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Education researchers are frequently interested in examining the causal impact of 

academic services and interventions; however, it is often not feasible to randomly assign 

study elements to treatment conditions in the field of education (Adelson, 2013). When 

assignment to treatment conditions is non-random, the omission of any variables relevant 

to treatment selection creates a correlation between the treatment variable and the error in 

regression models. This is termed endogeneity (Ebbes, 2004). In the presence of 

endogeneity, treatment effect estimates from traditionally used regression approaches 

may be biased.  

The purpose of this study was to investigate the causal impact of an integrated 

student support model, namely City Connects, on student academic achievement. Given 

that students are not randomly assigned to the City Connects intervention, endogeneity 

bias may be present. To address this issue, two novel and underused statistical 

approaches were used with school admissions lottery data, namely Gaussian copula 

regression developed by Park and Gupta (2012), and Latent Instrumental Variable (LIV) 

regression developed by Peter Ebbes (2004). The use of real-world school admissions 



 
 

 
 

lottery data allowed the first-ever comparison of the two proposed methods with 

Instrumental Variable (IV) regression under a large-scale randomized control (RCT) trial. 

Additionally, the researcher used simulation data to investigate both the performance and 

boundaries of the two proposed methods compared with that of OLS and IV regression.  

Simulation study findings suggest that both Gaussian copula and LIV regression 

are useful approaches for addressing endogeneity bias across a range of research 

conditions. Furthermore, simulation findings suggest that the two proposed methods have 

important differences in their set of identifying assumptions, and that some assumptions 

are more crucial than others.  

Results from the application of the Gaussian copula and LIV regression in the 

City Connects school lottery admissions study demonstrated that receiving the City 

Connects model of integrated student support during elementary school has a positive 

impact on mathematics achievement. Such findings underscore the importance of 

addressing out-of-school barriers to learning. 
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CHAPTER 1: INTRODUCTION 

Overview of the Problem 

In many fields, experimental research designs remain the gold standard for 

isolating the effects of a treatment or intervention (Shadish, Cook, & Campbell, 2001; 

Keppel & Wickens, 2004).  When conducting an experimental study, researchers assign 

study elements (i.e., individuals or clusters of individuals) to treatment and control 

groups through a random mechanism, which aims to ensure group comparability on all 

observed and unobserved characteristics (Alemayehu, Alvir, Jones, & Willke, 2011). 

When exposure to the treatment is allocated randomly, unrecognized confounding effects 

become statistically unlikely, provided that the sample size is sufficient (Alemayehu et 

al., 2011). Furthermore, because randomization ensures that the groups are comparable 

on unobserved and observed confounders, the notion of exchangeability – i.e., switching 

which group receives treatment does not change the average outcome – can be invoked 

and thus causation can be inferred (Hernan & Robins, 2018). As a result, experimental 

designs allow one to reasonably argue that the observed difference between the treatment 

and control groups on the outcome is attributable to the intervention.  

However, it is often the case in educational research that subjects cannot be 

assigned randomly to conditions; this may be due to lack of feasibility or, even more 

plausibly, ethical concerns (Adelson, 2013). Adelson among others, points out that 

factors such as school structures, student needs, and economic constraints limit the 

possibility of randomly assigning students to a particular condition (2013). Thus, 

educational researchers who aim to make causal inferences about the effect of some 

treatment or program must often contend with data that are collected as part of a study in 

which units are assigned to the treatment through some form of non-random assignment 



 
 

2 
 

process. Non-random assignment, however, raises the possibility of threats to the internal 

validity of a study, of which selection bias threats may be the most challenging for 

making causal inferences (Kaplan, 2009; Keppel & Wickens, 2004). Even with the 

challenges that non-random assignment procedures often create, researchers remain 

interested in examining if, and to what degree, an intervention impacts a student outcome.  

Despite questions in educational research often being causal in nature, the non-

random assignment of elements to treatment conditions often preclude credible causal 

inferences (Hernan & Robins, 2013). Technically, the central issue is that causal 

questions require that the variation in the treatment be exogenous (Gerring, 2011; Pearl, 

2009). In this particular context, exogenous means that the assignment of study elements 

to the treatment and control conditions does not depend on the outcome variable being 

studied, or on any variables related to the outcome variable (Stock & Watson, 2014). In 

the case of research scenarios with non-random assignment, however, treatment 

assignment may no longer be independent of the outcome variable or of its correlates. 

Moreover, when confounding variables are related to both treatment assignment and the 

outcome variable, the types of statistical analyses typically conducted to estimate a 

treatment effect (e.g., analysis of covariance, ordinary least squares regression) may 

result in misleading findings. Specifically, when treatment assignment is not independent 

of the outcome variable or of its correlates, some of the assumptions of the statistical 

models may be violated, possibly leading to incorrect inferences (Keppel & Wickens, 

2004).  

As will be elaborated on in the remainder of this chapter and throughout this 

dissertation, making causal inferences in the absence of random assignment remains an 
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intractable problem and researchers continue to explore statistical adjustments to 

addressing the lack of exogeneity. The instrumental variable (IV) regression method is 

one such approach that shows promise for addressing this issue (Ebbes, 2004; Hueter, 

2016). Under the traditional IV approach, an ordinary least squares regression model is 

augmented by the introduction of an instrumental variable, which is included to partition 

out the problematic correlation between the assignment variable and the structural error 

term (Ebbes, 2004). However, the instrumental variable approach has some limitations 

when appropriate observed instrumental variables cannot be identified (Ebbes, 2004; 

Hueter, 2016).  

In an effort to address this challenge, Ebbes (2004) and Park and Gupta (2012) 

have proposed a set of procedures that do not require researchers to identify observed 

instruments. Referred to as instrument-free methods, the Latent Instrumental Variable 

(LIV) approach developed by Peter Ebbes (2004) and the Gaussian copula approach 

developed by Park and Gupta (2012), show immense promise for addressing the 

challenge of identifying an appropriate instrumental variable that supports causal 

inferences. However, a review of the extant literature in this area reveals that their 

empirical application has been limited, and neither approach has been adopted for use in 

educational research. Moreover, comparisons among the Gaussian copula approach, the 

LIV approach, and the traditional IV approach are scarce, and a comparison using real-

world school lottery data to evaluate the impacts of an integrated student support program 

has never been conducted.  

In response to the dearth of research in this area, the goal of this dissertation 

research is to evaluate the efficacy of an integrated student support, namely City 
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Connects, for improving student academic achievement. Given that City Connects does 

not randomly assign students to receive the intervention, any evaluation of the City 

Connects intervention must contend with the possibility of endogeneity selection bias. To 

address this issue, the researcher investigated the utility of two novel and underused 

statistical approaches for dealing with endogeneity bias, namely Gaussian copula and 

Latent Instrumental Variable (LIV) regression. The methods were investigated in a two-

step manner. First, using simulation data, the researcher investigated both the 

performance and boundaries of the two methods compared with that of OLS and 

Instrumental Variable (IV) regression. Subsequently, the researcher applied the two 

methods to real-world data compiled from a large-scale lottery study that is being 

conducted to evaluate the effects of the City Connects intervention. To situate the 

relevance of this dissertation research, the sections that follow provide a description of 

the City Connects intervention followed by a discussion of the broader context for 

making causal inferences, outlining the inferential framework upon which this 

dissertation work rests and the logic invoked. Subsequently, the traditional IV approach is 

presented along with the methodological extensions that are at the heart of this 

dissertation research. This chapter ends with a discussion of the significance of this 

research. Note that this dissertation research frames non-randomization as an obstacle to 

sound educational evaluation and is built on the premise that causal inference research is 

one of several worthy forms of educational research for examining the effects of policy, 

programs, and interventions.  
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City Connects Intervention 

Prior research has shown that out-of-school factors can have significant impacts 

on students’ readiness to learn and thrive in school, accounting for up to two-thirds of the 

variance in academic achievement (Rothstein, 2010). The academic impact of out-of-

school factors is especially notable for students growing up in poverty. In fact, when 

compared to students from middle-class and affluent families during early school years, 

children in poverty score, on average, one-half to one full standard deviation lower on 

tests of achievement (Kaushal, Magnuson, & Waldfogel, 2012).  This achievement gap 

has direct consequences for students’ educational attainment and life outcomes; for 

example, it has been estimated that children growing up in extreme poverty are up to 12 

times less likely to graduate from high school than youth from middle-class families 

(Duncan, Brooks-Gunn, Yeung & Smith, 1998). In response to such a concern, 

researchers at Boston College developed the City Connects intervention (Walsh et al., 

2014).  

City Connects is an integrated student support model offering student support in 

high-poverty, urban schools. At the core of the intervention is a full-time Coordinator, 

trained as a Masters’-level licensed school counselor or social worker. Every fall, the 

Coordinator meets with every classroom teacher to identify each student’s strengths and 

needs. Specifically, Coordinators engage in a conversation with classroom teachers using 

a series of guiding questions aimed at eliciting teacher insights on student strengths and 

needs across four developmental domains (academic, social/emotional/behavioral, health, 

and family). During and following this conversation, City Connects Coordinators develop 

tailored plans for each student, identifying particular enrichment and service programs 

that best suit the strengths and needs of each individual student (Progress Report, 2018).  
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To identify these resources, and to allow for the tracking and follow-up of service 

delivery, Coordinators use a proprietary web-based database designed for the intervention 

to find specific service providers based on factors such as service type(s), geographical 

location, schedule, transportation requirements, and family capacity to support 

participation (e.g., access to insurance). Coordinators then connect students and their 

families with service providers, coordinate the provision of services, monitor service 

quality and appropriateness, and maintain partnerships with community providers 

(Progress Report, 2018). Throughout the entire process, the City Connects Coordinator 

works closely with students and their families to ensure service delivery.  

To date, multiple studies have demonstrated the efficacy of the City Connects 

intervention. Dearing et al. (2016) investigated the impact of City Connects on the 

mathematics and reading achievement of first-generation immigrant children living in 

high poverty, urban contexts. The study revealed significant and practically important 

positive effects in both mathematics and reading performance during elementary school 

years. Furthermore, Walsh et al. (2014) reported both higher report card scores and 

higher performance on middle school English language arts and mathematics tests for 

students participating in the City Connects intervention. Lee-St. John et al. (2018) 

investigated the association between participation in City Connects and high school 

dropout, finding that City Connects students had approximately half the odds of dropout. 

Although such studies provide compelling evidence for the effectiveness of City 

Connects for addressing non-academic barriers to learning, all research of the 

intervention to-date has relied on quasi-experimental design. This dissertation provided 
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the first-ever evidence from a randomized control trial design demonstrating the efficacy 

of the City Connects intervention.  

Role of Causal Inference and Experimentation in Educational Research 

Objects and facts in isolation are hardly of interest to scientists; instead, science is 

an enterprise concerning itself with relationships (Ozen, 2011). The educational sciences 

are thus no different, with educational researchers seeking to understand the relationship 

between the implementation of educational programs or policies and student outcomes. 

Given that education is widely viewed as a mechanism for improving the human 

condition, it comes as no surprise that federal agencies, policy-makers, researchers, and 

educators alike are deeply invested in improving educational outcomes. Despite the social 

consensus around the importance of education, public resources remain limited and 

education must often contend with the demands and needs of the public for other 

services, such as health care and public safety (Willett & Murnane, 2010). As a result, 

decisions regarding the allocation of resources to educational activities must be justified, 

with arguably this justification coming from empirical evidence regarding the programs 

and conditions that lead to improved student outcomes. Consequently, researchers have 

become increasingly interested in answering questions regarding the determinants of 

student achievement and the effectiveness of programs and policies devoted to improving 

these outcomes.   

There has long been a call for basing educational decisions in strong empirical 

evidence. In 1913, Paul Hanus, a Harvard Professor and the first dean of the Harvard 

Graduate School of Education, delivered a speech to the National Education Association 

(NEA) in which he argued that systematic research must be conducted within the field of 
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education and that the findings from such research ought to guide decision-making 

(Willett & Murnane, 2010). Specifically, he stated that, “We are no longer disputing 

whether education has a scientific basis; we are trying to find that basis” (Willett & 

Murnane, 2010). More than a century later, we note that the U.S. Department of 

Education’s Institute for Educational Sciences (IES) and the organization it sponsors, 

“The What Works Clearinghouse,” has set evidence standards that give focus to 

scientifically-based educational research, with particular preference given to 

experimental research that involves random-assignment. Thus, we see that “the basis” of 

which Hanus spoke in his address to the NEA in 1913 has been identified as 

experimentation.  

The focus of this dissertation research on comparing statistical approaches that 

support causal inference aligns itself with the particular conception of educational 

research and evaluation put forth by IES, thereby adopting a successionist framework for 

thinking about causality and relying on regularity and counterfactual logic as an 

argumentative basis (Gates & Dyson, 2016). The purpose of this work, however, is not to 

evaluate the epistemological merits of a particular causal framework; instead, this 

discussion serves to position the work within the broader context of educational research, 

providing the necessary context and line of reasoning for the methodological 

developments that will soon follow.  

Causal Inference  

Causality as a concept comes naturally to human beings, as we tacitly presuppose 

causal connections between phenomena on a daily basis in order to successfully navigate 

the world around us (Faye, 2014; Peterson, 1898). Thus, when faced with causal 
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statements such as, “pressing the power button caused the computer to start,” one is able 

to easily make intuitive sense of what this means; furthermore, direct experiences of this 

act happening warrants such a claim in our daily lives (Faye, 2014; Lee-St. John, 2012). 

Causal claims in science are akin to the causal claims we make in our daily lives, 

differing only in how they are warranted, as the former demands much stronger, detailed 

theoretical argument and sophisticated methods of observation (Faye, 2014). The basis 

for warranting causal claims in science can be found in Hume’s (1748) seminal work, An 

Enquiry Concerning Human Understanding, in which he defined causation as follows:  

We may define a cause to be an object, followed by another, and where all the 

objects, similar to the first, are followed by objects similar to the second 

[emphasis in original]. Or, in other words, where, if the first object had not been, 

the second never had existed. [emphasis in original] (Peterson, 1898, p. 44.) 

The above definition provided by Hume is a noteworthy starting point because it 

was the first documented definition of causation that invoked counterfactual logic. Thus, 

by relying on such logic, we can see that the previously given example of a causal 

statement, “pressing the power button caused the computer to start” can be formally 

explained by the statement, “if the power button had not been pressed, the computer 

would never had started.” More generally, we can formally explain any causal statement 

“X causes Y” by its counterfactual statement – “if X had not occurred, then Y would not 

have occurred” (Lee-St. John, 2012; Hume, 1748; Kaplan, 2009). This counterfactual 

conditional proposition has remained integral to the theory of causation (Kaplan, 2009).  

While Hume’s counterfactual definition of causation has been challenged by 

many, it was most notably John Stuart Mill who first debated and refined Hume’s 



 
 

10 
 

analysis of causation (Kaplan, 2009; Lee-St. John, 2012).  Mill’s main contribution to the 

theory of causation comes from qualifying Hume’s view of invariable succession, the 

identifying feature of causation made known to us only through experience. Specifically, 

Mill asserted that causation is a sequence of events (i.e., a succession) that is not only 

invariable but also unconditional (Peterson, 1898). In his A System of Logic, Mill (1843) 

writes:  

If there be any meaning which confessedly belongs to the term necessity, it is 

unconditionalness [emphasis in original]. That which is necessary, that which 

must [emphasis in original] be, means that which will be, whatever supposition 

we may make in regard to all other things. The succession of day and night 

evidently is not necessary in this sense…..We may define, therefore, the cause of 

a phenomenon to be the antecedents, or the concurrence of antecedents, on which 

it is invariably and unconditionally [emphasis in original] consequent. (Peterson, 

1898. p. 46) 

In plain language, Mill points out that relying on the single criterion of invariable 

succession for defining a cause inevitably leads to non-causal regularities warranting 

causal claims, such as reasoning that day causes night and vice versa. This will happen 

because the two events, given human experience, always accompany one another, even 

though day is not the cause of night and night does not cause day (Peterson, 1898). As a 

result, Mill (1748) modifies Hume’s definition of causation, adding the qualification that 

phenomena be unconditionally conjoined (Kaplan, 2009; Peterson, 1898). This is 

important because hitherto in science and philosophy, we were allowed to arbitrarily pick 

single objects and label them a cause, essentially ignoring all other conditions equally 
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necessary for an effect to occur (Kaplan, 2009; Hulswit, 2002). Thus, in moving from the 

work of Hume to Mill, the causal statement changes from, “X causes Y” to, “X causes Y 

if and only if Z is given,” where Z is an auxiliary set of true statements consistent with the 

antecedent, X (Hulswit, 2002; Lee-St. John, 2012). We can view Z as assumptions or 

premises (e.g., laws of nature) that, when conjoined with the antecedent, form the 

necessary set of conditions for an effect to invariably and unconditionally occur (Lee-St. 

John, 2012). This idea had profound implications, setting the foundation for the types of 

experimental designs that are considered the gold-standard in research and to which the 

field of education aspires (Kaplan, 2009).   

Drawing from his idea of unconditionalness, Mill argued that causal claims were 

only warranted when regularities governed by a constant law were isolated from some 

greater field of circumstances preceding or following that same phenomenon by chance 

(Huslwitz, 2002: Kaplan, 2009; Lee-St. John, 2012). Namely, Mill’s approach was to test 

for causality by observing the presumed causal connection between phenomena under 

varying conditions or situations (Hulswitz, 2002: Kaplan, 2009). Additionally, Mill 

posited three conditions needed for causal inference: 1) the cause must precede the effect 

(temporal precedence); 2) the cause and effect must be related (covariation); and 3) 

alternative possible explanations for the effect must be ruled out (Kaplan, 2009).  The 

third condition was of special interest to Mill, and, as a result, he proposed a set of 

methods for dealing with this condition.  The first method is known as The Method of 

Agreement, which states that the effect will be present when the cause is present. 

Secondly is The Method of Differences, stating that the effect will be absent when the 

cause is absent; and the third method is known as The Method of Concomitant Variation, 
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which states that when both of the first two conditions are observed, causal arguments are 

strengthened because alternative explanations for the covariation between the cause and 

effect have been ruled out (Kaplan, 2009). What is important to note is that this idea of 

varying the conditions in order to rule out alternative explanations gave rise to the notion 

of experimental manipulation; furthermore, we can see that the idea of a control group is 

implicit within Mill’s three methods detailed above, thus setting the foundation for 

experimental designs (Hulswitz, 2002; Kaplan, 2009).  

Experimental Design  

Following Mill’s treatise on experimental logic came the work of Campbell, 

which has been highly influential in shaping social scientists’ understanding of causality, 

especially in fields such as education and psychology (Lee St. John, 2012; Kaplan, 2009; 

Shadish, 2010; West & Thoemmes, 2010). Drawing heavily from Mill, Campbell and 

Stanley (1963) laid out the logic of experimental and quasi-experimental designs in their 

seminal work, Experimental and Quasi-Experimental Designs for Research (Kaplan, 

2009; West & Thoemmes, 2010). In this monograph, they detail the major sources of 

confounding in research designs and expand upon the notion of internal validity, a 

concept previously created and introduced by Campbell in 1957 (Kaplan, 2009). 

Specifically, Campbell and Stanley used the following question to characterize internal 

validity: Did in fact the experimental treatments make a difference in this specific 

experimental instance?  Campbell and Stanley (1963) shortly thereafter, stated that 

internal validity is “the basic minimum without which any experiment is uninterpretable” 

(pg. 5). Thus, they reintroduce the concept of internal validity as the sine qua non of 

experimental success (Campbell & Stanley, 1963; Kaplan, 2009). Campbell and Stanley 
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also introduce the idea of external validity, which related to the question of 

generalizability and subsequently state that the ideal experimental design is a design that 

is strong in both forms of validity (1963). Noteworthy, however, and of direct relevance 

for this dissertation research, is that the work of Campbell (1957) and Campbell and 

Stanley (1963) conceptualize internal validity as the degree to which causal claims are 

warranted. As a result, Campbell (1957), Campbell and Stanley (1963), and Campbell, 

Cook, and Shadish (2002), along with many other later works, focus on identifying 

factors that can serve as threats to internal validity and the causal claims made from 

experimentation (Kaplan, 2009). This focus on identifying extraneous variables that 

should be controlled is a direct result of Mill’s earlier works, viz. the condition of no 

plausible alternative explanations.  

Having established the importance of internal validity for warranting causal 

claims, Campbell and Stanley (1963) identified eight classes of extraneous variables that 

may affect the internal validity of a study. Campbell and Stanley’s (1963) original 

threats, presented in the order in which they described them, include history, maturation, 

testing, instrumentation, statistical regression, selection bias, experimental mortality, and 

selection maturation interaction as potential confounds.  In light of these threats, building 

a causal-argument then becomes a two-step process, whereby one first examines the 

degree to which a given research design and implementation is vulnerable to the 

aforementioned threats and secondly devises a strategy for systematically addressing the 

identified threats (Lee-St. John, 2012). Campbell and Stanley focus on strategies for 

addressing threats to internal validity that are primarily design-based (Lee St. John, 

2012). In particular, Campbell and Stanley (1963) recommended adding a group that does 
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not receive the intervention, i.e., a control group, as a powerful design element for 

guarding against threats to internal validity (Lee-St. John, 2012). The authors then lay out 

the concept of random assignment, the process by which adding a control group 

eliminates threats to internal validity (Kaplan, 2009; Lee St. John, 2012). In the context 

of experimentation, random assignment, or randomization, means that study elements 

have an equal probability of being placed into the treatment group or the control group 

(Kaplan, 2009). Given that random assignment is used to assign individuals to treatment 

conditions, selection, maturation, history, testing, and statistical regression are eliminated 

as plausible threats to internal validity over an infinite number of random assignments 

(Kaplan, 2009; Lee-St. John, 2012; Shadish, 2010).  

Rubin-Holland causal model and treatment effect 

While Campbell greatly advanced our conceptual understanding of causal 

inference, it was Paul Holland (1986) and Donald Rubin’s (1974) writings on causality 

that provided the statistical underpinnings for testing causal claims across the sciences 

(Lee St. John, 2012; Kaplan, 2009). Similar to Campbell (1957), their work is premised 

upon the counterfactual definition of causation first introduced by Hume and then later 

refined by the works of Mill, Mackie, and others (Lee. St. John, 2012; Kaplan, 2009; 

Hulswit, 2002; Peterson, 1898; West & Thoemmes, 2010). As such, Rubin and Holland 

also define the statement, “X causes Y” by its counterfactual, “if X had not occurred, then 

Y will not have occurred” (Kaplan, 2009; West & Thoemmes, 2010). The core concept of 

the Rubin-Holland model is that of potential outcomes, and ergo the cause, X, is 

conceptualized as being relative to another cause, including (but not limited to) the 

possibility of “not X” (Kaplan, 2009; Lee St. John, 2012; West & Thoemmes, 2010). The 
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key distinction of this model from Campbell’s is that the concept of potential outcomes is 

invoked to obtain precise estimates of the magnitude and direction of the causal effect via 

formal mathematical argument (West & Thoemmes, 2010).  

The Rubin-Holland model originated from Neyman’s nonparametric model 

concerning units with two potential outcomes, one observed and one unobserved (Glynn 

& Quinn, 2007; Kaplan, 2009). To begin, the Rubin-Holland model first considers a 

single unit (e.g., a human individual), denoted i, providing an outcome that is measured 

without error under at least two different treatment conditions within the same exact 

context (Lee-St. John, 2012; Kaplan, 2009; Morrison, 2011; Wet & Thoemmes, 2010). 

Rubin and Holland then define the causal effect as the difference between this 

individual’s outcomes under the different treatment conditions, written as:    

𝐴𝐴(𝑖𝑖) =  𝑌𝑌𝑡𝑡(𝑖𝑖) − 𝑌𝑌𝑐𝑐(𝑖𝑖)          (1) 

where 𝐴𝐴(𝑖𝑖) is the causal effect of interest, 𝑌𝑌𝑡𝑡(𝑖𝑖) is the observed outcome for 

individual i under treatment t, and 𝑌𝑌𝑐𝑐(𝑖𝑖) is the observed outcome for the same individual i 

under an alternative treatment condition, c (Lee-St. John, 2012; Kaplan, 2009; Hernan & 

Robins, 2018). Thus, we see that the Rubin-Holland model starts with the fundamental 

idea of causal inference at the individual level; however, Holland (1986) points out that 

this conception is patently flawed, as it is impossible to observe these two outcomes for 

the same unit, i. In other words, the condition of unit i receiving treatment precludes any 

possibility of unit i then being in the control condition within the same exact context, and 

vice versa (Kaplan, 2009; Lee-St. John, 2012). Holland refers to this problem as the 

Fundamental Problem of Causal Inference (Kaplan, 2009; Lee-St. John, 2012).  
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Rubin and Holland’s solution to this problem was to move away from estimating 

a treatment effect at the individual-level and instead make inferences of the population of 

individuals (Lee-St. John, 2012; Kaplan, 2009; West & Thoemmes, 2010). In doing so, 

they shift their focus to summarizing treatment effects, i.e., 𝐴𝐴(𝑖𝑖)’s, in the population, thus 

implicitly acknowledging that variability exists in treatment effects across i units. This 

framed causality as probabilistic, and consequently the average treatment effect, 

otherwise known as the ATE, became a statistic of central importance in causal inference 

methodology (Kaplan, 2009; Lee-St. John, 2012). The starting idea behind the ATE is 

that the aforementioned individual-level causal effect, 𝐴𝐴(𝑖𝑖), is a quixotic notion of 

causality, useful only in that it serves as a heuristic for thinking about research design. 

However, by leveraging this concept, Rubin and Holland arrive at useful approximations 

of this ideal, the most notable of which is the randomized experiment (Holland, 1986; 

Kaplan, 2009).  

Beginning with two treatment groups, A and B, Rubin and Holland (1987) 

calculate the idealized group-level treatment effect as:  

µ𝑡𝑡(𝐴𝐴) − µ𝑐𝑐(𝐴𝐴)         (2A)  

µ𝑡𝑡(𝐵𝐵) − µ𝑐𝑐(𝐵𝐵)         (2B) 

In this model, µ𝑡𝑡(𝐴𝐴) and µ𝑡𝑡(𝐵𝐵) represent the average outcomes for groups A and 

B, respectively, under treatment condition T. Equations 2A and 2B both represent average 

causal effects; however, it is important to note that these average causal effects may not 

be equal, as A and B may be representative of different populations (Hernan & Robins, 

2018; West & Thoemmes, 2010). Furthermore, just like with the individual-level 

scenario, we can never observe the same group under both treatment conditions; 
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therefore, Rubin and Holland (1983) replace Equations 2A and 2B with the observed 

group difference:  

ATE = µ𝑡𝑡(𝐴𝐴) − µ𝑐𝑐(𝐵𝐵)        (3) 

For Equation 3 to serve as an accurate estimate for the group differences specified 

by Equations 2A and 2B - i.e., the group-level treatment effect – Rubin notes that 

additional assumptions must be made (Kaplan, 2009; Lee-St. John, 2012; West & 

Thoemmes, 2010). Identifying the necessary yet minimally sufficient set of assumptions 

for estimating an unbiased treatment effect via Equation 3 then becomes the central focus 

of Rubin and Holland’s work (Kaplan, 2009; Lee-St. John, 2012). Of particular 

importance is the null effects selection assumption (NSEA), which states that in order for 

the ATE to be unbiased , i.e., µ𝑡𝑡(𝐴𝐴) − µ𝑐𝑐(𝐵𝐵) =  µ𝑡𝑡(𝐴𝐴) − µ𝑐𝑐(𝐴𝐴) =   µ𝑡𝑡(𝐵𝐵) − µ𝑐𝑐(𝐵𝐵), the 

two treatment groups, A and B, must be identical to one another pre-treatment (Lee St. 

John, 2012; Rubin, 1983; West & Thoemmes, 2010); furthermore, we note that NSEA is 

a group-level assumption and thus the equivalence relation applies to group 

characteristics (Lee-St. John, 2012). In other words, two groups A and B are considered 

identical when they are similar in composition on both observed and unobserved 

covariates (Lee.-St. John, 2012; Kaplan, 2009). The main advantage of random 

assignment is that it guarantees that groups are matched on covariates over repeated 

randomization, thus ensuring NSEA (Deaton & Cartwright, 2017; Kaplan, 2009; Lee-St. 

John, 2012). As a result, randomization, in conjunction with other assumptions being 

met, ensures unbiased estimation of the average causal effect.  

Given that only one of two potential outcomes can be observed per sampling 

element, we can conceptualize the counterfactual outcomes as a missing data problem. 
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Randomized experiments, like all other study designs, generate these missing data, 

allowing for only the observation of the outcome associated with the treatment condition 

actually received (Hernan & Robins, 2018; Kaplan, 2009; West & Thoemmes, 2010). 

However, the key difference with randomized experiments is that the random assignment 

mechanism embedded within such a design ensures that these missing data are missing 

completely at random (MCAR) (Hernan & Robins, 2018). This then allows estimation in 

spite of the missing data. More specifically, the assignment mechanism ensures that both 

observed and unobserved covariates are equally distributed across groups and everything 

but the treatment condition is the same (Kaplan, 2009; Lee-St. John, 2012). As a result, 

because the context to which the treatment is being applied is the same – i.e., selection is 

independent of covariates and the groups are identical – the treatment effect will manifest 

itself the same. In simpler terms, the treatment effect will be the same regardless of which 

group the treatment is actually administered to. This is the notion of exchangeability, and 

we more formally state this as 𝑌𝑌𝑎𝑎⫫ 𝐴𝐴, ∀ a in 𝐴𝐴. When the treated and untreated are 

exchangeable, we say that the treatment is exogenous and can use the observed responses 

associated with receiving “not treatment” as the counterfactual for receiving treatment 

(Hernan & Robins, 2018; Kaplan, 2009). Subsequently, µ𝑡𝑡(𝐴𝐴) − µ𝑐𝑐(𝐵𝐵) =  µ𝑡𝑡(𝐴𝐴) −

µ𝑐𝑐(𝐴𝐴) =   µ𝑡𝑡(𝐵𝐵)− µ𝑐𝑐(𝐵𝐵) and the ATE provides us with an unbiased average treatment 

effect (Hernan & Robins, 2018; Shadish, 2010).  

As outlined above, any serious attempt to address questions pertaining to causality 

require that the variation in treatment be exogenous (Gerring, 2011; Hernan & Robins, 

2018; Pearl, 2009). Exogenous in the particular context of experimentation means that the 

assignment of students to treatment conditions is related to external causes (i.e., external 
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to the model) and thus does not depend on the outcome variable or any variables related 

to the outcome (Stock & Watson, 2014). However, in the case of research situations 

where study elements are assigned to treatment and control through some non-random 

assignment process, the treatment assignment may no longer be independent of the 

outcome variable or its correlates. Moreover, important factors related to both treatment 

assignment and the outcome variable often cannot be captured by the types of statistical 

models used to estimate the average treatment effect. Consequently, any treatment 

assignment variation that is associated with these unmeasured confounders is subsumed 

into the residual, creating a correlation between the condition membership indicator and 

the error term. This correlation has been termed endogeneity. Moreover, this concept is 

important to consider because the linear statistical models commonly used in causal 

inference research carry with them the assumption that the regressors (e.g., the variable 

indicating membership in the treatment or control group) are exogenous. Otherwise, 

estimates for the parameter(s) of interest can become inaccurate, leading to faulty 

decision-making.  

In summary, causal inferences in the absence of random assignment can be 

problematic and researchers continue to face challenges when aiming to evaluate the 

effects of a treatment or intervention when random assignment is not feasible. The 

following section describes how the instrumental variable regression approach can be 

used to address this issue, describes some of the weaknesses of the approach, and ends 

with a discussion of the methodological advancement that is proposed in this dissertation 

research.  
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Study Purpose: Extending the Instrumental Variable Approach 

Instrumental variable methods are a promising solution for dealing with the 

aforementioned problem of endogeneity (Ebbes, 2004; Hueter, 2016). Augmenting the 

traditional linear regression outcomes model in which the outcome variable (𝑌𝑌𝑖𝑖) is 

regressed on the treatment variable (𝑋𝑋𝑖𝑖) for study element i (e.g., 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖), 

this method introduces a variable, 𝑍𝑍𝑖𝑖, that partitions out the problematic variation in the 

endogenous regressor (𝑋𝑋𝑖𝑖). The process is conducted in two stages with a set of linear 

equations written as follows:  

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋�𝑖𝑖 + 𝜀𝜀𝑖𝑖   (second-stage model)              (4) 

𝑋𝑋𝑖𝑖 = 𝛱𝛱0 + 𝛱𝛱1𝑍𝑍𝑖𝑖 + 𝜐𝜐𝑖𝑖    (first-stage model)                  (5) 

Notably, the set of linear equations contains a model for the endogenous 

regressor, 𝑋𝑋𝑖𝑖, which is expressed as a linear function of 𝑍𝑍𝑖𝑖 plus error, 𝜐𝜐𝑖𝑖. To be effective, 

the variable 𝑍𝑍𝑖𝑖 should (a) explain part of the variability in the endogenous regressor 𝑋𝑋𝑖𝑖; 

and (b) be uncorrelated with the error term in our regression outcomes model, 𝜀𝜀𝑖𝑖. The 

latter assumption implies that the variable 𝑍𝑍𝑖𝑖 has no direct effect on the outcome of 

interest (Ebbes, 2004). If the variable 𝑍𝑍𝑖𝑖 satisfies these criteria, it is called an instrument 

(Ebbes, 2004; Hueter, 2016).  

It is at this juncture that one can begin to see the crucial importance of 𝑍𝑍𝑖𝑖 and its 

associated properties. When 𝑍𝑍𝑖𝑖 is related to the endogenous regressor, 𝑋𝑋𝑖𝑖, its effect will 

be captured by the fixed, systematic component of the first-stage model in Equation 5, 

𝛱𝛱0 + 𝛱𝛱1𝑍𝑍𝑖𝑖. Of equal importance is the criterion that 𝑍𝑍𝑖𝑖 will be uncorrelated with the error 

term, 𝜀𝜀𝑖𝑖, in the subsequent second-stage outcomes model in Equation 4. If this property 

holds, it then follows that the fixed, systematic component of the first-stage regression 
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model, 𝛱𝛱0 + 𝛱𝛱1𝑍𝑍𝑖𝑖, provides us with the exogenous piece of 𝑋𝑋𝑖𝑖 while the first-stage 

residual, 𝜐𝜐𝑖𝑖, represents the endogenous and problematic association between 𝑋𝑋𝑖𝑖 and the 

outcomes model error term, 𝜀𝜀𝑖𝑖.  

Under this approach, the variability in 𝑋𝑋𝑖𝑖 is decomposed into two pieces and the 

aforementioned problem of endogeneity can be addressed by using the predicted values 

of 𝑋𝑋𝑖𝑖, denoted 𝑋𝑋�𝑖𝑖, from the first-stage regression in Equation 5 as the new exogenous, 

explanatory variable for predicting 𝑌𝑌𝑖𝑖 in the second-stage outcomes model. It is important 

to note that in reality, the two sets of equations are modeled simultaneously and are only 

presented here in a stepwise fashion to aid in the explanation.  

The challenge with this approach however, is that it assumes that a suitable 

instrumental variable is available to the researcher. In reality, such instruments can be 

difficult to obtain and no clear guidelines exist for how to identify a valid instrument 

(Ebbes, 2004). As a result, researchers often rely on their intuition and content knowledge 

to identify a useful instrument. Moreover, even when an instrument is identified, it often 

correlates poorly with the endogenous regressor, explaining only a small proportion of 

the variability in 𝑋𝑋𝑖𝑖, and therefore serves as a ‘weak’ instrument (Ebbes, 2004). 

Numerous studies have demonstrated that using weak instruments in IV analyses can 

result in potentially worse bias and inconsistency in the parameter estimate for the 

treatment effect than if the treatment estimate had simply been obtained from a traditional 

OLS regression analysis with no instrument at all (Ebbes, 2004; Hueter, 2016). In other 

words, the quality of the treatment effect estimate under the IV approach is highly 

dependent upon both the availability of the instrument as well as its quality.  
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In an effort to avoid this, researchers often identify observed instrumental 

variables that correlate strongly with the endogenous regressor 𝑋𝑋𝑖𝑖 when aiming to 

identify a valid instrument. However, the very act of choosing an observed instrument 

that is highly correlated with the endogenous regressor 𝑋𝑋𝑖𝑖 calls into question the 

assumption that the instrument itself is uncorrelated with the outcomes model error term 

(Ebbes, 2004). As such, endogeneity may still be present in the model. This issue makes 

the use of observed instruments extraordinarily difficult in applied research (Ebbes, 

2004).  

Promising Solution: Instrument Free Methods 

A proposed solution to the issue faced by the use of observed instrumental 

variables are statistical approaches that require no observed instrument. Referred to as 

instrument-free methods, these approaches allow researchers to apply unobserved 

instruments in an IV approach that can support causal inferences. This dissertation 

research aimed to quantitatively evaluate an integrated student support model by 

exploring and extending the application of two statistical instrument-free methods for 

dealing with the endogeneity problem; these are the Latent Instrumental Variable (LIV) 

approach developed by Peter Ebbes (2004) and the Gaussian copula approach developed 

by Park and Gupta (2012).  

Ebbes’ LIV model adopts a mixture modeling approach to introduce an 

unobserved discrete binary variable that partitions the problematic endogenous regressor 

into two parts: an endogenous piece correlated with the structural error term, 𝜀𝜀𝑖𝑖, in the 

outcomes model, and an exogenous piece (Ebbes, 2004). The Gaussian copula approach 

uses a copula function to model the joint distribution of the endogenous regressor and the 
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structural equation error term (Park & Gupta, 2012). Under these two approaches, 

researchers can use the IV method without having an observed instrument, thus avoiding 

the issues of instrument availability, quality, and validity.   

Despite the promise of the LIV and Gaussian copula approaches, an examination 

of the extant literature reveals that their empirical applications have been limited, and 

neither approach has been adopted for use in educational evaluation research. Moreover, 

comparisons among the Gaussian copula approach, the LIV approach, and the traditional 

IV approach are scarce, and a comparison using real-world randomized control trial data 

has never been conducted. In response to the dearth of research in this area, the goal of 

this dissertation was to both investigate the efficacy of the City Connects integrated 

student support model by utilizing the Gaussian copula and LIV approaches and to 

compare Gaussian copula and LIV regression to more classical approaches. The research 

questions are as follows:  

1. How does estimation performance under the two-stage least squares IV 

(2SLS-IV) approach, the Latent Instrumental Variable (LIV) approach, and 

the least squares Gaussian copula approach compare across a range of 

research conditions involving endogeneity bias?  

2. Using data from a real-world school lottery study examining the effect of the 

City Connects model of integrated student support, how do treatment effect 

estimates compare under the traditional 2SLS-IV approach with simulation-

based propensity scores, the Latent Instrumental Variable (LIV) approach, and 

the least squares Gaussian copula approach? And, how do the model 
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parameters generated by instrument-free approaches compare to the observed 

instrument? 

Data from two sources will be used to address the research questions. First, 

simulation data generated from different data generating processes will be used for 

exploring the performance of instrument-free methods and providing previously 

unexplored direct comparisons across a variety of different research conditions. Second, 

data collected as part of a large-scale study examining the effects of an integrated student 

support model on student outcomes will be used. This real-world evaluation using 

instrument-free methods will be valuable because a strong and valid instrument, a 

random offer from a lottery assignment process, is available to compare the three IV 

approaches. The application of the Gaussian copula and LIV methods with lottery data 

will also allow researchers to examine and triangulate the causal effects of an integrated 

student support on student academic achievement, providing important insights into key 

contributors of student success. Furthermore, the use of instrument-free methods will 

allow researchers to examine the causal effects of integrated student support with a much 

broader sample than allowed by traditional IV analysis, thus addressing possible self-

selection bias that may arise due to systematic differences between lottery participants 

and non-participants and strengthening causal claims.  

Summary 

This chapter introduced the problem of causal inference from observational data 

followed by recently developed methods for causal inference that can be useful in 

settings where random assignment to experimental conditions is not possible. A review of 

the assumptions needed for justifying causal statements shows that ordinary regression 
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techniques are ill-equipped for providing useful information about program impacts 

unless certain design conditions are met. Given that experimental designs are rare in 

program evaluation research, there is a need to evaluate the applicability of new statistical 

developments in the context of evaluation. The following chapter provides a theoretical 

overview of linear regression estimated via Ordinary Least Squares and Maximum 

Likelihood Estimation and Instrumental Variable regression along with limitations of 

these approaches. The researcher will then discuss two new causal inference 

methodologies for addressing the issues raised in both this chapter and the following.   
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CHAPTER 2: LITERATURE REVIEW 

Linear regression was first developed and used to deduce cause-and-effect 

relationships by renowned German mathematician and physicist, Carl Friedrich Gauss 

(Freedman, 1997; Freedman, 2005). Proposed as “the method of least squares”, Gauss 

used the method for estimating the orbital elements of astronomical objects (Freedman, 

1997; Freedman, 2005). Subsequently, social scientists have used regression models for 

supporting causal statements for over a century now; however, Gauss’ justification of the 

method of least squares, i.e., it is the unbiased linear estimate with minimum variance, is 

based upon conditions that are not easily achieved within social science contexts 

(Freedman, 1997). Measurements within the physical sciences, for instance, can often be 

made with great precision; furthermore, all relevant variables and the functional form of 

equations expressing orbital elements could be completely determined by Gauss via 

Newtonian mechanics (Freedman, 1997). Conversely, social scientists are far less certain 

about the relevant variables associated with an effect, and can rarely, if ever, measure all 

the variables relevant to a specified social-behavioral phenomenon. The result is that 

regression models applied to social science data are often either under-specified or 

misspecified, failing to control for important variables. Model specification problems are 

important to consider because the basic assumption behind regression methods in causal 

inference is that statistical control can replace random intervention, namely exogeneity 

(Gelman & Hill, 2006; Freedman, 1997). Thus, the enterprise of causal inference is 

inherently difficult within a social science context. To address these issues, more 

advanced regression-based techniques have been developed and applied.  

The purpose of this chapter is to first introduce Ordinary Least Squares (OLS) 

linear regression as a foundation for the proposed methodological developments in this 
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dissertation, outlining the method and its limitations in dealing with observational data. 

Instrumental Variable (IV) regression is subsequently presented as a common but often 

problematic alternative to OLS. This chapter ends with a discussion of the more recent 

instrument-free methodological developments for addressing endogeneity bias in causal 

inference research.  

The Linear Model 

The classic linear regression model that relates a continuous response variable, 𝑌𝑌𝑖𝑖, 

and a discrete or continuous regressor, 𝑋𝑋𝑖𝑖, can be written as follows: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜀𝜀𝑖𝑖, for i = 1,2,…,n               (6) 

We first note that the response variable 𝑌𝑌 takes on different values, which is 

denoted by the subscript i. In the context of regression, this variation in the response 

variable, 𝑌𝑌𝑖𝑖, can be partly explained by the variation in other variables, 𝑋𝑋 (Van De Geer, 

2005). Therefore we model 𝑌𝑌𝑖𝑖 as a linear function of 𝑋𝑋 plus noise, which is denoted 𝜀𝜀 and 

reflects the variation in Y that is due to sampling error. The linear function of X we use 

for modeling 𝑌𝑌 is called the regression function and is comprised of observed covariables 

X and regression parameters, β, representing how the expected response in Y linearly 

depends on the covariables (Rodriguez, 2007). Given that the covariables are observed, 

the goal is to estimate the regression parameters from the sample data (Van De Geer, 

2005). Thus we seek to find estimates of β for Equation 6, �̂�𝛽, that provides the best fit to 

the data, with “best fit” in this context being defined as the function that produces the 

least error, i.e., minimizes 𝜀𝜀. Recalling that 𝜀𝜀 is the error resulting from a certain model 

specification, we can re-write it as 𝜀𝜀(𝛽𝛽0,𝛽𝛽1), representing it as a function of the 

parameter values. Thus, Equation 6 will be re-written as follows:  
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𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀(𝛽𝛽0,𝛽𝛽1)        (7) 

And solving for 𝜀𝜀(𝛽𝛽0,𝛽𝛽1) yields  

𝜀𝜀(𝛽𝛽0,𝛽𝛽1) =  𝑌𝑌 - 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋                          (8) 

Therefore, across n observations, we are interested in ∑ 𝑌𝑌𝑖𝑖 − 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

However, due to errors being both positive and negative and canceling each other out in 

the summation, we square the deviation scores to arrive at the following function: 

∑ (𝑌𝑌𝑖𝑖 − 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖)2𝑛𝑛
𝑖𝑖=1             (9) 

Parameter values for 𝛽𝛽 are then chosen through the minimization of the function 

given by Equation 9, which is known as an objective function.  

Maximum Likelihood Estimation (MLE) 

Estimation of the regression parameters can also be achieved through the 

Maximum Likelihood Estimation (MLE) method, which is important to consider because 

it is a general-purpose estimation technique that allows for the linear model to be 

extended for different applications, including the use of instrument-free methods later 

discussed. A key difference under the MLE framework is that we assign a stochastic 

model to the error term of the regression model, whereas OLS requires no such stochastic 

assumption and instead is a distance-minimizing approach. Given that the continuous 

dependent variable, 𝑌𝑌𝑖𝑖 , will take on a range of different values, even for those sharing the 

same values on the covariates (i.e., being identical in characteristics), we assume that 

each observation, 𝑦𝑦𝑖𝑖, is a realization of a theoretical underlying random variable, 𝑌𝑌𝑖𝑖, to 

which we assign a probability distribution (Rodriguez, 2007). For the classical linear 

model, the assumption is that the random variable has a normal distribution with mean, 

𝜇𝜇𝑖𝑖, and variance, 𝜎𝜎2, represented as follows:  
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𝑌𝑌𝑖𝑖~𝑁𝑁(𝜇𝜇𝑖𝑖, 𝜎𝜎2)                          (10)  

In Equation 10, µ𝑖𝑖 represents the expected outcome for unit i, and 𝜎𝜎2 represents 

how much an actual observation may deviate from expectation (Rodriguez, 2007). It is 

important to emphasize here that the theoretical underlying random variable to which we 

assigned a probability distribution takes into account the fact that the response variable 

will take on a range of values for those who are identical on observed variables, and thus 

it reflects a conditional distribution. In other words, we are conceptualizing each 

observed response as one of many values we could observe under identical circumstances 

and therefore Equation 10 can be re-expressed as follows:  

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋 + 𝜀𝜀, where 𝜀𝜀 ~ N(0, 𝜎𝜎2)           (11) 

The normal distribution has a probability density function, written as follows:  

𝑓𝑓(𝑦𝑦𝑖𝑖) = 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)^2

2𝜎𝜎2                    (12) 

Equation 12 represents the distribution for one observation, 𝑦𝑦𝑖𝑖. However, through 

the assumption of mutually independent observations, the joint distribution of the data 

(i.e., all observations) is obtained by taking the continued product of the individual 

probability distributions given by Equation 12. This operation then leads to a likelihood 

function and allows for Maximum Likelihood Estimation (MLE) of the regression 

parameters β via standard calculus. Using the probability density function for a normal 

distribution, the likelihood function is written as follows:  

L = ∏ 1
√2𝜋𝜋𝜎𝜎2

𝑒𝑒−
(𝑦𝑦𝑖𝑖−µ𝑖𝑖)

2

2𝜎𝜎2𝑛𝑛
𝑖𝑖=1                   (13) 

An examination of Equation 13 reveals that the maximization of the likelihood 

function relies on minimizing the expression in the numerator above the exponential, and 
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one should further note that this expression corresponds exactly to the objective function 

in OLS. As a result, the estimators given by the MLE and the OLS methods are 

equivalent under the assumption of normality. 

Exogeneity Assumption of Regression and Bias 

In causal inference, the regression parameters to be estimated, 𝛽𝛽, are of direct 

interest. When certain research design conditions are met, the parameter estimate 

associated with a given treatment regressor variable yields the causal effect of the 

intervention on an outcome of interest, Y. Thus, it becomes understandable that it would 

be useful for the parameter estimators to have certain desirable properties, such as 

accuracy and reliability (i.e., unbiasedness and consistency). However, properties of these 

estimators rely on crucial assumptions that come directly from the Gauss-Markov 

theorem, a proof proposed by mathematicians Carl Friedrich Gauss and Andrey Markov 

(Ebbes, 2004). The theorem states that the linear regression model has deterministic 

design matrix X and vector 𝜀𝜀 of uncorrelated errors with a mean of zero and the same 

finite variance, 𝜎𝜎2, as also stated by Equation 11 (Ebbes, 2004). If such conditions hold, 

the OLS estimator for 𝛽𝛽, which is given by the following equation:  

�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌,                         (14) 

is unbiased, consistent, and efficient (Ebbes, 2004; Hueter, 2016). If these 

assumptions are unmet, however, the inferential integrity of OLS estimators may be 

compromised. 

A critical aforementioned assumption that must be revisited is that the vector 𝜀𝜀 

has mean zero, i.e., 𝐸𝐸(𝜀𝜀) = 0. Such an assumption, along with that of a deterministic 

design matrix X, dictates that the explanatory variables in the model are uncorrelated 
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with the error term, formally stated as 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0. It is imperative to mention that the 

condition 𝐸𝐸(𝜀𝜀) = 0 alone does not imply that 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0. Instead, 𝐸𝐸(𝜀𝜀) = 0 implies 𝜌𝜌𝜀𝜀,𝑥𝑥 =

0 if and only if 𝐸𝐸(𝜀𝜀𝑋𝑋) = 0. However, since the additional assumption of the regression 

model is that the design matrix is deterministic, the condition 𝐸𝐸(𝜀𝜀𝑋𝑋) = 0 then holds, and 

thus 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0.  This result is derived directly from the rules of expectation, where 𝐸𝐸(𝑎𝑎𝑎𝑎) 

= 𝑎𝑎(𝐸𝐸(𝑎𝑎)) for some constant C and random variable a. It then follows from this result 

that the classic linear regression model assumes 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0. It is furthermore important to 

note that the assumption of the design matrix X being fixed across repeated samples (i.e., 

that it is deterministic) is often considered inappropriate for non-experimental science 

where researchers exercise much less control over predictor variables (Hueter, 2016). 

This problem is addressed by restating the assumptions of the Gauss-Markov theorem as 

being conditional on X (Hueter, 2016). Therefore, the assumption about the vector 𝜀𝜀 

mean then moves from being 𝐸𝐸(𝜀𝜀) = 0 to 𝐸𝐸(𝜀𝜀|𝑋𝑋) = 0. Yet, we note that the condition 

𝐸𝐸(𝜀𝜀|𝑋𝑋) = 0 implies that 𝐸𝐸(𝜀𝜀𝑋𝑋) = 0, and thus the model still dictates that 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0, as the 

secondary and necessary condition for such a result still holds.  

In sum, we see that properties of the OLS estimator were derived assuming X is 

fixed and thus cannot correlate with the error, which is reasonable to assume with data 

obtained from experiments. However, in moving toward a framework with random 

regressors (i.e., observational studies where researchers play a much more passive role), 

both the error and the predictor variables are now considered random variables and can 

correlate; therefore an assumption is placed on the relationship between the regressors 

and the error term to provide results for the OLS estimator that are identical under the 

assumption of a deterministic design matrix. However, if 𝜌𝜌𝜀𝜀,𝑥𝑥 ≠ 0, then X is said to be 
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endogenous, and the OLS estimator for 𝛽𝛽 may then be biased, inconsistent, and 

inefficient, losing all properties that made it desirable as an estimate of the population 

parameter (Ebbes, 2004; Hueter, 2016).  

A major problem resulting from endogenous regressors is that of inconsistency. In 

mathematical terms, consistency is represented as: 

plim
𝑛𝑛→𝑖𝑖𝑛𝑛𝑖𝑖

�̂�𝛽𝑛𝑛 = 𝛽𝛽                 (15)  

Equation 15 implies that as the sample size approaches infinity, the variance of 

the estimator, a random variable, goes to zero and the estimates converge on the true 

parameter value (Ebbes, 2004). In practical terms, consistency means that the estimate 

becomes more accurate with more data. In causal inference this is important, as 

inconsistent regression estimates measure only the magnitude of an association, failing to 

capture both the magnitude and direction of causation (Stock & Watson, 2014). 

Returning to the standard linear regression model, the problem with endogenous 

regressors can clearly be illustrated. The standard regression model specifies a continuous 

response (y), regressors (x), error term, (𝜀𝜀), and OLS estimate �̂�𝛽 of 𝛽𝛽, reflecting the 

deviation from the conditional mean for every exogenous change in the regressor, x, 

provided 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0 (Ebbes, 2004). If x is uncorrelated with the error term 𝜀𝜀, then the only 

effect x has on y is a direct effect, as seen below: 

 
Figure 1. Exogenous Regressor 

x                    y 

𝜀𝜀   
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However, if there is an association between the regressor and error term, i.e., 

𝜌𝜌𝜀𝜀,𝑥𝑥 ≠ 0, then x has both a direct and indirect effect on y, shown as follows: 

 
Figure 2. Endogenous Regressor 

In this case, there is both a direct effect, 𝛽𝛽𝛽𝛽, and an indirect effect, 𝜀𝜀, which 

through its effect on x, affects y. As a result, changes in x now have two effects on y, and 

the OLS estimate yields either �̂�𝛽 > 𝛽𝛽 or �̂�𝛽 < 𝛽𝛽. Standard calculus reveals that the total 

derivative of 𝑦𝑦 = 𝛽𝛽𝛽𝛽 +  𝜀𝜀 with respect to 𝛽𝛽, yields the following: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 = 𝛽𝛽                         (16) 

However, when endogeneity bias is present, any change in x is also a function of 

the error, and thus the total derivative of the following is taken: 

𝑦𝑦 = 𝛽𝛽𝛽𝛽 +  𝜀𝜀(𝛽𝛽)                                                                                                   (17) 

Standard calculus now yields 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 = 𝛽𝛽 + 𝑑𝑑𝜀𝜀
𝑑𝑑𝑥𝑥

 ,                     (18) 

where  𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥

 is estimated from sample data and the OLS estimate is now the net 

effect 𝛽𝛽 + 𝑑𝑑𝜀𝜀
𝑑𝑑𝑥𝑥

. Under these circumstances, the estimate is likely to be both unreliable and 

inaccurate.  

The Two-Stage Least Squares Instrumental Variable (2SLS-IV) Method 

A solution to the endogeneity problem is to use an experimental design where 

assignment to the conditions on X is based on a random process. However, it is often the 

x                    y 

𝜀𝜀   
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case across research settings that randomization is either unfeasible or even unethical 

(Adelson, 2013; Ebbes, 2004). A proposed solution has been the instrumental variable 

regression approach, spearheaded by economists as a panacea to the endogeneity problem 

that has plagued nonexperimental science. Provided one has an instrument, Z, that is both 

correlated with the endogenous regressor, X, but uncorrelated with the regression model 

error term, 𝜀𝜀, one can model a simultaneous set of linear equations, 𝑌𝑌 = 𝑋𝑋𝛽𝛽 +  𝜀𝜀 and 𝑋𝑋 =

𝑍𝑍𝛱𝛱 + 𝜐𝜐 , to circumvent the problem of endogeneity and arrive at consistent estimators 

(Ebbes, 2004; Hueter, 2016). The core idea is that X is partitioned into an exogenous 

random variable, 𝑍𝑍𝛱𝛱, and an endogenous random variable, 𝜐𝜐 (Ebbes, 2004).  

Assuming a set of instrumental variables are available, regression parameters for 

the IV model can be estimated by means of simultaneous equation estimation techniques. 

The most widely used estimation techniques are Limited Maximum Likelihood 

Estimation (LIML) and Two Stage Least Squares (2SLS), of which only the 2SLS 

estimator will be discussed and presented here due to its simplicity and ubiquity. Given 

the observed instrument, Z, the unobserved 𝛱𝛱 and 𝑍𝑍𝛱𝛱 in the previously presented set of 

linear equations are estimated by first regressing the endogenous explanatory variable X 

on the observed instrument, Z (Ebbes, 2004; Hueter, 2016). In the context of IV 

regression, Z is exogenous and thus its covariation with X comprises exogenous 

variation, namely 𝑍𝑍Π. We recall from Equation 14 that ordinary least squares regression 

of a variable Y on a given design matrix X produces the following OLS estimator: 

�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌             (19) 

The first-stage regression of the endogenous regressor X on Z is also an ordinary 

least squares regression, and thus the OLS estimator for this regression is 
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�̂�𝛽 = (𝑍𝑍′𝑍𝑍)−1𝑍𝑍′𝑋𝑋                 (20) 

We note the structural similarities between Equations 19 and 20 and also note from 

Equation 20 that (𝑍𝑍′𝑍𝑍)−1𝑍𝑍′ is just the usual OLS regression projection matrix, denoted 

𝑃𝑃𝑧𝑧, mapping the first-stage response variable, X, to the predicted values produced by the 

linear function, 𝑋𝑋� (Hueter, 2016). Information contained by this projection matrix is then 

encoded into the second-stage linear regression, modifying the OLS estimator to give the 

following IV estimator:  

�̂�𝛽𝐼𝐼𝐼𝐼=(𝑋𝑋′𝑃𝑃𝑧𝑧𝑋𝑋)−1𝑋𝑋′𝑃𝑃𝑧𝑧𝑌𝑌          (21) 

In sum, the 2SLS-IV approach is equivalent to regressing the endogenous 

regressor on the instrument, saving the predicted values, and subsequently using these 

predicted values in the second-stage outcomes model to produce a regression coefficient 

detailing the linear relationship between these predicted values of X and the dependent 

variable, Y (Ebbes, 2004; Hueter, 2016).  

Instrumental Variables in Education Research: Lottery Studies  

Recently, the econometric literature has begun to examine the effect of school 

choice (e.g., pilot schools) on student academic outcomes via lottery studies. Essentially, 

this has been achieved by capitalizing on the random component embedded within many 

state’s school assignment mechanisms. A naïve evaluation of school effects is 

problematic due to selection bias, as many non-random factors determine where students 

attend school, and thus endogeneity bias is extremely likely (Abdulkadiroglu, Angirst, 

Dynarski, Kane, & Pathak, 2011). However, a number of major cities, such as Boston and 

New York City, have recently begun to assign students to schools using a centralized 

assignment process based on the Gale-Shapley Deferred Acceptance algorithm 
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(Abdulkadiroglu, Angirst, Narita, & Pathak, 2017). Within this process, if the number of 

applicants to a school is larger than the number of available seats at that school, then a 

random process is invoked. More specifically, students rank their school choices in terms 

of preference, with each student only being allowed a set maximum number of choices. 

Applying students are then assigned a priority category at each school, which can be 

looked at as the schools’ preferences over students. For students selecting the same 

school (i.e., tied on school preference) and belonging to the same priority group (i.e., tied 

on ranking within that school), a randomly generated lottery number is used to break the 

tie and determine who gets placement. Thus, conditional on application cycle, school 

preference, and priority group, which has been referred to as a “risk set” in the lottery 

literature, this system produces random assignment with known probabilities 

(Abdulkadiroglu et al., 2017). This conditional random assignment can then be 

capitalized on to create an instrument indicating whether or not a student received a 

random offer to attend one of their preferred schools. Subsequently, the random offer can 

be used as an instrumental variable in a 2SLS-IV linear regression model as follows:  

 𝑌𝑌𝑖𝑖 =  𝛼𝛼2 +  ∑𝑗𝑗𝛿𝛿𝑗𝑗𝑑𝑑𝑖𝑖𝑗𝑗 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝑂𝑂𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜� 𝑖𝑖 +  𝜀𝜀𝑖𝑖          (22A) 

𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 =  𝛼𝛼1 +  ∑𝑗𝑗𝜅𝜅𝑗𝑗𝑑𝑑𝑖𝑖𝑗𝑗 +  𝑋𝑋𝑖𝑖′𝛱𝛱 +  𝛱𝛱𝐼𝐼𝐼𝐼𝑍𝑍𝑖𝑖 +  𝜂𝜂𝑖𝑖,        (22B) 

Where 𝑌𝑌 is some student outcome of interest, ∑𝑗𝑗𝛿𝛿𝑗𝑗𝑑𝑑𝑖𝑖𝑗𝑗 are the risk sets previously 

introduced and used to create conditional random assignment,  𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜 is the variable 

indicating attendance at a particular school, and 𝑍𝑍 is a dummy coded variable indicating 

whether or not a student received a random offer to attend his/her school of choice. In the 

presence of selection bias, the school attendance variable is endogenous and therefore Z 

is used to partition school attendance into exogenous and endogenous variation.   
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Limitations of Instrumental Variable Approaches  

While promising in theory, the IV regression method has notable shortcomings in 

practice. Most notably, the method assumes an appropriate instrument, which can be 

difficult for several reasons (Crown, Henk, & Vanness, 2011). First, no clear guidelines 

for how to find valid instruments exist, leaving researchers to rely on intuition and theory 

and essentially “guess” at what may serve as a good instrument (Ebbes, 2004). Secondly, 

the available instrument must satisfy demanding criteria, which relate to relevance and 

exogeneity (Ebbes, 2004; Hueter, 2016; Stock & Watson, 2014). Instrument relevance 

dictates that the instrumental variable is strongly correlated with the endogenous 

regressor but uncorrelated with the outcome variable (Ebbes, 2004). In addition, the 

instrument must be exogenous and so uncorrelated with the error term; yet many 

researchers have noted the unlikelihood of both simultaneously occurring (Crown et al., 

2011; Ebbes, 2004; Hueter, 2016). Crown et al. (2011), among others, argues that the 

stronger the association between the endogenous regressor and the instrument (i.e., the 

greater the instrument relevance), the more likely it is that the instrument is correlated 

with the error term; thus, in an effort to minimize this correlation with the error term, 

researchers have a tendency to identify weak instruments. Ebbes (2004) agrees that the 

features that make instruments exogenous are also likely to make instruments weak. 

Bound, Jaeger and Baker (1995) prove the relative consistency of IV to OLS to be 

as follows: 

𝜌𝜌𝑧𝑧,𝜀𝜀/𝜌𝜌𝑥𝑥,𝜀𝜀

𝜌𝜌𝑥𝑥,𝑧𝑧
                    (23)  

A close examination of the denominator, 𝜌𝜌𝑥𝑥,𝑧𝑧, reveals that when an instrument is 

weak, even a small amount of endogeneity bias can result in inconsistency that is 
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potentially larger than that resulting from an OLS model (Bound et al., 1995; Ebbes, 

2004). Even in the presence of exogeneity, the literature is replete with warnings about 

the use of weak instruments and the potential for the estimates to be inconsistent, 

estimated with far less precision (i.e., estimates with inflated standard errors), and more 

biased than those for OLS; in effect, they lose all properties that made them an attractive 

option in the first place (Hueter, 2016). For example, Bound, Jaeger and Baker (1995) 

revisited the results from a well-known study conducted by Angrist and Krueger (1991) 

where quarter of birth (i.e., season) was used as an instrument in examining the causal 

effect of educational attainment on wages in a large U.S. Census sample. The authors 

found evidence suggesting that the weak correlation between the instrument and the 

endogenous regressor was problematic enough to statistically significantly affect their 

estimates, and a significant finite sample bias for the reported estimates also existed, 

bringing into question the validity of the study’s findings (Bound et al., 1995). This is but 

one example of the difficulty of finding a valid instrument, and, as a result, the 

consequences of a weak instrument.  

Even in school choice studies where random lottery offers may arguably satisfy 

the relevance and exogeneity criteria, the disadvantages to relying on centralized 

assignment mechanisms to obtain an instrument are still numerous. First, obtaining valid 

lottery instruments from centralized assignment mechanisms requires researchers to 

develop expertise in the school assignment algorithm, which are district specific and can 

be fairly complex. If the assignment algorithm is unable to be replicated with a high level 

of accuracy, the instrument can be rendered inaccurate and weak, leading to the 

aforementioned problems of inconsistency and bias that threaten the internal validity of 
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instrumental variable methods in general. Even with an understanding of the assignment 

process, the iterative nature of the school assignment algorithms make it hard to 

disentangle which students were randomized to schools. Abdulkadiroglu et al. (2017) 

note that traditional IV regression studies relying on lottery offers embedded within 

centralized assignment mechanisms have failed to capture the full random variation that 

exists within the assignment mechanism. Consequently, this weakens lottery instruments. 

Thus we see that while lottery studies can provide researchers with valid and useful 

instruments, instrument availability and quality largely depend on the researcher’s ability 

to understand and replicate district-specific, complex assignment algorithms and 

subsequently capture the random assignment existing within these processes.  

In situations where the instrument is both relevant and exogenous, the IV 

estimator is consistent; however, a fact often ignored by many applied researchers is that 

the IV estimator is biased in finite samples (Ebbes, 2004); moreover, in small samples 

this bias can be rather substantial. Incidentally, randomization in many school assignment 

mechanisms only takes place for a portion of students in the school assignment process, 

and, consequently, result in reduced sample sizes (Abdulkadiroglu et al., 2017; Steele, 

Slater, Zamarro, Miller, Li, Burkhauser, & Bacon, 2017).  The primary reason for this is 

that the allocation system based on the student-proposing deferred acceptance algorithm 

employs a multi-stage market design, randomly assigning only the subset of students who 

are tied on both school preference and priority ranking (Abdulkadiroglu et al., 2017; 

Abdulkadiroglu et al., 2011). Traditionally, the majority of lottery study instruments have 

been observed by considering only oversubscribed schools and students sharing high-

dimensional balancing scores known as marginal priority groups, which are discrete sets 



 
 

40 
 

containing students with the exact same school preference list and priority rankings 

(Abdulkadiroglu et al., 2011; Abdulkadiroglu et al., 2017; Steele et al., 2017).  

Abdulkadiroglu et al. (2017) note that lottery study strategies involving identifying 

random offers via full stratification on school preferences and student priorities 

considerably reduces degrees of freedom and sample size, eliminating schools and 

students from the analytic sample.  

The subsetting of school lottery data based on random offer instruments poses a 

potential threat to IV analyses, as smaller data sets induce greater variance and can 

substantially bias the estimates (Boef, Dekkers, Vandenbroucke, & le Cessie, 2014). 

Moreover, not all students partake in the school assignment processes underlying school 

lottery IV methods - a large group of students in some districts essentially opt out of the 

assignment process completely and get administratively assigned to a school. These 

students must then be excluded from the sample. Therefore a valid concern that may arise 

with the use of any observed lottery instrument is the possibility of systematic differences 

existing between the group of students/families that opt out of the school assignment 

process and those who choose to partake. In cities such as Boston, the school choice 

mechanism has had a history of associated problems, such as parents exhibiting strategic 

behaviors for gaming the system and implementation issues (e.g., walk-open precedence), 

which have led to unintended results and some general distrust of the system 

(Abdulkadiroglu, Pathak, Roth, & Sonmez, 2006). Additionally, school choice 

mechanisms can be daunting, presenting as a complicated web of options to many 

parents. As a result, it is reasonable to assume that some families may opt out of the 
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school assignment process for non-random reasons, biasing the results we obtain from 

instrumental variable methods applied to data using only lottery participants.  

Instrument-Free Methods 

The proposed solution to the identified problems is statistical approaches that 

require no observed instrument, called instrument-free methods. Instrument-free methods 

allow researchers to address issues of endogeneity and thus make causal inferences 

without needing to identify and justify instruments, one of the key problems associated 

with the traditional instrumental variable method. Although a few instrument-free 

methods exist, the researcher specifically focuses on two recent and particularly 

promising instrument-free approaches, both of which have never been applied within the 

context of educational research nor have received mention in the educational research 

literature.  

Latent Instrumental Variable Approach: A Promising Solution 

The Latent Instrumental Variable (LIV) approach developed by Ebbes (2004) is 

similar to the classical IV approach in that it assumes the endogenous regressor can be 

partitioned into two pieces, an endogenous part and an exogenous part (Ebbes, 2004; 

Hueter, 2016). Unlike the classical IV approach, however, it does not rely on an observed 

instrument and thus circumvents all previously introduced issues of instrument 

availability and validity. The LIV model simultaneously estimates a dichotomous 

grouping of the data along with other parameters using mixture modeling techniques, 

treating the discrete latent instrument as a nuisance parameter to be integrated out across 

a finite mixture (Ebbes, 2004). Put simply, mixture models are a combination of two or 

more probability density functions or data generating mechanisms, which together then 
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form a probability density function, known as a mixture. This model is a sum of 

individual probability density functions weighted by their respective mixing proportions, 

which are component priors that collectively sum to one (Shalizi, 2015). Given that each 

component function used in the summation is a probability density function, the resulting 

function is also a probability function through the property of convexity. The property of 

convexity refers to a linear combination of inputs where all inputs are weighted by 

coefficients that are non-negative and sum to one. One can view convex combinations as 

being subsumed under linear combinations, with the former preserving certain properties 

that make the resulting combination - i.e., mixture density - a probability density function 

as well. This is written as: 

𝑓𝑓(𝑦𝑦𝑡𝑡) = ∑ 𝜋𝜋𝑘𝑘𝑓𝑓𝑘𝑘(𝑦𝑦𝑡𝑡)𝐾𝐾
𝑘𝑘=1                      (24) 

Given the above formulation, any N-dimensional continuous random variable, Y, 

is interpreted as being generated from K distinct random processes, respectively modeled 

by 𝑓𝑓𝑘𝑘(𝑦𝑦𝑡𝑡), each with 𝜋𝜋𝑘𝑘 proportion of observations (Shalizi, 2015).  

The structural form of the LIV model, as presented by Ebbes (2004), is: 

𝑦𝑦𝑖𝑖 =  𝛽𝛽0+ 𝛽𝛽1𝛽𝛽𝑖𝑖 + 𝜀𝜀𝑖𝑖              (25A) 

 𝛽𝛽𝑖𝑖 =  𝜋𝜋′�̃�𝑧𝑖𝑖+ 𝑣𝑣𝑖𝑖                        (25B) 

in which the unobserved instrument, �̃�𝑧, is treated as being discrete (if it had been 

observed, it would separate the sample into m groups) and 𝜋𝜋 is an (m x 1) vector of 

category means. For model identification purposes, the number of category means must 

be equal to or greater than two and must be distinct. Simulation results from a study 

conducted by Ebbes (2004) have shown that the simple LIV model (where m = 2) is 

robust against misspecification of the true number of categories and performs well 
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overall. In the model, it is assumed that �̃�𝑧 is independent of the error terms (ε,𝑣𝑣). 

Furthermore, in Ebbes’ formulation of the model, the joint error terms are specified to 

follow a joint normal distribution, denoted H, with a mean of zero and a variance-

covariance matrix as follows: 

𝛴𝛴 = �𝜎𝜎𝜀𝜀
2 𝜎𝜎𝜀𝜀𝜀𝜀

𝜎𝜎𝜀𝜀𝜀𝜀 𝜎𝜎𝜀𝜀2
�               (26) 

where the correlation between the endogenous regressor and the outcomes model 

error term is captured by 𝜎𝜎𝜀𝜀𝜀𝜀.  

It is also assumed that the categories are unknown a priori and follow a 

multinomial distribution with parameters (𝑛𝑛, 𝜆𝜆), where 𝑛𝑛 = 1. Furthermore, we rely on 

the simple LIV model. Given n i.i.d. observations (𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖), the marginal probability 

density function for (𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖) is given as 

𝑓𝑓(𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖) = 𝜆𝜆𝑓𝑓1(𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖) + (1 − 𝜆𝜆)𝑓𝑓2(𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖)        (27) 

where 𝑓𝑓𝑗𝑗 is the conditional normal bivariate probability density function, given �̃�𝑧𝑖𝑖 

= 𝑒𝑒𝑗𝑗 (i.e., density for a subpopulation), and where 𝑒𝑒1=(1,0) ′and 𝑒𝑒2=(0,1)′. Referring 

back to the previous discussion of mixture models and Equation 24, we note that 𝑓𝑓(𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖) 

is a mixture of bivariate homoscedastic normal distributions; furthermore, the 

specification of the multinomial distribution for the latent instrument dictates that the 

parameters used as coefficients in Equation 27 are non-negative and sum to one (as they 

are proportions, i.e., fractions), ensuring the property of convexity holds and the resulting 

mixture is a density as well. It is important to emphasize that Equation 27 is just an 

averaging of conditional densities over all values of �̃�𝑧𝑖𝑖, and thus we marginalize out the 

instrument, �̃�𝑧𝑖𝑖, to arrive at an unconditional density for (𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖), removing the need for an 

observed instrument. This is a standard result from elementary probability, where one can 
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use the Law of Total Probability to move from a weighted sum of conditional densities to 

a marginal density. Ebbes (2004) notes that this mixture distribution (Equation 27) has 

the following expectation 

𝜇𝜇𝑑𝑑,𝑥𝑥 = ( 𝛽𝛽0 + 𝛽𝛽1(𝜆𝜆𝜋𝜋1 + (1 − 𝜆𝜆)𝜋𝜋2)
𝜋𝜋1 + (1 − 𝜆𝜆)𝜋𝜋2

)               (28) 

and variance-covariance matrix 

𝛺𝛺𝑑𝑑,𝑥𝑥 = 𝛺𝛺 + 𝜆𝜆(1 − 𝜆𝜆) (𝜋𝜋1 − 𝜋𝜋2)2(𝛽𝛽1, 1)′(𝛽𝛽1, 1),       (29) 

where 𝛺𝛺 is the following reduced form variance-covariance matrix 

𝛺𝛺 = �𝛽𝛽1
2𝜎𝜎𝜀𝜀2 + 2𝛽𝛽1𝜎𝜎𝜀𝜀𝜀𝜀 + 𝜎𝜎𝜀𝜀2(1 − 𝜆𝜆)𝜋𝜋2  𝛽𝛽1𝜎𝜎𝜀𝜀2 + 𝜎𝜎𝜀𝜀𝜀𝜀

𝛽𝛽1𝜎𝜎𝜀𝜀2 + 𝜎𝜎𝜀𝜀𝜀𝜀𝜋𝜋1 𝜎𝜎𝜀𝜀2
�     (30) 

For estimation of the parameters, we obtain the continued product of Equation 27 

across all observations to arrive at the likelihood function (Ebbes, 2004). Subsequently, 

the method of maximum likelihood estimation can be used to estimate the model 

parameters, 𝛽𝛽0, 𝛽𝛽1, 𝜋𝜋1, 𝜋𝜋2, Σ, and λ. Note again that �̃�𝑧𝑖𝑖 is left out, as the model does not 

require an observed instrument.  

Gaussian Copula Method: A Promising Second Solution  

Park and Gupta (2012) propose a model that identifies parameters through 

maximizing the likelihood resulting from the joint distribution of the endogenous 

regressor and structural equation error term. In order to arrive at the joint distribution of 

the endogenous regressor and structural error term and thus account for the correlation 

between the two quantities, Park and Gupta rely on a copula. A copula is a function 

linking a multivariate distribution to marginal univariate distributions (Papies et al., 2017; 

Park & Gupta, 2012). If we think of a n-dimensional unit cube [0,1]𝑛𝑛, then the copula is 

the multivariate distribution function defined on this space, with the marginal 
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distributions for each variable being uniformly distributed. In mathematical terms, if we 

let 𝑋𝑋 = (𝑋𝑋1,…..,𝑋𝑋𝑛𝑛) be a random vector with cumulative distribution function F, defined as 

𝐹𝐹 = 𝑃𝑃𝑃𝑃[𝑋𝑋1 < 𝛽𝛽1,….., 𝑋𝑋𝑛𝑛 < 𝛽𝛽𝑛𝑛], and with uniform marginal distribution functions 𝐹𝐹𝑖𝑖, 

such that 𝑋𝑋𝑖𝑖~ 𝐹𝐹𝑖𝑖, then the distribution function C is called a copula of X if:  

𝐹𝐹 = 𝑎𝑎(𝐹𝐹1, … . ,𝐹𝐹𝑛𝑛)              (31) 

Thus we see that C is a dependence structure, and the multivariate distribution has 

been decomposed into two components: the copula function and the uniform marginal 

distributions (Embrechts, Lindskog, & McNeil, 2001; Park & Gupta, 2012). One of the 

most important results regarding copulas is Sklar’s Theorem, which states that if the 

marginals, 𝐹𝐹𝑖𝑖, are all continuous, then the n-dimensional copula function C is uniquely 

determined (Embrechts, Lindskog, & McNeil, 2001). From a modeling standpoint, this 

then allows us to separate the univariate marginal distributions and the copula, capturing 

the dependence structure between the marginals with the copula, C (Embrechts, 

Lindskog, & McNeil, 2001).  

The essential idea behind Park and Gupta’s instrument-free method is to use 

information from the joint distribution of the endogenous regressor and structural error 

via a copula model to arrive at consistent estimators, thus obviating the need for an 

observed instrument (Park & Gupta, 2012). They achieve this by first selecting marginal 

distributions for the endogenous regressor and structural error term, which are based on 

information contained in the data and modeling assumptions, respectively (Park & Gupta, 

2012). Subsequently, the copula model estimates a joint distribution of the error and 

endogenous regressor from the marginal distributions, allowing for a range of 

correlations between the two marginals in the process. 
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For the marginal density of the error term, denoted 𝑔𝑔(𝜀𝜀), Park and Gupta (2012) 

specify a normal distribution, an assumption common to many linear modeling 

approaches. Unlike the structural error term, however, Park & Gupta note that data for 

the endogenous variable is observed (2012). As a result, they consider these observed 

data to be sample data from the true distribution of the endogenous regressor, X, and use 

a nonparametric density estimation approach to allow for the data to determine the 

marginal density function of the endogenous regressor (Park & Gupta, 2012). The 

proposed formula for the marginal density estimator is written as:  

ℎ�(𝛽𝛽) =  1
𝑇𝑇𝑥𝑥𝑇𝑇

∑ 𝐾𝐾(𝑥𝑥−𝑋𝑋𝑇𝑇
𝑇𝑇

𝑇𝑇
𝑡𝑡=1 )         (32) 

Where we assume 𝑋𝑋1, … . . ,𝑋𝑋𝑇𝑇 to be i.i.d observations with true density h(x), b is a 

data-driven bandwidth, and K(m) = 0.75 x (1-𝑚𝑚2) x I(|𝑚𝑚| ≤ 1), where I(y) is an indicator 

function. Given specifications for the marginal densities, Park and Gupta then construct a 

joint distribution function from marginal distributions of the endogenous regressor and 

structural error, respectively denoted 𝐻𝐻(𝛽𝛽) and 𝐺𝐺(𝜀𝜀). If we allow 𝐹𝐹(𝛽𝛽, 𝜀𝜀) to be the joint 

distribution function of the endogenous regressor and error term, with marginal 

distributions as previously stated, then Sklar’s Theorem states the following:  

𝐹𝐹(𝛽𝛽, 𝜀𝜀) = 𝑎𝑎(𝐻𝐻(𝛽𝛽),𝐺𝐺(𝜀𝜀)) = 𝑎𝑎(𝑈𝑈𝑥𝑥,𝑈𝑈𝜀𝜀)       (33) 

Given that 𝐻𝐻(𝛽𝛽) and 𝐺𝐺(𝜀𝜀) are marginal distribution functions, the probability 

integral transformations 𝑈𝑈𝑥𝑥 =  𝐻𝐻(𝛽𝛽) and 𝑈𝑈𝜀𝜀 = 𝐺𝐺(𝜀𝜀) in Equation 33 are 𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑜𝑜𝑃𝑃𝑚𝑚(0,1) 

random variables and C is a copula. To show this, let an arbitrarily chosen random 

variable Z follow a uniform distribution, denoted 𝑍𝑍 ~ 𝑈𝑈(0,1), with the resulting 

probability density function specified as 

𝑓𝑓(𝑧𝑧) = 1, 0 < z < 1.           (34) 
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Defining the Cumulative Distribution Function (CDF), denoted 𝐹𝐹𝑍𝑍(𝑧𝑧), as 

𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧), we then have that  

𝑃𝑃(𝑍𝑍 ≤ 𝑧𝑧) =  ∫ 1𝑧𝑧0 𝑑𝑑𝑧𝑧 = z          (35) 

Therefore 𝐹𝐹𝑍𝑍(𝑧𝑧) = 𝑧𝑧 for a 𝑈𝑈𝑛𝑛𝑖𝑖𝑓𝑓𝑜𝑜𝑃𝑃𝑚𝑚(0,1) random variable. Now let the 

endogenous regressor, a random variable X, have the continuous cumulative distribution 

function, F, and let 𝑈𝑈𝑋𝑋 = 𝐹𝐹(𝑋𝑋). Then we have the following:  

𝐹𝐹𝑈𝑈𝑥𝑥(𝑢𝑢𝑥𝑥), = 𝑃𝑃(𝑈𝑈𝑥𝑥 ≤ 𝑢𝑢𝑥𝑥) = 𝑃𝑃(𝐹𝐹(𝑋𝑋) ≤ 𝑢𝑢𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≤ 𝐹𝐹−1(𝑢𝑢𝑥𝑥)) = 𝐹𝐹(𝐹𝐹−1(𝑢𝑢𝑥𝑥)) = 𝑢𝑢𝑥𝑥      

(36) 

Therefore, 𝑈𝑈𝑥𝑥 is a uniform random variable. The same arguments are used for 

𝐺𝐺(𝜖𝜖). Given this result, we then see that the copula is a bivariate distribution function on 

the unit cube [0,1]2.   

The proposed copula model relies on a bivariate normal assumption of the 

variables to use a Gaussian copula, defined as:  

𝑎𝑎(𝑈𝑈𝑥𝑥,𝑈𝑈𝜀𝜀) = Ѱ𝜌𝜌(Ф−1(𝑈𝑈𝑥𝑥),Ф−1(𝑈𝑈𝜀𝜀))     

= 1
2𝜋𝜋�1−𝜌𝜌2

 ∫ ∫ exp [−�𝑥𝑥
2−2𝜌𝜌𝑥𝑥𝑑𝑑+𝑑𝑑2�
2(1−𝜌𝜌2) ]Ф−1(𝑈𝑈𝜀𝜀)

−∞
Ф−1(𝑈𝑈𝑥𝑥)
−∞  dxdy,   (37) 

where Ѱ𝜌𝜌 is the bivariate normal distribution function with parameter correlation 

coefficient ρ, and 𝛷𝛷 is the univariate standard normal distribution (Park & Gupta, 2012). 

Differentiating Equation 37 yields the joint probability density function of the 

endogenous regressor and the structural error, represented as  

𝑓𝑓(𝛽𝛽, 𝜀𝜀) =  𝜕𝜕
2𝐶𝐶(𝑈𝑈𝑥𝑥,𝑈𝑈𝜀𝜀)
(𝜕𝜕𝑥𝑥𝜕𝜕𝜀𝜀)

 ℎ(𝛽𝛽)𝑔𝑔(𝜀𝜀),       (38) 

where ℎ(𝛽𝛽) and 𝑔𝑔(𝜀𝜀) are marginal densities for the endogenous regressor and 

structural error term, respectively, and have been discussed. Using this joint density 
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function, one is then able to obtain a likelihood function, allowing for parameter 

estimation via Maximum Likelihood Estimation (MLE). However, given the 

aforementioned specifications, there is a much simpler way to estimate the model. The 

Gaussian copula assumes that the joint distribution follows a bivariate normal distribution 

(Park & Gupta, 2012). Therefore, letting Ф−1(𝑈𝑈𝑥𝑥) =  𝑋𝑋∗ and Ф−1(𝑈𝑈𝜖𝜖) =  𝜀𝜀∗, we see that 

the proposed copula method dictates that 𝑋𝑋∗ and 𝜀𝜀∗ are jointly distributed as a standard 

bivariate normal with correlation ρ (Park & Gupta, 2012). As a result, we can rewrite the 

model as:  

�𝑋𝑋
∗

𝜀𝜀∗� = �
1 0
𝜌𝜌 �1 − 𝜌𝜌2� �𝑧𝑧1𝑧𝑧2�          (39) 

Where 𝑧𝑧1 and 𝑧𝑧2 are independent random variables drawn from a standard normal 

distribution (Park & Gupta, 2012). Application of standard matrix algebra yields:  

𝑋𝑋∗ = 𝑧𝑧1             (40A) 

𝜀𝜀∗ = 𝜌𝜌𝑧𝑧1 +  �1 − 𝜌𝜌2𝑧𝑧2  => 𝜀𝜀∗ = 𝜌𝜌𝑋𝑋∗ +  �1 − 𝜌𝜌2𝑧𝑧2  (by definition of 𝑋𝑋∗)  (40B) 

Subsequently, if we recall the normality assumption of ε, and also recall that                   

𝜀𝜀∗ = Ф−1(𝐺𝐺(𝜀𝜀)), which is just a linear transformation of ε, we then get:  

ε = 𝜎𝜎𝜀𝜀𝜀𝜀∗ + µ𝜀𝜀 => 𝜀𝜀 = 𝜎𝜎𝜀𝜀𝜀𝜀∗  (by assumption of error) 

=> 𝜀𝜀 = 𝜎𝜎𝜀𝜀𝜌𝜌𝑋𝑋∗ + 𝜎𝜎𝜀𝜀�1 − 𝜌𝜌2𝑧𝑧2  (by equality given in Equation 40B)   (41) 

We can now write the linear regression model with endogenous regressor X as 

follows: 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 +  𝜀𝜀𝑖𝑖  => 𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝜎𝜎𝜀𝜀𝜌𝜌𝑋𝑋𝑖𝑖∗ + 𝜎𝜎𝜀𝜀�1 − 𝜌𝜌2𝑧𝑧2,𝑖𝑖    (42) 

By including 𝑋𝑋𝑖𝑖∗ in our linear regression model, we thus decompose the structural 

error into two components: 𝜎𝜎𝜀𝜀𝜌𝜌𝑋𝑋𝑖𝑖∗, the portion of the structural error correlated with the 
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endogenous regressor, and 𝜎𝜎𝜀𝜀�1 − 𝜌𝜌2𝑧𝑧2,𝑖𝑖, which is exogenous (Park & Gupta, 2012). We 

view 𝑋𝑋𝑖𝑖∗ as the copula Control Function (CF), which controls for the dependence between 

the endogenous regressor and the structural error and, as a result, allows us to 

consistently estimate β using OLS (Papies et al., 2017; Park & Gupta, 2012). This 

approach is similar to the CF approach used with traditional instrumental variable 

analyses, where the residuals from the regression of the endogenous variable on the 

observed instrument are then input into the outcomes model as an additional regressor, 

thus controlling for the correlation between the two quantities (Papies et al., 2017). The 

least squares Gaussian copula model for dealing with endogeneity bias is 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝛽𝛽2𝑋𝑋𝑖𝑖∗ + 𝜀𝜀𝑖𝑖,        (43) 

where 𝑋𝑋∗ = Ф−1(H(X)), and H(X) is an empirical cumulative density function 

(CDF) estimated from the data using a rank ordering of the endogenous variable X and 

calculating the proportion of observed values that are less than or equal to each rank 

ordered value (Papies et al., 2017; Park & Gupta, 2012). An important advantage of the 

copula method over other IV approaches, including LIV, is that it imposes no exogeneity 

requirement on the instrument (Park & Gupta, 2012). However, an important modeling 

assumption under this approach is that the endogenous regressor is non-normally 

distributed, which should be empirically tested prior to estimation (Papies et al., 2017; 

Park & Gupta, 2012).  

Conclusion 

As this discussion shows, instrument-free methods are a useful way for addressing 

endogeneity bias from observational studies. Moreover, they are less restrictive than 

traditional solutions relying on observed instruments, which can be hard to identify and 
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potentially result in model bias that is worse than if estimates had been obtained by 

means of OLS. In the chapter that follows, the proposed methods will be discussed along 

with specific research plans for addressing the dissertation research questions.  
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CHAPTER 3: RESEARCH DESIGNS AND METHODS 

This dissertation research explored various methods for estimating the causal 

impact of City Connects and also examined the performance of these methods under a 

range of simulated research conditions involving endogeneity bias.  Compared to the 

traditional 2SLS-IV approach, the LIV and the Gaussian copula instrument-free 

approaches are novel and underused approaches for dealing with endogeneity bias, and 

to-date, neither approach has been adopted for educational evaluation research.  

Furthermore, the adequacy of these methods compared to the traditional 2SLS-IV 

approach has not been fully explored nor demonstrated (Ebbes, 2004). At present, only 

one direct comparison of the LIV and Gaussian copula approaches can be found in the 

extant research literature, and this comparison examines the performance of the two 

methods under only a single endogeneity condition. Furthermore, comparing the 

estimation performance of instrument-free approaches and the classical IV approach will 

not only help researchers better understand the proposed instrument-free methods and the 

conditions under which they are most effective, but may also help to promote their use 

amongst applied researchers trained within the classical IV framework. Therefore, any 

opportunity to examine and compare the performance of these approaches with data 

involving endogeneity bias should be pursued, especially using real-world data arising 

from an RCT with a strong and arguably valid instrument, such as a school lottery 

assignment study. To the author's knowledge, this is the first ever comparison of 

instrument-free methods with IV under an RCT design in the field of education. 

Moreover, this research provides the first-ever evidence from an RCT demonstrating the 

efficacy of the City Connects intervention. The research questions that guided this 

research are as follows:  
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1. How does estimation performance under the two-stage least squares IV 

(2SLS-IV) approach, the Latent Instrumental Variable (LIV) approach, and 

the least squares Gaussian copula approach compare across a range of 

research conditions involving endogeneity bias?  

2. Using data from a real-world school lottery study examining the effect of the 

City Connects model of integrated student support program, how do treatment 

effect estimates compare under the traditional 2SLS-IV approach with 

simulation-based propensity scores, the Latent Instrumental Variable (LIV) 

approach, and the Gaussian copula approach? And, how do the model 

parameters generated by instrument-free approaches compare to the observed 

instrument?  

This chapter begins with a section describing the data sources used to address 

these research questions. To provide the necessary context for understanding the 

application of the instrument-free methods to the program evaluation of an integrated 

student support model, this section will also include a description of the intervention and 

the lottery assignment process. Lastly, methods and data analyses for addressing the 

research questions will be discussed. 

Data Sources 

This dissertation research used both synthetic and real-world program evaluation 

data to explore the performance of instrument-free methods for estimating the true causal 

effect across a range of endogeneity conditions. The synthetic data was artificially 

generated by the researcher and specified to represent certain conditions, while the 

program evaluation data comprises student lottery records, student demographics and 
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student outcomes data, e.g., student GPA, all of which have been obtained directly from a 

large urban school district, henceforth referred to as District Z. 

Synthetic data: Monte Carlo experiments  

Simulated data was generated in the R Statistical Computing Environment under a 

set of data generating processes representative of various regression scenarios. The range 

of data generating processes were designed to highlight both the performance and 

boundaries of instrument-free methods compared with that of OLS and the traditional 

two-stage least squares IV approach (2SLS-IV). To achieve this goal, the method of 

inverse transform sampling was used to generate data according to six studies, all of 

which fall under the scope of Research Question 1 and will be outlined in further detail in 

the methods and data analysis section to follow.   

School lottery data: Program Evaluation of City Connects Intervention 

The program evaluation portion of this research will take advantage of a ‘natural 

experiment’ that occurred within District Z, where students were assigned to schools via 

a centralized lottery-based assignment mechanism based on a student proposing deferred 

acceptance algorithm involving a random component. The deferred acceptance algorithm 

is described in the Lottery Design section. Using real-world student and school lottery 

data, the causal effect of attending a school within District Z that received an integrated 

student support intervention, the City Connects intervention, on student academic 

achievement will be compared under the instrument-free methods and the traditional 

2SLS-IV method. Since District Z uses a lottery mechanism in their school assignment 

process, the comparison among IV approaches will be conducted with a strong and valid 

observed instrument. Furthermore, the triangulation of results from empirically sound 
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methods, one of which makes use of conditional randomization, makes a distinct 

contribution to the field of program impact evaluation, as this work draws on a 

combination of novel methods to offer insights into the causal impacts of an integrated 

student support intervention implemented within the District Z school system, namely 

City Connects. The causal effect of the City Connects intervention is important to 

consider because it provides evidence about the efficacy of comprehensive student 

support models to improve early and middle childhood academic outcomes, which are a 

major determinant of future educational attainment, success and health (Huurre, Aro, 

Rahkonen, & Komulainen, 2007). 

The data source for the program evaluation portion of this dissertation research 

was a matched sample linking student demographic and state test data to District Z 

applicants’ school lottery records. School lottery records were obtained directly from 

District Z and contain for each student their Student ID number, randomly generated 

lottery number, school preference list, and priority ranking for each school s/he ranked. 

Additionally, school lottery records included lottery application year (i.e., cohort), school 

choice received (i.e., lottery offer), and the priority ranking of the student for the school 

to which they received an offer. Student demographic and state test outcomes data were 

also obtained directly from District Z and were cleaned and re-structured into long-format 

to include a row for each year a student attended a school within District Z. The District 

Z files also contained information on student characteristics, such as race and gender, 

student academic performance measures, such as GPA and scores on the state assessment 

in English language arts and mathematics, and City Connects treatment variables 

indicating whether or not the student participated in the City Connects intervention and 
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the number of years of the intervention received (i.e., dosage).  Analytic files were 

subsequently created by merging student lottery records with the District Z student 

demographic and outcomes file based on students’ unique Student ID number. Only those 

students found in both the lottery records and District Z student files were retained for 

analyses. 

As District Z keeps records of every year for each student within the district, the 

District Z student file contains data spanning across multiple years of the City Connects 

implementation. However, for the purposes of this program evaluation, samples were 

limited to include only those students applying to District Z schools via lottery in the 

years 2006-2013. These years correspond to when District Z implemented the student-

proposing deferred acceptance algorithm based on student-submitted school preference 

lists. Consequently, these data allowed the researcher to exploit the randomization within 

the District Z school assignment mechanism to conduct a natural experiment for 

estimating the impacts of City Connects on student outcomes. Subsequently, instrument-

free methods were also applied to these same lottery data to illustrate alternative methods 

for dealing with endogeneity bias in estimating the City Connects treatment effect.  

The City Connects intervention. Children growing up in poverty face a number 

of out-of-school factors that may impede their academic success and thriving, such as 

high rates of mobility, lack of quality healthcare, limited after-school or summer 

enrichment activities, and food insecurity (Berliner, 2009). Amidst growing evidence that 

out-of-school factors can affect academic outcomes, the City Connects intervention was 

developed to mitigate such barriers to learning through a systematic and coordinated 

process. As part of the City Connects evidence- and school-based intervention, a full-time 
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Master’s level school counselor or social worker (the Coordinator) works with teachers to 

identify the strengths and needs of every student in their class across four developmental 

domains: academic, social/emotional/behavioral, health, and family. Guided by this 

information, the Coordinator matches each student to a tailored set of services through 

leveraging community resources, documents each student’s service plan, and follows up 

to ensure the delivery of services (Walsh et al., 2014; Lee-St. John, 2012). 

Developed in 2001 through a collaboration between Boston College, District Z, 

and area community agencies, the City Connects intervention has grown organically, 

adding schools and students by invitation and funding (Shields, Walsh, & Lee- St. John, 

2016; Walsh, Raczek, Sibley, Lee- St. John, An, Akbayin, Dearing, & Foley, 2015). As a 

result, schools have not been randomly selected to participate in the City Connects 

intervention, and thus implementing a cluster randomized controlled trial design is 

impractical (Walsh et al., 2015). Evaluation of the City Connects treatment is further 

complicated by the fact that students do not randomly choose which school they attend 

within the District Z system, and instead the choice to attend a District Z school is 

determined by a myriad of non-random factors, such as socio-economic status and 

neighborhood. As a result, any study examining the effects of the City Connects 

intervention model will need to address endogeneity selection bias.   

Lottery study design. Although City Connects is being implemented in five 

states and 84 schools as of 2019, the proposed program evaluation will be conducted on 

the implementation of the intervention in only District Z spanning the years 2006-2013. 

This timeline and site were selected because students within the District Z school district 

were assigned to schools via a centralized assignment system (Abdulkadiroglu et al., 
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2017)1.  Within this system, students submit a preference list of schools, which asks 

students and their families to rank order up to ten schools in order of most preferred to 

least preferred. Each student is then assigned a priority ranking at each school to which 

they apply and, subsequently, students are rank ordered within schools based on these 

priorities, which can vary across schools. In the particular instance of the District Z 

school lottery system, students apply to programs within schools, known as “buckets.” 

Furthermore, the District Z algorithm splits each bucket into two categories: a “walk” 

half, giving additional preference to walk zone applicants, and an “open” half, which 

gives no additional preference to applicants within a school’s designated walk-zone.  

The priority rankings in hierarchical order of most preferred to least preferred are as 

follows: 

Table 1.  

Priority Rankings 
Walk Slots Open Slots 
Guaranteed Guaranteed 
Sibling-Walk  
Sibling Sibling 
Walk  
No Priority No Priority  

 

Where Guaranteed means a student is granted automatic admission into the 

school s/he is applying to; Sibling-Walk indicates that a student has a sibling at the school 

to which s/he is seeking admission and that same student lives within that same school’s 

                                                           
1 In the years following 2012-13, District Z still relied on a centralized assignment mechanism for assigning 
students to schools; however, the mechanism was substantially changed, with walk-zones and school 
preference lists being eliminated from the process. Instead, a behind-the-scenes algorithm automatically 
populated a choice menu of schools for students to choose from based on zip code, thereby limiting the 
number of schools students could choose. This introduces additional complexities, therefore the 
researcher omitted any years after 2012-13 from the analysis.  
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designated walk zone (e.g., one mile radius); Sibling indicates that the student has a 

sibling already attending the school to which s/he is applying; Walk signifies that the 

student lives within a school’s designated walk-zone; and No Priority means a student is 

given no preference consideration at the school to which s/he is applying. Once these 

priority rankings are established, the algorithm was implemented according to a walk-

open precedence, such that students apply for a program’s walk slot before applying to 

the same program’s open half.  

Given that each program/school has finite supply - i.e., a limited number of 

available seats - and students can be, and oftentimes are, tied on priority ranking within a 

given school, a decision rule is invoked to ration seats among students tied in ranking at 

each school. For the District Z school assignment mechanism, this decision rule is based 

on a single randomly generated lottery number that is completely independent of student 

priority and preferences. The rule is as follows: for any students who are applying to the 

same District Z school and tied on priority ranking within that school, the student(s) with 

the lowest lottery number(s) gains admission. In sum, the District Z algorithm considers 

the union of students’ priority rankings and lottery number to form a strict rank ordering 

of students within each school. This feature of the assignment process generates valuable 

data for program evaluation researchers, as although assignment of priority rankings at 

each school are obviously non-random, reliance upon randomly generated lottery 

numbers for breaking ties on priority ranking creates conditional random assignment. 

Given information contained in the school preference list, students’ school-

specific priority rankings, and the randomly generated lottery numbers, the District Z 

algorithm matches students to a District Z school program in an iterative fashion, 
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terminating only when there are no longer any students applying to a school for which 

they have not yet been considered (students may be left unassigned). Specifically, the 

District Z deferred acceptance (DA) algorithm based on single tie-breaking operates as 

follows:  

a) A single independently and identically distributed lottery number is drawn from a 

uniform distribution for each student. 

b) Each student applies to his or her most preferred school, with each school rank 

ordering each of their applicants based upon priority ranking and lottery number 

combined. 

c) Based upon this rank ordering of students, each school provisionally admits its 

highest ranked students up to the number of seats available at that school. 

d) Each student rejected then goes on to apply to their next most applied school and 

competes with the highest ranked students provisionally admitted.  

As outlined above, the District Z algorithm begins by matching students to their 

most preferred school program and for each program fills slots in order of student priority 

ranking and lottery number until capacity is reached. Subsequently, any student rejected 

from their top choice program in the previous step will go on to apply to their next most 

preferred school program, thereby competing with the pool of applicants with the lowest 

priority rankings and lottery numbers from the previous step. So for example, assume for 

simplicity that there are two students, denoted Student A and Student B, and two schools, 

labeled School One and School Two. Given that Student A has a sibling at School One, 

s/he then falls into the sibling priority category at that school. Meanwhile, assume 

Student B lives within a one mile radius of School One, and thus s/he then falls into the 
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walk priority category at that school. Then, given that Student A and B both apply to 

School One and the sorting rules dictate that School One prefers students with sibling 

priority over students with walk priority, Student A is ranked and admitted at School One 

before Student B. If School One has capacity of one, and we change the hypothetical 

such that Student A and B are tied on priority ranking (e.g., both have walk status), then 

the student with the lower lottery number is granted admission. This random assignment 

feature serves as the foundation for IV approaches. Moreover, because City Connects is 

an intervention implemented within the District Z school district, the researcher can 

exploit the randomization within this District Z school assignment mechanism to obtain 

unbiased treatment effects of the City Connects intervention. As such, the 

implementation of City Connects in District Z provides an ideal opportunity to address 

the research question. 

Methods and Data Analysis 

This section addresses how the data were used to answer the research questions 

that guided this dissertation research.  For each of the research questions, the specific 

analysis procedures will be discussed.  

Analyses for Research Question 1 

The first research question asks: Under a range of endogeneity conditions, how 

does estimation performance under the two-stage least squares IV (2SLS-IV) approach, 

the Latent Instrumental Variable (LIV) approach, and the least squares Gaussian copula 

approach compare? To address this question, simulation data (data source 1) were 

generated so that the following six studies could be conducted under various conditions:   
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Study 1. The researcher first generated data from a linear regression model where 

the assumptions of OLS were satisfied. Thus, endogeneity, denoted 𝜌𝜌𝜀𝜀,𝑥𝑥, was not 

present for this study.  

Study 2. Data were generated from a linear regression model where enodogeneity 

was present and thus 𝜌𝜌𝜀𝜀,𝑥𝑥 ≠ 0; furthermore, endogeneity was varied such that 𝜌𝜌𝜀𝜀,𝑥𝑥 

= 0.10, = 0.50, and 0.70.  

Study 3. Data were generated from a Latent Instrumental Variable regression 

model where enodogeneity was present, 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0.70; furthermore, the Latent 

Instrumental Variable model varied in complexity, with three models specified: 

a.) a regression-through-the-origin model; b.) a model with an intercept and single 

slope; and c.) a model with intercept and multiple slopes. The distribution of the 

endogenous regressor was varied such that it took on a symmetric bimodal 

distribution and asymmetric bimodal distribution.  

Study 4. Data were generated from both a Latent Instrumental Variable regression 

and linear regression model where endogeneity was present; for the LIV 

specification, 𝜌𝜌𝜀𝜀,𝑥𝑥 = 0.70, and for the linear regression specification 𝜌𝜌𝜀𝜀,𝑥𝑥 =.10, 

=.30, and .70.  

Study 5. Endogeneity was simulated from both a linear regression and Latent 

Instrumental Variable regression model. However, this time, the structural error 

distribution was specified to be non-normal for these data generating processes. 

Furthermore, the latent instrument and first-stage error were misspecified for the 

Latent Instrumental Variable regression model.  
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Study 6. Endogeneity was once again simulated from both linear regression and 

Latent Instrumental variable regression models. However, the sample size now 

varied for each specification, with N = 50, = 100, = 250, = 1000, = 2500, = 5000, 

representing small to considerably large samples. Additionally, the quality of the 

observed instrument for the instrumental variable analyses conducted for this 

study was varied such that the instrument took on the following four 

specifications: a.) high quality instrument; b.) weak but valid instrument; c.) 

strong, invalid instrument; d.) weak, invalid instrument.  

For each condition across Studies 1-3, 5, and 6, the researcher generated 500 data 

sets, fitting OLS, instrumental variable, and instrument-free methods to each. For Study 

4, the researcher generated 250 data sets due to the computational complexity of the 

model.  Model estimates from the 250-500 data sets were then used to construct an 

empirical sampling distribution from which summary statistics could be calculated. For 

Studies 1-5, the researcher calculated the ratio of the distance of the mean estimated 

value from the true parameter value to the standard deviation of the estimated values, 

denoted 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏, in order to establish unbiasedness of model estimates. For Study 6, the 

statistic of focus was mean squared error (MSE), which was calculated as follows:  

𝑀𝑀𝑆𝑆𝐸𝐸 = 𝐸𝐸[��̂�𝛽 − 𝛽𝛽�
2] = 𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏2 +  𝑣𝑣𝑎𝑎𝑃𝑃𝑖𝑖𝑎𝑎𝑛𝑛𝑆𝑆𝑒𝑒                                      (44) 

The MSE of the different methods were then compared, with lower MSE values 

indicating better estimation performance. An outline of the various conditions for the six 

studies are shown in Table 2.  
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Table 2.  

Overview of simulation studies 

 

 Data 
Generation 

Process 
Goal of Study 

Sample 
Size 

Number of 
Simulations 

Statistic(s) 
of Focus 

Study 1 

Linear 
regression 

model; 
exogeneity 

Investigate 
performance of 
methods under 

exogeneity 

500 500 t-bias 

Study 2 

Linear 
regression 

model; 
endogeneity 

Examine 
performance of 
methods under 

endogeneity 
arising from 

regression model 

500 500 t-bias 

Study 3 
LIV model; 
endogeneity 

Examine 
performance of 
methods under 

endogeneity 
arising from LIV 

model 

500 500 t-bias 

Study 4 

Linear 
regression and 

LIV model; 
endogeneity 

To further 
investigate 

performance of 
instrument-free 
methods under 

different 
endogeneity 

specifications 

500 250 

t-bias, 
correlation 
coefficient 

ρ 

Study 5 

Linear 
regression and 

LIV model; 
various error 

misspecifications  

Examine 
robustness of 
methods to 

misspecification 
of error term 

500 500 
Bias; t-

bias 
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Table 2 (continued).  
 
Overview of simulation studies 

 

Further specific details regarding each study and the summary statistics used are 

discussed in Chapter 4.  

Analyses for Research Question 2 

The second research question asks the following: Using data from a real-world 

school lottery study examining the effect of the City Connects model of integrated student 

support program, how do treatment effect estimates compare under the traditional 2SLS-

IV approach with simulation-based propensity scores, the Latent Instrumental Variable 

(LIV) approach, and the Gaussian copula approach? And, how do the model parameters 

generated by instrument-free approaches compare to the observed instrument? Data 

collected to evaluate the effects of the City Connects intervention on academic outcomes 

was used to address this research question. Specifically, the study used school lottery 

records, student demographic data, and student outcome data on the state test in English 

language arts and mathematics, each of which were obtained directly from District Z 

(data source 2). From these District Z supplied data, the researcher created two program 

evaluation data sets based on student participation in the District Z school lottery. The 

first evaluation data set (data 2.a) contained all District Z students from the lottery file 

for which demographic and student outcome data are also available, regardless of 

Study 6 

Linear 
regression and 

LIV model; 
endogeneity 

Examine impact 
of sample size on 

method 
performance 

50, 100, 
250, 500, 

1000, 
2500, 
5000 

500 MSE 
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whether a student chose to opt out of the District Z school assignment process or 

participate2. Subsequently, a reduced data set was created by selecting only those 

students from the District Z lottery file who chose to submit a school preference list and 

thereby participate in the District Z school assignment process; this data set was then 

further refined to capture only those students who were assigned to a District Z school via 

randomization (data 2.b). A discussion of the specific details of this refinement process 

follows.  

An observational analysis of the full program evaluation data set (data 2.a), was 

first conducted, producing naive OLS estimates of the City Connects effect. The linear 

regression model included a City Connects treatment variable as the endogenous 

regressor. Subsequently, the researcher subsetted the data based on random variation 

within the student proposing DA algorithm, selecting only those students for which the 

DA propensity score lies within the interval (0,1) (data 2.b). To achieve this, the 

researcher first identified and selected out only those students for which a preference list 

of schools was submitted. Therefore, if a student did not participate in the District Z 

school assignment process, s/he was deleted from the data file.  

Following this, the researcher recreated the District Z school assignment process 

by coding up the DA algorithm along with the necessary user-specified inputs (e.g., 

preference matrices) in the R programming language. Specifically, the author used the 

“matchingR” package (Tilly & Janetos, 2018) in R for running the DA algorithm within a 

custom wrapper function. After the algorithm and user-specified inputs had been coded, 

                                                           
2 If a student does not submit a school preference list, they opt out and are thus assigned by school 
administrators. 
This process of administrative assignment takes places after the District Z school assignment process has 
concluded and is influenced by a host of non-random factors.    
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the allocation system was simulated one time. For the purposes of this study, the 

researcher operationalizes a reasonable degree of accuracy for the simulation as being 

95% accuracy, i.e., 95% of students are assigned to a school via simulation that exactly 

matched the school they are assigned to via actual District Z lottery. When a reasonable 

degree of accuracy was not achieved based upon a single run of the algorithm, the 

algorithm and user-specified inputs were refined and the simulation process was run 

again.  

Once a reasonable degree of accuracy had been achieved, the algorithm was then 

run n times with n different sets of student lottery numbers randomly drawn from a 

uniform distribution without replacement, creating a distribution of assignment. 

Subsequently, the results of these runs were tabulated, and a probability of school 

assignment for each student was calculated in frequentist fashion. Specifically, 𝑝𝑝𝑎𝑎(𝑖𝑖) = 

probability that student i gets assigned to school a = frequency with which the occurrence 

takes place across the n runs. These probabilities of school assignment are more formally 

known as DA propensity scores (Abdulkadiroglu et al., 2017), and students with DA 

propensity scores strictly between (0,1) were retained for analysis. These DA propensity 

scores were then used as covariates in the first- and second- stage equations of the IV 

analysis to control for assignment risk and create random assignment. The instrumental 

variable for this analysis was a dummy-coded variable indicating a random lottery offer 

to attend a City Connects school, and this was used in a 2SLS-IV regression to obtain 

exogenous variation in the City Connects treatment variable.  

The simulated DA propensity score IV approach was chosen because other 

traditional lottery IV regression methods result in weaker, more inaccurate instruments 
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and reduced sample sizes.  Contrastingly, the DA propensity score-based stratification 

method reduces the dimensionality of preference and priority conditioning and identifies 

the maximal set of applicants subjected to randomized assignment (Abdulkadiroglu et al., 

2017). Because the maximal set of applicants subject to randomization is identified, this 

approach arguably provides the most relevant and valid observed instrument to compare 

the instrument-free methods against. Results from this comparison may then provide 

compelling empirical validity evidence of the proposed approaches.  

As previously noted, analyses based on extracting the random variation from the 

student assignment process reduced the sample size, as only a portion of students were 

actually assigned to a District Z school in a randomized way and furthermore not all 

students partake in the District Z school assignment process and instead opt out. As a 

result, this may have introduced selection bias despite the use of instrumental variables. 

To further explore this possibility, an extension of the simple LIV model, a 

nonparametric Bayesian LIV model estimated via MCMC estimation, and a Gaussian 

copula model via a CF approach were both applied to the full data (data 2.a). Because 

one of the benefits of an instrument-free approach is that no observed instrument is 

required, the data need not be subset based on a partially random mechanism, and thus 

the LIV and Gaussian copula approach can be used with the full data set used for OLS 

analysis, something that is not feasible when taking the traditional IV approach in lottery 

studies. The full data set is referred to as a quasi-lottery study, as it includes randomized 

participants along with non-randomized participants and non-participants. To then 

compare estimates of the City Connects causal effect across lottery study designs, both 

the Bayesian LIV model and Gaussian copula model were applied to the reduced data set 
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(data 2.b), which reflects the lottery binding sample. Following this, City Connects 

causal effects were qualitatively compared across lottery study designs for evidence of 

lottery selection bias. Additionally, the researcher used this empirical application to 

further compare the instrument-free approaches with the traditional IV approach, 

applying the 2SLS-IV model to the same reduced data set as was used for the instrument-

free approaches (data 2.a). Given that the data set used for 2SLS-IV, LIV, and the 

Gaussian copula is identical, direct comparisons of the estimated regression coefficients 

can provide useful insights. Thus, all resulting estimates and their associated precision 

were qualitatively evaluated and the causal effects of the City Connects treatment model 

were explored for interpretability across methods.  

Lastly, a useful feature of the instrument-free model framework is that it allows 

for direct tests for exogeneity of the regressor using no observed instrument. For the LIV 

model, this test is calculated using the parameter estimates from the LIV model, �̂�𝛽𝑂𝑂𝐼𝐼𝐼𝐼 

(Ebbes, 2004). More specifically, the researcher tested for exogeneity by assessing the 

95% Credible Interval associated with the nonparametric Bayes LIV parameter estimate 

capturing the dependence between the endogenous regressor and the structural error term, 

denoted 𝜌𝜌.  

The endogeneity test for the Gaussian copula method, the Hausman test, is simply 

a t-test on the regression coefficient associated with the copula Control Function term, 𝑋𝑋∗ 

(Papies, Ebbes, & van Heerde, 2017). This was calculated as follows:  

𝛽𝛽�𝑋𝑋∗

�𝐼𝐼𝑎𝑎𝑉𝑉(𝛽𝛽�𝑋𝑋∗)
              (45) 
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The researcher then examined the degree to which endogeneity presented as a 

problem across models, providing evidence for the appropriateness of IV methods in a 

lottery-study. 

To address the second part of Research Question 2, how the model parameters 

generated by these approaches compare to the observed instrument, the researcher 

developed an optimal LIV instrument, denoted �̃�𝑧, by fitting a nonparametric Bayesian 

LIV model and sampling from the conditional posterior distribution for the latent 

instrument. The optimal Bayes LIV instrument, �̃�𝑧, was then calculated as the mean of this 

posterior distribution, rounded to the nearest integer (Ebbes, 2004).Once this was 

achieved, the researcher compared the optimal LIV instrument with the observed 

instrument for the traditional 2SLS-IV lottery analysis, examining classifications across 

methods via a contingency table. Furthermore, The City Connects treatment variable was 

correlated with the optimal LIV instrument to assess the relevance of the optimal LIV 

instrument, and a 2SLS estimation of the City Connects treatment effect using the 

optimal LIV instrument was compared to the treatment effect estimate obtained from 

using the observed lottery instrument. Lastly, the 2SLS-LIV regression estimate was also 

compared to the Gaussian copula City Connects effect estimate.  
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CHAPTER 4: ANALYSES AND RESULTS   

Research Question One 

 The first research question aimed to compare the performance of the LIV and 

Gaussian copula instrument-free methods with ordinary least squares and instrumental 

variable regression methods across a range of research conditions. In total, six discrete 

studies were conducted to address this research question. Study 1 involved the 

formulation of a baseline model with no endogeneity. Studies 2 and 3 investigated 

performance of OLS, IV, and instrument-free methods under endogeneity arising from 

both a linear regression and LIV model. Study 4 then further explored the impact of 

different endogeneity specifications on instrument-free method performance. Study 5 

explored misspecification of the error distribution and Study 6 focused on the impact of 

sample size and instrument quality on the performance of instrumental variable and 

instrument-free methods. Table 2 presents a summary of the studies conducted by 

describing the data generation processes, the goal of the study, the sample size used, the 

number of simulations, and the statistics that were used to evaluate the methods.  

Analyses were performed using R and WinBUGS software; specifically, the 

author used the “AER” package (Kleiber & Zeileis, 2008) and code adapted from the 

“REndo” package (Gui, Meirer, Algesheimer, & Schilter, 2019) in R. All syntax used is 

available upon request. In the following sections, the analyses and results for each of the 

six studies explored for this dissertation research are presented and discussed.  

Study 1: Exogeneity 

 The researcher first investigated the performance of the LIV and Gaussian copula 

regression methods under the research condition of exogeneity. This research condition 
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served as a baseline, comparing instrument-free methods with ordinary least squares 

under ideal experimental conditions. The data generating process (DGP) was specified to 

be the classic linear regression model as follows:  

𝑦𝑦𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 0.8 + 0.7𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (46)    

𝜀𝜀 ~ 𝑁𝑁(0,𝜎𝜎2) = 𝑁𝑁(0, 1), 

For this specification no endogeneity was present such that 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0. Additionally, 𝛽𝛽𝑖𝑖 was 

fixed and discrete and the sample size, 𝑁𝑁, was set to 500. Unless otherwise noted, a 

sample size of 𝑁𝑁 = 500 remained constant throughout this dissertation research until 

Study 6. Five-hundred hundred data sets of N = 500 were generated under the above 

specified conditions and ordinary least squares, latent instrumental variable, and Gaussian 

copula regression models were fitted. The model estimates obtained across the 500 data 

sets were subsequently used to construct the empirical sampling distributions of the 

parameter estimates 𝛽𝛽0 and 𝛽𝛽1 (Park & Gupta, 2012). The researcher investigated the 

means and standard deviations of the empirical sampling distribution and calculated 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 

to make inferences about the difference between the mean estimates and the true 

parameter value. The 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistic is the ratio of the distance of the mean estimated value 

from the true parameter value to the standard deviation of the estimated values and 

allowed the researcher to establish unbiasedness3 . As is standard in the literature, the 

researcher used a cut point of 1.96 to establish unbiasedness using the 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistic, as 

this represents roughly two standard errors and is the value corresponding to the critical t-

                                                           
3 In actuality, the author is referring to asymptotic unbiasedness, as IV and instrument-free methods are 
unbiased in the limit; furthermore, the LIV estimator is approximately consistent, as consistency of the 
estimator has only been shown via simulation and no formal mathematical proof for consistency has been 
given to date. 
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statistic for a 95% confidence interval (Park & Gupta, 2012). Means, standard errors, and 

𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 are provided in Table 3.  

 Given that the true values for the intercept and regression coefficient were 0.80 

and 0.70, respectively, we see from the mean and standard error estimates in Table 3 that 

the OLS model produces the best linear unbiased estimate of 𝛽𝛽0 and 𝛽𝛽1. This is to be 

expected, as the assumptions of OLS, in particular for exogeneity, have been satisfied 

under this particular simulation study design. Interestingly, however, both the LIV and 

Gaussian copula regression models also yield unbiased estimates of 𝛽𝛽0 and 𝛽𝛽1, even 

when no endogeneity is present. By examining the standard errors in Table 3, we note 

that the LIV estimate for the main parameter of interest, 𝛽𝛽1, is the least efficient, with 

standard errors that are more than twice that of the OLS estimate.  

Study 2: Endogeneity from Linear Regression Model 

 Study 2 investigated the performance of instrument-free methods compared with 

traditional instrumental variable regression under a range of endogeneity conditions from 

minor to severe, where 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, = 0.30, and 0.50. The DGP and parameter values used 

were as follows:  

�
𝑥𝑥𝑖𝑖
∗

𝜀𝜀𝑖𝑖
∗

𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 𝜌𝜌𝑥𝑥,𝑒𝑒 0.5
𝜌𝜌𝑥𝑥,𝑒𝑒 1 0
0.5 0 1

��, 

𝛽𝛽𝑖𝑖 = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(𝑈𝑈𝑥𝑥,𝑖𝑖) = 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) ) = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1( Ф(𝛽𝛽𝑖𝑖∗) |𝑎𝑎,𝛽𝛽 ), 

𝜀𝜀𝑖𝑖 = 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(𝑈𝑈𝜀𝜀,𝑖𝑖) = 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) = Ф−1( Ф(𝜀𝜀𝑖𝑖∗) ), 

𝑧𝑧𝑖𝑖 = 𝑈𝑈𝑧𝑧,𝑖𝑖 = Ф(𝑧𝑧𝑖𝑖∗) , 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (47) 
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where 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(  |𝛼𝛼,𝛽𝛽) is the inverse cumulative gamma distribution with shape and scale 

parameters α = 2 and 𝛽𝛽 = 2, and Ф is the standard normal cumulative distribution. 

Therefore, 𝛽𝛽𝑖𝑖 has a 𝐺𝐺𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎(2, 2) distribution, 𝜀𝜀𝑖𝑖 follows the standard normal 

distribution, and the true instrument, 𝑧𝑧𝑖𝑖, follows a continuous uniform distribution on the 

(0,1) interval. The true instrument, 𝑧𝑧𝑖𝑖, is exogenous and strongly correlated with the 

endogenous regressor (i.e., 𝜌𝜌𝑧𝑧,𝑥𝑥 = 0.5). Note that the LIV model is misspecified for these 

conditions, as the endogenous regressor is not structurally composed of a discrete, 

exogenous instrument and an additive endogenous disturbance term. Instead, a 

continuous true instrument is correlated with the endogenous regressor.  

 For each endogeneity condition, 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, = 0.30, and 0.50, OLS, IV, LIV, and 

Gaussian copula regression models were fit to the 500 data sets generated.  Model 

estimates from across the 500 data sets were used to construct the empirical sampling 

distributions of 𝛽𝛽0 and 𝛽𝛽1 (Park & Gupta, 2012). Table 4 shows the means, standard 

errors, and 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 under each condition.  

Even for the mild endogeneity condition where 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, we see from the 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 

statistics that OLS produced biased results for the regression coefficient associated with 

the endogenous regressor. Furthermore, as endogeneity increases, we see that OLS 

estimates become increasingly biased, producing mean estimates that deviate 

considerably from the true parameter values. For example, under the endogeneity 

condition of 𝜌𝜌𝑥𝑥,𝜖𝜖 = 0.5 where the true parameter value is 2.5, the OLS model produces a 

mean estimate of 3.17. Unsurprisingly, IV estimates are unbiased regardless of the level 

of endogeneity specified. This is to be expected, as the IV model makes use of the true 
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instrument, which is strongly correlated with the endogenous regressor and uncorrelated 

with the structural error term; as a result, the instrument used is ideal. For the instrument-

free methods, we see that the Gaussian copula estimates are very close in value to the true 

parameter values with bias that is not significantly different from zero; additionally, the 

LIV estimates are also unbiased, albeit less accurate than the Gaussian copula estimate4. 

The benefit is that instrument-free methods provide unbiased results without relying on 

the true instrument. However, we note that the LIV estimates may only be unbiased due 

to the inefficiency of the method under the linear regression specification, as mean 

estimates for the approach notably deviate from the true parameter value, especially for 

larger values of endogeneity.   

 Although the estimate from the OLS model is biased, we see that it remains the 

most efficient, yielding standard errors that are smaller than those from all other specified 

methods. This is problematic, however, as the distribution of the estimates is tightly 

distributed around an erroneous and biased value. Consistent with the extant literature on 

instrumental variables (Ebbes, 2004; 2009; Boef, Dekkers, Vandenbroucke, & le Cessie, 

2014), the IV estimate is less efficient than OLS, yielding a standard error nearly double 

in size. Notably, the instrument-free methods yield the largest standard errors, indicating 

less precision. The reduced efficiency compared to 2SLS IV regression is due to the fact 

that the IV approach uses the true, ideal instrument. Moreover, there is an additional 

efficiency cost for the LIV approach due to misspecification (Ebbes et al., 2009). 

                                                           
4 For maximization of the likelihood function, the author used a derivative-free optimization technique. If 
one opts for a quasi-newton approach, it is advised that analytic expressions of the gradient and Hessian 
be used, as more stable and accurate results will likely be obtained by relying on such expressions.  This is 
because when the gradient and Hessian information are not given, numerical approximations of them 
must be calculated, and such approximations introduce error.  
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Table 3.  
 
Study 1: Exogeneity 

  OLS LIV Gaussian copula 
Θ True Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 
𝛽𝛽0 0.80 0.80 0.11 0.04 0.91 0.25 0.45 0.81 0.17 0.06 
𝛽𝛽1 0.70 0.70 0.03 -0.01 0.67 0.08 -0.45 0.70 0.07 -0.04 

 

 

Table 4. 
 
 Linear Regression Endogeneity 

 
 

      OLS IV LIV Gaussian copula 

𝝆𝝆𝒙𝒙,𝝐𝝐 Θ True Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

0.1 𝛽𝛽0 1.00 0.86 0.08 -1.67 1.00 0.15 -0.03 1.09 0.27 0.34 1.00 0.22 -0.02 
𝛽𝛽1 2.50 2.64 0.07 2.10 2.51 0.14 0.04 2.42 0.27 -0.30 2.50 0.22 0.02 

0.3 𝛽𝛽0 1.00 0.59 0.08 -5.31 1.00 0.15 0.01 0.94 0.25 -0.24 0.99 0.21 -0.04 
𝛽𝛽1 2.50 2.91 0.06 6.47 2.50 0.14 -0.03 2.57 0.24 0.28 2.50 0.21 0.01 

0.5 𝛽𝛽0 1.00 0.33 0.07 -9.65 1.00 0.15 0.01 0.86 0.32 -0.44 0.99 0.20 -0.03 
𝛽𝛽1 2.50 3.17 0.06 10.76 2.50 0.14 -0.01 2.65 0.31 0.49 2.50 0.19 0.01 
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Study 3: Endogeneity under LIV Model 

For Study 3, endogeneity based on the LIV model was generated to further 

compare OLS, IV, LIV, and Gaussian copula methods. For this study, the endogenous 

regressor is structurally different than it was in Study 2, with it now being decomposed 

into two pieces: the true, discrete instrument with two categories, and an additive, 

endogenous Gaussian error term (Ebbes et al., 2009). The researcher simulated data from 

three DGP’s with varying parameters to compare estimation performance. These studies 

are described as Studies 3.1 to 3.3 in the sections that follow.  

 Study 3.1: Regression through the origin (RTO) LIV model. For this sub-

study, the DGP’s and parameters were specified using a design similar to that appearing 

in the 2012 work by Park and Gupta, where the authors compared the performance of the 

Gaussian copula model with the latent instrumental variable model under the RTO LIV 

research design. Thus, the researcher used this first DGP as a baseline for providing 

comparative evidence.  

�
𝜈𝜈𝑖𝑖
𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝑧𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1(𝑈𝑈𝑧𝑧,𝑖𝑖) = 𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) ,𝑛𝑛,𝑝𝑝𝑧𝑧 ), 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖𝜋𝜋 + 𝜈𝜈𝑖𝑖  = �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 0

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 1

�, 

𝑦𝑦𝑖𝑖 = 𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (48) 

Study 3.2: Full LIV model with intercept. The specifications of this model are 

as before, however, an RTO model is a very simple parameterization that is rarely used in 

practice, as it can lead to biases when inappropriate. Therefore, the researcher extended 
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the DGP to investigate the performance of these methods under a fuller parameterization 

that included an intercept and slope as follows:  

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (49) 

Study 3.3: Full LIV model with additional exogenous regressor. The 

researcher then extended the DGP further to include an additional control variable, 

investigating the performance of the methods under a fuller parameterization that 

included an intercept and multiple slopes. 

�

𝜈𝜈𝑖𝑖
𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖∗
𝑆𝑆𝑖𝑖
� ~ 𝑁𝑁��

0
0
0
0

�  , �

1 0.7 0 0.1
0.7 1 0 0
0 0 1 0

0.1 0 0 1

��, 

𝑧𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1(𝑈𝑈𝑧𝑧,𝑖𝑖) = 𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) ,𝑛𝑛,𝑝𝑝𝑧𝑧 ), 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖𝜋𝜋 + 𝜈𝜈𝑖𝑖  = �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 0

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 1

�, 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝛽𝛽2𝑆𝑆𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 + 0.8𝑆𝑆𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (50) 

where Ф(6,1)
−1  is the inverse normal distribution function with 𝜇𝜇 = 6 and 𝜎𝜎2 = 1; Ф(2,1)

−1  is 

the inverse normal distribution function with 𝜇𝜇 = 2 and 𝜎𝜎2 = 1; and 𝐹𝐹𝑧𝑧,𝑖𝑖
−1 is the inverse 

binomial cumulative distribution function with number of trials 𝑛𝑛 = 1 and probability of 

success for each trial 𝑝𝑝𝑧𝑧 = 0.5, 0.8. Therefore, we note that 𝜋𝜋 =  (6, 2)′ with probabilities 

𝑝𝑝𝑧𝑧 and (1 − 𝑝𝑝𝑧𝑧). Furthermore, by varying 𝑝𝑝𝑧𝑧, the researcher changes the distribution of 

𝛽𝛽𝑖𝑖; when 𝑝𝑝𝑧𝑧 =0.5, 𝛽𝛽𝑖𝑖 is bimodal and symmetric with equal maxima and when 𝑝𝑝𝑧𝑧 =0.8, 𝛽𝛽𝑖𝑖 

is bimodal with unequal maxima. Thus, in general, 𝛽𝛽𝑖𝑖  ~ 𝑝𝑝𝑧𝑧 ∗ 𝑁𝑁(6,1) + (1 − 𝑝𝑝𝑧𝑧)∗ 𝑁𝑁(2,1). 

The endogenous regressor, 𝛽𝛽𝑖𝑖 , will be correlated with the structural error by roughly  1
2
∗

𝜌𝜌𝜀𝜀,𝜈𝜈, given the specification. Given that 𝛽𝛽𝑖𝑖 comprises a discrete, exogenous instrument 
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and an endogenous Gaussian disturbance term, 𝜈𝜈𝑖𝑖 , the LIV model is correctly specified 

for these conditions. However, we note that the Gaussian copula assumes a different 

dependence structure than the one specified, namely it assumes that the dependence 

between the error term and the endogenous regressor follows a copula dependence 

structure, and thus it is misspecified for these conditions (Park & Gupta, 2012).  

 For Study 3.3 (i.e., the full LIV model with an additional exogenous variable), a 

nonparametric Bayesian LIV model was estimated instead of the simple LIV model used 

with Studies 3.1 and 3.2, as it allows for the inclusion of additional exogenous regressors 

in a simple manner and avoids identification issues that may arise with the traditional 

MLE approach (Ebbes, 2004). In contrast to the simple LIV model, the Bayesian LIV 

model does not impose restrictions on the distribution of the latent instrument but instead 

specifies a Dirichlet process as a prior distribution on the space of all possible distribution 

functions for the latent instrument. Simply put, a Dirichlet process is a collection of 

random variables, where each random variable is itself a probability distribution function; 

therefore, one can think of it as a distribution over distributions, and with each draw from 

the distribution also yielding a probability distribution (Whye Teh, 2010).  Fundamental 

to Bayesian inference is that we assign prior distributions to the unknown quantities in a 

model (Gorur & Rasmussen, 2010). However, in order to do so, we must identify the 

parameters of the prior distribution (i.e., know its parametric form). Using a Dirichlet 

process as a nonparametric prior allows us to express any uncertainty about this 

parametric form (Gorur & Rasmussen, 2010). Given the Dirichlet process prior 

specification for the Bayesian LIV model, the unknown distribution for the latent 
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instrument is then estimated from the data (Ebbes, 2004; 2005). The Bayesian LIV model 

takes the following form: 

𝑦𝑦𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖    (51A) 

𝛽𝛽𝑖𝑖 =  𝛳𝛳𝑖𝑖 +  𝜐𝜐𝑖𝑖,    (51B) 

𝑤𝑤ℎ𝑒𝑒𝑃𝑃𝑒𝑒 𝛳𝛳𝑖𝑖 𝑎𝑎𝑃𝑃𝑒𝑒 𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑝𝑝𝑒𝑒𝑛𝑛𝑑𝑑𝑒𝑒𝑛𝑛𝑡𝑡𝑜𝑜𝑦𝑦 𝑑𝑑𝑃𝑃𝑎𝑎𝑤𝑤𝑛𝑛 𝑓𝑓𝑃𝑃𝑜𝑜𝑚𝑚 𝐺𝐺 𝑎𝑎𝑛𝑛𝑑𝑑 

 𝐺𝐺 ~ 𝐷𝐷𝑃𝑃(𝛼𝛼,𝐺𝐺0) 

Unlike the simple LIV model, where we assumed a multinomial distribution with 

𝑚𝑚 outcomes for the latent instrument, we now make no parametric assumptions regarding 

the form of the latent instrument distribution (Ebbes, 2004; Ebbes, Bockenholt, Wedel, 

Nam, 2014). The distribution 𝐺𝐺 is then given a Dirichlet process prior, 𝐷𝐷𝑃𝑃(𝛼𝛼,𝐺𝐺0),  with 

non-negative concentration parameter 𝛼𝛼 and baseline prior distribution 𝐺𝐺0 (Ebbes, 2004; 

Ebbes et al., 2014). Given the added computational complexity of estimating the 

Bayesian LIV model, the number of simulations for Study 3.3 was set to 250. For Studies 

3.1 and 3.2, the number of simulations was set to 500. Tables 5, 6, and 7 show the results 

for OLS, IV, LIV, nonparametric Bayesian LIV, and Gaussian copula regression models.   

For data generated from an intercept-only LIV model, we see that OLS produces 

upwardly biased estimates (�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 2.53, = 2.56), as mean estimates from this approach 

are statistically significantly larger than the true parameter value. Given the endogeneity 

problem, this is to be expected; however, the instrumental variable regression approach, 

which relies on the true, ideal instrument, corrects for this bias, producing accurate, 

unbiased estimates for the slope, 𝛽𝛽1 that recapture the true parameter values. Both 

instrument-free methods, which do not rely on an observed instrument, also produce 

accurate, unbiased results. Furthermore, the Gaussian copula approach produces unbiased 
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results despite misspecification, which matches simulation results reported in Park and 

Gupta (2012).  This result is only for a simple parameterization, however, and we note 

that when endogeneity was based on a fully specified model with both intercept and 

slopes, the Gaussian copula estimates for both 𝛽𝛽0 and 𝛽𝛽1 became significantly biased, 

deviating considerably from the true parameter values5. Moreover, this bias occurred for 

both a symmetric and asymmetric endogenous regressor, with the copula estimate 

significantly underestimating the true causal effect. Conversely, both the LIV and 

nonparametric Bayesian LIV approaches produce unbiased, highly accurate results 

regardless of the parameterization specified. Such results suggest that the dependence 

structure matters, and the Gaussian copula approach has difficulty adapting to 

endogeneity processes that differ from that which is assumed for the model.

                                                           
5 The biased intercept estimate given by the Gaussian copula approach can be addressed by mean-
centering the regressor; however, this strategy was investigated and it did not change the result of the 
slope for the endogenous regressor being significantly biased.  Moreover, centering approaches did not 
change the results across all specified research conditions. 
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Table 5.  
 

RTO LIV Model 

 

 

Table 6. 
 

 LIV Model w/ Intercept 

 
 
 
 
 
 
 

 

      OLS IV LIV Gaussian copula 
𝒑𝒑𝒛𝒛 Θ True Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

0.5 𝛽𝛽1 2.50 2.53 0.01 3.50 2.50 0.001 -0.04 2.50 0.03 -0.07 2.49 0.01 -1.19 
0.8 𝛽𝛽1 2.50 2.56 0.01 4.90 2.50 0.01 0.03 2.50 0.03 -0.05 2.48 0.02 -1.39 

      OLS IV LIV Gaussian copula 

𝒑𝒑𝒛𝒛 Θ True Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

0.5 𝛽𝛽0 1.00 0.44 0.08 -7.12 1.01 0.09 0.06 1.02 0.11 0.14 3.20 0.35 6.21 
𝛽𝛽1 2.50 2.64 0.02 8.34 2.50 0.02 -0.06 2.50 0.03 -0.08 1.95 0.09 -6.33 

0.8 𝛽𝛽0 1.00 0.45 0.07 -7.65 1.00 0.10 0.04 1.02 0.10 0.15 2.52 0.27 5.63 
𝛽𝛽1 2.50 2.70 0.02 8.64 2.50 0.03 -0.01 2.50 0.03 -0.08 1.95 0.09 -5.83 
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  Table 7. 
 

  LIV Model w/ Additional Exogenous Regressor 

 

     OLS IV Bayesian LIV Gaussian copula 

𝒑𝒑𝒛𝒛 Θ True Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

0.5 𝛽𝛽0 1.00 0.44 0.08 -6.76 1.00 0.09 -0.01 0.98 0.17 -0.10 3.21 0.35 6.34 
𝛽𝛽1 2.50 2.64 0.02 7.88 2.50 0.02 0.04 2.50 0.04 0.11 1.94 0.09 -6.41 

 𝛽𝛽2 0.80 0.78 0.04 -0.40 0.80 0.04 -0.09 0.80 0.04 -0.09 0.76 0.04 -1.13 

0.8 𝛽𝛽0 1.00 0.44 0.07 -7.91 0.99 0.09 -0.06 0.98 0.20 -0.12 2.52 0.28 5.38 
𝛽𝛽1 2.50 2.70 0.02 8.67 2.50 0.03 0.03 2.51 0.07 0.11 1.95 0.10 -5.83 

 𝛽𝛽2 0.80 0.78 0.04 -0.49 0.80 0.04 0.03 0.80 0.04 0.01 0.75 0.04 -1.21 



 
 

83 
 

Study 4: Investigating Endogeneity with an Optimal Bayes LIV Instrument 

When taken collectively, evidence from Studies 2 and 3 strongly suggests that the 

dependence structure matters when choosing between the two instrument-free 

approaches. As shown in Study 3, when endogeneity was specified according to a full 

LIV model (i.e., there was additive separability in the endogeneous regressor and the 

model included both intercept and slopes) the least squares Gaussian copula method 

yielded significantly biased estimates.  Conversely, when endogeneity was specified 

according to the linear regression model (i.e., endogeneity was purely correlational) the 

LIV method provided far less accurate, albeit statistically unbiased, parameter estimates 

than the Gaussian copula approach. This finding suggests a potential problem with the 

LIV approach under the linear regression endogeneity specification despite reported 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 

statistics being less than the 1.96 threshold.  In other words, the researcher wonders 

whether the deviation of the LIV estimates from the true parameter value under a linear 

regression specification is an actual problem not being captured by the 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistics. 

This is important to consider because if the LIV model is significantly biased under a 

linear regression specification, then the dependence structure matters to both the 

Gaussian copula and LIV model and an additional assumption is imposed upon the 

instrument-free approaches.  

To further investigate the impact of the dependence structure, the researcher 

simulated data from two DGP’s, each with a different endogeneity specification. The 

DGP’s and true parameters are as follows:  
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DGP 4.1: Full LIV model endogeneity  

�
𝜈𝜈𝑖𝑖
𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝑧𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1(𝑈𝑈𝑧𝑧,𝑖𝑖) = 𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) ,𝑛𝑛,𝑝𝑝𝑧𝑧 ), 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖𝜋𝜋 + 𝜈𝜈𝑖𝑖  = �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 0

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 1

�, 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖    (52) 

DGP 4.2: Linear regression endogeneity 

�
𝑥𝑥𝑖𝑖
∗

𝜀𝜀𝑖𝑖
∗

𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 𝜌𝜌𝑥𝑥,𝑒𝑒 0.5
𝜌𝜌𝑥𝑥,𝑒𝑒 1 0
0.5 0 1

��, 

𝛽𝛽𝑖𝑖 = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(𝑈𝑈𝑥𝑥,𝑖𝑖) = 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) ) = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1( Ф(𝛽𝛽𝑖𝑖∗) |𝑎𝑎,𝛽𝛽), 

𝜀𝜀𝑖𝑖 = 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(𝑈𝑈𝜀𝜀,𝑖𝑖) = 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) = Ф−1( Ф(𝜀𝜀𝑖𝑖∗) ), 

𝑧𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1(𝑈𝑈𝑧𝑧,𝑖𝑖) = 𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) ,𝑛𝑛,𝑝𝑝𝑧𝑧 ), 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (53) 

where the specifications are the exact same as those in Studies 2 and 3, except now the 

true instrument, 𝑧𝑧𝑖𝑖, takes a binomial distribution across the two DGP’s. The researcher 

then sampled 250 times from both DGP 4.1 and 4.2, fitting a nonparametric Bayesian 

LIV model from Equation 51 to each sampled data set from each DGP. In fitting the 

nonparametric Bayesian LIV model to the data, the researcher produced a posterior 

distribution for the optimal Bayes LIV instrument by sampling from the following full 

conditional distribution:  

𝑝𝑝(�̃�𝑧𝑖𝑖  |�̃�𝑧−𝑖𝑖 𝛽𝛽,𝛴𝛴,𝛼𝛼,𝐺𝐺0,𝑏𝑏) ,                                (54) 
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where 𝑏𝑏 is the 𝑛𝑛 x 1 vector containing elements 𝑏𝑏𝑖𝑖, and where 𝑏𝑏𝑖𝑖 =  (𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖)6. The optimal 

Bayes LIV instrument, �̃�𝑧, was then calculated as the mean of this posterior distribution, 

rounded to the nearest integer. The rounded posterior mean produces an observed 

instrument from the estimated Bayes LIV model, allowing for comparison of this 

instrument produced by the LIV model to the true, observed instrument, 𝑧𝑧. With the 

optimal Bayes LIV instrument, the researcher performed the following analyses across 

the two DGP’s:  

1) 2SLS-IV regression using the optimal Bayes LIV instrument, comparing the 

coefficients from this method to those from the Bayes LIV and 2SLS-IV 

regression using the true instrument; 

2) correlation analysis of the optimal Bayes LIV instrument with the true 

instrument; 

3) correlation analysis of the optimal Bayes LIV instrument with the endogenous 

regressor (relevance); and  

4) correlation analysis of the optimal Bayes LIV instrument with the true error 

(exogeneity). 

The researcher then examined results from the four analyses to investigate how well the 

LIV model recovered the true parameter values and reproduced the true instrument for 

both DGP’s.  

LIV endogeneity. Tables 8 and 9 provide results for data generated from DGP 

4.1, which represents endogeneity arising from a LIV model. Specifically, Table 8 

                                                           
6 See Ebbes 2004 for the conditional posterior distributions derived in full detail  
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provides model estimates from a 2SLS-IV regression with the optimal Bayes LIV 

instrument, which are referred to as 2SLS-LIV, a Bayes LIV regression, and a 2SLS-IV 

regression with the true instrument. Table 9 provides results from correlational analyses 

performed with the optimal Bayes LIV instrument.  

From the 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistics in Table 8, we see that OLS estimates statistically 

significantly differ from the true parameter values. Given the endogeneity problem, this is 

to be expected. Moreover, as previously demonstrated, both the IV regression and the 

Bayes LIV regression approaches provide unbiased results. Moreover, we also see that 

the 2SLS-LIV approach, which uses an optimal Bayes LIV instrument estimated from the 

data as the observed instrument, produces highly accurate, unbiased estimates of the true 

parameter value. Interestingly, the 2SLS-LIV approach is more efficient than the 

Bayesian LIV approach, yielding standard errors that are less than half the size of the 

standard errors from the Bayesian LIV model. In fact, the 2SLS-LIV standard errors are 

equal to those from the IV approach using the true observed instrument, suggesting that 

the optimal LIV instrument estimated from the data is equivalent to the true instrument. 

Thus, there is an efficiency gain to estimating the latent instrument and using it in a two-

stage least squares regression.  

In looking at Table 9, we see that the Bayes LIV model produces a highly 

accurate and valid instrument. The correlation between the optimal Bayes LIV instrument 

and the true instrument is .99, and the classification accuracy for the estimated instrument 

(i.e., how well the optimal Bayes LIV instrument captures true instrument group 

membership) is 99.7%. We also see from Table 10 that the optimal Bayes LIV instrument 

is highly relevant (i.e., �̅�𝜌𝑧𝑧�,𝑥𝑥 = -.89, = -.85) and uncorrelated with the true error (�̅�𝜌𝑧𝑧�,𝜀𝜀 =  < 
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.01). In sum, results suggest that the LIV approach reproduces the true instrument very 

well, given that the dependence structure is what the method assumes.   

Linear regression endogeneity. Tables 10 and 11 provide results for data 

generated from DGP 4.b, which represents endogeneity under a linear regression 

specification. In examining Table 10, we once again see that the LIV approach yields 

inaccurate yet statistically unbiased results across all specified endogeneity conditions 

(𝜌𝜌𝑥𝑥,𝜖𝜖 = 0.1, = 0.3, and 0.5). This result matches the results seen in Study 2; however, in 

looking at the 2SLS-LIV results, we now see empirical evidence for this unbiasedness 

being solely due to the inefficiency of the LIV method under misspecification, as the 

2SLS-LIV approach yields inaccurate and statistically biased results. Furthermore, Table 

11 reveals that the optimal Bayes LIV instrument estimated from the data is no longer 

valid. We see that the optimal Bayes LIV instrument is weakly correlated with the true 

instrument (�̅�𝜌𝑧𝑧�,𝑧𝑧 = -.22, = -.23) and the classification accuracy of 43% is poor. 

Furthermore, while the optimal Bayes LIV instrument is still highly relevant (�̅�𝜌𝑧𝑧�,𝑥𝑥 = -.72, 

= -.71), it is now correlated with the true error (�̅�𝜌𝑧𝑧�,𝜀𝜀= - .05, = - .14, = - .23). Interestingly, 

the correlation between the optimal LIV instrument and the true error is about half of the 

endogeneity specified for the DGP. Thus, we see that the LIV approach under the linear 

regression specification essentially produces a less endogenous regressor, thereby 

producing biased estimates, albeit estimates closer to the true parameter value than those 

produced by OLS. In other words, there is residual endogeneous variation left over when 

the LIV model is fit to data generated from a linear regression specification and the 

dependence structure is different from that assumed by the model. 
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Table 8. 
 

 Endogeneity under DGP 4.1 
      OLS IV Bayes LIV 2SLS-LIV 

𝒑𝒑𝒛𝒛 Θ True 
Value Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

0.5 𝛽𝛽0 1.00 0.44 0.09 -6.46 1.01 0.10 0.05 0.99 0.19 -0.03 1.00 0.10 0.05 
𝛽𝛽1 2.50 2.64 0.02 8.07 2.50 0.02 -0.03 2.50 0.05 0.05 2.50 0.02 -0.02 

0.8 𝛽𝛽0 1.00 0.45 0.07 -7.73 1.00 0.09 0.04 0.95 0.31 -0.17 1.00 0.09 0.03 
𝛽𝛽1 2.50 2.70 0.02 8.80 2.50 0.03 -0.04 2.52 0.11 0.18 2.50 0.03 -0.03 

 

 

Table 9. 
 

 Correlation analyses for DGP 4.1  

Optimal Bayes LIV Instrument Correlations 

𝒑𝒑𝒛𝒛 𝝆𝝆�𝒛𝒛� ,𝒛𝒛 % correctly classified  𝝆𝝆�𝒛𝒛� ,𝒙𝒙 𝝆𝝆�𝒛𝒛� ,𝝐𝝐 

0.5 0.99 99.7% -0.89 < .001 
0.8 0.99 99.8% -0.85 < .001 
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Table 10. 
 

 Endogeneity under linear regression model DGP 4.2  

 
 

Table 11. 
 

 Correlation analyses for DGP 4.2 
Optimal Bayes LIV Instrument Correlations 

𝝆𝝆𝒙𝒙,𝝐𝝐 𝝆𝝆�𝒛𝒛� ,𝒛𝒛 % correctly classified  𝝆𝝆�𝒛𝒛� ,𝒙𝒙 𝝆𝝆�𝒛𝒛� ,𝝐𝝐 

0.1 -0.22 43% -0.72 -0.05 
0.3 -0.22 43% -0.72 -0.14 
0.5 -0.23 43% -0.71 -0.23 

 

      OLS IV Bayes LIV 2SLS-LIV 

ρx,ϵ Θ True 
Value Mean S.E. tbias Mean S.E. tbias Mean S.E. tbias Mean S.E. tbias 

0.1 
β0 1.00 0.87 0.08 -1.65 1.02 0.17 0.12 0.90 0.35 -0.29 0.91 0.14 -0.65 

β1 2.50 2.63 0.07 1.94 2.48 0.17 -0.13 2.60 0.34 0.29 2.59 0.13 0.67 

0.3 
β0 1.00 0.60 0.08 -5.24 1.01 0.18 0.06 0.70 0.31 -0.96 0.73 0.13 -2.10 

β1 2.50 2.90 0.06 6.31 2.49 0.17 -0.06 2.80 0.31 0.96 2.77 0.12 2.26 

0.5 
β0 1.00 0.33 0.07 -9.38 1.01 0.17 0.05 0.58 0.32 -1.29 0.55 0.12 -3.80 

β1 2.50 3.17 0.06 10.89 2.50 0.17 -0.02 2.92 0.33 1.29 2.96 0.11 4.14 
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Study 5: Error Misspecification 

For Study 5, the researcher examined the robustness of instrument-free methods to 

misspecification of the error term. To do so, the researcher varied the error distribution 

across a range of different DGP’s and examined model estimation across the different 

specifications. These studies are described as Studies 5.1 to 5.4 in the sections that 

follow. Each of the following subsections will outline the DGP and error distributions 

specified, true parameter values, and results.   

Study 5.1: Exogeneity. Data was first simulated from a linear regression model 

with a non-normal error term and exogenous regressor. The DGP and parameter values 

generated were as follows:  

�𝑥𝑥𝑖𝑖
∗

𝜀𝜀𝑖𝑖
∗� ~ 𝑁𝑁 ��00�  , �1 0

0 1��, 

𝛽𝛽𝑖𝑖 = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(𝑈𝑈𝑥𝑥,𝑖𝑖) = 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) ) = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1( Ф(𝛽𝛽𝑖𝑖∗) |𝑎𝑎,𝛽𝛽 ), 

𝜀𝜀𝑖𝑖 = �
𝑈𝑈𝜀𝜀,𝑖𝑖  =  Ф(𝜀𝜀𝑖𝑖∗) − 𝐸𝐸( Ф(𝜀𝜀𝑖𝑖∗) ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 1

 𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =  𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ) − 𝐸𝐸� 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 2 
𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =  𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) − 𝐸𝐸� 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 3
 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (55) 

where Ф is the standard normal cumulative distribution, 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(  | 𝑑𝑑1,𝑑𝑑2 ) is the inverse 

cumulative F-distribution with parameters 𝑑𝑑1 = 8 and 𝑑𝑑2 = 5, 𝐹𝐹𝑒𝑒,𝑖𝑖
−1( | 𝑘𝑘 ) is the inverse 

cumulative chi-square distribution with parameter 𝑘𝑘 = 4, and 𝐸𝐸( ) is the expectation 

operator. Thus, the error term takes on the uniform, F- and Chi-square distributions each 

with mean zero. Given the error specifications, all models are misspecified. Table 12 

provides the results for each specification of the error term.  
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As shown by Table 12, OLS produces estimates of the intercept and causal effect 

with both the smallest bias and standard error (e.g., 𝐵𝐵𝑖𝑖𝑎𝑎𝑏𝑏𝑂𝑂𝑂𝑂𝑂𝑂 = >-.01;  𝑆𝑆.𝐸𝐸.𝑂𝑂𝑂𝑂𝑂𝑂 = .02). 

Such a result is ensured by the Gauss-Markov theorem, where the assumption of 

normality is not required for proving unbiasedness and efficiency of the OLS estimator7. 

Interestingly, the Gaussian copula approach also gives very accurate results. Given the 

least squares specification of the model and the absence of endogeneity, this result is as 

expected, as the distributional assumptions imposed upon the regressor and error term in 

order to separate variation are not as needed.  The LIV approach gives far less accurate 

and efficient results than both OLS and Gaussian copula approaches, yielding estimates 

with large mean bias and standard errors (e.g., 𝐵𝐵𝑖𝑖𝑎𝑎𝑏𝑏𝑂𝑂𝐼𝐼𝐼𝐼 = -.43;  𝑆𝑆.𝐸𝐸.𝑂𝑂𝐼𝐼𝐼𝐼= .27); however, 

due to the large standard errors, the estimates are not significantly biased. This decreased 

accuracy and efficiency is partly due to the fact that the LIV approach is estimated 

through the method of maximum likelihood, which is much more sensitive to 

distributional misspecification.  

Study 5.2: Endogenous linear regression specification. To further investigate 

the robustness of instrument free methods to misspecification of the error term, data was 

simulated from a linear regression model with an endogenous regressor and non-normal 

error term. The researcher specified the DGP and parameter values as follows:  

 

 

                                                           
7 Although the normality assumption is not critical for estimation, it is an important assumption for 
inference; additionally, if we assume normality, the OLS estimator is then the best of all unbiased 
estimators, linear and non-linear. 
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�
𝑥𝑥𝑖𝑖
∗

𝜀𝜀𝑖𝑖
∗

𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.5 0.5
0.5 1 0
0.5 0 1

��, 

𝛽𝛽𝑖𝑖 = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(𝑈𝑈𝑥𝑥,𝑖𝑖) = 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) ) = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1( Ф(𝛽𝛽𝑖𝑖∗) |𝑎𝑎,𝛽𝛽 ), 

𝑧𝑧𝑖𝑖 = 𝑈𝑈𝑧𝑧,𝑖𝑖 = Ф(𝑧𝑧𝑖𝑖∗) , 

𝜀𝜀𝑖𝑖 = �
𝑈𝑈𝜀𝜀,𝑖𝑖  =  Ф(𝜀𝜀𝑖𝑖∗) − 𝐸𝐸( Ф(𝜀𝜀𝑖𝑖∗) ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 1

 𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =  𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ) − 𝐸𝐸� 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 2 
𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =  𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) − 𝐸𝐸� 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 3
 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (56) 

where the correlation between the regressor and error term is now 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.5, and there is 

a true instrument, 𝑧𝑧𝑖𝑖. The error term takes on the same range of distributions as for Study 

4.1. Additionally, we note that the specification of the structural error and dependence 

structure renders the LIV model severely misspecified for these research conditions. 

Means, standard errors, bias, and 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistics are reported in Table 13.  
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Table 12. 
 
 Exogeneity with Misspecified Error 
      OLS LIV Gaussian copula 

ε Θ True 
Value 

Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

~𝑈𝑈  
𝛽𝛽0 1.00 1.00 0.02 < 0.01 0.02 1.44 0.28 0.44 1.60 1.00 0.06 > -0.01 > -0.01 
𝛽𝛽1 2.50 2.50 0.02 > -0.01 -0.02 2.07 0.27 -0.43 -1.62 2.50 0.06 > -0.01 0.00 

~𝐹𝐹(8,5)  𝛽𝛽0 1.00 1.00 0.17 -0.01 -0.06 1.03 1.33 0.03 0.03 0.99 0.59 -0.01 -0.02 
𝛽𝛽1 2.50 2.51 0.18 0.01 0.06 2.44 1.18 -0.06 -0.05 2.51 0.60 0.01 0.02 

~𝜒𝜒2(4)  𝛽𝛽0 1.00 1.01 0.18 0.01 0.04 0.65 1.55 -0.35 -0.23 0.97 0.59 -0.03 -0.05 
𝛽𝛽1 2.50 2.49 0.18 -0.01 -0.04 2.81 1.55 0.31 0.20 2.53 0.60 0.03 0.05 
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Table 13. 
 
 Linear Regression Endogeneity w/ Misspecified Error 

      OLS IV 

ε Θ True 
Value 

μ S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  μ S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 

~𝑈𝑈  
𝛽𝛽0 1.00 0.81 0.02 -0.19 -11.94 1.00 0.04 > -0.01 -0.01 
𝛽𝛽1 2.50 2.69 0.02 0.19 11.64 2.50 0.04 < 0.01 < 0.01 

~𝐹𝐹(8,5)  
𝛽𝛽0 1.00 -0.25 0.33 -1.25 -3.76 1.03 0.34 0.03 0.08 
𝛽𝛽1 2.50 3.75 0.33 1.25 3.84 2.47 0.34 -0.03 -0.09 

~𝜒𝜒2(4)  
𝛽𝛽0 1.00 -0.89 0.22 -1.89 -8.76 1.02 0.40 0.02 0.05 
𝛽𝛽1 2.50 4.39 0.21 1.89 8.92 2.48 0.40 -0.02 -0.05 

 
 

Table 13 (continued). 
 
 Linear Regression Endogeneity w/ Misspecified Error 

      LIV Gaussian copula 

ε Θ True 
Value 

μ S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  μ S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

~𝑈𝑈  
𝛽𝛽0 1.00 1.35 0.23 0.35 1.57 1.01 0.05 0.01 0.14 
𝛽𝛽1 2.50 2.16 0.21 -0.34 -1.62 2.49 0.05 -0.01 -0.17 

~𝐹𝐹(8,5)  
𝛽𝛽0 1.00 -0.62 1.61 -1.62 -1.01 -0.46 1.11 -1.46 -1.31 
𝛽𝛽1 2.50 4.10 1.57 1.60 1.02 3.96 1.10 1.46 1.33 

~𝜒𝜒2(4)  
𝛽𝛽0 1.00 -1.22 1.04 -2.22 -2.14 0.03 0.63 -0.97 -1.55 
𝛽𝛽1 2.50 4.69 1.03 2.19 2.14 3.46 0.63 0.96 1.53 



 
 

95 
 

Table 13 shows that OLS produces significantly biased estimates under an 

endogenous linear regression model with misspecification of the error. For example, 

when the error term takes on a Chi-square distribution with 4 degrees of freedom, the bias 

and 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 statistics for the OLS 𝛽𝛽1 estimate are 1.89 and 8.92, respectively. Furthermore, 

by looking at Tables 12 and 13 together, we see that the bias for OLS becomes 

considerably larger when there is endogeneity combined with an asymmetric error term.  

The IV method produced highly accurate, unbiased results regardless of the error 

distribution specified. As mentioned before, this is because the method makes use of the 

true instrument, which is of perfect quality and quite unlikely to be available to the 

researcher in a real-world setting. When the error term has a uniform distribution, the 

Gaussian copula produces accurate, unbiased results for the causal effect; however, when 

the error distribution is non-normal and asymmetric, the Gaussian copula approach 

produces very inaccurate estimates with large bias, albeit bias that is not statistically 

significantly different from zero. The non-significant t-statistic is in large part due to the 

inefficiency of the Gaussian copula estimates, as the estimates deviate substantially in 

value from the true parameter values. The LIV approach produces inaccurate results, 

having the largest bias across all non-normal error distributions. Additionally, the LIV 

estimate is the least efficient of all estimates. Such results suggest that the LIV model is 

poorly suited for situations where both the dependence structure and error term is 

misspecified.  

Study 5.3: LIV specification. For Study 5.3, the error term was misspecified as it 

was in subsections 1.5.1 and 1.5.3, but now the dependence structure was specified such 

that it satisfied LIV model assumptions. Thus, the DGP was specified as follows:  
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�
𝜈𝜈𝑖𝑖
𝜀𝜀𝑖𝑖
∗

𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝑧𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1(𝑈𝑈𝑧𝑧,𝑖𝑖) = 𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) ,𝑛𝑛,𝑝𝑝𝑧𝑧 ), 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖𝜋𝜋 +  𝜈𝜈𝑖𝑖 =  �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 0

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖 = 1

�, 

𝜀𝜀𝑖𝑖 = �

𝑈𝑈𝜀𝜀,𝑖𝑖  =  Ф(𝜀𝜀𝑖𝑖∗) − 𝐸𝐸( Ф(𝜀𝜀𝑖𝑖∗) ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 1

 𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =  𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ) − 𝐸𝐸 � 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 )� , 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 2 

 𝐹𝐹𝑒𝑒,𝑖𝑖
−1�𝑈𝑈𝜀𝜀,𝑖𝑖� =  𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) =   𝐹𝐹𝑒𝑒,𝑖𝑖
−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) − 𝐸𝐸� 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) | 𝑘𝑘 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 3
 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (57) 

The above specified dependence structure combined with misspecification of the error 

now renders the Gaussian copula model severely misspecified. Results for model 

performance across all four methods are presented in Table 14.  

From Table 14, we see that OLS produces significantly biased estimates across all 

misspecified error distributions once again; this is due to the persisting endogeneity 

problem. The IV approach is robust to misspecification of the error given the true, ideal 

instrument, producing highly accurate, unbiased estimates. Of the instrument-free 

methods, the Gaussian copula approach yields highly inaccurate results with large bias. 

For the uniform and chi-square distribution, this bias is not only large but also 

statistically significant. These results suggest that the Gaussian copula approach is 

unsuitable for situations where the dependence structure differs from what the method 

assumes and the error is non-normal. Contrastingly, the LIV approach produces unbiased 

results across all misspecifications of the error. However, we notice that both the bias and 

standard error of the LIV estimates are much larger for the asymmetric non-normal error 

distributions (e.g., F- and Chi-square distributions). Such results suggest that the 
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normality assumption may not be overly restrictive for this approach, but that symmetry 

of the error distribution matters. 
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Table 14. 
 
 LIV Endogeneity w/ Misspecified Error 
      OLS IV 

ε Θ True 
Value Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

~𝑈𝑈  𝛽𝛽0 1.00 0.84 0.02 -0.16 -7.73 1.00 0.03 < 0.01 0.03 
𝛽𝛽1 2.50 2.54 0.01 0.04 7.81 2.50 0.01 > -0.01 -0.02 

~𝐹𝐹(8,5)  𝛽𝛽0 1.00 0.07 0.37 -0.93 -2.52 1.00 0.27 < 0.01 0.01 
𝛽𝛽1 2.50 2.73 0.09 0.23 2.55 2.50 0.07 > -0.01 -0.01 

~𝜒𝜒2(4)  𝛽𝛽0 1.00 -0.51 0.21 -1.51 -7.28 1.00 0.26 > -0.01 -0.01 
𝛽𝛽1 2.50 2.88 0.05 0.38 7.49 2.50 0.06 < 0.01 0.01 

 

Table 14 (continued). 
 
 LIV Endogeneity w/ Misspecified Error 
      LIV Gaussian copula 

ε Θ True 
Value Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

~𝑈𝑈  𝛽𝛽0 1.00 1.09 0.10 0.09 0.94 1.62 0.09 0.62 6.59 
𝛽𝛽1 2.50 2.48 0.02 -0.02 -0.72 2.34 0.02 -0.16 -6.69 

~𝐹𝐹(8,5)  𝛽𝛽0 1.00 0.42 3.33 -0.58 -0.17 5.41 4.81 4.41 0.92 
𝛽𝛽1 2.50 2.62 0.68 0.12 0.18 1.39 1.19 -1.11 -0.93 

~𝜒𝜒2(4)  𝛽𝛽0 1.00 0.20 1.14 -0.80 -0.70 7.16 1.13 6.16 5.43 
𝛽𝛽1 2.50 2.68 0.25 0.18 0.71 0.95 0.28 -1.55 -5.53 
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Study 5.4: Misspecification of LIV first stage error term. The simple LIV 

model assumes the existence of a discrete latent instrument and error terms that follow a 

joint normal distribution (Ebbes, 2004; 2009). Given the closure properties of Gaussians, 

it then follows that the marginal error distributions are assumed normal (Do, 2008). 

Therefore an interesting and worthwhile investigation is to examine the performance of 

the LIV model under misspecification of the first stage error term in the two-stage 

equation,  

𝑦𝑦𝑖𝑖 =  𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖  (58A) 

𝛽𝛽𝑖𝑖 =  𝛳𝛳𝑖𝑖 +  𝜐𝜐𝑖𝑖  (58B) 

To further misspecify the LIV model, different distributions for the latent instrument can 

also be considered in combination with misspecification of the error term.  To investigate 

LIV model performance under such departures from assumptions, the following DGP’s 

were generated:  

Departure 4.4.a.  

�
𝜐𝜐𝑖𝑖
∗

𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝑧𝑧𝑖𝑖 = �
2, 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖∗ < 0 
6, 𝑖𝑖𝑓𝑓 𝑧𝑧𝑖𝑖∗ ≥ 0  

𝜐𝜐𝑖𝑖 = �

𝑈𝑈𝜐𝜐,𝑖𝑖  =  Ф(𝜐𝜐𝑖𝑖∗) − 𝐸𝐸( Ф(𝜐𝜐𝑖𝑖∗) ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 1

 𝐹𝐹𝜐𝜐,𝑖𝑖
−1�𝑈𝑈𝜐𝜐,𝑖𝑖� =  𝐹𝐹𝜐𝜐,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖∗) ) =  𝐹𝐹𝜐𝜐,𝑖𝑖
−1( Ф(𝜐𝜐𝑖𝑖∗) | 𝑔𝑔1,𝑔𝑔2 )–𝐸𝐸 � 𝐹𝐹𝜐𝜐,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖∗) | 𝑔𝑔1,𝑔𝑔2 )� , 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 2 

 𝐹𝐹𝜐𝜐,𝑖𝑖
−1�𝑈𝑈𝜐𝜐,𝑖𝑖� =  𝐹𝐹𝜐𝜐,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖∗) ) =   𝐹𝐹𝜐𝜐,𝑖𝑖
−1( Ф(𝜐𝜐𝑖𝑖∗) | 𝑘𝑘 )–𝐸𝐸� 𝐹𝐹𝜐𝜐,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖∗) | 𝑘𝑘 ) �, 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 3
 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖 + 𝜈𝜈𝑖𝑖    (59A) 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖   (59B) 
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Departure 4.4.b.  

�
𝜐𝜐𝑖𝑖
𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝑧𝑧𝑖𝑖 = �
𝑈𝑈𝑧𝑧,𝑖𝑖  =  Ф(𝑧𝑧𝑖𝑖∗), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 1

 𝐹𝐹𝑧𝑧,𝑖𝑖
−1�𝑈𝑈𝑧𝑧,𝑖𝑖� =  𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) =  𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) | 𝜈𝜈1, 𝜈𝜈2 ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 2 

 𝐹𝐹𝑧𝑧,𝑖𝑖
−1�𝑈𝑈𝑧𝑧,𝑖𝑖� =  𝐹𝐹𝑧𝑧,𝑖𝑖

−1( Ф(𝑧𝑧𝑖𝑖∗) ) =   𝐹𝐹𝑧𝑧,𝑖𝑖
−1( Ф(𝑧𝑧𝑖𝑖∗) | 𝑘𝑘 ), 𝑎𝑎𝑜𝑜𝑛𝑛𝑑𝑑𝑖𝑖𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 3

 

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖 + 𝜈𝜈𝑖𝑖   (60A) 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖   (60B) 

Departure 4.4.c.  

�
𝜐𝜐𝑖𝑖
∗

𝜀𝜀𝑖𝑖
𝑧𝑧𝑖𝑖
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

𝜐𝜐𝑖𝑖= �
2, 𝑖𝑖𝑓𝑓 𝜐𝜐𝑖𝑖∗ < 0 
6, 𝑖𝑖𝑓𝑓 𝜐𝜐𝑖𝑖∗ ≥ 0  

𝛽𝛽𝑖𝑖 = 𝑧𝑧𝑖𝑖 + 𝜈𝜈𝑖𝑖   (61A) 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖  (61B) 

Tables 15, 16, and 17 summarize the results from Departures 4.4.a – c. Given the 

endogeneity problem across the specified conditions, OLS remains biased, producing 

estimates that are tightly distributed around an erroneous value. This is consistent with all 

previous simulation results and thus will not be discussed in more detail. Provided with 

the true, ideal instrument, we see that the IV approach continues to produce highly 

accurate, unbiased estimates of the true parameter value regardless of the DGP 

specification. Examining the performance of the instrument-free methods, we see that the 

Gaussian copula approach produces inaccurate estimates with large bias when the first-

stage error has a uniform and F distribution; however, when the first-stage error has a 

chi-square distribution, the approach seems to gain accuracy, producing a parameter 
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estimate with small bias. Furthermore, we see that regardless of the distribution specified 

for the latent instrument, the Gaussian copula approach yields inaccurate results with 

large bias. And when data is simulated from a LIV model with both misspecified first-

stage error term and latent instrument, the Gaussian copula approach produces estimates 

that are very inaccurate and significantly biased away from true parameter values.  

The LIV approach seems to be somewhat robust to misspecification of the first-

stage error term. Across all three first-stage error specifications, the LIV method 

produced statistically unbiased results; however, as seen with misspecification of the 

structural error term, the LIV estimates have larger bias and standard errors when the 

first-stage error term takes on asymmetric non-normal distributions. Surprisingly, the LIV 

approach produces accurate, unbiased results despite misspecification of the latent 

instrument. Such results indicate that the latent instrument assumption of the simple LIV 

model may not be overly restrictive, as model performance appears to be relatively 

unaffected under violations of this assumption. When both the first-stage error and latent 

instrument are misspecified, however, the LIV approach produces significantly biased 

results as also seen with OLS and Gaussian copula approaches. 
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Table 15. 
 
 Misspecified first-stage error 

      OLS IV 

υ Θ True 
Value 

Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃   Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃   

~𝑈𝑈  
𝛽𝛽0 1.00 0.80 0.10 -0.20 -2.03 1.00 0.10 > -0.01 -0.05 
𝛽𝛽1 2.50 2.55 0.02 0.05 2.23 2.50 0.02 < 0.01 0.03 

~𝐹𝐹(8,5)  
𝛽𝛽0 1.00 0.51 0.11 -0.49 -4.52 1.00 0.09 < 0.01 0.05 
𝛽𝛽1 2.50 2.62 0.02 0.12 5.01 2.50 0.02 > -0.01 -0.04 

~𝜒𝜒2(4)  
𝛽𝛽0 1.00 0.37 0.06 -0.63 -10.39 1.00 0.10 < 0.01 0.03 
𝛽𝛽1 2.50 2.66 0.01 0.16 15.75 2.50 0.02 > -0.01 -0.02 
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Table 15 (continued). 
 

Misspecified first-stage error 

      LIV Gaussian copula 

υ Θ True 
Value 

Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃   Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃   

~𝑈𝑈  
𝛽𝛽0 1.00 1.22 0.30 0.22 0.74 2.93 0.18 1.93 10.98 
𝛽𝛽1 2.50 2.46 0.07 -0.04 -0.55 2.01 0.04 -0.49 -11.44 

~𝐹𝐹(8,5)  
𝛽𝛽0 1.00 0.69 0.76 -0.31 -0.41 1.64 0.48 0.64 1.35 
𝛽𝛽1 2.50 2.58 0.16 0.08 0.47 2.34 0.12 -0.16 -1.35 

~𝜒𝜒2(4)  
𝛽𝛽0 1.00 0.26 0.46 -0.74 -1.61 0.87 0.29 -0.13 -0.44 
𝛽𝛽1 2.50 2.69 0.12 0.19 1.59 2.53 0.07 0.03 0.42 
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Table 16. 
 
Misspecified latent instrument 
      OLS IV 

𝒛𝒛� Θ True 
Value 

Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

~𝑈𝑈  𝛽𝛽0 1.00 0.68 0.04 -0.32 -8.84 1.01 0.10 0.01 0.09 
𝛽𝛽1 2.50 3.15 0.03 0.64 20.26 2.49 0.16 -0.01 -0.09 

~𝐹𝐹(8,5)  𝛽𝛽0 1.00 0.80 0.08 -0.20 -2.39 1.00 0.06 > -0.01 -0.01 
𝛽𝛽1 2.50 2.62 0.05 0.12 2.44 2.50 0.02 < 0.01 0.06 

~𝜒𝜒2(4)  𝛽𝛽0 1.00 0.69 0.07 -0.31 -4.21 1.00 0.08 > -0.01 -0.04 
𝛽𝛽1 2.50 2.58 0.02 0.08 4.87 2.50 0.02 < 0.01 0.05 

 

 

Table 16 (continued). 
 
Misspecified latent instrument 
      LIV Gaussian copula 

𝒛𝒛� Θ True 
Value 

Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

~𝑈𝑈  𝛽𝛽0 1.00 0.99 0.09 -0.01 -0.15 0.67 0.15 -0.33 -2.17 
𝛽𝛽1 2.50 2.53 0.17 0.03 0.18 3.15 0.30 0.65 2.16 

~𝐹𝐹(8,5)  𝛽𝛽0 1.00 0.96 0.17 -0.04 -0.24 1.28 0.15 0.28 1.87 
𝛽𝛽1 2.50 2.52 0.09 0.02 0.19 2.32 0.10 -0.18 -1.86 

~𝜒𝜒2(4)  𝛽𝛽0 1.00 0.83 0.25 -0.17 -0.68 1.68 0.27 0.68 2.52 
𝛽𝛽1 2.50 2.54 0.06 0.04 0.67 2.33 0.07 -0.17 -2.57 
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Table 17. 
 
Misspecified latent instrument and first-stage error 

    OLS IV LIV Gaussian copula 

Θ True 
Value Mean S.E. Bias  𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  Mean S.E. Bias 𝒕𝒕𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃  

𝛽𝛽0 1.00 0.10 0.08 -0.90 -11.88 1.01 0.19 0.01 0.03 0.04 0.27 -0.96 -3.60 -0.98 0.28 -1.98 -7.02 

𝛽𝛽1 2.50 2.72 0.02 0.22 13.10 2.50 0.05 > -0.01 -0.04 2.74 0.06 0.24 4.03 3.00 0.07 0.50 7.09 
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Study 6: Impact of Sample Size and Instrument Quality  

 Study 6 investigates the impact of sample size on the performance of instrumental 

variable regression compared with that of instrument-free methods. The comparisons are 

described as sub-studies of Study 6. To perform these sub-studies, the researcher 

simulated endogeneity from three DGP’s and varied the sample size, N, for each DGP as 

follows: 50, 100, 250, 500, 1000, 2500, and 5000. Such values for N reflect sample sizes 

ranging from very small to considerably large. The DGP’s and true parameter values 

were specified as follows:   

DGP 6.a: Linear Regression Model  

�
𝑥𝑥𝑖𝑖
∗

𝜀𝜀𝑖𝑖
∗

𝑧𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 𝜌𝜌𝑥𝑥,𝑒𝑒 𝜌𝜌𝑥𝑥,𝑧𝑧
𝜌𝜌𝑥𝑥,𝑒𝑒 1 𝜌𝜌𝑧𝑧,𝑒𝑒
𝜌𝜌𝑥𝑥,𝑧𝑧 𝜌𝜌𝑧𝑧,𝑒𝑒 1

��, 

𝛽𝛽𝑖𝑖  = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1(𝑈𝑈𝑥𝑥,𝑖𝑖) = 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) ) = 𝐹𝐹𝑥𝑥,𝑖𝑖
−1( Ф(𝛽𝛽𝑖𝑖∗) |2, 2 ) − 𝐸𝐸( 𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝛽𝛽𝑖𝑖∗) |2, 2 ) ) , 

𝜀𝜀𝑖𝑖 = 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(𝑈𝑈𝜀𝜀,𝑖𝑖) = 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) = Ф−1( Ф(𝜀𝜀𝑖𝑖∗) ), 

𝑧𝑧𝑖𝑖 = 𝑈𝑈𝑧𝑧,𝑖𝑖 = Ф(𝑧𝑧𝑖𝑖∗) , 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (62) 

DGP 6.b: Latent Instrument is Observed Instrument LIV Model 

�
𝜈𝜈𝑖𝑖
𝜀𝜀𝑖𝑖
∗

�̃�𝑧𝑖𝑖∗
� ~ 𝑁𝑁��

0
0
0
�  , �

1 0.7 0
0.7 1 0
0 0 1

��, 

�̃�𝑧 = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1(𝑈𝑈𝑧𝑧�,𝑖𝑖) = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1( Ф(�̃�𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1( Ф(�̃�𝑧𝑖𝑖∗) , 1, 0.5), 

𝛽𝛽𝑖𝑖  = �̃�𝑧𝜋𝜋 +  𝜈𝜈𝑖𝑖  =  �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 �̃�𝑧 = 1

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜈𝜈𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜈𝜈𝑖𝑖) ), 𝑖𝑖𝑓𝑓 �̃�𝑧 = 0

�, → 𝛽𝛽𝑖𝑖=𝛽𝛽𝑖𝑖 −

 𝐸𝐸( 𝛽𝛽𝑖𝑖  ), 

𝜀𝜀𝑖𝑖 = 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(𝑈𝑈𝜀𝜀,𝑖𝑖) = 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) = Ф−1( Ф(𝜀𝜀𝑖𝑖∗) ), 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 +  2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (63) 



 
 

107 
 

DGP 6.c: LIV Model with Observed Instrument 

�

𝜐𝜐𝑖𝑖
𝜀𝜀𝑖𝑖
∗

�̃�𝑧𝑖𝑖∗
𝑧𝑧𝑖𝑖

� ~ 𝑁𝑁

⎝

⎛�

0
0
0
0

�  ,

⎣
⎢
⎢
⎡

1 𝜌𝜌𝜐𝜐,𝑒𝑒 0 0
𝜌𝜌𝜐𝜐,𝑒𝑒 1 0 𝜌𝜌𝑧𝑧,𝑒𝑒

0 0 1 𝜌𝜌𝑧𝑧�,𝑧𝑧
0 𝜌𝜌𝑧𝑧,𝑒𝑒 𝜌𝜌𝑧𝑧�,𝑧𝑧 1 ⎦

⎥
⎥
⎤

⎠

⎞, 

�̃�𝑧𝑖𝑖 = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1(𝑈𝑈𝑧𝑧�,𝑖𝑖) = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1( Ф(�̃�𝑧𝑖𝑖∗) ) = 𝐹𝐹𝑧𝑧�,𝑖𝑖−1( Ф(�̃�𝑧𝑖𝑖∗) , 1, 0.5), 

𝛽𝛽𝑖𝑖  = �̃�𝑧𝑖𝑖𝜋𝜋 + 𝜐𝜐𝑖𝑖  = �
𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖) ) =  Ф(6,1)
−1 ( Ф(𝜐𝜐𝑖𝑖) ), 𝑖𝑖𝑓𝑓 �̃�𝑧𝑖𝑖 = 1

𝐹𝐹𝑥𝑥,𝑖𝑖
−1�𝑈𝑈𝑥𝑥,𝑖𝑖� =  𝐹𝐹𝑥𝑥,𝑖𝑖

−1( Ф(𝜐𝜐𝑖𝑖) ) =  Ф(2,1)
−1 ( Ф(𝜐𝜐𝑖𝑖) ), 𝑖𝑖𝑓𝑓 �̃�𝑧𝑖𝑖 = 0

� → 𝛽𝛽𝑖𝑖  = 𝛽𝛽𝑖𝑖 −

 𝐸𝐸( 𝛽𝛽𝑖𝑖  ), 

𝜀𝜀𝑖𝑖 = 𝐹𝐹𝑒𝑒,𝑖𝑖
−1(𝑈𝑈𝜀𝜀,𝑖𝑖) = 𝐹𝐹𝑒𝑒,𝑖𝑖

−1( Ф(𝜀𝜀𝑖𝑖∗) ) = Ф−1( Ф(𝜀𝜀𝑖𝑖∗) ), 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 +  𝛽𝛽1𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖 = 1 + 2.5𝛽𝛽𝑖𝑖 +  𝜀𝜀𝑖𝑖,  (64) 

Five-hundred data sets were independently generated for each sample size N. 

Additionally, the degree of endogeneity, relevance and validity of the observed 

instrument were varied in order to compare performance of the instrument-free methods 

with the instrumental variable method across a range of different scenarios in 

combination with sample size. For the linear regression specification (DGP 6.a), 

endogeneity, denoted 𝜌𝜌𝑥𝑥,𝑒𝑒, was set equal to 0.1 and 0.5, representing minor and severe 

degrees of endogeneity, respectively. Likewise, instrument relevance, 𝜌𝜌𝑥𝑥,𝑧𝑧,  was set equal 

to 0.1 and 0.5, representing a weak to strong instrument, respectively. Instrument validity, 

𝜌𝜌𝑧𝑧,𝑒𝑒, was set equal to 0.0, 0.1, and 0.5, representing a valid instrument; an invalid, slightly 

endogenous instrument; and an invalid, severely endogenous instrument.  

For the LIV specification DGP 6.1b, endogeneity was generated from a simple 

LIV model with a discrete, relevant, and exogenous latent instrument. Furthermore, the 

latent instrument comprising the exogenous part of 𝛽𝛽𝑖𝑖 was also used as the observed 

instrument in the instrumental analyses performed under DGP 6.b. This represents the 
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rare, yet ideal scenario where the latent instrument manifests itself as the observed 

instrument, i.e., �̃�𝑧𝑖𝑖 = 𝑧𝑧𝑖𝑖, and therefore the perfect, true instrument is available to the 

researcher.  

For the LIV specification DGP 6.1c, the exogenous variation in 𝛽𝛽𝑖𝑖 is also captured 

by the discrete latent instrument, �̃�𝑧𝑖𝑖; however, this latent variable now remains 

unobserved and instead an observed instrument, 𝑧𝑧𝑖𝑖, is available to the researcher that 

varies in respect to validity and relevance8. This represents the arguably more common 

research scenario where the researcher searches for and identifies an available instrument 

that is not the true instrument but serves as a proxy and is of variable quality. For this 

DGP, instrument relevance, 𝜌𝜌𝑧𝑧�,𝑧𝑧, was set equal to 0.1 and 0.7, representing a weak and 

strong instrument, respectively. The values for instrument relevance, 𝜌𝜌𝑧𝑧�,𝑧𝑧, differ from 

those in the linear regression specification because both the non-linear transformation of 

�̃�𝑧𝑖𝑖∗ and the structural specification of 𝛽𝛽𝑖𝑖 attenuates the specified correlation9; level of 

endogeneity, denoted 𝜌𝜌𝜐𝜐,𝑒𝑒, was set equal to 0.2 and 0.8, representing minor and severe 

degrees of endogeneity, respectively. These values also differ from 𝜌𝜌𝑥𝑥,𝑒𝑒 in the linear 

regression specification because the endogenous regressor, 𝛽𝛽𝑖𝑖, for the LIV model will be 

correlated with the structural error by roughly  1
2
∗ 𝜌𝜌𝜐𝜐,𝑒𝑒, given the specification. Lastly, 

instrument validity, 𝜌𝜌𝑧𝑧,𝑒𝑒, was specified the same as it was for the linear regression 

specification.  

                                                           
8 Varying the parameters in the correlation matrix resulting from this specification led to 12 matrices, of 
which 1 was non-positive definite, i.e., it would not be a population correlation matrix; this was handled 
by computing the nearest positive definite matrix and using a correlation matrix based on this result.   
9 This attenuation happens especially for higher values of the correlation 
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For all DGPs, we note that the endogenous regressor, 𝛽𝛽𝑖𝑖, was mean-centered in 

order to allow for unbiased estimation of the intercept across all methods; as a result, the 

researcher omits results for the intercept for this section and only focuses on information 

regarding the regression coefficient, 𝛽𝛽1. This was done in order to limit the amount of 

output presented, as given the number of parameters varied for this section, the output 

was considerable. The statistic of central focus for all following sections is Mean Squared 

Error (MSE), which is a measure of how far an estimate is from the true parameter value 

on average (Boef, Dekkers, Vandenbroucke, & le Cessie, 2014). In mathematical terms, 

this statistic is the average of the squared deviations of an estimate from the true 

parameter value, and is written as  

𝑀𝑀𝑆𝑆𝐸𝐸 = 𝐸𝐸[��̂�𝛽 − 𝛽𝛽�
2

] = 𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏2 +  𝑣𝑣𝑎𝑎𝑃𝑃𝑖𝑖𝑎𝑎𝑛𝑛𝑆𝑆𝑒𝑒                  (65) 

The MSE was chosen as a performance measure because it simultaneously takes into 

account both the bias and variance of an estimate. A lower MSE value means that an 

estimate is, on average, closer to the true parameter value and thereby indicates better 

estimation performance.  

Study 6.1: High quality instruments. The performance of OLS, IV, and the 

Gaussian copula methods were first compared with data generated from DGP 6.a, 

representing the condition where there is a highly relevant, valid instrument, i.e., a perfect 

instrument. Table 18 provides MSE statistics for the three methods. We see that when 

endogeneity is minor, i.e., 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, OLS produces the estimate that is on average 

closest to the true parameter value for 𝑁𝑁 ≤ 500. This is largely due to the smaller 

variance of the OLS estimate at smaller sample sizes; additionally, the minor endogeneity 

condition biases OLS parameter estimates only slightly when compared with more severe 
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endogeneity conditions. Consistent with the extant literature on instrumental variables, 

results show that IV regression outperforms OLS at larger sample sizes, 𝑁𝑁 > 500, even 

under the most ideal conditions where a perfect instrument is available. Moreover, we see 

that the Gaussian copula regression approach also requires larger sample sizes, 

outperforming OLS at 𝑁𝑁 > 1000 and equaling the performance of IV regression with a 

perfect instrument at 𝑁𝑁 ≥ 5000. As expected, however, both the instrumental variable 

and Gaussian copula regression approaches outperform OLS at much smaller sample 

sizes when endogeneity becomes more severe, i.e., 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.50; specifically, IV with a 

perfect instrument outperforms OLS at an 𝑁𝑁 = 50 and the Gaussian copula approach 

outperforms OLS at  𝑁𝑁 = 100. Thus, we see that both the degree of unmeasured 

confounding and sample size matter when determining performance of instrumental 

variable and the Gaussian copula approaches relative to OLS. Additionally, we note that 

the Gaussian copula instrument-free approach never outperforms IV regression in terms 

of MSE when a perfect instrument is available to the researcher.  
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Table 18. 
 
 Strong, Valid Instrument under Linear Regression model* 

Mean Squared Error 
N 𝝆𝝆𝒙𝒙,𝒆𝒆 OLS IV  Gaussian copula 

50 0.1 0.06 0.25 0.55 
0.5 0.51 0.32 0.66 

100 0.1 0.04 0.11 0.29 
0.5 0.49 0.12 0.28 

250 0.1 0.03 0.04 0.10 
0.5 0.47 0.04 0.10 

500 0.1 0.02 0.02 0.04 
0.5 0.46 0.02 0.04 

1,000 0.1 0.02 0.01 0.02 
0.5 0.45 0.01 0.02 

2,500 0.1 0.02 < .01 0.01 
0.5 0.45 < .01 0.01 

5,000 0.1 0.02 < .01 < .01 
0.5 0.45 < .01 < .01 

*True parameter value is 2.5   

The researcher next compared the performance of the LIV instrument-free method 

with that of OLS and instrumental variable regression with a perfect instrument. Table 19 

gives MSE statistics for data generated from DGP 6.b, representing the scenario where 

the latent instrument manifests itself as the observed instrument, and thus the researcher 

once again has a perfect instrument available for use. Moreover, there is moderate to 

severe endogeneity for this condition (i.e., 𝜌𝜌𝜀𝜀∗,𝜐𝜐 = 0.7). 
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Table 19. 

 Latent instrument is observed instrument* 
Mean Squared Error 

N OLS IV LIV 
50 0.022 0.006 0.006 
100 0.020 0.003 0.002 
250 0.020 0.001 0.001 
500 0.020 0.001 0.001 

1,000 0.019 < .001 < .001 
2,500 0.020 < .001 < .001 
5,000 0.020 < .001 < .001 

*True parameter value is 2.5  
 

Similar to the results comparing OLS, IV and the Gaussian copula methods, we see that 

both IV regression and the instrument-free LIV method outperform OLS at small sample 

sizes, 𝑁𝑁 = 50, when endogeneity is severe.  For example, the MSE for IV and LIV is 

.006, whereas for OLS the MSE is 0.022. More interestingly, we see that the performance 

of the LIV instrument-free method equals that of the IV method across roughly all sample 

sizes. This suggests that the LIV method produces estimates that are, on average, as close 

to the true parameter value as estimates from an IV regression using a perfect instrument. 

This finding is conditional on the assumptions of the LIV model being satisfied10.  

Subsequently, the performance of the LIV instrument-free method was compared 

with that of OLS and IV regression approaches under varying degrees of endogeneity. A 

strong, valid instrument remains available for use with IV regression; however, for this 

condition, the observed instrument is no longer the latent instrument, but is instead a 

                                                           
10 Specifically, there exists a discrete latent instrument that is uncorrelated with the error term and there 
is additive separability in the endogenous regressor.  
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proxy for it, albeit a high quality one. Table 20 provides MSE statistics across all three 

methods as a comparative measure.  

Table 20. 
 
 High quality observed instrument under LIV model* 

Mean Squared Error 
N 𝝆𝝆𝝊𝝊,𝒆𝒆 OLS IV LIV 

50 0.2 0.005 0.019 0.006 
0.8 0.028 0.022 0.005 

100 0.2 0.003 0.009 0.003 
0.8 0.027 0.008 0.002 

250 0.2 0.002 0.003 0.001 
0.8 0.026 0.004 0.001 

500 0.2 0.002 0.002 0.001 
0.8 0.026 0.002 0.001 

1,000 0.2 0.002 0.001 < .001 
0.8 0.026 0.001 < .001 

2,500 0.2 0.002 < .001 < .001 
0.8 0.025 < .001 < .001 

5,000 0.2 0.002 < .001 < .001 
0.8 0.026 < .001 < .001 

*True parameter value is 2.5 

Consistent with the researcher’s previous findings, we see that IV regression outperforms 

OLS at larger sample sizes, 𝑁𝑁 > 500, when there exists minor endogeneity.  

Interestingly, however, is that the instrument-free LIV method outperforms OLS at 𝑁𝑁 > 

100 for the minor endogeneity condition (i.e., 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.2). Moreover, the LIV approach 

outperforms the IV regression approach across all sample sizes. This is due to the IV 

approach no longer using the true latent instrument but instead using an observed 

instrument. Although the observed instrument is of very high quality, there is an 

efficiency cost for using an observed variable as a proxy for the true latent instrument, 

and thus the method underperforms the LIV method. These findings, in conjunction with 

the findings from Table 19, suggest that the LIV method is comparable to an IV method 
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with a true, perfect instrument. Findings from the severe endogeneity condition, 𝜌𝜌𝜐𝜐,𝑒𝑒 = 

0.8, are similar as those from 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.2; however, we now see that the IV regression 

approach outperforms OLS at much smaller sample sizes, 𝑁𝑁 = 50, as was found with 

earlier comparisons. Additionally, the instrument-free LIV method outperforms both 

OLS and IV regression with an observed high quality instrument across all sample sizes 

when severe endogeneity exists.  

 Study 6.2: Weak instruments. The performance of OLS, IV with a weak, valid 

instrument, and instrument-free methods was compared across various sample sizes. To 

specifically compare OLS, IV with a weak instrument, and the Gaussian copula method, 

data was generated from DGP 6.a with 𝜌𝜌𝑥𝑥,𝑧𝑧 = 0.10. This represents the likely scenario 

where the researcher, in an attempt to satisfy the exogeneity requirement, identifies an 

instrument that is only weakly correlated with the endogenous regressor. Table 21 

provides MSE statistics across the three methods.  
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Table 21. 
 
 Weak, valid instrument under Linear Regression model* 

Mean Squared Error 
N 𝝆𝝆𝒙𝒙,𝒆𝒆 OLS IV Gaussian copula 

50 0.1 0.06 3991.10 0.62 
0.5 0.51 489.08 0.64 

100 0.1 0.04 3145.71 0.28 
0.5 0.5 226.88 0.28 

250 0.1 0.02 345.28 0.09 
0.5 0.46 177.48 0.08 

500 0.1 0.02 538.04 0.05 
0.5 0.45 61.04 0.04 

1,000 0.1 0.02 1.3 0.02 
0.5 0.45 0.51 0.02 

2,500 0.1 0.02 0.11 0.01 
0.5 0.45 0.13 0.01 

5,000 0.1 0.02 0.05 < .01 
0.5 0.45 0.06 < .01 

*True parameter value is 2.5 

For the minor endogeneity condition, 𝜌𝜌𝑥𝑥,𝑒𝑒= 0.10, we see that once again the instrument-

free Gaussian copula method requires larger sample sizes, outperforming OLS at 𝑁𝑁 > 

1000, which is consistent with the researcher’s previous findings. Notably, however, the 

Gaussian copula approach now outperforms the IV method across all sample sizes. This 

is interesting because the instrument used for the IV method is still a valid instrument. 

Given the weak instrument, the IV method also underperforms the OLS method across all 

sample sizes as well.  

For the severe endogeneity condition, 𝜌𝜌𝑥𝑥,𝑒𝑒= 0.50, we note that the IV method 

requires very large sample sizes, outperforming OLS at 𝑁𝑁 ≥ 2,500. However, the IV 

regression approach still never outperforms the Gaussian copula method when the 

instrument is weak, regardless of the degree of endogeneity specified. Furthermore, given 

the severe degree of endogeneity present, the Gaussian copula approach now outperforms 
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OLS at much smaller sample sizes, producing estimates that are on average closer to the 

true parameter value for 𝑁𝑁 ≥ 100. Such result suggest that using a weak instrument under 

the IV approach still produces consistent estimates, however, very large sample sizes are 

required before the method is of value. In such instances, it is far more beneficial to use 

the instrument-free Gaussian copula approach, which produces much more accurate 

results at far smaller sample sizes.   

The researcher next generated data from DGP 6.c with 𝜌𝜌𝑧𝑧�,𝑧𝑧 = 0.2, representing a 

weak observed instrument. Table 22 provides MSE statistics for OLS, IV, and LIV 

models.  

Table 22. 

 
 Weak, valid instrument under LIV model* 

Mean Squared Error 
N 𝝆𝝆𝝊𝝊,𝒆𝒆 OLS IV LIV 

50 0.2 0.006 14.691 0.007 
0.8 0.028 301.462 0.005 

100 0.2 0.004 7.687 0.003 
0.8 0.027 12.462 0.002 

250 0.2 0.002 93.141 0.001 
0.8 0.026 29.1 0.001 

500 0.2 0.002 1.246 0.001 
0.8 0.026 4.138 0.001 

1,000 0.2 0.002 0.323 < .001 
0.8 0.025 0.485 < .001 

2,500 0.2 0.002 0.021 < .001 
0.8 0.026 0.024 < .001 

5,000 0.2 0.002 0.009 < .001 
0.8 0.026 0.009 < .001 

*True parameter value is 2.5 

Once again, we see that the IV model performs the worst under the weak endogeneity 

condition of 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.2, underperforming both OLS and LIV approaches across all sample 
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sizes. The instrument-free LIV approach outperforms both OLS and IV at 𝑁𝑁 ≥ 100, 

producing estimates that are on average closest to the true parameter value for these 

sample sizes. For the major endogeneity condition of 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.8, results for the IV 

regression approach are consistent with earlier results, with the IV regression requiring 

very large sample sizes, 𝑁𝑁 ≥ 2,500, before outperforming OLS. Additionally, IV with a 

weak instrument never outperforms the LIV method, regardless of the degree of 

endogeneity specified. Such results suggest that the LIV approach is a suitable alternative 

to IV regression methods, especially when the instrument is valid but weak and the 

sample size is small.  

 Study 6.3: Strong, invalid instruments. Instrument quality in combination with 

sample size was once again varied, and the researcher generated data from DGP 6.a with 

𝜌𝜌𝑥𝑥,𝑧𝑧 = 0.5 and 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.10, 0.50. Such values represent a strong but invalid instrument and 

the likely scenario of the researcher using an endogenous instrument due to trying to 

satisfy the relevance requirement. Table 23 provides the MSE statistics for this condition.  

For the minor endogeneity condition, 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, results in Table 23 once again 

show that the Gaussian copula method outperforms OLS at 𝑁𝑁 ≥ 1000. In regards to 

instrument quality, we see that when minor endogeneity is combined with instrument 

invalidity, IV never outperforms OLS, yielding estimates farther from the true parameter 

value on average. This is true regardless of the degree of instrument validity specified, 

i.e., 𝜌𝜌𝑧𝑧,𝑒𝑒  = 0.10 and 0.50. Comparing IV to the instrument-free Gaussian copula method, 

we see that instrument validity matters more. When there is minor endogeneity and the 

instrument is only slightly invalid, the Gaussian copula method outperforms IV 
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regression at 𝑁𝑁 ≥ 250; however, when the instrument becomes strongly invalid, the 

Gaussian copula method outperforms IV regression across all sample sizes. 
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Table 23. 
 
 Strong, invalid instrument under Linear Regression model* 

Mean Squared Error 
N 𝝆𝝆𝒛𝒛,𝒆𝒆 𝝆𝝆𝒙𝒙,𝒆𝒆 OLS IV Gaussian copula 

50 
0.1 0.1 0.06 0.44 0.60 

0.5 0.51 0.33 0.76 

0.5 0.1 0.07 7.37 0.62 
0.5 0.51 2.80 0.69 

100 
0.1 0.1 0.04 0.22 0.31 

0.5 0.48 0.19 0.29 

0.5 0.1 0.04 2.80 0.27 
0.5 0.48 2.42 0.28 

250 
0.1 0.1 0.03 0.14 0.10 

0.5 0.46 0.11 0.10 

0.5 0.1 0.03 2.38 0.10 
0.5 0.47 2.34 0.09 

500 
0.1 0.1 0.02 0.11 0.05 

0.5 0.46 0.10 0.04 

0.5 0.1 0.02 2.29 0.04 
0.5 0.46 2.29 0.04 

1,000 
0.1 0.1 0.02 0.10 0.02 

0.5 0.45 0.10 0.02 

0.5 0.1 0.02 2.31 0.02 
0.5 0.45 2.24 0.02 

2,500 
0.1 0.1 0.02 0.09 0.01 

0.5 0.45 0.09 0.01 

0.5 0.1 0.02 2.24 0.01 
0.5 0.45 2.25 0.01 

5,000 
0.1 0.1 0.02 0.09 < .01 

0.5 0.45 0.09 < .01 

0.5 0.1 0.02 2.25 < .01 
0.5 0.45 2.25 < .01 

 *True parameter value is 2.5 

When degree of endogeneity is increased, 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.50, we notice slightly different 

results.  Given severe endogeneity and only minor instrument invalidity, i.e., 𝜌𝜌𝑧𝑧,𝑒𝑒  = 0.10, 

we see that IV regression now outperforms OLS across all sample sizes. This is due to 

the large bias in the OLS estimates resulting from severe endogeneity. As before, the 
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Gaussian copula method outperforms the IV approach at 𝑁𝑁 ≥ 250. However, when 

instrument invalidity is increased, 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.50, IV regression now underperforms OLS 

across all sample sizes, indicating that the bias in the IV estimates that results from the 

invalidity of the observed instrument is worse than the bias in the OLS estimates resulting 

from severe endogeneity. Additionally, when instrument invalidity is severe, the 

instrument-free Gaussian copula method outperforms IV regression across all sample 

sizes. Given severe endogeneity, the Gaussian copula method once again outperforms 

OLS for 𝑁𝑁 ≥ 100. Overall, such results suggest that the Gaussian copula approach is a 

suitable alternative to both OLS and IV regression for even small to moderate sample 

sizes when there is a high degree of endogeneity and a highly valid instrument is 

unavailable.  

Instrument validity in combination with sample size was varied under the LIV 

model in order to compare OLS, IV, and LIV approaches. The researcher now generated 

data from DGP 6.c with 𝜌𝜌𝑧𝑧�,𝑧𝑧  = 0.7 and 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.10 and 0.50. Table 24 provides MSE 

statistics for OLS, IV, and LIV under given specifications. For the minor endogeneity 

condition, 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.20, we note that the LIV method outperforms OLS at 𝑁𝑁 ≥ 250. 

Interestingly, when minor endogeneity is combined with instrument invalidity, we see 

that IV regression underperforms both the OLS and LIV approaches across all sample 

sizes, yielding estimates that are on average farthest from the true parameter value. This 

is true regardless of the level of instrument invalidity specified, i.e., 𝜌𝜌𝑧𝑧,𝑒𝑒  = 0.10 and 0.50. 

This is largely due to the fact that the IV regression makes use of not only an invalid 

instrument, thus biasing its estimates, but also an observed proxy instead of the true, 

latent instrument, thereby incurring an efficiency cost. 



 
 

121 
 

Table 24. 
 
 Strong, invalid instrument under LIV model* 

Mean Squared Error 
N 𝝆𝝆𝒛𝒛,𝒆𝒆 𝝆𝝆𝝊𝝊,𝒆𝒆 OLS IV LIV 

50 
0.1 0.2 0.006 0.028 0.006 

0.8 0.028 0.023 0.005 

0.5 0.2 0.005 0.263 0.006 
0.8 0.027 0.210 0.005 

100 
0.1 0.2 0.003 0.018 0.003 

0.8 0.026 0.014 0.002 

0.5 0.2 0.004 0.211 0.003 
0.8 0.027 0.196 0.002 

250 
0.1 0.2 0.002 0.011 0.001 

0.8 0.026 0.011 0.001 

0.5 0.2 0.002 0.207 0.001 
0.8 0.026 0.191 0.001 

500 
0.1 0.2 0.002 0.009 0.001 

0.8 0.026 0.009 < .001 

0.5 0.2 0.002 0.207 0.001 
0.8 0.026 0.190 0.001 

1,000 
0.1 0.2 0.002 0.009 < .001 

0.8 0.026 0.009 < .001 

0.5 0.2 0.002 0.203 < .001 
0.8 0.026 0.185 < .001 

2,500 
0.1 0.2 0.002 0.008 < .001 

0.8 0.026 0.008 < .001 

0.5 0.2 0.002 0.201 < .001 
0.8 0.026 0.184 < .001 

5,000 
0.1 0.2 0.002 0.008 < .001 

0.8 0.026 0.008 < .001 

0.5 0.2 0.002 0.200 < .001 
0.8 0.026 0.184 < .001 

*True parameter value is 2.5 

 When the degree of endogeneity is increased, 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.80, we once again see that 

instrument validity matters more. We see that when severe endogeneity is combined with 

minor instrument invalidity, IV regression outperforms OLS across all sample sizes; 

however, when the invalidity of the instrument is increased, 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.50, OLS now 
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outperforms IV regression across all sample sizes, once again indicating that the bias in 

the IV estimates resulting from the invalidity of the observed instrument is worse than the 

bias in the OLS estimates resulting from severe endogeneity. Importantly, we note that 

regardless of the invalidity of the instrument specified, the IV regression approach never 

outperforms the LIV method. Such results suggest that the LIV approach is a suitable 

alternative to both OLS and IV for even small to moderate sample sizes when 

endogeneity is present and a valid instrument is unavailable.  

 Study 6.4: Weak, invalid instruments. The researcher investigated the impact of 

sample size on OLS, IV with weak, invalid instruments, and instrument-free methods. In 

comparing OLS, IV, and the Gaussian copula approach, data was generated from DGP 

6.a with 𝜌𝜌𝑥𝑥,𝑧𝑧 = 0.1 and 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.10, 0.50. This represents the scenario where the researcher 

has identified an overall poor quality instrument, as it is both weak and invalid. Table 25 

provides MSE statistics across sample sizes for this scenario.  

From Table 25, we can see that the IV approach underperforms both OLS and 

Gaussian copula approaches across all sample sizes, regardless of degree of endogeneity 

specified or level of instrument invalidity specified. For example, for a sample size of 

5,000, instrument endogeneity of .10, and regressor endogeneity of .50, we see that MSE 

is .45, 2.38, and < .01 for OLS, IV, and Gaussian copula methods, respectively. Such 

results indicate that the combination of low instrument relevance and instrument 

invalidity render the IV model highly inaccurate, regardless of how large the sample 

becomes. We see that for the minor endogeneity condition, 𝜌𝜌𝑥𝑥,𝑒𝑒 = 0.10, the Gaussian 

copula approach outperforms OLS at  𝑁𝑁 > 1000; when endogeneity is severe, 𝜌𝜌𝑥𝑥,𝑒𝑒 = 

0.50, the Gaussian copula approach outperforms OLS at 𝑁𝑁 ≥ 100. To compare the OLS, 
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IV, and LIV models, data was generated from DGP 6.c with 𝜌𝜌𝑧𝑧�,𝑧𝑧  = 0.10 and 𝜌𝜌𝑧𝑧,𝑒𝑒 = 0.10 

and 0.50. This represents the scenario where a researcher does not have the true, 

unobserved instrument available to her, and instead relies on a poor quality instrument, as 

it is both weak and invalid.  

Results from Table 26 show that the IV regression approach underperforms both 

OLS and LIV approaches across all sample sizes, regardless of degree of endogeneity or 

level of instrument invalidity specified. These results confirm that the combination of low 

instrument relevance and instrument invalidity render the IV model highly inaccurate, 

regardless of how large the sample becomes. We see that for the minor endogeneity 

condition, 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.20, the LIV approach consistently outperforms OLS at 𝑁𝑁 ≥ 250. 

When endogeneity is increased to 𝜌𝜌𝜐𝜐,𝑒𝑒 = 0.80, the LIV approach outperforms OLS across 

all sample sizes, as seen in previous results. 

When viewed holistically, results from Study 5 highlight the importance of 

considering a variety of factors when performing causal inference analyses.  While the 

instrumental variable approach is useful for addressing endogeneity bias, its utility is 

largely dependent on the quality of the instrument. Furthermore, as simulation results 

have shown, even when an instrument has desirable properties, namely relevance and 

validity, it may produce estimates farther on average from the true parameter value than 

OLS if the sample size is insufficient. The utility of alternative instrument-free 

approaches was also investigated and simulation results have shown that such methods 

can successfully circumvent the need for identifying an observed instrument with certain 

desirable properties, as needed for IV analyses. Moreover, it was shown that instrument-

free methods often perform better than instrumental variable regression when the 
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instrument is either weak, invalid or a combination of the two. However, such findings 

are contingent upon the assumptions of these models being met, and sample size remains 

an important factor to consider. For the Gaussian copula method, larger sample sizes are 

often needed, especially if there is only minor endogeneity. For the LIV approach, 

simulation results suggest that only moderate sample sizes are needed when there is 

minor endogeneity. However, when the degree of endogeneity increases, both 

instrument-free methods outperform OLS at much smaller sample sizes, despite the 

smaller variance of the latter. Furthermore, when the instrument is anything but perfect, 

both instrument-free approaches may outperform IV regression, even at very small 

sample sizes. 
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Table 25. 
 
 Weak, invalid instrument under Linear Regression model* 

Mean Squared Error 
N 𝝆𝝆𝒛𝒛,𝒆𝒆 𝝆𝝆𝒙𝒙,𝒆𝒆 OLS IV Gaussian copula 

50 
0.1 0.1 0.06 2801.44 0.63 

0.5 0.49 300.84 0.64 

0.5 0.1 0.06 11237.83 0.59 
0.5 0.51 660539.6 0.69 

100 
0.1 0.1 0.05 232.03 0.29 

0.5 0.49 157.51 0.31 

0.5 0.1 0.04 26860.66 0.29 
0.5 0.47 2426.69 0.31 

250 
0.1 0.1 0.03 55.4 0.09 

0.5 0.47 154.22 0.10 

0.5 0.1 0.03 394232.2 0.10 
0.5 0.47 335707.3 0.09 

500 
0.1 0.1 0.02 53.14 0.05 

0.5 0.45 25.47 0.03 

0.5 0.1 0.02 67141.92 0.05 
0.5 0.45 3300.93 0.05 

1,000 
0.1 0.1 0.02 383.32 0.02 

0.5 0.45 7.57 0.02 

0.5 0.1 0.02 133.46 0.02 
0.5 0.46 325.63 0.02 

2,500 
0.1 0.1 0.02 2.67 0.01 

0.5 0.45 2.54 0.01 

0.5 0.1 0.02 65.56 0.01 
0.5 0.45 66.11 0.01 

5,000 
0.1 0.1 0.02 2.47 < .01 

0.5 0.45 2.38 < .01 

0.5 0.1 0.02 59.79 < .01 
0.5 0.45 59 < .01 

*True parameter value is 2.5 
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Table 26. 
 
 Weak, invalid instrument under LIV model* 

Mean Squared Error 
N 𝝆𝝆𝒛𝒛,𝒆𝒆 𝝆𝝆𝝊𝝊,𝒆𝒆 OLS IV LIV 

50 
0.1 0.2 0.005 6133.535 0.006 

0.8 0.027 42.473 0.006 

0.5 0.2 0.006 3095.335 0.006 
0.8 0.027 5379.293 0.006 

100 
0.1 0.2 0.004 38.088 0.003 

0.8 0.025 10.114 0.002 

0.5 0.2 0.003 4086.72 0.003 
0.8 0.026 945.065 0.002 

250 
0.1 0.2 0.002 51.509 0.001 

0.8 0.026 1146.919 0.001 

0.5 0.2 0.002 13387.95 0.001 
0.8 0.026 655.788 0.001 

500 
0.1 0.2 0.002 97.469 0.001 

0.8 0.026 63.740 < .001 

0.5 0.2 0.002 3164.579 0.001 
0.8 0.026 863.613 < .001 

1,000 
0.1 0.2 0.002 9.746 < .001 

0.8 0.026 5.604 < .001 

0.5 0.2 0.002 76.467 < .001 
0.8 0.026 451.269 < .001 

2,500 
0.1 0.2 0.002 0.602 < .001 

0.8 0.026 0.592 < .001 

0.5 0.2 0.002 15.334 < .001 
0.8 0.026 12.936 < .001 

5,000 
0.1 0.2 0.002 0.442 < .001 

0.8 0.026 0.427 < .001 

0.5 0.2 0.002 11.108 < .001 
0.8 0.026 11.070 < .001 

*True parameter value is 2.5 
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Research Question Two 

The second research question aims to measure the effect of the City Connect 

integrated student support model on student academic achievement in a single school 

district (District Z) using OLS, 2SLS-IV, Latent Instrumental Variable, and Gaussian 

copula regression models, with emphasis on comparing treatment effect estimates across 

methods. Additionally, by fitting both instrumental variable and instrument-free methods 

to real-world school lottery data, the second research question also seeks to illustrate the 

relationship between model parameters generated from instrument-free methods and a 

real-world, high-quality observed instrument from a RCT study. For the first portion of 

the second research question, the researcher analyzed both quasi-lottery and full lottery 

randomization data, comparing model parameter estimates both within and across lottery 

study designs. The second part of the second research question involved generating an 

optimal Latent Instrumental Variable instrument and comparing this to both the observed 

instrument from an RCT and the Gaussian copula treatment effect point estimate.  

Lottery Study Impact of City Connects 

Full lottery randomization study. The researcher first analyzed the data set 

containing only those students from the District Z lottery file who chose to submit a 

school preference list and thereby participate in the District Z school assignment process 

for kindergarten entry; the data set was then further refined to capture only those students 

who were assigned to a District Z City Connects school via lottery randomization (data 

2.b). Students subjected to lottery randomization were identified by simulating the 

deferred acceptance algorithm 𝑛𝑛 = 100,000 times and keeping only those students for 

which assignment to a City Connects school happened anywhere between approximately 
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500 to 𝑛𝑛 – 500 times11. With these data, the researcher performed two cross-sectional 

analyses: 1) a kindergarten analysis (N=3,277); and 2) 3rd grade analysis (N=1,384). The 

kindergarten analysis was conducted in order to establish a baseline immediately post-

randomization; the third grade analysis gives treatment effect estimates of the City 

Connects intervention for students receiving up to four years of the treatment. To 

generate causal effects of the treatment, OLS, 2SLS-IV, least squares Gaussian copula, 

and nonparametric Bayesian LIV regression models were fit to the reduced lottery data at 

both kindergarten and 3rd grade time points. The four model specifications are as follows:  

Ordinary Least Squares: 

𝑍𝑍 𝑅𝑅𝑎𝑎/𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑡𝑡 =  𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑡𝑡,                 (66) 

Instrumental Variable Regression:  

Second stage:  

𝑍𝑍 𝑅𝑅𝑎𝑎/𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑡𝑡 =  𝛼𝛼2𝑡𝑡 +  ∑𝑗𝑗𝛿𝛿𝑗𝑗𝑑𝑑𝑖𝑖𝑗𝑗 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝐶𝐶𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏� 𝑖𝑖𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑡𝑡,  

(67A)        

First stage: 

  𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 =  𝛼𝛼1𝑡𝑡 +  ∑𝑗𝑗𝜅𝜅𝑗𝑗𝑑𝑑𝑖𝑖𝑗𝑗 +  𝑋𝑋𝑖𝑖′𝛱𝛱 +  𝛱𝛱𝑂𝑂𝑖𝑖𝑖𝑖𝑒𝑒𝑉𝑉𝑅𝑅𝑎𝑎𝑛𝑛𝑑𝑑𝑜𝑜𝑚𝑚 𝑂𝑂𝑓𝑓𝑓𝑓𝑒𝑒𝑃𝑃𝑖𝑖 +  𝜂𝜂𝑖𝑖𝑡𝑡,  

(67B) 

Least Squares Gaussian copula Regression: 

𝑍𝑍 𝑅𝑅𝑎𝑎/𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑡𝑡 =  𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 +
             𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏∗𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡∗  +  𝜀𝜀𝑖𝑖𝑡𝑡,  (68) 

 

                                                           
11 The frequency of assignment was smoothed such that it was rounded to the nearest hundredth, and thus 
the integers 500 and 𝑛𝑛 − 500 were chosen because they would result in proportions to the nearest 
hundredths that would be between 0 and 1. The simple, and more general, idea is that for 𝑛𝑛 simulations of 
the assignment algorithm, students are non-deterministically placed if assignment to a City Connects school 
happens anywhere between 1 to 𝑛𝑛 − 1 times.  
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Bayesian Latent Instrumental Variable Regression:  

𝑍𝑍 𝑅𝑅𝑎𝑎/𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑡𝑡 =  𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡  +  𝜀𝜀𝑖𝑖𝑡𝑡,      (69A) 

 𝛼𝛼𝑡𝑡 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2), 

 𝛽𝛽𝑖𝑖  ~𝑁𝑁(𝜇𝜇,𝜎𝜎2) : 𝛽𝛽𝑖𝑖  𝜖𝜖 𝛽𝛽, 

 𝛽𝛽𝐶𝐶𝐶𝐶𝐶𝐶𝑋𝑋 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2), 

𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 =  𝛳𝛳𝑖𝑖 +  𝜐𝜐𝑖𝑖,                                                           (69B) 

𝛳𝛳𝑖𝑖 ~ 𝐺𝐺, 

𝐺𝐺 ~ 𝐷𝐷𝑃𝑃(𝛼𝛼,𝐺𝐺0), 

Where 𝛼𝛼𝑡𝑡 are year effects and 𝑋𝑋 is a design matrix containing a vector of 1’s and 

the following student-level dummy covariates: gender (female=0, male=1); race (non-

group membership=0, group membership=1); special education status (no = 0, yes = 1); 

free and reduced priced lunch status (no=0, yes=1); and bilingual status (no=0, yes=1). 

Furthermore, 𝑑𝑑𝑖𝑖𝑗𝑗 are the frequencies with which students were assigned to a City 

Connects school across the 𝑛𝑛 simulation runs of the deferred acceptance algorithm, i.e., 

the DA propensity score; 𝑅𝑅andom Offeri is a dummy indicator indicating random lottery 

offer; 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 is the treatment dosage up until time point 𝑡𝑡; and 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡∗  

is the inverse cumulative distribution of 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡.  

We note that 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 varies across cross-sectional analyses due to the 

amount of time from randomization to outcome reporting varying across analyses; so for 

the kindergarten analysis, 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 represents the number of school months spent 

in the City Connects intervention up until report card reporting, as a yearly measure of 
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dosage immediately following kindergarten randomization is severely restricted12. For 

the 3rd grade analysis, 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑡𝑡 represents the number of years spent in the City 

Connects intervention up until test date. Furthermore, we note that there were two sets of 

outcome variables, one for each cross-sectional analysis. For the kindergarten analysis, 

the outcomes were math and reading report card scores standardized by subject, grade, 

and school year, denoted 𝑍𝑍 𝑅𝑅𝑎𝑎𝑖𝑖𝑡𝑡. Report card scores were used because standardized 

assessment data is unavailable for grades prior to 3rd grade. For the grade 3 analysis, the 

outcomes were scores on the math and English Language Arts (ELA) sections of a state-

administered standardized assessment. The scores, denoted 𝑍𝑍 𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑡𝑡, have been 

standardized by subject, grade, and school year. Table 27 provides City Connects 

treatment effect estimates across grades and methods.  

 

                                                           
12 To be further sure of the Kindergarten City Connects effect immediately post-randomization, the 
researcher also ran OLS and IV analyses using a dichotomous City Connects dose variable, examining if 
the substantive results from these analyses differed from kindergarten analyses using months spent in City 
Connects as the treatment variable. The substantive findings from this analysis were the same as those 
reported in Table 28, giving validity to the findings reported. This additional analysis can be found in the 
Appendix section.  
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Table 27. 
 

Impact of City Connects intervention  
    OLS IV Gaussian copula Bayes LIV 

Grade Subject �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) 95% Credible 
Interval λ 

K 
Math <.01 (.01) 0.99 .01 (.02) 0.55 >-.01 (.01) 0.77 >-.01 (.01) (-.02, .01) 0.53 

Reading >-.01 (.01) 0.78 .01 (.02) 0.59 -.01 (.01) 0.50 -.01 (.01) (-.02, .01) 0.53 

3rd  
Math .05 (.02) < 0.01*** .04 (.06) 0.52 .06 (.03) .04** .04 (.02) (.01, .08)** 0.67 

ELA .02 (.02) 0.23 <.01 (.06) 0.96 .01 (.03) 0.41 .01 (.02) (-.02, .05) 0.66 

* denotes p < 0.10; ** denotes p < 0.05; *** denotes p < .01 
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Results from Table 27 show that all methods give surprisingly similar results, 

providing empirical validity evidence for the proposed instrument-free methods. For the 

kindergarten analysis, all methods indicate that there is no statistically significant 

difference in standardized report card scores between City Connects students and non-

City Connects students. This was expected, as these outcomes come very shortly after the 

randomization process, and thus the treatment group has received minimal dosage at the 

time of outcomes reporting. Moving to 3rd grade, we see that there is no statistically 

significant difference in performance on the English Language Arts portion of the state 

test between City Connects students and non-City Connects students. For the 

mathematics portion of the state test, however, we see that three out of the four methods 

indicate a statistically significant difference in performance between City Connects and 

non-City Connects students, with City Connects students performing significantly higher 

than their non-City Connects peers. Furthermore, the estimates across all four methods 

are strikingly similar (�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 0.05; �̂�𝛽𝐼𝐼𝐼𝐼 = 0.04; �̂�𝛽𝐺𝐺𝐶𝐶 = 0.06; �̂�𝛽𝑂𝑂𝐼𝐼𝐼𝐼 = 0.04). We note that 

the IV and LIV estimates of the City Connects treatment effect are virtually identical. In 

interpreting the findings, regression estimates imply that every year of the City Connects 

intervention causes a .04𝜎𝜎 to .06𝜎𝜎  increase in mathematics measured on a state test 

relative to the counterfactual. Therefore, students randomized into the City Connects 

intervention at grade kindergarten and receiving the intervention through 3rd grade score 

.16𝜎𝜎 to .24𝜎𝜎 higher in mathematics on a state test than students not receiving the City 

Connects intervention during the same time period. In terms of practical significance, this 

is a small, positive effect for receiving the City Connects intervention between 

kindergarten and 3rd grade.  
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In examining the �̂�𝛽(𝑆𝑆.𝐸𝐸. ) column of Table 27, we see that the IV estimate is by 

far the least efficient, and thus the coefficient for this method is statistically non-

significant. This result was also seen in previous simulation studies comparing IV 

regression with instrument-free methods, as findings suggested that IV is less efficient 

than instrument-free approaches when one makes use of anything but the true, perfect 

instrument, even if the observed instrument being used is valid and of high quality. Thus, 

such findings suggest that the instrument being used for this study is a high quality 

instrument but may not be not the true, perfect instrument13.  Equally interesting is that 

the LIV λ estimate in Table 27, representing the probability of group membership, is 

what one would expect it to be given the lottery randomization taking place at 

kindergarten entry. For the school assignment process, students competing within 

lotteries have equal chances of being assigned to one of two groups (i.e., lottery offer 

versus lottery non-offer). In assessing λ, we see that the estimated probability of group 

membership is .53, reflecting nearly equal chances of being in the first of 𝑚𝑚 = 2 groups 

for the simple Bayes LIV model. For grade 3 analyses, we see that the λ estimate 

changes, now reflecting unequal chances of group membership. However, we would 

expect this probability to change for later time points, as randomization takes place at 

kindergarten and students are not beholden to their lottery offers14; therefore students 

can, and often do, move around, especially as more time passes. Overall, the substantive 

                                                           
13 The author expected this, as the instrument used for this study was a random lottery offer to a school that 
was coded as being a City Connects school if it had ever been a City Connects school across a number of 
years. Thus, the coding scheme is imperfect, albeit still fairly accurate and useful.   
14 This is essentially an issue of compliance, which could be addressed by an intention-to-treat analysis.  
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results and similarity of the estimates across methods from Table 27 provide strong 

empirical validity evidence for both the Gaussian copula and LIV approaches.  

 Endogeneity bias. The researcher examined evidence for endogeneity bias across 

methods at both kindergarten and 3rd grade time points. To investigate endogeneity bias 

under the instrumental variable approach, the researcher performed the Wu-Hausman 

test, which is essentially a test of the difference between the OLS estimate and IV 

estimate under the null hypothesis that both estimates are consistent and no endogeneity 

bias is present. Table 28 provides results for the Hausman test across grades.  

Table 28. 
 
 IV Endogeneity test 

 
 
 
 
 
 

  
At both kindergarten and grade 3 analyses, we note that endogeneity bias does not appear 

to be present, as we fail to reject the null hypothesis for all Wu-Hausman tests in Table 

28. This finding is furthermore supported by the noted similarity between the OLS and 

IV regression coefficients reported in Table 27. However, it is important to note that the 

IV Wu-Hausman test for endogeneity assumes a valid instrument.  

The researcher subsequently examined for evidence of endogeneity bias using 

instrument-free approaches. For the Gaussian copula regression, endogeneity bias is 

indicated by significant results from the Hausman test, which is simply a t-test on the 

Grade Subject Wu-Hausman 
statistic p-value 

K 
Math 0.10 0.76 

Reading 0.04 0.85 

Grade 3 
Math 0.01 0.95 

Reading 0.01 0.93 
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Gaussian copula Control Function term, 𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏∗, in the least squares 

specification of the model given by Equation 68. The t-test is calculated as follows:  

 
𝛽𝛽�𝐶𝐶𝑖𝑖𝐶𝐶𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∗

�𝐼𝐼𝑎𝑎𝑉𝑉(𝛽𝛽�𝐶𝐶𝑖𝑖𝐶𝐶𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∗)
                            (70) 

For the Bayesian LIV approach, presence of endogeneity bias is determined from the 95% 

credible interval for the 𝜌𝜌 parameter estimate, which captures the correlation between the 

endogenous regressor and the structural error term. Table 29 gives endogeneity test results 

across the instrument-free methods.  

Table 29. 
 
 Instrument-free endogeneity tests 

Model Gaussian copula LIV 

Grade Subject �̂�𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏∗(𝑆𝑆.𝐸𝐸. ) p-value 𝜌𝜌� (𝑃𝑃𝑜𝑜𝑏𝑏𝑡𝑡𝑒𝑒𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃 𝑆𝑆.𝐷𝐷. ) 95% CI 

K 
Math .012 (.031) 0.694 .280 (.060) (.165, .394) 

Reading .014 (.029) 0.632 .273 (.058) (.159, .392) 

3 
Math -.018 (.047) 0.707 .049 (.072) (-.098, .193) 

ELA -.009 (.045) 0.837 .035 (.071) (-.110, .167) 

 

 From Table 29, we see that findings from the Hausman test on the Gaussian copula 

Control Function agree with findings from the IV Wu-Hausman test, suggesting no 

endogeneity bias (p > 0.05). Interestingly, the LIV 𝜌𝜌 estimate and its corresponding 95% 

credible interval for the Kindergarten analyses do not agree with previous findings and 

instead suggest endogeneity bias, with endogeneity ranging from .17 to .39. Using Cohen’s 

conventions for small, medium, and large effects for Pearson’s r, such values suggest small 
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to moderate endogeneity bias. However, by the 3rd grade analyses, the results from all 

methods agree, with endogeneity tests across all three methods suggesting the presence of 

very little to no endogeneity bias.  

 Model diagnostics. Both instrument-free methods assume non-normality of the 

endogenous regressor, as model identifiability breaks down under violations of this 

assumption (Papies et al., 2017; Park & Gupta, 2012). Therefore, the researcher empirically 

assessed the endogenous regressor for non-normality by using histogram graphical displays 

of the treatment variable and performing the Shapiro-Wilk test for normality.  At both 

kindergarten and 3rd grade time points, we note a highly non-normal distribution in the 

histogram display for treatment. Additionally, results from the Shapiro-Wilk test, where the 

null hypothesis is that the observed sample came from a normal distribution, indicate non-

normality of the treatment variable.  

   

     Figure 3. Histogram of Kindergarten treatment            Figure 4. Histogram of 3rd grade treatment 
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Table 30. 
 
Normality test for treatment variable 

Shapiro-Wilk test of Normality 
Grade W p-value 

K 0.66 < .01 
3 0.72 < .01 

 

 In estimating the Bayesian LIV model, it is important to check for convergence to 

the target distribution, namely the posterior distribution (Lunn, Jackson, Best, Thomas, & 

Spiegelhalter, 2012). The researcher examined for evidence of convergence of the Markov 

chains via trace plots of parameter estimates.  Trace plots show the sampled parameter 

values taken by each chain for the duration of the chain (Lunn et al., 2012). In examining for 

convergence, the simple idea is that we start multiple chains (for these analyses there are 

three) and examine if they come together and begin to behave similarly (Lunn et al., 2012). 

We see from Figures 5 to 8 that all chains appear to converge to the posterior distribution 

after approximately 350 iterations (where burn-in is 300). In other words, we can draw a 

straight line through the three chains and see them similarly move around this line, i.e., 

parameter value. Thus, we note that all chains appear non-problematic across models and 

provide evidence for convergence15.  

 

                                                           
15 Trace plots are provided for City Connects treatment effects only. This was done to limit the amount of 
output. Trace plots for all parameters across all analyses can be found in the appendix section.  
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Figure 5. Trace Plot for Kindergarten City Connects ELA Effect 
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Figure 6. Trace Plot for Kindergarten City Connects Math Effect 
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Figure 7. Trace Plot for Grade 3 City Connects ELA Effect 
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Figure 8. Trace Plot for Grade 3 City Connects Math Effect 

 

Additionally, we note from Tables 31 and 32 that all MC error estimates are less 

than 5% of the corresponding posterior standard deviation estimate, providing evidence for 

sufficient iterations. Lastly, the researcher examined the Gelman-Rubin (1992) 𝑅𝑅� statistic 

across models, which is the ratio of between-chain variability to within-chain variability. 

The 𝑅𝑅�  statistic is a MCMC convergence statistic for which the general rule of thumb is 

that values close to 1 indicate convergence and values above 1.1 indicate inadequate 

convergence. Note that for convergence, the 𝑅𝑅� values for all parameters must be less than 

1.1 (Brooks, Gelman, Jones, & Meng, 2011). From Tables 31 and 32, we see that all 𝑅𝑅� 

statistics are very close to 1 in value16. 

 

 

 

 

                                                           
16 Given the similarity between math and reading/ELA samples, and to limit the amount of in-text output, 
MC error and 𝑅𝑅�  statistics are given for math analyses only; additional MC error and 𝑅𝑅�  statistics for 
reading/ELA analyses are provided in the appendix  
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Table 31.  
 
MC Error and 𝑅𝑅� statistics for kindergarten math 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.077 0.003 1.04 

City Connects 0.007 < .001 1.01 
Year 07 0.069 0.002 1.03 
Year 08 0.071 0.003 1.03 
Year 09 0.070 0.002 1.01 
Year 10 0.070 0.002 1.02 
year 11 0.070 0.002 1.02 
Year 12 0.067 0.002 1.01 
Year 13 0.082 0.002 1.01 

Male 0.035 0.001 1.00 
Black 0.071 0.002 1.01 

Hispanic 0.067 0.002 1.01 
Asian 0.081 0.002 1.01 
Mixed 0.131 0.004 1.00 

Special Ed. 1 0.144 0.005 1.00 
Special Ed. 2 0.088 0.003 1.00 
Special Ed. 3 0.251 0.008 1.00 
Free Lunch 0.052 0.002 1.00 

Reduced Lunch 0.095 0.003 1.00 
ELL 0.047 0.001 1.00 
𝜆𝜆1 0.010 < .001 1.00 
𝜆𝜆2 0.010 < .001 1.00 
𝜋𝜋1 0.008 < .001 1.00 
𝜋𝜋2 0.008 < .001 1.00 
ρ 0.060 0.002 1.00 

 𝜎𝜎1 0.023 < .001 1.00 
𝜎𝜎2 0.002 < .001 1.00 
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Table 32.  
 
MC Error and 𝑅𝑅� statistics for grade 3 math 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.098 0.003 1.00 

City Connects 0.018 < .001 1.00 
Year 10 0.079 0.002 1.00 
year 11 0.085 0.003 1.00 
Year 12 0.080 0.002 1.00 
Year 13 0.078 0.002 1.00 

Male 0.049 0.001 1.00 
Black 0.093 0.003 1.00 

Hispanic 0.090 0.003 1.00 
Asian 0.103 0.004 1.00 
Mixed 0.190 0.006 1.00 

Special Ed. 1 0.161 0.005 1.00 
Special Ed. 2 0.114 0.004 1.00 
Special Ed. 3 0.210 0.006 1.00 
Free Lunch 0.075 0.003 1.00 

Reduced Lunch 0.131 0.004 1.00 
ELL 0.070 0.002 1.00 
𝜆𝜆1 0.014 < .001 1.00 
𝜆𝜆2 0.014 < .001 1.00 
𝜋𝜋1 0.021 < .001 1.00 
𝜋𝜋2 0.031 0.001 1.00 
ρ 0.070 0.002 1.00 

 𝜎𝜎1 0.033 0.001 1.00 
𝜎𝜎2 0.012 < .001 1.00 

 
 

Quasi-lottery study. The researcher analyzed the data set containing all District 

Z students from the lottery file for which demographic and student outcomes data are also 

available, regardless of whether a student chose to opt out of the District Z school 

assignment process or participate (data 2.a). Given that the quasi-lottery data contains 

students that did not participate in the school lottery assignment process, an instrumental 

variable analysis using a random lottery offer as an instrument cannot be used for this 

sample; however, the benefit of instrument-free approaches is that they do not rely on an 
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observed instrument from a lottery mechanism, and thus these approaches can be used for 

addressing endogeneity bias in the extended sample.  The researcher fit OLS, Gaussian 

copula, and Bayesian Latent Instrumental Variable regression models to the extended 

quasi-lottery sample at kindergarten and 3rd grade time points, as was done for the full 

lottery randomization sample. Table 33 provides results from across the three methods.  

Examining Table 33, we once again see that all methods give surprisingly similar 

results. For the kindergarten analysis, all three methods indicate that City Connects 

students have slightly lower standardized report card scores than their non-City Connects 

peers. Furthermore, all methods suggest that this difference is statistically significant for 

both Reading and mathematics. We note, however, that such findings are for the 

kindergarten grade level and thus reflect minimal dosage; in other words, we can view 

results from this analysis as providing a starting point or baseline comparison.  

Moving to 3rd grade, we see that there is no statistically significant difference in 

performance on the English Language Arts portion of the state test between City 

Connects students and non-City Connects students. For the mathematics portion of the 

state test, we see that instrument-free methods indicate a statistically significant 

difference in performance between City Connects and non-City Connects students, with 

City Connects students performing significantly higher than their non-City Connects 

peers. Furthermore, the estimates across all three methods are very similar (�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 0.03; 

�̂�𝛽𝐺𝐺𝐶𝐶 = 0.04; �̂�𝛽𝑂𝑂𝐼𝐼𝐼𝐼 = 0.04). We note that the Gaussian copula and LIV estimates of the 

City Connects treatment effect are exactly the same. Moreover, these results are similar 

to the estimates for the randomization sample, suggesting that the effect of City Connects 

is similar across samples and that there may not be considerable lottery selection bias. In 
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interpreting the findings, regression estimates imply that every year of the City Connects 

intervention causes a .03𝜎𝜎 to .04𝜎𝜎  increase in mathematics on a state test relative to the 

counterfactual for the general sample. Therefore, students entering into the City Connects 

intervention at grade kindergarten and receiving the intervention through 3rd grade score 

.12𝜎𝜎 to .16𝜎𝜎 higher in mathematics on a state test than students not receiving the City 

Connects intervention during the same time period. In terms of practical significance, this 

is once again a small, positive effect for receiving the City Connects intervention between 

kindergarten and 3rd grade. 

In examining the LIV λ estimate in Table 33, representing the probability of 

group membership, we once again see what one would expect given the sample under 

consideration. For the analysis of the randomization sample in the previous section, the 

LIV λ estimates were roughly .50, reflecting the randomization process taking place. 

Contrastingly, for this kindergarten analysis, we now see that kindergarten LIV λ 

estimates are far from .50, and no longer reflect nearly equal chances of group 

membership. However, this change makes sense, as we are now analyzing the full sample 

of students, which includes both lottery and non-lottery participants, and we therefore no 

longer have a randomized control trial (RCT).  
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Table 33. 
 
 Full sample analyses  

    OLS Gaussian copula Bayes LIV 

Grade Subject �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value Subject 95% Credible 
Interval 𝜆𝜆 

K 
Math -.01 (< .01) < .01*** -.01 (< .01) < .01*** -.02 (< .01) (-.02, -.01)** 0.71 

Reading -.01 (< .01) < .01*** -.01 (< .01) < .01*** -.02 (< .01) (-.02, -.01)** 0.70 

3 
Math .03 (.01) < .01*** .04 (.01) < .01*** .04 (.01) (.03, .05)** 0.86 
ELA > -.01 (.01) 0.36 < .01 (.01) 0.88 -.01 (< .01) (-.02, < .01) 0.89 

      * denotes p < 0.10; ** denotes p < 0.05; *** denotes p < .01 
      Note: Standard errors are clustered by school for OLS and Gaussian copula methods  
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As noted previously, estimates of the City Connects intervention effect were 

similar across lottery samples. Specifically, the estimates of the City Connects effect for 

the quasi-lottery study are only slightly smaller than those for the randomization sample. 

Such similarity suggests that lottery participation does not have a huge impact on the 

effectiveness of the City Connects intervention, i.e., lottery selection bias may not be of 

great concern. However, the similarity of the regression coefficients across lottery 

designs is far from definitive proof that students and their families who self-select into 

the kindergarten lottery process do not differ systematically from those students and 

families who choose to opt out. Therefore, the author seeks to further investigate the 

differences between the two samples. To do so, the author examined descriptive statistics 

for the following available demographic variables across the two samples: gender; race; 

reduced and free priced lunch; ELL status; and immigration status. In addition to 

examining sample percentages, the author calculated standardized mean differences to 

make claims about important covariate imbalance between lottery and non-lottery 

samples. A cutoff of .20 was used for determining imbalance. Table 34 provides 

descriptive statistics for lottery and non-lottery samples.  

We see from Table 34 that the lottery sample, which contains only those students 

who participated in the lottery assignment process, is similar to the non-lottery sample in 

numerous ways. Specifically, the lottery sample is similar to the non-lottery sample in 

regards to gender, special education status, ELL status, immigration status, and reduced 

lunch status, which serves as one proxy for socioeconomic status.  However, we do 

notice a few differences between the two groups. Although below the .20 cutoff, students 

receiving free lunch are noticeably more prevalent in the non-lottery sample, whereas 
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Hispanic students are more prevalent in the lottery sample. We notice the greatest 

imbalance for African-American students, with the corresponding SMD statistic 

exceeding the .20 cutoff. From this, we can say that African-American students and their 

families seem less likely to participate in the lottery process. Such findings may limit the 

generalizability of IV findings based on lottery participation to larger student populations. 

However, given that instrument-free methods do not rely on an observed instrument, the 

researcher was able to estimate exogenous City Connects treatment effects for samples 

including both groups, and thus one is able to make broader claims about the causal effect 

of the intervention. 

Table 34. 
 
 Sample demographics at kindergarten entry point  

Variable Non-lottery 
Sample  Lottery Sample SMD 

Male 52% 51% 0.01 
Black 37% 26% 0.24 
Asian 7% 9% 0.07 

Hispanic 41% 49% 0.17 
Mixed 2% 2% 0.03 
Sped 7% 7% < .01 

Reduced lunch 4% 4% 0.01 
Free lunch 83% 76% 0.18 

ELL 20% 23% 0.07 
Foreign Born 9% 7% 0.08 

 

Endogeneity bias. Using the full sample, the researcher once again examined for 

evidence of endogeneity bias across instrument-free methods at both kindergarten and 3rd 

grade time points. Table 35 gives endogeneity test results across the instrument-free 

methods.  
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From Table 35, we see that the LIV 𝜌𝜌 estimate and its corresponding 95% 

credible interval for the Kindergarten analyses using the full sample suggests endogeneity 

bias, with endogeneity ranging from .19 to .24. Using Cohen’s conventions for small, 

medium, and large effects for Pearson’s r, such values suggest small endogeneity bias. 

Interestingly, findings from the Gaussian copula Hausman test once again do not agree 

with the LIV estimates. For the Gaussian copula regression, results from the Hausman 

test on the copula Control Function term suggest no endogeneity bias (p > 0.05). 

However, by the time we reach 3rd grade analyses, the results from all methods agree, 

with endogeneity tests across the two methods suggesting no presence of endogeneity 

bias. 

Table 35. 
 
 Instrument-free endogeneity tests 

Model Gaussian copula LIV 

Grade Subject �̂�𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏∗(𝑆𝑆.𝐸𝐸. ) p-value 𝜌𝜌� (𝑃𝑃𝑜𝑜𝑏𝑏𝑡𝑡𝑒𝑒𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃 𝑆𝑆.𝐷𝐷. ) 95% CI 

K 
Math >-.01 (.01) 0.66 .22 (.01) (.19, .24) 

Reading -.01 (.01) 0.27 .21 (.01) (.19, .23) 

3 
Math -.01 (.01) 0.35 -.02 (.01) (-.05, .01) 

ELA -.01 (.01) 0.11 .01 (.01) (-.02, .03) 

 

Model diagnostics. The researcher empirically assessed the endogenous regressor 

for non-normality by using histogram graphical displays of the treatment variable. At 

both kindergarten and 3rd grade time points, we note a highly non-normal distribution in 

the histogram display for treatment. Given the much larger sample size, and the tendency 

of the Shapiro-Wilk test to over-reject the null hypothesis in large samples, a Shapiro-
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Wilk test for normality was not performed with the full sample, and instead the author 

relied solely on graphical displays of the treatment variable.  

   

 

Convergence of the Markov chains was assessed via trace plots of parameter 

estimates.  Given the much larger sample sizes, and to help ensure convergence, the number 

of iterations for the full sample analyses was set to be substantially larger than they were for 

previous analyses, with the value now being 𝑛𝑛𝑖𝑖𝑡𝑡𝑒𝑒𝑉𝑉𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑏𝑏 = 10,000. We see from Figures 11 to 

14 that all chains appear to converge to the posterior distribution.  

 

  Figure 9. Histogram for treatment at kindergarten         Figure 10. Histogram for treatment at 3rd grade.  
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Figure 11. Trace Plot for Full sample Kindergarten City Connects ELA Effect 
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Figure 12. Trace Plot for Full Sample Kindergarten City Connects Math Effect 
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Figure 13. Trace Plot for Full Sample Grade 3 City Connects ELA Effect 
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Figure 14. Trace Plot for Full Sample City Connects Math Effect 

 

Additionally, we note from Tables 36 and 37 that all MC error estimates are once 

again less than 5% of the corresponding posterior standard deviation estimate, providing 

evidence for sufficient iterations. Additionally, from Tables 36 and 37, we note that the 

Gelman-Rubin 𝑅𝑅�  statistics are all very close to 1 in value.  
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Table 36.  

MC Error and 𝑅𝑅� statistics for kindergarten math full sample 
Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.022 < .001 1.00 

City Connects 0.002 < .001 1.00 
Year 05 0.023 < .001 1.00 
Year 06 0.022 < .001 1.00 
Year 07 0.023 < .001 1.00 
Year 08 0.023 < .001 1.00 
Year 09 0.022 < .001 1.00 
Year 10 0.022 < .001 1.00 
year 11 0.022 < .001 1.00 
Year 12 0.023 < .001 1.00 
Year 13 0.025 < .001 1.00 

Male 0.010 < .001 1.00 
Black 0.017 < .001 1.00 

Hispanic 0.017 < .001 1.00 
Asian 0.023 < .001 1.00 
Mixed 0.036 < .001 1.00 

Special Ed. 1 0.045 0.001 1.00 
Special Ed. 2 0.022 < .001 1.00 
Special Ed. 3 0.058 0.002 1.00 
Free Lunch 0.015 < .001 1.00 

Reduced Lunch 0.030 < .001 1.00 
ELL 0.013 < .001 1.00 
𝜆𝜆1 0.003 < .001 1.00 
𝜆𝜆2 0.003 < .001 1.00 
𝜋𝜋1 0.003 < .001 1.00 
𝜋𝜋2 0.004 < .001 1.00 
ρ 0.014 < .001 1.00 

 𝜎𝜎1 0.007 < .001 1.00 
𝜎𝜎2 0.001 < .001 1.00 
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Table 37.  

MC Error and 𝑅𝑅� statistics for grade 3 math full sample 
Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.025 0.001 1.01 

City Connects 0.005 < .001 1.00 
Year 06 0.023 < .001 1.00 
Year 07 0.023 < .001 1.00 
Year 08 0.024 < .001 1.00 
Year 09 0.024 < .001 1.00 
Year 10 0.023 < .001 1.00 
year 11 0.024 < .001 1.00 
Year 12 0.023 < .001 1.00 
Year 13 0.023 < .001 1.00 

Male 0.011 < .001 1.00 
Black 0.019 < .001 1.00 

Hispanic 0.018 < .001 1.00 
Asian 0.024 < .001 1.00 
Mixed 0.043 0.001 1.00 

Special Ed. 1 0.042 0.001 1.00 
Special Ed. 2 0.022 < .001 1.00 
Special Ed. 3 0.033 0.001 1.00 
Free Lunch 0.019 < .001 1.00 

Reduced Lunch 0.035 0.001 1.00 
ELL 0.013 < .001 1.00 
𝜆𝜆1 0.002 < .001 1.00 
𝜆𝜆2 0.002 < .001 1.00 
𝜋𝜋1 0.003 < .001 1.01 
𝜋𝜋2 0.007 < .001 1.00 
ρ 0.014 < .001 1.00 

 𝜎𝜎1 0.007 < .001 1.00 
𝜎𝜎2 0.002 < .001 1.00 

 

 Further examination of the 3rd Grade City Connects Math Effect. In light of 

the previous findings, the author wished to further investigate the impact of City 

Connects on 3rd grade math achievement by fitting models that account for the school-to-

school variability and explicitly model the multilevel structure of the data. Given the 

clustering of students within schools, and the likely presence of treatment effect 
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heterogeneity, modeling approaches that incorporate school-level information arguably 

provide more valid inferences about the intervention impact. To explore this, fixed effect 

OLS and Gaussian copula regression and a random intercept nonparametric Bayesian 

LIV regression were fit to the full district sample including nonrandomized students. 

Modeling specifications from Equations 66 to 69 were extended as follows:  

Ordinary Least Squares: 

𝑍𝑍 𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 =  𝛾𝛾𝑗𝑗 +  𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑗𝑗𝑡𝑡 +  𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡,  (71) 

Least Squares Gaussian copula Regression: 

𝑍𝑍 𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 =  𝛾𝛾𝑗𝑗 + 𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑗𝑗𝑡𝑡 +
             𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏∗𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑗𝑗𝑡𝑡∗  +  𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡, (72) 

Random Intercept Bayesian Latent Instrumental Variable Regression:  

𝑍𝑍 𝑀𝑀𝑎𝑎𝐴𝐴𝑆𝑆𝑖𝑖𝑗𝑗𝑡𝑡 =  𝛾𝛾𝑗𝑗 +  𝛼𝛼𝑡𝑡 +  𝑋𝑋𝑖𝑖′𝛽𝛽 +  𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑗𝑗𝑡𝑡  +  𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡,  (73A) 

 𝛾𝛾𝑗𝑗  ~ 𝑁𝑁(𝛽𝛽0, 𝜏𝜏2) 

 𝛽𝛽0 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2) 

 𝛼𝛼𝑡𝑡 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2), 

 𝛽𝛽𝑖𝑖  ~𝑁𝑁(𝜇𝜇,𝜎𝜎2) : 𝛽𝛽𝑖𝑖  𝜖𝜖 𝛽𝛽, 

 𝛽𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2), 

𝑎𝑎𝑖𝑖𝑡𝑡𝑦𝑦𝑎𝑎𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑆𝑆𝑡𝑡𝑏𝑏𝑖𝑖𝑗𝑗𝑡𝑡 =  𝛳𝛳𝑖𝑖 +  𝜐𝜐𝑖𝑖, (73B) 

𝛳𝛳𝑖𝑖 ~ 𝐺𝐺, 

𝐺𝐺 ~ 𝐷𝐷𝑃𝑃(𝛼𝛼,𝐺𝐺0), 

Where the models are specified as they were before in Equations 66 to 69 but now 

include 𝛾𝛾𝑗𝑗, which is the fixed school effect in the OLS and Gaussian copula model and 

the random school intercept in the nonparametric Bayesian LIV model.  Given that there 

are no predictors of the random intercept in the multilevel Bayesian LIV model, the 
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estimates across models should be very similar. Table 38 provides results for the OLS, 

Gaussian copula, and random intercept Bayesian LIV model.  

Table 38.  
 
Fixed effect and random intercept models 

    OLS Gaussian copula Random Intercept Bayes LIV 

Grade Subject �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value Subject 95% CI 𝜆𝜆 

3 Math .07 (.01) < .01*** .08 (.01) < .01*** .07 (.01) (.06, .09)** 0.86 
 

Examining Table 38, we again see that all methods give very similar results. 

Given that there is no predictor for the level-two random intercept in the multilevel 

Bayesian LIV model, this is to be expected. Consistent with previous analyses, all three 

methods indicate a statistically significant difference in mathematics performance 

between City Connects and non-City Connects students, with City Connects students 

performing significantly higher than their non-City Connects peers. Furthermore, the 

estimates across all three methods are very similar (�̂�𝛽𝑂𝑂𝑂𝑂𝑂𝑂 = 0.07; �̂�𝛽𝐺𝐺𝐶𝐶 = 0.08; �̂�𝛽𝑂𝑂𝐼𝐼𝐼𝐼 = 

0.07). We note that the OLS and LIV estimates of the City Connects treatment effect are 

identical. However, estimates from this set of analyses indicate a larger achievement gain 

than the estimates from previous analyses with simpler models. Such a difference 

indicates that clustering and between school variability matters, and there is likely 

treatment effect heterogeneity. In interpreting the OLS and Gaussian copula findings, 

regression estimates imply that every year of the City Connects intervention causes a 

.07σ to .08σ increase in mathematics on a state test relative to the counterfactual, 

controlling for between school variability. For the multilevel LIV model, results indicate 
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that every year of the City Connects intervention causes a .07σ increase in mathematics 

on a state test relative to the counterfactual, controlling for the random effect of school. 

Therefore, students entering into the City Connects intervention at grade kindergarten and 

receiving the intervention through 3rd grade score .28𝜎𝜎 to .32𝜎𝜎 higher in mathematics on 

a state test than students not receiving the City Connects intervention during the same 

time period. In terms of practical significance, this is a notable positive effect for 

receiving the City Connects intervention between kindergarten and 3rd grade.  

ICC. Before estimating the multilevel Bayesian LIV model, the researcher 

examined the intraclass correlation coefficient (ICC) to examine the proportion of 

variance in 3rd grade state test mathematics achievement that exists between schools 

(O’Dywer & Parker, 2014). By estimating the ICC, the researcher was able to assess the 

degree of statistical dependency in the data and determine the need for a multilevel 

modeling approach (O’Dwyer & Parker, 2014). Although there is no general rule for how 

large the ICC needs to be before multilevel modeling is justified, the researcher examined 

for an ICC that was not close to zero in value. The ICC for these data was found to be 

.14. In other words, 14% of the variance in 3rd grade state test mathematics achievement 

was due to between school variability.   

Endogeneity evidence. The researcher once again examined for evidence of 

endogeneity bias across instrument-free methods. Table 39 gives endogeneity test results 

across the instrument-free methods. 
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Table 39. 
 
 Endogeneity bias for fixed effect and multilevel Gaussian copula and LIV model 

Model Gaussian copula Random Intercept Bayes LIV 

Grade Subject �̂�𝛽𝐶𝐶𝑖𝑖𝑡𝑡𝑑𝑑𝐶𝐶𝑜𝑜𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑏𝑏∗(𝑆𝑆.𝐸𝐸. ) p-value 𝜌𝜌� (𝑃𝑃𝑜𝑜𝑏𝑏𝑡𝑡𝑒𝑒𝑃𝑃𝑖𝑖𝑜𝑜𝑃𝑃 𝑆𝑆.𝐷𝐷. ) 95% CI 

3 Math -.01 (.01) 0.04 -.05 (.01) (-.07, -.02) 
 

Results from the Gaussian copula and random intercept Bayesian LIV model 

agree, and we see from Table 39 that both methods suggest the presence of minor 

endogeneity bias. Although both methods suggest that the correlation between the 

endogenous regressor and error term is statistically significant, the values for this 

correlation are very small and close to zero. Such a small degree of endogeneity bias will 

not bias OLS estimates very much, and this is reflected in the findings reported for Table 

38, as the regression coefficients from OLS and the instrument-free methods were very 

similar.   

LIV Model convergence. Convergence of the Markov chains was assessed via trace 

plots of parameter estimates.  Given the complexity of the model, the number of iterations 

for the random intercept LIV model was set to be substantially larger than they were for 

previous analyses, with the value now being 𝑛𝑛𝑖𝑖𝑡𝑡𝑒𝑒𝑉𝑉𝑎𝑎𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛𝑏𝑏 = 25,000. We see from Figure 15 

that the treatment effect chain appeared to converge to the posterior distribution. All other 

chains appeared to converge as well and appear in the appendix. Additionally, we note from 

Table 40 that all MC error estimates are once again less than 5% of the corresponding 

posterior standard deviation estimate, providing evidence for sufficient iterations. 

Additionally, from Table 40, we note that the Gelman-Rubin 𝑅𝑅�  statistics are all very close 

to 1 in value.  
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Figure 15. Trace Plot for Random Intercept LIV Model City Connects Math Effect 
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Table 40.  

MC Error and 𝑅𝑅� statistics for grade 3 fixed effects and multilevel models 
Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.043 < .001 1.00 

City Connects 0.008 < .001 1.00 
Year 06 0.022 < .001 1.00 
Year 07 0.022 < .001 1.00 
Year 08 0.022 < .001 1.00 
Year 09 0.022 < .001 1.00 
Year 10 0.022 < .001 1.00 
year 11 0.022 < .001 1.00 
Year 12 0.022 < .001 1.00 
Year 13 0.022 < .001 1.00 

Male 0.010 < .001 1.00 
Black 0.019 < .001 1.00 

Hispanic 0.018 < .001 1.00 
Asian 0.026 < .001 1.00 
Mixed 0.043 < .001 1.00 

Special Ed. 1 0.041 < .001 1.00 
Special Ed. 2 0.022 < .001 1.01 
Special Ed. 3 0.032 < .001 1.00 
Free Lunch 0.019 < .001 1.00 

Reduced Lunch 0.034 < .001 1.00 
ELL 0.014 < .001 1.00 
𝜆𝜆1 0.002 < .001 1.00 
𝜆𝜆2 0.002 < .001 1.00 
𝜋𝜋1 0.003 < .001 1.01 
𝜋𝜋2 0.006 < .001 1.00 
ρ 0.014 < .001 1.00 

 𝜎𝜎1 0.006 < .001 1.00 
𝜎𝜎2 0.001 < .001 1.00 

 

A comparison of instrument-free parameters to the observed instrument  

 Given that District Z school lottery admissions generate a stratified RCT, one 

very arguably is provided with a relevant and valid instrument when relying on a lottery 

offer variable. The author took advantage of the observed, high quality instrument 

available from the lottery RCT to further demonstrate the validity of the proposed 
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instrument-free approaches. To do so, the researcher first produced a posterior 

distribution for the optimal Bayes LIV instrument by sampling from the full conditional 

distribution:  

𝑝𝑝(�̃�𝑧𝑖𝑖  |�̃�𝑧−𝑖𝑖 𝛽𝛽,𝛴𝛴,𝛼𝛼,𝐺𝐺0,𝑏𝑏) ,            (74) 

where 𝑏𝑏 is the 𝑛𝑛 𝛽𝛽 1 vector containing elements 𝑏𝑏𝑖𝑖, and where 𝑏𝑏𝑖𝑖 =  (𝑦𝑦𝑖𝑖, 𝛽𝛽𝑖𝑖). As was done 

for simulation study four, the optimal Bayes LIV instrument, �̃�𝑧, was then calculated as 

the mean of this posterior distribution, rounded to the nearest integer. The rounded 

posterior mean produces an observed instrument from the estimated Bayes LIV model, 

allowing for comparison of the estimated latent instrument produced by the LIV model to 

the observed lottery instrument. The author then examined the degree to which the LIV 

instrument correlated with the lottery instrument and how well the estimated LIV 

instrument recreated the lottery offer via classification accuracy. Additionally, the 

researcher examined the degree to which the estimated LIV instrument correlated with 

the endogenous regressor (i.e., relevance). All comparative analyses were conducted at 

the kindergarten time point, as that is when the randomly generated lottery offer is 

produced. Table 41 provides correlations and cross-classification accuracies. 

Table 41. 
 
 LIV instrument correlation analyses  

 

  

Optimal Bayes LIV Instrument Correlations 
Subject 𝝆𝝆�𝒛𝒛� ,𝒍𝒍𝒍𝒍𝒕𝒕𝒕𝒕𝒆𝒆𝒍𝒍𝒍𝒍 𝒍𝒍𝒐𝒐𝒐𝒐𝒆𝒆𝒍𝒍 % correctly classified 𝝆𝝆�𝒛𝒛� ,𝒙𝒙 
Math .74 86% .99 
Reading .73 86% .99 
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Table 41 provides strong empirical validity evidence for the LIV approach, as we 

see that the estimated LIV instrument is strongly correlated with the observed, high 

quality instrument (�̅�𝜌𝑧𝑧�,𝑜𝑜𝑜𝑜𝑡𝑡𝑡𝑡𝑒𝑒𝑉𝑉𝑑𝑑 𝑜𝑜𝑖𝑖𝑖𝑖𝑒𝑒𝑉𝑉 = .74, = .73). Given the previously noted imperfect 

coding scheme used for the lottery instrument, we note that the observed instrument is 

not perfect either, and thus the correlation between the estimated LIV instrument and 

lottery instrument could be slightly attenuated due to this fact. However, we note that the 

observed lottery instrument is arguably still of very high quality, and such a strong 

correlation between the LIV instrument and observed lottery instrument speaks to the 

power of the instrument-free LIV method. Additionally, we note that the estimated LIV 

instrument correctly matches the lottery offer for 86% of the observations. Moreover, the 

estimated LIV instrument is highly relevant, producing a nearly perfect correlation with 

the endogenous regressor at �̅�𝜌𝑧𝑧�,𝑥𝑥 = .99.  

 The researcher subsequently performed a 2SLS-IV regression using the estimated 

LIV instrument (denoted 2SLS-LIV) and compared this with 2SLS-IV using the observed 

lottery instrument and least squares Gaussian copula regression. Table 42 provides 

comparative results.  

Table 42. 
 
 2SLS-LIV comparative results 

    IV Gaussian copula 2SLS-LIV 
Grade Subject �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value 

K 
Math .011 (.018) 0.550 -.003 (.011) 0.765 -.003 (.006) 0.633 

Reading .009 (.017) 0.593 -.007 (.010) 0.503 -.006 (.006) 0.314 
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We note from Table 42 that substantive findings across all three methods are the same, 

and the City Connects intervention has no statistically significant impact immediately 

post-randomization. Furthermore, we see that the 2SLS-LIV and Gaussian copula 

estimates are nearly identical. Estimates from the IV regression differ from the 

instrument-free method estimates but are also close to zero. Given the proximity to zero 

of all estimates and the non-statistical significance, all differences between estimates are 

deemed trivial. In sum, we see that the LIV model can be estimated in two ways, and the 

method produces an estimated latent instrument that is strongly correlated with an 

observed instrument from an RCT, thereby producing findings consistent with those from 

other empirically sound approaches.  
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CHAPTER 5: DISCUSSION 

Summary of Findings 

 City Connects is an integrated student support model offering student support in 

high-poverty, urban schools. Given that City Connects does not randomly assign students 

to receive the intervention, the consideration of statistical methods for dealing with 

endogeneity bias is important. This dissertation research explored the utility of 

instrument-free methods for addressing endogeneity bias. Specifically, the author 

investigated two research questions:  

1) How does estimation performance under the two-stage least squares IV (2SLS-

IV) approach, the Latent Instrumental Variable (LIV) approach, and the least 

squares Gaussian copula approach compare across a range of research 

conditions involving endogeneity bias?;  

2) Using data from a real-world school lottery study examining the effect of the 

City Connects model of integrated student support, how do treatment effect 

estimates compare under the traditional 2SLS-IV approach with simulation-

based propensity scores, the Latent Instrumental Variable (LIV) approach, and 

the Gaussian copula approach? And, how do the model parameters generated by 

instrument-free approaches compare to the observed instrument? 

The first research question was investigated via extensive simulation study, whereas the 

second research question involved the application of instrument-free methods to a real-

world large-scale RCT.  
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Simulation Findings  

 Study 1. The simulation study research comprised six discrete studies. For 

simulation study one, the researcher investigated instrument-free method performance 

under the condition of exogeneity. Results demonstrated that both LIV and Gaussian 

copula methods are unbiased and produce estimates that closely resemble OLS estimates; 

however, OLS is far more efficient than the instrument-free approaches and therefore 

provides the best linear unbiased estimate. Such findings are in perfect accordance with 

the extant literature, as Gauss and Markov proved OLS to be the best linear unbiased 

estimate under the conditions of exogeneity and error having mean zero, and the 

functional form being correctly specified (Ebbes, 2004; Hueter, 2016).  

 Study 2. Simulation study two investigated the performance of instrumental 

variable and instrument-free methods under endogeneity arising from a linear regression 

specification. Park and Gupta (2012) previously investigated the performance of 

instrumental variable and Gaussian copula regression approaches under such a condition; 

however, the authors did not investigate the performance of the LIV regression approach 

under this condition. Therefore, by also considering the LIV regression approach, this 

research provides new comparative findings.  

Findings from this study suggest that IV and Gaussian copula regression 

approaches correctly adjust for the endogeneity bias when endogeneity is specified to be 

purely correlational, i.e., the endogeneity is entirely captured by 𝜌𝜌𝑥𝑥,𝜀𝜀, and there is no 

exogenous variation in the endogenous regressor. These findings match those from Park 

and Gupta (2012), where the authors also found that the IV and Gaussian copula 
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approaches successfully recovered the true parameter values. In addition, findings from 

this dissertation study demonstrated that the LIV approach produced inaccurate estimates 

under this condition, especially as the degree of endogeneity increased. Such findings 

suggest that additive separability in the endogenous regressor, i.e., the endogenous 

regressor can be split into two additive pieces, an endogenous and exogenous component, 

is a strong requirement of the LIV modeling approach.  

 Study 3. The researcher subsequently investigated the performance of 

instrumental variable and instrument-free methods under endogeneity arising from a LIV 

regression model, where there is now additive separability in the endogenous regressor 

and thus there exists exogenous variation. In other words, the endogenous regressor is 

now represented as 𝛽𝛽 =  𝜃𝜃 +  𝜈𝜈, where 𝜃𝜃 is the exogenous latent instrument and 𝜈𝜈 is an 

additive error term that is endogenous. Park and Gupta (2012) previously compared the 

Gaussian copula regression approach with the LIV regression approach under this 

condition; however, their simulation research was based only on a simple linear 

regression through the origin (RTO) LIV model, where the intercept was omitted and 

there was a single slope. Therefore, this research extended their simulation work by 

generating endogenous data from three LIV models: a RTO LIV model; a full LIV model 

with intercept and slope; and a full LIV model with intercept and multiple slopes.  

Simulation results for the RTO LIV model matched those from Park and Gupta 

(2012), as all three IV, Gaussian copula, and LIV modeling approaches produced 

unbiased, highly accurate estimates. However, once the author considered fuller 

parameterizations and simulated data from LIV models with both intercept and slope(s), 

the simulation results changed. For both full LIV model specifications, the IV and LIV 
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regression approaches still produced highly accurate, unbiased estimates of the true 

parameter value, as the author expected. Contrastingly, however, the Gaussian copula 

approach now produced inaccurate, biased results. Such findings produce new evidence 

suggesting that the Gaussian copula approach has difficulty correcting for endogeneity 

bias when the exogeneity requirement for the instrument holds and the dependence 

structure differs from what the modeling approach assumes.  

 Study 4. The simulation study four further investigated the performance of the 

LIV regression approach with endogenous data based on both the linear regression and 

LIV specification. The dissertation research results from simulation study two showed 

that LIV estimates became increasingly inaccurate when endogeneity was based on a 

linear regression specification, yet this inaccuracy was not statistically significant 

according to 𝑡𝑡𝑇𝑇𝑖𝑖𝑎𝑎𝑏𝑏 test statistics. To further determine if the LIV model produced biased 

estimates under endogeneity arising from a linear regression specification, the author 

generated an observed LIV instrument by estimating a nonparametric Bayesian LIV 

model. A 2SLS regression using the generated LIV instrument was then fit to simulated 

data from both a linear regression specification and a LIV model specification.  

For endogenous data arising from a LIV model, the 2SLS regression using the 

LIV instrument produced estimates that were unbiased and highly accurate. Furthermore, 

the generated LIV instrument correlated nearly perfectly with the true instrument and had 

roughly zero correlation with the true error term. However, for endogenous data based on 

the linear regression specification, the 2SLS regression based on the generated LIV 

estimate produced inaccurate, statistically significantly biased results. The bias was now 

detectable due to the increased efficiency of the 2SLS regression approach using the 



 
 

166 
 

generated LIV instrument. Moreover, the generated LIV instrument was only weakly 

correlated with the true instrument and now correlated with the true error term. 

Interestingly, the correlation between the LIV instrument and true error was roughly half 

that of the endogeneity specified for the data generating process. Thus, this evidence 

revealed that the LIV approach corrects for roughly only half of the endogeneity bias 

when the dependence structure is different from what is assumed for the modeling 

approach. Additionally, these findings confirm that additive separability is a strong 

requirement for the LIV modeling approach. Furthermore, when this finding is taken in 

conjunction with findings from simulation study three, results suggest that there is an 

important additional, and previously undiscussed, assumption of the two proposed 

instrument-free approaches. Specifically, the added assumption of the instrument-free 

methods is that the endogeneity can be represented by a certain dependence structure; 

moreover, we see that the dependence structure assumed for each instrument-free method 

strongly matters.  These findings are new and highly informative for future research, 

which will be further discussed in sections to follow. 

 Study 5. Misspecification of the error term was investigated for simulation study 

five. For this study, the author considered uniform, F-distribution(8,5), and Chi-square(4) 

distributions for the true structural error term. This research extends the work of Ebbes 

(2009) and Park and Gupta (2012) by considering new distributions for the structural 

error term, as Park and Gupta only investigated a Uniform distribution for the error term 

under the Gaussian copula approach, and Ebbes considered Gamma, mixture,  Chi-

square(1) and t(3) distributions for the LIV model error (2004; 2009; 2012).  
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 When the error term was misspecified under the condition of exogeneity, OLS 

produced the best linear unbiased estimates, regardless of the distribution chosen for the 

error term. This finding is supported by the extant literature, as Gauss and Markov proved 

unbiasedness and efficiency of the OLS estimator without relying on assumptions of 

normality (Ebbes, 2004; Hueter, 2016). When endogenous data was generated from a 

linear regression model and the error term followed a uniform distribution, both IV and 

Gaussian copula methods produced unbiased, accurate results. The unbiased result found 

for the Gaussian copula approach matches the results reported by Park and Gupta (2012) 

for a uniform error distribution. However, once asymmetric, non-normal distributions 

were considered for the error term, the Gaussian copula no longer produced accurate 

results. The instrumental variable approach, given the true instrument, still produced 

highly accurate, unbiased results regardless of the distribution specified for the error 

term. These findings are new and suggest that the distributional assumption for the error 

term matters for the Gaussian copula approach, especially if the distribution is 

asymmetric.  

 For endogenous data generated from a LIV model where the error term was 

uniformly distributed, both the IV and LIV approach produced highly accurate, unbiased 

results. However, for asymmetric, non-normal distributions of the error, the LIV 

estimates became noticeably less accurate. Such results suggest that the LIV approach is 

somewhat sensitive to misspecification of the structural error term, which fits with 

findings reported by Ebbes (2009) in which the author noted that the LIV approach is 

more sensitive to distributional assumptions than other approaches, such as OLS. 

However, Ebbes’ (2004) results for the LIV model when the error took on a Chi-
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square(1) distribution were found to be more accurate than those reported in this work 

when the error took on a Chi-square(4) distribution. While the two distributions have 

different parameters and are therefore different distributions, findings across these two 

different specifications were not expected to differ much. The author notes that the 

discrepancy in findings could very well be due to differences in the sampling methods 

used for the simulation, as Ebbes’ samples from the two-stage equation error terms 

differently than done for this dissertation. However, further investigation is needed here. 

The IV regression approach, given the true, perfect instrument, was once again found to 

be robust to misspecification of the error term, producing highly accurate estimates 

regardless of the distribution specified.  

 The author subsequently investigated misspecifiation of the latent instrument, 𝛳𝛳𝑖𝑖, 

and first-stage error term, 𝜐𝜐𝑖𝑖, in the two stage LIV equation. For misspecification, the 

author considered three distributions for both the latent instrument and the first-stage 

error: uniform; F-distribution(8,5); and Chi-square(4). 

When the first-stage error term was uniformly distributed, both IV and LIV 

regression approaches produced unbiased, highly accurate results; however, when the 

distribution for the first-stage error became positively skewed (i.e., F- and Chi-square 

distributed), only IV regression produced highly accurate results, as LIV estimates 

became less accurate, albeit not statistically significantly so. Such results suggest that the 

distributional assumption placed on the first-stage error term is not overly restrictive. 

Although normality of the first-stage error term does not seem to be a strong assumption 

for the LIV approach, results suggest that symmetry of the first-stage error distribution 
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matters. These findings are new, as misspecification of the first-stage error term in the 

LIV model had not previously been investigated to the author’s knowledge.  

 Moreover, simulation results suggest that the LIV model preforms well when the 

latent instrument is misspecified. For all three distributions specified for the latent 

instrument, both the IV and the LIV model produced unbiased, accurate results. These 

findings are consistent with those reported by Ebbes (2009) and Papies et al. (2017), 

where the authors reported that the LIV model produced unbiased results when the latent 

instrument took on a non-normal gamma distribution. Findings from this dissertation 

work extend results from Ebbes (2009) and Papies et al. (2017) by considering an 

additional three distributions for the latent instrument that had not been previously 

explored. When viewed collectively, findings suggest that the assumption of a discrete 

multinomial distribution for the latent instrument is not a strong assumption of the LIV 

model, as the approach is robust to violations of this assumption.   

 Lastly, the author investigated misspecification of the first-stage error and latent 

instrument jointly. For this portion of the simulation study, the latent instrument was 

specified to follow a normal distribution and the first-stage error term followed a binary 

discrete distribution. As a result, the LIV model was severely misspecified for this 

research condition. Findings demonstrated that the LIV model produced highly 

inaccurate, biased results for this specification. However, the IV regression approach, 

provided with the true, perfect instrument, once again produced highly accurate, unbiased 

results.  



 
 

170 
 

 Study 6. Simulation study six illustrated the importance of considering both 

instrument quality and sample size when using instrumental variable and instrument-free 

methods.  For the instrumental variable approach, research findings demonstrated that the 

utility of the method for addressing endogeneity bias is largely dependent on the quality 

of the available instrument. When the available instrument is the true, perfect instrument, 

the IV regression method performs well, providing unbiased, consistent estimates; 

furthermore it outperformed the Gaussian copula approach in terms of mean-squared 

error (MSE) across all sample sizes investigated: 50, 100, 250, 500, 1000, 2500, and 

5000. Interestingly, the LIV regression approach performed equally well as IV regression 

using the true, perfect instrument across all investigated sample sizes. Moreover, research 

findings demonstrated that there was an efficiency cost for the IV approach when 

anything but the true, perfect instrument was used, even if the available instrument was of 

high quality and served as a good proxy for the true instrument. Once a proxy instrument 

was used for IV instead of the true instrument, the LIV modeling approach outperformed 

IV in terms of MSE at all investigated sample sizes.  

Even when the available instrument was of high quality, IV regression still 

produced estimates farther on average from the true parameter value than OLS when 

endogeneity was minor and the sample size was insufficient. Specifically, for a simple 

linear regression specification with a single regressor and minor endogeneity bias, a 

sample size of 1,000 was required before IV regression outperformed OLS. This result 

supports findings from simulation research conducted by Boef, Dekkers, 

VandenBroucke, and le Cessie (2014), where the authors reported that IV often requires 

large sample sizes before outperforming OLS when endogeneity bias is minor.  
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Findings from this dissertation research also suggest that the degree of 

unmeasured confounding and sample size interact to determine the utility of instrument-

free methods as well. For the Gaussian copula method, much larger sample sizes were 

needed to outperform OLS (N > 1,000), given minor endogeneity. For the LIV approach, 

simulation results suggested that only moderate sample sizes (N > 250) were required 

before outperforming OLS when there was minor endogeneity.   

Further simulation research revealed that instrument-free methods performed 

better than instrumental variable regression across all investigated sample sizes once the 

available instrument became either weak, invalid or a combination of the two. Notably, 

when the available instrument was weak but exogenous, IV required very large sample 

sizes before providing reasonable estimates, as IV estimates demonstrated large bias and 

variance across most investigated samples. For the minor endogeneity condition, IV with 

a weak, exogenous instrument never outperformed OLS in terms of MSE; however, when 

endogeneity bias became severe, IV with a weak, exogenous instrument outperformed 

OLS at 𝑁𝑁 ≥ 2,500. These findings are consistent with the literature regarding IV 

regression with weak instruments (Bound et al., 1995; Crown et al., 2011; Boef et al., 

2014; Hueter, 2016; Ebbes, 2004). Moreover, IV with a weak but exogenous instrument 

never outperformed instrument-free methods across sample sizes ranging from small to 

large.   

Lastly, when the observed instrument became endogenous, IV regression 

underperformed both OLS and instrument-free approaches across all specified sample 

sizes and regressor-error endogeneity conditions, producing highly biased estimates with 

large variance. This finding is consistent with previous research regarding IV regression 
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with bad quality instruments (Crown et al., 2011). Overall, simulation study six 

contributes new research findings to the field of causal inference, as to the author’s 

knowledge there is no previous research considering the impact of sample size on 

instrument-free method performance. 

Applied Findings: The academic impact of integrated student support 

 To investigate the causal impact of an integrated student support model, City 

Connects, on student academic achievement, the author applied 2SLS-IV and instrument-

free regression methods to real-world school lottery data. Centralized assignment systems 

used by school districts to assign students to schools rely on random lotteries to break ties 

in admissions decisions. This creates a stratified RCT that researchers can take advantage 

of for conducting credible program evaluation research. Furthermore, by leveraging the 

random offer from lottery admissions, the researcher is afforded an arguably valid and 

high quality instrument for use in instrumental variable regression.  

 Results from Gaussian copula, LIV, and IV regression with a random lottery offer 

instrument demonstrated that the City Connects intervention had no impact on student 

academic achievement immediately post-randomization at kindergarten. The finding of 

non-significant differences was expected by the author, as given randomization, the 

students should be roughly equivalent on all covariates and outcome measures at this 

time point. Furthermore, City Connects is posited to be a long-term intervention that has 

impact over time by continually addressing students’ strengths and needs (Chen, 2014; 

Lee-St. John, 2012).  Interestingly, the LIV 𝜆𝜆 estimates, which reflect probability of 

group membership, were .53, reflecting nearly equal chances of group membership. This 

estimate accurately reflects the randomization process taking place at the kindergarten 
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entry point and serves as further empirical validity evidence for the LIV modeling 

approach.  

By the time students reached 3rd grade, both IV regression with a random offer 

lottery instrument and instrument-free methods revealed statistically significant positive 

achievement gains in mathematics for students receiving the City Connects intervention. 

Specifically, City Connects students received a predicted .04𝜎𝜎 to .06𝜎𝜎  increase in 

mathematics on a state test for every year the intervention was received relative to the 

counterfactual. Therefore, students randomized into the City Connects intervention at 

grade kindergarten and receiving the intervention through 3rd grade score .16𝜎𝜎 to .24𝜎𝜎 

higher in mathematics on a state test than students not receiving the City Connects 

intervention during the same time period. This demonstrates a positive math effect for 

receiving the City Connects intervention between kindergarten and 3rd grade. By contrast, 

both IV and instrument-free methods suggested that City Connects had no significant 

impact on students’ English Language Arts state test achievement at 3rd grade. For both 

mathematics and ELA, the estimates across methods were strikingly similar, and the IV 

and LIV math estimates matched nearly exactly. Such findings provide empirical validity 

evidence for the instrument-free methods.  

Interestingly, both the IV and instrument-free method estimates were similar to 

the OLS estimate across analyses. The reason for this result is that endogeneity bias is 

likely not an issue for this sample. This claim was supported by endogeneity tests for all 

three methods. Specifically, the IV and Gaussian copula Hausman tests for endogeneity 

and the LIV𝜌𝜌 estimate, a measure of endogeneity, all suggested exogeneity at the grade 3 

time point. Lastly, the author estimated an observed LIV instrument from a 
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nonparametric Bayesian LIV model and correlated this instrument with both the observed 

lottery offer instrument and the endogenous City Connects treatment variable. The LIV 

instrument was found to be highly correlated with the random lottery offer instrument 

(.74) and very highly correlated with the City Connects treatment variable (.99). 

Furthermore, the estimated LIV instrument correctly classified the student random offer 

for 86% of the observations. These results match earlier dissertation simulation findings, 

where the LIV instrument produced an estimated latent instrument that was strongly 

correlated with the true instrument. Overall, the findings from the lottery study offer new 

empirical validity evidence for the instrument-free methods, as, to the author’s 

knowledge, this is the first time instrument-free methods have been applied to a large-

scale real-world RCT. Moreover, this research presents new evidence regarding the 

efficacy of City Connects, as an analysis leveraging an RCT design for estimating the 

impact of City Connects has not been previously conducted. Dearing et al. (2016) 

revealed significant and practically important positive effects in mathematics 

performance during elementary school years for first-generation immigrant children 

living in high poverty, urban contexts and who received the City Connects intervention. 

Walsh et al. (2014) also reported higher mathematics performance for students 

participating in the City Connects intervention. However, such research findings are from 

quasi-experimental comparison group designs; the findings from this study are consistent 

with findings from the previous research investigating the impact of the City Connects 

intervention and provide stronger empirical evidence from a randomized control (RCT) 

trial design.  
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To make broader inferences about the impact of City Connects, instrument-free 

methods were then applied to the full district sample of students, regardless of whether or 

not they participated in the lottery assignment process. Results from both LIV and 

Gaussian copula regression approaches demonstrated that the City Connects intervention 

had no impact on student academic achievement at Kindergarten. The LIV 𝜆𝜆 estimates, 

which reflect probability of group membership, were .71 and .70, reflecting far from 

equal chances of group membership. This change in the estimate accurately reflects the 

full district data, as we are no longer taking advantage of a school lottery and therefore no 

longer have a RCT.  

By the time students reached 3rd grade for the full district sample, instrument-free 

methods once again revealed statistically significant positive achievement gains in 

mathematics for students receiving the City Connects intervention. Specifically, for 

simple student-level models, City Connects students received a .03𝜎𝜎 to .04𝜎𝜎 increase in 

mathematics on a state test for every year the intervention was received relative to the 

counterfactual. When explicitly accounting for the multilevel structure of the data and 

between-school variability, the positive effect of receiving the City Connects intervention 

became even more notable. Specifically, for fixed effects and multilevel models, City 

Connects students received a .07𝜎𝜎 to .08𝜎𝜎 increase in mathematics on a state test for 

every year the intervention was received relative to the counterfactual. Therefore, 

students randomized into the City Connects intervention at grade kindergarten and 

receiving the intervention through 3rd grade score .28𝜎𝜎 to .32𝜎𝜎 higher in mathematics on 

a state test compared to students not receiving the City Connects intervention during the 

same time period. Surprisingly, both the Gaussian copula and LIV estimates were once 
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again similar to the OLS estimate across analyses. Such a result suggests that endogeneity 

bias is likely not an issue even for the full district sample. This claim was supported by 

endogeneity tests for instrument-free methods. The Gaussian copula Hausman test for 

endogeneity and the LIV𝜌𝜌 estimate, a measure of endogeneity, both suggested 

exogeneity.  

Lastly, the researcher notes the lack of a statistically significant difference in 

reading and ELA achievement between City Connects and non-City Connects students 

across lottery and full sample research studies. It is speculated that this finding may be 

due to mathematics being primarily school-based and therefore its teaching and learning 

is much more confined to the contexts of classrooms than is the case with reading and 

language learning, as this type of learning can frequently take place outside of the school 

context. Consequently, school-based interventions may have more of an impact for 

mathematics achievement than they do for reading and ELA achievement; however, this 

topic merits further consideration and research.  

Limitations and Future Research 

 In exploring the utility of the proposed methods, the author notes that there were 

several study limitations that warrant further research. Both limitations and future 

research will be discussed simultaneously in the sections that follow.  

 Estimation of Gaussian copula regression. Given Park and Gupta’s (2012) 

formulation of the model, there are two ways one can estimate the Gaussian copula 

regression: least squares and maximum likelihood estimation (MLE). For this dissertation 

research, the author only considered estimation of the Gaussian copula regression using 
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least squares. While Park and Gupta (2012) note that the Gaussian copula approach 

produced nearly identical results across estimation methods, this may not be the case for 

the research conditions investigated for this dissertation research. It is possible that one 

may get different results if a MLE Gaussian copula regression is used and it therefore 

may be worthwhile to investigate and compare a maximum likelihood based approach 

under the research conditions specified for this dissertation.  

 Dependence structure results. To the author’s knowledge, this is the first time 

the dependence structure assumption for the proposed instrument-free methods has been 

discovered and explored. However, the reason for why the least squares Gaussian copula 

regression provides biased estimates for data generated from a LIV model including 

intercept but not for data generated from a LIV slope only specification remains 

unknown.  Algebraically, the slope coefficient for a regression through the origin and a 

regression including intercept are nearly equivalent, differing only if the mean of the 

independent variable is not equal to zero (Kozak & Kozak, 1995). The researcher did 

investigate a mean-centering approach for the independent variable in further simulation 

study; however, the slope under the Gaussian copula approach remained biased. This 

result needs further investigation and possibly more detailed mathematical explanation as 

to why the inclusion of the intercept biases the Gaussian copula slope estimate under a 

LIV data generating process.  

 Furthermore, the LIV approach produces biased estimates when there exists no 

exogenous variation in the regressor and data is generated from a linear regression 

specification. Further investigation revealed that the estimated latent instrument only 

corrected for roughly half the endogeneity bias, and thus there was residual endogenous 
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variation left over when a LIV modeling approach was fit to endogenous data generated 

from a linear regression specification. In other words, the LIV approach creates a less 

endogenous variable when the dependence structure is different from what is assumed for 

the model. To correct for this, one would only have to further adjust for the residual 

endogenous variation. Therefore, it may be possible to combine the two instrument-free 

approaches in such a way that the model appropriately accounts for any endogenous 

variation that could not be accounted for by the LIV modeling approach alone. Future 

research could explore a combined Gaussian copula LIV model, perhaps where the 

optimal LIV instrument is generated by the researcher and then combined with the 

Gaussian copula control function in some fashion. Furthermore, it may be possible in the 

LIV estimation process to account for any dependence between the latent instrument and 

structural error term.  

Lastly, the researcher only identified that the dependence structure seems to 

matter for the instrument-free methods and, specifically, that the exogeneity requirement 

of the latent instrument breaks down if the dependence structure is different from what 

the LIV model assumes. It would be helpful if future research identified useful diagnostic 

checks or techniques for reliably identifying when the dependence structure differs from 

what each of the instrument-free methods assume.  

Statistical models for sample size simulation. The sample size impact 

simulation study aimed to provide a starting point for generating useful guidelines and 

ideas about the appropriateness of the different methods under various contexts. 

However, the models investigated for the sample size simulation study were only simple 

linear regression models in that each method estimated an intercept and single slope only. 
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Such a model is often unrealistic in applied science, and furthermore by relying on these 

simple models for providing sample size guidelines one may underestimate the actual 

sample size needed by applied researchers. This is because the models often employed in 

applied research have many more parameters to estimate, which ties up additional 

degrees of freedom and thus require larger samples. As a result, the impact of sample size 

on instrument-free methods and instrumental variable regression should be further 

investigated using more fully parametrized models.  

In addition to the consideration of more fully parametrized models, one may also 

wish to consider various treatment assignment mechanisms and degrees to which the 

instrumental variable influences selection when investigating the impact of sample size 

on IV and instrument-free methods.  Research conducted by Boef et al. (2014) may serve 

as a useful starting point for performing this comparison. Furthermore, it would be 

interesting to see how well the equation Boef et al. (2014) derived for approximating the 

threshold sample size at which IV outperforms OLS also approximates the sample sizes 

needed for instrument-free methods to outperform OLS. Lastly, it should be theoretically 

possible to derive an equation for approximating the threshold sample size at which 

instrument-free methods outperform OLS in terms of MSE.  

Consistency of the LIV estimator. This dissertation research contributes to the 

prior research conducted by Ebbes (2004; 2005; 2009), Papies et al. (2017), and Park and 

Gupta (2012) by also demonstrating that the LIV estimator is approximately consistent 

via simulation study results. However, we reserve the term ‘approximately consistent’ for 

describing the LIV estimator due to the fact that consistency has only been shown via 

simulation study. To the author’s knowledge, a mathematical proof for the consistency of 
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the LIV estimator still does not exist. Future mathematical research proving this property 

would ensure confidence in applying the LIV modeling approach.  

Coding of the lottery random offer instrument. While the random offer 

instrument from an admissions lottery is a valid instrument, coding decisions that affect 

the representational accuracy of the instrument were made. The actual random offer 

provided in the admissions data was for specific schools. The researcher then coded this 

random offer to a specific school as being a random offer to a City Connects school if the 

school the student received an offer to attend was ever a City Connects school across a 

number of years. In other words, an if-ever coding scheme was used. This approach is not 

representative of actual reality and possibly weakens the instrument; however, it should 

not affect exogeneity of the instrument.  

Level of City Connects treatment. Given the individualized nature of the City 

Connects intervention, the unit of randomization being the student for the lottery study, 

and the dosage measure of exposure to treatment, the City Connects treatment was 

specified to be at the student-level for all applied analyses. However, it is important to 

note that City Connects is a school-wide intervention, and furthermore that treatment may 

be heterogeneous at the school-level. Therefore it is possible that treatment and the 

models used for the applied analyses were misspecified.  As a possible solution, one may 

wish to consider modeling treatment at both the student- and school-level in future 

analyses.  Additionally, although the lottery study explored for this dissertation research 

randomizes students to schools, it is important to note that schools have not been 

randomized to the City Connects treatment condition. It is therefore also possible that 
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important school-level factors, e.g., effective principal leadership, account for the 

treatment effects observed.  

Treatment dosage. By including years spent in the City Connects intervention as 

a measure of dosage in our models, we are assuming that there is a linear increase in 

outcome performance for each year spent in the City Connects intervention. This is a 

strong assumption, and one which may be unrealistic. Future research should empirically 

investigate the degree to which this assumption holds by including nonlinear 

transformations of the treatment variable in regression models.  

Broader Implications 

 Instrument-free methods are useful approaches for addressing endogeneity bias 

and providing researchers with valuable information about the causal impact of an 

intervention. Given the problem of finding high quality instruments, and the potentially 

even bigger problem of relying on poor quality instruments, it is important to have 

alternative statistical approaches for addressing unobserved confounding when probing 

causal hypotheses. Instrument-free statistical approaches serve as viable alternatives to 

instrumental variable regression, providing unbiased, accurate causal estimates across a 

range of research conditions involving endogeneity bias. Furthermore, these methods do 

not require that the researcher identify a valid instrument. However, as research has also 

demonstrated, these approaches require their own set of identifying assumptions before 

one can infer causality (Papies et al., 2017). This underscores the importance of 

assumptions when performing causal inference in the absence of experimental data. 

Because all non-experimental research relies on key assumptions, no one method in 

statistical causal inference is invariably superior to another, and therefore we must be 
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aware of the assumptions made under any given modeling approach and the degree to 

which these assumptions fit our context (Papies et al., 2017).  

 When performing causal inference with OLS, we make the key assumption that 

the treatment variable is uncorrelated with the structural error term. For IV regression, the 

assumptions change, and we now assume that an instrumental variable is available for use 

and that this variable is both relevant and exogenous. Such assumptions may be hard to 

satisfy, and this strongly encourages the use of an instrument-free approach. However, in 

adopting an instrument-free modeling approach, we must be aware that we are making 

new and important assumptions. Specifically, the assumptions of instrument relevance 

and exogeneity are replaced by the assumptions that the endogenous regressor is non-

normal and that there exists a certain dependence structure in place. For the LIV model, 

we assume additive separability in the endogenous regressor, and that the dependence can 

be captured by the correlation between the structural error term and the additive 

endogenous component of the endogenous regressor. For the Gaussian copula approach, 

we assume that the exogeneity requirement does not hold, and that the dependence 

between the endogenous regressor and the structural error term can be represented as 

purely correlational. In sum, we use different sets of assumptions for making causal 

inferences under different approaches, and the validity of the causal inference is tied to 

the degree to which assumptions hold for any given analytic approach.  

This dissertation research also offers new empirical validity evidence for 

instrument-free methods by applying the approaches to a real-world large-scale RCT. As 

demonstrated, the results from instrument-free methods matched results from IV 

regression using a random lottery offer instrument from an RCT. Moreover, the latent 
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instrument produced by the LIV approach strongly correlated with the observed random 

lottery offer instrument. Such results are very encouraging and demonstrate the power of 

instrument-free methods. Given this result, educational researchers should consider the 

adoption of instrument-free methods in their own substantive work. To the author’s 

knowledge, instrument-free methods have not yet been adopted for educational 

evaluation research purposes. Hopefully, this practice will change as these methods align 

well with education researchers’ substantive goals and could be a powerful complement 

to other more commonly employed regression techniques. This is especially the case for 

education researchers seeking to make causal claims about student services and academic 

interventions.  

 In line with the above, instrument-free methods were used in combination with IV 

regression to demonstrate the academic impact of an integrated student support model, 

namely the City Connects intervention. Findings revealed significant positive effects for 

students receiving the intervention during early elementary school years. Such findings 

are consistent with the extant research examining the efficacy of the City Connects 

student support model. Dearing et al. (2016) noted a significant and practically important 

positive effect in both mathematics and reading performance for first-generation 

immigrant children in high poverty, urban contexts during elementary school years 

associated with exposure to the City Connects intervention. Furthermore, Walsh et al. 

(2014) reported both higher report card scores and higher performance on middle school 

English language arts and mathematics tests for students participating in the City 

Connects intervention. These studies provide compelling evidence for the effectiveness 

of City Connects for addressing non-academic barriers to learning. This dissertation 
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research contributes to these findings by offering efficacy evidence from a real-world 

RCT. Additionally, instrument-free methods were used to triangulate findings and further 

support claims regarding the impact of the City Connects intervention.  

 The Every Student Succeeds Act (ESSA), the nation’s main law for public 

education, has shifted focus toward more disadvantaged students by encouraging the use 

of integrated student support programs for addressing barriers to learning brought on by 

poverty and other contextual factors (ESSA Title I, Title IVA). Stemming from this 

federal law, numerous states have adopted legislation to advance integrated student 

support strategies (Policy Brief, p.14-17). City Connects is an evidence-based student 

support model that demonstrates the feasibility of offsetting the impact of out-of-school 

factors on learning and healthy development through the provision of comprehensive, 

tailored and individualized services (Dearing et al., 2016; Walsh et al., 2014; Progress 

Report, 2016). As a result, the City Connects intervention can inform the development of 

state policies and protocols, and guide more effective approaches to implementation at 

scale.  
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APPENDIX 

Table 1.  

Impact of City Connects with Dichotomous Dose variable 

 

 

 

 

Table 2.  
 
MC Error and 𝑅𝑅� statistics for kindergarten ELA randomization sample 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.072 0.004 1.00 

City Connects 0.006 < .001 1.00 
Year 07 0.062 0.002 1.00 
Year 08 0.070 0.002 1.00 
Year 09 0.066 0.002 1.00 
Year 10 0.065 0.003 1.00 
Year 11 0.066 0.002 1.00 
Year 12 0.061 0.002 1.00 
Year 13 0.081 0.003 1.00 

Male 0.034 <.001 1.00 
Black 0.071 0.004 1.00 

Hispanic 0.068 0.004 1.00 
Asian 0.080 0.004 1.00 
Mixed 0.130 0.005 1.00 

Special Ed. 1 0.140 0.004 1.00 
Special Ed. 2 0.085 0.003 1.00 
Special Ed. 3 0.242 0.006 1.00 
Free Lunch 0.050 0.002 1.00 

Reduced Lunch 0.096 0.003 1.00 
ELL 0.044 0.001 1.00 
𝜆𝜆1 0.010 < .001 1.00 
𝜆𝜆2 0.010 < .001 1.00 
𝜋𝜋1 0.008 < .001 1.00 
𝜋𝜋2 0.008 < .001 1.00 
ρ 0.058 0.002 1.00 

 𝜎𝜎1 0.021 < .001 1.00 
𝜎𝜎2 0.002 < .001 1.00 

 

    OLS IV 
Grade Subject �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value �̂�𝛽(𝑆𝑆.𝐸𝐸. ) p-value 

K 
Math .06 (.04) 0.13 .18 (.15) 0.25 

Reading -.02 (.04) 0.62 .04 (.14) 0.76 
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Table 3.  
 
MC Error and 𝑅𝑅� statistics for grade 3 ELA randomization sample 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.094 0.005 1.00 

City Connects 0.017 < .001 1.00 
Year 10 0.078 0.003 1.01 
Year 11 0.079 0.003 1.00 
Year 12 0.076 0.003 1.00 
Year 13 0.077 0.002 1.00 

Male 0.047 0.001 1.00 
Black 0.094 0.004 1.01 

Hispanic 0.087 0.004 1.00 
Asian 0.106 0.004 1.00 
Mixed 0.182 0.006 1.00 

Special Ed. 1 0.159 0.004 1.00 
Special Ed. 2 0.107 0.003 1.01 
Special Ed. 3 0.196 0.006 1.00 
Free Lunch 0.076 0.003 1.00 

Reduced Lunch 0.132 0.004 1.00 
ELL 0.068 0.002 1.00 
𝜆𝜆1 0.014 < .001 1.00 
𝜆𝜆2 0.014 < .001 1.00 
𝜋𝜋1 0.022 < .001 1.00 
𝜋𝜋2 0.031 0.001 1.00 
ρ 0.071 0.002 1.00 

 𝜎𝜎1 0.029 < .001 1.00 
𝜎𝜎2 0.012 < .001 1.00 
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Table 4.  
 
MC Error and 𝑅𝑅� statistics for kindergarten ELA full sample 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.022 < .001 1.00 

City Connects 0.002 < .001 1.00 
Year 05 0.022 < .001 1.00 
Year 06 0.022 < .001 1.00 
Year 07 0.022 < .001 1.00 
Year 08 0.022 < .001 1.00 
Year 09 0.022 < .001 1.00 
Year 10 0.022 < .001 1.00 
Year 11 0.021 < .001 1.00 
Year 12 0.022 < .001 1.00 
Year 13 0.024 < .001 1.00 

Male 0.010 < .001 1.00 
Black 0.017 < .001 1.00 

Hispanic 0.017 < .001 1.00 
Asian 0.023 < .001 1.00 
Mixed 0.035 < .001 1.00 

Special Ed. 1 0.044 0.001 1.00 
Special Ed. 2 0.020 < .001 1.00 
Special Ed. 3 0.058 0.002 1.00 
Free Lunch 0.015 < .001 1.00 

Reduced Lunch 0.028 < .001 1.00 
ELL 0.013 < .001 1.00 
𝜆𝜆1 0.002 < .001 1.00 
𝜆𝜆2 0.002 < .001 1.00 
𝜋𝜋1 0.003 < .001 1.00 
𝜋𝜋2 0.004 < .001 1.00 
ρ 0.012 < .001 1.00 

 𝜎𝜎1 0.007 < .001 1.00 
𝜎𝜎2 0.001 < .001 1.00 
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Table 5.  
 
MC Error and 𝑅𝑅� statistics for grade 3 ELA full sample 

Parameter S.D. MC Error 𝑹𝑹� 
Intercept 0.021 < .001 1.00 

City Connects 0.005 < .001 1.00 
Year 02 0.020 < .001 1.01 
Year 03 0.021 < .001 1.00 
Year 04 0.021 < .001 1.01 
Year 05 0.021 < .001 1.00 
Year 06 0.021 < .001 1.00 
Year 07 0.021 < .001 1.00 
Year 08 0.022 < .001 1.00 
Year 09 0.011 < .001 1.00 
Year 10 0.022 < .001 1.00 
Year 11 0.021 < .001 1.00 
Year 12 0.021 < .001 1.00 
Year 13 0.022 < .001 1.00 

Male 0.009 < .001 1.00 
Black 0.014 < .001 1.00 

Hispanic 0.014 < .001 1.01 
Asian 0.020 < .001 1.01 
Mixed 0.040 0.001 1.00 

Special Ed. 1 0.040 0.001 1.00 
Special Ed. 2 0.017 < .001 1.00 
Special Ed. 3 0.024 < .001 1.00 
Free Lunch 0.016 < .001 1.00 

Reduced Lunch 0.027 < .001 1.01 
ELL 0.011 < .001 1.00 
𝜆𝜆1 0.001 < .001 1.00 
𝜆𝜆2 0.001 < .001 1.00 
𝜋𝜋1 0.002 < .001 1.00 
𝜋𝜋2 0.006 < .001 1.00 
ρ 0.012 < .001 1.00 

 𝜎𝜎1 0.006 < .001 1.00 
𝜎𝜎2 <.001 < .001 1.00 
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Figure 1. Trace Plot for Kindergarten Lottery Sample Math Intercept  
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Figure 2. Trace Plot for Kindergarten Lottery Sample Math Year 07 
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Figure 3. Trace Plot for Kindergarten Lottery Sample Math Year 08 
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Figure 4. Trace Plot for Kindergarten Lottery Sample Math Year 09 
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Figure 5. Trace Plot for Kindergarten Lottery Sample Math Year 10 
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Figure 6. Trace Plot for Kindergarten Lottery Sample Math Year 11 
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Figure 6. Trace Plot for Kindergarten Lottery Sample Math Year 12 
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Figure 8. Trace Plot for Kindergarten Lottery Sample Math Male 
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Figure 9. Trace Plot for Kindergarten Lottery Sample Math Black 
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Figure 11. Trace Plot for Kindergarten Lottery Sample Math Asian 

 



 
 

204 
 

beta[14] chains 1:3

iteration
359 400 500 600 700

   -0.5

  -0.25

    0.0

   0.25

    0.5

 

Figure 12. Trace Plot for Kindergarten Lottery Sample Math Mixed 
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Figure 13. Trace Plot for Kindergarten Lottery Sample Math Sped 1 
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Figure 14. Trace Plot for Kindergarten Lottery Sample Math Sped 2 
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Figure 15. Trace Plot for Kindergarten Lottery Sample Math Sped 3 
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Figure 16. Trace Plot for Kindergarten Lottery Sample Math Free Lunch 
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Figure 17. Trace Plot for Kindergarten Lottery Sample Math Reduced Lunch 
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Figure 18. Trace Plot for Kindergarten Lottery Sample Math Bilingual 
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Figure 19. Trace Plot for Kindergarten Lottery Sample Math Lambda 1 
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Figure 20. Trace Plot for Kindergarten Lottery Sample Math Lambda 2 
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Figure 21. Trace Plot for Kindergarten Lottery Sample Math Pi 1 
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Figure 25. Trace Plot for Kindergarten Lottery Sample Reading Intercept 
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Figure 26. Trace Plot for Kindergarten Lottery Sample Reading Year 07 
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Figure 27. Trace Plot for Kindergarten Lottery Sample Reading Year 08 
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Figure 28. Trace Plot for Kindergarten Lottery Sample Reading Year 09 
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Figure 29. Trace Plot for Kindergarten Lottery Sample Reading Year 10 
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Figure 30. Trace Plot for Kindergarten Lottery Sample Reading Year 11 
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Figure 31. Trace Plot for Kindergarten Lottery Sample Reading Year 12 
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Figure 32. Trace Plot for Kindergarten Lottery Sample Reading Year 13 
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Figure 33. Trace Plot for Kindergarten Lottery Sample Reading Male 
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Figure 34. Trace Plot for Kindergarten Lottery Sample Reading Black 
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Figure 35. Trace Plot for Kindergarten Lottery Sample Reading Hispanic 
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Figure 36. Trace Plot for Kindergarten Lottery Sample Reading Asian 
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Figure 37. Trace Plot for Kindergarten Lottery Sample Reading Mixed 
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Figure 38. Trace Plot for Kindergarten Lottery Sample Reading Sped 1 
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Figure 39. Trace Plot for Kindergarten Lottery Sample Reading Sped 2 
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Figure 40. Trace Plot for Kindergarten Lottery Sample Reading Sped 3 
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Figure 41. Trace Plot for Kindergarten Lottery Sample Reading Free Lunch 
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Figure 42. Trace Plot for Kindergarten Lottery Sample Reading Reduced Lunch 
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Figure 43. Trace Plot for Kindergarten Lottery Sample Reading Bilingual 
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Figure 44. Trace Plot for Kindergarten Lottery Sample Reading Lambda 1 
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Figure 46. Trace Plot for Kindergarten Lottery Sample Reading Pi 1 

 



 
 

216 
 

pi[2] chains 1:3

iteration
359 400 500 600 700

   5.84

   5.86

   5.88

    5.9

   5.92

 

Figure 47. Trace Plot for Kindergarten Lottery Sample Reading Pi 2 
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Figure 48. Trace Plot for Kindergarten Lottery Sample Reading Rho 
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Figure 95. Trace Plot for Kindergarten Lottery Sample Reading Sigma 1 
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Figure 49. Trace Plot for Kindergarten Lottery Sample Reading Sigma 2 
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Figure 50. Trace Plot for Grade 3 Lottery Sample Math Intercept 
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Figure 51. Trace Plot for Grade 3 Lottery Sample Math Year 10 
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Figure 52. Trace Plot for Grade 3 Lottery Sample Math Year 11 
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Figure 53. Trace Plot for Grade 3 Lottery Sample Math Year 12 
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Figure 54. Trace Plot for Grade 3 Lottery Sample Math Year 13  
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Figure 55. Trace Plot for Grade 3 Lottery Sample Math Male 
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Figure 56. Trace Plot for Grade 3 Lottery Sample Math Black 
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Figure 57. Trace Plot for Grade 3 Lottery Sample Math Hispanic 
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Figure 58. Trace Plot for Grade 3 Lottery Sample Math Asian 

 

beta[11] chains 1:3

iteration
359 400 500 600 700

   -0.5

    0.0

    0.5

    1.0

 

Figure 59. Trace Plot for Grade 3 Lottery Sample Math Mixed 
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Figure 60. Trace Plot for Grade 3 Lottery Sample Math Sped 1 
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Figure 61. Trace Plot for Grade 3 Lottery Sample Math Sped 2 
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Figure 62. Trace Plot for Grade 3 Lottery Sample Math Sped 3 
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Figure 63. Trace Plot for Grade 3 Lottery Sample Math Free Lunch 
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Figure 64. Trace Plot for Grade 3 Lottery Sample Math Reduced Lunch 
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Figure 65. Trace Plot for Grade 3 Lottery Sample Math Bilingual 
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Figure 66. Trace Plot for Grade 3 Lottery Sample Math Lambda 1 
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Figure 67. Trace Plot for Grade 3 Lottery Sample Math Lambda 2 
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Figure 68. Trace Plot for Grade 3 Lottery Sample Math Pi 1 
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Figure 69. Trace Plot for Grade 3 Lottery Sample Math Pi 2 
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Figure 70. Trace Plot for Grade 3 Lottery Sample Math Rho  
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Figure 71. Trace Plot for Grade 3 Lottery Sample Math Sigma 1 
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Figure 72. Trace Plot for Grade 3 Lottery Sample Math Sigma 2 
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Figure 73. Trace Plot for Grade 3 Lottery Sample ELA Intercept 
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Figure 74. Trace Plot for Grade 3 Lottery Sample ELA Year 10 
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Figure 75. Trace Plot for Grade 3 Lottery Sample ELA Year 11 
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Figure 76. Trace Plot for Grade 3 Lottery Sample ELA Year 12 
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Figure 77. Trace Plot for Grade 3 Lottery Sample ELA Year 13 

 

beta[7] chains 1:3

iteration
359 400 500 600 700

   -0.4
   -0.3
   -0.2
   -0.1

-2.77556E-17
    0.1

 

Figure 78. Trace Plot for Grade 3 Lottery Sample ELA Male 
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Figure 79. Trace Plot for Grade 3 Lottery Sample ELA Black 
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Figure 80. Trace Plot for Grade 3 Lottery Sample ELA Hispanic 
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Figure 81. Trace Plot for Grade 3 Lottery Sample ELA Asian  
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Figure 82. Trace Plot for Grade 3 Lottery Sample ELA Mixed  

 

beta[12] chains 1:3

iteration
359 400 500 600 700

   -1.5

   -1.0

   -0.5

    0.0
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Figure 84. Trace Plot for Grade 3 Lottery Sample ELA Sped 2 
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Figure 85. Trace Plot for Grade 3 Lottery Sample ELA Sped 3 
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Figure 86. Trace Plot for Grade 3 Lottery Sample ELA Free Lunch  
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Figure 87. Trace Plot for Grade 3 Lottery Sample ELA Reduced Lunch  
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Figure 88. Trace Plot for Grade 3 Lottery Sample ELA Bilingual 
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Figure 89. Trace Plot for Grade 3 Lottery Sample ELA Lambda 1 
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Figure 90. Trace Plot for Grade 3 Lottery Sample ELA Lambda 2 
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Figure 91. Trace Plot for Grade 3 Lottery Sample ELA Pi 1 
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Figure 92. Trace Plot for Grade 3 Lottery Sample ELA Pi 2 
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Figure 93. Trace Plot for Grade 3 Lottery Sample ELA Rho 
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Figure 94. Trace Plot for Grade 3 Lottery Sample ELA Sigma 1 
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Figure 95. Trace Plot for Grade 3 Lottery Sample ELA Sigma 2 
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Figure 96. Trace Plot for Kindergarten Full Sample Math Intercept 
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Figure 97. Trace Plot for Kindergarten Full Sample Math Year 05 
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Figure 99. Trace Plot for Kindergarten Full Sample Math Year 07 
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Figure 101. Trace Plot for Kindergarten Full Sample Math Year 09 
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Figure 102. Trace Plot for Kindergarten Full Sample Math Year 10 
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Figure 103. Trace Plot for Kindergarten Full Sample Math Year 11 
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Figure 105. Trace Plot for Kindergarten Full Sample Math Year 13 
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Figure 106. Trace Plot for Kindergarten Full Sample Math Male 
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Figure 107. Trace Plot for Kindergarten Full Sample Math Black 
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Figure 108. Trace Plot for Kindergarten Full Sample Math Hispanic 
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Figure 109. Trace Plot for Kindergarten Full Sample Math Asian 
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Figure 110. Trace Plot for Kindergarten Full Sample Math Mixed 
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Figure 111. Trace Plot for Kindergarten Full Sample Math Sped 1 
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Figure 115. Trace Plot for Kindergarten Full Sample Math Reduced Lunch 
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Figure 123. Trace Plot for Kindergarten Full Sample Math Sigma 2 
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Figure 124. Trace Plot for Kindergarten Full Sample Reading Intercept 
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Figure 124. Trace Plot for Kindergarten Full Sample Reading Year 05 
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Figure 125. Trace Plot for Kindergarten Full Sample Reading Year 06 
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Figure 126. Trace Plot for Kindergarten Full Sample Reading Year 07 
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Figure 127. Trace Plot for Kindergarten Full Sample Reading Year 08 
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Figure 128. Trace Plot for Kindergarten Full Sample Reading Year 09 
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Figure 129. Trace Plot for Kindergarten Full Sample Reading Year 10 
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Figure 130. Trace Plot for Kindergarten Full Sample Reading Year 11 
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Figure 131. Trace Plot for Kindergarten Full Sample Reading Year 12 
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Figure 132. Trace Plot for Kindergarten Full Sample Reading Year 13 
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Figure 132. Trace Plot for Kindergarten Full Sample Reading Male 
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Figure 133. Trace Plot for Kindergarten Full Sample Reading Black 
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Figure 134. Trace Plot for Kindergarten Full Sample Reading Hispanic 
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Figure 135. Trace Plot for Kindergarten Full Sample Reading Asian 
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Figure 136. Trace Plot for Kindergarten Full Sample Reading Mixed 
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Figure 137. Trace Plot for Kindergarten Full Sample Reading Sped 1 
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Figure 138. Trace Plot for Kindergarten Full Sample Reading Sped 2 
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Figure 139. Trace Plot for Kindergarten Full Sample Reading Sped 3 
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Figure 140. Trace Plot for Kindergarten Full Sample Reading Free Lunch 
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Figure 141. Trace Plot for Kindergarten Full Sample Reading Reduced Lunch 
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Figure 142. Trace Plot for Kindergarten Full Sample Reading Bilingual 
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Figure 143. Trace Plot for Kindergarten Full Sample Reading Lambda 1 
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Figure 144. Trace Plot for Kindergarten Full Sample Reading Lambda 2 
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Figure 145. Trace Plot for Kindergarten Full Sample Reading Pi 1 
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Figure 146. Trace Plot for Kindergarten Full Sample Reading Pi 2 
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Figure 147. Trace Plot for Kindergarten Full Sample Reading Rho 
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Figure 148. Trace Plot for Kindergarten Full Sample Reading Sigma 1 
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Figure 149. Trace Plot for Kindergarten Full Sample Reading Sigma 2 
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Figure 150. Trace Plot for Grade 3 Full Sample Math Intercept 
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Figure 151. Trace Plot for Grade 3 Full Sample Math Year 06 
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Figure 152. Trace Plot for Grade 3 Full Sample Math Year 07 
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Figure 153. Trace Plot for Grade 3 Full Sample Math Year 08 
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Figure 154. Trace Plot for Grade 3 Full Sample Math Year 09 
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Figure 155. Trace Plot for Grade 3 Full Sample Math Year 10 
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Figure 156. Trace Plot for Grade 3 Full Sample Math Year 11 
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Figure 157. Trace Plot for Grade 3 Full Sample Math Year 12 
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Figure 158. Trace Plot for Grade 3 Full Sample Math Year 13 
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Figure 159. Trace Plot for Grade 3 Full Sample Math Male 

 

beta[12] chains 1:3

iteration
335 400 500 600

  -0.65

   -0.6

  -0.55

   -0.5

  -0.45

 

Figure 160. Trace Plot for Grade 3 Full Sample Math Black 
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Figure 161. Trace Plot for Grade 3 Full Sample Math Hispanic 

 

beta[14] chains 1:3

iteration
335 400 500 600

   0.25

    0.3

   0.35

    0.4

   0.45

 

Figure 162. Trace Plot for Grade 3 Full Sample Math Asian 
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Figure 163. Trace Plot for Grade 3 Full Sample Math Mixed 
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Figure 164. Trace Plot for Grade 3 Full Sample Math Sped 1 
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Figure 165. Trace Plot for Grade 3 Full Sample Math Sped 2 
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Figure 166. Trace Plot for Grade 3 Full Sample Math Sped 3 
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Figure 167. Trace Plot for Grade 3 Full Sample Math Free Lunch 
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Figure 168. Trace Plot for Grade 3 Full Sample Math Reduced Lunch 

 

beta[21] chains 1:3

iteration
335 400 500 600

  -0.45

 -0.425

   -0.4

 -0.375

  -0.35

 

Figure 169. Trace Plot for Grade 3 Full Sample Math Bilingual 
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Figure 170. Trace Plot for Grade 3 Full Sample Math Lambda 1 
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Figure 171. Trace Plot for Grade 3 Full Sample Math Lambda 2 
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Figure 172. Trace Plot for Grade 3 Full Sample Math Pi 1 
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Figure 173. Trace Plot for Grade 3 Full Sample Math Pi 2 
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Figure 174. Trace Plot for Grade 3 Full Sample Math Rho 
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Figure 175. Trace Plot for Grade 3 Full Sample Math Sigma 1 
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Figure 176. Trace Plot for Grade 3 Full Sample Math Sigma 2 
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Figure 177. Trace Plot for Grade 3 Full Sample ELA Intercept 
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Figure 178. Trace Plot for Grade 3 Full Sample ELA Year 02 
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Figure 179. Trace Plot for Grade 3 Full Sample ELA Year 03 
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Figure 180. Trace Plot for Grade 3 Full Sample ELA Year 04 
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Figure 181. Trace Plot for Grade 3 Full Sample ELA Year 05 
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Figure 182. Trace Plot for Grade 3 Full Sample ELA Year 06 
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Figure 183. Trace Plot for Grade 3 Full Sample ELA Year 07 
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Figure 184. Trace Plot for Grade 3 Full Sample ELA Year 08 
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Figure 185. Trace Plot for Grade 3 Full Sample ELA Year 09 
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Figure 186. Trace Plot for Grade 3 Full Sample ELA Year 10 
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Figure 187. Trace Plot for Grade 3 Full Sample ELA Year 11 
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Figure 188. Trace Plot for Grade 3 Full Sample ELA Year 12 
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Figure 189. Trace Plot for Grade 3 Full Sample ELA Year 13 
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Figure 190. Trace Plot for Grade 3 Full Sample ELA Male 
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Figure 191. Trace Plot for Grade 3 Full Sample ELA Black 
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Figure 192. Trace Plot for Grade 3 Full Sample ELA Hispanic 
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Figure 193. Trace Plot for Grade 3 Full Sample ELA Asian 
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Figure 194. Trace Plot for Grade 3 Full Sample ELA Mixed 
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Figure 195. Trace Plot for Grade 3 Full Sample ELA Sped 1 
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Figure 196. Trace Plot for Grade 3 Full Sample ELA Sped 2 
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Figure 197. Trace Plot for Grade 3 Full Sample ELA Sped 3 
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Figure 198. Trace Plot for Grade 3 Full Sample ELA Free Lunch 
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Figure 199. Trace Plot for Grade 3 Full Sample ELA Reduced Lunch 
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Figure 200. Trace Plot for Grade 3 Full Sample ELA Bilingual 
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Figure 201. Trace Plot for Grade 3 Full Sample ELA Lambda 1 
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Figure 202. Trace Plot for Grade 3 Full Sample ELA Lambda 2 
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Figure 203. Trace Plot for Grade 3 Full Sample ELA Pi 1 
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Figure 204. Trace Plot for Grade 3 Full Sample ELA Pi 2 
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Figure 205. Trace Plot for Grade 3 Full Sample ELA Rho 

 



 
 

270 
 

sigma[1] chains 1:3

iteration
342 400 500 600

   0.78
   0.79
    0.8
   0.81
   0.82
   0.83

 

Figure 206. Trace Plot for Grade 3 Full Sample ELA Sigma 1 
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Figure 207. Trace Plot for Grade 3 Full Sample ELA Sigma 2 
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Figure 208. Trace Plot for Grade 3 Multilevel Full Sample Math Intercept 
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Figure 209. Trace Plot for Grade 3 Multilevel Full Sample Math Year 06 
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Figure 210. Trace Plot for Grade 3 Multilevel Full Sample Math Year 07 

 

beta[4] chains 1:3

iteration
339 400 600 800 1000

  -0.15

   -0.1

  -0.05

1.38778E-17

   0.05

 

Figure 211. Trace Plot for Grade 3 Multilevel Full Sample Math Year 08 
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Figure 212. Trace Plot for Grade 3 Multilevel Full Sample Math Year 09 
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Figure 213. Trace Plot for Grade 3 Multilevel Full Sample Math Year 10 
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Figure 214. Trace Plot for Grade 3 Multilevel Full Sample Math Year 11 
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Figure 215. Trace Plot for Grade 3 Multilevel Full Sample Math Year 12 
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Figure 216. Trace Plot for Grade 3 Multilevel Full Sample Math Year 13 
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Figure 217. Trace Plot for Grade 3 Multilevel Full Sample Math Male 
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Figure 218. Trace Plot for Grade 3 Multilevel Full Sample Math Black 
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Figure 219. Trace Plot for Grade 3 Multilevel Full Sample Math Hispanic 
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Figure 220. Trace Plot for Grade 3 Multilevel Full Sample Math Asian 
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Figure 221. Trace Plot for Grade 3 Multilevel Full Sample Math Mixed 
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Figure 222. Trace Plot for Grade 3 Multilevel Full Sample Math Sped 1 
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Figure 223. Trace Plot for Grade 3 Multilevel Full Sample Math Sped 2 
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Figure 224. Trace Plot for Grade 3 Multilevel Full Sample Math Sped 3 
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Figure 225. Trace Plot for Grade 3 Multilevel Full Sample Math Free Lunch 
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Figure 226. Trace Plot for Grade 3 Multilevel Full Sample Math Reduced Lunch 

 



 
 

277 
 

beta[20] chains 1:3

iteration
339 400 600 800 1000

   -0.4

  -0.35

   -0.3

  -0.25

 

Figure 227. Trace Plot for Grade 3 Multilevel Full Sample Math Bilingual 
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Figure 228. Trace Plot for Grade 3 Multilevel Full Sample Math Lambda 1 
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Figure 229. Trace Plot for Grade 3 Multilevel Full Sample Math Lambda 2 
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Figure 230. Trace Plot for Grade 3 Multilevel Full Sample Math Pi 1 
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Figure 231. Trace Plot for Grade 3 Multilevel Full Sample Math Pi 2 
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Figure 232. Trace Plot for Grade 3 Multilevel Full Sample Math Rho 
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Figure 233. Trace Plot for Grade 3 Multilevel Full Sample Math Sigma 1 
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Figure 234. Trace Plot for Grade 3 Multilevel Full Sample Math Sigma 2 
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