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ABSTRACT

The transition between many-body localized states and the delocalized thermal

states is an eigenstate phase transition at finite energy density outside the scope

of conventional quantum statistical mechanics. We apply support vector machine

(SVM) to study the phase transition between many-body localized and thermal

phases in a disordered quantum Ising chain in a transverse external field. The

many-body eigenstate energy E is bounded by a bandwidth W = Emax − Emin.

The transition takes place on a phase diagram spanned by the energy density

ε = 2(E−Emin)/W and the disorder strength δJ of the spin interaction uniformly

distributed within [−δJ, δJ ], formally parallel to the mobility edge in Anderson

localization. In our study we use the labeled probability density of eigenstate wave-

functions belonging to the deeply localized and thermal regimes at two different

energy densities (ε’s) as the training set, i.e., providing labeled data at four cor-

ners of the phase diagram. Then we employ the trained SVM to predict the whole

phase diagram. The obtained phase boundary qualitatively agrees with previous

work using entanglement entropy to characterize these two phases. We further

analyze the decision function of the SVM to interpret its physical meaning and

find that it is analogous to the inverse participation ratio in configuration space.

Our findings demonstrate the ability of the SVM to capture potential quantities
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that may characterize the many-body localization phase transition.

To further investigate the properties of the transition, we study the behavior

of the entanglement entropy of a subsystem of size LA in a system of size L > LA

near the critical regime of the many-body localization transition. The many-

body eigenstates are obtained by exact diagonalization of a disordered quantum

spin chain under twisted boundary conditions to reduce the finite-size effect. We

present a scaling theory based on the assumption that the transition is continuous

and use the subsystem size LA/ξ as the scaling variable, where ξ is the correla-

tion length. We show that this scaling theory provides an effective description of

the critical behavior and that the entanglement entropy follows the thermal vol-

ume law at the transition point. We extract the critical exponent governing the

divergence of ξ upon approaching the transition point. We again study the partic-

ipation entropy in the spin-basis of the domain wall excitations and show that the

transition point and the critical exponent agree with those obtained from finite

size scaling of the entanglement entropy. Our findings suggest that the many-body

localization transition in this model is continuous and describable as a localization

transition in the many-body configuration space.

Besides the many-body localization transition driven by disorder, We also

study the Coulomb repulsion and temperature driving phase transitions. We ap-

ply a finite-temperature Gutzwiller projection to two-dimensional Hubbard model

by constructing a ”Gutzwiller-type” density matrix operator to approximate the

real interacting density matrix, which provides the upper bound of free energy of

the system. We firstly investigate half filled Hubbard model without magnetism

and obtain the phase diagram. The transition line is of first order at finite temper-

ature, ending at 2 second order points, which shares qualitative agreement with

dynamic mean field results. We derive the analytic form of the free energy and

therefor the equation of states, which benefits the understanding of the different
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phases. We later extend our approach to take anti-ferromagnetic order into ac-

count. We determine the Neel temperature and explore its interesting behavior

when varying the Coulomb repulsion.
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CHAPTER I

Introduction

The study of phase transitions is one of the most important aspects in physics.

From every-day examples like boiling water and steam to more exotic ones like

superconductivity and superfluidity, the nature of phase transitions is so rich,

making that how to identify, classify and understand them subtle questions.

In the modern classification, phase transitions are divided into two broad cate-

gories, namely first-order phase transition and second-order phase transition. For

the former, a familiar example is the boiling of water, where the water does not

instantly turn into vapor, but forms a turbulent mixture of liquid water and vapor

bubbles, which illustrates a characteristic property of the first-order phase transi-

tion: phase coexistence across the transition. Another more sophisticated example

involves the U-T phase diagram (U is the interaction strength, T is the temper-

ature) of the frustrated Hubbard model in the limit of large lattice coordination,

known as Mott transition which will be detailed in later chapters: there exists a

first-order phase-transition line at nonzero temperature[2]. The first-order phase

transition is usually characterized by a discontinuity in the first derivative of the

free energy with respect to some thermodynamic variables.

In contrast, the second-order phase transition does not involve phase coexis-

tence or discontinuity in the first derivative of the free energy, it’s continuous in
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the first derivative, but non-analytical in the second derivative of free energy. The

study of second-order phase transition has been one of the most fascinating area

of modern physics since last century, especially enlightened by Landau-Ginzburg

theory and concepts of spontaneous symmetry breaking. One famous example is

the Curie point of a ferromagnet. The Curie point is the critical point Tc, when

T < Tc, the magnetic moment of the system m > 0, while when T > Tc, m van-

ishes. This transition is driven by thermal fluctuations. The correlation length

ξ, namely the length scale determining the exponential decay of the two-point

correlation function, diverges when T → T+ as ξ ∼ (T − Tc)
−ν , where ν is the

correlation length exponent which is universal. In addition to this example, the

Mott transition mentioned above, while it has a first-order phase-transition line in

the U-T phase diagram, the line ends in a second-order (quantum) critical point

at zero temperature.

A subclass of phase transitions which occur only at zero temperature, is quan-

tum phase transition (QPT). Differing from the classical phase transitions, QPTs

are purely driven by quantum fluctuations instead of thermal fluctuations. They

can also be classified to be first-order or second-order. The first-order QPTs have

discontinuities in the first derivative of the ground state energy density. The

second-order ones, being continuous in the first derivative, have non-analytical

second derivatives in most cases. They are usually signaled by order parameters

vanishing continuously at the quantum critical point, namely, at some critical val-

ues of parameters characterizing the Hamiltonian, such as interaction strength,

magnetic field, pressure, and so on.

Great progress has been made in understanding QPTs in recent decades. In-

stead of taking a thorough look at all of them, we briefly discuss two critical

exponents which are more relevant to our later results. Denote the parameter

characterizing the Hamiltonian as g, when g → gc, the energy gap ∆ between
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the ground state and the first excited state vanishes, the system become gapless

at the critical point gc. In the vicinity of the transition, ∆ ∼ |g − gc|zν , where

z, ν are critical exponents. Besides, in analogy to the correlation length for the

second-order classical phase transition, here ξ is the correlation length defined in

a similar manner, by G(r) = (〈O(0, t)O(r, t)〉 − 〈O(0, t)〉〈O(r, t)〉) ∼ e−r/ξ

rd−2+η ,which

is the equal-time correlation function, and η is the Fisher exponent and d is the

dimensionality of the system. ξ diverges as ξ ∼ |g − gc|−ν when g → gc. As a

result, G(r) decays as a power law instead of exponentially at transition.

People may argue that as zero temperature is impossible to be reached in

experiments, the study of QPTs does not shed light to understanding real phys-

ical systems, however, the knowledge about QPTs are critical to understand the

behavior of systems in the quantum critical region at finite temperature.

Another important class of phase transitions is the eigenstate phase transi-

tions, of which many-body localization (MBL) phase transition is an illustrating

example. We will focus on this topic in later chapters. Here for completeness

we mention that in contrast to ordinary quantum phase transitions that occur

in ground states, the MBL phase transition is at finite energy densities. It falls

outside of the frame of conventional quantum statistical mechanics which averages

over many eigenstates, due to the breakdown of ergodicity in the MBL phase. As

a result, its nature is not yet clear now.

This work is composed of three parts. We (1) study the MBL transition us-

ing machine learning approach, the machine learning results implies that MBL is

a genuine localization in spin configuration space, which supports an argument

still under debate. We (2) explore the critical behavior of entanglement entropy

and participation entropy near many-body localization transition by developing

a scaling theory and perform finite size scaling based on that theory, the results

suggests the continuity of MBL phase transition, helping understand the funda-
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mentals of this unconventional eigenstate phase transition. We then (3) presents

a study of Mott transition at finite temperature using Gutzwiller approximation.

We generalize the Gutzwiller projection from ground states to finite temperature

and determine the U-T phase diagram, and equations of states, which helps to un-

derstand the Mott phase and phase transition at finite temperature. The results

are compared with DMFT results.

Below I briefly review some key concepts of many-body localization. Then I

briefly introduce the foundation of Gutzwiller approximation, specifically, Gutzwiller

approximation of Hubbard model. In both part, I focus on basics, I refer the read-

ers to materials[3–6] for MBL and materials[7–9] for Gutzwiller approximation,

which present more comprehensive and extensive study and details.

1.1 Many-Body Localization

1.1.1 Anderson Localiztion

In 1958, Anderson published the well-known paper where he discussed the

electrons’ behavior in crystal with impurities. In contrast to the behavior in clean

system, the electron in such disordered system is trapped due to the external

random potential, its motion is no longer diffusive, so even after infinite long

time, its wavefunction will not be extensive, instead, it will take a characteristic

exponential shape in space, as shown in Fig. 1.1. That is to say, the wavefunction

that takes the asymptotic long distance form Ψn(r) ∼ exp(− |r−Rn|
ξ

) is localized,

where ξ here is the localization length, n denotes the nth state localized near

position Rn. In 1D and 2D, all eigenstates become localized at infinitely small

disorder. But in 3D systems, the transition between the localized and extended

states can happen. Below the critical disorder strength, there exists an extensive

regime in the middle of the band. This regime is separated with the rest of band
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Figure 1.1:
A schematic plot of Anderson localization. When the disorder strength
is smaller than the critical value, there exists mobility edges in the
band separating localized eigenstates from extensive ones.

by the mobility edge Ec. There are two mobility edges in the band (though only

one is shown in Fig. 1.1 for simplicity). When the disorder strength increases, the

mobility edge moves toward the band center, until at the critical disorder strength,

the extensive regime disappears, all eigenstates become localized.

A simple example of Hamiltonian displaying Anderson localization transition

can be a tight-binding model of a single quantum particle hopping on an infinite

lattice:

Ĥ = −t
∑
〈i,j〉

c†icj +
∑
i

Uic
†
ici (1.1)

where 〈i, j〉 denotes pairs of nearest neighbor lattice site and Ui is a static random

onsite potential. eq. 1.1 can be transformed to Ĥ =
∑

nEnc
†
ncn, where c†n creates

a particle in the single-particle eigenstate |n〉. If a particle is initialized to be in a

localized |n〉, it cannot traverse the whole lattice even after infinitely long time.

There are several quantities that are commonly used to characterize the An-

derson localized state, including the conductance, the inverse participation ratio
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(IPR) the typical density of states and so on. Here we briefly mention IPR for

later use.

IPR measures the inverse spatial coverage of a single-particle eigenstate, de-

fined as:

Iq(En) =
∑
r

|Ψn(r)|2q (1.2)

The size dependence of IPR enables us to distinguish between the metallic and

localized regime. In the localized regime, we expect that only a few lattice sites are

occupied with |Ψn| ∼ 1. Therefore Iq ∼ 1 does not depend on the size of the system.

In the metallic regime, electron occupies all sites of the lattice, |Ψn(r)|2 ∼ L−d

where d is the dimension of the system, and Iq(En) ∼ L−d(q−1). At the critical

point, where the wave function is multifractal[10], and Iq ∼ L−dq(q−1) where dq

is the multifractal dimension depending on the value of q. In Chapter IV this

single-particle IPR will be generalized to many-body case and be used to study

the many-body localization.

More recently, there are also attempts to study the Anderson localization using

a single particle quantity called typical density of states, which is defined as the

geometric average of the local density of states over the disorder configurations [11,

12]. This method has also been applied to realistic materials to study the Anderson

localization for functional materials[13–15].

1.1.2 Thermalization and Eigenstate Thermalization Hypothesis

Basko[6] presented that the localization keeps to remain when weak interac-

tions exist, this is the many-body localization (MBL). In contrast to the delo-

calized system whose long-time behaviour obeys equilibrium thermodynamics, in

MBL phase, the system fails to thermalize and there is a breakdown of ergodicity.

Therefore the phase transition between MBL and the delocalized phase is a dy-

namical phase transition that cannot be described by the conventional quantum
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Figure 1.2:
A closed quantum system partitioned into a subsystem A and every-
thing else B, while B is much larger than A.

statistical mechanics. Before moving on to more details, we firstly clarify the idea

of thermalization in a closed quantum system and the concept of eigenstate ther-

malization hypothesis (ETH) which is true in the delocalized systems, but not in

the MBL phase.

First consider a system satisfying thermodynamic limit, shown in Fig. 1.2, it’s

partitioned into a subsystem of A, and everything else B. Any choice of subsystem

A is acceptable, as long as the degrees of freedom within A as a fraction of the

full system’s degrees of freedom goes to zero. The whole system in its initial (pure

or mixed) state is described by a density matrix ρ(0). After time t, it evolves

to ρ(t) = e−iĤt/~ρ(0)eiĤt/~. The same system at equilibrium at temperature T

has Boltzmann density matrix ρeq(T ) = exp(−Ĥ/kT )/Z, where Z = Tr(e−Ĥ/kT )

is the partition function, and the temperature T is determined by Tr(Ĥρ(0)) =

Tr(Ĥρeq(T )), as the whole system is closed, no energy exchange with the external

environment.

The reduced density matrix of the subsystem A at time t is ρA(t) = TrB(ρ(t)).
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Also as a subsystem of the whole, the density matrix of A at equilibrium tem-

perature T will have density matrix ρeqA (T ) = TrB(ρeq(T )), where T is defined

above.

Thermalization of a closed quantum system means that after infinitely long

time evolution, the state of the subsystem should be the same to that if it’s

coupled to a infinitely large heat bath at temperature T , because the rest of the

whole system, B, acts as that heat bath. That is to say, all degrees of freedom in

any choice of subsystem A are interacting with the rest of the system, we cannot

find any subsystem which isolated from the rest. For any initial state of the system

ρ(0) this leads to:

limt→∞ρA(t) = ρeqA (T ) (1.3)

Note that thermodynamic is assumed for eq. 1.3.

If a system can thermalize, it suggests naturally that all its many-body eigen-

states of Ĥ are thermal, which is the statement of eigenstate thermalization hy-

pothesis (ETH). Consider the system is in an eigenstate |n〉 satisfying Ĥ|n〉 =

En|n〉, where En is the eigenstate energy corresponding to equilibrium temper-

ature Tn such that En = Tr(Ĥρeq(Tn)). As ρ(0) = ρ(n)(0) = |n〉〈n|, its time

evolution is trivial, ρ(n)(t) = e−iĤt/~|n〉〈n|eiĤt/~ = ρ(n)(0),∀t, thus leading to

ρ
(n)
A (t) = TrBρ

(n)(t) = TrBρ
(n)(0) = ρ

(n)
A (0),∀t. Because the system can ther-

malize, meaning that we have limt→∞ρ
(n)
A (t) = ρeqA (T ), ETH asserts that:

ρ
(n)
A (0) = ρeqA (T ) (1.4)

Although it’s impossible in experiment to initialize a system to be in its eigenstate,

ETH is an important tool for studying the MBL phase and MBL-ETH phase

transition, as ETH is true in delocalized systems but false in MBL phase. These

aspects will be detailed in ChapterII.

8



A significant consequence of ETH is the volume law of the subsystem entan-

glement entropy. The entanglement entropy of subsystem A in eigenstate |n〉 is

defined as:

SAE(n) = −kBTrA(ρ
(n)
A logρ

(n)
A ) (1.5)

Plugging eq. 1.4 into eq. 1.5, we have SAE(n) = SA(Tn), namely, the entanglment

entropy equals to equilibrium thermal entropy of subsystem A at finite tempera-

ture Tn. Because thermal entropy is an extensive property proportional to system

size, it implies that the entanglement entropy of an eigenstate satisfying ETH

should be proportional to the size of subsystem A, obeying a volume law of scal-

ing.

ETH is not true for all systems, namely, not all systems can thermalize, or

act as a reservoir for any of its subsystems. As a result, equilibrium quantum

statistical mechanics fails in such kind of systems, namely those that are many-

body localized.

1.1.3 Many-Body Localization

MBL is localization with interactions, driven by disorder. As mentioned above,

many-body localized system cannot thermalize and fails to satisfy ETH. Due to

the breakdown of of equilibrium quantum statistical mechanics in such systems,

the MBL transition is invisible to the traditional statistical mechanical ensembles.

However, it is an eigenstate phase transition, the dynamics of the system and the

properties of the many-body eigenstate change drastically around the transition.

The properties that sharply change include: DC conductivity which is finite in

ETH phase vanishes in MBL phase; local spectrum changes from continuous to

discrete; subsystem entanglement entropy of the eigenstate obeys volume law in

the ETH phase but area law in the MBL phase; the spread of entanglement from

non-entangled initial condition obeys power law in ETH phase while becomes
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logarithmic in MBL phase; dissipation vanishes in MBL phase, and so on. For

details of these properties we refer readers to reference[3].

The MBL phase transition occurs when varying disorder strength at a certain

value of energy density, or varying energy density when the system is not fully

many-body localized (FMBL), where FMBL means that all many-body eigenstates

of the system violate ETH thus the mobility edges disappear, this occurs when

disorder strength is larger than a critical value. Because we focus on high energy,

there is no major difference between Fermion and Boson, but for simplicity and

feasibility (of exact diagonalization), we limit the discussion to spin chains, below

we list some 1-dimensional quantum spin models which are widely used to study

MBL phase transition[1, 16, 17], our work in later chapters is based on the study

of the first one.

Ĥ = −
L−1∑
i=1

Jiσ
z
i σ

z
i+1 + J2

L−2∑
i=1

σzi σ
z
i+2 + h

L∑
i=1

σxi

(1.6a)

Ĥ =
L∑
i=1

Si · Si+1 − hiSzi

(1.6b)

Ĥ = J1

L−1∑
i=1

[(Sxi S
x
i+1 + Syi S

y
i+1) + Szi S

z
i+1] +

L∑
i

hiS
z
i + J2

L−2∑
i=1

(Sxi S
x
i+2 + Syi S

y
i+2)

(1.6c)

the concepts of l-bits is useful to understand some of the properties which

have sharp difference in MBL and ETH phases. When a system of N-local, two-

state degrees of freedom {σi} which is referred to as p-bits (p, physics) is in FMBL

regime, it’s argued that the Hamiltonian can be written in terms of Pauli operators
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{τi} called l-bit (l, localized) as:

Ĥ = E0 +
∑
i

τ zi +
∑
ij

Jijτ
z
i τ

z
j +

∞∑
n=1

∑
i,j,{k}

K
(n)
i{k}jτ

z
i τ

z
k1
· · · τ zknτ

z
j (1.7)

The typical magnitudes of the interactions Jij and K
(n)
i{k}j, and their probabilities

of being large fall off exponentially with distance. For weakly interacting systems,

the l-bits τi should have substantial overlap with the bare p-bits σi, thus may be

viewed as dressed p-bits, with a dressing that falls off exponentially in real space.

For a generic state, its dynamics can be described as that each l-bit τi precesses

around its z axis, the precession rate is determined by the interactions between

τi and all other l-bits other than i, namely, {τj 6=i}. Because τ zi ,∀i are constants

of motion, there is no dissipation of the system, but because of the precession,

there is dephasing, and entanglement even for two initially non-entangled sites.

However, the spread of entanglement is much slower than that in ETH phase.

That’s because in thermal phase, if there is interaction between A and B, as well

as between B and C, then entanglement is produced not only between A and B,

B and C, but also between A and C because they are interacted through B, as

a result, the spread of entanglement will obey power law. But the same case

in FMBL regime will not produce entanglement between A and C, because A

interacts with B only through τ zB which is conserved over time thus cannot be

affected by the interaction between B and C.

The l-bits construction is proved to work with FMBL regime, but whether

it’s valid for systems with mobility edges separating MBL and ETH eigenstates

is still an open question. As a result, the above discussion about the spread of

entanglement is not clear for Hamiltonians that have both extended and localized

eigenstates.
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1.2 Gutzwiller Approximation of the Hubbard Model

1.2.1 Hubbard Model

The Hubbard model, proposed by Hubbard in the early 1960’s[18], works as

a paradigm of correlated electronic systems. Though looking simple, it strikingly

captures the most important aspects of the system. It consists of a hopping term

describing the electrons’ nearest neighbor hopping and contributing as the kinetic

energy in the Hamiltonian, and an interaction term which is the energy cost of

two electrons being on the same site, due to the repulsion between them.

Ĥ = −t
∑
〈i,j〉σ

c†iσcjσ + U
∑
i

ni↑ni↓ (1.8)

where 〈i, j〉 denotes pairs of nearest neighbor lattice sites. In general further

hopping terms or more interactions can be added to give rise to an extended

Hubbard model. Two dimensionless parameters characterizing this Hamiltonian

are the strength of the Coulomb interaction U/t and the filling fraction n.

1.2.2 Gutzwiller approximation

Though looking simple, the Hubbard model has analytical solutions for the

ground state only in one-dimension. To obtain approximate solutions for higher di-

mension, Gutzwiller developed a variational method called Gutzwiller projection[7–

9]. The idea of this approach is to construct a trial wavefunction from a non-

interacting one by suppressing the double occupation (see Fig 1.3) which costs

energy due to the repulsion interaction. The amount of double occupation weight

reduction is determined variationally thus to minimize the ground state energy,

so it depends on the value of U/t, the larger the repulsion, the more the double

occupation weight is reduced, when U = 0, the weight is not reduced at all so it
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Figure 1.3:
Illustration of the local Fock space with zero occupation (empty)(a),
single occupation (b, c) and double occupation (d).In a non-interacting
wavefunction, the four local states have the same weight as long as
the order parameters are fulfilled, whereas the repulsion makes double
occupation less favored. Gutzwiller wavefunction reduce the weight of
the double occupation state from the non-interacting wavefunction to
reflect the role of the interaction.

recovers the non-interacting result.

To formalize, the Gutzwiller wavefunction can be written as:

|Ψ〉 = P̂ |Ψ0〉 (1.9)

where |Ψ0〉 is the non-interacting function and P̂ is the projection operator which

reduces the double occupation on all sites by:

P̂ =
∏
i

P̂i =
∏
i

gD̂ii (1.10)

P̂i is the local projection operator acting on each site. D̂i = n̂i↑n̂i↓ is the double

occupation projection operator acting on site i, gi’s are variational parameters

satisfying 0 ≤ gi ≤ 1,∀i, the first equality holds when U → ∞ thus the double

occupation is completely projected out, while the second one hold when U = 0,

recovering non-interacting wavefunction.

Under this formula, the expectation value of any operator can be computed
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with the projected Gutzwiller wavefunction as:

〈Ô〉 =
〈Ψ0|P̂ ÔP̂ |Ψ0〉
〈Ψ0|P̂ P̂ |Ψ0〉

=
〈P̂ ÔP̂ 〉0
〈P̂ 2〉0

(1.11)

where 〈· · · 〉 denotes the average in non-interacting case. In the same manner, the

ground state energy can be approximated as:

E(g) = 〈Ĥ〉 =
〈P̂ ĤP̂ 〉0
〈P̂ 2〉0

(1.12)

the variational parameters gi’s are determined by minimizing the ground state

energy E(g), in the homogeneous case, gi = g,∀i. In the special case of one or

infinite dimension, this is analytically solvable[19, 20] and the result agrees well

with the exact result.

Before and after the projection, the charge density should remain the same,

however, this original form of the projection operator P̂i = gD̂ii does not reflect

this constraint. In order to ensure that niσ = n0
iσ, while the superscript 0 indicates

the quantity in non-interacting case, two extra fugacities in P̂i are required. The

projection operator is now modified to be:

P̂i = y
n̂i↑
i↑ y

n̂i↓
i↓ g

D̂i
i (1.13)

Now Lagrange multipliers can be introduced to ensure that the charge density

remains the same after projection: λiσ(n0
iσ − niσ).

Now the goal is to formalize a renormalized non-interacting Hamiltonian Ĥre

satisfying 〈Ĥre〉0 = 〈Ψ |Ĥ|Ψ〉, note that the equality holds only at the level of

average value. To facilitate the derivations to achieve this goal, all four local state

projection operators are introduced below, namely empty projection Êi, single

occupied σ projection Q̂iσ and double occupation projection operator D̂i which
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was already seen above,

D̂i = n̂i↑n̂i↓ (1.14a)

Êi = (1− n̂i↑)(1− n̂i↓) (1.14b)

Q̂i↑ = n̂i↑(1− n̂i↓) (1.14c)

Q̂i↓ = n̂i↓(1− n̂i↑) (1.14d)

The four local states form a complete local Fock space thus

Êi + D̂i + Q̂i↑ + Q̂i↓ = 1 (1.15)

The Gutzwiller projection operator can be expanded and if ignoring higher order

terms it turns to be:

P̂i = y
n̂i↑
i↑ y

n̂i↓
i↓ (1− (1− gi)D̂i)

= y
n̂i↑
i↑ y

n̂i↓
i↓ (Êi + Q̂i↑ + Q̂i↓ + giD̂i)

= Êi + yi↑Q̂i↑ + yi↓Q̂i↓ + giyi↑yi↓D̂i (1.16)

Let zi = 〈P̂ 2
i 〉0, after some detailed algebra the hopping term in the Hubbard

model can be renormalized as:

〈c†iσcjσ〉 =
〈P̂ic†iσP̂iP̂jcjσP̂j〉0

zizj

= gtiσg
t
jσ〈c

†
iσcjσ〉0 (1.17)

where we have:

gtiσ =
yiσ(1− n0

iσ̄)

zi
+
yiσy

2
iσ̄gin

0
iσ̄

zi
(1.18)

Below we try to express gi, yiσ, zi in terms of di, ei, qiσ and d0
i , e

0
i , q

0
iσ, using the
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relations:

di = 〈D̂i〉 =
g2
i y

2
i↑y

2
i↓d

0
i

zi
(1.19a)

ei = 〈Êi〉 =
e0
i

zi
(1.19b)

qiσ = 〈Q̂iσ〉 =
y2
iσq

0
iσ

zi
(1.19c)

The second equality of each of the above expressions is obtained using 1.14a-1.14d.

Then the Gutzwiller coefficient gtiσ in 1.18 can be written as:

gtiσ =

√
eiqiσ
e0
i q

0
iσ

(1− n0
iσ̄) +

√
diqiσ̄
d0
i q

0
iσ̄

n0
iσ̄ (1.20)

Considering that qiσ + di = niσ, di + ei + qi↑ + qi↓ = 1 and niσ = n0
iσ, eq. 1.20 can

further be written as di and n0
iσ:

gtiσ =

√
(n0

iσ − di)(1 + di − n0
iσ)

n0
iσ(1− n0

iσ)
+

√
di(n0

iσ̄ − di)
n0
iσ̄(1− n0

iσ̄)
(1.21)

While when n0
iσ is known, for example, in paramagnetic phase, n0

iσ = n/2, while

in ferromagnetic phase n0
iσ = n/2 + m, where n is the electron density and m is

the magnetic order, d is the only variational variable to minimize the energy. The

renormalized Hamiltonian can be written as:

Ĥ = −t
∑
〈i,j〉σ

gtiσg
t
jσc
†
iσcjσ + U

∑
i

di − µ
∑
iσ

n̂iσ (1.22)

under constraints
∑

iσ λiσ(n̂iσ −n0
iσ) which ensure the electron density unchanged

before and after the projection.
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1.2.3 Mott transition at half filling

Consider the Hubbard model at half filling, naively it may be thought as a

metal as the band is half filled, however, as the double occupation costs extra

energy, when U is large enough hopping process is not allowed as it creates double

occupation inevitably in the half filled system. As a result, there is a metal-

insulator transition when varying U , this type of phase transition is called Mott

transition, which can be described by Gutzwiller approximation, as shown below.

This metal-insulator quantum phase transition is the starting point of Chapter IV

where we will generalize the approximation approach to finite temperature.

When there is no magnetism, in the homogeneous half filling case, n0
i↑ = n0

i↓ =

1/2, di = d, taking them into eq. 1.21, gtσ can be calculated as:

gtσ = 4
√
d(1/2− d) (1.23)

The variational energy per site on a square lattice thus turns to:

E(d)/Ns = −8t〈c†iσciσ〉0 · 16d(1/2− d) + U · d (1.24)

where Ns is the number of lattice sites. d is determined by minimizing the varia-

tional energy E(d)/Ns:

d =
1

4
· (1− U

64t · 〈c†iσciσ〉0
) (1.25)

d vanishes at Uc = 64t · 〈c†iσciσ〉0 ≈ 12.9t. The value of d and gtσ varying with U

are shown in Fig. 1.4.

From Fig. 1.4, gtσ decreases with the increase of U and vanishes at Uc, meaning

that the interaction renormalize the bandwidth down, at the critical point the

band is flattened and the effective mass of the electron diverges, which is how
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Figure 1.4:
Metal-insulator transition at half filling. Double occupancy d and
Gutzwiller factor as functions of Hubbard U on a square lattice.

Brinkman and Rice describe this metal-insulator transition.

The Gutzwiller approximation which treats the interaction term as a mean

field underestimates the quantum fluctuation. According to the results obtained

from more accurate numerical methods such as variational Monte Carlo simu-

lation, such metal-insulator transition will never happen at finite U , indicating

that the Gutzwiller approximation overestimate the tendency that the system be-

comes frozen, however, the idea that the bandwidth is down renormalized by the

interaction is valid.
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CHAPTER II

Interpretable Machine Learning Study of

Many-Body Localization Transition in

Disordered Quantum Spin Chain

2.1 Introduction

Many-body localization (MBL) refers to a class of correlated systems that

fail to thermalize in the sense that they violate the eigenstate thermalization

hypothesis (ETH) [3, 21–23]. As a consequence, certain memories of the local

initial conditions can be forever remembered in conserved local observables. They

thus have the potential to robustly store quantum information [5]. Compared to

the conventional thermal phase, the MBL phase has many novel characteristic

properties. The hallmark of the MBL phase is that the eigenstate entanglement

entropy follows the area-law instead of the volume-law in the thermal phase [1, 16,

24–31]. The MBL phase has zero DC conductivity [32] and discrete local spectrum

[4]. The statistics of the energy level spacing in the MBL phase is described by

the Poisson distribution, in contrast to the Wigner-Gaussian distribution typical

in the thermal phases [3, 5, 16, 29, 33–35].

The properties of the entanglement entropy and the level spacing have been

commonly used to study MBL-thermal phase transition [1, 16, 36–40]. However,
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the intrinsic many-body problem makes the study of the critical phenomena very

challenging due to the sample size limitations and the nonperturbative nature

of strong disorder. Despite the formal analogy to the mobility edge problem in

the single particle Anderson localization [41], such basic questions of whether the

MBL-ETH transition can be viewed as a localization transition in the many-body

Hilbert space remains controversial. It is known that Anderson localization is

stable against weak electron-electron interactions, which suggests that the MBL

phase would emerge when disorder is strong enough [32]. One of the most profound

and powerful physical quantities widely used to identify the Anderson localization

transition is the inverse participation ratio (IPR) [42] that measures the (inverse)

of the spatial coverage of the single-particle eigenstates. One therefore asks if

the MBL arises through the localization of the many-body states in the config-

urational Hilbert space, and if the scaling behavior of properly generalized IPR

can be used to determine the MBL phase transition. Several theoretical studies

have shown that the behavior of the IPR (or its inverse) and the entanglement

entropy share similarities [43–45] and are directly related in the single particle pic-

ture [46], whereas others offer opposite arguments [16, 47]. Recent experimental

measurements also explored and demonstrated the connections between Hilbert

space localization and energy level statistics[48].

In this work, we apply machine learning to the classification of two different

phases, the ETH and the MBL. We will also explore and extract useful information

concerning the above questions from a machine learning perspective. Specifically,

we build and operate the support vector machine (SVM), designed for the random

transverse-field Ising chain. First, we demonstrate that the trained SVM with

appropriate kernel choice is able to distinguish the two phases and determine

the phase boundary. For our model, we only require training data from two

different energy densities to make the trained SVM work for the whole energy
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spectrum. This fact ensures that during the training process, the models are

built on properties of the MBL phase itself which should not depend on energy.

Compared to training and testing at a fixed energy density and repeat the process

multiple times in the full energy space to determine the transition line, training

only once is much more computation cost-saving, especially considering that it is

often expensive to generate class labels. Finally, we try to study and understand

how the SVM makes the decision. We find strong evidence that the SVM has the

ability to automatically choose a decision function which is very closely related to

the many-body IPR defined in the configuration space.

2.2 Model and Method

2.2.1 Transverse-field disordered quantum Ising chain

The quantum transverse-field Ising chain is known to develop the MBL phase

when the disorder strength is strong. The Hamiltonian of the system is given

by [1]

Ĥ = −
L−1∑
i=1

Jiσ
z
i σ

z
i+1 + J2

L−2∑
i=1

σzi σ
z
i+2 + h

L∑
i=1

σxi (2.1)

where σx and σz are Pauli matrices and L is the number of sites in the chain.

In Eq. (3.1), the second nearest neighbor coupling J2 and the transverse eternal

field h will be assigned uniform and nonrandom values, whereas the nearest neigh-

bor coupling is site-dependent, Ji = J + δJi, where J is a constant and δJi is

randomly taken from a uniform distribution [−δJ, δJ ]. Thus δJ measures the dis-

order strength. For a certain disorder realization, the energy E of the many-body

eigenstates of H is bounded within a bandwidth W = Emax − Emin. Consider

a disordered ensemble of H, the appropriate dimensionless energy is defined by

the energy density ε = 2(E − Emin)/W relative to the total bandwidth, within

a small window around ε. The density of states of this model at δJ = 1.8 when
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Figure 2.1:
Density of state of Hamiltonian in Eq. (3.1) at δJ = 1.8 for a specific
disorder configuration. ε is the energy density. The mobility edges
separating thermal and MBL phases are determined according to sup-
plementary material of [1].

L = 14 for a specific disorder configuration is shown in Fig. 2.1. For a given

set of J , J2, and h, the transition between the thermal (ETH) and MBL phases

corresponds to a boundary in the phase diagram spanned by δJ and ε. Here we

set J2 = 0.5h = 0.3J .

We express the many-body quantum states and the Hamiltonian matrix in the

spin configuration basis, which is constructed by direct product states of the local

Hilbert space {σzi }. In addition to being natural, this basis is non-entangled and

suitable for introducing the many-body IPR to describe the localization in the

spin configuration basis. We work in this basis throughout the rest of the paper.

2.2.2 Data for machine learning

Instead of dividing the system into two subsystems A and B to calculate the

reduced density matrix of an eigenstate ρA = TrB|Ψ〉〈Ψ | and using the entangle-
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ment spectrum as the training data set [49, 50], we directly feed the probability

density of the eigenstate |Ψ〉 computed in the spin basis to the machines as the

training data set. The reason for doing so is that, although by preprocessing the

training data can reduce the dimension and filter out redundant information, use-

ful information contained in the wavefunction of the entire system can also be lost.

Since the entanglement entropy is not the only quantity that can characterize the

MBL phase, we thus classify the probability density of the wave function instead

of the entanglement spectra. This method not only allows the exploration of other

characteristic physical quantities of MBL in the entire system, but also stages a

test on the power of machine learning: if only the minimally processed knowledge

is provided in the training data, will machine learning be able to find out the

relevant physical property to be used for classification by itself?

Our results show that the answer is affirmative. In addition, the algorithm

turns out to be remarkably efficient for our model: only input wave functions

at two different energy densities are used as the training set and the trained

model is able to determine the transition region at all energy densities and the

mobility edge for any disorder strength. In other words, by training with wave

functions generated at four corner points on the (δJ, ε)-plane, the models are able

to produce the complete phase boundary in the 2-parameter phase diagram. It is

also remarkable that the SVM is capable of capturing certain generic properties for

all energy densities in making the decision, rather than being trapped by energy-

specific properties. This part is presented in detail together with the classification

results and the decision function detection in Section 2.3.

2.2.3 Support vector machine

There are many machine learning models that are widely used for data classifi-

cation. Some of them have been applied to study phase transitions in many-body
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systems, such as artificial neural networks [49–53], clustering via principal compo-

nent analysis [54], and kernel method for support vector machine (SVM) [55, 56].

Here we focus on the last one due to its better interpretability.

SVM is one of the most successful model for binary classification, which aims

to linearly separate data belonging to two classes {+1,−1}, making the distance

between the separating hyperplane and its nearest data points in both classes as

large as possible. In other words, for any hyperplane separating the two classes

of data, there exists a region where we can pin the separating hyperplane without

changing the accuracy of classification. This region is called the margin and we

want to find the hyperplane corresponding to the maximum margin. Fig. 2.2(a) is

a schematic plot of how a separation plane separates different phases with largest

margin in a two-dimensional feature space.

The hyperplane satisfying this requirement can be described by the linear

equation: ~w · ~x + b = 0, where ~w is the vector perpendicular to the hyperplane

and ~x denotes any point on the hyperplane. Since only the direction of ~w matters,

we can rescale the modulus of ~w and make the distance between the separating

hyperplane and its closest data points equal to one. Denoting those data points

closest to the separating hyperplane as ~xSV (where the superscript SV stands for

support vectors), we have, after rescaling, |~w·~xSV +b| = 1. As a result, the distance

from ~xSV to the hyperplane, |(~xSV − ~x) · ~w
|~w| | =

1
|~w| is what we want to maximize.

Equivalently, we can minimize 1
2
~w · ~w subject to the condition yn(~w · ~xn + b) ≥ 1,

where ~xn is any of the training data samples in the two classes yn = ±1, because

the distance from any of them to the separating hyperplane is at least 1.

Next, consider the case where the data points are not completely linearly sep-

arable, i.e. a few of them would fall into the margin of the linear-separating

hyperplane. As a result, the above constraint can be adjusted according to

yn(~wT · ~xn + b) ≥ 1 − ξn, where ξn ≥ 0 for all data points and the total vio-
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(a) (b)

Figure 2.2:
(a) A separating plane (solid line) separates two different phases
(labeled as circles and crosses respectively) with the largest margin
(shaded area) in the 2-dimensional feature space. The red circles and
crosses mark the support vectors that are closest to the separating
plane. (b) The large circle in the original 2-dimensional feature space
is a separating hyperplane in higher dimensional space after the trans-
formation. Such a transformation makes data points that are not
linearly separable in its original space linearly separable in the trans-
formed higher dimensional space.
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lation is the sum of all ξn. Using the Kuhn-Tucher theorem, the minimization of

1
2
~w · ~w under the constraints can be achieved by minimizing the following effective

Lagrangian,

L(~w, b, ~ξ, ~α, ~β) =
1

2
~wT · ~w + C

N∑
n=1

ξn

−
N∑
n=1

αn[yn(~wT · ~xn + b)

−(1− ξn)]−
N∑
n=1

βnξn (2.2)

where N is the total number of training samples and αn, βn ≥ 0 are the Lagrangian

multipliers enforcing the constraints. The second term on the r.h.s of Eq. (2.2)

is the regularization term that specifies the price that violations of the margin

have to pay. Increasing C means less tolerance for violating the margin, thus

yields more complex models, whereas decreasing C makes the price of violation

smaller, thus avoids overly fitting the noise. The “hyperparameter” C should be

determined by grid search in a manually specified subset of values. We take the

value of C that leads to the best validation result. The validation data samples

are generated at values of δJ in the same range as the testing data set, but for

different disorder realizations.

Minimizing L with respect to ~w, b, and ξn first leads to,

~O~wL = ~w −
N∑
n=1

αnyn~xn = 0 (2.3)

∂L
∂b

= −
N∑
n=1

αnyn = 0 (2.4)

OξnL = C − αn − βn = 0 (2.5)

Plugging Eqs (2.3-2.5) into Eq. (2.2), we can get rid of the variables ~w, ~ξ, and b,
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and obtain −L(~α) which is to be minimized with respect to ~α:

1

2



α1

α2

...

αN



T 

y1y1K11 y1y2K12 . . . y1yNK1N

y2y1K21 y2y2K22 . . . y2yNK2N

...
...

. . .
...

yNy1KN1 yNy2KN2 . . . yNyNKNN





α1

α2

...

αN


−~1 · ~α = −L(~α)

(2.6)

under the constraints that
∑N

n=1 αnyn = 0 and 0 ≤ αn ≤ C, ∀n, where the Kij =

~xi ·~xj are called the kernel. Note that only a few (out of N) of the αn are nonzero,

otherwise there is a high risk for over-fitting. Those nonzero αn correspond to the

data points that are closest to the separating hyperplane. They are the so-called

called support vectors because they are what determine the separating hyperplane

in the end. After obtaining the αn, ~w can be obtained from Eq. (2.3) by

~w =

NSV∑
k=1

αSVk ySVk ~xSVk (2.7)

where ~xSVk is one of the NSV number of the support vectors.

In the above linear algorithm, the kernel Kij is simply the inner product of

two data points ~xi and ~xj. However, in most of the realistic cases, the data sets

are not linearly separable and we have to transform a data point from a vector ~x

in its original space X to a vector ~z in a higher dimensional space Z . Fig.2.2(b)

illustrates a simple example of such kind of transformation. If the original X space

is 2-dimensional and represented by (x1, x2), the simplest transformation to the

higher dimensional space X → Z corresponds to be (x1, x2) → (x2
1,
√

2x1x2, x
2
2).

Consequently, the kernel in Z space is Kij = ~zi · ~zj = (~xi · ~xj)2. In the actual

calculations, we only need to know the values of the kernel in order to minimize

Eq. (2.6) to obtain αn and thus the decision function. In fact, a set of input data
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can be raised to any order by choosing the general form of the polynomial kernel

Kij = K(~xi, ~xj) = (c0 + γ~xi · ~xj)d, or even transformed to infinitely dimensions of

space by choosing a radial basis function (RBF) kernel Kij = exp(−γ|~xi − ~xj|2).

The resulting decision function is determined by the value of the kernels according

to:

f (~x) = sign

(
NSV∑
k=1

αSVk ySVk K(~xSVk , ~x) + b

)
(2.8)

where ~xSVk ’s are support vectors.

2.3 Phase Classification and Decision Function

2.3.1 Classification result and phase diagram

In our case, both the training and testing data sets are composed of probability

density of the eigenstate wavefunctions of the Hamiltonian in Eq. (3.1) obtained

by exact diagonalization, labeled as MBL (+1) or ETH(−1). We choose δJ =

0.15± 0.05 and energy densities ε = 59/60 and ε = 19/60 which are deep in ETH

phase and δJ = 9.0 ± 1.0 at the same energy densities which are deep in MBL

phase to generate 18000 wavefunctions, 4500 for each set of (δJ, ε), and use their

probability densities as the training set. We will demonstrate that by training the

machine learning models at two different energy densities, the precise values of

which are not important, we can obtain a model that works for determining the

phase diagram in the whole energy spectrum. More detailed discussion and the

possible implications of this remarkable finding will be given at the end of this

subsection.

We first train the SVM with different kernels, including the linear kernel, the

polynomial kernel with d = 2, 3, 4, 5, 6, and the RBF kernels. Since we only wish

to keep the homogeneous terms, we choose c0 = 0 in Kij = (c0 + γ~xi · ~xj)d for

the polynomial kernels. By grid-search we find that in this case the models are

28



0.4

0.6

0.8

1

te
st

 a
cc

u
ra

cy polynomial

RBF

1 2 3 4 5 6
d

0

0.2

0.4

S
V

 f
ra

ct
io

n

polynomial

RBF

(a)

(b)

Figure 2.3:
(a) The test accuracy as a function of the order (d) of the polynomial
kernel. The black dots denote the test accuracy. It increases from
47.5% for the linear kernel at d = 1 and approaches 100% correspond-
ing to that of the RBF kernel (the red dashed line). (b) The fraction of
support vectors among all training data versus kernel order d shown in
the blue squares. The green dash-dot line corresponds to the fraction
of SV in the RBF kernel.
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not very sensitive to the regularization. Specifically, when C in Eq. (2) is swept

through {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104}, we find that the test accuracy

in the validation set always stays above 96% for all polynomial kernels when

C ∈ [10−2, 102], which is unaffected by the order d (excluding the special case

d = 1, i.e. the linear kernel). Therefore, we choose C = 1.0 for our models.

For models with polynomial kernels, there exits a threshold of γ in the kernel

expressions Kij = (c0 + γ~xi · ~xj)d and Kij = exp(−γ|~xi − ~xj|2), above which the

validation accuracy reaches its maximum. We choose γ = 400, which is large

enough to give the optimum validation result for the polynomial models. While

for the RBF kernel, we choose γ = 1/2L+6, which is also determined by validation.

Next, we make a model selection of the kernels to adopt based on their per-

formances on the testing set, then use the selected kernel to proceed with the

phase classification. The testing set consists of probability density of wavefunc-

tions generated at δJ ∈ [0.05, 0.45] labeled as ETH and δJ ∈ [9.0, 12.0] labeled as

MBL at ε = 59/60, 43/60, 31/60, 19/60. The result for the model selection with

L = 12 is shown in Fig. 2.3(a). We find the test accuracy in the test set is below

50% for the linear kernel, implying that the linear SVM is unable to distinguish

between the ETH and MBL phases. The polynomial SVMs, on the otherhand, all

have test accuracy above 96%, meaning that the polynomial SVMs are all quali-

fied phase classifiers. The test accuracy increases with increasing d until reaching

about 100% for the RBF kernel.

In Fig. 2.3(b) we show the fraction of support vectors (SV), namely, the number

of nonzero αn among all training data for L = 12. The fraction of SV is always

smaller than 1/3. Because the number of SV is directly related to the effective

degrees of freedom of the model, this indicates that we are not at the risk of

over-fitting. In addition, the fraction of SV decreases with increasing d when

d ≥ 2, until it reaches 10.2% for the RBF kernel. Considering that SV are the
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Figure 2.4:
The probability that eigen-wavefunction corresponding to energy den-
sity ε = 59/60 generated at a given δJ is ETH phase for δJ ∈ [0, 5].
The probability is estimated using the fraction of ETH phase in an
ensemble of 300 disorder realizations at energy density ε = 59/60 for
L = 10 (blue dots), L = 12 (red dots) and L = 14 (red dots) predicted
by SVM with RBF kernel. For each size, we take the δJ corresponding
to 50% probability of being ETH to be the phase boundary and denote
it by δJ∗. The inset shows the finite-size extrapolation of δJ∗. The in-
tercept is interpreted as the phase boundary δJc in the thermodynamic
limit.
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Figure 2.5:
Phase diagram of the disordered quantum Ising chain defined in
Eq. (3.1) obtained by SVM with RBF kernel. The training was per-
formed for 0.1 ≤ δJ ≤ 0.2 at two energy densities ε = 59/60 and
19/60 labeled as ETH and for 8.0 ≤ δJ ≤ 10.0 at the same two energy
densities labeled as MBL. The black diamonds are the critical disorder
strengths δJc extracted from the large L extrapolations of the finite
size transition points (blue, red and green dots) at the different ε. The
black dashed line is an exponential fit to the phase boundary.

data points most difficult to classify, this result again implies that the SVM with

the RBF kernel may be the best choice of model for this study. For L = 10 and

L = 14, the test accuracy versus the order of the polynomial kernel has the same

trend as that in L = 12 case. Thus, we choose the RBF kernel that gives the best

test accuracy (99.81% for L = 10 and ∼ 100% for L = 14) to search for the phase

boundary.

Finally, we use the trained SVM to determine the transition point at different

energy densities. For better comparison with previous result [1], we choose ε =

(11+4i)/60, i = 1, 2, · · · , 12. For each of the ε, we study a series of δJ in the range

[0, 5], and for each δJ we consider an ensemble of probability density of eigenstate

wavefunctions generated with different disorder realizations/configurations. We
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input all eigenstates in an ensemble and compute the fraction of the ETH outputs.

When the ensemble is large enough, this fraction corresponds to the probability

that a wavefunction generated at the given δJ is in ETH phase. The standard

deviation of the probability is calculated according to the central limit theorem.

The probabilities are plotted with error bar in Fig. 4 as a function of δJ for different

system sizes at a fixed energy density ε = 59/60. The probability of being in ETH

phase behaves like a soft step function. When δJ is small, namely deep in ETH

phase, it approaches 1 because the actual phase should be ETH, whereas for δJ

large, i.e. deep in the MBL phase, it approaches 0. In the transition region between

the two limiting phases, the probability of being ETH decreases from 1 to 0. We

choose the δJ corresponding to ETH probability = 0.5 as the transition point δJ∗

(Fig. 2.4) for a given system size L, because it’s the disorder strength at which the

wavefunctions have half probability to be in ETH phase and half to be in MBL

phase thus quantities (like entanglement entropy) that behave differently in these

two phases will have the largest standard deviation[1]. As shown in Fig 2.4, with

increasing system size, the soft step function becomes steeper, implying that it

behaves like a step function in thermal dynamic limit. We regard any disorder

strength at which the probability of ETH reaches 0.5 within error as being in

transition region, thus to determine the error of δJ∗. As can be seen from Fig. 4,

δJ∗ exhibits significant size dependence for L = 14, 12, 10. In the inset of Fig. 2.4,

δJ∗ is plotted against 1/L and a finite extrapolation within the error bars to the

large L limit produces an asymptotic estimate of the δJc separating the ETH and

MBL phases at this energy density. Repeating this procedure, we computed δJc

at different energy densities ε = (11 + 4i)/60, i = 1, 2, · · · , 12 shown in the phase

diagram Fig. 2.5. The phase boundary separating the ETH and the MBL phases

is obtained by an exponential fit to the data, which qualitatively agrees with the

result obtained from scaling the variance of the entanglement entropy [1].
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It is important to note that the phase diagram cannot be obtained had the data

at only one energy density been used as the training set. Indeed, we started off

training the model at a single energy density (ε = 59/60 or 19/60) and tested the

ability of the model to determine the phase boundaries at different energy densities.

Surprisingly, the obtained results were quite poor. The testing accuracy in the best

case was below 95%. The resulting transition boundary does not vary much with

energy and deviates significantly from the one obtained by scaling the variance of

the entanglement entropy [1]. This finding is unexpected and remarkable, since

it suggests that the information learned by the SVM is controlled by both the

energy density and the disorder strength. In order to correctly determine the

phase boundary in the two-parameter phase space, the SVM needs to learn to

decipher that the information encoded in the wavefunctions come from a two-

parameter support in order to avoid being misled by those at different energies.

There are at least two possible origins for this novel behavior: (1) this is due to the

specifics of the SVM learning algorithm. However, it is worth noting that we find

the same property using the neural networks model, which is discussed in detail in

the appendix, suggesting that this finding is not specific to a particular machine

learning model. It could still arise from the fact that the input to the models,

both the training and the processed information, is the probability density of the

many-body wavefunctions. (2) An alternative and physically more interesting

possibility is that the thermal to MBL transition driven by disorder δJ and the

energy density ε (mobility-edge like) have different critical properties, such that the

training along one direction of the phase diagram (at fixed energy density) doesn’t

enable the model to learn the transition along the other (at fixed disorder). This

is reminiscent of the situation where there are two relevant scaling directions at

a critical point. Clearly, more works in the future are needed to fully understand

this remarkable property.
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2.3.2 Decision function in SVM

As can be seen in Fig. 2.3, the linear SVM completely fails to distinguish

between the two phases, resulting in 47.5% test accuracy, in contrast to the worst

case of 96.8% for polynomial kernels. We next study the details in the L = 12

case in order to corroborate our conclusion that the SVM cannot separate the

input data labeled by the two different phases in their original space, and that the

phase classification requires the transformation of the inputs to higher dimensional

spaces. Fig. 2.6 shows that when using linear kernel the test accuracy is around

or below 50% in different trials, even with increasing number of training samples.

The origin of this can be traced back to the fact that the probability amplitudes

of the wavefunctions are normalized so that the sum of elements in an ~x, whether

they are from the ETH or the MBL regions, is unity. Thus, one can imagine a

2L − 1 dimensional hyperplane in the feature space where all data samples are

distributed because of the constraint. The data points corresponding to MBL

phase are more likely to be near the edges of that hyperplane, while the ETH data

are more likely to be in the center. It is thus impossible to find a hyperplane of

the same dimension to separate them. So we have to turn to at least a quadratic

kernel. As shown in Fig. 2.6, using a quadratic kernel dramatically increases

the test accuracy to at least 91.7% with 10000 training samples, which can be

systematically improved further by enlarging the training set. This is what we

expect since more training data will reduce model variance, thus improving the

test performance.

The unique advantage of the SVM is that one can uncover the exact form of the

decision function, although it can be very cumbersome in higher order polynomial

kernels and infeasible in the RBF kernel. In the following, we shall limit ourselves

to case of the SVM with the quadratic kernel, where the decision function can be

written as:
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Figure 2.6:
The test accuracy obtained from 4500 testing samples of L = 12 for
the SVM machines using the linear kernel (black line) with K(~xi, ~xj) =
~xi · ~xj and the quadratic polynomial kernel (red line) with K(~xi, ~xj) =
(~xi · ~xj)2. The number of training samples used is indicated by the
horizontal axis.
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f (~z) = sign
(
~w′
T · ~z + b

)
= sign

(∑
i≤j

w′ijzij + b

)
(2.9)

where i, j = 1, 2, · · · , dim(H), and w′ij is each element of ~w′ that is coupled to the

transformed inputs ~z in the quadratic Z space, according to Eq. (2.7) it can be

calculated as:

w′ij =

NSV∑
k=1

αSVk ySVk zSVkij =

NSV∑
k=1

αSVk ySVk uijx
SV
ki x

SV
kj (2.10)

given the exact form of the transformation from the original X space to the

quadratic Z space: zij = uijxixj where uij = 1 if i = j and
√

2 if i < j. In

the same manner, the decision function in Eq. (2.9) can be written in terms of the

original basis as:

f (~z) = sign

(∑
i≤j

wijxixj + b

)
(2.11)

where wij = uijw
′
ij.

In Fig. 2.7, we plot the distributions of the off-diagonal and the diagonal values

of wij(i < j) and wii for L = 12 where i, j = 1, · · · , 212. Clearly, the distributions

of wii and wij(i < j) are drastically different. We find that wii coupling to x2
i are

positive for all i, with an average of 22.15, which dominates in the decision function

over the contributions from wij(i < j), which can be either positive or negative

but are clustered around much smaller magnitudes with an average of −1.8∗10−3.

As a result, only the diagonal terms of the kind x2
i = |〈{σzi }|Ψn〉|4 contribute

essentially to determining the phase region, whereas the cross term of the form

xixj = |〈{σzi }|Ψn〉|2 × |〈{σzj}|Ψn〉|2 (i < j) do not affect the decision qualitatively.

This immediately reminds one of the inverse participation ratio (IPR) that plays a

crucial role in the study of the single-particle Anderson localization in disordered

media. The generalized definition of the IPR in Fock space of a many-body system
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Figure 2.7:
Distributions of Wij (left) and Wii (right) for L = 12. When i 6= j,
Wij can be positive or negative, but cluster very close to zero with
96.7% of them distributed in the range [−0.2, 0.2] for an average of
−1.8∗10−3 as denoted by the red diamond shown in the left panel. In
contrast, the diagonal Wii are much larger. 88.6% of all Wii are larger
than 10 with an average of 22.25 as denoted by the red diamond in
the right panel.

is:

Iq(En) =
∑
i

|〈{σzi }|Ψn〉|2q (2.12)

with q = 2. It can also be seen from Fig. 2.7 that most of the wii are of the

same order, indicating that 〈{σzi }|Ψn〉|4 for each i contributes almost equally, thus

further corroborating that it’s a quantity similar to the IPR that acts as the

threshold in the decision function of the SVM with the quadratic kernel.

The above analysis and discussion suggest that the decision function of the

quadratic SVM is closely related to the many-body IPR Iq=2. One may wonder

if the total off-diagonal contribution which after averaging over i is −3.91, is still

negligible compared to the diagonal contribution x2
i with an average over i be-

ing 22.15. A related question is whether the SVM with higher order polynomial

kernels also uses decision functions related to the higher order Iq, i.e. if terms
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like |〈{σzi }|Ψn〉|2q still dominate in the classification for higher q. Indeed, Fig. 2.3

showed that higher order polynomial kernels lead to better test performance and

the test accuracy reaches its maximum for the RBF kernel. It will be instructive

to find out the reason for this increase. Is it because the cross terms xixj, i < j

become more important or more irrelevant, or is it simply because higher order

terms are sharper classifiers?

Unfortunately for higher order polynomial kernels, the decision function has

poor visualization and becomes even inaccessible in the RBF kernel. So instead

of studying the decision functions directly, we preprocess the training data by

manually raising each element in the input vector to higher order, removing the

cross terms by keeping only terms like xqi = |〈{σzi }|Ψn〉|2q. Then, we train the linear

SVM on the preprocessed data. The test accuracy in the testing set obtained is

99.90% for q = 2, 99.75% for q = 3 and 99.69% for q = 4, suggesting that to

correctly distinguish between the MBL and ETH phases, the information from

the cross terms are unimportant. Because the test accuracy doesn’t change much

when varying q in the inputs |〈{σzi }|Ψn〉|2q, the IPR of any order equal to or larger

than 2 can characterize the phase transition. This result also provides a possible

explanation for the increase of test accuracy in the higher order polynomial kernels.

The contribution from the cross terms to the decision function may be further

suppressed in the higher order polynomial and RBF kernels, which causes the test

accuracy to approach that obtained without the cross terms.

To gain further insights, we also applied the three linear SVMs trained on the

preprocessed data with q = 2, 3, 4 to classifying the data in transition region. The

results are shown in Fig. 2.8 at energy density ε = 59/60 and L = 12. The decision

boundary obtained in each case corresponds to δJ∗ = 1.85± 0.62, 1.89± 0.65 and

1.95± 0.70 respectively (shown in colored lines), which agrees well with the result

δJ∗ = 1.88± 0.47 for the RBF kernel on original data set (shown in black dashed
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Fraction of data points classified as in the ETH phase in an ensemble
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line). This further supports our conjecture that when the SVMs with polynomial

and RBF kernels search for the decision function, they learn to ignore to a large

extent the unnecessary cross terms. As before, the decision function of the linear

SVM trained on the preprocessed data has contributions from evenly distributed

components, |〈{σzi }|Ψn〉|2q with q = 2, of the same order of magnitude. This is

consistent with the decision functions being closely related to the IPR in the spin

configuration space.

2.3.3 Inverse participation ratio and MBL

The concept of MBL originates from the inability of many-body eigenstates

to thermalize in strongly disordered systems. As such, the entanglement entropy

SE between the subsystems has been the common tool used to separate the ETH

phase for weak disorder where SE obeys the volume-law from a MBL phase at for

strong disorder where SE obeys the area-law and the eigenstates fail to thermalize.

There remains under investigation, however, an outstanding issue with important

physical implications, i.e. if and how MBL is related to the localization of the

eigenstates in the many-body Hilbert-space of the entire system under strong

disorder and correlation [43–45].

Our interpretable machine learning results described above have shown that,

at least for the disordered quantum spin chain studied, the decision function used

by the SVM is related to the generalized many-body IPR in Hilbert space. It is

known that relating MBL to the localization in Hilbert space requires a choice of

basis and is basis dependent. Because we choose the spin configurations as the

basis of the Hilbert space, our SVM approach and its consequent interpretability

in terms of IPR is also specific to this basis. Furthermore, the SVMs can produce

the boundary between the ETH and MBL phases, which is in good agreement

with the one obtained by scaling the variance of the entanglement entropy[1], sug-
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The ensemble averaged half-chain entanglement entropy SE (left
panel) and the participation entropy SP (right panel) plotted versus
disorder strength δJ for different length L of the quantum Ising chain
at energy density ε = 59/60.

gesting that the IPR may have the ability to identify the MBL phase transition

as a localization phenomenon in the many-body Hilbert space. In single parti-

cle picture, the entanglement entropy defined using the site occupation number

basis is deterministically related to the IPR and its multifractal spectrum at the

Anderson localization transition point [46]. Unfortunately, it has not been possi-

ble to establish the connection between these two quantities for the many-body

eigenstates in disordered interacting systems. Motivated by our machine learning

results, in the following, we explore the similarities in the behavior of these two

quantities in the disordered quantum spin chain.

The entanglement entropy between two partitions separated at the midpoint of

the chain is given by, SE = −TrLæLlnæL, where æL is the reduced density matrix

ρL = TrR|Ψ〉〈Ψ | and L and R denote the left or right half of the chain. In the

ETH phase, SE is an extensive quantity with values proportional to the volume

of the subsystem (length L/2 of the left half of the chain here) because degrees of
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freedom in the subsystems are highly entangled. In the MBL phase, however, the

entanglement is limited to the boundary between the subsystems such that SE is

proportional to the boundary area. In 1D systems, it is bounded by a constant.

In order to facility a direct comparison to the entanglement entropy SE, we con-

vert the IPR into the participation entropy defined by SP = −ln(
∑

i |〈{σzi }|Ψ〉|4)

over the entire system of length L. SP is commonly used to study the single-

particle Anderson localization [57? ]. In the single-particle case, when the system

is in the delocalized phase, SP is proportional to the logarithm of the size of con-

figuration space and hence the number of lattice sites in the single-particle picture.

In the localized phase, on the other hand, SP is bounded by a constant. At the

mobility edge, i.e. the critical point of the metal-insulator transition, SP exhibits

multifractal behavior. For our interacting Ising chain, the size of the configura-

tion space equals 2L. It is thus natural to expect [16, 58] SP to be proportional

to the length of the chain L up to certain sub-leading terms in the ETH phase,

resembling the volume law behavior of the entanglement entropy SE in the ETH

phase. In the MBL phase, it remains to be explored whether SP is bounded by

a constant, namely, whether there exists a genuine localization in the many-body

Hilbert space. We calculate both the entanglement entropy SE and the participa-

tion entropy SP by exact diagonalization at energy density ε = 59/60, averaging

over ensembles at varying disorder strength δJ . Fig. 2.9 displays the ensemble av-

eraged SE (left) and SP (right) as a function of δJ for different length of the chain

at L = 8, . . . , 14. There are indeed remarkable similarities in their behaviors. At

small δJ , both SE and SP exhibit clear linear size (L) dependence characteristic of

the volume-law in the ETH phase. As the δJ increases, both SE and SP decrease,

as does their dependence on the system sizes. In the regime of strong disorder

with δJ , the entanglement entropy SE shows essentially no size dependence, char-

acteristic of a MBL phase with the area-law in 1D. The participation entropy SP
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also displays a much reduced size-dependence, which disappears for the largest

sample sizes L = 10 and 12 at large disorder δJ . While a definitive conclusions

would require numerical studies of even larger system sizes which are beyond our

current size limit, these results together with those from the interpretable machine

learning studies bring sufficient new insights and raise the possibility of studying

theoretically as well as experimentally[48] other physical quantities more directly

connected to the localization of the many-body eigenstates in the Hilbert space.

2.4 Summary and Conclusions

We presented in this paper an interpretable machine learning classification of

the thermal and MBL phases in a disordered quantum Ising spin chain. Specifi-

cally, the SVMs were built with different types of kernels of the probability density

of the exact eigenstate wavefunctions. We find that training the machines with

data at a minimal of two different energy densities and two disorder strengths cor-

responding to the limiting cases deep in the thermal and MBL phases, the SVMs

are able to classify the phases in the entire transition regime and determine the

boundary separating the two phases at all energy densities. The phase boundary

determined by machine learning is in good qualitative agreement with that ob-

tained by scaling the variance of the entanglement entropy[1]. These results show

that the decision function of the SVM is a general two-parameter quantity, i.e. the

energy density and disorder strength, capable of classifying the whole many-body

eigenstate spectrum of the Hamiltonian. In addition to providing insights into

the critical behavior of the MBL transition, these findings also demonstrate the

the efficiency of machine learning classification in that it can operate with much

less labeled data which are expensive in computation. Thus, when appropriately

applied, the SVMs can be more powerful tool for classifying physical data com-

pared to conventional methods, especially in complex physical situations. In the
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appendix, we also trained the 3-layer neural networks (NN) machine on the same

training sets, and used it in the same way as the SVM to classify the MBL and

thermal phases. The phase diagram obtained by neural network machine agrees

to that determined by the SVM within the error bars, demonstrating that dif-

ferent machine learning models lead to the consistent classification results in the

disordered quantum Ising spin chain.

A unique advantage of the SVM is its interpretability, which indeed allowed

us to interpret how the SVM separates the input data belonging to the different

phases. Remarkably, we find that the decision function constructed by the SVM

is closely related to the generalized IPR in the many-body Hilbert space. The fact

that the interpretable machine learning suggests that IPR may have the ability to

identity the MBL transition is a physically significant results in that it relates the

failure to thermalize to the Anderson type of localization in the many-body Hilbert

space. The consistency between the SVM phase diagram and the one obtained

from the variance of the entanglement entropy[1] further supports this intrigu-

ing possibility. Introducing the participation entropy to describe the many-body

IPR, we further explored this connection by directly comparing the entanglement

entropy and the participation entropy and found remarkable similarity in their

behaviors. Further studies of the interconnection between these two quantities in

larger system sizes are however necessary to reach more definitive conclusions.
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CHAPTER III

Critical behaviors of the entanglement and

participation entropy near the many-body

localization transition in a disordered quantum

spin chain

3.1 Introduction

In 1958, Anderson proposed that all single particle states of a closed non-

interacting quantum system can be localized with sufficient randomness and thus

have zero conductivity. Such systems fail to reach thermal equilibrium even after

an infinitely long time evolution[41]. About half a century later, Basko, Aleiner,

and Altshuler argued that when weak interactions are present, the localization

remains[6] in the many-body localization (MBL) phase, which has since then been

widely studied theoretically and numerically[1, 3–5, 16, 24–29, 59–61], and ob-

served experimentally in cold atom and trapped ion systems[62–66].

The transition between the MBL phase and the delocalized thermal phase is

a dynamical phase transition. As the disorder strength increases, the delocal-

ized system whose long-time behaviour obeys equilibrium thermodynamics turns

nonergodic and thus fails to thermalize. Due to the breakdown of ergodicity in
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the MBL phase, the transition cannot be described by the conventional quantum

statistical-mechanics with averages over many eigenstates. In contrast to ordinary

quantum phase transitions that occur in ground states, the MBL transition is a

transition in the the many-body eigenstates at finite energy densities. The excited

eigenstates that satisfy eigenstate thermalization hypothesis (ETH) are separated

from those that fail to satisfy ETH by the MBL transition. A significant implica-

tion of ETH is the volume law of the entanglement entropy, whereas it obeys the

area law in the MBL phase due to the locality of the interactions, akin to quantum

ground states. As a result, the entanglement entropy is widely used as an “order

parameter” to study the MBL-ETH phase transition.

Although great progresses have been made, some fundamentals of the MBL-

ETH phase transition are still not clear, partly because the MBL transition falls

outside equilibrium statistical mechanics. Grover argued [67] that the critical

eigenstates are thermal assuming that the MBL-ETH transition is continuous.

While some numerical supports for this analysis have been reported[1, 16, 68],

other works suggest the behavior at the critical point to be more like that of a

localized phase than an ergodic phase[59, 60]. Arguments against the continuous

transition assumption have also proposed[17]. Moreover, following the assumption

of a continuous MBL transition, a Harris criterion type of bound ν ≥ 2/d for the

critical exponent of the divergent length scale has been proposed[69]. While this

bound is corroborated by the perturbative renormalization group (RG) studies[70–

72], it is violated by essentially all current exact diagonalization (ED) and scaling

of finite-size systems[1, 16]. Recently, the validity of the Harris criterion for MBL

transition has been challenged and an exact result of ν = 1 was derived from the

theoretical analysis[73].

Another intriguing and relevant question is wether the MBL ultimately arises

through the localization of the many-body states in the configurational Hilbert
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space of the entire system L, in analogy to the single-particle Anderson localiza-

tion in the physical space. Is the entanglement entropy, which is defined on a

subsystem LA ∈ L, and its volume vs area law in the ETH and MBL phases in the

thermodynamic limit L � LA � 1 just one of the many ways for describing the

MBL transition? To be specific, consider an exponentially many expansion coef-

ficients of an eigenstate wave function on the thermal side of the transition over

some local basis states. Will the number of expansion coefficients be of lower order

on the MBL side? If this is the case, there must exist a quantity defined in that

local basis space, in analogy to the inverse participation ratio (IPR) that measures

the (inverse) of the spatial coverage of the single-particle eigenstates. This quan-

tity can be called as the many-body IPR (mIPR). Does the mIPR exhibit critical

behavior near the MBL transition? The mIRP is clearly basis dependent, but is its

critical behavior (if any) basis dependent? Is there a naturally specified choice of

basis wherein the MBL transition can be described by the mIRP? Several theoret-

ical studies have shown that the behavior of the mIPR or its logarithm termed as

the participation entropy and the entanglement entropy share similarities[44, 45],

but if the former is a critical quantity in the MBL transition is still under debate.

In this work, we report the progress made on a disordered transverse field

Ising chain defined in Section IIA, which is known to display the MBL-ETH

transition[1], using an improved ED and a new finite-size scaling analysis that

provide several useful insights into these fundamental issues associated with the

MBL transition. Specifically, we apply twisted boundary conditions (TBC) that

significantly reduce the finite size effect discussed in Section IIB. The ED is car-

ried out on otherwise identical Ising chains where the end spin is rotated by an

angle θ around x axis. The relevant quantities are averaged over different twisted

angles, disorder realizations, and a small energy density window. We find that

this algorithm greatly reduces the finite size effect. We then study the behavior
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of the entanglement entropy near the transition in Section III, based on the same

two assumptions made by Grover[67]. The first assumption is that the MBL-ETH

transition is continuous. This implies, according to Grover’s analysis, that the

critical entanglement entropy equals to a thermal entropy. The second is that the

entanglement entropy SAE of the subsystem is a scaling function only of LA/ξ, with

no significant dependence on the total system size L when L� LA, ξ. This is rea-

sonable because in the thermodynamic limit, the exact size of the whole system L

that acts as a heat bath of the subsystem should not significantly impact the value

of SA. We show that L influences SAE only through the dimensionless partition

ratio r = LA/L. In the relevant thermodynamic limit where r → 0, we find that

SAE is strictly thermal at critical point, instead of being subthermal as suggested in

Ref[1, 16, 17]. This is consistent with Grover’s analysis and therefore corroborates

the assumption of the continuity of SAE . Following the above analysis, we perform

a finite size scaling analysis of SAE with LA/ξ as the scaling variable, whereas L

enters through r as corrections to scaling due to irrelevant operators. In this way

we find a critical exponent ν = 0.94 ± 0.07. This value still violates the Harris

bound, but agrees well with the result derived in Ref[73]. Finally, in Section IV

we perform a finite size scaling analysis of the participation entropy, i.e. the log-

arithm of the mIPR, defined in a suitable spin configuration space of the domain

wall excitations. We find that both the critical point and the critical exponent

agree with those obtained from the scaling of entanglement entropy. This result

implies that MBL-ETH transition is a localized-delocalized transition in the spin

configuration space.
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3.2 Model and Methods

3.2.1 Transverse-field disordered quantum Ising chain

The quantum transverse-field Ising chain is known to develop the MBL phase

when the disorder strength is strong enough. The Hamiltonian of the system is

given by [1]

Ĥ = −
L−1∑
i=1

Jiσ
z
i σ

z
i+1 + J2

L−2∑
i=1

σzi σ
z
i+2 + h

L∑
i=1

σxi (3.1)

where σx and σz are Pauli matrices and L is the number of sites in the chain.

In Eq. (3.1), the second nearest neighbor coupling J2 and the transverse exter-

nal field h are uniform, whereas the nearest neighbor coupling is site-dependent.

We use Ji = J + δJi, where J is a constant and δJi is randomly taken from a

uniform distribution [−δJ, δJ ]. Thus δJ measures the disorder strength. For a

certain disorder realization, the energy E of the many-body eigenstates of H is

bounded within a bandwidth W = Emax − Emin. Consider a disordered ensem-

ble of H, the appropriate dimensionless energy is defined by the energy density

ε = 2(E − Emin)/W relative to the bandwidth, within a small window around ε.

All quantities computed later are averaged over different disorder configurations

in a small energy window around a fixed ε = 59/60. We set J2 = 0.5h = 0.3J ,

where the ground state of the Hamiltonian has ferromagnetic order in z direction

due to Z2 symmetry breaking. As we focus on excited states, in the absence of

interactions and randomness, the ferromagnetic order is destroyed at any finite

energy density as the excited domain walls are extensive over the whole chain.

When there’s randomness but no interaction, the domain walls become localized

for infinitesimal disorder. With both interaction and randomness, there exists a

finite critical disorder strength separating the ETH phase where the domain walls

are extensive from the MBL phase where they’re localized[1, 3].
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3.2.2 Twisted bondary conditions

When applying exact diagonalization (ED) to the Hamiltonian to compute the

eigen wavefunctions, we normally use open boundary conditions (OBC), namely,

ignore the interactions between boundary spins; or periodic boundary conditions

(PBC) which allow the boundary spins to couple in the same way as inner spins;

or a mixture of the above. If the system size is large enough, such boundary

effect will have negligible impact. However, due to the exponential increase of

numerical demand, we can only study systems of very limited sizes. L = 16 is

the largest system size commonly studied using ED for quantum Ising chains.

This limitation leads to strong finite size effects, which become more severe for

long-ranged interactions.

To reduce the finite size effects, it is common to use twisted boundary condi-

tions (TBC)[74, 75]. In this paper, we implement TBC by rotating the last spin

at the end of the Ising chain by an angle θ around the x axis. This corresponds

to a transformation in the Hamiltonian

σzL → eiθS
x
L/~σzLe

−iθSxL/~ (3.2)

or equivalently,

σz1σ
z
L → cos(θ/2)σz1σ

z
L + sin(θ/2)σz1σ

y
L,

σz2σ
z
L → cos(θ/2)σz2σ

z
L + sin(θ/2)σz2σ

y
L, (3.3)

respectively in the nearest and second nearest neighbor coupling terms. The cou-

pling term between σxL and the transverse field are kept unchanged. When θ = 0,

the last spin is along the z axis, which is simply PBC; and when θ = 2π, it corre-

spond to anti-PBC. We vary θ from 0 to 2π. For each θ value, we use a number of

51



-20 -10 0 10 20
E

0

0.05

0.1

0.15

0.2

D
o
S

-20 -10 0 10 20
E

0

0.05

0.1

0.15

0.2

(a) (b)

Figure 3.1:
Averaged DoS for the disordered spin chain with L = 8 computed
using TBC (a) and PBC (b). Red lines are obtained from spectral
function and black lines from counting the number of eigenstates in a
small binned energy window. They are obtained by averaging over the
same number of ED results and presented under the same parameter
settings.

disorder configurations to generate eigen-wavefunctions. All quantities computed

from the wavefunctions will be averaged over both different θ and different disor-

der configurations within a small energy window around an energy density, which

will be discussed in detail below.

Fig.3.1 shows that the application of TBC greatly improves the smoothness

of the density of states (DoS). Fig.3.1(a) and Fig.3.1(b) are the DoS obtained

using TBC and PBC respectively, with both of them averaged over the same

number of ED results. The red line denotes the DoS computed from the spectral

function and the black line is obtained by counting the number of eigen-energies

in a binned energy window. The values of the infinitesimal real positive number

in the spectral function and the width of the energy window are chosen to be the

same in Fig.3.1(a) and Fig.3.1(b).
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Figure 3.2:
Entanglement entropy as a function of disorder strength computed for
spin chains of lengths L = 8, 10, 12, 14 under TBC (a) and PBC (b).
The average is taken over the same number of disorder configurations.

In Fig.3.2 and Fig.3.3, we show that averaging over TBC compared to using

pure PBC also reduces the fluctuations of the quantities computed from the wave

functions, thus benefits the scaling analysis to be discussed later. We take entan-

glement entropy and participation entropy (which will be detailed in the following

sections) as examples. Fig.3.2(a) shows that the entanglement entropy calculated

with TBC has much less fluctuations as a function of the disorder strength, com-

pared to that calculated using PBC in Fig.3.2(b). Fig.3.3 illustrates the same

effect for the participation entropy.

From the above results, we find that using TBC can greatly mitigate the bound-

ary effects in finite size systems as it removes the bias of fixing a specific boundary

condition and improves the quality of the numerical data by reducing fluctuations

of averaged quantities. In the rest of the paper, we will use TBC exclusively to

generate all required data.
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Participation entropy as a function of disorder strength computed for
spin chains of lengths L = 8, 10, 12, 14 under TBC (a) and PBC (b).
The average is taken over the same number of disorder configurations.

3.3 Entanglement Etropy

3.3.1 Qualitative behavior

We now study the qualitative behavior of the entanglement entropy SAE(LA, L, δJ)

of a subsystem A of length LA, where L is the length of the whole spin chain and

δJ is the disorder strength. It is given by

SAE = −TrAρAlnρA, (3.4)

where

ρA = TrAc |Ψn〉〈Ψn| (3.5)

is the reduced density matrix with the trace TrAc running over the complement

set of A, i.e. L − LA. |Ψn〉 is the nth eigenstate with energy En obtained by

exact diagonalization of the Hamiltonian in Eq. (3.1). In this work we focus
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on eigenstates with energy densities falling into a small energy window around

ε = 59/60. It is already clear that in the ETH phase, SAE obeys the volume law,

namely it is proportional to the subsystem size. Therefore in our one-dimensional

system, it is linear in LA. On the other hand, in the MBL phase, SAE should

obey the area law, being proportional to the boundary of the subsystem, i.e. it

should be a constant in the one-dimensional case. In previous works on the spin

chains, it is common to study the half-chain entanglement entropy and its scaling

behavior with respect to the whole system size L[1, 16]. Doing so does not clearly

addressed if the entanglement entropy scales with L or LA. Although in this case

scaling with L is equivalent to scaling with LA, discussing the scaling behavior

with respect to the total system size L may be confusing. There are two reasons.

First of all, by definition, SAE should only scale with LA, since when L is large

enough to satisfy L � LA and L � ξ where ξ ∼ |δJ − δJc|−ν is the correlation

length, SAE should be independent of the value of L. This can be understood since

in the thermodynamic limit L � LA � 1 because if the subsystem in the ETH

phase can thermalize and the rest of the system is able to act as an infinite heat

bath, the exact size of the heat bath should not matter. If instead, the subsystem

is in the MBL phase, the area law implies that the one-dimensional systems will be

independent of either LA or L. Thus the only dimensionless scaling variable should

be LA/ξ. Second, requiring LA = L/2 is far away can never really approach the

LA � L limit. As a result, the finite size effect may greatly impact the behavior

of SAE and thus systems may be more difficult to be fully thermalized and thus

more prong to subthermal behavior of SAE . In the ED studied of small to moderate

finite size systems, the partition ratio r = LA/L can enter through corrections to

scaling which must be taken into account.

We further illustrate the above statements by calculating the entanglement

entropy at fixed LA = 2 and explore how SAE varies with L for different disorder
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The entanglement entropy SAE as a function of L at fixed subsystem
size LA = 2 for different δJ . When L is large, SAE is approximately
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strength δJ . The results of the ED are shown in Fig. 3.4. It can be seen that

when L > 12, for very weak and very strong disorder strengths, i.e. δJ ≤ 1.0

and δJ ≥ 4.5 respectively, SAE shows approximately no dependence on L, implying

that L � LA and L � ξ are both satisfied. On the other hand, if L ≤ 12 in

the region of disorder strength above, or for 1.0 < δJ < 4.5 and all L ≤ 16, SAE

appears to increase with L. This latter behavior is likely caused by the violation

of L � ξ, as ξ becomes larger when δJ gets closer to its critical value. First, we

emphasize that this increase is a finite size correction rather than the volume law

in L. Because SAE is bounded in this case by ln2LA, the dependence of SAE on L

must vanish for large enough L. Second, the finite size correction in the regime

where L is comparable to ξ reduces the value of SAE , which should be accounted

for. To achieve this goal, we introduce the partition ratio r = LA/L. When r � 1,

meaning that when L� LA, this correction is negligible. When r is finite, it adds

a correction to the scaling of SAE in the regime around the critical point with ξ,

in the same spirit as correction to scaling due to irrelevant operators. By doing

so we express all L dependence on SAE through r, thus the entanglement entropy

SAE(LA, L, δJ) = SAE(LA, r, δJ). The quantitative study of its scaling behavior will

be discussed in the next section. Next, we examine the dependence of SAE on LA

and demonstrate why the bipartition entanglement entropy, namely SAE(r = 0.5),

may not be a good choice for studying the scaling behavior of SAE . In Fig. 3.5

we show how SAE varies with r for different fixed L at weak, moderate and strong

disorder strengths. Fig. 3.5a-c show that at small or moderate δJ , SAE shows linear

dependence in r for fixed L, i.e. linear in LA, when r is small, implying a volume

law of SAE in LA. As r increases and approaches 0.5, SAE ’s linear dependence on

LA becomes invalid. The condition that r must be small for the volume law to

hold is consistent with the thermodynamic limit requirement L � LA, i.e. when

the rest of the system can act as an infinite reservoir for the subsystem. Since
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Figure 3.5:
Entanglement entropy as a function of the partition ratio r = LA/L at
a fixed L for 5 different system sizes L = 8, 10, 12, 14, 16. Each panel
corresponds to a fixed disorder strength: δJ = 0.1 (a), 1.5 (b), 3.0 (c),
and 5.0 (d).

SAE seems not to be fully thermalized at r = 0.5 due to the small whole system

size relative to the subsystem size and do not obey volume law even at very weak

disorder strength as seen in Fig. 3.5a, the bipartition entanglement entropy may

not be an appropriate choice for studying the scaling behavior. Fig. 3.5d shows

that when δJ is large (δJ = 5.0), the dependence of SAE on either L or LA is rather

weak, which is consistent with the area law behavior.

The above observations are qualitatively consistent with the analysis of Grover

[67] and support the notion that the MBL transition is continuous in the ther-

modynamic limit. We note that in ref[17], it was argued that in the quantum

critical regime, the entanglement entropy obeys the area law, which challenges the

assumption that the MBL-ETH transition is continuous. We also observed similar

plateaus in the SAE versus L plot at a small fixed LA in Fig. 3.4. However, since
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the volume or area law is defined with respect to LA instead of L, we refrain from

regarding the plateau as an indication of the area law in quantum critical regime.

Moreover, it can be seen in Fig. 3.5c where δJ = 3.0, SAE for L = 8, 10 corresponds

to the plateau region in Fig. 3.4, the entanglement entropy as a function of LA

appears not to behave very differently from those at L = 12, 14, 16. As a result,

we believe the continuity assumption is still valid, and based on which we proceed

to build our scaling theory.

3.3.2 Finite-size scaling for SA

The finite-size scaling for the entanglement entropy in the MBL phase transi-

tion has been widely studied[1, 16, 17, 67, 76]. Based on the above observation

and discussion, we need to construct a scaling theory explicitly in the subsystem

sized LA, such that when δJ < δJc, S
A
E obeys the volume law in LA therefore

SAE/LA is a finite constant; when δJ > δJc, S
A
E is a constant independent of LA

thus SAE/LA → 0 when LA � 1, following area law in LA; at the critical point

δJ = δJc, S
A
E is continuous and thus maintain a critical volume law. To this end,

we specify the system and subsystem sizes using (LA, r) and all correction to the

scaling of the entanglement entropy caused by a finite L is expressed in terms of

the noncritical dependence on r. The entanglement entropy SAE thus depends on

three variables as SAE(LA, r, δJ), or equivalently, SAE(LA, r, ξ(δJ)) where ξ is the

correlation length. The finite-size scaling form can therefore be written according

to

SAE(LA, r, δJ) = LAf(LA|δJ − δJc|ν , r). (3.6)

The scaling function f(x, r) can be expanded in the vicinity of the critical point,

SAE/LA = fc(r)(1 + gr(LA|δJ − δJc|ν)), (3.7)
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where fc(r) = f(0, r) is the value of SAE/LA at the critical point δJc. The func-

tion gr(x) can be expanded as a polynomial in x with gr(0) = 0; its expansion

coefficients have in general r dependence.

The functional form in Eq. (3.7) suggests that at the critical point, for all

combinations of L and LA, SAE/LA should collapse to the same function fc(r).

In this way we can determine the critical disorder strength by choosing δJc to

be the point where all SAE/LA (for example, all data points in of Fig.3.5 divided

by their corresponding subsystem size LA) collapse the best. The resulting fc(r)

describes the critical volume law amplitude at the transition for any given r. In

Fig. 3.6, SAE/LA is shown as a function of r on scatter plots for all L at different

disorder strength ∆J . We find that the best data collapse arises at δJc = 3.2 ±

0.1 corresponding to Fig. 3.6c, which gives the critical disorder strength for the

transition.

The functional curve of the collapsed data in Fig. 3.6c provides the critical

amplitude function fc(r). Fitting the data according to

fc(r) = α + βr + γr2 (3.8)

we obtain α = 0.72± 0.03, β = −1.31± 0.22, and γ = 0.84± 0.62 with the mean

square root fitting error equal to 9.98 ∗ 10−3. This allows us to extrapolate the

critical amplitude to the thermodynamic limit 1 � LA � L by taking the limit,

limr→0 fc(r) = a = 0.72±0.03 for the prefactor of the volume-law at critical point.

Remarkably, this result agrees within the error bar with the thermal entropy which

is ln2LA in the high temperature limit, where the prefactor is ln2 ≈ 0.693. This

serves as a self-consistency check and confirms that SAE is continuous and obeying

the volume-law in LA at transition. Subthermal behavior of SAE near the critical

point has been observed previously[1, 16, 77, 78], but these works do not focus
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Figure 3.6:
Scatter plots of SA/LA as a function of r = LA/L for δJ = 1.5 (a),
3.0 (b), 3.2 (c), and 4.5 (d). There are 26 data points obtained for
L = 10, 12, 14, 16 and LA = 1, 2, · · · , L/2. The least squared fits are
shown by dashed lines.

on the limit LA � L. As can be seen from Fig. 3.6c, fc(r) < ln2 for nonzero r,

strongly suggesting that the subthermal behavior near the transition is due to a

failure to satisfy the L� LA limit that is most severe at the half-chain partition

r = 0.5. In this case, the ability of the rest of the system to act as a heat bath is

impaired, making the subsystem not fully thermalized.

We now turn to the finite size scaling analysis of the entanglement entropy SAE .

Instead of scaling SAE/LA in Eq. (3.7), we scale the quantity y = SAE/(LAfc(r)),

where fc(r) has already been obtained by the above procedure and given in

Eq. (3.8). Thus y = 1 + gr(x) where x = LA|δJ − δJc|ν . Since the major de-

pendence of on r has been removed in y, we assume the remaining r dependence

in the function gr(x) is small and negligible in the neighborhood of the critical

point, provided that r is small and not very close to 0.5. This assumption can be
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further discussed below.

This algorithm allows us to choose the largest system size studied namely

L = 16 and LA = 1, 2, 3, 4, 5, 6, 7 to complete the finite size scaling analysis. The

obtained scaling plot is shown in Fig. 3.7. The good quality of the data collapse

allows us to determine the critical point δJc = 3.19 ± 0.03, which is consistent

with the condition under which fc(r) was obtained. The critical correlation length

exponent is ν = 0.94 ± 0.067. Note that the data for LA = 8 are not included,

because it corresponds to r = 0.5 which is too large for the coefficients in gr(x)

to be treated as independent of r. We checked that if LA = 8 were included in

the scaling plot, the quality of the data collapse becomes noticeably poorer. In

fact, our theory implied that the value of L should not matter if only we divide

SAE/LA by the corresponding fc(r). To verify this point, we repeated the finite size

scaling analysis for L = 14 and LA = 1, 2, 3, 4, 5, 6 and obtained a similar quality

of data collapse with the critical point δJc = 3.14±0.06 and the correlation length

exponent ν = 0.99 ± 0.09, which are very close to obtained when using L = 16.

The errors in our analysis are obtained following the approach presented in the

supplementary material of reference[16]. The good quality of the data collapse and

the similar results obtained for different system sizes justify that the r dependence

in gr(x) near the critical point (x = 0) is negligible when r is away from 0.5.

3.4 Participation Entropy

Finally, we investigate if the MBL transition describable by the entanglement

entropy of a subsystem LA in a system L in the limit 1� LA � L can be character-

ized by the inverse participation ratio (IPR) or its associated participation entropy

in the spin configuration space of the entire system L. In other words, is the MBL

related to the localization of the eigenstates in the spin configuration space of the

entire system L due to strong disorder and correlation?[44, 45, 79, 80] The con-
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nections between Hilbert space localization and energy level statistics have indeed

been explored and demonstrated by experimental measurements recently[48]. The

IPR, which is widely used to study the Anderson localization transition[57, 81],

can be generalized to the many-body probelm[58], defined for the nth eigenstate

|Ψn〉 as,

Iq(n) =
∑
i

|〈{σzi }|Ψn〉|2q, q = 2, 3, 4 · · · , (3.9)

where {σzi } is chosen as the basis for the spin configuration for the model param-

eters used. This choice of basis will be discussed below. The associated participa-

tion entropy is given by

SqP (n) =
1

1− q
lnIq(n). (3.10)

We consider q = 2 and ignore the superscript q for simplicity in the rest of the

discussion.

Several theoretical studies have shown that the behavior of SP and the entan-
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′
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glement entropy share certain similarities[44, 45, 79] and are directly related to

each other in the single-particle case[46], while others offer opposite arguments[16,

47]. Using the high quality SP data obtained by ED under the TBC, we per-

formed a finite size scaling analysis of SP obtained on finite-size systems with

L = 10, 11, 12, 13, 14, 16 at different disorder strengths. The scaling plot is shown

in Fig.3.8, which gives the critical disorder strength δJ ′c = 3.16±0.04 and the crit-

ical correlation length exponent ν ′ = 0.89± 0.03. Comparing the results to those

obtained for the entanglement entropySA, we find that (δJc, ν) and (δJ ′c, ν
′) agree

within the numerical uncertainty, suggesting that the critical behaviors in the par-

tition entropy SP and the entanglement entropy SAE may describe the same phase

transition, and therefore MBL is possibly a localization in the spin configuration

space.

Note that the definition of the many-body IPR in Eq. (3.9) requires choosing
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a basis and the obtained results can be basis dependent. It is thus important

to discuss if there exists a physically suitable basis for studying MBL using the

participation entropy. Here we chose the spin configuration basis along the z direc-

tion in Eq. (3.9) and demonstrated that the participation entropy Sp in Eq. (3.10)

displays a MBL transition consistent with that of the basis-independent entan-

glement entropy SAE for the spin-chain. The reason for this basis choice is that

the ground state of the system has ferromagnetic order of the spins along the z

direction at h = 0.6J . Thus the excited states are domain wall excitations that

flip the spin along the z direction[1, 3]. In the ETH phase the domain wall exci-

tations are extensive, whereas in the MBL phase they are localized. There exists

an occupation number representation for the domain walls in terms of the local

spin configuration in the z direction. For example, in our model system with Z2

symmetry under P̂ =
∏L

i=1 σ
x
i and OBC, an unoccupied domain wall state |0〉 is

given by (| ↑↑〉 + | ↓↓〉)/
√

2, while an occupied domain wall state |1〉 corresponds

to (| ↑↓〉+ | ↓↑〉)/
√

2). We believe that the suitable basis to define the many-body

IPR is the quasiparticle occupation number basis. Thus, for the parameter space

leading to the ferromagnetic ground state and domain wall excitation, the spin

configuration in the z direction is the suitable choice of basis with which we com-

puted the participation entropy. This implies that when h� J where the domain

wall excitations turn to flip spins in the x direction, the appropriate choice of basis

would be the spin configuration in the x direction. While more detailed studies

are necessary, we have tested this at h = 4J and found that the participation en-

tropy SP defined in the spin configurations along the x direction shows the scaling

behavior, while that along the z direction does not. Finally, any two choices of

basis connected by transformations that commute with the Hamiltonian will give

the same behavior of the m-IPR. In the present case, identical results are obtained

if the basis is chosen to be the spin configuration along the −z direction. In the
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more general case where the Hamiltonian has SU(2) symmetry, the basis choices

of spin directions along x, y or z will produce the same results.

3.5 Summary

We introduced a finite size scaling theory for the critical behavior of the entan-

glement entropy near the MBL transition. We emphasized that it is the subsystem

size LA, not the total system size L, that cuts off the critical singularity of the MBL

transition, such that the only scaling variable is LA/ξ with ξ being the divergent

correlation length. The total system size L enters only as a correction to scaling

through the introduction of the partition ratio r = LA/L that characterizes the

ability of the rest of system to act as an infinite heat bath to the subsystem. While

r vanishes in the thermodynamic limit L � LA, a large r close to its maximum

rm = 0.5 pronounces the inability to fully thermalize, leading to subthermal be-

haviors of the entanglement entropy near the critical point. In the thermodynamic

limit, the scaling function produces the volume and area laws of the entanglement

entropy in LA but not in L in the ETH and MBL phases, respectively. We applied

this scaling theory to the MBL transition in the disordered transverse field Ising

chain. The finite size scaling analysis of the entanglement entropy, obtained using

exact diagonalization and twisted boundary conditions to reduce the boundary ef-

fects, supports that the MBL-ETH transition is continuous and the entanglement

entropy is strictly thermal at the critical point. The correlation length exponent is

obtained to be ν = 0.94±0.07. This value is below the lower bound set by the Har-

ris criteria, as are several other exact diagonalizaiton results. It is, however, close

to ν = 1 derived by Monthus[73] who argued that the critical exponent for the

MBL transition need not satisfy the Harris bound since the quantum many-body

state under study experiences 2L − 1 random energies, which is much more than

Ld assumed in the derivation of the Harris bound. It remains to be explored if

66



the Harris bound is violated due to the limited system size, or because it does not

apply to the MBL phase transition studied. We also argued that the many-body

IPR and the participation entropy defined in the quasiparticle occupation number

basis of domain wall excitations in the entire system L can be used to describe

the MBL transition as a localization transition of the many-body eigenstates in

the spin configuration space. We find that the finite size scaling analysis of the

participation entropy results in a critical point and a correlation length exponent

very close to those obtained from the entanglement entropy, suggesting they share

similar critical behaviors near the MBL transition. In addition to providing new

insights to the subject of MBL, this scaling theory should be applicable to other

models of MBL.

67



CHAPTER IV

Finite Temperature Gutzwiller Approximation

of Hubbard Model and the Equation of States

4.1 Introduction

The Hubbard model works as a paradigm for studying electronic systems with

strong but short-range Coulomb interactions. Despite its simple form, it strik-

ingly captures most important aspects of the system on one hand, on the other

hand, it lacks anaylitical solution except in one-dimension. The Gutzwiller projec-

tion methond, sometimes in combination with variational Monte Carlo approach,

is widely used to treat the Hubbard model at zero temperature. The reasons

for its popularity lie in two aspects, firstly it characterize the fact that the band-

width is renormalized (narrowed) by the interaction, which other traditional mean

field methods fail to account. Secondly, it describes the metal-insulator transi-

tion driven by strong Coulomb interaction. The most successful application of

Gutzwiller projection is in the study of ground state, one can variationally search

for the ground state by devising it as |G〉 = P |G0〉, where P is the Gutzwiller

projector and |G0〉 is a suitable non-interacting state. Equivalently, this can be

regarded as finding a renormalized noninteracting Hamiltonian ĤGW to approx-

imate the interacting Hamiltonian. It’s then natural to ask if this projection
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method can be extended to finite temperature. While in contrast to zero temper-

ature, this requires to treat an ensemble instead of one pure state, thus we need to

generalize the projection from the wavefunction level to the density matrix level.

In this work we construct a density matrix operator to approximate the real in-

teracting density matrix, since the real one gives the lowest energy, our constructed

one can at least provide an upper bound of the free energy. The constructed den-

sity matrix can be anything if only it’s positive definite and its trace is unity, we

take such an ansarts, where P is still of Gutzwiller type. We get the exact form

of internal energy and a lower bound of entropy, thus the upper bound of free en-

ergy. The entropy contribution is from the projector, which is the incoherent part

that cannot be characterized by quasiparticles. We apply this method to half-

filled Hubbard model to study the metal-insulator transition with and without

magnetism.

When assuming no magnetic order, we find that there exists a critical temper-

ature Tc, below which there exists two repulsion strength Uc1 and Uc2 such that

below Uc1 the system is in phase I; above Uc2 the system is in phase II; between

Uc1 and Uc2 the two phases coexist. We’ll discuss these 2 phase in detail later.

When the temperature is above Tc, the two phases are indistinguishable. We plot

the phase diagram and compare our result to that of dynamical mean field theory.

We find some qualitative agreements as well as some new physics which will be

detailed in the following subsections.

When considering magnetism, we find that the Neel temperature is increasing

with repulsion U when U is small, which agrees with the result of Hartree Fock

mean field theory. When U is large, TNeel decreases with 1/U which agrees with

the result of Heisenberg model. More details will be shown in later chapters.
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4.2 Extension of Gutzwiller projection to finite-temperature

4.2.1 Internal energy

We know for the interacting system at finite temperature T, the free energy

functional is:

F (ρ) = (Hintρ) + kT (ρ ln ρ) (4.1)

where ρ is positive definite, satisfying ρ = 1.

Obviously, the first part to the ·lhs· of equation (A.1) is internal energy, and

the second part is −TS, where S = −kρ ln ρ is the entropy. The exact form of the

density matrix is denoted as ρmin, expressed as:

ρmin =
e−βĤint

Tr(e−βĤint)
(4.2)

Therefore the exact free energy is:

Fexact = F (ρmin) ≤ F (ρ), ∀ρ > 0 with Trρ = 1 (4.3)

If we choose a variational desity matrix ρ satisfying above condition, by varying

ρ we can find an upper bound of free energy.

If we assume the variational ansatz is:

ρ =
P̂ e−β(Ĥ0−µN̂)P̂

T r(P̂ e−β(Ĥ0−µN̂)P̂ )
(4.4)

where P̂ is a projection operator specified in the grand canonical ensemble and

Ĥ0 is a non-interacting Hamiltonian. Define the non-interacting average gov-

erned by Ĥ0 at finite temperature to be 〈Ô〉0T := Tr(Ôe−β(Ĥ0−µN̂))
Z0 , where Z0 :=

Tr(e−β(Ĥ0−µN̂)). then Z := Tr(P̂ e−β(Ĥ0−µN̂)P̂ ) = Tr(P̂ 2e−βĤ0 )
Z0 · Z0 = Z0 · 〈P̂ 2〉0T .
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Thus equation (A.2) becomes:

ρ =
P̂ e−β(Ĥ0−µN̂)P̂

Z0 · 〈P̂ 2〉0T
(4.5)

If we choose the projection operator to be Gutzwiller type:

P̂ =
∏
i

(Êi + yiσQ̂iσ + giyiσyiσ̄D̂i) (4.6)

where

Êi = (1− ni↑)(1− ni↓) (4.7)

Q̂iσ = niσ(1− niσ̄) (4.8)

D̂i = ni↑ni↓ (4.9)

Then 〈P̂ 2〉0T can be factorized as what we did in ground state Gutzwiller pro-

jection, the only difference is here we use finite-temperature Wick’s theorem. So

we get 〈P̂ 2〉0T =
∏

i zi(T ), with zi(T ) = e0
i (T ) + y2

iσq
0
iσ(T ) + (giyi↑yi↓)

2d0
i (T ), where

e0
i = 〈Êi〉0T , q0

iσ = 〈Q̂iσ〉0T , d0
i (T ) = 〈D̂i〉0T .

Thus the corresponding quantities after projection are:

ei(T ) = (Eiρ) = e0
i (T )/zi(T ) (4.10)

qiσ(T ) = (Qiσρ) = y2
iσq

0
iσ(T )/zi(T ) (4.11)

di(T ) = (Diρ) = (giyi↑yi↓)
2d0
i (T )/zi(T ) (4.12)
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Now we can evaluate (Hintρ).

(Hintρ) = (Hkineticρ) + U(Dρ)

=
∑
<ij>σ

(P̂ e−β(Ĥ0−µN̂)P̂C†iσCjσ)

Z0 · 〈P̂ 2〉0T
+ U

∑
i

(Diρ) (4.13)

Firstly we should find a renormalized non-interacting Hamiltonian to take place

of the ·lhs· of equation (4.13). Ignoring inter-site Wick contraction we can get:

(P̂ e−β(Ĥ0−µN̂)P̂C†iσCjσ)

Z0 · 〈P̂ 2〉0T

=
(P̂C†iσCjσP̂ e

−β(Ĥ0−µN̂))

Z0 · 〈P̂ 2〉0T

=
(P̂iC

†
iσP̂iP̂jCjσP̂je

−β(Ĥ0−µN̂))
∏

l 6=i,j zl(T )

Z0 ·
∏

l zl(T )

=
〈P̂iC†iσP̂iP̂jCjσP̂j〉0(T )

zizj

=
〈Γ̂iσ〉0T
zi

〈Γ̂jσ〉0T
zj
〈C†iσCjσ〉0T

= 〈gtiσ(T )gtjσ(T )C†iσCjσ〉0T , (4.14)

where P̂iC
†
iσP̂i = yiσQ̂iσC

†
iσÊi+y

2
iσ̄yiσgiD̂iC

†
iσQ̂iσ̄ = yiσ(1−niσ̄)C†iσ+y2

iσ̄yiσginiσ̄C
†
iσ ≡

Γ̂iσC
†
iσ, and gtiσ(T ) ≡ 〈Γ̂iσ〉0T/zi(T ). Thus we have

gtiσ(T ) =
yiσ(1− n0

iσ̄(T ))

zi(T )
+
y2
iσ̄yiσgin

0
iσ̄(T )

zi(T )
(4.15)

Secondly evaluate the ·rhs· of equation (4.13), that’s simply U
∑

i di(T ) =

U
∑

i
(giyi↑yi↓)

2

zi(T )
d0
i (T ).
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Thus we get a renormalized non-interacting Hamiltonian ĤGW :

ĤGW = −t
∑
<ij>σ

gtiσ(T )gtjσ(T )c†iσcjσ

+U
∑
i

(giyi↑yi↓)
2d0
i (T )

e0
i (T ) + y2

iσq
0
iσ(T ) + (giyi↑yi↓)2d0

i (T )

= Ĥrenorm
kinetic + U

∑
i

di(T ) (4.16)

the internal energy (Hintρ) can now be expressed as:

E = (Hintρ)− µN̂ = 〈ĤGW 〉0T , (4.17)

where 〈ĤGW 〉0T = (ĤGW e−β(Ĥ0−µN̂))

(e−β(Ĥ0−µN̂))
.

Note that Ĥ0 can be any non-interacting Hamiltonian. We’re free to take it

to be ĤGW , let’s do so and then this term has clear physical meaning. With the

form E = (ĤGW e
−β(ĤGW−µN̂)), it’s exactly the internal energy of a non-interacting

system governed by ĤGW . Even though after making this replacement, the internal

energy behaves like a non-interacting one, it doesn’t mean that now the interacting

system is completely equivalent to a non-interacting one, since the free energy we’ll

get later won’t be equal to that of a non-interacting system governed by ĤGW ,

namely, F 6= FGW , where we define FGW as:

FGW = −kT lnZGW

= −kT ln(e−β(ĤGW−µN̂))

= −kT ln[(e−β(Ĥrenorm
kinetic −µN̂)) · e−βU

∑
i di ]

= U
∑
i

di − kT
∑
~k

ln(1 + e−β[EGWkinetic(
~k)−µ]) (4.18)

We’ll see soon that the difference comes from an extra entropy ∆S (entropy will
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differ from non-interacting system’s entropy by ∆S). That is to say, we use a

non-interacting system governed by ĤGW to approximate the coherent part of the

interacting system, while the effect of incoherent part is approximated by ∆S.

4.2.2 Entropy

We already know the expression of entropy is S = −k(ρ ln ρ), where ρ =

P̂ e−β(ĤGW−µN̂)P̂
Z

, thus we can further write S as:

S = −k [P̂ e−β(ĤGW−µN̂)P̂ ln(P̂ e−β(ĤGW−µN̂)P̂ )]

Z
+ k lnZ (4.19)

The first term in the ·rhs· of equation (4.19) equals to:

−k [(P̂ ln(P̂ e−β(ĤGW−µN̂)P̂ )P̂ )e−β(ĤGW−µN̂)]

Z0 · 〈P̂ 2〉0T

=
〈P̂ ln(P̂ e−β(ĤGW−µN̂)P̂ )P̂ 〉0T

〈P̂ 2〉0T
(4.20)

Since the projection operator acts on a non-interacting eigenstate |Ψ 0
n〉 to reduce

its weight if only 〈Ψ 0
n|D̂|Ψ 0

n〉 6= 0, if 〈Ψ 0
n|D̂|Ψ 0

n〉 = 0, the projection keeps its weight

unchanged, so it’s always true that ln(P̂ e−β(ĤGW−µN̂)P̂ ) ≤ ln(e−β(ĤGW−µN̂)) =

−β(ĤGW − µN̂) (Definitely the original Gutzwiller projector itself cannot satisfy

this, which implies that normalization of the projector is required, we’ll come back

to discuss the normalization factor later.)

So now we have a lower bound of entropy:

S ≥ 1

T
(
〈P̂ ĤGW P̂ 〉0T
〈P̂ 2〉0T

− µN̂) + k lnZ (4.21)

We must be careful when evaluating
〈P̂ ĤGW P̂ 〉0T
〈P̂ 2〉0T

.

Recall that 〈ĤGW 〉0T =
〈P̂ (Ĥkinetic+UD̂)P̂ 〉0T

〈P̂ 2〉0T
, one may naively think that

〈P̂ ĤGW P̂ 〉0T
〈P̂ 2〉0T

is
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equal to the sum of−t
∑

<ij>σ(gtiσ(T )gtjσ(T ))2〈c†iσcjσ〉0T and U
∑

i
(giyi↑yi↓)

2d0i (T )

e0i (T )+y2iσq
0
iσ(T )+(giyi↑yi↓)2d

0
i (T )

.

However, this is not the case. Note that P̂ is a projection operator. Recall the

ground state Gutzwiller projection, by doing projection on the non-interacting

state we are looking for a projected state P̂ |Ψ 0
0 〉 which can best approximate the

interacting state, after we obtain it through variational process, we cannot con-

tinue to do projection on it to further reduce double occupation, otherwise we get

result without physical meaning. Thus it requires us to manually add a constraint:

After we specified P̂ and determine P̂ |Ψ 0
0 〉, we cannot change it further by making

more projections, that is to say, (P̂ )nP̂ |Ψ 0
0 〉 ∀n ∈ Z+, gives the same result P̂ |Ψ 0

0 〉.

As a result, 〈P̂ ĤGW P̂ 〉
〈P̂ 2〉

= 〈ĤGW 〉. Here it’s the same, we have
〈P̂ ĤGW P̂ 〉0T
〈P̂ 2〉0T

= 〈ĤGW 〉0T .

So the correct lower bound of entropy is:

S ≥ 1

T
(〈ĤGW 〉0T − µN̂) + k lnZ

=
1

T
(〈ĤGW 〉0T − µN̂) + k ln(e−β(ĤGW−µN̂))

+k ln〈P̂ 2〉0T (4.22)

In fact, if P̂ is a real projector satisfying P̂ 2 = P̂ , the statement above will be

obvious. To be more specific, if P̂ 2 = P̂ , we can find a set of eigenstates {|k〉} of

ρ̂, it’s clear that P̂ |k〉 = |k〉. Thus the numerator of the first term in the ·rhs· of
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equation (4.19) can be expressed as:

[P̂ e−β(ĤGW−µN̂)P̂ ln(P̂ e−β(ĤGW−µN̂)P̂ )]

=
∑
k

〈k|e−β(ĤGW−µN̂)|k〉 ln〈k|e−β(ĤGW−µN̂)|k〉

≤
∑
k

〈k|e−β(ĤGW−µN̂) ln e−β(ĤGW−µN̂)|k〉

= (P̂ e−β(ĤGW−µN̂) ln e−β(ĤGW−µN̂)P̂ )

= Z0 · 〈ĤGW P̂
2〉0T

= Z0 · 〈ĤGW 〉0T · 〈P̂ 2〉0T (4.23)

Thus the first term in the ·rhs· of equation (4.19) equals to
Z0·〈ĤGW 〉0T ·〈P̂

2〉0T
Z0·〈P̂ 2〉0T

=

〈ĤGW 〉0T . Giving the same result.

Note that ρ = P̂ e−β(Ĥ0−µN̂)P̂

(P̂ e−β(Ĥ0−µN̂)P̂ )
, which means if we rescale the projection operator

P̂ −→ αP̂ , the density matrix ρ will remain the same, so the thermal average of

all observable quantities will remain the same. It seems we have full freedom to

rescale P̂ without making any change. However, from equation 4.22 we find that

if P̂ −→ αP̂ , the extra entropy δS −→ δS + k lnα2. This should not be allowed,

definitely we cannot tune the entropy randomly, so we need some constraints on

P̂ . Recall that we used the property of projection operator before: P̂ 2 = P̂ , even

though the Gutzwiller type projection operator can never satisfy this condition, we

can make it true at the average level: 〈P̂ 2〉0T = 〈P̂ 〉0T . Although it’s an uncontrolled

approximation, since we’re always dealing with average, this constraint is to some

extent enough, at least when U is not that large, the true ground state is not

significantly different from the noninteracting one, this approximation is quite

accurate. In another word, we should find an α, let P̂ = α
∏

i(Ei + yiσQiσ +
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giyi↑yi↓Di), we have 〈P̂ 2〉0T = 〈P̂ 〉0T . This gives:

α =
∏
i

e0
i (T ) + yiσq

0
iσ(T ) + giyi↑yi↓d

0
i (T )

e0
i (T ) + y2

iσq
0
iσ(T ) + g2

i y
2
i↑y

2
i↓d

0
i (T )

(4.24)

Besides, we come back to the issue mentioned before that the projector P̂ should

always reduce the wave function, now we can check that with such a normal-

ization, at least under d = 0 (large positive U limit), d = 0.25 (noninteracting

case), d = 0.5 (large negative U limit), the projector P̂ does reduce part of the

wave function thus satisfying ln(P̂ e−β(ĤGW−µN̂)P̂ ) ≤ ln(e−β(ĤGW−µN̂)). (With a

projector of Gutzwiller type, we cannot ensure that the projector is reducing wave

function under all circumstance, such a normalization is the most we can do, it

can at least ensure that our result will not deviate too far from the reality, namely

no singularities or infinities.)

At last we get the expression of the upper bound of the interacting system’s

free energy:

Fexact ≤ F (ρ) = E − TS

≤ FGW − kT
∑
i

ln zi(T )− kT ln(α2)

≡ F = U
∑
i

di − kT
∑
~k

ln(1 + e−β[EGWkinetic(
~k)−µ])

−kT
∑
i

ln
[e0
i (T ) + yiσq

0
iσ(T ) + giyi↑yi↓d

0
i (T )]2

e0
i (T ) + y2

iσq
0
iσ(T ) + g2

i y
2
i↑y

2
i↓d

0
i (T )

(4.25)

4.3 First order phase transition in half-filled Hubbard model

Firstly note that when there’s no magnetism, d0
i (T ), e0

i (T ), q0
iσ(T ) are all inde-

pendent of temperature, they will keep their zero-temperature value in all tem-

perature, so do zi(T ), gtiσ(T ). Thus we can remove the temperature index. For

uniform case at half filling, we can further remove the site index, considering
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particle-hole symmetry, it’s easy to see that:

d0 = e0 = q0
σ = 1/4 (4.26)

yi↑ = yi↓ =

√
1

2d
− 1 (4.27)

giyi↑yi↓ = 1 (4.28)

gtiσ =
√

16d(1/2− d) (4.29)

In order to compare to DMFT result, we use Bethe lattice density of state

N(ξ) = 2
π

√
1− ξ2. Then we have:

F

N
= Ud− 2kT

∫
dξN(ξ) ln(1 + e−β·16d(1/2−d)ξ)

−2kT ln(
√
d+

√
1/2− d) (4.30)

In Fig 4.1 and Fig 4.2 two groups of plots F versus d are shown, we can see

there’re two ranges of T, each group represents a T value in each range. In the

lower range, each T corresponds to two different Us, say Uc1(T ) and Uc2(T ). When

U ≤ Uc1 the free energy versus d has only one minimum; when Uc1 < U < Uc2

another smaller minimum appears, so there’re 2 minima in F-d figures; when

U ≥ Uc2 the larger minimum among the two disappears, only the smaller one

stays, there’s again only one minimum. This implies that there must be first order

phase transition in the lower range of T. In the higher range of T, the two minima

mix so whatever U is, there’s only one minimum, we call that T separating the

two ranges (where there is first order phase transition and there is not) as Tc.

We can find out Tc, and Uc1(T ), Uc2(T ) for each T below Tc. Also after doing

Maxwell construction, we can find Uc(T ) for each T when there two minima in F-d

figure and the two minima correspond to the same free energy (crossing point).

The figure of phase transition is shown in Fig 4.3. In our result, Tc = 0.19 which
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Figure 4.1:
Free energy Vs double occupancy at T=0.1 for U=1.2, 2.2, 3.2. (a)
U < Uc1, free energy has only one minimum at d = 0.17, which leads
to a normal Fermi liquid. (b) Uc1 < U < Uc2, free energy has two
minima, which means two different phases coexist. (c) U > Uc2, free
energy has only one mimimum at d = 0.0015, leading to a very nar-
row bandwidth which is much smaller than kT , thus giving nontrivial
physical properties which will be discussed below.
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Figure 4.2:
Free energy Vs double occupancy at T=0.2 for U=1.2, 2.2, 3.2. Since
T > Tc, whatever U is, there’s only one minimum in free energy, tow
phases when T < Tc can no longer be distinguished.

is three or four times larger than Tc = 0.05 in DMFT. At zero temperature, Uc =

Uc2 = 3.4, which is, as expected, the transition U of Brinkman-Rice transition,

while Uc1 approaches zero when temperature approaches zero.

Then we’ll prove that when T < Tc, there’s a range (Uc1(T ) < U < Uc2(T ))

where two different phases coexist (two minima),and approximately write down

the equation of state of the two phases at low temperature. We start from the

derivation of free energy over d.

F ′ =
∂F

∂d

= U − 64(d− 0.25)

∫
dξN(ξ)

ξ

e
16d(0.5−d)ξ

kT + 1

−kT
1√
d
− 1√

0.5−d√
d+
√

0.5− d
(4.31)
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Figure 4.3:
Phase diagram of half filled Hubbard model. The transition line is first
order at finite temperature and terminates at 2 second order points
(Uc = 1.9, Tc = 0.19) and (Uc = 3.4, Tc = 0).

It’s easy to check that we can recover all T = 0 results. In addition, when U = 0

for noninteracting case, the ·rhs· of equation (4.31) is negative when d < 0.25,

and it’s zero when d = 0.25, and positive when d > 0.25, which means d = 0.25 is

the only minimum for noninteracting case, that’s what we expect.

From Fig 4.4 we can see that F ′−U for different temperature. When T = 0.01

and T = 0.1 (which are smaller than Tc) if −U is between y axis of the two

black points (whose coordinates are (d1(T ),−Uc1(T )) and (d2(T ),−Uc2(T ))), then

F ′ = 0 has 3 solutions for 0 ≤ d ≤ 0.25, meaning that there will be 2 minima (and

a maximum) in this d range. However when T = 0.2 > Tc, it’s impossible to have

2 minima when 0 ≤ d ≤ 0.25 whatever U is.

We can see that when F ′ = 0 has three solutions, one of the two solutions

(except the one corresponds to maximum of free energy) is d smaller than d1, and

the other is d larger than d2. That means, if we divide the F ′ − U as a function

of d into three parts, namely, when d < d1, d1 ≤ d ≤ d2, and d > d2, and write
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Figure 4.4:
Derivative of free energy Vs double occupancy at T=0.01,0.1,0.2. In
the first 2 figures, there exists a range of U which can give 3 solutions
of saddle point equation F ′ = 0 when d ≤ 0.25, while in the last figure
no such U. Also in the first 2 figures we plot the Maxwell construction
line, which gives the value of −Uc(T ).
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down the approximate expression of F ′ − U in the first and last range, we’ll get

equations of ’small d’ state and ’large d’ state. That’s possible when T is small,

since when T is small (e.g. T < 0.01), in this range, though d1 and d2 are both

small, but we have 16d1(0.5 − d1)W � kT and 16d2(0.5 − d2)W � kT (W is

bandwidth). Thus we can do high-T approximation and Sommerfeld expansion in

each case.

4.3.1 d < d1

In this d range, as we said, at low temperature, 16d(0.5 − d)W � kT , which

means we can do high-T approximation to F ′.

F ′ = U − 64(d− 0.25)

∫
dξN(ξ)

ξ

e
16d(0.5−d)ξ

kT + 1

−kT
1√
d
− 1√

0.5−d√
d+
√

0.5− d

≈ U − 64(d− 0.25)

∫
dξN(ξ)

ξ

2(1 + 8d(0.5−d)ξ
kT

)

−kT
1√
d√

0.5

≈ U − 32(d− 0.25)
2

π

∫
dξ
√

1− ξ2ξ(1− 8d(0.5− d)

kT
ξ)

−kT
√

2

d

= U − 32d

kT
−
√

2

d
kT (4.32)

So the equation of ’samll d’ state is F ′ = 0, namely:

U =

√
2

d
kT +

32d

kT
(4.33)

The ·rhs· of equation (4.33) has minimum at d = (32
√

2)−
3
2 (kT )

4
3 = α(kT )

4
3 ,
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Figure 4.5:
Exact and approximate forms of F ′ at low temperature. The left figure
is when d < d1 for small d range, from the inset we see the smaller d
is, the better the approximate form agrees with the exact form. The
right figure is when d > d2 for large d range, similarly, the larger d is,
the better the two forms agree with each other.

where α ≈ 0.08, the minimum value is Umin = (32α+
√

2
α

)(kT )
1
3 ≈ 20.5(kT )

1
3 . Thus

we get (d1(T ), Uc1(T )) at small T, which is (α(kT )
4
3 , (32α +

√
2
α

)(kT )
1
3 ). We can

see that when T is small, d1 ∝ (kT )
4
3 � kT , that’s consistent to the requirement.

Besides, the expression of Uc1 at low temperature is:

Uc1(T ) = (32α +

√
2

α
)(kT )

1
3 (4.34)

The left part of Fig 4.5 shows that in the d < d1 range at low temperature,

the approximate form of F ′ and the exact F ′ agrees very well, which justify this

approximation and equation of ’small d’ state.

The ’small d’ implies a narrow renormalized bandwidth compared to kT . We

proved analytically that for small T, the renormalized bandwidth is much smaller

than kT , and in fact, according to our calculation result, even for larger T (but

still smaller than Tc), the smaller value among the two d values corresponding to

the two minima of free energy gives rise to a renormalized bandwidth which will

be smaller than kT. It’s like the high-T limit, there isn’t Fermi surface anymore,

here we call such phase as ’incoherent metal’.
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4.3.2 d > d2

In this d range, at low temperature, 16d(0.5 − d)W � kT , which means we

can do Sommerfeld expansion to F ′.

F ′ = U − 64(d− 0.25)

∫
dξN(ξ)

ξ

e
16d(0.5−d)ξ

kT + 1

−kT
1√
d
− 1√

0.5−d√
d+
√

0.5− d

≈ U − 64(d− 0.25)

0∫
−W

dξN(ξ)ξ

−64π(d− 0.25)

3
[

kT

16d(0.5− d)
]2 −

1√
d
− 1√

0.5−d√
d+
√

0.5− d
kT

= U +
128

3π
(d− 0.25)− 64π(d− 0.25)

3
[

kT

16d(0.5− d)
]2

−
1√
d
− 1√

0.5−d√
d+
√

0.5− d
kT (4.35)

So the equation of ’large d’ state is F ′ = 0, namely:

U = −128

3π
(d− 0.25) +

64π(d− 0.25)

3
[

kT

16d(0.5− d)
]2

+

1√
d
− 1√

0.5−d√
d+
√

0.5− d
kT (4.36)

We note that even though d > d2 is a large range where d can be quite large

(e.g. comparable to 0.25), at low temperature d2 itself is very small (though much

larger than kT
W

. Thus at the neighborhood of d2, the derivative of free energy as a

function of d can be expressed as:

F ′ = U +
128

3π
(d− 0.25)−

√
2

d
kT +

π

12
[
kT

d
]2 (4.37)

85



We see from equation (4.37) that F ′−U has a minimum at d = [
3(
√

521
18

+
√

1
2

)

π
]−

2
3 (kT )

2
3

= β(kT )
2
3 , where β ≈ 0.31. To ensure that F ′ = 0 has solution we must have

U ≤ 32
3π
− (128β

3π
−
√

2
β

+ π
12β2 )(kT )

2
3 ≈ Uc(T = 0) − 4.4(kT )

2
3 (This again verifies

that at zero temperature, Uc2 = Uc, and when temperature is low, Uc2(T ) has a

small correction ∝ (kT )
2
3 compared to Uc2(T = 0) ). Thus we get (d2(T ), Uc2(T ))

at small T, which is (β(kT )
2
3 , ( 32

3π
− (128β

3π
−
√

2
β

+ π
12β2 )(kT )

2
3 ). We can see that

when T is small, d2 ∝ (kT )
2
3 � kT , that’s consistent to the requirement. Besides,

the expression of Uc2 at low temperature is:

Uc2(T ) =
32

3π
− (

128β

3π
−
√

2

β
+

π

12β2
)(kT )

2
3 (4.38)

The right part of Fig 4.5 shows that in the d > d2 range at low temperature,

the approximate form of F ′ and the exact F ′ agrees very well, which justify this

approximation and equation of ’large d’ state. In this state, kT is much smaller

than the renormalized bandwidth, our system can still be characterized as a Fermi

liquid.

Below we show the behavior of double occupancy for different U when tempera-

ture increases from infinitesimal to quite large (Ten times of half of unrenormalized

bandwidth). From the figure we see if U > Uc(T = 0), the system always stays in

the ’small d’ or incoherent metal phase; while when Uc(Tc) < U ≤ Uc(T = 0), at

low temperature the ’large d’ or Fermi liquid phase is favored, keeping increasing

T until it touches the crossing line in the phase diagram, the first order phase

transition happens, the system suddenly jumps to incoherent metal phase; and if

U < Uc(Tc), the Fermi liquid phase is always favored so there isn’t phase transition.

At last we come to entropy. As mentioned before, the interacting system is

approximated by a non-interacting system governed by HGW plus effects caused

by an extra entropy. From equation (4.30) we know ∆S = k ln[(
√
d+
√

1/2− d)2].
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Figure 4.6:
Temperature dependence of double occupancy in half filled Hubbard
model, lines correspond to U = 0, 0.65, 1.3, 1.95, 2.6, 3.25.

So when d = 0, it gives an extra −k ln 2. And the entropy of free Fermion part

is S0 = 2k
∑

~k[ln(1 + e−β·16d(1/2−d)E~k) +
βE~k

e
β·16d(1/2−d)E~k+1

. When d = 0, S0 = 2k ln 2,

which is the result of flat band. Thus S0 + ∆S gives a total ln 2 entropy, which

is quite physical, since when d = 0 there’re only 2 possible states | ↑〉 and | ↓〉 for

each site.

However, when T = 0, S0 = 0, the free Fermion part has no entropy at zero

temperature. while ∆S = k ln[(
√
d+
√

1/2− d)2] ≤ 0, ’=’ exits only when d = 1/4

for non-interacting (U = 0) case, the total entropy will be negative. That’s because

the total entropy here is exactly a lower bound of the real entropy. The Figure is

shown below.

4.3.3 Conclusion

To conclude, we studied metal-insulator transition in Hubbard model at half

filling. We find using Gutzwiller approximation we can recover first order tran-
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Figure 4.7: Entropy versus temperature when U = 0, 0.65, 1.3, 1.95, 2.6, 3.4.

sition as it is in DMFT. However the ’insulator’ here does not indicate a real

insulator (no double occupancy or opened gap), but a phase with very small dou-

ble occupancy and thus narrow renormalized bandwidth (compared to kT ), which

we call ’incoherent metal’. We also get equation of state for both metal (Fermi

liquid) and incoherent metal phase at low temperature, as well as the U − T re-

lationship of phase boundary at low temperature. Problems still exist, though

we can qualitatively recover DMFT result, we don’t get a real insulating phase,

and our Tc is a bit too large compared to DMFT, and negative entropy at low

temperature is a inherent problem with this method.

4.4 Antiferromagnetic phase in half filled Hubbard model

Assuming that the system is uniform, at half filling, n0
i (T ) = 1, so n0

i↑(T ) =

0.5+m(T ) and n0
i↓(T ) = 0.5−m(T ). For simplicity, we drop off (T) and subindex

i for each physical quantity, but we keep in mind that they’re self consistently
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related to temperature. From equation (4.15) we can calculate Gutzwiller factor

for magnetic case, specifically here we have:

gtiσ =
yiσ(1− n0

iσ̄) + y2
iσ̄yiσgin

0
iσ̄

e0
i + y2

iσq
0
iσ + (giyi↑yi↓)2d0

i

= [
(n0

iσ − di)(1 + di − n0
i )

n0
iσ(1− n0

iσ)
]
1
2 + [

di(n
0
iσ̄ − di)

n0
iσ(1− n0

iσ)
]
1
2

= [
d(0.5 +m− d)

0.25−m2
]
1
2 + [

d(0.5−m− d)

0.25−m2
]
1
2

= gtiσ̄ ≡ g (4.39)

Dividing the whole lattice into two sublattices A and B, the Hamiltonian in

antiferromagnetic case is:

Ĥ = −4t
∑

~k∈RBZ
σ

g2 cos
kx
2

cos
ky
2
C†
Aσ~k

CBσ~k

−µ
∑

~k∈RBZ
σ

(n̂Aσ~k + n̂Bσ~k − 1)

+
∑

~k∈RBZ

λ[n̂A↑~k + n̂B↓~k − 2(
1

2
+m)]

=
∑
~k

(C†
A↑~k

C†
B↑~k

) M

(
CA↑~k
CB↑~k

)
+
∑
~k

(C†
B↓~k

C†
A↓~k

) M

(
CB↓~k
CA↓~k

)
−
∑
~k

[λ(1 + 2m)− 2µ]

=
∑
~kσ

(d†
−σ~k

d†
+σ~k

)

 E−~k 0

0 E+~k

(d−σ
d+σ

)

−
∑
~k

[λ(1 + 2m)− 2µ] (4.40)
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where M =

 −µ+ λ −4tg2 cos kx
2

cos ky
2

−4tg2 cos kx
2

cos ky
2

−µ

,

E± = ±
√

(8tg2 cos kx
2

cos ky
2

)2 + λ2

4
+ λ

2
− µ, and µ = λ

2
because of particle-hole

symmetry. d+
−σ

~k
are linear combination of CAσ~k and CBσ~k.

CA↑ =
a√
a2 + 1

d−↑ +
b√
b2 + 1

d+↑ (4.41)

CB↑ =
1√

a2 + 1
d−↑ +

1√
b2 + 1

d+↑ (4.42)

CB↓ =
a√
a2 + 1

d−↓ +
b√
b2 + 1

d+↓ (4.43)

CA↓ =
1√

a2 + 1
d−↓ +

1√
b2 + 1

d+↓ (4.44)

where a =
λ−

√
(8tg2 cos kx

2
cos

ky
2

)2+λ2

−8tg2 cos kx
2

cos
ky
2

, and b =
λ+

√
(8tg2 cos kx

2
cos

ky
2

)2+λ2

−8tg2 cos kx
2

cos
ky
2

.

m =
nA↑ − nA↓

2
=
nB↓ − nB↑

2

=
1

2
[
a2 − 1

a2 + 1
f (E−~k) +

b2 − 1

b2 + 1
f (E+~k)] (4.45)

where f (E±~k) = 〈d†±σd±σ〉 = 1

e
βE±~k+1

.

Now we get the average free energy of each electron in the projected antifer-

romagnetic system is:

f =
F

2N
= Ud

−2kT
1

2N

∑
~k

[ln(1 + e−βE−~k) + ln(1 + e−βE+~k)]

−λm− kT ln
[e0 + yσq

0
σ + gy↑y↓d

0]2

e0 + y2
σq

0
σ + (gy↑y↓)2d0

(4.46)

where d0 = e0 = (1
2

+m)(1
2
−m), q0

↑ = (1
2

+m)2, q0
↓ = (1

2
−m)2,
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y↑ =

√
( 1
2

+m−d)( 1
4
−m2)

( 1
2

+m)2d
, y↓ =

√
( 1
2
−m−d)( 1

4
−m2)

( 1
2
−m)2d

, and gy↑y↓ = 1.

4.4.1 Phase Transition

We know that within Hartree Fock mean field method, transition temperature

from antiferromagnetic phase to paramagnetic phase (Neel temperature) keeps

increasing while the repulsion U is increasing, which means that Hartree Fock

mean field method cannot correctly characterize strong correlated system since

in actual case TNeel will drop when U keeps increasing. With our Gutzwiller

projection method, the phase diagram and Neel temperature qualitatively agrees

with other numerical calculation results such as DMFT.

However, if we look deeper into Fig 4.8 the phase diagram we’ll find that when

U ≤ 1.4, if temperature increases, there will be an ordinary second order transition

from AF to PM, when 1.4 < U ≤ 2.0, however, the transition turns to be a first

order transition, the red line between the square dot and the circle dot is the level

crossing line of the phase transition and the corresponding blue lines in the same U

range describe the boundary of coexistence of the two phases. In this range TNeel

still increases while U increases. It’s when U > 2.0 we see the decrease of TNeel. In

this range it’s still first order transition, and one side of the coexistence boundary

below which the PM phase does not exist is exactly the transition line between

metal and incoherent metal we got previously (the green line in the figure). We’ll

show why it is then.

We show free energy versus magnetization at different temperature for U ≤ 1.4,

1.4 < U ≤ 2.0 and U > 2.0. Although we have 3 parameters: m(magnetization),

d(double occupancy) and Lagrangian multiplier λ, λ should be self-consistently

determined when m and d are fixed while d is chosen to minimize free energy

when m is given. Thus we can plot F −m at different U and T.

In the left two plot in Fig 4.9, we can see that free energy and its derivative
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Figure 4.8:
Phase diagram of AFM and PM. The thick black line is transition line
between AFM and PM, left to the blue dot it’s second order transtion,
right to the blue dot it’s first order transition. Between the blue dot
and the green square, the both AFM and PM phase exist in ”large
d” phase, while right to the green square the first order transition
is not only from AFM to PM, but from AFM ”large d phase” to PM
”small d incoherent metal”. The shadowed area is where PM and AFM
coexist, two dashed black lines are boundaries of coexistent area. The
red line is transition line from metal to incoherent metal, part of which
coincides with one boundary of coexistent area.
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are continuous, which means when m varies, d which minimize free energy varies

continuously, there is not a jump in d. We also find that d we get in these two U

ranges are not too small, by saying this we mean that we stay in coherent metal

phase no matter what the value of m is. The only difference between these two

plots is that in the first one, m that minimize free energy changes continuously from

a finite value to zero as temperature increases, there’s always only one minimum

in the F − m plot. While in the second plot, there exists a temperature range

where there’re two minima, m jumps from a finite value to zero when the free

energy corresponding to the two minima crosses.

In the third plot in Fig 4.9, however, when temperature is larger than a certain

value, singularity appears in F −m plot, which means there must be a d jump,

one of the two minima belongs to metal phase while the other is bad metal.

The reason for d jump is that, if we plot free energy in m − d plane, for a

given m, there in general two d leading to local minimum of free energy, the local

minimum corresponding to smaller d is F − m in incoherent metal phase, while

the other in normal metal. For U ≤ 2.0, the F −m in incoherent metal phase is

always larger than that in metal for all m, that’s why it’s invisible to us, but when

U > 2.0 we know from previous chapter that at least when m = 0, free energy for

incoherent metal phase is smaller than for metal phase in appropriate temperature

range. If we plot F −m in both incoherent and coherent meatal phase, we’ll see

how they cross. The left figure in Fig 4.10 is when temperature smaller than

transition temperature from metal to incoherent metal, which is T = 0.042 at

U = 2.5, and the right one is when T > 0.042.

We examined all F −m in incoherent metal phase and find that there’s always

only one minimum at m = 0, which means in incoherent metal phase there can-

not exist magnetic order, in another word, incoherent metal cannot appear when

the system has AFM order. Below we study the reason behind this nontrivial
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Figure 4.9:
F −m at different temperature for U = 1.3, U = 1.9, U = 2.5. In (a)
we find there’s always only one minimum in free energy. As tempera-
ture increases, magnetization corresponding to the minimum decreases
from a finite value to zero. In (b), at low temperature there’s only one
minimum at finite m, but when temperature reaches a certain value,
m = 0 gives another minimum and stays as a minimum when temper-
ature keeps increasing and the other minimum at finite m disappears.
In (c), As temperature increases, free energy becomes discontinuous
when the minimum at m = 0 shows up, the singularity in F − m
implies discontinuity in double occupancy, namely, phase transition
between ”large d” and ”small d” phases.
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Figure 4.10:
F −m in both metal and incoherent metal phase at T = 0.003 and
T = 0.05 when U = 2.5

phenomenon.

We can see from Fig 4.11 that given a small d, Gutzwiller factor is increas-

ing with m, which means the larger m is, the smaller the kinetic part (Ekinetic =

−4t
∑

~k∈RBZ
σ

g2 cos kx
2

cos ky
2
C†
Aσ~k

CBσ~k) of internal energy is. Meanwhile, the pro-

jective enetropy (which is always negative) is increasing withm too, thus−TSprojective

is decreasing with m, the contribution to free energy caused by projective is de-

creasing with m.

However the internal entropy Sinternal is decreasing with m, thus the internal

entropy contribution to free energy favors small d. whenm = 0.5, there’s only one

possible state thus Sinternal = ln 1 = 0, and when m = 0, the entropy determined

by d, if d is very small (incoherent metal phase), the internal entropy is ln 4 while

projective entropy is− ln 2, but when d is not that small (metal phase), the entropy

is much smaller than ln 4, as we discussed in previous chapter (See Fig 4.7. As a

result, in incoherent metal phase, when m is increasing, the entropy contribution

to free energy is significantly increasing, which dominates over the decrease of
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Figure 4.11:
Behavior of Gutzwiller factor and projective entropy in m-d 2D plane.

kinetic energy, so paramagnetism is always favored in such case. On the other

hand, in metal, the entropy contribution and kinetic contribution is comparable,

they compete with each other, giving a finite m which minimizes free energy, thus

magnetism shows up. We show that in Fig 4.12.

4.4.2 Conclusion

To conclude this chapter, we use projective Gutzwiller method to study mag-

netic phase transition. We get a Neel temperature versus repulsion U which qual-

itatively agrees with that of DMFT. However, with our method the drop of TNeel

at large U is because of a first order transition from antiferromagnetic metal to

paramagnetic incoherent metal in which magnetism does not exist.
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metal phase. We can see the change of entropy in incoherent metal
phase is much more drastically than that in metallic phase.
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APPENDIX A

Phase classification by artificial neuralnetworks

A.1 Phase classification by artificial neural networks

The artificial neural networks (NN) are computing systems widely used in data

classification, pattern recognition an so on. Recently its application to condensed

matter physics has been explored heavily, with significant outcomes.[49–51, 82]

Here we train a one-hidden-layer NN on the same training data used in the main

text, namely, the probability density of wave functions generated at small disorder

strength δJ = 0.15 ± 0.05 at ε = 19/60, 59/60, labeled as ETH, denoted by a 2

dimensional vector (1, 0) and probability density of wave functions generated at

large δJ = 9.0 ± 1.0 at the same energy densities, labeled as MBL, denoted by

(0, 1).

In the hidden layer, the inputs ~x are multiplied by a 2L×M dimensional matrix

~~W (1), where M is the number of nodes in the hidden layer, M ranges from 80 to

200 depending on the dimension of inputs, in another word, the size L of the spin

chain. After the above linear combination, the results are added to some biases

~b(1) and then fed to a nonlinear activation function Θ(1). The work done by the
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Figure A.1:
Schematic explanation how NN maps an input data ~xi to its label yi,
the NN acts on all input data points i = 1, 2, · · · , N thus plays a role
as its target function.

first layer can be summarized as:

~x(1) = Θ(1)(~x · ~~W (1) +~b(1)) (A.1)

where Θ(1) takes the form of ReLU[? ], and ~x(1) are the outputs of the hidden

layer.

Similarly, the next layer, called the output layer, maps ~x(1) to the final outputs

f(~x) by

f(~x) = Θ(2)(~x(1) · ~~W (2) +~b(2)) (A.2)

where ~W (2) is a M × 2 dimensional vector performing linear combination of ~x(1),

~b(2) are the biases, and Θ(2) takes the form of softmax[? ] function. Thus the NN

maps the 2L dimensional inputs to 2 dimensional outputs, Fig. A.1 illustrates how

NN works. The two elements of a 2 dimensional output represent the probability
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Figure A.2:
The probability that eigen-wavefunction corresponding to energy den-
sity ε = 59/60 generated at a given δJ is ETH phase for δJ ∈ [0, 5].
The probability is estimated by the fraction of ETH phase in an en-
semble of 300 disorder realizations at energy density ε = 59/60 for
L = 10 (blue dots), L = 12 (red dots) and L = 14 (red dots) pre-
dicted by NN. For each size, we take the δJ corresponding to 50%
probability of being ETH to be the phase boundary and denote it by
δJ∗. The inset shows the finite-size extrapolation of δJ∗. The inter-
cept is interpreted as the phase boundary δJc in the thermodynamic
limit.
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Figure A.3:
Phase diagram of the disordered quantum Ising chain defined in main
text. With ε = 2(E−Emin)/(Emax−Emin) being the energy density
relative to the total bandwidth. The black diamonds are δJc at dif-
ferent εs, which are the finite size extrapolations from the finite size
transition point (blue, red and green dots).

that the input being classified as ETH and being classified as MBL respectively.

The final prediction of class should be the class whose probability is larger in f(~x).

We use cross entropy as the cost function that acts as a metric to describe the

closeness between the outputs f(~x) and the actual labels ~y.

Cost = −
N∑
i=1

~yi · log f(~xi) (A.3)

where ~xi denotes input of each training sample and ~yi denotes the corresponding

label, N is the total number of training samples. All parameters of NN, including

~~W (1),
~~W (2),~b(1),~b(2), are determined by minimizing the cost function.

We use the same testing set as that used by SVM described in the main text.

The testing accuracy is 99.8% with L = 14, accuracy 99.5% with L = 12, and
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accuracy 98.8% with L = 10. We then follow the same procedure described in the

main text to determine critical points for energy densities ε = (11 + 4i)/60, i =

1, 2, · · · , 12 (Fig. A.2), and then the phase boundary separating MBL and thermal

phases by exponential fitting(Fig. A.3). The result obtained by using NN agrees

with that of SVM within error, it also agrees with that of scaling the variance of

entanglement entropy[1] within error.
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