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Abstract. Homogeneous catalysts are advantageous in selective catalysis due to the well-

defined active site at the molecular level. The poor recyclability, bimolecular aggregation, 

and undesired poison resistance of homogeneous catalysts hinder further industrial 

application despite the controlled reaction pathway due to the homogeneous environment. 

On the other hand, heterogeneous catalysts are preferred in industry due to their high 

recyclability and high activity. Yet, poor selectivity due to undefined active sites is a 

drawback. The construction of a host-guest system where a molecular level catalyst is 

incorporated into the Metal-Organic Framework (MOF) provides a promising solution to 

bridge those two fields. This composite maintains the advantages of homogeneous and 

heterogeneous catalysts and overcomes the disadvantages. However, finding an 

incorporation method that is versatile with minimum synthetic modification of the host and 

guest remains one of the challenges.  

In the first part of this dissertation, a new concept called “aperture-opening 

encapsulation’’ is introduced for incorporating large and diverse guest molecules into 

MOFs without changing the identity of either the guest or MOF.  The approach capitalizes 

on the existence of linker exchange reactions, which, as our kinetic studies show, proceed 

via competition between associative and dissociative exchange mechanisms. The second 

part describes how this method is applied to incorporate a molecular catalyst into the cavity 

of UiO-66 for the hydrogenation of carbon dioxide to formate, which is a useful application 



 
 

for energy related industry. The developed hybrid composite showed the ability to be 

recycled, showed no evidence of bimolecular catalyst decomposition, and was less prone 

to catalyst poisoning. These results demonstrate for the first time how the aperture-opening 

process resulting from linker dissociation in MOFs can be utilized as a strategy to 

synthesize host-guest materials useful for chemical catalysis. After the establishment of the 

hybrid catalyst, the last part of the dissertation describes our efforts into the investigation 

of mass transport in catalysis. The understanding of the interaction between the host-guest 

is beneficial for the development of biological analogs in the future. 
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Chapter 1. MOFs as porous host 

1.1 Crystalline porous materials in catalysis 

Synthetic crystalline porous materials are applied in a variety of fields, including 

gas separation/adsorption,1 biological sensing,2 catalysis,3 and food production.4 Among 

those applications, catalysis is of particularly significant industrial importance. Since the 

early 1980s, zeolites or aluminosilicates have remained the most popular porous materials 

for catalysis in academic settings and industrial applications, finding use as solid catalysts, 

molecular sieves, and host matrices.5 The strong Si-O and Al-O bonds render these 

materials stable under a wide variety of conditions, thereby making them attractive for 

catalysis. Furthermore, the porous structure of zeolites allows them to accommodate a wide 

variety of cations, such as Na+, K+, Ca2+, and Mg2+.6 These positive ions are loosely bound 

and can readily be exchanged for others in solution, making zeolites a great platform for 

ion exchange.7 Tremendous advances have been made in designing well-defined pores. 

Organic templates, which are removed by post-synthetic calcination, can be used to 

synthesize zeolites with a defined pore size. Zeolites with chiral pores have recently been 

realized for enantioselective catalysis, with ITQ-37 representing the first chiral zeolite 

composed of an enantiomorphous framework with a single gyroidal channel (Figure 1-1a)8. 

Thanks to the fast extension of pore structures in zeolites, transition metal complexes can 

be incorporated into zeolites to alleviate their bimolecular decomposition, such as 

anchoring rhodium dicarbonyl to highly dealuminated zeolite Y for alkene polymerization 

(Figure 1-1b).9 Nevertheless, the synthetic difficulties associated with these processes has 

prevented widespread adoption of these methods.  In addition, identification of active sites 

and mechanistic understanding of the catalytic transformation remains challenging.3  
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Figure 1-1. a) Structure of SDA2 used for synthesizing the ITQ–37 zeolite. SDA2 contains 

four chiral centres (marked with asterisks) in a meso conformation, making the overall 

molecule achiral. b) Simplified structural models for Rh+(CO)2 supported in dealuminated 

Y zeolite developed from EXAFS analysis 

In the 1990s, well-defined supermolecular cages like cyclodextrin gained 

popularity in catalysis.10 Cyclodextrin is an attractive mimic for artificial enzyme due to 

its ability to modulate the size-selectivity of a given reaction. It does so by confining the 

substrate within the ring, much like an enzyme does in nature. In early studies, Breslow 

found that electrophilic halogenation of methoxy-benzene regioselectively forms a para-

substituted product when the substrate was confined within the ring. In a sharp contrast, 

both ortho- and para- substituted products were formed in the absence of the cyclodextrin 

(Figure 1-2), likely due to the blocking of ortho- position by the cavity.11  
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Figure 1-2.  Halogenation of methoxy-benzene with and without an α-cyclodextrin ring. 

In the late 1990s and early 2000s, Bergman and Raymond synthesized an M4L6 

tetrahedral cage (Figure 1-3a). This invention was later used by Toste to bridge the fields 

of molecular biology and supramolecular chemistry.12 The typical inorganic tetrahedral 

cage is constructed by the self-assembly of metal nodes and organic bridging linkers 

(Figure 1-3a). This M4L6 cage is able to distinguish between molecular recognition 

pathways, namely conformational selection13 and induced fit14. Conformational selection 

describes the phenomenon that a dynamically fluctuating protein binds to another protein 

and shifts the conformational ensemble towards a stabilized state. On the other hand, 

induced fit refers to subtle changes in the active site occur when an enzyme binds to the 

appropriate substrate. Those two mechanisms are both challenging to be deconvoluted in 

biological system (Figure 1-2b).12d The invention of M4L6 is the first example of 

conformational selection in a synthetic system, and this simple enzyme mimic inform the 

design of efficient self-assembled microenvironment catalysts. Despite this enormous 

success in biomimicking, the tetrahedral cages commonly suffer from difficulties in 

structural diversification due to the lengthy synthetic sequence required to obtain the 

ligands needed for supramolecular construct.  
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Figure 1-3. a) Self-assembly of an M4L6 cage. b) Distinguishing between a conformation 
selection and an induced fit mechanism in host-guest systems. 

 

Supramolecular chemistry is a highly interdisciplinary field, the roots of which 

extend into organic chemistry, coordination chemistry, physical chemistry, and 

biochemistry.15  Molecular recognition events represent the basis of information processing 

at the supramolecular level. The simplest recognition is the attractions between positively 

and negatively charged metal ions, and a supramolecular system has been demonstrated to 

enhance their attractions. For example, specific groups have been attached to 

functionalized bipyridines to form metal complexes with fixed geometries and physico-

chemical properties (Figure 1-4a).16 The fixation of the positively charged ions on to the 

supramolecular system allows the positively charged nucleate complexes to interact 

selectively with the negatively charged oligonucleotides (Figure 1-4b).17  



 

5 
 

 

 

Figure 1-4. a) functionalized a,a'-bipyridines and b) bis-adenosine derivative. 

 

The photogeneration of charge-separated states is important for the transfer of 

photosignals (e.g. through a membrane18) and inducing photocatalytic reactions (e.g. for 

artificial photosynthesis19 ). Silver ions are bound to the macrocycles of the electron 

receptors containing porphyrin sites (Figure 1-5).20 As a result, the quenching of the singlet 

excited state of the Zn-porphyrin center is more efficient by an efficient intracomplex 

electron transfer, which generates a porphyrinium cation of long half-life. The continuous 

development of supramolecular chemistry provides a comprehensive solutions to scientific 

problems that are difficult to solve by focusing on a single field.  
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Figure 1-5. The donor (Zn sites) and acceptor (Ag sites) units in metal coordination 

centers.  

Building on these supramolecular cages, a novel porous material was discovered 

that quickly gained popularity in cross-disciplinary scientific fields in the early 2000s.21 

This class of porous material is widely known as metal-organic frameworks (MOF), named 

by Yaghi22, though they are also referred to as coordination polymers.23  In this dissertation, 

we choose to refer to them as MOFs for consistency.  

MOFs, as mentioned above, are a class of porous materials formed by the self-

assembly of organic bridging linkers and metal nodes (Figure 1-6). Compared to other 

inorganic and organic matrices, broad choices of organic ligands and node topology endow 

MOFs a wide range of structural properties and functionalities.24 Over the past two decades, 
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MOFs have shown great potential as a host material in the fields of catalysis,25 such as gas 

separation,26 drug delivery,2 and sensing27. These applications largely take advantages of 

MOFs’ high porosity and crystallinity, moderate chemical and thermal stability, as well as 

capacity for post-synthetic modification.2, 25-27  

 

Figure 1-6. Self-assembly process of MOFs. 

 

1.2 Metal-organic frameworks: opportunities for catalysis  

Now that several of the unique properties of MOFs have been outlined in the 

previous section, this section will focus on how each component of the framework 

contributes to catalysis. It is generally accepted that MOF materials can be categorized into 

two different families based on the dimensionality of the inorganic framework (Figure 1-

7):28 In the first family, the organic-inorganic framework is organized into either 1- or 2-

dimensional (1D or 2D) layers. 1D MOFs are often labeled metal-organic polyhedra 

(MOPs), and it should be noted that their inorganic moieties are often only partially 
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connected by bridging organic ligands or solvent molecules. In the second, 3D open-

framework coordination polymers are made from 1D secondary building units (SBUs) (i.e. 

isolated metal ions) connected by bridging organic polytopic ligands. For example, MIL-

53 (node: Al, ligand: 1,4-benzenedicarboxylate) belongs to the first family and MOF-5 

(nodes: Zn4O, ligand: 1,4-benzodicarboxylate) is in the second category.  

 

 

Figure 1-7. Representations of 1D, 2D, and 3D MOF stuctures. 

Besides the coordination geometry, the organic and inorganic components of a 

MOF are also important for catalysis (Figure 1-8). It is possible, for instance, for the metal 

ions contained in a MOF’s SBUs to serve as active sites for catalysis. For example,  

transition metal ions like Fe3+, Cu2+ ,and Cr3+ are common catalytically active coordination 

metal nodes. Some catalytically active MOFs are [Cu(im)2] (im=imidazolate),29 [Cu(2-
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pymo)2],30 and HKUST-1(M) (M=Cr3+, Fe3+, Al3+).31 The metal ions in these structures 

have a high coordination number. Catalysis, conversely, usually requires coordination of 

the substrate to an unsaturated coordination site on the metal center. For catalytically active 

MOFs, the open coordination site is usually created by the dissociation of an organic 

bridging linker, though this can sometimes cause pores to collapse and lead to poor 

recyclability.28b Catalysis carried out throughout the entire MOF (i.e. on the surface) 

precludes the ability for the MOF to display size-selective catalytic performance, which 

provides little advantages compared to traditional heterogeneous catalysts or homogeneous 

catalysts supported on traditional supports (e.g. silica, alumina, etc.).  

Besides metal nodes, the versatile organic linkers in a MOF can also serve as 

catalytic sites.28b MOFs that use linkers as active sites usually are composed of bifunctional 

organic linkers,24 containing coordinative functional groups, like carboxylate, that 

coordinate to SBUs and maintain the crystallinity of MOF, and reactive functional groups, 

like lewis acids, which remain intact during the MOF synthesis and contribute to the 

catalytic activity of  MOF. Some examples of catalytically active MOFs are IRMOF-3, 

NH2-UiO-66, and NH2-MIL-101(M) (M=Cr3+, Fe3+, Al3+).32  Adding amino functional 

groups is a common way to imbue a MOF with Lewis base character.   
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Figure 1-8. Simplified MOF picture where catalytically active moieties can be inserted 

through SBU/ligand modification and guest incorporation in the cavity. 

All the MOFs mentioned above that utilize nodes and organic functional groups for 

catalysis are referred to as as-synthesized active MOFs.24 On the other hand, for 

catalytically inert MOF materials, active sites can be grafted onto the originally inert MOF 

or the original, inert nodes can be post-synthetically replaced with active ones. For example, 

Lin incorporated Ir complexes into a UiO-66 analogue MOF using 2,2′-bipyridine-5,5′-

dicarboxylate ligands to provide isolated anchoring sites for Ir. After activation, the MOF-

immobilized Ir complex is active ( TON: 6149, TOF: 410 h-1) towards hydrogenation of 

CO2 to formate (Figure 1-9a), while an Ir nanoparticle shows no conversion.33 Ion 

exchange of metal nodes thus allows the originally inert MOF to become catalytically 

active. In another example, Dinca partially substituted ZnII with MnII in MOF-5(Zn). The 

resultant MnII node can access terminal high-valent metal-oxo (MnIII, MnIV) species that 

subsequently engage in catalytic oxygen atom transfer of cyclopentene due to the relatively 
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weak ligand fields provided by the SBU (Figure 1-9b). 34 In addition, many other groups 

have used similar strategies for other catalytically active MOFs.24,28b,31 

a) 

 

b) 

 

 

Figure 1-9. a) Ir complex incorporation into UiO-type MOFs for CO2 hydrogenation. b)  
Partial substitution of ZnII with MnII to activate MOF-5(Zn) for redox chemistry. 
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In summary, MOFs contain three well-differentiated parts that can support active 

sites for catalysis: the organic linker, the metal nodes, and the cavity space, two of which 

have been covered in this section. In the next section, the MOF cavity and the construction 

of a host-guest system will be discussed. 

1.3 Using the MOF cavity space: host-guest systems 

 Recently, MOFs have come to bridge the gap between homogeneous and 

heterogeneous catalysis. In homogeneous catalysis, the well-defined molecular active site 

is advantageous for selective catalysis. The reaction can then usually be well controlled, 

both kinetically and thermodynamically, due to the homogenous environment. 

Organometallic complexes, for example, are a class of homogeneous catalysts that is 

widely used in industry for cross-coupling reactions,35 olefin metathesis reactions,36 

polymerization catalysis,37 and hydrogenation reactions.38 Modifications to the organic 

ligand alters the primary coordination sphere, which can be used to regulate the activity 

and selectivity through electronic and steric effects. High catalytic performance is achieved 

through rational ligand design35 or high throughput screening processes.39 However, the 

poor recyclability, bimolecular aggregation, and low poison tolerance of homogeneous 

catalysts are common limitations, despite their high selectivity and desired activity.40 

Heterogeneous catalysts are instead preferred for many industrial applications, due to their 

high recyclability and high activity, yet these catalysts show poor selectivity due to their 

undefined active sites. MOF chemistry represents an opportunity to optimize molecular 

catalysts, merging the advantages of homogeneous and heterogeneous catalysts through 

the use of host-guest complexes.  
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 In a host-guest system, active guest molecules are incorporated into the cavities 

of crystalline porous materials, imparting functionality for numerous applications in drug 

delivery,41 sensing,27, 42 catalysis,33 and energy conversion (Figure 1-10).40, 43 In the past 

two decades, MOFs have been more attractive for host-guest composites than zeolites. 

MOFs have high porosity and crystallinity, moderate chemical/thermal stability, and a 

capacity for post-synthetic modification.2, 27 Compared to other pure inorganic and organic 

matrices, variety in organic ligands and node-strut topology endow MOFs with large 

structural libraries and functional tunability.24  

 Construction of MOF host-guest systems by simply diffusing guest molecules 

into the MOF cavity is generally limited to guests that are smaller than the window size of 

the MOF cage.44 This limitation commonly leads to guest  molecule  leaching, since 

molecules that can diffuse in can also diffuse out,  which  is  particularly  problematic  for  

catalytic  applications.45 Retaining  guests  in  the  cavity  of  MOFs  by  pursuing  strategies  

that  incorporate  guests larger than the MOF aperture size could circumvent this problem.  

 

 

 

 

 

 

 

 

 
 

Figure 1-10. Applications of the host-guest system. 
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 Two such strategies are the de novo encapsulation of the guest during MOF 

crystal growth and the ship-in-a-bottle assembly of the guest within the pore subunits.28b 

De novo encapsulation (which may be thought of as a “bottle-around-ship” method) 

involves mixing a functional guest molecule with MOF precursors during the process of 

MOF formation so that the MOF forms around the guest molecules (Figure 1-11a).46 While 

convenient, this one-pot encapsulation method requires the guest molecule to be 

compatible with MOF synthesis conditions, which often involve high temperatures and the 

use of acid as a modulator. To date, this approach has only been applicable to  a few organic 

compounds, like chromophore molecules,47  metal ions,48 and catalysts that have high 

thermal/chemical compatibility with MOF synthesis condition.  

 The ship-in-a-bottle approach is another elegant encapsulation strategy (Figure 

1-11b).48 This encapsulation strategy requires assembling the guest molecule within the 

cavity of the pre-synthesized MOF crystals. A number of techniques have been developed 

for this strategy, including using negatively charged MOFs to incorporate cationic organic 

compounds.49 This approach is advantageous because it decouples the MOF synthesis from 

guest formation; however, the assembling of sophisticated catalytically active species 

within the MOF cavity still remains a challenge. MOFs also may not be compatible with 

the strong organic bases required for metal ligand metalation. So far, the most prevalent 

method in constructing host-guest composites relies on tethering the guest species to the 

backbone of the MOF linkers, similar to the aforementioned linker-based catalysis, but the 

loss in degrees of freedom for these tethered homogeneous catalysts can be detrimental to 
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their activity and selectivity. (Figure 1-11c)33 Furthermore, there is little control over the 

distribution of catalyst throughout the MOF, which can impede size-exclusion catalysis.  

  

Figure 1-11. Strategies for encapsulating guests into MOFs. 

1.4 Aperture-opening encapsulation for host-guest construction 

 Due to the labile binding between the organic bridging linker and the metal node, 

MOFs can undergo a linker exchange process in which the bridged linker in the MOF 

crystal can be exchanged with a structurally inert but chemically different functionalized 

ligand.50 This phenomenon was first discovered by Choe51 for pillared porphyrin 

paddlewheel framework and later modified by several groups.52 This linker exchange 
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process is often referred to as solvent-assisted linker exchange (SALE) or post-synthetic 

modification (PSM). Our group prefers SALE, because the solvents used in this process 

often facilitate linker exchange. Through this process, additional functionalities can also 

be introduced to the organic linkers after synthesis of the MOF.53  

 SALE is a versatile and powerful method for synthesizing MOF materials that 

cannot be synthesized by direct methods.53a For instance, the direct synthesis of Zn(im)2 

(im=imidazolate) results in a non-porous zni structure, while the crystalline sod structure 

can be achieved through SALE between pre-synthesized Zn(2-mim)2 (ZiF-8) (mim=2-

methyl imidazolate) and exogenous imidazolate.53b Ubiquitous in coordination chemistry, 

linker exchange  between  metal  centers  is  described by one of two limiting pathways for 

ligand substitution: associative  or  dissociative.39 Mechanistic studies were conducted to 

determine the underlying kinetics of SALE, and the results suggest the linker exchange 

proceeds associatively in the presence of excess exogenous imidazolate and dissociatively 

in its low concentration regime.44 We believe the dissociative pathway ‘opens’ part of the 

framework and extends the aperture size of the pore, which allows for the encapsulation of 

guest molecules larger than the aperture size but smaller than the pore size (Figure 1-12a). 

We call this new host-guest system synthesis method aperture-opening encapsulation 

(Figure 1-12b).44 Although the isolation and characterization of the short-lived aperture-

opening intermediate are challenging, the successful formation of the host-guest system in 

ZiF-8 with a guest molecule of Rhodamine 6G or triphenylphosphine demonstrates that 

this method is successful and effective. 
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Figure 1-12. a) Linker exchange proceeds through the dissociative pathway. b) The 
aperture-opening encapsulation strategy. 
 

1.5 The scope of this dissertation 

 Our interest in the construction of a host-guest system stems from the idea of 

designing better catalysts by bridging the gap between homogeneous and heterogeneous 

catalysis. We noticed that the design of the ligands found in most homogeneous catalysts 

requires lengthy synthesis sequences that highly limit their practical industrial application, 

despite their superior catalytic performance. On the other hand, despite the advances being 

made in heterogeneous catalyst design, the lack of a well-defined active site at the 
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molecular level has always been an issue. We believe the heterogenization of homogeneous 

catalysts provides an alternative approach to combine the advantages of both homogeneous 

and heterogeneous catalysis. MOFs have rapidly become one of the most popular host 

structures, and we started our project by searching for ways to incorporate guest molecules 

into MOFs. Most known methods are limited to the use of specific MOFs or guest 

molecules (e.g. ionic MOFs54 and simple chromophore molecules42), with the remainder 

requiring non-trivial materials engineering or guest syntheses. The ideal method to 

construct a host-guest system should be widely applicable to a variety of systems and 

require little engineering of the host and the guest to facilitate guest encapsulation. We 

found that such a method could be designed by taking advantage of SALE. Initially, 

application and characterization were difficult because there is a lack of suitable 

spectroscopic signatures for following the mechanism of the exchange reactions. Through 

interdisciplinary inputs in materials and organic chemistry, we were able to develop an 

analytical tool box for the kinetic study of  materials. These efforts, which will be discussed 

in Chapter Two, were pioneered by Dr. Joe Morabito and Dr. Lien-Yang Chou from the 

Tsung lab, under the guidance by both Prof. Tsung and Prof. Byers. After the initial 

establishment of the aperture-opening encapsulation mechanism, the use of this novel 

encapsulation method to construct a catalytically active host-guest system becomes the 

core of this research dissertation. Ongoing challenges and exciting directions in the 

development process, such as ensuring the integrity of the catalyst structure after 

encapsulation, preventing active site leaching during catalysis, minimizing mass transport 

using materials engineering, and mimicking enzymatic activity through outer-sphere 

interaction, will be discussed in later chapters.  
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Chapter 2. Molecular Encapsulation beyond the Aperture Size Limit through 
solvent-assisted Linker Exchange in Metal-Organic Frameworks 

 

2.1  Incorporating guest molecules in MOF by aperture-opening encapsulation 

 

As mentioned previously, constructing a host-guest system using MOF chemistry 

is widely applicable in various cross-disciplinary fields.1  This chapter is primarily focused 

on the invention of aperture-opening encapsulation strategy which is pioneered by Dr. 

Joseph Morabito and Dr. Randy Chou. My contribution to the study is mainly in the 

development of Eyring analysis to provide an independent means for verifying the 

hypothesis that the reaction is proceeding by a competition between associative and 

dissociative linker exchange process. Some of the most pertinent results from Dr. Joseph 

Morabito and Dr. Randy Chou will be provided to legitimize the efforts described in 

Chapters 3-5.  Also, the investigation into the mass transport associated with different MOF 

particle sizes are attempted.  

Incorporation of guest molecules in MOFs by diffusion is generally limited to 

guests that are smaller than the MOF aperture size,2 and this limitation commonly leads to 

guest molecule leaching. Retaining guests in the cavity of MOFs by pursuing strategies 

that incorporate guests larger than the MOF aperture size could circumvent this problem. 

Two strategies for this are the ship-in-a-bottle assembly of the guest within the pore 

subunits and the de novo encapsulation of the guest during MOF crystal growth.3 However, 

they are limited in either multiple postsynthetic operations or challenged in compatibility 

with MOF synthesis. The development of an alternative encapsulation approach is in high 

demand.4 
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It has been reported that the bridging organic ligands in MOF crystals can be exchanged 

with compatible but chemically distinct ligands without disrupting the underlying MOF 

crystal structure and morphology. This phenomenon was first reported by Choe for pillared 

porphyrin paddlewheel frameworks5 and has been optimized by several groups.6 The 

ligand exchange process has become extremely popular for the diversification of MOFs 

and is most commonly referred to as solvent-assisted linker exchange (SALE)6a or 

postsynthetic exchange (PSE).6b   

A new concept for incorporating larger and more diverse guest molecules into 

MOFs is introduced by taking advantage of ligand exchange reactions to “open” part of the 

framework of the pre-synthesized MOF crystals (Figure 2-1). Expanded apertures created 

by the ligand exchange process allow large guest molecules to diffuse into the MOF pore.  

After guest incorporation, association of the ligand closes the large aperture, trapping the 

guest molecule in the MOF pore. This new approach to guest incorporation is expected to 

be general as framework ligand exchange has been carried out under various conditions 

and exists in a large number of MOFs with diverse secondary building units.5-7 An 

additional practical advantage of decoupling encapsulation and MOF synthesis is that MOF 

production can be scaled-up independently of guest loading, which is especially relevant 

since several MOFs, such as ZIF-8, Fe-BTC, HKUST-1, and MIL-53(Al), have been 

become commercially available. Recently, UiO-66 has been commercialized by BASF and 

STREM. 
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Figure 2-1. Molecular encapsulation of a large organic guest into the pores of ZIF-8 
through dissociative linker exchange.  

The ability for ligands to exchange between metal centers is ubiquitous in 

coordination chemistry, where the two limiting mechanisms for ligand substitution 

reactions are associative or dissociative mechanisms. In a MOF, the metals are typically 

coordinatively saturated, a property that we reasoned would make a dissociative 

mechanism more likely. If dissociative linker substitution occurs in MOFs, we 

hypothesized the existence of short-lived linker vacancies, which would momentarily 

expand the pore aperture size to allow the passage of larger guests into the framework. 

Subsequent reincorporation of the dissociated linker reassembles the MOF with an aperture 

size that is smaller than the incorporated guest. 
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2.2 Encapsulation of Rhodamine 6G into ZIF-8 under linker exchange conditions 

As a proof of principle, the commercially available zeolitic imidazolate framework 

(ZIF-8) was used as a model MOF. A suitable guest molecule should meet two criteria. 

First, to maximize guest retention, the guest molecule should be larger than the MOF 

aperture size but smaller than its pore size. For encapsulation in ZIF-8, this requirement 

makes the ideal guest size between ~ 3.4 and 11.6 Å, the aperture and pore sizes of ZIF-8, 

respectively. Second, in order to better quantify the loading, the guest molecules should be 

easily detectable by UV-Vis spectroscopy. Rhodamine 6G (R6G) was selected as an ideal 

candidate that meets both criteria outlined above: it is a fluorescent dye (λmax = 530 nm) 

with a molecular diameter of 11.3 – 13.7 Å (Figure 2-2). The amounts of encapsulated R6G 

are determined by UV-Vis spectroscopy after acid digestion of the ZIF-8 crystals in 

methanol. 

 

 

Figure 2-2. The molecular dimensions of the host ZIF-8 and the guest molecule 
Rhodamine 6G. 

To test whether linker exchange can facilitate guest incorporation, R6G was incubated with 

ZIF-8 in the presence of 2-methylimidazole as an exogenous linker in n-butanol at 100 °C 
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for 7 days (Figure 2-3). Exchange of the 2-methylimidazole linker in ZIF-8 with imidazole 

has been reported under these conditions.7a After the reaction, the material, henceforth 

referred to as R6G@ZIF-8, took on a cloudy light pink hue. The structure of the guest 

encapsulation products was characterized by transmission electron microscopy (TEM) and 

powder X-ray diffraction (PXRD). Both techniques showed no apparent differences after 

guest encapsulation, suggesting that the guest loading method was not destructive to the 

MOF structure (Figures 2-4 and 2-5).  

 

Figure 2-3. Rhodamine 6G encapsulation through ZIF-8 linker exchange. Condition: 
10.29 mM of R6G at 100 ºC in n-butanol for 7 d. 

 

 

Figure 2-4. Transmission electron microscope (TEM) images and particle size 
distributions (PSDs) of ZIF-8 crystals a) as synthesized (micron-sized), b) as synthesized 
(nano-sized), c) PSD of as synthesized (nano-sized), d) after R6G loading (micron-sized), 
e) after R6G loading (nano-sized), and f) PSD of after R6G loading (nano-sized). The 
loading was carried out with 10.3 mM R6G at 100 °C for 7 days in n-butanol.  
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Figure 2-5. Powder X-ray diffraction patterns of R6G@ZIF-8. The R6G loading was 
carried out with 10.3 mM R6G at 100 °C for 7 days in n-butanol (red) and in DMF (blue). 
The pattern for pure ZIF-8 crystals (black) is given for reference below. 
 

2.3.1 Encapsulated versus surface bond Rhodamine 6G  

To confirm that the R6G is indeed incorporated in ZIF-8 instead of attaching to its surface, 

a method was sought out to remove the surface bound R6G in all samples prior to UV-Vis 

analysis. Briefly exposing ZIF-8 to R6G at room temperature led to the coloration of the 

MOF, despite linker exchange not occurring to an appreciable extent (Figure 2-6). The 

affinity of R6G for ZIF-8 likely arises from its ester and amine functional groups, which 

can interact with the hydrophilic external surfaces of ZIF-8. To remove surface bound R6G 

from ZIF-8, the samples were washed with methanolic solutions of polyvinylpyrrolidone 

(PVP), a polar polymer with poly-ketone functional groups that interact strongly with MOF 

crystals due to the polyvalency effect.8  Due to its large size, PVP cannot penetrate the 

interior of ZIF-8. Therefore, any R6G that remains associated with ZIF-8 after PVP 

washing is likely trapped in the pores of ZIF-8 rather than on its surface. As expected, 
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repeated washings of R6G@ZIF-8 with PVP led to the liberation of some R6G, but after 

repeated PVP washings, the pink color of R6G@ZIF-8 remained (Figure 2-7). Analysis of 

the PVP washed R6G@ZIF-8 by UV/Vis allowed for the encapsulation efficiency of R6G 

in R6G@ZIF-8 to be quantitatively determined.  A similar PVP washing procedure carried 

out under conditions where linker exchange does not occur led to full removal of R6G from 

the ZIF-8 crystals (Figure 2-7).  

 

 

Figure 2-6. ZIF-8 surface interaction experiments. Loading of R6G for 7 days and 30 
minutes. All other R6G loading parameters were the same (10.3 mM R6G, n-butanol, 
25 °C). 
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Figure 2-7. PVP washing experiments. a) Digital photograph of R6G@ZIF-8 precipitates 
and supernatants after centrifugation: (left) as synthesized R6G@ZIF-8 after 5 times 
methanol washing and (right) methanol-washed R6G@ZIF-8 re-suspended in 14 wt. % 
PVP/methanol solution. Surface bound R6G was washed by PVP solution. In b) and c), 
R6G content tracking by absorbance after PVP washing cycles. The R6G loading was 
carried out with 1.29 mM R6G in n-butanol at b) 100 °C for 7 days, and c) 25 °C for 10 
min.  

  

To further confirm that the R6G is encapsulated in ZIF-8 during linker exchange, 

comparison was carried out between fluorescence intensity of the sample prepared by 

linker exchange in n-butanol with R6G, the sample prepared by brief exposure of ZIF-8 to 

the R6G, and free R6G in solution (Table 2-1). After the fluorescence intensities were 

normalized by the amount of the R6G in the samples, a significant decrease in fluorescence 

intensity was observed for the linker exchange sample. The normalized intensity for surface 

bound R6G was more than double than the linker exchange sample, while fluorescent 

lifetimes (τ) were approximately the same for all samples. The origin of the low intensity 
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is likely due to the encapsulation. The difference in intensity has further supported that 

R6G is indeed encapsulated in ZIF-8 during the linker exchange instead of bound to the 

external ZIF-8 surface. 

 

 

Table 2-1. Fluorescence lifetime and fluorescence intensity measurement. R6G@ZIF-8 
samples prepared with 147 mM 2-methylimidazole exogenous linker (+ Hmim) and 
without any exogenous linker (no exog.) in n-butanol. Both R6G@ZIF-8 samples were 
PVP washed to remove surface bound dye as described in the main text. The R6GonUiO-
66 was prepared by exposing ZIF-8 particles to R6G in a methanolic solution for 10 min, 
followed by extensive (5x) washing with methanol. In previous control experiments we 
found that PVP washing of a sample prepared this way led to complete removal of the dye, 
demonstrating that dye loading is solely on the surface. The fluorescence intensities were 
normalized by the amount of the R6G loading measured by absorption after the ZIF-8 
particles were digested by acid. The R6G standard consisted of R6G dissolved in methanol 
with a UV-vis absorbance of 0.3 a.u..Last entry was measured under the condition where 
no exogenous imidazole was added.  

 

 

2.3.2 Investigating parameters affecting Rhodamine 6G encapsulation 

2.3.2.1 Temperature and solvent 

After R6G was removed from the surface, the effects of temperature, solvent, and initial 

concentration of R6G on encapsulation in ZIF-8 were studied (Figure 2-8). This study 

indicated that guest loading was temperature and solvent dependent. For instance, n-

butanol facilitated the encapsulation more than acetonitrile at the same temperature. Higher 

encapsulation was observed at higher temperatures due to increased linker exchange rates. 
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As expected for diffusion-controlled guest incorporation, R6G loading was found to be 

dependent on the initial concentration of R6G. Re-subjecting R6G@ZIF-8 to the linker 

exchange reaction  conditions  without  exogenous  R6G  led  to  diffusion  of  the  dye  

into  solution (Table 2-2). The leaching can be prohibited by using the conditions that do 

not promote linker exchange (Table 2-2). 

 

 

 

 

 

 

Figure 2-8. Rhodamine 6G encapsulation through ZIF-8 linker exchange (7 days). R6G 
loading versus [R6G] at 100 °C (red) and 25 °C (blue) in n-butanol and at 100 °C in 
acetonitrile (green). Inset image shows ZIF-8 after R6G loading at various [R6G] during 
linker exchange at 100 °C in n-butanol 

 

 

Table 2-2. Leaching experiment. (a) the original R6G@ZIF-8 prepared under linker-
exchange condition, (b) Re-subjecting R6G@ZIF-8 to the linker exchange condition at 
elevated temperature without exogenous linker, (c) Re-subjecting R6G@ZIF-8 to non-
linker exchange condition at room temperature with exogenous linker. 
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2.3.2.2  Exogenous linker concentration  

The effect of exogenous 2-methylimidazole linker concentration had on guest loading was 

explored next. Somewhat surprisingly, R6G loading was inversely proportional to the 

concentration of 2-methylimidazole linker (Figure 2-9). In fact, the highest loading of R6G 

was observed when reactions were carried out without any exogenous 2-methylimidazole 

linker. Although unexpected, this result was rationalized by a dissociative linker 

substitution mechanism where dissociation of 2-methylimidazole from ZIF-8 led to the 

formation of a linker-deficient “open” state (Figure 2-1). Under low concentrations of free 

imidazole, the “open” state is not as readily arrested by free linker, which provides more 

time for the guest to diffuse into the pores of the MOF. Consequently, higher guest loadings 

are observed at lower concentrations of the exchanging linker.  The aforementioned 

leaching experiment also suggested exogenous linker and low temperature shut down 

dissociative linker substitution reaction pathway.  

 

Figure 2-9. Dependence of R6G encapsulation on the [2-methylimidazole] exogenous 
linker. Conditions: 10.29 mM of R6G at 100 ºC in n-butanol for 7 d. 
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2.4 Linker exchange mechanistic study 

2.4.1 Kinetic measurements  

The development of the first quantitative kinetic method for studying MOF linker 

exchange reactions and the application of this method to understand the solvent 

dependence of ZIF-8 and imidazole is described in detail in Dr. Joe Morabito’s Ph.D. 

dissertation. This part of chapter 2 serves as a summary of major findings from Dr. Joe 

Morabito and Dr. Randy Chou’s work.  

To test the hypothesis that linker substitution is dissociative, Dr. Joseph Morabito 

and Dr. Randy Chou, particularly pioneered by Joseph examined the kinetics of the linker 

exchange reaction under pseudo-first order conditions by varying the initial concentration 

of exogenous imidazole linker (See Experimental Section). The observed rate (kobs) for the 

linker exchange reaction could be obtained by using the method of initial rates (< 10% 

conversion) of multiple parallel reactions stopped at different time. By plotting kobs versus 

[imidazole] ([im]), they observed a linear correlation with a non-zero slope and intercept 

(representative  1H-NMR spectra in Figure 2-10, conv. vs. t plots  in  Figure  2-11,  and  kobs  

values  in  Table  2-3, kobs vs. [im] in Figure 2-12,). These data suggest that there is a 

competition between associative and dissociative linker substitution reactions with the 

slope of this line (m = 38.6 x 10-6 M-1•s-1) being the second order rate constant for 

associative exchange, and the intercept (b = 3.37 x 10-6 s-1) being the first order rate 

constant for dissociative exchange. Under the empirically determined conditions employed 

for linker exchange ([im] = 147 mM), the apparent rate constant for associative linker 

substitution (kapp(s-1) = ka•[im]) is 5.67 x 10-6 s-1, which is similar to the first order rate 

constant for dissociative linker exchange. Importantly, under the conditions that worked 
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best to maximize guest incorporation ([im] = 0), the associative exchange mechanism was 

completely shut  down, indicating that linker exchange occurs from a competition between 

associative and dissociative pathway under conditionally typically employed for linker 

exchange reactions in ZiF-8.  Indeed, the lower guest incorporation at higher  linker  

concentrations  may  be  due  to  a  competing associative exchange process that precludes 

the formation of an “open” state for guest incorporation.  These studies clearly reveal the 

mechanistic complexity of the process. Besides exogenous linkers, the solvent dependency 

of the incorporation of R6G dye into MOF clearly indicates the solvent-assisted linker 

exchange property. Hence, rate measurements made for the exchange of imidazole into 

ZIF-8 demonstrated a complicated dependency on the imidazole concentration, which 

could be related to the existence of at least three distinct reaction mechanisms: a) a 

dissociative pathway that predominates at low imidazole concentration and only for protic 

solvents, b) a faster associative process that is first order in imidazole and is relatively 

solvent independent, and c) a pathway that has a kinetic order in imidazole that is greater 

than one and that is highly dependent on the hydrogen bond donating ability of a solvent. 

(Figure 2-13). An alternative interpretation of the data besides pathway a is that the reaction 

is always dissociative, and the linear plot of kobs vs. [im] is due to the reassociation of the 

ligand being the rate determining step of the dissociative pathway. However, the fact that 

we never observed saturation kinetics at high linker concentrations is more consistent with 

an associative linker exchange mechanism as opposed to dissociative process. In summary, 

we conclude linker exchange in ZIF-8 goes through a competition between at least 2 

pathways. One of these has first order or higher dependence in linker and doesn’t allow for 

guest encapsulation. The other occurs only in protic solvents and allows for guest 
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encapsulation via long-lived missing-linker defects. Both pathways are strongly solvent-

dependent and both are fastest in protic solvents. 

 

Figure 2-12. Observed rate constants (kobs) for exchange of ZIF-8 with imidazole at 

different concentrations of imidazole.  

 

Figure 2-13. Three hypothetical mechanism pathways a) a dissociative pathway at low 

ImH concentration, b) an associative pathway first order in ImH, c) an associative pathway 

higher than first order in ImH.   
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2.4.2 Eyring analysis on linker exchange reactions 

The experiments were carried out to provide an independent means for verifying 

the hypothesis that the reaction is proceeding by a competition between associative and 

dissociative linker exchange process. Doing so requires treating the dissociative and 

associative regions separately. Linker exchange in ZIF-8 was carried out with exogenous 

imidazole in n-BuOH at different temperatures. The product after partial linker exchange 

is denoted SALEM-2.9 The level of conversion was kept under 10% to prevent the 

formation of a zni phase, which can form with high imidazole incorporation.10 

The Eyring equation is widely used in chemical kinetics to describe the variance in 

the rate of a chemical reaction with changing temperature.   

k = #(%&)(
)

𝑒
+,‡	
/ 𝑒

0△2‡

/3                                                                                                     (Eq. 1) 

The equation can be written in this following form as well.  

ln #
(
= 678‡

9
⋅ ;
(	
+ 𝑙𝑛 #(%&)

)
+ △?‡

9
                                                                                   (Eq. 2) 

where k is the reaction rate constant, T is the absolute temperature, △ 𝐻‡ is the 

enthalpy of activation, △ 𝑆‡ is the entropy of activation, R is the ideal gas constant, kB is 

Boltzmann constant and ℎ  is Planck’s constant. The kinetics underpinning a chemical 

reaction, such as the enthalpy of activation (	△ 𝐻‡) and the entropy of activation △ 𝑆‡ ), 

can be derived from this form of the Eyring equation.  

The plot of conversion vs time for associative and high imidazole concentration 

([im]=0.441 M) and low imidazole concentration ([im]=0.0294 M) was acquired from 1H-

NMR (T1=13 s) analysis of reactions at different time (Figure 2-14). Each kinetic 
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experiment was repeated at least three times to improve the accuracy. Slopes of the fitting 

from linear regression was the observed rates for reactions (Table 2-4). Those data 

indicated the rate of reaction increased with temperature and the concentration of 

exogenous imidazole.  

 

 

Figure 2-14. Plot of conversion vs. time of the Zn(mim)2 to Zn(mim)2-x(im)x exchange 
reaction at varying temperature, with conversion expressed as the appearance of imidazole 
in the framework as a molar fraction of the total imidazolate linker content of the solid. (a) 
Exogenous [im]=0.441 M. (b) Exogenous [im]=0.0294 M. Least squares linear regressions 
are shown. 

 

 

Table 2-4. The observed rates (kobs) determined by the method of initial rates (kobs = slope 
m) from the conversion vs. time plots in Figure 2-13, with the coefficients of determination 
(R2) for each linear fit.  
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Plots of ln(ka/T) vs. 1/T were then made for both the associative region ([im]=0.441 

M) and the dissociative region ([im]=0.0294 M) using the rate constants ka calculated from 

dividing kobs by the concentration of exogenous imidazole ([im]), as detailed above (Figure 

2-15). The calculated activation parameters ΔH‡ and ΔS‡ from the Eyring plots show a 

notable difference from the associative to dissociative regions, which is consistent with our 

hypothesis of a mechanism change as the exogenous linker concentration increases.  ΔH‡ of 

the associative reaction ( 13.935 kcal/mol) is almost twice that of the dissociative (7.269 

kcal/mol).  The negative sign of ΔS‡ (-32.0 kcal/K*mol) for the associative region is 

consistent with the aforementioned mechanism, though it remains unclear why a negative 

entropy is derived from the dissociative region (-33.4 kcal/K*mol). In principle, the 

dissociative pathway should have a positive entropy due to the increase of freedom after 

linker being dissociated from the framework. The more negative entropy of activation (ΔS‡) 

may arise from the high entropic cost of solvent reorganization in the transition state, such 

as to stabilize a buildup of charge.  

 

Figure 2-15. Eyring plot ln(ka/T) vs. 1/T for associative region and dissociative region and 
the calculated activation parameters ΔH‡ and ΔS‡ from Eyring plot. 
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2.4.3 Understanding mass transport in linker exchange kinetics  

Mass transport is a challenge in obtaining mechanistically relevant kinetic 

information for reactions occurring in porous solids, since slow diffusion within the pores 

may cause the reaction to be rate limited by the mass transport.11 

In principle, mass transport is crystal size dependent while kinetics is not. To 

determine if kinetics for linker exchange rather than diffusion, bond breaking and forming, 

were being obtained, we measured and compared the exchange rates of imidazole with 

ZIF-8 of different crystal sizes in the solvent 1-butanol (BuOH). To minimize the 

possibility of interference from diffusion, all kinetic measurements were carried out using 

initial rates early on in the linker exchange process (<10 %).12 Size-controlled ZIF-8 

samples ranging from 80 nm to 10 um in average diameter (Figures 2-16, Table 2-5) were 

synthesized by varying the ratio between Zn(NO3)2 and 2-methylimidazolate. Figure 2-16 

shows the particle size distributions obtained from TEM images of size controlled ZIF-8 

particles shown as counts versus grain diameter d, and the statistics analysis are shown in 

Table 2-5. The observed rate constant (kobs) for exchange was measured for each size at 

high (0.294 M) and low (0.0735 M) concentrations of exogenous imidazole ([ImH]) in 

BuOH at 70 °C. kobs versus the log of crystal diameter (Figure 2-17) was plotted to 

understand if there is any correlation between kobs and diffusion rate at different crystal 

sizes.  
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Figure 2-16. Particle size distributions obtained from TEM imaging of size-controlled ZIF-
8 particles shown as counts versus grain diameter, d, in nm, CDF = cumulative distribution 
function of the particle volume distribution (equal to weight for constant density).  

 

 

 

 

 

Table 2-5. The parameters obtained from the particle size distributions in Figure 2-11. 
Average grain diameter, dave, is the mean of the number distribution of grain diameters.  
D10, D50, and D90 are the corresponding d values of the mass-weighted cumulative 
distribution functions in Fig. 2-11 at CDF = 0.1, 0.5, and 0.9 respectively. In other words, 
10 % of the particles have grain diameters less than D10, 50 % are smaller than D50, and 
90 % are smaller than D90. D50 is also referred to as the mass median diameter. 
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Figure 2-17. The dependence of linker exchange kinetics on ZIF-8 crystal size as measured 
in n-butanol at 70 °C with (a) 0.0735 M and (b) 0.294 M imidazole. Data are plotted for 
size-controlled (filled symbols) and commercially obtained (open symbols) ZIF-8. Crystal 
diameter values come from statistical analysis of transmission electron micrographs, 
scaling the number distribution of grain diameters to a volume (weight) distribution. The 
x-values are the mass median diameters (D50) of the crystal grain size distribution, and x-
error bars represent the span of the distribution from 10 % (D10) to 90 % (D90) of the 
distribution by weight. The lines are meant to guide the eye and do not represent a 
mathematical fit to the data. Uncertainty in kobs for Basolite Z1200 indicates the 99 % 
confidence interval. 

The plots show a partial dependency of kobs on crystal diameters. kobs is independent 

of crystal sizes until the size increases to around 400 nm and Kobs is gradually affected by 

the crystal sizes when size further increases to micrometer region. The commercial ZIF-8 

particles with the size around 200 nm is in the region where kobs is not completely diffusion 

controlled. Although these values indicate that under these conditions reaction kinetics are 

not fully uncoupled from mass transport, valuable mechanistic information could still be 

garnered from measurements on this material due to the still substantial contribution of 

intrinsic kinetics to the overall rate. Our methodology used initial  rates  early  on  in  the  
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linker  exchange  process  (< 10 %), which  stops  the reaction before the product layer can 

become too thick, making transport through it rate limiting. In particular, trends in the 

kinetic orders in imidazole obtained from the shape of kobs vs. [ImH0] plots (Figure 2-9) 

should still be valid if the exchange kinetics in other solvents also show comparably steady 

contributions from diffusion over the range of imidazole concentrations as in n-BuOH. We 

note that the absolute rate constants obtained above do not reflect the elementary rate 

constants for the reactions because they are a composite result from diffusion and the 

mechanism for linker exchange. 

2.5 Construction of [Rh, PPh3]@ZIF-8 for catalysis.  

The construction of host-guest catalytic system was attempted by the incorporation 

of a transition metal complex in ZIF-8 under linker exchange conditions. In all previous 

instances of ship-in-a-bottle complex synthesis, the metal cation serves as the initial 

subunit that is encapsulated in the MOF via electrostatic interactions.13 Subsequent to metal 

loading, ligands smaller than the aperture size of the MOF are added to form a transition 

metal complex. In contrast to the anionic MOFs, the neutral pores of ZIF-8 offer no similar 

means to immobilize metal ions electrostatically. Since our approach allows sufficiently 

bulky ligands to be encapsulated and retained, a neutral ligand could be encapsulated in 

ZIF-8. Complexation of the incorporated ligand could then be carried out in a subsequent 

step by using transition metal ion precursors that could easily diffuse into the MOF. 

Triphenylphosphine (PPh3) (molecular diameter = 9.56 Å) was chosen as the initial guest 

ligand, because of its ubiquity in organometallic catalysis and its appropriate molecule size 

(Figure 2-18). The same method used for dye encapsulation was adopted to encapsulate 

PPh3 in ZIF-8 (henceforth referred to as PPh3@ZIF-8) using initial [PPh3] of 165 mM and 
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220 mM. Elemental analysis of the product obtained with an initial [PPh3] of 220 mM 

indicated a PPh3 loading of 2 wt. % (Figure 2-19). Based on PXRD, PPh3@ZIF-8 had the 

same crystal structure as pristine ZIF-8 (Figure 2-20).  

 

Figure 2-18. The molecular dimensions of the host ZIF-8 and the guest molecule 
triphenylphosphine. 

 

 

Figure 2-19. A representative energy dispersive X-ray spectrum of PPh3@ZIF-8 loaded 
with initial [PPh3] of 220 mM. Inset shows the TEM image of the area used for analysis, 
with the focused particle indicated by an arrow. The 10 % pore loading of PPh3 was 
estimated by multiplying the P/Zn atomic ratio of 0.016 by 6 (the number of unique Zn 
atoms per sodalite cage of ZIF-8). 
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Figure 2-20. Powder X-ray diffraction (PXRD) patterns of PPh3@ZIF-8 (top, red) and 
ZIF-8 simulated from the crystal structure (bottom, black) for reference. The loading was 
carried out with 220 mM PPh3 in n-butanol for 7 days at 100 °C. 

To demonstrate that the PPh3 was mainly encapsulated within the pores of ZIF-8 

and not on its surface, N2 adsorption data were collected at 77 K on the two loadings of 

PPh3@ZIF-8 and the commercial source of ZIF-8 (Figure 2-21a). A high resolution of 

points in the micropore adsorption region was depicted in Figure 2-20b. Saturation of the 

micropore volume with N2 occurred for the reference ZIF-8 material at 485 cm3/g, and the 

BET surface area was calculated to be 1554 m2/g using a P/Po range of 5 × 10−4 to 5 × 10−3 

(before gating) or 1885 m2/g with a range of 5 × 10−4 to 10−2 (after gating). These surface 

areas are in agreement with ZIF-8 values from the literature.14 For the PPh3@ZIF-8 

samples, micropore saturation occurred at 459 cm3/g for the sample exchanged with 165 

mM PPh3 and at 405 cm3/g for that with 220 mM PPh3, which is 5 % and 16 % lower 

compared to ZIF-8. This decrease in the micropore adsorption capacity was in excess of 

the decrease anticipated from the weight gain upon loading (only 2 %) and was consistent 
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with guests occupying some pores of the MOF.  It was estimated from the data that 

approximately one in every 10 pores in ZIF-8 was occupied by a triphenylphosphine ligand.  

Such loadings were only possible by the linker exchange process that facilitates 

incorporation of the large ligand guest. 

 

 

Figure 2-21. (a) N2 absorption (filled symbols) and desorption (open symbols) isotherms 
of ZIF-8 (red), 165 mM triphenylphosphine@ZIF-8 (blue) and 220 mM 
triphenylphosphine@ZIF-8 (green). (b) Log10 scale of P/P0 to show the detailed N2 sorption 
under low pressure.  

The metalation of the encapsulated triphenylphospine in PPh3@ZIF-8 was done by 

treating a suspension of PPh3@ZIF-8 with rhodium(III) trichloride in ethanol under reflux 

for one hour. Importantly, independent measurements revealed that these reaction 

conditions resulted in only a minimal amount of 2-methyl imidazole linker exchange. TEM 
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images of the rhodium loaded PPh3@ZIF-8 (henceforth referred to as [Rh,PPh3]@ZIF-8) 

revealed no evidence for rhodium nanoparticle formation, indicating that the rhodium is 

highly dispersed. The conditions for the metalation reaction were patterned after the 

synthesis of Wilkinson’s catalyst (i.e. (PPh3)3RhCl), which results in the reduction of 

rhodium(III) trichloride to rhodium(I).15 As indirect evidence that a similar reduction 

occurred in our reactions, the elemental composition of [Rh,PPh3]@ZIF-8 analyzed by 

EDX revealed a Rh:Cl of 1:0.8, which was more consistent with rhodium(I) rather than 

rhodium(III) species. Interestingly, the Rh:P ratio was close to 1:1, which suggested a 

speciation that was different from Wilkinson’s catalyst where a Rh:P of 1:3 was expected. 

At this point in our investigations, the source of this discrepancy is uncertain, but it may 

be due to the inaccessibility of multiple PPh3 ligands to coordinate to rhodium in the ZIF-

8 pores. Importantly, a similar procedure was carried out by treating ZIF-8 (without PPh3) 

with rhodium(III) trichloride in ethanol under reflux. Elemental analysis of the resulting 

Rh@ZIF-8 from the ICP-OES of H2SO4 digested sample revealed a Rh:Cl that was close 

to 1:3, which suggested the presence of a rhodium(III) species. This result also suggested 

that PPh3 interacted with rhodium in [Rh,PPh3]@ZIF-8; otherwise, the reduction of 

rhodium(III) would not have occurred. 

The hydroformylation of various alkene substrates using [Rh,PPh3]@ZIF-8 was 

next carried out (Figure 2-22). Whereas Wilkinson’s catalyst and [Rh,PPh3]@ZIF-8 

demonstrated catalytic activity for the hydroformylation of 1-octene (Conversions: 98%, 

68% ), RhCl3@ZIF-8 and RhCl3 showed low catalytic activity (Conversions: 31%, 1%). 

These results provided a second piece of evidence that rhodium in [Rh,PPh3]@ZIF-8 was 
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in the rhodium(I) oxidation state, which was a more active oxidation state for 

hydroformylation than was rhodium(III).16 

           

 

Figure 2-22. Hydroformylation of 1-octene by Wilkinson catalyst (RhCl(PPh3)3),  
[Rh,PPh3]@ZiF-8, RhCl3@ZIF-8 and RhCl3.  

 

For all of the olefins evaluated, [Rh,PPh3]@ZIF-8 led to lower catalytic turnover 

compared to Wilkinson’s catalyst (Figure 2-23). However, in sharp contrast to Wilkinson’s 

catalyst, [Rh, PPh3]@ZIF-8 demonstrated a significant dependence on the size and shape 

of the olefin substrate. Larger olefins resulted in lower conversions compared to smaller 

olefins. For example, while 1-octene demonstrated nearly 68% conversion after 17 h, 1-

dodecene showed only 7%. Moreover, the branched vinylcyclohexane, which is too large 

to fit through the aperture of ZIF-8, demonstrated significantly retarded reaction rates 
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compared to the nearly isomeric 1-octene substrate. In addition to the size and shape 

dependence of the reaction rate, the selectivities for hydroformylation were also very 

different for [Rh, PPh3]@ZIF-8 compared to Wilkinson’s catalyst. The linear:branched 

ratios observed for isomeric aldehydes were higher for [Rh, PPh3]@ZIF-8 (~3:1 for all 

linear alkenes) than for Wilkinson’s catalyst (~1:1 for all linear alkenes), likely due to the 

effects of cage confinement on the formation of the intermediate.  

 

Figure 2-23. Hydroformylation of 1-octene, 1-dodecene, and vinylcyclohexane by using 
[Rh, PPh3]@ZIF-8 and RhCl(PPh3)3. 

 

The dramatic size dependence that [Rh, PPh3]@ZIF-8 demonstrated, coupled with 

the difference in selectivity observed for [Rh, PPh3]@ZIF-8 compared to Wilkinson’s 

catalyst, clearly indicated that [Rh, PPh3]@ZIF-8 contained a catalytically active species 

that was sequestered in the metal-organic framework. 
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2.6 Summary 

A method has been developed for the postsynthetic encapsulation of large guests (R6G, 

PPh3) with molecular diameters that exceed the framework aperture size in ZIF-8 

nanocrystals beyond what could be explained by framework flexibility. The approach 

capitalizes on the existence of linker exchange reactions, which our kinetic studies show 

proceed by a competition between associative and dissociative exchange mechanisms.  

Maximum guest encapsulation was observed under conditions where the dissociative 

mechanism predominates because the dissociation of at least one aperture-defining 2-

methylimidazole linker facilitates the formation of a short-lived “open” state in the pore 

with an expanded pore aperture size.  Compared to other encapsulation strategies, this 

approach does not require any specific electrostatic interaction between the guest and the 

MOF host, which may significantly expand the scope of molecular guests and MOF hosts 

suitable for forming host-guest composites.  In addition to the impact that these findings 

have on the ability to incorporate large guests in MOFs, important insight into the 

mechanism for linker exchange processes in MOFs was garnered.  Such processes have 

already been exploited for the synthesis of novel MOF architectures,5  useful catalyst 

species,7d  and sophisticated nanocomposite materials.7f   

Furthermore, a hydroformylation catalyst analog has been synthesized by combining the 

encapsulated triphenylphospine in PPh3@ZIF-8 with rhodium(III) trichloride, and the 

resulted composite [Rh, PPh3]@ZIF-8 shows higher linear to branch  selectivity and similar 

activity compared to its homogeneous analog. Although distinct catalytic performance has 

been shown for [Rh, PPh3]@ZIF-8, no exclusive evidence has shown the interactions 

between the rhodium and triphenylphospine. 
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Future investigations will look at the application of these findings to other classes of MOFs 

such as UiO-66, as well as the utilization of the new encapsulation methodology to expand 

the library of current catalytic systems that takes advantage of the size-selective capabilities 

of MOFs. After the exploration of aperture-opening encapsulation as a result of linker 

exchange, and the initial attempt in constructing catalytic host-guest composite, Chapter 3 

will discuss in length the first successful example of the construction of host-guest hybrid 

catalytic system for energy conversions by using this aperture-opening encapsulation 

method. The following Chapters 4 and 5 will expand the scope of the host-guest system, 

and investigate the importance of mass transport in catalysis as well as the interactions 

between the host and guest to develop better biological analogs in the future.  

2.7 Experimental Section  

General considerations Unless otherwise stated, all the reactions were carried out 

in the air without taking any precaution to protect reactions from oxygen or moisture.  Zinc 

nitrate hexahydrate (Aldrich, 99%), 2-methylimidazole (Aldrich, 99%), imidazole (Alfa 

Aesar, 99%), Basolite Z1200 (ZIF-8, Aldrich, produced by BASF), n-butanol (Alfa Aesar, 

≥99.4%), N,N′-dimethylformamide (Alfa Aesar, ≥99.8%), Rhodamine 6G (Acros, dye 

content ~95%), triphenylphosphine (Aldrich), sodium hydroxide (VWR), 

polyvinylpyrrolidone (PVP, Mw~29,000, Aldrich), deuterium oxide (Aldrich, 99.9 atom % 

D), and sulfuric acid-d2 solution (96-98 wt. % in D2O, 99.5 atom % D) were purchased 

from the indicated sources and used without further purification.  

Characterization Transmission electron microscope (TEM) images were obtained 

on JEOL JEM2010F operated at 200 kV. The powder x-ray diffraction patterns (PXRD) 

were collected on a Bruker AXS diffractometer with Cu Kα radiation (λ= 1.5418 Å). 1H 
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NMR spectra obtained for the kinetic experiments were recorded on a Varian (Agilent) 

(600 MHz) spectrometer. The line listing for the NMR spectra are reported as chemical 

shift in ppm. The nitrogen gas adsorption-desorption was carried out on Micromeritics 

ASAP 2020 provided by the University of Massachusetts Boston. Visible light absorption 

spectra were measured on a Thermo Scientific NanoDrop 2000c. 

Dye loading via linker exchange Variable amounts (9.3 mg/0.02 mmol, 29.2 

mg/0.06 mmol, 73.9 mg/0.15 mmol, and 292.4 mg/0.61 mmol) of Rhodamine 6G (R6G) 

were placed in a 20 mL glass scintillation vial. 2-methylimidazole (Hmim) (181 mg, 2.2 

mmol) and activated ZIF-8 crystals (75 mg, 0.33 mmol Zn(mim)2) were added to the vial 

with the guest molecules. Next, n-butanol or DMF (15 mL) was added to the vial, and the 

solids were suspended by sonication for 10 minutes. The vial was capped and placed in an 

isothermal oven at 100 °C for 7 days. The guest-loaded ZIF-8 was collected by 

centrifugation at 5000 rpm for 10 minutes. The solid precipitate was triturated by decanting 

the methanol supernatant then re-suspended into fresh methanol (10 mL). The 

centrifugation and trituration steps were repeated at least 5 times until the supernatant was 

completely transparent. The residual solvent was removed from the isolated solids in a 

vacuum oven at 100 °C overnight. The mass recovery of the product was 92%. 

PPh3 loading via linker exchange Variable amounts of PPh3 (866 mg/3.3 mmol 

and 649 mg/2.5 mmol) were placed in a 20 mL scintillation vial. 2-methylimidazole (181 

mg, 2.2 mmol) and activated ZIF-8 crystals (75 mg, 0.33 mmol Zn(mim)2) were added to 

the vial with the guest molecules. Next, n-butanol (15 mL) that had been sparged with Ar 

gas for 30 min to remove dissolved O2 was added to the vial. The vial was capped and the 

solids were suspended by sonication for 10 minutes. The vial was placed in an isothermal 
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oven at 100 °C for 7 days. The guest-loaded ZIF-8 was collected by centrifugation at 5000 

rpm for 10 minutes. The solid precipitate was triturated by decanting the methanol 

supernatant then re-suspended into fresh methanol (10 mL). The centrifugation and 

trituration steps were repeated at least 5 times. The residual solvent was removed from the 

isolated solids in a vacuum oven at 100 °C overnight. The mass recovery of the product 

was 92%. 

The effect of exogenous linker concentration R6G (73.9 mg, 0.15 mmol) and 

activated ZIF-8 crystals (75 mg, 0.33 mmol Zn(mim)2) were placed in a 20 mL scintillation 

vial. Variable amounts (0 mg, 60.3 mg/0.73 mmol, 120.6 mg/1.47 mmol, 181.0 mg/2.21 

mmol, and 482.4 mg/5.88 mmol) of 2-methylimidazole were added to the vial with the 

guest and ZIF-8 mixture. Next, n-butanol (15 mL) was added to the vial, and the solids 

were suspended by sonication for 10 minutes. The vial was capped and placed in an 

isothermal oven at 100 °C for 7 days. The guest-loaded ZIF-8 was collected by 

centrifugation at 5000 rpm for 10 minutes. The solid precipitate was triturated by decanting 

the methanol supernatant then re-suspended into fresh methanol (10 mL). The 

centrifugation and trituration steps were repeated at least 5 times until the supernatant was 

completely transparent. The residual solvent was removed from the isolated solids in a 

vacuum oven at 100 °C overnight.  

Synthesis of micron-sized ZIF-8 The synthesis of micron-sized ZIF-8 followed a 

published procedure.17  A 25 mM solution of Zn(NO3)2·6H2O in methanol (0.125 mmol, 5 

mL) was combined with a 25 mM solution of 2-methylimidazole (0.125 mmol, 5 mL) in a 

20 mL scintillation vial.  The reaction was carried out at room temperature for 24 hours 

without stirring. The product was collected by centrifugation at 5000 rpm for 10 minutes.  
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The solid precipitate was triturated by decanting the methanol supernatant then re-

suspended with fresh methanol (10 mL). The centrifuging and trituration steps were 

repeated 3 times. The residual solvent was removed from the isolated solids in a vacuum 

oven at 100 °C overnight. The yield of ZIF-8 was 8.4%. 

Synthesis of nano-sized ZIF-8 The synthesis of nano-sized ZIF-8 is based on a 

previous procedure with some modifications.18 Zn(NO3)2·6H2O (150 mg, 0.504 mmol) and 

2-methylimidazole (330 mg, 4.02 mmol) were weighed and transferred to a 30 mL glass 

vessel and 20 mL scintillation vial, respectively. The solids were dissolved in methanol 

(7.15 mL each). The glass jar was then equipped with a magnetic stir bar, and placed on a 

stir plate. Next, under vigorous stirring, the 2-methylimidazole solution was poured into 

the jar and the mixture was stirred at room temperature for 6 hours. The product was 

collected by centrifugation at 7000 rpm for 10 minutes.  The solid precipitate was triturated 

by decanting the methanol supernatant then re-suspended with fresh methanol (10 mL). 

The centrifuging and trituration steps were repeated 3 times. The residual solvent was 

removed from the isolated solids in a vacuum oven at 100 °C overnight. The yield of ZIF-

8 was 83%. 

Visible light absorption spectroscopy Dried R6G@ZIF-8 (10 mg) was digested 

in a 1 wt% hydrochloric acid/methanol solution (2 mL). After stirring for 1 minute, the 

resulting solution was transferred to a glass cuvette to measure the visible light absorption 

spectrum at 530 nm on a Thermo Scientific NanoDrop 2000c. The amount of R6G loading 

was determined with a calibration obtained by monitoring the absorbance of light at 530 

nm at different R6G concentration (extinction coefficient= 0.0934 µM-1cm-1 at 530 nm). 

 PVP washing Dried R6G@ZIF-8 (15 mg) was suspended in a 14 wt. % 
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PVP/methanol solution (10 mL) by sonication for 10 minutes.  The solid precipitate was 

collected by trituration after centrifugation at 5000 rpm for 10 minutes. The isolated solid 

was then re-suspended with fresh 14 wt. % PVP/methanol (10 mL), and the centrifugation 

and trituration steps were repeated at least 5 times until the R6G content was constant, as 

determined by UV-Vis absorption spectroscopy. The PVP-washed product was then re-

suspended with 10 mL methanol to remove any excess PVP, and the final product was 

collected by centrifugation at 5000 rpm for 10 minutes followed by decanting of the 

supernatant.  The solid was then dried overnight in vacuum oven at 100 °C to remove any 

residual solvent. The mass recovery was 10 mg (66%). 

 Molecular size calculations The molecular sizes of R6G and triphenylphosphine 

were estimated by using the Spartan 10 software package. Hartree-Fock method with the 

basis set 3-21G was used to minimize structures. The greatest interatomic distances for 

each molecule are given as the effective molecular sizes in Figure 2-2, 2-22. 

Linker exchange kinetics The kinetics of exchange of Zn(mim)2 (ZIF-8) with 

exogenous imidazole (Him) to yield Zn(mim)2−x(im)x (SALEM-2) were followed using a 

modified procedure based on literature precedence.9 Due to the heterogeneous nature of 

the exchange reaction, accurate sampling could not be guaranteed, and thus, for the kinetics 

experiment, each point shown in Figure 2-10 is the result of independent measurements 

carried out at different reaction times by monitoring the amount of linker incorporated in 

the solid product.  Generally, each reaction was repeated three times, the average of which 

is used for the kinetic fits. 
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Dried ZIF-8 (5.0 mg, 0.022 mmol Zn(mim)2) was placed in a 3 mL glass serum vial. 

Solids were suspended by sonication in an appropriate volume of n-butanol (tabulated 

below) before the reaction was initiated with exogenous linker.  A 588 mM solution of 

imidazole in n-butanol was added in an appropriate volume (see below), and vials were 

immediately sealed with PTFE-lined aluminum crimp caps. Immediately, the vials were 

shaken manually for 5 s, and placed into the aluminum heating blocks of a Labmate 

synthesizer thermostated at 70 °C.  The reactions were incubated at 70 ºC with 450 rpm 

shaking for a predetermined amount of time. 

Data point  1 2 3 4 

im/mim (mol/mol) 5 10 20 30 

Vol. n-butanol (mL) 2.625 2.250 1.500 0.750 

Vol. 588 mM Him (mL) 0.375 0.750 1.500 2.250 

 

At the end of the allocated time, the vials were removed and immediately immersed 

in a water bath held at 0 ºC. Suspended solids were transferred quickly into 3 mL of 

methanol chilled at 0 °C in a 15 mL centrifuge tube and centrifuged at 3300 rpm for 5 min.  

The solid precipitate was triturated by decanting the supernatant, and the product was re-

suspended in fresh methanol (6 mL).  The centrifugation and trituration was repeated 3 

times with 6 mL of methanol each time. The isolated solids were transferred to pre-weighed 
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glass vials and the residual solvent was removed in a vacuum oven at 100 °C overnight. 

Dried samples were weighed and then digested in a solution of 0.900 mL deuterium oxide 

and 0.100 mL 98% d2-sulfuric acid in D2O along with tetramethylammonium bromide (0.7 

mg) that was used as an internal standard for analysis by 1H-NMR spectroscopy. 

The spin-lattice relaxation times (T1) of each proton in solution were determined 

by the inversion recovery method and are detailed in the following table. In light of the 

measured relaxation times, 1H-NMR spectra were acquired using an acquisition time (at) 

of 18 s and an interpulse delay (d1) of 54 s, in order to make (at + d1) ~ 5 × the longest T1. 

A pulse angle of 90 ° was used and 16 transients were taken per acquisition. 

 

proton 

(in red)    

H2O 
  

δ 
(ppm) 7.85 6.66 6.45 4.94 2.35 1.79 

T1 (s) 13.74 ± 
0.28 

12.06 ± 
0.21 9.72 ± 0.26 3.01 ± 

0.11 5.65 ± 0.12 4.44 ± 
0.32 

 

The quantity of imidazole and 2-methylimidazole in solution were determined 

using the formulae: 

AP = area determined by integration of peak (P), as defined in Figure S9 

HN N

H
HN N

H H

HN N

HH

N

CH3

CH3

H3C CH3 HN N

CH3
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Synthesis of 85, 125, 240, and 400 nm ZIF-8 The synthesis procedure was adapted 

from previous reports.19 A 1.32 M solution of 2-MeImH was prepared by adding 10.837 g 

2-MeImH to a volumetric flask and diluting to 0.100 L with deionized water. A 0.01 M 

cetyltrimethylammonium bromide (CTAB) solution was prepared by adding 0.3645 g of 

CTAB to a volumetric flask and diluting to 0.100 L with deionized water (dissolves slowly). 

A 0.024 M Zn(NO3)2 solution was prepared by adding 0.7140 g Zn(NO3)2·6H2O to a 

volumetric flask and diluting to 0.100 L with deionized water. Reactions were carried out 

in stainless steel autoclaves (Parr) with 45 mL capacity PTFE liners. In a PTFE liner, 17.5 

mL of the 1.32 M 2-MeIm solution was combined with variable amounts of the 0.01 M 

CTAB solution: 1.260 mL (85 nm), 1.008 mL (125 nm), 0.504 mL (240 nm), and 0.252 

mL (400 nm). The solutions were then mixed by stirring at 500 rpm for 5 min followed by 

the addition of 17.5 mL of the 0.024 M Zn(NO3)2 solution. Stirring was continued for 5 

min, after which the stirbar was removed and the PTFE liner was transferred into the 

stainless steel autoclave. All of the solutions became cloudy within 2 min after Zn(II) 

addition, with higher concentrations of CTAB resulting in delayed precipitation. The 

autoclaves were sealed and left in a 120 °C oven for 6 h. After cooling, the ZIF-8 crystals 
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and mother liquor were divided into two 45 mL centrifuge tubes to which was added 20 

mL of methanol each. The crystals were then collected by centrifugation at 14k rpm for 

either 30 min (85 and 125 nm) or 15 min (240 and 400 nm). The supernatants were decanted 

and the solids were consolidated from two tubes into one tube per reaction with 20 mL of 

fresh methanol. This first wash was then collected by centrifugation at either 14k rpm for 

20 min (85 and 125 nm) or 10k rpm for 15 min (240 and 400 nm) and the supernatants 

were decanted. The washing procedure was then repeated for a second wash with 20 mL 

fresh methanol. The resulting solids were left to soak overnight in 20 mL fresh methanol 

in a third wash to allow trapped species such as unreacted 2-MeImH to diffuse out of the 

microporous crystals. The next day, the particles were collected as before and the 

supernatants decanted. The products were dried at 70 °C in air. Yields were around 90 % 

for all four sizes, with representative product weights of 83.7 mg (85 nm), 86.5 mg (125 

nm), 83.2 mg (240 nm), and 84.9 mg (400 nm). 
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Figure 2-24. TEM images used to calculate the grain size distribution of the commercial 
sample, Basolite Z1200, with a D50 of 265 nm. White lines are the grain diameter, d, 
measurements.  

 

 

Figure 2-25. TEM images used to calculate the grain size distribution of the sample “M” 
with a D50 of 85 nm. White lines are the grain diameter measurements. For this sample 
grain size, d, equals particle size. 
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Figure 2-26. TEM images used to calculate the grain size distribution of the sample “L” 
with a D50 of 125 nm. White lines are the grain diameter measurements. For this sample 
grain size, d, equals particle size. 

 

Figure 2-27. TEM images used to calculate the grain size distribution of the sample “XL” 
with a D50 of 239 nm. White lines are the grain diameter measurements. For this sample 
grain size, d, equals particle size. 

 

Figure 2-28. TEM images used to calculate the grain size distribution of the sample “XXL” 
with a D50 of 404 nm. White lines are the grain diameter measurements. For this sample 
grain size, d, equals particle size. 
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Figure 2-29. TEM images used to calculate the grain size distribution of the sample with 
a D50 of 1.96 µm. White lines are the grain diameter measurements. For this sample grain 
size, d, equals particle size. 

 

 

Figure 2-30. TEM images used to calculate the grain size distribution of the sample with 
a D50 of 7.76 µm. White lines are the grain diameter measurements. 

Preparation of [Rh, PPh3]@ZIF-8 To a 20 mL scintillation was added 150 mg of 

PPh3@ZIF-8 (containing 2 wt% triphenylphosphine) and it was suspended in ethyl alcohol 

(4 mL). RhCl3 (0.79 mg, 4 mol, 0.33 eq.) was added to this suspension, the vial was capped 

and heated to 90 °C for 45 minutes. The vial was gently agitated throughout the course of 

the reaction. The solution was cooled to room temperature and the solid was isolated by 
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filtration and washed with cold ethanol (3x3 mL). Afterwards, the solid was dried in 

vacuum affording a yellowish solid in a quantitative yield.   

Preparation of Rh(PPh3)2(CO)Cl16a All the glassware were dried in oven 

overnight before being transferred to the glove box.  The following procedure was carried 

out  in  a  glove  box  under  N2  atmosphere. [Rh(CO)2Cl]2 (15mg, 0.038 mmol) dissolved 

in dry  benzene  (2 mL)  was  treated  slowly  dropwise  with triphenylphosphine  (20 mg,  

0.076 mmol)  in  dry  benzene  (1 mL)  with  vigorous  stirring.  The triphenylphosphine 

was further rinsed out with dry benzene (0.5 mL) twice. The reaction was carried out for 2 

hours in the glove box with stirring. After being taken out of the glove box, the reaction 

mixture was concentrated by removing the solvent. Addition of pentane (4 mL) gave the 

orange-yellow product. The solid was re-suspended by sonication and re-precipitate the 

solid after centrifugation at 4300rpm for 3 minutes.  The isolated  solid  was  then  re-

suspended  with fresh  pentane  (4 mL),  and  the  sonication, centrifugation and decanting 

steps were repeated three times. The final product was dried in vacuum and gave 75% yield. 

1H NMR (DMSO-d6, 500 MHz). δ 7.15 ppm (d, 12H), δ 7.44 ppm ( t, 12 H), δ 7.47 ppm 

(t, 6 H). NMR matches literature reports.   

 

General procedure for hydroformylation 

General consideration Hydroformylation was performed in 50 Ml Parr reactor 

using 1:1 H2/CO supplied by Airgas,  Inc.  Nuclear  Magnetic  Resonance  (NMR)  spectra  

were  recorded  at  ambient  temperature  on spectrometers operating at 500 MHz, and gas 

chromatography (Shimadzu,GC-2014, 30 °C 5 mins, 15 °C/min up to 250 °C for 15 mins) 
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were also applied to analyze the products. Eight glass liners used as reaction container 

allows multiple reactions to run in parallel.  

  1-octene, 1-dodecene and vinylcyclohexane substrates were used for the 

hydroformylation of n-alkene over ZIF-8 encapsulated catalyst. The catalytic reactions 

were carried out in the following way. In the 20 mL glass ampules were added the reaction 

mixture containing the olefin substrate (1mmol, 1M) in toluene, and the catalyst. The olefin 

and the rhodium ratio was kept at 2000/1, for example, 1 mmol olefin, 16 mg [Rh, 

PPh3 ]@MOF or  0.12  mg  Wilkinson  catalyst.  One ampule containing toluene was 

included in the reactor to avoid cross-talk over the course of reaction.  The Parr reactor was 

initially purged with syngas (1:1 H2/CO) for 5 minutes followed by being pressurized up 

to 34 bar at room temperature. After the pressure was stabled for 10 minutes, the gas tank 

was closed and the reaction was heated to 80 °C. The reaction was stirred at 300 rpm at 

80 °C for 17 hours. The reaction mixture was sonicated shortly and transferred in to a 20 

ml dram vial.  After centrifugation at 4300 rpm for 3 mins, the catalyst precipitated at the 

bottom of the vial. The remaining oil was analyzed by 1H NMR and GC.   
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Chapter 3. Aperture-opening Encapsulation of a Transition Metal Catalyst in 

a Metal-organic Framework for CO2 Hydrogenation  

3.1 Strategies for constructing host-guest systems with a metal-organic framework 

As discussed in the previous chapters, host-guest composites using MOFs as hosts  

have proven to be a versatile platform for a wide variety of applications including gas 

storage,1 drug delivery,2 chemical sensing,3 and catalysis.4  

Recently, we have developed a new approach to encapsulate guest molecules into 

MOFs that circumvents lengthy synthetic sequences and incompatible reaction conditions.5 

In this approach, molecular guests larger than the aperture size of a MOF host are 

encapsulated into the pores by taking advantage of aperture-opening events that occur as a 

result of dissociative linker substitution reactions (Scheme 3-1). In this work, we 

demonstrate that the solvent-dependent aperture-opening process exists even in a 

chemical/thermal robust MOF,6 which led us to pursue an effective strategy for using 

MOFs to synthesize host-guest composites for chemical catalysis (Scheme 3-1). 
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Scheme 3-1 

 

The strategy involves encapsulating catalysts and running catalytic reactions under 

different conditions. Solvents that favor dissociative linker exchange were used to promote 

the encapsulation of a molecular guest via aperture-opening events (e.g. (1) to (4), Scheme 

1). Molecular catalyst leaching from the framework during catalysis is prevented by 

carrying out catalytic reactions in solvents where dissociative linker exchange is slow (e.g. 

(4) to (3), Scheme 3-1). Herein, implementation of this strategy is demonstrated successful 

with the encapsulation of a highly active homogeneous CO2 hydrogenation catalyst7 into 

the robust metal-organic framework, UiO-66 (shown as the octahedral cage in scheme 3-

1).8 The encapsulated catalyst exhibited properties that were a hybrid of homogeneous and 

heterogeneous catalysts, and evidence is provided that supports that the majority of the 

active catalyst was encapsulated inside of the MOF rather than on its surface. 
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3.2 Dye encapsulation in UiO-66 though aperture-opening encapsulation 

The robust UiO-66 was anticipated to be compatible with a variety of reaction 

conditions. As a result, UiO-66 was selected as the host material to demonstrate this 

concept instead of the less robust zinc imidazolate-based MOF ZIF-8 was previously 

investigated in chapter 2. In order to verify that the aperture-opening events in UiO-66 can 

be used to encapsulate guests similarly to what have been observed in ZIF-8,5 the 

fluorescent dye Rhodamine 6G (R6G) was used as a model guest molecule (see 

experimental section for details). Dye encapsulation carried out by Tom Rayder was 

observed when UiO-66 was suspended in protic polar solvents (Figure 3-1), and 

encapsulation of R6G was depressed when exogenous terephthalic acid was present (Figure 

3-2). These results are similar to those obtained with ZIF-8 (See Chapter 2), suggesting 

that R6G encapsulation occurred as a consequence of aperture-opening events that result 

from linker dissociation which are more prominent at low concentrations of exogenous 

terephthalic acid.10 
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Figure 3-1. Rhodamine 6G encapsulated (parts per thousand) in UiO-66 at 55 ºC and 85 

ºC in various solvents. Ppth represents parts per thousand.  

  

 

 

Figure 3-2. Effect of exogenous linker addition on Rhodamine 6G encapsulation at 85 ºC 
for five days in methanol and DMF. Ppth represents parts per thousand. 
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The appearance of new defects is a common concern in post treatment of MOF 

materials.5 The surface area of UiO-66 obtained from nitrogen sorption before (947.6 m2/g) 

and after aperture-opening events (948.8 m2/g) indicated that no additional defects were 

generated after the encapsulation (Figure 3-3).8b  

 

Figure 3-3. Nitrogen adsorption and desorption of UiO-66 before and after linker 

exchange. 

Next, similar dye encapsulation experiments were used to identify the appropriate 

conditions required for encapsulation of a transition metal complex and to discern the 

orthogonal conditions needed to suppress leaching of the guest catalyst molecules during 

catalysis (Figure 3-4). The amount of encapsulated R6G was significantly higher than 

surface bond dye, and more encapsulation of R6G occurred at elevated temperature in polar 

protic solvents (Figure 3-4a, b). Similarly, in experiments that involved exposing R6G 
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encapsulated in UiO-66 to various solvents, dye leaching into solution was highly 

suppressed in aprotic solvents compared to protic solvents (Figure 3-4c).  

 

 

Figure 3-4. a) Encapsulation of R6G in UiO-66 in methanol at 55 ºC for 5 days; 

[Ru]@UiO-66 in DMF at 55 ºC for five days resulted in no change in [R6G]. b) Amount 

of dye encapsulated in MOF in neat solvent at 55 ºC for 5 days. c) percent of original 

encapsulated dye remaining in R6G@UiO-66 after exposure to solvents at 55 ºC for 2 days. 

Due to the linker exchange reaction occurring at the solid-liquid interface, and due 

to the transient nature of the intermediate involved, direct observation of the proposed 
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aperture-opened intermediate (e.g., 2, Scheme 3-1) is difficult. Therefore, to further probe 

the mechanism for guest encapsulation, two additional experiments were carried out 

(Figure 3-5).  

 

Figure 3-5. a) Dialysis experiment with UiO-66 in water at 55 ºC for 18 days; empirical 
formula for UiO-66 as determined from TGA analysis of MOF shown below corresponding 
dialysis bags. b) TGA trace of samples UiO-66 before dialysis (black), UiO-66 after 
dialysis after thermal activation (red) 

 

Evidence for the existence of the aperture-opened intermediate was obtained by 

subjecting UiO-66 to dialysis under conditions that were best for encapsulation (Figure 3-
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5a). We hypothesized that if linkers were to dissociate from UiO-66 to form the aperture-

opened intermediate, then they would diffuse through the dialysis bag instead of re-

associating with UiO-66. Periodic removal of water external to the dialysis bag would 

ultimately result in UiO-66 that contained more missing terephthalic linkers. Consistent 

with these expectations, thermogravimetric analysis (TGA) of UiO-66 after dialysis 

revealed that there was less weight percentage loss around 400 °C for the UiO-66 after 

dialysis in water for 18 days, which was indicative of less terephthalic acid linkers per 

zirconium node compared to UiO-66 before dialysis8b (Figure 3-5b). 

 Next, to illustrate that encapsulation of guest molecules requires properly-sized 

guest molecules for diffusion through opened apertures (e.g. 2 ® 3, Scheme 3-1), Brilliant 

Blue G (BBG) was subjected to the same encapsulation conditions (Figure 3-6a). BBG (26 

Å) is larger than the successfully-encapsulated R6G (12 Å) (Figure 3-6b), and the size of 

the opened apertures that would result upon dissociation of a terephthalic acid linker (12 

Å). Therefore, if aperture-opening was the key step for R6G encapsulation, BBG should 

not be encapsulated. Consistent with this rationale and unlike R6G, BBG demonstrated no 

appreciable incorporation (0.01 mmol/mg) beyond the amount adsorbed to the surface of 

the MOF (Figure 3-6c). In addition, the leaching experiments were carried out using R6G 

dye as a probe, where the encapsulated dye molecules were exposed to various solvents 

(Table 3-1). Understanding the nature of guest leaching was crucial for applying this 

aperture-opening encapsulation strategy in catalysis. The leaching experiment here using 

dye as a probe provided insight into the leaching behavior of the following organometallic 

complexes.  
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Figure 3-6. a) Attempted encapsulation of BBG in UiO-66 in methanol at 55 ºC for five 
days.  b) Comparison of molecular size between MOF host (Left), Rhodamine 6G (Middle), 
Brilliant Blue G (Right). c) Comparison of the amount of Brilliant Blue G physically 
adsorbed on UiO-66 and incorporated through aperture opening encapsulation, and its 
comparison to R6G encapsulated in UiO-66 and on UiO-66. 
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Table 3-1. Observation of guest leaching from R6G@UiO-66 in DMF, methanol, a 

DMF/DBU mixture, and water for catalysis. 

 

 

3.3 Encapsulation of a homogeneous catalyst into UiO-66  

One catalyst candidate identified for CO2 hydrogenation reaction was 

(iPrPNP)Ir(CO)H3 (iPrPNP = 2,6-bis((i-propyl-phosphino)methyl)pyridine) (1) by Nozaki.  

Another catalyst  (tBuPNP)Ru(CO)HCl (tBuPNP = 2,6-bis((di-tert-butyl-

phosphino)methyl)pyridine) (2) was a highly active catalyst in non-aqueous condition.9  2 

was popularized by Milstein10 and explored extensively for CO2 hydrogenation by 

Pidko.7b,11 Both catalysts are suitable as a guest molecule in UiO-66 because they are larger 

than the UiO-66 aperture size but smaller than its pore size (Figure 3-7). It is also 

appropriate for our strategy because both are soluble and stable in methanol. 2 is an active 

catalyst for CO2 hydrogenation in DMF/1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) 

mixtures, while 1 is active in aqueous alkaline base.11b  
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Figure 3-7. Comparison of molecular size between MOF host (Left), (iPrPNP)Ir(CO)H3 

(Middle), and (tBuPNP)Ru(CO)HCl (Right). 

The encapsulated iridium and ruthenium catalysts, henceforth referred to as 

1@UiO-66 and 2@UiO-66, were prepared by exposing UiO-66 to the complexes in 

methanol at 55 ºC for five days.12 After a pretreatment procedure to remove surface-bound 

complex (See Experimental Section), the loading was determined from analysis of the 

digested solid via inductively coupled plasma optical emission spectrometry (ICP-OES). 

From the ratio of ruthenium to zirconium in 2@UiO-66, the catalyst loading was 

determined to be 0.35 wt. ‰. The phosphorous to ruthenium ratio was 2:1, suggesting that 

the ligand did not dissociate from the ruthenium complex. 1H-NMR analysis of the 

ruthenium complex that remained in the supernatant indicated that it was unchanged during 

encapsulation, which further supported the absence of complex decomposition during the 

loading process. Powder X-ray diffraction (PXRD) analysis indicated that the crystal 

structure of UiO-66 was unchanged after encapsulation (Figure 3-8). The same analysis 

was applied for 1@UiO-66, where ICP-OES and PXRD analysis suggested the iridium 

complex retained its structural integrity after the encapsulation.   
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Figure 3-8. Comparison of crystallinity of pristine UiO-66 (blue), 2@UiO-66 before 

catalysis (red) and 2@UiO-66 after 5 cycles of catalysis (yellow) by PXRD. 

Catalyst 1 and 1@UiO-66 were subjected to catalysis due to the easy access to the 

catalyst. The catalytic results showed the encapsulation did not sacrifice the accessibility 

of the catalyst where both homogeneous catalyst and the encapsulated catalyst gave similar 

yield under the same condition. Again, the ICP-OES analysis of the 1@UiO-66 revealed 

that the iridium catalyst still retained its structural integrity after the catalysis with 0.42 wt. 

‰ catalyst loading.  

To provide additional support that the iridium complex in 1@UiO-66 is 

encapsulated in the MOF rather than on its surface, CO2 hydrogenation reactions were 

carried out in the presence of thiols which are known poisons for many transition metal 

catalysts (Figure 3-9). The catalytic results showed that the activity of 1@UiO-66 was less 

susceptible to the poisoning, suggesting the active site was indeed encapsulated in the cage.  
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Figure 3-9. (a) Comparison of the activity of encapsulated (red) and homogeneous (blue) 
catalysts in the presence of a bulky thiol poison, 1-dodecanethiol. (b) Recyclability test of 
1@UiO-66.  

 

One benefit of heterogenizing homogeneous catalyst is to increase its recyclability. 

1@UiO-66 show poor recyclability, as the TON gradually decreased, dropping 25% in the 

2nd cycle and 50% in the 3rd cycle (Figure 3-10). Elemental analysis also showed that 26% 

and 55% of 1 leached out from the framework in the 2nd cycle and the 3rd cycle, according 

to the ICP-OES analysis of the digested 1@UiO-66. These results suggested that the 

1@UiO-66 structure had significant leaching issue during catalysis, despite the success of 

the initial encapsulation of 1 into the cavity of UiO-66. 
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Figure 3-10. Recyclability test of 1@UiO-66. Elemental analysis also showed that 26% 
and 55% of 1 leached out from the framework in the 2nd cycle and the 3rd cycle, 
according to the ICP-OES analysis of the digested 1@UiO-66. 

 

Past reports have suggested that linker exchange is sensitive to the acidity of the 

solvent.13 Hence, we speculated that leaching of 1 was likely caused by the increased 

acidity of the solvent during catalysis as sodium hydroxide was consumed to form formate.  

Catalysis was thus performed with a variety of buffer solutions, such as TAPS/TAPS 

sodium salt buffer ([Tris(hydroxymethyl)methyl]-3-aminopropanesulfonic salt), 

Et2NHCl/Et2NH buffer, and Borax buffer, to test this hypothesis. 
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Table 3-2. CO2 hydrogenation by 1 and 1@UiO-66 using TAPS buffer with various 

conditions.   

 

The yield to formate decreased by half as [TAPS] decreased from 1 M to 0.2 M, 

which suggesting the reaction became base limited at 0.2 M (Table 3-2, Entry 1, 2). Under 

[TAPS]=0.2 M condition, the TON of homogeneous catalyst was brought back to around 

9000 by using three quarters of less catalyst loading in the reaction (Table 3-2, Entry 2,3). 

This observation suggested the homogeneous catalyst was likely deactivated under high 

catalyst loading due to bimolecular decomposition. The poisoning study was next carried 

out for homogenous catalyst under the aforementioned condition and the catalyst lost its 

75% activity in the present of 1-dodecanethiol (Table 3-2, Entry 3,4) Interestingly, in the 

present of additional terephthalic acid, the homogeneous catalyst was less prone to 

poisoning compared to reactions without terephthalic acid (Table 3-2, Entry 5). With the 

understanding of how [TAPS] and thiol poison work in the homogeneous catalyst system, 
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we next set out to test the catalytic performance of the encapsulated catalyst under those 

conditions. Notably, PXRD analysis of the 1@UiO-66 after the catalysis revealed UiO-66 

was incompatible with the combination of 0.1 M [TAPS] and 1-dodecanethiol (Table 3-2, 

Entry 6, 7). The [TAPS] was further reduced to 0.05 M, and unfortunately, UiO-66 still 

turned partial amorphous after the catalysis (Table 3-2, Entry 8, 9).  All these experiments 

suggested TAPS failed to improve the system in terms of both the poison study and the 

compatibility with the encapsulated catalyst.  

Next, Et2NHCl/Et2NH buffer, and Borax buffer were attempted to improve the 

catalytic system. However, 1@UiO-66 was not compatible under either of these two buffer 

systems.  

The failed improvement of 1@UiO-66 has led us to reevaluate the system and 

investigation was drawn to 2@UiO-66 which was active in a aprotic and polar solvent 

instead, such as DMF.  

Due to the robustness of the catalyst, 2@UiO-66 was mixed with virgin UiO-66 

with no catalyst in the framework to lower the catalyst loading. Afterwards, a pretreatment 

method involving running the catalyst at elevated temperature was necessary to remove all 

the surface bond catalyst.   Consistent with the complex integrity being maintained during 

the encapsulation process was the observation that 2@UiO-66 is an excellent catalyst for 

CO2 hydrogenation (TON: 2.9E05), comparable to the homogeneous ruthenium catalyst 

(TON: 3.1E05). A key difference between the homogeneous ruthenium catalyst, and the 

2@UiO-66 encapsulated catalyst is the ability to recycle the catalyst.14 As shown in Figure 

3-11a, 2@UiO-66 retained its activity through five cycles. PXRD analysis after the fifth 

cycle and the absence of terephthalic acid in the 1H-NMR spectrum of the reaction 
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supernatant provided support that the UiO-66 host maintained its integrity. The ruthenium 

loading in 2@UiO-66 after the fifth cycle detected by ICP-OES was 0.35 wt. ‰ with a 

phosphorous: ruthenium ratio of 2.4, similar to the catalyst composition prior to the first 

cycle. Additionally, the supernatant from reactions using 2@UiO-66 was inactive for CO2 

hydrogenation, providing more evidence that catalyst leaching did not occur.  

 

Figure 3-11. a) Activity of 2@UiO-66 (TON = mmol HCOO-/mmol Ru) upon catalyst 
recycling. b) comparison of catalyst activity in first cycle (dark) to that upon addition of a 
second aliquot of DBU (light).  
 

Recyclability and stability of the encapsulated catalyst was further evaluated by an 

alternative method. A second aliquot of DBU was added to reactions catalyzed by 2 and 

2@UiO-66, and the reaction mixtures were then re-subjected to the hydrogenation 

conditions. A significant decrease in activity was observed for the reaction catalyzed by 2, 
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whereas activity remained virtually the same for the reaction catalyzed by 2@UiO-66 

(Figure 3-11b). This outcome suggests that bimolecular decomposition limits recyclability 

of the homogeneous catalyst, which is not the case for 2@UiO-66.11b Additional evidence 

that the homogeneous catalyst undergoes bimolecular catalyst deactivation more readily 

than the encapsulated catalyst was obtained by evaluating the activity of the two catalysts 

at different catalyst concentrations (Figure 3-12). The homogeneous catalyst demonstrated 

a polynomial decrease in turnover number with increasing catalyst loading, which is 

characteristic of a catalyst that undergoes bimolecular catalyst deactivation. In contrast, 

turnover in 2@UiO-66 was constant irrespective of catalyst loading, which is expected for 

a catalyst that does not undergo bimolecular decomposition. 

 

Figure 3-12. Turnover number for homogenous catalyst (blue) and hybrid catalyst (red) as 

a function of catalyst concentration (mM). 
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The susceptibility of the catalysts to poisoning was next probed by carrying out 

catalysis in the presence of a series of thiols (Figure 3-13). In all cases, catalytic activity 

was higher for 2@UiO-66 compared to 2 in the presence of the thiol poisons. Moreover, 

all reactions catalyzed by 2 were poisoned to approximately the same degree regardless to 

the identity of the thiol poison. In contrast, poisoning in reactions catalyzed by 2@UiO-66 

was dependent on the identity of the thiol, with the most effective poisons being the least 

sterically demanding. These results are consistent with the catalyst being situated inside, 

instead of on the surface of UiO-66, because more facile diffusion of the smaller thiols 

through the aperture of UiO-66 is expected, resulting in more poisoning of the catalyst than 

with larger and more sterically bulky thiol poisons.15  

For comparison, a sample in which the complex was adsorbed to the surface of MOF 

crystals was also prepared, which will be referred to as 2onUiO-66. After pretreatment of 

2onUiO-66, the catalyst loading was determined to be nearly an order of magnitude lower 

([Ru] = 0.0375 ‰) than the loading in 2@UiO-66.  
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Figure 3-13. Comparison of the activity of homogeneous (left) and encapsulated (right) 
catalysts in the presence of differently sized thiol poisons. 
 

So far we have been able to show that the solvent dependency of the aperture-

opening encapsulation allows us to rationally choose solvents that prevent active sites from 

leaching in catalysis. The combined results of 1@UiO-66 and 2@UiO-66 again suggest 

that leaching of the active site during catalysis is facilitated by protic and polar solvents 

such as H2O, and can be prevented in aprotic and polar solvent such as DMF.  

3.4 Summary  
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In summary, a new method for encapsulation of a transition metal complex within 

a MOF was developed that capitalizes on the existence of solvent-dependent, aperture-

opening events resulting from dissociative linker exchange reactions in MOFs. An 

encapsulated catalyst for CO2 hydrogenation prepared using this method exhibited greater 

recyclability, slower bimolecular deactivation events, and resistance to poisoning 

compared to its homogeneous counterpart. It is necessary to select a catalyst that is stable 

in protic solvent and active in aprotic solvent to maximize the aperture-opening 

encapsulation and minimize the leaching issue during the catalysis. These benefits are a 

direct consequence of the molecular size-selectivity and isolation of individual complexes 

encapsulated within the solid framework. Notably, the new method for encapsulation does 

not require engineering of the guest or host materials, allowing for independent 

modification of the host material and guest catalyst structure. This feature makes it easier 

to exploit the unique advantages for catalysts encapsulated in molecularly sized cages.16  

The distribution of active sites is important for the catalytic performance of the 

host-guest composite. The aforementioned strategies like anchoring (Chapter 1) usually 

results in active sites distributed in a mixture of encapsulated and surface-bond species, 

which does not fully take advantage of the well-defined local environment of the cavity of 

MOF. Anchoring the catalyst to the MOF nodes or bridging linker also lead to less freedom 

in catalyst mobility, which could cause inferior catalytic activity. The ‘Ship-in-a-bottle’ 

approach and strategies relying on electrostatic interaction between the host and guest 

highly depend on the identity of the host and guest. Unlike any of those strategies, 

‘aperture-opening encapsulation’ provides a practical method allowing for the active sites 

to be incorporated exclusively in the cavity without being chemically bound to the MOF 
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itself. The next important question to ask is how the distribution of the catalyst is in the 

MOF crystal as a result of the ‘aperture-opening encapsulation’. Are the active species in 

cages closer to the surface or are they distributed throughout the MOF crystal? Answering 

this question is beneficial for addressing some of the important topics in heterogenzing a 

homogeneous catalyst, such as understanding the role of mass transport. We will shed some 

insight on these important topics in the next chapter.  

3.5 Experimental section 

General Considerations Unless otherwise stated, all manipulations were carried 

out in air using standard analytical procedures. Catalytic carbon dioxide hydrogenation 

reactions were carried out in 5.0 mL ampules placed in a 450 mL stainless steel Parr reactor 

with stirring. Included with each reaction were positive and negative controls (using 

(tBuPNP)Ru(CO)HCl and no catalyst, respectively) to ensure proper operation and ensure 

that no cross contamination between ampules occurred. To ensure that all catalyst activity 

in the hybrid materialwas coming from the encapsulated complex, a control reaction with 

virgin UiO-66 was carried out, which revealed only trace amounts of formate being formed. 

Experiments carried out in an air-free environment were conducted under a positive 

pressure of N2 using standard glovebox or Schlenk line techniques.17 UiO-66 was 

synthesized as previously described. (tBuPNP)Ru(CO)HCl was synthesized following a 

procedure adapted from the literature.8b All [Ru]@UiO-66 catalyst employed was pre-

treated as noted and subjected to serial solid dilution with UiO-66 in a mortar and pestle to 

achieve sufficiently low catalyst loading so that the reactions were not base-limited. [Ru]-

on-UiO-66 used in catalysis was subjected to solid dilution without pre-treatment because 

this procedure led to complete removal of catalyst from the surface of the MOF.  
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2,6-lutidine (Aldrich), di-tert-butylchlorophosphine (Acros Organics), 

polyvinylpyrrolidone (TCI), and Rhodamine 6G (Sigma-Aldrich) were purchased from the 

indicated sources and used without further purification. Dialysis tubes were purchased 

from BioDesignDialysis Tubing with 15.5 mm wet diameter, 1.91 ml/cm volume and 8000 

MWCO.  STA analysis  was carried out in NETZSCH STA 449F. Powder X-ray 

diffraction traces were collected on a Bruker AXS diffractometer with Cu Kα radiation 

(λ=1.5418 Å). 1H-NMR and 31P-NMR spectra were collected on a Varian Unity INOVA 

spectrometers (400 MHz, 500 MHz, or 600 MHz, as indicated), with all chemical shifts 

reported in ppm. Chemical shifts were reported in reference to tetramethylsilane and 

phosphoric acid for 1H-NMR and 31P-NMR spectra, respectively (δ 0.0 ppm for both). 

Formate production in catalysis was quantified using 1H NMR spectroscopy using benzene 

(10 µL) as an external standard in a mixture of D2O (450 µL) and reaction mixture (250 

µL). 1H-NMR spectra were acquired in 16 transients. 31P-NMR spectra were acquired in 

160 transients. All centrifugation steps were performed at 4000 revolutions per minute for 

10 minutes using a Thermo Scientific CL2 centrifuge unless otherwise noted. All UV-

visible absorbance measurements were obtained using a refurbished Molecular Devices 

Spectramax M5 spectrometer. Inductively coupled plasma optical emission (ICP-OES) 

spectrometry was recorded in an Agilent 5100 instrument that was calibrated using known 

concentrations of standard solutions to quantify Zr, Ru, and P. Ru (1000±4 ppm), P 

(100.04±0.55 ppm), Zr (999±5 ppm) single elemental standards were purchased from 

Inorganic Ventures.  

Digestion of R6G/UiO-66 samples Each dried solid sample (5 mg) was added to 

a 1.5-mL centrifugation tube. Dimethylsulfoxide (1.5 mL) was added to each sample. One 
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drop of 15 wt% hydrofluoric acid was added to each sample, which was then left to digest 

overnight. Each sample was then neutralized using excess sodium bicarbonate and 

subjected to centrifugation.  

Development of calibration curves Rhodamine 6G was weighed directly in a 50-

mL volumetric flask, which was then filled to the volumetric marking with the solvent to 

be tested. This solution was then distributed among as many 20-mL scintillation vials as 

necessary. 1 mL of each calibration solution was removed and diluted using a volumetric 

flask (10 mL or 50 mL) to yield various concentrations to be used to calibrate. The 

absorbance of each solution was taken at 530 nm and 25 ºC using a compatible cuvette.  

Encapsulation of Rhodamine 6G in UiO-66, R6G@UiO-66 Following a 

procedure similar to previously published procedure,5 the intended encapsulation solvent 

(15 mL) was added to a 20-mL scintillation vial for each sample or to 20 mL crimp-sealed 

vials for reactions carried out at 85 ºC. UiO-66 (15 mg) and Rhodamine 6G (14.8 mg) were 

added to the vial, which was then sealed and heated at the noted temperature (55 ºC or 85 

ºC) for five days. Upon cooling, the solid sample was isolated by centrifugation, and then 

triturated by washing the solid with a 14 wt.% polyvinylpyrrolidone mixture in methanol 

followed by centrifugation. Trituration was carried out twice more and the samples were 

allowed to dry in air at room temperature overnight. The MOF material was digested using 

the above digestion procedure, and the absorbance of each resulting solution was collected 

at 530 nm and 25 ºC in DMSO using a 0.7-mL VWR quartz cuvette. The concentration of 

the dye was determined by comparison to a standard curve, which was then related to the 

amount of digested MOF to get the loading of Rhodamine 6G in UiO-66.  
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Physical mixture control sample, R6GonUiO-66 UiO-66 (15 mg in each vial) 

was weighed out in a 20-mL scintillation vial. Methanol (15 mL) was added to this vial, 

which was subjected to sonication for approximately 10 minutes to disperse the solid. 

Rhodamine 6G (14.8 mg) was added to this vial, which was inverted twice, then 

immediately subjected to centrifugation. The supernatant was then decanted and the solids 

were obtained without further washing.  

I/A Measurements  A “Surface-bound dye” sample was prepared using the 

above procedure. This sample and all R6G@UiO-66 samples were added to separate 20 

mL scintillation vials. All solids were dispersed in neat methanol, and transferred to quartz 

cuvettes. The samples were excited at 530 nm and emission intensity measurements were 

obtained at 552 nm. The solids were then allowed to air-dry overnight. The solids were 

then digested using the above procedure and the absorbance of each resulting solution at 

530 nm and 25 ºC was obtained using a 0.7-mL VWR quartz cuvette in dimethyl sulfoxide. 

These readings were normalized by mass and analyzed to find a ratio of fluorescence 

intensity to absorbance of the solution.  

Influence of exogenous terephthalic acid linker concentration on dye 

encapsulation in R6G@UiO-66 The general procedure used for encapsulating 

Rhodamine 6G was used as described above except different amounts of terephthalic acid 

(30.3 mg, 60.6 mg, 90.9 mg, or 250.9 mg) were also added to the reaction and an additional 

washing step using N,N’-dimethylformamide in place of the PVP/methanol solution. 

Analysis of dye encapsulation was carried out in an analogous fashion as described above.  

Rhodamine 6G leaching studies from R6G@UiO-66 Solid samples of 

R6G@UiO-66 (encapsulated in water at 55 ºC, 5 mg each) were weighed out in separate 
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20 mL scintillation vials and dried for three days in a vacuum oven at 130 ºC to remove 

residual water. Solvent (5.0 mL) was added to each of these vials, which were then sealed 

and heated for two days at either 55 ºC or 85 ºC. The solid from the samples were isolated 

by centrifugation, washed three times with a mixture of polyvinylpyrollidone (PVP) in 

methanol (14 wt %), then allowed to dry in air overnight at room temperature. The dye 

concentration was then determined as described above. The resulting dye loading values 

were compared to loadings from R6G@UiO-66 obtained from the same source directly 

after its synthesis.  

Synthesis of 2,6-bis((di-tert-butylphosphino)methyl)pyridine (tBuPNP) The 

synthesis of this species was adapted from a literature procedure.10 On a Schlenk line under 

nitrogen atmosphere, a solution of 2,6-lutidene (0.54 mL, 4.7 mmol) in diethyl ether (1.96 

mL) was prepared in a 50-mL two-neck flask, then cooled to 0 ºC. n-Butyl lithium in 

hexanes (2.0 M, 4.8 mL, 9.6 mmol) was added slowly by syringe to this cooled solution, 

which resulted in the homogeneous reaction mixture to turn a dark maroon-red color. The 

reaction mixture was allowed to warm to room temperature and heated to 40 ºC for fifteen 

hours. After cooling to room temperature, the reaction mixture was brought -78 ºC where 

di-tert-butylchlorophosphine (1.85 mL, 9.74 mmol) was added dropwise to the reaction 

mixture via syringe. The reaction mixture was allowed to warm to room temperature where 

it reacted for one hour, retaining its deep red coloration. The reaction mixture was quenched 

with degassed methanol (40 mL), resulting in a color change to light-yellow. The reaction 

mixture was left without stirring for one hour to allow the resulting lithium salt to settle. 

The liquid product mixture was transferred by cannula filtration to another two-necked 

flask, and the lithium salt was washed twice with diethyl ether. The solvent mixture was 
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removed by vacuum at 55 ºC resulting in an off-white solid. This solid was transferred to 

the glovebox and extracted in diethyl ether, then recrystallized in diethyl ether at -40 ºC. 

The clear-white crystalline product was recovered and washed with cold diethyl ether 

(492.8 mg, 53% yield). 1H and 31P-NMR spectra matched literature values.10 31P{1H} NMR 

(C6D6): 37.60 (s). 1H NMR (C6D6): 1.13 (d, 3JPH) 10.8 Hz, 36H, PC(CH3)3), 3.09 (d, 2JPH) 

2.4 Hz, 4H, CH2P), 7.17 (d, 3JHH) 7.5 Hz, 2H, pyridine-H3,5), 7.25 (t, 3JHH) 7.8 Hz, 1H, 

pyridine-H4). 13C{1H} NMR (C6D6): 29.68 (d, 2JPC) 54.0 Hz, PC(CH3)3), 31.69 (d, 1JPC) 

94.2 Hz, CH2P), 32.23 (d, 1JPC) 103.8 Hz, CH2P), 120.64 (d, 3JPC) 36.6 Hz, pyridine-C3,5), 

135.68 (s, pyridine-C4), 161.40 (d, 2JPC) 59.4 Hz, pyridine-C2,5). 

Synthesis of (tBuPNP)Ru(CO)HCl. (Adapted from literature)7b In an inert 

atmosphere glove box, RuHCl(PPh3)3(CO) (257.7 mg, 0.2707 mmol) was suspended in 

tetrahydrofuran (10 mL) in a 100 mL Schlenk tube. tBuPNP (110.2 mg, 0.2786 mmol) was 

added to this suspension. The solution was diluted with THF (20 mL). This reaction 

mixture was sealed and removed from the glovebox, then heated at 65 ºC for 3 hours. The 

resulting mixture was returned to the glove box and filtered through celite on a coarse 

fritted funnel. The remaining THF was removed en vacuo. The resultant oily yellow solid 

was dissolved in THF (0.5 mL), and precipitated into pentane to give a yellow solid. This 

solid was then washed with pentane (50 mL), and the crude product was recrystallized in 

pentane at -40 ºC. The recrystallized product (87.3 mg, 0.155 mmol, 57.4% yield) 1H and 

31P-NMR spectra matched literature values. 

Synthesis of UiO-66 This synthesis was adapted from the literature8b N,N’-

dimethylformamide (DMF) (25 mL) was added to a 45 mL Teflon-lined steel autoclave. 

Zirconium tetrachloride (241.4 mg, 1.036 mmol) and terephthalic acid (342.8 mg, 2.063 
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mmol) and concentrated hydrochloric acid (180 µL) was added to the autoclave, which was 

then sealed and heated at 220 ºC for 20 hours. The reaction mixture was then allowed to 

cool to room temperature and agitated to suspend the solid. This solid was isolated by 

centrifugation, then washed with DMF (15 mL) and left to soak in this solvent overnight. 

This solid was isolated again by centrifugation and washed twice with methanol (15 mL), 

then left to soak overnight in methanol. The solid was isolated by centrifugation and dried 

in a vacuum chamber overnight, then dried overnight in an oven at 70 ºC. Powder X-Ray 

diffraction traces matched literature precedents.8b 

Synthesis of 2@UiO-66 In an inert atmosphere glovebox, methanol (10 mL) was 

added to a 20-mL crimp-sealed vial in a glovebox. UiO-66 (200 mg) and 

(tBuPNP)Ru(CO)HCl (5.0 mg, 5.3 µmol) were added to the vial, which was then sealed. 

This mixture was heated at 55 ºC for five days, and then allowed to cool to room 

temperature. The resulting mixture was brought into a glovebox. The vial was unsealed, 

and the resultant mixture was transferred to a 20 mL scintillation vial and subjected to 

centrifugation. Trituration was achieved by decanting the supernatant from this mixture, 

which was set aside for NMR analysis. The remaining solid was further triturated three 

times with methanol (10 mL) each time using centrifugation to ensure quantitative mass 

transfer. After three washing cycles, 188 mg of a pale yellow solid (94%) was obtained. 

This solid was dried overnight in a vacuum chamber. A portion of this material (100 mg) 

was suspended in 15 mL of degassed DMF, and then transferred as a slurry to a 20 mL 

ampule containing a stir bar using a 9” glass pipet. 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU) (2.465 mL, 2.505 g, 15.50 mmol) was added to this ampule. The ampule was added 

to a 450-mL stainless steel Parr reactor. The vessel was purged with carbon dioxide for 5 
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minutes and then pressurized to 42 psi. The vessel was then pressurized with hydrogen gas 

to achieve a total pressure of 542 psi at room temperature. The reactor was heated to 129 

ºC and left to react for 45 minutes. The heating mantle was removed, the reactor was cooled 

using a room-temperature water bath, and the pressure was released slowly from the vessel. 

The vessel was opened and the ampule was removed. The reaction mixture was transferred 

as a slurry to a 20-mL scintillation vial and subjected to centrifugation at 3000 revolutions 

per minute for 15 min, after which the supernatant was decanted. The solid was triturated 

twice with methanol (20 mL) followed by centrifugation and dried overnight in a vacuum 

chamber to give a pale yellow powder (93 mg, 93%). The loading of catalyst in the MOF 

was determined by ICP-OES (see “Preparation of (tBuPNP)Ru(CO)HCl stock solutions” 

and “Digestion of UiO-66 for ICP-OES analysis”, below).  

Procedure for preparing 2onUiO-66 In an inert atmosphere glovebox, methanol 

(10 mL) was added to a 20-mL scintillation vial. UiO-66 (100 mg) and 

(tBuPNP)Ru(CO)HCl (5.0 mg, 5.3 µmol) were added to the vial, which was then sealed. 

This mixture was agitated by shaking for several seconds, then immediately subjected to 

centrifugation. Trituration was achieved by decanting the supernatant from this mixture. 

The remaining solid was further triturated three times with methanol (10 mL) each time 

using centrifugation to ensure quantitative mass transfer and dried overnight in a vacuum 

chamber. After three washing, 92 mg of a pale yellow solid (92%) was obtained and used 

without further manipulation in catalysis. This solid was dried overnight in a vacuum 

chamber and the loading of catalyst in the MOF was determined by ICP-OES (see 

“Preparation of (tBuPNP)Ru(CO)HCl stock solutions” and “Digestion of UiO-66 for ICP-

OES analysis”, below).  
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Preparation of (tBuPNP)Ru(CO)HCl stock solutions (tBuPNP)Ru(CO)HCl (5.0 

mg, 5.3 µmol) was added to a 20 mL scintillation vial. Degassed N,N’-dimethylformamide 

(DMF) (3.0 mL) was added to this vial. From this solution, 1.0 mL was extracted and 

diluted to 5.0 mL in a class A 10-mL volumetric flask using DMF. Further serial dilution 

was achieved by removing 1.0 mL of this solution and diluting to 10 mL in a class A 10-

mL volumetric flask. The catalytic solution (0.033 µM) was transferred to a 20-mL 

scintillation vial, sealed, and stored at -40 ºC in a glovebox. Solutions were allowed to 

warm to room temperature before use in catalysis. 

General Procedure for the hydrogenation of carbon dioxide For homogeneous 

catalysis, a stock solution (3.0 mL) of (tBuPNP)Ru(CO)HCl in DMF was prepared as 

previously noted and added to a 5.0-mL ampule using a 9” glass pipet. For the 

heterogeneous catalyst, unless otherwise noted, the solid was suspended in 3 mL of 

degassed DMF, and then transferred as a slurry to 5-mL ampules using a 9” glass pipet. 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.493 mL, 0.501 g, 3.30 mmol) was added to 

each ampule with a stir bar. These ampules were arranged in a 450 mL stainless steel Parr 

reactor that contained a thermocouple to ensure thermostated reactions. The vessel was 

placed on a Parr instrument stand atop a stir plate and surrounded by a heating mantle. The 

reaction vessel was purged with carbon dioxide for 5 minutes and then pressurized to 42 

psi. The vessel was pressurized with hydrogen to a total pressure of 212 psi, and the 

reactions were allowed to react at room temperature for 30 minutes. Upon conclusion of 

the reaction, the heating mantle was removed and the pressure was released slowly from 

the vessel. The vessel was opened and the ampules were removed. The colorless slurry 

obtained from reactions involving heterogeneous catalysis were transferred to 20 mL 
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scintillation vials and subjected to centrifugation, after which the supernatant was decanted. 

The homogeneous reactions were removed from the ampoules and the supernatant was 

analyzed as described below without further manipulation. A 0.25 mL aliquot of the 

supernatant was removed and combined with benzene (0.01 mL) and D2O (0.45 mL) in 

4.0-mL vials. These mixtures were then transferred to individual NMR tubes and 

quantitative 1H NMR was used to determine the yield of formate by integration of the 

formate peak in reference to benzene.  

Digestion of UiO-66 for ICP-OES analysis Solid MOF material (5.00 mg) was 

weight out into a 1.5 mL Teflon vial. DMSO (300 µL) and 1 drop of 15 wt.% aqueous 

hydrofluoric acid solution were added in sequence. The mixture was sonicated for 1 minute 

and left to digest for 1 hour. The digested samples then heated to approximately 150 °C 

overnight in a sand bath open to the air to remove solvent. The resulting solid was dissolved 

and transferred to a 20 mL glass scintillation vial using a mixture (10% v/v) of hydrochloric 

acid in deionized water (300 µL). Each sample was diluted with additional deionized water 

(3.7 mL) and analyzed by ICP-OES. 

ICP-OES Standard preparation Four standards were prepared by dilution from 

commercially available zirconium (999 ± 5 ppm), ruthenium (999 ± 5 ppm), and 

phosphorus (100.04 ± 0.55 ppm) standards using serial dilution in grade A volumetric 

glassware to cover the expected concentration ranges. The standards were then employed 

in a calibration curve to determine the loading of catalyst in a tested solid. These standards 

consisted of Zr/Ru/P concentrations in ppm at the proportions: 250/5/5, 150/2/2, 25/0.5/0.5, 

2.5/0.05/0.05 
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Procedure for carbon dioxide hydrogenation recycling studies using 2@UiO-

66 Carbon dioxide hydrogenation was carried out using the “general procedure for carbon 

dioxide hydrogenation” at 5x scale in a 20-mL ampule. The solid was washed twice with 

methanol (20 mL) and dried overnight in a vacuum chamber between cycles. 

Procedure for carbon dioxide hydrogenation in the presence of thiols Carbon 

dioxide hydrogenation was carried out using the “general procedure for carbon dioxide 

hydrogenation” with the addition of different thiols. 1-dodecanethiol (0.15ml, 0.627 mmol), 

1-hexanethiol (0.09 ml, 0.627 mmol), 1-octanethiol (0.11ml, 0.627 mmol), benzenethiol 

(0.064 ml, 0.627 mmol), 2-ethylhexanethiol (0.109 ml, 0.627 mmol), or tert-butylthiol 

( 0.07ml, 0.627 mmol) was added to the reaction mixture in a fume hood. These ampules 

were added to a 450 mL stainless steel Parr reactor. Upon conclusion of the reaction, the 

heating mantle was removed and the pressure was released slowly from the vessel into a 

fume hood. The vessel was brought to a fume hood and opened and the ampules were 

removed. The ampules and reactor were cleaned after the reaction with a solution of bleach 

(20%) in water. 

Procedure for carbon dioxide hydrogenation to test catalyst deactivation 

Carbon dioxide hydrogenation was carried out using the “general procedure for carbon 

dioxide hydrogenation”. After the first cycle, an aliquot of reaction mixture (0.25 mL) was 

removed from the ampule set aside in a small vial. DBU (0.493 mL, 3.30 mmol) was added 

to each ampule, and the ampules were again subjected to reaction conditions. Catalyst 

deactivation was determined as the difference between formate production in the first and 

second reactions. 
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Procedure for BET measurement The samples “UiO-66” and “UiO-66 after 

linker exchange” (with no catalyst being added) were incubated in methanol for 7 days 

with solvent replaced every twelve hours. The solids were isolated by centrifugation and 

dried, then activated by first ramping the temperature to 200 oC at a rate of 5 oC/min, 

remaining constant for 10 minutes, then ramping to 270 oC and remaining constant for 

twelve hours. The nitrogen gas adsorption-desorption was carried out on quodrasorb evo 

provided by ShanghaiTech University.   

Procedure for UiO-66 dialysis experiment A dialysis tube was soaked in water 

first for 5 minutes until it was fully solvated. One side of the tube was clamped tightly 

and UiO-66 (200 mg) and deionized water (3ml) were added to the tube, and then the 

other side was clamped. The dialysis tube was placed in a 1-L beaker and suspended in 

water (1 L) with stirring at 55 ºC for 18 days. The external water was refreshed daily, and 

water removed was collected and concentrated by heating for LC-MS analysis.  

Procedure for STA analysis Prior to STA analysis, all samples were dried under 

vacuum and heat at 150 oC to ensure the complete dryness before the TGA measurement. 

Analysis was carried out in an Al2O3 crucible on NETZSCH STA 449F1. Samples were 

thermally activated in air by STA with first ramping to 270 ºC with 10 ºC/min and stay 

isotherm at 270 ºC for 12 hours and cool back down to room temperature. After the thermal 

acitivation to get rid of any residue solvent and organic impuries, the samples were ran 

from room temperature to 900 ºC at 5 ºC/min in air. Unless otherwise stated, all the 

measurements were carried out using air as carrier gas and nitrogen as the protection gas.  

Calculation of missing linkers from TGA data8b 
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The missing linker (x) per Zr6-oxo cluster of the defective UiO-66 was calculated by the 

following formula   

X= 6 − FGHI6JKII
(JL)MN.GHI6JKII)/Q

	=6 −	 JGHI6JKII
(GGI.G%6;II%)/Q

 = 6 − JGHI6;II%
GI.IS%

	 

Where, the final weight W900 (6ZrO2 ) was normalized to 100%. Wtheo.270 is the ideal weight 

of a defect-free UiO-66, Zr6O4(OH)4(BDC)6, after the normalization which equals to 

220.2%. W270 is the actual normalized weight at 270 ºC detected from TGA trace of the 

sample.  

Encapsulation of Brilliant Blue G in UiO-66, Dye-at-UiO-66 Following a 

procedure similar to previously published procedure,5 methanol (15 mL), UiO-66 (15 mg) 

and Brilliant blue G (15 mg) were added to a 20-mL scintillation vial. The vial was then 

sealed and heated at 55 ºC for five days. Upon cooling, the solid sample was isolated by 

centrifugation, and then triturated by washing the solid with a 14 wt.% 

polyvinylpyrrolidone mixture in methanol followed by centrifugation. Trituration was 

carried out twice more and the samples were allowed to dry in air at room temperature 

overnight. The MOF material was digested using the above digestion procedure, and the 



 

103 
 

absorbance was collected at 624 nm and 25 ºC in DMSO using a 0.7-mL VWR quartz 

cuvette. The concentration of the dye was determined by comparison to a standard curve.  

Physical mixture control sample, dye-on-UiO-66 UiO-66 was weighed out in a 

20-mL scintillation vial. Methanol (15 mL) was added to this vial, which was subjected to 

sonication for approximately 10 minutes to disperse the solid. Brilliant Blue G (15 mg) 

was added to this vial, which was inverted twice, then immediately subjected to 

centrifugation. The supernatant was then decanted and the solids were obtained without 

further washing. 

Detection of formate by mass spectrometry A carbon dioxide hydrogenation product 

mixture (3 mL) was placed in a 50-mL round-bottom flask and hooked up to an air-free 

manifold. This flask was put under vacuum and heated at 120 ºC for three hours. The 

mixture was allowed to cool to room temperature and transferred to a 20-mL scintillation 

vial. Methanol (5 mL) was then added to this mixture, and the product formate was detected 

using Direct Analysis in Real Time in the negative ion mode on a JEOL AccuTOF 4G LC-

Plus. (CH2O2 expected: 45.017g/mol; found: 45.000 g/mol) 

Procedure for testing pre-treated homogeneous catalyst mixture for catalytic activity 

A solution of (tBuPNP)Ru(CO)HCl (7.0 mg, .0125 mmol) in DMF was prepared and added 

to a 5.0-mL ampule, then subjected to pre-treatment as described above. The supernatant 

was concentrated by rotary evaporation and tested by 31P-NMR to observe decomposition 

of the homogeneous catalyst. Carbon dioxide hydrogenation was carried out using the 

“general procedure for carbon dioxide hydrogenation”. This experiment was run 

simultaneously with a sample of (tBuPNP)Ru(CO)HCl that had not been pre-treated to 

properly observe the effect of pre-treatment on the homogeneous catalyst. 
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Procedure for testing pre-treated supernatant and UiO-66 for catalytic activity UiO-

66 (10 mg) and (tBuPNP)Ru(CO)HCl (7.4 mg, 0.0132 mmol) were mixed together in a 5.0-

mL glass ampule and subjected to pre-treatment as described above. The solid and 

supernatant were then separated by centrifugation. The solid was washed once with 

methanol and dried overnight in a vacuum chamber. The supernatant was concentrated by 

rotary evaporation and tested by 31P-NMR to observe decomposition of the homogeneous 

catalyst. Carbon dioxide hydrogenation was carried out using the “general procedure for 

carbon dioxide hydrogenation” for each of these species. These experiments were run 

simultaneously with a sample of [Ru]@UiO-66 to ensure the activity of the hybrid species 

in the absence of activity for the pre-treated UiO-66 and supernatant. 

Statement on base limitation in CO2 hydrogenation studies The conditions reported for 

carbon dioxide hydrogenation using (tBuPNP)Ru(CO)HCl as the catalyst result in full 

conversion of the requisite DBU base additive to [HCOO][DBUH].18 While these 

conditions maximize catalytic turnover, the status of the base as the limiting reagent in the 

system precludes an accurate comparison between the activity of the homogeneous and 

encapsulated catalysts. Therefore, the reaction conditions were modified by lowering the 

reaction temperature, catalyst loading, and hydrogen pressure so that the reaction was not 

base-limited (i.e. [formate]:[DBU]0 ≤ 1) 

Statement on alternative method for detection of formate Though detection of formate 

in a product mixture is achievable through either mass spectrometry or NMR spectroscopy, 

we primarily utilized the latter method for ease of quantification.  

Statement on the effect of pre-treatment upon the identity of the active species Two 

control experiments were carried out that provide indirect evidence that the initially formed 
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catalyst is unlikely being converted into a different catalytically active species. Firstly, the 

homogeneous complex was exposed to the pretreatment conditions using significantly 

higher concentrations than were used in reactions catalyzed by 2@UiO-66. Evaluation of 

the supernatant by NMR spectroscopy revealed that the homogeneous complex was 

converted into a new species that was found to be catalytically inactive for CO2 

hydrogenation. To rule out the possibility that a new heterogeneous catalyst supported by 

the MOF may form that is otherwise unstable in the absence of the MOF, we have carried 

out a second control experiment, in which the homogeneous complex is exposed to the 

pretreatment procedure in the presence of virgin UiO-66. As was found with the 

homogenous complex, neither the supernatant nor the heterogeneous material that was 

recovered were found to be catalytically competent for CO2 hydrogenation.  

 
Synthesis of (iPr-PNP)Ir(H)3 To a 50ml stainless autoclave, [Ir(coe)2Cl]2 (291 mg, 

0.325 mmol, 1 equiv.), iPr-PNP (389 mg, 1.05 mmol, 3.2 equiv.), and THF (4 ml) were 

charged under N2 atmosphere. The mixture was pressurized with H2 (360 psi) and stirred 

at 90 °C for 6 hours. After 6 hours, the color of reaction mixture turns from red initially 

into light yellow. Solvent was removed in vacuum, and then add approximate 1 ml of THF 

to re-dissolve most of the solid in. Drop-wisely add 3 ml hexane to precipitate the product 

out. After precipitation, wait a couple of minutes until the supernatant is clear light yellow 

and then carefully decant the upper layer. The residue yellow-white compound was then 

washed extensively with large quantities of hexane to get rid of minor impurities. The 

residue solvent was removed in vacuum to deliver a pale yellow compound (iPr-

PNP)Ir(H)2Cl. Afterwards, to a solution of (iPr-PNP)Ir(H)2Cl (60 mg, 0.1 mmol, 1 equiv.) 

in THF ( 2mL ), a slurry suspension of NaH (163 mg, 6.8 mmol, 68 equiv.) in THF was 
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added drop-wise. The mixture was stirred at room temperature for 24 hours and the color 

of the solution changes from orange yellow to red wine. The mixture was filtered through 

a pad of Celite. The solvent was removed in vacuum, and the title compound was 

recrystallized from a mixture of THF/hexane as yellow crystals. 1H, 31P NMR spectra 

match literature precedence.9  
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Chapter 4. Investigating the effect of particle size on catalysis 

4.1 The role of particle size in heterogeneous catalysis 

Heterogeneous catalysts are favored in industrial applications due to their high 

activity, ease of recycling, resiliency to harsh conditions, and resistance to CO poisons.1 

As such, heterogeneous catalysis is estimated to have a global impact of around $10 trillion 

per year.1  Common industrial catalysts include noble metals ( e.g., Pt-Rh alloy 

nanoparticles can perform a variety of hydrogenations),2 metal oxides (e.g., vanadium 

oxide catalyzes the synthesis of sulfuric acid, and iron oxides are involved in the formation 

of ammonia),3 and inorganic conjugated frameworks (e.g., zeolites are responsible for the 

bulk of industrial alcohol dehydrogenation).4 In particular, encapsulating 

homogeneous/heterogeneous catalyst into MOFs could potentially have advantages for  

catalytic  performance  especially  for  size  selectivity  due  to  the  inherent selective  

sieving  of  the  MOF  cages. Studies have shown that catalyst activity is highly affected 

by changing the size of a catalytically active nanoparticle in a MOF.5 However, there is a 

lack of understanding of how the change of MOF size affects the selectivity and activity of 

the composite when a homogeneous catalyst is encapsulated inside the cage. 

Understanding this effect is important to integrate the homogenous moiety onto the 

heterogeneous platform. This chapter focuses on how the change of MOF size can affect 

the catalytic performance of a homogeneous CO2 hydrogenation catalyst encapsulated in 

the metal-organic framework UiO-66.  

Extensive efforts have been made using MOFs to construct a host-guest catalyst 

system, including catalyst anchoring6 and post-synthetic modification.7 Recently, the role 
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the host structure plays in catalysis has begun to receive recognition despite the difficulty 

in synthesizing well-defined size and shape of the host material.8 As a result, the rational 

design of size-controlled MOF crystals has not yet been used to mitigate possible mass 

transport limitations and enhance catalytic performance.  

In the previous chapter, we demonstrated the successful encapsulation of a Ru-PNP 

pincer complex (2) in the cavity of UiO-66 by utilizing the ‘aperture-opening encapsulation’ 

that is made possible from the dissociative linker exchange reactions that occur for UiO-

66 in protic solvents (Figure 4-1). The catalyst is referred to as 2@UiO-66 and displays 

properties that are hybrid between homogeneous and heterogeneous catalysts: it is selective 

for the formation of formate, recyclable, resistant to thiol poisons, and  does not suffer from 

bimolecular decomposition.9 

a) 
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           b) 

 

Figure 4-1. Structures of a)2 catalyst, 2@UiO-66 catalytic reaction and b) UiO-66 
structure. 

Despite these notable advantages, the homogeneous catalyst outperforms 2@UiO-

66 at low [Ru] (Figure 4-2). Mass transport limitations are a common issue for substrates 

and products in heterogeneous catalysis.10 In this case, a low TON could be attributed to 

the limited mass transport of one of the reactants or the product from the reaction (or both). 

In order to understand the role that mass transport plays in CO2 hydrogenation, it is first 

important to understand how the active sites are distributed in the inorganic matrix of 

2@UiO-66.  
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Figure 4-2. Turnover number for 2 (blue) and 2@UiO-66 (red) as a function of catalyst.  

We expect the distribution of active sites are related to the mechanism for 

encapsulation of the transition metal complex. Three competing factors are important for 

the aperture-opening encapsulation process: diffusion of the guest into the framework, 

diffusion of the guest within the framework, and the linker exchange rate of the terephthalic 

acid linkers. The distribution of the guest within the MOF crystal likewise depends on the 

relative rate of these three process.  

Two extreme cases are possible, depending on the relative rates between the 

diffusion of the guest (into and within the framework) and the linker exchange (Figure 4-

3).  If the average diffusion rate is much faster than the rate of linker exchange, uniformly 

distributed 1@UiO-66 throughout the MOF crystals is likely to result. Conversely, if the 

diffusion rate into the framework is larger but the diffusion rate within the framework is 

much slower than the rate of linker exchange, the active sites are more likely to be located 

in the outer shell, close to the crystal surface. If the two rates are similar, the distribution 
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will likely fall somewhere in between. It’s worth noting that it is possible in the real 

situation that linker exchange and diffusion rates vary within the depths of the MOF crystal 

(i.e. it may become harder/easier for the linkers to dissociate and/or the complex to diffuse 

from one pore to the next).  

 

Figure 4-3. Two extreme situations of guests in a MOF matrix (left) distributed in the 
cage closer to the surface and (right) distributed throughout the whole MOF crystal.  

To evaluate the importance of mass transport and to assess how metal complexes 

are distributed during aperture-opening encapsulation, 2 was encapsulated into UiO-66 of 

various sizes. If the TON of the hybrid catalyst increases as particle size decreases, then 

we mass transport of the product is likely causing the lower activity for the hybrid catalyst 

compared to the homogeneous catalyst. Moreover, this outcome would be more consistent 

with even distribution of the homogeneous catalyst through the MOF crystal.  On the other 

hand, if the smaller UiO-66 particle size does not affect the TON, then the lower TON we 

observed in the hybrid catalyst is likely not from product diffusion limitations, and the 

active sites are likely located in the cavity closer to the surface.  

4.2 Synthesis of UiO-66 particles with different sizes  
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Acetic acid is commonly utilized in MOF synthesis to slow down the nucleation 

process and achieve higher crystallinity and better morphology, which is due to the fact 

that acetic acid is a monocarboxylate that can bridge zirconium oxide clusters.11 The 

advantage of using acetic acid, compared to other carboxylic acid modulators (e.g. benzoic 

acid), is that acetic acid also participates in the hydrolysis of Zr-oxo clusters.12  Pursuant 

to our experimental goals outlined above, we followed a published method to synthesize a 

series of size-controlled UiO-66, where acetic acid and trimethylamine (NEt3) was used as 

co-modulators (Table 4-1).13  Here, acetic acid reacts with the organic base NEt3. We 

hypothesized that varying the amount of NEt3 can buffer the amount of acetic acid available 

to participate in the nucleation process. We believed doing so could alter the rate of 

nucleation, allowing for modulation of the size of UiO-66 crystals.  

Table 4-1. UiO-66 synthesis with acetic acid/NEt3 as co-modulator. 

 

 

Small particle sizes were observed in the presence of trimethylamine and larger 

particle sizes were obtained in the absence of trimethylamine (Figure 4-4). This observation 
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is consistent with our hypothesis that the NEt3 behaves like a buffer influencing the ability 

of the acetic acid to bind to the Zr-oxo clusters. The acidity of the solution containing NEt3 

changed dramatically before reaching the buffer equilibrium between acetic acid and NEt3, 

substantially influencing the nucleation of UiO-66. The particular size significantly 

decreased upon addition of NEt3. As [NEt3] continues to increase, there is less acetic acid 

available to assist the formation of nucleation. The particle size did not continuously 

decrease in size with increasing NEt3 but was rather insensitive to the amount of [NEt3] 

added to the reaction. This is likely due to the fact that there is a constant amount of acetic 

acid participating in the formation of MOF crystals when acetic acid/NEt3 reaches an 

equilibrium.  

 

 

Figure 4-4. The average of the size of UiO-66 as the change of [NEt3], and the error bar 
represents the average error. Size distribution was generated from manually counting 100 
particles from scanning electron microscope (SEM). 
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We also notice from the particle counting that the size distribution is broader when 

no NEt3 is added during the synthesis. (Figure 4-5) This observation suggests that 

nucleation is less well-controlled without the acetic acid/NEt3 buffer. We speculate this 

originates from the fluctuating pH caused by the continuous consumption of acetic acid 

since there is no base to provide a buffer.  

 

Figure 4-5. UiO-66 synthesized in the absence of NEt3, a) SEM images, b) particle 

counting of one batch (average: 0.75 µm), c) particle counting of another batch synthesized 

in parallel (average: 0.53 µm) . SEM images and the particle size analysis demonstrate 

wide size distribution.  

Benzoic acid with mono-carboxylate moiety has been widely used in modulating 

MOF synthesis. In particular, it’s structural similarity with terephthalic acid makes it 

attractive in UiO-66 synthesis. Researchers have shown that benzoic acid can promote the 

formation of ‘‘missing-cluster defects’’ in the formation of UiO-66. In the formed 

“defective” UiO-66, the charge and coordination deficiencies are compensated by 

modulator ligands, which further causes the change of the particle size. As a result, the size 
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of UiO-66 can be potentially modulated by the varying the addition of benzoic acid as a 

modulator. While most study is focused on investigating the generated defect content, there 

are very limited reports on understanding the size effect from the use of benzoic acid. 

Herein, we propose to generate large particle size of UiO-66 by using the combination of 

benzoic acid and acetic acid.  

The synthesis of UiO-66 was attempted by varying the amount of added acetic acid 

while keeping the amount of benzoic acid constant. Doing so allowed us to systematically 

approach the best combination of those two modulators. SEM images showed the size and 

shape of UiO-66 particles could be modulated by the addition of acetic acid and the most 

well defined shape and size were achieved when the largest amount of acetic acid was 

added (x=2.2) (Figure 4-6). The average size for x equals 2.2 was 1.3 µm calculated by 

counting at least 100 particles from the SEM image manually.   
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Figure 3-6. SEM images of synthesized UiO-66 particles with varying amount of acetic 
acid (x: 0.85, 1.3, 1.7, 2.2).  

Next, three sizes (0.2 um, 0.7 um and 1.3 um) of UiO-66 were chosen to perform 
the aperture-opening encapsulation of the Ru-PNP pincer complex (Scheme 4-2). 

 

 

 Scheme 4-2. Synthesis of 2@UiO-66 through aperture-opening encapsulation.  

 

4.3 Catalytic performance of 2@UiO-66 at different UiO-66 particle sizes 

To best compare the effect that UiO-66 crystal size has on catalytic efficiency in 

2@UiO-66 hybrid catalysts, the loading of 2 must be kept consistent in all particle sizes. 

The extent of encapsulation in this aperture-opening encapsulation process is believed to 

be proportional to the exposed surface area of solid as a result of diffusion control. Small 

particles are expected to incorporate more 2 per unit volume than large particles in the 
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presence of the same concentration of 2 in solution. This expectation was confirmed 

experimentally (Table 4-1, Entry 1-5). The loading of 2 in UiO-66 with the size of 0.2 µm 

was kept constant, and the loading of 2 in UiO-66 with the size of 0.7 µm was brought 

down to the same loading by changing the concentration of 2 in solution. Attempts with 

initial [Ru] brought from 0.5 mmol to 0.4 mmol in 20 ml DMF, the loading of 1 was 

approximately the same in UiO-66 at size of 0.2 um and 0.7 um. The P/Ru atomic ratio 

was found to be approximately 2 by ICP-OES from the digested composite. These data 

suggest the complex remains intact during the encapsulation process. A similar screening 

process was carried out with the size of 1.3 um particles, and the results were summarized 

in Table 4-1 (Entry 6).   

 

Table 4-1. Attempts of obtaining three different sizes of [Ru]@UiO-66 with same [Ru] 
loading by varing the amount of initial [Ru]. The [Ru] loaing was determined by ICP-OES 
of disgested samples after pretreatment to remove the surface bond catalyst.  

 

To remove surface bound complex, the samples with different particle sizes were 

first subjected to the same pre-treatment conditions ( 45 mins, 129 °C, H2: 37 bar, CO2: 3 

bar) as described in Chapter 3. As described in Chapter 3, 2@UiO-66 had to be diluted 

with virgin UiO-66 to achieve catalyst loadings that were low enough so that reactions 

could be in run without complications from base limitations. The pretreated catalysts were 



 

120 
 

mixed with UiO-66 crystals with their own sizes (eg. 2@UiO-66 with particle size of 0.2 

um was diluted with 0.2 um empty UiO-66). Afterwards, the diluted samples were tested 

for catalysis.   

The hybrid catalysts with different sizes exhibit the same activity and recyclability 

as the non-size-controlled sample (Figure 4-7). The surface area per volume being 

irrelevant to the catalyst activity suggests that the active sites are more likely to be 

distributed in the shell near the surface of UiO-66 particles using aperture-opening 

encapsulation. Compared to the post-linker functionalization encapsulation method where 

the active sites are likely distributed through the entire crystal, the aperture-opening 

encapsulation method provides a desired catalyst distribution that allows more active sites 

to be accessible to the substrates. To understand the mass transport with the base, NEt3 

with a smaller size than DBU was used as a base instead. Despite the lower TON of 2 and 

2@UiO-66 in the present of NEt3 compared to DBU, the activity difference between 2 and 

2@UiO-66 is smaller in lower [Ru], from almost twelve times to less than twice for the 

ratio of homogeneous catalyst to the encapsulated hybrid catalyst (Figure 4-8). This 

observation suggested the discrepancy in activities could be attributed to the fact that large 

base has difficulties in accessing the catalyst through apertures of the MOF. Having 

catalyst predominately in the cages closer to the MOF surface and (or) using smaller base 

could potentially alleviate this issue.  
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Figure 4-7. CO2 hydrogenation reaction to formate by 2@UiO-66 with defined size as a 
comparison to the previous hybrid catalyst with wide particle size distribution.  

 

 

 

 

Figure 4-8. Comparison between homogeneous catalyst 1 and hybrid catalyst 1@UiO-66 
in the present of DBU and NEt3.  
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4.4 Förster Resonance Energy Transfer (FRET) of C151 and R6G 

To further support our hypothesis of guest distribution, Förster Resonance Energy 

Transfer (FRET) experiment was designed and conducted by Noella D’Souza who was my 

undergraduate mentee. Förster Resonance Energy Transfer (FRET), is the spatially-

dependent, nonradiative energy transfer between a donor and acceptor molecule pair.14 For 

FRET to occur, the molecules must be within 10-100Å of each other, and the overlap 

between donor emission and acceptor excitation spectra allows donor to transfer energy to 

the acceptor, upon the excitation of the donor.14 In this study, FRET was used as a 

“molecular ruler” to determine the separation distance between a guest FRET donor, 

encapsulated in a host metal-organic framework (MOF), and an exogenous acceptor in 

solution, which sheds light on the distribution of guests in MOFs.  

For this study, the fluorescent dye Coumarin 151 (C151) was chosen as a FRET 

donor since it’s size (8.3Å) is smaller than the pore size yet larger than the aperture size of 

UiO-66 to prohibit guest diffusion out of the MOF.15 Rhodamine 6G (R6G) was chosen as 

the FRET acceptor, since its excitation spectrum overlaps well with the emission spectrum 

of C151 and the guest, with a diameter of 13.7Å, is too large to diffuse into the MOF pores. 

Samples of C151 incorporated into the MOF via de novo and aperture-opening 

encapsulation were prepared and suspended in ethanol solutions with varying 

concentrations of Rhodamine 6G to observe the FRET efficiency.  

Comparing samples of C151@UiO66 synthesized via the de novo and aperture-

opening encapsulation methods support that the C151 is encapsulated close to the MOF 

surface with aperture-opening encapsulation. FRET was not demonstrated for the sample 

prepared in de novo, since only a peak at 468.9nm, corresponding to the emission of C151, 

was visible, and no R6G emission peak in the 560nm area (Figure 4-9a). This observation 
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was attributed to low loading of guest incorporation in UiO-66 through the do novo 

encapsulation, according to the UV-Vis measurement of the digested sample. Hence, 

C151@UiO-66-NO2 was synthesized to provide a de novo encapsulation comparison with 

appreciable dye loading. Varying the acceptor concentration in solution for C151@UiO-

66-NO2 changes FRET efficiency most significantly when the concentration increases by 

an order of magnitude rather than in smaller increments (Figure 4-9b). Furthermore, the 

maximum acceptor emission intensity for C151@UiO66-NO2 by de novo encapsulation is 

weaker than that of C151@UiO-66 by aperture-opening encapsulation, 175.324 a.u. vs. 

316.805 a.u., for samples of similar donor loadings and acceptor concentration. Both 

observations indicate that more of the dye is encapsulated within the MOF, rather than at 

the surface, for C151@UiO66-NO2 since the FRET is less receptive to smaller changes in 

acceptor concentration and is comparably less intense, overall, relative to that of the 

aperture opening sample. These findings are consistent with the spatially homogeneous 

incorporation of guests during de-novo encapsulation. 

 



 

124 
 

 

Figure 4-9. Fluorescence emission spectra at ƛex=385nm for a) C151@UiO-66 through de 
novo, b) C151@UiO-66-NO2 through de novo and c) C151@UiO-66 through aperture-
opening encapsulation in contact with varying concentrations of exogenous R6G 
suspended in ethanol. d) After aperture-opening encapsulation, C151@UiO-66 overgrown 
with UiO-66 for 2, 4, and 6 hours suspended in 3mL of a 5.7010-5M solution of R6G in 
ethanol. 

On the other hand, FRET was observed for the sample of C151@UiO66 

encapsulated via aperture-opening, as evidenced by the C151 emission peak at ƛmax=450nm 

and R6G emission peak at ƛmax=565nm (Figure 4-9c). Additionally, a smaller 66% increase 

in exogenous R6G concentration improves acceptor emission intensity by 35%, relative to 

the sample in the least concentrated solution of R6G, compared to a corresponding 25% 

increase in acceptor emission intensity demonstrated by the C151@UiO-66-NO2 sample. 

Increased sensitivity to smaller changes in acceptor concentration is possible only if the 

guest molecule is encapsulated close to the MOF surface, where it is most likely to interact 

with exogenous R6G and undergo FRET. This supports the near-surface-encapsulation of 

molecular guests via the aperture-opening encapsulation method.  
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To further demonstrate near-surface-encapsulation via aperture-opening, samples 

of C151@UiO-66 prepared by aperture-opening encapsulation were added to MOF 

precursor solution and resubjected to UiO66 synthesis conditions for 2, 4, and 6 hours to 

form a MOF overgrowth on the dye encapsulated sample with different thickness of new 

layers. Subsequent FRET measurements on these samples displayed a general decrease in 

the acceptor emission intensity, relative to the C151@UiO-66 of equivalent loading 

(Figure 4-9d). This phenomenon can be attributed to the overgrowth layer increasing the 

minimum separation between donor and acceptor, which limits the extent of energy transfer 

in comparison to a non-overgrown sample. Furthermore, as the overgrowth period is 

extended, the acceptor emission intensity noticeably decreases. As the thickness of the 

overgrowth layer increases, the minimum separation between the donor/acceptor pair 

increases proportionally, which steadily decreases the ability to transfer energy to acceptor.  

 

4.5 Summary 

This chapter primarily focused on assessing the importance of mass transport for 

CO2 hydrogenation catalysts encapsulated in UiO-66 and to better understand the 

distribution of catalysts in MOFs when the aperture-opening encapsulation method is used 

to encapsulate transition metal complexes in UiO-66. We proposed mass transport of 

formate could be responsible for the lower activity of 2@UiO-66 compared to 2 at low 

catalyst loadings, due to the inherent heterogeneity of the hybrid catalyst. To test this 

hypothesis, 2@UiO-66 with different UiO-66 particle sizes were synthesized.  The 

catalytic results show there is no difference in TON, yield to formate and recyclability 
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between 2@UiO-66 at size of 0.7 µm, 0.2 µm and 0.7 µm, and the hybrid catalyst with 

large size distribution. These observations suggest mass transport of formate is not 

responsible for limiting catalytic performance. Further understanding of the guests’ 

distribution is achieved through the FRET experiment of C151@UiO-66/UiO-66. In 

comparison with C151@UiO-66 constructed by de novo method, FRET spectra of samples 

prepared by aperture-opening encapsulation demonstrate the encapsulated guests are 

distributed in the cages near the surface. Since the donor/acceptor interactions for the MOF 

host-guest system are not as precisely defined as the protein-protein interactions used in 

traditional biological applications of FRET, there are limitations to the accuracy of distance 

measurements that can be obtained. However, quantifying a certain distance range from 

the surface in which the guest is encapsulated can still provide relevant information for 

catalysis. This fact is promising for future catalyst@MOF constructs because this 

distribution limits contributions from mass transport and it can be used to position multiple, 

catalytically active subunits in close proximity with one another.  

 

4.6 Experimental section 

General Considerations Unless otherwise stated, all manipulations were carried 

out in air using standard analytical procedures. Catalytic carbon dioxide hydrogenation 

reactions were carried out in 5.0 mL ampules placed in a 450 mL stainless steel Parr reactor 

with stirring. Included with each reaction were positive and negative controls (using 

(tBuPNP)Ru(CO)HCl and no catalyst, respectively) to ensure proper operation and ensure 

that no cross contamination between ampules occurred. To ensure that all catalyst activity 

in the hybrid material was coming from the encapsulated complex, a control reaction with 
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virgin UiO-66 was carried out, which revealed only trace amounts of formate being formed. 

Experiments carried out in an air-free environment were conducted under a positive 

pressure of N2 using standard glovebox or Schlenk line techniques.16 UiO-66 was 

synthesized as previously described. (tBuPNP)Ru(CO)HCl was synthesized following a 

procedure adapted from the literature.17 All [Ru]@UiO-66 catalyst employed was pre-

treated as noted and subjected to serial solid dilution with UiO-66 in a mortar and pestle to 

achieve sufficiently low catalyst loading so that the reactions were not base-limited. [Ru]-

on-UiO-66 used in catalysis was subjected to solid dilution without pre-treatment because 

this procedure led to complete removal of catalyst from the surface of the MOF.  

Digestion of 1@UiO-66 samples Each dried solid sample (5 mg) was added to a 

1.5-mL centrifugation tube. Dimethylsulfoxide (1.5 mL) was added to each sample. One 

drop of 15 wt% hydrofluoric acid was added to each sample, which was then left to digest 

overnight. Each sample was then neutralized using excess sodium bicarbonate and 

subjected to centrifugation.  

Synthesis of UiO-66 ( Large size distribution) This synthesis was adapted from 

the literature15 N,N’-dimethylformamide (DMF) (25 mL) was added to a 45 mL Teflon-

lined steel autoclave. Zirconium tetrachloride (241.4 mg, 1.036 mmol) and terephthalic 

acid (342.8 mg, 2.063 mmol) and concentrated hydrochloric acid (180 µL) was added to 

the autoclave, which was then sealed and heated at 220 ºC for 20 hours. The reaction 

mixture was then allowed to cool to room temperature and agitated to suspend the solid. 

This solid was isolated by centrifugation, then washed with DMF (15 mL) and left to soak 

in this solvent overnight. This solid was isolated again by centrifugation and washed twice 

with methanol (15 mL), then left to soak overnight in methanol. The solid was isolated by 
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centrifugation and dried in a vacuum chamber overnight, then dried overnight in an oven 

at 70 ºC. Powder X-Ray diffraction traces matched literature precedents.17 

Synthesis of 1@UiO-66 In an inert atmosphere glovebox, methanol (10 mL) was 

added to a 20-mL crimp-sealed vial in a glovebox. UiO-66 (200 mg) and 

(tBuPNP)Ru(CO)HCl (5.0 mg, 5.3 µmol) were added to the vial, which was then sealed. 

This mixture was heated at 55 ºC for five days, and then allowed to cool to room 

temperature. The resulting mixture was brought into a glovebox. The vial was unsealed, 

and the resultant mixture was transferred to a 20 mL scintillation vial and subjected to 

centrifugation. Trituration was achieved by decanting the supernatant from this mixture, 

which was set aside for NMR analysis. The remaining solid was further triturated three 

times with methanol (10 mL) each time using centrifugation to ensure quantitative mass 

transfer. After three washing cycles, 188 mg of a pale yellow solid (94%) was obtained. 

This solid was dried overnight in a vacuum chamber. A portion of this material (100 mg) 

was suspended in 15 mL of degassed DMF, and then transferred as a slurry to a 20 mL 

ampule containing a stir bar using a 9” glass pipet. 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU) (2.465 mL, 2.505 g, 15.50 mmol) was added to this ampule. The ampule was added 

to a 450-mL stainless steel Parr reactor. The vessel was purged with carbon dioxide for 5 

minutes and then pressurized to 42 psi. The vessel was then pressurized with hydrogen gas 

to achieve a total pressure of 542 psi at room temperature. The reactor was heated to 129 

ºC and left to react for 45 minutes. The heating mantle was removed, the reactor was cooled 

using a room-temperature water bath, and the pressure was released slowly from the vessel. 

The vessel was opened and the ampule was removed. The reaction mixture was transferred 

as a slurry to a 20-mL scintillation vial and subjected to centrifugation at 3000 revolutions 
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per minute for 15 min, after which the supernatant was decanted. The solid was triturated 

twice with methanol (20 mL) followed by centrifugation and dried overnight in a vacuum 

chamber to give a pale yellow powder (93 mg, 93%). The loading of catalyst in the MOF 

was determined by ICP-OES (see “Preparation of (tBuPNP)Ru(CO)HCl stock solutions” 

and “Digestion of UiO-66 for ICP-OES analysis”, below).  

Preparation of (tBuPNP)Ru(CO)HCl stock solutions (tBuPNP)Ru(CO)HCl (5.0 

mg, 5.3 µmol) was added to a 20 mL scintillation vial. Degassed N,N’-dimethylformamide 

(DMF) (3.0 mL) was added to this vial. From this solution, 1.0 mL was extracted and 

diluted to 5.0 mL in a class A 10-mL volumetric flask using DMF. Further serial dilution 

was achieved by removing 1.0 mL of this solution and diluting to 10 mL in a class A 10-

mL volumetric flask. The catalytic solution (0.033 µM) was transferred to a 20-mL 

scintillation vial, sealed, and stored at -40 ºC in a glovebox. Solutions were allowed to 

warm to room temperature before use in catalysis. 

General Procedure for the hydrogenation of carbon dioxide For homogeneous 

catalysis, a stock solution (3.0 mL) of (tBuPNP)Ru(CO)HCl in DMF was prepared as 

previously noted and added to a 5.0-mL ampule using a 9” glass pipet. For the 

heterogeneous catalyst, unless otherwise noted, the solid was suspended in 3 mL of 

degassed DMF, and then transferred as a slurry to 5-mL ampules using a 9” glass pipet. 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.493 mL, 0.501 g, 3.30 mmol) was added to 

each ampule with a stir bar. These ampules were arranged in a 450 mL stainless steel Parr 

reactor that contained a thermocouple to ensure thermostated reactions. The vessel was 

placed on a Parr instrument stand atop a stir plate and surrounded by a heating mantle. The 

reaction vessel was purged with carbon dioxide for 5 minutes and then pressurized to 42 
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psi. The vessel was pressurized with hydrogen to a total pressure of 212 psi, and the 

reactions were allowed to react at room temperature for 30 minutes. Upon conclusion of 

the reaction, the heating mantle was removed and the pressure was released slowly from 

the vessel. The vessel was opened and the ampules were removed. The colorless slurry 

obtained from reactions involving heterogeneous catalysis were transferred to 20 mL 

scintillation vials and subjected to centrifugation, after which the supernatant was decanted. 

The homogeneous reactions were removed from the ampoules and the supernatant was 

analyzed as described below without further manipulation. A 0.25 mL aliquot of the 

supernatant was removed and combined with benzene (0.01 mL) and D2O (0.45 mL) in 

4.0-mL vials. These mixtures were then transferred to individual NMR tubes and 

quantitative 1H NMR was used to determine the yield of formate by integration of the 

formate peak in reference to benzene.  

Digestion of UiO-66 for ICP-OES analysis Solid MOF material (5.00 mg) was 

weight out into a 1.5 mL Teflon vial. DMSO (300 µL) and 1 drop of 15 wt.% aqueous 

hydrofluoric acid solution were added in sequence. The mixture was sonicated for 1 minute 

and left to digest for 1 hour. The digested samples then heated to approximately 150 °C 

overnight in a sand bath open to the air to remove solvent. The resulting solid was dissolved 

and transferred to a 20 mL glass scintillation vial using a mixture (10% v/v) of hydrochloric 

acid in deionized water (300 µL). Each sample was diluted with additional deionized water 

(3.7 mL) and analyzed by ICP-OES. 

ICP-OES Standard preparation Four standards were prepared by dilution from 

commercially available zirconium (999 ± 5 ppm), ruthenium (999 ± 5 ppm), and 

phosphorus (100.04 ± 0.55 ppm) standards using serial dilution in grade A volumetric 
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glassware to cover the expected concentration ranges. The standards were then employed 

in a calibration curve to determine the loading of catalyst in a tested solid. These standards 

consisted of Zr/Ru/P concentrations in ppm at the proportions: 250/5/5, 150/2/2, 25/0.5/0.5, 

2.5/0.05/0.05 

Procedure for carbon dioxide hydrogenation recycling studies using 1@UiO-

66 Carbon dioxide hydrogenation was carried out using the “general procedure for carbon 

dioxide hydrogenation” at 5x scale in a 20-mL ampule. The solid was washed twice with 

methanol (20 mL) and dried overnight in a vacuum chamber between cycles. 

Synthesis of UiO-66 with different sizes (0.2 um, 0.7 um) This synthesis was 

adapted from the literature.18 ZrCl4 (4 mM) and BDC (4 mM) were dissolved in 140 ml 

DMF containing acetic acid (2.4 M) in a glass vial. Afterwards, different amount of NEt3 

(0 M, 0.001 M, 0.004 M, 0.008 M) was added to the solution. Than the vial was heated in 

an oven at 120 oC for 6 hours. After the sample was cooled to room temperature, the 

product was collected by centrifugation, washed three times with DMF and three times 

with methanol, and then soaked in methanol for three days with replacing the soaking 

solvent every 12 hours to exchange DMF. The solid was isolated by centrifugation and 

dried in a vacuum chamber overnight, then dried overnight in an oven at 70 ºC. The yields 

were around 50% for all reactions, even while varying the amount of NEt3. The products 

were characterized by powder X-ray diffraction (PXRD) to confirm their crystallinity and 

scanning electron microscope (SEM) to generate their size distribution, counting at least 

100 particles.  

Synthesis of UiO-66 with 1.3 um particle size ZrCl4 (4 mM) and BDC (4 mM) 

were dissolved in 20 ml DMF containing 3.5 mmol benzoic acid in a glass vial. Afterwards, 
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different amount of acetic acid ( 0.85 M, 1.3 M, 1.7 M, 2.2 M) was added to the solution. 

Than the vial was heated in an oven at 120 oC for 24 hours. After the sample was cooled 

to room temperature, the product was collected by centrifugation, washed three times with 

DMF and three times with methanol, and then soaked in methanol for three days with 

replacing the soaking solvent every 12 hours to exchange DMF. The solid was isolated by 

centrifugation and dried in a vacuum chamber overnight, then dried overnight in an oven 

at 70 ºC. The yields are around 30% for all reactions, even while varying the amount of 

acetic acid. The products were characterized by powder X-ray diffraction (PXRD) to 

confirm their crystallinity and scanning electron microscope (SEM) to generate their size 

distribution, counting at least 100 particles.  
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Chapter 5. Understanding Non-covalent Interactions in a Host-guest System  
 

5.1 Outer sphere interactions in a host-guest system 

Historically, pure inorganic porous materials such as zeolites,1 supramolecular 

cages,2 and tetrahedral inorganic cages3 have been explored as host materials. These host 

materials are capable of immobilizing large libraries of transition metal complexes, 

however, they are often limited by structural tunability or sophisticated material 

characterization (See Chapter 1), and systematic investigations of outer sphere interactions 

are uncommon in those host-guest systems.  

Recently, researchers have tested the photodynamic behaviors of incorporated 

chromophores in MOFs and observed the effect of spatial-confining characteristics of the 

porous materials on the photophysical behavior of the chromophores.4 The inherent 

sensitivity of this approach is powerful in revealing the dye molecule’s orientation and 

energy migration properties when confined in the host matrix. However, few reports have 

detailed a systematic investigation to correlate chromophore-MOF non-covalent 

interactions and the properties of differently substituted linkers.5 Because non-covalent 

interactions can be highly influenced by the subtle changes of functional groups, we have 

interrogated chromophore-MOF interactions by systematically installing substitutions on 

linkers, where the substitutes on linkers are not interfering with the MOF structure.   

UiO-66, consisting of Zr-oxo cluster nodes and terephthalic acid linkers, is one of 

the most chemically and thermally robust MOFs reported.6 In addition, modifications to 

UiO-66 are easily achievable by two methods: direct synthesis of analogs6 and post-

synthetic linker exchange reactions.7 In Chapter 2 and 3, our group has developed a method 
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called “aperture-opening encapsulation” that allows molecules larger than its aperture size 

of the MOF but smaller than the cavity size to be encapsulated in the cavity without relying 

on covalent bonds to anchor the guest to the host.8 Herein, we report the encapsulation of 

a weakly solvatochromic dye, Rhodamine 6G into a series of functionalized UiO-66 

derivatives using the “aperture-opening encapsulation” method. Rhodamine dyes were 

identified as a promising probe due to high quantum yield, strong absorption, and emission 

in the visible (500-600 nm) range.9 Outer sphere interactions between the dye and the guest 

were evaluated by monitoring the absorption and fluorescent properties of the dye. Further, 

Kamlet-Abboud-Taft solvation energy relationships and linear free energy relationships 

were used to reveal a sophisticated and synergistic relationship between the solvent and the 

substituent installed on the terephthalic aicd linkers, both of which modulate the local 

environment in the cavity of the MOF in ways that are more significant than observed for 

R6G in solution.  

5.2 The photophysical behavior of UiO-66 encapsulated Rhodamine 6G 

To probe host-guest interactions in the chromophore-MOF system, Rhodamine 6G 

(R6G) was encapsulated in UiO-66 using the aperture-opening encapsulation described in 

Chapter 2.8b The encapsulated Rhodamine 6G's photophysical behavior was analyzed by 

ultraviolet-visible spectroscopy in an array of solvents: CH2Cl2, MeOH, H2O, acetone, n-

butanol, ethanol, 1-hexanol, 1-heptanol, DMF, dioxane and DMSO, which covers a large 

spectrum of solvent properties. The magnitude of the bathochromic shift in the emission 

λmax of the encapsulated dye was greater than the free Rhodamine 6G dye molecules in the 

same solvent. For example, R6G@UiO-66 (564 nm) exhibited a 10 nm bathochromic shift 

from free Rhodamine 6G (554 nm) in 1-hexanol (Figure 5-1a). Rhodamine 6G dye has 
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been reported to be weakly solvatochromatic,1 which is consistent with our observation 

(Figure 5-1b). In the chosen solvents, the emission λmax of homogenous Rhodamine 6G 

spanned 22 nm from CH2Cl2 (539 nm) to DMSO (561 nm) (Figure 5-1b). Unlike any other 

solvent evaluated, the emission λmax of free Rhodamine 6G in CH2Cl2 (539 nm) was 

significantly hypsochromic shifted compared to the rest of solvents.  

Compared to free Rhodamine 6G, the UiO-66-encapsulated dyes molecules 

exhibited a bathochromic shift in emission for most solvents employed. The emission λmax 

for free Rhodamine 6G was in the order of CH2Cl2, MeOH, H2O, acetone, n-butanol, 

ethanol, 1-hexanol, 1-heptanol, DMF, dioxane, DMSO, and that for UiO-66 encapsulated 

Rhodamine 6G is MeOH, H2O,  dioxane, CH2Cl2, n-butanol, 1-hexanol, ethanol, 1-

heptanol, acetone, DMSO, DMF. For example, the emission λmax for free Rhodamine 6G 

was in the range from 539 nm (CH2Cl2) to 561 nm (DMSO), and R6G@UiO-66 emitted 

from 556 nm (MeOH) to 569 nm (DMF) (Figure 5-1b). Although R6G@UiO-66 exhibited 

a greater bathochromic shift in most solvents, there was no particular trend in shift based 

on solvent.  Despite the overall bathochromic shift of the encapsulated Rhodamine 6G, 

there was no obvious correlation between the amount that dye’s fluorescence was shifted 

and solvent properties, such as dielectric, hydrogen bonding capabilities, etc. (vide supra) 

One notable observation was that some solvents led to more significant shifts than others 

such as DMSO and dioxane. This observation indicates that the bathochromic shifts are a 

consequence of more than just dye encapsulation and that the local environment of the dye 

is significantly affected by the encapsulation.  
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Figure 5-1. The Emission spectra of Rhodamine 6G and R6G@UiO-66 (a) in 1-Hexanol,  
(b) in solvent array: Top: CH2Cl2, MeOH, H2O, acetone, n-butanol, ethanol, 1-hexanol, 1-
heptanol, DMF, dioxane, DMSO; Bottom: methanol, H2O,  dioxane, CH2Cl2, n-butanol, 
1-hexanol, ethanol, 1-heptanol, acetone, DMSO, DMF. 

 

To test whether the difference in R6G fluorescence originated from encapsualting 

the dye in the MOF as oppsoed to being a consequence of the dye being adsorbed to the 

surface of the MOF, a control experiment was carried out in which a physical mixture of 

Rhodamine 6G and MOF was prepared. No bathochromic shift was observed in the 

emission spectra (Figure 5-2a). This observation demonstrated that the change of 

photophysical behavior of Rhodamine 6G was caused by the dye molecule encapsulated in 

the MOF cavity.   

To test whether possibilities other than encapsulation could contribute to the 

bathchromic shift in emission spectra, absorption spectra were taken for free Rhodamine 

6G and encapsulated Rhodamine 6G dissolved/suspended in water (Figure 5-2b). Two 

bands in the absorption profile of free R6G were observed, and in sharp contrast, only one 

absorption band was observed in R6G@UiO-66 in water.  Rhodamine 6G in known to 

dimerize in the aqueous solvent and this phenominon is particularly problematic at high-
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concentrations where dye aggregation is likely.10 For instance, Rhodamine 6G is known to 

form dimers and aggregates in aqueous solution at high concentrations, which leads to 

bathochromic emission shifts or even quenching.11 Two types of dimers are common, 

where two dye molecules in the dimer structure in parallel is referred to as H-dimer, and J-

dimer are two molecules in orthogonal. Here, two absorption bands observed for free 

Rodamine 6G in water have been attributed to the H- and J-dimers as a result of dye 

aggregation.11 Rhodamine 6G is of similar size (13 Å) to the octahedral cavity size of UiO-

66 (12 Å), meaning that hypothetically only one molecule can fit in each cage. The 

observation that only one absorption band was observed in R6G@UiO-66 indicates that  

the dye molecule does not exist as a dimer even though the spectrum was collected in water 

and at concentrations where dye aggregation is known to occur for R6G dissolved in water. 

This finding strongly supports the encapsulation of R6G in the pores of UiO-66 rather than 

being supported on the surface of UiO-66. Thus, the observed change in the photophysical 

properties of Rhodamine 6G is most likely a consequence of dye molecules being confined 

in the cage rather than surface supported dye-dye interactions.  

 

Figure 5-2. The Emission spectra of (a) physical mixture of Rhodamine 6G with UiO-66 
in 1-hexanol. (b) Absorption spectra of R6G, R6G@UiO-66in water and R6G in 1-heptanol.  
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To investigate whether the interactions is depenent on the distance between the host 

and guest, Rhodamine 6G was encapsulated in UiO-67, a MOF with larger pore sizes than 

UiO-66. UiO-67 has the same topology with UiO-66,  yet it consists of biphenyl-4,4’-

dicarboxylate linkers rather than terephthalic acid. A diminished bathochromic shift in 

emission λmax was observed in R6G@UiO-67 compared to R6G@UiO-66 in 1-hexanol 

(Figure 5-3a).  Moreover, compared to free Rhodamine 6G, R6G@UiO-67 exhibited less 

significant bathochromic shifts in the array of solvents studied ranging from acetone (555 

nm) to dioxane (560 nm). Based on these comparisons, we concluded that the observed 

behavior resulted from the dye being constrained in the cage environment played a role in 

the chromophore-solvent interaction. Although, it is still not clear why dichloromethane 

displays significant bathochromic shifts when R6G is encapsulated in UiO-66 or UiO-67.  

 

Figure 5-3. The emission spectra of Rhodamine 6G and R6G@UiO-67 (a) in 1-hexanol, 
(b) in solvent array: Bottom: acetone, ethanol, 1-heptanol, 1-hexanol, MeOH, CH2Cl2, n-
butanol, DMSO, DMF, H2O, dioxane.  
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5.3 The photophysical behavior of UiO-67 and UiO-66-OMe encapsulated Rhodamine 

6G 

We postulated that the photophysical properties of Rhodamine 6G could be further 

tuned by introducing structurally-inert substitutions on the organic bridging linker of the 

MOF. UiO-66-OMe, which features 2-methoxyterephthalic acid as the organic linker,12 

was chosen as a host candidate to evaluate this hypothesis. Installing a methoxide substitute 

on the terephthalic acid linker introduces significant steric bulk and significantly alters the 

electronic characteristics of the linker. The installed functionalities are expected to interact 

with entrapped solvent molecules differently compared to the unfunctionalized terephthalic 

acid linkers in UiO-66.  

We observed the emission spectra of R6G@UiO-66-OMe exhibited a significant 

amplification of the observed bathochromic shift. For instance, the emission λmax of 

R6G@UiO-66-OMe (570 nm) was shifted 6 nm further than that of R6G@UiO-66 (564 

nm), and 16 nm further than that of free R6G (554 nm) in 1-hexanol. (Figure 5-2c) More 

importantly, the solvatochromic behavior of Rhodamine 6G was significantly amplified 

when being encapsulated in UiO-66-OMe. The λmax range of R6G@UiO-66-OMe spanned 

up to 36 nm from 553 nm (ethanol) to 589 nm (dioxane), which is 23 nm larger than that 

of R6G@UiO-66.  The higher sensitivity of R6G@UiO-66-OMe to solvent polarity could 

be attributed to the confinement and electronic and steric influences from the –OMe group.  
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Figure 5-4. The Emission spectra of Rhodamine 6G, R6G@UiO-66 and R6G@UiO-66-
OMe (a) in 1-hexanol,  (b) in solvent array: Top: CH2Cl2, MeOH, H2O, acetone, n-butanol, 
ethanol, 1-hexanol, 1-heptanol, DMF, dioxane, DMSO; middle: MeOH, H2O, Dioxane, 
CH2Cl2, n-butanol, 1-hexanol, ethanol, 1-heptanol, acetone, DMSO, DMF. Bottom: MeOH, 
H2O, ethanol, acetone, DMF, DMSO, 1-hexanol, CH2Cl2, n-butanol, 1-heptanol, dioxane.  

 

5.4 Systematic change of substitutes on MOF linker  

After demonstrating the impact of -OMe on the MOF backbone to the 

solvatochromic behavior of the dye, next, we investigated the effect of systematic changes 

of functional groups in UiO-66 on solvent stabilization of the excited state of Rhodamine 

6G. Doing so requires analyzing the emission λmax of various R6G@UiO-66-X derivatives 

in the same solvent.  

In addition to UiO-66-OMe, a library of UiO-66 variants UiO-66-X (X=H, Br, Cl, 

NH2, NO2, Me, I) was synthesized by literature protocols.6,15 Rhodamine 6G was 

encapsulated through an aperture-opening encapsulation method identical to that for UiO-

66, UiO-67, and UiO-66-OMe, and the absorption and emission λmax of R6G@UiO-66-X 

were measured in an array of solvents (Table 5-1).   
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Table 5-1. The absorption λmax,  emission λmax and Stokes shift of free Rhodamine 6G and 
R6G@UiO-66-X (X=H, Br, NH2, NO2, Cl, OMe, Me, I).  

a) 

 

b)  
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c) 

 

In a single solvent, the emission profiles of R6G@UiO-66-X changed significantly 

with change to the MOF linker functionality (Figure 5-5). In particular, the emission λmax 

of R6G@UiO-66-OMe (586 nm) and R6G@UiO-66-Cl (581 nm) in 1-heptanol exhibited 

bathochromic shifts of 32 nm (5.7%) and 27 nm (4.9 %)  compared to free Rhodamine 6G, 

respectively (Figure 5-5a). The magnitude of the shifts observed is remarkable, considering 

that Rhodamine 6G has limited solvatochromism in the array of solvents investigated. The 

large bathochromic shifts observed by changing the functionality in the MOF suggest that 

non-covalent host-guest interactions have a stronger impact on the excited state of the guest 

when it is constrained in the solid matrix with solvent compared to when the 

unencapsulated guest molecule is surrounded by freely moving solvent molecules. In other 

words, changing the substitutes on the linker from hydrogen to methoxide has a much 

larger impact on the local environment in which the dye resides than does changing the 
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solvent from methanol to hexane. In addition, the degree of the enhancement was 

dependent on the sterics and electronics of the substitutions.  

 

Figure 5-5. The Emission spectra of R6G@UiO-66-X in (a) 1-heptanol, (b) acetone, (c) 
ethanol, (d) n-butanol.  

Rhodamine 6G was encapsulated into functionalized UiO-67-X (X: NO2, NH2, Br) 

as well. Consistent with the hypothesis that confinement of the dye is necessary to amplify 

solvent/solute interactions, the emission maximum of Rhodamine 6G was less sensitive to 

changes in a host with a larger pore size (Table 5-2).  
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Table 5-2. The emission λmax of R6G@UiO-67-X (X=H, Br, NO2, NH2), and the 
graphical presentation.  

 

 

 

5.5 Linear solvation energy relationship 

Having demonstrated the amplification of solvatochromism due to substitutions on 

the MOF linker, we explored the linear solvation energy relationships in the form of 

Kamlet-Abboud equation to analyze the effect of solvent properties on the spectral features 

of Rhodamine 6G. 

The linear solvation energy relationship is a powerful model to correlate solvent 

properties with the photophysical behavior of chromophores.13 Solvatochromic behavior 

of xanthene dyes results from various solute-solvent interactions in a given medium.14 In 

principle, there are two categories of solute-solvent interactions: non-specific interactions, 

such as the enhancement of dipole moment, and specific interactions, such as hydrogen 

bonding. The parameters governing the contribution of solvent parameters upon spectral 

shifts regarding specific and non-specific interactions have been evaluated using the 

Kamlet-Abboud-Taft equation. (Eq. 1) 13 
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(Va-Vf)=(Va-Vf)0 + aα + bβ + sπ*                           Eq. 1    

In this model, π* is the measurement of the solvent polarizability, α is the scale of 

the solvent hydrogen bond donor ability (HBD) and β is the scale of the solvent hydrogen 

bond acceptor ability (HBA). (Table 5-3) Va is the absorption energy and Vf is the emission 

energy.  The value of (Va-Vf)0 is obtained from linear regression fitting and is related to 

the energy loss from the Stokes shift. The coefficients (a, b and s) are weighted, suggesting 

which interaction plays the major role.  

Table 5-3. α, β and π* values of the listed solvents.  

 

 

First, the Kamlet-Abboud-Taft equation was applied to the UV-Vis data for all 

solvents for absorption, emission, and the Stokes shift of Rhodamine 6G, R6G@UiO-66, 
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and R6G@UiO-66-OMe. R6G, R6G@UiO-66, and R6G@UiO-67 exhibited a poor 

correlation between the spectra and the employed solvent properties. Although satisfactory 

fits could not be obtained when considering all the solvents in the study, decent fits to the 

data could be obtained by separating the solvents into protic and aprotic solvents. In this 

case, absorption and emission features exhibited good correlation with solvent properties. 

The Stokes shift, defined as the energy difference between absorption energy and emission 

energy, correlated to the relative change of energy between ground and excited states. By 

fitting the Stokes shift data, the effect that the solvent has on the ground state and excited 

state is manifested in a single number (Figure 5-6).  

 

Figure 5-6. Values of Kamlet--Abboud-Taft coefficients a, b, and s,  and their weightage 
fitted from spectra date in protic solvents and aprotic solvents for Rhodamine 6G(R6G), 
R6G@UiO-66, and R6G@UiO-66-OMe.   
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All coefficients a, b, and s showed positive values in protic solvents, indicating an 

increase of Stokes shift with an increase in hydrogen bonding capability (α, β) and solvent 

polarizability (π*). All a, b, and s values from free Rhodamine 6G to R6G@UiO-66 

increased, and increased significantly from R6G@UiO-66 to R6G@UiO-66-OMe 

indicating the enhancement of chromophore-solvent interaction. These coefficients further 

signified hydrogen bonding interactions dominating the solvent polarizability based on the 

observed Stokes shifts in protic solvents. All of those interactions between the host and 

guest can be altered by simply changing the substituents on the linker.  

In contrast, the coefficients a, b and s have either positive or negative values in 

aprotic solvents. However, the a value is irrelevant to the Stokes shift since α values are 

negligible in aprotic solvents (Table 5-3). The contributions from hydrogen accepting 

interactions (β only) decreased and solvent polarizability increased as Rhodamine 6G 

changed from its solvated state to being encapsulated in UiO-66, which implied the 

confined cavity played a major role in influencing the solvent polarizability. Interestingly, 

after the addition of the electron donating –OMe group to UiO-66, the contribution of 

hydrogen-bond interactions was similar to that of free Rhodamine 6G, which suggested the 

enhanced solvent polarization capability was balanced by the electronic impact of –OMe. 

 These results suggested that the factors that influence the change in Rhodamine 

6G’s  solvatochromic behavior are diverse and complex, with influence from the identity 

of the solvent, the nature of the substituents on the MOF, and the synergistic effect between 

chromophore-solvent interaction and host-guest interaction. 

Generally, solvents that are polar, viscous, or can engage in hydrogen bonding have 

high chromophore-solvent interaction that stabilize excited states and facilitate relaxation 
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of excited electrons to the ground state.11 Solvents with these features – DMF, dioxane, 

and alcohols – have resulted in the greatest bathochromic shifts. Despite the significant 

bathochromic shift in fluorescence spectra, there is minimal change in the absorption for 

encapsulated R6G dye with change in solvent (Table 5-4).  

Table 5-4. Absorption λmax of Rhodamine 6G, R6G@UiO-66, and R6G@UiO-66-OMe 
in protic solvents and aprotic solvents, and the graphical presentation.   

 

We hypothesize that the observed fluorescence shifts are a product of chromophore-

solvent interactions. According to the Franck-Condon principle, a change from 

one vibrational energy level to another will be more likely to happen if the two 

vibrational wave functions overlap more significantly. This principle can also be applied 

to the electronic transitions of a chromophore dissolved in a liquid where the chromophore 

and solvent molecules have different energies in their ground and excited states. The 

solvent molecules rearrange themselves to accommodate the change of the electronic 

configuration of the excited states. Essentially, the change of the dipole moment of a dye 
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molecule in response to the surrounding solvent molecules leads to the shift in absorption 

and emission spectra. Since both absorption and emission maxima are similar among 

solvents for free R6G molecules, we speculate that those solvents employed exhibited 

similar stabilization of the ground state and excited states of R6G. However, when R6G 

dye is encapsulated in the solid matrix where functional groups had a substantial electronic 

and steric influence, the interaction of the electronic states of the dye with the employed 

solvent in the pore and the surrounding cage environment is significantly perturbed. The 

amplified solvatochromism observed in R6G@UiO-66-OMe is likely a result of the 

enhanced solvent-sensitive stabilization of the excited state of Rhodamine 6G by the cage 

environment. However, the stabilization of the ground state of R6G by solvent is expected 

to be less pronounced because of its lower charge and weaker dipole moment. 

5.6 Linear free energy relationship: Taft equation 

After the correlation between substitutes on MOF linker and the solvatochromism 

of the MOF-encapsulated dye was demonstrated, attempts were made to correlate the 

solvatochromism to linear free energy relationship (LFER) for electronic and steric factors 

using Hammet σ or Es. However, no correlation was drawn between these two. It was 

hypothesized that a correlation was possible by combining both electronic and steric factors 

using the Taft equation where σ and Es were both involved.  Hence, the electronic and 

steric contributions from the aryl substituents were quantitatively analyzed by applying 

linear free energy relationships (LFER) in the form of the following Taft equation. (Eq. 2)  

log(VX/VH)=x*σ+y*Es                            Eq. 2 
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Where log(VX/VH) is the logarithmic ratio of the energy 

(Absorption/Emission/Stokes shift) of the selected functionalized UiO-66-X sample to 

UiO-66, σ is the polar substituent constant that describes the field and inductive effect of 

the substituent, and Es is the steric substituent constant (Table 5-5).  

 

 

Table 5-5. A list of σ and Es values of functional groups (H, NH2, NO2, Br, Cl, OMe, 
Me, I). 

 

The correlation between the absorption spectra and the Taft parameters of 

functional groups was poor, presumably due to a subtle change in absorption λmax for those 

samples. For emission and Stokes shift, good correlations could not be observed with linear 

free energy relationships pertaining to the electronic (σ ) or steric (Es) factors of the 
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substituents separately but could be obtained if both factors were incorporated in the LFER. 

For example, a good correlation was found in DMF for R6G@UiO-66-X (R2=0.94) when 

both σ and Es were considered, while no trend was observed if only σ (R2=0.33) or Es 

(R2=0.03) was included  (Figure 5-7).  
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Figure 5-7. Linear free energy relationship between stokes shift and (a) only σ (b) only 
Es (c) σ and Es in solvent DMF. 
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The results suggest that a combination of electronic and steric effects are 

responsible for the bathochromic shift in emission spectra as well as the amplified 

solvatochromism behavior of the dye. The purpose of acquiring x and y values is to assess 

how the steric and electronic factors of the substitutes effect the local environment of the 

MOF cavity rather than predicting Stokes shift. Direct comparison of the relative 

importance of substituent sterics and electronics is impossible due to the fact that σ and Es 

are not normalized to one another. However, evaluating the coefficients (x, y) by 

comparing one solvent to another can be made to assess how sensitive the relative 

importance of the substituent sterics and electronics are to the solvent. For small alcohols 

(MeOH, n-butanol, EtOH) and acetone, which has the same pKa as MeOH, the relative 

importance of the substituents electronics (x) and sterics (y) on the spectra of encapsulated 

R6G stay approximately the same. In comparison, large alcohols like 1-heptanol and 1-

hexanol alter the relative importance of substituent electronics and sterics: Spectra taken 

in these solvents are sensitive to both factors more than they would be for more polar 

alcohols . Nonpolar solvents such as dioxane and CH2Cl2 exhibit poor correlation with the 

emission spectra of the dye molecule (R2(dioxane): 0.64, R2(CH2Cl2):0.70), second and 

third worse to water (R2:0.49). DMSO and DMF are aprotic polar solvents, and they have 

different x,y values compared to other categories. If there is little change to x and y among 

solvents, like in 1-hexanol and 1-heptanol, substituent effects dominate the change of 

photophysical property of the chromophore. If x and y change significantly from solvent 

to solvent, the nature of the fluorescence is connected to the identity of the solvent as well 

as the electronic and steric factors of the substituents on the MOF. The outer sphere 
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interaction in the host-guest system is so complex that any subtle change on solvents and 

substitutes on MOF linker could lead to a significant change in the photophysical property 

of the guest molecule.  

Table 5-6. Summary of x and y values from linear free energy fitting in all the solvents. 

 

 

5.7 Conclusion 

Rhodamine 6G was encapsulated into UiO-66, UiO-67, and a series of 

functionalized UiO-66-X through aperture-opening encapsulation. R6G demonstrated 

strong solvatochromic behavior only when encapsulated in functionalized UiO-66 

derivatives, with emission features tunable through modulation of the functional group on 

the MOF linker and the identity of the solvent. The comparison between R6G confined in 

UiO-66 and UiO-67 further demonstrated that spatial confinement was necessary to 
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maximize host-guest interaction. In addition, the effect of solvent polarity on the absorption 

and emission features of the free and encapsulated R6G was interpreted by a linear free  

energy relationship in the form of Kamlet-Abboud-Taft equation. The results revealed that 

hydrogen bond donating/accepting capability and the polarizability of the solvent influence 

the photophysical property of the dye significantly. Also, the spectra showed that host-

guest interactions respond differently to there factors depending on whether the spectrum 

was acquired in polar or nonpolar solvent.  Moreover, the influence from the electronic and 

steric features of the linker functional group was investigated using similar linear free 

energy relationships in the form of the Taft equation. The results from fitting to the Taft 

equation suggested both electronic and steric properties of the linker substitutes affect the 

local environment in the MOF cavity. The comparision between UiO-66-encapsualted 

R6G and UiO-67-encapsualted R6G suggests that distance-dependent non-covalent 

interactions between the dye and the encapsulated solvent molecules are reinforced by the 

electronically and sterically altered cage environment. Those interactions are responsible 

for the changes in the photophysical properties of Rhodamine 6G.  

This study has shown that encapsulation of guest molecules into MOFs is an elegant 

method to create tunable, multifunctional, and moderate solvatochromic materials. The 

local environment in the cavity of the MOF can be altered by changing the identity of the 

MOF and solvent that cannot be achieved by changing the solvent alone. We provide an 

effective exploration of host-guest interactions that otherwise might be less amenable to 

measurement in other systems. Reminiscent of enzymatic structures, the host-guest system 

is a simpler, efficient, and economical alternative for investigating outer sphere interactions. 

The combination of experimental evidence and statistical analysis provides a more diverse 
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perspective for the subsequent development of host-guest systems to better understand 

outer sphere interactions in biological analogues, especially catalysis in the future. For 

instance, catalysis that are highly dependent on solvents can be tuned by encapsulating the 

active species in a different MOF with functional substitutes. Simply changing the 

substitutes on MOF linker may have similar effect to the catalytic behavior of the 

encapsulated catalyst than changing the solvent.  

5.8 Experimental section  
 

General considerations Unless otherwise stated, all manipulations were carried 

out in open air with no precautions taken to protect chemicals/reactions from air or water. 

ZrCl4 (Sigma Aldrich), terephthalic acid (Sigma Aldrich), [1,1’-biphenyl]-4,4’-

dicarboxylic acid (Sigma Aldrich), R6G (Sigma Aldrich) were purchased from the 

indicated sources and used without further purification. The Powder x-ray diffraction 

spectra (PXRD) were collected on a Bruker AXS diffractometer with Cu Kα radiation (λ= 

1.5418 Å). HPLC graded solvents were used directly without further purification.  

Synthesis of UiO-66 The synthesis of UiO-66 is based on a previously published 

procedure.6 To a 50 mL pressure vessel reactor, a 80 mM stock solution of ZrCl4 in DMF 

( 1 ml, 0.08 mmol), a 80 mM stock solution of terephthalic acid in DMF (1 ml, 0.08 mmol) 

were added followed by acetic acid (1.4 ml, 24 mmol). The mixture was then filled up to 

the total volume of 10 ml. The reaction was carried out at 120 ºC temperature for 24 hours 

without stirring. The product was collected by centrifugation at 5000 rpm for 10 minutes.  

The solid precipitate was triturated by decanting the DMF supernatant then re-suspended 

with fresh DMF (15 mL). The centrifuging and trituration steps were repeated at least 3 

times until supernatant was completely transparent. The residual solvent was removed from 
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the isolated solids in a vacuum oven at 100 °C overnight. The product mass recovery is 16 

mg with yield 50%. The material is characterized by PXRD (See below) and the crystalline 

pattern matches with literature.  

Synthesis of functionalized UiO-66-X (X: Cl, Br, NO2, NH2, Me)6 The general 

synthesis method is the same as the synthesis of UiO-66. Instead of using terephthalic acid 

(BDC) (0.08 mmol), BDC-Cl (0.08 mmol), BDC-Br (0.08 mmol), BDC-NO2 (0.08 mmol), 

BDC-NH2 (0.08 mmol), BDC-Me (0.08 mmol) was used in the synthesis.  

Synthesis of UiO-66-OMe15 This synthesis was adapted from the literature N,N’-

dimethylacetamide (DMA) (9 mL) was added to a 45 mL Teflon-lined steel autoclave. 

Zirconium oxychloride octahydrate ( 314 mg, 0.974 mmol) and 2-methoxyl terephthalic 

acid (191 mg, 0.974 mmol) and concentrated formic acid (3.87 ml, 97.4 mmol) was added 

to the autoclave, which was then sealed and heated at 150 ºC for 20 hours. The reaction 

mixture was then allowed to cool to room temperature and agitated to suspend the solid. 

This solid was isolated by centrifugation, then washed with DMF (15 mL) and left to soak 

in this solvent overnight. This solid was isolated again by centrifugation and washed twice 

with methanol (15 mL), then left to soak overnight in methanol. The solid was isolated by 

centrifugation and dried in a vacuum chamber overnight, then dried overnight in an oven 

at 70 ºC with a yield of 60 %. The material is characterized by PXRD (Figure 5-6) and the 

crystalline pattern matches with literature.  

Synthesis of UiO-66-I To a 20 ml high-pressure reaction glass vessel was added 

100 mg of UiO-66 (BDC: 0.35 mmol), iodine terephthalic acid (200 mg, 0.68 mmol) and 

3 mL H2O. The vessel was then sealed at heated at 80 °C for 8 days using a steady shaker. 

The solid was isolated by centrifugation and then washed with MeOH until no iodine 
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terephthalic acid was detected by 1H NMR in the washing solvent. The solid was then 

collected by centrifugation and dried in heating oven overnight at 70 ºC.  

Digestion of UiO-66-I for 1H NMR analysis Solid MOF material UiO-66-I (5.00 

mg) was weight out into a 1.5 mL Teflon vial. DMSO-d6 (700 µl) and 1 drop of 15 wt.% 

aqueous hydrofluoric acid solution were added in sequence. The mixture was sonicated for 

1 minute and left to digest for 1 hour. An excess of NaHCO3 was then added to the clear 

solution which effervesced until all of the hydrofluoric acid was neutralized. Neutralized 

supernatant was loaded into an NMR tube for 1H NMR analysis. Analysis of the NMR 

spectrum revealed that 92% of original terephthalic acid was exchanged to iodine 

terephthalic acid.  

 

Figure 5-6. PXRD of R6G@UiO-66-X (X=-H, Br, Cl, Me, NH2, NO2, OMe, I) 
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Figure 5-7. TGA of R6G@UiO-66-X (X=-H, Br, Cl, Me, NH2, NO2, OMe, I) 

 

Synthesis of UiO-67 The synthesis of UiO-67 is based on a previously published 

procedure.6 To a 20 mL vial, a 58 mM solution of ZrCl4 in DMF (5 ml, 0.3 mmol), 0.5 mL 

con. HCl were added. The mixture was applied with ultrasonication for 20 minutes giving 

a clear solution. To another 20 ml vial, a 76 mM solution of [1,1’-biphenyl]- 4,4’-

dicarboxylic acid (1)in DMF (5 ml, 0.38 mmol) was added. The mixture was applied with 

ultrasonication for 20 minutes giving a translucent suspension. Afterward, the ZrCl4 in 

DMF solution (5 ml, 0.3 mmol), the 1 in DMF suspension (5 ml, 0.38 mmol), and additional 

5 mL DMF were added to a 50 mL pressure vessel reactor in sequence. The mixture was 

ultrasonicated for additional 5 minutes. The reaction was carried out at 80 °C for 24 hours 

without stirring. The product was collected by centrifugation at 5000 rpm for 10 minutes. 

The solid precipitate was triturated by decanting the DMF supernatant then re-suspended 

with fresh ethanol (15 mL). The centrifuging and trituration steps were repeated at least 3 

times and until the supernatant was completely transparent. The residual solvent was 
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removed from the isolated solids in a vacuum oven at 100 °C overnight. The yield of the 

reaction is 60%. Product was characterized by PXRD (Figure 5-8), and the crystal structure 

matches the literature.   

Encapsulation of R6G in functionalized UiO-66 through aperture opening 

encapsulation 10 mL of saturated solution of R6G in H2O was placed in a 20 mL 

microwave pressure vessel. To each of the vial, 20 mg of either UiO-66 or functionalized 

UiO-66 was added. The vial was sealed and the solid was suspended by sonication for 10 

minutes. The vial was stirred and heated for three days. The R6G functionalized UiO-66 

was collected by centrifugation at 5000 rpm for 10 minutes. The solid precipitate was 

triturated by decanting the supernatant and dispersed into fresh methanol (10 ml). The 

centrifugation and trituration steps were repeated at least 5 times until the solvent isolated 

from the washing solvent was transparent. The residual solvent was removed from the 

isolated solid in a vacuum overnight and the mass recovery is 90%.  

2-Nitrobiphenyl-4, 4’-dicarboxylic acid dimethyl ester 19 To a solution of 2.0 g 

(7.4 mmol) of biphenyl-4, 4’-dicarboxylic acid dimethyl ester in 20 mL of concentrated 

sulfuric acid was added 1.2 ml (7.4  mmol)  of  56%  HNO3   in  1.5 ml of concentrated  

H2SO4 dropwisely at 15 °C under intense stirring.  The reaction mixture was maintained at 

15-20 °C for additional 1 h  and  then  was poured on a crushed ice. The precipitated solids 

were separated by filtration, washed with water, and purified by column chromatography 

with 20% THF/hexane. Yield 2.0 g (85%) of the colorless crystals.  1H NMR (DMSO-d6 ), 

δ: 3.88 (s, 3H, –CH3 ), 3.93 (s, 3H, –CH3 ), 7.53 (d, 2H, J3 ortho  = 8.6 Hz, 3’,5’/2’,6’-Ar), 

7.73 (d, 1H, J3 ortho  = 7.9 Hz, 6-Ar(NO 2 )), 8.04  (d,  2H,  J3 ortho   =  8.6  Hz,  3’,5’/2’,6’-

Ar),  8.28  (dd,  1H,  J3 ortho   =  8.0  Hz,  J3 meta   =  1.7  Hz,  5-Ar(NO 2 )), 8.48 (d, 1H, 
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J3 meta  = 1.5 Hz, 3-Ar(NO 2 )); IR (KBr, ν cm -1 ): 3107, 3093, 3027, 2980, 2900, 2863, 

1733, 1620, 1543, 1443, 1373, 1323, 1293, 1253, 1217, 1200, 1173, 1147, 1133, 1123, 

1040, 1023, 993, 980, 973, 940, 907, 890, 873, 837, 793, 787, 770, 720. 

Synthesis of  2-Aminobiphenyl-4,4’-dicarboxylic  acid  dimethyl  ester19 To a 

solution of  1.46  g  (4.6 mmol) of 2-nitrobiphenyl-4,4’-dicarboxylic acid dimethyl ester in 

50 ml of dry THF, 1 g of 10% Pd/C was added and the reaction mixture was stirred under 

hydrogen atmosphere at RT for 1 day. When the consumption of hydrogen ceased, the 

catalyst was filtered and solvents removed under reduced pressure. The resulting yellow 

paste was recrystallized from ethanol, and the crude reaction mixture was purified by 

column chromatography with 20% THF/hexane and dried under reduced pressure. Yield 

1.0 g (75%) of light yellow to white solid. 1H NMR (DMSO-d6 , 500 MHz), δ: 3.84 (s, 3H, 

–CH3 ), 3.88 (s, 3H, –CH3 ), 5.16 (s, 2H, –NH2 ), 7.16 (s, 1H, 3-Ar(NH2 )), 7.20 (d, 1H, J3 

meta = 1.3 Hz, 6-Ar(NH2 )), 7.45 (d, 1H, J3 meta  = 1.0 Hz, 5-Ar(NH2 )), 7.59 (d, 2H, J3 

ortho  = 8.5 Hz, 3’,5’/2’,6’-Ar), 8.03 (d, 2H, J3 ortho  = 8.5 Hz, 3’,5’/2’,6’-Ar); IR (KBr, ν 

cm -1 ): 3475, 3380, 3225, 3100, 3070, 3047, 3015, 2960, 2900, 2845, 1943, 1913, 1807, 

1780, 1720, 1630, 1610, 1570, 1560, 1530, 1490, 1440, 1403, 1367, 1340, 1313, 1303, 

1283, 1267, 1250, 1190, 1157, 1123, 1113, 1073, 1020, 1003, 970, 953, 910, 867, 840, 827, 

793, 773, 760, 727, 700. 

Synthesis of 2-bromobiphenyl-4,4’-dicarboxylic acid dimethyl ester  Dimethyl 

2-aminobiphenyl-4,4'-dicarboxylate 50 mg  (0.175 mmol) was suspended in  5 mL of 

MeCN,  the solution was cooled at 0 °C and a solution of TsOH.H2O in MeCN  (99 mg, 

0.53 mmol) was added dropwise. The mixture was stirred at r.t.  for 1 hour, then 24 mg 

(0.35 mmol) CuBr in MeCN was added and the resulting solution was heated and reflux to 
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60 °C for 2 hrs. The reaction mixture was poured into 50 mL of saturated Na2S2O3 aqueous 

solution and the majority of MeCN was removed under reduced pressure. The residue was 

extracted with 50 mL ethyl acetate. After the solvent was removed, the crude reaction 

mixture was purified by column chromatography with 20% THF/hexane on silica gel to 

give the final product as a pale yellow solid, yield 60%. 1H NMR (400 MHz, CDCl3) δ 

8.35 (d, J = 1.6 Hz, 1H), 8.11 (d, J = 8.3 Hz, 2H), 8.02 (dd, J = 8.0, 1.7 Hz, 1H), 7.48 (d, J 

= 8.4 Hz, 1H), 7.39 (d, J = 7.9 Hz, 1H), 3.95 (d, J = 1.5 Hz, 6H). 13C NMR (400 MHz, 

Chloroform-d) δ 166.81 (s, CO2-C6H3Br), δ 165.60 (s, CO2-C6H4), δ 146.00 (s, C1- C6H4), 

δ 144.69 (s, C1- C6H3Br), δ 134.50 (s, C3-C6H3Br), δ 131.20 (s, C4-C6H3Br), δ 131.09 (s, 

C5-C6H3Br), δ 130.31 (s, C2-C6H4), δ 129.95 (s, C6-C6H4), δ 129.53 (s, C3-C6H4), δ 139.37 

(s, C5-C6H4), δ 128.61 (s, C4-C6H4), δ 127.34 (s, C5-C6H3Br), δ 122.37 (s, C2-C6H3Br), δ 

52.61 (s, CH3), δ 52.36 (s, CH3). IR (, ν cm-1 ): 3073.5, 2962, 2888, 1716, 1600, 1434, 1280, 

1235, 1192, 1113, 1062, 963, 845, 826, 754, 697, 549, 490. MS HRMS(DART) calibrated 

for C16H13O4Br (M-H)+ 349.00700 found 349.00755. 

Synthesis of 2-bromobiphenyl-4,4’-dicarboxylic acid 2-bromobiphenyl-4,4’-

dicarboxylic acid dimethyl ester 50 mg (0.14 mmol) was combined with 4 ml THF in a 20 

ml vial.  An aqueous solution of KOH (48 mg)  was added into the vial dropwise at room 

temperature with steady stirring. The solution was heated to reflux at 60 °C for 20 hours. 

The reaction was concentrated under reduced pressure and 2 mL of 6M HCl was added 

dropwise. The final yellow paste was purified by column chromatography with 20% 

THF/Hexane, resulting in yellow solid, yield: 62%; 1H NMR (DMSO-d6 , 500 MHz), δ: 

7.56 (d, 2H ), 7.58 (d, 2H ), 7.90 (d, 1H), 8.03 (d, 2H), 8.17 (s, 2H). 

Synthesis of UiO-67-Br/UiO-67-NO2/UiO-67-NH2 The synthesis protocol  of 
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UiO-67-Br/UiO-67-NO2/UiO-67-NH2 is similar to the synthesis of UiO-67.6 To a 20 mL 

dram vial, a 58 mM solution of ZrCl4 in DMF (5 ml, 0.3 mmol), 0.5 ml concentrated HCl 

were added. The mixture was subjected to ultrasonication for 20 minutes giving a clear 

solution. To another 20 ml dram vial, a 76 mM solution of [1,1’-biphenyl]- 4,4’-

dicarboxylic acid variant (BPDC-Br/BPDC-NO2/BPDC-NH2) in DMF (5 mL, 0.4 mmol) 

was added. The mixture was subjected to ultrasonication for 20 minutes giving a 

translucent suspension. Afterwards, the ZrCl4 in DMF solution (5 ml, 0.29 mmol), the 

BPDC variant in DMF suspension (5 ml, 0.38 mmol), and additional 5 ml DMF were added 

to a 50 ml pressure vessel reactor in succession. The mixture was ultrasonicated for 

additional 5 minutes. The reaction was carried out at 80 °C for 24 hours without stirring. 

The product was collected by centrifugation at 5000 rpm for 10 minutes. The solid 

precipitate was triturated by decanting the DMF supernatant then suspended with ethanol 

(15 ml). The centrifuging and trituration steps were repeated at least 3 times until the 

supernatant was completely transparent. The residual solvent was removed from the 

isolated solids in a vacuum oven at 100 °C overnight. The yield for those reactions are 

about 50%. Products are characterized by PXRD (Figure 5-8) and SEM (Figure 5-9). 
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Figure 5-8. PXRD pattern of UiO-67-X (X: Br, NH2, NO2)  

 

 

 

 

Figure 5-9. TEM images of UiO-67-Br, UiO-67-NO2, UiO-67-NH2 

 

Encapsulation of R6G in UiO-67-Br/UiO-67-NO2/UiO-67-NH2 through 

aperture-opening encapsulation 10 mL of saturated solution of R6G in H20 was placed 

in a 20 ml microwave pressure vessel. To each of the vial, 20 mg of either UiO-67 or 
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functionalized UiO-67 was added. The vial was sealed and the solid was suspended by 

sonication for 10 minutes then heated for three days. The R6G loaded functionalized UiO-

67 was collected by centrifugation at 5000 rpm for 10 minutes. The solid precipitate was 

triturated by decanting the supernatant then re-suspended into methanol (10 mL). The 

centrifugation and trituration steps were repeated at least 5 times until the last washing 

solvent was transparent. The residual solvent was removed from the isolated solid in a 

vacuum overnight with 90% mass recovery. 
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