dispersion for single triangle lattice

Figure 3.15: Lattice dispersion for single triangle lattice

When we increase the interlayer distance a little, the lattice structure retains.

Fig 3.16 shows the lattice dispersion for interlayer distance is 0.2a. Fig 3.17 shows

the lattice dispersion for interlayer distance is 3.0a.
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Figure 3.16: Lattice dispersion for trilayer triangle lattice, interlayer distance is
0.2a

Figure 3.17: Lattice dispersion for trilayer triangle lattice, interlayer distance is
3.0a
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Since we solve the eigenvalue of dynamical matrix to get the dispersion curve,

orignially, the eigenvalue is proportional to the w2
p, if the lattice is stable, all the

eigenvalues should be positive. In the numerical calculation, if eigenvalue λ is

negative, we display −
√
−λ. We can see that the w value is always positive for

both d = 0.2a and d = 3.0a, which means the lattice is stable. This matches our

lattice prediction.

We can see that when some two lines tend to cross, they form a gap. Fig 3.18

shows more detail about the gap formation. We will discuss the gap formation

mathematically later. When the d is large enough, it converges to dispersion curve

of a single layer with lower number density.

Figure 3.18: Gap formation

3.2.2 Dispersion for trilayer square lattice

At some intermediate value for d, the system prefers a square lattice(Fig 3.19).

Here we show one example for d = 1.5a. Fig 3.20 to 3.21 show their disper-

sion curves at different principle angles. In the square lattice, the angle 0 and π
2

are equivalent. At every gap formed by two crossing lines, the eigenvector type

exchanges rather than follows a continuous line.
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Figure 3.19: top view of overlapping trilayer square lattice structure

Figure 3.20: Lattice dispersion for trilayer square lattice, interlayer distance is
1.5a
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Figure 3.21: Lattice dispersion for trilayer square lattice, interlayer distance is
1.5a

3.2.3 Eigenvector analysis

Since for square lattice we have real symmetric dynamical matrix, all the eigen-

vectors are real, we can easily visualize it by 2D vectors. Suppose we get an eigen-

vector with six elements (x1, y1, x2, y2, x3, y3), then we break it into three vectors

(x1, y1), (x2, y2), (x3, y3), we use an arrow to represent each vector. If all the

tree vectors are in the same directon, it is labelled as ’A’(All), if the middle layer

doesn’t move, it is labelled as ’S’(Stationary), if the middle layer does move in

one dirction and the other two layers are in the opposite direction, we label it as

’M’(Move). Fig 3.22 to Fig 3.25 show the eigenvector visualization for the square

lattice. When ϕ = 0, compare the plot from ka = 0.2001 and ka = 0.3501, we can

clearly see that subplot 2 and subplot 5 exchange pattern. Generelly, for acoustic

mode at k → 0, the slope of longitudinal(L) mode is always greater that of trans-

verse(T) mode. For ka = 0.2001 and ϕ = 0 case, it is along the kx direction, the

vertical(1) displacement is T, the horizontal(2) displacement is L. For ϕ = 90, the

ky direction, we can see the subplot 1 and subplot 2 exchange order, which makes

sense.
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Figure 3.22: Displacement visualization of the eigenvecotors, interlayer distance
is 1.5a, ϕ is the propagation angle in k space respect to kx axis,
the length of the arrows means its magnitude, the black, red, green
corresponds to layer 1-middle,2-upper,3-lower

Figure 3.23: Displacement visualization of the eigenvecotors, interlayer distance
is 1.5a, ϕ is the propagation angle in k space respect to kx axis,
the length of the arrows means its magnitude, the black, red, green
corresponds to layer 1-middle,2-upper,3-lower
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Figure 3.24: Displacement visualization of the eigenvecotors, interlayer distance
is 1.5a, ϕ is the propagation angle in k space respect to kx axis,
the length of the arrows means its magnitude, the black, red, green
corresponds to layer 1-middle,2-upper,3-lower

Figure 3.25: Displacement visualization of the eigenvecotors, interlayer distance
is 1.5a, ϕ is the propagation angle in k space respect to kx axis,
the length of the arrows means its magnitude, the black, red, green
corresponds to layer 1-middle,2-upper,3-lower
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Generally, with finite interlayer distance, whenever two dispersion curves form

a gap, they exchange eigenvector type. Or in other words, The slope of the

dispersion curve from a given polarization type won’t change sign around a cross

point. This can be seen based on the matrix structure, for example, in square

lattice, along ϕ = 0◦ or 90◦ direction, all the Mxy elements are zero. The dynamical

matrix can be decomposed into two 3×3 sub-matrix(XX and YY). Each sub-

matrix has a structure as


A B B

B F C

B C F

 The eigenvalues and eigenvectors will be

discussed in the next chapter.

For staggered hexagonal lattice, the dynamical matrix is complex, its eigen-

vectors are also complex. We can’t simply use 2D vector to display the displace-

ment. Here we use elliptical plot to display the complex eigenvectors. For a given

eigenvector (x1, y1, x2, y2, x3, y3), here all the numbers are complex, when display

(x1, y1), we get x1
y1

= reiθ, where r and θ are real numbers. The visualization is

based on the parametric equations


ξ = r sin(wt+ θ)

η = sin(wt)

(3.4)

because sometimes r can be close to zero or infinity, practically, we plot it based

on 
ξ = s r√

1+r2
sin(wt+ θ)

η = s 1√
1+r2

sin(wt)

(3.5)

where s =
√
|x1|2 + |y1|2, Eq 3.5 only gives us the obit. However, the obit from

(x2, y2) and (x3, y3) are always the same, in order to distinguish them, we will
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define the phase difference between layers.


x2
x1

= λ2e
iδ2

x3
x1

= λ3e
iδ3


y2
y1

= ρ2e
iε2

x3
x1

= ρ3e
iε3

(3.6)

we use δ and ε to characterize the phase difference. In each sub-eigenvector (x1, y1),

(x2, y2) and (x3, y3), its θ, δ and ε can uniquely distinguish it from others. Here we

give an example for the phase values. When d=0.2, ϕ = 0, we have the following

conclusion for δ and ε.

1. θ2 and θ3: one of them is π
2
, the other one is −π

2

2. δ2 − δ3 and ε2 − ε3 are always 0 or π. When δ2 − δ3 is 0, ε2 − ε3 must be π;

When δ2 − δ3 is π, ε2 − ε3 must be 0.

3. When δ2−δ3 or ε2−ε3 is 0, δ2 or ε2 must be either 0 or π, 0 means in phase,

π means out of phase.

In the elliptical plot legend, it is in a form of


1−R

2−R, Y+

3− L, Y+

, the number means

the layer label. The second column is letter R or L, it represents right rotating

orbit or left rotating orbit. If θ is positive , it is L, or else it is R. After the comma,

it is letter X or Y, if δ2 − δ3 is 0, it is X, if ε2 − ε3 is 0, it is Y. The last sign is

either + or -, if δ2 or ε2 is 0, it is +; if δ2 or ε2 is π, it is -.

These conclusions above are only true for kx direction. For other k direction, we

will get different conclusions, but θ, δ and ε still can distinguish each eigenvector

uniquely.

46



Figure 3.26: Displacement visualization of the complex eigenvecotors

47



Figure 3.27: Displacement visualization of the complex eigenvecotors
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Figure 3.28: Displacement visualization of the complex eigenvecotors
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Figure 3.29: Displacement visualization of the complex eigenvecotors

From Fig 3.26 and Fig 3.29 we can find that only at k=0 or k at the boundary

of BZ, we can see obit with middle layer being almost zero, which represents S

mode.
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CHAPTER IV

QLCA and MD comparison for trilayer liquid

system

4.1 QLCA prediction

In the last Chapter, we have studied the dispersion relation for a trilayer lat-

tice. In this chapter, we will calculate the dispersion for a trilayer liquid sys-

tem by Quasilocalized Charge Approximation(QLCA), where we need to borrow

pair distribution data from MD simulation.The QLCA was firstly proposed by

Kalman(Kalman and Golden, 1990; Kalman et al., 2005; Golden and Kalman,

2000).

The QLCA is proposed to calculate the collective mode dispersion of Yukawa

or Coulomb plasma at high Γ liquid phase. In lattice phase, each particle is

just oscillating with small amplitude around a fixed site, when we calculate the

phonon dispersion from the dynamical matrix, which is based on the lattice site

summation. In liquid phase, a particle has no fixed average position, it can diffuse

to anywhere in the system. In a shorter time scale, a particle oscillates in a local

potential well, this is the quasilocalization.

All the content in this chapter is for Yukawa system with κ = 0.4. The

collective modes of the system are the solution of the characteristic equation
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||ω2δµνδ
ij − Cij

µν || = 0, where i, j indicate the layer and µ, ν the 2D spatial co-

ordinate. The middle layer is identified by i = 1, the top layer by i = 2, and

bottom layer j = 3. This leads to a 6 × 6 dynamical matrix whose elements are

given by

Cij
µν(
~k) = δij

∑
m=1,2,3

Simµν (0)− Sijµν(~k) (4.1)

In lattice

Sijµν(
~k) =

1

m

∑
n

∂2ϕij(~rn)

∂rµ∂rν
ei
~k~rn , (4.2)

In QLCA, we replace the lattice site summation by an integral based on g(~r),

Sijµν(
~k) =

n

m

∫
ψijµν(~r)e

i~k~rg(~r)d~r, (4.3)

where

q2ψijµν(r) =
∂2ϕij(r)

∂rµ∂rν
, (4.4)

n = ns
3

is the surface density of a single layer, r2 = ρ2 + d2, ρ2 = x2 + y2, and d

the inter–layer distance between layer i and j. Rescaling the matrix leads to

Sijµν(k) =
2πnsq

2

ma

a

6π

1

a3
a2

∫ ∞
0

∫ 2π

0

ψijµν(ρ, d, θ)e
ikρ cos θgij(ρ)ρdρdθ

=
ω2
p

6π

∫ ∞
0

∫ 2π

0

ψijµν(ρ, d, θ)e
ikρ cos θgij(ρ)ρdρdθ

(4.5)

Keep in mind, in the following formulas, all the length variables are in the unit

of a. Since the final result will be scaled by plasma frequency, we will ignore w2
p

in the future. Let’s firstly calculate the angular integral part,

f ijµν(kρ, r) =
1

6π

∫ 2π

0

ψijµν(ρ, r, θ)e
ikρ cos θdθ (4.6)
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ψijxx =
e−κr

r5
[x2(κ2r2 + 3κr + 3)− (1 + κr)r2] (4.7a)

ψijyy =
e−κr

r5
[y2(κ2r2 + 3κr + 3)− (1 + κr)r2] (4.7b)

ψijxy =
e−κr

r5
[xy(κ2r2 + 3κr + 3)] (4.7c)

x = ρ cos θ, y = ρ sin θ, It is easy to see that the matrix element with ψxy

integral is always zero. Define A = κ2r2 + 3κr + 3 and B = 1 + κr, then


f ijxx = 1

6π
e−κr

r5

∫ 2π

0
(Aρ2cos2θ −Br2)eikρ cos θdθ

f ijyy = 1
6π

e−κr

r5

∫ 2π

0
(Aρ2 sin2 θ −Br2)eikρ cos θdθ

(4.8)

The final result is 
f ijxx = e−κr

3r5
[(J1
kρ
− J2)Aρ2 −Br2J0]

f ijyy = e−κr

3r5
[J1
kρ
Aρ2 −Br2J0]

(4.9)

J is the Bessel function of kρ, at k → 0 limit,

f ijxx(k → 0) = f ijyy(k → 0) =
e−κr

3r5
(
1

2
Aρ2 −Br2) (4.10)

, this means the transverse and longitudinal modes are degenerated at k → 0,

the last step is to calculate the integral Sijµν =
∫∞

0
fµνgij(ρ)ρdρ, gij(ρ) is from MD

simulation. The dynamical matrix is a real symmetric matrix, it always has real

eigenvalues. The structure of dynamical matrix is in the form


C11 C12 C13

C21 C22 C23

C31 C32 C33
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where each sub-block is

Cij
xx 0

0 Cij
yy

 Because the middle layer has different envi-

ronment from top or bottom layer, we should keep in mind that g11 6= g22 except

two limit cases where d = 0 or ∞. Fig 4.1 to Fig 4.2 are some examples of the

pair distribution function.
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Figure 4.1: Inter/intra-layer pair distribution functions for Γ = 160, (a) d = 3.0,
(b) d = 1.5, (c) = 0.5, (d) d = 0.2, note that the g23(r → 0) > 1 at
larger d value and g23(r → 0)→ 0 at smaller d value . In (a), g11 and
g22 nearly overlap; In (d), g11 and g12 nearly overlap
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Figure 4.2: The same as Fig. 4.1 for Γ = 10

When we plot the dispersion curve, we plot the lines by there eigenvector type

rather than the line continuity. The same as that in the previous chapter. Fig

4.3 illustrates the six types of eigenvectors.
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Figure 4.3: Six types of eigenvector, the length of each arrow represents the dis-
placement of each layer, from 1 to 6, they are: AT,AL,MT,ML,ST,SL

In fact, since all Cxy terms are zero, the dynamical matrix can be decoupled into

two 3×3 matrix, representing XX and YY subspace. The displacement pattern of

the eigenvector can be seen based on the matrix structure, each sub-matrix has a

structure as


A B B

B F D

B D F

 The eigenvalues of C-matrix are


α1 = F −D

α2 = A+D+F−
√

∆
2

α3 = A+D+F+
√

∆
2

(4.11)

their corresponding eigenvectors are


v1 = (0,−1, 1)

v2 = (−−A+D+F+
√

∆
2B

, 1, 1)

v3 = (−−A+D+F−
√

∆
2B

, 1, 1)

(4.12)
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where ∆ = (F +D − A)2 + 8B2.

Each eigenvalue represents a mode, a mode’s property is determined by its

eigenvector. (0,-1,1) means the middle layer doesn’t move while top and bottom

layer move in the opposite directions, this is labelled as S mode. Since −A +

D + F +
√

∆ is always positive and −A + D + F −
√

∆ is always negative, the

displacements of the middle layer in v2 and v3 always have different signs. When

the displacement of all the three layers have same sign, it is labelled as A mode.

When the displacement of the middle layer has different sign with the top or

bottom ones, it is labelled as M mode. The eigenvetors are visualized in Fig 4.3.

The S mode displacement is independent of k, while A and M mode displacements

depends on k, if the value of B changes sign, A mode will exchange displacement

type with M mode. Based on the C-matrix elements in the appendix, it is easy to

show A + D + F =
√

∆ and B < 0 when k=0, which means α2 is acoustic mode

at small k region. The first element in v2 is positive, it indicates α2 is A mode. A

mode is acoustic, this is physically reasonable. Accordingly α3 = −3B when k=0.

The two optical eigenvalues at k=0 are α1 = F−D = −B−2D and α3 = −3B.

How close the two gap values are is determined by the difference between g12 and

g23. If g12=g23, the S and M gap values are the same.

In the d→ 0 limit, according to the MD simulations g11 = g22/33 = g12 = g23.

Then the eigenvalues become (A−B,A−B,A+ 2B). Suppose (x1, x2, x3) is the

eigenvector, A-B gives constraint x1 + x2 + x3 = 0, A+2B gives constraint x1 =

x2 = x3, so we can choose (1, 1, 1) as the eigenvector for A+2B, (0,−1, 1),(−2, 1, 1)

for A-B. Obviously, A+2B represents the acoustic mode, while A-B represents the

S and M modes. Recall the Eq 4.1, A = 3C11(0) − C11(k), B = −C12(k), since
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g11 = g12, we have C11(k) = C12(k), then we have


A−B = 3C11(0)

A+ 2B = 3[C11(0)− C11(k)]

(4.13)

The optical mode A-B is independent of k. Because 3C11 = Ctotal and we use

Ctotal(0)−Ctotal(k) = ω2 to get the dispersion curve for a projected single layer, the

acoustic curves in trilayer QLCA is exactly the same as the result in single layer.

However, the gap mode 3C11(0) is just the Einstein frequency of the projected

single layer. This has been noticed in Golden and Kalman (2003).

Fig 4.4 to 4.6 are the QLCA dispersion of the six modes. When Γ is higher, the

dispersion curves have deeper fluctuation, this is because at high Γ, the system

behaves more like a lattice. A very important property is that the M and A modes

can’t cross each other. At the ’crossing’ point, it forms a gap and exchanges

eigenvector type. But the S mode can cross other lines. Fig 4.8 shows a more

clear view of the crossing situation.
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Figure 4.4: QLCA dispersion of six modes for d = 0.2

Figure 4.5: QLCA dispersion of six modes for d = 1.0
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Figure 4.6: QLCA dispersion of six modes for d = 3.0

Figure 4.7: Avoided crossing between A and M modes dispersion curves for
Γ=160, d = 0.5
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Figure 4.8: S mode dispersion curves for Γ=160, d = 0.5, each mode is always
along a continuous line. The real crossing indicates S mode doesn’t
entangle with other two modes.

4.2 Extracting collective mode information from MD data

In last section, we finished the QLCA calculation, now we should compare the

calculation with the MD simulation result.

4.2.1 Current correlation function and VAF

We determine the collective mode dispersion by the current correlation func-

tion. Set ~vi(t), ~ri(t) as the velocity and position of ith particle at time t. Then the

current is defined as(Hansen and McDonald , 2013)

~j(~r, t) =
N∑
i=1

~vi(t)δ[~r − ~ri(t)] (4.14)

where N is the the number of particles. Its Fourier component is

~j(~k, t) =
N∑
i=1

~vi(t)e
−i~k·~ri(t) (4.15)
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The longitudinal current correlation function is

Cl(~k, t) =
1

N
〈[~k ·~j(~k, t)][~k ·~j( ~−k, 0)]〉 (4.16)

The transverse current correlation function is

Ct(~k, t) =
1

N
〈[~k ×~j(~k, t)][~k ×~j( ~−k, 0)]〉 (4.17)

In a liquid system, due to the isotropic property, we can simply set the ~k in

front of ~j as unit vector along kx direction, then we get

Cl(k, t) =
1

N
〈jx(k, t)jx(−k, 0)〉 (4.18a)

Ct(k, t) =
1

N
〈jy(k, t)jy(−k, 0)〉 (4.18b)

After the time Fourier transform, the current correlation function is

C(~k, w) = lim
T→∞

1

2πT

∫ T

0

C(~k, t)eiwtdt (4.19)

Then we look at the time Fourier transformed correlation function C(~k, w),

based on the peak position we determine the dispersion relation.

In Eq 4.16 and 4.17, the angle brackets mean the ensemble average. Assume

the system is ergodic, we can use the time average to calculate the ensemble

average. Practically, we do this current calculation in a different way because it

is convenient to do numerically.

Let us use Cl as an example to show the derivation. The angle brackets mean

Cl(k, t) = lim
T1→∞

1

N

1

T1

∫ T1

0

jx(k, t+ t′)jx(−k, t′)dt′ (4.20)
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Do the time Fourier transform

Cl(k, w) = lim
T1→∞
T→∞

1

N

1

2πT1T

∫ T1

0

∫ T

0

jx(k, t+ t′)jx(−k, t′)eiwtdtdt′

= lim
T1→∞
T→∞

1

N

1

2πT1T

∫ T1

0

∫ T

0

jx(k, t+ t′)jx(−k, t′)eiw(t+t′)eiw(−t′)dtdt′

=
2π

N
jx(k, w)jx(−k,−w)

(4.21)

Generally, we do the MD measurement such as

CAB
l (k, w) =

2π√
NANB

jAx (k, w)jBx (−k,−w) (4.22)

A,B represent the species. Since jx(k, w) = j∗x(−k,−w), Eq 4.22 is always real

for CAA
l (k, w), but it is complex for CAB

l (k, w). In order to reduce the random

error and get high quality profile of CAB
l (k, w), we repeat the measurement for Eq

4.22 multiple times, then calculate its arithmetic average. Another useful term is

density-density correlation function, it is defined as

F (~k, t) =
1

N
〈ρ~k(t)ρ−~k(0)〉 (4.23)

where

ρ~k(t) =
N∑
i=1

e−i
~k·~ri(t) (4.24)

The Fourier form of Eq 4.23 is

S(~k, w) = lim
T→∞

1

2πT

∫ T

0

F (~k, t)eiwtdt (4.25)

Based on the definition above, according to Eq (7.4.28) in Hansen and Mc-
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Donald (2013), we should have

Cl(k, w) =
w2

k2
S(k, w) (4.26)

In the following text, we also use L(w, k), T (w, k) to represent Cl(k, w) and

Ct(k, w).

Let us also look at the velocity auto-correlation function(VAF). It describes

the behavior of a single particle. Peter used the definition like

Z(t) =
〈~v(t) · ~v(0)〉
〈|~v(0)|2〉

(4.27)

Because 〈|~v(0)|2〉 ∝ kBT , it is constant for any particle in an equilibrium system,

we can simply just analyze the behavior of 〈~v(t) · ~v(0)〉.

Z(t) = 〈vx(t)vx(0)〉+ 〈vy(t)vy(0)〉 (4.28)

In liquid or disordered lattice layer system, the system is isotropic, it is safe to say

x component is equivalent to the y component(Not true for an ordered lattice).

We can simply just analyze x component. Follow the derivation in Eq 4.21, we

can have

Z(w) = vx(w)vx(−w) (4.29)

Do the average among different particles, we have

Z(w) =
1

N

∑
i

vix(w)vix(−w) (4.30)

Since vx(w) = v∗x(−w), Z(w) is also real.
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4.2.2 Extracting collective mode information

For a trilayer system, we should have four distinct current correlation functions:

C11, C22, C12, C23. According to the eigenvector type in QLCA calculation, we can

predict the peak profile in the current correlation functions as following:

C11 → two positive peaks

C12 → one positive peak, one negative peak

C22 → three positive peaks

C23 → two positive peaks, one negative peak

This can be confirmed by the MD result(Fig 4.9).

Figure 4.9: peaks profile in longitudinal current correlation function, Γ=160,
d=3.0, ka = 0.32032, the letter A, M, S label the corresponding mode

Since there are multiple peaks, how do we distinguish them? Based on the

physical meaning of the eigenvectors, we can know: C11 contains A, M modes; C12

contains A, S, M modes; C12 contains A, M modes, the positive one is A and the

negative one is M; C23 contains A, S, M modes, the negative one is S. Since the
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position of each peak is independent, sometimes two of them may overlap, this is

why in Fig 4.9 we choose a special k value in order to show all the possible peaks.

Moreover, sometimes the S, M mode peak is very weak compared with A mode, we

will not try to locate the peak position in the original current correlation function

picture such as Fig 4.9. We will do the following combination:

C11-C12 → M mode

C11+C12 → A mode

C22-C23 → S mode

After such a summation or subtraction, we expect to see a single peak representing

the collective mode, whose amplitude will be enhanced by twice. We do the

Gaussian fit to determine the peak position and use its half height width as the

error bar range. Here we show some comparison between the MD and QLCA.

For A mode, we always get good agreement between MD and QLCA. For the gap

modes M and S, only at larger inter-layer distance can we get good agreement.

4.3 QLCA and MD result comparison

Let us look at Fig 4.9 again, this is picture for d = 3.0, we can see the A,M,S

mode peaks, if we set d → 0, C11, C22 should be equivalent, C12, C23, C33 should

also be equivalent. This means the M, S mode peaks should disappear. Only

A mode will remain. This analysis is confirmed by the simulation data, in Fig

4.10, we do see only one strong peak, the A mode. There is some weak peak, we

will discuss it in the next section. This type of profile also happens in transverse

current correlation function(Fig 4.11). So we will display the comparison of A

mode for small d and A, S, M modes for large d.
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Figure 4.10: peaks profile in longitudinal current correlation function, Γ=160,
d=0.2, ka = 0.32032,

Figure 4.11: peaks profile in transverse current correlation function, Γ=160,
d=0.2, ka = 0.32032,
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Fig 4.12 to 4.19 are the dispersion comparison between MD and QLCA, the

red line is the QLCA, the blue square is MD. Each column corresponds to some d

value. The first row is the longitudinal and the second row is transverse. In each

subplot, Y axis is ω/ωp, X axis is ka. The blue square is the peak value from the

Gaussian fit on the current correlation function. The error bar is the half height

width from the Gaussian fit. We can see that we get very good agreement between

MD and QLCA.

Figure 4.12: A mode dispersion comparison between MD and QLCA Γ=10, d =
0.2, 0.5, 1.0
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Figure 4.13: A mode dispersion comparison between MD and QLCA Γ=10, d =
1.5, 2.0, 3.0

Figure 4.14: A mode dispersion comparison between MD and QLCA Γ=160, d =
0.2, 0.5, 1.0
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Figure 4.15: A mode dispersion comparison between MD and QLCA Γ=160, d =
1.5, 2.0, 3.0

Figure 4.16: M mode dispersion comparison between MD and QLCA Γ=160, d =
1.5, 2.0, 3.0
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Figure 4.17: S mode dispersion comparison between MD and QLCA Γ=160, d =
1.5, 2.0, 3.0

Figure 4.18: M mode dispersion comparison between MD and QLCA Γ=10, d =
1.5, 2.0, 3.0
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Figure 4.19: S mode dispersion comparison between MD and QLCA Γ=10, d =
1.5, 2.0, 3.0

From these dispersion comparison above, we can see that QLCA result always

matches the MD result in lower k range except for T current correlation functions,

since weakly coupled liquid system can’t support transverse mode, this cut off has

been discussed in Schmidt et al. (1997); Hartmann et al. (2007) At higher k range,

there is some deviation but the QLCA still can match the MD tendency.

When d is small, if we still follow the procedure above, the extracted MD

disperison curve will have an obvious discrepancy compared with the QLCA pre-

diction for S and M mode, which is similar to the previous result of bilayer system

Kalman et al. (1999); Donkó et al. (2003b,a).

4.3.1 More about the current correlation function

In Fig 4.16, you can see there is an abrupt jump in the dispersion extracted

from the MD simulation. Here we will explain it.

We assumed the current correlation function profile in Fig 4.9, but when d=1.5,

there is a little difference. From Fig 4.20, we can see it contains more than the
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A,S,M modes as we assumed.

Figure 4.20: T current correlation function Γ=160, d = 1.5

Fortunately, we have found some clue for the extra peaks in the current correla-

tion function. Recall the lattice structure for a trilayer system at d=1.5, we know

it is an overlapping square lattice. Let’s compare the current correlation function

in a density map plot. From Fig 4.21 to Fig 4.23, in the left panel, there is a

thin black line sketching the extra peaks, you can find it in the right panel at the

same position.(Notice: the lattice simulation is based on a lattice with 45◦rotation

from Fig 3.19) So the extra peaks can be found in the lattice dispersion. A simple

answer to this phenomenon is that the trilayer liquid system at Γ = 160 is similar

to a lattice system. This can be seen from the particle snapshot in Fig 4.24.
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Figure 4.21: Current correlation function comparison between the liquid and lat-
tice phase for d = 1.5. Left: T11 from liquid system with Γ = 160;
Right: T11 from trilayer overlapping square lattice system.

Figure 4.22: Current correlation function comparison between the liquid and lat-
tice phase for d = 1.5. Left: T11 from liquid system with Γ = 160;
Right: L11 from trilayer overlapping square lattice system.
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Figure 4.23: Current correlation function comparison between the liquid and lat-
tice phase for d = 1.5. Left: T22 from liquid system with Γ = 160;
Right: T22 from trilayer overlapping square lattice system.

Figure 4.24: particle snapshot for trilayer liquid system at Γ = 160, d = 1.5

Furthermore, you can also see a gap in the AT dispersion curve in Fig 4.14,

we have found the reason. Let’s look at the T correlation function for a given ka

value. In Fig 4.25, we can’t see a strong A mode peak at high ka value(In Fig
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4.11, we do see the A mode peak). When we do the Gaussian fit for T11− T12, we

will get the higher peak value of the envelope, which is not what we want. Some

more accurate numerical method will be explored in the future.

Figure 4.25: T current correlation function Γ=160, d = 0.2

4.4 Current correlation function at small d

When the interlayer distance is small,we see some weak peak. What are they?

Let’s firstly take a careful look at it.
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Figure 4.26: L11, L12 at d=0.2, Γ=160

Figure 4.27: L22, L23 at d=0.2, Γ=160
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Figure 4.28: T11, T12 at d=0.2, Γ=160

Figure 4.29: T22, T23 at d=0.2, Γ=160
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Figure 4.30: L11, L12 at d=0.2, Γ=10

Figure 4.31: L22, L23 at d=0.2, Γ=10
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Figure 4.32: T11, T12 at d=0.2, Γ=10

Figure 4.33: T22, T23 at d=0.2, Γ=10

Fig 4.27 to Fig 4.33 are the profile of MD current correlation function. Each

picture contains three subplots. The first and second ones are either C11 and
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C22 or C22 and C23. The third subplot is just the difference between the first two

subplot, that is to say, C11−C12 or C22−C23. Each subplot contains six lines, each

line corresponds to a certain ka value(See the legend box). In the third subplot,

the A mode peak has been cancelled. The X axis is ka, the Y axis is in arbitrary

unit.

We can see that no matter which combination we choose(T or L, 11-12 or 22-

23) , the profile (Fig 4.27 to Fig 4.33) in the third subplot is always nearly the

same(Here the strongest A mode peak is cancelled). Genreally, L/T contains an

A mode peak and an envelope. There are two properties about the envelope:

1. Cii always contains a positive envelope, while Cij always contains a negative

envelope

2. the envelope’s amplitude in Cii is always almost twice of that from Cij

At lower gamma, it shows a central diffusive peak and another single peak; at

higher gamma, it shows two peaks. In fact, these peaks don’t seem to be collective

mode, they are more like the peaks in the velocity auto-correlation function(VAF)

Hansen et al. (1975); Schmidt et al. (1997); Hartmann et al. (2005). Normally, at

k → 0 limit, a collective mode peak should be very sharp, like a Dirac function

rather than a broad envelope. The two properties is compatible to the previous

single 2D layer result Kalman et al. (2004). We can see only one single collective

peak without only any envelope. Since

Ctotal =
1

3
[C11 + C22 + C33 + 2Re(C12 + C13 + C23)] (4.31)

On the right side, all the envelope profiles perfectly cancel out, only a single peak

remains. Up to now, we may post a conjecture that the envelope is just VAF. We

will continue to explore the formation of this envelope.
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4.4.1 When k → 0 and d→ 0 in a trilayer system

Let’s try to analyze the trilayer system as a 2D single layer. According equation

4.15,

~j(k = 0, t) =
N∑
m=1

~vm(t) (4.32)

The summation is among all the particles, because the momentum is conserved,

~j(k = 0, t) is constant. We will see a Dirac peak at w = 0 in C(k = 0, w), which

coincides with the fact that ω and k are both zero in acoustic mode in a single

layer. Numerically we should only see some noise.

Now, we randomly label the particles into three groups, the C(k = 0, w) shows

some pattern. The only reason is that total momentum in each subgroup is not

constant due to fluctuation. Assume the momentum fluctuation is ~ξA,B,C(t), their

summation must be zero,

~ξA(t) + ~ξB(t) + ~ξC(t) = 0 (4.33)

For simplicity, here we just consider its x component. Its Fourier transformed

form is

ξAx (w) + ξBx (w) + ξCx (w) = 0 (4.34)

Multiply ξAx (−w) on both sides, we can get

ξAx (w)ξAx (−w) + ξBx (w)ξAx (−w) + ξCx (w)ξAx (−w) = 0 (4.35)

then we can have

CAA
l (w) + CAB

l (w) + CAC
l (w) = 0 (4.36)
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Because CAB
l (w) and CAC

l (w) are equivalent, then we can have

CAA
l (w) = −1

2
CAB
l (w) (4.37)

This is the ratio we see in the MD data. We also know that the profile of CAA
l (w)

is similar to Z(w), but we can’t prove that ξAx (w)ξAx (−w) ∝ vx(w)vx(−w) strictly.

We can only use an phenomenological model to explain it. Consider just one

particle, it can collide with the group A,B,C as medium for them to exchange

momentum, under this picture, vx(t) = ξx(t), the envelope is exactly VAF. At low

Γ limit, the system behaves like ideal gas, particles have little correlation. The

momentum fluctuation in each group should behave similar to a single particle.

Based on the formula (8.2.18) and (7.5.17) in bookHansen and McDonald

(2013), we have

Z(w) = w2 lim
k→0

Ss(k, w)

k2
(4.38)

Ss(k, w) =

√
βm

2πk2
e−

βmw2

2k2 (4.39)

Here the Eq 4.39 is only true at ideal gas limit, which means very low Γ. So we

know that

Z(w) ∼ lim
k→0

w2

k3
e−

w2

2k2 (4.40)

this is what we observed in MD data(see picture 4.34 and 4.35), it confirms the

envelope is highly close to VAF. On the other hand, because Ct(k, w) is not pro-

portional to the S(k, w), in Fig 4.32 and Fig 4.33 we can’t see a decay in the

envelope at k → 0 limit. Of course ideal gas limit is for very low Γ, in our simula-

tion, Γ is about 10, so equation 4.39 can’t predict the peak at finite frequency in

VAF, we will explain it later.
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Figure 4.34: envelope in L at low Γ, Γ = 10, the envelope is k dependent

Figure 4.35: a plot of equation 4.40, the legend box is the k value for each line,
its tendency coincides with our MD data
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4.5 Current correlation function in trilayer lattice

In last chapter, we studied the trilayer lattice dispersion. Especially for d=0,

it is a staggered hexagonal lattice, we do get six different modes. But why we

can not observe it in the MD simulation with small d? Let’s look at a snapshot

of from MD when d=0 and high Γ value(see Fig 4.36). We can see the particles

from the three layers are buckled each other with random distribution, it is not a

good periodic structure. In order to compare our lattice dispersion calculation, we

design a new MD simulation. We initialize a single layer hexagonal lattice, then

label the lattice sites according to the Fig 3.10. The system is under a very high

Γ, which means the kinetic energy of each particle is very small, each particle can

only do small amplitude oscillation near a fixed site, its mean position will not

change during the simulation process.

Figure 4.36: projected top view of an trilayer liquid at Γ = 160, d=0.2, the red
circle is middle layer, the green triangle is the top layer, the blue
square is bottom layer.
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Figure 4.37: L current correlation function intensity map for an ordered trilayer
lattice at Γ = 1000, d=0
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Figure 4.38: T current correlation function intensity map for an ordered trilayer
lattice at Γ = 1000, d=0. Notice: T in our simulation is calculated
by choosing ky and vx.

From Fig 4.37 and Fit 4.38, we can see MD result does match the calculated

lattice dispersion perfectly. On one hand, it confirms the lattice calculation, on

the other hand, it shows that even at small interlayer distance, we can see the

collective mode peak in the current correlation function. It is the disordered

particle distribution that hides the collective mode and leads to the envelope.

4.5.1 Particle motion under harmonic oscillation model

At high Γ value, the system can be treated as a perfect lattice approximately.

Since d=0, the total system is just a single layer triangle lattice. In this single

layer lattice, we assume each particle’s displacement is ~v(~r, t) ∝ ei(
~k1·~r−w(~k1)t), here

both the ~r and ~k1 are in the global coordinates, not in the local coordinate of
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each sublayer. Normally, ~r is time dependent, because we study lattice, then

~r is independent of time. In the following text, we will write w(~k1) as w1 for

simplicity. The pair (k1, w1) is a point on the lattice dispersion curve. Because

there are more than one modes , we need to add a coefficient p(w1), here the

p(w1) is not necessarily density of states(DOS)(at least we haven’t proved it so

far), it is just the Fourier component of the velocity. The complete version of the

displacement is

~v(~r, t) = ~v0

∑
w1

ei(
~k1·~r−w1t)p(w1) (4.41)

Since every particle in the lattice is equivalent, if we set ~r = 0, we can get

~v(~r = 0, t) = ~v0

∑
w1

e−iw1tp(w1) (4.42)

According to Z(w) = v(w)v(−w), the VAF is just p(w1)p(−w1). Current is

~j(~k, t) =
N∑
i=m

~vm(t)e−i
~k·~rm(t)

= ~v0

∑
w1

N∑
m=1

ei(
~k1·~rm−w1t)e−i

~k·~rmp(w1)

= ~v0

∑
w1

N∑
m=1

ei((
~k1−~k)·~rm)e−iw1tp(w1)

= ~v0

∑
w1

f(~k1 − ~k)e−iw1tp(w1)

(4.43)

where

f(~k1 − ~k) =
N∑
m=1

ei((
~k1−~k)·~rm) (4.44)
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The Eq 4.44 is just the atomic form factor. The time Fourier form of current is

~j(~k, w) =
1

2π

∫
~j(~k, t)eiwtdt

= ~v0

∑
w1

f(~k1 − ~k)δ(w − w1)p(w1)
(4.45)

Because CAB(k, w) = jAµ (k, w)jBµ (−k,−w), µ is x or y. A,B are the layer label.

CAB(k, w) = fA(~k1−~k)fB(~k2+~k)(
∑
w1

δ(w−w1)p(w1))(
∑
w2

δ(w+w2)p(w2)) (4.46)

Up to now, we finished the general derivation for all the correlation functions

in a lattice system. In the following sections, we will apply it to the trilayer lattice,

either ordered or disordered. Eq 4.46 is the key equation. We will use it frequently

later. Eq 4.46 is derived in frequency domain, recently, Raj and Eapen (2019) also

showed a derivation in time domain.

4.5.2 1D chain lattice

Figure 4.39: 1D chain lattice, each unit cell contains just one particle
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Figure 4.40: disperion for 1D chain with one particle in each unit cell, black dash
line is the Brillouin zone boundary

In Fig 4.39, it is 1D chain, each unit cell contains just one particle, the inter-

particle distance is a. Fig 4.40 is an assumed dispersion. Since it is 1D and only

has one particle in each unit cell, we should have only one dispersion curve, it is

acoustic.

Now if we choose a bigger unit cell that contains three particles(see Fig 4.41).

Keep in mind, we never change the chain lattice itself. If we do the lattice disper-

sion calculation, we must get three dispersion curves. One is acoustic, the other

two are optical. It looks like the profile in Fig 4.42. The lattice period for the new

unit cell is 3a, so the new Brillouin zone is smaller, just 1
3

of that from one particle

unit cell. Since we need to solve a 3 by 3 matrix, each curve is colored based on its

eigenvector type. The acoustic will not change. But we do get two more optical

curves. They don’t carry new information, In Fig 4.40, we see that the period is

2π
a

, we just shift the blue curves to the left or right with 1
3

of the 2π
a

, we will get

the other two optical mode. The Brillouin zone for a bigger unit cell is smaller.
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In Fig 4.42, if we just look at the zone between the black dash lines, we lost some

acoustic information beyond the black dash line, which will be compensated by

the optical curves between the black dash lines. You can just fold the acoustic

line into the first Brillouin zone to get the optical modes.

Figure 4.41: 1D chain lattice, each unit cell contains three particle

Figure 4.42: disperion for 1D chain with three particle in each unit cell,black dash
line is the Brillouin zone boundary
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4.5.3 Current correlation function in 1D chain lattice

Suppose we did the MD simulation for such a 1D chain lattice and measure

the current correlation function. What will we see?

Firstly, let us measure it as a single chain. We can only measure CAA, rewrite

the Eq 4.46 as

CAA(k, w) = fA(~k1−~k)fA(~k2+~k)(
∑
w1

δ(w−w1)p(w1))(
∑
w2

δ(w+w2)p(w2)) (4.47)

If we are considering a single layer system. Since the particles distribute umiformly

in the space we have

1

N

N∑
m=1

ei
~k·~rm = δ(~k) (4.48)

For a given ~k, we just chose


~k1 − ~k = 0

~k2 + ~k = 0

(4.49)

then fA(~k1 − ~k)fA(~k2 + ~k) is N2, it shows a very strong peak at frequency w1.

fA(~k1 − ~k) or fA(~k2 + ~k) can be nonzero if and only if ~k1 − ~k = 0 or ~k2 + ~k = 0.

If one of conditions in Eq 4.49 is not satisfied, the current correlation function

will contains a Dirac function term(Eq 4.48), it is always zero. This is why we

can only one peak in the current correlation function in a single layer system. Eq

4.49 indicates k1 = −k2, it is just two points when a horizontal line crosses the

dispersion curve(see Fig 4.43). k1, k2 both correspond to the same frequency value

w1 = w2, CAB(k, w) = N2p(w1)p(−w1),(assume there are N particles in the chain)

we will see a very strong sharp peak at w1, where (w1, k) is a point on the lattice

dispersion curve. This strictly indicates the dispersion curve extracted from MD

current correlation function in a single layer system is exactly the same as the
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calculated lattice dispersion for a given ~k direction.

Figure 4.43: k1 = −k2, they correspond to the same frequency(yellow dash line)

If we treat the 1D chain as an ordered trilayer system. As shown in Fig 4.41,

each layer contains particles with label A or B or C. The position of the particles

with each label is: rA = 3na, rB = (3n+ 1)a, rC = (3n+ 2)a. Because

fA(k1 − k) =
N∑
n=1

ei((k1−k)·3na)

,

fB(k2 + k) =
N∑
n=1

ei((k2+k)·3na)ei((k2+k)a

, in order to let fA and fB have nonzero value, we set k1 − k = 0, due to the

factor α = ei((k2+k)a, the choice of k2 + k matters, if k2 + k is 0, the factor α is

1, we get a positive peak. If (k2 + k)3a = 2π, the factor α is ei
2π
3 = −1

2
+
√

3
2
i,

if we display the real part, we get a negative peak and with one half amplitude.

When (k2 + k)3a = 4π, we have ei
4π
3 = −1

2
−
√

3
2
i. Combine k1 − k and k2 + k,

94



the three choices correspond to the result k1 + k2 = 0, 2π
3a
, 4π

3a
. Here we predict

the peak profile in current correlation function just based on the fact rA = 3na,

rB = (3n+ 1)a, rC = (3n+ 2)a, we don’t even need the dispersion information in

Fig 4.42. In the next paragraph, I will show the result k1 + k2 = 0, 2π
3a
, 4π

3a
can be

reflected in the Fig 4.42.

Recall the dispersion curve(see Fig 4.44), we should get three curves, one acous-

tic, anther two can be obtained by shifting or folding. The first Brillouin zone

range for one particle unit cell is 2π
a

, shift the acoustic line with 1
3

2π
a

, we get the

red line(see Fig 4.44), shift the acoustic line with −1
3

2π
a

, we get the green line,

when a yellow dash line crosses all the dispersion curves, for a given k1, we have

three choices k2, k′2, k′′2 , all of them correspond to the same frequency. we can see

the optical modes obey k1 + k′2 = 2π
3a
, k1 + k′′2 = 4π

3a
, and k1 + k2 = 0 means the

two points are on the same acoustic line. This matches our conclusion from last

paragraph.
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Figure 4.44: k1 + k2 = 0, k1 + k′2 = 2π
3

, k1 + k′′2 = 4π
3

, they correspond to the same
frequency(yellow dash line)

Based on the analysis above, in a trilayer chain, we should have the four prop-

erties for the current correlation function:

1. CAA should have three positive peaks.

2. the real part of CAB should have one positive peak(acoustic), two neg-

ative peaks(optical). The imaginary part of CAB should have just two

peaks(optical), one is positive(represent the red line in Fig 4.44), one is

negative(represent the green line in Fig 4.44)

3. in the real part of CAB, the amplitude of the two optical mode peaks is −1
2

of that from CAA
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4. in the imaginary part of CAB, the absolute value of amplitude of the two

optical mode peaks is
√

3 time of that from the real part of CAB

I will show the MD data to confirm the four properties later.

4.5.3.1 Connection between 1D trilayer and 2D trilayer

So far, we are done for 1D chain. For our 2D trilayer system, because we study

L or T, we always just consider the projection of one direction, once you do the

projection, it is reduced to the 1D chain analysis above.

In 1D case, we only have one k direction, but in our 2D hexagonal lattice

trilayer, we have 4 principle directions, we can only observed folding effect for

φ = 30◦, 90◦(see Fig 3.13). Since we used the fact that spatial position can be

expressed in such way that rA = 3na, rB = (3n+1)a, rC = (3n+2)a, if you look at

the particles along 0◦(orthogonal to 90◦) and 120◦(orthogonal to 30◦) direction(red

and black lines in Fig 4.45), each line covers only one type of particles, it means

we can project all the particles into a 1D chain in Fig 4.41. But for the other two

principle directions, this is not satisfied. The formation of purely gaped modes

along 0◦and 60◦is a problem to be solved in the future.
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Figure 4.45: Top view of a trilayer lattice, along the black and red lines, you can
only see one type of particles

4.5.3.2 Conformation from the MD result

Here we show the two MD result figures to confirm the peak amplitude prop-

erties we have predicted.
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Figure 4.46: peak comparison between T11 and T12 from a trilayer staggered tri-
angle lattice, d=0, Γ = 1000, both are real part. ka = 0.54912. Left:
T11; Right: T12

Figure 4.47: peak comparison between real part and imaginary part of T12 from
a trilayer staggered triangle lattice, d=0, Γ = 1000, ka = 0.54912.
Left: real; Right: imaginary
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In Fig 4.46, in the left panel, the amplitude of the second and third peak is

about 1.14e7 and 1.36e7, in the right panel, the absolute value of the amplitude of

second and third peak is about 0.57e7 and 0.66e7, 0.57
1.14

= 0.5, 0.66
1.36

= 0.485, this is

very close to theoretical ratio 1
2
.

In Fig 4.47, in the left panel, the amplitude of the second and third peak is

about 0.57e7 and 0.66e7, in the right panel, the absolute value of the amplitude

of second and third peak is about 0.985e7 and 1.15e7, 0.985
0.57

= 1.728, 1.15
0.66

= 1.742,

this is very close to theoretical ratio
√

3 = 1.732. In the right panel, the acoustic

peak is invisible, which also matches our prediction.

In the second property, we predicted the red optical line shows a positive peak

in imaginary part of CAB, the green optical line shows a negative peak in imaginary

part of CAB, now if you compare Fig 4.38 and Fig 4.44, you can understand why

in the right panel of Fig 4.47, the lower frequency peak is positive and the higher

frequency peak is negative.

From Fig 4.46 and 4.47 we can see the T current correlations accurately match

the four properties we predicted.

4.5.4 Disordered trilayer lattice

In last sectioon, I have explained the peak formation for an ordered trilayer

lattice.

If we are considering a disordered trilayer system, for the same reason, if Eq

4.49 is satisfied, we will get a strong positive peak, which is the acoustic one, no

matter in CAA or CAB. This can be seen from Fig 4.10.

But the Eq 4.48 should be modified.

N/3∑
m=1

ei
~k·~rAm +

N/3∑
m=1

ei
~k·~rBm +

N/3∑
m=1

ei
~k·~rCm = Nδ(~k) (4.50)
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This means that even though the condition in Eq 4.49 is satisfied, fA(~k1 − ~k) or

fB(~k2 + ~k) is not δ(~k) any more. If k is nonzero,

fA(~k) + fB(~k) + fC(~k) = 0 (4.51)

the three parts in complex plane are just three equal length vectors with 120◦angle.

For a given k, if w doesn’t match the lattice dispersion with k, then

CAB(k, w) = fA(~k1 − ~k)fB(−~k1 + ~k)p(w)p(−w) (4.52)

where (~k1, w) is a point on the lattice dispersion curve. If we set fA = eiθ, then

fB = ei(θ+
2
3
π) or fB = ei(θ−

2
3

)π with equal weight. Then |fA|2 = 1, Re(fA(fB)∗) =

1
2
Re(ei

2
3
π + e−i

2
3
π) = −1

2
, this explains the ratio of the envelope’s amplitude. For

the imaginary part, Im(fA(fB)∗) = 1
2
Im(ei

2
3
π + e−i

2
3
π) = 0.

Fig 4.48 and Fig 4.49 are the L12 plot from the the disordered trilayer lattice.

The left panel is the real part of L12, the right panel is the imaginary part of L12.

The two panels are in the same coordinate scale. From Fig 4.48, we can see the

real part of L12 contains positive acoustic peak and negative envelope, while the

imaginary part is negligible, just some noise. The Fig 4.49 is a zoomed picture.

Fig 4.50 is the comparison between the real part of L11 and L12, they do have

the same acoustic peak, but L11 contains positive envelope, L12 contains negative

envelope, the amplitude ratio is nearly one half.

101



Figure 4.48: comparison of the real part(left) and imaginary part(right) of L12,
full profile picture, the simulation data is from disordered trilayer
system. Γ = 1000, d=0. In the legend box, it is the ka value for each
line.

Figure 4.49: The same as Fig 4.48 but a zoomed in profile picture.
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Figure 4.50: comparison of the real part of L11(left) and L12(right), full profile
picture. the simulation data is from disordered trilayer system. Γ =
1000, d=0. In the legend box, it is the ka value for each line.

Since Eq 4.51 is independent of k, this is why the envelope profile is independent

of k. Up to now, at high Γ limit, we proved that the envelope is exactly the VAF.

Fig 4.51 can perfectly confirm this result(Both two panels have been normalized).
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Figure 4.51: the comparison between envelope(left) and VAF(right). The envelope
is obtained from T11 − T12. In the legend box, it is the ka value of
each line.

4.6 N dependence of the envelope

We have done the MD simulation with different numbers of particles in the

system to check the N dependence of the envelope’s amplitude.
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Figure 4.52: N dependence of the envelope’s amplitude for trilayer triangular lat-
tice, d=0, Γ = 1000

Figure 4.53: N dependence of the envelope’s amplitude for trilayer triangular lat-
tice, d=0, Γ = 1000

Fig 4.52 and Fig 4.53 clearly show that the envelope’s amplitude is independent

of N. Here we try to give a speculative explanation for it. Since we already know

that the envelope is VAF and it is independent of k, we only analysis this problem
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at k = 0.

For a trilayer system with small d, each layer contains N particles. When k is

zero, the

~j(k = 0, t) =
3N∑
i

~vi(t)

, it is simply the summation of the all the particles’ velocity. Since the momentum

is conserved, the total velocity summation should be constant. But the velocity

summation from each layer has some fluctuation. Assume the momentum fluctu-

ation is ~ξA,B,C(t), their summation must be zero,

~ξA(t) + ~ξB(t) + ~ξC(t) = 0 (4.53)

at a certain time, the length of the three vectors are not necessarily the same, but

the average in a long time range must be the same, the angle between two vectors

must be 120◦. Since the system is disordered, for simplicity, we can only consider

x component. We already know that |ξAx (w)|2 is the envelope. In order to study

the N dependence of the envelope. We just need to study the N dependence of

ξAx (t).

In the system, all the particles are equivalent. If we consider a single particle

#i, we record time series data of velocity: vi(t1), vi(t2), vi(t3),...,vi(tn), the velocity

has a certain distribution. Its average must be zero, set its variance as σ2. Since

ξA(t) =
N∑
i

vi(t)

, the average of ξA(t) is still zero, but its variance is Nσ2. Based on Var(X) =

X2 − X
2

= X2, this indicates the ξA(t)2 = Nσ2 and |ξAx (w)|2 ∝ N . Since we

calculate current correlation function with L(w, k) = 1
N
j(w, k)j(−w,−k) in the

simulation, when k=0, the envelope must be independent of N, this is a general
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conclusion regardless of the Γ value. L(w, k = 0) ∝ σ2 ∝ kBT , the envelope is

due to the momentum fluctuation, which is related to the temperature. This has

been confirmed by Fig 4.49, in which we can see the amplitude of the envelope is

approximately in the same order of the noise. As we have proved in the previous

section, the acoustic peak amplitude is proportional to N at crystal limit(high Γ).

4.7 Why the envelope equals the VAF?

In previous section, I have proved the envelope is the VAF at crystal limit. In

fact, it is very easy to show this is always true regardless of Γ.

One particle’s velocity can be written as

v(t) =
∑
w

e−iwtp(w) (4.54)

The VAF is just Z(w) = p(w)p(−w). Since every particle is equivalent, the Fourier

spectrum of every particle is the same. But obviously the velocity of each particle

at a given time is not the same. This is because v(t) has a different phase θ for

each particle,

vn(t) =
∑
w

e−iwt+θnp(w)

,

ξA(t) =
N∑
n

vn(t)

should also proportional to ∑
w

e−iwtp(w)

, this is why when k=0, the envelope is just the VAF.
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4.8 More about VAF

From these VAF profile at different Γ, we can see a peak at about w = 0.8wp

for all Γ, there is a lower frequency peak only for high Γ. The peaks in the VAF

mean higher density of states. Generally, density of states is propotional to dk
dw

,

which means a stationary point on the dispersion corresponds to some peak in

the VAF. Previous works Hansen et al. (1975); Schmidt et al. (1997) thought

higher frequency peaks is from longitudinal mode, the lower frequency peak is

from the transverse mode. But based on our new result, this conclusion might

be wrong. It seems that the two peaks correspond to the two stationary points

only on the longitudinal mode. Look at the first column in Fig 4.14, we can see

the two stationary points in AL mode are at about w = 0.8wp and w = 0.3wp,

this matches the profile in Fig 4.26(the third subplot). On the other hand, the

stationary point in AT mode is at about w = 0.6wp, which can’t be found in Fig

4.26.

Figure 4.54: the VAF for single layer lattice at Γ = 1000, the Fourier transforma-
tion is done without any window function.
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From Fig 4.54 we can see there are two spikes on the right peak. One is 0.8wp,

the other one is 0.88wp, the precisely matches the stationary points in the single

layer triangle lattice dispersion(see Fig 3.14). We can also clearly see the peak

amplitude is linear to the frequency. Its mechanism needs more research work in

the future.
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CHAPTER V

Summary

In this thesis, I fully studied the quasi-2D strongly coupled Yukawa system.

The density profile under trap is studied by density functional method, with both

MF and HNC approximations. A trilayer Yukawa lattice is studied to determine

its stable lattice structure and its phonon dispersion. Then the MD result at

Γ = 1000 perfectly matches the calculated lattice dispersion. For a trilayer liquid

system, its collective mode is studied by the QLCA method, and then compared

with the MD result. We get a very good agreement when interlayer distance is

large. At short interlayer distance, the previous gap discrepancy is clarified. We

found there is no optical collective mode in the current correlation function, we can

only see a VAF profile. We gave a brief speculative explanation on the formation of

the envelope and its connection to the VAF. So far, only the theoretical calculation

and simulation have been done. We hope some experiment can be done for the

trilayer system in the near future.

Future work direction:

1. Explore the peak formation of the VAF profile, we hope to understand

whether it is from L mode or both L and T modes

2. Try to give strict proof to the linear relationship of the peak amplitude of

VAF peaks. Further more, we also can explore it in 3D system.
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3. At intermediate d value(0.5 < d < 1.5), how does the current correlation

function profile transform from the envelope type to the collective type?

4. In the trilayer liquid system with Γ = 160, d=1.5, the current correlation

function has some extra peaks that can be found in the lattice current cor-

relation function, We want to know how are they related quantitatively.

5. In the trilayer lattice(d=0) dispersion curves, we see the folding effect along

some direction and purely optical modes along some other direction, we want

to understand the physical meaning of those purely optical modes. Since the

system is the same as a 2D layer, we hope to generate the optical mode just

by the two acoustic modes in the 2D layer.
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APPENDIX A

The mathematical proof for the monotonic

density profile in mean field theory

According to the screened Poisson equation, we have

[∆− κ2]ϕ(r) = −ρ(r)

ε0
q (A.1)

where the ϕ is the total Yukuwa potential at a given position in sapce, q is the

charge. Since the system is cylindrical symmetric. ∆ = ∂2

∂z2
. The Total potential

is

U(z) = wz2 + ϕ(z)q (A.2)

Then density profile ρ(z) ∝ e−βU(z), for simplicity, we ignore some coefficients and

write down

ρ(z) = e−(wz2+ϕ(z)) (A.3)
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Figure A.1: density profile with some stationary point

Assume there a density profile like that in Fig A.1, there is local maximum

point at z0, at z = 0, it is a local minimum point, and ρ(z0) > ρ(0).

ρ′(z) = −e−(wz2+ϕ(z))[ϕ′(z) + 2wz] (A.4a)

ρ′′(z) = −e−(wz2+ϕ(z)){[ϕ′(z) + 2wz]2 − ϕ′′(z)− 2w} (A.4b)

Based on the math property of a stationary point, we have ρ′(z0) = 0 and ρ′′(z0) <

0, it leads to ϕ′′(z0) + 2w > 0, because [ ∂
2

∂z2
− κ2]ϕ(z) ∝ −ρ(z), we finally have

ρ(z0) < 2w + κ2ϕ(z0) (A.5)

similarly, at z = 0, we have ρ′(0) = 0 and ρ′′(0) > 0, we will get

ρ(0) > 2w + κ2ϕ(0) (A.6)
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Because we have assumed ρ(z0) > ρ(0), then U(z0) < U(0), which means wz2
0 +

ϕ(z0) < ϕ(0). We will get

ρ(0) > 2w + κ2ϕ(0) > 2w + κ2ϕ(z0) > ρ(z0) (A.7)

This conflicts to our assumption ρ(z0) > ρ(0). We can also assume there is a

local maximum at z = 0 and there is a local minimum at z0. We will get the

similar conflict, here we skip the detail. It means the density profile can’t have a

stationary point, the density profile in mean field theory is always monotonic.
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Wrighton, J., J. W. Dufty, H. Kählert, and M. Bonitz (2009), Theoretical de-
scription of coulomb balls: Fluid phase, Phys. Rev. E, 80, 066,405, doi:
10.1103/PhysRevE.80.066405.

120


