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ABSTRACT

Magnetism is an old field in condensed matter physics, but it is still vibrant and

full of excitement. Regardless of deep fundamental physics therein, it also has

broad application in engineering technology, modern hard disk drive as an ex-

ample. Magnetic skyrmion, a vortex-like structure in two-dimensional magnetic

systems, has been discovered in various magnetic materials, among which chiral

magnets are a family of candidates. The skyrmions are characterized by nonzero

topological charges. The vortex-like structure of skyrmions makes skyrmion mate-

rials good candidates of new generation of data storage device. So understanding

the transport properties of the skyrmion materials is important for the possible

application in the future. The Hall effect is a key aspect of electron transports.

The topological Hall effect, which is one component in the total Hall effect, only

depends on the magnetic structures, and the topological Hall conductivity is pro-

portional to the topological charge. It thus serves as the transport signature of

magnetic skyrmions. The major mission of this thesis is to investigate the topolog-

ical charge distribution in realistic models and uncover the relationship between

the existence of skyrmions and other chiral excitations. The organization of the

thesis is the following.

The first chapter is the introduction. A historical survey about magnetic

skyrmions and chiral magnets is presented firstly. The magnetic skyrmion is iden-

tified by the topological charge. Further, the relationship between the topological
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hall effect and topological charge is described by the emergent electrodynamics.

The importance of the topological charge in chiral magnets is explained in this

part.

Following the importance of the topological charge, the investigation of topo-

logical charge in two-dimensional chiral magnets is presented in the second chap-

ter. The Monte Carlo simulation is employed to calculate the topological charge

on a square lattice. The results show that the nonzero topological charge is not

necessarily correlated to the existence of skyrmions in chiral magnets. To un-

derstand the numerical results, simple analysis based on the physical picture of

a triangle on the square lattice is performed. Then we calculate the topological

charge in continuum model of chiral magnets. At the high temperature limit, the

numerical results, picture analysis and the analytic result are consistent. Then, in

this chapter, there is a description of the recent experimental work on thin film

SrRuO3 which confirmed our theoretical prediction. A discussion on spin chirality,

topological charge and Hall conductivity is presented in the end.

However, no experiment on chiral magnets has been on a perfect monolayer sys-

tem. So we extend the investigation of topological charge into three-dimensional

situation. This work is introduced in the third chapter. The Monte Carlo sim-

ulation and the analytical calculation are presented firstly. A special issue in

three-dimensional chiral magnets is the thickness dependence. The Monte Carlo

simulation is used to address this issue. A combination of analytical calculation

and physical picture of magnons is used to explain the numerical results well. Sim-

ilar as the second chapter, the experiment on finite thickness SrRuO3 is described.

Because the effective Dzyaloshinskii–Moriya interaction is due to the interface ef-

fect which cannot be used to judge our numerical results based on homogenous

chiral magnets.

The Heisenberg interaction in the system described in the previous two chap-
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ters is ferromagnetic interaction. More physical results with antiferromagnetic

interaction are expected in different magnetic system. In the fourth chapter, a

review of the work on a frustrated magnet with hexagonal lattice is introduced.

The direction of the DM interaction of the hexagonal lattice is perpendicular to

the bonds of nearest magnetic atoms. The topological charge is calculated numer-

ically. A similar thermally driven topology as found in chiral magnets is achieved

by investigating the topological charge. Following that, the system with staggered

DM interaction is discussed. The study of the topological charge in this system not

only gives the evolution of thermally driven topology of the system, but also dis-

tinguishes the topological charge and spin chirality based on the antiferromagnetic

interaction.

Not only thermally driven topology in chiral magnets but also the driven mo-

tion of skyrmions are interesting to us. Inspired by the similarity of the vortex

state in the Type-II superconductor and skyrmion crystal phase, we investigate

the proximity effect between the skyrmion material and non-centrosymmetric s-

wave superconductor. The method is to calculate the effective interaction between

the Cooper pairs and skyrmions. A field-theoretical approach is employed to this

end.
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CHAPTER I

Introduction

Geometry is a mature tool describing the physical world. From the vector

representation of force and to curvature description of gravity, the applications of

geometry in physics have been successful. Topology, a branch in geometry which

studies the geometric properties and spatial structures invariant under the con-

tinuous change, has recently become popular in the research of condensed matter

physics. Many novel phenomena and elegant theories relevant to topology ap-

peared, such as Berry phase[1], quantum Hall effect(QHE)[2] topological insula-

tor[3, 4] and anomalous Hall effect(AHE)[5]. Magnetism is a long living field in

condensed matter physics. In magnetic systems, there are a few topology related

structures, such as magnetic monopole[6], magnetic vortex[7], magnetic domain

wall[8] and magnetic skyrmions[9, 10]. Topology does not only make physicists

understand the universe well, but also motives the revolution of techniques. Mag-

netic skyrmion is a good example of the application on a topological object in

physics to electric engineering. The magnetic skyrmion materials are predicted as

good candidates for constructing the next generation data storage devices[11].

Skyrmion, firstly proposed by Tony Skyrme[12] in 1960s, was used to explain

the stability of the hadrons from the view of the topological defects in three di-

mensional(3D) non-linear sigma model. Magnetic skyrmions, as the topologi-
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cal defects, have been found in various magnetic materials, such as chiral mag-

nets[10, 13, 14, 15] which are non-centrosymmetric,the centrosymmetric magnets

with easy-axis anisotropy[8, 16, 17, 18, 19, 20], and the interface of ferromag-

nets with automatic breaking of spatial inversion symmetry[21, 22]. The magnetic

skyrmion, which has a vortex-like spin texture gives nontrivial topological struc-

ture comparing to the common ordered spin textures such as ferromagnetic and

antiferromagnetic phases.

1.1 Magnetic skyrmions an topological charge

The magnetic skyrmion is a vortex-like magnetic structure in a two-dimensional

(2D) plane. The spin structure of magnetic skyrmions can be viewed as a stereo-

graphic projection from a spherical hedgehog onto a 2D plane. The spins locating

on the spherical surface of the hedgehog are pointing radially away from the center

of the sphere, which is described as n(r) = r̂. As Figure 1.1(b) shows, the south

pole of the sphere sits on the origin of the 2D plane. The north pole is mapped to

point at the infinity. Any other spin on the sphere is projected at the intersecting

point of the connecting line between north pole is mapped to the 2D plane by

a straight line that goes through the north pole, the point on the sphere and a

point on the 2D plane. A Néel type skyrmion is achieved by this projection. If

Figure 1.1:
(a)The stereographic pojection of a hedge spin texture and a Néel type
skyrmion. (b) The projection of one spin the spherical hedgehog.
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all the spins of a Néel type skyrmion are rotated around the axis perpendicular

to the plane by 90◦ at the same direction, a Bloch type skyrmion is acheived. The

magnetic structures of Néel type skyrmion and Bloch type skyrmion are shown in

Figure 2. The spins at the edge of the skyrmions are upward and spins at core are

Figure 1.2:
(a) Bloch type magnetic skyrmion. (b)Néel type magnetic
skyrmion[23].

downward. The spins between edge and core vary gradually. If the radius of the

sphere is R, from the stereographic projection, the spin configuration of the Néel

type skyrmion can be parameterized as[24]

nN éel = (
2Rx

r2 +R2
,

2Ry

r2 +R2
,
r2 −R2

r2 +R2
), (1.1)

where r2 = x2 + y2. The spin configuration of Bloch type skyrmion is

nBloch = (− 2Ry

r2 +R2
,

2Rx

r2 +R2
,
r2 −R2

r2 +R2
). (1.2)

As mentioned in last paragraph, the two kinds of skyrmions can exchange to each

other by rotation which means they are topologically identical. The topological

charge is the winding number of the spins on the sphere. It is defined as

Q =
1

4π

∫
d2rn � (∂xn× ∂yn), (1.3)
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where n = n(r) is the normalized local magnetization.

To skyrmions, The non-zero value of the topological charge is used to point out

the skyrmions when Q = 1 means the magnetization at skyrmion core is upward

(+z direction) and Q = −1 means downward (−z direction). More generally, the

nontrivial topology in the magnetic system is identified by the non-zero value of

the topological charge.

1.2 Skyrmion phases in chiral magnets

The magnetic skyrmions are observed in many various magnetic materials with

distinctive properties. The chiral magnet is typically one of them. The crystal

structures of chiral magnetic materials are non-centrosymmetric, such as B20 com-

pounds(MnSi[10, 25, 26, 27, 28], FeGe[29], MnGe[13, 30, 31],etc.). Here, using

MnSi as an example, the crystal structure is shown in Figure 1.3. If an inversion

operation is performed on this crystal structure, the positions of Manganese atoms

and Silicon atoms will be exchanged. The structure is no longer the same. This

kind of crystallographic structures lacks an inversion center.

Figure 1.3: The crystallographic structure of MnSi

The study of the chiral magnets can be traced back to 1970s. Neutron scat-

tering experiments identified the helical spin structures in non-centrosymmetric

metallic ferromagnets such as MnSi[10] and FeGe[29]. In year 1980, Bak and

Jensen[32] constructed a theoretical description of the chiral magnets based on
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the Ginzburg-Landau theory. In their works, the Dzyaloshinskii-Moriya(DM) in-

teraction plays a crucial role to understand the helical spin structures in non-

centrosymmetic magnets. This antisymmetric interaction is expressed as

HDM =
∑
〈ij〉

Dij � (Si × Sj), (1.4)

in a discrete spin model, where 〈ij〉 means nearest neighbor. The vector Dij has

Dij = −Dij and |Dij| is finite. The DM interaction is achieved by Dzyloshin-

skii[33]through a phenomenal model and by Moriya[34] through a microscopic

model. The microscopic mechanism of DM interaction is based on the spin-orbit

coupling. From Eqn.(1.4), HDM gets its minimum requires Si is perpendicular to

Sj. In no non-centrosymmetric metallic ferromagnets, there is Heisenberg inter-

action between earest spins,

HJ = −J
∑
〈ij〉

Si � Sj, (1.5)

where J > 0. HJ gets its minimum requires the nearest spins should be parallel to

each other. The competition between Heisenberg interaction and DM interaction

leads the helical magnetic ground state. In Bak and Jensen’s work, they employed

the continuum model for the chiral magnets. By minimizing the energy, they

achieved the general solution of the ground state,

S(r) =
1√
2

[Sq exp(iq � r) + S∗−q exp(−iq � r)], (1.6)

which is just the helical state. The q, the magnetic modulation vector, is deter-

mined by the Heisenberg interaction, the DM interaction and the anisotropy in

the system. Then Bogdanov and his collaborators[35] extended the theoretical de-

scription of chiral magnetism by introducing the Zeeman coupling which is between
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the local magnetization and the external magnetic field. A saddle-point solution

with a vortex-like magnetic structure was found, which is the magnetic skyrmion.

Moreover, inspired by the formation of Abrikosov vortex lattice in Type-II su-

perconductor, they predicted there would be a skyrmion crystal structure with

a triangular arrangement at a certain temperature and external magnetic field

region.

On the other hand, there was a curious phase in MnSi which locates just

below the Curie temperature. For a long time, it was called A-phase. The letter

A means anomalous[36, 37, 38], because at that early time, the phase could not be

understood completely. Through small angle neutron scattering experiments done

on the bulk MnSi, Pfleiderer’s group discovered the skyrmion configuration and

finally identified the A phase as the skyrmion crystal phase(SkX)[10]. The phase

diagram is shown in Figure 1.4(a). The spin configuration in real space is shown

in Figure 1.4(b). Figure 1.4(c) shows the helical, conical and field-polarized spin

structure from left to right, q is the magnetic modulation vector parallel to the

external magnetic field H. M is the component of spin parallel to the external

magnetic field H. M0 is the module of spins.

Meanwhile, an experiment from Tokura’s group on the thin-film of chiral mag-

netic Fe1−xCoxSi[39] revealed the skyrmion phases at a broad range of the temper-

ature extending almost zero. In this work, a Monte Carlo simulation was employed

to accomplish explaining the experimental results. The phase diagrams(in Figure

1.4) from both experiment and numerical simulation show there is mixture be-

tween skyrmion and other magnetic phases, the helical and ferromagnetic phases.

The skyrmion phases can be stabilized in the thin-film system makes the thin-film

chiral magnets as a good candidate to test the quantum transport properties, like

anomalous Hall effect(AHE), excepted for 2D SkX state.

In the year 2012, the magnetic phase diagram of chiral magnet Cu2OSeO3 has
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Figure 1.4:
(a)Phase Diagram of MnSi(Ref[10]). (b)Configuration of SkX phase in
real space. (c)The helical, conical, field-polarized spin structures[10].

been investigated by Tokura’s group[15]. The space group of the crystal struc-

ture is P213 which is as the same as B20 compounds. The crystal structure is

in Figure 5 and the phase diagram. The crystal structure of Cu2OSeO3 shares

the same space group as B20 compounds, but it is an insulator, unlike the B20

compounds. Without the itinerant electrons, there is no charge carrier. Only the

thermal carriers, such as magnons and phonons contribute to thermal conductiviy.

The magnon hall effect is proposed in this kind of systems[40, 41, 42, 43]. This

material is a good candidate to study how the chiral magnetism affects the ther-

mal conductivity because there is no interruption from the conduction electrons.

Also, Cu2OSeO3 is ferrimagnetic material[44, 45] which may has broad application

on techniques and engineerings. Several chiral magnets which host the skyrmion

textures have been listed in Table 1.1.

The skyrmions with zero-field[46, 47, 48] and room temperatures[49, 50] are

more likely to be applied to the data storage devices and logic gates[51, 52, 53, 54,

55, 56, 57, 58] . Many other magnetic sytems, such as the magnetic thin films[59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69] and artificial magnetic structures[70, 71, 72,

7



Figure 1.5:
Phase diagram of Fe0.5Co0.5Si. (a)-(c) Magnetic field dependence of
Lorentz TEM images. (d) Temperature versus magnetic field phase di-
agram from experiments. (e)-(g) Magnetic field dependence of numer-
ical snapshots. (h) Temperature versus magnetic field phase diagram
from numerical simulationcite[39].

Material TC(K) λm(nm) Conductivity Ref.

MnSi 30 18 Metal [10, 25, 26, 27, 28]
Fe1−xCoxSi ¡36 40˜250 Semiconductor [39]

MnGe 170 3 Metal [13, 30, 31]
FeGe 278 70 Metal [29]

Cu2OSeO3 59 62 Insulator [15, 44]

Table 1.1: The chiral magnets which host the skyrmion structre.

73, 74, 75, 76]. So understanding the transport properties of skyrmion materials

is important to the future possible usages in engineerings.

1.3 Topological Hall effect in chiral magnets

Understanding the transport properteies of the chiral magnets is an important

aspect for the future applications. Topological Hall effect(THE)[77, 78, 79, 80, 81,

82, 83, 84] would occur in some magnetic metals when there are the non-coplanar

spin textures. THE can be simply described as non-coplanar spin textures acts on

the electrons an effective magnetic field and deflects the electron sided away. It is

8



Figure 1.6: The crystal structure and the phase diagram of Cu2OSeO3[15].

distinguished with the ordinary Hall effect(OHE)[85], which requires the external

magnetic field and anomalous Hall effect(AHE)[5, 86], which has been discovered

in uniform magnetic structure. The mechanism of THE can be explained by the

emergent electrodynamics[87, 88, 89, 90, 91].

The Hamiltonian of the conductive electrons in a magnetic system is

Ĥ =
1

2m
(−i~∇)2 − JHM � σ̂, (1.7)

wherem is the effective mass of the electrons, JH is Hund’s coupling and M = M(r)

is the local magnetization. The normalized magnetization is

n(r) =
M(r)

|M(r)|
, (1.8)

and M = |M(r)| If the Hund’s coupling JH is strong enough, the motion of

electrons can be treated adiabatically, which means the spins of electrons will be

parallel to the local magnetization at each point of the space. The spin eigenstates

will be n � σ̂|n〉 = |n〉. Defining the projection operator P̂ = |n〉〈n|, the effective
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Hamiltonian which makes a rotation in the Hilbert space to make the Hund’s

coupling term simply,

Ĥeff = P̂ ĤP̂ =
1

2m
(−i~∇− e

c
a)2 − JHM, (1.9)

where a = i~c
2e
〈n|∇|n〉 is the emergent gauge field. In 2D, ∇ = (∂x, ∂y, 0), the

corresponding effective magnetic field[92] is

b = ∇× a =
i~c
2e
ẑn � (∂xn× ∂yn). (1.10)

where the effective magnetic field is perpendicular to plane. n � (∂xn × ∂yn) has

appeared in the definition of the topological charge. So this effect depends on the

topology of the spin textures. The magnetic flux of the emergent field is

Φ =

∫
bzdA =

hc

e
Q (1.11)

which corresponds to the topological charge. In the square lattice, n � (∂xn× ∂yn)

can be approximated as ni � (ni+x̂ × ni+ŷ) which is the mixing product of three

nearest spins. It is also called spin chirality.

The Hall resistivity is

ρxy = RoH +RsM + ρTHExy , (1.12)

where Ro is the OHE coefficient, Rs is the conventional AHE coefficient and ρTHExy

is the contribution from THE. The contribution of the AHE is mainly from the

Berry phase of electrons in momentum phase[93, 94, 95], skew scattering[96, 97,

98] and side jump effect[99, 100, 101]. Studying the topological charge or spin

chirality is directly relevant to Hall effect of chiral magnets. Another question
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needs to be answered is does nonzero topological charge correspond the existence

of skyrmions in chiral magnets. The importance of the topological charge to the

Hall effect and the relationship with the existence of skyrmions motivate us to

investigate how it evolves thermally. We performed both numerical and analytical

method to calculate the thermal average of the topological charge in 2D chiral

magnetic system[102] which will be presented in Chapter 2. We found the nonzero

topological charge exists even above the Curie temperature at which the spin

textures are disordered. Experiments have been done to measure the signal of

THE on thin film magnetic metals SrRuO3 and V-doped Sb2Te3[103]. The THE

signals are significant above the Curie temperature which means the topological

charge or the spin chirality is nonzero above the Curie temperature. The results

from the experiments confirmed our theoretical prediction in the 2D thin film. Our

investigation of the topological charge goes to the 3D chiral magnets because all

the experiments have been mentioned above were performed on the thin films with

finite thicknesses or in bulk samples. No sample can be treated as a perfect 2D

system[10, 39, 15]. The calculation of the topological charge in 3D is presented in

Chapter 3 with a discussion of the thickness dependence. Then in Chapter 4, the

systems with antiferromagnetic Heisenberg interaction are discussed. Motivating

by the similarity of the vortices in Type-II superconductor and magnetic skyrmion,

we study the proximity effect of Type-II superconductor and skyrmion material

by a field-theoretical calculation. It will be presented in Chapter 5.
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CHAPTER II

Topological charge in 2D chiral magnets

The B−T phase diagrams of several chiral magnetic materials have been stud-

ied experimentally[10, 15] and theoretically[39]. In the skyrmion crystal phase(SkX),

the topological charge is identical to the skymion number. The definition of the

topological charge in Eqn.(1.1) respects the rotational symmetry so that it is

not proper to be selected as the order parameter. But the topological charge of

magnetic systems is directly relevant to the transport properties. Therefore, it

is interesting to study how the topological charge distributes in the B − T dia-

gram. The theoretical study of the topological charge in 2D chiral magnets will

be elaborated in this chapter. This chapter is organized as following. The first

section is about the Monte Carlo simulation of the topological charge in 2D chiral

magnets. For the purpose to understand the numerical results well, an analy-

sis on a three-spin picture is performed in the second section. In third section,

a field-theoretical method is employed to calculate the topological charge in 2D

chiral magnets. Then there is a comparison and discussion of the numerical and

analytical results at the end this chapter.
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2.1 Monte Carlo simulation

2.1.1 Methodology

The Monte Carlo simulation is performed on a 2D square lattice of classical

spin model. The Hamiltonian of the chiral magnet with external magnetic field is

H =
∑
〈lm〉

(−JSl � Sm + Dlm � Sl × Sm)− gµBH
∑
l

Szl , (2.1)

where Sl = Snl is the spin vector on site l and |nl| = |Sl|
S

= 1. 〈lm〉 means

site l and m are the nearest neighbors. In this model, the 2D square lattice

lays on the x − y plane, and the external magnetic field is perpendicular to this

plane, along z direction. The first term is Heisenberg interaction, J > 0 for

ferromagnetic exchange coupling. The second term is the DM interaction term.

In this square lattice, Dl,l+x̂ = Dx̂ and Dl,l+ŷ = Dŷ. |Dlm| = D is the amplitude of

DM interaction. The last term is the Zeeman coupling term, µB is the magnetic

momentum. For simplicity, gµBH is defined as B and we choose the natural

units(kB = ~ = c = 1).

To calculate the thermal average of the topological charge, the square lattice

need to be triangulated. Summation over all the solid angle Ω of three spins

on each triangle divided by 4π gives the total the topological charge for each spin

configuration. The solid angle Ω can be achieved by a projecting method as Figure

2.1 shows.

After moving the ends of the three normalized spin vectors without changing

the directions the at a same point, the solid angle Ω can be easily achieved from

the area they surround on the sphere. The solid angle Ω is calculated by the Berg
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Figure 2.1: Solid angle of the three nearest spins

formula[104]:

exp(
iΩ

2
) = ρ−1[1 + n1 � n2 + n2 � n3 + n3 � n1 + in1 � (n2 × n3)], (2.2)

ρ = 2[(1 + n1 � n2)(1 + n2 � n3)(1 + n3 � n1)]
1
2 . (2.3)

where n1, n2 and n3 are the three spins on triangle. The Metropolis and over-

relaxation algorithm are employed iteratively to generate a Markov chain of spin

configurations[105], averaging over which thermal average of the topological charge

was derived. The procedure of Metropolis algorithm is

1. It starts from an an arbitrary spin lattice.

2. After flipping one spin on the lattice, The new energy Hnew is compared to

Hold. If δH = Hnew < Hold, the change is accepted.

3. Otherwise, the random number z(0 < z < 1) is generated to compare with

the probability p = exp(− δH
T

)where T is the temperature. If p > z, the

change is accepted.

By repeating the steps above, the most probable spin lattice is achieved at the

given temperature T . We imposed periodic boundary conditions and performed
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average over 2.4 × 106 ensembles at each temperature. Also, the lattices with

different sizes have been employed to study the size dependence issue.

2.1.2 Results

The results are shown in Figure 2.2. Figure 2.2(a) shows the color plot of the

-2.5

0

Figure 2.2:
(a) B − T diagram of the topological charges in 2D with D/J = 0.3.
(b)The size dependence of topological charge.

average the topological charge in the B − T diagram with the fixed DM interac-

tion as D/J = 0.3. A dramatic upturn of the the topological charge is addressed

along a ridge in the B − T diagram. The value of the the topological charge is

significant in areas greatly extended to the skyrmion phase, which is located at

small B and low T in the bottom region of the ridge. Special attention need to

be paid to the high field region, where is no skrymion excepted. As a typical

example, we fix B/J = 0.2 to study the relationship between value of average

the topological charge and the temperature T/J , which is shown in Figure 2.2(b).

At very low temperature, the topological charge is equal to zero, as all spins are

nearly polarized. At very high temperature, the topological charge converges to

zero due to the topological triviality of a completely random phase. In between,
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the topological charge becomes significantly elevated at finite temperatures. A

deep dip of the the topological charge is witnessed around T/J = 1.0, the Cuire

temperature of the corresponding Heisenberg model. The negative of the topolog-

ical charge is consistent with the fact that spin at the skrymion core is opposite

to the external magnetic field. The same calculations were performed for lattices

with sizes varying from 20×20 to 100×100. No difference could be found between

different lattice sizes. This immunity to the nite size effect suggests robustness

of the the topological charge upturn, which might be related to the scaling-free

atomic scale physics.

This emergent topology at finite temperatures does not correspond to any

ordered phase such as the skyrmion crystal phase (SkX) or meron-helix composite.

The snapshots at several unique points with different temperatures and fields have

been taken to look into the spin textures in different situations. For the purpose

to show the corresponding points of the snapshots in the B − T diagram of the

topological charges(Figure 2.2(a)), the B−T diagram of the topological charges is

put at the top of Figure 2.3. Below the B − T diagram of the topological charges

are the snapshots from the different temperatures and fields.

Two snapshots of spin states around the ridge were taken, as shown in .3(a)

and (b). Location of their corresponding parameters are labeled by the same letter

in the B-T diagram on the top. At point A to the right of the ridge, B = 0.2J and

T = 1.02J , and the total the topological charge is about -12 in a 100×100 lattice.

However, the real space image shown in Figure 2.3(a) is completely random. Fast

Fourier transformation(FFT) of the image provides only one peak at Γ point in the

reciprocal space. This indicates the uniform randomness and absence of any spin

ordering at this point. For point B to the left, where the temperature T = 0.8J

is relatively lower, the corresponding real space snapshot in Figure 2.3(b) shows

similar randomness with a single peak at the Γ point of the reciprocal space.
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Figure 2.3:
Snapshots and corresponding reciprocal space plots by Fast Fourier
Transform (FFT) at points on the B − T diagram of the topological
charges shown in top figure. (a) B = 0.20J and T = 1.02J , (b) B =
0.20J and T = 0.80J , (c) B = 0.06J and T = 0.02J , (d)B = 0.06J
and T = 0.66J , (e)B = 0.08J and T = 0.02J and (f) B = 0.02J and
T = 0.02J . In real space snapshots, red (blue) contour represent the
positive (negative) value of size and the arrows represent the directions
of in-plane component. For (c) and (d), the density of the topological
charge is also shown at right panel respectively.
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Compared to point A, a higher spin polarization parallel with the field is achieved

here. From zero temperature to points A or B of interest, no phase transition

occurs. The emergence of the topological charge is thus purely a consequence of

the thermal fluctuation.

In contrast, the topological charges at low field, especially at low temperatures,

have distinct origin. The Monte Carlo simulation shows that the the topologi-

cal charge grows significantly around T = 0.25J during the annealing procedure

and remains stable to zero temperature. It is attributed to the formation of the

skyrmion crystal phase. A typical snapshot was taken at point C with B = 0.06J

and T = 0.02J . The real space image shows a well aligned skyrmion lattice,

and the reciprocal space shows the hexagonal pattern as expected. At the same

field, if the temperature is elevated to point D, the snapshot in Figure 2.3(d) does

not present any ordering, although the the topological charge remains significant.

Densities of the topological charge for C and D points are plotted in Figure 2.3(c)

and Figure 2.3(d) for comparison. Nonzero topological charge emerges only near

the skyrmion in the ordered skyrmion phase, while it is evenly distributed in the

high temperature state. At a relatively higher field at point E shown in Figure

2.3(e), the skyrmion crystal is melted and sparse skyrmions are observed. While

at a lower field at point F, the transition from skyrmion crystal phase to the helical

phase takes place, and a meron-helix composite appears at this first order phase

transition. In all these regions at low temperatures, the the topological charge is

consistent with the number of skyrmions in the lattice. Thermal fluctuation in-

duced the topological charge is suppressed. These low-field and low-temperature

results are consistent with previous studies[106, 107].

The dependence of the topological charges on DM interactions and fields are

also investigated by the Monte Carlo simulation. The the topological charge versus

temperature figures with fixed DM interaction and several values of fields and
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the one with fixed magnetic field with several values of DM interactions have

been plotted in Figure 2.4. At fixed temperature T = 2.0J , curve fittings are

Figure 2.4:
(a) The topological charge versus T/J with fixed D/J = 0.3. (b) The
topological charge versus T/J with fixed B/J = 0.12. The lattice
size is 60 × 60. The two intersecting panels on (a) and (b) shows
the relationship of the absolute value of the topological charge |QT |
between magnetic field and DM interaction at T = 2.0J.

applied for the absolute value of the topological charge |QT | with fields and DM

interaction independently. The results show that at relative high temperature

|QT | is proportional to the magnetic field with fixed DM interaction. And it is

quadratic on the DM interaction with fixed magnetic field.

2.2 Analysis on the physical picture of one triangle in the

square lattice

As indicated by its scaling-free property, origin of the thermally driven topology

can be understood by a simple physical picture on the atomic scale. As defined

earlier, the topological charge is the summation of solid angles of all triangles in

the lattice. Due to the presence of the DM interaction, these three spins in each

triangle are canted and contribute a solid angle of Ω . If we reverse all three spins,
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the new configuration cants an opposite solid angle . In the absence of the field,

these two configurations share the same energy, as both the Heisenberg and DM

interactions are quadratic spin interactions. These two configurations thus have

the same probability of appearance at any temperature, and the average of the

topological charge is zero, which can be shown in Figure 2.5(a). However, these two

n1

n2
n3

Figure 2.5:
The sphere figure shows the net the topological charge is zero in ab-
sence of magnetic field. The triangle shows the energy degenracy of
the two triangle with opposite spins lifted by the external magnetic
field.

configurations, being time reversal to each other, share opposite magnetizations.

An external magnetic field can thus lift the degeneracy and induce a net the

topological charge after thermal averaging. One needs to be aware that under large

enough field, canting of spin takes place only when the temperature approaches the

Curie temperature, far below which the polarized state is robust and the average

the topological charge is zero. On the other hand, a very high field, the energy

difference induced by the field is no longer relevant, and average the topological

charge decays to zero as well.

Quantitively, one triangle in the square lattice can be employed to explain these

relationships. From the lattice shown in Figure 2.1. The spins at the vertices of

the selected triangle is n1, n2 and n3. Notice that n2 and n3 are not the nearest

neighbors, so there is no direct interaction between them. By the definition in
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Eqn.(1.1), the topological charge of the triangle can be simplified as the solid

angle Q = n1 � (n2 × n3) without the constant 1
4π

. The energy of the triangle can

be expressed as

E = −J(n1 � n2 + n1 � n3)−D(n1yn2z − n1zn2y + n1zn3x − n1xn3z)

−B(n1z + n2z + n3z). (2.4)

The thermal average the topological charge of this triangle is

〈Q〉 =
1

Z

∫ ∏
i

dnin1 � (n2 × n3) exp(−E
T

), (2.5)

where Z =
∫ ∏

i dni exp(−E
T

) is the partition function. At the high temperature

limit which means E/T � 1, we can expand the average of topological charge as

〈Q〉 =
1

Z

∫ ∏
i

dnin1 � (n2 × n3)[1− E

T
+

1

2!
(
E

T
)2 − 1

3!
(
E

T
)3 +O((

E

T
)4)]. (2.6)

ni can be parameterized as ni = (sin θi cosφi, sin θi sinφi, cos θi). The integral∫ ∏
i dni is replaced by

∫ ∏
i dΩi where

∫
dΩi =

∫ 2π

0
dφi
∫ π

0
sin θidθi . It requires

the nonzero terms in polynomial expansion in Eqn.(2.6) should include ni and their

components with even powers. The leading two orders of E/T vanish because

one cannot pair up ni and their components into even powers. The nonzero

contribution emerges at the order of 1
T 3 . They are

−(−D)2(−B)

T 3
n1yn2zn1zn3xn1z(n1yn2zn3x) =

D2B

T 3
(n1yn2zn3x)

2n2
1z, (2.7)

−(−D)2(−B)

T 3
n1zn2yn3zn1xn1z(n1xn2yn3z) =

D2B

T 3
(n1xn2yn3z)

2n2
1z, (2.8)

−(−D)2(−B)

T 3
(−n1zn2y)n1zn3xn1z(−n1zn2yn3x) =

D2B

T 3
(n1zn2yn3x)

2n2
1z. (2.9)

The contribution from above all together is proportional to D2B
T 3 . Further, the
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contribution of the order 1
T 4 is nonzero. All the terms are listed below:

(−D)2(−J)(−B)

T 4
n1yn2zn1zn3xn1zn2zn2z(n1yn2zn3x) =

D2JB

T 4
(n1yn2zn3x)

2n2
1zn

2
2z,

(−D)2(−J)(−B)

T 4
n1yn2zn1zn3xn1yn2yn2z(−n1zn2yn3x) = −D

2JB

T 4
(n1zn2yn3x)

2n2
1yn

2
2z,

(−D)2(−J)(−B)

T 4
n1zn2yn3zn1xn1zn3zn1z(n1xn2yn3z) =

D2JB

T 4
(n1xn2yn3z)

2n2
1zn

2
3z,

(−D)2(−J)(−B)

T 4
n1zn2yn3zn1xn1xn3xn3z(−n1zn2yn3x) = −D

2JB

T 4
(n1zn2yn3x)

2n2
1xn

2
3z,

(−D)2(−J)(−B)

T 4
n1yn2z(−n3zn1x)n1yn2yn2z(n1xn2yn3z) = −D

2JB

T 4
(n1xn2yn3z)

2n2
1yn

2
2z,

(−D)2(−J)(−B)

T 4
n1yn2z(−n3zn1x)n1xn3xn3z(n1yn2zn3x) = −D

2JB

T 4
(n1yn2zn3x)

2n2
3zn

2
1x,

(−D)2(−J)(−B)

T 4
n1yn2z(−n3zn1x)n1yn2yn2z(n1xn2yn3z) = −D

2JB

T 4
(n1xn2yn3z)

2n2
1yn

2
2z,

(−D)2(−J)(−B)

T 4
n1yn2z(−n3zn1x)n1xn3xn3z(n1yn2zn3x) = −D

2JB

T 4
(n1yn2zn3x)

2n2
3zn

2
1x,

(−D)2(−J)(−B)

T 4
(−n1zn2y)n1zn3xn1zn2zn2z(−n1zn2yn3x) =

D2JB

T 4
(n1zn2yn3x)

2n2
1zn

2
2z,

(−D)2(−J)(−B)

T 4
(−n1zn2y)n1zn3xn1zn3zn3z(−n1zn2yn3x) =

D2JB

T 4
(n1zn2yn3x)

2n2
1zn

2
3z,

(−D)2(−J)(−B)

T 4
(−n1zn2y)n1zn3xn1xn3xn3z(n1xn2yn3z) = −D

2JB

T 4
(n1xn2yn3z)

2n2
1zn

2
3x,

(−D)2(−J)(−B)

T 4
(−n1zn2y)n1zn3xn1yn2yn2z(n1yn2zn3x) = −D

2JB

T 4
(n1yn2zn3x)

2n2
1zn

2
2y.

(2.10)

They have the same absolute value after integration. The contributions to 〈Q〉

is positive and negative are determined by the sign as Eqn.(2.10) shows. There

are 8 “-” and 4 “+” which means the total contribution is negative in contrast of

positive contribution at the order 1
T 3 . Moreover, it is proportional to D2BJ

T 4 .

The results from the analysis on a triangle is reasonable. the topological charge

respects to the spatial inversion symmetry and breaks the time reversal symmetry.

Respecting to the spatial inversion symmetry requires the topological charge to be

proportional to D squared, which is spatial inversion odd. It can be predicted at

higher order, the DM interaction D would emerge with the even order. Breaking
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time reversal symmetry leads the linear relationship between the topological charge

and B at the nonzero lowest order of 1
T

because B is time reversal odd. The results

are consistent with the curve fitting in Figure 2.4.

2.3 The field-theory approach

The argument in the last section is only based on one triangle. To the many

spin system, a continuous field theory can be applied to calculate the average of

the topological charge.

2.3.1 Hamiltonian in the continuum model

The energy in Eqn.(2.1) can be expanded to the form, here, for simplicity, the

Zeeman coupling part is set to zero,

H = −J
∑
〈lm〉

Sl � Sm −D
∑
l

[(Sl × Sl+x̂) � x̂+ (Sl × Sl+ŷ) � ŷ], (2.11)

where 〈lm〉 means the nearest neighbor. In real materials, the ration D
J
< 1 means

the Heisenberg ferromagnetic exchange coupling dominates. The lattice constant

a is much shorter than the periodical length of the helical ground state so we can

treat this model in continuum limit. S = ~Sn, in natural units, ~ = 1.

Sl � Sl+nearest = S2 + ar̂Sl � ~∇Sl +
a2

2
Sl �∇2Sl +O(a3)

= S2 +
a2S2

2
n �∇2n +O(a4) (2.12)

→ S2 − a2S2

2
(∂in) � (∂in) +O(a4), (2.13)
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where i = x, y. The odd order of a is zero because of the symmetry in the square

lattice system. The DM interaction term can be expanded as

(Sl × Sl+x̂) � x̂+ (Sl × Sl+ŷ) � ŷ ≈ a[(Si × ∂xSi) � x̂+ (Si × ∂ySi) � ŷ]

= aS2

(∣∣∣∣∣
1 0 0

nx ny nz

∂xnx ∂xny ∂xnz

∣∣∣∣∣

+

∣∣∣∣∣
0 1 0

nx ny nz

∂ynx ∂yny ∂ynz

∣∣∣∣∣
)

= aS2(ny∂xnz − nz∂xny + nz∂ynx − nx∂ynz)

= −aS2n � (∇× n). (2.14)

Here, ∇ = (∂x, ∂y, 0). Turning to continuum limit, the summation
∑

lHl →
1
ad

∫
ddrH. The Hamiltonian is

H =
1

a2

∫
d2r[

JS2a2

2
(∂in)(∂in) +DS2an�(∇× n)]

=

∫
d2r[

JS2

2
(∂in)(∂in) +

DS2

a
n�(∇× n)]. (2.15)

The Zeeman coupling term can be added to the continuum model simply,

HZeeman =
−BS
ad

∫
ddrnz (2.16)

So, the Hamiltonian of the continuum model of chiral magnet in 2D is

H =

∫
d2r[

J̄

2
(∂in)(∂in)− D̄n � (∇× n)− B̄nz], (2.17)
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where i = x, y, J̄ = JS2, D̄ = DS
a

, B̄ = BS
a2

and n(r) is the normalized spin.

Calculating the thermal average of topological charge need to be performed in a

statistical physics framework. So,

〈Q〉 =
1

Z

∫ ∏
i

Dni(r)Q exp(−H
T

)δ(|n| − 1) (2.18)

where Z =
∫ ∏

iDni(r) exp(−H
T

)δ(|n| − 1) . It is not easy to do the functional

integration over field n(r) because the Zeeman coupling term is linear. More steps

need to be applied to make it Gaussian integrable.

2.3.2 CP1 formalism

CP 1 formalism[108, 109, 110]is a suitable method for the path integral ap-

proach, because the projection

n = z†σz (2.19)

makes the Zeeman term bilinear, where σ = (σx, σy, σz) is the vector of Pauli

matrices. z is a two component complex spinor which is unimodule z†z = 1. The

degrees of freedom of spin vector n are two, because n has three components which

means it has three degrees of freedom and the constraint condition |n| = 1 makes

the degrees of freedom subtract one. After CP 1 projection, z is a two component

complex spinor, the degrees of freedom is four, also with the condition |z| = 1, the

final degrees of freedom is tree. That means there is one residue degree of freedom

after CP 1 projection. To spinor, the chosen of z is arbitrary in some sense. If

z→ eiθ(r)z, the spin n is invariant. The residue degree of freedom corresponds to

a local gauge symmetry.
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2.3.3 Effective Hamiltonian in CP 1 model

The density of the Hamiltonian is

H = 2J̄(∂iz)†(∂iz)−4J̄A2
i−2D̄n�A−iD̄z†(σ �A)z+iD̄(∇z†)�σz−B̄z†σzz (2.20)

where Ai = − i
2
[z†(∂iz)−(∂iz)†z]. We perform the Hubbard-Stratonovich[111, 112,

113] to decouple the quartic terms of field z. In CP 1 representation, the partition

function is

Z =

∫ ∏
i=1,2

DaiDz†Dz exp{− 1

T

∫
d2r[2J̄ |(∂i−iai+iκσi)z|2−B̄z†σzz]}δ(z†z−1)}

(2.21)

where a is the emergent U(1) gauge and κ = D̄
2J̄

. We can transform the partition

function with quadratic terms of ai,

Z =

∫
DaiDz†Dz

× exp{− 1

T

∫
d2r[2J̄(ai − Ai − κz†σiz)2 + 4J̄κ2 − B̄z†σzz− 2D̄z†σizAi

+2J̄ [(∂iz)†(∂iz)− A2
i ] + iD̄(∂iz

†σiz− z†σi∂iz)]}δ(z†z− 1). (2.22)

After integrating the fields ai out, the partition function is

Z = C
∫
Dz†Dz exp{− 1

T

∫
d2r[2J̄ [(∂iz)†(∂iz)− A2

µ − B̄z†σzz

+iD̄(∂µz
†σµz− z†σµ∂µz)− 2D̄z†σµzAµ + 4J̄κ2]}δ(z†z− 1) (2.23)

Where C is a constant from the integral. The effective Hamiltonian is

Heff =

∫
d2r[2J̄ [(∂µz)†(∂µz)− A2

µ] + iD̄(∂µz
†σµz− z†σµ∂µz)

−2D̄z†σµzAµ − B̄z†σzz (2.24)
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which is as same as Eqn.(2.20). So the effective Hamiltonian in CP 1 model is

H =

∫
d2r[2J |(∂i − iai + iκσi)z|2 − hz†σzz) (2.25)

where i = x, y, κ = D̄
2J̄

and h = B̄
2J̄

. Under the gauge transformation

z→ eiθ(r)z, ai → ai + ∂iθ(r), (2.26)

the Hamiltonian is invariant. Another important relationship is

n � (∂xn× ∂yn) = (∇× a)z. (2.27)

In 2D, the curl of the emergent gauge field is the density of topological charge

without the constant 1
4π

, we define b = (∇× a)z. So in CP 1 model, the simp way

to study the topological charge is to solve the emergent gauge field a.

2.3.4 Mean field approximation

In path integral,

Z =

∫
Dz†Dz

∏
i=1,2

Dai exp(−H
T

)δ(z†z− 1), (2.28)

delta function can be replaced by

δ(z†z− 1) =

∫
Dλ exp{

∫
d2r[iλ(z†z− 1)]}, (2.29)

where the auxiliary field λ is introduced to fix the module of the field z. A rescaling

z →
√

2J̄
T

z and λ → T
2J̄
λ[108] has been performed to make the Hamiltonian
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simpler,

Z =

∫
Dz†Dz

∏
i=1,2

Dλ exp{
∫
d2r(−[|(∂i − iai + iκσi)z|2

− hz†σzz + iλ(z†z− 2

f
)])}, (2.30)

where f = T
J̄

. The mean field approximation[113] is to deal with the auxiliary

field λ. We extend the CP 1 model to the CPN−1 model in which the field z has

N flavors and |z†z| = N
2

. The fields can be rescaled as z →
√

2J̄
T

z and define

h = B̄
2J̄

, f = T
J̄

, and λ→ f
2
λ. The partition function transforms into

Z =

∫
Dz†DzDaiDλ exp{

∫
d2r(−[|(∂i− ii+ iκσi)z|2− hz†σzz− iλ(z†z− N

f
))}.

(2.31)

After integrating out the field z, the partition function has a more consise form

Z =
∫
DaiDλ exp(−Seff [ai, λ]).

Seff [i,λ] = C ′ + Tr log[−(∂i − ii+ iκσi)
2 + hσz + iλ]− N i

f

∫
d2rλ, (2.32)

where C ′ is a constant. When we consider N →∞ , the effective action can be

approximated by the quadratic fluctuation around the saddle point. The saddle

point is i〈λ〉 = λ̄, 〈ai〉 = 0. Because of h � |N λ̄
f
| when N → ∞ with a finite

temperature, we can ignore the Zeeman coupling term in large N approximation.

The effective action around saddle point in momentum space is

Seff [0, λ̄] = C ′′ +
∑
k

log[(k2 + λ̄+ 2κ2)2 − 4κ2k2]− NL
2λ̄

f
(2.33)

where L2 is the area of the space. Here, we use to relationship of σ3σiσ3 = −σi

and Tr log(ABC) = Tr log(CAB) to work out the trace. By replacing
∑

kby
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L2
∫

d2k
(2π)2

, we can obtain

1

2

Λ∫
−Λ

d2k

(2π)2

2(k2 + λ̄+ 2κ2)

(k2 + λ̄+ 2κ2)2 − 4κ2k2
− N

f
= 0. (2.34)

The momentum in the integral has a cutoff Λ ∼ 1
a

due to the correlation length.

The saddle point equation can be transformed into

log
Λ2 + λ̄+ 2κ2

λ̄+ 2κ2
+

2κ√
λ̄+ κ2

arctan
κ√

λ̄+ κ2
≈ 2πN

f
(2.35)

based on the assumption κ2 � λ̄ < Λ2. Also, the second term on the left side can

be neglected. Turning back to CP 1(N = 2) mode, the solution has a simple form

log
Λ2 +m2

0

m2
0

≈ 4π

f
, (2.36)

where m2
0 = λ̄ + 2κ2. This scheme is the hard cutoff scheme. Also we can em-

ploy the Pauli-Villars regularization[114, 115, 116] which can protect the gauge

symmetry and translational symmetry. We integrate over k from −∞ to ∞, and

replace
∫∞
−∞

d2k
(2π)2

2(k2+λ̄+2κ2)

(k2+λ̄+2κ2)2−4κ2k2
by 1

2

∫∞
−∞

d2k
(2π)2

2(k2+λ̄+2κ2)

(k2+λ̄+2κ2)2−4κ2k2
−
∫∞
−∞

d2k
(2π)2

1
k2+Λ2

PV

where ΛPV is the cutoff. The solution in Pauli-Villars regularization is

log
Λ2
PV

m2
0

≈ 4π

f
. (2.37)

In hard cut-off scheme, there is no need to assume m2
0 � Λ2 , we can perform this

model when m0 is comparable with the cut-off Λ. Also, in very low temperature

region, (f � 1) we can get m2
0 � Λ2 in both schemes which means at low tem-

perature, log Λ2

m2
0
≈ 4π

f
works for both schemes. One problem left to be clarified is

why the cut-off Λ has the scale as 1
a
, where a is the lattice constant
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2.3.5 Cut-off Λ and correlation length

In eqn.(37), m2
0 = Λ2 exp(−4π

f
). for the purpose to clarify the problem simplify,

the κ term is neglected because κ � Λ, H =
∫
d2r2J |(∂i − iai)z|2, and the

propagator is

G(x) =
1

Z

∫
Dz†Dzz†(0)z(x) exp[− 2

f

∑
k

z†k(k2 +m2
0)zk −

∑
k

2m2
0

f
]

=
1

2

∑
k

e−ik�x

k2 +m2
0

∼ 1

|x|
exp(−|x|m0). (2.38)

The two-point correlation function can be defined as

S+−(x) = 〈[nx(0) + iny(x)][nx(x)− iny(x)]〉

→ 〈z?m(0)zm′(0)z?m(x)zm(x)〉

= Sm6=m
′
(x) = |G(x)|2 ∼ 1

|x|2
exp(−|x|/(1/2m0))

So we define the correlation length ξ,

ξ =
1

2m0

=
1

2Λ
exp(

2π

f
). (2.39)

Going back to the square lattice model, the separation of the two nearest neighbors

is lattice constant a. If the correlation length is less than a, the nearest spins are

no longer correlated. It means below the energy scale Λ, the spins will correlate to

others. But above Λ, the energy of local spin vibration will increase, but cannot

propagate to others. The continuum model does not work any longer above the

energy scale Λ. That is the reason why we choose Λ ∼ 1
a

as the cut-off.
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2.3.6 The effective action of the emergent gauge field

The basic idea in what follows is to integrate out the z field, and get the effective

action theory in terms of the gauge field a. The gauge invariant requirement gives

rise to only two possible terms up to the second order of the emergent gauge

field a in the effective action. The procedure for finding them two begins with

the antisymmetric tensor fij = ∂iaj − ∂jai(i, j = x, y), which is easy to prove

gauge invariant. One is
∑

ij fijfij which corresponds to the quadratic term b2 .

Another one is
∑

ij εzijhzfij which is the term hb. A perturbative calculation in

field theory is employed to work out the effective action of emergent gauge field

a. In momentum space, the unperturbed part of the action is

S0 = L2

∫
d2k

(2π)2
z†k(k

2 +m2
0 − 2κkiσi)zk, (2.40)

where L2 is the area of the 2D film. The corresponding Feynman diagram is shown

in Figure 2.6(a).

Figure 2.6: Feynman rules and diagrams.

The perturbative part of the action is divided into two terms which are

Si1 = L4

∫
d2kd2q

(2π)4
z†
k+ q

2
(−2kiai,q − 2κai,qσi − hσz)zk−q

2
, (2.41)

Si2 = L4

∫
d2kd2q

(2π)4
z†kzqai,pai,k−q−p (2.42)
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The Feynman diagram Figure 2.6(b) corresponds to Si1, where the spring line

represents the part −2(kiai,q +κai,q + h
2
σz) in the three-point vertex. Figure 2.6(c)

is four point interaction in Si2. The tilde line represents the pure emergent gauge

field ai.

The Green’s function of field z isG0,z(k) = 〈zkz†k〉 = 1
k2+m2

0−2κkiσi
. As discussed

Figure 2.6(b) corresponds to the interaction described by Si1. The action described

by the process in Figure 2.6(d) is

Sd = L4Tr

∫
d2kd2q

(2π)4

ai,qai,−q
k2 +m2

0 − 2κkiσi

= L4

∫
d2kd2q

(2π)4
[

2i, qi, q

k2 +m2
0

+
4κ2k2a2

i,q

(k2 +m2
0)4

+O(κ4)]. (2.43)

Because of κ2

Λ2 � 1, the terms of κ2 and higher order can be neglected. The

Pauli-Villars regularization is applied to the divergent integral,

∫
d2k

(2π)2

1

k2 +m2
0

→
∫

d2k

(2π)2
(

1

k2 +m2
0

− 1

k2 + Λ2
PV

)

=
1

4π
log

Λ2
PV

m2
0

. (2.44)

So

Sd =
L4

2π
log

Λ2
PV

m2
0

∫
d2q

(2π)2
ai,qai,−q. (2.45)
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The process in Figure 2.6(e) corresponds to the action

Se = −L
4

2!

∫
d2kd2q

(2π)4

×〈2z†
k+ q

2
(−kiai,q − κai,qσi −

hq
2
σz)zk− q

2

×2z†
k− q

2
(−kjaj,−q − κaj,−qσj −

h−q
2
σz)zk+ q

2
〉

= −2L4Tr

∫
d2kd2q

(2π)4

1

(k + q
2
)2 +m2

0 − 2κ(k + q
2
)i′σi′

(kiai,−q + κai,−qσi +
h−q
2
σz)

× 1

(k − q
2
)2 +m2

0 − 2κ(k − q
2
)j′σj′

(kjaj,q + κaj,qσj +
hq
2
σz)

= −2L4

∫
d2kd2q

(2π)4
[

1

(k + q
2
)2 +m2

0

+
2κ(k + q

2
)i′σi′

[(k + q
2
)2 +m2

0]2
+O(κ2)]

×(kiai,−q + κai,−qσi +
h−q
2
σz)[

1

(k − q
2
)2 +m2

0

+
2κ(k − q

2
)j′σj′

[(k − q
2
)2 +m2

0]2
+O(κ2)](kjaj,q + κaj,qσj +

hq
2
σz)

= −2L4Tr

∫
d2kd2q

(2π)4
[

k2a2
q + κ2a2

q +
h2q
4

[(k + q
2
)2 +m2

0][(k − q
2
)2 +m2

0]

+
(kiai,−q + κai,−qσi + h−q

2
σz)

(k + q
2
)2 +m2

0

2κ(k − q
2
)j′σj′

[(k − q
2
)2 +m2

0]2
(kjaj,q + κaj,qσj +

hq
2
σz)

+
2κ(k + q

2
)i′σi′

[(k + q
2
)2 +m2

0]2
(kiai,−q + κai,−qσi +

h−q
2
σz)

(kjaj,q + κaj,qσj + hq
2
σz)

(k − q
2
)2 +m2

0

+O(κ2)]. (2.46)

?s?? We do not consider the κ2a2
i term with the same reason in Sb. Also h2 term

is neglected because it decouples with ai. We employ Feynman parametrization

to work out the integrals

Se1 = −4L4

∫
d2qd2k

(2π)4

1∫
0

dx
(kiai)

2

{x[(k + q
2
)2 +m2

0] + (1− x)[(k − q
2
)2 +m2

0]}2
(2.47)
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with

A =

∫
d2k

(2π)2

1∫
0

dx
(kiai)

2

[k2 + q2

4
+m2

0 + 2(x− 1
2
)k � q]2

=

1∫
0

dx

∫
d2k

(2π)2

(kiai)
2

{[k + (x− 1
2
)q]2 + q2

4
+m2

0 − (x− 1
2
)2q2}2

=

1∫
0

dx

∫
d2l

(2π)2

{[l − (x− 1
2
)q]iai}2

[l2 +m2
0 + x(1− x)q2]2

, (2.48)

where l = k + (x − 1
2
)q and define ∆ = m2

0 + x(1 − x)q2. A is divided into two

parts

A = A1 + A2

A1 =

1∫
0

dx

∫
d2l

(2π)2

(liai)
2

(l2 +∆)2

=

1∫
0

dx

2π∫
0

dθ

∞∫
0

ldl

(2π)2

(l|a| cos θ)2

(l2 +∆)2

=
1

4π2

2π∫
0

dθ cos2 θ

1∫
0

dx

∞∫
0

dl2

2

l2

(l2 +∆)2
a2

=
1

8π2

1∫
0

dx

2π∫
0

dθ(
1 + cos 2θ

2
)

∞∫
0

dl2
l2a2

(l2 +∆)2

=
1

8π

1∫
0

dx

∞∫
0

dl2
l2a2

(l2 +∆)2
(2.49)
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A2 =
1

4π

1∫
0

dx

∫
d2l

(2π)2

(x− 1
2
)2(qiai)

2

(l2 +∆)2

=
1

4π

1∫
0

dx

∞∫
0

dl2
(x− 1

2
)2(qiai)

2

(l2 +∆)2

=
1

4π

1∫
0

dx[−
(x− 1

2
)2(qiai)

2

l2 +∆
]

∣∣∣∣l2=∞

l2=0

=
1

4π

1∫
0

dx
(x− 1

2
)2(qiai)

2

m2
0 + x(1− x)q2

=
1

4π

(qiai)
2

q2
[−1 +

1

2

√
q2 + 4m2

0

q2
log(

√
q2 + 4m2

0 + q√
q2 + 4m2

0 − q
)] (2.50)

The integral in A1 is divergent. As the same as above, Pauli-Villars regularization

is applied to deduct the divergent part,

A1 → A′1 =
1

8π

1∫
0

dx

∞∫
0

dl2{ l2a2
i

[l2 +m2
0 + x(1− x)q2]2

− l2a2
i

(l2 + Λ2
PV )2

}

=
1

8π

1∫
0

dx(log
Λ2
PV

m2
0 + x(1− x)q2

)a2
i

=
1

8π

1∫
0

dx{logΛ2
PV − log[m2

0 + x(1− x)q2]}a2
i

=
1

8π
[log

Λ2
PV

m2
0

+ 2−

√
q2 + 4m2

0

q2
log(

√
q2 + 4m2

0 + |q|√
q2 + 4m2

0 − |q|
)]a2

i ,(2.51)

where a2
i = ai,qai,−q.

Se1 = −L
4

2π

∫
d2q

(2π)2
[2−

√
q2 + 4m2

0

q2
log(

√
q2 + 4m2

0 + |q|√
q2 + 4m2

0 − |q|
)]

×ai(δij −
qiqj
q2

)aj −
1

2π
log

Λ2
PV

m2
0

∫
d2q

(2π)2
a2
i (2.52)
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and

Sa2 = Sd + Se1 =
L4

π

∫
d2q

(2π)2
[
1

2

√
q2 + 4m2

0

q2
log(

√
q2 + 4m2

0 + |q|√
q2 + 4m2

0 − |q|
)− 1]

×ai(δij −
qiqj
q2

)aj. (2.53)

The gauge violent terms in Sd and Se1 cancel with each other. We expand Sa2 by

the order of q2 ,

Sa2 =
L4

π

∫
d2q

(2π)2
[
q2

12m2
0

− (q2)2

120m4
0

+O((q2)4)]ai, q(δij −
qiqj
q2

)aj,−q. (2.54)

In the main text, b = (∇× a)z has been defined. Sa2 has another form as Sb2

Sb2 =
L4

π

∫
d2q

(2π)2

b2
q

12m2
0

+O(q2b2), (2.55)

where bq = iεzijqiaj,q. By using the result in Eqn.(2.37)

Sb2 =
L4

π

∫
d2q

(2π)2
[

b2
q

12Λ2
PV

exp(
4π

f
) +O(q2b2)]. (2.56)

The effective action of hb term in Se is

Se2 = Shb = −4L4

∫
d2kd2q

(2π)4
[
iκ2εijz(k + q

2
)iaj,−qhq + iκ2εizj(k + q

2
)ih−qaj,q

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]

+
iκ2εijzai,−q(k − q

2
)jhq + iκ2εzijh−q(k − q

2
)iaj,q

[(k + q
2
)2 +m2

0][(k − q
2
)2 +m2

0]2
]

= 4κ2L4

∫
d2kd2q

(2π)4
{ 4k � q(iεzij)ki(aj,−qhq − aj,qh−q)

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]2

+
2(k2 + q2

4
+m2

0)(bqh−q + b−qhq)

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]2
}. (2.57)

(k � q)ki can be replaced by 1
2
k2qi in the integral. Following the procedure of the
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Feynman parametrization used above,

Shb = 8κ2L4

1∫
0

dx

∫
d2ld2q

(2π)4

κ2h−qbq(
q2

4
+m2

0)

(l2 +∆)4

= 8κ2L4

1∫
0

dx

∫
d2q

(2π)2

Λ∫
−Λ

d2l

(2π)2

( q
2

4
+m2

0)h−qbq

(l2 +∆)4
. (2.58)

The momentum has bounds in the integral due to the correlation length. The

hard cutoff scheme is applied to work out the integral,

Shb =
2L4κ2

π

1∫
0

dx

∫
d2q

(2π)2
[

1

∆3
− 1

(Λ2 +∆)3
](
q2

4
+m2

0)h−qbq. (2.59)

Expanding the action by q2,

Shb =
2L4κ2

π

∫
d2q

(2π)2
[
(Λ2 +m2

0)3 −m6
0

m4
0(Λ2 +m2

0)3
+O(q2)]h−qbq. (2.60)

Sb2 and Shb are added together. In position space,

Sb2 + Shb =
1

π

∫
d2r[

b2(r)

12Λ2
PV

exp(
4π

f
) +

(Λ2 +m2
0)3 −m6

0

2m4
0(Λ2 +m2

0)3
hb(r) +O(∂2b)]. (2.61)

Here, we can simply set ΛPV = Λ. Ignoring the fluctuation of the b(r), the average

value of b(r) is obtained through the saddle point equation
δ(Sb2+Shb)

δb(r)
= 0,

b̄ = −3Λ2

m4
0

[1− (
m2

0

Λ2 +m2
0

)3] exp(−4π

f
) (2.62)
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. The result in eqn.(23)is applied to obtain b̄ as a function of temperature,

b̄ ≈ −3κ2h

Λ2
[exp(

4π

f
)− 1]2[1− exp(−12π

f
)] exp(−4π

f
)

= −12κ2h

Λ2
sinh2(

2π

f
)[1− exp(−12π

f
)]. (2.63)

At the high temperature( 1
f
� 1), we can expand the b̄ by the order of 1

f
,

b̄ = −9κ2h

Λ2
[(

4π

f
)3 − 3

2
(
4π

f
)4 +O(

1

f 5
)]. (2.64)

The average of topological charge is

〈Q〉 ≈ 1

4π

∫
d2b̄ (2.65)

= −N
2a2

4π

9κ2h

Λ2
[(

4π

f
)3 − 3

2
(
4π

f
)4 +O(

1

f 5
)]. (2.66)

.By using the parameters in the lattice Hamiltonian (κ = D̄
2J̄

= D
2Ja

, h = B̄
2J̄

=

B
2Ja2S

, f = T
J̄

= T
JS2 ) with Λ = 1

a
, we have

〈Q〉 ≈ −18π2N2D2BS5

T 3
[1− 6πJS2

T
+O(

1

T 2
)] (2.67)

= −18π2L2BS5

T 3
(
D

a
)2[1− 6πJS2

T
+O(

1

T 2
)], (2.68)

where D
a

is the DM interaction in the continuum limit.This result matches well

with the simple argument based on one triangle in 1
T 3 and 1

T 4 order. In one

triangles the signs of these two are opposite and proportional to D2B and D2BJ

respectively.
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2.4 Experimental evidence

In Chapter I, we introduced that the topological Hall resistivity is proportional

to the topological charge in magnetic systems. Experiments on thin film chiral

magnetic metals SrRuO3 and V-doped Sb2Te3 have investigated the topological

Hall effect. It have shown that the topological Hall signal is significant above the

Curie temperature[103]. They measured the Hall resistivity of the thin film sam-

ples and subtract the contribution from OHE and AHE. The thin film SrRuO3

and V-doped Sb2Te3 have different density of carriers. Here, we compared the

experimental results of thin film SrRuO3 and our theoretical results. The ex-

Figure 2.7:
(a) Total Hall resistivity. (b) Anomalous Hall resistivity is subtracted.
(c) Topological Hall effect. (d) The relationship between topological
resistivity and temperature. Right top is the thickness dependence of
the topological Hall resistivity[103].

periment was done on a sandwich structure SrTiO3-SrRuO3-SrTiO3. The DM
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interaction is due to the inteface of SrTiO3and SrRuO3. Figure 2.7(a) is the total

Hall resistivity. THE signal is subtracted from the total. By the linear relation-

ship between external magnetic field and ordinary Hall resistivity, they subtracted

the OHE signal. (b) shows anomalous Hall resistivity is subtracted by employed

the Langevin method, left the topological hall resistivity as Figure 2.7(c) shows.

(d) indicates the peak of topological Hall resistivity is above the Curie tempera-

ture. The we compare the theoretical results and our theoretical results shown in

Figure 2.8. The configuration of topological Hall resistivity in Figure 2.8 (a) has

Figure 2.8:
(a) The thickness dependence of the topological Hall resistivity. (b)
The theoretical results of the topological charge.

matched our theoretical results in Figure 2.8 (b). The peak of the Hall resistivity

emerges above the Curie temperature, and in our theoretical results, the valley of

the topological charges emerge at the random phase which appears with a higher

temperature than the Skyrmion crystal phase. Here are two things need to be

mentioned. First there is no stable Skyrmion phase has been discovered in the

thin film SrRuO3. Another, in their work, they used spin chirality in stead of

the topological charge. In their work they used spin chirality not the topological

charge. We also investigated topological charge and spin chirality. The results
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indicate they are not identical.

2.5 Spin chirality, topological charge and Hall resistivity

For the purpose to investigate the Hall effect, the Kubo formula[117, 118, 119,

120] is employed to calculate the Hall conductivity, the form we used is

σxx(ω) =
e2

~
Re
∑
m 6=n

[f(εm)− f(εn)]〈m|v̂x|n〉〈n|v̂x|m〉
(εm − εn)2 − (ω + iη)2

, (2.69)

σxy(ω) =
e2

~
Im
∑
m 6=n

[f(εm)− f(εn)]〈m|v̂x|n〉〈n|v̂y|m〉
(εm − εn)2 − (ω + iη)2

. (2.70)

where εm is the energy of the electron’s eigenstate |m〉. The f(εm) is the Fermion

distribution function which is

f(εm) =
1

exp(εm − µ) + 1
. (2.71)

Here, we used the natural unit ~ = c = kB = 1 for simplicity. When ω = 0,

σxx = σyy =σxx(0) and σxy = σxy(0) are we concerned. The conductivity is

σc =
( σxx σxy

σyx σyy

)
. (2.72)

The matrix of the resistivity is ρ = σ−1
c . The Hamiltonian for the electrons within

a spin system is

H = −t
∑
〈ij〉,σ

c†i,σcj,σ − JH
∑
i

c†i,σSi � σσσ′ci,σ′ , (2.73)

where c†i,σ and ci,σ are the creation and annihilation operators of the electrons at

the i-site. σ and σ′ are the spin index which can be ↑ or ↓. Si is the local spin
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of the i site. t is the hopping constant of the nearest spins and JH is the Hund’s

coupling. The position operator is

R̂ =
∑
i,σ

Ric
†
i,σci,σ, (2.74)

where the vector Ri indicates the position of the i site. R̂ acts on an eigenvector

|j, σ′〉 of the electron which lays on the i site

R̂|j, σ′〉 =
∑
i,σ

Ric
†
i,σci,σ|j, σ′〉

=
∑
i,σ

Ric
†
i,σci,σc

†
j,σ′|0〉

=
∑
i,σ

Ric
†
i,σ{ci,σ, c

†
j,σ′}|0〉 −

∑
i

Ric
†
i,σc
†
i,σcj,σ′|0〉

=
∑
i,σ

Ric
†
i,σδij,σσ′|0〉

= Rjc
†
j,σ′|0〉 = Rj|j, σ′〉 (2.75)
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Here , we define R̂i =
∑

σ Ric
†
i,σci,σ for the i-site. The velocity operator is

v̂i =
˙̂
Ri = −i[R̂i, H]

= −i
∑
σ

[Ric
†
i,σci,σ,−t

∑
〈lm〉,α

c†l,αcm,α −
∑
l

JHc
†
l,αSl � σαβcl,β]

= it
∑
σ

[Ri,σc
†
i,σci,σ,

∑
〈lm〉,α

c†l,αcm,α] + iJH
∑
σ,l

[ci,σc
†
i,σ, c

†
l,αcl,β]Sl � σαβ

= it
∑

i,〈lm〉,σ,α

Ri[c
†
i,σci,σ, c

†
l,αcm,α] + iJH

∑
i,σ,l

[ci,σc
†
i,σ, c

†
l,αcl,β]Sl � σαβ

= it
∑

i,〈lm〉,σ,α

Ri(c
†
i,σ{ci,σ, c

†
l,α}cm,α − c

†
l,α{cm,α, c

†
i,σ}ci,σ)

+ iJ
∑
σ,l

Ri[c
†
i,σ{ci,σ, c

†
l,α}cl,β − c

†
l,α{cl,β, c

†
i,σ}ci,σ]Sl � σαβ

= it
∑
〈lm〉,σ,α

Ric
†
i,σδilδσαcm,α −Ric

†
l,αδmiδασci,σ

+ iJRi(c
†
i,αci,β − c

†
i,αci,β)Sl � σαβ

= it
∑
σ

Ri(c
†
i,σci+nearest,σ − c

†
i+nearest,σci,σ). (2.76)

So the velocity operator is

v̂ = it
∑
i,σ

(Ric
†
i,σci+nearest,σ −Ric

†
i+nearest,σci,σ). (2.77)

In 2D system, the components fo the velocity operator are

v̂x = it
∑
i,σ

Ri,x(c
†
i,σci+x̂,σ + c†i,σci−x̂,σ − c

†
i+x̂,σci,σ − c

†
i−x̂ci,σ), (2.78)

v̂y = it
∑
i,σ

Ri,y(c
†
i,σci+ŷ,σ + c†i,σci−ŷ,σ − c

†
i+y,σci,σ − c

†
i−ŷci,σ). (2.79)

After diagonalizing the Hamiltonian, we can get the eigenvalues εm and the cor-

responding normalized eigenvectors |m〉. This system can also be described by
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another set of complete orthogonal basis |i, σ〉, which is

c†i,σ|0〉 = |i, σ〉 =

(
0

...

1→ (2i+ α)th

0

...

)
(2.80)

when σ =↑, α = 1 and σ =↓, α = 2. So the matrix element of the velocity operator

can be rewritten as

〈m|v̂α|n〉 =
∑
ijσσ′

〈m|i, σ〉〈i, σ|v̂α|j, σ′〉〈j, σ′|n〉. (2.81)

We define a new operator is

V̂α =
∑
ijσσ′

|i〉〈i|v̂α|j〉〈j|. (2.82)

We used a 3 × 3 square lattice to explain how the new operator works. The

lattice is shown in the Figure 2.9. The spin index σ is not considered for a simple

Figure 2.9:
Left is the 3× 3 square lattice. Right shows the periodical boundary
condition.
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explanation. The periodical boundary condition is employed, as shown in the right

of Figure 2.9. At x−direction, we have |1+x̂〉 = |2〉, |2+x̂〉 = |3〉 and |3+x̂〉 = |1〉.

Also at y− direction, we have |1 + ŷ〉 = |4〉, |4 + ŷ〉 = |7〉 and |7 + ŷ〉 = |1〉. The

same rules are applied to other rows and columns. To the first row of the lattice,

v̂x−row1 = it[R1x(c
†
1c2 + c†1c3 − c†2c1 − c†3c1)

+R2x(c
†
2c3 + c†2c1 − c†3c2 − c†1c2)

+R3x(c
†
3c1 + c†3c2 − c†1c3 − c†2c3)]

= it{(R1x −R2x)(c
†
1c2 − c†2c1)] + [(R2x −R3x)(c

†
2c3 − c†3c2)]

+ [(R3x −R1x)(c
†
3c1 − c†1c3)]}

= it[(R2 −R1)c†2c1 + (R3 −R2)c†3c2 + (R1 −R3)c†1c3] + h.c., (2.83)

especially R1x −R3x = −a where a is the lattice constant. So,

v̂x−row1 = ita(c†2c1 + c†3c2 + c†1c3) + h.c.. (2.84)

The operator V̂x for the 3× 3 lattice is

V̂x = 2ita(|2〉〈1|+ |3〉〈2|+ 1〉〈3| (first row of the lattice)

+ |5〉〈4|+ |6〉〈5|+ |4〉〈6| (second row of the lattice)

+ |8〉〈7|+ |9〉〈8|+ |7〉〈9|). (third row of the lattice). (2.85)

The matrix form is

V̂x = 2ita

( A3×3 0 0

0 A3×3 0

0 0 A3×3

)
, A3×3 =

( 0 0 1

1 0 0

0 1 0

)
. (2.86)
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Also we can achieve the V̂y of the lattice by the same procedure. Then adding the

spin index back, we do numerical calculation with the spin textures in 2D chiral

magnet with nonzero topological charge. For the purpose to study the topological

Hall effect which just depends on the spin texture, we set a strong Hund’s coupling

JH/t = 1. With the spin textures we chose, σxx � σxy which can lead to ρxy = σxy
σ2
xx
.

The results are shown in Figure 2.10. The low field one Figure 4. (a) shows, at

Figure 2.10:
The relationship between Hall resistivity, topological charge and spin
chirality, (a) low field, (b) high field.

low temperatures, the topological charge is flat and the absolute value of chirality

decays with the increasing temperature, and also the Hall resistivity ρxy. The high

field situation shows that the behaviors of topological charge and the chirality are

similar. The peak value of ρxy is very close to the valley values of the spin chirality

and topological charge. More work need to be done to distinguish the spin chirality

and the topological charge and how they contribute to the Hall effect, especially

in the magnetic system with superexchage antiferromagnetic coupling[121]. The

program for calculating Hall conductivity written by Python is in the Appendix

A.
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2.6 Conclusion

In this chapter, the thermal average of topological charge in 2D chiral magnet

has been studied through three different methods. In common belief, the param-

agnetic phase is a totally random magnetic phase which is topological trivial. But

through the discussions above, in thin film chiral magnets, the paramagnetism is

not necessarily topologically trivial. In a region of high temperature which is out of

the skrymion crystal phase, the average of topological charge is nonzero although

the snapshots show random spin textures. A significant upturn of the topological

charge was observed outside the skyrmion crystal phase. This phenomenon is well

understood by both analyzing thermal fluctuations in the atomic scales and field

theoretical approach based on CP 1 formalism. As has been extensively studied

in the skyrmion phasse, non-zero topological charge would lead to the topological

Hall effect, which was observed in the skyrmion crystal phase only[10, 79, 80],.

The discrepancy between the topological Hall signal and distribution of the topo-

logical charge observed due to the itinerant nature of the magnetism in most chiral

magnets under investigation. Close to or above the Cuire temperature, the local

magnetic moment in these magnets is significantly reduced. But all the calcula-

tion and analysis in this chapter is based on the assumption the local magnetic

moment is constant which does not apply to the itinerant magnetism. Only in-

sulating magnets such as Cu2OSeO3, local magnetic moments are persistent at

elevated temperatures. The magnon Hall effect has been observed in such insulat-

ing chiral magnets[40]. The transport properties of the insulating chiral magnets

have a lot of interesting aspects to be discovered, which may be closely relevant

to the nontrivial topology in the materials.
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CHAPTER III

Topological charge in 3D chiral magnets

In Chapter II, the thermal average of topological charge in 2D chiral magnets

has been investigated. There is nonzero topological charge out of the skyrmion

crystal phase. If looking into the past experiments about the chiral magnets, there

was no one done on a monolayer sample. The small angle neutron scatting(SANS)

was performed on the bulk MnSi[10]. The skymion crystal phase was detected on

the surface of the bulk. The experiments about Fe1−xCoxSi[39] and Cu2OSeO3[15]

were a thin film with tens of nanometers thickness. Even with this thickness, the

sample cannot be treated as a 2D system. How does the topological charge behave

when there the sample has finite thickness motivates us to do further analysis in

this session.

3.1 Monte Carlo simulation

3.1.1 Methodology

The Monte Carlo simulation is performed on a 3D cubic lattice of classical spin

model. The Hamiltonian of the chiral magnet with external magnetic field is

H =
∑
〈lm〉

(−JSl � Sm + Dlm � Sl × Sm)−B
∑
l

Szl , (3.1)
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where Sl = Snl is the spin vector on site i and |ni| = |Si|
S

= 1. 〈ij〉 means site i

and j are the nearest neighbors. In 3D model, the DM interaction is

Dl,l+ê = Dê, (3.2)

where ê = x̂, ŷ, ẑ. The procedure is similar in 2D situation. Here, we just

used Metropolis method[105] to make the Markov chain of spin configurations.

The over-relaxation method was not employed here because we used graphics

processing unit(GPU) programming[122] to accelerate the calculation. The over-

relaxation method was used to make the results converge more rapidly than using

many spin configurations for the average value. In GPU programming, the struc-

ture of the storage units is very suitable for writing and reading data repeatedly

quickly. And GPU can make the summation and average operations much more

quickly. It makes employing larger sizes of spin lattices and averaging more data

points at unique temperatures become acceptable. With the help of GPU, the

over-relaxation method is not required.

Triangulation of the lattice at x − y plane is performed to calculate the solid

angle surrounded by the three spins. The Berg formula is used to calculate the

solid angle, which has been mentioned in the last chapter. Here, we do summation

of all the topological charges at every layer, then get the average, which is depicted

in Figure 3.1.

Here, we just focus on the signal of the topological charge. A 16 × 16 × 16

cubic lattice with periodic boundary condition is employed.

3.1.2 Results

With different combinations of DM interactions and external magnetic fields,

We have the results shown in Figure 3.2. The similar curve fitting in 2D can be
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Figure 3.1: Triangulation of the cubic lattice

done to investigate the relation between the thermal average topological charge

and DM interaction with fixed magnetic field at a fixed high temperature, as well

as the relation between the thermal average topological charge and magnetic field

with fixed DM interaction.

Another interesting topic of 3D chiral magnets is the thickness dependence.

In the experiment[103], SrRuO3 thin film samples with different number of layers

have been employed to measure the topological Hall effects. It motivates us to

investigate the topological charge with different number of layers. We employed

the lattice with the sizes 32× 32×Nz(Nz = 1, 2, 3, 4, 8, 16, 32), the x− y plane is

periodic boundary condition, z direction is open boundary condition which mimics

the experimental environment. The results have been shown in Figure 3.3. The

valley values of the topological charge decrease and the positions of valleys move

from low temperature to high temperature with the increasing number of layers.

The positions of the valleys may relate to the finite size effect. We employed the

finite size scaling to investigate this effect.
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Figure 3.2: (a) QT vs T/J , fixed B/J = 0.2.(b)QT vs T/J , fixed D/J = 0.3.
. (c)At T = 2.446J , relationship between QT and D. (c)At T = 2.446J ,

relationship between QT and B.

3.1.3 Finite size scaling

B = 0.2J and D = 0.4J is chosen to investigate the finite size effect. The

specific heats of different layers need to be calculated for the finite size scal-

ing purpose[123].The Figure 3.4 shows the specific heats(a) and the topological

charges(b) with different Nz. The package pyfssa written by Python was used to

do the finite size scaling. The finite size scaling makes the curves of the specific

heats collapse together. The scaling happens by cvL
−ζ/ν
z vs. [(T −Tc)L1/ν

z +Tc]/J

in which Tc is the critical temperature searching by the finite size scaling. The

topological charge is size effect free, means no need to rescale. The diagram after

finite size scaling has been shown in Figure 3.5. The best values of the rescaling
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Figure 3.3: Topological charge versus T/J .

parameters are Tc = 2.455 ± 0.003, ν = 11.857 ± 0.014 and ζ = 0.761 ± 0.001.

The specific heats collapse together well. The valleys are at the same position. It

proves the positions of the valleys are affected by the finite size effect. But till

now, there is not a good explanation of the finite values of topological charge at

high temperature.

3.2 The field theory approach

As the same as 2D situation, the field-theory approach has been performed to

calculate topological charge lay on the x − y plane which is perpendicular to the

external magnetic field hz.
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Figure 3.4:
(a) Specific heat cv versus T/J . (b) Average Topological charge versus
T/J.

3.2.1 The model and Hamiltonian

The discrete Hamiltonian of cubic spin lattice has been shown in Eqn.(3.1).

The Heisenberg interaction term can be expanded as the same as 2D situation

but ∇ = (∂x, ∂y, ∂z). The DM interaction in 3D can be expanded as The DM
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Figure 3.5:

Rescaling specific heat cvL
− ζ
ν

z versus [(T−Tc)L1/ν
z +Tc] (b) Average

Topological charge versus [(T − Tc)L1/ν
z + Tc].

interaction term is

∑
e

(Sl × Sl+ê) � ê ≈
∑
e

a(Sl × ∂eSl) � ê

= aS2

(∣∣∣∣∣
1 0 0

nx ny nz

∂xnx ∂xny ∂xnz

∣∣∣∣∣

+

∣∣∣∣∣
0 1 0

nx ny nz

∂ynx ∂yny ∂ynz

∣∣∣∣∣

+

∣∣∣∣∣
0 0 1

nx ny nz

∂znx ∂zny ∂znz

∣∣∣∣∣
)

= aS2(ny∂xnz − nz∂xny + nz∂ynx − nx∂ynz

+ nx∂zny − ny∂znx)

= aS2n � (∇× n). (3.3)
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So the Hamiltonian in continuum limit is

H = Λ

∫
d3r[

J̄

2
(∂in) � (∂in) + D̄n � (∇× n)− B̄nz]. (3.4)

where i = x, y, z, J̄ = JS2 , D̄ = D2S
a

and B̄ = BS
a2

.The parameters are the same

as 2D situation. By employing CP 1 projection, we have

H0 = Λ

∫
d3r{2J̄ |(∂i − iai + iκσi)z|2, (3.5)

witout the Zeeman coupling term, where ai is the emergent gauge field and D̄
2J̄
.

And

HZeeman = −Λ
∫
d3rhz†σzz, (3.6)

where h = B̄
2J̄
. Extending CP 1 model to CPN−1 model, the partition function is

Z =

∫
Dz†Dz

3∏
i=1

Dai exp(−H
T

)δ(z†z− N
2

). (3.7)

By replacing δ(z†z− N
2

) by
∫
dλ exp[iλ(z†z− 1)], the partition function is

Z =

∫
Dz†Dz

3∏
i=1

DaiDλ

× exp(−2J̄Λ

T

∫
d3r[|(∂i − iai + iκσi)z|2 − i

∫
d3rλ(z†z− N

2
)]. (3.8)

After rescaling z →
√

2JΛ
T

z, f = T
J

and λ → f
2
λ, Th partition function has a

simpler form,

Z =
3∏
i=1

∫
Dz†DzDaiDλ exp[−

∫
d3r[|(∂i − iai + iκσi)z|2 − iλ(z†z− Nλ

f
)]

× exp[−
∫
d3r[|(∂i − iai + iκσi)z|2 − iλ(z†z− Nλ

f
)]. (3.9)
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3.2.2 Mean field approximation

The partition function has the form Z =
∏3

i=1

∫
DaiDλ exp(−Seff [ai, λ]) after

integrating out the field z and

Seff [ai, λ] = C ′ + Tr

∫
d3r{log[−(∂i − iai + iκσi)

2 + iλ]− NΛ
f
iλ}. (3.10)

In momentum space, the mean field approximation i〈λ〉 = λ̄, 〈ai〉 = 0,

Seff [0, λ̄] = C ′′ +
∑
k

log[(k2 + λ̄+ 3κ2)2 − 4κ2k2]− NΛL
3λ̄

f
. (3.11)

By replacing
∑

kby L3
∫

d3k
(2π)3

then solving the saddle point equation
δSeff
δλ̄

= 0.

L3

∫
d3k

(2π)3

2(k2 + λ̄+ 3κ2)

(k2 + λ̄+ 3κ2)2 − 4κ2k2
=
NΛL3

f∫
k2dkdΩ

(2π)3
[

1

(k2 − 2κk + λ̄+ 3κ2)
+

1

(k2 + 2κk + λ̄+ 3κ2)
] =
NΛ
f∫

k2dk

2π2
[

1

(k − κ)2 + λ̄+ 2κ2
+

1

(k + κ)2 + λ̄+ 2κ2
] =
NΛ
f
. (3.12)

Setting m2
0 = λ̄ + 2κ2 , and we assume κ → 0 then use the Pauli-Villars regular-

ization,

∫
d3k

(2π)3

1

k2 +m2
0

→
∫

d3k

(2π)3

1

k2 +m2
0

− 1

k2 + Λ2
=
NΛ
2f

∞∫
0

dk −m2
0

∞∫
0

dk

k2 +m2
0

−
∞∫

0

dk + Λ2

∞∫
0

dk

k2 + Λ2
=
Nπ2Λ

f

π

2
(Λ−m0) =

Nπ2Λ

f

m0 = (1− 4π

f
)Λ

m2
0 = (1− 4π

f
)2Λ2. (3.13)
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We can see at high temperature m0 is comparable with Λ. With the condition

κ � 1, we can neglect it when using the mean field theory to estimate the value

of m2
0.

3.2.3 Perturbative Calculation

In momentum space, the non-perturbative part S0 and perturbative parts Si1,

Si2 are

S0 =
∑
k

z†k(k
2 +m2

0 − 2κkiσi)zk, (3.14)

Si1 = −
∑
k,q

z†
k+ q

2
(2kiai,q + 2κai,q + hqσz)zk− q

2
, (3.15)

Si2 =
∑
k,q,p

z†kzqai,pai,k−p−q. (3.16)

The propagator of z field can be read as 〈zkz†k〉 = 1
k2+m2

0−2κkiσi
. The relevant

Feynman diagrams are in Figure 3.6. The propagator is G0,z(k) = 〈zkz†k〉 =

1
k2+m2

0−2κkiσi
. The relevant Feynman rules and diagrams are in Figure 3.6. The

Figure 3.6: Feynman rules and Feynman diagrams
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effective action of Figure 3.6(d) diagram is

Sd = L6Tr

∫
d3kd3q

(2π)3

ai,qai,−q
k2 +m2

0 − 2κkiσi

= L6

∫
d3kd3q

(2π)3

2ai,qai,−q
k2 +m2

0

+
4κ2k2ai,qai,−q
(k2 +m2

0)2
+O(κ4). (3.17)

Here we just ignore the κ2 and higher order, by employing Pauli-Villars regular-

ization,

∫
d3k

(2π)3

1

k2 + λ̄
→
∫

d3k

(2π)3
(

1

k2 +m2
0

− 1

k2 + Λ2
)

=
1

4π
(Λ−m0). (3.18)

So that,

Sd =
L6

2π
(Λ−m0)

∫
d3q

(2π)3
ai,qai,−q. (3.19)
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In Fig(e),

Se = −L
6

2!

∫
d3kd3q

(2π)6

× 〈2z†
k+ q

2
(−kiai,q − κai,qσi −

hq
2
σ3)zk− q

2

× 2z†
k− q

2
(−kjaj,−q − κaj,−qσj −

h−q
2
σ3)zk+ q

2
〉

= −2L6Tr

∫
d3kd3q

(2π)6

1

(k + q
2
)2 +m2

0 − 2κ(k + q
2
)i′σi′

× [kiai,−q + κai,−qσi + (κa3,−q +
h−q
2

)σ3]

× 1

(k − q
2
)2 +m2

0 − 2κ(k − q
2
)j′σj′

[kjaj,q + κaj,qσj + σ3]

= −2L6

∫
d3kd3q

(2π)6
[

1

(k + q
2
)2 +m2

0

+
2κ(k + q

2
)i′σi′

[(k + q
2
)2 +m2

0]2
+O(κ2)]

× [kiai,−q + κai,−qσi + (κa3,−q +
h−q
2

)σ3][
1

(k − q
2
)2 +m2

0

+
2κ(k − q

2
)j′σj′

[(k − q
2
)2 +m2

0]2
+O(κ2)][kjaj,q + κaj,qσj + (κa3,q +

hq
2

)σ3]

+
2κ(k + q

2
)i′σi′

[(k + q
2
)2 +m2

0]2
[kiai,−q + κai,−qσi + (κa3,−q +

h−q
2

)σ3]
(kjaj,q + κaj,qσj + hq

2
σ3)

(k − q
2
)2 +m2

0

+O(κ2)] (3.20)

We do not consider the κ2a2
i term with the same reason of 2D situation in Sb.

Also h2 term is neglected because it decouples with ai. We employ Feynman

parametrization to work out the integrals,

Se1 = −4L6

∫
d3qd3k

(2π)6

1∫
0

dx
(kiai)

2

{x[(k + q
2
)2 +m2

0] + (1− x)[(k − q
2
)2 +m2

0]}2
(3.21)

59



with

A =

∫
d3k

(2π)3

1∫
0

dx
(kiai)

2

[k2 + q2

4
+m2

0 + 2(x− 1
2
)k � q]2

=

1∫
0

dx

∫
d3k

(2π)3

(kiai)
2

{[k + (x− 1
2
)q]2 + q2

4
+m2

0 − (x− 1
2
)2q2}2

=

1∫
0

dx

∫
d3l

(2π)3

{[l − (x− 1
2
)q]iai}2

[l2 +m2
0 + x(1− x)q2]2

(3.22)

(3.23)

where l = k+(x− 1
2
)q and define ∆ = m2

0 +x(1−x)q2. A is divided into two parts

A = A1 + A2 (3.24)

A1 =

1∫
0

dx

∫
d3l

(2π)3

(liai)
2

(l2 +∆)2

=

1∫
0

dx

∫
dΩ

∞∫
0

l2dl

(2π)3

1

3

l2aiai
(l2 +∆)2

=
1

6π2

1∫
0

dx

∞∫
0

l4dl

(l2 +∆)2
a2 (3.25)
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A1 → A′1 =
1

6π2

1∫
0

dx

∞∫
0

[
l4dl

(l2 +∆)2
− l4dl

(l2 + Λ2)2
]a2
i

= − 1

4π2

1∫
0

dx
π

2
(
√
∆− Λ)a2

i

= − 1

8π

1∫
0

dx(
√
m2

0 + x(1− x)q2 − ΛPV )a2
i

= − 1

8π

1∫
0

dx(m0 − ΛPV −
x(1− x)q2

2m0

]a2
i +O(q4)

= − 1

8π
(m0 − Λ+

q2a2

12m0

) +O(q4) (3.26)

A2 =

1∫
0

dx

∫
d3l

(2π)3

(x− 1
2
)2(qiai)

2

(l2 +∆)2

=
1

2π2

1∫
0

dx

∞∫
0

l2dl
(x− 1

2
)2(qiai)

2

(l2 +∆)2

=
1

2π2

1∫
0

dx[

∞∫
o

[
dl

l2 +∆
− ∆dl

(l2 +∆)2
](x− 1

2
)2(qiai)

2

=
1

2π2

1∫
0

dx
π

4

1√
∆

(x− 1

2
)2(qiai)

2

=
1

96π

1

m0

(qiai)
2 +O(q4) (3.27)

A′1 + A2 = − 1

8π
(m0 − Λ)a2 − 1

96πm0

[q2a2 − (qiai)
2] +O(q4) (3.28)

Se1 =
L3

2π

∫
d3q

(2π)3
(m0 − Λ) +

1

12m0

[q2a2 − (qiai)
2] +O(q4)

=
L6

2π

∫
d3q

(2π)3
(m0 − ΛPV ) +

1

12m0

[aiq
2ai − qiaiqjaj] +O(q4) (3.29)

Sd + Se1 =
L6

24πm0

∫
d3q

(2π)3
[aiq

2ai − qiaiqjaj] +O(q4)

=
L3

24πm0

∫
d3r[−ai∂2ai + ai∂i∂jaj] +O(q4)

=
L3

48πm0

∫
d3rfijfij +O(∂4) =

L3

24πm0

∫
d3rb2 +O(∂4) (3.30)
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where fij = ∂iaj − ∂jai. Then

Se2 = Shb = −4L6

∫
d3kd3q

(2π)6
[
iκ2εij3(k + q

2
)iaj,−qhq + iκ2εi3j(k + q

2
)ih−qaj,q

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]

+
iκ2εij3ai,−q(k − q

2
)jhq + iκ2ε3ijh−q(k − q

2
)iaj,q

[(k + q
2
)2 +m2

0][(k − q
2
)2 +m2

0]2
] +O(κ3)

= 4κ2L6

∫
d3kd3q

(2π)6
{−4k � q(iε3ij)ki(aj,−qhq − aj,qh−q)

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]2

+
2(k2 + q2

4
+m2

0)(bqh−q + b−qhq)

[(k + q
2
)2 +m2

0]2[(k − q
2
)2 +m2

0]2
}

= 8κ2L6

1∫
0

dx

∫
d3ld3q

(2π)6

h−qbq(
q2

4
+m2

0)

(l2 +∆)4

= 8κ2L6

1∫
0

dx

∫
l2dl

2π2

∫
d3q

(2π)3

( q
2

4
+m2

0)h−qbq

(l2 +∆)4

→ 8κ2L6

1∫
0

dx

∫
l2dl

2π2

∫
d3q

(2π)3
(

1

(l2 +∆)4
− 1

(l2 + Λ2)4
)(
q2

4
+m2

0)h−qbq

4κ2L6

π2

1∫
0

dx

∫
d3q

(2π)3

π

32
(

1

m5
0

− 1

Λ5
)(
q2

4
+m2

0)h−qbq

=
κ2L6

8π

∫
d3q

(2π)3
(

1

m3
0

− m2
0

Λ5
)h−qbq +O(q2) (3.31)

Here, we also add the term 1
l2+Λ2 even the integral is not divergent because we

need to consider in the system there exists the momentum cut-off Λ which is pro-

portional to 1/a, a is the lattice constant. We use the Pauli-Villars regularization∫∞
0
f(k,m0)− f(k, Λ) to replace

∫ Λ
0
f(k,m0). In real space,

Sb2 + Shb =
L3

π

∫
d3r

1

24m0

b2 +
κ2h

8
(

1

m3
0

− m2
0

Λ5
)bz + ... . (3.32)
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The saddle point is easy to get 〈bz〉 = −3
2
κ2h( 1

m2
0
−m3

0

Λ5 ) and pluge in m0 = Λ(1− 4π
f

)

at high temperature . So,

〈bz〉 = −3

2

κ2h

Λ2
[

1

(1− 4π
f

)2
− (1− 4π

f
)3]. (3.33)

Then we expand it to the order of 1
f3
.

〈bz〉 = −3κ2h

2Λ2
[
20π

f
+

320π3

f 3
+O(

1

f 4
)]

= −30πκ2h

Λ2
[
1

f
+

16π2

f 3
+O(

1

f 4
)]. (3.34)

The average of the topological charge in the plane perpendicular to the external

magnetic field is

〈Q〉 =
L2

4π
〈bz〉 = − 1

4π
a2 30π

Λ2
(
D

2Ja
)2(

B

2Ja2
)
J

T
[1 + (

4πJ

T
)2] +O((

J

T
)4)

= −15

16
N2BD

2

J2T
[1 + (

4πJ

T
)2] +O((

J

T
)4), (3.35)

where N2 is the size of the x − y plane. This calculation is for the homogeneous

cubic bulk chiral magnets. Roughly, we can compare the absolute value of 〈Q〉

in 3D and 2D at a unique temperature in high temperature region. It is obvious

that, the value of 3D is smaller than 2D.

3.3 Thickness dependence

The deviation of spins n away from its ground state can be described by the

magnon whose dynamic can be described by a plane wave if it is confined in a

finite size space. If the layers at z direction is finite, the modes at z direction is

no longer treated continuous due to the cut-off of |kz| as Λ and Λ ∼ 1
a

where a

is the lattice constant of the cubic lattice. To explain the thickness dependent
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problem, Λ is set to be π
a
. If the number of layers is Nz, the modes of magnons

has kz = πm
(Nz−1)a

, in which Nz ≥ 2 and m ≤ Nz − 1 is an integer makes |kz| ≤ Λ.

When the number of layers are small, the modes are discrete. When the number

of layers increases, the number of modes increases correspondingly in the range of

[0, Λ] which means the magnon becomes more close to the continuous modes. It

can explain why the number of layers get to some point, the topological charge

versus temperature figures do not change in configurations.

3.3.1 Mean field approximation

Firstly , the kz is discretized and k =
√
k2
x + k2

y is defined for simplicity.

Employing Pauli-Villars regularization[114, 115, 116] the mean field approximation

is regularization, the mean field approximation is

∑
kz

∫
d2k

(2π)2

1

k2 + k2
z +m2

0

→
∑
kz

∫
d2k

(2π)2

1

k2 + k2
z +m2

0

− 1

k2 + k2
z + Λ2

=
NΛ
2f∑

kz

∫
d2k

(2π)2

1

k2 + k2
z +m2

0

− 1

k2 + k2
z + Λ2

=
NΛ
2f

2π

2

∫
dk2dkz
(2π)2

1

k2 + k2
z +m2

0

− 1

k2 + k2
z + Λ2

=
NΛ
2f∑

kz

1

4π
log

k2
z + Λ2

k2
z +m2

0

=
NΛ
2f∑

k

log
k2
z + Λ2

k2
z +m2

0

=
2πNΛ
f

(3.36)

when N = 2, ∑
kz

log
k2
z + Λ2

k2
z +m2

0

=
4π

f
(3.37)

when Nz = 1 which means kz = 0, it is

log
Λ2

m2
0

=
4π

f
(3.38)
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When Nz = 2,

log
2Λ2

Λ2 +m2
0

+ log
Λ2

m2
0

=
4π

f

log
2Λ4

(Λ2 +m2
0)m2

0

=
4π

f

(Λ2 +m2
0)m2

0 + 1
4
Λ4

2Λ4
= exp(−4π

f
)

(Λ2 +m2
0)2 = 2Λ4 exp(−4π

f
)− 1

4
Λ4

m2
0 = Λ2(

√
2 exp(−4π

f
)− 1

4
− 1). (3.39)

when Nz = 3, |kz| = 0, π
2a

(Λ
2
), π

a
(Λ),

log
Λ2

4
+ Λ2

Λ2

4
+m2

0

+ log
2Λ2

Λ2 +m2
0

+ log
Λ2

m2
0

=
4π

f

log(
5Λ2

Λ2 + 4m2
0

) + log
2Λ2

Λ2 +m2
0

+ log
Λ2

m2
0

=
4π

f
. (3.40)

When Nz = n, kz = πm
(n−1)a

(m = ±(n− 1), ±(n− 2), ...0).

3.3.2 Thickness dependence of 〈bz〉

By comparing to the 2D calculation, the effective action is similar to 2D model,

just add
∑

kz
and replace Λ2 and m2

0 by Λ2 + k2
z and m2

0 + k2
z ,

Sb2 =
L4

π

∑
kz

∫
d2q

(2π)2

b2
q

12(m2
0 + k2

z)
+O(q2b2) (3.41)

Shb =
2L4κ2

π

∑
kz

∫
d2q

(2π)2
[
(Λ2 + k2

z)
3 − (m2

0 + k2
z)

3

(m2
0 + k2

z)
2(Λ2 + k2

z)
3

+O(q2)]h−qbq. (3.42)

By solving the equation
δ(Sb2+Shb)

δb
= 0 , we can get

〈b〉 = 12κ2h
∑
kz

(Λ2 + k2
z)

3 − (m2
0 + k2

z)
3

(Λ2 + k2
z)

3(m2
0 + k2

z)
2
/
∑
kz

1

m2
0 + k2

z

. (3.43)
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Several Nz has been chosen to do this calculation and the results shown in Figure

3.7. From Figure 3.7(a), the 〈bz〉 will decay more quickly and has the larger

Figure 3.7:
(a) The relationship between 〈bz〉 and T/J . (b)The relationship be-
tween 〈bz〉 and T/J .

value with a smaller number of layers. And Figure 3.7(b) shows at each fixed

temperature chosen, 〈bz〉 will decay with the increasing number of the layers.

When the number arrives at some point, the change of the 〈bz〉 becomes flat. The

analysis from a magnon view is consistent with the numerical results, especially

for the invariance of the topological charge when the numbers of layers are larger

than some value.

3.4 Conclusion

As an extensive work of the 2D chrial magnets[102], we investigate the topo-

logical charge in 3D chiral magnetic system through Monte Carlo simulation and

CP 1 field theory calculation. Then thickness dependent phenomenon was also

discussed explained by a physical picture of the magnon excitations. Whatever

from the numerical or the analytical results, it can be seen that the absolute value

of the topological charge at the valley point is smaller with a larger number of the
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layers. When the number of layer arrives at some point, the configurations of the

of 〈Q〉 versus T/J figures is invariant, won’t change with increasing of the layers.

In the experiments of thin film SrRuO3[103], they increased the number of

layers to test the variance of the THE signals. When the number of layers is

seven, there no THE signal. Because the DM interaction in SrRuO3/SrTiO3 is

due to the interface effect. The Deff×t =constant where t is the number of layers.

Our theoretical calculation is based on the model of homogenous chiral magnets.

So we look forward the future experiments to confirm or fight against our results.
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CHAPTER IV

Topological charge in antiferromagnetic system

with different kinds of DM interaction

The results from chapter II and chapter III have proved that the nonzero topo-

logical charge does not respond to the existence of the skyrmions in the magnetic

systems[102]. However, the topological charge is very important to the topo-

logical Hall effect, as mentioned in previous chapters[77, 87]. In the previous

chapters, we just focus on the the spin systems with ferromagnetic interaction

and Dzyloshinskii-Moriya(DM) interaction which is parallel to the bonds of two

nearest spins. This model describes the non-centrosymmetric ferromagnets. The

Heisenberg interaction in the this system is ferromagnetic system. It is natural to

think about the situation when the type of Heisenberg interaction changes to the

antiferromagnetic interaction. This magnetic system can be found in real materi-

als, for example, the monolayer MnBi[124, 125]. By the results from the previous

chapters, the DM interaction plays an important role to produce the nonzero topo-

logical charge in non-centrosymmetric system. However, in centrosymmetric mag-

nets, there still can be DM interaction. The staggered DM interaction will respect

the inversion symmetry of the whole system and can be found in CaMnO3[126,

127, 128], BiFeO3[129, 130, 131] and LaFeO3[132] . In this chapter, the thermally

driven topology in non-centrosymmeric antiferromagnet and centrosymmetric an-
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tiferromagnet with staggered DM interactions will be discussed.

4.1 Topological charge in frustrated magnetic system

The thermally driven topology of the 2D Antiferromagnetic frustrated system

has been studied in Ref[133]. The model is based on a simple hexagonal lattice

which can be regarded as a 2D hexagonal boron nitride structure with buckling, as

shown in Figure 4.1(a). There are two sublattices A and B, are in different atomic

Figure 4.1:
(a)Top view and side view of the Top view and side view for the crystal
structure of a 2D hexagonal lattice with A and B sublattices. (b)The
relationship between topological charge density and temperature with
D = 0.40J , Ku = 0.20J and B = 0.40J .

mono-layers. Magnetic atoms are located at sublattice A and heavy atoms such

as 4d or 5d transition metal with strong spin-orbit coupling (SOC) are located at

B. A has local magnetic moment. Three dashed lines in Figure 4.1 give six nearest

neighbors for one A site. The direction of DM interaction D is given by six arrows.

This system has the point group of C3v without inversion symmetry and it is also a

prototype of many non-centrosymmetric magnetic monolayer film systems such as

Fe/Ir(111) and Fe/Re(0001)[134, 135, 136]. Then the Hamiltonian in this model

is given by
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H =
∑
〈ij〉

[JSi � Sj + Dij � (Si × Sj)]−
∑
i

(
1

2
KuS

2
iz +BSiz), (4.1)

where 〈ij〉 means nearest neighbors in the first term, J > 0 is for antiferromag-

netic Heisenberg interaction which originates from the superexchange between two

neighboring A sites along A-B-A bond as well as direct exchange along A-A bond.

The direction of DM interaction is shown in Figure 4.1 which is perpendicular

to the bond connecting the nearest magnetic sites. |Dij| = D is a constant in

the numerical simulation. The Ku is the uniaxial anisotropy. In this model, the

anisotropy makes the z−axis which is perpendicular to the plane of hexagonal

lattice plane as an easy axis of spins. The object of introducing this interaction is

to study the MnBi system. The last term in Hamiltonian is the Zeeman coupling

term. B is the external magnetic system.

It has been reported that the skyrmion phase is, in principle, possible in frus-

trated magnets[137, 138]. However, such phase exists only at external fields B

comparable to the antiferromagnetic exchange J, which is extremely large in most

antiferromagnets. The Monte Carlo simulations reveal that nonzero topological

charge takes place at low fields and elevated temperatures. The numerical results

predicted that the experiments can be easily performed to measure the signals

from the topological charge. Specially, in monolayer MnBi, the DM interaction is

exceedingly large. The high field situation is also discussed in this work. Figure

4.1(b) shows the relationship between the topolgoical charge and temperature.

It is obvious that the topological charge is immune from finite size effect. The

parameters are D = 0.40J, Ku = 0.20Jand B = 0.40J . The topological charge

density is zero at very low temperature. With the increasing of the temperature,

at some point, the topological charge begins to emerge and get the maximum

of the absolute value at T = 0.34J with |QT | about 6.07 per 1000 spins. Then
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the absolute value of the topological charge decays. At very high temperature it

converges to zero. Accomplishing that, the spin textures become completely ran-

dom. The configuration of the |QT | per 1000 spins versus temperature is similar to

the 2D homogeneous non-centrosymmetric ferromagnets which have been shown

in Chapter[102]. Also, in this work, the QTversus magnitude of DM interaction

D and the external magnetic field B has been done. At the high temeprature

T = 1.49J. It is

QT ∝ D2B (4.2)

The results are shown in Figure 4.4. And also the relationship between QT and

Figure 4.2:
Relationship between topological charge, and DM interaction as well
as external magnetic field.

the anisotropy Ku is studied in this work. The Figure 4.5 shows the results. At
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Figure 4.3:
Relationship between topological charge and uniaxial magnetic
anisotropy.

high temperature, it is

QT ∝ D2B(1 + αKu), α > 0. (4.3)

Here, in frustrated magnetic system with antiferromagnetic system also has the

thermally driven topology.
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4.2 Topological charge in antiferromagnets with staggered

DM interaction.

4.2.1 Model

Here, we perform the calculation on a 2D antiferromagnetic square lattice with

staggered DM interaction. There are two sublattices, A and B . The unit cell is

shown in Figure 4.4(a). The position of the unit cell is chosen as the same position

as A site. The primitive vectors are â1 = x̂+ ŷ and â2 = x̂− ŷ.

H =
∑
i

J

2
SAi � (SBi + SBi+â1 + SBi+â2 + SBi+â1+â2

)

+
D

2
[ŷ � SAi × (SBi + SBi+â1+â2

)− x̂ � (SBi+â1 + SBi+â2)]

−B
∑
i

(SAiz + SBiz) (4.4)

in which J > 0 and D > 0. For site B, A↔ B, D → −D is the reason why it is

called staggered DM interaction. The Fourier transformation of S(r) as

SAi =
1√
N

∑
k

SAk exp(ik � Ri) (4.5)

SBi =
1√
N

∑
k

SBk exp(−ikx) exp(ik � Ri) (4.6)

The Heisenberg interaction part is

HHeisenberg =
J

2N

∑
i

∑
k′

∑
k

SAk′ � S
B
k e

i(k′+k)�Ri(eikx + e−ikx + eiky + e−iky)

=
J

N

∑
k′

∑
k

SAk′ � S
B
k δk+k′,0(cos kx + cos ky)

= J
∑
k

SA−k � S
B
k (cos kx + cos ky).

73



The DM interaction is

HDM =
2D

2N

∑
i

∑
k′

∑
k

(ŷ � SAk′ × SBk cos kx − x̂ � SAk′ × SBk cos ky)e
i(k+k′)�Ri

= D
∑
k

(ŷ � SA−k × SBk cos kx − x̂SA−k × SBk cos ky)

The total energy has the form

Figure 4.4:
(a)The unit cell and primitive vectors. (b)The smallest cell of stag-
gered DM situation.

H =
1

2

∑
k

(SAT−k , SBT−k )
( 0 Mk

MT
k 0

)( SAk

SBk

)
(4.7)

in which

M =

( J(cos kx + cos ky) 0 −D cos kx

0 J(cos kx + cos ky) −D cos ky

D cos kx D cos ky J(cos kx + cos ky)

)
, (4.8)

and Sk =
( SAk

SBk

)
. Next is to determine the ground state of the system.
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4.2.2 Ground state

4.2.2.1 Situation without the external magnetic field

We add the Lagrangian multiplier to make sure the length of the spins SA,k

and SB,k are the same , Hλ = λ(SA−k � S
A
k − SB−k � S

B
k ). So

H =
1

2

∑
k

(SAT−k , SBT−k )
( 0 Mk

MT
k 0

)( SAk

SBk

)
(4.9)

Solving the equation δH
δS−k

= 0 will get the minimum value of the energy which

corresponds to the ground state of the system. The equations are

( λI3×3 Mk

MT
k −λI3×3

)( SAk

SBk

)
= 0. (4.10)

Then SAk = −MkM
T
k

λ2
SAk and SBk = −MT

k Mk

λ2
SBk . The matrix is

MkM
T
k = MT

k Mk =

( A2
k +D2 cos2 ky −D2 cos kx cos ky 0

−D2 cos kx cos ky A2
k +D2 cos2 kx 0

0 0 A2
k +D2(cos2 kx + cos2 ky)

)
,

(4.11)

in whichAk = J(cos kx+cos ky). The eigenvalues are E2
1 = J2(cos kx+cos ky)

2, E2
2,3 =

J2(cos kx + cos ky)
2 +D2(cos2 kx + cos2 ky). So E1± = ±J | cos kx + cos ky|, E2,3± =

±
√
J2(cos kx + cos ky)2 +D2(cos2 kx + cos2 ky). When kx = ky = 0, E can get its

minimum Emin = −2
√
J2 + D2

2
. So we have

( 0 M0

MT
0 0

)
S0 = −2

√
J2 + D2

2
S0.

The kx = ky = 0 means, for the sublattice A, the ground state is the ferromagnetic
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state, and either for sublattice B. Then, we have

( 2J 0 −D

0 2J −D

D D 2J

)( SBx

SBy

SBz

)
= −2

√
J2 +

D2

2

( SAx

SAy

SAz

)
, (4.12)

we define cos θ = J√
J2+D2

2

, tan θ = D√
2J

and

( SAx

SAy

SAz

)
= −

( cos θ 0 sin θ√
2

0 cos θ − sin θ√
2

− sin θ√
2

sin θ√
2

cos θ

)( SBx

SBy

SBz

)
. (4.13)

Here Sci = Sci,k=0 and

M ′ = −

( cos θ 0 sin θ√
2

0 cos θ − sin θ√
2

− sin θ√
2

sin θ√
2

cos θ

)
. (4.14)

Then

M ′M ′T = M ′TM ′ =

( cos θ 0 sin θ√
2

0 cos θ − sin θ√
2

− sin θ√
2

sin θ√
2

cos θ

)( cos θ 0 − sin θ√
2

0 cos θ sin θ√
2

sin θ√
2
− sin θ√

2
cos θ

)

=

( cos2 θ + 1
2

sin2 θ −1
2

sin2 θ 0

−1
2

sin2 θ cos2 θ + 1
2

sin2 θ 0

0 0 cos2 θ + 1
2

sin2 θ

)
.

(4.15)
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The equation is

SA = M ′TM ′SA (4.16)

SB = M ′M ′TSB (4.17)

By solving the equations, we can get Scx = Scy, S
c
z = 0 where c = A,B which means

the spins of sublattice A and sublattice B are parallel to the diagonal direction of

the square lattice.

4.2.2.2 The situation with external magnetic field

When turning on a small external magnetic field perpendicular to the 2D plane,

intuitively speaking, the component at the direction of the magnetic moments will

not be zero. Following the results of ground state without the external magnetic

field, we can make the ansatz as

SA = (
1√
2

sin θA,
1√
2

sin θA, cos θA), (4.18)

which is for sublattice A and for sublattice B, it is

SB = (
1√
2

sin θB,
1√
2

sin θB, cos θB), (4.19)

With this ansatz, the energy of one unit cell is

H = 2J cos(θA − θB)−
√

2D sin(θA − θB)−B(cos θA + cos θB). (4.20)
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Then we minimize the energy by solving the following equations,

∂H

∂θA
= −2J sin(θA − θB)−

√
2D cos(θA − θB) +B sin θA = 0, (4.21)

∂H

∂θB
= 2J sin(θA − θB) +

√
2D cos(θA − θB) +B sin θA = 0. (4.22)

Then the solution is

sin θA = − sin θB, (4.23)

with θA, θB ∈ [−π, π] . So we can get θA = −θB. And

2J sin 2θA +
√

2D cos 2θA = B sin θA. (4.24)

This results match the Monte Carlo simulation at almost zero temperature. The

ground state is that the in-plane components are parallel to the diagonal direction

of the square lattice but for sublattice A and sublattice B, the in-plane components

are antiparallel. And the sublattice A and sublattice B have the same component

perpendicular to the plane. This is a canted antiferromagnetic phase.

4.2.3 Spin chirality at high temperature

Inspired by the work of the chiral magnets, we investigate the topological

charge of the smallest cell. We use the spin chirality of the triangle to replace

the solid angle which is the triple product of the tree spins on this triangle. The

smallest unit cell in staggered DM system is shown by Figure4.6(b). The energy

is

E = −jS0 �
4∑
i=1

Si + dS0 � [x̂× (S1 + S3) + ŷ × (S2 + S4)]− h
4∑
i=0

Siz, (4.25)
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where j > 0 is the Heisenberg antiferromagnetic interaction, d is the magnitude

of DM interaction and h is the external magnetic field. The topological charge Q

is

4πQ = S0 � (S1 × S2 + S2 × S3 + S3 × S4 + S4 × S1). (4.26)

The thermal average is

〈Q〉 =

∫ ∏
i

dSiQ exp(−H
T

). (4.27)

With high temperature limit,

〈Q〉 =

∫ ∏
i

dSiQ(1− H

T
+

1

2!
(
H

T
)2 − 1

3!
(
H

T
)3 +

1

4!
(
H

T
)4 + ...). (4.28)

Employing the same method from Ref[102], we can get the first non-zero value as

the order of 1
T

. Now we need to do an analysis first. The notation is i = 0 ∼

4, α = x, y, z. The solid angle part 4πQ gives 3 components of spins. If we want to

get the paired components, the total number of components should be even. The

Heisenberg term will provide two components and also the DM term. The Zeeman

coupling term just provides one component. So it is required that nonzero terms in

the polynomial form of 〈Q〉 should include the odd orders of h. The terms without

DM interaction d can be ignored because it is identical to d = 0 situation which

it is just ferromagnetic phase with an external magnetic field, from the physical

picture, the topological charge cannot emerge. Also, the terms with odd orders of

d can be ignored because of the binary system, for example, the sublattice A has

positive d and B has the negative d. If we sum over all the lattice, the terms of

the two different sites will be cancelled with each other. They will not contribute

to the net topological charge. The summation of the selecting rules is

1. Odd order of h( even number of the components),
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2. Contain d (DM interaction induces the topological charge),

3. the order of d should be even( Terms with odd orders will be canceled with

two kinds of sites with opposite DM interaction.)

Then we do it order by order,

• ( 1
T

)0: None,

• ( 1
T

)1: None,

• ( 1
T

)2: None,

• ( 1
T

)3 : d2h(proved no contribution),

• ( 1
T

)4 : jd2h(proved no contribution).

• ( 1
T

)5 : j2d2h(no contribution), d2h3(no contribution), d4h(no contribution),

... . We use the Mathematica to pick up the terms we want and then pick up all

the terms have the even orders of the siα. Our algorithm is

1. Compute QHn(n ≥ 3) which corresponds to the order 1
Tn

,

2. Array s[j](j = 0 ∼ 15), replace {s0x, s0y, s0z} → {s[1], s[2], s[3]}, ..., {s4x, s4y, s4z} →

{s[13], s[14], s[15]},

3. Pick up the coefficient of unique combination of j, d and h, for example,

Q3 = coefficient[QH3, d2h],

4. For j = 0, j < 16, j = j + 1, Q3 = 1
2
[Q3 + Q3(s[j] → −s[j])]. Use this

iterative method to eliminate the terms have odd orders of siα ,

5. Analyze the left terms.

The way to analyze the left terms is direct forward, just representing the compo-

nents of spins in spherical coordinate.
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1. {s[1], s[2], s[3]} → {sin θ1 cosφ1, sin θ1 sinφ1, cos θ1}, ... ,{s[13], s[14], s[15]} →

{sin θ5 cosφ5, sin θ5 sinφ5, cos θ5}.

2. 〈Q〉 =
∫ ∏

i
dSiQ exp(−H

T
),
∫ ∏

i dSi →
∫ ∏

i dΩi =
∫ ∏

i sin θidθidφi

3. Then integrate over all the θi, φi.(The Mathematica code will be added as

an appendice.)

With the results arrive at ( 1
T

)5, at high temperature limit, there is no nonzero

contribution terms to the spin chirality. From the view of the symmetry, it is not

hard to get the average of the spin chirality is zero. If we change the spin S1 and

S3.

4πQ′ = S0 � (S3 × S2 + S2 × S1 + S1 × S4 + S4 × S3)

= −S0 � (S2 × S3 + S1 × S2 + S1 × S4 + S4 × S3) = −4πQ. (4.29)

But from Eqn.(4.24), the energy does not change. It is to prove that the thermal

average of chirality is zero. In antiferromagnetic case, it is not proper to use the

spin chirality to replace the solid angle. The solid angle need to be calculated

by the Berg formula which has been used in the numerical simulation. We did

a Metropolis calculation on this five spins system, searching for the explanation

based on a simple physical picture as we did in 2D chiral magnets. But no converge

results is achieved. The program written by Mathematica is attached in Appendix

B. It motivated us to investigate the topological charge in a finite size lattice with

staggered DM interaction.

4.2.4 Topological charge in antiferromagnetic square lattice with stag-

gered DM interaction

The procedure is similar to the pervious works of calculating the average topo-

logical charges in various magnetic systems. The Metropolis method[105] is used
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to generate Markov chain of spins to construct the spin lattice. The Berg for-

mula is employed to calculate the solid angle of nearest three spins. Then after

summing over all the solid angles, the thermal average of the topological charge is

achieved by employing the Boltzmann distribution. The results have been shown

as Figure 4.5. The left one of Figure 4.5 shows relationship between topological

Figure 4.5:
The topological charge of antiferromagnetic system with staggered DM
interaction

charge density and temperature with fixed DM interaction and various magnetic

fields. Comparing to the chiral magnetic system, the topological charge starts to

emerge at a very low temperature. Another difference is that when the external

magnetic field is along +z direction, the absolute values of topological charge den-

sity is positive and the value is large comparing to the chiral magnetic system.

When the external magnetic field is along −z direction, the topological charge

density is negative.The right picture in Figure 4.5 shows the relationship between

topological charge density and temperature with fixed magnetic field and various
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DM interaction.

In this system, each site of the lattice is an inversion center. It means the sys-

tem is centrosymmetric. The giant topological charge density at low temperature

need to be further investigated. The ground state without the external magnetic

is that the spins are parallel to the diagonal of the square lattice. The nearest

three spins are projected on the sphere as shown in Figure 4.6(a) and (b). At

Figure 4.6:
(a) Three spins on one triangle.(b)The projection fo the three spins
on the shpere.(c)The value of solid angle Ω∆ by Berg formula.

zero temperature, if there is no external magnetic field, they are coplanar. After

turning on the external magnetic field along +z direction, they will get a nonzero

component of z direction. With increasing the temperature, the S1 and S2 will

no be parallel by the thermal fluctuation. The three spins are no longer coplanar.

There will be a spin configurations of the three spins shown by S
′
0, S′1 and S2’ as

shown in Figure 4.8(b). The solid angle surrounded by them three is almost 2π.

A jump of solid angle from zero to almost 2π(or −2π when magnetic field is along

−z direction) is induced by the thermal fluctuation. The Berg formula[104] can

be written in another form,

exp(
iΩ∆1

2
) = cos(

Ω∆1

2
) + i sin(

Ω∆2

2
)

=
1

ρ
[(1 + S0 � S1 + S1 � S2 + S2 � S0) + iS0 � (S1 × S2)]. (4.30)
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How to determine the value of Ω∆ is shown in Figure 4.8(c). This phenomenon

happens around the ground state. When the temperature becomes higher, the

topological charge will be zero because of the randomness of spin textures. The

B−T diagram of topological charge is shown in Figure 4.7. It shows a symmetric

Figure 4.7: B − T diagram of topological charge in staggered DM system.

pattern about B = 0. The topological charge in paramagnetic phase is zero due to

the totally random spin textures. Also several points at different temperatures are

selected to capture the snapshots to investigate the spin textures, shown in Figure

4.8. The DM interaction is D = 0.20J and external magnetic field is B = 0.10J .

In this system, whether the topological hall effect is still connected to the

topological charge is doubted. The topological hall effect can be explained by

the adiabatic motion of electrons in magnetic system when the spin textures vary

gradually. In this kind of system, the nonzero topological charge exists at the

canted antiferromagnetic phase which has a staggered spin textures, the nearest
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Figure 4.8:
Snapshots of spin textures(a)T = 0.0176J. (b)T = 0.1998J .(c)T =
0.3947J .(d)T = 0.5912J .(e)T = 0.7845J .(f) T = 0.9998J . And D =
0.2J ,B = 0.1J .

spins are almost antiparallel. We look forward to the experiments to investigate

the relationship of topological charge and topological Hall effect in the antiferro-

magnetic systems. Another is that in this system, the difference of the topological

charge and spin chirality is significant. The relationship between topological Hall

conductivity, spin chirality and topological charge need to be further investigated
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CHAPTER V

Proximity effect between skyrmion material and

Type-II superconductor

As mentioned in the introduction, the magnetic skyrmion is a vortex like struc-

ture and the skyrmion crystal phase has the triangle lattice arrangement. In type-

II superconductor, there is a vortex phase. At this vortex phase, the arrangement

of the vortices is a triangular lattice. This triangular lattice is called by Abrikosov

lattice. With the similarity of the vortex structure and the triangular arrangement,

the interaction of the skyrmions and vortices in type-II superconductors[139, 140]

intrigued our interest. Our investigation based on a system contains two thin

films contacted together. One of the two films is the type-II superconductor and

another is skyrmion material. The type-II superconductor is in the vortex phase

and skyrmion material is in the SkX phase. The proximity effect of electrons in

the interface of the two films is studied by perturbative calculation. The behavior

of the vortices is described by the copper pairs . The direct way to understand

the interaction between vortices and skyrmions is to study the interaction between

the copper pairs and magnetization of the skyrmion materials.
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5.1 Model

We consider a 2D system consists of skyrmion material and superconductor

thin films. The superconductor is s-wave, so the copper pair is described by a

scalar field. The wave function of electrons is written in Nambu space[141] as

Ψ = (ψ↑, ψ↓, ψ
†
↓, −ψ

†
↑)
T (5.1)

The Hamiltonian of the model is

H =
1

2
Ψ †τz(

p2

2m
− µ+ αp � σ)Ψ − 1

2
JHΨ

+M � σΨ − g(∆ψ†↑ψ
†
↓ + h.c.), (5.2)

hich can describe the non-centrosymmetric superconductor and the skyrmion ma-

terials. M = (Mx, My, Mz) is used to describe the ferromagnetism. The ∆ is

the field of the Cooper pair for the s-wave superconductor, the coupling constant

is g. α is the strength of Dresselhaus spin orbit coupling. For simplicity, we set

Hund’s coupling JH = 1 and g = 1 . The motions of the conducting electrons and

holes are confined in a two-dimensional(2D) plane, so pz = 0. The action can be

written as

S =

β∫
0

dτ

L∫
0

d2r{1

2
Ψ †[∂τ+τz(

(−i∇)2

2m
−iα∇�σ−µ)]Ψ−1

2
Ψ †M�σΨ−(∆ψ†↑ψ

†
↓+h.c)}.

(5.3)

Turning to the frequency and momentum space, the Grassmann fields are

ψσ,n,p =
1

L2β

β∫
0

dτ

L∫
0

d2rψσ(r, τ)ei(ωnτ−p�r), (5.4)

ψ†σ,n.−p =
1

L2β

β∫
0

dτ

L∫
0

d2rψ†σ(r, τ)ei(ωnτ−p�r). (5.5)
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SoΨn,p = (ψ↑,n,p, ψ↓,n,p, ψ
†
↓,n,−p, −ψ

†
↑,n,−p)

T . The order parameter,

∆k =
1

L2

L∫
0

d2r∆(r)e−ik�r, (5.6)

∆̄−k = (∆k)
† =

1

L2

L∫
0

d2r∆̄(r)ik�r. (5.7)

The action in momentum space is

S(ωn, p, k) =
1

2

∑
ωn,p

Ψ †p

(
−iωn + ξp + αp � σ 0

0 −iωn − ξ−p − αp � σ

)
Ψp

−1

2

T

L2

∑
p,k

Ψ †
p+ k

2

(
Mk � σ ∆k

∆̄−k Mk � σ

)
Ψp− k

2

=
1

2
[
∑
n,p

Ψ †p

(
−iωn + ξp + αp � σ 0

0 −iωn − ξ−p − αp � σ

)
Ψp

− T

L2

∑
p,k

Ψ †
p+ k

2

(
Mk � σ ∆k

∆̄−k Mk � σ

)
Ψp− k

2
] (5.8)

with ξp = p2

2m
and ξp = ξ−p. The interaction part can be defined as

Σk =
T

L2

(
Mk � σ ∆k

∆̄−k Mk � σ

)
(5.9)

The spinor in momentum space can be represented as Ψp = (ψ↑,p, ψ↓,p, ψ
†
↓,−p, −ψ

†
↑,−p)

T

and Ψ †p = (ψ†↑,−p, ψ
†
↓,−p, ψ↓,p, −ψ↑,p) . The Green function of electrons and holes
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is read as

g(e)
p =

1

−iωn + ξp + αp � σ

=
−iωn + ξp − αp � σ
(−iωn + ξp)2 − α2p2

, (5.10)

g
(h)
−p =

1

−iωn − ξ−p − αp � σ

=
−iωn − ξ−p + αp � œ
(−iωn − ξ−p)2 − α2p2

. (5.11)

And

g(e)†
p =

iωn + ξp − αp � σ
(iωn + ξp)2 − α2p2

= −−iωn − ξ−p + αp � σ
(−iωn − ξ−p)2

= −g(h)
−p (5.12)

g
(h)†
−p =

iωn − ξp + αp � σ
(iωn − ξp)2 − α2p2

= − −iωn + ξp − αp � σ
(−iωn − ξp)2 − α2p2

= −g(e)
p (5.13)

Further,

g
(e)

p+ k
2

=
−iωn +

(p+ k
2

)2

2m
− α(p + k

2
) � σ

[−iωn −
(p+ k

2
)2

2m
]2 − α2(p+ k

2
)2

=
−iωn + 1

2m
(p2 + p � k + k2

4
)− α(p + k

2
) � σ

[−iωn − 1
2m

(p2 + p � k + k2

4
)]2 − α2(p2 + p � k + k2

4
)
. (5.14)

5.2 Effective action and Its Expansion

Here, we set the Boltzmann constant kB = 1. So, F = −T lnZ and−S =

−βF = lnZ with β = 1
T

where Z is the partition function. And Z = Tr(e−βF ) .

89



The partion function in path integral is

Z =

∫
DΨ †DΨ exp(−S)

=

∫
DΨ †DΨ exp(−

β∫
0

dτ

L∫
0

d2r
1

2
Ψ †GΨ) (5.15)

.By Summing (Intergrating) over Ψ , S = −lnZ = −Tr lnG−1. The minus sign is

from the exchage

S = −Tr lnG−1 = −Tr ln(G−1
0 + G−1

1 )

= −Tr ln[G−1
0 (1 + G0G−1

1 )]

= −TrlnG−1
0 − Tr ln(1− G0Σ) (5.16)

. The first term is a constant. After expanding the second term,

S = −Tr ln(1− G0Σ) = Tr(G0Σ) +
1

2
Tr(G0ΣG0Σ) +

1

3
Tr(G0ΣG0ΣG0Σ)

+
1

4
Tr(G0ΣG0ΣG0ΣG0Σ) +O(Σ5) (5.17)

and tr(G0Σ) = 0. We study the free energy for the system, F = −T lnZ = TS.
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5.2.1 Second Order Calculation of Free Energy

The second order of the action is

S2 =
T 2

2

∑
n

∫
d2p

(2π)2

∫
d2q

(2π)2
Tr(G0,p+ q

2
ΣqG0,p− q

2
Σ−q)

=
T 2

2

∑
n

∫
d2p

(2π)2

∫
d2q

(2π)2
Tr

(
ge
p+ k

2

0

0 gh−p− k
2

)(
Mq � œ ∆q

∆̄−q M−q � œ

)

�

(
gep− q

2
0

0 gh−p+ q
2

)(
M−q � σ ∆−q

∆̄q Mq � σ

)

=
T 2

2

∑
n

∫
d2p

(2π)2

∫
d2q

(2π)2
Tr

(
gep+ q

2
Mq � σ gep+ q

2
∆q

gh−p− q
2
∆̄−q gh−p− q

2
M−q � σ

)

�

(
gep− q

2
M−q � σ gep− q

2
∆−q

gh−p+ q
2
∆̄q gh−p+ q

2
Mq � σ

)

=
T 2

2

∑
n

∫
d2p

(2π)2

∫
d2q

(2π)2
tr(gep+ q

2
∆qg

h
−p+ q

2
∆̄q + gh−p− q

2
∆̄−qg

e
p− q

2
∆−q

+ gep+ q
2
Mq � σg

e
p− q

2
M−q � σ + gh−p− q

2
M−q � σg

h
−p+ q

2
Mq � σ) = S2∆ + S2M , (5.18)

where

S2∆ =
T 2

2

∫
d2p

(2π)2

∫
d2q

(2π)2
tr(gep+ q

2
∆qg

h
−p+ q

2
∆̄q + gh−p− q

2
∆̄−qg

e
p− q

2
∆−q)

=
T 2

8

∫
d2p

(2π)2

∫
d2q

(2π)2
tr(gep+ q

2
,+Pp+ q

2
,+ + gep+ q

2
,−Pp+ q

2
,−)∆q

×(gh−p+ q
2
,+P−p+ q

2
,+ + gh−p+ q

2
,−P−p+ q

2
,−)∆̄q + h.c.

=
T 2

4

∫
d2p

(2π)2

∫
d2q

(2π)2
[(gep+ q

2
,+ + gep+ q

2
,−)(gh−p+ q

2
,+ + gh−p+ q

2
,−)∆q∆̄q

+(gep+ q
2
,+ − g

e
p+ q

2
,−)(gh−p+ q

2
,+ − g

h
−p+ q

2
,−)

−p2 + q2

4

|p + q
2
||p− q

2
|
∆q∆̄q]

+h.c. (5.19)
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and

S2M =
T 2

2

∫
d2p

(2π)2

∫
d2q

(2π)2
tr(gep+ q

2
Mq � σg

e
p− q

2
M−q � σ + gh−p− q

2
M−q � σg

h
−p+ q

2
Mq � σ)

=
T 2

8

∫
d2p

(2π)2

∫
d2q

(2π)2
tr[(gep+ q

2
,+Pp+ q

2
,+ + gep+ q

2
,−Pp+ q

2
,−)Mq � σ

×(gep− q
2
,+Pp− q2 ,+ + gep− q

2
,−Pp− q2 ,−)M−q � σ] + h.c.

=
T 2

8

∫
d2p

(2π)2

∫
d2q

(2π)2
tr[(gep+ q

2
,+ + gep+ q

2
,−)Mq � σ(gep− q

2
,+ + gep− q

2
,−)M−q � σ

+(gep+ q
2
,+ − g

e
p+ q

2
,−)(gep− q

2
,+ − g

e
p− q

2
,−)

(p + q
2
) � σMq � σ(p− q

2
) � σM−q � σ

|p + q
2
||p− q

2
|

+(gep+ q
2
,+ + gep+ q

2
,−)(gep− q

2
,+ − g

e
p− q

2
,−)

Mq � σ(p− q
2
) � σM−q � σ

|p− q
2
|

+(gep+ q
2
,+ − g

e
p+ q

2
,−)(gep− q

2
,+ + gep− q

2
,−)

(p + q
2
) � σ(Mq � σ)M−q � σ

|p + q
2
|

] + h.c.

=
T 2

4

∫
d2p

(2π)

∫
d2q

(2π)2
[(gep+ q

2
,+ + gep+ q

2
,−)(gep− q

2
,+ + gep− q

2
,−)Mq � M−q

+(gep+ q
2
,+ − g

e
p+ q

2
,−)(gep− q

2
,+ − g

e
p− q

2
,−)

(δijδkl − δikδjl + δilδjk)

|p + q
2
||p− q

2
|

×(p+
q

2
)iMq,j(p−

q

2
)kM−q,l

+(gep+ q
2
,+ + gep+ q

2
,−)(gep− q

2
,+ − g

e
p− q

2
,−)
iεijkMq,i(p− q

2
)jM−q,k

|p− q
2
|

+(gep+ q
2
,+ − g

e
p+ q

2
,−)(gep− q

2
,+ + gep− q

2
,−)
iεijk(p+ q

2
)iMq,jM−q,k

|p + q
2
|

] + h.c.

=
T 2

4

∫
d2p

(2π)2

∫
d2q

(2π)2
[(gep+ q

2
,+ + gep+ q

2
,−)(gep− q

2
,+ + gep− q

2
,−)Mq � M−q

+
(gep+ q

2
,+ − g

e
p+ q

2
,−)(gep− q

2
,+ − g

e
p− q

2
,−)

|p + q
2
||p− q

2
|

[2(p � Mq)(p � M−q)

−(q � Mq)(q � M−q)

2
− (p2 − q2

4
)(Mq � M−q)]. (5.20)

Firstly, we consider the dynamic parts of the order parameters. Here, for the

purpose to estimate the coefficient before the ∂∆̄∂∆ , we just consider the O(k
2

m
)

term.

F∆̄∆ =

∫
d2r[c∂∆̄∂∆+ a|∆̄∆|+ b

2
|∆̄∆|2 + ...] (5.21)
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The term−T 2

L4

∑
n,p,k

ξp
(ω2
n+ξ2p)2

k2

4m
(∆k∆̄−k+h.c.) corresponds to the the term

∫
d2rc∂∆̄∂∆

,

T 2

4mL4

∑
n,p,k

ξp
(ω2

n + ξ2
p)

2
(∆k∆̄k + h.c.)

≈−
∑
n

T 2

8m

∫
d2p

(2π)2
∂ξp

1

ω2
n + ξ2

p

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=−
∑
n

T 2

8m

∫
2πpdp

4π2
∂ξp

1

ω2
n + ξ2

p

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=− T 2

8m

∑
n

∫
2md(p2/2m− µ)

4π
∂ξp

1

ω2
n + ξ2

p

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=− T 2

16π

∫
dξp∂ξp

1

ω2
n + ξ2

p

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=
T 2

16π

∑
n

1

ω2
n

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=
T 2

16π

∑
n

β2

π2

1

(2n+ 1)2

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=
T 2

16π

β2

π2

π2

8

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.)

=
1

128π

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.) (5.22)

In position space,

∫
d2k

(2π)2
k2(∆k∆̄k + h.c.) → − 2

L2

∫
d2r∆∂2∆

→ 2

L2

∫
d2r(∂∆̄)∂∆ (5.23)

. So in this approximation, we recover the coupling parameter g can obtain c =

g2T
64πL2 .
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A = ac = −2T 3g2
∑
n

∫
d2p

(2π)2

1

ω2
n + ξ2

p

= −2T 3g2
∑
n

∫
2π(2m)dξp

4π2

1

ω2
n + ξ2

p

= −2mT 3

π
g2
∑
n

∫
dξp
ωn

ωn
ω2
n + ξ2

p

= −2mT 3

π
g2
∑
n

∫
d(
ξp
ωn

)
1

1 + ( ξp
ωn

)2

1

ωn

= −mT 3g2
∑
n

β

2π(2n+ 1)

= −mT
2g2

2π

∑
n

1

2n+ 1

a = −32mT
∑
n

1

2n+ 1
(5.24)

For the local magnetization part, we didn’t calculate that. The Ruderman-Kittel-

Kasuya-Yosida(RKKY)[142, 143, 144] interaction has been studied in Ref[145],

which discuss how the conducting electrons affect the local spins. The result in

the reference will give a similar result for this part.
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5.2.2 The Third Order Calculation

In the third order calculation

S3 =
T 3

3
Tr
∑
n

∫
d2p1d

2p2d
2p3

(2π)6
G0,p1Σp1,p2G0,p2Σp2,p3G0,p3Σp3,p1

=
T 3

3
Tr
∑
n

∫
d2p1d

2p2d
2p3

(2π)6

(
ge1 0

0 gh−1

)(
σ �M12 ∆12

∆̄21 σ �M12

)

×

(
ge2 0

0 gh−2

)(
σ �M23 ∆23

∆̄32 σ �M23

)(
ge3 0

0 g
(h)
−3

)(
σ �M31 ∆31

∆̄13 σ �M31

)

=
T 3

3
Tr
∑
n

∫
d2p1d

2p2d
2p3

(2π)6

(
g

(e)
1 σ �M12 g

(e)
1 ∆12

g
(h)
−1 ∆̄21 g

(h)
−1σ �M12

)

×

(
g

(e)
2 σ �M23 g

(e)
2 ∆23

g
(h)
−2 ∆̄32 g

(h)
−3σ �M23

)(
g

(e)
3 σ �M31 g

(e)
3 ∆31

g
(h)
−3 ∆̄13 g

(h)
−1σ �M31

)

=
T 3

3

∑
n

∫
d2p1d

2p2d
2p3

(2π)6
Tr

(
M11 M12

M21 M22

)
, (5.25)

where

M11 = g
(e)
1 ∆12g

(h)
−2 ∆̄32g

(e)
3 σ �M31 + g

(e)
1 σ �M12g

(e)
2 ∆23g

(h)
−3 ∆̄13

+g
(e)
1 ∆12g

(h)
−2σ �M23g

(h)
−3 ∆̄13 + ..., (5.26)

M22 = g
(h)
−1 ∆̄21g

(e)
2 σ �M23g

(e)
3 ∆31 + g

(h)
−1σ �M12g

(h)
−2 ∆̄32g

(e)
3 ∆31

+g
(h)
−1 ∆̄21g

(e)
2 ∆23g

(h)
−3σ �M31 + .... (5.27)
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We just consider the leading term after expanding the Green funcion.

tr[g
(e)
1 ∆12g

(h)
−2 ∆̄32g

(e)
3 (σ � M31)]

=
1

D(p1, p2, p3)
tr[−α(−iωn + ξp1)(−iωn − ξ−p2)∆12∆̄32p3 � σ(σ � M31) + ...

− α2(−iωn + ξp3)p1 � σ∆12p2 � σ∆̄32(σ � M31)

+ α2(−iωn − ξ−p2)p1 � σ∆12p3 � σ∆̄32(σ � M31)

− α2(−iωn + ξp1)p2 � σ∆12p3 � σ∆̄32(σ � M31)

− α3(p1 � σ)∆12(p2 � σ)∆̄32(p3 � σ)(σ � M31)]. (5.28)

We replace the momentum
p1

p2

}
→
{ p− q1

2

p+ q1
2

,
p2

p3

}
→
{ p− q2

2

p+ q2
2

,
p3

p1

}
→

{ p− q3
2

p+ q3
2

and just focus on the dynamic term of order parameter which means

q �Mq = 0 and Mq = M0 . Also q1+q2+q3 = 0 can be obtained from p1+p2+p3 = 0

and
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tr[ge1∆12g
h
−2∆̄32g

e
3(σ � M31)]

=tr[gep− q1
2
∆q1g

h
−p+ q

2
∆̄−q2g

e
3(σ � Mq3)]

=
tr

8
[(gep− q1

2
,+Pp− q12 ,+ + gep− q1

2
,+Pp− q12 ,−)∆q1(g

h
−p+ q2

2
,+P−p+ q2

2
,+ + gep− q1

2
,+Pp− q12 ,−)∆̄−q2

× (gep− q3
2
,+Pp− q32 ,+ + gp− q3

2
,−Pp− q3

2
,−)(σ � Mq3)

=
tr

8
{[gep− q1

2
,+(1 +

(p− q1

2
) � σ

|p− q1

2
|

) + gep− q1
2
,−(1−

(p− q1

2
) � σ

|p− q1

2
|

)]∆q1

× [gh−p+ q2
2
,+(1−

(p− q2

2
) � σ

|p− q1

2
|

) + gh−p+ q2
2
,−(1 +

(p− q2

2
) � σ

|p− q2

2
|

)]∆̄−q2

× [gep− q3
2
,+(1 +

(p− q3

2
) � σ

|p− q3

2
|

) + gep− q3
2
,−(1−

(p− q3

2
) � σ

|p− q3

2
|

)](Mq3 � σ)

=
tr

8
{[(gep− q1

2
,+ + gep− q1

2
,−) + (gep− q1

2
,+ − g

e
p− q1

2
,−)

(p− q1

2
) � σ

|p− q1

2
|

]∆q1

× [(gh−p+ q2
2
,+ + gh−p+ q2

2
,−)− (gh−p+ q2

2
,+ − g

h
−p+ q2

2
,−)

(p− q2

2
) � σ

|p− q2

2
|

]∆̄−q2

× [(gep− q3
2
,+ + gep− q3

2
,−) + (gep− q3

2
,+ − g

e
p− q3

2
,−)

(p− q3

2
) � σ

|p− q3

2
|

](Mq3 � σ)
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=
tr

4
{[(gep− q1

2
,+ + gep− q1

2
,−)(gh−p+ q2

2
,+ + gh−p+ q2

2
,−)(gep− q3

2
,+ − g

e
p− q3

2
,−)∆q1∆̄q2

(p− q3

2
) � Mq3

|p− q3

2
|

− (gep− q1
2
,+ + gep− q1

2
,−)(gh−p+ q2

2
,+ − g

h
−p+ q2

2
,−)(gep− q3

2
,+ + gep− q3

2
,−)∆q1∆̄q2

(p− q2

2
) � Mq3

|p− q2

2
|

+ (gep− q1
2
,+ − g

e
p− q1

2
,−)(gh−p+ q2

2
,+ + gh−p+ q2

2
,−)(gep− q3

2
,+ + gep− q3

2
,−)∆q1∆̄q2

(p− q1

2
) � Mq3

|p− q1

2
|

− (gep− q1
2
,+ − g

e
p− q1

2
,−)(gh−p+ q2

2
,+ − g

h
−p+ q2

2
,−)(gep− q3

2
,+ + gep− q3

2
,−)

×
iεijk(p− q1

2
)i∆q1(p− q2

2
)j∆̄−q2Mq3,k

|p− q1

2
||p− q2

2
|

− (gep− q1
2
,+ + gep− q1

2
,−)(gh−p+ q2

2
,+ − g

h
−p+ q2

2
,−)(gep− q3

2
,+ − g

e
p− q3

2
,−)

×
iεijk∆q1(p− q2

2
)i∆̄−q2(p− q3

2
)jMq3,k

|p− q1

2
||p− q2

2
|

+ (gep− q1
2
,+ − g

e
p− q1

2
,−)(gh−p+ q2

2
,+ + gh−p+ q2

2
,−)(gep− q3

2
,+ − g

e
p− q3

2
,−)

×
iεijk(p− q1

2
)i∆q1∆̄−q2(p− q3

2
)jMq3,k

|p− q1

2
||p− q3

2
|

− (gep− q1
2
,+ − g

e
p− q1

2
,−)(gh−p+ q2

2
,+ − g

h
−p+ q2

2
,−)(gep− q3

2
,+ − g

e
p− q3

2
,−)

× (δijδkl − δikδjl + δilδjk)∆q1∆̄−q2
|p− q1

2
||p− q2

2
||p− q3

2
|

(p− q1

2
)i(p−

q2

2
)j(p−

q3

2
)kMq3,l. (5.29)

Then

(δijδkl − δikδjl + δilδjk)∆q1∆̄−q2(p−
q1

2
)i(p−

q2

2
)j(p−

q3

2
)kMq3,l

=∆q1∆̄−q2 [(p−
q1

2
) � (p− q2

2
)][(p− q3

2
) � Mq3 ]

−∆q1∆̄−q2 [(p−
q1

2
) � (p− q3

2
)[(p− q2

2
) � Mq3 ]

+∆q1∆̄−q2(p−
q2

2
) � (p− q3

2
)][(p− q1

2
) � Mq3 ]. (5.30)

We do summation over p. It is easy to prove that the gauge violent term is equal to

zero( One method is just from the notation we choose, another is∇�(∇× ~AM) = 0.
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) The Hermite conjugate term is

tr[g
(h)
−1 ∆̄21g

(e)
2 ∆23g

(h)
−3 (σ �M13)] → − i

2
α2[2g

(e)2
0,p g

(h)3
0,−pεijkq1,i∆̄−q1q2,j∆q2Mq3,k

+g
(h)4
0,−pg

(e)
0,pq1,i∆̄−q1q2,j∆q2Mq3,k]. (5.31)

By the permutation 1→ 2→ 3→ 1, the free energy F∆̄∆M is

S3 = βF∆̄∆M

= −T
3

L6

∑
n,p,{qi}

i

2
α2εijk(2g

(e)3
0,p g

(h)2
0,−p + g

(e)4
0,p g

(h)
0,−p)q1,i∆q1q2,j∆̄−q2Mq3,k + h.c.)

×δ(q1 + q2 + q3). (5.32)

In position space,

F∆̄∆M =

∫
d2r[iγ(~∂∆̄× ~∂∆) �M ] (5.33)
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where,

γ = T
α2T 3

2

∑
n

∫
d2p

(2π)2
[2(g

(e)3
0,p g

(h)2
0,−p − g

(h)3
0,−pg

(e)2
0,p )

+(g
(e)4
0,p g

(h)
0,−p − g

(h)4
0,−pg

(e)
0,p)]

=
α2T 4

2

∑
n

∫
πdp2

4π2
[

4ξp
(ω2

n + ξ2
p)

3
+

2ξp(3ω
2
n − ξ2

p)

(ω2
n + ξ2

p)
4

]

=
2mα2T 4

8π

∑
n

∞∫
0

dξp[
4ξp

(ω2
n + ξ2

p)
3

+
2ξp(3ω

2
n − ξ2

p)

(ω2
n + ξ2

p)
4

]

=
mα2T 4

4π

∑
n

∞∫
0

dξ2
p [

2

(ω2
n + ξ2

p)
3

+
(3ω2

n − ξ2
p)

(ω2
n + ξ2

p)
4

]

=
mα2T 4

4π

∑
n

∞∫
0

dξ2
p

5ω2
n + ξ2

p

(ω2
n + ξ2

p)
4

=
mα2T 4

4π

∑
n

7

6ω2
n

=
mα2T 4

4π

∑
n

7β2

6(2π)2

1

(2n+ 1)2
=

7mα2T 2

768πL6
. (5.34)

With this approximation, if we rescale the Free energy and get J back,

F =

∫
d2r[(∂∆̄)(∂∆) + a(∆̄∆) +

b

2
(∆̄∆)2 + iγ′(~∂∆̄× ~∂∆) �M ] (5.35)

where γ′ = γ
c

= 7L2mα2JT
12

.
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5.2.3 The fourth order perturbation

Fourth order perturbative calculation will give us the quadratic term of ∆ and

the term ¯(∆∆)(M �M).

S4 =
1

4

T 4

L8
Tr(G0ΣG0ΣG0ΣG0Σ)

=
1

4

T 4

L8
Tr

(
g

(e)
1 0

0 g
(h)
−1

)(
σ �M12 ∆12

∆̄21 σ �M12

)

�

(
g

(e)
2 0

0 g
(h)
−1

)(
σ �M23 ∆23

∆̄32 σ �M

)

�

(
g

(e)
3 0

0 g
(h)
−3

)(
σ �M34 ∆34

∆̄43 σ �M34

)

�

(
g

(e)
4 0

0 g
(h)
−4

)(
σ �M41 ∆41

∆̄14 σ �M41

)

=
1

4

T 4

L8
Tr

(
g

(e)
1 σ �M12 g

(e)
1 ∆12

g
(h)
−1 ∆̄21 g

(h)
−1σ �M12

)(
g

(e)
2 σ �M23 g

(e)
2 ∆23

g
(h)
−2 ∆̄32 g

(h)
−2σ �M23

)

�

(
g

(e)
3 σ �M34 g

(e)
3 ∆34

g
(h)
−3 ∆̄43 g

(h)
−3σ �M34

)(
g

(e)
4 σ �M41 g

(e)
4 ∆41

g
(h)
−4 ∆̄14 g

(h)
−4σ �M41

)
(5.36)

We use mean field theory J2(∆̄∆)〈M �M〉 to replace J2 ¯(∆∆)(M �M). The fourth

order is

F4 =
7mT 2g4

256π3c
ζ(3)

∫
d2r(∆̄∆)2 (5.37)

So, b = 7mT 2g4

128π3 ζ(3)64πL2

g2T
= 7mg2TL2

2π2 ζ(3). With the assumption α � J ∼ g < 1, γ′

term can be treated as the perturbative interaction.
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5.3 Ginzburg-Landau equations

The improminent parts of the free energy of order parameter and skyrmion

spin textures is F2 + F3,

F∆̄∆M =

∫
d2r[c(∂i∆̄)(∂i∆)+a(∆̄∆)+

b

2
(∆̄∆)2]+iγ[(

−→
∂ ∆̄×

−→
∂ ∆)�M]+... (5.38)

To get the equation of motion of ∆, δF
δ∆̄

= 0 . Then

− ∂2∆+ a∆+ b(∆̄∆)∆+ iγ′εijk∂i∆∂jMk = 0 (5.39)

where ∂2 = ∂2
x + ∂2

y and ∆ = ∆(x, y) . For further simplifying,

− ∂2∆+ a∆+ b(∆̄∆)∆+ i
4γ′R2

(r2 +R2)2
(y∂x∆− x∂y∆) = 0. (5.40)

To the off center situation

− ∂2∆+ a∆+ b(∆̄∆)∆+ i
4γ′R2

(r′2 +R2)2
[(y − r0)∂x∆− (x− r0)∂y∆] = 0. (5.41)

By defining η = x+ iy, η̄ = x− iy, it is easy to get ∂x = ∂η + ∂η̄, ∂y = i(∂η − ∂η̄)

and x = 1
2
(η + η̄), y = 1

2i
(η − η̄) . So the Eqn of motion can be rewritten as

− 4∂2

∂η∂η̄
∆+ a∆+ b(∆̄∆)∆+

4γ′R2

(η̄η +R2)2
(η
∂

∂η
− η̄ ∂

∂η̄
)∆ = 0. (5.42)

Turning to polar coordinates,

− 1

r

∂

∂r
(r
∂

∂r
∆)− 1

r2

∂2

∂θ2
∆+ a∆+ b(∆̄∆)∆− 8iγ′R2

(r2 +R2)2

∂

∂θ
∆ = 0. (5.43)
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The off center situation is

x = r cos θ, y = r sin θ, r′2 = (r cos θ − r0)2 + (r sin θ − r0)2 = r2 + r2
0 −

2rr0(cos θ + sin θ) So

− 1

r

∂

∂r
(r
∂

∂r
∆)− 1

r2

∂2

∂θ2
∆+ a∆+ b(∆̄∆)∆− 8iγ′R2

(r′2 +R2)2

∂

∂θ
∆ = 0. (5.44)

By solving the equations, how the skyrmions affect the vortex can be achieved.

5.4 Discussion

The proximity effect between superconductors and magnetic materials has been

studied in various combinations[146, 147, 148, 149]. The interaction between vor-

tices in Type-II superconductor and skyrmions is studied in some special situ-

ations[150, 151]. The structural similarity of the vortices in Type-II supercon-

ductors and skyrmions[152] inspire us to study the dynamics of the vortices and

skyrmions in general case. In the above calculation, we assume the skyrmions are

robust. As a consequence, the spin textures of Bloch type skyrmion is introduced

directly into the Ginzburg-Landau equations. We can also put the interaction

(
−→
∂ ∆̄ ×

−→
∂ ∆) � M into the Hamiltonian of chiral magnets and get the Landau–

Lifshitz–Gilbert equation[153, 154]. By solving both Ginzburg-Landau equation

and Ginzburg-Landau equation, more physical phenomena are expected. The

spin-orbit coupling is considered in the calculation because the superconductor

is non-centrosymmetric as we assumed. At the same time, chiral magnets which

host the skyrmions also lack the inversion symmetry. This breaking inversion sym-

metry in 2D system makes more nontrivial topological structures excepted to be

found in non-centrosymmetric materials.
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CHAPTER VI

Summary and future directions

In this thesis, we investigated the topological charges of several magnetic sys-

tems which have the Dzyaloshinskii–Moriya(DM) interactions. Firstly, we make

a historical description of the study on chiral magnets, especially the skyrmion

physics therein. Then we pointed out that the topological charge which was used

to identify the skyrmions is directly relevant to the topological Hall effect. So

understanding the topological charge is important to the transport properties of

chiral magnets.

Then we study the two-dimensional chiral magnetic system. In this system,

the Heisenberg interaction is ferromagnetic interaction. We employed Monte Carlo

method to calculate the topological charge on a square lattice. A B − T diagram

of topological charge is shown . Several points in the B − T diagram are chosen

to take the snapshots to study the phases. The results show that the maximum

absolute value of the topological charge does not correspond to the skyrmion crys-

tal phases. The phase with the maximum absolute value of the topological charge

is a random phase. Then we made an analysis on one triangle to understand the

physics well. The analysis show the external magnetic field lifts the energy degen-

eracy of triangles with opposite spins on the vertices of the triangles It leads to the

conclusion that the thermal average of the topological charge, which is replaced
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by triple product of the three spins on the vertices, is no longer zero and the topo-

logical charge scales as Q ∝ D2B
T 3 at high temperature, where D is the magnitude

of the DM interaction, B is the strength of the external magnetic field and T is

the temperature. It matches the results from the Monte Carlo simulation. At a

fixed high temperature, when D is fixed Q ∝ B and when B is fixed, Q ∝ D2.

Then we performed a field theoretical calculation of the topological charge through

CP 1 model. In the CP 1 model, there is an emergent gauge field whose curl is the

density of the topological charge. The curl of the emergent gauge field is the emer-

gent magnetic field. We calculated the effective action of the emergent magnetic

field and get the saddle point value of the emergent magnetic field to estimate

the topological charge. At high temperature, the analytical result matches the

analysis of the physical picture on one triangle and the numerical calculation well.

An experimental work on thin film SuRuO3 confirmed our theoretical results.

Then we extend our calculation into three-dimensional system. The Monte

Carlo simulation and the field theoretical calculation through CP 1 model are per-

formed. At high temperature, there is still nonzero topological charge. There

is one more question need to be clarified is that in three-dimensional case, the

thickness dependent issue. We investigated the topological charges with different

thicknesses or layers in the direction of the external magnetic field. Both numer-

ical and analytical method were used to investigate this issue. An explanation

based on a physical picture of magnons in the box can explain the phenomena re-

lated to the thickness of the sample. The SrRuO3 experiments cannot confirm our

theoretical results because the effective DM interaction is induced by the interface

of SrRuO3 and SrTiO3, the effective DM interaction is inversely proportional to

the thickness. When the sample is thick enough, the effective DM interaction is

too weak to host this nontrivial topology. However, our model is used to describe

the homogenous chiral magnets which have the constant DM interaction.
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Here, we would like to mention that so far the topological hall effect is still

regarded as the best transport signature of the skyrmions. But in the past, topo-

logical Hall effect is misused to identify the skyrmions. The value of our work is

to provide a new mechanism of the topological Hall effect can be induced by the

thermal fluctuation without skyrmions.

Our works are not limited to non-centrosymmetric ferromagnets. A work on

the two-dimensional hexagonal frustrated magnets have been reviewed to show

that the non-zero topological charge can also exist in the system with antiferro-

magnetic Heisenberg interaction. The DM interaction in this system breaks the

inversion symmetry. The topological charge in this system has the similar pattern

of the chiral magnets. Then we investigate the staggered DM interaction system

which is centrosymmetric. The giant non-zero topological charge exists at very

low temperature, By our analysis, the reason is from the speciality of spin tex-

tures at ground state. The linear relationship between the topological charge and

topological Hall resistivity is doubted here because the adiabatic approximation

may fail to describe the motion of conductive electrons with the staggered spin

textures at low temperature. The work about proximity effect between type-II

superconductor and skyrmion materials is introduced finally. This work gives a

open question what will happen in the non-centrosymmetric systems.

As mentioned above, the relationship between the topological charge and topo-

logical resistivity in various magnetic systems is worth investigating, especially in

the systems with antiferromagnetic Heisenberg interaction. Moreover, whether the

breaking the inversion symmetry is necessary to the nonzero topological charge is

still needed to prove. Also we hope the experiments can confirm or fight against

our theoretical results.
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APPENDIX A

The program for calculating the Hall

conductivity

The program for calculating the hall conductivity is written by Python. For

a compact appearance, the program does not follow the standard indention in

Python.

from numba import cuda , f l oa t64 , n j i t

import numpy as np

import math

H T = −100.0 # hopping constant

H J = −100.0 # Hund ’ s coup l ing

ETA = 1.0

MU = −80.0 # Fermi energy

N LX : i n t = 32
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N LY : i n t = 32

N SPINS : i n t = N LX∗N LY #l a t t i c e s i z e

N2 SPINS : i n t = 2∗N SPINS #matrix s i z e o f the Hamiltonian

TpB: i n t = 256

TpB 2D = (8 , 8)

NBlock : i n t = (N SPINS+TpB − 1)//TpB

NBlock 2D = (N SUB//8 , N SUB//8)

NBlock 2D a = (N SUB//8 , N SPINS//8) #GPU bloch s i z e

Path=”” #The path o f the sp in t ex tu re f i l e s

Temperatures =[ ]

@cuda . reduce

de f reduce sum (a , b ) :

r e turn a + b

cuda . j i t ( dev i ce=True , i n l i n e=True )

de f f e rmi cuda ( e , t ) :

r e turn 1 . 0/ ( math . exp ( ( e−MU)/ t ) + 1) #Fermi d i s t r i b u t i o n func t i on

@cuda . j i t

de f get s igma cuda ( e , u , ux , uy , sxx , sxy , t ) :

m, n = cuda . g r i d (2 )

sh sxx = cuda . shared . array ( ( 8 , 8 ) , dtype=f l o a t 6 4 )
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sh sxy = cuda . shared . array ( ( 8 , 8 ) , dtype=f l o a t 6 4 )

tx , ty = cuda . threadIdx . x , cuda . threadIdx . y

bx , by = cuda . b lockIdx . x , cuda . b lockIdx . y

gx = cuda . gridDim . x

jx , jy = 0 . 0 , 0 . 0

f a c = 0 .0

#i n i t i a l i z a t i o n

i f m != n :

f a c = ( fermi cuda ( e [ n ] , t)− f e rmi cuda ( e [m] , t ) )\

/ (ETA∗ETA+(e [ n]−e [m] ) ∗ ( e [ n]−e [m] ) )

f o r i i s in range (N SPINS ) :

jx += u [ i i s , m] . conjugate ( )∗ ux [ i i s , n ]\

− u [ i i s , n ]∗ ux [ i i s , m] . conjugate ( )\

+ u [ i i s+N SPINS , m] . conjugate ( )∗ ux [ i i s+N SPINS , n ]\

− u [ i i s+N SPINS , n ]∗ ux [ i i s+N SPINS , m] . conjugate ( )

jy += u [ i i s , m] . conjugate ( )∗ uy [ i i s , n ]\

− u [ i i s , n ]∗ uy [ i i s , m] . conjugate ( )\

+ u [ i i s+N SPINS , m] . conjugate ( )∗ uy [ i i s+N SPINS , n ]\

− u [ i i s+N SPINS , n ]∗ uy [ i i s+N SPINS , m] . conjugate ( )

sh sxx [ tx , ty ] = fa c \∗( jx . conjugate ( )\

∗ jx /complex ( e [m]−e [ n ] , ETA) ) . r e a l

sh sxy [ tx , ty ] = −f a c ∗( jx ∗ jy . conjugate ( ) ) . imag

e l s e :

sh sxx [ tx , ty ] = 0 .0

sh sxy [ tx , ty ] = 0 .0

cuda . syncthreads ( )
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#GPU summation

i f ty % 2 == 0 :

sh sxx [ tx , ty ] += sh sxx [ tx , ty + 1 ]

e l s e :

sh sxy [ tx , ty ] += sh sxy [ tx , ty − 1 ]

cuda . syncthreads ( )

i f ty % 4 == 0 :

sh sxx [ tx , ty ] += sh sxx [ tx , ty + 2 ]

e l i f ty % 4 == 3 :

sh sxy [ tx , ty ] += sh sxy [ tx , ty − 2 ]

cuda . syncthreads ( )

i f tx % 2 == 0 :

sh sxx [ tx , ty ] += sh sxx [ tx + 1 , ty ]

e l s e :

sh sxy [ tx , ty ] += sh sxy [ tx − 1 , ty ]

cuda . syncthreads ( ) i f tx % 4 == 0 :

sh sxx [ tx , ty ] += sh sxx [ tx + 2 , ty ]

e l i f tx % 4 == 3 :

sh sxy [ tx , ty ] += sh sxy [ tx − 2 , ty ]

cuda . syncthreads ( )

i f ( tx == 0) and ( ty == 0 ) :

sxx [ bx + gx ∗ by ] = sh sxx [ 0 , 0]+ sh sxx [ 0 , 4 ]\

+ sh sxx [ 4 , 0]+ sh sxx [ 4 , 4 ]

e l i f ( tx == 3) and ( ty == 3 ) :

sxy [ bx + gx ∗ by ] = sh sxy [ 3 , 3]+ sh sxy [ 3 , 7 ]\

+ sh sxy [ 7 , 3]+ sh sxy [ 7 , 7 ]

@cuda . j i t
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de f get un cuda (u , nbs , ux , uy ) :

i , i i s = cuda . g r i d (2 )

nbx , nby = 0 , 0

i f i i s < N SPINS :

nbx = nbs [ i i s , 0 ]

nby = nbs [ i i s , 2 ]

cuda . syncthreads ( )

i f ( i < N2 SPINS) and ( i i s < N SPINS ) :

i f i i s + 1 == nbx :

ux [ i i s , i ] = u [ nbx , i ]

ux [ i i s + N SPINS , i ] = u [ nbx + N SPINS , i ]

i f i i s + 32 == nby :

uy [ i i s , i ] = u [ nby , i ]

uy [ i i s + N SPINS , i ] = u [ nby + N SPINS , i ]

@cuda . j i t

de f ge t hami l ton ian cuda (ham, nbs , sp ) :

i = cuda . g r i d (1 )

i f i < N SPINS :

i f i + 1 == nbs [ i , 0 ] :

ham[ i , nbs [ i , 0 ] ] = H T

ham[ i+N SPINS , nbs [ i , 0]+N SPINS ] = H T

i f i − 1 == nbs [ i , 1 ] :

ham[ i , nbs [ i , 1 ] ] = H T

ham[ i+N SPINS , nbs [ i , 1]+N SPINS ] = H T

i f i + N LX == nbs [ i , 2 ] :

ham[ i , nbs [ i , 2 ] ] = H T

ham[ i+N SPINS , nbs [ i , 2]+N SPINS ] = H T
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i f i − N LX == nbs [ i , 3 ] :

ham[ i , nbs [ i , 3 ] ] = H T

ham[ i+N SPINS , nbs [ i , 3]+N SPINS ] = H T

cuda . syncthreads ( )

i f i < N SPINS :

ham[ i , i ] += H J∗ sp [ i , 5 ]

ham[ i+N SPINS , i+N SPINS ] += −H J∗ sp [ i , 5 ]

ham[ i , i+N SPINS ] += H J∗complex ( sp [ i , 3 ] , −sp [ i , 4 ] )

ham[ i+N SPINS , i ] += H J∗complex ( sp [ i , 3 ] , sp [ i , 4 ] )

import numpy as np

from numba . cuda . cudadrv . dev i c ea r ray import DeviceNDArray

from datet ime import datet ime

import os from THC import ∗

s t a r t = datet ime . now ( ) #timing

nbs data =np . l oadtx t ( )

# the in fo rmat ion o f sp in t ex tu re f i l e s in ( )

ne ighbors = np . z e r o s ( ( N SPINS , 4) , dtype=np . in t32 )

f o r i in range (N SPINS ) :

ne ighbors [ i ] = l i s t (map(np . f l oa t64 , nbs data [ i , 1 ] . s p l i t ( ) ) )

nbs d = cuda . t o d e v i c e ( ne ighbors )

p r i n t ( ’ ne ighbors shape = {0} ’ . format ( ne ighbors . shape ) )

s igma xx d :\

DeviceNDArray = cuda . d e v i c e a r r a y (N REDUCE)

sigma xy d :\

DeviceNDArray = cuda . d e v i c e a r r a y (N REDUCE)
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e d : DeviceNDArray = cuda . d e v i c e a r r a y (N SUB)

u d : DeviceNDArray = cuda . d e v i c e a r r a y ( ( N2 SPINS , N SUB) )

ux d : DeviceNDArray = cuda . d e v i c e a r r a y ( ( N2 SPINS , N SUB) )

uy d : DeviceNDArray = cuda . d e v i c e a r r a y ( ( N2 SPINS , N SUB) )

f o r temperature in Temperatures :

sigma xx sum : f l o a t = 0 .0

sigma xy sum : f l o a t = 0 .0

sigma yy sum : f l o a t = 0 .0

s igma xx sq : f l o a t = 0 .0

s igma xy sq : f l o a t = 0 .0

sigma xx : f l o a t = 0 .0

sigma xy : f l o a t = 0 .0

sigma yy : f l o a t = 0 .0

f i l e s = [ ]

#read the sp in t ex tu re f i l e s

n f = len ( f i l e s )

p r i n t ( temperature , n f )

f o r f i l e in f i l e s :

# read sp in s

sp in s da ta = np . l oadtx t ( )

# sp in t ex tu re f i e s in ( )

sp in s d = cuda . t o d e v i c e ( sp in s da ta )

ham = np . z e r o s ( ( N2 SPINS , N2 SPINS ) )

#hopping

get hami l ton ian cuda [ NBlock , TpB]\
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(ham , nbs d , sp in s d )

e , u = np . l i n a l g . e igh (ham )

#d i a g o n a l i z e the Hamiltonian

e d = cuda . t o d e v i c e ( e [ I BEGIN : I END ] )

u d = cuda . t o d e v i c e \

(np . a scont i guousar ray ( u [ : , I BEGIN : I END ] ) )

get un cuda [ NBlock 2D a , TpB 2D]\

( u d , nbs d , ux d , uy d )

get s igma cuda [ NBlock 2D , TpB 2D]\

( e d , u d , ux d , uy d ,\

sigma xx d , sigma xy d , temperature )

sigma xx = reduce sum ( sigma xx d ) ∗ H T∗H T ∗ ETA / N SPINS

sigma xy = reduce sum ( sigma xy d ) ∗ H T∗H T / N SPINS

sigma xx sum += sigma xx

sigma xy sum += sigma xy

s igma xx sq += sigma xx∗ sigma xx

s igma xy sq += sigma xy∗ sigma xy

#output

p r i n t ( sigma xx , sigma xy )

p r i n t ( date . now()−datet ime )

sigma xx sum /= n f

sigma xy sum /= n f
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s igma xx sq /= n f

s igma xy sq /= n f

s i gma xx er r = s igma xx sq − sigma xx sum∗ sigma xx sum

s igma xy er r = s igma xy sq − sigma xy sum∗ sigma xy sum

pr in t ( temperature , sigma xx sum , s igma xx err ,\

sigma xy sum , s i gma xy er r ) )
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APPENDIX B

Metropolis program for calculating the

topological charge in a staggered DM system

The program is written by Mathematica.

Array [ s , 15 , {1 , 15} ] (∗ sp in s ∗)

Array [EN, 1000000 , {1 , 1000000} ] ; (∗ energy ∗)

Array [TC, 1000000 , {1 , 1000000} ] ; (∗ Topo log i ca l Charge ∗)

Array [ZW, 1000000 , {1 , 1000000} ] ; (∗ weight :ZW=exp(−EN/T)∗ )

s0 = { s [ 1 ] , s [ 2 ] , s [ 3 ] }

s1 = { s [ 4 ] , s [ 5 ] , s [ 6 ] }

s2 = { s [ 7 ] , s [ 8 ] , s [ 9 ] }

s3 = { s [ 1 0 ] , s [ 1 1 ] , s [ 1 2 ] }

s4 = { s [ 1 3 ] , s [ 1 4 ] , s [ 1 5 ] } ( ∗ sp in s ∗)

(∗T=1 j=1 d=0.5 h=0.5 max : number o f s t ep s ∗)
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For [ max = 10000 , max <= 10001 , max = max + 1000 ,

Z = 0 ; (∗ p a r t i t i o n func t i on ∗)

Q = 0 ;

For [ j = 1 , j < max + 1 , j ++,

For [ i = 1 , i < 16 , i = i + 3 ,

r i = 2 . 0 ;

While [ r i >= 1 . 0 ,

rx = RandomReal [{−1 , 1 } ] ;

ry = RandomReal [{−1 , 1 } ] ;

r i = rx ˆ2 + ry ˆ 2 ] ;

rk = \ [ Sqrt ] ( 1 − r i ) ;

s [ i ] = 2∗ rx∗ rk ;

s [ i + 1 ] = 2∗ ry∗ rk ;

s [ i + 2 ] = 1 − 2∗ r i ;

] ;
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