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Abstract

We construct taut foliations in every closed 3–manifold obtained by r–framed Dehn

surgery along a positive 3–braid knot K in S3, where r < 2g(K)−1 and g(K) denotes

the Seifert genus of K. This confirms a prediction of the L–space conjecture. For

instance, we produce taut foliations in every non–L–space obtained by surgery along

the pretzel knot P (−2, 3, 7), and indeed along every pretzel knot P (−2, 3, q), for q a

positive odd integer. This is the first construction of taut foliations for every non–L–

space obtained by surgery along an infinite family of hyperbolic L–space knots. We

adapt our techniques to construct taut foliations in every closed 3–manifold obtained

along r–framed Dehn surgery along a positive 1–bridge braid, and indeed, along

any positive braid knot, in S3, where r < g(K) − 1. These are the only examples

of theorems producing taut foliations in surgeries along hyperbolic knots where the

interval of surgery slopes is in terms of g(K).
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Chapter 1

Introduction

1.1 A little history

Low–dimensional topology is the study of 3– and 4–manifolds, and the knots and

surfaces that live inside them. To understand these spaces, topologists consider the

following fundamental questions:

Question 1.1. How do we build (interesting) 3– and 4–manifolds?

Question 1.2. If presented two manifolds, how could we distinguish them?

To approach the first question, one develops constructive techniques, while the

second question typically requires studying invariants associated to your objects.

In 1938, Max Dehn proposed a way to build 3–manifolds [Deh10]. Dehn surgery

is the process of choosing a knot in a 3–manifold, removing a tubular neighborhood

of it (which is homeomorphic to a solid torus), and regluing a solid torus via some

homeomorphism from the boundary to that of the knot exterior; there are Q–many

ways to perform this operation. In the 1960’s, Lickorish and Wallace independently

proved that every closed, connected, oriented 3–manifold is obtained by surgery along

some link (a collection of knots) in S3 [Lic62, Wal60]. Thus, Dehn surgery is a

1
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powerful technique used to construct 3–manifolds, and it has become a prominent

area of study within low–dimensional topology. Questions about this construction

abound:

Question 1.3. Which manifolds are obtained by surgery along knots?

Question 1.4. Fix a knot K. What manifolds are obtained by surgery along K?

Question 1.5. If M ≈ S3
r (K), to what extent does M determine K? That is, if we

fix a manifold M , which knots admit a surgery to M?

Question 1.6. If M ≈ S3
r (K), to what extent does K determine M? That is, if we

fix a manifold M and a surgery coefficient r, can multiple knots admit an r–framed

surgery to M?

In general, these are very difficult to answer! In fact, even the simplest versions

have notorious resolutions. For example, consider perhaps the simplest instance of

Question 1.5: which knots admit a non–trivial surgery to S3? Using a technique

known as graphs of surface intersections, Gordon–Luecke famously showed:

Theorem 1.7 ([GL89]). If S3
r (K) ≈ S3 and r ∈ Q, then K is the unknot, and

r = 1/n.

In the direction of Question 1.6, Kronheimer–Mrowka–Ozsváth–Szabó resolved

Gordon’s conjecture, using monopole Floer homology, a powerful package of in-

variants:

Theorem 1.8 ([KMOS07]). Let U denote the unknot in S3, and let K be any knot.

If there is an orientation-preserving diffeomorphism S3
r (K) ≈ S3

r (U), for r ∈ Q, then

K ≈ U .

Another instance of Question 1.5, known as the Property R conjecture, occurs

when M ≈ S1 × S2. For homological reasons, the surgery coefficient must be 0,
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reducing the question to: when is 0–surgery along a knot S1 × S2? In his seminal

work, Gabai proved:

Theorem 1.9 ([Gab87]). The only knot admitting a 0–surgery to S1 × S2 is the

unknot.

Gabai’s proof uses taut foliations: A foliation of a 3–manifold Y is a decom-

position into (typically non–compact) surfaces, called leaves. A foliation is taut if

there exists a simple closed curve meeting each leaf transversely. That is, we try to

study a 3–manifold by understanding if and how it can be decomposed into simpler

(2–dimensional) pieces.

Though every 3–manifold admits a foliation, not all of them admit taut ones! For

instance, in his thesis, Reeb showed that S3 cannot be tautly foliated [Ree52]. In

his proof, he constructed the so–called Reeb foliation of a solid torus. A foliation

without a Reeb component is called Reebless. We note that if a foliation is taut,

then it is Reebless; the converse is not true.

Later, Novikov showed that if M3 has a taut foliation, then the fundamental

group is infinite [Nov65]; indeed, the closed transversal has infinite order in π1(M).

Therefore, elliptic manifolds (i.e. those obtained as a quotient of S3) cannot be tautly

foliated.

For a time, taut foliations were used to investigate Thurston’s geometrization

conjecture: Thurston proved that if K is a hyperbolic knot in S3, then all but finitely

many manifolds obtained by Dehn surgery along K are hyperbolic [Thu97] (this

can be interpreted as one geometric approach to Question 1.4). It was conjectured

that every hyperbolic 3–manifold had a Reebless foliation, and this could serve as

an approach to Thurston’s geometrization. This line of inquiry was vanquished by

Roberts–Shareshian–Stein, who showed that there exist infinitely many hyperbolic

3–manifolds not admitting Reebless foliations [RSS03].
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Nevertheless, an expectation persisted: in some appropriate sense, “most” hyper-

bolic 3–manifolds should admit taut foliations. A good recalibration requires Heegaard

Floer homology. First introduced by Ozsváth–Szabó in the early 2000s, this powerful

package of invariants has been instrumental in answering long–standing questions in

geometric topology (especially questions about Dehn surgery). The Heegaard Floer

homology of a 3–manifold Y is an algebraic invariant, computed using analytic data.

In this context, there is a natural notion of a “smal” 3–manifold, from the Floer–

homological perspective:

Definition 1.10. An irreducible rational homology 3–sphere Y is an L–space if it

is small from the perspective of Heegaard Floer homology: that is, equality is obtained

in rank(ĤF (Y ; Z/2Z)) ≥ |H1(Y ; Z)|.

Lens spaces and elliptic manifolds are prominent examples of L–spaces. A stan-

dard technique to build L–spaces is via Dehn surgery:

Definition 1.11. A knot K ⊂ S3 is an L–space knot if there exists some r > 0

such that S3
r (K) is an L–space.

Tours knots [Mos71] and the Berge knots [Ber18] admit lens space surgeries, so

they are L–space knots. In fact, if a knot admits a surgery to a single L–space, it

admits infinitely many:

Theorem 1.12 ([KMOS07, RR17]). Suppose a non–trivial knot K ⊂ S3 is an L–

space knot. Then for all r ≥ 2g(K)− 1, S3
r (K) is an L–space.

Ozsváth–Szabó showed that L–spaces cannot admit taut foliations [OS05]. This

theorem, combined with Thurston’s hyperbolic Dehn surgery result, presents a Floer–

homological counterpoint to the result of Roberts–Shareshian–Stein: let K be a hy-

perbolic L–space knot, and consider the collection of manifolds obtained by r–framed

Dehn surgery along K, where r ≥ 2g(K)−1. All but finitely many of these manifolds
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are hyperbolic, yet none can admit taut foliations! This leads to the following natural

question:

Question 1.13. In what ways is the geometric notion of a taut foliation related to

the Floer–homological notion of an L–space?

Investigating this question sparked many new avenues within the low–dimensional

topology community, culminating in a unexpected conjecture.
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1.2 Modern motivation and summary of results

The L-space Conjecture predicts a surprising relationship between Floer-homological,

algebraic, and geometric properties of a closed 3-manifold Y :

Conjecture 1.14 (The L-space Conjecture [BGW13, Juh15]). Suppose Y is an ir-

reducible rational homology 3-sphere. Then the following are equivalent:

1. Y is a non-L-space (i.e. the Heegaard Floer homology of Y is not “simple"),

2. π1(Y ) is left-orderable, and

3. Y admits a taut foliation.

Work by many researchers fully resolves Conjecture 1.14 in the affirmative for

graph manifolds [BC15, BC17, BGW13, BNR97, CLW13, EHN81, HRRW15, LS09].

Combining results of Ozsváth-Szabó, Bowden, and Kazez-Roberts proves that if Y

admits a taut foliation, then Y is a non-L-space [OS04, Bow16, KR17]. Here, we

investigate the converse.

One strategy for producing non-L-spaces is via Dehn surgery. A non-trivial knot

K ⊂ S3 is an L-space knot if some non-trivial surgery along K produces an L-space.

Lens spaces are prominent examples of L-spaces, so any knot with a non-trivial surgery

to a lens space (notably Berge knots [Ber18]) is an L-space knot. Berge-Gabai knots

are the subclass of 1-bridge braids in S3 admitting lens space surgeries [Gab90, Ber18],

yet every 1-bridge braid is an L-space knot [GLV18].

In fact, if K is an L-space knot, infinitely many surgeries along K yield L-spaces.

In particular, for any K realized as the closure of a positive braid, the set of L-space

surgery slopes is either [2g(K)− 1,∞)∩Q, or the empty set [Liv04, OS05, KMOS07,

RR17]. Thus, r-framed Dehn surgery along any non-trivial knot realized as a positive

braid closure yields a non-L-space for all r < 2g(K) − 1. This viewpoint guides our

treatment of Conjecture 1.14, which predicts these manifolds admit taut foliations.
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Theorem 1.15. Let K be a knot in S3, realized as the closure of a positive 3-braid.

Then for every r < 2g(K) − 1, the knot exterior XK := S3 − ◦
ν(K) admits taut

foliations meeting the boundary torus T in parallel simple closed curves of slope r.

Hence the manifold obtained by r-framed Dehn filling, S3
r (K), admits a taut foliation.

Remark 1.16. Theorem 1.15 can be reformulated as follows: for K and r as above,

the manifold S3
r (K) admits a taut foliation, such that the core of the Dehn surgery is

a closed transversal.

A 3-stranded twisted torus knot is a knot obtained as the closure of (σ1 σ2)q(σ2)2s,

where q and s are positive integers, and σ1, σ2 are the standard Artin generators.

Vafaee proved every 3-stranded twisted torus knot is an L-space knot [Vaf15]. More-

over, if an L-space knot admits a presentation as a 3-braid closure, then K is a twisted

torus knot [LV19]. Thus, hyperbolic L-space knots are abundant among positive 3-

braid closures. Applying Theorem 1.15 yields:

Corollary 1.17. In Conjecture 1.14, (1) ⇐⇒ (3) holds for all Dehn surgeries along

an infinite family of hyperbolic L-space knots. �

Baker-Moore, strengthening results of Lidman-Moore, proved that the only L-

space Montesinos knots are the pretzel knots P (−2, 3, q), for q ≥ 1, q odd [LM16,

BM18]. These knots are realized as closures of positive 3-braids (see Figure 10).

Applying Theorem 1.15, we deduce:

Corollary 1.18. Let K be an L-space Montesinos knot in S3. Then for any r-framed

surgery on K, the surgered manifold Y = S3
r (K) is a non-L-space ⇐⇒ Y admits a

taut foliation. �

We note that Delman-Roberts recover Corollary 1.18 in forthcoming work [DRb].

The Fintushel-Stern pretzel knot P (−2, 3, 7) is a hyperbolic knot in S3 admitting

lens space surgeries [FS80], hence is an L-space knot. It can be realized as a positive 3-



1.2. Modern motivation and summary of results 8

braid closure in S3 (see Figure 10). In Section 3.2, we explicitly construct the family of

taut foliations meeting the boundary torus T in all rational slopes r < 2g(K)−1 = 9.

Tran, generalizing work of Nie [Nie19], showed that for any K in an infinite sub-

family F of 3-stranded twisted torus knots, and r ≥ 2g(K) − 1, π1(S3
r (K)) is not

left-orderable [Tra19]. The L-space pretzel knots comprise a proper subset of F . We

conclude:

Corollary 1.19. Suppose Y is obtained by r-framed Dehn surgery along K in S3,

for K a 3-stranded twisted torus knot in F , and r ∈ Q. Then

π1(Y ) is not left-orderable ⇐= Y is an L-space ⇐⇒ Y does not admit a taut

foliation.

That is, (2) =⇒ (1) ⇐⇒ (3) of Conjecture 1.14 holds for manifolds obtained by

Dehn surgeries along knots in F .

Our methods for proving Theorem 1.15 are constructive. Inspired by work of

Roberts [Rob01a, Rob01b], we build sink disk free branched surfaces in fibered knot

exteriors. By Li [Li02, Li03], these branched surfaces carry essential laminations. We

first extend these laminations to taut foliations in knot exteriors, and then to taut

foliations in surgered manifolds.

Conjecture 1.14 predicts Theorem 1.15 holds for any knot K realized as a positive

braid closure, on any number of strands. Any such K is fibered; applying [Rob01b],

S3
r (K) admits a taut foliation for any r < 1. An

In Chapter 4, we prove adapt of our techniques to partially close the gap between

Roberts’ result and the prediction for 1-bridge braids in S3:

Theorem 1.20. Let K be any (positive) 1-bridge braid in S3, i.e. K is a knot in

S3, realized as the closure of a braid β on w strands, where

β = (σbσb−1 . . . σ2σ1)(σw−1σw−2 . . . σ2σ1)t
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for w ≥ 3, 1 ≤ b ≤ w − 2, t ≥ 1. Then for every r < g(K), the knot exterior

XK := S3 − ◦
ν(K) admits taut foliations meeting the boundary torus T in parallel

simple closed curves of slope r. Hence the manifold obtained by r-framed Dehn filling,

S3
r (K), admits a taut foliation.

This serves as a warm–up for Theorem 1.21 below; we further modify our tech-

niques to leverage some hidden flexibility in both our construction and positive braids.

Theorem 1.21. Suppose K is a knot in S3 which can be realized as the closure of

a positive braid on n strands. Then for all r ∈ (∞, g(K) − 1), S3
r (K) admits a taut

foliation.

Remark 1.22. To prove Theorem 1.21, we will divide the set of all positive n–braids

with prime closure into four categories, based on the parity of the braid index. Our

proof shows that we can construct taut foliations in S3
r (K) for all r ∈ (−∞, g(K))

for three of the four categories.

This is proved in Chapter 5.

Remark 1.23. These are the only examples in the literature of theorems producing

taut foliations in surgeries along hyperbolic knots where the interval of surgery slopes

is in terms of g(K).

1.3 Why positive braids?

Throughout this work, we focus on the class of positive braid knots – the knots in

S3 which can be realized as the closure of a positive braid. Why these knots in

particular?

As indicated in Sections 1.1 and 1.2, L–space knots are special from the Dehn

surgery perspective, as they admit surgeries to the simplest 3–manifolds, L–spaces.

Thus far, a classification of L–space knots remains elusive, and there are few examples
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in the literature of such knots [Mos71, Ber18, GLV18]. However, it is known that L–

space knots are fibered [Ghi08, Ni07]: the knot exterior has the structure of a surface

bundle over a circle, as below. Here, F is a compact, connected, oriented surface with

a single boundary component.

XK := S3 − ◦
ν(K) = (F × I)

/
(x, 1) ∼ (ϕ(x), 0)

Thus, if we would like to probe the L–space conjecture and investigate a potential

classification of L–space knots, the following is a good place to start:

Goal: Build taut foliations in manifolds obtained by Dehn surgery along fibered knots.

One way to study a fibered knot is to focus on the associated monodromy, i.e.

the (conjugacy class of the) diffeomorphism used to build the mapping torus. Honda–

Kazez–Matíc showed that these diffeomorphisms can be sorted into three categories,

based on the fractional Dehn twist coefficient (FDTC), which (morally speaking)

measures how much the diffeomorphism “twists about the boundary" [HKM07] (see

[KR13] for a nice summary):

• FDTC(K) > 0 (i.e ϕ is right–veering)

• FDTC(K) < 0 (i.e ϕ is left–veering)

• FDTC(K) = 0 (i.e. ϕ is neither right– nor left–veering)

Rather than venture into a discussion on veering–ness here, we focus on some

applications and consequences of their theorem. Roberts proved that if K is a hyper-

bolic fibered knot in S3 with FDTC(K) = 0, then for every r ∈ Q, S3
r (K) has a taut

foliation [Rob01b]. So, to pursue our stated goal, we need only consider the first two

cases.
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Moreover, if a fibered knotK has right–veering monodromy, then the mirrorm(K)

has left–veering monodromy: so, we restrict our attention to the former. Indeed, if a

knot admits a positive surgery to an L–space, it must have right–veering monodromy

[Hed10].

In fact, Hedden showed that L–space knots are strongly quasi–positive (SQP):

they are realized as closures of strongly quasi–positive braids [Hed10]. These braids

have rigid braid word presentations: define

σi,j := (σiσi−1 . . . σj−2)(σj−1)(σiσi−1 . . . σj−2)−1

A braid β is strongly quasi–positive if

β =
m∏
k=1

σik,jk

Therefore, to probe Conjecture 1.14, we amend our goal:

Goal (redux): Build taut foliations in manifolds obtained by Dehn surgery along

fibered, strongly quasi–positive knots.

It is reasonable to expect that the data of the monodromy be used explicitly,

in some capacity. There is a minor hiccup to this approach – in general, it can be

difficult to identify the monodromy of a fibered SQP knot! However, we observe

that positive braid knots are examples of fibered SQP knots where we can identify a

concrete factorization of the monodromy (see Sections 2.2 and 2.3).

Thus, positive braid knots serve as an ideal testing ground for investigating Con-

jecture 1.14 and the Goal (redux). This informs our perspective for this body of

work.
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1.4 Organization

In Chapter 2, we present the necessary background on branched surfaces, fibered knot

detection and product disks, and positive braid closures as Hopf plumbings.

In Chapter 3, we first establish the foundations for proving Theorem 1.15. Along

the way, we construct taut foliations for every S3
r (K), where K = P (−2, 3, 7) and

r < 9. In particular, this constructs taut foliations in every non–L–space obtained by

surgery for this knot. Afterwards, we prove Theorem 1.15.

In Chapter 4, we consider 1-bridge braids, and construct taut foliations in S3
r (K)

where r ∈ (−∞, g(K)). This proves Theorem 1.20, and prepares us for Chapter 5.

In Chapter 5, we construct taut foliations in S3
r (K), where r ∈ (∞, g(K)− 1) and K

is any (prime) positive braid knot. This proves Theorem 1.21.

In Chapter 6, we present some concluding remarks and future directions.

1.5 Conventions
• We work only with braid closures which are knots in S3.

• For any knot exterior XK , H1(∂XK) is generated by

the Seifert longitude λ and the standard meridian µ.

v

w

〈v, w〉 = 1

• Let 〈α, β〉 denote the algebraic intersection number; following the sign con-

vention above, we set 〈λ, µ〉 = 1. For any essential simple closed curve γ on

T = ∂XK , the slope of γ is determined by 〈γ, λ〉
〈µ, γ〉

.

• We use σ1, σ2, . . . , σn−1 to represent the standard Artin generators for the n-

stranded braid group. Strands are drawn vertically, oriented “down", and enu-
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merated from left-to-right. Given a braid diagram, we recover the braid word

by reading β from top-to-bottom.

• The surface F will always be orientable; in all figures of Seifert surfaces, only

F+ is visible.

• If a properly embedded arc α lies on F−, it is drawn with a blue dotted line;

if α lies on F+, it is drawn with a pink solid line. A helpful mnemonic: “pink"

and “plus" both start with “p".

• Given a fibered knot K ⊂ S3 with fiber F and monodromy ϕ, the knot exterior

is a mapping torus F × [0, 1]/ ∼, where (x, 0) ∼ (ϕ(x), 1). Moreover, ϕ ≈ 1 in

ν(∂F ).



Chapter 2

Background

2.1 Branched Surfaces

Our primary tool for constructing taut foliations are branched surfaces. For a detailed

exposition on branched surfaces, see Floyd-Oertel [FO84].

Definition 2.1. A spine for a branched surface is a 2-complex in a 3-manifold

M , locally modeled by:

Figure 1: Ignoring the arrows yields the local models for the spine of a

branched surface.

Definition 2.2. A branched surface B in a 3-manifold M is built by providing

smoothing/cusping instructions for a spine. It is locally modeled by:

14
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Figure 2: The cusping instructions for the spine in Figure 1 yield these

local models.

A branched surface is locally homeomorphic to a surface everywhere except in a

set of properly embedded arcs and simple closed curves, called the branch locus γ.

A point p in γ is called a triple point if a neighborhood of p in B is locally modeled

by the rightmost picture of Figure 2. A branch sector is a connected component of

B − γ (the closure under the path metric). In this paper, all branched surfaces meet

the boundary torus of XK ; it will do so in a train track.

Definition 2.3. A sink disk [Li02] is a branch sector S of B such that (1) S is

homeomorphic to a disk, (2) ∂S ∩ ∂M = ∅, and (3) the branch direction of every

smooth arc or curve in its boundary points into the disk. A half sink disk [Li03] is a

branch sector S of B such that (1) S is homeomorphic to a disk, and (2) ∂S∩∂M 6= ∅,

and (3) the branch direction of each arc in ∂S − ∂M points into S. Note: ∂S ∩ ∂M

may not be connected. When a branched surface B contains no sink disk or half sink

disk, we say B is sink disk free. See Figure 3.

Thus, to prove a branched surface is sink disk free, we need only check that some

cusped arc points out of each branch sector. Indeed, this is the heart of the proof of

Theorem 1.15.

Gabai and Oertel prove a lamination L is essential if and only if L is carried by

an essential branched surface B [GO89]. Li proves that for B to carry an essential

lamination, it suffices to be sink disk free:
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Figure 3: On the left, the local model of a sink disk. On the right, the

bolded lines lie on ∂M ≈ T 2; this is the local model for a half sink disk.

Theorem 2.4 (Theorem 2.5 in [Li03]). Suppose M is an irreducible and orientable

3-manifold whose boundary is an incompressible torus, and B is a properly embedded

branched surface in M such that

(1a) ∂h(N(B)) is incompressible and ∂-incompressible in M − int(N(B))

(1b) There is no monogon in M − int(N(B))

(1c) No component of ∂hN(B) is a sphere or a disk properly embedded in M

(2) M − int(N(B)) is irreducible and ∂M − int(N(B)) is incompressible in M −

int(N(B))

(3) B contains no Reeb branched surface (see [GO89] for more details)

(4) B is sink disk free

Suppose r is any slope in Q∪{∞} realized by the boundary train track τB = B∩∂XK.

If B does not carry a torus that bounds a solid torus in M(r), the manifold obtained

by r-framed Dehn filling, then (1) B carries an essential lamination in M meeting

the boundary torus in parallel simple closed curves of slope r, and (2) M(r) contains

an essential lamination.

Remark 2.5. Our version of Theorem 2.4 differs mildly from the version in [Li03].

The discrepancy arises from our consideration of the lamination in M ; this is not
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problematic, as the lamination inM(r) meets the surgery torus in simple closed curves

of slope r.

A branched surface satisfying conditions (1–4) in Theorem 2.4 is called a laminar

branched surface. To prove Theorem 1.15 for any positive 3-braid knot K, we

construct a laminar branched surface B and prove the boundary train track τ carries

all rational slopes r < 2g(K)− 1. Applying Theorem 2.4, we deduce the existence of

essential laminations in XK , which we extend to taut foliations in XK .

2.2 Fibered knots and product disks

Positive braid closures are fibered links [Sta78]. This statement can be proved con-

cretely via disk decomposition [Gab86]. We recount the relevant details of Gabai’s

method.

For K ⊂ S3, let F be a genus g orientable Seifert surface for K. F × I is

a genus 2g handlebody H, and ∂H ≈ F+ ∪ F− ∪ A, where A ≈ K × I. This

is an example of a sutured manifold with annular suture A, formally written as

(F × I, ∂F × I) ≈ (F × I,K × I) ≈ (M,γ).

A product disk is a diskD2 in the complementary sutured manifold (XF , ∂F×

I), XF := S3 − (F × I), such that ∂D2 ≈ S1 meets the suture A exactly twice. Given

a product disk inXF , we can decompose along it, by cuttingXF alongD and creat-

ing a new sutured manifoldM ′ ≈ XF − (D × I). The sutures γ ofM can be modified

in one of two ways to form the sutures γ′ of M ′: at the sites where γ ∩ ∂M ′, connect

the ends of γ ∩ (∂D × (±1)) by diameters of D × {±1}. Writing (M,γ) D (M ′, γ′)

denotes a (product) disk decomposition.

Theorem 2.6 (Theorem 1.9 in [Gab86]). A link L ⊂ S3 is fibered with fiber surface

F if and only if a sequence of product disk decompositions, applied to (XF , ∂F × I),

terminates with a collection of product sutured balls (B3, S1 × I).
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Figure 4: The product disk D for a positive Hopf Band. We see

∂D|F+∪F− ≈ α ∪ ϕ(α), where ϕ is a positive Dehn twist about the core

curve.

When K is a fibered knot in S3, the sequence of product disk decompositions

terminates with a single (B3, S1 × I).

A sequence of disk decompositions to a product sutured ball not only certifies

fiberedness, but also determines where the monodromy sends properly embedded

arcs on F . Let F be a fiber surface for K ⊂ S3; thus, (F × I, A) is a trivial product

sutured manifold. Heuristically, all the data pertaining to the monodromy of the

fibered knot is captured by the complementary sutured manifold. In particular, let

α be an essential properly embedded arc on F−. Now, view α as an arc on F− ⊂

∂(F × I) with ∂α ⊂ ∂A. Pushing α through the complementary sutured manifold

(XF ≈ F × I, ∂F × I) yields a disk D ≈ α × I, where ∂D meets the suture twice,

and ∂D − A = α+ t α−, with α? ⊂ F ?. D is a product disk, and ϕ(α−) ≈ α+. See

Figure 4 for an example.

Remark 2.7. Positive braid closures are obtained by a sequence of plumbings of

positive Hopf bands. One can inductively apply Corollary 1.4 in [Gab85] to produce

an explicit factorization of the monodromy in terms of Dehn twists. We demonstrate

this procedure alongside an example in Section 2.3.
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2.3 Positive braids and Hopf plumbings

In this section, we present an algorithm realizing the fiber surface for a positive

braid knot as the plumbing of positive Hopf bands. We demonstrate the construction

alongside the β below, which has braid index five:

β ≈ σ1σ3σ2σ3σ4σ
2
1σ3σ2σ3σ4σ3 (2.1)

For β a positive braid on n strands, we built F by attaching positively twisted

bands to n disks, in accordance to the braid word.

Definition 2.8. The disks used to build F are called Seifert disks, and we denote

them as Si, for 1 ≤ i ≤ n.

Lemma 2.9. Let β be a positive braid on n strands. The standard Bennequin surface

F , obtained by attaching positively twisted bands between n disks, is a fiber surface

for β̂. Moreover, the braid word determines a factorization of the monodromy of F .

Proof. This lemma is well known to experts; for a survey on constructing fibered

knots, see [Sta78]. However, our goal is to explicitly read off the monodromy of the

fibration from the braid word – accordingly, we explain the proof via an example,

which illustrates how to find an explicit factorization of the monodromy.

We recall: a positive Hopf band is a fibered link in S3; the fiber surface is an

annulus, and the monodromy ϕ is a positive Dehn twist about the core curve c. Let

H1 and H2 denote two positive Hopf links, with monodromies ϕ1 and ϕ2 respectively.

Applying [Sta78], plumbing H2 onto H1 yields a new fibered link; as explained in

[Gab85], the monodromy ϕ of the result is obtained via precomposition: that is,

ϕ ≈ ϕ1◦ϕ2. Now consider a sequence of plumbings of Hopf linksH1, . . . , Hk (whereHi

is plumbed ontoHi−1). The result is a fibered link L with monodromy ϕ = ϕ1◦. . .◦ϕk,

where ϕi is a positive Dehn twist about the core curve of Hi.
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This algorithm can be neatly realized in the positive braid setting: indeed, a

plumbing sequence can be read off directly from the braid word. We demonstrate

this procedure for the braid β in (2.1).

Definition 2.10. Let ci denote the total number of occurrences of σi in β.

Definition 2.11. The ith column of F , denoted Γi, is the union of the Seifert disks

Si, Si+1, and the bands 1, . . . ci
connecting them.

We will build the fiber surface F in stages, one column at a time. That is, we

first build the surface F1, corresponding to the first column. We iteratively build the

surface Fi from Fi−1 by first stabilizing, and then plumbing Hopf bands in accordance

to the relative positions of the σi’s with respect to the σi−1’s.

Step 0: Build the unknot as a braid closure.

Build a surface by attaching a single positively twisted band between two disks,

as in the leftmost part of Figure 5. This presents the unknot as the closure on the

braid σ1 ∈ B2 (the braid group on two strands).

Figure 5: We build F1 by plumbing two positive Hopf bands to the unknot.

The plumbing arcs are indicated in blue.
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Step 1: Build F1.

We now build the first column of the fiber surface F : let c1 denote the number of

occurrences of σ1 in β. Build the torus link T (2, c1) by iteratively plumbing together

c1 − 1 Hopf bands. Call the surface built at this stage F1. For the braid β in (2.1),

c1 = 3, so we plumb 2 Hopf bands to produce T (2, 3); see Figure 5.

Step 2: Build F2 by plumbing Hopf bands to F1.

Next, stabilize F1, such that the stabilization occurs at the site of the first σ2 in

β, as in Figure 6 (left to middle). Note that after (possibly) conjugating, we may

assume that β begins with a σ1, so the first σ2 in β occurs after some number of σ1s.

The stabilization allows us to realize the same fiber surface F1, but it is appears

as the Bennequin surface of a braid on three (rather than two) strands. To build F2,

sequentially plumb c2 − 1 Hopf bands, where all the plumbing arcs lie in the Seifert

disk S2. To do this, we need to identify an arc α ⊂ S2 to plumb onto.

We already identified the first occurrence of σ2 in β (this determined the site of

the stabilization). Now, identify the second occurrence of σ2: it will occur after t

occurrences of σ1 (note that t can be zero). Let uα and `α denote the upper and

lower endpoints of the forthcoming α; both will lie on ∂S2. Then uα will lie above

the attachment sites of the previous σ2 band, and the `α will lie after the t right

attachment sites of the σ1 bands (if t = 0, then α will be isotopic to the co–core of

the existing σ2 band). Connecting uα and `α via a simple arc in S2 yields the plumbing

arc α. That is: the plumbing arc α will “enclose” the right attachments sites of the

t σ1 bands that occur between the previous and current σ2’s in β. Repeating this

process until we have exhausted all occurrences of σ2 in β yields the fiber surface F2.

In our example, c2 = 2, and the first σ2 occurs between the first two σ1’s, while

the second σ2 occurs after the last σ1. Thus, we need only plumb on a single Hopf

band along the arc indicated to build the surface F2. The plumbing arc, and the
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Figure 6: We build F2 by first stabilzing F1 (as in the middle figure),

and then plumbing a single positive Hopf band along the indicated (blue)

plumbing arc. The resulting surface F2, is on the right.

result of the plumbing, are seen in Figure 6 (middle and right).

Step 3: Exhaust all σi’s in β to build F .

We repeat this procedure to build the surface Fi, by plumbing positive Hopf bands

onto Fi−1: for each 3 ≤ i ≤ n−1, stabilize the surface Fi−1 such that the stabilization

occurs at the location of the first occurrence of σi in β. Then, count the number of

σi’s in β, and plumb ci−1 Hopf bands onto the stabilized Fi−1, while keeping track of

the relative positions to the σi−1’s, as in the previous paragraph. The result is called

Fi. Indeed, the surface Fn−1 is F , the fiber surface for β. See Figures 7 and 8 to see

the remainder of this procedure for β as in (2.1).

This procedure allows us to read off an explicit sequence of plumbings from the

braid word. Moreover, each pair of consecutive bands between adjacent Seifert disks
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Figure 7: Building F3 for the braid β in (2.1).

specifies a simple closed curve γ, and the monodromy of the braid will be a sequence

of positive Dehn twists about the simple closed curves from the plumbings: from

“bottom–to–top”, we Dehn twist about the simple closed curves in Γn−1, then Γn−2,

then Γn3 , until we reach the first column Γ1. Thus, the positive braid word β not

only specifies a fiber surface for β̂, but also produces an explicit factorization of the

monodromy.

Remark 2.12. This procedure also works for alternating – or more generally, homo-

geneous – braids. For braids of these forms, the plumbing involves both positive and

negative Hopf bands, in accordance with the sign of the σi in β.
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Figure 8: Building F4 ≈ F for the braid β in (2.1).



Chapter 3

Positive 3–braids

3.1 Fiber surfaces for positive 3–braid closures

Let β be a positive 3-braid, where β is not one of σs1, σs2, or σ1σ2. For such braids,

conjugation and repeated applications of the braid relation σ2σ1σ2 = σ1σ2σ1 eliminate

isolated instances of σ1 [Baa13]. Thus, every such positive 3-braid can be written in

the form

β = σa1
1 σ

b1
2 σ

a2
1 σ

b2
2 . . . σak

1 σ
bk
2 , where for all i ≤ k, 2 ≤ ai and 1 ≤ bi (3.1)

Going forward, we assume all 3-braids are in this form.

Definition 3.1. Let β be of the form described in (3.1). β has k blocks, where the

ith block has the form σai
1 σ

bi
2 .

Definition 3.2. Let β̂ denote the closure of β, which is in the form specified by

Equation 3.1. Define:

c1 :=
k∑
i=1

ai c2 :=
k∑
i=1

bi

Applying Seifert’s algorithm to β̂ yields Seifert disks S1, S2, S3. Reading β from

left to right, each occurrence of σi dictates the attachment of a positively twisted

band between Si and Si+1.

25
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Definition 3.3. For the jth letter σi in the braid word β, denote the corresponding

positively twisted band attached between Si and Si+1 as bj.

The bands are attached from top to bottom; there are c1 + c2 bands attached in

total. This is our fiber surface F for β̂. Following conventions established by Rudolph

[Rud93], we only see F+, the “positive side" of F , in our figures.

Definition 3.4. The bands bj and bk are of the same type if they are both attached

between the Seifert disks Si and Si+1.
S1 S2

S3
bj

bj+1

bj+2

bj+3

Figure 9: There are two product disks dentified, Dj and Dj+1. We have

∂Dj ⊂ S1 ∪ S2 ∪ bj ∪ bj+3, and ∂Dj+1 ⊂ S2 ∪ S3 ∪ bj+1 ∪ bj+2. The

non-sutured portions of ∂Dj and ∂Dj+1 are α−j ∪ α+
j and α−j+1 ∪ α+

j+1,

respectively.

It is straightforward to identify a collection of product disks for F : the boundary

of a disk Dj will be entirely contained in bj, bk (the next band of the same type as

bj), and Si ∪ Si+1 ∪ A (where Si and Si+1 are the Seifert disks to which bj and bk

are attached). Decomposing XF along c1 + c2 − 2 disks results in a single product
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sutured ball. Since fiber surfaces are minimal genus Seifert surfaces, we conclude

χ(F ) = 3− (c1 + c2) and 2g(K)− 1 = c1 + c2 − 3.

Definition 3.5. Suppose a product disk has boundary contained in bj and bk, which

are bands of the same type with j < k. We refer to this disk as Dj. Furthermore, we

denote the non-sutured portion of ∂Dj, ∂Dj − A, by α+
j ∪ α−j , where α?j ⊂ F ?.

The product disk Dj is completely determined by the arcs α−j and α+
j ≈ ϕ(α−j ),

so we use these arcs to identify product disks – in particular, we will not include the

interior of these disks in our figures. As in Figure 9, we draw α±j on F ×
{

1
2

}
, not in

(XF , K × I).

3.2 Foundations and the P (−2, 3, 7) pretzel knot

This section provides the structure of proof of Theorem 1.15 and a series of important

lemmas towards that end. We establish notation for constructing and analyzing

branched surfaces in exteriors of positive 3-braid closures. The proof of Theorem 1.15,

in Section 3.3, requires analysis of 3 cases; we carry out the example of P (−2, 3, 7)

here alongside our preparatory material as motivation. This example already contains

the richness of the several cases required to prove Theorem 1.15.

We outline the construction of taut foliations in S3
r (K), K realized as the closure

of a positive 3-braid, r ∈ (−∞, 2g(K)− 1):
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Section 3.2.1: Identify c1 + c2 − 2 disjoint product disks {Dj} in XF

Section 3.2.2: Isotope {Dj} into a standardized position in XK

Section 3.2.3: Build the spine of the branched surface in XK from a copy of

the fiber surface F and these standardized disks

Section 3.2.4: Build the laminar branched surface B:

Section 3.2.5: Assign optimal co-orientations for the standardized {Dj}

Section 3.2.6: Check B is sink disk free

Section 3.2.7: Prove B is a laminar branched surface

Section 3.2.8: Construct taut foliations in XK :

Section 3.2.9: Show the boundary train track τ carries all slopes

r ∈ (−∞, 2g(K)− 1)

Section 3.2.10: Extend essential laminations to taut foliations in XK

Section 3.2.11: Produce taut foliations in S3
r (K) via Dehn filling

To begin our motivational example, we note that P (−2, 3, 7) is the closure of a

positive 3-braid. In particular, P (−2, 3, 7) = β̂, for β = σ7
1σ

2
2σ

2
1σ2.

q q
q

q

Figure 10: An isotopy of P (−2, 3, q), q odd, q ≥ 1 into the positive closed

3-braid β̂, for β = σq1σ
2
2σ

2
1σ2.
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3.2.1 Identify disjoint product disks {Dj} in XF .

The setup in Section 3.1 supplies c1 + c2 − 2 product disks: take the product disks

used to show F is a fiber surface for K.

Figure 11 shows the fiber surface for P (−2, 3, 7), and 10 product disks {D1, . . . D10}.

The disks {D1, D2, . . . , D7, D10} have boundaries contained in b1 ∪ . . . ∪ b7 ∪ b10 ∪

b11∪S1∪S2; the disks {D8, D9} have boundaries contained in b8∪b9∪b12∪S2∪S3.

The product disks D1, . . . , D10 are disjoint in XF , as α−1 , . . . , α−10 are pairwise disjoint.

3.2.2 Isotope {Dj} into a standardized position in XK

The c1+c2−2 product disks found in Section 3.2.1 are contained in the surface exterior

XF ≈ XK − (F × [1
4 ,

3
4 ]). Collapsing F ×

[
1
4 ,

3
4

]
to F ×

{
1
2

}
produces c1 + c2− 2 disks

in XK , with ∂Dj ⊂ (F × {1/2}) ∪ ∂XK .

Consider (F ×{1
2})∪ (D1∪ . . .∪Dc1+c2−2) in XK . This is the spine for a branched

surface in XK . For all j 6= ` and fixed ? ∈ {+,−}, the arcs α?j and α?` are disjoint on

the fiber surface F ×{1
2}. However, for j 6= `, it is possible for α+

j and α−` to intersect

on F × {1
2}; after smoothing, there will be many triple points, as in Figure 2.

We want to simplify the forthcoming branched surface. To this end, we isotope

the product disks D1, . . . , Dc1+c2−2 in XK such that the arcs {α±j } intersect minimally

on F × {1
2}.

There are two types of intersection points between α+
j and α−` , j 6= `:

Definition 3.6. A Type 1 intersection point arises from α+
j ∩ α−j+1, where bj

and bj+1 are bands of the same type. A Type 2 intersection point arises from

α+
j ∩ α−` , where bj and b` are bands associated to the last occurrences of σ1 and σ2

in the same block σai
1 σ

bi
2 .

In Figure 11, we see nine triple points in the spine of P (−2, 3, 7): there are eight

Type 1 intersection points, and a single Type 2 intersection point. Lemma 3.9 will
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eliminate all Type 1 intersection points.

Definition 3.7. Let Dj be a product disk in the spine of a branched surface. A spinal

isotopy ιj : Dj × [0, 1] → XK is an isotopy of the disk Dj in XK such that for all

t ∈ [0, 1],

• ιj|α−
j ×{t}

= 1

• ιj(α+
j × {t}) ⊂ (F × {1

2})
+

• (∂D ∩ ∂XK) ⊂ ∂XK

• D̊ ⊂ XK − (F × {1
2})

and ιj(α+
j × {1}) ⊂ Si, where i = 2, 3.

Intuitively, allowing α+
j to move freely along F × {1

2} guides an isotopy of Dj in

XK .

Definition 3.8. An arc α+
j is in standard position if it has been isotoped to lie

entirely in a single Seifert disk Si, i = 2, 3. A disk is in standard position if both

α+
j and α−j lie entirely in S1 ∪ S2 ∪ S3.

Lemma 3.9. There exists a sequence of c1 + c2 − 2 spinal isotopies of the disks

D1, . . . , Dc1+c2−2 putting all disks in standard position. Equivalently, there exists a

splitting of the spine of the branched surface with no Type 1 intersection points, i.e.

with α+
1 , . . . , α

+
c1+c2−2 in standard position.

Proof. Scanning the diagram of F × {1
2} from bottom to top, find the first arc α+

s

encountered. The last letter of β is σ2, so α+
s ⊂ bs∪bc1+c2 ∪S2∪S3, with s < c1 + c2.

If we allow free isotopy of arcs in F × 1
2 (i.e. an isotopy is of α+

s where the endpoints

of the arc can move along ∂F ), α+
s can be isotoped to lie entirely in S3. Let ιs be the

spinal isotopy of Ds in XK such that for all t, ιs(α+
s × {t}) = is(α+

s × {t}). Applying

ιs puts Ds in standard position.
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Continue scanning the diagram from bottom to top, and find the next arc α+
r

encountered. Apply the spinal isotopy ιr of Dr in XK such that ιr|α+
r ×{t} pushes α

+
r

into standard position. After c1 + c2− 2 iterations of this procedure (finding the next

arc α+
m encountered, and putting the disk Dm in standard position via ιm), all disks

are standardized. A Type 1 intersection between α+
t and α−t+1 is eliminated by the

isotopy ιt standardizing Dt.

Remark 3.10. The pre- and post- split spine have isotopic exteriors.

For P (−2, 3, 7), the arcs get isotoped in the following order:

α+
9 , α

+
10, α

+
7 , α

+
8 , α

+
6 , α

+
5 , α

+
4 , α

+
3 , α

+
2 , α

+
1

The result of applying Lemma 3.9 is seen in the right diagram in Figure 11. There is

a single Type 2 intersection point between α+
7 and α−9 .

Going forward, all disks Dj are in standard position, unless stated otherwise. We

will not change our notation to indicate the disks are standardized.

3.2.3 Build the spine of the branched surface

The spine for the branched surface is built from

(F × {1/2}) ∪
(
c1+c2−2⋃
i=1

Di

)

For P (−2, 3, 7), the spine for the branched surface is in Figure 11.
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b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

Figure 11: On the left: the fiber surface and 10 product disks for

P (−2, 3, 7). On the right: the laminar branched surface for P (−2, 3, 7)

with cusping directions (←)7(→)(←)(→)( )( ).
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3.2.4 Build the branched surface B

To build the laminar branched surface, we need to assign co-orientations for the disks

Dj, 1 ≤ j ≤ c1 + c2− 2, and verify these choices do not create sink disks. To achieve

these goals, we study the branch locus and branch sectors.

Lemma 3.9 simplified the branch locus: all arcs α±j , 1 ≤ j ≤ c1 + c2 − 2 are now

contained in S1 ∪S2 ∪S3. Moreover, arcs α−j are isotopic to the co-cores of bands bj,

or would be if other bands were not obstructing the path of the lower endpoint.

For P (−2, 3, 7),

• the arcs α−1 , . . . , α−7 , α−10, contained in S1, are isotopic to the co-cores of the

1-handles b1, . . . ,b7,b10 respectively.

• the arc α−8 is isotopic to the co-core of b8.

• the arcs α+
1 , . . . , α

+
6 , α

+
10 are isotopic to the co-cores of the 1-handles b2, . . .b7,b11,

respectively, and are contained in S2.

• the α+
8 is isotopic to the co-core of b9, and is contained in S3.

• the two arcs α−9 and α+
7 are not isotopic to the co-cores of any bands.

Cusp directions for the disks have yet to be assigned. Nevertheless, we know the

branch sectors for B will fall into two categories: the sectors that lie in F ×{1
2}, and

sectors arising from isotoped product disks. The former can be further refined into 3

categories:

Definition 3.11. The Si disk sector is the connected component of a branch sector

containing the Seifert disk Si. A band sector is the connected component of a

branch sector associated to a positively twisted band. The remaining branch sectors

are polygon sectors; each lies in a single Seifert disk.
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In particular, all polygon sectors lie in S2. For P (−2, 3, 7), there are 7 band sectors

(the branch sectors containing b2, . . . ,b7 ∪ b9 ∪ b10), and a pair of polygon sectors.

3.2.5 Assign optimal co-orientations to {Dj}

Definition 3.12. Let α̂?j denote the cusp direction of α?j , for ? ∈ {+,−}.

Lemma 3.13. Assigning a co-orientation to Dj determines the cusp orientation to

both α+
j and α−j . Moreover, if we orient the arcs α±j from the lower endpoint to the

upper endpoint, the pairings 〈α+
j , α̂

+
j 〉 and 〈α−j , α̂−j 〉 have opposite signs.

Heuristically: the induced cusp orientations of α+
j and α−j “point in opposite

directions" when looking at (F × {1
2})

+.

F × 1
2F × 1

2

D2D2

Figure 12: In this local model, we have fixed a co-orientation on F ×{1
2},

and chosen different co-orientations on Dj in the left and right figures.

The correct cusping choices for α±j are provided. The bolded horizontal

lines lie on ∂XK .

Proof. For simplicity, assume the disk has yet to be standardized. Choose a co-

orientation on Dj. Since F is co-oriented, the correct smoothing choices for α+
j

and α−j ensure the co-orientations of F and Dj agree near the branch locus. The
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corresponding cusp directions for α±j can be determined immediately, as in the local

model in Figure 12: if the cusp direction on α−j points to the right (resp. left) near

∂XK , then the cusp direction on α+
j points to the left (resp. right) near ∂XK . Taking

a global viewpoint as in Figure 13, orient the arcs α±j from the lower endpoint to the

upper endpoint: the pairings 〈α±j , α̂±j 〉 have opposite signs, and the cusp directions

point in opposite directions when looking at (F×{1
2})

+. Our isotopy ιt ofDt preserves

the relative positions of the upper and lower endpoints of α+
t , so the lemma holds for

standardized disks.

α−j α−j

bj bj

bj+1 bj+1

Figure 13: After standardizing, α̂−j and α̂+
j “point in opposite directions".

Remark 3.14. In addition to establishing conventions about cusp directions, Figure

13 indicates special (i.e. bolded) endpoints. The meaning of the bolding is postponed

until Definition 3.19 (it will become relevant when computing the slopes carried by the

branched surface).

The cusp direction of α−j determines the co-orientation ofDj. Moreover, the upper

endpoint of α−j is planted above the attachment site of the 1-handle bj, which in turn

is associated to the jth letter σi of β. Therefore, we can encode the co-orientation of

Dj directly to bj, via the induced cusp orientation on α−j .

Definition 3.15. We encode the co-orientation of Dj by recording the cusp direction

of α−i in tandem with β. For σ the jth letter of β:
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• Writing ← below σ indicates 〈α̂−j , α−j 〉 = 1 and 〈α̂+
j , α

+
j 〉 = −1. That is, α−j is

cusped “to the left", and α+
j is cusped “to the right" when looking at (F ×{1

2})
+.

• Writing → below σ indicates 〈α̂−j , α−j 〉 = −1 and 〈α̂+
j , α

+
j 〉 = 1. That is, α−j is

cusped “to the right", and α+
j is cusped “to the left" when looking at (F ×{1

2})
+

• Writing ( ) below σ indicates not choosing the product disk Dj with pre-

standardized arc α+
j passing through this 1-handle. We say σ is uncusped.

P (−2, 3, 7) is realized as the closure of β = σ7
1σ

2
2σ

2
1σ2 = σ7

1σ2σ2σ1σ1σ2. The

cusping directions in (3.2) below determine a branched surface – it specifies which

product disks to choose when building the spine, and how to co-orient them, as in

Figure 11.

σ7
1 σ2 σ2 σ1 σ1 σ2

(←)7(→)(←)(→)( )( ) (3.2)

We emphasize: directions, as in (3.2), completely determine a branched surface.

In Section 3.3.2, we assign cusp directions for an arbitrary positive 3-braid closure.

3.2.6 Check B is sink disk free

Lemma 3.16. A branch sector arising from an isotoped product disk is never a sink

disk.

Proof. Let Dj be any product disk sector. By Lemma 3.13, the pairings 〈α+
j , α̂

+
j 〉 and

〈α−j , α̂−j 〉 have opposite signs. Therefore, one of α̂+
j and α̂−j points out of (F × {1

2})
+

and into Dj (and vice-versa for the other). It is impossible for both cusp directions

to point into Dj.

In Section 3.3, we develop techniques for determining which cusping directions (as

in (3.2)) create sink disks. For the branched surface B for P (−2, 3, 7), we already
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identified the branch sectors on F × {1
2}, so verifying B is sink disk free is straight-

forward. To show a branch sector is not a half sink disk, we need only check some

cusped arc α̂?j points out of it.

• The Disk Sectors

– S1 is not a sink disk, because α̂−10 points out of it.

– S2 is not a sink disk, because α̂+
1 points out of it.

– S3 is not a sink disk, because α̂+
9 points out of it.

• The Band Sectors

– The sectors b2, . . . ,b7 have α̂−2 , . . . , α̂−7 pointing out of the respective re-

gions.

– The band sector containing b9 ∪ b10 in the boundary has α̂−9 pointing out

of it.

• The Polygon Sectors

– The boundary of the upper polygon sector Pu is contained in α+
7 ∪α−8 ∪

α−9 ∪ ∂F ; α̂−8 points out of the sector.

– The boundary of the lower polygon sector P` is contained in α+
7 ∪α−9 ∪

α+
10 ∪ ∂F ; α̂−9 points out of the sector.

3.2.7 B is a laminar branched surface

Proposition 3.17. A sink disk free branched surface B, constructed from a copy of

the fiber surface and a collection of product disks, is a laminar branched surface.

Proof. We verify B is laminar by verifying conditions (1) – (4) of Theorem 2.4 hold.

Note that the M of Theorem 2.4 is XK .
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(1a) ∂h(N(B)) is incompressible and ∂-incompressible in M − int(N(B)).

A sutured manifold (M,γ) is taut if M is irreducible and R(γ) is norm min-

imizing in H2(M,γ) [Gab83]. Each of our product disks appears in a sutured

manifold decomposition of (XF , K× I) which terminates in (D2, S1× I). Thus,

any sutured manifold appearing in the sequence of product disk decompositions

of (XF , K× I) is a taut sutured manifold [Gab83]. In particular, the exterior of

the pre-split spine (built from c1 + c2 − 2 co-oriented product disks), (M ′, γ′M),

is a taut product sutured manifold, and R(γ′M) is norm minimizing.

The exterior of the post-split spine also has a product sutured manifold struc-

ture; denote this manifold (N ′, γ′N). For B the branched surface whose spine

has standardized disks, we have γ′N ≈ ∂v(N(B)) ∪ (∂XK − int(N(B))|∂XK
)

and R(γ′N) is isotopic to R(γ′M) ≈ ∂h(N(B)). Thus ∂hN(B) is norm mini-

mizing in H2(N ′, γ′N), and ∂h(N(B)) is incompressible and ∂-incompressible in

M − int(N(B)).

(1b) There is no monogon in M − int(N(B)).

This follows from our construction; the branched surface has a transverse ori-

entation.

(1c) No component of ∂hN(B) is a sphere or a disk properly embedded in

M .

Every component of ∂hN(B) meets ∂XK , so no component of ∂h(N(B)) can be a

sphere. The horizontal boundary ∂hN(B) is properly embedded in XB, not XK .

(2) M − int(N(B)) is irreducible and ∂M − int(N(B)) is incompressible in

M − int(N(B)).
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M − int(N(B)) is a submanifold of S3 with connected boundary, thus is ir-

reducible. ∂XK − int(N(B)) is a torus with a neighborhood of a train track

removed: it is a collection of bigons. In particular, any simple closed curve in

∂XK − int(N(B)) bounds a disk in ∂XK − int(N(B)), and is incompressible in

M − int(N(B)).

(3) B contains no Reeb branched surface (see [GO89] for more details).

To prove B does not contain a Reeb branched surface, it suffices to show that

B cannot carry a torus or fully carry an annulus.

By construction, every sector of B meets ∂XK . Thus, any compact surface

carried by B must also meet ∂XK . Thus, B cannot carry a torus.

We now prove B cannot fully carry an annulus. Suppose, by way of contradic-

tion, that B fully carries a compact surface S. Any such S is built as a union

of branch sectors, where each branch sector has a positive weight. Since β is in

the form specified by Section 3.1, we can restrict our attention to the first two

letters of the braid word, namely σ1σ1; see Figure 14. We assign weights to the

relevant branch sectors:

• the disk sectors D1 and D2 have weights w1 and w2, respectively

• the band sector b2 has weight w3,

• the two (isotoped) product disks associated to σ2
1 have weights w4 and w5.

See Figure 14. If B carries a compact surface, the switch relations induced

by the branch loci induce the following: w1 = w2 + w4, w3 = w2 + w4, and

w1 = w5 + w3.

This implies that w1 = w3 = w3 + w5, thus w5 = 0. This contradicts that S is

fully carried by B. We conclude that B cannot carry any compact surface, and
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therefore does not carry an annulus.

(4) B is sink disk free.

This holds by assumption. �

w1 w2

w3

w4

w4

w5

Figure 14: A local picture of the branched surface near the bands b1 and

b2. For simplicity, the product disk associated to α1 appears broken in

our figure; it has weight w4. The standard relations near the branch locus

indicate that w5 = 0, thus B cannot fully carry an annulus.

3.2.8 Construct taut foliations in XK

B is a laminar branched surface. Theorem 2.4 guarantees that for every rational

slope r carried by the boundary train track τ , there exists an essential lamination Lr

meeting ∂XK in simple closed curves of slope r. To construct taut foliations in XK ,

we first understand which slopes are carried by τ , apply Theorem 2.4 to get a family

of essential laminations, and then extend each lamination to a taut foliation in XK .
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3.2.9 Show the train track τ carries all rational slopes

r < 2g(K)− 1

Since B is formed by (F × {1
2}) ∪ D1 ∪ . . . ∪ Dc1+c2−2, the boundary train track τ

carries slope 0.

Definition 3.18. Each Dj meets ∂XK in two arcs, each tracing out the path of an

endpoint of α−j under ϕ. These arcs are sectors of the train track τ ; τ − λ is a

collection of sectors.

We have c1 + c2 − 2 disks, and therefore 2 · (c1 + c2 − 2) sectors in the associated

train track τ . Consider α−j with cusping α̂−j . The cusping α̂−j will agree with the

orientation of λ at one endpoint of α−j , and disagree at the other endpoint. Thus,

for sj and s′j the pair of sectors induced by α−j , the train tracks λ ∪ sj and λ ∪ s′j

carry different slopes, as in Figure 15: λ ∪ (the leftmost sector) carries [0, 1), while

λ ∪ (the middle sector) carries (−∞, 0].

Definition 3.19. If the direction of α̂−j disagrees with the orientation of λ at a given

endpoint of α−j , we say this endpoint contributes maximally to τ .

In our figures, the endpoint of α−j contributing maximally is bolded.

λ

∂(XK)

Figure 15: A train track τ ⊂ ∂(XK). λ ∪ (the leftmost sector) carries

[0, 1), while λ∪ (the middle sector) carries (−∞, 0]. The rightmost sectors

are linked.

Our goal is to maximize the interval of slopes carried by τ . There are c1 + c2 − 2

endpoints contributing maximally to τ – one for each product disk. It is tempting to



3.2. Foundations and the P (−2, 3, 7) pretzel knot 42

claim τ carries all slopes [0, c1 + c2 − 2). However, this is naïve: the endpoints of the

arcs α, α′ could be linked on along ∂F , as in the rightmost picture in Figure 15.

Definition 3.20. Let α−j and α−` be distinct properly embedded arcs on F such that

(1) the first endpoint of each arc contributes maximally to τ and (2) their endpoints

are linked in λ. Then α−j and α−` are called linked arcs. See Figure 15. If α−j and

α−` are not linked, they are unlinked or not linked.

The train track τ induced by B will carry all slopes in (−∞, k), where k is the

maximum number of pairwise unlinked arcs contributing maximally to τ . Proving

Theorem 1.15 requires sorting positive 3-braids into three types. For each type, we

construct a laminar branched surface B using c1 + c2− 2 product disks and a unique

pair of linked arcs. Thus, τ carries all slopes in [0, (c1 + c2− 2)− 1) = [0, 2g(K)− 1).

Definition 3.21. A sub-train-track τ ′ of τ is a train track carrying slope 0, such

that {sectors of τ ′} ⊆ {sectors of τ}.

Remark 3.22. For our purposes, τ ′ will include all sectors contributing maximally

to τ , and a single sector s with λ ∪ s carrying (−∞, 0].

Lemma 3.23. Any slope carried by τ ′, a sub-train-track of τ , is also carried by τ . �

For P (−2, 3, 7), we have c1 + c2 − 2 = 10 sectors contributing maximally to τ ,

and exactly one pair of linked arcs coming from α−8 and α−9 . Let τ ′ be the sub-train-

track built from the endpoints of α−1 , . . . , α−10 that contribute maximally to τ . Thus τ ′

carries all rational slopes in [0, 9). Appending the upper endpoint of α−8 to τ ′ ensures

τ ′ carries all slopes in (−∞, 9). Applying Lemma 3.23, we conclude τ , the train track

induced by B, carries slopes in (−∞, 9).
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3.2.10 Extend essential laminations to taut foliations

We now have a laminar branched surfaceB carrying all rational slopes in (−∞, 2g(K)−

1). By Theorem 2.4, B carries an essential lamination Lr for every rational r ∈

(−∞, 2g(K)− 1). We use these laminations to construct taut foliations in XK .

Proposition 3.24. Let Lr be an essential lamination carried by our laminar branched

surface B, such that Lr meets ∂XK in simple closed curves of slope r. Then Lr can

be extended to a taut foliation in XK, which foliates ∂XK in parallel simple closed

curves of slope r.

Proof. In Proposition 3.17, we proved the branched surface exterior

XB ≈ XK − int(N(B)) is isotopic to a product sutured manifold. In particular,

XB has an I-bundle structure. N(B) is an I-bundle over B, thus N(B)− Lr has

an I-bundle structure. Endowing the lamination exterior XLr ≈ XK − Lr with an

I-bundle structure yields a foliation Fr for XK which is induced by Lr.

Lr meets ∂XK in simple closed curves of slope r, so XLr |∂XK
is an r-sloped an-

nulus Ar. Ar is formed from XB|∂XK
and N(B)− Lr|∂XK

, which both have I-bundle

structures. Simultaneously endowing XB and N(B)− Lr with an I-bundle structure

(as above) foliates Ar by circles of slope r; thus ∂XK is foliated by simple closed

curves of slope r.

3.2.11 Produce taut foliations in S3
r (K) via Dehn filling

For all rational r < 2g(K)−1, XK admits a taut foliation Fr foliating ∂XK in simple

closed curves of slope r. Performing r-framed Dehn filling endows S3
r (K) with a taut

foliation.

To summarize for P (−2, 3, 7): we constructed a laminar branched surface B ⊂

XK . The induced train track τ carries all rational slopes in (−∞, 2g(K) − 1) =

(−∞, 9). Applying Proposition 3.17, Theorem 2.4 and Proposition 3.24, we deduce
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XK admits taut foliations meeting the boundary torus T in simple closed curves of

slope r ∈ (−∞, 2g(K)− 1). Performing r-framed Dehn filling yields S3
r (K) endowed

with a taut foliation. These manifolds are non-L-spaces; we have produced the taut

foliations predicted by Conjecture 1.14.

3.3 Proving the positive 3–braids theorem

In this section, we prove:

Theorem 1.15. Let K be a knot in S3, realized as the closure of a positive 3-braid.

Then for every rational r < 2g(K)−1, the knot exterior XK := S3− ◦
ν(K) admits taut

foliations meeting the boundary torus T in parallel simple closed curves of slope r.

Hence the manifold obtained by r-framed Dehn filling, S3
r (K), admits a taut foliation.

The proof requires generalizing the P (−2, 3, 7) example of Section 3.2. In Section

3.3.1, we prove a few lemmas. Three families of branched surfaces are constructed in

Section 3.3.2.

3.3.1 Co-orienting Arcs

Given an arbitrary positive 3-braid word β, we choose c1 + c2 − 2 product disks, as

in Section 3.2.1. We need a strategy for assigning co-orientations. As in Section

3.2.5, we will provide cusp directions in tandem with β, and analyze which cusping

directions produce sink disks and linked arc pairs. We aim to maximize the slopes

carried by τ while ensuring B is sink disk free.

Lemma 3.25. Suppose the subword σiσi arises as the jth and j+1st letters in β. The

cusping directions (←)2, (→)2, and (→ ←) prevent the band sector bj+1 from being a

half sink disk.
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Proof. As in Figures 16 and 18, α+
j is isotopic to the co-core of bj+1. If α̂−j = (→),

then by Lemma 3.13, α̂+
j = (←), hence the directions (→)2 and (→ ←) do not make

bj+1 a half sink disk. The cusping directions (←)2 have α̂−j+1 pointing out of bj+1.

bj bj

bj+1 bj+1

Figure 16: The directions (→)2 and (←)2 do not make bj+1 a half sink

disk.

bj

bj+1

bj+2

Figure 17: The band bj+1 is a half sink disk.
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Lemma 3.26. Suppose β contains the subword σiσiσi, arising as the j, j + 1, j + 2

letters of β. The cusping directions (← → ? ), ? ∈ {→, ←, } force bj+1 to be

a half sink disk.

Proof. As in Figure 17, both α−j+1 and α+
j are isotopic to the co-core of bj+1. Not

only does α̂−j+1 point into bj+1, but by Lemma 3.13, so does α̂−j+1.

To produce a sink disk free branched surface, we should avoid the cusp directions

(← →).

α−j

α+
j

α−j+1

bj

bj+1

Figure 18: The arcs α−j and α−j+1 are linked.

α−j

α−j+1

α+
j

bj

bj+1

Figure 19: The arcs α−j and α−j+1 are not linked.
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Lemma 3.27. Suppose β contains the subword σiσi arising as the jth and j + 1st

letters in the braid word β. The associated cusping directions (← ←) and (→ →)

create an arc, unlinked from all other arcs, that contributes maximally to τ . The

cusping directions (→ ←) create a pair of linked arcs.

Proof. First, suppose (σi)2 is cusped via (←)2, as in the left picture in Figure 16.

The bolded endpoints of α−j and α−j+1 contribute maximally to τ . Traversing K from

♦, we first encounter the upper endpoint of α−j , and then its image: no point that

contributes maximally to τ occurs between them. Thus α−j is unlinked from all other

arcs. Analogously, if (σi)2 is cusped via (→)2, α−j is unlinked from all other arcs, as in

the right picture of Figure 16. If (σi)2 is cusped via (→ ←), α−j and α−j+1 are linked,

as in Figure 18.

Lemma 3.28. Suppose the subword σ1σ2 occurs as the j and j + 1 letters of β. The

arcs αj and αj+1, cusped as (← →), are unlinked.

Proof. As in Figure 19, α−j is unlinked from αj+1.

3.3.2 Building Branched Surfaces

Definition 3.29. β has the form described in Equation 3.1. Then β is one of Types

A, B, or C described below:
Type A: k = 1, and β = σa1

1 σ
b1
2 . For β̂ to be a knot, a1 and b1 are both odd.

Note: β̂ = T (2, a1)#T (2, b1).

Type B: k = 2, and b1 = b2 = 1. So, β = σa1
1 σ2σ

a2
1 σ2

Type C: all other positive 3-braid closures; namely:

• k = 2 and (up to cyclic rotation) a1, a2, b1 ≥ 2, b2 ≥ 1

• k ≥ 3, ai ≥ 2, bi ≥ 1 for all i.

Given a positive 3-braid knot, we construct a branched surface by fusing c1 +

c2 − 2 product disks to F × {1
2}, such that we have exactly one linked pair of arcs.
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Propositions 3.30, 3.32, 3.33 construct the branched surfaces for Types A, B, and

C respectively.

Proposition 3.30. (Building the branched surface for Type A)

Suppose β = σa1
1 σ

b1
2 for a1, b1 odd, and K = β̂. There exists a sink-disk free branched

surface B ⊂ XK, for K = T (2, a1)#T (2, b1), with exactly one pair of linked arcs.

Moreover, there exists a sub-train-track τ ′ of τ carrying all rational slopes r < 2g(K)−

1.

Proof. First suppose a1, b1 ≥ 3. We identify c1 + c2 − 2 = a1 + b1 − 2 product disks:

β = σa1
1 σ

b1
2 = σa1−1

1 σ1 σb1−2
2 σ2 σ2

(→)a1−1 ( ) (→)b1−2 (←) ( ) (3.3)

The spine of the branched surface is built from F × {1
2}, fused with the product

disks specified. Applying Lemma 3.9 puts the product disks into standardized po-

sition; cusping as== instructed in (3.3) yields a branched surface B. In this case,

all arcs on F × 1
2 are pairwise unlinked (see Figure 20 for an example). Lemma 3.16

guarantees no product disk sector is a half sink disk, while Lemmas 3.25 and 3.26

guarantee no band sectors are half sink disks. There are no polygon sectors. We

check the disk sectors S1, S2, and S3 are not half sink disks.

• α̂−1 points out of S1.

• α̂−a1+1 points out of the S2 disk sector.

• α̂−a1+b1−1 points into the S2 disk sector, so α̂+
a1+b1−1 points out of the S3 disk

sector.

B is sink disk free. By Lemma 3.27, α−a1+b1−2 and α−a1+b1−1 are the unique pair of

linked arcs.
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Now suppose a1 ≥ 3 and b1 = 1, a1 = 1 and b3 ≥ 1, or a1 = b1 = 1. Then

β̂ is isotopic to T (2, a1), T (2, b1), or the unknot respectively. The canonical fiber

surface for K is produced after destabilization. The following instructions specify a

construction of a branched surface for T (2, n), n ≥ 3:

β = σn1 = σn−2
1 σ1 σ1

(→)n−2 (←) ( )

Standardize the disks as in Lemma 3.9. Lemmas 3.16 and 3.26, and 3.25 guarantee

no product disks or band sectors are half sink disks. There are no polygon sectors.

α̂−1 and α̂+
n−1 point out of S1 and S2 respectively, ensuring no disk sectors. Finally,

Lemma 3.27 guarantees only α−n−2 and α−n−1 are linked.

Thus for any β = σa1
1 σ

b1
2 , a1, b1 ≥ 1 and odd, there exists a sink disk free branched

surface B with a unique pair of linked arcs. Including both sectors induced by α1 to

τ ′ ensures that τ ′ carries all rational r < 2g(K)− 1.

Remark 3.31. Eventually, we aim to conclude that B is not just sink-disk-free, but

that it is laminar. To do so, we need to modify the proof that B does not fully carry

an annulus (our proof of this in Proposition 3.17 relied on a local model that does

not apply for braids of Type A). However, this is straightforward: consider Figure

14, and reverse the orientations on each of the cusp directions shown (i.e. α̂−1 and

α̂−2 point out of S1, and α̂+
1 points into S2). The resulting local model for a branched

surface now matches Type A branched surfaces. We preserve the labelling of the

weights of each sector. The new cusp directions, combined with the switch relations

at branch sectors, induce the following:

w1 + w4 = w2 w3 + w4 = w2 w1 + w5 = w3

Therefore, w1 + w4 = w3 + w4, which implies w1 = w3. Again, we conclude that

w5 = 0. We conclude that B does not carry any compact surface, and therefore does

not carry an annulus.
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Figure 20: From left to right: laminar branched surfaces of Types A, B,

and C.

Proposition 3.32. (Building the branched surface for Type B)

Suppose β = σa1
1 σ2σ

a2
1 σ2, ai ≥ 2 and K = β̂. There exists a sink-disk free branched
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surface B ⊂ XK with exactly one pair of linked arcs. Moreover, there is a sub-train-

track τ ′ of τ carrying all rational slopes r < 2g(K)− 1.

Proof. The spine of the branched surface is built from F×{1
2}, fused with the product

disks specified below:

β = σa1
1 σ2σ

a2
1 σ2

= σa1
1 σ2 σa2−1

1 σ1 σ2

= (←)a1(←)(→)a2−1( )( ) (3.4)

Lemma 3.9 puts the product disks into standardized position. Cusping the disks

as specified in (3.4) yields a branched surface, as in Figure 20. By Lemma 3.16, no

product disk sector is a half sink disk. No disk sectors are half sink disks:

• α̂−a1+2 points out of the S1 disk sector

• α̂−1 points into the S1 disk sector, so α̂+
1 points out of the S2 disk sector

• α̂−a1+1 points into the S2 disk sector, so α̂+
a1+1 points out of the S3 disk sector

Lemmas 3.25 and 3.26 guarantee no band sectors are sink disks. It remains to

check the single polygon sector P , which lies in Seifert disk S2. The boundary of P

meets α+
j , a1 + 2 ≤ j ≤ c1 + c2 − 2, α−a1+1, α

+
a1 , and no other arcs α±j . Since α̂−a1+1

points out of P , it is not a half sink disk. Thus, our branched surface B is sink disk

free.

We are fusing c1 +c2−2 product disks to F ×{1
2}, so there exists a sub-train-track

τ ′ with c1+c2−2 sectors. By Lemmas 3.27 and 3.28, α−a1 and α
−
a1+1 are the unique pair

of linked arcs. Thus τ ′ carries all slopes in [0, c1 + c2− 3) = [0, 2g(K)− 1). Including

both sectors induced by αa1+1 to τ ′ ensures that τ ′ carries all slopes r < 2g(K)−1.

The most nuanced construction arises in Case C:



3.3. Proving the positive 3–braids theorem 52

Proposition 3.33. (Building the branched surface for Case C)

Let K = β̂, where β is of Case C (see Definition 3.29). There exists a sink-disk

free branched surface B ⊂ XK with a unique pair of linked arcs. Moreover, there is a

sub-train-track τ ′ of τ carrying all rational slopes r < 2g(K)− 1.

Proof. The spine of the branched surface is built from F×{1
2}, fused with the product

disks specified by:

β = σa1
1 σ

b1
2 σ

a2
1 σ

b2
2 . . . σak

1 σ
bk
2

= σa1
1 (σ2) (σb1−1

2 ) σa2
1 σb2

2 σa3
1 σb3

2 . . . (σak−1
1 )(σ1)(σbk−1

2 )(σ2)

= (←)a1(→)(←)b1−1(→)a2(←)b2(→)a3(←)b3 . . . (→)ak−1( )(←)bk−1( ) (3.5)

Applying Lemma 3.9 puts the product disks into standardized position. Cusping

the disks as specified in (3.5) yields a branched surface B. See Figure 20 for an

example.

We check for half sink disks: by Lemma 3.16, no product disk sector is a half sink

disk. No disk sector is a half sink disk:

• α̂−a1+b1+1 points out of the S1 disk sector

• α̂−1 points into the S1 disk sector, σ̂+
1 points out of the S2 disk sector

• whether k = 2 or k = 3, there exists a σ2 letter in β cusped via (←). The

corresponding image arc will point out of the S3 disk sector

Lemmas 3.25 and 3.26 guarantee no band sectors are sink disks.

It remains to analyze polygon sectors. Unlike the cases analyzed in Propositions

3.30 and 3.32, there may be intersection points between α+ and α− arcs. Each

intersection point will occur between consecutive blocks. Moreover, each intersection

point indicates the existence of two polygon sectors. Reading from top-to-bottom,

we number the intersection points i1, . . . , im, . . . in. We note that n is bounded above
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by k− 1, where k is the total number of blocks in β. Moreover, n = k− 1 if and only

if for every t, bt ≥ 2. In particular, the intersection point im does not have to occur

between the blocks m and m + 1. For example, in the rightmost diagram in Figure

20, the unique intersection point i = i1 occurs between blocks 2 and 3.

As an intersection point indicates the existence of a pair of polygon sectors, we

will identify the individual polygon sectors by their relative position. The polygon

sectors associated to the intersection point im are labelled Pu,m and P`,m, and called

upper polygon and lower polygon sectors respectively.

ba1

ba1+1 = ba1+b1

ba1+b1+1

ba1+b1+2

α−a1

α−a1+b1+1

α−a1+b1+2

P

ba1

ba1+1

ba1+b1

ba1+b1+1

Pu,1

P`,1

α−a1

α−a1+b1+1

Figure 21: Studying b1. On the left, we have b1 = 1. The shaded region

is the single polygon sector P , which is not a sink disk, as α̂+
a1 points

out of it. On the right, an example with b1 = 2. The upper and lower

polygon sectors, Pu,1 and P`,1, are shaded; these polygon sectors meet at

the point i1 (not labelled, but indicated in the diagram). Pu,1 is not a sink

disk because α̂−a1+1 points out of it. P`,1 is not a sink disk because α̂−a1+b1

points out of it.
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We first analyze the behavior of b1. If b1 = 1, then we have a single polygon sector

P . It is not a half sink disk, as α̂+
a1 points out of the region; see (Figure 21, left). If

b1 ≥ 2, we have a pair of polygon sectors to analyze; see (Figure 21, right):

• The boundary of Pu,1 meets the arcs

◦ α−j , a1 + 1 ≤ j ≤ a1 + b1

◦ α+
a1 ,

• The boundary of P`,1 meets the arcs

◦ α−a1+b1 ,

◦ α+
a1 ,

◦ α+
j , a1 + b1 + 1 ≤ j ≤ a1 + b1 +a2−1,

Since α̂−a1+1 points out of Pu,1, and α̂−a1+b1 points out of P`,1, neither are half sink

disks.

We now analyze the remaining polygon sectors. If, for q ≥ 2, the qth block has

bq = 1, there will be a single polygon region. It is not a half sink disk because

α̂−a1+b1+...+aq
points out of it region (see Figure 22, left). If bq ≥ 2, then the polygon

sectors come in pairs; all such pairs can be analyzed simultaneously (see Figure 22,

right). Suppose im is the intersection point between Pu,m and P`,m, which occur at

the transition from block t to block t+ 1. For the pair Pu,m and P`,m:

• the boundary of Pu,m meets the arcs

◦ α−j , where a1 + b1 + . . . at + 1 ≤ j ≤ a1 + b1 + . . .+ at + bt

◦ α+
a1+b1+...+at

• the boundary of P`,m meets the arcs

◦ α−a1+b1+...+at+bt

◦ α+
a1+b1+...+at

◦ α+
j , where a1 + b1 + . . .+ bt + 1 ≤ j ≤ a1 + b1 + . . .+ bt + at+1 − 1



3.3. Proving the positive 3–braids theorem 55

For each 2 ≤ m ≤ n, Pu,m is not a sink disk: α̂+
a1+b1+...+at

points out of it.

Furthermore, P`,m has α̂−a1+b1+...+at+bt
pointing out of it. Thus B is sink disk free.

We cusped (c1 − 1) + (c2 − 1) arcs. By Lemma 3.27, there exists a single linked

pair, arising from the arcs associated to the first two occurrences of σ2 in β. Thus,

there exists a sub-train-track τ ′ carrying all slopes in [0, c1 + c2− 3) = [0, 2g(K)− 1).

Including the sectors induced by αa1+1 to τ ′ ensures that τ ′ carries all rational r <

2g(K)− 1.

ba1+b1+...+aq

ba1+b1+...+aq+bq

ba1+b1+...+aq+bq+1

ba1+b1+...+aq+bq+2

α−a1+b1+...+aq
ba1+b1+...+at

ba1+...+at+1

ba1+...+at+bt

ba1+...+bt+1

Pu,m

P`,m

α−a1+...+at

Figure 22: On the left: we have bq = 1. The shaded region is the single

polygon sector, which is not a sink disk because α̂+
a1+b1+...+aq

points out of

it. On the right: an example with bm = 2. The upper and lower polygon

sectors, Pu,m and P`,m, are shaded; they meet at the point im (not labelled,

but indicated in the diagram). Pu,m is not a sink disk because α̂+
a1+...+at

points out of it. P`,m is not a sink disk because α̂−a1+...+at+bt
points out of

it.
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3.3.3 Finale

We conclude this section with the proof of the main theorem.

Proof of Theorem 1.15. Let K ⊂ S3 be the closure of a positive 3-braid β. After

isotopy, β has the form specified by Equation 3.1, and by Definition 3.29 is Type A,

B or C. By Propositions 3.30, 3.32, 3.33, there exists a branched surface B ⊂ XK

inducing a sub-train-track τ ′ carrying all rational slopes in the interval (−∞, 2g(K)−

1). B is laminar Proposition 3.17 (we note that if β is Type A, then we additionally

apply Remark 3.31). Applying Theorem 2.4 yields a family of essential laminations

{Lr | r ∈ (−∞, 2g(K)−1)∩Q}, where Lr meets ∂XK in simple closed curves of slope

r. Proposition 3.24 extends the essential lamination Lr to a taut foliation Fr in XK ,

foliating ∂XK by simple closed curves of slope r. Performing r-framed Dehn filling

yields S3
r (K) endowed with a taut foliation.



Chapter 4

1–bridge braids

4.1 Preliminaries

We generalize the techniques developed in Chapter 3 to produce taut foliations in

1-bridge braid exteriors. Gabai defines a 1-bridge braid K(w, b, t) in D2 × S1 to

be a knot, realized as the closure of a positive braid β, which is specified by three

parameters: w, the braid index; b, the bridge width; and t, the twist number: β =

(σbσb−1 . . . σ2σ1)(σw−1σw−2 . . . σ2σ1)t where 1 ≤ b ≤ w − 2, 1 ≤ t ≤ w − 2 [Gab90].

We consider a slightly more general definition:

Definition 4.1. A (positive) 1-bridge braid K in S3 is a knot realized as the closure

of a braid β on w-strands, where

β = (σbσb−1 . . . σ2σ1)︸ ︷︷ ︸
bridge subword

(σw−1σw−2 . . . σ2σ1)t

for w ≥ 3, 1 ≤ b ≤ w−2, t ≥ 1. We call the first b letters of β the bridge subword.

In particular, we allow a 1-bridge braid in S3 to have arbitrarily large twist num-

ber.

Remark 4.2. There are no 1-bridge braids with w = 3; we may assume w ≥ 4.

57
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Theorem 1.20. Let K be a (positive) 1-bridge braid in S3. Then for every r ∈

(−∞, g(K)) ∩ Q, the knot exterior XK := S3 − ◦
ν(K) admits taut foliations meeting

the boundary torus T in parallel simple closed curves of slope r. Moreover, the man-

ifold obtained by r-framed Dehn filling, S3
r (K), admits a taut foliation.

Every 1-bridge braid K is a fibered knot in S3. As in Theorem 1.15, proving

Theorem 1.20 requires building a laminar branched surface B from a copy of the fiber

surface F and a collection of product disks.

4.2 Branched surfaces for 1–bridge braids

Definition 4.3. Let Bw denote the braid group on w strands. Suppose β′ ∈ Bw such

that β′ = σmσm−1σm−2 . . . σ2σ1, with 1 ≤ m ≤ w − 1. We call the canonical fiber

surface F ′ for β′, built from w disks and m 1-handles, a horizontal slice.

We can view the canonical fiber surface F for a 1-bridge braid K(w, b, t) as built

by vertically stacking t+1 horizontal slices, h0,h1, . . . ,ht+1: numbering the horizontal

slices from top-to-bottom, the horizontal slice h0 comes from the bridge subword; the

remaining t horizontal slices h1, . . .ht come from the t occurrences of the subword

σw−1σw−2 . . . σ2σ1 in β; see (Figure 23, upper) for an example.

Definition 4.4. A Seifert disk Si is odd (even) if i is odd (even).

As in Sections 3.2 and 3.3, we provide cusping directions alongside β. That is,

given a 1-bridge braid K with braid word presented as in Definition 4.1, we will

choose disjoint product disks as in Section 3.2.1. The boundaries of these disks will

lie entirely in consecutive Seifert disks and consecutive bands of the same type; see

(Figure 23, upper). As in Definition 3.15 (with the paragraph preceding it) and

Section 3.3, the data of the disks and their co-orientations are recorded in tandem
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with the braid word; see (Figure 23, lower) for example of a portion of the resulting

branched surface.

hs

hs+1

hs

hs+1

Figure 23: Upper: the consecutive horizontal slices hs and hs+1 of a 1-

bridge braid fiber surface. As in Figure 9, we have identified three product

disks, by indicating where the disks meet F− ∪ F+. The disks look like

those in Figure 4. Lower: we first performed a spinal isotopy so that the

α+ arcs lie only in Seifert disks, and then co–oriented the disks as shown.

The result is a portion of a branched surface.
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Proposition 4.5. For K a 1-bridge braid in S3, the following cusping directions

specify a sink disk free branched surface:

• σi is cusped via ( ) ⇐⇒ i is even, or i is odd and σi is associated to a 1-handle

used to build ht.

• Otherwise, σi is cusped via (←) or (→), as specified below:

◦ The first occurrence of σi in β is cusped (←).

◦ All other occurrences of σi in β are cusped via (→).

Proof. Following Sections 3.2 and 3.3, the directions above specify arcs α−j ; applying

the monodromy to these arcs produces the product disks {Dj}. Build the spine for

a branched surface from F × {1
2} and {Dj}. Applying the proof of Lemma 3.9 splits

the spine of B, putting the disks in standard position. After standardizing, all α−j lie

in odd Seifert disks Si, and all α+
j lie in even Seifert disks. Choosing co-orientations

for {Dj} as specified by the instructions provided yields a branched surface B. See

Figure 24 for an example of such a branched surface.

We check B has no sink disks. No Seifert disk Si contains both α−j and α+
` arcs,

thus there are no polygon sectors. It suffices to check that no disk and band sectors

are sink disks. There are at most t + 1 band sectors: one for each horizontal slice

h0,h1, . . . ,ht.

Definition 4.6. The branch sector containing the bands in hi is the ith band sector,

and denoted Bi.

We consider 3 cases: t = 1, t = 2, and t ≥ 3.

If t = 1, then after destabilizing, K = K(w, b, 1) ≈ T (b + 1, 2) ≈ T (2, b + 1) as

knots in S3. In Proposition 3.30, we constructed a laminar branched surface B for any

knot K = T (2, n), where the induced train track τ carried all slopes (−∞, 2g(K)−1).
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Figure 24: A laminar branched surface for the 1-bridge braid K(7, 4, 2)

Appealing to Theorem 1.15 yields a stronger result than the one we seek for Theorem

1.20.

Before treating the t = 2 and t ≥ 3 cases, we prove:

Lemma 4.7. Let B be the branch surface described above, for K(w, b, t) with t ≥ 2.

If b is odd (resp. even), the disk sectors S1, . . . Sb+1 (resp. S1, . . . Sb) are not half sink

disks.

Proof. If b is odd (resp. even), then every odd Seifert disk among S1, . . . , Sb (resp.

S1, . . . , Sb−1) contains arcs α−j cusped via both (←) and (→) (this is guarenteed since

t ≥ 2). Lemma 3.13 guarantees all Seifert disks S1, S2, . . . , Sb+1 (resp. S1, S2, . . . , Sb)

contain arcs cusped via both (←) and (→). Each of these disks contains an outward

pointing cusped arc, hence they are not half sink disks. This completes the proof of

Lemma 4.7.
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We return to the proof of Proposition 4.5.

If t = 2, we have a three subcases:

• b = w − 2, b ≡ w ≡ 0 mod 2

No band sectors are half sink disks: α̂−b , α̂−b+1, and α̂+
b+w−1 point out B0,B1 and

B2 respectively.

By Lemma 4.7, the disk sectors S1, S2, . . . , Sw−2 are not half sink disks. Sw−1,

Sw−2, and B1 are part of the same branch sector; we already determined B1 is

not a half sink disk. Finally, α̂+
b+1 points out of Sw, and B is sink disk free.

• b = w − 2, b ≡ w ≡ 1 mod 2

No band sectors are half sink disks: α̂−b and α̂+
b+w−1 point out of B0 and B2

respectively. B1 and B2 are in the same branch sector, so B2 is not a half sink

disk.

By Lemma 4.7, the Seifert disks S1, S2, . . . , Sw−1 are not half sink disks. Sw and

B2 are in the same branch sector. B is sink disk free.

• b < w − 2

α̂−b and α̂+
b+w−1 point out of B0 and B2 respectively. Either α̂−b+1 (if w ≡ 0

mod 2) or α̂−b+2 (if w ≡ 1 mod 2) points out of B1. No band sectors are half

sink disks.

If b ≡ 0 mod 2, then by Lemma 4.7, S1, S2, . . . , Sb are not half sink disks.

Every even Seifert disk Si with i ≥ b+ 2 contains an image arc cusped via (→).

Sb+1 is in the same branch sector as S1. All other Seifert disks Si, i ≥ b+ 3 are

in the same branch sector as B1, which we know has an outwardly cusped arc.

B is sink disk free.
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Alternatively, if b ≡ 1 mod 2, then by Lemma 4.7, S1, S2, . . . , Sb+1 are not half

sink disks. Every even Seifert disk Si, i ≥ b + 3 contains an image arc cusped

via (→). Every odd Seifert disk Si, i ≥ b+ 2 is in the same branch sector as S1.

B is sink disk free.

Consider a 1-bridge braid with t ≥ 3. Every odd Seifert disk Si contains arcs

cusped via both (←) and (→). If w is even (resp. odd), the proof of Lemma 4.7

guarantees S1, . . . , Sw (resp. S1, S2, . . . , Sw−1) are not half sink disks. If w is odd, S1

and Sw will be in the same disk sector. We conclude no disks sectors are half sink

disks.

Finally, we verify no band sectors are sink disks: α̂−b points out of B0. For each

2 ≤ i ≤ t, α̂−b+(i−1)(w−1) points out of Bi. We need only confirm B1 is not a half sink

disk. If b < w − 2, α̂−b+2 points out of B1 (if w is odd) or α̂−b+1 does (if w is even).

If b = w − 2 and w ≡ 1 mod 2, then B1 and Sw are in the same branch sector; we

know B1 is not a half sink disk. If b = w− 2 and w ≡ 0 mod 2, then α̂−b+1 points out

of B1. We conclude B is sink disk free.

Lemma 4.8. The train track τ , induced by B, admits no linked pairs of arcs.

Proof. All arcs α−j contributing maximally to τ lie in odd Seifert disks Si. Therefore,

the only way to produce a linked pair of arcs is if σ−m and σ−m+w−1 are cusped via (→)

and (←) respectively, as in Figure 25. Our cusping directions avoid these instructions.
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Figure 25: These cusping instructions for α−m and α−m+w−1 yield a linked

pair.

Definition 4.9. Let K be a 1-bridge braid, and B the sink disk free branched surface

built in Proposition 4.5. Define Γ to be the number of product disks used to build B.

Lemma 4.10. The induced train track τ carries all rational slopes in (−∞, g(K)).

Proof. By Lemma 4.8, we have no linked arcs; therefore, we need only count the total

number of product disks Γ used to build B, and verify Γ ≥ g(K). It is straightforward

to compute the genus of any 1-bridge braid K:

χ(F ) = w − ((w − 1)t+ b) =⇒ g(K) = −χ(F ) + 1
2 = wt− w − t+ b+ 1

2

The value of Γ depends on the parity of w and b; we analyze the 4 possible cases

in Table 1 below. In each case, Γ ≥ g(K). Including both sectors of τ induced by

αb yields a sub-train track τ ′ carrying all slopes in (−∞, g(K)). Therefore, for any

K, the train track τ induced by the branched surface B carries all rational slopes

r < g(K).
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parity of w parity of b Γ

even even (t− 1)w
2 + b

2 = wt+ b− w
2

even odd (t− 1)w
2 + b+ 1

2 = wt− w + b+ 1
2

odd even (w − 1)(t− 1)
2 + b

2 = wt− w − t+ b+ 1
2

odd odd (w − 1)(t− 1)
2 + b+ 1

2 = wt− w − t+ b+ 2
2

Table 1: The slopes carried by the train track of a 1–bridge braid branched

surface.

4.3 Proving the 1–bridge braids theorem

Proof of Theorem 1.20. By Proposition 4.5, for any 1-bridge braid K ⊂ S3, there

exists a sink disk free branched surface B ⊂ XK . We want to prove that B is

laminar by applying Proposition 3.17. However, we need to modify the proof of

said proposition to show that B cannot fully carry an annulus (our proof of (3) in

Proposition 3.17 relied on a local model that does not apply to 1-bridge braids).

This is straightforward. The cusping directions provided in Proposition 4.5 focuses

our attention to the first Seifert disk; see Figure 26. Let the weights of the disk sectors



4.3. Proving the 1–bridge braids theorem 66

S1 and S2 be w1 and w2 respectively, the weight for the horizontal slice h1 is w3, and

the weight of the isotoped product disks associated to the first two occurrences of α1

are w4 and w5 respectively. The switch relations for a branched surface to carry a

compact surface imply the following:

w1 = w2 + w4 w3 = w1 + w5 w3 = w2 + w4

This implies that w3 = w1, thus w5 = 0. This contradicts that S is fully carried by

B. We conclude that B cannot carry any compact surface, and therefore does not

carry an annulus. Thus, B is laminar.

w1 w2

w3

w4

w4

w5

Figure 26: A local picture of the branched surface near the first Seifert

disk S1. For simplicity, the first product disk appears broken in our figure;

it has weight w4. We do not see all of the second product disk, which has

weight w5. The standard switch relations induced by the branch loci

indicate that w5 = 0. Thus B cannot carry a compact surface.
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By Lemma 4.10, the boundary train track τ carries all rational slopes r < g(K).

Applying Theorem 2.4 yields a family of essential laminations Lr carried by B, where

r < g(K). Proposition 3.24 extends each essential lamination Lr to a taut foliation

Fr meeting ∂XK in simple closed curves of slope r. Performing r-framed Dehn filling

produces S3
r (K) endowed with a taut foliation. �



Chapter 5

Positive n–braids

In this chapter, we partially generalize Theorem 1.15 to the class of all positive braid

knots of any braid index n. In particular, we prove:

Theorem 1.21. Suppose K is a knot in S3 which can be realized as the closure of a

positive braid. Then for all r ∈ (∞, g(K)− 1), S3
r (K) admits a taut foliation.

In [DRa], Delman–Roberts proved that if K is a composite fibered knot, then for

all r ∈ Q, S3
r (K) admits a taut foliation. Therefore, to prove Theorem 1.21, it suffices

to restrict to the class of positive braids on n ≥ 4 strands whose closures are prime

knots. Indeed, Theorem 1.21 is a corollary of the following theorem:

Theorem 5.1. Suppose K is a prime knot in S3 which can be realized as the closure

of a positive braid on n ≥ 4 strands. Then for all r ∈ (∞, g(K)− 1), S3
r (K) admits

a taut foliation.

Remark 5.2. As stated in Section 1.2, our proof of Theorem 5.1 requires dividing

such positive braids into four categories; in doing so, we actually construct taut foli-

ations in S3
r (K) for all r ∈ (−∞, g(K)) in all but one case.

This chapter is dedicated to proving Theorem 5.1.

68
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5.1 The construction and an example

In this section, we demonstrate the construction alongside an example. In addition to

establishing some preliminaries, the example demonstrates the strategy for proving

Theorem 5.1 for a generic positive braid (our definition of “generic” will become clear

in Section 5.2). Throughout this section, we use the braid defined in (2.1), reproduced

here for convenience:

β ≈ σ1σ3σ2σ3σ4σ
2
1σ3σ2σ3σ4σ3

In particular, we will use the plumbing structure of Section 2.3, and the explicit

factorization of the monodromy, to choose arcs on the fiber surface F . We outline

the construction of taut foliations in S3
r (K), K realized as the closure of a positive

braid on n strands, where r ∈ (−∞, g(K)) and n ≥ 4:
Section 5.1.2: Design a template for a branched surface for a column of the braid.

Section 5.1.3: Apply the template to multiple columns to build a branched surface B.

Section 5.1.4: Show that B is laminar.

Section 5.1.5: Calculate the slopes carried by the train track τB.

Section 5.1.6: Construct taut foliations in the surgered manifolds.

But first, we establish some necessary preliminaries about positive braid words.

5.1.1 Preliminaries about β

First, we recall Definition 2.11:

Definition 2.11 The ith column of F , denoted Γi, is the union of the Seifert disks

Si, Si+1, and the bands b1, . . .bci
connecting them.

Definition 5.3. Let ci denote the number of σi that appear in β. We define Codd

(resp. Ceven) to be the sum of all ci where i is odd (resp. even), and C is the total
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number of crossings in β.

Note that Codd + Ceven = C, which is also the length of the braid word. Since we

are interested in braids whose closures are knots (and not links), we must have that

ci ≥ 1 for all 1 ≤ i ≤ n− 1.

In fact, we can assume that for all i, ci ≥ 2. Suppose otherwise: if there exists

some i such that ci = 1, then we could destabilize the braid and decrease the braid

index. This operation preserves positivity and the isotopy type of the closure as a

link in S3.

Definition 5.4. For 1 ≤ i ≤ n − 1, define the functions Bi : β → Z+ as follows:

conjugate β so it is of the form β ≈ σp1
i w1σ

p2
i w2 . . . σ

pk
i wk, where for all 1 ≤ j ≤ k,

1 ≤ pj and wj is a subword of β with no σi letters. Then Bi(β) := k.

Indeed, the functions Bi are well–defined, as we are only applying braid conjuga-

tion (and not using the braid relations).

Lemma 5.5. If β̂ is a prime knot, then for all 1 ≤ i ≤ n− 1, Bi(β) ≥ 2.

Proof. We proceed via a proof by contrapositive: suppose there exists some i such

that Bi(β) = 1. Therefore, there exists some conjugation of β such that β ≈ σp1
i w1,

where w1 is a word spelled without σi letters. But this means that β can be realized

a connected sum of two braids β1 and β2; see Figure 27 for an example alongside the

splitting S2.

Going forwards, we assume that β̂ is prime.
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w1 w2

Figure 27: A braid with B4(β) = 1; w1 and w2 are braid words in the Artin

generators σj with j 6= 4. The orange unknotted circle is the equator of

an S2 realizing β̂ as the connected sum of two knots.

5.1.2 Design a template for a branched surface for a

column of the braid

To build the branched surfaceB for Theorem 1.21, we will design and apply a standard

template to a subset of the columns of F . This requires three steps:

• Identifying the product disks in a column Γj

• Building the spine for a branched surface, supported in Γj

• Assign co–orientations to build the branched surface

Identify product disks in a column Γj

The construction in Lemma 2.9 not only identifies a factorization of the monodromy

of the fiber surface for β̂, but it also identifies plumbing arcs for the Hopf bands.

Thus, we can exactly identify the images of the plumbing arcs under the monodromy,

as in Lemma 2.9.

To identify product disks in column Γj, we will first put β in some standard form

with respect to σj:
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Definition 5.6. Fix some 1 ≤ i ≤ n−1. Conjugate β so that β ≈ σp1
i w1σ

p2
i w2 . . . σ

pk
i wk

and w1 contains a σi+1 (resp. σi−1). Call the band b corresponding to the first σi+1

(resp. σi−1) in w1 a right (resp. left) splinter.

Definition 5.7. A positive braid β is standardized with respect to σi when β

can written as:

β ≈ σiw1σ
p2
i w2 . . . σ

pk
i wkσ

w1−1
i ≈ σiw1σ

p2
i w2 . . . σ

pk
i w

′
k

such that (1) for all 1 ≤ j ≤ k, wj has no σi letters (so, w′k ≈ wkσ
w1−1
i ), and (2) w1

has a right splinter.

Lemma 5.8. For every 1 ≤ i ≤ n− 1, β can be standardized with respect to σi.

Proof. Fix some i as in the statement. Since β is prime, then Lemma 5.5 implies that

Bi(β) ≥ 2. Since ci ≥ 2, there exists some j for which the subword wj contains a σi+1

letter. Conjugate β so this subword becomes w1.

Note: these standardized forms of β are not well–defined; our construction is

independent of well–definedness.

So, assume β is standardized with respect to σj. The construction of Section 2.3

thereby specifies cj − 1 plumbings in column Γj. We will choose the product disks

obtained by applying the monodromy to the cj − 1 plumbing arcs. In particular, we

get cj − 1 disks, all sitting in column Γj.

The spine for a branched surface in a column Γ

Now that we have identified the product disks in column Γj, we can build the spine

for a branched surface. The branch locus is supported in Seifert disks Sj, Sj+1, and

the bands connecting them.

Definition 5.9. The spine Sj is formed by fusing the fiber surface F with the product

disks {Djt | 1 ≤ t ≤ cj − 1} in column Γj.
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As in Chapters 3 and 4, we will now simplify the spine Sj via a spinal isotopy (see

Definition 3.7).

Definition 5.10. Let Aj denote the collection of plumbing arcs in Seifert disk Sj.

As a result of the spinal isotopy, on F , we see geodesic representatives of both

the plumbing arcs, α ∈ Aj, and their images, ϕ(α), as elements in H1(F, ∂F ). Mildly

abusing notation, we will refer to the spine after the spinal isotopy as Si, and note

that the branch locus is now supported in Sj and Sj+1.

Co–orient the product disks

The previous section specifies how to build a spine for a branched surface in a column

of the braid. To produce a branched surface, we need to specify co–orientations for

the product disks. We recall an essential part of Definition 3.15, where we described

how to provide cusp directions in tandem with a braid word.

Definition 5.11. An arc α± on F± is co–oriented to the left (resp. right) if,

when looking at the fiber surface F , the arc is decorated with a left (resp. right)

pointing arrow, indicating the smooth direction of the locus of where the product disk

meets the fiber surface.

We are now ready to assign co–orientations to the (isotoped) product disks; with

β standardized with respect to σj, smooth the plumbing arcs Aj ⊂ Sj as follows:

• smooth the first plumbing arc to the left

• smooth all subsequent plumbing arcs to the right

This concludes the description of the template for a branched surface Bj, whose

branch locus is supported in the adjacent Seifert disks Sj and Sj+1.
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5.1.3 Apply the template to multiple columns

In the previous section, we designed a template which we can apply to a column of

the fiber surface. We will choose multiple columns in F , and apply the template to

these columns, one–by–one. We study the distribution of crossings across the odd

and even columns to choose the plumbing arcs, and therefore the product disks, to

include in our branched surface B.

Definition 5.12. Let Cbig = max {Codd, Ceven}. If Codd = Ceven, then set Cbig = Codd.

If Cbig = Codd (resp. Ceven), then we will apply our template to the “odd (resp.

even) columns", i.e. the columns Γj where j is odd (resp. even). We do this in stages,

one column at a time.

Definition 5.13. Let Γf denote the first column of the braid to which the template

is applied.

If Cbig = Codd, then Γf = Γ1; otherwise, if Cbig = Ceven, then Γf = Γ2. As in Section

5.1.2, we: conjugate β to be in standard from with respect to σf , and then apply the

template built in Section 5.1.2 to Γf .

Continue by applying the template to all columns Γs, where f and s have the

same parity. That is, for each t ≡ f mod 2 in turn, standardize β with respect to σt,

and then apply the template designed in Section 5.1.2 to Γt. Let B be the resulting

branched surface.

In our example, Codd = c1 + c3 = 3 + 5 = 8 and Ceven = c2 + c4 = 2 + 2 = 4. Thus,

we will choose the plumbing arcs in the odd (i.e first and third) Seifert disks; that is,

our product disks sit in Γ1 and Γ3. We:

1. standardize β with respect to σ1,

2. apply the template to Γ1,

3. standardize β with respect to σ3,
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4. apply the template to Γ3.

We exhibit the result of Steps 1 & 2 in Figure 28 (left), and the result of Steps 3

& 4 in 28 (right). This is the branched surface B for the β in (2.1).

Remark 5.14. Conjugating the braid does not affect the smoothing directions of the

branch locus. That is, the co–orientations on the arcs on F is preserved under braid

conjugation.

5.1.4 Show B is laminar

Our eventual goal is to build taut foliations: we want to build a laminar branched

surface, apply Theorem 2.4 to get an essential lamination, and finally apply Proposi-

tion 3.24 to get a taut foliation. To proceed with this outline, we first verify that B

has no sink disks.

Since we built B from a copy of the fiber surface F and a collection of co–oriented

product disks, we can classify the branch sectors into three types:

1. the (isotoped) product disks

2. the sectors containing the Seifert disks Si, or disk sectors

3. the remaining sectors, which we call horizontal sectors

In Lemma 3.16, we showed that (isotoped) product disks are never sink disks.

Therefore, it suffices to show that the disk sectors and the horizontal sectors are sink

disks. For our example, we verify this by inspecting Figure 28 (right) directly.

B is sink disk free, so applying Proposition 3.17, we conclude B is a laminar

branched surface. Thus, for any r ∈ Q carried by the train track τB, S3
r (K) contains

an essential lamination Lr: our next goal is to determine the slopes carried by τB.
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Figure 28: On the left: the braid β = σ1σ3σ2σ3σ4σ
2
1σ3σ2σ3σ4σ3 standard-

ized with respect to σ1, and the template applied to Γ1. On the right: we

chose a standardization of β with respect to σ3, and applied the template

to Γ3.



5.1. The construction and an example 77

5.1.5 Calculate the slopes carried by τB

To compute the slopes carried by τB, we first count the total number of product disks

used to build B, and then deduct the total number of pairs of linked arcs. We argue

that, in fact, our example has no pairs of linked arcs.

Proposition 5.15. The train track τB contains no linked arcs.

Proof. We chose our product disks to lie in alternating columns. Therefore, the only

way to have linked arcs is to have product disks Dα1 and Dα2 in the same column,

where:

• the plumbings arcs α1 and α2 are consecutive.

• α1 is cusped to the right, and α2 is cusped to the left

as in Figure 25. Our template avoids these directions.

We calculate the slopes carried by τB in our example. Here, Cbig = Codd = 8, so

we used (c1 − 1) + (c3 − 1) = Codd − 2 = 6 product disks to build B. Since we have

no linked arcs, our train track carries all slopes r ∈ (−∞, 6).

Since F is the fiber surface for K,

g(K) = g(F ) = C − n+ 1
2 = 12− 5 + 1

2 = 4

and τB certainly carries all slopes in (−∞, g(K)).

5.1.6 Constructing taut foliations

We are ready to build taut foliations in manifolds obtained by Dehn surgery along β̂.

First, observe that by section 5.1.4, we have a laminar branched surface B. Second,

by Section 5.1.5, the train track τB carries all slopes in the interval (−∞, g(K)).

Applying Theorem 2.4 yields a family of essential laminations Lr carried by B, where
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r < g(K). Proposition 3.24 extends each essential lamination Lr to a taut foliation

Fr meeting ∂XK in simple closed curves of slope r. Performing r-framed Dehn filling

produces S3
r (K) endowed with a taut foliation.

This concludes the example, and the outline of the construction. We emphasize:

the key is to understand the distribution of crossings between odd and even columns,

and use the more populated set to build the laminar branched surface.

5.2 Proving the positive n–braids theorem

We are almost ready to prove Theorem 5.1. We emphasize: the key aspects of the

construction are to build B from a collection of co–oriented product disks such that

(1) B is sink disk free, and (2) τB carries all slopes in (−∞, g(K)− 1).

5.2.1 Building a sink disk free branched surface

Let β be any positive braid on n ≥ 4 strands such that β̂ is a prime knot. As in

Section 5.1.3, compute Cbig, and as in Definition 5.13, let Γf denote the first column

to which we apply the template designed in Section 5.1.2.

We apply our template to all columns Γt where t ≡ f mod 2, with one minor

modification: if n − 1 ≡ t mod 2 (i.e. we include the product disks in last column,

Γn−1, into the branched surface), then we proceed as follows:

• First, standardize β with respect to σn−1 (as in Definition 5.7), except now, do

it so that w1 has a left splinter (and not a right splinter).

• If cn−1 = 2, include no co–oriented plumbing arcs from Γn−1 into B.

• If cn−1 ≥ 3, smooth the first plumbing arc in Γn−1 to the right, and smooth all

subsequent plumbing arcs to the left.
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Next, we divide positive braids β into two categories, based on the distribution of

crossings in the columns used for the construction:

• positive braids where ct ≥ 3 for each t ≡ f mod 2 (this is the “generic" case).

• positive braids where ct = 2 for some t ≡ f mod 2 (this is the “edge" case).

This division is necessary: the arguments proving the associated branched sur-

faces are sink disk free differ; in particular, the second scenario is more nuanced.

Nevertheless, both cases have something in common: in Section 5.1.4, we argued that

the branch sectors can be split into three types: (1) sectors coming from isotoped

product disks, (2) disk sectors, and (3) horizontal sectors. We already know that the

first are not sink disks, leaving us to investigate the remaining two types of sectors for

both the “generic” and “edge” cases. Showing that we have no disk sectors requires

two separate arguments. We show that neither case yields a horizontal sector sink

disk in a single Lemma.

Lemma 5.16 (Disk sector analysis for the generic case). Suppose β is a positive braid

such that ct ≥ 3 for each t ≡ f mod 2. Then the branched surface B, built as in

Section 5.1.3, has no disk sector sink disks.

Proof. Let Γt denote a column whose product disks are used in constructing B. Since

ct ≥ 3, St contains a mix of both left and right smoothed plumbing arcs. So, St is

not a sink disk. Moreover, this ensures that St+1, which contains the images of the

plumbing arcs, also has a mix of cusp directions. Therefore, if the product disks of

Γt are included in B, then the disk sectors containing St and St+1 are not sink disks.

So, we check which columns are utilized to build B, and which are not – the Seifert

disks of the former will not be sink disks, and to argue the same for the latter, we do

more work. This requires some case analysis.
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• If n is odd and Cbig = Codd, then for every 1 ≤ i ≤ n − 1, the Seifert disk

Si contains a collection of arcs with both left and right smoothings, so the

associated disk sectors are not sink disks. It remains to check that the disk

sector containing Sn is not a sink disk, but this is straightforward: the boundary

of this disk sector contains all the images of the plumbing arcs from Γn−2. But

since cn−2 ≥ 3, these arcs are smoothed both to the left and to the right. Thus,

at least one of these arcs points out of Sn.

• An argument analogous to the one above works for for the case when n is odd

and Cbig = Ceven: for all 2 ≤ i ≤ n, Si contains a collection of arcs with both left

and right smoothings. The disk sector containing S1 contains all the plumbings

arcs in S2 in the boundary. As c2 ≥ 3, we have a mix of smoothing directions in

the boundary. In particular, there exists an arc pointing out of the disk sector

containing S1.

• If n is even and Cbig = Ceven, then for every 2 ≤ i ≤ n − 1, the Seifert disks

Si contains a collection of arcs with both left and right smoothings, so the

associated disk sectors are not sink disks. Therefore, we need only check that

the disk sectors containing S1 and Sn are not sink disks. Combining the two

arguments above yields the desired result.

• If n is even and Cbig = Codd, then for all 1 ≤ i ≤ n, the Seifert disk Si collection

of arcs with both left and right smoothings, so the associated disk sectors are

not sink disks.

We deduce that there are no disk sector sink disks.

Lemma 5.17 (Horizontal sectors for both the generic and edge cases). Suppose β is

a positive braid, and B is the branched surface B built as in Section 5.1.3. B has no

horizontal sector sink disks.
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Proof. Fix a horizontal sector H. Consider the portions of ∂H that are not contained

in ∂F : these all come from the branch locus of B. Moreover, scanning the diagram

from left–to–right, these alternating between plumbing arcs and images of plumbing

arcs. That is, using our coloring conventions for arcs and their images, these portions

of ∂H alternate between blue and pink.

Definition 5.18. An arc α ⊂ F encloses a band on the left (resp. right) if the

left (resp. right) attaching site of a band b lies in the branch sector S with α ⊂ ∂S.

We observe that every blue arc encloses a band on the left, while every pink

arc encloses a band to the right. In particular, this means that when scanning the

horizontal sector H from left–to–right, when we encounter a blue arc α, we can keep

moving to the right (the band enclosed by α provides a path to the next Seifert disk).

The right attachment site of b could be blocked by some image arc, ϕ(α′), or it

could be unobstructed. In the latter, the horizontal sector H is in the same branch

sector as a Seifert disk; thus, by Lemma 5.16 (and, assuming the forthcoming Lemma

5.16), it is not a sink disk. In the former, the image arc ϕ(α′) must be endowed with

some co–orientation: if it is smoothed to the left, then H is not a sink region. If,

however, it is smoothed to the right, then our smoothing directions dictate that there

must be a right splinter in this sector; see Figure 29. In particular, ϕ(α′) encloses a

band on the left, and so H keeps snaking eastwards.

Suppose, by way of contraction, a horizontal sector H is a sink disk. Thus, every

connected component of ∂H − ∂F is a right pointing arc, pointing into H. Moreover,

the east–most boundary arc must be a pink image arc ϕ(α′′). The east–most arc

ϕ(α′′) lies in the Seifert disk Sj, and either Sj 6= Sn or Sj = Sn.

Suppose Sj 6= Sn. After conjugating, the east–most portion of H must look as

in Figure 30. In particular, since the east–most arc ϕ(α′′) is smoothed to the right,

the arc α′′ is smoothed to the left. However, our construction prescribes a single

left pointing arc in a column Γj 6= Γn — in particular, this left–pointer must be
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b

H

Figure 29: An eastward snaking horizontal sectorH, shaded in green. The

band b is a right splinter.

accompanied by a right splinter (as in Figure 29). But this right splinter would be

enclosed by ϕ(α′′), contradicting that we are at the east–most portion of H. Thus,

Sj = Sn. See Figure 30.

H

SjSj−1

α′′

ϕ(α′′)

Figure 30: The eastmost boundary of H, shaded in green, cannot lie in Sj

with j < n. In particular, this local picture does not appear in B (though

there could be σj−2 bands between these two σj−1 bands).

Therefore, H meets Sn. There are two possibilities: either cn−1 = 2, or cn−1 ≥ 3.

If cn−1 = 2, then we included no co–oriented product disks from Γn−1 into B;
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thus, the east–most arc in H is contained in Sn−2, and H contains Γn−1; see Figure

31 (left). In particular, this sector is not a disk! Thus, it cannot be a sink disk.

Now suppose H meets Sn, and cn−1 ≥ 3. After conjugating, the east–most portion

of H must look as in Figure 31: note that ϕ(α′′) is smoothed to the right, and

moreover, there is a (blue) arc α′′′ preceding it (else H would be in the same sector

as Sn−1). Since we are assuming H is a sink, then α′′ must also be smoothed to the

right.

H

Sn−2

Sn−1 Sn

H

Sn−2

Sn−1 Sn

α′′

ϕ(α′′)

α′′′

Figure 31: Left: If cn−1 = 2, the (orange) horizontal sector H is not a

disk. Right: The (green) horizontal sector H cannot meet Sn in this local

model. In particular, this local picture does not appear in B (though there

could be σj−2 bands between these two σj−1 bands).

Since ϕ(α′′) is smoothed to the right, α′′ must be smoothed to the left. However,

the cusping directions prescribed by our construction dictate that for plumbing arcs

in the last column, all but one of them are left pointing. In particular, looking from

top–to–bottom, if left pointing plumbing arc is followed by another plumbing arc,

then it must also be left pointing – not right pointing as assumed. We have derived

a contradiction.

We conclude that no horizontal sector is a sink disk.
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We now prove the analogous version of Lemma 5.16 for the “edge" case:

Lemma 5.19 (Disk sector analysis for the edge case). Suppose β is a positive braid

where ct = 2 for some t ≡ f mod 2. Then the branched surface B, built as in Section

5.1.3, has no disk sector sink disks.

Proof. For the columns Γm with cm ≥ 3, the same argument as in Lemma 5.16 hold.

Therefore, we need only consider the Seifert disks Sq with cq = 2, and q ≡ f mod 2.

Note that, by our construction, q 6= n− 1.

Let Ss denote the first Seifert disk with cq = 2, and q ≡ f mod 2 (that is, s is the

smallest such q, i.e. the left–most column with this property). Then the disk sector

containing Ss is contained in a horizontal sector H that snakes east–wards; see Figure

32. This is reminiscent of Lemma 5.17; indeed, we will use some of the language and

ideas from that proof going forward.

H

Ss

Figure 32: The disk sector containing Ss, where cs = 2, snakes eastwards.

It is part of the shaded horizontal sector H, shaded in green. There could

be bands with attachment sites in the dashed regions.

Suppose that H is a sink disk, and every arc in ∂H− ∂F is smoothed to the right.

The east–most arc in this set must be an image arc, which we denote ϕ(α′′). We
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claim ϕ(α′′) ⊂ Sn.

Suppose, for contradiction, that ϕ(α′′) ⊂ Sj with j < n. If we standardize β with

respect to σj, ϕ(α′′) must enclose a band (the right splinter) on the left; see Figure

29. In particular, this band would allow us to move further to the right. But we

assumed that ϕ(α′′) is the east–most arc, thus arriving at the contradiction.

Therefore, H is a sink disk which snakes eastward until it meets Γn. There are

two possibilities: either cn−1 = 2 or cn−1 ≥ 3 (and there are multiple pink arcs in Sn).

If cn−1 ≥ 3, then H is in the same branch sector as Sn−1; our choices for co–

orientations in this case guaranteed this sector contains a mix of smoothing directions.

See Figure 33.

Ss

H

Sn

Figure 33: The disk sector containing Ss, where cs = 2, meets Sn−1. It is

part of the shaded horizontal sector H, shaded in green. There could be

bands with attachment sites in the dashed regions. H is not a sink disk.

If cn−1 = 2, then H cannot be a sink disk: we did no include any co–oriented prod-

uct disks from Γn−1, so the sector containing H includes Sn−1 and Sn. In particular,
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b1(H) ≥ 1, as in Figure 31 (left).

This concludes our analysis; we deduce that B has no disk sector sink disks.

Combining the above, we get:

Proposition 5.20. Applying the construction in Section 5.1.3 to any positive β on

n ≥ 4 strands with β̂ a prime knot yields a sink disk free branched surface B.

Proof. In the generic case, this follows by combining Lemmas 5.16 and 5.17. In the

edge case, this follows by combining Lemmas 5.19 and 5.17

5.2.2 Understanding the train track τB

In our construction, we chose product disks in the more “densely populated" columns.

We claim this choice ensures that the train track τB carries all slopes r < g(K), where

g(K) = C − n+ 1
2

Lemma 5.21. The branched surface B carries all slopes in (−∞, g(K)− 1).

Proof. As in Proposition 5.15, our construction almost always guarantees that there

are no linked arcs on τB – the only exception is when n is even and Cbig = Codd with

cn−1 ≥ 3; in this case, we have a unique pair of linked arcs.

Therefore, it suffices to count the number of product disks used to build B (and

deduct one from the case specified above). The number of product disks used to build

B is determined by the parity of the braid index, and the parity of the columns to

which we applied our template. We analyze these cases below. Again, we recall: if

we use a column Γj to build B, then we gain cj − 1 product disks from Γj.

• If n ≡ 1 mod 2 and Cbig = Codd: this means Codd ≥ C/2, and we are using

(n − 1)/2 columns to build B. Thus we have k unlinked arcs contributing

maximally to τB, where

k = Codd −
n− 1

2 ≥ C2 −
n− 1

2 = C − n+ 1
2 = g(K)
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• If n ≡ 0 mod 2 and Cbig = Ceven: here, we have Ceven > C/2, and we use

(n/2)− 1 columns to build B. Therefore, we have k unlinked arcs contributing

maximally to τB, where

Ceven −
(
n

2 − 1
)
>
C − n+ 2

2 >
C − n+ 1

2 = g(K)

• If n ≡ 1 mod 2 and Cbig = Ceven: here, we have Ceven > C/2.

We observe: for C − n + 1 to be divisible by 2, C must be even. Thus, if

Cbig = Ceven, we have Ceven > C/2, thus Ceven ≥ C/2 + 1.

We are using (n − 1)/2 columns to build B. Notice that in this case, we are

using product disks in Γn−1 to build B; in particular, when cn−1 ≥ 3, we have

a pair of linked arcs. So, we consider two separate cases: (1) cn−1 = 2 and (2)

cn−1 ≥ 3.

If cn−1 = 2, then we have k unlinked arcs contributing maximally to τB, where

k = Ceven −
n− 1

2 − 1 ≥
(C

2 + 1
)
− n− 1

2 − 1 = C − n+ 1
2 = g(K)

If cn−1 ≥ 3, then we have a single pair of linked arcs in τB. So, τB contains k

unlinked arcs contributing maximally to τB, where

k = Ceven −
n− 1

2 − 1 > C − n+ 1
2 − 1 = g(K)− 1

But notice: τB carries all slopes r ∈ (−∞, s), where s is an integer. Therefore,

if r ∈ (−∞, k) and k > g(K)− 1, then k ≥ g(K), and so we have at least g(K)

unlinked arcs in τB.

• If n ≡ 0 mod 2 and Cbig = Codd: as above, we are using co–oriented product

disks in Γn−1 to build B. If cn−1 ≥ 3, we have a pair of linked arcs.

If cn−1 = 2, then we have no linked arcs in τB, so it contains k unlinked arcs

contributing maximally to τB, with
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k = Codd −
n

2 − 1 ≥ C − n2 − 1 = g(K)− 3
2

Since τB carries all slopes r ∈ (−∞, s), where s is an integer, then we must have

that k ≥ g(K)− 1, and τB contains at least g(K)− 1 unlinked arcs.

Finally, if cn−1 ≥ 3, then we have a single pair of linked arcs, so τB contains k

unlinked arcs, where

k = Codd −
n

2 − 1 ≥ C − n2 − 1 = g(K)− 3
2

So k ≥ g(K)− 1, and we deduce that τB carries all slopes r ∈ (−∞, g(K)− 1).

We conclude: in all cases, τB carries all slopes in (−∞, g(K)− 1).

5.2.3 Finishing the proof of Theorem 5.1

Proof of Theorem 5.1. Let β be any positive braid on n–strands such that β̂ is a

prime knot. By Proposition 5.20, there exists a sink disk free branched surface for

B; by Proposition 3.17, it is laminar. By Lemma 5.21, it carries all slopes r ∈

(−∞, g(K)− 1). Applying Theorem 2.4 and Proposition 3.24 yields a family of taut

foliations Fr of XK , meeting ∂XK in simple closed curves of slope r. Performing

r-framed Dehn filling produces S3
r (K) endowed with a taut foliation. �



Chapter 6

Concluding remarks

6.1 Discussion

To prove Theorem 5.1, we used an arbitrary braid word as it was presented to us. In

particular, we mostly utilized conjugation as a way to modify the braid as we built

branched surfaces.

Of course, there are other standard ways to modify a braid word and preserve the

link type of the closure – by using the relations in the standard Artin presentation of

the braid group on n generators. We recall the “close” and “far” relations below:

• The “close” relations: for all 1 ≤ i ≤ n− 2, σi σi+1 σi = σi+1 σi σi+1

• The “far” relations: for all |i− j| ≥ 2, σi σj = σj σi.

We never applied these braid relations while constructing B! Moreover, we make

the following observation: fix a braid word β, and compute Codd and Ceven as in

Chapter 5. If we could apply a “close" relation to β to produce a “braid synonym”

β′, the values of Codd and Ceven will change (one will increase by one, the other will

decrease by one, depending on the parity of i). Thus, if we had a braid β where

we could apply the “close” relations many times, we could drastically change the

89
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distribution of crossings between the odd and even columns of β. This suggests a

natural question:

Question 6.1. Fix β be a positive n–braid, and let

Cdiff(β) := max{ |Codd(β′)− Ceven(β′)| }

where we maximize over all possible synonyms β′ of β. How big can Cdiff(β) get for a

fixed isotopy class of the braid closure?

If one could always make Cdiff(β) (much) bigger than g(K), then in fact, the

proof of Theorem 5.1 produces taut foliations in S3
r (K), where r ∈ (∞,m), where

2g(K) − 1 > m >> g(K). Using the braid relations to “imbalance” a braid (i.e.

force as many crossings as possible into either the odd or even columns) is a strategy

used by Baader–Feller–Lewark–Zentner [BFLZ19] and Feller [Fel16] to investigate the

dealternation numbers and signatures of positive braids, respectively. One may hope:

if we could

1. answer Question 6.1, and

2. build B using a co–oriented product disk for every plumbing arc,

then perhaps we could prove:

for any positive braid with closure a prime knot, and any r ∈ (−∞, 2g(K)− 1),

S3
r (K) has a taut foliation.

Of course, at this time, this is merely speculation, as there are combinatorial chal-

lenges with arguing that the branched surface is sink disk free, and that the train

track τB carries all slopes r < 2g(K)− 1.

Murasugi famously classified all 3–braids up to conjugation [Mur74]; no such clas-

sification exists for higher braid index. We suspect: the difficulty in generalizing

Theorem 1.15 to the statement above reflects this missing classification.
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6.2 Future directions

In this section, we present some potential directions for future projects. Pursuing

them would require building on the techniques developed here, while developing some

new strategies, too.

Problem 6.2. Show that for any positive braid β with β̂ ≈ K a prime knot, S3
r (K)

has a taut foliation for every r ∈ (−∞, 2g(K)− 1), .

Problem 6.3. Show that for any fibered knot K with right–veering monodromy and

r ∈ (−∞, g(K)), S3
r (K) has a taut foliation.

Problem 6.4. Show that for any (hyperbolic) fibered knot K of genus g ≥ 2 and

r ∈ (−∞, 2), S3
r (K) has a taut foliation.
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