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Chapter 1 studies volatility tail risk and its asset pricing implications. Motivated by dynamic models 

featuring jumps in stochastic volatility, I examine the economic behaviors and the pricing of volatility tail 

risk in the cross-section of asset prices, including stocks and options. Using intraday option dataset, I 

construct a novel non-parametric volatility tail risk measure from high-frequency implied volatility data 

and find a strong negative effect associated with volatility tail risk: stocks with high volatility tail risk 

robustly underperform stocks with low volatility tail risk. In particular, the negative price of volatility tail 

risk is driven systematic component through decomposition. The volatility tail risk measure is strongly 

related to jump components in the volatility process identified using non-parametric approach, and is the 

best predictor of future average jump intensity and jump size. Furthermore, the volatility tail risk measure 

plays an important role in predicting future economic variables: it positively and robustly predicts future 

equity return jump risk, volatility risk premium, idiosyncratic volatility, stock return high-order moments, 

illiquidity measure and volatility skew. Finally, it predicts future risk-neutral option straddle return as 

well as volatility risk premium, measured as the difference between implied volatility and realized 

volatility. 

 

Chapter 2 (joint with Dimitry Muravyev) studies the seasonality of option returns. We show that 

average returns for S&P 500 index options are negative and large: -0.7% per day. Strikingly, when we 

decompose these delta-hedged option returns into intraday (open-to-close) and overnight (close-to-open) 

components, we find that average overnight returns are -1%, while intraday returns are actually positive, 

0.3% per day. A similar return pattern holds for all maturity and moneyness categories, and equity options. 

Rational theories struggle to explain positive intraday returns. However, our results are consistent with 

option prices failing to account for the well-known fact that stock volatility is substantially higher 

intraday than overnight. These results help us better understand the price formation in the options market. 

 

Chapter 3 (joint with Dimitry Muravyev) studies option informed trades and the connections with 

stock return predictability. We show that option order imbalances predict the cross-section of equity 

returns. We show that a large part of this predictability can be attributed as one-day announcement effect. 

Predictability of option order imbalances declines as forecasting horizon prolongs. In particular, we show 



that, the predictability of long-horizon predictability depends on the privacy of information. Public 

disclosure of option trades information has a crucial and negative impact on the predictability of option 

order imbalances. Furthermore, using identification algorithms, we can imprecisely distinguish between 

investor’s trades and option market maker’s trades and find that, the order imbalances from non-option 

market makers contain almost all information relevant for predicting future stock returns. Our results are 

consistent with theories implying that option trading volume reflects the actions of informed traders, and 

the action of disclosing this information can facilitate asset price movements. 
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Volatility Tail Risk and Asset Prices

Xuechuan (Charles) Ni∗†

ABSTRACT

Motivated by dynamic models featuring jumps in stochastic volatility, I examine the economic

behaviors and the pricing of volatility tail risk in the cross-section of asset prices, including stocks

and options. Using intraday option dataset, I construct a novel non-parametric volatility tail risk

measure from high-frequency implied volatility data and find a strong negative effect associated

with volatility tail risk: stocks with high volatility tail risk robustly underperform stocks with

low volatility tail risk. In particular, the negative price of volatility tail risk is driven systematic

component through decomposition. The volatility tail risk measure is strongly related to jump

components in the volatility process identified using non-parametric approach, and is the best

predictor of future average jump intensity and jump size. Furthermore, the volatility tail risk

measure plays an important role in predicting future economic variables: it positively and robustly

predicts future equity return jump risk, volatility risk premium, idiosyncratic volatility, stock return

high-order moments, illiquidity measure and volatility skew. Finally, it predicts future risk-neutral

option straddle return as well as volatility risk premium, measured as the difference between implied

volatility and realized volatility.
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Recent finance literature shows that jumps in price and volatility play a very important role in

explaining equity risk premium as well as the wedge between stock price and option price. For

example, Bollerslev and Todorov (2011) uses intraday index future data to demonstrate that the

compensation for tail events accounts for a large fraction of the equity risk premium and variance

risk premium. Pan (2002) reveals that the jump component in the stochastic volatility process is

crucial in explaining the joint dynamics of both S&P 500 index and short-term index option prices.

While numerous literature examine how tail risks of return and volatility explain the dynamics

of aggregate stock market behavior, the questions of how to measure volatility tail risk without

structural restrictions and how volatility tail risk affects the cross-section of expected stock returns

and economic conditions have received less attention.

First and foremost, one of the realistic questions is: do stock volatility jumps? This is quite

natural to ask before we explore further. In academic research, we are always trying to build models

such that they can accommodate asset pricing phenomenon from different markets. Studies on

volatility jumps in complex structural models are firstly introduced by Bates (2000) and Pan (2002).

Their estimates are obtained from options data and joint returns/options data, respectively. They

conclude that jumps in stock returns do not adequately describe the systematic variations in option

prices. Results in both papers point toward models that include jumps in volatility process. In

response to these findings, Eraker, Johannes, and Polson (2003) uses returns data only to investigate

the performance of models with jumps in volatility as well as in prices (henceforth EJP). The results

show that EJP provides a significantly better fit to the returns data. Eraker (2004) has provided

answers from a model-fitting perspective using joint returns/options data. Eraker (2004) concludes

that models with volatility jumps indeed fit options and stock returns data simultaneously in a

better way.

The volatility expectation, or IV, captures the uncertainty in investors’ assessments of these

risks. As argued by Baltussen, Bekkum, and Grient (2014), the main advantage of using option

market information is that option prices are forward-looking by nature, making them an appealing

basis to measure investors’ uncertainty about risk ex ante. Options are written on the stock itself,

traded by a large number of agents, and observed on a daily frequency. Thus, unlike for example

earnings estimated by analysts or survey forecasts by other investment professionals, expectations

are extracted from actual financial market transactions. Being derived directly from market prices
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also circumvents self-selection problems and optimism bias in analyst forecasts (e.g., McNichols

and O’Brien (1997)), and prevents distortions by incentive-related effects.

Furthermore, IV innovations are also related to innovations in expected stock volatility as well as

stock returns. Dennis, Mayhew, and Stivers (2006) explores the relation between daily stock returns

and daily innovations in option-derived IVs. Their results indicate that the relation between stock

returns and innovations in systematic volatility (idiosyncratic volatility) is substantially negative

(near zero). They also provide evidence that innovations in implied volatility are good proxies

for innovations in expected stock volatility. Besides, IV is closely related to many option-related

characteristics that prove to strongly predict future stock returns in the finance literature. For

example, Conrad, Dittmar, and Ghysels (2013) shows that ex ante moments predict expected stock

returns. They show that even after controlling for differences in co-moments, ex ante skewness

still matters. Xing, Zhang, and Zhao (2010) shows that volatility smirk negatively predicts future

stock returns, which persists for at least 6 months. Bali and Hovakimian (2009) finds that volatility

spread (RV-IV) can be viewed as a good proxy for volatility risk and thus, predicts the cross-

sectional variation in expected stock returns.

Motivated by dynamic models featuring jumps in volatility1, the objective of this paper is to

construct a novel non-parametric volatility tail risk measure, and examine the impact of volatility

tail risk on future economic quantities as well as its pricing implications in the cross-section (and

time-series) of stock returns. This paper also explores the economic linkages between volatility tail

risk and other economic state variables. In papers such as Eraker et al. (2003), however, jumps

are identified under specific structural models, and they don’t focus on exploring the pricing in the

cross-section. Building on the idea proposed by Bollerslev and Todorov (2011), I construct my daily

tail risk measure of volatility using intraday implied volatility estimated from at-the-money options

with time-to-maturity closest to 30 days. Implied volatility (IV) is by far one of the best predictors

of future stock returns in the cross-section, and captures investors’ conditional expectations of future

realized volatility. Consequently, the tail risk of IV can be treated as a reliable proxy for how market

participants perceive ”volatility tail risk”. Then, I aggregate the daily volatility tail risk measure to

obtain monthly volatility tail risk measure (V TR). There are two arguments for doing at monthly

frequency which I perceive as nontrivial: first, aggregating to monthly frequency can smooth the

1For example, Pan (2002), Eraker et al. (2003), Eraker (2004), and Broadie, Chernov, and Johannes (2007).
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micro-structure noise and frictions from intraday data. This is particular important because 1-

minute option quote data is used. Second, IV is generally persistent for a given stock, which means

that the volatility tail risk measure will be relatively persistent with long-term predictability. This

differs from information-driven stock return predictability (e.g., Johnson and So (2012), Hu (2014)).

There are multiple advantages of using my proposed non-parametric measures: (1) first of all,

the advantage of using non-parametric measure, in contrast to parametric measure (i.e. complex

structural models), is that non-parametric approach is immune to model misspecifications. Frankly

speaking, unlike experimental science, it is hard to testify the validity of a model. Furthermore,

structural models with stochastic volatility, as well as jumps in stock return and volatility (namely,

multiple hidden factors), make the accurate estimation of parameters a tough task even with

MH algorithm and Gibbs sampling. (2) The primary reason for using high-frequency quadratic

variations is motivated by Bollerslev and Todorov (2011). In their paper, they discuss that if we

assume that stock return process driven by a diffusion component and a jump component, then the

tail variation of intraday quadratic variation can be viewed as a reliable measure of realized jumps in

intraday stock returns. Furthermore, the assumption that instantaneous volatility follows geometric

Brownian motion is also widely used in finance literature, for example, Huang and Shaliastovich

(2014). Therefore, given the mathematical inductions in Bollerslev and Todorov (2011) paper, I

argue that the VTR measure in my paper can reasonably capture tail variations in intraday IV

change. (3) Compared to the measure proposed by Kelly and Jiang (2014) (hence, KJ), they

propose a new measure of time-varying tail risk that is directly estimated using from the cross-

section of stock returns. Their estimator relies critically on the assumption that they assume the

tail distributions of all stock returns have similar power-law distribution. This critical assumption,

albeit it seems to work well in the paper, is hard to validate. The mathematical formulae between

VTR and KJ is not directly comparable, therefore, we will compare them empirically in the paper.

On introducing a novel volatility tail risk measure, I validate this measure from multiple aspects.

First, I analyze the connection between volatility tail risk and equity return jump measure, ERJM .

I show that volatility jumps and stock return jumps are empirically uncorrelated for SPY (reliable

proxy for SPX) time series: the correlation is merely 0.01 with no statistical significance. I also

test the market return predictability using V TR, ERJM , V RP (short for volatility risk premium)

and dividend-price ratio (or D/P). I show that V TR negatively predicts future stock return even
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after controlling for other predictors.

Second, I compare the relation between V TR and other crucial firm characteristics. In par-

ticular, to make economic magnitudes comparable, I standardize each variable to zero mean and

unit variance. I first conduct a V TR explanatory analysis by regressing V TR on other firm con-

trols (contemporaneously). The results show that only Size, Amihud (stock liquidity measure),

and OptSpread (option liquidity measure) can explain over 10% cross-sectional V TR variations.

Together with other controls, only 30% contemporaneous cross-sectional variations of V TR can be

explained. A large fraction of information contained in V TR remain unexplained. Then I conduct

a large panel VAR analysis by predicting future economic variables, including V TR, ERJM , V RP :

first of all, the volatility tail risk is persistent in the cross-section with an autocorrelation of 0.44

after controlling for other factors. It is also the most effective predictor of itself among others. In

addition, we show that the proposed volatility tail risk measure, V TR, is an effective predictor of

future equity return jump measure and volatility risk premium. It also positively predicts future

idiosyncratic volatility and illiquidity measures, i.e. Amihud and OptSpread.

Third, to validate that V TR indeed measures jump components in IV process, I use a novel

non-parametric approach proposed by Lee and Mykland (2007) to identify jumps in the IV process.

Built on the identified jumps from IV process, I develop three extended IV jump measures: IVJI,

IVJS and IVSJS. IVJI stands for IV jump intensity. IVJS represents IV jump size and IVSJS

stands for IV scaled jump size. I show that V TR is robustly related to all three IV jump measures,

particularly for IVSJS. Furthermore, after controlling for other crucial firm characteristics, we show

that V TR is one of the most effective predictor of future IV jump measures. The average coefficient

of predicting IVJI/IVJS/IVSJS is 0.207, which is the largest in economic magnitude among all other

economic variables. This serves as very strong evidence that my V TR captures future IV jumps in

an effective way.

How volatility tail risk is priced in the stock market? We find strong evidence that stocks

with high volatility tail risk (high V TR) robustly underperform stocks with low volatility tail risk,

that is, volatility tail risk bears a negative effect in the cross-section. After sorting stocks into

quintile portfolios based on V TR, the long-short strategy that buys stocks with the highest V TR

and sells stocks with the lowest V TR generates an average monthly return of −43.6 basis points

(−5.23% per annum) with a t-statistic of −2.41. The corresponding Carhart (1997) four-factor
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risk-adjusted alpha for the long-short V TR portfolio is −42.2 basis points per month (−5.1% per

annum) with a t-statistic of −2.67. The magnitude of the return difference is both economically

and statistically significant. The cross-sectional results, at first glance, are not in line with existing

risk compensation models with rational expectations. I also show that the negative volatility tail

risk effect is persistent up to about 4 months after portfolio formation. This evidence is opposed

to the view that the negative volatility tail risk effect is a mispricing phenomenon. Empirically, it

is attractive to think of the negative volatility risk effect as another piece of anomaly analogous to

the idiosyncratic volatility puzzle documented by Ang, Hodrick, Xing, and Zhang (2006) and Ang,

Hodrick, Xing, and Zhang (2009).

Next, I further confirm that the negative relation between the volatility tail risk measure, V TR,

and future stock returns in the cross-section using Fama and MacBeth (1973) regressions. In Fama-

MacBeth regressions, after controlling for a set of well-documented firm and option characteristics,

a one-standard deviation increase in V TR is associated with a 1.2%-standard deviation drop in

monthly return.The volatility tail risk effect is robust to a battery of control variables, including

well-documented stock-related characteristics as well as option-related characteristics: firm size and

book-to-market ratio ( Fama and French (1993)), short-term reversal ( Jegadeesh (1990), Lehmann

(1990)), momentum ( Jegadeesh and Titman (1993)), historical skewness ( Harvey and Siddique

(2000)), historical kurtosis, Amihud illiquidity ( Amihud (2002)), maximum monthly return ( Bali,

Cakici, and Whitelaw (2011)), information asymmetry measured as option bid-ask spread, the level

of implied volatility, the volatility skew ( Xing et al. (2010)), and the option-to-stock volume ratio

( Johnson and So (2012)). More importantly, the volatility tail risk effect doesn’t get attenuated

by idiosyncratic volatility ( Ang et al. (2006)), and volatility-of-volatility effect ( Baltussen et al.

(2014)). But the reverse seems to be the case: the volatility-of-volatility effect is weakened when

volatility tail risk comes into play. I also conduct rigorous tests to rule out the possibility that the

negative cross-sectional predictability of volatility tail risk is merely driven by the renowned idiosyn-

cratic volatility effect. Neither total volatility nor idiosyncratic volatility completely compromises

stocks’ volatility tail risk feature.

To test the debate between systematic and idiosyncratic V TR, I implement an individual stock

V TR decomposition: I decompose stock-level V TR into systematic component, or sV TR, and

idiosyncratic component, or iV TR, by projecting stock V TR onto the span of SPY V TR, which I
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use it as a proxy for market-level V TR, and constant. We show that the negative relation between

V TR and future stock returns is primarily driven by systematic component in V TR measure. This

validates the argument that the volatility tail risk is systematically priced in the cross-section of

stock returns and the price of risk is negative. This can be explained by risk-compensation story:

empirically, V TR tends to be high while the stock return is low. Consequently, an asset that pays

off V TR is essentially a hedging asset to the economy, which should pay off with negative price of

risk.

To guarantee that my volatility tail risk measure, V TR, effectively measures the fat tails of

intraday IV distribution, I investigate the relation between V TR and other well-documented fat

tail measures. I confirm that my volatility tail risk measure V TR is closely related to the tradi-

tional higher-order moment kurtosis. As a robustness check, I construct daily IV kurtosis measure

from intraday IV data using method suggested by Amaya, Christoffersen, Jacobs, and Vasquez

(2015). Amaya et al. (2015) shows in their paper that under realistic assumptions on the continu-

ous dynamics of underlying equity prices (robust to stochastic volatility and jumps), the realized

higher-order moments converge to well-defined limits. Building on this insight, the daily time-

varying IV kurtosis is constructed using intraday quartic variations of log change in IV and then

aggregated to monthly IV kurtosis for each stock separately. The second robustness check draws

light from a recent paper by Kelly and Jiang (2014), where I fit a power-law distribution to the IV

tail of each stock and estimate the daily volatility tail risk parameter of each stock using intraday

IV distribution. The negative relation between volatility tail risk and expected stock returns in

the cross-section is also confirmed using alternative measures of volatility tail risk. For example,

a long-short strategy that buys stocks in the highest quintile of IV kurtosis and sells stocks in the

lowest quintile of stocks yields an annual average Carhart (1997) four-factor alpha of −3.2% with a

t-statistic of −1.76. The Fama and MacBeth (1973) regression result provides additional evidence

by showing that IV kurtosis also negatively predicts subsequent stock returns in the cross-section

after controlling for a battery of firm and option characteristics.

The rest of the paper is organized as follows. Section I summarizes related literature. Section II

describes the data, especially the intraday option quotes from Nanex, and the construction and

properties of the novel volatility tail risk measure. Section III establishes the validation and eco-

nomic interpretations of the proposed volatility tail risk measure. I also validate in this section that
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the proposed V TR measure is one of the best predictor of future IV jumps. Section IV examines

the effectiveness of alternative volatility tail risk measures. Section V presents empirical results

on the relation between volatility tail risk and the cross-section of expected stock returns. Sec-

tion VI examines the robustness of the proposed volatility tail risk measure from multiple aspects.

Section VII concludes.

I. Literature Review

Finance literature that studies the measurement of tail properties and its impact on asset prices

is of great volume. The measurement approach I use is closely related to Bollerslev and Todorov

(2011), which studies the role of rare events in explaining equity risk premia and variance risk

premia. Given a special structure of the diffusion and jump process, they identify and estimate

a new Investor Fears Index. The index reveals large time-varying compensation for fears and

disasters and shows that compensation for rare events accounts for a large fraction in variance

risk premia. The measurement of volatility tail distribution is also related to Kelly and Jiang

(2014) and Amaya et al. (2015). Kelly and Jiang (2014) uses a power-law approach to estimate

the time-varying tail risk from a panel of tail returns of stocks. They show that their tail risk

measure predicts aggregate stock market return up to five years. Amaya et al. (2015) estimates

daily realized variance, skewness and kurtosis using intraday high-frequency return data. They

conclude that realized skewness negatively predicts stock returns in the cross-section. A recent

work by Begin, Dorion, and Gauthier (2017) shows that idiosyncratic jump risk matters. They

have found that idiosyncratic factors explain almost 30% of the variation in the risk premium on

a stock. And they show that the contribution of idiosyncratic risk to the equity risk premium

arises exclusively from the jump risk component. They then conclude that tail risk thus plays a

central role in the pricing of idiosyncratic risk. My paper contribute to this strand of literature by

introducing a novel non-parametric (or semi-parametric) volatility tail risk measure that is immune

to model misspecifications.

This paper is also related to research studying volatility-related risks and stock returns. Bakshi

and Kapadia (2003) is one of the first set of papers studying the volatility risk premium through

delta-hedged option returns. Within a stochastic volatility framework, they first demonstrated a
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correspondence between the sign and magnitude of the volatility risk premium and the mean of

delta-hedged portfolio returns, and then provide strong evidence in supportive of a negative volatil-

ity framework. Bollerslev, Tauchen, and Zhou (2009) builds and examines the asset implications of

a general equilibrium model incorporating the effects of time-varying economic uncertainty. They

show that the variance risk premium is able to explain a non-trivial fraction of the time-series

variation in post-1990 aggregate stock market returns. By incorporating volatility-of-volatility

risk into the Bakshi and Kapadia (2003) framework, Huang and Shaliastovich (2014) shows that

the volatility-of-volatility risk is a significant risk factor which affects both index and index op-

tion returns, and bears a negative price of risk. In contrast, Baltussen et al. (2014) studies the

volatility-of-volatility effect and its impact on the cross-section of stock returns and argues that

the negative volatility-of-volatility effect doesn’t seem to be a systematic risk factor. Surprisingly,

few people study how tail distribution of volatility process affects asset prices in the cross-section.

I contribute to this strand of literature by exploring the importance of volatility tail risk in ex-

plaining the cross-section of stock returns as well as aggregate market return. I also show that the

volatility-of-volatility effect ( Baltussen et al. (2014)) may not be that robust and is dominated by

the volatility tail risk effect in my sample.

The empirical methodology is built on a huge body of literature that studies the connections

between stock characteristics and cross-section of stock returns. Those features include but not

limited to firm fundamentals, stock return moments, as well as option-related characteristics. I

briefly review the literature here. Fama and French (1992) shows that firm size and book-to-market

equity capture the cross-sectional variation in average stock returns. Amihud (2002) documents that

stock illiquidity affects the expected stock returns, and this illiquidity effect is stronger for small-

cap stocks. Jegadeesh and Titman (1993) documents that a trading strategy that buys momentum

portfolio earns significant positive return, and can’t be explained by common risk factors. In

addition to these first-order effects, Ang et al. (2006) provides evidence that exposure to aggregate

market volatility is priced in the cross-section. Furthermore, they show that stock’s idiosyncratic

volatility relative to Fama and French (1993) negatively predicts future stock returns in the cross-

section. This effect is extremely strong and economically large, and is not mitigated by other well-

documented factors. Beyond that, Conrad et al. (2013) uses a panel of option prices to estimate

the ex-ante risk-neutral volatility, skewness and kurtosis. They find a strong negative (positive)
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relation between ex-ante skewness (kurtosis) and subsequent stock returns. Amaya et al. (2015)

uses intraday high-frequency data to examine the information contained in the realized higher-

order moments and documents that realized skewness negatively predicts future stock returns in

the cross-section.

Finally, this paper borrows insights from market microstructure literature that studies how in-

formation is incorporated into asset prices. Central to all information-based models is the role of

informed traders and uninformed traders. Although specific modeling approaches differ, informa-

tion gets incorporated into asset prices as a result of trading behavior of informed and uninformed

traders. Glosten and Milgrom (1985) shows, in a sequential trading model, that trading can reveal

information of underlying assets and affect the behavior of prices. This insight is enriched and

pushed further by Easley, O’Hara, and Srinivas (1998), where they allow the participation of in-

formed traders in the option market to be decided endogenously in an equilibrium framework. In

their model, informed traders choose to trade in both the stock and the option market, in a pooling

equilibrium, when option implicit leverage is high, when the stock market liquidity is low, or when

the overall fraction of informed traders is high. Empirically, Pan and Poteshman (2006), taking

advantage of a unique option data set by CBOE, presents strong evidence that option trading vol-

ume contains information about future stock prices. Consequently, their evidence clearly implies

that the existence of informed trading in the option market.

II. Data and Empirical Design

In this section, I first describe the datasets used in this paper. Then I will show how the

volatility tail risk measure, V TR, is defined and measured using the intraday high-frequency option

quotes data from Nanex2 and its conditional cross-sectional distribution by year-month. Finally, I

construct portfolios by sorting stocks into quintiles based on monthly volatility tail risk measure,

analyze VTR-portfolio characteristics and examine its performance.

2The intraday high-frequency option quotes data are obtained from Nanex, a high-quality data vendor. Nanex
obtains its data from standard data aggregators: OPRA for options and SIP for equities (e.g. TAQ data in WRDS
also use SIP).
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A. Data

The Nanex option quotes database used in this paper contains data from January 2004 to

December 2014. Nanex provides historical quotes, trades information for every option traded on a

given day with 1-minute snapshots from 9:30 EST to 16:00 EST. Following Baltussen et al. (2014),

and Xing et al. (2010), I use the implied volatility (IV) of at-the-money (ATM) options with closest

to 30-day time-to-expiration to construct the intraday IV distribution of each stock. Particularly,

for each 1-minute snapshot during trading hours, I select a group of options (both calls and puts)

with SK/S ∈ [0.95, 1.05] and time-to-maturity closes to 30 days, where S here stands for the closing

price of a stock, and SK represents the strike price of an option. There are some papers also using

|∆| ≈ 0.5 as the definition of at-the-money (e.g. Bollen and Whaley (2004)). This turns out not

to be an issue in my sample. Since my focus is on options with around 30-day time-to-expiration,

those options with SK/S ∈ [0.95, 1.05] will have |∆| ≈ 0.5 in most of the cases. Such at-the-money

IV estimates are generally based on the most liquid and informative option prices. To alleviate

additional liquidity concerns, I further require that options, in order to be included in the sample,

should have opening quotes in [9:30, 9:40] and closing quotes in [15:50, 16:00], and must have

non-zero trading volume.

High frequency data usually contains some incorrect quotes, consequently, for each day, I apply

the following filters to intraday option quotes in order to select out valid and reasonable option

quotes data for the purpose of correctly computing intraday implied volatility of each stock: (1)

Bid price ≤ Ask price. (2) Both bid price and ask price should exist. (3) Bid price is greater

or equal to 10 cents. (4) Ask price is less than twice of the stock price. (5) (Bid-Ask)/Bid< 0.7

and (Bid-Ask)≤ 10 and (Bid-Ask)≤Stock price. Condition (3) and (5) are used to rule out penny

options, which are usually deep out-of-money options.

I use data of U.S.-listed options written on common equity shares of individual stocks traded

on NYSE, NASDAQ or AMEX. To ensure sufficient liquidity, for daily stock file, I require that

stock volume must be positive and stocks with closing price less than $1 are dropped. I also

acquire data from three additional databases. I obtain daily and monthly stock return, volume,

and shares outstanding data from Center for Research and Security Prices (CRSP) database to

compute historical skewness (kurtosis), reversal, momentum, size, monthly maximum return and
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monthly Amihud illiquidity measure. Firm accounting data are extracted from Compustat. I

obtain additional daily option data from OptionMetrics to compute the volatility-of-volatility used

by Baltussen et al. (2014), the out-of-money skew in Xing et al. (2010), monthly average IV of at-the-

money options and option liquidity, measured as option bid-ask spread. The final sample contains

156, 509 firm-month observations with approximately 1, 500 unique firms per year on average.

B. Construct Volatility Tail Risk Measure

I build the volatility tail risk measure of individual securities using IVs derived from intraday

option prices, which are estimated from Black-Scholes formula. I first construct the daily volatility

tail risk measure from intraday quadratic variations of the log change in IV for each stock, and

then aggregate it to monthly volatility tail risk measure, V TR, by taking average across the month.

The main advantage of using IV inferred from option price is that IV is a forward-looking mea-

sure of future realized volatility and reflects market participants’ estimation of future uncertainty.

Therefore, the volatility tail risk measure built from IV can be considered as an ex-ante measure

of future volatility tail risk.

Taking a similar approach applied extensively in estimating the daily realized variance of stock

returns (e.g.Andersen, Bollerslev, Diebold, and Labys (2003), Bollerslev and Todorov (2011)), I

construct the daily realized variance of implied volatility of stock i on any given day j of month t

as the summation of quadratic variations of the log change of intraday implied volatility:

RV V i
j,t =

N∑
k=1

[dlog(σIV,ik,j,t)]
2, (1)

where dlog(σIV,ik,j,t) = ln(σIV,ik,j,t)− ln(σIV,ik−1,j,t) = ln

(
σIV,ik,j,t

σIV,ik−1,j,t

)
. Here, N is the number of intraday log

change in IV recorded on day j. For the Nanex dataset, the 1-minute snapshot means N = 390. As

a standard approach, I do not adjust for the mean here because in high-frequency world, variance

dominates.

The construction of the daily left-tail (right-tail) variation of implied volatility, RLTV V i
j,t
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(RRTV V i
j,t), is a variation of the method proposed by Bollerslev and Todorov (2011).

RLTV V i
j,t =

N∑
k=1

[dlog(σIV,ik,j,t)]
21{dlog(σIV,i

k,j,t)<α
L,i
j,t }

, (2)

RRTV V i
j,t =

N∑
k=1

[dlog(σIV,ik,j,t)]
21{dlog(σIV,i

k,j,t)>α
R,i
j,t }

, (3)

where 1{·} is a indicator function and equals to 1 if the condition in {·} is true. αL,ij,t (αR,ij,t ) is

the left-tail (right-tail) threshold of dlog(σIV,ik,j,t). However, my choice of αL,ij,t (αR,ij,t ) is different

from Bollerslev and Todorov (2011). The purpose of RLTV V i
j,t (RRTV V i

j,t) is to capture the left-

tail (right-tail) component of the daily realized variance of implied volatility. Therefore, I do not

need extreme-value theory to specifically identify rare ”jumps” as what Bollerslev and Todorov

(2011) does in their paper. Therefore, I choose the αL,ij,t to be the 5% value of dlog(σIV,ik,j,t)’s intraday

distribution, and αR,ij,t to be the 95% value of dlog(σIV,ik,j,t)’s intraday distribution for each stock i

separately. Figure 1 gives an illustrative example of how I choose the left-(right-) tail distribution

given the probability density function of dlog(σIV ).

[Place Figure 1 about here]

I construct the daily tail variation of implied volatility, RTV V i
j,t, of each stock i as the summa-

tion of RLTV V i
j,t and RRTV V i

j,t:

RTV V i
j,t = RLTV V i

j,t +RRTV V i
j,t. (4)

The interpretation of this measure is quite straight-forward: RTV V i
j,t captures the 10% most fat-

tailed component of dlog(σIV,ik,j,t)’s intraday distribution. It can be seen that I don’t add overnight

change in log-IV to the RTV V measure here. Drop the overnight period can avoid the IV drop

during firm’s earning announcements. Consequently, it makes sure that V TR is not contaminated

by earning announcement effects. Meanwhile, in the literature, it is not clear whether overnight

period contains valuable information or simply adds more noise.

To alleviate micro-structure noise concerns, I then aggregate these daily volatility tail risk

measures to monthly volatility tail risk measures by taking average. The monthly realized variation
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of volatility of stock i in month t is defined as: RV V i
t =

1

Nt

Nt∑
j=1

RV V i
j,t, where Nt is the number

of daily observations in month t. Since RTV V i
j,t would tend to be large if RV V i

j,t is large, the

monthly volatility tail risk measure, V TR, is built by scaling RV V to filter out the level effect.

Mathematically,

V TRit =
1

Nt

Nt∑
j=1

RTV V i
j,t

RV V i
t

, (5)

where RV V i
t is defined above. In fact, my volatility tail risk measure V TRit bears similar intuition as

statistical higher-order moment: kurtosis. However, compared with kurtosis measure, my measure

is more focused on tail distribution of implied volatility. I will also use IV Kurtosis as an alternative

measure of volatility tail risk in Section IV. In addition, the value of this scaled volatility tail risk

measure, V TRit, will definitely fall in [0, 1] for stock i on any given month t. To guarantee sufficient

liquidity for this measure, I require a minimum of Nt = 5 daily observations for a given month t.

Similarly, I can also define the monthly left-tail (right-tail) risk measure of volatility as:

V LTRit =
1

Nt

Nt∑
j=1

RLTV V i
j,t

RV V i
t

(6)

V RTRit =
1

Nt

Nt∑
j=1

RRTV V i
j,t

RV V i
t

(7)

Consequently, we will have the following identity: V TRit = V LTRit + V RTRit. Furthermore, from

now on, I will suppress the superscript and subscript in notation V TRit if no confusion would occur.

There are multiple advantages that allow my proposed measure, V TR, to serve as a good proxy

on measuring volatility tail risks: (1) first and foremost, the advantage of using non-parametric

measure, in contrast to parametric measure (i.e. complex structural models), is that non-parametric

approach is immune to model misspecifications. Frankly speaking, unlike experimental science, it

is hard to testify the validity of a model. Furthermore, structural models with both jumps in stock

return and volatility, as well as stochastic volatility process (multiple hidden factors), make the ac-

curate estimation of parameters a tough task even with MH algorithm and Gibbs sampling. (2) Sec-

ond, the reason for using high-frequency quadratic variations is motivated Bollerslev and Todorov

(2011). In their paper, they discuss that if we assume that stock return process is comprised of a

diffusion component and a jump component, then the tail variation of intraday quadratic variation
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can be a reliable measure of realized jumps in intraday stock returns. Furthermore, the assumption

that volatility follows from geometric Brownian motion is also widely used in finance literature, for

example, Huang and Shaliastovich (2014). Therefore, given the mathematical inductions in Boller-

slev and Todorov (2011), I argue that the VTR measure in my paper can reasonably capture tail

variations in intraday IV change. (3) Third, comparing our measure to kurtosis measure, which is

an extensively used measure for estimating tail distribution in statistics, the major difference comes

from the numerator part. The part in curly braces, {dlog(σIV,ik,j,t) < αL,ij,t }+ dlog(σIV,ik,j,t) > αR,ij,t }, en-

sures that we only capture large tail variations (jump components) in IV process, while traditional

kurtosis measure, IVKurt, doesn’t really separate them out. Hence, for the purpose of the paper,

VTR is a better fit.

[Place Table I about here]

In Table I, I present descriptive statistics of V TR by year. I report means, standard deviations,

medians as well as 10th, 25th, 75th and 90th percentiles over time and across securities for each

year during the sample period. The cross-sectional percentiles suggest that the IV distribution of

individual stock is quite fat-tailed, as we can see that the means and medians are usually greater

than 0.65 over time, the average of which are 0.6955 and 0.6875 respectively. This suggests that

the volatility tail risk should be a non-trivial priced risk factor and deserves a careful examination.

Moreover, the 10th percentile of V TR is consistently higher than 0.5 across years, further reinforcing

the fat-tail property of individual stock volatility distribution.

[Place Figure 2 about here]

In Figure 2, I plot the 10th, 25th, Median, 75th and 90th percentiles of V TR across securities

for each year-month. There are some interesting patterns reflected in Figure 2. First, we observe

a sharp decline in V TR of all percentiles by the end of 2008. This suggests that the whole cross-

sectional distribution of V TR moves left towards the origin. This is pretty interesting because this

time period is when the 2008 financial crisis got worse. We might expect more fat-tailed distribution

of V TR rather than less. As a robustness check, I also check the possibility of miscalculation by

examining the cross-sectional distribution of IV kurtosis (See Figure 7). The IV kurtosis graph

confirms that this is not a miscalculation issue. My interpretation to this decline is that the whole
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distribution of V TR became more dispersed around crisis. This is confirmed by Baltussen et al.

(2014) that the volatility-of-IV actually increased in 2008, which is also true in my sample period.

As a consequence, either V TR or IV kurtosis turns out to be smaller due to scaling. Second,

we observe an increasing trend in V TR starting from the end of 2013. Broadly speaking, the

cross-sectional distribution of V TR is generally stable across the sample period except for the 2008

financial crisis period, where the IV distribution of individual stock was extremely volatile.

C. Characteristics of V TR-Sorted Portfolios

By the end of each month, I sort stocks into equal-weighted quintile portfolios based on the

monthly volatility tail risk measure, V TR. Table II reports the time-series average of V TR and firm

characteristics, by quintile. Column 1 contains portfolio of stocks with the lowest V TR and column

5 contains portfolio of stocks with the highest V TR. Firm characteristics include equity return

jump measure (ERJM), volatility risk premium (VRP), the log of firm size (Size)(in $billions), the

log of book-to-market ratio (LBM)( Fama and French (1993)), short-term reversal (Reversal) and

long-term momentum (Momentum)( Jegadeesh (1990), Jegadeesh and Titman (1993)), historical

skewness (HSkew)( Harvey and Siddique (2000)), historical kurtosis (HKurt), monthly maximum

return (MaxRet), Amihud illiquidity measure (Amihud)( Amihud (2002)), option quoted spread

(OptSpread), monthly average implied volatility (ImpVol), OTMSkew (also known as volatility

skew in Xing et al. (2010)).

[Place Table II about here]

From Table II, we can observe that V TR moves from an average of 0.564 in quintile 1 to an

average of 0.847 in quintile 5. And there exists a strong pattern between V TR and some firm

characteristics: (1) firm size is negatively correlated with V TR. This turns out to be the case

mainly because small cap-stocks are generally more volatile than large cap-stocks. The volatility of

small cap-stock is more volatile as well. Consequently, small cap-stocks usually bear high V TR. (2)

High V TR stocks tend to be less liquid: both measured by stock illiquidity, Amihud, and option

illiquidity, OptSpread. I will show that V TR captures future illiquidity information but is not

fully driven by illiquidity. The interaction between V TR and illiquidity is analyzed in detail in

next section. (3) V TR is also positively correlated with stock volatility, i.e. idiosyncratic volatility,
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though not very pronounced. We show in later section that the negative relation between V TR and

future stock returns can be partially explained by the idiosyncratic volatility relation documented

by Ang et al. (2006).

A formal test of the unconditional correlation between V TR and firm characteristics is re-

ported in Table XII Panel B. Detailed discussion and double-sorting analysis will be conducted in

Section VI to further disentangle V TR effect from other mixed features.

III. Validations and Interpretations

On introducing a novel volatility tail risk measure, I plan to validate this measure from multiple

aspects. First, I analyze the connection between volatility tail risk and equity return jump measure,

ERJM . I show that volatility jumps and stock return jumps is empirically uncorrelated and for

SPX series: the correlation is merely 0.01 with no statistical significance. I also test the market

return predictability using V TR, ERJM , V RP (volatility risk premium) and dividend-price ratio

(or D/P). I show that V TR negatively predict future stock return even after controlling for other

predictors.

Then, I compare the relation between V TR and other crucial firm characteristics. In particu-

lar, to make economic magnitudes comparable, I standardize each variable to zero mean and unit

variance. I first conduct a V TR explanatory analysis by regressing V TR on other firm features

(contemporaneously). I also examine how V TR is related to future economic state variables by

testing its capability in forecasting future macro quantities through VAR analysis. Finally, I ex-

amine whether V TR is an effective predictor of future IV jumps by predicting future IV jump

measures, i.e. IVJI/IVJS/IVSJS, using lagged V TR and other crucial variables.

In the model proposed by Broadie et al. (2007), they show that jumps in stochastic process can

affect the pricing of options. To examine this implication, we explore the relation between V TR

and subsequent option returns, measured by option straddle returns and variance risk premium.

The variance risk premium is approximated by the difference between implied volatility and realized

volatility.
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A. Stock Market Return, V TR and ERJM

To examine the relation between volatility tail risk and stock return tail risk, we construct stock

return jump measure, or ERJM , based on the measure proposed by Bollerslev and Todorov (2011).

In particular, I highlight the time-series of CRSP value-weighted stock market return, V TR and

ERJM constructed from SPY in the figure below.

[Place Figure 4 about here]

In Figure 4, I address 2 important questions here: first, how correlated is volatility jump and

stock return jump? The time-series Pearson correlation between V TR and ERJM of SPY is: 0.01,

which is literally not significant at all. Namely, we don’t observe statistically significant correlation

between jumps in return and jumps in volatility. This is not surprising: in finance literature, as

suggested by many papers that study sophisticated structural models, i.e. Eraker et al. (2003),

they assume that the jump process in return and volatility are mutually independent.

Second, why we don’t see a spike in VTR? From the figure above, I want to argue the following

fact: realized volatility spike doesn’t necessarily imply that it is caused by a jump in volatility

process. It can also be driven by jump in underlying stock return. i.e. thinking about GARCH-

style volatility models. That is exactly what we saw in the 2008 Crisis period. The volatility swings

during 2008 financial crisis period are mostly driven by jump events in underlying stock return that

are illustrated in the bottom panel. Furthermore, this also confirms the low correlation between

V TR and ERJM .

[Place Table VI about here]

In Table VI, I test the market return predictability at different horizons: 1-month, 3-month,

and 6-month. There are good things and bad things in this market return predictability test. The

good thing is: consistent with findings in the cross-section, V TR negatively predicts future market

return. However, the bad thing is: the statistical power is not very strong.

As we acknowledge this deficiency in time-series test, the reasons could be multi-dimensional:

• The sample for our test is just not long enough. We only have 104 monthly observations. In

a time-series test, this is not quite sufficient.
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• Our measure is a proxy of systematic volatility tail risk using SPY. Henceforth, measurement

error could be an issue.

It is also interesting to see that in the joint regression, VRP is probably the only significant variable:

the reason is because VRP is measured as IV-RV. In a model with both jumps in stock return and

volatility, VRP captures three effects: pure variance risk, stock return jump risk, and volatility

jump risk.

B. How Important is V TR?

In this part, I want to address the following important question: how important is the informa-

tion captured by V TR? Namely, if the information contained in V TR can be fully explained by

other firm characteristics and factors, then V TR is redundant from the perspective of asset pricing.

To address this issue and make estimated coefficients comparable, I first standardize each vari-

able to zero mean and unit variance. The advantage of using standardized variable is that the

economic impact on V TR of each variable is directly comparable from the magnitude of the coef-

ficient.

[Place Table III about here]

In Table III, the four variables that have the most impact on V TR in univariate regression are:

ERJM, Size, Amihud, and OptSpread. We further classify them into 3 categories: stock return

jump risk (ERJM), firm size (Size) and liquidity risk (Amihud, and OptSpread).

[Place Figure 5 about here]

Results in Figure 5 show the cross-sectional explanatory power of each variable: only Size, Ami-

hud, and OptSpread have over 10% R-square. Furthermore, all variables can only explain around

30% of total cross-sectional variation in V TR, which indicates that V TR captures additional non-

trivial information that is not captured by other variables. In other words, most of the information

in V TR is not captured by other firm characteristics and factors.
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C. VAR Analysis

In this section, I implement VAR analysis to explore the connection between V TR and future

economic activities. In macroeconomics, one important research topic is to investigate predictors

that can effectively forecast future macroeconomic activities. Therefore, I show that the proposed

V TR measure not only captures exclusive information contemporaneously, but also predicts future

economic quantities.

In particular, we run the following predictive regressions:

Xi
t+1 = α+ β′Xi

t + εit+1, (8)

where Xi
t is a vector of economic state variables including all related variables and factors.

[Place Table IV about here]

First, in order to validate V TR measure in a comprehensive way, variables that are closely

related to V TR must be considered in a careful way, i.e. equity return jump measure (ERJM),

volatility risk premium (VRP), and liquidity measure (Amihud and OptSpread). Similarly, to make

magnitudes comparable, all variables are standardized to zero mean and unit variance.

Results in Table IV show that V TR has quite decent persistency and statistical power. The

cross-sectional autocorrelation, after controlling for other lagged factors, is 0.44. Meanwhile, we

also confirm the interaction between stock return jump (ERJM) and volatility jump (V TR): albeit

VTR positively predicts ERJM in next period, the impact magnitude is not impressive, merely

0.02. And, ERJM positively predicts future V TR, but with little statistical power. Furthermore, it

positively and robustly predicts future volatility risk premium, idiosyncratic volatility, stock return

high-order moments, illiquidity measures and volatility skew.

D. V TR and IV Jumps

To provide an incisive and clear picture of the relation between the proposed IV tail risk mea-

sure, V TR, and IV jumps, we construct several IV jump measures using a robust non-parametric

identification approach proposed by Lee and Mykland (2007). The formal mathematical theorems

are described in details in Appendix B. The intuition of this methodology is that if the stochastic

20



volatility process consists of a diffusion component and a jump component, then we can identify a

deviation as a jump with certain confidence level if the magnitude of this deviation is way-too-large

compared with conditional bi-power variation.

I extend this idea by further compute statistics based on identified IV jumps at 99% confidence

level. Three IV jump measures are constructed: IVJI, IVJS and IVSJS. IVJI stands for IV jump

intensity. IVJS stands for IV jump size. IVSJS stands for IV scaled jump size. Mathematically,

for any stock i on any given day j of month t,

IV JIij,t =
1

N

N∑
k=1

1{dlog(σIV,i
k,j,t)∈{Jumps}}

, (9)

IV JSij,t =
1

NJ

N∑
k=1

|dlog(σIV,ik,j,t)| · 1{dlog(σIV,i
k,j,t)∈{Jumps}}

, (10)

IV SJSij,t =
1

NJ

N∑
k=1

|dlog(σIV,ik,j,t)|

|dlog(σIV,ik,j,t)|
· 1{dlog(σIV,i

k,j,t)∈{Jumps}}
, (11)

where 1{·} is an indicator function and equals 1 if the condition in {·} is true, and NJ is the

number of jumps identified per day: dlog(σIV,ik,j,t) ∈ {Jumps}. N is number of intraday periods:

for our sample, N = 390. |dlog(σIV,ik,j,t)| = 1
N

∑N
k=1 |dlog(σIV,ik,j,t)|, represents the average absolute

variation of dlog(σIV,ik,j,t. From the construction we can see that IVJS measure is contaminated

by the diffusion variation. Therefore, the purpose of IVSJS is to mitigate the effect of diffusion

component when measuring the IV jump size property. Daily measures of IV JIij,t, IV JS
i
j,t, and

IV SJSij,t are then aggregated to monthly level by taking average for each stock i to obtain IV JIit ,

IV JSit , and IV SJSit . In Figure 3, we plot the cross-sectional distributions of these three IV jump

measures. Compared with the cross-sectional distribution of V TR in Figure 2, we find strong

comovements between V TR and IVJI/IVSJS. This provides preliminary evidence that our IV tail

risk measure V TR really measures jump components in the intraday IV process.

[Place Figure 3 about here]

Before dealing with the correlation issue, we first explain what IVJI means. For example,

IV JI = 0.01 means: we identify 1 jump out of 100 intraday observations. Consequently, since we

observe 390 observations per day, IV JI = 0.01 would mean that we identify 390*0.01=3.9 jumps

per day. That is what I call as ”IV jump intensity”. In Table V, I report the unconditional cross-
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sectional correlation between V TR and IV jump measures IVJI/IVJS/IVSJS. The correlations with

all 3 IV jump measures are quite decent and statistically significant. Meanwhile, we need to be

aware that given the rarity of jump events, the historical IV jump intensity measure may not be

that accurate.

[Place Table V about here]

The Table V Panel B reports the cross-sectional forecasting regressions of IV jump measures

constructed from realized IV process. First of all, each variable is standardized to zero mean and

unit variance. Consequently, we can compare the economic magnitude of each explanatory variable

directly. While controlling for all other important variables, we can observe that V TR is still the

most effective predictor of future IV jumps: V TR generates the highest average coefficient (0.207)

across all three IV jump measures as well as t-statistics.

In terms of model fitness, the univariate average R-square of only using V TR is about 15%,

while using all variables can merely explains about 30% of total cross-sectional variation in V TR.

This indicates that V TR is as important as all other factors in predicting future IV jumps. This

serves as a piece of strong evidence that the proposed volatility tail risk measure, V TR, has a

better capability of forecasting future IV jump risks over other variables.

E. V TR and Liquidity Concern

As we find in subsection III.B, liquidity is one of the most important factors that affects the

validity of V TR measure. I address the liquidity concern from two aspects: stock liquidity (i.e.

Amihud) and option liquidity (i.e. option quoted spread, or OptSpread).

In the paper, to alleviate microstructure noise concern, I use 3 approaches: first, the IV is

constructed from around 30-day ATM option, which is known for good liquidity condition. Second,

I smooth the V TR measure across days in a month to form monthly measures. Third, I also control

for these illiquidity measures in regressions.

The concern that V TR may capture illiquidity rather than IV jump information is resolved in

subsection ?. We show that even controlling for illiquidity measures, V TR is still the most effective

predictor of future IV jumps. Besides, V TR itself is quite persistent, which indicates that V TR

has at least one persistent component that varies over time, and is not temporary noise.
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[Place Figure 6 about here]

To address some of the concerns that the negative relation is driven by illiquidity, we conduct

double-sorting from the perspective of stock and option liquidity respectively. The double-sorting

strategy is implemented in a conditional approach: we first sort stocks based on Amihud (Opt-

Spread), then sort stocks based on VTR measure.

The upper left panel shows the double-sorting portfolio performance for Amihud and V TR, it

is obvious that we can observe statistically and economically significant and negative relation in

almost all quintile groups (4 out of 5). And in particular, albeit the long-short portfolio of the

5th Amihud group generates the largest negative alpha, we don’t observe a particular strong linear

pattern that the negative relation in V TR is driven by stock illiquidity.

The double-sorting result on stock liquidity is further reinforced by the double-sorting result

on option liquidity, measured by OptSpread. The average long-short magnitude for OptSpread

quintile group 2 to 5 is about −1%. And the pattern is pretty much flat, which rules out the

hypothesis that the negative relation in V TR is driven by option market illiquidity.

F. VTR, Option Returns and Variance Risk Premium

In the paper by Broadie et al. (2007), they examine the model specification issues and estimate

diffusive and jump risk premia using S&P futures and futures options. They find strong evidence

in support of the presence of jumps in volatility in a time-series test. As an alternative approach,

they also find modest evidence of jumps in volatility using cross-section of option prices.

In this subsection, I examine how my volatility tail risk measure V TR affects the cross-section

of option returns and variance risk premium. To eliminate first-order stock price movements, we

use delta-neutral option straddle return: for each call option, we choose one put option with same

strike and expire date and such that the pair of option portfolio is risk neutral. Then we take

an equal-weighted approach for options with moneyness (measured as option delta) in [0.35, 0.65]

for each stock each day. We use OptRetstraddleavg to represent average daily option straddle return

for each stock in a given month, and use OptRetstraddlesum to represent aggregated option straddle

return for each stock in a given month. Bollerslev et al. (2009) show that under certain structural

assumptions, variance risk premium can be represented as: V RP = IV −RV , where IV is implied
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volatility and RV is realized volatility. In this paper, RV is the annualized daily volatility computed

from daily returns of a given month.

[Place Table VI about here]

As displayed in Table VI, we can conclude that V TR does affect option prices: specifically,

V TR positively predicts cross-section of option straddle returns. Admittedly, a 1.8 t-value is not

very impressive. But given the volatile nature of option returns and limited sample size, the 10%

statistical significance is acceptable. In addition, we show that V TR strongly predict cross-sectional

V RP = IV −RV , which is consistent with results in Table V.

We can arrive at several conclusions here: (1) since the delta-neutral option straddle rules out

most of the variations in stock prices, we show that the volatility tail risk measure, V TR, is priced

in the cross-section of option returns. (2) We show that a certain fraction of the variance risk

premium measure, V RP = IV − RV , can be attributed to volatility tail risks. (3) Together with

results in subsection III.C, we conclude that the proposed volatility tail risk measure, or V TR,

contains valuable information about future economic activities and IV jumps, and are priced in the

option market.

IV. Alternative Measures

The volatility tail risk measure, V TR, which I propose in Section II.B is novel and immune to

model misspecifications albeit not very intuitive. To ensure that my volatility tail risk measure,

V TR, essentially measure the fat-tail risk of volatility process, I consider two well-documented

alternative measures here: (1) the first measure is kurtosis. Amaya et al. (2015) provides theoretical

foundations for estimating daily kurtosis using high-frequency data. (2) The second measure is a

well-documented tail risk measure induced by power-law method, which is proposed by Kelly and

Jiang (2014). I show, in this section, that V TR is highly correlated with these two alternative

measures, and they share some common properties.

A. IV Kurtosis (IVKurt)

The IV Kurtosis measure, IVKurt, built in this part follows the method used by Amaya et al.

(2015). Specifically, I construct the daily kurtosis of volatility for stock i on any given day j of
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month t as:

IV Kurtij,t =

N
N∑
k=1

[dlog(σIV,ik,j,t)]
4

[RV V i
j,t]

2
, (12)

where dlog(σIV,ik,j,t) = ln(σIV,ik,j,t) − ln(σIV,ik−1,j,t) = ln

(
σIV,ik,j,t

σIV,ik−1,j,t

)
. Here, N is the number of intraday

log change in IV recorded on day j. The RV V i
j,t is the daily realized variation of volatility defined

in II.B. Amaya et al. (2015) proves that under realistic assumptions, this realized high-order moment

converges to well-defined limits. The limit of IVKurt is determined by jumps in the continuous-time

process. Under the setting of this paper, IVKurt is dominated by jumps in the intraday IV process.

Similar to the aggregation process I use for V TR construction, the daily IV Kurtij,t is then

aggregated to monthly IV Kurtit by taking average across days in month t for each firm i separately.

Mathematically,

IV Kurtit =
1

Nt

Nt∑
j=1

IV Kurtij,t, (13)

where Nt is the number of daily observations in month t.

I also construct the IV skewness measure, IVSkew, using intraday IV data following the pro-

cedure in Amaya et al. (2015). The daily skewness of volatility for stock i on any given day j of

month t is defined as:

IV Skewij,t =

√
N

N∑
k=1

[dlog(σIV,ik,j,t)]
3

[RV V i
j,t]

3/2
. (14)

and monthly IV skewness measure is defined as: IV Skewit =
1

Nt

Nt∑
j=1

IV Skewij,t.

The IVSkew measure is not my primary interest here. The purpose I include this one is to control

the potential skewness effect. One caveat is that IVSkew is different from the OTMSkew used

by Xing et al. (2010). In Xing et al. (2010), they call OTMSkew as volatility skew, which is defined

as the difference between out-of-monney put IV and at-the-money call IV with time-to-maturity

in [10, 50] days. The OTMSkew measure is primarily affected by excess tail risks in underlying

stock returns, which is quite different from the information captured by IVSkew. Figure 7 plots

the cross-sectional percentiles of IVKurt by year-month. Broadly speaking, we can observe similar

patterns as the cross-sectional percentiles of V TR in Figure 2, which provides evidence in support

of the high correlation between these two measures. The formal test of unconditional correlation
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is shown in Table VIII Panel A.

[Place Figure 7 about here]

B. Power-Law Method: λLT and λRT

The second alternative measure I use is a variation of the tail risk measure proposed by Kelly

and Jiang (2014) 3. The empirical framework of Kelly and Jiang (2014) is built on a reduced-form

description for the tail distribution of returns. They assume that the lower tail of asset returns

behaves in a similar power law fashion. Specifically, in my setting, the left-tail distribution of the

log change of intraday IV for firm i on any given day j of month t is defined as:

Prob(dlog(σIV,ik,j,t) < x | dlog(σIV,ik,j,t) < µLT,ij,t , Fj,t) =

(
x

µLT,ij,t

)− 1

λLT,ij,t , (15)

where x < µLT,ij,t < 0, and Fj,t is the information set at time (j, t). µLT,ij,t is the left-tail threshold.

The choice of µLT,ij,t follows from II.B, µLT,ij,t = αL,ij,t to be the 5% value of dlog(σIV,ik,j,t)’s intraday

distribution (This choice is also what Kelly and Jiang (2014) use). Equation 15 states that the

extreme dlog(σIV,ik,j,t) events obey a power law. The parameter of the model, λLT,ij,t , determines the

shape of of the tail and is referred to as the tail component. Since x < µLT,ij,t < 0 and x/µLT,ij,t > 1,

the probability of tail events

(
x

µLT,ij,t

)−1/λLT,i
j,t

gets bigger if λLT,ij,t is larger. The time-varying λLT,ij,t

is referred to as the ”left-tail risk” of firm i at time (j, t).

Given the panel of observations of dlog(σIV,ik,j,t) on any given day j for firm i, the daily λLT,ij,t is

estimated through Hill (1975)’s power law estimator. Mathematically,

λLT,ij,t =
1

K

K∑
k=1

ln

(
dlog(σIV,ik,j,t)

µLT,ij,t

)
, (16)

where K is the total number of exceedences where dlog(σIV,ik,j,t) < µLT,ij,t on any given day j of month

3Albeit we operate under similar power-law framework, the assumption I use differ slightly from Kelly and Jiang
(2014). In their paper, stocks have similar tail distribution and the tail risk λi

t = λt across stock universe. Finally,
they infer λt from the cross-sectional tail events of individual stocks.
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t for firm i. Then, I aggregate this daily λLT,ij,t to λLT,it of month t for each firm i separately:

λLT,it =
1

Nt

Nt∑
j=1

λLT,ij,t (17)

where Nt is the number of daily observations in month t.

The ”right-tail risk” parameter λRT,ij,t can be defined similarly. Specifically, I assume the right-

tail distribution of the log change of intraday IV for firm i on any given day j of month t follows:

Prob(dlog(σIV,ik,j,t) > x | dlog(σIV,ik,j,t) > µRT,ij,t , Fj,t) =

(
x

µRT,ij,t

)− 1

λRT,ij,t , (18)

where x > µRT,ij,t > 0, and Fj,t is the information set at time (j, t). µRT,ij,t is the right-tail threshold.

The choice of µRT,ij,t is the 95% value of dlog(σIV,ik,j,t)’s intraday distribution. The Hill (1975)’s power

law estimator for the ”right-tail” risk parameter λRT,ij,t is:

λRT,ij,t =
1

K

K∑
k=1

ln

(
dlog(σIV,ik,j,t)

µRT,ij,t

)
(19)

where K is the total number of exceedences where dlog(σIV,ik,j,t) > µRT,ij,t on any given day j of month

t for firm i. Then, aggregate λRT,ij,t to monthly ”right-tail risk” measure for firm i:

λRT,it =
1

Nt

Nt∑
j=1

λRT,ij,t (20)

where Nt is the number of daily observations in month t. Furthermore, from now on, the superscript

i and the subscript t will be suppressed if not necessary.

[Place Table VIII about here]

Having defined the alternative measures, I then test the correlation between V TR and these

alternatives. Table VIII Panel B reports the unconditional correlations of different volatility tail

risk measures. The correlations of V TR with IVKurt, λLT and λRT are 0.668, 0.678 and 0.687,

respectively. The evidence in Table VIII Panel A shows that my volatility tail risk measure, V TR,

is highly correlated with other well-documented tail risk measures. High correlations also suggest
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V TR should be able to capture excess volatility tail effectively.

V. Stock Return Predictability

In this section, I examine the relation between V TR and future monthly stock returns in the

cross-section. Subsequently, I study the economic magnitude and performance persistence of the

long-short portfolio which buys stocks in the highest quintile Q5 and sells stocks in the lowest

quintile Q1. Finally, I formally test the negative relation between V TR and the cross-section of

future stock returns through Fama-MacBeth ( Fama and MacBeth (1973)) cross-sectional regres-

sions. I also test the robustness of the V TR effect against a battery of control variables. Finally, I

decompose V TR into systematic V TR, sV TR, and idiosyncratic V TR, iV TR, by projecting indi-

vidual stock V TR onto SPY V TR (systematic V TR proxy). I validate that the negative relation

between stock and future stock returns is primarily driven by systematic V TR components rather

than idiosyncratic components. This implies that volatility tail risk is priced as a systematic risk

factor with negative price of risk.

A. Portfolio Sorts

At the end of each month, stock are ranked into quintiles based on V TR. Then equal-weighted

portfolios are formed and portfolio returns in next month are computed and recorded. Table IX

Panel A reports the time-series averages of monthly returns for V TR quintile portfolios.

[Place Table IX about here]

In Table IX Panel A, we can observe a decreasing trend between the level of V TR and the average

return in subsequent month. The average monthly return decreases from 68.3 basis points for the

lowest quintile portfolio to 24.7 basis points for the highest quintile portfolio. The ”High-Low”

strategy that buys stocks in the highest quintile and sells stocks in the lowest quintile generates an

average raw return of −43.6 basis points per month, which is −5.23% per annum. The t-statistic

associated with the High-Low portfolio is −2.405, which is statistically significant at 5% level. I

also adjust the average raw return by standard measures of systematic risks. The CAPM alpha,

adjusting for excess market return, of the High-Low portfolio is −47.6 basis points per month
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(−5.71% per annum) with a t-statistic of −2.737. The FF3 alpha, adjusting for excess market

return, small-minus-big, high-minus-low, equals −44.8 basis points per month (−5.38% per anuum)

with a t-statistic of −2.715. The FF3+MOM alpha, which adjusts for Fama-French three factors

( Fama and French (1993)) as well as Carhart momentum factor ( Carhart (1997)), equals −42.2

basis points per month (−5.1% per annum) with a t-statistic of −2.665, statistically significant at

1% level. Both raw return and risk-adjusted alpha results show that the negative relation between

V TR and the cross-section of subsequent stock returns is economically and statistically significant.

To get a more straight-forward view of this negative relation, I plot a bar graph that displays the

average raw excess return and the Carhart (1997) four-factor alpha of V TR-sorted quintile portfolios

as well as the High-Low portfolio in Figure 8. The unit of vertical axis is percentage. Broadly

speaking, alphas associated with low V TR quintiles are positive, though they are not statistically

significant. Alphas associated with high V TR quintiles are negative, and are economically and

statistically significant. The alphas for low V TR quintiles may be associated with firm size, liquidity

costs and other characteristics. To resolve those concerns, I disentangle those effects in Fama-

MacBeth cross-sectional regressions in Section V.C.

[Place Figure 8 about here]

In addition, the economic and statistical significance of the negative relation is not limited to

the top and the bottom portfolio. The last column of Table IX Panel A reports return difference of

a long-short portfolio that longs an equal-weighted portfolio of quintile 4 and quintile 5 and shorts

an equal-weighted portfolio of quintile 1 and quintile 2. Regardless of the risk-adjusted benchmark

used, the average return and risk-adjusted alphas are economically and statistically significant.

The FF3+MOM alpha is −31.5 basis points per month (−3.78% per annum) with a t-statistic of

−2.807.

Besides the return difference results for portfolios sorted on V TR, I also report portfolio sorts

based on V LTR and V RTR in Table IX Panel B and Panel C, respectively. Panel B reports

the return difference and risk-adjusted alphas for quintile portfolios sorted on the left-tail risk

measure of volatility, V LTR. The last two columns in Panel B reports the High-Low portfolio

as well as (Q4 + Q5) − (Q1 + Q2) portfolio results, the definition of which are quite similar to

Panel A. Panel C reports return difference and risk-adjusted alphas for quintile portfolios sorted
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on the the right-tail risk measure of volatility, V RTR. Consistent with the strong negative relation

between V TR and future cross-sectional stock returns reported in Panel A, both measures also

generate impressive negative relations. This suggests that volatility tail risk as a whole has same

asset pricing implications. The High-Low portfolio on V LTR generates a monthly four-factor

(FF3+MOM) alpha of −34.5 basis points (−4.14% per annum) with a t-statistic of −2.787. Panel

C shows that the High-Low portfolio on V RTR yields a monthly four-factor alpha of −28.2 basis

points (−3.38% per annum) with a t-statistic equaling to −1.7.

In Figure 9, I examine the profitability of a trading strategy that replicates the Low-High

portfolio (reverse the High-Low portfolio in Table IX Panel A) formed on the basis of V TR. As

a comparison with other benchmarks, I also compute the cumulative return series for the excess

market return, small-minus-big (SMB) and high-minus-low (HML) portfolios (See Fama and French

(1993)), as well as momentum (MOM) portfolio (See Carhart (1997)). The V TR-sorted Low-High

portfolio and the market portfolio straightly beat the SMB, HML and MOM portfolios over the

sample period from January 2004 to December 2014. In contrast, the Low-High portfolio of V TR

generates a holding-period return of 70% which is comparable to the contemporaneous market

excess return of 88.3%. Even though the raw return of Low-High strategy doesn’t surpass S&P

500 index, Figure 3 also shows that the V TR-sorted Low-High strategy suffers impressively less

drawback than the market portfolio during 2008 financial crisis, which suggests that this strategy

can offer competitive risk-adjusted return. The Sharpe ratio for the V TR-sorted Low-High strategy

is 0.7 per annum, excelling the 0.48 annual Sharpe ratio generated by the market index, over the

sample period.

[Place Figure 9 about here]

In conclusion, I find strong evidence in support of a negative cross-sectional relation between

volatility tail risk, measured by V TR, and subsequent stock returns in the cross-section. The

volatility tail risk is relevant in determining stock returns in the cross-section, and its effect is not

captured by Carhart (1997) four-factor asset pricing model.

30



B. Performance Persistence

Having established a strong negative relation between V TR and future stock returns, I next

examine the duration of this return predictability. Figure 10 shows the raw returns and alphas

of the High-Low strategies with progressively longer holding periods from the observation of V TR

signal to portfolio-rebalancing. For example, the V TR High-Low strategy with a 3-month lag

means sorting firms into quintile portfolios 3-month prior to the realized return window. Then, I

use the monthly time-series of those raw returns to compute alphas (CAPM alpha, FF3 alpha and

FF3+MOM alpha). Figure 10 repeats this process with lags from 1- to 4-month.

[Place Figure 10 about here]

The left graph of Figure 10 shows that the return predictability associated with V TR exists

for at least 3 to 4 months, where the surrounding error bars represent 95% confidence interval

of the corresponding alpha estimation. Even though the 3-month-lag alphas are not statistically

significant, we observe a reverse pattern for the 4-month-lag alphas. Not surprisingly, the 1-month-

lag alphas are the most significant one from the perspective of both economics and statistics.

The right graph of Figure 10 shows the cumulative alphas from the left graph. We don’t

observe a reverse trend in cumulative return series for at least 4-month after portfolio formation.

This suggests that the volatility tail risk is an important determinant of expected cross-sectional

stock returns rather than a mispricing story. The cumulative 4-month risk-adjusted alphas range

from −1.25% to −1.41%.

C. Fama-MacBeth Regressions

To further assess the negative relation between the volatility tail-risk measure, V TR, and the

cross-section of future stock returns, I conduct various Fama-MacBeth ( Fama and MacBeth (1973))

cross-sectional regressions with a battery of control variables. For each month t, I compute the

volatility tail-risk measure V TRit for each stock i and estimate the following cross-sectional regres-

sions:

rit+1 = α+ βV TRit + γ′Xi
t + εit+1, (21)
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where rit+1 (in percentage) is the stock return (including dividends) of firm i for month t+ 1, and

Xi
t represents a vector of characteristics and controls of firm i observed at the end of month t.

[Place Table X about here]

Table X reports the time-series average of the cross-sectional coefficients for the six model

estimated. The Newey and West (1987) adjusted t-statistics are reported in square brackets. The

first column displays results of regressing monthly return on lagged V TR without any control. The

coefficient associated with V TR is −0.0168 with a Newey-West t-statistic of −5.66. This confirms

the negative relation found in the portfolio-sorting results, Table IX.

The 5th column reports results of the cross-sectional regression after adding a battery of firm

characteristics and controls. Specifically, I control for the equity return jump measure (ERJM),

volatility risk premium (VRP), the log of firm size (Size) and the log book-to-market ratio (LBM)

as in Fama and French (1993), short-term reversal (Reversal) as in Jegadeesh (1990), momentum

return (Momentum) as in Jegadeesh and Titman (1993), maximum monthly return (MaxRet)

as in Bali et al. (2011), historical skewness (HSkew), historical kurtosis (HKurt), and Amihud

illiquidity measure (Amihud) as in Amihud (2002). The magnitude of the coefficient associated

with V TR reduces to −0.089 with a Newey-West t-statistic of −2.57. The stock return kurtosis

(HKurt) is also statistically significant at 1% level. However, surprisingly, the coefficient associated

with Size is not significant, which suggests potential missing variable concerns.

In the last column, besides the firm characteristics added in Model 5, I also include a set of

option-related characteristics to alleviate missing variable issues and guarantee that the volatility

tail risk effect is not absorbed by any previously documented factors: average option quote spread

of at-the-money options (OptSpread), average implied volatility of at-the-money calls (ImpVol),

the volatility skew (OTMSkew) as in Xing et al. (2010), and the option-to-stock volume (O/S) as

in Johnson and So (2012). The OptSpread is used to control for liquidity in the option market. The

OTMSkew as analyzed by Xing et al. (2010) is associated with stochastic volatility and jumps in

stock returns. First of all, the coefficient associated with V TR is still economically and statistically

significant after controlling for a battery of characteristics, equaling to −0.0116 with a Newey-

West t-statistic of −2.77 (significant at 1% level). The magnitude becomes smaller possibly due

to dilutions by some cross-sectional patterns found in Table II. Considering the 10% unconditional
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standard deviation of V TR in the sample, a two-standard-deviation increase in V TR will lead

to a 2.32% drop in expected annual return. It can also be observed that variables such as Size,

ImpVol and OTMSkew still play a significant role in the cross-section over the sample period, while

characteristics such as LBM, Reversal, Momentum, MaxRet do not show up to be important. The

insignificant coefficient associated with O/S is consistent with what Johnson and So (2012) finds

in their paper: the return predictability of O/S seems to be short-lived.

As a summary, Table X demonstrates that the economic and statistical significance of the

negative volatility tail risk effect, measured by V TR, in the cross-section of expected stock returns

is robust to the inclusion of various control variables. The estimated negative relation between

V TR and future stock returns in the cross-section is consistent with evidence in Table IX. What’s

more, Figure 10 rules out the possibility of mispricing: negative High-Low V TR portfolio return

lasts for at least a quarter, and shows no sign of reverting back. In the next section, I am going

to explore the driving force of this negative relation: is it a systematic priced factor or merely an

idiosyncratic anomaly.

D. V TR Decomposition

In this part, I investigate the critical debate that whether V TR is systematically priced in the

cross-section. To achieve this purpose, I use SPY V TR as proxy for systematic volatility tail risk

measure. Consequently, I decompose stock V TR by projecting onto the span of SPY V TR and

constant. The beta component of SPY V TR is classified as systematic V TR, or sV TR. The rest

part is classified as idiosyncratic V TR, or iV TR.

[Place Table XI about here]

In table XI, I report the stock return predictability test using decomposed V TR. Several

conclusions can be made: (1) volatility tail risk is negatively priced in the cross-section of stock

returns. (2) The idiosyncratic V TR component has opposite effect on future stock returns compared

to systematic V TR. (3) The economic impact of systematic V TR on future cross-section of stock

returns is five times large than that of idiosyncratic V TR.

Our results on V TR decompositions are consistent with the structural estimation on the price

of risk of volatility jumps by Eraker (2004). This can be explained from a risk-compensation story:
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VTR and stock return is negatively correlated. In SPY time-series, the time-series correlation

between SPX return and VTR is −0.3. Consequently, an asset that pays off VTR while stock

return is low is essentially a hedging asset to the economy, which should pay off with negative price

of risk. This argument has the same logic as the negative volatility risk premium.

In addition, this negative price of risk is also consistent with the negative idiosyncratic volatility

relation. Recently, Stambaugh, Yu, and Yuan (2015) investigates the idiosyncratic volatility (IVOL)

puzzle from an arbitrage asymmetry perspective. In financial markets, buying is usually easier

than shorting for many equity investors. The IVOL-return relation is negative among overpriced

stocks but positive among underpriced stocks. Consistent with arbitrage asymmetry theory, the

negative relation is stronger, especially for stocks less easily shorted. They also find evidence that

high investor sentiment weakens positive relation among underpriced stocks and strengthens the

negative relation among overpriced stocks. Meanwhile, we also show that our VTR measure is

not only strongly associated with idiosyncratic risk contemporaneously, but also positively predicts

idiosyncratic risk in the next period. Consequently, this negative relation arises.

E. Alternative Volatility Tail Risk Measures and Stock Returns

Having established alternative volatility tail risk measures in Section IV, we want to investigate

whether the negative relation is robust to alternative measures or just special to V TR itself.

[Place Table XII about here]

At the end of each week, stocks are sorted into quintile portfolios based on IVKurt (λLT or λRT )

with the lowest located in the 1st quintile and the highest located in the 5th quintile. Table XII

Panel A reports portfolio-sorting results based on IVKurt. Table XII Panel B reports portfolio-

sorting results based on λLT and Panel C displays results of λRT . In the subsequent analysis, I will

mainly focus on the IVKurt measure. Even though the raw portfolio return for the first quintile

of IVKurt is a little lower than the 2nd quintile, there still exists a downward trend in raw returns

from low quintile portfolio to high quintile portfolio. The High-Low strategy of IVKurt that buys

stocks in the 5th quintile and sells stocks in the 1st quintile generates an average monthly return

of −30.8 basis points (−3.7% per annum) with a t-statistic of −2.347. The Carhart four-factor

alpha for the High-Low portfolio is −26.2 basis points (−3.15% per annum) with a t-statistic of

34



−1.756. Furthermore, the long-short strategy that longs an equal-weighted portfolio in quintile 4

and 5 and shorts an equal-weighted portfolio in quintile 1 and 2 generates an annual four-factor

alpha of −3.55% with a Newey-West t-statistic of −2.815.

[Place Table XIII about here]

To further assess the robustness of this negative relation, I conduct Fama and MacBeth (1973)

cross-sectional regressions by regressing monthly stock returns (in percentage) on IV kurtosis

(IVKurt), volatility-of-volatility (VoV), IVSkew and a battery of other control variables described

in Section II.C. The volatility-of-volatility (VoV) variable is constructed as Baltussen et al. (2014).

Section VI.A provides a thorough examination of the volatility-of-volatility risk. Table XIII reports

the time-series average of cross-sectional coefficients under three specifications. Table XIII Model

1 shows results of regressing monthly returns on IVKurt and constant. The coefficient associated

with IVKurt equals to −0.0002 with a Newey-West t-statistic of −4.03. This provides support

to the negative relation found in Table XII. Model 3 displays estimates after controlling for firm

characteristics as well as VoV and IVSkew. The coefficient associated with IVKurt reduces in mag-

nitude to −0.0001 with a Newey-West t-statistic of −2.143 (statistically significant at 5% level).

A close examination of coefficients of other controls reveals that the factors that play important

roles coincide with those reported in Table X: for example, coefficients associated with Size, Im-

pVol and OTMSkew are still economically and statistically significant. This indicates that these

cross-sectional patterns are quite robust over my sample period from January 2004 to December

2011.

In summary, the evidence in Table XII and Table XIII supports the validity of my volatility

tail risk measure, V TR. It also confirms the robustness of the negative relation between volatility

tail risk and future cross-sectional stock returns documented in Subsection V.C. The Fama and

MacBeth (1973) results in Table XIII also shed light on the interactions between between IVKurt

and volatility-of-volatility (VoV), and indicate that volatility skewness (IVSkew) doesn’t seem to

be an important stock return determinant in the cross-section.
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VI. Robustness Tests

The volatility tail risk measure, V TR, is closely related to a strand of literature that studies

volatility-related characteristics and their impact on the cross-section of stock returns. In partic-

ular, Ang et al. (2006) and Ang et al. (2009) show that idiosyncratic volatility carries a puzzling

feature that high idiosyncratic volatility stocks predict low expected stock returns. This puzzling

feature is pervasive among other international markets. In addition, Huang and Shaliastovich (2014)

argues that the volatility-of-volatility risk is a priced factor and bears a negative price of risk. In

contrary, Baltussen et al. (2014) empirically studies the volatility-of-volatility risk and shows that

the volatility-of-volatility risk seems to be an idiosyncratic feature. Despite of these inconsisten-

cies, both of them show in their paper that volatility-of-volatility risk affects the cross-section of

stock returns. Finally, from analysis in previous sections, I would like to know how V TR interacts

with firm characteristics, e.g. firm size. In addition, since I construct this measure using option

data, it is important to address the question that how option characteristics affect the negative

cross-sectional predictability of V TR.

A. Volatility-of-Volatility Effect

The topic of this paper is closely related to the volatility-of-volatility concept in Baltussen et al.

(2014) and Huang and Shaliastovich (2014), both in economic and statistical sense. Albeit from

different angle, both authors show that volatility-of-volatility is a crucial factor that determines

stock returns in the cross-section. They, however, differ on a central issue that whether volatility-

of-volatility risk should be a systematically priced factor. Nevertheless, empirical evidence suggests

that it might be important to rule out the effect of volatility-of-volatility by controlling for this

feature.

Recent finance literature has demonstrated that variance risk is closely related to the tail risk of

underlying stock price. Particularly, one strand of literature draws focus on disentangling tail risk

premium from variance risk premium. For example, Bollerslev, Todorov, and Xu (2015), relying

on a new model-free estimation procedure, shows that much of the predictability that variance risk

premium predicts future stock market return might be attributed to time variation in the part of

variance risk premium associated with special compensation demanded by investors for bearing
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jump risk or tail risk. In macro-finance field, researchers have found that disaster risk is a plausible

solution to the equity premium puzzle (e.g. Barro (2006), Gabaix (2012)). All those insights imply

that volatility tail risk should be as important as volatility-of-volatility risk.

I formally test the interactions between volatility tail risk and volatility-of-volatility risk ( Bal-

tussen et al. (2014)) using the Fama and MacBeth (1973) cross-sectional regressions described

below:

rit+1 = α+ β1V TR
i
t + β2V oV

i
t + β3IV Skew

i
t + γ′Xi

t + εit+1, (22)

where rit+1 (in percentage) is the stock return (including dividends) of firm i for month t+ 1, and

Xi
t represents a vector of characteristics and controls of firm i observed at the end of month t.

IV Skewit is the monthly realized skewness of volatility defined in Equation 14.

The VoV, or volatility-of-volatility, is built as Baltussen et al. (2014). The volatility-of-volatility

of stock i for month t is constructed as follows:

V oV i
t =

1

σIV,it

√√√√ 1

Nt

Nt∑
j=1

(σIV,ij,t − σ
IV,i
t )2, (23)

where σIV,it =
1

Nt

Nt∑
j=1

σIV,ij,t is the average of daily IV over month t, and Nt is the number of daily

observations over month t.

[Place Table XIV about here]

Table XIV Panel A reports the time-series average of coefficients in Equation 22. Model 1 to

3 displays estimated coefficients associated with V TR, VoV and IVSkew, respectively. Under an

univariate specification, we find a negative relation between VoV and future stock returns in the

cross-section, which is consistent with what Baltussen et al. (2014) reveals in their paper. IVSkew,

on the other hand, doesn’t seem to be a determinant of future stock returns in the cross-section,

at least in-sample. The Fama and MacBeth (1973) results for multivariate regression with firm

characteristics are reported in the last column under tab ”Model 5”. The coefficient associated

with V TR is −0.012 with a Newey-West t-statistic of −2.71 (statistically significant at 1% level).

To my surprise, the VoV effect gets completely absorbed by V TR and other firm characteristics.

Those prominent cross-sectional features reported in Table X, such as Size, ImpVol and OTMSkew,
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continue to make an impact in Model 5. The bottom line, to be as conservative as possible, is

that the volatility tail risk in itself is an important determinant of expected stock returns in the

cross-section and doesn’t get silenced by the volatility-of-volatility effect.

To shed deep light on the inter-connection between vol-of-vol and V TR, I perform a double-

sorting test on V TR and vol-of-vol. At the end of each month, stocks are first sorted into quintile

portfolios by vol-of-vol, and further sorted into quintile portfolios based on V TR within each vol-of-

vol group. The double-sorting outcome is reported in Table XIV Panel B. Panel B-1 gives results on

excess return, and Panel B-2 gives shows results on Carhart (1997) four-factor alpha. I show that

even after controlling for vol-of-vol effect, the negative abnormal return still exists for High-Low

V TR portfolio. Admittedly, the performance of High-Low V TR portfolio for vol-of-vol Q2 and Q3

are not so satisfactory. In fact, we see that though the low V TR portfolio exhibits relatively low

returns. The Q2 and Q3 display higher returns. In fact, the long-short strategy that uses Q2 instead

of Q1 generates an economically and statistically significant abnormal return. I would accrue this

not-so-satisfactory evidence to micro-structure issues inherent in the options market. Albeit I am

very careful when constructing V TR, I still cannot fully rule out the impact of micro-structure

issues on my results. As a conclusion, I argue that the vol-of-vol effect documented by Baltussen

et al. (2014) and Huang and Shaliastovich (2014) cannot explain the negative relation between

V TR on the cross-section of stock returns.

B. V TR and Stock Volatility

One of the most prominent strand literature in volatility-related asset pricing is the well-known

topic on stock volatility and its impact on the cross-section of stock returns (e.g. Ang et al. (2006),

and Ang et al. (2009)). The ground-breaking paper by Ang et al. (2006) shows two main results:

(1) the first result is that market volatility is a priced risk factor in the cross-section and bears

negative price of risk, which is consistent with risk-based theories; (2) the second result is that the

idiosyncratic volatility, after controlling for Fama and French (1993) three factors, negatively impact

the cross-section of stock returns, and cannot be explained by exposure to aggregate volatility risk

or other asset pricing models. Built on this insight, Ang et al. (2009) further demonstrate that this

”idiosyncratic volatility puzzle” is pervasive among other international markets. They also rule out

explanations based on trading frictions, information dissemination, and higher moments.
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In this subsection, I intend to decompose the interaction between V TR and stock volatility

effects, i.e. total volatility and idiosyncratic volatility. Due to the close relation between volatility

tail risk and stock return volatility (total volatility, and idiosyncratic volatility), it is nontrivial

to investigate and disentangle the validity of the V TR effect. In this section, I explore the in-

terconnections using two approaches: (1) the first approach is to explore portfolio returns from

double-sorting on V TR and stock volatility (either total volatility or idiosyncratic volatility). (2)

The second approach is more straight-forward. I conduct cross-sectional regressions by controlling

for stock volatility. The outcomes of these two approaches are reported in XV Panel A and Panel

B, respectively.

The definitions of total volatility (tVol) and idiosyncratic volatility (iVol) follow directly from Ang

et al. (2006). tVol, short for total volatility, is estimated as the volatility of stock’s daily returns

over a certain horizon, which is set to a calendar month under the circumstance of this paper. iVol,

short for idiosyncratic volatility, is defined relative to the Fama and French (1993) three-factor fac-

tor model. Mathematically, iVol is computed as the standard deviation of the residuals of the Fama

and French (1993) three-factor regression. To disentangle V TR from tVol (or iVol), I implement

the conditional double-sorting approach at the end of each calendar month. Stocks are first sorted

into quintile portfolios based on tVol (or iVol), then further sorted into quintile portfolios based on

V TR within each volatility group. Portfolios are held for the subsequent month and are rebalanced

every month.

[Place Table XV about here]

In Table XV Panel A, I report the double-sorting results on tVol and iVol, respectively. The Carhart

(1997) four-factor alphas are estimated for all portfolios with the corresponding Newey-West ad-

justed standard errors reported in the square brackets. The last column reports the performance

of an equal-weighted long-short investment strategy that buys stocks in the highest V TR quintile

and sells stocks in the lowest V TR quintile within each tVol (or iVol) quintile. The double-sorting

abnormal return for V TR-sorted portfolios exhibits similar pattern for both total volatility and

idiosyncratic volatility: the negative abnormal alphas are concentrated in stocks with high stock

return volatility (both tVol and iVol). The High-Low V TR portfolio of the highest tVol quintile gen-

erates an abnormal return of −0.7% per month (−7.3% per annum), which is also economically and
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statistically significant. This pattern shows that my V TR measure captures additional downside

risk information that is not captured by stock return volatility. After controlling for idiosyncratic

volatility (iVol), the bottom section of Table XV Panel A shows that the statistically significant

abnormal return also exists for High-Low V TR portfolio with high iVol. Overall, these evidence

shows that the downside risk information captured by V TR is not fully collided with what is already

captured in stock return volatility, either the market component or the idiosyncratic component.

In terms of why negative abnormal returns only exists in high tVol (and iVol) portfolios, there

are two possible explanations: (1) stocks with low volatility are less likely to have volatility jumps

in the volatility process, therefore, V TR might bear measurement errors; (2) second, stocks with

low volatility are less likely to have exposure to the downside risk induced by volatility fat-tail

distribution. Since implied volatility is market’s expectation about future stock volatility, varia-

tions in implied volatility will reflect information fluctuations in the fundamentals and changes in

investors’ expectations. This is related to economic questions on how information incorporates into

asset prices and whether option market has superior information about underlying asset prices.

Take an additional step forward, I also test the first-order effect of stock return volatility on

V TR in Fama and MacBeth (1973) cross-sectional regression by controlling for tVol and iVol. In XV

Panel B, empirical results on the joint cross-sectional regressions are provided. Not surprisingly,

the magnitude of V TR on the cross-section of stock returns seems to vary little across a variety of

specifications. Neither total volatility nor idiosyncratic volatility substantially affects the magnitude

and the predicting sign of V TR. This evidence serves as additional support that volatility tail risk

is not a mere proxy of market volatility or idiosyncratic stock volatility puzzle documented by Ang

et al. (2006), and captures additional downside risk about the fundamentals that is not captured

by stock return volatility only.

C. V TR and Firm Characteristics

In this subsection, I further explore the interaction between V TR and other firm characteristics

using double-sorting strategy. Among all firm characteristics, firm size and option related variables

are of special interest to me. Existing literature studying cross-section of stock returns often

show that return anomaly are most pronounced in small-cap firms. In aforementioned sections,

I have shown that the downside risk captured by V TR is unlikely to be systematic risk from
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risk-compensation perspective. Due to the fact that implied volatility actually reflects investors’

expectations, I therefore argue that the negative return predictability could be very well driven by

an information story: option investors are informative about underlying stock prices, and the V TR

is associated with information asymmetry in stock prices. Under this hypothesis, I would argue

that information are more likely to be revealed for stocks with high option trading volume and high

degree of information asymmetry, albeit the relation might be linear.

The unconditional correlation matrix between V TR and other firm characteristics is reported

in Table VIII Panel A. For other firm characteristics displayed in Table VIII Panel B, I don’t put

special focus on them either because their low correlation with V TR measure or not quite relevant

to the economic story behind. In the text below, I first explore the interaction between V TR

and firm size, then try to link the negative predictability to economic story from an information

perspective. Consistent with microstructure literature, I use option quoted spread as a measure of

information asymmetry, and option trading volume as a measure of option liquidity.

The relation between V TR and firm size is investigated using double-sorting strategy. Specif-

ically, by the end of each month, stocks are first sorted into quintile portfolios by firm size, and

then sorted into quintile portfolios by V TR within each size group. Consequently, 25 portfolios are

formed based on these two criteria. Table XVI Panel A reports average raw returns of each portfo-

lio as well as High-Low portfolio of V TR conditional on Size. Panel B reports the Carhart (1997)

four-factor alpha of each portfolio. This double-sorting strategy allows us to evaluate volatility

tail risk effect conditional on different size levels. The results for the High-Low portfolio of V TR

conditional on Size are reported in the last column of each panel.

[Place Table XVI about here]

Not surprisingly, the negative volatility tail risk effect is most prominent among small-cap firms.

For example, the monthly Carhart (1997) four factor alpha of High-Low V TR portfolio for Size

quintile 1 is−1.1% (that is approximately 13% per annum), with a statistically significant t-statistic

at 1% level. In contrast, stocks beyond the lowest size quintile do not show significant volatility

tail risk effect. This result is consistent with the aforementioned idiosyncratic volatility results: as

showed in Subsection VI.B, stock volatility is usually high for small-cap stocks, and the negative

volatility tail risk effect is also stronger for stocks with high volatility stocks. The findings are also

41



consistent with many cross-sectional stock return studies, which find cross-sectional predictable

patterns are generally stronger for small stocks4.

VII. Conclusions

Finance literature has shown in various ways that jump in volatility is a crucial feature in dien-

tangling complex asset pricing phenomenon: first of all, jumps in volatility allow for rapid increase

in stock volatility, while other features cannot address this issue. Furthermore, jumps in volatility

allow persistent shocks to asset returns with large magnitude. In this paper, I develop a novel

non-parametric volatility tail risk measure using a sample of high-frequency intraday option quotes

and trades from January 2004 to December 2014. The volatility tail risk measure is conditional at

monthly frequency. First and foremost, the advantage of using non-parametric measure, in con-

trast to parametric measure (i.e. complex structural models), is that non-parametric approach is

immune to model misspecifications. Frankly speaking, unlike experimental science, it is hard to

testify the validity of a model. Furthermore, structural models with both jumps in stock return

and volatility, as well as stochastic volatility process (multiple hidden factors), make the accurate

estimation of parameters a tough task even with MH algorithm and Gibbs sampling.

To validate that V TR indeed measures jump components in IV process, I use a non-parametric

approach proposed by Lee and Mykland (2007) to identify jumps in the IV process. Built on the

identified jumps from IV process, I develop three extended IV jump measures: IVJI, IVJS and

IVSJS. IVJI stands for IV jump intensity. IVJS stands for IV jump size and IVSJS stands for IV

scaled jump size. I show that V TR is robustly related to all three IV jump measures, particularly

for IVSJS. Furthermore, V TR is also one of the most effective predictor of future IV jumps in the

cross-section.

The volatility tail risk is closely linked to future economic conditions, both contemporaneously

and subsequently. I find strong evidence that the constructed volatility risk measure, V TR, is

positively correlated with stock return jump risk, volatility risk, implied volatility, idiosyncratic

volatility, firm size and liquidity measure (stock liquidity and option liquidity), contemporaneously.

In particular, firm size (as well Amihud illiquidity measure and option liquidity measure, option

quoted spread), persistently, accounts for a critical fraction of the total cross-sectional variation in

4For example, Ang et al. (2006), Xing et al. (2010), Baltussen et al. (2014), Amaya et al. (2015).
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V TR. Furthermore, stocks with high V TR tends to bear high uncertainty in the future. The non-

parametric volatility tail risk measure forecasts future stock return jump measure, volatility risk

premium, idiosyncratic volatility, Amihud liquidity measure, option quoted spread, return skewness

and kurtosis with non-trivial economic magnitude and impressive statistical significance.

I find a reliable and significant negative relation between my volatility tail risk measure, V TR,

and next month’s stock returns in the cross-section. In terms of return magnitude, when sorting

stocks into quintile portfolios based on V TR, stocks with the highest V TR underperform stocks

with the lowest V TR by 5.23% per annum in raw returns, equivalent to 5.1% per annum on a risk-

adjusted basis ( Carhart (1997) four-factor alpha). This negative effect is economically substantial,

a trading strategy that buys stocks with low V TR and sells with high V TR over the sample period

generates a total holding-period return of 70%, which is comparable to the cumulative market

excess return of 88%, but with a much higher Sharpe of 0.7 per annum. In comparison, the

contemporaneous Sharpe ratio for the market portfolio is merely 0.48.

The negative volatility tail risk effect is robust and has a distinct nature. The negative per-

formance is persistent: the performance of the High-Low V TR-sorted portfolio is persistent for at

least 3 to 4 months, ruling out the possibility of mispricing. I provide evidence that the negative

volatility tail risk effect in the cross-section survives the inclusion of a battery of well-documented

characteristics, such as size, book-to-market, historical skewness (kurtosis), maximum return of

previous month, short-term reversal, momentum, Amihud illiquidity, and option-related features.

Particularly, I confirm that, albeit related, the volatility tail risk effect is not mitigated by the

idiosyncratic volatility anomaly and the volatility-of-volatility effect, which are mostly relevant.

Furthermore, I show that the negative volatility tail risk effect is stronger for small-cap, high

idiosyncratic volatility, large option spread stocks.

Several possible explanations exist behind this negative volatility risk effect: (1) volatility tail

risk bears a negative price of risk and is priced into asset prices, including both stock prices

and option prices. We show in the paper that the negative V TR-return relation is driven by

systematic component in V TR through a decomposition analysis. This can be explained from a

risk-compensation story: V TR and stock return is negatively correlated. In SPX time-series, the

time-series correlation between SPX return and V TR is −0.3. Consequently, an asset that pays

off V TR while stock return is low is essentially a hedging asset to the economy, which should
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pay off with negative price of risk. This argument has the same logic as the negative volatility

risk premium. (2) Second, Stambaugh et al. (2015) investigates the idiosyncratic volatility (IVOL)

puzzle from an arbitrage asymmetry perspective. In financial markets, buying is usually easier

than shorting for many equity investors. The IVOL-return relation is negative among overpriced

stocks but positive among underpriced stocks. Consistent with arbitrage asymmetry theory, the

negative relation is stronger, especially for stocks less easily shorted. They also find evidence that

high investor sentiment weakens positive relation among underpriced stocks and strengthens the

negative relation among overpriced stocks. Meanwhile, we also show that our VTR measure is

not only strongly associated with idiosyncratic risk contemporaneously, but also positively predicts

idiosyncratic risk in the next period. Thus, I argue that the V TR can affect the expected stock

return through the proposed idiosyncratic risk channel. (3) Third, the negative relation can also be

related to uncertainty story. In the paper, we show that V TR predicts future uncertainty measure

in stock returns, such as idiosyncratic volatility, stock return jump risk and volatility risk. This

evidence is consistent with findings in Glosten, Jagannathan, and Runkle (1993) who finds support

for a negative relation between conditional expected monthly return and conditional variance of

monthly return in a GARCH-M model.
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Appendix A. Option Sample Selection

This appendix gives a detailed description on how I construct the final option sample for implied

volatility computation. The high-frequency intraday option quotes data are from Nanex. I apply

the following filters to the options data:

1. For stocks:

• Only include common equity shares that are listed on NYSE, AMEX and NASDAQ.

• The stock trading volume must be positive.

• The stock closing price must be higher than $1.

2. For options:

• The option trading volume must be positive.

• Moneyness: 0.95 <= SK/S <= 1.05, where S is the stock closing price and SK is the

strike price of the option.

• Time to expiration: closest to 30 days.

• The earliest quote available must be no later than 9:40am. The last quote available must

be later than 3:50pm. As we know, option market is not as liquid as stock market, this

requirement is to alleviate liquidity concerns arisen from option market.

Furthermore, in order to extract valuable and reasonable implied volatility information from high-

frequency option quotes, I rule out observations where option quotes are problematic: (1) Bid >

Ask; (2) either Bid or Ask is missing; (3) Bid < $0.1; (4) Ask is higher than twice stock price;

(5) (Ask-Bid)> $10 or (Ask-Bid)/Bid>0.7 or (Ask-Bid)>Stock Price. I choose ATM option as

the benchmark for implied volatility because it has the highest liquidity among all traded options.

In fact, in terms of trading volume, the total trading volume of ATM calls and puts accounts for

approximately 40% of total daily volume.
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Appendix B. Identify Jumps in IV Process

This appendix provide a brief description of the Lee and Mykland (2007)’s nonparametric

approach under the settings of this paper. In particular, to simplify notations, the superscript

representing any given firm will be suppressed unless necessary. The definition of test statistic L(i)

follows from Definition 1 in Lee and Mykland (2007):

DEFINITION 1: The statistic L(i), which tests at time ti whether there was a jump from ti−1 to

ti, is defined as:

L(ti) =
ln
(
σIV (ti)/σ

IV (ti−1)
)

Σ̂(ti)
, (B1)

where the instantaneous volatility Σ̂(ti) is estimated using realized bipower variations,

Σ̂(ti)
2

=
1

K − 2

i−1∑
j=i−K+2

|ln
(
σIV (tj)/σ

IV (tj−1)
)
||ln

(
σIV (tj−1)/σ

IV (tj−2)
)
|. (B2)

The choice of window size K is proposed and proved in Theorem 1 of Lee and Mykland

(2007). Lee and Mykland (2007)’s Theorem 1 suggests the optimal window size K should fall in

(
√

252× nobs, 252×nobs), where nobs is the number of observations per day. In the context of this

paper, the time interval ∆t = ti − ti−1 =1-minute, corresponding to nobs = 390 (trading hours).

To alleviate microstructure noise, I choose the time-window to be three-day.

The process of identifying jumps in IV involve addressing the rejection region when statistic

|L(i)| is too large. The lemma below is modified based on Lemma 1 in Lee and Mykland (2007):

LEMMA 1: If conditions for L(i), K, An, and c are defined as in Lee and Mykland (2007)’s

Theorem 1, then as ∆t → 0,
maxi∈An

|L(i)| − Cn
Sn

→ ξ, (B3)

where ξ has a cumulative distribution function P (ξ ≤ x) = exp(−ex),

Cn =

√
2ln(n)

c
− ln(π) + ln(ln(n))

2c
√

2ln(n)
and Sn =

1

c
√

2ln(n)
, (B4)

where n is the number of observations per day and c =
√

2/
√
π ≈ 0.7979.

In short, the main idea in selecting a rejection region is that if the observed test statistics are
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not even within the usual region of maximums, it is unlikely that the realized return is from the

continuous part of the jump diffusion model. To apply this result for selecting a rejection region, for

instance in my application, I set the significance level to 1%. Then the threshold for
|L(i)| − Cn

Sn
is

ξ∗, such that P (ξ ≤ ξ∗) = exp(−eξ∗) = 0.99. Equivalently, ξ∗ = −ln(−ln(0.99)) = 4.6. Therefore,

if
|L(i)| − Cn

Sn
>= 4.6, then I reject the hypothesis of no jump at ti.

[Place Figure 11 about here]

Figure 11 is cited from Figure 1 in Lee and Mykland (2007). This graph illustrates the intuition

that how this jump detection test distinguishes the jump arrivals. The jump detection statistic

L is formulated by taking the ratio of the last return in a window to the instantaneous volatility ,

estimated by bipower variation using the returns in the same window.
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Figure 1. An Illustrative Example on V TR Construction. This figure provides an illustra-
tive example on how I define the tail variation in the intraday distribution of dlog(σIV ). αL (αR)
is the left (right) threshold chosen to construction left-(right-)tail variation in implied volatility.
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Figure 2. The Cross-Sectional Distribution of V TR. This figure displays the distribution
percentiles of V TR for the cross-section of stocks by year-month. V TR is the monthly tail risk
measure of IV. IV is calculated as the average implied volatility of a group of at-the-money options
with maturity closest to 30 days. The sample consists of 156,509 firm-month observations over the
time period January 2004 to December 2014.
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Figure 3. The Cross-Sectional Distribution of Lee and Mykland (2007) IV Jump
Measures (IVJI/IVJS/IVSJS). This figure displays the cross-sectional distributions of IV jump
measured constructed using Lee and Mykland (2007) non-parametric identification strategy. IVJI
represents IV jump intensity. IVJS represents IV jump size. IVSJS represents IV scaled jump size.
IV is calculated as the average implied volatility of a group of at-the-money options with maturity
closest to 30 days. The sample consists of 156,509 firm-month observations over the time period
January 2004 to December 2014.
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Figure 4. The Time-Series of SPY Stock Return, V TR and ERJM . This figure displays
the time-series of SPY stock return, V TR and ERJM . The V TR is the constructed volatility
tail risk measure. ERJM is the equity return jump measure constructed based on Bollersleve and
Todorov (2011). The sample contains monthly observations from January 2005 to December 2015.

56



Figure 5. Marginal R-Squares. This figure reports the marginal R-Squares of univariate regressions of V TR on firm characteristics.
Specifically, the Blue bars represent greater than 10% R-Squares. The sample period is from January 2004 to December 2014.
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Figure 6. V TR and Liquidity Concerns. This figure reports the relation between V TR and illiquidity measure. Specifically, we
measure illiquidity from 2 sides: stock illiquidity (measured by Amihud), and option illiquidity (measured by OptSpread). To address the
concern that the negative relation between V TR and future stock return is driven by illiquidity, we conduct conditional double-sorting
strategy and report the Carhart 4-factor alpha of long-short strategy. The sample period is from January 2004 to December 2014.
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Figure 7. Cross-Sectional Percentiles of IV Kurtosis. This figure displays the distribution
percentiles of IV Kurtosis for the cross-section of stocks by year-month. IV Kurtosis is measured
using intraday quartic variations of the log change in IV. IV is calculated as the average implied
volatility of a group of at-the-money options with maturity closest to 30 days. The sample consists
of 156,509 firm-month observations over the time period January 2004 to December 2014.
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Figure 8. Monthly Performance of V TR Portfolios. This figure displays the average monthly
excess return and four-factor alpha of portfolios sorted on V TR. V TR is the monthly tail risk
measure of IV. IV is calculated as the average implied volatility of a group of at-the-money options
with maturity closest to 30 days. By the end of each month, I sort stocks into quintile portfolios
based on V TR. The sample period is from January 2004 to December 2014.
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Figure 9. Cumulative Return Series. This figure plots the cumulative return series of long-short strategy in V TR, Fama-French 3
factors and Cahart Momentum factor. The long-short strategy in V TR holds a long position in the lowest quintile with a short position
in the highest quintile sorted on the basis of V TR. The sample period is from January 2004 to December 2014.
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Figure 10. Performance Persistence of V TR-Return Relation. This figure presents the the alphas associated with a portfolio
that combines an equal-weighted long position in the highest quintile with an equal-weighted short position in the lowest sorted on the
basis of V TR. V TR is the monthly tail risk measure of IV. IV is calculated as the average implied volatility of a group of at-the-money
options with maturity closest to 30 days. The left graph shows the monthly alphas, where the surrounding error bars represent 95%
confidence interval. The right graph shows the cumulative alphas with respect to different benchmarks. The sample period is from
January 2004 to December 2014.
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Figure 11. Lee and Mykland (2007) Non-Parametric Jump Identification Methodol-
ogy. This figure is the original Figure 1 in Lee and Mykland (2007). This graph illustrated the
intuition behind the non-parametric jump detection test.
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Table I

Summary Statistics of V TR by Year

This table displays the volatility tail risk measure V TR by year. V TR is the monthly tail risk measure of IV. IV is calculated as the average implied volatility of
a group of at-the-money options with maturity closest to 30 days. Entires to the table are the mean, standard deviation, 10th percentile, 25th percentile, median,
75th percentile, and 90th percentile of V TR across securities by year. The sample consists of 156,509 firm-month observations over the time period January 2004
to December 2014.

Year Mean Std. Dev. P10 P25 P50 P75 P90

2004 0.7059 0.1023 0.5758 0.6281 0.6996 0.7749 0.8443

2005 0.7073 0.1063 0.5692 0.6273 0.7022 0.7796 0.8530

2006 0.6930 0.1092 0.5527 0.6070 0.6866 0.7699 0.8414

2007 0.6989 0.1036 0.5658 0.6187 0.6921 0.7725 0.8426

2008 0.6698 0.1016 0.5485 0.5913 0.6569 0.7350 0.8133

2009 0.6722 0.1074 0.5404 0.5884 0.6615 0.7463 0.8224

2010 0.6910 0.1042 0.5617 0.6120 0.6816 0.7616 0.8369

2011 0.6833 0.1078 0.5524 0.6000 0.6702 0.7550 0.8354

2012 0.6934 0.1091 0.5561 0.6087 0.6859 0.7686 0.8442

2013 0.7020 0.1042 0.5703 0.6222 0.6963 0.7722 0.8420

2014 0.7340 0.0837 0.6325 0.6745 0.7297 0.7897 0.8451

Average 0.6955 0.1036 0.5660 0.6162 0.6875 0.7659 0.8382
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Table II

Characteristics of Portfolios Sorted by V TR

This table displays the characteristics of portfolios sorted by V TR. Each month, stocks are sorted by V TR into
quintile portfolios and the equal-weighted characteristics of each portfolio are computed. V TR is the monthly tail
risk measure of IV. IV is calculated as the average implied volatility of a group of at-the-money options with maturity
closest to 30 days. Size is the market capitalization (in $billions). LBM is the log of book-to-market ratio. Reversal is
the return of past month t. Momentum is return of past 6 month (from t−6 to t−1). MaxRet is the maximum daily
return of past month t. HSkew is the historical skewness computed using past month’s daily return. HKurt is the
historical kurtosis computed using past month’s daily return. Amihud is the Amihud (2002) illiquidity measure. iVol
represents the idiosyncratic volatility relative to Fama-French 3 factor model defined in Ang et al. (2006). OptSpread
is the average option spread of at-the-money options. ImpVol is the average implied volatility of at-the-money calls
with around 30-day time-to-maturity. OTMSkew is computed as the average of daily difference between the implied
volatility of out-of-money puts and the implied volatility of at-the-money calls with around 30-day time-to-maturity.
O/S is the option-to-stock volume ratio measured at monthly frequency. The sample period is from January 2004 to
December 2014.

Quintiles 1 (Low) 2 3 4 5 (High)

V TR 0.5635 0.6321 0.6865 0.7459 0.8457

Size 2.0770 1.3747 0.9432 0.5646 0.2771

LBM -0.9878 -0.9550 -0.9262 -0.9184 -0.9302

Reversal 0.0123 0.0125 0.0139 0.0136 0.0091

Momentum 0.0089 0.0090 0.0089 0.0102 0.0149

MaxRet 0.0475 0.0494 0.0520 0.0569 0.0635

HSkew 0.1044 0.1251 0.1396 0.1530 0.1690

HKurt 0.8881 1.2241 1.4006 1.6244 1.7931

Amihud 0.0007 0.0011 0.0013 0.0021 0.0038

iVol 0.0153 0.0161 0.0172 0.0191 0.0220

OptSpread 0.0894 0.1324 0.1694 0.2061 0.2335

ImpVol 0.3752 0.3817 0.3968 0.4268 0.4826

OTMSkew 0.0495 0.0531 0.0561 0.0618 0.0783

O/S 0.0018 0.0012 0.0010 0.0009 0.0011
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Table III

Regressions of V TR on Firm Characteristics

This table explores the relation between V TR and other crucial firm characteristics. We perform contemporaneous regressions of V TR on other crucial firm controls. V TR is
the monthly volatility tail risk measure. ERJM is the equity return jump measure. V RP is the volatility risk premium proxy. Size is the market capitalization (in $billions).
LBM is the log of book-to-market ratio. Reversal is the return of past month t. Momentum is return of past 6 month (from t−6 to t−1). MaxRet is the maximum daily return
of past month t. Amihud is the Amihud (2002) illiquidity measure. iVol represents the idiosyncratic volatility relative to Fama-French 3 factor model defined in Ang et al.
(2006). OptSpread is the average option spread of at-the-money options. ImpVol is the average implied volatility of at-the-money calls with around 30-day time-to-maturity.
All variables are standardized. The Newey-West (1987) t-statistics are reported in square brackets.

Dependents: V TRt

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16

ERJM 0.473 0.038
[8.20] [1.00]

V RP 0.192 0.112
[9.63] [11.01]

Size -0.4 -0.155
[-11.75] [-5.26]

LBM -0.003 -0.016
[-0.23] [-2.13]

Reversal -0.013 -0.058
[-1.93] [-2.23]

Momentum 0.028 -0.092
[5.89] [-3.37]

MaxRet 0.14 -0.176
[9.28] [-10.94]

iVol 0.204 0.172
[10.71] [8.56]

HSKew 0.012 0.063
[3.13] [7.14]

HKurt 0.129 0.075
[11.41] [9.50]

RVolKurt 0.099 0.061
[4.63] [7.89]

Amihud 0.408 0.12
[10.07] [7.28]

ImpVol 0.271 -0.081
[7.65] [-2.61]

OTMSkew 0.239 0.092
[11.25] [9.87]

OptSpread 0.493 0.347
[9.12] [9.50]

Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time-Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2(%) 4.45 3.41 18.46 0.23 0.31 0.37 1.58 3.7 0.09 1.59 1.1 12.22 5.29 4.28 22.6 33.18
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Table IV

VAR Analysis

This table reports the VAR analysis of predicting future firm characteristics. V TR is the monthly volatility tail risk measure. ERJM is the equity return jump measure. V RP
is the volatility risk premium proxy. SktRet is the monthly stock return. MaxRet is the maximum daily return of past month t. Amihud is the Amihud (2002) illiquidity
measure. iVol represents the idiosyncratic volatility relative to Fama-French 3 factor model defined in Ang et al. (2006). HSkew is the historical skewness computed using past
month’s daily return. HKurt is the historical kurtosis computed using past month’s daily return. OptSpread is the average option spread of at-the-money options. ImpVol is the
average implied volatility of at-the-money calls with around 30-day time-to-maturity. OTMSkew is computed as the average of daily difference between the implied volatility of
out-of-money puts and the implied volatility of at-the-money calls with around 30-day time-to-maturity. All variables are standardized. The Newey-West (1987) t-statistics are
reported in square brackets.

Dependents: Xi
t+1

V TR ERJM V RP StkRet MaxRet iVol HSkew HKurt RVolKurt Amihud ImpVol OTMSkew OptSpread

V TR 0.439 0.016 0.044 -0.007 0.002 0.021 0.008 0.038 0.026 0.017 0.005 0.045 0.085
[26.55] [2.78] [5.48] [-2.56] [0.39] [2.33] [1.55] [4.56] [4.53] [4.95] [0.81] [5.49] [10.01]

ERJM 0.064 0.362 -0.041 0.01 0.033 0.062 -0.014 -0.144 -0.082 0.125 0.086 0.119 -0.015
[1.54] [13.42] [-1.32] [1.11] [2.45] [2.63] [-1.65] [-6.35] [-1.58] [9.60] [3.56] [7.19] [-1.31]

V RP 0.085 -0.003 0.162 0.014 0.02 0.039 0.023 0.114 0.057 0.063 0.035 -0.005 0.008
[4.16] [-0.38] [12.24] [1.05] [4.65] [7.18] [5.15] [16.41] [3.98] [7.49] [6.43] [-0.81] [1.84]

StkRet -0.016 -0.016 0.032 -0.009 -0.046 -0.026 -0.037 -0.016 0.003 -0.041 -0.023 -0.02 -0.034
[-3.78] [-1.51] [2.59] [-0.84] [-3.67] [-3.02] [-4.17] [-1.49] [0.35] [-15.72] [-4.29] [-2.87] [-10.67]

MaxRet -0.076 -0.015 -0.043 0.027 0.009 -0.1 0.006 -0.019 0.01 -0.062 -0.004 -0.02 0.009
[-6.14] [-1.07] [-2.36] [2.32] [0.31] [-4.86] [0.47] [-1.93] [1.37] [-7.11] [-0.31] [-1.73] [0.92]

iVol 0.081 0.001 0.133 -0.009 0.031 0.15 0.029 0.019 -0.036 0.039 0.087 -0.018 -0.036
[16.42] [0.05] [8.93] [-0.39] [2.98] [7.23] [2.90] [1.26] [-2.10] [6.15] [15.56] [-1.50] [-5.30]

HSkew 0.026 0.007 0.017 -0.009 0.004 0.037 0.021 0.02 -0.006 0.019 0.003 0.011 -0.001
[6.02] [1.40] [2.80] [-2.37] [0.49] [7.44] [5.72] [4.13] [-1.92] [5.83] [0.31] [3.09] [-0.43]

HKurt 0.018 -0.02 0.02 0.001 -0.038 -0.05 0.008 0.014 -0.008 0.034 -0.052 0.001 0.024
[3.20] [-5.64] [3.34] [0.23] [-3.13] [-6.64] [2.16] [2.26] [-5.85] [4.88] [-9.11] [0.24] [6.50]

RVolKurt -0.019 -0.028 0.018 0.004 -0.022 -0.036 0.004 -0.016 0.046 -0.006 -0.026 -0.007 0.017
[-1.82] [-4.74] [2.64] [1.58] [-4.26] [-4.67] [2.61] [-3.41] [2.04] [-1.33] [-4.87] [-1.11] [2.76]

Amihud 0.087 0.027 0.038 0.028 0.022 0.025 0.02 0.02 -0.009 0.814 0.02 0.004 0.068
[7.20] [3.10] [9.51] [4.24] [4.15] [9.11] [5.76] [3.16] [-1.11] [41.53] [9.55] [0.83] [11.31]

ImpVol -0.035 0.227 0.321 -0.02 0.409 0.518 0.002 0.068 -0.065 -0.038 0.745 0.126 0.015
[-0.63] [16.23] [14.08] [-1.74] [22.44] [18.77] [0.16] [3.00] [-2.02] [-4.19] [72.96] [7.00] [1.98]

OTMSkew 0.043 0.051 0.004 -0.019 0.02 0.039 -0.008 0.01 0 -0.002 0.032 0.547 -0.009
[16.27] [8.55] [0.17] [-5.12] [3.43] [14.10] [-1.66] [1.78] [0.04] [-0.44] [3.29] [18.00] [-1.28]

OptSpread 0.212 0.006 0.002 0.012 0.013 0.005 0.003 0.017 0.043 0.027 0.011 0.001 0.744
[5.03] [2.47] [0.28] [4.01] [3.26] [1.12] [1.01] [3.20] [3.51] [4.45] [3.80] [0.38] [30.15]

Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time-Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2(%) 43.2 56.16 26.43 6.41 25.17 38.23 1.34 3.68 3.78 79.54 79.66 44.78 68.92
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Table V

V TR and IV Jump Measures, IVJI/IVJS/IVSJS

This table conducts deep analysis on the relation between our constructed volatility tail risk measure, V TR, and IV
jump measures, constructed using Lee and Mykland (2007) non-parametric identification approach. I include three
measures of IV jumps: IVJI, IVJS, and IVSJS. IVJI represents IV jump intensity. IVJS represents IV jump size.
IVSJS represents IVSJS represents IV scaled jump size. V TR is the monthly volatility tail risk measure. ERJM
is the equity return jump measure. V RP is the volatility risk premium proxy. Size is the market capitalization (in
$billions). LBM is the log of book-to-market ratio. Reversal is the return of past month t. Momentum is return of
past 6 month (from t−6 to t−1). MaxRet is the maximum daily return of past month t. Amihud is the Amihud
(2002) illiquidity measure. iVol represents the idiosyncratic volatility relative to Fama-French 3 factor model defined
in Ang et al. (2006). OptSpread is the average option spread of at-the-money options. ImpVol is the average implied
volatility of at-the-money calls with around 30-day time-to-maturity. Panel A reports the average cross-sectional
correlation matrix between V TR and IVJI/IVJS/IVSJS. Panel B reports forecasting regressions using V TR and
other crucial controls to predict future IVJI/IVJS/IVSJS. All variables are standardized. The Newey-West (1987)
t-statistics are reported in square brackets. The sample period is from January 2004 to December 2014.

Panel A: Cross-Sectional Correlation between V TR and IVJI/IVJS/IVSJS

V TR IVJI IVJS IVSJS

V TR 1

IVJI 0.406 1

IVJS 0.408 0.237 1

IVSJS 0.591 0.088 0.452 1
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Panel B: Forecasting Future IV Jump Measures

IV JIt+1 IV JSt+1 IV SJSt+1 IV JIt+1 IV JSt+1 IV SJSt+1

V TR 0.381 0.325 0.394 0.252 0.105 0.265

[19.22] [18.52] [25.31] [13.87] [7.92] [24.35]

ERJM -0.032 0.15 0.055

[-1.18] [8.47] [2.60]

V RP 0.087 -0.052 0.041

[8.50] [-6.87] [2.86]

Size -0.034 -0.085 0.017

[-3.99] [-2.45] [1.23]

LBM 0.014 0.037 -0.016

[4.88] [4.36] [-3.46]

Reversal -0.15 0 0.016

[-9.39] [0.02] [0.92]

Momentum -0.108 0.001 0.019

[-6.49] [0.09] [1.18]

MaxRet -0.01 -0.02 -0.02

[-0.64] [-1.67] [-0.93]

iVol 0.013 -0.081 0.039

[1.05] [-7.88] [3.39]

HSKew -0.002 0.005 0.008

[-0.30] [1.18] [0.99]

HKurt 0.013 0.041 0.01

[2.35] [5.39] [1.25]

VoV -0.009 -0.006 0.008

[-1.71] [-1.31] [1.19]

RVolKurt -0.014 0.007 -0.013

[-4.01] [1.28] [-1.68]

Amihud 0.052 0.041 0.047

[2.70] [4.61] [4.49]

ImpVol 0.01 -0.178 -0.007

[0.47] [-7.77] [-0.23]

OTMSkew 0.026 0.04 0.049

[2.77] [7.03] [7.05]

OptSpread 0.172 0.141 0.2

[9.88] [19.38] [12.85]

O/S -0.062 -0.093 0.025

[-7.55] [-13.24] [1.48]

Intercept Yes Yes Yes Yes Yes Yes

Time-Fixed Effect Yes Yes Yes Yes Yes Yes

Adj. R2(%) 15.96 12.93 16.5 22.86 41.02 22.92
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Table VI

Market Return Predictability

This table reports market return predictability test using V TR and other well-documented predictors. V TR is the monthly volatility tail risk measure. ERJM is the equity return
jump measure. V RP is the volatility risk premium proxy. D/P is the monthly dividend-price ratio. The Newey-West (1987) t-statistics are reported in square brackets.

Horizon: 1-month Horizon: 3-month Horizon: 6-month

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

V TR -0.049 -0.032 -0.158 -0.122 -0.293 -0.254
[-1.698] [-1.479] [-2.494] [-1.317] [-2.248] [-1.173]

ERJM -0.917 -0.406 -1.913 -0.900 -0.162 1.129
[-4.625] [-1.548] [-3.475] [-1.462] [-0.163] [0.967]

V RP 6.403 5.394 13.443 10.807 12.576 13.300
[4.054] [2.529] [3.350] [3.115] [2.041] [1.914]

D/P 0.002 0.002 0.001 0.001 0.004 0.005
[1.638] [2.024] [0.513] [0.711] [0.976] [1.301]

Intercept Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj. R2(%) 0.40 4.33 10.54 -0.60 9.71 2.96 5.32 12.85 -0.94 13.66 4.67 -0.97 4.04 -0.74 6.67
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Table VII

V TR, Option Returns and Volatility Risk Premium

This table reports average Fama-MacBeth (1973) regression slopes and t-values from cross-sectional regressions that
predict option returns and variance risk premium using volatility tail risk measure, V TR. OptRetstraddleavg is the
average daily option straddle return for each stock in a given month. OptRetstraddleavg is the aggregated daily option
straddle return for each stock in a given month. We adjust the number of put option in each option straddle pair such
that the straddle is risk-neutral. V RP , the variance risk premium (or volatility risk premium), is measured as the
difference between implied volatility and realized volatility. The sample consists of 156,509 firm-month observations
over the time period January 2004 to December 2014. The Newey-West (1987) t-statistics are reported in square
brackets.

Model: Y i
t+1 = α+ βV TRit + εit+1

Dependents: Y

OptRetstraddleavg ,% OptRetstraddlesum ,% VRP=IV-RV

Intercept -1.2123 -24.3213 -0.0357

[-1.716] [-1.745] [-4.066]

V TR 2.0191 40.7523 0.0779

[1.786] [1.870] [16.642]

Avg.R2(%) 0.30 0.27 0.45
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Table VIII

Correlation Matrix

Panel A displays average cross-sectional correlations of firm characteristics. Size is the market capitalization (in $billions). LBM is the log of book-to-market ratio.
Reversal is the return of past month t. Momentum is return of past 6 month (from t−6 to t−1). MaxRet is the maximum daily return of past month t. HSkew
is the historical skewness computed using past month’s daily return. HKurt is the historical kurtosis computed using past month’s daily return. Amihud is the
Amihud (2002) illiquidity measure. iVol represents the idiosyncratic volatility relative to Fama-French 3 factor model defined in Ang et al. (2006). OptSpread is
the average option spread of at-the-money options. ImpVol is the average implied volatility of at-the-money calls with around 30-day time-to-maturity. OTMSkew
is computed as the average of daily difference between the implied volatility of out-of-money puts and the implied volatility of at-the-money calls with around
30-day time-to-maturity. O/S is the option-to-stock volume ratio measured at monthly frequency. The sample period is from January 2004 to December 2014.

Panel A: Average Cross-Sectional Correlations of Firm Characteristics

V TR Size LBM Reversal Momentum MaxRet HSkew HKurt Amihud iVol OptSpread ImpVol OTMSkew O/S

V TR 1

Size -0.419 1

LBM 0.026 -0.052 1

Reversal -0.011 -0.027 0.012 1

Momentum 0.014 -0.045 0.004 -0.872 1

MaxRet 0.133 -0.315 -0.028 0.404 -0.257 1

HSkew 0.024 -0.037 -0.013 0.447 -0.423 0.517 1

HKurt 0.112 -0.097 -0.051 0.035 0.041 0.504 0.134 1

Amihud 0.279 -0.451 0.005 -0.008 0.009 0.192 0.027 0.023 1

iVol 0.201 -0.415 -0.059 0.078 0.090 0.801 0.087 0.504 0.252 1

OptSpread 0.448 -0.472 0.102 0.011 -0.012 0.053 0.019 0.043 0.344 0.069 1

ImpVol 0.241 -0.572 -0.073 -0.041 0.121 0.500 0.026 0.109 0.379 0.655 0.088 1

OTMSkew 0.211 -0.243 -0.006 -0.006 0.038 0.198 0.009 0.049 0.216 0.264 0.134 0.361 1

O/S -0.126 0.197 -0.165 0.016 0.008 0.060 0.023 0.025 -0.044 0.082 -0.335 0.130 0.119 1
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Panel B displays unconditional correlations of alternative volatility tail risk measures. IV Kurtosis (IVKurt) is
measured using intraday quartic variations of the log change in IV. IV is calculated as the average implied volatility
of a group of at-the-money options with maturity closest to 30 days. λLT is the left-tail risk measure of IV using
power-law approach. λRT is the right-tail risk measure of IV using power-law approach. The sample period is from
January 2004 to December 2014.

Panel B: Correlations of Alternative Volatility Tail Risk Measures

V TR IVKurt λLT λRT

V TR 1

IVKurt 0.668 1

λLT 0.678 0.585 1

λRT 0.687 0.572 0.922 1
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Table IX

Volatility Tail Risk and the Cross-Section of Stock Returns

This table displays the equal-weighted monthly portfolio returns (in percentage) formed on the basis of V TR (V LTR and V RTR). Quintile portfolios are formed
by then end of each month, ranging from 1 to 5 with the highest (lowest) values located in the 5th (1st) quintile. Panel A reports results for V TR. Panel B reports
results for V LTR. Panel C reports results for V RTR. V LTR (V RTR) is the left-tail (right-tail) risk measure of IV, where V TR=V LTR+V RTR. The sample
consists of 156,509 firm-month observations over the time period January 2004 to December 2014. The raw alphas (in percentage) are obtained from quintile
portfolios sorted on tail risk measure, V TR (V LTR and V RTR). The risk-adjusted alphas (CAPM, FF3, and FF3+MOM) are the intercepts from time-series
regressions of the returns of the portfolio on systematic risk factors. The Newey-West (1987) t-statistics are reported in square brackets.

1 (Low) 2 3 4 5 (High) High−Low (4+5)−(1+2)

Panel A: V TR and the Cross-Section of Stock Returns

Raw return 0.683 0.733 0.735 0.535 0.247 -0.436 -0.317

[1.507] [1.518] [1.343] [1.008] [0.494] [-2.405] [-3.244]

Alpha, CAPM -0.054 -0.011 0.007 -0.222 -0.53 -0.476 -0.344

[-0.29] [-0.06] [0.074] [-1.799] [-2.009] [-2.737] [-3.923]

Alpha, FF3 -0.028 0.019 0.043 -0.179 -0.476 -0.448 -0.323

[-0.233] [0.218] [0.519] [-2.39] [-3.367] [-2.715] [-2.994]

Alpha, FF3+MOM -0.025 0.04 0.047 -0.169 -0.447 -0.422 -0.315

[-0.223] [0.526] [0.552] [-1.92] [-3.508] [-2.665] [-2.807]

Panel B: V LTR and the Cross-Section of Stock Returns

Raw return 0.634 0.822 0.762 0.426 0.291 -0.343 -0.37

[1.438] [1.612] [1.453] [0.788] [0.586 [-1.997] [-4.77]

Alpha, CAPM -0.106 0.08 0.032 -0.312 -0.504 -0.398 -0.395

[-0.544] [0.568] [0.272] [-2.917] [-1.787] [-2.358] [-5.559]

Alpha, FF3 -0.077 0.112 0.066 -0.27 -0.451 -0.374 -0.378

[-0.609] [2.734] [0.846] [-3.097] [-3.098] [-2.622] [-4.963]

Alpha, FF3+MOM -0.073 0.135 0.071 -0.268 -0.418 -0.345 -0.374

[-0.609] [5.102] [0.876] [-2.994] [-3.348] [-2.787] [-4.903]
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1 (Low) 2 3 4 5 (High) High−Low (4+5)−(1+2)

Panel C: V RTR and the Cross-Section of Stock Returns

Raw return 0.673 0.737 0.617 0.541 0.368 -0.305 -0.251

[1.438] [1.534] [1.185] [1.003] [0.738] [-1.99] [-2.022]

Alpha, CAPM -0.067 0 -0.136 -0.213 -0.393 -0.326 -0.27

[-0.372] [0.001] [-0.993] [-1.612] [-1.903] [-2.187] [-2.277]

Alpha, FF3 -0.041 0.03 -0.098 -0.167 -0.344 -0.303 -0.25

[-0.359] [0.32] [-1.198] [-2.475] [-2.9] [-1.869] [-1.733]

Alpha, FF3+MOM -0.04 0.047 -0.083 -0.154 -0.322 -0.282 -0.241

[-0.371] [0.545] [-0.895] [-2.014] [-2.73] [-1.703] [-1.63]
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Table X

Stock Return Predictability

This table displays Fama-MacBeth regression results of monthly returns on V TR and other control variables. V TR is the
monthly volatility tail risk measure. ERJM is the equity return jump measure. V RP represents volatility risk premium.
Size is the market capitalization (in $billions). LBM is the log of book-to-market ratio. Reversal is the return of past
month t. Momentum is return of past 6 month (from t−6 to t−1). MaxRet is the maximum daily return of past month t.
HSkew is the historical skewness computed using past month’s daily return. HKurt is the historical kurtosis computed using
past month’s daily return. Amihud is the Amihud (2002) illiquidity measure. iVol represents the idiosyncratic volatility
relative to Fama-French 3 factor model defined in Ang et al. (2006). OptSpread is the average option spread of at-the-money
options. ImpVol is the average implied volatility of at-the-money calls with around 30-day time-to-maturity. OTMSkew is
computed as the average of daily difference between the implied volatility of out-of-money puts and the implied volatility
of at-the-money calls with around 30-day time-to-maturity. O/S is the option-to-stock volume ratio measured at monthly
frequency. The Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 2004 to
December 2014.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

V TR -0.0168 -0.0067 -0.0089 -0.0116

[-5.66] [-3.09] [-2.57] [-2.77]

ERJM -0.0837 -0.0744 -0.0175 -0.0015

[-4.81] [-4.84] [-0.99] [-0.12]

V RP -0.1908 -0.0584 -0.1486 0.0684

[-1.62] [-0.50] [-1.08] [0.39]

Size -0.0007 -0.0016

[-1.46] [-2.04]

LBM 0.0007 0.0003

[0.78] [0.26]

Reversal 0.0101 0.0148

[0.53] [0.71]

Momentum 0.013 0.0241

[0.56] [1.16]

MaxRet -0.0042 0.0676

[-0.11] [1.59]

iVol -0.2531 -0.136

[-1.65] [-0.70]

HSkew 0.0003 -0.0008

[0.55] [-1.53]

HKurt 0.0008 0.0003

[4.49] [2.07]

Amihud -0.129 -0.1967

[-0.60] [-0.65]

ImpVol -0.0314

[-3.98]

OTMSkew -0.0537

[-7.31]

OptSpread -0.0008

[-0.22]

O/S 0.3255

[1.29]

Intercept Yes Yes Yes Yes Yes Yes

Adj. R2(%) 0.37 1.82 0.92 2.72 6.94 8.13
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Table XI

VTR Decompositions and Return Predictability

This table displays Fama-MacBeth regression results of monthly returns on V TR and other control variables. V TR is the
monthly volatility tail risk measure. I decompose individual stock V TR into systematic V TR, sV TR, and idiosyncratic
V TR, iV TR, by projecting stock VTR onto SPY VTR (systematic volatility tail risk measure). The Newey-West (1987)
t-statistics are reported in square brackets. The sample period is from January 2004 to December 2014.

Model 1 Model 2 Model 3 Model 4 Model 5

sV TR -0.0757 -0.1507 -0.1441

[-5.510] [-4.277] [-4.426]

iV TR 0.0451 0.0482 0.0332

[2.936] [3.253] [3.187]

ERJM 0.0032 -0.0019 0.0051

[0.097] [-0.057] [0.155]

V RP 0.0942 -0.1293 0.0688

[0.689] [-0.756] [0.495]

Size -0.0038 -0.0014 -0.0038

[-3.906] [-2.585] [-4.020]

LBM -0.0006 -0.0001 -0.0007

[-0.504] [-0.051] [-0.577]

Reversal 0.0026 0.0086 0.0046

[0.088] [0.283] [0.161]

Momentum 0.0205 0.0277 0.024

[0.759] [0.950] [0.904]

MaxRet 0.0662 0.1209 0.0755

[1.585] [2.423] [1.749]

iVol -0.1075 -0.3087 -0.1442

[-0.809] [-1.803] [-1.090]

HSkew -0.0002 -0.0011 -0.0004

[-0.439] [-1.809] [-0.694]

HKurt 0.0004 0.0001 0.0003

[1.663] [0.415] [1.472]

Amihud 0.4445 -0.0486 0.4034

[0.912] [-0.129] [0.870]

ImpVol -0.0272 -0.0231 -0.0267

[-3.483] [-2.654] [-3.345]

OTMSkew -0.0287 -0.0521 -0.0307

[-2.266] [-3.896] [-2.479]

OptSpread 0.0305 -0.0095 0.0244

[4.765] [-1.659] [4.935]

O/S -0.2729 -0.0216 -0.2436

[-1.990] [-0.110] [-1.738]

Intercept Yes Yes Yes Yes Yes

Adj. R2(%) 0.81 0.32 8.78 8.02 8.89
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Table XII

Alternative Volatility Tail Risk Measure and the Cross-Section of Stock Returns

This table displays the equal-weighted monthly portfolio returns (in percentage) formed on the basis of IV Kurtosis (IVKurt) (λLT and λRT ). Quintile portfolios are
formed by then end of each month, ranging from 1 to 5 with the highest (lowest) values located in the 5th (1st) quintile. Panel A reports results for IVKurt. Panel B
reports results for λLT . Panel C reports results for λRT . IV Kurtosis (IVKurt) is measured using intraday quartic variations of the log change in IV. IV is calculated
as the average implied volatility of a group of at-the-money options with maturity closest to 30 days. λLT (λRT ) is the left-tail (right-tail) risk measure of IV using
power-law approach.. The sample consists of 156,509 firm-month observations over the time period January 2004 to December 2014. The raw alphas (in percentage) are
obtained from quintile portfolios sorted on tail risk measure, IVKurt (λLT and λRT ). The risk-adjusted alphas (CAPM, FF3, and FF3+MOM) are the intercepts from
time-series regressions of the returns of the portfolio on systematic risk factors. The Newey-West (1987) t-statistics are reported in square brackets.

1 (Low) 2 3 4 5 (High) High−Low (4+5)−(1+2)

Panel A: IV Kurtosis (IVKurt) and the Cross-Section of Stock Returns

Raw return 0.647 0.745 0.796 0.408 0.338 -0.308 -0.323

[1.364] [1.427] [1.631] [0.76] [0.707] [-2.347] [-3.411]

Alpha, CAPM -0.106 -0.014 0.046 -0.337 -0.399 -0.293 -0.308

[-0.594] [-0.102] [0.243] [-2.419] [-2.126] [-2.329] [-3.42]

Alpha, FF3 -0.08 0.019 0.084 -0.294 -0.349 -0.27 -0.291

[-0.738] [0.307] [1.117] [-3.29] [-3.452] [-1.815] [-2.684]

Alpha, FF3+MOM -0.073 0.04 0.104 -0.289 -0.335 -0.262 -0.296

[-0.724] [0.557] [1.628] [-3.142] [-3.271] [-1.756] [-2.815]

Panel B: λLT and the Cross-Section of Stock Returns

Raw return 0.639 0.823 0.677 0.447 0.351 -0.288 -0.332

[1.393] [1.627] [1.275] [0.887] [0.682] [-1.748] [-3.504]

Alpha, CAPM -0.126 0.087 -0.057 -0.27 -0.441 -0.315 -0.336

[-0.558] [0.667] [-0.466] [-2.18] [-1.729] [-1.944] [-3.728]

Alpha, FF3 -0.099 0.119 -0.025 -0.228 -0.385 -0.286 -0.316

[-0.659] [3.056] [-0.349] [-2.899] [-2.463] [-1.52] [-2.736]

Alpha, FF3+MOM -0.083 0.137 -0.015 -0.226 -0.366 -0.283 -0.323

[-0.598] [2.993] [-0.198] [-2.834] [-2.404] [-1.52] [-2.921]
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1 (Low) 2 3 4 5 (High) High−Low (4+5)−(1+2)

Panel C: λRT and the Cross-Section of Stock Returns

Raw return 0.638 0.77 0.787 0.446 0.295 -0.343 -0.334

[1.386] [1.491] [1.554] [0.879] [0.562] [-1.957] [-3.323]

Alpha, CAPM -0.114 0.015 0.067 -0.278 -0.499 -0.385 -0.34

[-0.523] [0.103] [0.569] [-2.97] [-1.898] [-2.309] [-3.572]

Alpha, FF3 -0.087 0.046 0.103 -0.237 -0.444 -0.357 -0.32

[-0.587] [0.94] [1.639] [-2.718] [-3.042] [-2.044] [-2.582]

Alpha, FF3+MOM -0.08 0.068 0.113 -0.235 -0.419 -0.339 -0.321

[-0.565] [1.91] [1.633] [-2.603] [-3.066] [-1.97] [-2.62]
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Table XIII

Fama-MacBeth Regression Results of IV Kurtosis

This table displays Fama-MacBeth regression results of monthly returns on IV Kurtosis (IVKurt) and other control variables.
IV Kurtosis (IVKurt) is measured using intraday quartic variations of the log change in IV. Vol-of-Vol (VoV) is the volatility
of daily IV scaled by average daily IV of each month. IV Skewness (IVSkew) is measured using intraday cubic variations
of the log change in IV. IV is calculated as the average implied volatility of a group of at-the-money options with maturity
closest to 30 days. Size is the market capitalization (in $billions). LBM is the log of book-to-market ratio. Reversal is the
return of past month t. Momentum is return of past 6 month (from t−6 to t−1). MaxRet is the maximum daily return of
past month t. HSkew is the historical skewness computed using past month’s daily return. HKurt is the historical kurtosis
computed using past month’s daily return. OptSpread is the average option spread of at-the-money options. ImpVol is the
average implied volatility of at-the-money calls with around 30-day time-to-maturity. OTMSkew is computed as the average
of daily difference between the implied volatility of out-of-money puts and the implied volatility of at-the-money calls with
around 30-day time-to-maturity. The sample period is from January 2004 to December 2014.

Model 1 Model 2 Model 3

IVKurt -0.0002 -0.0001 -0.0001

[-4.0333] [-2.2764] [-2.1428]

VoV -0.0156 0.0014

[-1.9164] [0.1499]

IVSkew 0.0002 -0.0008

[0.4177] [-1.0091]

Size -0.0013

[-1.8082]

LBM 0.0005

[0.4256]

Reversal 0.0178

[0.6955]

Momentum 0.0232

[1.1108]

MaxRet 0.0089

[0.2577]

HSkew -0.0001

[-0.1162]

HKurt 0.0004

[1.2887]

OptSpread 0.0011

[0.2023]

ImpVol -0.0298

[-2.971]

OTMSkew -0.0488

[-3.391]

Adj. R2(%) 0.25 0.41 7.01
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Table XIV

V TR and Volatility-of-Volatility

This table displays Fama-MacBeth regression results of monthly returns on V TR and Vol-of-Vol (VoV). V TR is the monthly
volatility tail risk measure. Vol-of-Vol (VoV) is the volatility of daily IV scaled by average daily IV of each month (See Bal-
tussen et al. (2014)). IVSkew is measured using intraday cubic variations of the log change in IV. IV is calculated as the
average implied volatility of a group of at-the-money options with maturity closest to 30 days. Size is the market capital-
ization (in $billions). LBM is the log of book-to-market ratio. Reversal is the return of past month t. Momentum is return
of past 6 month (from t−6 to t−1). MaxRet is the maximum daily return of past month t. HSkew is the historical skew-
ness computed using past month’s daily return. HKurt is the historical kurtosis computed using past month’s daily return.
OptSpread is the average option spread of at-the-money options. ImpVol is the average implied volatility of at-the-money
calls with around 30-day time-to-maturity. OTMSkew is computed as the average of daily difference between the implied
volatility of out-of-money puts and the implied volatility of at-the-money calls with around 30-day time-to-maturity. The
Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 2004 to December 2014.

Panel A: Fama-MacBeth Regressions of V TR and Vol-of-Vol

Model 1 Model 2 Model 3 Model 4 Model 5

V TR -0.0168 -0.0156 -0.0121

[-3.1203] [-2.9919] [-2.7101]

VoV -0.0198 -0.0153 0.0021

[-2.729] [-2.0508] [0.2252]

IVSkew 0.0006 0.0003 -0.0007

[1.0388] [0.642] [-0.8604]

Size -0.0015

[-1.9967]

LBM 0.0005

[0.4263]

Reversal 0.0155

[0.6107]

Momentum 0.0209

[1.0064]

MaxRet 0.0078

[0.2254]

HSkew -0.0000

[-0.0264]

HKurt 0.0004

[1.3616]

OptSpread -0.0002

[-0.0396]

ImpVol -0.0297

[-2.9206]

OTMSkew -0.0476

[-3.3858]

Adj. R2(%) 0.37 0.13 0.04 0.51 7.09
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This table displays the double-sorting results on V TR and Vol-of-Vol (VoV). V TR is the monthly volatility tail risk measure.
Vol-of-Vol (VoV) is the volatility of daily IV scaled by average daily IV of each month (See Baltussen et al. (2014)). The
double-sorting methodology is implemented as follows: stocks are first sorted into 5 groups by VoV, then sorted into 5 groups
by V TR within each VoV group. Panel B-1 reports raw returns. Panel B-2 reports Carhart (1997) four-factor alphas. The
Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 2004 to December 2014.

Panel B: Double-Sorting of V TR and Vol-of-Vol

Panel B-1: Raw Return

V TR

1 (Low) 2 3 4 5 (High) High-Low

VoV 1 (Low) 0.009 0.007 0.009 0.006 0.003 -0.006

[1.838] [1.558] [1.727] [1.121] [0.536] [-1.528]

2 0.006 0.009 0.007 0.005 0.004 -0.002

[1.524] [2.095] [1.352] [1.118] [0.859] [-1.019]

3 0.005 0.008 0.008 0.005 0.003 -0.002

[1.306] [1.621] [1.354] [0.839] [0.465] [-0.968]

4 0.006 0.005 0.007 0.006 0.001 -0.005

[1.163] [0.884] [1.356] [1.226] [0.175] [-3.394]

5 (High) 0.007 0.006 0.007 0.003 0.002 -0.005

[1.242] [1.173] [1.022] [0.498] [0.403] [-1.647]

Panel B-2: Alpha, FF3+MOM

VoV 1 (Low) 0.002 0.001 0.002 -0.001 -0.004 -0.006

[1.668] [0.587] [2.806] [-0.493] [-1.564] [-2.134]

2 0.000 0.003 0.000 -0.002 -0.003 -0.002

[-0.215] [2.119] [-0.276] [-1.768] [-2.454] [-0.856]

3 -0.002 0.001 0.001 -0.002 -0.004 -0.002

[-0.973] [0.379] [0.399] [-1.007] [-1.441] [-0.554]

4 -0.002 -0.002 0.000 -0.001 -0.006 -0.005

[-1.628] [-1.712] [0.271] [-0.942] [-5.820] [-3.143]

5 (High) 0.000 -0.001 -0.001 -0.004 -0.005 -0.005

[-0.016] [-0.641] [-0.259] [-1.713] [-2.257] [-1.815]
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Table XV

V TR and Stock Volatility

This table reports double-sorting results on V TR and tVol (and iVol) on the purpose of disentangling the volatility tail
risk effect from the volatility effect documented by Ang et al. (2006). Specifically, tVol represents the total volatility of
stock returns. iVol represents the idiosyncratic volatility relative to Fama-French 3 factor model defined in Ang et al.
(2006). Firms’ tVol and iVol are estimated at the end of each month using daily returns. The double-sorting methodology is
implemented as follows: stocks are first sorted into 5 groups by tVol (or iVol), then sorted into 5 groups by V TR within each
tVol (or iVol) group. The Carhart (1997) four-factor alphas are computed for all portfolios and for all long-short strategies.
The Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January 2004 to December
2014.

Panel A: Double-Sorting on VTR and Stock Volatility

V TR

1 (Low) 2 3 4 5 (High) High-Low

tVol 1 (Low) 0.003 0.004 0.003 0.003 0.003 0.000

[5.344] [5.270] [2.254] [2.106] [3.129] [-0.357]

2 0.000 0.002 0.001 0.004 0.002 0.002

[-0.037] [2.354] [1.003] [1.905] [1.843] [1.242]

3 0.000 -0.001 -0.001 0.000 -0.004 -0.004

[0.001] [-1.291] [-0.547] [0.038] [-2.175] [-1.489]

4 0.000 0.000 -0.001 -0.002 -0.005 -0.006

[0.103] [-0.099] [-0.719] [-1.020] [-3.647] [-1.937]

5 (High) -0.006 -0.002 -0.007 -0.009 -0.013 -0.007

[-3.187] [-0.977] [-3.872] [-2.525] [-3.261] [-1.917]

iVol 1 (Low) 0.002 0.003 0.004 0.003 0.003 0.002

[1.877] [5.021] [4.854] [2.495] [4.600] [1.132]

2 0.001 0.003 0.002 0.000 0.000 -0.001

[1.057] [3.795] [2.819] [0.014] [0.284] [-0.385]

3 -0.002 0.000 0.000 -0.001 -0.002 0.000

[-1.048] [-0.328] [-0.020] [-1.116] [-1.516] [-0.069]

4 -0.001 -0.001 -0.001 0.000 -0.006 -0.005

[-0.388] [-1.158] [-0.376] [-0.026] [-3.272] [-1.750]

5 (High) -0.006 -0.002 -0.007 -0.009 -0.012 -0.006

[-4.321] [-0.984] [-4.352] [-2.487] [-2.979] [-1.723]
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This table reports Fama-MacBeth regression results of monthly returns on V TR and stock volatility measures (tVol and
iVol). V TR is the monthly volatility tail risk measure. Size is the market capitalization (in $billions). LBM is the log of
book-to-market ratio. Reversal is the return of past month t. Momentum is return of past 6 month (from t−6 to t−1).
MaxRet is the maximum daily return of past month t. HSkew is the historical skewness computed using past month’s daily
return. HKurt is the historical kurtosis computed using past month’s daily return. OptSpread is the average option spread
of at-the-money options. ImpVol is the average implied volatility of at-the-money calls with around 30-day time-to-maturity.
OTMSkew is computed as the average of daily difference between the implied volatility of out-of-money puts and the implied
volatility of at-the-money calls with around 30-day time-to-maturity. O/S is the option-to-stock volume ratio measured at
monthly frequency. The Newey-West (1987) t-statistics are reported in square brackets. The sample period is from January
2004 to December 2014.

Panel B: Fama-MacBeth Regressions on V TR and Stock Volatility

Model 1 Model 2 Model 3

V TR -0.0122 -0.0123 -0.0122

[-2.7055] [-2.7731] [-2.6781]

tVol -0.2046

[-1.3153]

iVol -0.1724

[-1.212]

Size -0.0014 -0.0014 -0.0014

[-1.9528] [-1.9623] [-1.9175]

LBM 0.0004 0.0005 0.0004

[0.3477] [0.3949] [0.3176]

Reversal 0.0156 0.0155 0.0186

[0.6233] [0.6377] [0.7349]

Momentum 0.0211 0.0257 0.0259

[0.9827] [1.103] [1.1179]

MaxRet 0.0148 0.0766 0.0561

[0.4269] [2.227] [1.1158]

HSkew -0.0001 -0.0013 -0.0006

[-0.2255] [-1.7585] [-1.1631]

HKurt 0.0004 0.0003 0.0004

[1.3239] [1.2974] [1.5323]

OptSpread -0.0006 -0.0003 -0.0001

[-0.1744] [-0.0953] [-0.0275]

ImpVol -0.0296 -0.0258 -0.0265

[-3.0237] [-2.9071] [-3.0322]

OTMSkew -0.0525 -0.0528 -0.0507

[-3.8472] [-3.8681] [-3.6985]

O/S 0.0019 0.002 0.002

[0.6792] [0.7148] [0.7018]

Adj. R2(%) 7.08 7.32 7.33
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Table XVI

Double-Sorting on V TR and Firm Size

This table displays the double-sorting results on V TR and firm size. V TR is the monthly volatility tail risk measure. Size
is the market capitalization (in $billions). The double-sorting methodology is implemented as follows: stocks are first sorted
into 5 groups by Size, then sorted into 5 groups by V TR within each Size group. Panel A reports raw returns. Panel B
reports Carhart (1997) four-factor alphas. The Newey-West (1987) t-statistics are reported in square brackets. The sample
period is from January 2004 to December 2014.

Panel A: Raw Return

V TR

1 (Low) 2 3 4 5 (High) High-Low

Size 1 (Low) 0.007 0.004 0.003 0.002 -0.004 -0.011

[1.363] [0.706] [0.558] [0.338] [-0.863] [-3.178]

2 0.006 0.007 0.005 0.005 0.004 -0.001

[1.234] [1.233] [1.011] [0.851] [0.876] [-0.650]

3 0.009 0.008 0.008 0.007 0.007 -0.002

[1.646] [1.804] [1.495] [1.208] [1.181] [-0.684]

4 0.008 0.009 0.009 0.007 0.006 -0.002

[1.502] [1.749] [1.662] [1.081] [0.935] [-0.505]

5 (High) 0.006 0.007 0.006 0.008 0.006 0.000

[1.415] [1.436] [1.384] [1.594] [1.159] [0.055]

Panel B: Alpha, FF3+MOM

Size 1 (Low) -0.001 -0.004 -0.004 -0.006 -0.012 -0.011

[-0.632] [-2.634] [-2.179] [-3.345] [-2.970] [-3.237]

2 -0.002 0.000 -0.002 -0.003 -0.003 -0.001

[-1.038] [0.064] [-1.401] [-1.233] [-2.104] [-0.480]

3 0.001 0.001 0.001 0.000 0.000 -0.001

[0.904] [1.076] [0.725] [-0.006] [0.114] [-0.499]

4 0.000 0.002 0.002 0.000 0.000 -0.001

[0.094] [1.500] [1.641] [0.125] [-0.149] [-0.151]

5 (High) -0.001 0.001 0.000 0.002 0.001 0.001

[-0.496] [1.091] [0.096] [2.347] [0.363] [0.451]

85



Table XVII

Double-Sorting on V TR and Option Characteristics

This table displays the double-sorting results on V TR and option characteristics. V TR is the monthly volatility tail risk
measure. OptSpread is the average option quote spread of at-the-money 30-day options, a proxy for information asymmetry
in microstructure literature. OptVolume is the total option trading volume, a measure of option liquidity. The double-sorting
methodology is implemented as follows: stocks are first sorted into 5 groups by OptSpread (OptVolume), then sorted into
5 groups by V TR within each OptSpread (OptVolume) group. The Carhart (1997) four-factor alphas are reported for all
portfolios and for all long-short strategies. The Newey-West (1987) t-statistics are reported in square brackets. The sample
period is from January 2004 to December 2014.

Double-Sorting on V TR and Option Characteristics

V TR

1 (Low) 2 3 4 5 (High) High-Low

OptSpread 1 (Low) -0.003 -0.001 -0.001 -0.001 -0.002 0.001

[-1.101] [-0.421] [-0.988] [-0.927] [-1.069] [0.425]

2 0.002 0.000 0.001 0.002 -0.007 -0.008

[0.711] [-0.099] [0.555] [1.032] [-3.412] [-2.492]

3 0.003 -0.001 0.000 0.000 -0.007 -0.010

[1.772] [-1.009] [-0.006] [-0.387] [-2.775] [-3.283]

4 0.001 0.000 -0.001 -0.005 -0.007 -0.008

[0.595] [0.112] [-0.784] [-4.353] [-3.683] [-3.290]

5 (High) 0.002 0.000 0.001 -0.002 -0.003 -0.005

[1.238] [0.312] [0.515] [-1.135] [-1.306] [-2.142]

OptVolume 1 (Low) 0.001 0.003 0.001 -0.001 -0.001 -0.002

[0.719] [2.467] [0.478] [-0.391] [-0.485] [-0.787]

2 0.003 0.000 0.001 -0.001 -0.004 -0.007

[2.017] [-0.371] [0.633] [-0.676] [-2.094] [-3.560]

3 0.002 0.001 0.002 -0.001 -0.008 -0.010

[1.056] [1.262] [2.009] [-1.035] [-4.389] [-4.905]

4 0.000 0.001 0.000 -0.004 -0.006 -0.007

[0.219] [0.604] [-0.254] [-2.579] [-3.122] [-2.405]

5 (High) -0.003 -0.003 -0.002 -0.003 -0.007 -0.004

[-1.147] [-2.910] [-1.863] [-1.928] [-4.203] [-1.159]
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1 Introduction 

Derivatives play an important role in the economy. They help to complete the 

market and allow for a capital-efficient hedging and speculation. However, policymakers 

are concerned that because derivatives are so complex, even professional investors may 

not fully understand their risks and even occasionally misprice them. We find evidence 

consistent with this concern in one of the world’s most widely-studied, actively-traded, 

and transparent derivatives markets – the options market.
1
 Based on these characteristics, 

one would expect option prices to be efficient and fair. Yet, we find that option prices are 

systematically biased, and positive intraday option returns are particularly hard to 

explain. Our results are consistent with option prices failing to account for a well-known 

volatility seasonality – volatility is usually higher during trading hours than overnight. 

This conclusion is notable because volatility is obviously a major input to option pricing 

models, and the models can be easily adjusted for the volatility seasonality. Perhaps, 

prices in other derivatives markets may similarly deviate from their fair values preventing 

efficient capital allocation.  

To understand our main result, let us first explain the intuition behind average 

option returns. In the Black-Scholes-Merton (BSM) model, an option can be perfectly 

replicated by hedging continuously in the underlying stock. Thus, a delta-hedged option 

portfolio earns a risk-free rate of return. However, average delta-hedged option returns 

are negative in practice, implying that option sellers collect a risk premium from option 

buyers. Average delta-hedged option returns are also directly related to the variance risk 

premium – option-implied variance exceeds the realized return variance on average. 

Although option returns have been extensively studied,
2
 there is an active debate about 

whether these large negative returns reflect compensation for taking risk or due to 

mispricing.
3
 Numerous studies show that option investors are highly sophisticated, which 

makes mispricing less likely.  

We contribute to this debate by documenting a remarkable pattern in average 

delta-hedged option returns. In particular, option returns are only negative during the 

                                                 
1
 Indeed, according to Option Clearing Corporation, U.S. equity options had a notional volume of 372 

trillion shares in 2015, which is about one-fifth of trading volume in U.S. equities. 
2
 E.g., Bakshi and Kapadia (2003), Carr and Wu (2009), and Bakshi, Madan, and Panayotov (2010). 

3
 For example, Han (2008) and Bondarenko (2014) advocate the mispricing and sentiment explanations. 
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overnight period (from close to open) and are mildly positive intraday (open-to-close). 

Overnight delta-hedged returns are -1.0% per day for index options and -0.4% for equity 

options and are notably persistent over our sample period from 2004 to 2013. In contrast, 

during the trading day, option returns flip sign and become positive: 0.3% per day for 

index options and 0.1% for equity options. This day-night effect is stronger for options 

with high-embedded leverage, such as short-term and out-of-the-money options. VIX 

futures returns show a similar, albeit weaker, pattern. Importantly, this option return 

asymmetry varies across stocks and ETFs. For most ETFs and stocks, option returns are 

positive intraday but for some the pattern is reversed with positive returns overnight. 

This day-night effect is not only puzzling in itself but it also makes harder to 

rationalize why average option returns are so negative. Indeed, literature struggles to 

explain why returns for selling a delta-hedged option on the S&P 500 index are so 

positive, 0.7% per day in our sample.
4
 A common justification is that this trading strategy 

is akin to “picking up nickels in front of a steamroller” and lost 80% of its capital during 

the financial crisis. However, as option returns are only negative overnight, this baseline 

strategy can be improved by only selling option volatility overnight, with no position 

during the day. The overnight strategy not only increases average returns to 1.0%, but 

also more than doubles its Sharpe ratio. Moreover, it is profitable in every three-month 

period, including the crisis! Thus, it poses new challenges for rational option theories. 

Admittedly, large trading costs in index options make this trading strategy hard to 

implement in practice. However, the strategy is potentially profitable after costs in 

important special cases, such as options on the most popular index ETF, SPY. 

We consider a number of potential risk and friction-based explanations for the 

striking asymmetry between day and night returns, including stochastic volatility and 

price jumps, inability to adjust delta-hedge overnight, price pressure, discretization error, 

transaction costs, funding and other carry costs. The proposed theories should explain not 

only the return asymmetry but also its cross-asset variation. Although, most of these 

theories are consistent with some of the facts and help explain negative night returns, 

most of them struggle with positive intraday returns, and even zero returns would be 

                                                 
4
 These estimates are consistent with the prior literature that uses older data Coval and Shumway (2001), 

Bakshi and Kapadia (2003), Santa-Clara and Saretto (2007), and Broadie, Chernov, and Johannes (2009). 
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puzzling. Simply put, why would put options, which provide insurance against market 

crashes, offer positive average returns? For example, if our sample period missed an 

intraday rare disaster, this “peso problem” would worsen the intraday return puzzle. A 

disaster would trigger large positive returns for a delta-hedged option, and thus the “true” 

average return is even more positive than our estimate. Another natural explanation is 

that option investors consider night particularly risky due to the inability to adjust delta-

hedges and option positions. Therefore, investors require larger compensation for bearing 

volatility risk during night, and thus overnight option returns should be particularly 

negative. This theory implies less negative intraday returns, but the returns are positive. 

Adding to the challenge, negative overnight returns do not depend on volatility (such as 

VIX) and measures of tail risk. In contrast, most rational theories predict that expected 

option returns should depend on market conditions. Finally, rational theories struggle to 

explain the cross-stock variation in day-night option returns.  

On a more positive note, price pressure and the “discretization bias” likely 

contribute to positive intraday returns. Order imbalances for index options are positive 

and may push option prices higher causing positive intraday returns. However, the 

imbalances are not large, and in theory, such anticipated imbalances should be reflected 

in prices in advance. Branger and Schlag (2008) introduce the discretization bias and 

argue that infrequent delta-hedging and biased option deltas may lead to positive option 

returns. We conduct several tests that reduce but not completely eliminate this concern. 

Finally, conventional jump and stochastic volatility theories are promising if option 

investors love taking intraday risk. Obviously, high option trading costs limit the ability 

of arbitrageurs to eliminate the day-night effect; however, the costs cannot explain why 

this effect exists in the first place. We further discuss all the explanations in Section 5.1. 

The limited success of rational theories in explaining the day-night effect implies 

that option market-makers (OMMs) may not be fully rational, in the sense that they post 

systematically biased prices. Instead of settling on this “residual” conclusion, we propose 

and test a simple behavioral explanation. Perhaps, option returns change sign from 

negative overnight to positive intraday because option prices fail to account for the fact 

that stock volatility is on average much higher intraday than overnight. This well-known 
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fact is perhaps the strongest volatility seasonality.
5
 We document its properties for 

individual stocks and S&P 500 index in our sample. Surprisingly, option prices are set as 

if total intraday and night volatilities were about the same, totally ignoring the 

seasonality. This failure to account for the volatility seasonality translates into option 

returns. Indeed, option delta-hedged returns are proportional to the difference between 

realized and implied volatilities (Bakshi and Kapadia, 2003). Implied volatility is usually 

set slightly above the expected realized volatility resulting in negative average option 

returns, which compensates investors for taking volatility/tail risks. Therefore, positive 

intraday (negative night) returns imply that option prices understate intraday (overstate 

overnight) volatility. Option close prices are too high, and open prices are too low. 

Admittedly, the effect on implied volatility is less dramatic as it reflects total remaining 

variance until expiration with about the same number of day and night periods. 

We conduct two major tests to further validate the volatility bias hypothesis. First, 

it predicts that stocks with more pronounced day-night volatility seasonality should have 

higher day-night asymmetry in option returns. That is, if options are priced assuming the 

same volatility for day and night, while actual volatility is much higher intraday, then 

intraday option returns will be more positive (and night return more negative). We test 

this prediction with portfolio sorts and regressions on a cross-section of more than 

thousand optionable stocks. Remarkably, the day-to-night volatility ratio computed from 

historical data explains most of the variation in the day-night option return asymmetry 

across stocks and thus helps resolve the day-night puzzle. Also, both day and night option 

returns become negative after accounting for the volatility seasonality bias. That is, 

returns seem consistent with conventional theories after accounting for the bias.  

In the second test, we add the day-night volatility seasonality to the standard 

Black-Scholes and Heston models. In the model, we control for how much option prices 

underreact to the volatility seasonality and thus can study the volatility bias in controlled 

settings. Specifically, options are priced using a different day-night volatility ratio than 

the actual ratio that generates the underlying stock price. We simulate day-night option 

returns from both models under realistic parameter values. First, the models are able to 

replicate not only signs but also magnitudes of day-night option return if option prices 

                                                 
5
 Oldfield and Rogalski (1980), Amihud and Mendelson (1991), Stoll and Whaley (1990) among others. 
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completely ignore the day-night volatility seasonality. That is, options’ prices seem not 

simply underreact but completely ignore the volatility seasonality. Second, day-night 

option returns depend primarily on perceived volatility ratio reflected in option prices and 

much less on the actual volatility ratio  We also confirm our cross-stock results, as we 

find similar regression results in a simulated panel of option returns from the BSM 

model. It is reassuring that both models produce similar results. 

Interestingly, other option investors do not seem to take advantage of the day-

night effect. Many investors could be simply unaware of it. Positive intraday returns 

encourage option investors to move their sell (buy) trades to the afternoon (morning). 

Contrary to this prediction, option order imbalance is more positive in the afternoon; that 

is, investors buy more (and thus sell fewer) options towards close.  

We conduct numerous robustness tests. Our main results are robust to alternative 

definitions of open and close prices (e.g., using trade prices instead of quote midpoints), 

option returns (e.g., using leverage-adjusted, straddle, and raw returns), and different 

subsamples (e.g., for all of the moneyness and time-to-expiration categories).  

Empirical work in option pricing typically relies on the estimation of fully 

specified parametric models. Option returns are easier to interpret than the pricing errors 

of such models because returns represent the actual gains or losses to a trading strategy. 

Also, the day-night effect is hard to extract from implied volatility, and thus option 

returns provide a more natural way to study them. Several others have also noted the 

advantages of analyzing average option returns.
6
  

Overall, multiple explanations likely contribute to the day-night effect, but the 

volatility bias is by far the most promising. The remainder of the paper is organized as 

follows. In Section 2, we briefly review the related literature. In Section 3, we describe 

the data and the methodology. Section 4 documents the asymmetry between day and 

night option returns, while Section 5 tries to explain it. Section 6 concludes the paper. 

The Appendix provides several additional results and tables.  

 

                                                 
6
 See for example Coval and Shumway (2001), Bondarenko (2003), Driessen, Maenhout, and Vilkov 

(2009), Duarte and Jones (2007), Broadie, Chernov, and Johannes (2009), Goyal and Saretto (2009), 

Bakshi, Madan, and Panayotov (2010), and Muravyev (2016). 
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2 Literature and Contribution 

This paper contributes to several strands of literature. First, our results are 

obviously important for the option returns literature. Second, we contribute to the 

literature that studies behavioral finance and investor irrationality. Although options 

provide leverage (Black, 1975) and lottery-like payoffs (Shefrin and Statman, 1993) that 

can attract speculators, some of whom may act irrationally, surprisingly few papers 

including study behavioral factors in derivatives markets. Stein (1989) and Poteshman 

(2001) show that option-implied volatility underreacts to individual daily changes in 

instantaneous variance and overreacts to periods of mostly increasing or mostly 

decreasing daily changes in variance. Han (2008) shows that changes in investor 

sentiment help explain time variation in the slope of index option smile and risk-neutral 

skewness. Jones and Shemesh (2016) show that returns for stock options are more 

negative over weekends than weekdays. Overall, these studies argue that the option 

market reacts in the right direction but the magnitudes are too large, while we find that 

intraday option return have a “wrong” sign and identify a likely mechanism behind the 

puzzle. Relatedly, the literature on the optimal exercise of equity options concludes that 

professional investors, such as OMMs, almost always exercise their options optimally 

while retail investors occasionally make mistakes, which is hardly surprising because 

optimal exercise boundaries are hard to compute. This paper focuses on systematic 

pricing mistakes by market-makers rather than occasional mistakes by retail investors.  

We know only one other paper, Sheikh and Ronn (1994), that investigates 

intraday patterns in option returns. Using the data on short-term at-the-money options on 

30 stocks for just 21 months ending pre the 1987 crisis (pre volatility skew period), they 

find, among other results,  that “the adjusted option returns” are more negative overnight 

than intraday but the difference is not statistically significant, perhaps because their 

sample is too small. Sheikh and Ronn focus on returns towards the end of trading day, 

and do not discuss overnight versus intraday returns, nor do they study index options. 

They argue that differences between option and equity market returns provide evidence 

of information-based trading in options. Obviously, the options market has changed 

substantially since mid-1980s. Also, Chan, Chung, and Johnson (1995) show that option 
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volume exhibits a U-shaped intraday pattern similar to stock volume; however, we are the 

first to examine intraday patterns in option order flow/imbalance.  

If OMMs ignore the day-night volatility, this is extremely puzzling because 

volatility is a major input to option pricing models, and these models can be easily 

adjusted for the volatility seasonality.
7
 The idea that volatility seasonality should affect 

option prices goes back to at least Merton (1973) and French (1984). Also, option 

investors are highly sophisticated, which makes mispricing less likely: institutional 

investors account for most of option trading volume.
8
 Indeed, numerous studies show that 

option prices and volume contain information about future unscheduled events (e.g., 

mergers), stock returns, and volatility. 

A growing literature examines the day-night effect in equity returns.
9
 Our result 

that option investors potentially misprice the day-night volatility can potentially be useful 

for explaining the equity market day-night puzzles. Volatility is a basic input to many 

risk measures such as CAPM betas and thus may affect required rate of return for night 

and day. Importantly, despite apparent similarity, the day-night effect in the equity 

market does not affect our results. First, options are delta-hedged so that their beta is 

close to zero, and thus option returns are uncorrelated with returns for the underlying. 

Controlling for stock/index returns does not affect the option day-night effect. Second, 

unlike in the equity market, the autocorrelation between day and night returns is 

essentially zero in options. Finally, the options day-night effect is an order of magnitude 

larger than its equity market counterpart; the latter amounts to only less than one basis 

point per day in our sample.  

The fact that OMMs may ignore short-term swings in the underlying volatility, 

such as the day-night volatility seasonality, suggests that results of event studies that rely 

on intraday option data should be interpreted with caution. For example, positive option 

returns immediately after an intraday announcement, such as macro news, may indicate a 

                                                 
7
 Option market-making is highly concentrated. According to Citadel, as of late 2008, Citadel (30% of 

option volume, specialist in options on 1,655 stock names), Susquehanna (1,152 stock names), Timber Hill 

(1,124), Citi (554), Goldman Sachs (390), Morgan Stanley (286), UBS (218) dominated this market. 
8
 Muravyev and Pearson (2015) show that most option trades are executed using sophisticated algorithms 

not available to retail inventors. 
9
 For example, Lockwood and Linn (1990) and more recently Cooper, Cliff, and Gulen (2008) show that all 

of the equity risk premium in their sample comes from overnight returns. Lou, Polk, and Skouras (2015) 

and Bogousslavsky (2016) examine how stock anomalies behave intraday/overnight. 
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risk premium associated with this event or, alternatively, OMMs simply ignored the 

event. In the latter case, option returns will also be positive because they are proportional 

to the difference between realized volatility, which is high after the announcement, and 

implied volatility, which is unchanged if the event is ignored. 

 

3 Data and Methodology 

We obtained stock and options data from Nanex, a firm specializing in high-

quality data feeds. The original data come from standard data aggregators: OPRA for 

options and SIP for equities (e.g., TAQ data also use SIP). The data include intraday 

quoted bid and ask prices at one-minute frequency for both options and the underlying 

equities for the sample period from January 2004 to April 2013. For options, we also 

observe best bid and offer (BBO) from all option exchanges. Timestamps are 

synchronized across markets. To reduce dataset size, only option contracts with at least 

one trade on a given day are included. Still, the compressed data require more than 

twelve terabytes of storage. When needed, we merge our intraday data with daily stock 

and option prices from CRSP and OptionMetrics by ticker and date. Delta-hedges are 

computed using S&P 500 index futures data. Option order imbalances are computed from 

option trades and BBO quoted prices preceding them. First, the quote rule is applied to 

trade and NBBO (National Best Bid and Offer) to determine whether a trade is buyer or 

seller-initiated; if a trade is at the NBBO quote midpoint, we apply the quote rule to the 

quoted bid and ask prices from the exchange that reported the trade. 

Let us briefly describe the options market structure. The U.S. options market has a 

similar structure to the equity market with some distinct features. Equity options are 

typically cross-listed across multiple fully-electronic exchanges, and NBBO rule is 

enforced. Investors can post limit or market orders, and market-makers are obliged to 

provide continuous two-sided quotes. All major brokers provide real-time option prices to 

their (retail) clients similarly to stock information. S&P500 index options are special 

because one exchange, CBOE, has exclusive rights to trade SPX options, and a lot of 

trading is still done manually. OMMs provide continuous bid and ask quotes for SPX 

options that investors can trade against. Johnson, Liang, and Liu (2016) and Muravyev 

(2016) provide further details.  
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Open price is computed as the quote midpoint at 9:40 a.m. We skip the first ten 

minutes of trading (both the equity and options markets open at 9:30 a.m. EST) because, 

as Chan, Chung, and Johnson (1995) first show and we confirm, option quotes are 

sporadic and bid-ask spreads are often wide right after market opens. Closing prices are 

based on the quote midpoint preceding close, which is 4:00 p.m. for equity and 4:15 p.m. 

for S&P options. Options and the underlying market typically close/open at the same 

time. Our main results are robust to alternative specifications of open and close prices. 

We apply standard data filters. In order to compute option return over a given 

time period, we exclude option contracts for which at the beginning of this period (1) 

option prices violate no-arbitrage bounds, (2) the bid price is greater or equal to the ask 

price, (3) the bid price is not available or is below 50 cents, (4) the quoted bid-ask spread 

is more than 70% of the midpoint or three dollars, or (5) if option delta cannot be 

computed. Omitting any one of these filters has little effect on our main results.    

Delta-hedged option returns are computed using deltas from the Black-Scholes-

Merton model; and the hedge is revised five times a day (approximately every 80 

minutes). Figure A.2 in the Appendix confirms that our main results are robust to 

alternative hedging frequencies. Following the literature, we define delta-hedged option 

dollar profit (P&L) for option contract with price    between times     and   as  

                  (       ) , 

where   is option delta and    is the underlying price at time  . Option delta-

hedged return is then computed as
10

  

     
    

    
 

Following this definition, intraday (open-to-close) returns are computed as the 

intraday (open-to-close) dollar P&L for a long option position divided by opening option 

price. Index futures have low margin costs supporting this definition. In untabulated 

results, we show that other ways to normalize P&L (instead of simply dividing by option 

price) expectedly affect the magnitudes of day- night option returns but not their signs.  

We first compute day and night returns for each option contract, then average 

them for each underlying, and finally take an equally-weighted average across stocks 

                                                 
10

 We study regular option returns instead of excess returns because daily risk-free rate is negligible 

compared to option returns, and thus, subtracting it makes little difference. 
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(this step is not needed for S&P index options). Thus, this gives us one intraday and one 

overnight return per stock and date. With slightly less than ten years of data, we end up 

with more than 2200 daily observations. When required, we similarly compute returns for 

option subsamples such as out-of-the-money (OTM) index puts. 

For robustness, we also examine leverage-adjusted option returns, which help us 

compare returns of options with different moneyness. Following the literature, the 

deleveraged option return for      is defined as: 

    
   

    
    

            |
        

    
|  

     is the delta-hedged option return for time period         defined above.      is 

the deleveraged factor. The deleveraged factor,  , is usually well above 5.  

It is also important to clarify why we study option returns and not just open and close 

VIX levels or other implied volatility measures (including “model-free” versions). VIX 

alone tells us little about whether option prices are cheap or expensive. It is mechanically 

higher at open and lower at close (and also higher on Monday and lower on Friday) 

because it is computed based on calendar instead of business time, which is another 

manifestation of the volatility seasonality bias. Whether option prices are 

cheap/expensive is jointly determined by implied and realized volatilities, and option 

returns is a convenient way to access this. 

 

4 The Day-and-Night Effect in Option Returns 

4.1. Average Overnight and Intraday Option Returns 

In this section, we explore properties of average overnight and intraday option 

returns. Figure 1 shows our main result. We decompose daily delta-hedged option returns 

into intraday (open-to-close) and overnight (close-to-open) components. It is well known 

that delta-hedge returns for index options (and to a lesser degree for equity options) are 

negative on average. We show that these negative returns are entirely due to the returns 

from the overnight period, which are -1.0% per day, while intraday returns are positive 

(0.3%). Our magnitudes for total daily option returns are consistent with the literature 

(e.g., Coval and Shumway, 2001). Tables 1 and 3 confirm that day and night returns are 

both statistically significant (t-statistics of 2.6 and -12 respectively). This day-night effect 
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is also observed in equity option returns, but magnitudes are expectedly smaller: a -0.4% 

per day overnight return and 0.1% intraday (see Figure 1, Table 1 Panel B, and Table A.2 

in the Appendix). Statistical significance is higher for equity options (t-statistics of -19 

and 3) as averaging across stocks reduces estimation error. 

Figure 2 shows that despite high variance, overnight returns are remarkably stable 

over the entire sample period. In particular, this figure compares cumulative option 

returns over a three-month rolling window for two trading strategies. The conventional 

strategy of collecting the option risk premium sells a delta-hedged option portfolio and 

keeps it for the entire day (thus collecting both day and night returns) while the 

“overnight” strategy only keeps the short position open overnight and thus has no 

position intraday. The conventional strategy is highly profitable but the P&L is highly 

volatile, and it loses more than 80% of capital in late 2008. In contrast, the overnight 

strategy is profitable in every three-month sub-period, including the crisis. As a result, it 

yields more than twice the Sharpe ratio of the conventional strategy. Admittedly, the 

overnight strategy is hard to implement in practice as it requires frequent trading. Its 

average daily profits are smaller than a 6% average effective bid-ask spread in S&P500 

index options. Of course, investors do not need to pay the entire spread and can also 

provide liquidity. In Section 5.6, we discuss how options on SPY ETF, which have 

similar return properties but much smaller transactions costs, can be used to make the 

overnight strategy potentially profitable after costs. Importantly, high trading costs can 

explain why the anomaly does not disappear, but not why it exists in the first place.  

Table 4 complements this analysis by reporting option returns by calendar year. 

First, both night returns as well as the difference between day and night returns are 

economically and statistically significant in every year of our sample. The least negative 

night returns are -0.77% in 2008. The smallest day-night difference is 0.89% in 2012. 

Second, the intraday returns are quite volatile and are positive or close to zero in all 

years. The most negative intraday return is -0.21% in 2012 (t-statistics of -0.8). Overall, 

day-night option return asymmetry is observed in every year.   

The day-night return difference cannot be explained by differences in higher 

moments of option return distribution. Table 1 shows that day and night option returns 
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have about the same volatility of 4.8% and similar 1% and 99% tail quantiles. Thus, at 

least in terms of these “naïve” risk measures day and night returns are similarly risky.
11

 

To better understand the nature of intraday returns, we compute average option 

returns over five equal intraday sub-periods in Table 3. The intraday returns are close to 

zero in the morning and noon (-0.02%) and become positive in the afternoon and 

especially before close (0.16% and 0.19% in the last two sub-periods). Interestingly, 

index option returns have a different intraday pattern than the underlying volatility, which 

has a pronounced U-shape: volatility is highest at the open and close. However, equity 

option returns are more positive during the beginning (0.10%) and end (0.05%) of the 

trading day (vs. -0.04% during lunch, see Table A.2 in the Appendix) and thus match the 

U-shape volatility seasonality. Perhaps, we just do not have enough statistical power to 

find the U-shape in index option returns. Overall, the fact that returns are non-negative 

for all intraday sub-periods confirms that our results are not driven by some strange price 

behavior at open or close.  

We conduct many other tests and find that our main result is remarkably robust. 

Sections A.1 and A.2 in the Appendix explain them in detail.
12

 In particular, we consider 

several alternatives for open/close option prices and returns. All of them have little effect 

on the day-night return magnitudes. First, to elevate concern that we compute open and 

close prices at a particular time (9:40am and 4pm), we re-compute them as an average 

quoted price during the first and last 15 minutes of a trading  day. Second, to elevate the 

concern that bid prices can occasionally be set too low and thus bias the midpoint, we 

compute returns using only ask (or only bid) prices (Table A.9). Third, despite being 

widely used the quote midpoints may not represent prices that investors get. To address 

this, we compute option returns from average trade prices instead of quote midpoints 

(Panel B of Table A.8). If anything the day-night return asymmetry is stronger here. 

                                                 
11

 Expectedly, the median return is lower than the mean because an option payoff is non-linear. Overnight 

return median is -1.2%, and thus our main result is not driven by outliers. Median intraday return is slightly 

negative (-0.38%) reflecting the fact that a buyer of an option straddle (put plus call) lose money on a 

median day because stock price remains unchanged in this median scenario, and thus an option buyer loses 

time value. 
12

 We also confirm in Table 3 that negative overnight returns are not driven by weekends. Night returns 

become slightly less negative, increasing from -1.0% to -0.8% if weekends are excluded. We thus confirm 

the finding of Jones and Shemesh (2016) that option returns are more negative over weekends (Friday to 

Monday). In untabulated results, we also test whether the volatility seasonality bias that we propose can 

explain the weekend effect, and it does not. Unfortunately, the weekend effect remains a puzzle. 
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Fourth, hedging in the underlying may produce spurious returns, we study straddle 

returns to address this concern (Panel A of Table A.7). In a straddle, a call is delta-

hedged with corresponding put options instead of the underlying. Finally, delta hedging 

may affect option returns, e.g. because option deltas can be biased. In Figure A.2, we 

show that intraday returns depend little on the delta-hedging frequency. Moreover, in 

Panel B of Table A.7, we confirm the day-night effect for raw (unhedged) option returns. 

After documenting the day-night effect in index and equity options, we 

investigate major exchange-traded funds including U.S. index, industry, commodity, 

fixed-income, and international equity ETFs (Table A.1).
13

 The day-night effect varies 

across ETFs in a systematic way that matches the pattern in day-night ETF return 

volatility. Average option returns for U.S. index, industry, and commodity ETFs are 

negative overnight and positive intraday. However, option returns for international ETFs 

(e.g., tickers EEM and EFA) and long-term Treasury bond ETF (ticker TLT) are negative 

in both intraday and overnight. Interestingly, the day-night effect flips sign for the China 

Large-Cap ETF: night returns are positive, and day returns are negative. These 

“exceptions” encouraged us to compare average option returns with the day/night return 

volatility for these ETFs. For the Chinese ETF, intraday volatility is less than overnight 

volatility; for international equity ETFs and fixed-income ETF, the day and night 

volatilities are roughly equal. Finally, for U.S. index and industry ETFs, intraday 

volatility is significantly higher than overnight volatility. Remarkably, the volatility 

pattern matches the pattern in average option returns! Overall, the variation in day-night 

option returns across ETFs is an important stylized fact that helps us distinguish between 

alternative explanations. 

Finally, we compare day and night return distributions for the underlying. Panels 

A and B of Table 2 report return distributions for S&P500 index and individual stocks 

respectively. Average S&P index returns are close to zero during our sample period: 

                                                 
13

 We also find evidence of the day-night effect in VIX futures. In Table A.10, we show that intraday 

returns for front-month VIX futures are close to zero (0.01%, statistically insignificant) while overnight 

returns are significantly negative (-0.15%). As VIX futures are traded around the clock but are highly 

illiquid outside of normal trading hours, we use the same open and close times as for index options to 

compute VIX futures returns. All futures with maturities up to six months have negative overnight returns 

and slightly positive (or zero) intraday returns. After launching in 2004, the market for VIX futures really 

took off only recently, which made futures prices volatile in the beginning of our sample. This may explain 

the relatively large standard errors. 
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0.008% for overnight period and -0.004% for intraday. That is, the difference is only one 

basis point and is not statistically significant. As for the higher moments, intraday period 

is only 6.5 hours (regular trading hours) but its total volatility is 1.5 times higher than for 

the longer overnight period. Similarly, return percentiles are more extreme for intraday 

returns. Excess kurtosis is similar for two return distributions while skewness is 

significantly more negative for intraday returns. Summary statistics for equity returns are 

similar to index returns except the magnitudes are more extreme. We first compute 

statistics for each stock and then report the cross-stock average. For an average stock, 

overnight returns are higher than intraday by 0.06%. Day and night volatilities are 3.1% 

and 2.1% respectively. Skewness is positive, particularly overnight.  

 

4.2. Conditional Properties of Option Returns 

In this section, we show how day-night option returns depend on option 

parameters. Overall, the day-night return asymmetry is observed for almost all option 

subsets that we considered. Table 1 shows that the return asymmetry becomes more 

pronounced as option moneyness decreases. E.g., OTM options have highest leverage 

and thus more extreme returns: 0.27% intraday and -1.74% overnight; while in-the-

money (ITM) options have little leverage/optionality with day and night returns of only 

0.07% and -0.22%. Delta-hedged call and put returns are similar because both produce a 

similar straddle position after delta-hedging. Finally, Panel B of Table 1 confirms these 

stylized facts for equity options, but the magnitudes are expectedly smaller.  

The return asymmetry declines with time-to-expiration; that is, short-term options 

have more extreme returns. Table A.4 in the Appendix shows that options with less than 

three weeks to expiration have average night and day returns of -2.6% and 0.7%, while 

returns for long-term options are close to zero. Returns for equity options show a similar 

pattern. Table 5 double-sorts options based on maturity and moneyness and shows that 

the day-night effect is more pronounced for short-term and more OTM options. ITM 

long-term options have both returns close to zero, while short-term OTM options have 

night returns of -5.3% and day returns 0.75%. Relatedly, we also explore how delta-

hedged index option returns depend on option Greeks. Table A.5 double-sorts options by 

normalized option Theta and Vega (option price sensitivity to time-to-expiration and 
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volatility respectively) from the BSM model. The option return asymmetry is decreasing 

in Theta and increasing in Vega, with the high-Vega low-Theta portfolio having day-

night returns of 0.4% and -2%. Day returns are positive and night returns are negative for 

all Vega-Theta portfolios. 

All moneyness and maturity categories have positive day and negative night 

returns. Thus, the day-night return asymmetry will be observed for any combination of 

options with positive weights. For example, call and puts can be combined into a 

synthetic variance swap, a key portfolio for studying the variance risk premium. Thus, 

according to this argument, the day-night effect will be also observed for variance swaps. 

Most of option return variation across maturity and moneyness is due to option 

leverage. In Table A.3, we report the deleveraged returns for S&P index options by 

moneyness and time-to-expiration. As expected, return signs are not affected but 

magnitudes decrease sharply after deleveraging. Average returns become comparable 

across time-to-expiration and are weakly decreasing in moneyness. Most t-statistics 

remain significant for both day and night deleveraged returns.  

To explore how option returns depend on market conditions, we sort trading days 

into portfolios based on market volatility, tail risk, option liquidity, interest rates, and 

investor sentiment. Consistent with visual evidence in Figure 2, Panel A of Table 6 shows 

that market conditions produce little variation in overnight returns. Night returns are 

slightly more negative when VIX is high, and interest rates and investor sentiment are 

low. Intraday returns on the other hand are extremely positive when volatility is high 

(0.97% per day) or option liquidity is low (0.57% per day). Interestingly, intraday returns 

also depend differently on the two measures of investor sentiment that we use. The 

returns are increasing in the AAII investor sentiment, which is based on a survey of how 

bullish investors are about the stock market, but are decreasing in the Baker and Wurgler 

(2006) sentiment.
14

 Interestingly, the BW sentiment is the only variable that produces 

significant high-low spread for both night and day returns (-0.62% and -0.54%). Next, we 

use two popular tail risk measures proposed by Kelly and Jiang (KJ, 2014), and Du and 

Kapadia (DK, 2012) to explore whether rare disasters or tail risk can explain the day-

                                                 
14

 Baker and Wurgler sentiment consists of six components including closed-end-fund discounts, market 

turnover, equity issuance, number of IPOs, and their first day return. Baker and Wurgler (2006) provide 

sentiment index data only until 2010 at the time of our analysis. 
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night effect. Panel B of Table 6 shows that systematic tail risk produces little variation in 

either day or night option returns.  

Finally, we show the day-night option returns asymmetry cannot be explained by 

S&P 500 index returns and VIX futures returns. Table A.6 estimates a regression of index 

option returns on VIX futures returns and index returns separately for day and night 

periods. First, delta-hedging works reasonably well as the coefficient for index returns is 

zero for intraday period and is relatively small for overnight. Second, intraday returns for 

options and VIX futures are highly correlated with t-statistics of 17. However, night 

returns are much less correlated as the coefficient is lower than for the intraday regression 

(0.66 vs. 0.92), and the t-statistics is “only” 5.6. Perhaps, the options and volatility 

futures markets are less integrated during overnight period. Importantly, volatility and 

market risk factors explain only a tiny portion of the day-night effect. Indeed, the 

intercept, which corresponds to alpha/abnormal returns, is 0.24% for the intraday case 

and is only slightly smaller than average intraday return of 0.28%. Overnight return 

decreases from -1.08% to -0.89% after controlling for market and volatility factors.  

 

4.3. Intraday Patterns in Option Order Flow 

In this section, we study how option investors trade intraday. To our knowledge, 

we are the first to study option order imbalances over intraday sub-periods. Following the 

literature, we compute order imbalance as the difference between the number of buyer- 

and seller-initiated trades divided by total number of trades; thus, it is between -100% (if 

all trades are sells) and 100% (if all trades are buys). It is widely believed that investors 

are generally buying put index options and writing covered calls (long stock, short OTM 

call) in equity options. We confirm this fact; however, the order flow is much more 

balanced than expected. Table 7 shows that average order imbalance for index puts (calls) 

is 3.2% (0.9%). That is, out of 1000 put trades only 516 are buyer-initiated and the 

remaining 484 are seller-initiated. Similarly, for equity options, call and put order 

imbalances are -5.5% and -1.7% respectively. Thus, call writing and protective put 

strategies do not seem to dominate option trading in the recent period.  

How do imbalances evolve over a trading day?  While equity option imbalances 

do not vary much across intraday sub-periods, index option imbalances do. In the 
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morning, investors tend to buy index puts (a 2% imbalance) with zero imbalance in index 

calls, but in the afternoon, they start buying more calls and puts. Imbalance for call 

options becomes positive (2%), and put imbalance increases to 5%.  

A 3% increase in put order imbalance from morning to the afternoon has several 

implications. First, this increase is consistent with positive intraday option returns; 

however, such small imbalance is unlikely to make enough price pressure to explain 

intraday returns. Furthermore, any anticipated order imbalances should be reflected in 

prices in advance. Second, this result rejects a popular hypothesis in the options literature 

that option investors trade aggressively around the close. We find that order flow is not 

that different around the close. Finally, increasingly positive imbalances are consistent 

with investors not being aware of the day-night option return effect. The day-night effect 

encourages volatility sellers (sell options and then delta-hedging them) to execute their 

trades in the afternoon rather than morning. Investors who sell options in the morning 

suffer from positive intraday returns and are not compensated for taking intraday 

volatility. Contrary to this prediction, option order imbalance is slightly more positive in 

the afternoon, i.e., investors buy more instead of selling. Thus, an average option investor 

does not take advantage of the day-night effect. This fact implies that option market-

makers do not lose money by posting biased option prices. 

Overall, we document several stylized facts about option order flow and relate 

them to potential explanations for the day-night effect, which we further discuss below.  

 

5 Potential Explanations 

So far, we have documented puzzling empirical facts about option returns, which 

is our main result. In this section, we try to explain them with a wide range of potential 

explanations including risk-based option pricing theories, financial frictions, and finally 

behavioral explanations. Although, most of these explanations are consistent with some 

of the facts, almost all of them struggle to replicate the day-night return asymmetry. 

However, we introduce a behavioral theory, the volatility seasonality bias that fits most 

empirical facts relatively well. This makes us focus on testing it. Overall, multiple 

explanations likely contribute to the day-night effect, but the volatility bias is by far the 

most promising.  

 



19 

 

5.1. Challenges for Rational Explanations 

In this section, we explore potential rational explanations for the day-night return 

asymmetry. Positive intraday option returns are particularly hard to reconcile, even zero 

returns would be puzzling. Also, the proposed theories should not only explain the day-

night return asymmetry but also its cross-asset variation. For most ETFs and individual 

stocks, option returns are positive intraday but for some the pattern is reversed with 

positive returns overnight.  

In conventional models, negative average option returns compensate investors for 

taking volatility and jump risks. The intuition is simple. A long delta-hedged position in a 

call or a put has a (convex) V-shaped payoff: it makes money if the underlying price 

deviates significantly from its current level. Thus, this option portfolio provides valuable 

insurance against market crashes and should earn negative excess returns (negative risk 

premium). Investors must be compensated for taking this risk. Numerous theoretical 

papers formally show this point. For these models to explain the day-night return 

asymmetry, we have to assume that option investors are averse to overnight 

volatility/jumps, but love intraday volatility so much, that they are willing to take the 

intraday risk for free or even pay for it. For example, imagine that investors hate jumps 

and love stochastic volatility, and maybe most jumps occur overnight, hence negative 

overnight returns, and the only risk intraday is stochastic volatility, but investors love it, 

hence positive intraday returns. Yet extending this example to explain the cross-asset 

variation in the day-night effect is a bit more challenging. Overall, if these theories 

indeed are responsible for the day-night effect, this has striking implications about option 

investors’ risk-aversion (i.e., risk loving). Several of our tests indirectly speak to this 

explanation. First, day and night option return distributions are similar (except of course 

for the mean), implying similar risk profiles for the two periods (Table 1). Second, 

overnight returns do not depend on the ex-ante jump measures (Panel B of Table 6). 

Third, the stochastic process for the underlying is not that different across the two sub-

periods (Table 2) and if anything the overnight period has lower stock return variance. 

Fourth, if night returns are risky, then a strategy of selling volatility overnight should 

occasionally lose money, yet it is profitable in every three-month period (Figure 2). 
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Peso problem can potentially explain many of asset pricing anomalies. The idea is 

that a given sample may be unrepresentative because it missed a “rare disaster,” which 

typically triggers large negative stock returns (e.g., a war). Peso problem can potentially 

explain why night returns are so negative; however, missing a rare disaster would worsen 

the intraday return puzzle. A disaster triggers extreme returns in the underlying, that 

translate into large positive returns for a delta-hedged option portfolio. Overall, peso 

problem implies that the “true” average return is even more positive than our estimate. 

Also, if peso problem is important, night and day returns should depend on the ex-ante 

disaster likelihood as captured by the tail risk measures, but they do not depend in the 

data (Panel B of Table 6). It’s also not clear how peso problem can fit the cross-asset 

patterns. We also want to mention a “reverse” peso problem. Maybe our sample contains 

too many rare disasters. However, our main results hold even after excluding the 

financial crisis. Overall, peso problem is useful for explaining why option returns are so 

negative over longer horizons, but it struggles to explain the day-night asymmetry. 

We next consider several financial frictions that are particularly large during   

overnight period. For one thing, option market-makers (OMMs) cannot adjust their 

option positions at night because the market is closed. Relatedly, this period is also 

special because the underlying market is liquid intraday but is illiquid overnight. Thus, 

while OMMs can delta-hedge frequently and seamlessly during the trading day, they 

cannot adjust their hedges during overnight.
15

 Although return variance is larger intraday, 

volatility of an option portfolio can be substantially reduced intraday by frequent delta-

hedging (index futures). As a result, the night period has more residual volatility and is 

riskier in this sense. Therefore, option investors may require a larger premium to carry 

positions overnight. This natural theory may explain why night returns are more negative 

than day returns. Unfortunately, it struggles to explain the remaining facts. First, it 

predicts that intraday returns should be also negative (just less negative than night 

returns). Second, night returns should be more negative when volatility is high (high 

VIX) as the overnight risk is proportional to OMM’s risk-aversion, position size, and 

volatility. But night returns depend little on volatility (Table 6). Finally, as after-hours 

                                                 
15

 For example, Figlewski (1989) shows that even with frequent delta-hedging the residual standard 

deviation that remained unhedged is large. Thus, even small transaction costs make the market incomplete. 
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trading in index futures became more liquid in recent year, adjusting delta-hedges 

became easier overnight, and thus night returns should be less negative in recent years, 

but they didn’t change (Table 4). Overall, OMMs certainly cannot properly hedge 

overnight and thus are exposed to significant overnight jump risk. This friction can 

potentially explain why night returns are so negative; however, it has less success 

explaining the day-night asymmetry.  

Overnight period is also special because funding and margin costs are usually 

incurred overnight (and thus are small intraday). These large overnight costs imply that 

the day-night effect should be more pronounced when interest rates are high. However, 

night returns are slightly more negative when interest rates are low (Table 6). Also, such 

costs implied that intraday option returns should be similarly positive for all securities 

and thus cannot explain the cross-asset variation in the day-night effect.  

Branger and Schlag (2008) formalize several concerns about option returns that 

are relevant for our results. First, they argue that option pricing models and thus option 

deltas are often misspecified. This is certainly true in practice, even practitioners cannot 

agree on whether deltas should be greater or smaller than deltas from the BSM model. 

Thus, “delta-hedged” option portfolios may have residual delta exposure. If this residual 

delta is positive, and the positive equity risk premium exceeds the negative variance 

premium, then intraday option returns can be positive on average. If most of the equity 

risk premium occurs overnight, this fact may also contribute to option returns asymmetry. 

Branger and Schlag also introduce the “discretization bias”. Surprisingly, the average 

delta-hedged returns are slightly positive even in the BSM world with unbiased deltas. 

They show that the discretization error in option returns is high then the equity risk 

premium and option gamma are high, and the delta-hedging frequency is low. This 

explanation is one of the few that naturally produces positive option returns. We conduct 

several tests to explore the implications of these two hypotheses. First, both day and night 

option returns stay virtually unchanged after controlling for contemporaneous underlying 

returns (Table A.6). This regression is akin to accounting for “empirical” deltas and 

eliminates any obvious delta biases. Second, average intraday returns depend little on 

delta-hedging frequency (Figure A.2). More frequent delta-hedging decreases the 

discretization error. If this error is the primary driver of the positive intraday returns, then 
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the returns should be sensitive to the hedging frequency, but they are not. Third, Branger 

and Schlag use pretty extreme parameter values such as the equity premium of 20%, 

volatility of 4%, and weekly delta-hedging. In untabulated results, we simulate the BSM 

model with parameters that match our historical data and found that the discretization 

error is small compared to intraday returns. Fourth, the discretization error would make 

both day and night returns more positive. Thus, this error alone cannot explain the return 

asymmetry, and something else (perhaps the inability to hedge overnight) makes 

overnight returns so negative. Finally, we further address concerns about delta-hedging 

by confirming our main result for straddle and raw option returns. Overall, the 

discretization error and biased deltas are probably responsible for some of the intraday 

returns, and despite the above tests we cannot fully eliminate the possibility that a non-

linear interaction of these factors can lead to the observed return pattern. 

A related concern is that the day-night effect is somehow mechanical because, 

following the literature, we compute option returns from the quote midpoints. To address 

it, we show that the size of the day-night effect does not depend on the option bid-ask 

spread (Table 6) and alternative return specifications such as computing returns from 

only bid or only ask prices (Table A.9). We also compute returns using trade prices 

instead of the quote midpoints (Table A.8). Finally, the correlation between day and night 

returns is close to zero unlike a pronounced negative correlation typical for a mechanical 

case (e.g., if open or close prices are “special” compared to other intraday prices). 

If investors buy a lot of options, this price pressure can cause positive intraday 

returns by pushing option prices higher. And perhaps, night returns are so negative 

because part of the positive price pressure is reversed overnight. This price reversal 

implies a negative correlation between day and night returns, but the actual correlation is 

close to zero. However, one of our tests is consistent with the price pressure hypothesis. 

We find that investors on average buy index calls and puts, and even more so in the 

afternoon (Table 7). The order imbalance is relatively small though (3-5%) and is 

unlikely to significantly push prices. Also, order imbalance for equity options does not 

match positive intraday returns. Finally, option prices should reflect any anticipated order 

imbalances in advance. If OMMs expect positive order imbalances tomorrow, they will 
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raise prices today. Overall, price pressure may contribute to positive intraday returns but 

its effect seems relatively small.   

Although S&P 500 index options are some of the most important and actively 

traded options in the world, their trading costs are large. The effective bid-ask spread is 

more than 6% on average, and it decreased little over time.
16

 Although we tentatively 

show in Section 5.6 that arbitrageurs with good execution algorithms can potentially 

make after-costs profits (they of course can also provide liquidity with limit orders), 

selling volatility overnight is not profitable after costs for most investors. Investors can 

still reduce their trading costs by executing option buys in the morning and sells in the 

afternoon. Overall, large transaction costs can explain why arbitrageurs do not eliminate 

the day-night effect, but not why this anomaly exists in the first place. 

In summary, many of these theories have implications for negative overnight and 

long term option returns, but only few can produce positive intraday returns. The 

discretization bias and positive intraday imbalances potentially contribute to the intraday 

returns. Conventional jump and stochastic volatility theories are promising if we can 

understand why investors love taking intraday risk. Transaction costs explain why the 

effect is not arbitraged away. 

 

5.2. Behavioral Explanations 

Given that rational theories have limited success explaining positive intraday 

returns, we now turn to behavioral explanations. Even for them fitting the facts is not 

easy. For example, we first hypothesized that option investors may fail to continuously 

adjust time-to-expiration during the trading day and thus overstate option maturity by 

almost one day at the close. This hypothesis generates positive day and negative night 

returns but fails to match the cross-asset variation of the day-night effect. Luckily, these 

cross-sectional patterns hinted us at the volatility bias explanation. Option prices 

underreact to the day-night seasonality in the underlying volatility. 

We propose the “volatility seasonality bias,” option prices correctly reflect the 

total daily volatility in the underlying. However, they get wrong the split between 

intraday and overnight volatilities by ignoring the day-night volatility seasonality. The 

                                                 
16

 We compute effective spreads as twice the difference between trade price and the pre-trade quote 

midpoint, adjusted for trade sign and normalized by option price. 
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underlying volatility is much higher intraday than at night, which is perhaps the strongest 

known volatility seasonality. Thus, total volatility during the life of an option can be 

viewed as a sequence of high (intraday) and low (night) volatility periods stacked 

together. Option prices are proportional to the total return variance expected before 

expiration and thus should reflect this seasonality. Compared to the no-seasonality (equal 

volatility) case, option prices (and implied volatility) should be slightly higher at open, 

when high volatility periods outnumber lower volatility periods by one.  

It is more intuitive however to think about this phenomena in terms of option 

returns rather than prices. Option returns are proportional to the difference between 

realized and implied return variances. Implied volatility is usually set above the expected 

realized volatility, which leads to the negative average option returns. The failure to 

account for the volatility seasonality translates into option returns. Positive intraday 

returns indicate that option prices systematically understate intraday volatility, and 

similarly large negative night returns suggest that overnight volatility is overstated. 

Option close prices are too high and open prices are too low. Figure A.1 in the appendix 

illustrates how the volatility seasonality bias affects the relationship between implied and 

realized volatilities. 

Overall, the volatility bias fits the basic facts.  Day returns are positive and night 

returns are too negative because perhaps option prices underreact to the day-night 

volatility seasonality. In the next sections, we further show that an option pricing model 

with day-night volatility seasonality and underreaction produces plausible day-night 

option return magnitudes. We also test that the cross-asset variation in the return 

asymmetry is mostly due to the variation in the day-night volatility seasonality. These 

two tests convinced us that the volatility bias is a major contributor to the day-night 

return asymmetry. 

We also consider another plausible behavioral explanation – perhaps option 

market-makers only adjust time-to-maturity at open instead of continuously changing it 

during a day. That is, a 30-day option is assumed to remain exactly 30-day during the 

entire trading day, and becomes 29-day only at the next-day open. As option prices are 

increasing in time-to-expiration, this bias causes closing prices to be too high and thus 

makes option returns negative at night and positive intraday. Although this theory 
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produces the option return asymmetry, it fails on other dimensions. In untabulated results, 

we simulate a Heston economy with this time-to-maturity bias. In the simulations, if we 

match the overnight return magnitude with the data, intraday returns are too large. 

Furthermore, the time-to-maturity bias implies that overnight option returns should 

always be equally negative for all ETFs/stocks, which is not true in the data. Overall, 

even finding a behavioral theory for the day-night effect is difficult, which makes it even 

more remarkable how the volatility seasonality bias matches the stylized facts so well. 

 

5.3. Day and Night Volatility 

Before testing the volatility bias explanation, we want to explore its main 

ingredient, the day-night volatility seasonality. We explore the seasonality for individual 

stocks and S&P 500 index. Although it is well-known that volatility is higher intraday, 

surprisingly little is known about how much higher it is. Using five stocks between 1974 

and 1977, Oldfield and Rogalski (1980) find the day-night volatility ratio of 2.06. For 50 

stocks from Tokyo exchange, Amihud and Mendelson (1991) show that volatility is 

higher in trading compared to non-trading periods. Converting their estimates of 

overnight and daily return variances produces a day-night volatility ratio of 1.49. Stoll 

and Whaley (1990) find the volatility ratio of 2.3 for NYSE stocks during 1982 through 

1986. Surprisingly, more recent references are hard to find. These estimates are broadly 

consistent with what we find in our sample. 

To compute the day-night volatility ratio, we first compute night (close-to-open) 

and day (open-to-close) volatilities as standard volatility but with close-to-open and 

open-to-close returns. I.e., night volatility is an average of a square root of the sum of 

squared close-to-open returns over the previous 60 days. We do not annualize volatility 

and do not adjust for the day and night length differences. To make day and night 

volatilities comparable on the per-hour basis, intraday volatility can simply be multiplied 

by 1.64 ( √       ⁄  ) as night and day periods are 17.5 and 6.5 hours respectively. We 

then compute a simple ratio of the intraday and overnight volatilities.   

Figure 3 shows the two volatilities and their ratio for S&P500 index over our 

sample period. Both volatilities expectedly spike during the financial crisis and remain 

low otherwise. However, the volatility ratio is surprisingly stable even during the crisis. 
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The ratio slowly decreases from about two in 2004 to about one in 2013. The ratio of 1 

still means that per-hour volatility during the day is 1.6 times of overnight volatility. 

Most of the decease occurred during the late 2007 to 2009 period, then the stock liquidity 

improved substantially due to regulatory changes. Interestingly, the decreasing trend in 

total volatility that received so much public attention recently (as volatility is close to 

historical low now) is due to the decline in intraday rather than overnight volatility. We 

also explore the volatility ratio trends for individual stocks. Figure A.3 in the Appendix 

shows how distribution of the volatility ratio across stocks (quantiles and the mean) 

evolved over the sample period. Average volatility ratio declined from 2 to 1.7, which is 

much less than for the index. The distribution is quite symmetric with mean and median 

tracking each other closely. Top and bottom 10% percentiles have a volatility ratio of 2.7 

and 1.0 respectively and are persistent over time.  

The fact that the day-night volatility ratio does change over time is important. The 

volatility literature typically estimates realized volatility from intraday data and then 

annualizes it using an ad hoc day-night volatility ratio. We argue that the day-night 

volatility ratio should be estimated carefully, otherwise such volatility estimates may be 

substantially biased.  

Overall, the volatility ratio fluctuates in a relatively narrow range (e.g., from 1 to 

2 for the index), we use this range later to simulate day and night option returns for a grid 

of plausible volatility ratio values. We leave for future research to understand the trends 

in the volatility ratio. 

 

5.4. Cross-Sectional Tests of the Volatility Seasonality Bias 

The volatility seasonality bias can certainly match the sign of day-night option 

returns. We conduct two major empirical tests to further validate it. The next section 

shows that the bias can produce the return magnitudes observed in the data by simulating 

option returns in a model with the volatility bias. In this section, we explore cross-stock 

implications of the bias. Our main test is inspired by the anecdotal evidence from select 

ETFs in Section 4.1. The volatility bias implies that stocks with more pronounced day-

night volatility seasonality should have higher day-night asymmetry in option returns. 

Indeed according to the bias, option prices ignore that day and night volatilities are above 
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and below the overall average volatility (day + night). Thus, the more intraday volatility 

deviates from the overall average, the more positive intraday option returns are, hence 

higher return asymmetry. The day-night volatility seasonality measures this volatility 

deviation and is computed as a simple ratio of intraday and night volatilities,   
  

      
         

 ⁄ , where intraday volatility,       
  (        

 ), is computed as standard 

deviation of intraday (night) underlying returns. This volatility ratio is around 1.8 for an 

average stock. 

We can apply this test to the S&P 500 index time-series or to the cross-section of 

optionable stocks. For S&P 500 index, it is hard to reliably estimate time-variation in 

average returns and volatility, and we lack statistical power. Therefore, stock cross-

section is a more natural testing ground with more than a thousand stocks on a typical 

day, and the volatility ratio ranging from one to three. Similar to the cross-section of 

stock return tests, we can implement this test with portfolio sorts or Fama-MacBeth 

regressions. The portfolio test sorts stocks into five portfolios based on their historical 

day-night volatility ratio, and then day and night option returns are computed as an 

average over all stocks in a given portfolio. As Table 9 shows, the day night volatility 

seasonality varies from one to three between bottom and top portfolios. The ratio of one 

still means that per-hour volatility during the day is 1.6 higher than during the night. As 

predicted by the volatility bias hypothesis, as the day-night volatility ratio increases, night 

returns decrease from -0.33% to -0.52%, and intraday returns increase from -0.03% to 

0.26%. The corresponding t-statistics for the difference between high and low portfolios 

are -11 and 18. These portfolio sorts confirm that the day-night volatility seasonality is a 

major driver of the day-night option return asymmetry.  

We prefer Fama-MacBeth regressions to portfolio sorts though, because they let 

us control for other factors affecting option returns. We estimate separate regressions for 

day and night returns as dependent variables and report the results in Table 8. The setup 

and interpretation are very similar to the cross-section of stock returns tests. If no controls 

are included, then the intercept equals to the mean of the dependent variable, which are 

the average day and night option returns in our case (0.1% and -0.4%). Next, we want to 

explain the negative night and positive day intercepts by adding explanatory variables to 

these two regressions. The day-night volatility ratio is our main explanatory variable. As 
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we add it to the intercept-only regressions, two notable changes occur: (i) the volatility 

ratio is indeed highly significant and (ii) the intercepts in day and night regressions 

become similarly negative. First, the coefficient for the volatility ratio is positive (0.17) in 

the intraday regression. That is, higher day-night volatility ratio corresponds to more 

positive intraday option returns, exactly as predicted by the volatility bias hypothesis. 

Similarly, the ratio has a negative coefficient (-0.14) in the overnight regression. That is, 

night returns are more negative if the volatility ratio is high. Both results are highly 

statistically significant (t-statistics of 14 and -12) even after accounting for 

autocorrelation in the volatility ratio. Overall, this result directly supports the volatility 

bias explanation. Interestingly, the coefficients match in magnitude but differ in sign 

(            ). The next section explains that it’s not a coincidence: this pattern is 

implied by the volatility bias if option prices completely ignore the day-night volatility 

seasonality. Second, the intercepts change from (0.1%, -0.4%) to (-0.15%, -0.26%) after 

controlling for the volatility ratio. This means that after accounting for the day-night 

volatility seasonality, the abnormal option returns in the day and night sub-periods are 

similarly negative (             ). Perhaps, OMMs do not charge additional 

return premium for the overnight period after controlling for the volatility bias, but a 

more detailed analysis is needed here. Finally, all these results generally hold after 

including control variables as shown in the last two columns of Table 8. 

Importantly, if there is an issue with the measurement of volatility, e.g., maybe 

the right measure is the per-hour volatility ratio or the variance ratio, this is not likely to 

affect this cross-asset analysis because the volatility ratio for every stocks is likely 

multiplied by the same number. The portfolio sort analysis is immune to any monotonic 

transformation of the volatility ratio.  

Overall, this cross-sectional test strongly supports the volatility seasonality bias 

explanation of the day-night effect. Specifically, the day-night volatility ratio negatively 

(positively) predicts subsequent night (intraday) option returns across stocks, exactly as 

implied by the volatility bias. The next section introduces a simple model that helps us 

interpret some of the coefficient relationships found above. 
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5.5.  Option Pricing Models with Volatility Seasonality 

In this section, we add the day-night volatility seasonality to the Black-Scholes-

Merton (BSM) and Heston models. In the model, we control for how much option prices 

underreact to the volatility seasonality and thus can study the volatility bias in controlled 

settings. Assuming realistic parameters, these models produce not only the signs but also 

the magnitudes of the day-night option returns. This calibration exercise also implies that 

option prices not simply underreact but completely ignore the day-night volatility 

seasonality. Furthermore, we confirm the cross-stock results from the previous section as 

we find similar regression results in a simulated panel of option returns from the BSM 

model. It is also reassuring that both models produce similar results. 

Let us briefly summarize the setup. We put implementation details in Sections 

A.3 and A.4 in the Appendix because the volatility seasonality can be easily added to 

standard option models. Our methodological contribution is modest, simulation results 

are the interesting part. First, we take standard BSM and Heston models and adjust the 

volatility process for the underlying to add the day-night seasonality. For the BSM 

model, this simply means that day and night volatilities are set to constants such that 

           . For the Heston model, instantaneous spot variance is multiplied by a 

constant scaling factor, such that            . Microstructure literature indeed shows 

that volatility jumps around open and close validating this assumption. Obviously, these 

models operate with instantaneous (per second) volatilities, but these parameters can be 

easily set to match the target day-night volatility ratios, which we do not adjust for the 

difference in day-night length to compare them with results from the previous sections. 

We set implied volatility in the BSM model higher than realized volatility to generate the 

variance risk-premium. Second, we solve for option prices using a simple closed-form 

formula for the BSM model and Monte-Carlo simulations for the Heston model. So far, 

we assumed that OMMs, who price options, know the true day-night volatility ratio. 

What if they don’t? What if they underreact to the volatility seasonality or even 

completely ignore it? We model this so that option prices reflect total volatility correctly 

but use the “wrong” day-to-night volatility ratio. We simulate the underlying with true 

volatility ratio, λ (     ⁄       ), but compute option prices using OMM’s beliefs 

about volatility ratio,      In two special cases, OMMs can have rational beliefs if 
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     , or they can completely ignore the day-night volatility and assume the same per-

hour volatility during day and night if          √       ⁄ , where trading day is 6.5 

hours. We then compute option returns similarly to actual option data as described in 

Section 3. That is, we keep the same return methodology but now control the price 

generating process.  

We set model parameters to match historical data and Broadie et al. (2007).  We 

summarize them in Table 10. Keeping other parameters fixed, we simulate the model for 

different degrees of the day-night volatility ratio    and underreaction to the volatility 

seasonality    .   is set to (1, 1.5, 2, or 2.5) to match the plausible range of day-night 

ratios for S&P500 index in Figure 3. OMM’s beliefs about the volatility ratio     take the 

same values (1, 1.5, 2, or 2.5) and also           which is the “totally ignore the 

seasonality” case. Importantly, these parameters affect the split between intraday and 

night volatilities but not the daily total. Thus, the choice of  (     ) affects average day 

and night option returns individually but not their sum, which is -0.7% per day and 

matches the numbers in Figure 1. 

Two main results emerge in the simulations. Frist, the models are able to replicate 

day-night return magnitudes in the data if option prices completely ignore the day-night 

volatility seasonality. Second, day-night option returns depend primarily on OMM’s 

perceived volatility ratio    , and much less on the actual volatility ratio    

Figure 4 shows how average day and night option returns for the BSM model 

depend on (     ). Consider            , the average day-night volatility ratio in 

the data. If OMMs have rational believes      , then both day and night option returns 

are negative (-0.50% and -0.22%). As the perceived volatility ratio     decreases, and 

thus the volatility underreaction increases, the asymmetry between day-night option 

returns increases too. That is, night returns become more negative, and intraday returns - 

less negative.  In the extreme “full bias” case, then OMMs completely ignore the day-

night volatility seasonality (       ), intraday returns become positive 0.10%, and 

overnight returns are -0.84%.  These simulated returns are remarkably close to the option 

returns observed in the data (-1.04% and 0.28% in Table 1)! The return pattern is similar 

for other plausible volatility ratios    Returns are generally negative, but for the “full 

bias” case intraday returns become slightly positive (ranging from -0.04% for     to 
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0.23% for       ). Overnight returns vary from -0.70% for     to -0.96% for 

     . Thus, the return results are not particularly sensitive to the true volatility ratio  , 

and are depend mostly on    that OMMs use to price options.  

Figure 5 shows results for the Heston model, which is a more realistic way to 

introduce the negative variance risk premium. The results are similar to the BSM model 

except that intraday returns are less negative on average. For example, if the volatility 

ratio is        and option prices ignore the volatility seasonality, then night and day 

returns are -1.05% and 0.45%, again remarkably close to the historical returns. Returns 

depend to the volatility ratio   but are not too sensitive. As the ratio increases from one to 

two, day and night returns change from 0.16% to 0.57% and from -0.79% to -1.21%, for 

the full bias case. That is, intraday returns are slightly positive for all    

This model also predicts that, if option prices underreact to the volatility 

seasonality, the correlation between day and night option returns must be close to zero, 

which we confirm in simulations. This correlation is indeed close zero in the data (0.02), 

which validates our hypotheses. 

The BSM model can be also used to simulate the cross-sectional implications of 

the volatility bias (Heston model is too computationally expensive here). These 

simulations help interpret our cross-stock results in Table 8; in particular, (i) stocks with 

higher day-night volatility seasonality have more pronounced day-night option return 

asymmetry and  (ii) the remarkable coefficient patterns for the volatility ratio. Indeed, we 

show that these patterns are implied by the model with the volatility bias. We simulate a 

panel of option returns for a cross-section of a hundred stocks, each with its own 

volatility ratio,  . We assume the full volatility bias case and uniformly draw   from 

between one and three, which matches the range in actual data (see Table 9 and Figure 

A.3). In Table 11, we report results for the Fama-MacBeth cross-sectional regressions for 

simulated data. We find exactly the same patterns as in the regressions for actual data in 

Table 8. First, the intercept in the intraday return regression flips sign from positive 

(unconditional return) to negative after controlling for the volatility ratio. The negative 

conditional intercept reflects the true option risk premium embodied in the model, which 

is negative. T-statistics are large as we can simulate as much data as we want. Second, 

the volatility ratio positively (negatively) predicts intraday (overnight) returns. That is, 
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the day-night return asymmetry increases with the volatility ratio. The coefficients for the 

volatility ratio   in the day and night regressions have the same magnitude but opposite 

sign,     
       and       

       . These coefficients are remarkably close to the 

coefficients in the regression for historical data (  
       and   

       ). Finally, 

also matching the data, both day and night option returns become negative after 

controlling for the volatility ratio. 

Obviously, the BSM and Heston models are too simplistic to capture all the 

complexities of option prices and returns. However, it is reassuring that even these 

stylized models can replicate reasonably well the magnitudes of day and night option 

returns in the data with just the undereaction to the day-night volatility seasonality added 

to standard models. These results further support the volatility bias as the most promising 

explanation for the day-night return asymmetry.  

 

5.6. Trading Strategy 

Practitioners may wonder whether the day-night bias can be turned into a trading 

strategy by profiting from large overnight returns. The short answer is yes, but only for 

certain options and only for investors who are very careful about their trade execution 

(e.g., hedge funds specializing in both trading options and trade execution). The costs for 

an average investor are too high; however, he can still benefit from the day-night effect 

(i.e., reduce costs and risks) by executing their option sales in the afternoon instead of the 

morning. Importantly, marginal investors, who have low execution costs, not average 

investors, are responsible for arbitraging away such “good deals.”  

At first glance, the option trading costs are ridiculously large.
17

 For example, the 

effective bid-ask spread for S&P 500 index options is about 6% in our sample. Hardly 

any option trading strategy is profitable after accounting for these spreads. Do most 

investors pay such large spreads? No, Muravyev and Pearson (2016, MP henceforth) 

show that most investors time their trades and pay lower spreads. Trade timers pay as 

                                                 
17

 We focus on the bid-ask spread as it is typically much larger than other option costs such as hedging 

costs in the underlying (e.g., Figlewski, 1989), brokerage/exchange commissions, margin/funding costs, 

execution uncertainty, and price impact; however, obviously, these costs should be accounted for in a more 

thorough analysis. 
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much as one fourth of the effective bid-ask spread when taking liquidity. Of course, 

investors can also reduce costs by providing liquidity with limit orders. 

For the trading strategy, we focus on options on SPDR S&P 500 ETF (ticker 

SPY), the world’s most liquid ETF, that are a close substitute for S&P index options but 

incur much lower transaction costs. Next, we compute trading cost measures introduced 

by MP (2016). That is, using the option trade data, we compute the effective bid-ask 

spread adjusted for the fact that many investors time their trades to reduce transaction 

costs. Following MP (2015), each trade is assigned the likelihood of being initiated by an 

execution timing algorithm, which let us to compute trading costs for two investor types: 

execution algorithms (“algos,” who care about trading costs and time their trades) and 

everybody else (“non-algos,” an average investor).  

In Table 12, we compare overnight returns and trading costs for SPY options. 

Results are reported for two sub-periods – before and after the Penny Pilot reform that 

reduced the tick size for SPY options to one penny on September 28, 2007 (SPY options 

were launched in January 2005). An average overnight return for SPY options is -0.64% 

(an intraday return is 0.18%), and is identical before and after the Penny Pilot. However, 

trading costs decreased a lot after the tick size reduction. The costs for non-algos, which 

equal to the conventional effective bid-ask spread, decreased from 3.9% to 1.2%. Algo-

traders’ costs decreased from 0.66% to 0.05%. Thus, a hypothetical trading strategy that 

sells SPY options overnight and incurs transaction costs typical for an algo-trader breaks 

even in the pre-Pilot period (-0.01% = 0.65% - 0.66%), and is highly profitable in the 

post-Pilot period (0.6% per day) as the profits do not change while the costs decrease 

substantially. We use the transaction costs for algo-traders because they are the marginal 

investors in this high-cost market. Other investors’ costs are too high to profit from this 

strategy. Overall, option trading costs decreased after the Penny Pilot making the 

overnight strategy potentially profitable for algo-traders, but only for them. Of course, the 

debate about the after-cost profitability of the overnight strategy does not answer a more 

fundamental question about why this effect exists in the first place.  
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6 Conclusion 

In this paper, we document a striking pattern in average option returns. The 

returns are negative overnight but positive intraday. This result is robust to methodology 

choices and observed in different subsamples. We consider a number of potential 

explanations that help us understand option returns in general, but most of them struggle 

to explain positive intraday returns and the variation of the day-night option returns 

across stocks. The discretization bias and positive intraday imbalances potentially 

contribute to the intraday returns. Conventional jump and stochastic volatility theories are 

promising assuming investors love taking intraday risk. Obviously, transaction costs is a 

big factor for why the effect is not arbitraged away, they can’t explain though why the 

anomaly exists in the first place. The day-night volatility bias is the most promising 

explanation. Perhaps, option returns become positive intraday because option traders 

completely ignore the well-known fact that stock volatility is much higher intraday than 

overnight. We conduct several tests that support this hypothesis. 

These results improve our understanding of price formation in the options market 

but pose new challenges for future research. If option prices are indeed biased as the 

volatility bias implies, what does it mean? It‘s hard to imagine that OMMs (Citadel, 

Goldman Sachs), who are some of the most sophisticated investors, do not know about 

the day-night volatility seasonality. Volatility is obviously a major input to option pricing 

models, and these models can be easily adjusted to account for the volatility seasonality. 

Possibly, OMMs don’t have incentives to adjust their models until they start losing 

money due to the day-night effect, but other investors trade as if unaware of the day-night 

returns. This argument emphasizes the important role that arbitrageurs play in forcing 

improvements in pricing models. Another possibility is that OMMs use a relatively 

simple model for volatility forecasting that probably includes first-order effects (volatility 

clustering, mean-reversion, leverage effect, earnings announcements) but ignores less 

obvious stylized facts such as volatility seasonalities. We leave for future research to 

explore whether other volatility seasonalities are properly reflected in option prices.   
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Figure 1 Day and night average option returns 
 

Overnight (close-to-open) and intraday (open-to-close) average delta-hedged returns for S&P 500 

index options (Panel A) and equity options (Panel B). Returns are in percentage points per day; 

e.g., a -1.04% daily return for overnight index options. We also report 95% confidence intervals. 

Tables 1 and 2 complement this figure. 

 

Panel A S&P 500 Index Option Returns 
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 Figure 1 Panel B: Equity Option Returns 
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Figure 2 Profitability of two strategies that sell option volatility  
 

Three-month rolling cumulative returns for two trading strategies that sell S&P500 index 

volatility (i.e., sell delta-hedged options). The conventional strategy keeps the position for the 

entire day (thin-dashed-grey line) while the proposed strategy that sells volatility only during 

overnight period (thick-solid-orange line). An investor sells calls and puts that traded at least once 

on a given day and then delta-hedges the position in the index futures market. Typical returns of 

these strategies are 30% per three months before transaction costs. Option returns are computed 

using quote midpoints. 
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Figure 3 Day and night volatility for S&P 500 index 
 

The top panel shows overnight (close-to-open) and intraday (open-to-close) volatility over the 

sample period.  Overnight volatility is computed as an average of a square root of the sum of 

squared close-to-open returns over the previous 60 days. The bottom panel plots the ratio of the 

two volatilities. Note that the volatility is not annualized. Also, the ratio is not adjusted for the 

difference in length between intraday and overnight periods (to adjust multiple by 1.64). Figure 

A.3 in the appendix documents similar results for individual stocks.  
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Figure 4 Day and night option returns in the Black-Scholes-Merton model  

 

We study how day and night option returns depend on the day-night volatility bias in the BSM 

model. Model parameters are set to match the historical data. We simulate the model separately 

for different levels of the day-night volatility ratio (          ⁄              ), which cover 

range of plausible values in the data, and then compute average option returns. Each graph shows 

how night and day returns depend on the degree to which option prices underreact to the day-

night volatility seasonality. While the actual seasonality is              ⁄ , option prices are 

set assuming a different ratio         
        

  ⁄ , i.e., option investors have biased believes. In 

particular, Full Bias case means the option market maker completely ignores the volatility 

seasonality and treats:     
         

      . “No Bias” indicates cases then option prices are set 

using correct volatility ratio (i.e., unbiased beliefs). Also, the volatility ratio is not adjusted for the 

difference in length between intraday and overnight periods (to adjust multiple by 1.64). 
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Figure 5 Day and night option returns in the Heston model 

 

Similar to Figure 4, we study how day and night option returns depend on the day-night volatility 

bias in the Heston model. Model parameters are set to match the historical data. We simulate the 

model separately for different levels of the day-night volatility ratio (          ⁄          ), 

which cover range of plausible values in the data, and then compute average option returns. Each 

graph shows how day and night returns depend on the degree to which option prices underreact to 

the day-night volatility seasonality. While the actual seasonality is              ⁄ , option 

prices are set assuming a different ratio         
        

  ⁄ , i.e., option investors have biased 

believes. In particular, Full Bias case means the option market maker completely ignores the 

volatility seasonality and treats:     
         

      . “No Bias” indicates cases then option 

prices are set using correct volatility ratio (i.e., unbiased beliefs). Also, volatility the ratio is not 

adjusted for the difference in length between intraday and overnight periods (to adjust multiple by 

1.64). 

 

 



Table 1 Panel A   Day and night delta-hedged returns for S&P 500 index options 

We report statistics for average daily returns, including their mean, standard deviation and 1%, 50%, and 99% percentiles. On each day, we 

compute average return for all options in a given category (e.g. OTM calls) and then report average across days. Returns are in percentage points 

per day; e.g., a 0.28% daily return for index options intraday. “All Deltas” include options with absolute delta between 0.1 and 0.9. Options are 

delta-hedged at the beginning of each sub-period. 

 

    Intraday Returns, %   Overnight Returns, % 

  Moneyness  Mean 
Stand. 

Dev. 
1% 50% 99%   Mean 

Stand. 

Dev. 
1% 50% 99% 

             
All All Deltas 0.28 4.8 -8.70 -0.38 16.19 

 
-1.04 4.5 -9.70 -1.24 11.25 

 
0.1 <     < 0.25 0.27 8.0 -14.63 -0.78 28.81 

 
-1.74 6.2 -14.65 -2.03 18.20 

 
0.25 <     < 0.5 0.31 4.3 -7.94 -0.26 14.05 

 
-0.89 3.3 -8.05 -1.15 10.61 

 
0.5 <     < 0.75 0.15 2.0 -3.84 -0.07 6.76 

 
-0.53 1.8 -4.13 -0.69 5.35 

 
0.75 <     < 0.9 0.07 0.9 -1.68 -0.03 3.20 

 
-0.22 1.0 -2.38 -0.32 2.88 

             Puts All Deltas 0.24 4.6 -8.19 -0.35 15.97 
 

-0.90 4.1 -8.83 -1.09 12.22 

 
0.1 <     < 0.25 0.20 6.9 -12.01 -0.70 24.72 

 
-1.34 5.7 -11.28 -1.72 16.12 

 
0.25 <     < 0.5 0.23 3.7 -6.80 -0.25 11.98 

 
-0.83 3.1 -7.91 -0.88 8.89 

 
0.5 <     < 0.75 0.18 2.2 -4.33 -0.07 7.28 

 
-0.61 2.4 -7.05 -0.63 6.73 

 
0.75 <     < 0.9 0.14 1.3 -2.69 -0.01 4.20 

 
-0.22 1.8 -4.88 -0.21 5.67 

             Calls All Deltas 0.28 5.3 -9.97 -0.29 17.52 
 

-1.17 5.0 -11.05 -1.43 12.02 

 
0.1 <     < 0.25 0.46 10.9 -20.75 -0.72 36.30 

 
-2.23 8.5 -20.92 -2.85 25.56 

 
0.25 <     < 0.5 0.39 5.1 -8.85 -0.23 17.47 

 
-1.05 4.1 -9.73 -1.47 12.27 

 
0.5 <     < 0.75 0.14 2.0 -3.73 -0.05 6.52 

 
-0.50 2.1 -4.78 -0.71 6.14 

  0.75 <      < 0.9 0.08 1.0 -1.91 -0.02 3.29 
 

-0.21 1.3 -3.39 -0.35 4.02 
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Table 1 Panel B  Day and night equity option returns 

We report statistics for average daily returns, including their mean, standard deviation and 1%, 50%, and 99% percentiles. On each day, we 

compute average return for all options in a given category (e.g. OTM calls), then aggregate them across stocks. Summary statistics are reported for 

this aggregate equally weighted return (one number per day). Returns are in percentage points per day; e.g., a 0.10% daily return for equity options 

intraday. “All Deltas” include options with absolute delta between 0.1 and 0.9. Options are delta-hedged at the beginning of each sub-period. 

 

 

 

    Intraday Returns, %   Overnight Returns, % 

  Moneyness  Mean 
Stand. 

Dev. 
1% 50% 99%   Mean 

Stand. 

Dev. 
1% 50% 99% 

             
All All Deltas 0.10 1.3 -2.69 -0.05 4.66  -0.41 1.1 -2.89 -0.43 3.41 

 
0.1 <     < 0.25 0.05 2.5 -4.97 -0.18 8.84  -0.58 1.8 -4.96 -0.65 5.52 

 
0.25 <     < 0.5 0.17 1.8 -3.65 -0.02 6.45  -0.49 1.3 -3.58 -0.52 4.27 

 
0.5 <     < 0.75 0.16 1.0 -1.91 0.04 3.84  -0.31 0.8 -2.11 -0.33 2.80 

 
0.75 <     < 0.9 0.16 0.6 -0.84 0.07 2.04  -0.10 0.4 -0.92 -0.13 1.50 

             
Puts All Deltas 0.21 1.3 -2.40 0.09 4.81  -0.49 1.2 -3.14 -0.50 3.54 

 
0.1 <     < 0.25 0.23 2.3 -4.04 0.02 9.05  -0.54 1.7 -4.24 -0.59 4.72 

 
0.25 <     < 0.5 0.29 1.5 -2.79 0.12 6.19  -0.50 1.2 -3.34 -0.51 4.02 

 
0.5 <     < 0.75 0.27 1.0 -1.76 0.17 3.54  -0.33 0.9 -2.31 -0.39 3.25 

 
0.75 <     < 0.9 0.26 0.6 -0.92 0.19 2.20  -0.12 0.6 -1.38 -0.16 1.93 

             
Calls All Deltas 0.07 1.8 -4.11 -0.08 6.37  -0.40 1.3 -3.80 -0.38 3.92 

 
0.1 <     < 0.25 0.28 4.5 -9.89 -0.11 15.60  -0.53 2.8 -7.41 -0.69 9.35 

 
0.25 <     < 0.5 0.25 2.6 -5.39 0.02 8.93  -0.47 1.6 -4.68 -0.48 5.42 

 
0.5 <     < 0.75 0.09 1.3 -2.70 -0.03 4.64  -0.29 0.9 -2.48 -0.29 2.86 

  0.75 <      < 0.9 0.07 0.7 -1.34 0.02 2.42  -0.11 0.5 -1.13 -0.13 1.41 
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Table 2 Summary statistics for day and night returns for S&P500 index and individual stocks  

This table reports the returns properties of the underlying (S&P 500 index and individual stocks). Panel A uses implied S&P500 index level from 

option prices while Panel B uses S&P 500 index futures. Returns and variances are not annualized and not adjusted for the difference in length 

between intraday and overnight periods. 

 

Panel A. S&P500 index returns  

 

 
Mean Std. Dev. Skewness Ex. Kurt. 5% 50% 95% 

Intraday 0.00% 0.009 -0.264 14.375 -1.35% 0.05% 1.14% 

Overnight 0.01% 0.006 -0.055 18.970 -0.92% 0.03% 0.81% 

 

 

Panel B. Equity returns  

 

 

 
Mean Std. Dev. Skewness Ex. Kurt. 5% 50% 95% 

Intraday 0.00% 0.031 0.569 20.314 -4.25% -0.05% 4.35% 

Overnight 0.06% 0.021 1.616 61.836 -2.55% 0.02% 2.77% 
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Table 3 S&P index option returns during intraday sub-periods 

Each trading day is divided into five equally long sub-periods. Options are delta-hedged at the start of each sub-period. “Total” column for 

intraday returns reports the cumulative return over all intraday sub-periods. Returns are in percentage points per day; e.g., a 0.28% daily return for 

index options intraday. “Excl . Weekend” column reports overnight returns excluding weekends (Friday close to Monday open). Right panel 

reports t-statistics that are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. Table A.2 in the 

appendix reports similar results for the equity option returns. 

 

  
Return Average, % 

 
T-statistics 

  
Intraday Sub-period 

 
Overnight 

 
Intraday Sub-period 

 
Overnight 

  
1

st
 2

nd
 3

rd
 4

th
 5

th
 Total 

 
Total 

Excl. 

Week

-end 
 

1
st
 2

nd
 3

rd
 4

th
 5

th
 Total 

 
Total 

Excl. 

Week-

end 

                     All All Deltas -0.04 -0.02 -0.02 0.16 0.19 0.28 
 

-1.04 -0.80 
 

-0.8 -0.4 -0.6 4.3 3.7 2.6 
 

-12.0 -9.4 

 
0.1 <     < 0.25 -0.17 -0.06 -0.05 0.26 0.27 0.27 

 
-1.74 -1.40 

 
-2.0 -0.9 -1.0 4.2 3.3 1.6 

 
-14.1 -11.5 

 
0.25 <     < 0.5 -0.01 -0.02 0.00 0.15 0.21 0.31 

 
-0.89 -0.73 

 
-0.3 -0.5 0.2 4.4 3.8 3.2 

 
-12.9 -10.2 

 
0.5 <     < 0.75 0.00 -0.01 0.00 0.08 0.09 0.15 

 
-0.53 -0.44 

 
0.1 -0.7 -0.2 4.9 4.6 3.4 

 
-13.9 -11.8 

 
0.75 <     < 0.9 -0.01 0.01 -0.01 0.02 0.05 0.07 

 
-0.22 -0.20 

 
-0.8 1.3 -0.8 3.2 4.9 3.4 

 
-11.2 -9.9 

                     
Puts All Deltas -0.06 -0.03 0.00 0.13 0.21 0.24 

 
-0.90 -0.72 

 
-1.3 -0.8 0.2 4.0 3.6 2.3 

 
-10.5 -9.1 

 
0.1 <     < 0.25 -0.21 -0.06 0.00 0.21 0.25 0.20 

 
-1.34 -1.11 

 
-3.0 -1.1 0.0 3.9 3.4 1.3 

 
-11.3 -10.8 

 
0.25 <     < 0.5 -0.01 -0.02 0.01 0.11 0.17 0.23 

 
-0.83 -0.67 

 
-0.2 -0.7 0.4 3.7 3.6 2.9 

 
-13.0 -11.3 

 
0.5 <     < 0.75 0.02 -0.01 -0.01 0.09 0.11 0.18 

 
-0.61 -0.48 

 
0.9 -0.5 -0.8 4.6 4.7 3.8 

 
-13.3 -10.5 

 
0.75 <     < 0.9 0.02 0.02 -0.02 0.04 0.07 0.14 

 
-0.22 -0.16 

 
1.2 1.8 -1.6 3.3 4.8 5.0 

 
-6.5 -4.4 

                     
Calls All Deltas -0.03 -0.01 -0.04 0.16 0.21 0.28 

 
-1.17 -0.95 

 
-0.5 -0.3 -1.1 4.0 3.5 2.4 

 
-12.6 -9.9 

 
0.1 <     < 0.25 -0.08 -0.04 -0.10 0.38 0.31 0.46 

 
-2.23 -1.85 

 
-0.7 -0.5 -1.4 4.2 2.7 2.0 

 
-13.4 -10.5 

 
0.25 <     < 0.5 -0.01 0.00 0.00 0.19 0.22 0.39 

 
-1.05 -0.89 

 
-0.1 -0.1 0.0 4.6 3.9 3.5 

 
-12.7 -10.0 

 
0.5 <     < 0.75 0.00 0.00 0.01 0.08 0.09 0.14 

 
-0.50 -0.44 

 
0.0 -0.2 0.5 4.7 4.3 3.3 

 
-12.4 -10.4 

 
0.75 <      < 0.9 -0.01 0.01 0.01 0.03 0.04 0.08 

 
-0.21 -0.19 

 
-0.7 1.1 1.0 2.9 3.3 3.4 

 
-8.2 -6.8 
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Table 4 Day and night S&P 500 index option returns by year 

 

Returns are in percentage points per day; e.g., “0.11” means 0.11% daily return. Intraday period is divided into five equally long sub-periods. The 

t-statistics (right panel) are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

  Average Returns, %     T-statistics 

Year Intraday Sub-period Night Diff. 
 

Day Night Diff. 

  1
st
 2

nd
 3

rd
 4

th
 5

th
 Total Total 

Day - 

Night 
  Total Total 

Day - 

Night 

2004 -0.29 -0.06 -0.07 0.08 0.21 -0.13 -1.1 0.97 
 

-0.6 -13.7 4.4 

2005 -0.16 -0.08 -0.06 0.15 0.22 0.08 -1.13 1.20 
 

0.4 -12.6 5.6 

2006 -0.03 -0.03 0.1 0.04 0.11 0.2 -0.98 1.15 
 

0.9 -12.3 4.7 

2007 -0.22 -0.16 0.18 0.33 0.32 0.48 -0.78 1.38 
 

1.6 -3.5 4.0 

2008 -0.1 0.27 0.17 0.4 0.92 1.59 -0.77 1.51 
 

2.5 -1.3 2.8 

2009 0.05 0.02 -0.1 -0.15 0.07 -0.11 -1.13 0.99 
 

-0.5 -6.9 3.2 

2010 0.00 -0.11 -0.12 0.13 0.06 -0.05 -1.07 0.92 
 

-0.2 -4.8 2.4 

2011 0.03 0.15 -0.06 0.24 0.15 0.51 -1.07 1.52 
 

1.5 -3.8 3.3 

2012 0.16 -0.11 -0.2 0.16 -0.23 -0.21 -1.12 0.89 
 

-0.8 -4.6 2.6 

2013 0.57 -0.11 -0.03 0.16 -0.05 0.6 -1.66 2.23   0.9 -4.4 2.5 
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Table 5 S&P 500 index option returns double-sorted by moneyness and time-to-expiration 

Moneyness is measured as absolute option delta. Maturity is measured as the number of trading days before option expiration. Returns are in 

percentage points per day; e.g., a 0.73% daily return for short-term index options intraday. The t-statistics (right panel) are computed using the 

Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

 

 

Double-sorted by 

Moneyness (   ) and 

Maturity (Days) 

Average Returns, % 
 

T-statistics 

4-15 16-53 54-118 119-252 253+ 
 

4-15 16-53 54-118 119-252 253+ 

Intraday: 
           

All Deltas 0.73 0.29 0.16 0.16 0.21 
 

3.1 2.4 1.8 2.6 3.1 

0.1 <     < 0.25 0.75 0.38 0.14 0.16 0.18 
 

1.7 1.9 1.0 1.7 2.1 

0.25 <     < 0.5 0.91 0.27 0.12 0.17 0.16 
 

3.5 2.6 1.8 3.4 3.4 

0.5 <     < 0.75 0.36 0.17 0.09 0.10 0.10 
 

3.3 3.3 2.4 3.2 2.4 

0.75 <      < 0.9 0.16 0.06 0.03 0.06 0.04 
 

3.6 2.6 1.4 2.5 0.8 

Overnight: 
           

All Deltas -2.62 -1.00 -0.47 -0.29 -0.22 
 

-15.6 -12.1 -8.7 -8.4 -6.5 

0.1 <     < 0.25 -5.36 -1.68 -0.72 -0.44 -0.28 
 

-16.3 -13.5 -9.3 -8.5 -5.5 

0.25 <     < 0.5 -2.81 -0.90 -0.43 -0.30 -0.22 
 

-15.2 -12.7 -10.7 -10.4 -8.1 

0.5 <     < 0.75 -1.32 -0.48 -0.25 -0.16 -0.12 
 

-15.3 -13.6 -9.7 -4.9 -3.7 

0.75 <      < 0.9 -0.37 -0.17 -0.07 0.03 -0.07 
 

-9.0 -8.9 -3.0 0.4 -1.3 
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Table 6 Panel A Portfolio sorts for S&P 500 index option returns 

Time series of S&P index option returns for overnight and intraday periods are sorted into four equally weighted portfolios.  

Option liquidity is measured as the option effective bid-ask spread. The AAII Investor Sentiment Survey measures the percentage of individual 

investors who are bullish, bearish, and neutral on the stock market. “BW Sentiment” is Baker and Wurgler (2006) index of investor sentiment. 

Returns are in percentage points per day. The t-statistics are computed using the Newey-West (1987) adjustment for heteroskedasticity and 

autocorrelation. 

 

 

VIX 

Index 
Intraday Overnight Diff t-stat 

 
LIBOR  Intraday Overnight Diff t-stat 

 
TED 

Spread 
Intraday Overnight Diff t-stat 

Low, 1 -0.28 -0.86 0.58 4.9 
 

Low, 1 0.12 -1.26 1.38 6.3 
 

Low, 1 0.20 -1.26 1.46 6.8 

2 -0.02 -1.03 1.02 5.3 
 

2 0.05 -0.98 1.03 4.4 
 

2 0.01 -0.93 0.94 4.2 

3 0.08 -1.07 1.15 5.0 
 

3 0.25 -0.94 1.18 5.0 
 

3 0.17 -1.01 1.18 6.3 

High, 4 0.97 -1.14 2.12 6.9 
 

High, 4 0.33 -0.91 1.24 6.2 
 

High, 4 0.42 -0.93 1.34 4.9 

H - L -1.26 0.28 
   

H - L -0.21 -0.36 
   

H - L -0.22 -0.34 
  

t-stat -5.3 1.2 
   

t-stat -0.9 -2.2 
   

t-stat -0.8 -1.5 
  

                 
Option 

Liquidity 
Intraday Overnight Diff t-stat 

 
AAII 

Sentiment 
Intraday Overnight Diff t-stat 

 
BW 

Sentiment 
Intraday Overnight Diff t-stat 

Low, 1 -0.01 -1.05 1.05 6.0 
 

Low, 1 0.66 -1.13 1.79 6.7 
 

Low, 1 0.08 -1.23 1.30 6.6 

2 0.04 -1.04 1.08 6.5 
 

2 0.02 -1.04 1.06 4.8 
 

2 -0.27 -0.96 0.69 3.2 

3 0.15 -1.07 1.22 6.1 
 

3 0.20 -1.12 1.32 6.1 
 

3 0.21 -1.09 1.30 6.8 

High, 4 0.57 -0.94 1.51 4.8 
 

High, 4 -0.14 -0.82 0.69 3.9 
 

High, 4 0.70 -0.68 1.38 4.1 

H - L -0.58 -0.11 
   

H - L 0.80 -0.30 
   

H - L -0.62 -0.54 
  

t-stat -2.1 -0.5 
   

t-stat 3.4 -1.4 
   

t-stat -2.1 -2.1 
  

 

  



50 

 

Table 6 Panel B Portfolio sorts for S&P 500 index option returns based on tail risk measures 
 

Time series of S&P index option returns for overnight and intraday periods are sorted into four equally weighted portfolios based on measures of 

tail risk. KJ is the tail risk measure proposed by Kelly and Jiang (2014). DK is the jump tail risk measure introduced by Du and Kapadia (2012). 

Returns are in percentage points per day. The t-statistics are computed using the Newey-West (1987) adjustment for heteroskedasticity and 

autocorrelation. 

 

KJ 

Measure 
Intraday Overnight Diff t-stat 

 
DK 

Measure 
Intraday Overnight Diff t-stat 

Low, 1 -0.07 -1.13 1.06 5.4 
 

Low, 1 0.18 -0.91 1.09 6.5 

2 0.51 -0.75 1.26 4.9 
 

2 0.22 -1.02 1.23 6.0 

3 0.24 -1.00 1.24 5.8 
 

3 0.25 -0.91 1.16 4.5 

High, 4 0.07 -1.23 1.30 6.0 
 

High, 4 0.13 -1.10 1.24 4.2 

H - L 0.13 -0.11   
 

H - L -0.04 -0.19   

t-stat 0.6 -0.6   
 

t-stat -0.2 -0.8   
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Table 7 Intraday patterns in option order imbalance 

 

Order imbalance is computed as the difference between the number of buyer- and seller-initiated trades divided by the total number of trades. We 

report an average over all trading days for a given category (such as index puts). A trading day is divided into five equal sub-periods. For equity 

options, imbalance is equally-weighted across stocks on a given day. The t-statistics (right panel) are computed using the Newey-West (1987) 

adjustment for heteroskedasticity and autocorrelation. Order imbalances are in percentage points; e.g., investors on average purchase index puts 

with a daily imbalance of 3.2%. That is, out of 100 trades about 51.6 are initiated by buyers and 48.4 by sellers. Thus, order imbalances are quite 

balanced for all categories. 

 

 

 

 
Average Order Imbalance, % 

 
T-statistics 

 
1

st
 2

nd
 3

rd
 4

th
 5

th
 Total 

 
1

st
 2

nd
 3

rd
 4

th
 5

th
 Total 

S&P Options 
             

Puts 1.8 2.3 2.9 3.5 4.9 3.2 
 

6.0 7.2 8.6 11.3 17.4 16.1 

Calls 0.1 0.1 0.6 1.2 1.9 0.9 
 

0.4 0.3 1.7 3.6 6.7 4.5 

Equity Options 
             

Puts -1.2 -1.9 -1.7 -1.1 -0.6 -1.7 
 

-9.8 -14.3 -13.0 -7.8 -4.8 -14.1 

Calls -3.9 -5.3 -4.8 -4.7 -3.6 -5.5 
 

-30.3 -37.5 -36.4 -33.8 -28.6 -41.4 
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Table 8 Explaining the day-night option returns with the day-night volatility ratio 

In this table, we explore how day and night option returns vary across stocks depending on the day-night volatility ratio. The first two columns 

report separate Fama-MacBeth regressions for day and night option returns on just the intercept. Thus, the intercept coefficients match the day-

night return asymmetry documented in Table 1 Panel B (i.e., 0.1% and -0.4% per day and night periods respectively). Trying to explain these 

intercepts/returns, return regressions in the next two columns control for just the day-night volatility ratio. For the volatility ratio, we first compute 

intraday (overnight) volatility from open-to-close (close-to-open) stock returns from preceding 60 days, and then compute their ratio. The intercept 

coefficients become both negative and of similar magnitude. The last two columns add several controls including absolute stock return, option bid-

ask spread, option volume, option implied volatility, and volatility skew. Returns are in percentage points per day (e.g., 0.1 is 0.1% per day). T-

statistics (in brackets) are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. We also confirm that the 

absolute value of the volatility ratio             coefficients in the day and night regressions are not statistically different from each other (i.e., 

            ). 
  

 
                   

 
Day Night Day Night Day Night 

          0.1 -0.4 -0.15 -0.26 -0.06 -0.10 

 
(3.6) (-18.6) (-2.5) (-7.7) (-0.8) (-1.8) 

            
  

0.17 -0.14 0.18 -0.13 

   
(14.2) (-12.6) (14.1) (-9.1) 

           
    

9.6 7.2 

     
(22.6) (14.4) 

             
   

-0.1 -0.1 

     
(-1.3) (-0.4) 

                
-0.6 -1.4 

     
(-9.7) (-11.0) 

             
0.2 1.5 

     
(1.0) (6.7) 

               
0.0 0.0 

     
(-1.9) (3.0) 

       ( ) 0.0 0.0 0.3 0.2 2.2 1.4 
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Table 9 Option returns for portfolios sorted on the day-night volatility ratio 

In this table, we explore how day and night option returns vary across stocks depending on the day-night 

volatility ratio. We sort stocks into five portfolios based on the historical day-night volatility ration. For 

each portfolio, we report average volatility ratio, intraday and overnight option returns as well as the 

return difference with the corresponding t-statistics. For the volatility ratio, we first compute intraday 

(overnight) volatility from open-to-close (close-to-open) stock returns from preceding 60 days, and then 

compute their ratio. Also, the ratio is not adjusted for the difference in length between intraday and 

overnight periods (to adjust multiple by 1.64). Returns are in percentage points per day (e.g., -0.33 is -

0.33% per day). T-statistics (in brackets) are computed using the Newey-West (1987) adjustment for 

heteroskedasticity and autocorrelation.  

 

 
    

      
 

Option Return, % 

  
 

Intraday Overnight Diff. T-Stat 

Low, 1 1.0 -0.33 -0.03 -0.3 -5.8 

2 1.5 -0.43 0.09 -0.51 -8.7 

3 1.8 -0.44 0.14 -0.58 -9.8 

4 2.2 -0.47 0.19 -0.67 -11.3 

High, 5 3.0 -0.52 0.26 -0.78 -13.9 

High - Low 
 

-0.19 0.29 
  

T-Stat 
 

-11.2 18.4 
  

 

 

  



54 

 

Table 10 Parameter choices: data vs. model 

Panel A the BSM model. We adjust the standard BSM model to add the day-night volatility seasonality 

and report our main parameter choices here. The data moments are computed using sample of S&P500 

index from January 2004 to December 2013. In the model,   is the instantaneous return (annualized) of 

the underlying asset.    is the risk-free rate (annualized).   is the instantaneous volatility for the asset 

price process, scaled to daily level.     is the implied volatility used to price options. We choose       

to match the average daily delta-hedged option returns on S&P500 index, which is approximately -0.7%. 

For the day-night volatility ratio,  , or           ⁄ , we use a range of plausible values that spans 

historical variation in this ratio. 

 

 
Data Model 

 , annual 5.08% 5.08% 

 , annual 14.88% 14.88% 

  , annual 1.52% 1.52% 

   , annual - 21% 

 

Panel B the Heston model. The panel reports key parameters of the Heston model adjusted for the day-

night volatility seasonality.   is the instantaneous drift of the return process for the underlying.    is the 

risk-free rate. For the instantaneous stochastic variance process         is its mean-reverting speed,   is the 

long-run variance,   is the volatility of volatility.   is the price of volatility risk.   is the correlation 

between innovations in asset price and stochastic volatility.  

 

 
Data Model Source* 

  5.08% 5.08% 1 

   1.52% 1.52% 1 

  - 34.27 3 

  - 2.21% 1 

  - 0.28 2 

  - -20.16 3 

  - -0.37 2 

 

*: 1 – from the data. 2 – parameter estimation from Broadie et al. (2007). 3 – based on Broadie et al. 

(2007), we adjust parameters by amplifying with same multiples to get comparable magnitude in our 

benchmark case when       and         . 
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Table 11  Confirming cross-sectional tests for panel of simulated option returns 

This table reports Fama-MacBeth cross-sectional regressions on a panel of simulated option returns. 

These simulations confirm our two tests for the volatility seasonality bias. After controlling for the day-

night volatility seasonality, (i) the intercept becomes negative in both day and night regressions and (ii) 

the coefficients for the volatility ratio have the same absolute value but differ in sign     
         

 . 

We simulate option returns in the BSM model for a cross-section of “stocks” with the day-night volatility 

ratio ranging from 1 to 3, to match the 10% to 90% percentiles of the cross-sectional distribution in the 

data. We assume that option prices completely ignore the day-night volatility seasonality. Similar our 

approach in Table 8, the volatility ratio is computed in two steps. We first compute intraday (overnight) 

volatility from open-to-close (close-to-open) stock returns from preceding 60 days, and then compute 

their ratio. Panel A reports Fama-MacBeth regression of day and night option returns on the volatility 

ratio. T-statistics are reported in parentheses are large because we can simulate a large enough panel. The 

option return is reported in percentage points (e.g. -0.11%). Panel B confirms that the absolute value of 

the coefficients for the day-night volatility ratio are not statistically different.  
 

Panel A 

 

              , %                , % 

Constant 0.16 -0.11 -0.90 -0.63 

 

(15.3) (-20.1) (-277.1) (-75.9) 

             ⁄   0.13  -0.13 

 

 (54.1)  (-53.0) 

 

 

Panel B 

  :     
         

  

p-value: 0.82  

Reject or not? Cannot reject     
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Table 12 Trading strategy 

We compare overnight returns for SPY options with their trading costs. We follow Muravyev and Person 

(2015) in using the adjusted effective bid-ask spreads for two investor types. “Algo” denote option trades 

that are likely initiated by smart execution algorithms (“Non-Algo” are all trades excluding algo trades; 

their trading costs equal to the conventional effective bid-ask spread). “Combined” include all the trades, 

both algo and non-algo. We report results for two sub-periods – before and after the tick size for SPY 

options was reduced to a penny on September 28, 2007. The last column reports profits from a 

hypothetical trading strategy that sells and delta-hedges SPY options overnight and incurs transaction 

costs typical for an algo-trader.  

 

 

 Option 

Overnight 

Returns  

Trading Costs Profits 

after 

Costs for 

Algos 

  

Period Non-Algo Combined Algo 

Pre-Penny Pilot (< Sep2007) -0.65% 3.93% 2.25% 0.66% -0.01% 

Post-Penny Pilot (> Sep2007) -0.64% 1.24% 0.84% 0.05% 0.60% 

 

  



57 

 

Internet Appendix for “Why Do Option Returns Change 

Sign from Day to Night?” 

This Appendix reports several additional results for “Why Do Option Returns Change 

Sign from Day to Night?” Specifically, it includes: (a) several figures and tables that 

complement the main results, (b) the results for computing option returns using trade prices and 

for (c) straddle and unhedged option returns, (d) the details of the Black-Scholes-Merton (BSM) 

and Heston models with day-night volatility seasonality. 

 

A.1 Option Returns Using Trade Prices 

In this section, we show that our main result is robust to computing option returns using 

trade prices instead of the quote midpoints. Computing returns with the quote midpoints is a de 

facto standard for a good reason. Besides being supported by many microstructure models, the 

quote midpoint has nice empirical properties: it is intuitive, observed at every instance, and is not 

affected by the bid-ask spread bounce. In some markets, there is a concern about whether the bid 

and ask prices are tradable, but in the options market overwhelming majority of trades are 

executed within the bid-ask spread.
18

  

The advantage of using trade prices is that these are actual transactions, and thus there is 

less uncertainty about tradability. Unfortunately, trade prices are obviously only observed at the 

time of a trade. Thus, to estimate intraday option returns with trade prices, we have to limit our 

sample to option contracts that traded near both open and close on a given day. A similar 

criterion is used for overnight returns (trade around close of the previous day and open of the 

current day). This requirement obviously greatly reduces the sample size, as many options trade 

infrequently. Also, trade prices are noisy due to the bid-ask spread bounce, as buyer-initiated 

(seller) trades are typically executed above (below) the fair value.  

We first compare average trade prices with the quote midpoints, and then compare day 

and night option returns for the two approaches. Panel A of Table A.8 reports the dollar and 

relative differences between option trade prices and midpoints. For each trade, we compute the 

difference between the trade price and the pre-trade quote midpoint. We further normalize it by 

the quote midpoint to compute the relative difference. We do not account for the trade direction 

                                                 
18

 For equity options, most trades are executed either at the bid or the ask. 



58 

 

(like in the effective bid-ask spread) because we study the bias between two prices not 

transaction costs.  

Both differences are slightly positive meaning that trade prices are systematically higher 

than quote midpoints. This is to be expected because buyer-initiated trades outnumber sells for 

index options. The dollar difference is 0.63 cents on average and ranges from 0.24 cents in the 

morning to 0.99 cents in the afternoon (average option price is about seven dollars). Similarly, 

the relative difference is 0.09% and ranges from 0.07% to 0.12%. Almost by construction, the 

price difference tracks closely the patterns in order imbalance discussed in Section 4.3 and 

shown in Table 7. Order imbalance is positive for index options particularly in the afternoon. 

Simple ad hoc calculations show that the price difference is mostly driven by positive order 

imbalance. Multiplying a 3% order imbalance from Table 7 by 3% typical effective bid-ask half-

spread produces a 0.09% expected bias, which matches the price difference in Table A.8. Also, 

not the 0.05% difference in prices between morning and afternoon (0.12% minus 0.07%) is small 

compared to intraday option returns (0.3%).  Overall, the effect of buys and sells cancel each 

other, and the average trade price is relatively close to the quote midpoint.  

Of course, the most important test here is to compare not just prices but option returns. 

As both open and close trade-based prices are slightly higher than option quote midpoints, this 

small positive bias cancels out and produces similar option returns as the quote midpoints. We 

compute option returns using trades the same way as from the quotes except we only delta-hedge 

once intraday. The reason is that the sample of options that trade at every intraday sub-period 

cut-off is small, and the benefits of frequent delta-hedging are small.  

Panel B of Table A.8 shows a 0.44% average intraday return and a -2.26% night return 

with t-statistics of 2.8 and -17.8. If anything the return magnitudes are larger than for the 

baseline (quote midpoint) case (0.29% and -1.04%) because the subsample of traded options 

overweighs short-term options, as they are traded more frequently. We find similar magnitudes 

for both call and put options. As for the quote midpoint case, returns are more extreme for out-

of-the money options because of their higher leverage. Interestingly, overnight returns are close 

to zero for deep-in-the money options, perhaps because these options rarely trade. Long-term and 

ITM options trade rarely, while slightly OTM short-term options are the most liquid.  

Overall, our main result is robust to using option trade prices instead of the quote 

midpoints for computing option returns. However, it is important to acknowledge that both 
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approaches to computing option returns make an implicit assumption that the quote midpoint 

(trade price) is perhaps noisy but an unbiased estimate of the option fair value. The fair value can 

potentially be anywhere between the bid and ask prices, which could be quite far apart due to the 

large option bid-ask spreads. Our results in this section and other robustness tests significantly 

reduce but not completely eliminate this concern. 

 

A.2 Straddle and Unhedged Option Returns 

Our main return measure, the delta-hedged option returns, rely on the ability to hedge a 

call/put by trading in the underlying. This can raise several potential concerns. First, the 

timestamps could be desynchronized across the two markets leading to the put-call parity 

violations and other microstructure effects. Luckily, our data are synchronized up to few 

milliseconds as our data provider aggregates from both markets simultaneously. Second, trading 

in the underlying requires posting margin that may not be properly accounted in option return 

calculations. Finally, as the portfolio consists of options and the underlying, it could be the case 

that the underlying part rather than option position drives our return results.  

In this section, we study two option return measures that do not require hedging in the 

underlying to elevate these concerns. Raw returns require no delta-hedging, while straddle 

returns are hedged by combining calls with corresponding puts. Raw returns are equivalent to 

delta-hedged returns with option delta set to zero, so that they can be computed similar to delta-

hedged returns. Panel B of Table A.7 reports average raw option returns. The results look good.  

Day and night option returns are 0.22% and -0.93% per day respectively with t-statistics of 2.3 

and -12.1. Taking an average across calls (positive delta) and puts (negative delta)  to compute 

returns on a given day  provides implicit delta-hedging (the residual delta is small). As a result, 

average raw returns have similar magnitudes to the delta-hedged returns (in Table 3). Then we 

compute raw returns separately for calls and puts, the intraday returns are similar (0.3%), but 

calls have almost two times less negative returns overnight (-0.6% vs. -1.1%). This pattern is 

consistent with the equity risk premium being small intraday and large overnight (calls have 

positive delta and thus benefit from positive stock returns). 

We form a straddle portfolio by combining a call with as many corresponding puts (with 

same strike and expiration) as to make it delta-neutral. A typical straddle portfolio includes one 

call and one put (on average). We then compute straddle returns the same way as raw returns r 
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returns for a delta-hedged portfolio (i.e., no delta-hedging is done except for combining calls 

with puts). As reported in Panel A of Table A.7, straddle returns are similar to delta-hedged 

returns in Table 1 (discussed in Section 4). Day and night option returns are 0.18% and -0.85% 

per day respectively with t-statistics of 2.5 and -17.7. The day-night return asymmetry is 

observed for all moneyness categories. Finally, forming a straddle portfolio our way or not is not 

critical for our results because as for the raw returns there is implicit delta-hedging from 

averaging over call and put returns. 

Overall, results for raw and straddle returns together with other robustness tests in the 

paper suggest that our main results are robust to delta-hedging. 

 

A.3 BSM Model with Volatility Seasonality 

In this Section, we explain the details of how we add the day-night volatility seasonality 

and undereaction to the standard Black-Scholes-Merton model. We first explain the basic setup 

for the BSM model with the volatility seasonality. The underlying price,   , follows a geometric 

Brownian motion with deterministic time-varying volatility to introduce the day-night volatility 

seasonality. In particular, 

   

  
            

where    is a simple Brownian motion, and    is the annualized instantaneous volatility for the 

underlying. To introduce the volatility seasonality, we set         for intraday periods, and 

          for overnight periods, with            . Obviously, this is a minor adjustment to 

the classic BSM model, and option prices can be easily solved for. The European call and put 

option prices for the no dividend case are: 

         (  )       (   ) (  )  

          (   ) (   )     (   )  
where 

   
  (

  

 
)    (   )  

 
 

     
 (   )          

 (   )      

√    
 (   )          

 (   )     

  

          √    
 (   )          
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and  ( ) is the cumulative function of standard Gaussian distribution. (   )    is a sum of the 

day periods over    , in years. Similarly, (   )      is a sum of the night periods. These 

simple formulas collapse to the standard BSM prices if              . 

We choose model parameters to match key return moments of S&P 500 index and its 

options during our sample period (January 2004 to December 2013). In particular, we assume 

expected return of        , volatility          , risk-free rate         , and implied 

volatility        . We initially set the day-to-night volatility ratio      , but also consider 

other plausible values. Panel A of Table 10 summarizes parameter values. The implied volatility  

    is set higher than the actual volatility   to produce the -0.7% daily delta-hedged option 

return observed in the data. Higher     relative to   is a common way to introduce the variance 

risk premium in the BSM model.  

We want to discuss the relationship between instantaneous (per-hour) volatility   and the 

day-night volatility ratio    which is computed without accounting for the length difference 

between day and night. The following equations outline this relationship: 

   
    

  
      

  
   

  
    

     (A.3) 

  
    

      
√

    

       
 

    

      
√         

    

           
 

Where night and day periods are             and          hours respectively, and 

     and        are instantaneous (per hour) day and night volatilities. The first equation shows 

that total daily variance is the sum of intraday and overnight variances (adjusting for their 

duration). The second equation shows how to account for the difference in day-night length then 

computing our version of the day-night volatility ratio. Setting volatility   to match historical 

data and choosing the day-night volatility ratio (e.g.,      ), we can use the two equations 

about to solve for      and       . We simulate the model with 20-year long and 365-day in 

each year. The first 10% sample is treated as burn-in period and therefore, is discarded.  

 

A.4 Heston Model with Volatility Seasonality 

The Heston stochastic volatility model is a common way to introduce the negative 

variance risk premium. We add the volatility seasonality to the standard Heston framework. In 

particular, the underlying price follows, 
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     √     

   

where   
  is a Brownian motion with no drift.    is the instantaneous stochastic variance. The 

stochastic volatility process follows square-root mean-reverting process, 

     (    )    √     
   

where   is the mean-reverting speed,   is the long-run variance,   is the volatility of volatility. 

  
  is a standard Brownian motion with no drift. In addition,    

     
     , where     in 

order to reflect the leverage effect.  

In a risk-neutral world, the Heston model can be written as: 

   

  
     √     

         

      (    )          √     
     

where   is the price of volatility risk, and     indicates a negative variance risk premium.   
   

 

and   
   

 are Brownian motions under risk-neutral measure, where    
       

        and 

   . We set model parameters to match historical data and Broadie et al. (2007).  We 

summarize them in Table 10. 

To introduce volatility seasonality, we make following adjustments: in particular, we 

treat    as a hidden conditional variance process with adjustments to adapt to day and night 

variance. The seasonality-adjusted variance,    , is therefore, 

    {
  

   
       

  
     

         

  

i.e., the implementation is very similar to the BSM model. We scale instantaneous variance up 

during day and down during night.  

   
     

  
  

     
 

    

  
  

   
    (A.4) 

  √
  

   
    

  
     

      
 

 

    
√

    

       
 

And these equations can also be solve in reverse:       
  

   

  

     and        
  

    

 

    . Let’s 

make some examples: if    , then           and            . If       , then      

     and            .   
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Figure A.1 Hypothetical example of how the difference in overnight and intraday volatilities affects 

option returns. If day and night volatilities are equal, then option returns are similarly negative in both 

periods (“Vol. Ratio = 1”). However, a more common case is when total volatility is much higher 

intraday than overnight (“Vol. Ratio = 2”). If the implied volatility stays the same as in the previous case, 

it greatly overestimates overnight volatility and understates intraday volatility, which leads to large 

negative overnight option returns and somewhat positive intraday returns. Option returns are proportional 

to the difference between realized and implied volatilities. 
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Figure A.2 Intraday returns and delta-hedging frequency.  

 

We report how average intraday returns for S&P500 index options depend on the frequency of delta-

hedging (from one time per day to five times, which is our baseline case). 95% confidence intervals are 

also reported.  
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Figure A.3 Day (open-to-close) and night (close-to-open) volatility for individual stocks 
 

We first compute the day-night volatility ratio for each stock and then plot quantiles of its distribution on 

each day. We report 10%, 25%, 50%, 75%, 90% quantiles and the mean (which is close to the median). 

Overnight volatility is computed as an average of a square root of the sum of squared close-to-open 

returns over the previous 60 days. We then compute a simple ratio of the day and night volatilities. Note 

that he ratio is not adjusted for the difference in length between intraday and overnight periods (to adjust 

multiple by 1.64). 

 

 
 

 



Table A.1 Day and night option returns for major ETFs 

This table reports average stock volatility and option returns for overnight and intraday periods 

for selected ETFs. The ETFs were selected to represent major sectors and on option trading 

volume. Returns and volatilities are in percentage points per day. Stock volatility is measured as 

standard deviation of intraday or night stock returns (not annualized). The t-statistics in the last 

two columns are computed using the Newey-West (1987) adjustment for heteroskedasticity and 

autocorrelation.  

 

  

Stk. Volatility, % Opt. Ret., % T-Stat. Opt. Ret. 

Ticker Description Intraday Overnight Intraday Overnight Intraday Overnight 

SPY S&P 500 1.0 0.7 0.17 -0.49 3.1 -12.5 

QQQ NASDAQ 100 1.1 0.7 0.14 -0.39 3.0 -14.2 

IWM Russell 2000 1.4 0.8 0.15 -0.58 3.1 -18.2 

DIA Dow Jones 0.9 0.6 0.15 -0.61 2.4 -13.5 

 

International ETFs 

      EEM MSCI Emerg. Markets  1.5 1.5 -0.17 -0.20 -2.3 -4.2 

EFA MSCI EAFE (Europe) 1.1 1.2 -0.08 -0.05 -0.8 -0.7 

FXI China Large-Cap 1.4 1.8 -0.14 0.04 -1.9 0.6 

EWZ MSCI Brazil 1.9 1.7 -0.02 -0.17 -0.2 -2.9 

 

Industry ETFs 

      IBB Nasdaq Biotech. 1.2 0.8 0.23 -0.62 3.0 -7.6 

XHB S&P Homebuilders 2.2 1.4 0.09 -0.35 1.2 -8.3 

XLE Energy Sector 1.5 1.1 0.12 -0.30 2.0 -7.1 

XOP Oil&Gas Expl&Prod. 2.0 1.5 0.08 -0.32 0.6 -2.9 

XLF Financial Sector 1.8 1.2 0.06 -0.34 0.8 -8.2 

XLV Health Care Sector 0.8 0.7 0.00 -0.57 0.1 -6.7 

IYR DJ US Real Estate 2.0 1.0 0.10 -0.51 1.3 -9.2 

 

Commodities and IR 

      USO Oil 1.7 1.4 0.04 -0.43 0.5 -6.9 

GLD Gold 1.4 1.1 0.29 -0.70 2.6 -8.0 

TLT 20+Y Treasury Bond 0.6 0.6 -0.14 -0.30 -2.1 -5.5 

 



Table A.2 Equity option returns for intraday sub-periods 

Each trading day is divided into five equally long sub-periods. Options are delta-hedged at the start of each sub-period. “Total” column for 

intraday returns reports the cumulative return over all sub-periods. Returns are in percentage points per day; e.g., a 0.10% daily return for index 

options intraday.  “Excl . Weekend” column reports overnight returns excluding weekends (Friday close to Monday open). The t-statistics (right 

panel) are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

  
Return Average, % 

 
T-statistics 

  
Intraday Sub-period 

 
Overnight 

 
Intraday Sub-period 

 
Overnight 

  
1

st
 2

nd
 3

rd
 4

th
 5

th
 Total 

 
Total 

Excl. 

Week

-end 
 

1
st
 2

nd
 3

rd
 4

th
 5

th
 Total 

 
Total 

Excl. 

Week

-end 

                     All All Deltas 0.10 -0.02 -0.04 0.00 0.05 0.10 
 

-0.41 -0.29 
 

7.7 -2.0 -5.7 0.1 5.7 3.0 
 

-19.5 -13.5 

 
0.1 <     < 0.25 0.08 -0.05 -0.05 0.00 0.05 0.05 

 
-0.58 -0.44 

 
3.7 -2.7 -4.0 0.0 3.3 0.9 

 
-16.0 -11.9 

 
0.25 <     < 0.5 0.14 -0.02 -0.05 0.01 0.08 0.17 

 
-0.49 -0.35 

 
8.5 -1.8 -5.1 1.0 6.5 4.0 

 
-18.8 -13.2 

 
0.5 <     < 0.75 0.12 0.01 -0.02 0.01 0.05 0.16 

 
-0.31 -0.21 

 
10.8 0.8 -3.5 1.1 6.0 6.5 

 
-19.6 -13.4 

 
0.75 <     < 0.9 0.09 0.03 0.00 0.01 0.03 0.16 

 
-0.10 -0.06 

 
14.6 5.5 0.3 2.5 4.7 11.9 

 
-12.1 -6.9 

                     
Puts All Deltas 0.14 0.00 -0.01 0.03 0.05 0.21 

 
-0.49 -0.37 

 
10.0 0.0 -0.7 2.2 4.3 6.9 

 
-20.0 -14.6 

 
0.1 <     < 0.25 0.12 0.00 -0.01 0.04 0.07 0.23 

 
-0.54 -0.41 

 
5.5 0.0 -0.3 2.1 3.7 4.2 

 
-15.4 -11.5 

 
0.25 <     < 0.5 0.17 0.01 0.00 0.04 0.07 0.29 

 
-0.50 -0.37 

 
10.8 0.8 -0.4 3.0 5.3 7.7 

 
-19.1 -14.0 

 
0.5 <     < 0.75 0.17 0.03 0.00 0.03 0.04 0.27 

 
-0.33 -0.25 

 
15.4 2.9 0.5 3.9 5.1 11.7 

 
-17.5 -12.8 

 
0.75 <     < 0.9 0.14 0.04 0.02 0.03 0.03 0.26 

 
-0.12 -0.09 

 
20.5 7.5 4.0 4.8 4.4 19.5 

 
-10.2 -7.1 

                     
Calls All Deltas 0.10 -0.02 -0.06 -0.01 0.06 0.07 

 
-0.40 -0.27 

 
4.6 -1.2 -3.5 -0.5 3.0 1.6 

 
-16.4 -10.7 

 
0.1 <     < 0.25 0.22 -0.01 -0.07 0.01 0.10 0.28 

 
-0.53 -0.35 

 
4.9 -0.2 -2.3 0.4 2.6 2.8 

 
-9.6 -6.1 

 
0.25 <     < 0.5 0.18 -0.01 -0.05 0.02 0.11 0.25 

 
-0.47 -0.31 

 
6.6 -0.3 -2.8 0.8 4.5 4.2 

 
-14.6 -9.4 

 
0.5 <     < 0.75 0.10 0.00 -0.04 0.00 0.04 0.09 

 
-0.29 -0.20 

 
6.2 -0.3 -3.3 -0.3 3.2 3.1 

 
-17.6 -11.6 

 
0.75 <      < 0.9 0.07 0.01 -0.01 0.00 0.01 0.07 

 
-0.11 -0.07 

 
7.2 1.4 -2.1 -0.2 1.6 4.8 

 
-12.5 -7.3 
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Table A.3 Leverage-adjusted returns for S&P 500 index options by moneyness and time-to-expiration 

Option delta hedged returns are adjusted for implied leverage as described at the end of Section 3. Moneyness is measured as absolute option delta. 

Maturity is measured as trading days before expiration (~252 trading days in calendar year). Returns are in percentage points per day; e.g., 0.73% 

daily return for short-term index options intraday. The t-statistics (right panel) are computed using the Newey-West (1987) adjustment for 

heteroskedasticity and autocorrelation. 

 

 

Moneyness (   ) and 

Maturity (Days) 

Average Returns, % 
 

T-statistics 

4-15 16-53 54-118 119-252 253+ 
 

4-15 16-53 54-118 119-252 253+ 

Intraday: 
           

0.1 <     < 0.25 0.023 0.015 0.007 0.013 0.031 
 

2.0 1.6 0.8 1.3 2.4 

0.25 <     < 0.5 0.025 0.014 0.013 0.019 0.025 
 

3.3 2.4 2.2 2.8 2.9 

0.5 <     < 0.75 0.015 0.010 0.008 0.009 0.014 
 

3.5 2.7 2.0 2.0 2.3 

0.75 <      < 0.9 0.006 0.003 0.002 0.007 0.014 
 

2.5 1.5 0.9 1.6 2.0 

Overnight: 
           

0.1 <     < 0.25 -0.102 -0.057 -0.041 -0.042 -0.053 
 

-13.5 -9.4 -7.4 -7.3 -5.8 

0.25 <     < 0.5 -0.063 -0.042 -0.033 -0.033 -0.030 
 

-12.7 -10.2 -9.5 -8.9 -5.9 

0.5 <     < 0.75 -0.038 -0.026 -0.022 -0.022 -0.023 
 

-13.2 -11.5 -8.6 -7.4 -6.0 

0.75 <      < 0.9 -0.018 -0.015 -0.010 -0.006 -0.014 
 

-10.3 -9.9 -3.6 -1.3 -1.6 
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Table A.4 Option returns by time-to-expiration 

Maturity is measured as the number of trading days before expiration (~252 trading days in calendar year). Each trading day is divided into five 

equal sub-periods. “Total” column for intraday returns reports the cumulative sum of sub-period returns. Returns are in percentage points per day; 

e.g., a 0.73% daily return for short-term index options intraday. The t-statistics (right panel) are computed using the Newey-West (1987) 

adjustment for heteroskedasticity and autocorrelation. 

 

 

  Average Returns, %   T-statistics 

Maturity, 

Days 
Intraday Sub-period Overnight 

 
Intraday Overnight 

  1
st
 2

nd
 3

rd
 4

th
 5

th
 Total Total   1

st
 2

nd
 3

rd
 4

th
 5

th
 Total Total 

S&P Options 

4-15  0.01 0.01 -0.11 0.36 0.41 0.73 -2.62 

 

0.1 0.1 -1.7 4.4 3.4 3.1 -15.6 

16-53  -0.07 -0.05 -0.01 0.17 0.24 0.29 -1.00 

 

-1.1 -1.1 -0.2 4.2 4.1 2.4 -12.1 

54-118  -0.03 0.00 -0.01 0.10 0.10 0.16 -0.47 

 

-0.7 0.1 -0.5 3.5 2.1 1.8 -8.7 

119-252  0.02 0.02 0.01 0.07 0.08 0.16 -0.29 

 

0.5 0.9 0.5 2.9 2.4 2.6 -8.4 

253+  0.02 0.04 0.02 0.05 0.08 0.21 -0.22   0.6 1.5 0.8 2.0 2.3 3.1 -6.5 

Equity Options 

4-15  0.24 -0.04 -0.13 -0.04 0.00 0.04 -1.01 

 

7.9 -1.7 -7.8 -2.0 0.1 0.5 -18.5 

16-53  0.15 -0.02 -0.05 0.01 0.07 0.17 -0.51 

 

9.4 -1.5 -6.1 0.8 6.7 4.2 -20.4 

54-118  0.09 0.00 -0.01 0.02 0.07 0.18 -0.21 

 

7.4 0.3 -1.6 2.2 7.1 5.6 -11.5 

119-252  0.06 0.00 -0.01 0.02 0.06 0.13 -0.09 

 

5.0 0.2 -1.3 2.4 6.3 4.6 -5.8 

253+  0.07 0.02 0.00 0.01 0.03 0.13 -0.05   5.7 1.8 -0.2 1.3 3.1 4.8 -3.2 
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Table A.5 S&P 500 index option returns double-sorted by (normalized) option Theta and Vega 

This table reports intraday and overnight option returns of portfolios double sorted by option Theta and Vega. Theta is computed as     ⁄ , and 

Vega is computed as     ⁄ , where   is the option price. Theta and Vega of each option are measured at the start of each period. We then 

independently sort options into 4 groups by Theta and Vega, with 16 portfolios in total. Option returns are reported in percentage points per day. 

The t-statistics (right panel) are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

 

Double-sorted by  

Theta and Vega 

Average Returns, %   T-statistics 

                                                                            

Intraday: 
           

         0.25 0.39 0.35 0.41 0.38  2.4 2.9 2.1 2.0 2.2 

       0.17 0.20 0.14 0.15 0.15  3.4 2.7 1.4 1.2 1.7 

       0.07 0.14 0.11 0.17 0.11  1.9 2.5 1.6 1.7 2.0 

          0.03 0.09 0.14 0.15 0.09  1.4 2.5 2.8 1.5 2.4 

         
0.09 0.16 0.19 0.30 0.18  2.3 2.7 2.0 1.9 2.1 

Overnight: 
           

         -1.11 -1.70 -1.90 -2.04 -1.92  -13.2 -16.1 -17.0 -15.0 -16.2 

       -0.63 -0.72 -0.74 -0.74 -0.74  -15.1 -15.1 -12.4 -8.8 -12.8 

       -0.34 -0.36 -0.39 -0.37 -0.38  -13.6 -10.9 -9.2 -5.6 -10.5 

          -0.12 -0.17 -0.24 -0.30 -0.17  -6.6 -7.9 -8.0 -3.7 -7.7 

         
-0.46 -0.63 -0.96 -1.53 -0.92  -14.3 -10.9 -14.5 -14.5 -14.3 
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Table A.6 Volatility and equity risk cannot explain day-night option returns   
 

The table reports a time series regression of S&P 5000 delta-hedged index option returns on the index returns (Panel A) and VIX futures returns 

(Panel B). Index and VIX futures returns are computed over exactly the same period as option returns (e.g., open-to-close for intraday). We report 

results separately for intraday and overnight returns. Returns are in percentage points per day; e.g., the intercept of “0.18” means a 0.18% daily 

abnormal alpha. T-statistics are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

 

Panel A:                     

 
Intraday 

 
Overnight 

  a b   a b 

Coeff. 0.18 -2.07 
 

-0.99 -3.33 

T-stat. 2.1 -10.2   -18.4 -10.4 

 

 

Panel B:                                  

 
Intraday 

 
Overnight 

  a b c   a b c 

Coeff. 0.24 0.08 0.92 
 

-0.89 -1.63 0.66 

T-stat. 3.2 0.5 17.3   -12.8 -2.6 5.6 
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Table A.7 Unhedged returns and straddle returns for S&P 500 index options  

We explore the robustness of our main result by computing option returns in two alternative ways that do not require delta-hedging in the 

underlying. Panel A reports returns for a straddle portfolio that includes a call and as many corresponding puts (with the same strike and 

expiration) as to make it delta-neutral. On average, a straddle portfolio has one call and one put. Panel B reports raw option returns. I.e. returns are 

computed the same way as in the baseline case except no delta-hedging is done. Returns are in percentage points per day; e.g., “0.18” means a 

0.18% daily return. Intraday period is divided into five equally long sub-periods. The t-statistics (right panel) are computed using the Newey-West 

(1987) adjustment for heteroskedasticity and autocorrelation. 

 

Panel A Straddle returns 

 

  Return Average, %   T-statistics 

 
Intraday Sub-periods Overnight 

 
Intraday Sub-periods Overnight 

  1st 2nd 3rd 4th 5th Total Total   1st 2nd 3rd 4th 5th Total Total 

All Deltas -0.03 -0.02 -0.02 0.11 0.14 0.18 -0.85 
 

-0.9 -0.9 -0.8 4.3 3.9 2.5 -17.7 

0.1 <     < 0.25 0.03 -0.01 -0.04 0.15 0.13 0.26 -1.00 
 

0.5 -0.2 -1.2 3.9 2.8 2.7 -14.1 

0.25 <     < 0.5 0.03 0.00 -0.02 0.13 0.16 0.30 -0.91 
 

0.7 0.0 -0.7 4.7 4.0 3.9 -16.5 

0.5 <     < 0.75 -0.01 -0.02 0.00 0.10 0.11 0.19 -0.73 
 

-0.2 -0.8 -0.1 4.5 4.0 3.1 -17.0 

0.75 <      < 0.9 -0.10 -0.04 -0.02 0.12 0.13 0.09 -0.89   -3.0 -1.5 -0.8 4.3 3.8 1.2 -16.6 

 

 

Panel B Unhedged returns 

 

 Return Average, %   T-statistics  

 

Intraday Sub-periods Overnight 
 

Intraday Sub-periods Overnight 

  1st 2nd 3rd 4th 5th Total Total   1st 2nd 3rd 4th 5th Total Total 

All -0.04 -0.03 -0.02 0.14 0.16 0.22 -0.93 
 

-0.8 -0.8 -0.7 4.1 3.6 2.3 -12.1 

Puts 0.13 0.05 -0.10 0.15 0.00 0.31 -1.16 
 

0.8 0.4 -1.0 1.1 0.0 0.9 -4.6 

Calls -0.17 -0.07 0.07 0.18 0.32 0.39 -0.63   -1.2 -0.6 0.7 1.5 2.0 1.3 -3.1 
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Table A.8 Trade price as an alternative to the option quote midpoint 

 

Panel A compares trade price with a quote midpoint at the time of the trade for S&P500 index options. We split every day into five equally long 

sub-periods. For all option trades in a given sup-period and day we compute the average dollar difference (        ) and relative difference 

(        )       between trade price and quote midpoint. We then compute average across days. “0.0024” means 0.24 cents. Panel B reports 

day and night option returns computed from trade prices. For a set of options that trade around both open and close, we compute option delta 

hedged returns the same way as for the quote midpoints (i.e., delta-hedging, etc.). Returns are in percentage points per day; e.g., “0.44” means 

0.44% daily return. Intraday period is divided into five equally long sub-periods. The t-statistics (right panel) are computed using the Newey-West  

 

Panel A Average difference between option trade prices and the quote midpoints 

 

  Intraday Sub-period  

  1st 2nd 3rd 4th 5th Overall 

       

Dollar Difference, $ 0.0024 0.0032 0.0067 0.0088 0.0099 0.0063 

Relative Difference, % 0.07 0.07 0.08 0.10 0.12 0.09 

 
 

Panel B Day and night option returns computed from option trade prices 

 

    Return Average, %   T-statistics 

  
Intraday Overnight 

 
Intraday Overnight 

    Total Total 
Exclude 

Weekends 
  Total Total 

Exclude 

Weekends 

         All All Deltas 0.44 -2.26 -1.82 
 

2.8 -17.8 -14.0 

 
0.1 <     < 0.25 0.62 -3.84 -3.10 

 
2.3 -18.7 -14.7 

 
0.25 <     < 0.5 0.43 -1.98 -1.67 

 
3.2 -18.7 -15.5 

 
0.5 <     < 0.75 0.32 -0.69 -0.45 

 
4.0 -9.8 -6.1 

  0.75 <      < 0.9 0.27 -0.03 0.06   3.8 -0.3 0.4 

Puts All Deltas 0.40 -2.32 -1.96 
 

2.6 -17.2 -14.1 

Calls All Deltas 0.48 -2.41 -1.83   2.7 -14.7 -10.7 
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Table A.9 S&P 500 index option returns using alternative open and close option prices 

This table reports intraday and overnight option returns using alternative definitions of open and close option prices. In particular, we compute 

option returns using (i) 10 a.m. quote midpoint as open price, (ii) 4 p.m. as close price (index options close at 4:15p.m.), (iii) compute returns 

using only option bid prices and (iv) using only ask prices. Option returns are reported in percentage points per day. The t-statistics (right panel) 

are computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

 

 
Option Returns 

 T-statistics 

Option Price Intraday Overnight   Intraday Overnight 

Open at 10am 0.29% -1.17% 
 

3.4 -16.7 

Close at 4pm 0.20% -1.08% 
 

2.3 -16.1 

Option Bid 0.27% -1.08% 
 

2.9 -14.2 

Option Ask 0.22% -0.96%   2.4 -13.5 
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Table A.10 VIX futures returns  

Maturity is measured in trading days to expiration. First we compute average return for all futures in a given maturity bin on a given day and then 

compute average return across days. Returns are in percentage points per day; e.g., “0.11” means a 0.11% daily return. Intraday period is divided 

into five equally long sub-periods. Overnight period is from 4:15 pm to 9:30 am. to match the options results.  The t-statistics (right panel) are 

computed using the Newey-West (1987) adjustment for heteroskedasticity and autocorrelation. 

 

 

 

Maturity, 

days 

 

Return Average, % 
 

T-statistics 

Intraday Sub-periods Overnight  

 
Intraday Sub-periods Overnight 

1
st
 2

nd
 3

rd
 4

th
 5

th
 Total Total 

 
1

st
 2

nd
 3

rd
 4

th
 5

th
 Total Total 

Front-

month 
0.06 0.03 0.00 0.01 -0.10 0.01 -0.15  1.3 1.0 0.0 0.3 -2.7 0.1 -2.6 

                

4-15 0.11 -0.02 0.05 0.01 -0.10 0.04 -0.20 
 

1.7 -0.5 1.1 0.3 -1.9 0.4 -2.4 

16-53 0.03 0.03 -0.01 0.02 -0.01 0.06 -0.15 
 

0.8 1.0 -0.2 1.0 -0.5 1.0 -3.3 

54-118 0.00 0.03 0.01 0.03 0.02 0.08 -0.09 
 

-0.2 1.6 0.4 1.7 1.0 2.0 -2.7 

119-252 -0.05 0.00 0.00 0.02 0.05 0.02 0.04 
 

-2.1 0.3 0.0 1.4 1.6 0.5 0.9 

253+ -0.02 0.00 0.01 0.00 -0.01 -0.02 -0.03 
 

-1.6 -0.5 0.6 0.2 -1.2 -1.1 -1.9 
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Abstract 

Option order imbalances predict the cross-section of equity returns. We show that a large part of 

this predictability can be attributed as one-day announcement effect. Predictability of option 

order imbalances declines as forecasting horizon prolongs. In particular, we show that, the 

predictability of long-horizon predictability depends on the privacy of information. Public 

disclosure of option trades information has a crucial and negative impact on the predictability of 

option order imbalances. Furthermore, using identification algorithms, we can imprecisely 

distinguish between investor’s trades and option market maker’s trades and find that, the order 

imbalances from non-option market makers contain almost all information relevant for 

predicting future stock returns. Our results are consistent with theories implying that option 

trading volume reflects the actions of informed traders, and the action of disclosing this 

information can facilitate asset price movements. 
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1. Introduction 

The fundamental economic question of how information gets incorporated into asset 

prices has always been an interesting topic in information theory as well as of practical interest. 

This paper examines the informational content of option trading for future movements in 

underlying stock prices. In particular, using a unique external variation event, we examine the 

impact of information disclosure on the predictability of subsequent stock returns. We also 

examine what characteristics do option informed trades have in detail. Theoretically and 

practically, the embedded leverage feature of options allows capital-constrained investors, e.g. 

investors who cannot borrow from money market, to leverage up their positions in a very short 

period of time. 

Our focus on the informational role of derivatives, particularly equity options, comes at a 

time when derivatives play an increasingly important role in financial markets. Indeed, for the 

past several decades, the capital markets have experienced an impressive proliferation of 

derivative securities, ranging from equity options to fixed-income derivatives to, more recently, 

credit derivatives. The view that informed investors might choose to trade derivatives because of 

the higher leverage offered by such instruments has long been entertained by academics (e.g., 

Black (1975)) and can often be found in the popular press. A formal treatment of this issue is 

provided by Easley, O’Hara, and Srinivas (1998), who allow the participation of informed 

traders in the option market to be decided endogenously in an equilibrium framework. In their 

model, informed investors choose to trade in both the option and the stock market—in a “pooling 

equilibrium” - when the leverage implicit in options is large, when the liquidity in the stock 

market is low, or when the overall fraction of informed traders is high. 

Our main empirical methodology seek to address two main questions: first of all, we 

want to empirically quantify the impact of option-trading information disclosure on predictability 

of future stock returns in the cross-section. Second, and more interestingly, we want to identify 

the characteristics shared by option informed trades. In particular, we want to show that only 

order imbalance signals constructed from informed trades poor can predict future stock price 

movements. Option order imbalance construct from liquidity-trades pool add little value in 

predicting future stock returns. 

In Section 3, using a unique dataset from ISE, which contains trades initiation and 

direction information, as well as some client information, we empirically quantify the impact of 



 

 

option-trading information disclosure on the predictability of future stock returns. Specifically, 

we construct multiple order imbalance predictors, for example, the Pan and Poteshman (2006) 

put-call ratio, as well as open-buy call (or open-buy put) order imbalance measures, and 

empirically test their stock return predictability from 2005 to 2013. The empirical results show 

that, across over all sample, the predictability coefficient, beta, is statistically significant across 

the sample for one-day forecasting horizon. Only put-call ratio and open-buy put ratio can 

predict future stock returns at 1-week (skipping 1-day) and 1-month (skipping1-day) horizon. In 

particular, as illustrated in Figure 1 Panel A, we show that the stock return predictability of put-

call measure is the strongest for 1-day horizon (similar patterns are also true for other order 

imbalance predictors). Overall, we still find predictability of measure for 1-week and 1-month 

horizon: however, this predictability concentrates in the pre-disclosure period. Ever since ISE 

started to sell Open/Close profile to investors in late 2007, the middle to long horizon predictability 

has weakened. In Table 1 and Table 2, we formally test the effect of ISE disclosure by introducing 

dummy variables representing different sub-periods. Our findings are broadly consistent with what 

Pan and Poteshman (2006) mentioned in their paper: only private option volume signal predict future 

stock returns. Under our setting, the ISE disclosure provides us with a perfect experiment scenario to 

study how option volume predicts future stock returns when private signal becomes public. 

Since, we do find out evidence in supporting of informed trades in equity option market. 

Next, we want to examine what characteristics are commonly shared by option informed trades. 

Practically, we can treat this problem as how to identify informed trades from a big pool consists of 

liquidity trades/hedging-based trades, informed trades that seek to speculate on underlying stock 

price movement, and noisy trades. Given the high transaction costs and bid-ask spread in trading 

options, the noisy trade portion only account for a small fraction of total trading volume, which is in 

sharp contrast from stock market. Therefore, our main research problem is to separate informed 

trades from liquidity-based option trades. To achieve this purpose, we make few very critical 

assumptions: first of all, we assume that the option trades are primarily consist of liquidity/hedging 

trades, informed trades that seek to bet on future stock movements, and noisy trades. Second, we 

assume that liquidity-based trades are mostly initiated by option market makers and for this type of 

trades, reducing the effective costs of trading options is the main purpose. In other words, liquidity 

traders only care about temporary option price movements. Meanwhile, informed traders who seek to 

bet on underlying stock price movements are more concerned about long-term option price 

movements caused by movements in underlying stock prices. This implicit hypothesis gives critical 



 

 

empirical implications: we can try to time the short-term option market to reduce the effective costs 

of trading options, which we call it execution-timing algorithms 

In Section 4, we take advantage of the mega minute-level data from Nanex and implement 

our classification algorithms. . The direction of each option transaction is determined according to 

the Lee and Ready (1991) algorithm. Over a fixed time interval (say, a day), the volume of the signed 

option transactions can be aggregated to generate an order flow measure for each option contract. 

Based on our execution-timing algorithm, we can imprecisely divide the total option trades pool into 

two sup-groups: one group contains liquidity trades, noisy trades, and few informed trades, another 

pool only contains informed trades, and noisy trades. Given this separation, we can indirectly test the 

validity of our implicit assumptions described above. First and foremost, we want to demonstrate that 

our execution-timing based order imbalance measures are efficient in predicting future cross-

sectional stock returns, both in short and long horizon. And we also show that the order imbalance 

predictors constructed from liquidity pool are not as efficient. In Table 3, we have shown that the 

order imbalance predictors constructed from informed-trades pool are strong predictors of future 

price movements, not only for next day, but also for 1-week (skipping 1-day), and 1-month 

(skipping 1-day) horizon. As reported in Table 4 Panel A, the High-Low      (      , or 

     ) strategy generates -8.39 (4.07, or -3.51) basis points FF3 alpha per day, equivalent to -

23.5% (10.8%, or -9.25%) per annum.  

The rest of the article is organized as follows. Section 2 reviews the literature on the price 

impact of option trading. In Section 3, we discuss the datasets and describe the sample construction 

in detail. In Section 4, we empirically examine the negative information disclosure effect of option 

trades information on the predictability of future underlying stock price movements. In Section 5, we 

first describe our execution-timing algorithms and theoretical assumptions in detail. Then we test our 

hypothesis using trade-level data from Nanex. Section 6 concludes the findings. 

 

2. Literature Review and Motivations 

Microstructure theories such as Ho and Stoll (1981), Glosten and Milgrom (1985), Kyle 

(1985), and Easley and O’Hara (1987) suggest that a stock’s order flow affects its price and that , 

in particular, transactions initiated by buyers (sellers) cause the stock prices to move up (down). 

The empirical evidence that supports this prediction exists both at the market level (Chordia, 

Roll, and Subrahmanyam, 2002) and in the cross-section of stocks (Chordia and Subrahmanyam, 

2004). The stock options market provides an alternative venue for gaining stock exposure. For 



 

 

example, Easley, O’Hara, and Srinivas (1998) and Pan and Poteshman (2006) show that options 

order flow also predicts the underlying stock returns. This paper examines the interaction 

between option transactions and the underlying stock transactions and how this interaction 

affects the predictability of stock returns. In addition, the stock options market also provides 

investors with valuable approaches to managing volatility. In particular, N, Pan and Poteshman 

(2008) investigates informed trading on stock volatility in the option market and they show that 

the non-market maker net demand for volatility is quite informative about about the future 

realized volatility of underlying stocks. 

Derivative trading can convey important information in a market with information 

asymmetry. Black (1975) first notes the possibility that informed traders could use the options 

market as an alternative trading venue because option contracts provide higher leverage. Biais 

and Hillion (1994) examine the impact from the introduction of options and find that informed 

traders’ profits can either increase or decrease depending on the type of liquidity orders. 

Focusing on how private information gets incorporated into security prices, Easley, O’Hara, and 

Srinivas (1998) formalize a two-market microstructure model in which informed traders choose 

to trade in the stock or options markets. The authors show that a pooling equilibrium exists in 

which informed traders trade in both markets when the leverage and liquidity of the options are 

sufficiently high. They further argue that because the availability of multiple option contracts 

presents difficult learning problems for uninformed traders, option contracts can be more 

attractive to informed traders. If informed traders trade in the options market, the options order 

flow can contain information about fundamental values of the underlying stocks. 

The theoretical discussion on the feedback effect from options has motivated many 

empirical studies on the lead-lag relation between the two markets. A group of researchers focus 

on the relation between the actual stock prices and the implied stock prices from options. Early 

studies such as Manaster and Rendleman (1982) and Bhattacharya (1987) find that the options 

market leads the stock market in price discovery. However, more evidence points in the opposite 

direction. For example, Chakravarty, Gulen, and Mayhew (2004) find that the information share 

of option quotes is less than 20% on average. Holowczak, Simaan, and Wu (2006) show that the 

information share of options even decreases over time, and they argue that this decrease is 

because of the prevailing use of computers for the automatic updating of quotes in the options 

market. In a recent study, Muravyev, Pearson, and Broussard (2013) find that option quotes, but 



 

 

not stock quotes, adjust themselves to eliminate arbitrage opportunities across the two markets, 

and they conclude that the options market does not play a role in price discovery. Another strand 

of empirical research directly investigates the options order flow. Many studies find that this 

order flow predicts future stock returns in time series regressions for a small group of stocks, for 

example, Easley, O’Hara, and Srinivas (1998), Poteshman (2006), Dong and Sinha (2011), and 

Holowczak, Hu, and Wu (2014). 

Pan and Poteshman (2006) investigate the information content of the options order flow 

in the cross-section of stocks. Using a unique dataset, these authors construct volume ratios of 

put and call options from buyers opening new positions. They find that the open-buy put-call 

ratio negatively predicts returns and that there turn predictability lasts over three weeks. 

However, as we will argue in this paper, the predictability of put-call ratio is really coming from 

the privacy of signals. Once these order information get disclosed, stock prices react to it in a 

very short period of time. 

Chan, Chung, and Fong (2002) investigate the informational role of order flows and 

quote revisions in the two markets. They find that the options order flow does not have a pricing 

effect but the stock order flow does. Cao, Chen, and Griffin (2005) examine order flow 

information around mergers and acquisitions. Their results suggest that the options volume 

imbalance becomes significantly informative about future stock prices right before merger 

announcements but remains silent during normal periods. 

 

3. Data and Sample Construction 

In this section, we discuss the data and empirical methodology used in this paper. We 

obtained stock prices from CRSP, and firm fundamentals from Compustat. The option prices and 

trades information come from two different sources: International Securities Exchange
1
 (ISE) 

and Nanex. The ISE database contains daily option trades information from ISE: in particular, it 

provides daily buy and sell trading volume for each option series traded at the ISE, disaggregated 

by whether the trades open new option positions or close existing positions. Trades on reported 

on ISE Open/Close profile represents about 20% to 30% of the total trading volume in equity and 

ETF options during our sample period spanning from May 2005 to December 2012. The other 

                                                 
1
 A detailed description of the ISE data is available at http://www.ise.com/market-data/products/put-call-data/ise-

open-close-trade-profile/. 



 

 

data source is from Nanex, a firm specializing in providing high-frequency stock and option 

quotes and trades data. The original data come from standard data aggregators: OPRA for 

options and SIP for equities (e.g., TAQ data also use SIP). The data include intraday quoted bid 

and ask prices at one-minute frequency for both options and the underlying equities for the 

sample period from January 2004 to December 2015. For options, we also observe best bid and 

offer (BBO) from all option exchanges. Advantages of this second dataset are that it covers a 

longer time period, including the period after the Penny Pilot when the options market minimum 

tick size decreased to one cent per share, and for each date includes data on the full cross-section 

of options that traded on that date. Timestamps are synchronized across markets. To reduce 

dataset size, only option contracts with at least one trade on a given day are included. Even given 

these constraints intended to reduce the size, the compressed data are still require more than 

fifteen terabytes of storage. For either datasets, because we focus on the ability of option order 

imbalances predict cross section of stock returns, we exclude index and foreign exchange options 

from analysis. 

The ISE data include volumes due to trades of both firm proprietary traders and public 

customers. For each option series and trader type or trade size bucket, the option trading volume 

data are broken down into four categories: volume from buy orders that open new purchased 

positions (open buy volume), volume from sell orders that open new written positions (open sell 

volume), volume from buy orders that close existing written positions (close buy volume), and 

volume from sell orders that close existing purchased positions (close sell volume). Part of our 

analyses, which is built on this ISE dataset, combines the volumes from the different trader types 

and trade size buckets. For each underlying stock and volume type we aggregate the volume for 

the different call and put series, yielding four call volumes and four put volumes for each 

underlying stock. Considering the different characteristics, i.e., open/close, buy/sell, and call/put, 

we have eight categories of options volume, which are open buy call (OBC), open sell call 

(OSC), close buy call (CBC), close sell call (CSC), open buy put (OBP), open sell put (OSP), 

close buy put (CBP), and close sell put (CSP).  

For the Nanex dataset, we compute option order imbalances using option trades as well 

as BBO quoted prices preceding a trade. First, the quote rule is applied to trade and NBBO 

(National Best Bid and Offer) option prices to determine whether a trade is buyer or seller-



 

 

initiated; if a trade is at the NBBO quote midpoint, we apply the quote rule to the quoted bid and 

ask prices from the exchange that reported the trade. 

We also want to briefly comment on the options market structure. The U.S. options 

market clearly resembles the U.S. equity market with some distinct differences. Equity options 

are typically cross-listed across multiple exchanges, most of which are fully electronic, and 

NBBO rule is enforced. Anybody can post limit or market orders, but market-makers are obliged 

to provide continuous two-sided quotes. All major brokers provide real-time option prices to 

their (retail) clients similarly to stock information. S&P500 index options are somewhat special 

because one exchange, CBOE, has exclusive rights to trade SPX options, and a large fraction of 

trading is still done manually. Even for SPX options, there are continuous bid and ask prices that 

investors can trade against (See Muravyev (2016) for further details). 

In Section 3, we take advantage of the unique client information obtained from ISE 

dataset to specifically test the information content contained in open-buy/open-sell type option 

order imbalances. In Section 4, we rely on the trade-level information for every single-name 

stock as well as ETFs to separate option market maker’s liquidity trades from superior informed 

trades with future stock price information. 

 

4. ISE Open/Close Order Imbalances and the Cross-Section of Stock Returns 

Literature, e.g. Pan and Poteshman (2006), have shown that option trading volume 

contains valuable information about future stock price movements. In this section, we use ISE 

Open/Close profile to test and validate main empirical results documented by Pan and 

Poteshman (2006) and Pearson et al. (2016). We briefly discuss results in this section and further 

explore the public disclosure effect on the predictability of those well-documented order 

imbalance measures since ISE began to sell this Open/Close profile in November 2007. 

Henceforth, it is interesting to investigate whether this public disclosure event affects stock 

return predictability. As illustrated in the paper by Pan and Poteshman (2006), the open-buy put-

call ratio measure is defined as, 

    
   

         
  

where     (   ) is the open-buy call (open-buy put) volume. The aggregation of     (or 

   ) is described in detail by Pearson et al. (2016). We add a small number 5 in the 



 

 

denominator to avoid special case:          . Differing from what Pan and Poteshman 

(2006) used in their paper, since we don’t have CBOE data, we use ISE data to examine the 

stock return predictability. By theory, if option trades are informative, we should also observe 

cross-sectional predictability in the ISE dataset. 

Slightly different from what Pearson et al. (2016) used in their paper, we construct open-

buy call and open-buy put order imbalance measures as follows: 

       
   

    
            

   

    
  

where                    represents total call volume, and            

        stands for total put volume. In the original paper by Pearson et al. (2016), they 

normalize     (or    ) by stock volume. We find that normalizing by option volume delivers 

a better signal when predicting cross-section of stock returns, especially for middle to long 

horizon. Therefore, we use normalizing by option volume as our benchmark case. 

 

4.1. The Cross-Sectional Stock Return Predictability 

Whether option trades are informative is always a hot issue, papers, such as Pan and 

Poteshman (2006), Hu (2014) and Pearson et al. (2016), have shown empirical evidence that 

option order imbalance is informative and can predict future stock returns. However, those 

studies do not discuss how long can this predictability sustains. Notwithstanding this deficiency, 

all studies generally do agree that the next day predictability is the strongest, which we would 

like to call it announcement effect. If we purge out this next-day announcement effect, order 

imbalance measures from previously mentioned papers are not so satisfactory: Pan and 

Poteshman (2006) put-call ratio still works due to data limitations (at the time of the study, 

CBOE does not sell this open/close profile to investors). Besides Pan’s work, Hu’s (2014) stock 

order imbalance measure loses predictability and no further are provided in Pearson et al. (2016). 

Henceforth, in this part, we provide analysis on the cross-sectional predictability of Pan (2016) 

and Pearson (2016) measures at different forecasting horizon: 1-day ahead, 1-day ahead, 1-week 

ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). Notice that for 1-week and 1-

month horizon, we intentionally exclude the next-day to avoid strong announcement effect. 

Without causing confusion, we will use 1-week and 1-month instead of 1-week ahead (but 

skipping 1-day) and 1-month ahead (but skipping 1-day) for simplicity.  



 

 

We examine the cross-sectional predictability, as well as disclosure effect using Fama-

MacBeth (1973) regressions. In Figure 1 Panel A, we plot the time-series of coefficients of Pan 

(2006) put-call measure,   . To smooth the figure, we take 100-day moving average. As 

illustrated in Figure 1 Panel A, we show that the stock return predictability of    measure is the 

strongest for 1-day horizon. Overall, we still find predictability of    measure for 1-week and 1-

month horizon: however, this predictability concentrates in the pre-disclosure period. Ever since 

ISE started to sell Open/Close profile to investors in November 2007, the middle to long horizon 

predictability has weakened. We will formally test this public disclosure effect in the subsequent 

sections. 

As reported in Table 1 Model 1 column, the Fama-MacBeth (1973) estimate of     for 1-

day horizon is -0.098 with a t-stat value of -8.25. And the significance of this predictability 

gradually declines as forecasting horizon extends: the t-stat value for 1-week horizon is -3.4 and 

for 1-month horizon is -2.56. Given these empirical results, we can conclude that the Pan and 

Poteshman (2006) order imbalance measure,   , does predict cross-section of stock return at 

different horizons, though the degree of predictability varies. 

We also examine the predictability of Pearson et al. (2016) order imbalance measures, 

      and      . In Figure 2 Panel A.1 and Panel A.2, we report time series of coefficients 

of       and      , respectively. As illustrated in the figure, both       and       

display strong 1-day announcement effect: stocks with higher       (     ) tend to perform 

better (worse) next day. The announcement effect is weakened as ISE began to sell the data to 

investors, but still remains and is nontrivial. In contrast, similar to what we find in the put-call 

ratio,   , case, the 1-week and 1-month predictability concentrates in pre-disclosure period. 

After the disclosure date, the middle to long term predictability for       and       

gradually dies away (2008 and 2009 are still Financial Crisis period, in which case data behaves 

differently as we can see from the figure).  

In Table 2 Panel A and Panel B, we report Fama-MacBeth regression results for       

and       at different forecasting horizons, respectively. Besides what we observe in Figure 2 

Panel A, open-put order imbalance measure,      , seems to be a better signal at predicting 

stock returns than open-call order imbalance measure      .  Evidence suggests option 

investors normally do not use calls as a long-term investment tool. 



 

 

Using ISE dataset, we have demonstrated short-term stock return predictability for Pan 

(2006) and Pearson (2016) order imbalance measures. Besides, we also provide evidence 

indicating weaker predictability as forecasting horizon extends. During Financial Crisis period, 

we find spikes in predictability at all order imbalance measures, we argue that this phenomenon 

is due to capital constraints: investors are unable to leverage up using money market tools so 

they in turn use option as a tool for embedded leverage. Furthermore, we show significant 

decline in predictability at all horizons due to disclosure event by ISE. The ISE disclosure effect 

is going to be discussed in the next section. 

 

4.2. The ISE Disclosure Effect on the Predictability of Option Order Imbalances 

As we mention earlier in the paper, the International Securities Exchange, or ISE, started 

to sell this Open/Close profile to investors from November 2007. Furthermore, Pan and 

Poteshman (2006) document that the predictability of put-call order imbalance measure merely 

exists if they use private signal: at that time, the CBOE Open/Close profile is undisclosed. 

Therefore, it is reasonable to wonder whether the disclosure event could weaken the 

predictability of documented option order imbalances since those measures proposed by Pan and 

Poteshman (2006) and Pearson et al. (2016) are not private anymore.  

In Figure 1 Panel B, we explore the variation trend in coefficients of    measure from 

May 2005 to December 2012. In particular, we compute the average coefficient by year and 

corresponding 95% confidence interval. As illustrated in Figure 1 Panel B, we still have 

significant predictability at 1-day horizon albeit slight weaker compared with before disclosure 

situation. However, things start to get worse when for 1-week and 1-month forecasting horizon. 

If we exclude periods involving Financial Crisis (2008 and 2009), then the middle to long-term 

predictability almost disappears for post-2010 period, as displayed in the 2
nd

 and 3
rd

 sub-figure in 

Panel B. Similarly, we also find gradually disappearing predictability for Pearson (2016)       

and       measures as illustrated in Figure 2 Panel B.1 and Panel B.2. For both       and 

      order imbalance measures, the 1-week and 1-month predictability almost demise after 

ISE started to sell its Open/Close profile data (excluding periods affected by Financial Crisis and 

its aftermath). 

To further validate our findings in Figure 1 and Figure 2, we formally test the effect of 

ISE disclosure by introducing dummy variables and reported regression results in Table 1 and 



 

 

Table 2. To examine the effect associated with public disclosure, which essentially creates a 

perfect exogenous shock for identification, we create several time dummies:                

equals 1 if date is greater than or equal to 12/2007; otherwise equals 0. Following same logic, we 

also define                              and               . From Table 1 and 

Table 3 column Model 3, we find that whatever order imbalance measure we are using, either 

Pan (2006)    measure or Pearson (2016)       (     ) measure, the 1-week and 1-month 

horizon predictability decreases sharply for post-2010 period, which is particularly phenomenal 

for put-call ratio    measure. Besides, the summation of constant and coefficient on        

        is indifferent from zero statistically. 

Our findings are broadly consistent with what Pan and Poteshman (2006) mentioned in 

their paper: only private option volume signal predict future stock returns. Under our setting, the 

ISE disclosure provides us with a perfect experiment scenario to study how option volume 

predicts future stock returns when private signal becomes public. We can conclude that option 

volume does contain valuable information about future stock prices and are incorporated into 

asset prices as information becomes publicly available. The analysis on ISE disclosure also 

reveals two opposite hypothesis. The long-term predictability disappears due to either (1) option 

open-buy order imbalances are not informative anymore, or (2) option open-buy order 

imbalances are still informative, but information gets incorporated into asset prices in a faster 

pace since ISE started to disclose this private information. If hypothesis (2) is true, then it 

implies private signal, if properly constructed, can still predict long-term cross-sectional stock 

returns. We will investigate those two hypotheses using execution-timing methodology in the 

next section. 

 

5. Execution-Timing based Order Imbalances and the Cross-Section of Stock 

Returns 

In the option market, option market makers usually take in trades passively to clear the 

market. Those trades are generally not informative about underlying asset prices and are called 

liquidity trades. Therefore, we want to purge out those liquidity trades from market makers and 

collect trades from retail investors and institutional investors, who trades based on superior 

information. To meet this objective, we borrow ideas from Muravyev and Pearson (2016) and 



 

 

use their execution-timing algorithm to distinguish between market maker’s trades and other 

trades (e.g. retail investors, institutional investors, and noisy traders) from Nanex trade-level 

dataset. In Eq.(3) of their paper, they define their option price predicting equation as: 

             ( ̂ 
      )                            ( ̂ 

      )

                               

where    is the option price (can be either call price or put price) at time  .  ̂ 
    is the Black-

Scholes model implied option price (the logic behind is that usually option price responding to 

stock price with lag).  ̂ 
    represents the difference between the average quote midpoint and 

across all exchanges (BBO average).           (          ) represents percentage of 

exchanges that report best NBBO bid (ask) price. In practice we use this model to predict option 

price 10min or 30min later (               ). 

In the paper by Muravyev and Pearson (2016), this model is relatively good at estimating 

the efficient trading costs by option market makers. Therefore, in this article, we use it to identify 

option market maker’s trades from others with slight variations. The identification strategy goes 

as follows: For Buy trades, if        , then we categorize this trade as a good-buy         

trade; otherwise we call it bad-buy        . Similarly, for Sell trades, if         then we call 

this trade good-sell         trade, otherwise categorizing as bad-sell        . In other words, in 

order to limit their trading costs, option market makers should trade in the moving direction of 

the price. Combining with Call and Put category, together we categorize trade into six categories: 

good-buy-call (       ), good-sell-call (       ), bad-buy-call (       ) or bad-sell-call 

(      ), good-buy-put (      ), bad-buy-put (      ), good-sell-put (      ), and bad-sell-

put (      ). 

The trades that are categorized as Bad trades don’t mean those trades are error trades, it 

just means those trades are not cost-efficient evaluated using our algorithms. However, we want 

to emphasize here that trades that called Bad trades are not necessarily all from retail investors 

and institutional investors, they also include trades from noisy traders (in other words, this is a 

semi-pooling equilibrium). Despite of this efficiency, the signals we construct from these Bad 

trade order imbalances are far-more precise than total order imbalances, which has proven to be 

noisy and uninformative. In particular, we only emphasize the definition of normalized      , 

     , and      here. The other order imbalances are not informative in predicting future 



 

 

stock returns and are not our focus in this paper. Normalized      ,      , and      are 

defined as follows: 

       
   

    
   

       
   

    
  

and, 

      
   

         
  

where    represents total call trading volume and is measured as                . 

   represents total put trading volume and is measured as                . As 

expected, we argue that this measurement is quite private. Therefore, we expect the ISE 

disclosure may not have a very big impact on the long-term predictability of our private order 

imbalance measures. We will explore these issues in the rest of this section. 

 

5.1. The Cross-Sectional Stock Return Predictability and ISE Disclosure Effect 

First and foremost, we want to demonstrate that our execution-timing based order 

imbalance measures are efficient in predicting future cross-sectional stock returns, both in short 

and long horizon. We run Fama-MacBeth (1973) predictive regressions for our three constructed 

order imbalance measures,      ,      , and     , at 1-day, 1-week and 1-month horizon. 

In Figure 3, we illustrate the time-series coefficients of      ,      , and       in 

Panel A, Panel B and Panel C, respectively. As expected, either      ,       or      

shows strong 1-day announcement effect. For 1-week and 1-month horizon, besides,       or 

     shows robust and persistent predictability before and after ISE disclosure event. 

Unfortunately, for      , we do find significant forecasting ability before ISE disclosure. But 

after 2010, this predictability gradually weakened and died away. 

To further validate our findings in Figure 3, we formally test the effect of ISE disclosure 

by introducing dummy variables and reported regression results in Table 3. The definitions of 

time dummies are stated in previous sections. The regression results of      ,       or 

     are reported in Table 3 Panel A, Panel B and Panel C, respectively. In particular, Model 1 

report overall predictability of our execution-timing order imbalance measures. Consistent with 

what we observe from the figure, all of our constructed order imbalance measures strongly and 



 

 

robustly predict future cross-sectional stock returns at 1-day horizon (announcement effect). 

However, unlike Pan and Poteshman (2006) and Pearson et al. (2016) documented open-buy 

measures, our execution-timing based       and      order imbalance measures consistently 

to show robust and significant predictability at 1-week and 1-month horizon. In particular, 

      predicts 1-week and 1-month with a t-value of -8.05 and -7.41 respectively. And      

also predicts 1-week and 1-month horizon with a t-value of -4.31 and -3.93, respectively. Despite 

the satisfying performance      and      , the normalized       doesn’t do a very good 

job at predicting long-term stock returns. In particular, predictability has weakened critically 

after 2010. From Model 3 in Table 3 Panel A, we can see that the coefficient is indifferent from 

zero for post-2010 period. However, as illustrated by Model 2 and Model 3 in Table 3 Panel B 

and Panel C, we also show that our long-term predictability still exists for       and     . 

Given the empirical results, we can reach at several conclusions: first of all, our 

execution-timing based order imbalance measures are effective at extracting informative option 

trades from option market makers’ liquidity trades and noisy trades. Second, since our signals are 

privately constructed, the ISE disclosure doesn’t have a crucial impact on the predictability of 

our order imbalance measures. 

  

5.2. Predictability and Exchange Segmentation 

Though we confirm that both short and long term predictability of our execution-timing 

order imbalance measures is robust and not affected by the ISE disclosure event, there is still 

another exception that our predictability may due to informed trades from other exchanges rather 

than ISE. To rule out this possibility, we re-construct our order imbalance measures separated by 

exchanges, e.g. ISE/CBOE/OTHER. As an illustration, order imbalances constructed from 

CBOE represents we only use option trades from CBOE and don’t use information from other 

exchanges. Then, we run predictive regressions using order imbalance measures from different 

exchanges and draw the time-series of coefficients in Figure 4.  

As illustrated by Figure 4 Panel A, Panel B and Panel C, it is obvious that the ISE 

disclosure event do not really affect the predictability of our privately-constructed order 

imbalance measures. Two conclusions can be reached: (1) our ISE-only execution-timing based 

on order imbalance measures robustly predict short and long term cross-sectional stock returns 

and are not crucially affected by ISE disclosure on November 2007, which is completely 



 

 

different from ISE open-buy order imbalances (e.g. Pan and Poteshman (2006), Pearson et al. 

(2016)). (2) We find no significant differences in predictability between ISE-only order 

imbalance measures and CBOE/OTHER-only order imbalance measures. This can be indirect 

evidence that even ISE started to sell their Open/Close profile to public investors, informed 

trades haven’t fully fled away from trading on ISE. 

 

5.3. Portfolio Performance 

In this section, we explore the decile portfolio performance at 1-day/1-week/1-month 

horizon. Portfolios are sorted into decile by the end of each day based our execution-timing order 

imbalance measures (      ,       and     ). Figure 5 displays decile portfolio 

performance as well as High-Low long-short strategy performance in bar graph. Exact numbers 

and t-statistics are reported in Table 4. 

In Figure 5, we can see that the trend is most obvious for 1-day return, which is exactly 

consistent with the aforementioned evidence that the 1-day predictability is the strongest for 

every order imbalance measure we use. As forecasting horizon prolongs, the trend becomes less 

apparent, which is also consistent with a weaker predictability of these order imbalance measures 

in predicting long-term stock returns in the cross section. 

As reported in Table 4 Panel A, the High-Low      (      , or      ) strategy 

generates -8.39 (4.07, or -3.51) basis points FF3 alpha per day, equivalent to -23.5% (10.8%, or -

9.25%) per annum. The statistical significance is also very impressive across all measures. To 

our satisfaction, though the predictability becomes weak at longer horizon, the High-Low long-

short strategy still works well. The raw returns as well as FF3 alphas are statistically significant. 

One interesting observation from Figure 5, the bottom decile portfolio bears 

unconvenational behaviors. One caveat here, the bottom decile, or Low, portfolio contains and 

only contains stocks with order imbalance measures equaling to zero. Given our empirical 

evidence, those zero-order imbalance measures behave unusually, which reminds us of digging 

into details of those zero order imbalance stocks.  

 

6. Conclusions 

This article examines the informational content of option trading for future movements in 

underlying stock prices. In particular, we are trying to address two main questions here: (1) using 



 

 

an exogenous variation event, we try to quantify the impact of information disclosure on the 

predictability of future stock returns. (2) We also examine the characteristics of option informed 

trades: in particular, with implicit assumptions on transitory and persistent price impact, we use 

our self-developed execution-timing algorithms to separate option market makers’ liquidity 

trades from investors’ informed trades. We show that the cross-sectional predictability of 

underlying stock prices is mostly driven by valuable signals initiated by investors’ who perceive 

superior information about future stock prices, while option market makers’ liquidity order 

imbalances provide little guidance towards future stock price movements. We also show that the 

disclosure of private option trades information has a non-trivial impact on stock return 

predictability as well as the information absorption speed. 

First of all, we show that option order imbalances can predict the cross-section of stock 

returns. We show that a large part of this predictability can be attributed as one-day stock return 

forecasting effect. Predictability of option order imbalances declines as forecasting horizon 

prolongs. In particular, we show that, the predictability of long-horizon predictability depends on 

the privacy of information. Public disclosure of option trades information has a crucial and 

negative impact on the predictability of option order imbalances.  

To specifically examine what characteristics do those informed option trades have in 

common, we develop our testing algorithms based on few implicit but very critical assumptions: 

we argue that option market makers are primarily responsible for liquidity trades and informed 

investors who have superior information are responsible for informed trades that predicts future 

stock price movements. For liquidity trades, the most important factor is execution costs (option-

trading is notoriously expensive), in other words we would like to call it “Temporary Impact”. 

However, for informed trades that want to maximize information advantage and take advantage 

of option embedded leverage characteristics, trading cost is not of primary concern. Long-term 

“Persistent Impact” on stock price is much more important. 

Furthermore, using identification algorithms, we can imprecisely distinguish between 

investor’s trades and option market maker’s trades and find that, the order imbalances from non-

option market makers contain almost all information relevant for predicting future stock returns. 

In particular, we have shown that option order imbalance predictors constructed from our 

informed-trades pool can strongly predict cross-sectional stock returns at 1-day, as well as 1-

week and 1-month horizon. The long-short portfolio (decile portfolios) can generate annual 



 

 

abnormal return ranging from 10% to 24% per annum. Our results are consistent with theories 

implying that option trading volume reflects the actions of informed traders, and the action of 

disclosing this information can facilitate asset price movements. 
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Figure 1. Predictability of Pan and Poteshman (2006) Put-Call Ratio 

This figure examines the cross-sectional predictability of Pan and Poteshman (2006) put-call ratio 

measure using ISE dataset. Panel A plots the time series of estimated coefficients (100-day moving 

average) from Fama-MacBeth (1973) regression at daily frequency. Panel B plots average coefficients 

(red dot) and corresponding 95% confidence interval (blue error bar) by year. The predictability is tested 

at three horizons: 1-day ahead, 1-week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). 

 

Panel A: Coefficients of Pan and Poteshman (2006) Put-Call Ratio: Daily Frequency 

 

  



 

 

Panel B: Average Coefficients and 95% Confidence Interval of Pan and Poteshman (2006) Put-

Call Ratio, by Year 

 

  



 

 

Figure 2. Predictability of Pearson et al. (2016) Order Imbalance Measures 

This figure examines the cross-sectional predictability of Pearson et al. (2016) order imbalance measures 

using ISE dataset. Panel A.1 (Panel A.2) plots the time series of estimated coefficients (100-day moving 

average) of Pearson et al. (2016) OBC/C (OBP/P) measure from Fama-MacBeth (1973) regression at 

daily frequency. Panel B.1 (Panel B.2) plots average coefficients (red dot) and corresponding 95% 

confidence interval (blue error bar) by year. The predictability is tested at three horizons: 1-day ahead, 1-

week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). 

 

Panel A.1: Coefficients of Pearson et al. (2006) OBC/C measure: Daily Frequency 

 
 

  



 

 

Panel A.2: Coefficients of Pearson et al. (2006) OBP/P measure: Daily Frequency 

 

  



 

 

Panel B.1: Average Coefficients and 95% Confidence Interval of Pearson et al. (2006) OBC/C 

measure, by Year 

 

  



 

 

Panel B.2: Average Coefficients and 95% Confidence Interval of Pearson et al. (2006) OBP/P 

measure, by Year 

 

  



 

 

 

Figure 3. Predictability of Execution-Timing based Order Imbalance Measures 

This figure examines the cross-sectional predictability of our execution-timing based order imbalance 

measures using Nanex dataset.  Panel A plots the time series of estimated coefficients (100-day moving 

average) of normalized bad-buy call order imbalance measure (BBC/C). Panel B plots the time series of 

estimated coefficients (100-day moving average) of normalized bad-buy put order imbalance measure 

(BBP/P). Panel C plots the time series of estimated coefficients (100-day moving average) of normalized 

bad-buy put-call order imbalance measure (BBPC). The predictability is tested at three horizons: 1-day 

ahead, 1-week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). 

 

Panel A: Coefficients of Normalized Bad-Buy Call Order Imbalance Measure (BBC/C): Daily 

Frequency 

 

  



 

 

Panel B: Coefficients of Normalized Bad-Buy Put Order Imbalance Measure (BBP/P): Daily 

Frequency 

 



 

 

 

Panel C: Coefficients of Normalized Bad-Buy Put-Call Order Imbalance Measure (BBPC): 

Daily Frequency 

 

  



 

 

Figure 4. Predictability of Execution-Timing based Order Imbalance Measures, by Different 

Exchanges 

This figure examines the cross-sectional predictability of our execution-timing based order imbalance 

measures using Nanex dataset but categorized according to different exchanges: CBOE, ISE and OTHER.  

Panel A plots the time series of estimated coefficients (100-day moving average) of normalized bad-buy 

call order imbalance measure (BBC/C). Panel B plots the time series of estimated coefficients (100-day 

moving average) of normalized bad-buy put order imbalance measure (BBP/P). Panel C plots the time 

series of estimated coefficients (100-day moving average) of normalized bad-buy put-call order 

imbalance measure (BBPC). The predictability is tested at three horizons: 1-day ahead, 1-week ahead (but 

skipping 1-day), 1-month ahead (but skipping 1-day). 

 

Panel A: Coefficients of Normalized Bad-Buy Call Order Imbalance Measure (BBC/C) by 

Different Exchanges: Daily Frequency 

 

  



 

 

Panel B: Coefficients of Normalized Bad-Buy Put Order Imbalance Measure (BBP/P) by 

Different Exchanges: Daily Frequency 

 



 

 

 

Panel C: Coefficients of Normalized Bad-Buy Put-Call Order Imbalance Measure (BBPC) by 

Different Exchanges: Daily Frequency 

 

  



 

 

Figure 5. Portfolio-Sorting Results based on our Execution-Timing Order Imbalance Measures  

This figure examines the portfolio performance based on our execution-timing order imbalance measures. 

By the end of each day, stocks are sorted into decile portfolios based on our order imbalance measures. 

Portfolio performance is then recorded at different holding horizons: 1-day ahead, 1-week ahead (but 

skipping 1-day), 1-month ahead (but skipping 1-day). Panel A displays decile portfolio performance at 1-

day horizon. Panel B displays decile portfolio performance at 1-week (but skipping 1-day) horizon. Panel 

C displays decile portfolio performance at 1-month (but skipping 1-day) horizon. Both raw excess return 

and Fama-French 3 factor alpha are reported. 

Panel A: Decile Portfolio Performance at 1-day Horizon 

 



 

 

Panel B: Decile Portfolio Performance at 1-week (but skipping 1-day) Horizon 

 

  



 

 

Panel C: Decile Portfolio Performance at 1-month (but skipping 1-day) Horizon 

 

 



 

 

 

Table 1. The Disclosure Effect on the Predictability of Pan and Poteshman (2006) Order Imbalance Measures 

This table examines the public disclosure effect on the predictability of Pan and Poteshman (2006) put-call ratio order imbalance 

measure. We test the disclosure effect by running time-series regressions on the coefficients from Fama-MacBeth (1973) 1
st
-stage 

results. Dummy variables are constructed as: D(date>=200712) equals 1 if date>=12/2007 and 0 otherwise. The definitions for 

D(date>=200712 & date<=200912) and D(date>=201001) are similar to D(date>=200712). We validate predictability at three different horizons: 

1-day ahead, 1-week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). The sample spans from May 2005 to December 2012. T-

stats are computed using Newey-West (1987) standard errors. 

 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant -0.0977 -0.0991 -0.0991 
 

-0.1437 -0.1785 -0.1785 
 

-0.4151 -0.539 -0.539 

 
(-8.247) (-8.2309) (-8.2309) 

 
(-3.395) (-7.4487) (-7.4487) 

 
(-2.558) (-6.3713) (-6.3713) 

D(date>=200712) 
 

0.0021 
   

0.0528 
   

0.1877 
 

  
(0.1035) 

   
(0.7828) 

   
(0.7175) 

 
D(date>=200712 & date<=200912) 

  
-0.0412 

   
-0.0928 

   
-0.2632 

   
(-1.7789) 

   
(-0.9323) 

   
(-0.5676) 

D(date>=201001) 
  

0.0319 
   

0.1528 
   

0.4976 

   
(2.3275) 

   
(5.232) 

   
(4.0627) 

Adjust R-Squared, % 0 -0.05 0.48 
 

0 0.03 1.27 
 

0 0.19 2.96 

 

  



 

 

Table 2. The Disclosure Effect on the Predictability of Pearson et al. (2016) Order Imbalance Measures 

This table examines the public disclosure effect on the predictability of Pearson et al. (2016) open-buy order imbalance measures. We 

test the disclosure effect by running time-series regressions on the coefficients from Fama-MacBeth (1973) 1
st
-stage results. Dummy 

variables are constructed as: D(date>=200712) equals 1 if date>=12/2007 and 0 otherwise. The definitions for D(date>=200712 & 

date<=200912) and D(date>=201001) are similar to D(date>=200712). We validate predictability at three different horizons: 1-day ahead, 1-week 

ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). Panel A reports results using open-buy call measure (OBC/C). Panel B reports 

results using open-buy put measure (OBP/P). The sample spans from May 2005 to December 2012. T-stats are computed using Newey-West 

(1987) standard errors. 

 

Table 2 Panel A: Open-Buy Call measure: OBC/C 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant 0.1193 0.1023 0.1023 
 

0.1588 0.2594 0.2594 
 

0.2241 0.4788 0.4788 

 
(5.7789) (6.8738) (6.8738) 

 
(2.7841) (7.2644) (7.2644) 

 
(1.5392) (3.3916) (3.3916) 

D(date>=200712) 
 

0.0258 
   

-0.1524 
   

-0.3859 
 

  
(0.7789) 

   
(-1.7666) 

   
(-1.611) 

 
D(date>=200712 & date<=200912) 

  
0.1055 

   
0.0415 

   
0.0507 

   
(2.7438) 

   
(0.3743) 

   
(0.1562) 

D(date>=201001) 
  

-0.0289 
   

-0.2856 
   

-0.6858 

   
(-1.7011) 

   
(-6.214) 

   
(-4.0979) 

Adjust R-Squared, % 0 0.03 1.6 
 

0 0.58 2.58 
 

0 1.05 3.86 

 

  



 

 

Table 2 Panel B: Open-Buy Put measure: OBP/P 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant -0.1001 -0.085 -0.085 
 

-0.1619 -0.1481 -0.1481 
 

-0.4857 -0.433 -0.433 

 
(-7.7115) (-8.0801) (-8.0801) 

 
(-3.6414) (-3.0795) (-3.0795) 

 
(-3.1013) (-3.0626) (-3.0626) 

D(date>=200712) 
 

-0.0229 
   

-0.0209 
   

-0.08 
 

  
(-1.0807) 

   
(-0.2537) 

   
(-0.3006) 

 
D(date>=200712 & date<=200912) 

  
-0.0644 

   
-0.18 

   
-0.5459 

   
(-2.3596) 

   
(-1.7175) 

   
(-1.332) 

D(date>=201001) 
  

0.0056 
   

0.0885 
   

0.2402 

   
(0.3799) 

   
(1.6082) 

   
(1.366) 

Adjust R-Squared, % 0 0.01 0.37 
 

0 -0.04 1.1 
 

0 -0.01 2.55 

 

  



 

 

Table 3. The Disclosure Effect on the Predictability of Execution-Timing based Order Imbalance Measures 

This table examines the public disclosure effect on the predictability of our execution-timing order imbalance measures using Nanex 

dataset. We test the disclosure effect by running time-series regressions on the coefficients from Fama-MacBeth (1973) 1
st
-stage 

results. Dummy variables are constructed as: D(date>=200712) equals 1 if date>=12/2007 and 0 otherwise. The definitions for 

D(date>=200712 & date<=200912) and D(date>=201001) are similar to D(date>=200712). We validate predictability at three different horizons: 

1-day ahead, 1-week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). Panel A reports results using Nanex bad-buy call measure 

(BBC/C). Panel B reports results using Nanex bad-buy put measure (BBP/P). Panel C reports results using Nanex bad-buy put-call measure 

(BBPC). The sample spans from January 2004 to December 2015. T-stats are computed using Newey-West (1987) standard errors. 

 

Table 3 Panel A: Nanex Bad-Buy Call measure: BBC/C 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant 0.0713 0.08 0.08 
 

0.0328 0.1189 0.1189 
 

0.0669 0.2109 0.2109 

 
(7.5941) (9.303) (9.303) 

 
(1.4775) (5.1304) (5.1304) 

 
(1.1724) (2.0026) (2.0026) 

D(date>=200712) 
 

-0.0132 
   

-0.1298 
   

-0.217 
 

  
(-0.8271) 

   
(-4.1428) 

   
(-1.8569) 

 
D(date>=200712 & date<=200912) 

  
0.027 

   
-0.083 

   
-0.1316 

   
(1.8371) 

   
(-2.188) 

   
(-0.8807) 

D(date>=201001) 
  

-0.027 
   

-0.1459 
   

-0.2464 

   
(-1.5861) 

   
(-4.2471) 

   
(-2.0603) 

Adjust R-Squared, % 0 -0.01 0.15 
 

0 0.52 0.56 
 

0 0.37 0.4 

 

  



 

 

Table 3 Panel B: Nanex Bad-Buy Put measure: BBP/P 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant -0.0725 -0.0798 -0.0798 
 

-0.1168 -0.1226 -0.1226 
 

-0.3526 -0.3775 -0.3775 

 
(-11.3592) (-12.6479) (-12.6479) 

 
(-8.0477) (-4.3967) (-4.3967) 

 
(-7.4049) (-5.2452) (-5.2452) 

D(date>=200712) 
 

0.011 
   

0.0087 
   

0.0374 
 

  
(1.0005) 

   
(0.2691) 

   
(0.3884) 

 
D(date>=200712 & date<=200912) 

  
-0.0102 

   
0.0015 

   
0.1361 

   
(-0.4974) 

   
(0.0355) 

   
(0.8968) 

D(date>=201001) 
  

0.0183 
   

0.0112 
   

0.0035 

   
(1.7556) 

   
(0.3365) 

   
(0.0366) 

Adjust R-Squared, % 0 -0.02 0.01 
 

0 -0.03 -0.06 
 

0 -0.02 0.01 

 

Table 3 Panel C: Nanex Bad-Buy Put-Call measure: BBPC 

 
Forecasting horizon: 1-day 

 
Forecasting horizon: 1-week 

 
Forecasting horizon: 1-month 

 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 
 

Model 1 Model 2 Model 3 

Constant -0.0827 -0.0828 -0.0828 
 

-0.0837 -0.1239 -0.1239 
 

-0.2885 -0.382 -0.382 

 
(-14.6531) (-10.532) (-10.532) 

 
(-4.3029) (-3.5887) (-3.5887) 

 
(-3.928) (-2.4272) (-2.4272) 

D(date>=200712) 
 

0.0002 
   

0.0606 
   

0.1409 
 

  
(0.0215) 

   
(1.5223) 

   
(0.7864) 

 
D(date>=200712 & date<=200912) 

  
-0.0233 

   
0.0623 

   
0.0747 

   
(-1.627) 

   
(1.0346) 

   
(0.2938) 

D(date>=201001) 
  

0.0083 
   

0.0601 
   

0.1637 

   
(0.7631) 

   
(1.4841) 

   
(0.9336) 

Adjust R-Squared, % 0 -0.03 0.05 
 

0 0.11 0.08 
 

0 0.16 0.17 

 

  



 

 

Table 4. Portfolio Performance sorted on our Execution-Timing Order Imbalance Measures 

This table displays portfolio performances based on our execution-timing order imbalance measures. By the end of each day, stocks are sorted into 

decile portfolios based on our order imbalance measures. Portfolio performance is then recorded at different holding horizons: 1-day ahead, 1-

week ahead (but skipping 1-day), 1-month ahead (but skipping 1-day). Panel A displays decile portfolio performance at 1-day horizon. Panel B 

displays decile portfolio performance at 1-week (but skipping 1-day) horizon. Panel C displays decile portfolio performance at 1-month (but 

skipping 1-day) horizon. Both raw excess return and Fama-French 3 factor alpha (FF3 alpha) are reported. The sample spans from January 2004 to 

December 2015. T-stats are computed using Newey-West (1987) standard errors. 

 

Table 4 Panel A: Forecasting Horizon: 1-day 

 
Portfolio Performance 

BBC/C 

           

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.0301 0.0176 0.0192 0.0293 0.0184 0.03 0.0346 0.0494 0.0639 0.0697 0.0395 

 

(1.3384) (0.7415) (0.8404) (1.3368) (0.8707) (1.4346) (1.4546) (2.1599) (2.9233) (2.9496) (5.9849) 

FF3 alpha, % -0.0051 -0.0176 -0.0159 -0.0058 -0.0165 -0.0044 0.0002 0.015 0.0298 0.0358 0.0407 

 

(-0.9515) (-2.9159) (-2.5899) (-0.6976) (-2.9199) (-0.6247) (0.0216) (1.5556) (4.2443) (4.3355) (6.1268) 

            BBP/P 

           

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.0498 0.0576 0.043 0.0469 0.022 0.0246 0.0066 -0.0023 0.0088 0.0145 -0.0351 

 

(2.307) (2.4392) (1.8674) (2.1251) (0.991) (1.0476) (0.2882) (-0.0996) (0.3683) (0.6502) (-7.4029) 

FF3 alpha, % 0.015 0.0232 0.0086 0.0122 -0.0129 -0.0102 -0.028 -0.0373 -0.0257 -0.02 -0.0349 

 

(2.7425) (3.2524) (1.316) (1.5749) (-2.9391) (-1.3297) (-3.3549) (-5.7747) (-3.996) (-2.7909) (-7.3309) 

            
BBPC 

           

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.0498 0.0839 0.0607 0.0388 0.0351 0.017 0.0192 0.008 -0.0084 -0.0341 -0.0838 



 

 

 

(2.307) (3.7253) (2.85) (1.7104) (1.5361) (0.6992) (0.8269) (0.3536) (-0.3413) (-1.4946) (-11.7519) 

FF3 alpha, % 0.015 0.0506 0.0267 0.0042 0.0001 -0.0177 -0.0158 -0.027 -0.0436 -0.0689 -0.0839 

 

(2.7425) (5.9114) (4.3012) (0.5536) (0.0187) (-2.8294) (-2.2066) (-4.638) (-6.5122) (-9.6158) (-12.4095) 

 

 

Table 4 Panel B: Forecasting Horizon: 1-week but skipping 1-day 

 
Portfolio Performance 

BBC/C 

           

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.1313 0.1157 0.1066 0.087 0.0907 0.1162 0.1018 0.1237 0.1282 0.1438 0.0128 

 

(1.0657) (0.9338) (0.8835) (0.717) (0.7485) (0.9978) (0.8279) (1.0307) (1.0841) (1.1676) (0.8341) 

FF3 alpha, % -0.0285 -0.0476 -0.0583 -0.0766 -0.0744 -0.0482 -0.0624 -0.0395 -0.0327 -0.015 0.0141 

 

(-1.553) (-2.0133) (-2.5471) (-3.4109) (-3.1748) (-1.8772) (-2.2408) (-1.3469) (-1.3838) (-0.6174) (0.9029) 

 
           

BBP/P            

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.1405 0.1361 0.123 0.0892 0.1031 0.0789 0.0911 0.0831 0.0725 0.0786 -0.0621 

 

(1.1467) (1.117) (1.0223) (0.7341) (0.8824) (0.6554) (0.7421) (0.6968) (0.5778) (0.6468) (-5.235) 

FF3 alpha, % -0.0194 -0.0277 -0.0409 -0.0771 -0.0624 -0.0863 -0.0719 -0.0812 -0.0905 -0.0808 -0.0614 

 

(-1.0193) (-1.1415) (-1.8551) (-3.482) (-2.4667) (-3.7622) (-2.6376) (-2.755) (-4.3693) (-3.8488) (-4.9033) 

            
BBPC            

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.1405 0.1144 0.0922 0.1071 0.0939 0.1014 0.1088 0.0956 0.0739 0.0473 -0.0934 

 

(1.1467) (0.9403) (0.7774) (0.88) (0.7849) (0.8312) (0.9234) (0.8071) (0.5932) (0.3635) (-3.9434) 

FF3 alpha, % -0.0194 -0.0473 -0.0712 -0.0571 -0.0713 -0.0642 -0.0554 -0.0668 -0.0902 -0.1153 -0.0958 

 

(-1.0193) (-1.6745) (-2.5534) (-2.3566) (-3.3247) (-2.6739) (-2.1661) (-2.6244) (-3.9267) (-4.171) (-3.9931) 

 

  



 

 

Table 4 Panel C: Forecasting Horizon: 1-month but skipping 1-day 

 
Portfolio Performance 

BBC/C 

           

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.4854 0.4438 0.407 0.334 0.3809 0.3552 0.3473 0.4065 0.4872 0.52 0.0396 

 

(0.9394) (0.8752) (0.8143) (0.6705) (0.7612) (0.7162) (0.6943) (0.8151) (0.9861) (1.0387) (1.016) 

FF3 alpha, % -0.1584 -0.2022 -0.2453 -0.3194 -0.2701 -0.2937 -0.3025 -0.2408 -0.1531 -0.107 0.0546 

 

(-1.8099) (-2.3684) (-2.8391) (-3.5204) (-2.7595) (-2.864) (-2.9695) (-2.3767) (-1.5832) (-1.1699) (1.5269) 

 
           

BBP/P            

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.5407 0.4686 0.4149 0.3252 0.3243 0.3219 0.3284 0.3301 0.2984 0.3204 -0.2187 

 

(1.0779) (0.9278) (0.8443) (0.6425) (0.6504) (0.6366) (0.6531) (0.6496) (0.5882) (0.6265) (-6.0867) 

FF3 alpha, % -0.0987 -0.1866 -0.2279 -0.3327 -0.3342 -0.3337 -0.321 -0.3213 -0.3504 -0.3229 -0.2242 

 

(-1.1369) (-1.8524) (-2.6172) (-3.5484) (-3.4014) (-3.6307) (-3.232) (-3.4387) (-3.8572) (-3.3386) (-6.2798) 

            
BBPC            

 

Low D2 D3 D4 D5 D6 D7 D8 D9 High High-Low 

Raw return, % 0.5407 0.3966 0.321 0.3519 0.374 0.3893 0.3781 0.3736 0.2837 0.2053 -0.3339 

 

(1.0779) (0.7946) (0.6567) (0.7071) (0.7519) (0.7775) (0.7567) (0.7292) (0.5453) (0.3818) (-4.0161) 

FF3 alpha, % -0.0987 -0.2474 -0.3196 -0.2982 -0.2805 -0.2685 -0.2775 -0.2788 -0.3706 -0.4454 -0.3467 

 

(-1.1369) (-2.2388) (-2.9722) (-2.8418) (-2.8788) (-2.9432) (-3.0941) (-3.0703) (-3.6954) (-4.1273) (-4.5558) 
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