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Solar fuel synthesis via photoelectrochemistry represents a promising strategy to achieve 

solar energy conversion and storage. The improvement of photoelectrochemical water 

splitting performance lies in choosing suitable photoelectrode materials, followed by 

strategic optimization of their properties. Among those properties, the interface between 

the semiconductors and electrolyte is of paramount importance, yet it is still not well 

understood. In my dissertation, I will mainly focus on understanding and controlling 

those interfaces, with two study platforms. 

 The first study platform is tantalum nitride (Ta3N5), which is an attractive 

photoanode material with good optoelectronic properties. However, it suffers from low 

photovoltage despite of the high theoretical expectation and rapid performance decay 

when it is used for water oxidation. With the help of various characterization methods, it 

was found that water or hydroxyl group adsorption on the surface as well as the self-

limited surface oxidation during water oxidation led to the positive shift of band edge 

positions and Fermi level, accompanied with increase of charge transfer resistance on the 

surface. In consequence, decrease of photovoltage and photocurrent was observed. 

 Two different strategies were developed. The first was to fully isolate Ta3N5 from 
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water with the deposition of uniform protection layer through atomic layer deposition. 

The second strategy utilized the reaction between Ta3N5 and co-catalyst instead of water, 

which led to the formation of a photo-induced interface that favored the desired chemistry instead 

of side reactions. 

 The second study platform is a Si buried junction protected by GaN. By tuning the loading 

amount of Pt nanoparticles on GaN surface, both the photocurrent density and photovoltage of the 

photocathode was improved. With detailed spectroscopic study, it was implied that both charge 

transfer kinetics and interfacial energetics could be influenced by the loading of Pt on the surface. 
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CHAPTER 1 THIN FILM PHOTOELECTRODES FOR SOLAR WATER SPLITTING 

1.1 DEMAND FOR SOLAR ENERGY STORAGE 

Since the first Industrial Revolution, the development of human society has been highly 

dependent on fossil fuels. However, as the industry scaled up, the side effects of 

consuming fossil fuels emerged, such as the global warming. In order to achieve 

environment-friendly and sustainable development, it becomes critical to utilize the 

renewable energy sources. As the most abundant renewable energy sources, solar 

radiation produced annual energy of approximately 3,850,000 EJ, which is almost four 

orders of magnitude higher than the yearly energy consumption of human beings. 

However, the utilization of solar energy in terawatt scale still remains challenging due to 

the intermittent nature of sunlight, leading to the urgent demand for efficient and cost-

effective energy storage devices.1 For example, due to the cost of lithium-ion batteries 

has fallen rapidly, electric grid combining station batteries and photovoltaics shows its 

practical feasibility as one of the energy storage solutions.   

Among various approaches, technologies that can utilize solar energy to drive 

thermodynamically uphill reactions are attractive, since they provide a simple pathway to 

achieve both solar energy conversion and storage simultaneously.2 Water splitting to 

produce hydrogen gas and carbon dioxide reduction to produce hydrocarbons are 
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representative ones.  The resultant products, namely solar fuels, can be redistributed to fit 

in the infrastructure of energy consumption, such as direct usage as fuels or subjected to 

industrial synthesis. The approach is usually named artificial photosynthesis, mimicking 

the natural photosynthesis in green plants. Photoelectrochemical (PEC) water splitting is 

one of the most promising strategies to produce H2 as solar fuels based on a recent 

techno-economic analysis. First reported in 1968 by Boddy and popularized in 1972 by 

Honda and Fujishima, such an approach has been studied by researchers since then, 

creating a broad field.3, 4 In the past a few decades, numerous efforts have been devoted 

to make the PEC route practical, along with discovery of exciting scientific knowledge. 

In the following section, some basic principles of PEC water splitting will be introduced. 

Furthermore, recent progress of using thin-film photoelectrodes in PEC water splitting 

will be discussed in details. 

1.2 PRINCIPLES OF PHOTOELECTROCHEMICAL WATER SPLITTING 

The basic principles of PEC water splitting are based on the behaviors of semiconductor-

liquid junctions.5 The process can be described in Figure 1.1, taking a n-type 

semiconductor as the example. When the semiconductor is immersed into the electrolyte 

without illumination, the equilibrium between the semiconductor and redox species in the 

electrolyte (e.g., O2/H2O) leads to the depletion of majority carriers in the semiconductor 

near the surface and results in the band bending (Figure 1.1 (a)), in which the potential 

drop is defined as Vbb. Such a region is called space charge region and its width is 

defined as Wsc. In the space charge region, there are positive charges left behind, while 
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excess of negative charges is accumulated in the Helmholtz layer in the electrolyte side 

near the semiconductor surface. As a result, an electric field is created in the space charge 

region, which can help to separate the photo-generated charges under illumination. 

Particularly, the minority charge carriers (e.g., holes for n-type semiconductors) will 

transport to the semiconductor surface under the electric field to complete the desired 

reaction (e.g., water oxidation). 

 

Figure 1.1 (a) Schematic shows the band diagram of a n-type semiconductor before and after equilibrium with the 

water oxidation potential under dark. (b) Schematic shows the band diagram of a n-type semiconductor connected with 
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a metal counter electrode under illumination for overall water splitting. ECB: conduction band minimum, EVB: valence 

band minimum, EF,n: quasi-Fermi level of electrons, EF,p: quasi-Fermi level of holes. (c) Schematic shows the band 

diagram of a n-type semiconductor connected with p-type semiconductor in tandem configuration under illumination 

for overall water splitting. Vph1: photovoltage from n-type photoanode, Vph2: photovoltage from p-type photocathode. 

The overall photovoltage Vph=Vph1+Vph2. 

To enable unassisted water splitting through the PEC approach, the photovoltage 

(Vph) generated from the semiconductor/liquid junction needs to satisfy the 

thermodynamic energy of splitting water molecules to hydrogen and oxygen molecules 

(∆Go = 237.1 kJ/mol, corresponding to ∆Eo = 1.23 V per electron) and additional kinetic 

barriers for the reaction.2 The value of Vph depends on the difference between the initial 

Fermi level (EF) and the equilibrium potential of redox species, as shown in Figure 

1.1(b). However, it is difficult to meet the energy requirement using a single 

semiconductor. Typically, multiple light absorbers will be connected together, as shown 

in Figure 1.1(c), so that wider range of solar spectrum can be utilized and the Vph’s can 

be added up. When the circuit is closed under illumination, the hydrogen fuels are 

produced. The solar to hydrogen efficiency (STH) is defined as: 

 𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐽𝐽𝑝𝑝ℎ×1.23 𝑉𝑉
𝑃𝑃𝑖𝑖𝑖𝑖

   (1.1) 

In the equation (1.1), Jph is the photocurrent density out of the PEC device, 

measuring the rate of photo-generated holes consumed by the water oxidation reaction. 

Pin is the light intensity on the PEC device. Since Pin is usually a constant, the value of Jph 

determines the value of STH. For a certain semiconductor, its ability to absorb light in 

certain wavelength is well defined by the absorption coefficients (α). Theoretically, the 

photogenerated charges across the semiconductor/liquid junction come from two parts. 

One is generated within the space charge region, which can be separated and transported 
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efficiently. Another is generated in the bulk of semiconductor, and the farthest position 

where the photogenerated charges can diffuse into the space charge region for efficient 

separation is determined by the minority carrier diffusion length (Lmin). Since the width 

of space charge layer depends on the degree of band bending, which is affected by the 

applied potential, the photocurrent density under monochromatic illumination can be 

calculated using Gärtner equation6: 

 𝐽𝐽𝐺𝐺 = 𝐼𝐼0[1 − exp(−𝛼𝛼𝑊𝑊𝑠𝑠𝑠𝑠)
1+𝛼𝛼𝐿𝐿𝑚𝑚𝑖𝑖𝑖𝑖

]   (1.2) 

 𝑊𝑊𝑠𝑠𝑠𝑠 = �2𝜀𝜀𝜀𝜀0𝑉𝑉𝑏𝑏𝑏𝑏
𝑞𝑞𝑁𝑁𝑑𝑑

= �2𝜀𝜀𝜀𝜀0(𝑉𝑉−𝑉𝑉𝑓𝑓𝑏𝑏)
𝑞𝑞𝑁𝑁𝑑𝑑

   (1.3) 

In equation (1.2), JG is the photocurrent density calculated from the Gärtner 

equation. I0 is the photon flux illuminated on the semiconductor. Equation (1.3) describes 

the dependence of Wsc on the Vbb as well as other properties of a given semiconductor. 

Nd is the donor density, ε is the dielectric constant of the semiconductor and ε0 is the 

vacuum permittivity, which is a constant. In the case when the applied potential only 

shifts the Fermi level (so-called band edge pinning conditions), Vbb equals V-Vfb, in 

which Vfb is the flat-band potential. Vfb is defined as the potential where band banding is 

zero, which is the Fermi level in Figure 1.1(a) before the equilibrium. The relationship 

between photocurrent density and applied potential based on Gärtner equation is shown 

as the dotted line in Figure 1.2. 
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Figure 1.2 The curves of photocurrent density versus applied potential for a n-type semiconductor in the electrolyte 

under illumination. The dotted line is calculated based on equation (1.2), while the solid line is calculated based on 

equation (1.4). 

However, what is usually observed under the experimental conditions is different 

from the predicted photocurrent density using Gärtner equation as shown in Figure 1.2. 

That is because the key assumptions required for Gärtner equation are (1) all 

photogenerated holes in the bulk and within the space charge region are transported to the 

surface without loss; (2) all surface-reaching holes are transferred rapidly across the 

interface. This means there is no charge recombination in the space charge region and at 

the semiconductor/electrolyte interface. But such an assumption is difficult to reach for 

the water splitting reactions. The limitations can be considered from two aspects. In the 

kinetics perspective, water reduction and oxidation feature sluggish reaction kinetics, 

affecting the charge transfer rate constant (ktran) across the semiconductor/electrolyte 

interface.7 From the energetics perspective, surface states (e.g., surface adsorbed species, 

dangling bonds and electronic states) at the semiconductor/electrolyte interface serve as 

the recombination centers for electrons and holes.8 Due to the slow charge transfer rate 

constant across the interface, holes accumulate at the surface, altering the potential drop 
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across the Helmholtz layer.7 At the same applied potential, instead of the band edge 

pinning conditions where the applied potential only leads to the change of band bending, 

such an effect (defined as the Fermi level pinning) leads to the decrease of band banding 

(thus smaller Vbb). Weaker band bending leads to worse charge separation ability, 

resulting in higher surface charge recombination rate constant (krec). The effect of surface 

charge recombination and Fermi level pinning is described in Figure 1.3. As a 

consequence, the photocurrent density based on Gärtner equation (JG) can be modified 

as:7 

 𝐽𝐽𝑝𝑝ℎ = 𝐽𝐽𝐺𝐺
𝑘𝑘𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖

𝑘𝑘𝑟𝑟𝑟𝑟𝑠𝑠+𝑘𝑘𝑡𝑡𝑟𝑟𝑎𝑎𝑖𝑖
   (1.4) 

As shown in Figure 1.2, significant photovoltage and photocurrent loss can be 

observed due to the slow minority charge carrier transfer and enhanced surface charge 

recombination as well as Fermi level pinning. 

 

Figure 1.3 The schematic shows the charge transfer and recombination in a n-type semiconductor with the redox 

species (A/A-) in the electrolyte under illumination. The size of arrows represents the qualitative value of ktran and krec. 

When ktran decreases and surface states exist (from the left to the right), surface recombination becomes severe and the 

band bending decreases (∆Vbb) even at the same applied potential. 
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Based on aforementioned discussions, the key factors govern the properties and 

performance of a semiconductor-based water splitting system can be summarized as 

follows: 

(1) Light absorption abilities of the semiconductor. The band gap (Eg) determines 

how broad is the absorption spectrum, and the light absorption coefficient 

determines how efficient is the light absorption at each wavelength. Overall, it 

provides the upper limit of photocurrent density one can obtain from a 

semiconductor with a certain thickness. 

(2) Electronic properties of the semiconductor. The band edge positions and the 

Fermi level determine the photovoltage output, which is the thermodynamic 

requirement and the driving force. Other electronic properties are also important 

such as the minority diffusion length and the width of space charge region, 

limiting the amount of minority carriers reaching the surface. 

(3) Interfacial properties between the semiconductor and electrolyte. How fast the 

charge can be transferred to complete the desired chemistry and how significant 

is the surface charge recombination set additional limits for the photocurrent 

density. Whether there are surface states at the interface impacts the potential 

distribution in the space charge region and Helmholtz layer, further affecting the 

surface energetics. 

Those key factors provide guidelines for choosing the suitable materials and optimization 

directions of the whole water splitting systems. In the following sections, thin-film 

materials will be used as the study platforms to illustrate the PEC water splitting systems 

in details. 
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1.3 DEFINITION OF THIN-FILM PHOTOELECTRODES 

The dilemma between efficiencies and costs is a critical challenge that has prevented 

solar fuels from being developed into a practical technology for large-scale solar energy 

harvesting and storage.  That is, highly efficient or low-cost solar fuel synthesis has been 

demonstrated separately but not together.  At the heart of the dilemma are issues 

connected to materials which can be used to harvest solar energy and carry out the 

desired chemical reactions.  Such an understanding has underpinned the significant 

research efforts in materials innovations for solar fuel synthesis.  Indeed, a wide spectrum 

of materials in terms of compositions, morphologies and structures, among other factors, 

has been proposed and tested, with varying degrees of successes in solving the cost-

efficiency dilemma. Thin-film materials whose thicknesses are below a few microns, 

mostly in the tens of nanometers range, are unique for a number of reasons. First, they 

represent a form factor that can be readily studied for materials’ fundamental properties, 

especially charge behaviors such as excitation, separation, transport and transfer. For 

instance, most thin films can be readily fashioned into an electrode for the assessment of 

the electrochemical and photoelectrochemical behaviors, which report on the charge 

properties of the materials. While better performance may be measured on other 

morphologies (vide infra), particularly those with nanometer scale features, thin films are 

often much simpler to study for insights that can guide future efforts aimed at optimizing 

structures for further improvements. In other words, thin film materials represent a good 

model platform for fundamental understanding of solar fuel materials. 

Second, a rich knowledge base on thin film materials has been generated by 

decades of intense research on semiconductors. A great deal has been learned about how 
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to synthesize them; a battery of experimental techniques has been developed to readily 

study them; strategies on how to combine different layers of components with 

complementary functionalities into a single material have been proposed and proven 

highly effective. The last point is especially valuable for the purpose of solar fuel 

synthesis because it is widely recognized that a single composition is unlikely to meet all 

the needs, including light absorption, charge separation, catalysis and passivation. The 

best hope to realize these functionalities is to construct an integrated system that includes 

multiple components, each optimized for one or more specific purposes.  For example, 

semiconductors with suitable bandgaps and electronic properties may be used to 

maximize light absorption and charge separation; heterogeneous and/or molecular 

catalysts can be introduced on top of the semiconducting light absorber for fast and 

highly specific charge transfer; additional protection may be necessary for durability.  

While such a strategy may be implemented in a variety of forms, thin films have been 

proven the most straightforward thanks to the rich knowledge base on their syntheses. 

More important, what is learned on thin film materials may be readily transferred for the 

construction of more complex structures for optimum performance such as various 

nanostructures. 

In the following sections, each component of a thin-film photoelectrode will be 

discussed, including the light absorbers (which are limited to semiconductors for ease of 

discussions), protection layers and catalyst layers. A general introduction of the synthetic 

methods of thin films will be discussed first, and then move on to discussions of light 

absorbers based on their common problems and corresponded strategies.  Corrosion 

protection strategies are next discussed, followed by thin film catalyst layers. 
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1.4 THIN FILM SYNTHESIS 

A variety of synthetic methods have been developed to produce thin films. Generally, 

they may be categorized into three major groups based on the nature of the reactions 

utilized, namely physical vapor deposition, chemical deposition and electrochemical 

deposition (Figure 1.4).  The principles of each method are presented below with selected 

examples.  It is noted that in a complex thin film, which may include multiple layers, 

each layer may be prepared by a different method. Such a consideration is particularly 

relevant for the topic discussed here as successful solar fuel reactions often dictate the 

combination of materials with distinctly different, yet complementary, properties (Figure 

1.4).  The flexibility of using different methods to synthesize different components holds 

great promise for realizing the desired functionalities. 

 

Figure 1.4 Schematics showing the common deposition methods for thin-film materials. The advantages and 

disadvantages of each method are shown in green and red texts, respectively. 
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1.4.1 Physical vapor deposition (PVD) 

Physical vapor deposition refers to synthesis methods which vaporize target materials 

with physical means for subsequent deposition on the receiving substrates.  A key 

distinguishing feature of PVD is the lack of chemical reactions.  The methods to 

introduce target materials include plasma (sputtering, molecular beam epitaxy), electron 

beam (e-beam evaporation, molecular beam epitaxy), heat (thermal evaporation, 

molecular beam epitaxy) and laser (pulse laser deposition).  In comparison with other thin 

film growth techniques, PVD features advantages such as versatile, reproducible and 

relatively easy to implement.  The resulting materials are often of the highest quality in 

terms of purity and quality.  For these reasons, PVD has been widely used to synthesize 

nearly every type of semiconductors reported to date.  Just within the context of solar fuel 

synthesis, a large number of examples exist, where high performance photoelectrodes 

were prepared by PVD.  For instance, Cu(InGa)Se2 photocathode was obtained by the co-

evaporation of In, Ga, Cu and Se targets onto Mo-coated glass substrates.9  Materials 

with similar compositions have also been achieved by molecular beam epitaxy (MBE), 

with the substrate temperature first increased to 300 °C and then fixed at 550 °C.10  Ta3N5 

has been reported to be synthesized by sputtering TaOx thin-films onto Ta metal 

substrates, followed by a facile nitridation process.11   InGaN nanowires have been 

reported to grow on Si substrates using In/Ga metal and N2 plasma at 600 °C using 

MBE.12  In addition to photoactive materials as noted above, PVD has been used for the 

deposition of protective layers and/or catalysts.  For example, TiO2 protection layer can 

be deposited on Si surface by sputtering Ti target in a reactive oxygen atmosphere.13  To 

minimize surface oxidation of Si during the process, a thin layer of Ti (5 nm) was first 
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sputtered to protect the surface.  Metal layers (AuGe/Ni/Au and Pt) was e-beam 

evaporated on the surface of GaAs photocathode to protect it from photocorrosion.14  Of 

these examples, the most broadly implemented may be Pt deposition via sputtering as an 

effective catalyst to improve the hydrogen evolution reaction (HER) performance of 

photocathodes.15 The limitation of PVD is mainly the high cost due to high-vacuum 

chamber assemblies, which introduce extra fabrication cost compared with solution-based 

methods. 

1.4.2 Chemical deposition 

The most obvious difference between chemical deposition and PVD is the involvement of 

chemical precursors and/or chemical reactions during the deposition.  Depending on the 

media within which the deposition is carried out, chemical deposition may be divided 

into subcategories.  When the deposition is mainly performed via vapor-phase processes, 

we have chemical vapor deposition (CVD) or atomic layer deposition (ALD).  For the 

ease of precursor delivery, volatile materials such as organometallic compounds are most 

often used as the precursors.  The key difference between CVD and ALD lies in that the 

latter typically features self-limiting surface chemical reactions.  CVD has been widely 

employed to synthesize thin film semiconductors, including metal oxides.  For example, 

Kay et al. reported the synthesis of cauliflower-type hematite (α-Fe2O3) thin films from 

Fe(CO)5 and tetraethoxysilane (TEOS) on a FTO-coated glass substrate at 415 °C.16  

GaAs-based photoelectrodes have been synthesized by the metal-organic CVD 

(MOCVD) method at 800 °C, using trimethyl gallium, trimethyl aluminium and arsine 

(AsH3) as the precursors for Ga, Al and As, respectively.14, 17, 18  Amorphous silicon (a-
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Si) was deposited via a plasma-enhanced CVD (PECVD) method, in which silane (SiH4) 

was used as the precursor for silicon, and phospine (PH3) and trimethyl boron (B(CH3)3) 

were used for n- and p-type doping, respectively.19 

Different from CVD, the self-limiting surface reaction nature of ALD gives rise to 

the ability to precisely control the growth thickness by a layer-by-layer deposition 

process.  Consequently, it has been widely used to deposit thin-film semiconductors, 

protective layers and catalysts.  For example, thin-film hematite has been deposited on 

high-aspect ratio substrates such as TiSi2 nanonets and Si nanowires with Fe(OtBu)6 and 

H2O as the Fe and O precursors, respectively.20, 21  ALD-grown TiO2 has been explored 

as an effective protection layer on both photoanode and photocathode materials.  It was 

found that the crystallinity of TiO2 is sensitive to many factors, including the type of 

precursors used.  When titanium isopropoxide (Ti(i-PrO)4) was used as the precursor, 

crystalline TiO2 was deposited at 275 °C onto Cu2O, which served as a protection layer.22  

When tetrakis(dimethylamido)-titanium (TDMAT) was used as the precursor, amorphous 

TiO2 was deposited at 150 °C onto BiVO4 that also served as a protection layer.23  ALD 

was also be used to deposit thin films of catalysts. For example, NiO has been deposited 

on the surface of BiVO4 at 260 °C using bis(2,2,6,6‐tetramethylheptane‐3,5‐

dionato)nickel(II) (Ni(thd)2) and H2O as the precursors.24  Interestingly, the as-grown 

NiO is also a p-type semiconductor.  In addition to serving as an oxygen evolution 

reaction (OER) catalyst, it was discovered to further improve the performance of the 

system by forming a p-n junction with BiVO4. 

An advantage offered by CVD and ALD is the control over the purity of the target 

materials, thanks to the gas-phase nature of the precursor delivery.  The low pressures at 
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which the deposition is carried out also ensure reasonably long mean free path of the 

precursor species in the reactor, suggesting that most film growth is not diffusion limited.  

This feature, however, makes the implementation relatively difficult, increasing the 

processing cost.  Such a challenge may be addressed by relaxing the requirements for 

vacuum and carrying out the deposition either directly in a solution or in ambient air.  

The most popularly encountered examples include chemical bath deposition (CBD) and 

electrochemical deposition. Due to the broad implementations of electrochemical 

deposition, this method will be introduced as a subcategory next. 

Various metal oxides, such as hematite, WO3 and BiVO4, have been successfully 

synthesized by solution methods.  For instance, nanostructured hematite thin films were 

synthesized by immersing a FTO glass into the mixture of FeCl3 and NaNO3 at 100 °C, 

followed by post-annealing in air.25  WO3 thin films were prepared by first mixing the 

tungsten precursor with H2O2, 2-proponal and poly(ethylene glycol) and then drop-

casting the solution onto a FTO glass substrate, followed by post-annealing in air to 

convert the film to WO3.26 Non-oxide semiconductors have been synthesized by solution-

based methods, as well. For example, Cu2ZnSnS4 was obtained by spin coating a 

homogenous hybrid ink containing thiourea, Sn2+, Cu2+ and Zn nanoparticles in 2-

methoxyethanol onto molybdenum-covered glass substrates, followed by air drying (at 

200 °C) and sulfurization processes in H2S atmosphere at 560 °C.27  Note that a post-

growth annealing treatment is involved in all examples listed here either to achieve the 

desired crystallinity or compositions because the synthesis conditions are often not 

sufficient for the desired materials in a single step, as limited by the solution nature of the 

precursors or the reactions or both. 
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In addition to semiconductors, protective layers and catalysts have been 

synthesized by solution-based methods.  For example, Liu et al. reported the synthesis of 

a ferrihydrite protection layer on the surface of Ta3N5 by immersing the substrates into a 

solution containing Fe(NO3)3 and NaNO3 at 100 °C.28 Further decoration of Co3O4 

nanoparticles as OER catalysts was achieved hydrothermally by sealing the substrate 

with a precursor solution containing Co(CH3COO)2 and NH4OH in an autoclave at 120 

°C.  Nickel-iron layered double hydroxide (NiFe-LDH) has been deposited on the surface 

of Ta3N5 nanorods as a protection layer via a two-step hydrothermal reaction at 120 °C 

and 150 °C, respectively.29 Thin films (5-10 nm) of Ni:FeOOH were deposited on various 

semiconductors (e.g., WO3/BiVO4, hematite, TiO2 and Si) via a hydrothermal method at 

100 °C to serve as an efficient water oxidation catalyst.30 

1.4.3  (Photo)electrochemical deposition 

The uniqueness of electrochemical deposition (ED) and photoelectrochemical deposition 

(PED) method lies in the usage of an external bias and sometimes illumination.  On the 

one hand, it introduced more parameters, such as potential and current, to tune the 

composition, morphology and the corresponding performance of the deposited materials.  

On the other hand, the utilization of light to facilitate the deposition in the case 

photoelectrochemical processes not only reduces energy input for the synthesis, it also 

improves the interface between the target materials (e.g., catalysts) and the receiving 

substrates for better charge transfer. Another benefit is the selectivity – catalysts will be 

deposited only where they are needed (e.g., where the photogenerated holes are for OER 

reaction). The detailed mechanisms and examples of electrochemically deposited 
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semiconductors and catalysts have been reviewed recently.31 For instance, nickel 

molybdenum (Ni-Mo) catalyst has been electrodeposited under dark or light illumination 

on various photocathode materials to serve as efficient HER catalysts. Digdaya et al. 

reported an amorphous SiC photocathode coated with Ni-Mo, which was 

potentiostatically deposited at -1.0 V vs. Ag/AgCl under standard AM 1.5 illumination 

from mixed solution of nickel sulfate, boric acid and sodium molybdate.32 Similar 

deposition was also reported by Pan et al. on Cu2O photocathodes, but with constant 

current of -1.5 mA/cm2 during deposition and nickel sulfamate as the nickel precursor.33 

In addition, various OER catalysts (e.g., transition metal (oxy)hydroxide) have been 

widely used on photoanode materials via ED/PED. For example, Liu et al. reported 

amorphous cobalt-iron hydroxide nanosheet catalysts with efficient OER activities in 

alkaline environment.34 Such catalysts were deposited on BiVO4 photoanodes at a 

constant potential of -1.42 V vs. Hg/Hg2SO4 from the electrolyte containing equivalent 

amount of Co(NO3)2 and Fe(NO3)2. Kim et al. showed that FeOOH and NiOOH 

deposited on the BiVO4 photoanode sequentially by PED method improved its turn-on 

potential (Von) and photocurrent density (Jph) at the same time.35 A wide spectrum of 

semiconducting materials and catalysts has been successfully prepared by 

(photo)electrochemical methods, making the technique a facile tool for the synthesis of 

nearly all photoactive materials for solar fuel applications. 
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1.5 COMMON PROBLEMS AND CORRESPONDED STRATEGIES FOR 

REPRESENTATIVE THIN-FILM SEMICONDUCTORS 

As one of the most exciting research areas during the past decade, solar fuel synthesis has 

attracted enormous attention. As such, nearly all photoactive materials have been 

exploited for the purpose of solar fuel synthesis.  Comprehensive reviews on such efforts 

can be found here.36-38  In this section, the emphasis is placed on the common issues that 

limit the performance of a given material for solar-to-chemical energy conversion.  

Representative strategies in addressing these issues on prototypical materials are 

presented.  Since there is rarely a semiconductor that can meet all the common issues, 

most of study for photoelectrode materials have focused on solving one or multiple 

limitations of a certain material with other promising properties. Organizing the content 

by undesired properties and corresponded solving strategies can clearly show the research 

efforts on developing thin-film materials for solar fuel synthesis. 

As shown in Figure 1.5, solar fuel synthesis on a solid-state material involves several key 

steps, including charge excitation, separation, transport and transfer. Of them, charge 

excitation is ensured by the optoelectronic properties of the materials. For 

semiconductors, the gap in the energy bands acts as a key enabling factor. Similar 

functionalities may be achieved following other mechanisms such as the plasmonic 

effect, the quantum confinement effect, or other similar effects on emerging materials 

(e.g., 2D materials).  An important issue that needs research attention here is the energy 

of photons that can be absorbed and how they match the solar spectrum. As has been 

shown by the classical Schockley-Queisser analysis, the optimum absorption edge for a 

single absorber would be 1.34 eV for solar-to-electricity conversion. For the purpose of 



 19 

solar fuel synthesis, the free energy gain of the target reactions imposes another 

constraint to the consideration, and the optimum absorption edge would be 1.6 eV if the 

reaction is water splitting.39 Few materials match this absorption perfectly. A handful 

examples whose absorption edges are close to this desired value present new challenges 

such as mismatch of the band edge positions and stability.  We will discuss strategies 

aimed at addressing these issues in Section 1.5.4 and 1.5.5.  

 

Figure 1.5 The Schematic shows the charge excitation, separation, transport and transfer process (green arrows) in an 

n-type semiconductor in contact with aqueous electrolyte. ECB: potential of conduction band minimum; EVB: potential 

of valence band maximum; Eoxidation: potential of self-oxidation for the semiconductor; E(O2/H2O): potential of water 

oxidation. The undesired properties including poor light absorption, bulk/surface recombination, mismatch of 

energetics and instability are indicated by the red arrows, with the corresponded strategies listed below as green texts.  

The next step in solar fuel synthesis is charge separation and transport.  Ideally, 

the only competing processes of this step would be radiative recombination, the result of 
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which would be photons that may be reabsorbed. In reality, however, recombination by a 

variety of other mechanisms constitutes the biggest loss in solar-to-electricity conversion.  

Efforts developed to address this issue arguably represent the biggest portion of 

materials-related research on solar fuels.  We devote the bulk of subsection 1.5.2 on these 

efforts. 

After the charges emerge to the surface, how they are utilized would be the next 

issue to be addressed.  The desired processes would be facile forward charge transfer for 

solar fuel synthesis. Competing processes, aside from surface recombination that may be 

regarded as a solid-state process, include corrosion (parasitic chemical reactions that 

damage the photoelectrode itself) and side reactions (parasitic reactions that compete 

with solar fuel formation). Moreover, the energetics at the solid/liquid interface is of 

critical importance.  There are a handful of materials that are highly efficient in absorbing 

light, separating and transporting charges but feature significant mismatch of the 

energetics with desired solar fuel synthesis reactions.  That is, the charges are simply not 

energetic enough to carry out the reactions as desired.  We will discuss these issues in 

Section 1.5.3.  

1.5.1 Poor light absorption 

1.5.1.1 Narrow the band gaps or add another light absorber to enhance light 

absorption 

A common issue that limits the performance of materials with good optoelectronic 

properties (such as high light absorption coefficient, facile charge separation and 

transport) is the narrow absorption region relative to the overall solar spectrum. Two 
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general strategies have been developed to address this issue, including narrowing the 

band gap and adding another light absorber. For instance, the utilization of TiO2 for 

practical water splitting is limited mainly by its wide band gap (3.2 eV for the anatase 

phase), even though it exhibits high incident photo-to-electron efficiencies and good 

chemical stability. The wide band gap means it can only absorb light in the deep UV 

region.  It was hypothesized that the band gap might be narrowed through methods such 

as self-doping of Ti3+ and/or oxygen vacancies by chemical reduction or ion doping.40  

To this end, Yang et al. reported core-shell nanostructured “black” rutile TiO2, which was 

synthesized by first forming a reduced shell of TiO2-x with TiO2 nanoparticles and then 

post annealing in H2S to dope S into the shell of the nanoparticles.41  Diffuse reflectance 

spectrum indicated that the band gap of the treated TiO2 was 1.3 eV narrower than 

pristine rutile TiO2. After assembled into photoelectrodes by spin coating, the S-doped 

rutile TiO2 showed 30-fold increase of photocurrent density at 1.23 V vs. reversible 

hydrogen electrode (RHE; All the potentials in this Chapter are versus RHE if no specific 

reference electrode is referred to). and negative shift of turn-on potential by 280 mV 

compared with pristine rutile TiO2 in 1 M NaOH electrolyte.  It is noted that whether the 

broadened absorption is actually due to the shift of the band edge positions would require 

additional research. 

A better accepted example in tuning the band structures by varying the 

compositions is found in nitride semiconductors.  For instance, GaN features a direct 

band gap of 3.4 eV, with the conduction band and valence band edges straddling the 

water splitting potentials. As a photoelectrode, early turn-on potentials and good fill 

factor have been obtained. Notwithstanding, its practical applications for solar water 
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splitting are limited due to the wide band gap.  To further actualize the promises held by 

this material, researchers have tried to incorporate In during the synthesis, which was 

shown to reduce the band gap from 3.4 eV (pure GaN) and to 0.65 eV (pure InN).42  

Significantly, the change of the band gap between the two extremes is continuous, 

depending on the In concentrations in GaN.  When used for water splitting applications, a 

key challenge is the stability of the material.  In one example of such efforts, In0.21Ga0.79N 

films (Eg=2.3 eV) with an average thickness of 1 μm were synthesized on sapphire 

substrates by MOCVD.43  After tested in 1 M HCl at 1.5 V vs. SCE under illumination, 

In and Ga elements were found in the electrolyte, confirming the material is being etched 

during the test.  In another example, AlOtaibi et al. reported the synthesis of InGaN/GaN 

core/shell nanowire arrays (L=400-500 nm) on Si substrate.12  With a band gap of 2.38 

eV, the integrated photoanode reached 23 mA/cm2 current density at 1 V vs. Ag/AgCl in 

a 1 M HBr electrolyte under AM1.5G illumination.  Interestingly, the morphology and 

composition of the nanowires were confirmed to remain the same even after 24 hours 

PEC measurements.  The superior stability may be explained by the MBE growth itself, 

which leads to nitrides of N-termination.  It has been shown by Kibria et al. that such a 

termination offers better stability than Ga termination, which is expected for MOCVD-

grown materials.44 

To tune the band structures by changing the compositions of materials using methods 

such as MBE has been shown as a promising method to enhance light absorption by 

narrowing down the band gaps of semiconductors. By controlling the suitable 

compositions, the light absorption range can be extended from ultraviolet part to near-

infrared region, covering the visible light spectrum. However, new issues are introduced 
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by such approaches.  For instance, to achieve low-defect and high-quality materials, high-

vacuum techniques are usually necessary, greatly raising the cost of the synthesis process.  

Low-cost alternative synthesis methods, such as solution-based ones, tend to yield 

materials of inadequate quality that are characterized by low solar-to-chemical-energy 

efficiencies.  How to balance the efficiency and cost will continue to be a key focus for 

efforts focused on tailoring materials optoelectronic properties by changing their 

compositions. 

Another strategy to broaden the range of light absorption is to complement the 

wide band gap material with narrow band gap absorbers. A large number of examples 

have been reported toward this direction. For example, Mayer et al. reported a dual-

absorber photoanode consisting of Si nanowires (Si NWs) and α-Fe2O3.21 Thin films of α-

Fe2O3 were deposited by ALD on the surface of high-aspect-ratio Si NWs with conformal 

coverage. Owing to the larger Eg (2.1 eV) of α-Fe2O3 compared with the one of Si 

(Eg=1.1 eV), incident photons with longer wavelength (600 nm < λ < 1100 nm) were 

transparent for α-Fe2O3 and absorbed by the underlying Si. As a result, the utilization of 

overall solar spectrum was improved. In addition, the appropriate band alignment 

between n-Si and α-Fe2O3 created an appreciable band-bending depth, providing 

additional photovoltages and guaranteed electron injection from α-Fe2O3 to Si. As 

expected, the dual-absorber photoanode showed a more cathodic turn-on potential (0.6 V) 

and a higher photocurrent density in a 1.0 M NaOH electrolyte compared with the 

performance of planar α-Fe2O3 thin film grown on the FTO-coated glass substrate. 

Similarly, Hwang et al. reported a photoanode consisting of n-type Si NWs and thin films 

(35 nm) of n-TiO2 on the surface.45 The construction of n/n junction between n-Si and n-
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TiO2 not only improved the charge separation due to the band bending at the junction, but 

also introduced a potential barrier at the interface that blocked the holes back to the TiO2 

layer and reduced the loss of holes. In theory, the strategy of combining materials of 

complementary light absorption would enable broad light absorption for high 

performance; in practice, however, how to build a low-defect and intimate interface 

between different materials remains as a challenge. 

1.5.1.2 Reduce reflection to avoid light absorption losses 

As has been shown in research on solar cells, optical loss due to reflection contributes 

significantly to the low performance of planar semiconductor materials when used for 

solar energy harvesting applications. Several strategies have been developed to meet this 

challenge. In the first approach, light absorption was shown to be enhanced by 

constructing nanostructures on the surface.  For example, Garnett et al. discovered that by 

carefully controlling the diameter and density of Si nanowires, the path length of incident 

solar irradiation was enhanced by up to a factor of 73 when compared with Si thin films 

of the same thickness, thanks to the strong light trapping effect by the nanowire 

morphologies.46 Maiolo et al. reported Si microwires synthesized through a vapor-liquid-

solid method with Au as the catalyst.47 With a length between 10 and 30 μm, these Si 

wires showed enhanced photocurrent density and photovoltage in a 1,1′-

dimethylferrocene (Me2Fc)+/0 redox system in CH3OH when compared with planar 

samples.  Dai et al. reported Si nanowire (NW) arrays synthesized through a Ag seeds 

assisted etching process.48 In comparison with planar silicon, the Si NWs showed 

broadband anti-reflection properties with an optical reflectance of ~ 0%, while the planar 

one reflected 19% of sunlight at the Si-water interface. 
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In another approach, designing suitable substrates underneath the semiconducting 

light absorber was also shown to enhance light absorption through recycling incident 

photons.  For instance, Qiu et al. reported a mesoporous BiVO4 deposited on a pre-

designed nanocone substrate.49  The light absorption was enhanced due to light trapping 

through multiple light scattering in the nanocone structure. Simulations of the 

electromagnetic wave distribution at λ=500 nm for Mo:BiVO4 on the nanocone substrate 

and a flat FTO-coated glass substrate indicated that the incident light was diffracted and 

redistributed in the nanocone area, owing to the match of the incident light wavelength 

and the distance between neighboring nanocone arrays.  The results were also supported 

by enhanced absorption by BiVO4 deposited on the nanocone substrate in UV-vis 

absorption spectrum. Similarly, Shi et al. reported the introduction of a distributed Bragg 

reflector (DBR) layer to improve the performance of a tandem cell device consisting of 

BiVO4/WO3 photoanode and DSSC.50  The DBR layer was placed on the back side of 

FTO glass for the BiVO4/WO3 photoanode and served as the conductive counter 

electrode for the DSSC.  The DBR layer consisting of multiple layers of materials with 

high- and low-refractive indices would reflect short-wavelength photons (λ<500 nm) 

while transmitting long-wavelength photons, leading to photon recycling by the BiVO4 

photoanode.  A STH of 7.1% was achieved, corresponding to a Jph of 5.75 mA/cm2, 

which was 1.1 mA/cm2 higher than the one without DBR layers. 

The strategies to reduce the light absorption can be widely implemented into 

different semiconductor materials. For instance, the light trapping effect and anti-

reflection properties through nanostructuring have been achieved on various 

semiconductor platforms including Si, metal oxides and metal nitrides, etc. with carefully 
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controlled dimensions and structures. In addition, it can serve the purpose more than 

reducing the light reflection, such as enhancing the surface area for more catalytic sites 

and reducing charge recombination (more details in Section 1.5.2.1). At the same time, 

some issues may also occur due to enlarged contact area between semiconductors and 

electrolytes, such as more severe surface charge recombination. Future strategies need to 

make balance between the benefits and drawbacks. 

1.5.2 Bulk recombination 

1.5.2.1 Nanostructuring to match the short diffusion length 

In one scenario, the recombination of photo-generated charges would take place due to 

the mismatched diffusion length of charge carriers with the light penetration depth. For 

instance, hematite features a light penetration depth of 46 nm at wavelength of 450 nm,51 

but its hole diffusion length is reported to be 2-4 nm,52 meaning that most photogenerated 

holes would recombine with electrons before they are transferred to the semiconductor-

electrolyte interface. To address this issue, nanostructuring has been applied to reduce the 

distance of charge transfer from bulk to surface while still ensuring sufficient light 

absorption, resulting in improved charge collection efficiency. One better-known 

example of this strategy is the cauliflower-type silicon-doped hematite thin film 

synthesized by atomospheric pressure chemical vapor deposition (APCVD) from 

Fe(CO)5 and tetraethoxysilane on FTO-coated glass at 415 °C, reported by Kay et al. in 

2006.16  Its photocurrent density in 1 M NaOH at 1.23 V under AM 1.5 light illumination 

(100 mW/cm2) could reach 2.3 mA/cm2, which can be further improved to 2.7 mA/cm2 

with the addition of Co2+ catalysts. 
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Another example was found in electrodeposited Cu2O, whose electron diffusion 

length (20 to 100 nm)53 is shorter than the light penetration depth (several µm at 2.4 eV)54 

by a large margin. Increasing the aspect ratios of nanostructured Cu2O has proven a 

promising method to address this issue. For example, Luo et al. synthesized Cu2O 

nanowire arrays via anodization and post annealing treatments.55  Cu(OH)2 nanowire was 

first formed by anodization; it was then converted to Cu2O during the post annealing in 

Ar atmosphere at 600 °C, featuring diameters of 100-300 nm and lengths of 3-5 µm. 

Additional electrodeposited Cu2O was introduced to cover the exposed Cu substrate, 

which was shown to significantly reduce charge recombination due to the contact 

between the Cu substrate and the protection layer (Al-doped ZnO). With further 

decoration of TiO2 and RuOx (as the HER catalyst), the Cu2O nanowire photoelectrode 

achieved -10 mA/cm2 photocurrent density at -0.3 V and a turn-on potential of 0.48 V in 

0.5 M Na2SO4 buffered at pH 5.  By comparison, planar Cu2O films showed -7.8 mA/cm2 

photocurrent density at the same applied potential, indicating the effectiveness of the 

nanostructuring strategy. 

Along the line of using nanostructures to help solve the mismatch between charge 

diffusion and optical depth, directly growing thin film light absorbers on nanostructures 

is yet another idea that has been exploited in the literature. For example, Lin et al. 

reported thin-film hematite (25 nm) grown on TiSi2 nanonets by atomic layer deposition 

(ALD) using Fe2(OtBu)6 and H2O as precursors.20  The TiSi2 nanonet substrate not only 

provided a high surface area for better charge collection, but also served as a highly 

conductive charge collector. As a result, the nanonet-based hematite photoelectrodes 

achieved 1.6 mA/cm2 photocurrent density at 1.23 V in 1 M NaOH, which was three 
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times higher than the planar thin film with the same thickness. To this end, Qiu et al.’s 

work of depositing mesoporous BiVO4 on nanocone substrates may be regarded as 

similar.49  Besides the ability to enhance the light absorption as mentioned previously, the 

nanocone structure reduced the charge transport distance in the photoelectrode, 

increasing charge collection efficiencies.  Consequently, for the BiVO4 nanoporous film 

of the same thickness on nanocone substrate and flat FTO glass substrate, the former 

showed a much higher photocurrent density (4.18 mA/cm2) at 1.23 V in pH 7 phosphate 

buffer than the latter (2.10 mA/cm2).  With the introduction of Fe(Ni)OOH OER catalyst, 

the photocurrent density was further improved to 5.82 mA/cm2. 

Another way of growing light absorbing nanostructures is to take advantage of 

templates with preformed nanoscale features. For instance, Ta3N5 nanorods were 

prepared using an anodization method with porous anodic alumina (PAA) as the template 

in a H3BO3 solution under high applied DC voltages (600-650 V), followed by high-

temperature annealing in NH3.29, 56, 57  Using this method, Li et al. reported that a 600 nm 

thick nanorod arrays showed enhanced photocurrent density at 1.23 V in 0.5 M Na2SO4 

(by 2.2 times at pH 13) with IrO2 as a catalyst when compared with planar thin films of 

the same thickness and catalysts.56  The improvement was attributed to the decreased 

distance for the photo-generated holes to reach the Ta3N5 surface in the nanorod 

configuration. As far as Ta3N5 is concerned, although nanostructures have been shown 

effective in improving the performance, the hole diffusion distance still remains a debate.  

On the one hand, Ziani et al. reported carrier lifetimes ranging from 3.1 to 8.7 ps in 

Ta3N5 thin films based on transient spectroscopy measurements. These values would 

corresponded to a diffusion length between 3 and 9 nm.58  On the other hand, Respinis et 
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al. reported a carrier lifetime of 1.6 ms based on time-resolved microwave conductivity 

measurements, corresponding to a diffusion length of 18,000 nm.59  Further studies are 

necessary to reconcile the apparent discrepancies. 

The advantages of nanostructuring have been discussed in Section 1.5.1.2. It is a 

versatile strategy for semiconductors suffering from short diffusion lengths. In addition, it 

may introduce more benefits at the same time, such as enhancing light absorption and 

increasing catalytic surface areas. However, large surface areas introduced by 

nanostructuring may also lead to side effects such as more defect states and more severe 

surface charge recombination. 

1.5.2.2 Doping to enhance charge transport 

In the literature, it has been commonly referred to that high carrier concentration would 

improve charge collection.  As will be summarized in this subsection, a number of efforts 

have been applied to increase charge carrier concentrations through approaches such as 

doping.  However, how these approaches work has been poorly discussed.  For instance, 

for an n-type semiconductor (e.g., metal oxide photoanode), dopants that are introduced 

to increase electron concentrations would decrease hole concentrations under equilibrium 

conditions according to the mass law. As such, these approaches may be regarded as 

decreasing bulk recombination thanks to the decrease of the minority carrier 

concentrations.  A more common way of understanding the effect was often referred to in 

the literature as increasing the majority carrier concentration to improve the transport of 

photogenerated electrons (in the case of an n-type photoanode); as such, the utilization of 

photogenerated holes is improved, as well, due to reduced bulk recombination. These two 

views are actually consistent, just from different angles. A good example in this sub-
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category is found in hematite, which usually features relatively low majority carrier 

concentrations (<1018 cm-3).51  Doping has been popularly sought as an effective method 

to change the situation.  An added benefit of doing so is the shift of the equilibrium Fermi 

levels of electrons (toward the more negative direction), so as to increase the splitting 

between the Fermi level and the water oxidation potentials and, hence, the degree of band 

bending for better charge separation. 

For instance, Pt4+, in the form of chloroplatinic acid, was added into the FeCl3-

containing solutions during the synthesis of β-FeOOH thin film on FTO coated glass at 

100 °C, followed by a two-step annealing process at 550 °C and 800 °C to form Pt-doped 

hematite.60  With an optimized thickness (500 nm) of the hematite thin film and a Pt/Fe 

ratio of 5%, the photoelectrode exhibited 74% enhancement of photocurrent density at 

1.23 V in comparison with the undoped one.  The Mott-Schottky analysis showed the 

donor density increased by one order of magnitude, supporting the role of Pt4+ as a 

dopant into hematite, which improved its electrical conductivity.  Along the same line, Li 

et al. treated hydrothermally synthesized WO3 nanoflakes with chemical etching and 

reduction by poly(vinyl pyrrolidone) and ascorbic acid, respectively,61 resulting in porous 

WO3 nanoflakes with increased surface oxygen vacancies (due to the reduction of W6+ to 

W5+).  The high oxygen vacancies not only increased the carrier concentrations, but also 

narrowed the band gap by 0.1 eV.  Consequently, the water oxidation performance at 

1.23 V in 1 M H2SO4 increased from 0.62 mA/cm2 for pristine WO3 nanoflakes to 1.10 

mA/cm2 for the etch-reduced WO3 nanoflakes. 

Mo6+ and W6+ have been shown to be the most significant dopant for BiVO4, 

which can substitute V5+ to increase the carrier concentrations.  For example, Berglund et 
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al. reported Mo and W doped BiVO4 by e-beam evaporation of Bi, V, Mo and W.62  Both 

W and Mo doped BiVO4 showed higher photocurrent density at 1.23V than bare BiVO4, 

while W/Mo co-doped BiVO4 showed the highest value in pH 6.8 phosphate buffer 

solutions.  In a different system, Han et al. introduced a gradient dopant profile to 

amorphous SiC to improve charge collection.63  A 10 nm p-type amorphous SiC was first 

deposited via boron doping in a PECVD growth, followed by another 40 nm p-type 

amorphous SiC with a reduced dopant concentration and 40 nm intrinsic amorphous SiC.  

Due to the increased thickness of the depletion region between p-type and intrinsic SiC, 

the drift charge transport was enhanced in comparison to the diffusion-controlled process 

in intrinsic SiC, leading to an anodic shift of the turn-on potentials (~200 mV).  When 

coupled with a Si photovoltaic module, the photocathode achieved the photocurrent 

density of -5.1 mA/cm2 at 0 V in 0.1 M sulfamic acid with pH 3.75 under 1 sun 

illumination. The last example connects this line of research with those focused on 

improving photovoltaics through controlling the energetics within the buried junctions. 

Doping is as a promising strategy to enhance the charge transport. On one hand, 

such a method has been well-developed in semiconductor fabrication industries, which 

can provide a rich knowledge base. On the other hand, various dopant elements have 

been explored, offering many options to modify semiconductors. However, there are still 

challenges remained when the doping strategy is applied, such as the uniformity of 

dopants. 
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1.5.3 Surface recombination 

Even for pristine semiconductors, their surfaces are rich in electronic states whether in 

vacuum or in contact with a metal electrode.  In addition to the types of states that would 

be abundant in bulk (e.g., due to dopants and/or impurities), surfaces feature unique 

defects such as dangling bonds and structural imperfections, which often introduce 

electronic states within the bandgap. These states are the origins for severe recombination 

at or near the surface. Significant research efforts have been devoted to understanding 

and addressing these recombination processes as they play important roles in defining the 

properties of the overall device. The situation is significantly more pronounced for 

photoelectrodes in photoelectrochemical applications because the surfaces are now in 

contact with a liquid where chemical reactions take place.  Besides the usual suspects that 

would introduce surface states, chemisorbed species that are either reactants, 

intermediates or products act as centers to promote charge recombination. Below 

strategies that have been attempted to study and deal with this issue will be discussed. 

1.5.3.1 Use electron/hole scavengers to study the extent of surface recombination 

Among the various techniques to study the surface recombination, using electron/hole 

scavengers has been widely applied as an important step. Taking hole scavengers as the 

example, they are usually reagents that can be more easily oxidized compared with water, 

which in principle can eliminate the surface charge recombination. To better reflect the 

effect, the photocurrent density (Jph) can be expressed via a simplified charge transfer 

process64: 

 𝐽𝐽𝑝𝑝ℎ = 𝐽𝐽𝑎𝑎𝑎𝑎𝑠𝑠 × 𝜂𝜂𝑠𝑠𝑠𝑠𝑝𝑝 × 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖  (1.5) 
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In equation  (1.5, Jabs is the photon absorption rate; ηsep is the separation 

efficiency, representing the fraction of holes reaching the electrode/electrolyte interface 

without recombining with electrons in the bulk; ηinj is the charge injection efficiency, 

representing the fraction of holes for desired oxidation reaction (e.g., water oxidation or 

scavenger oxidation) without recombining with electrons at the surface. When the hole 

scavenger is present, ηinj should be 100%. With the assumption that the existence of hole 

scavenger doesn’t affect Jabs and ηsep, ηinj for water oxidation can be derived from the 

ratio of Jph for water oxidation and hole scavenger oxidation. Furthermore, the Jabs can be 

estimated from the light absorption spectrum of photoelectrodes. The measured Jph for 

hole scavenger oxidation can be used to calculate ηsep, helping to understand the extent of 

bulk recombination. 

For instance, Zhong et al. used H2O2 as the hole scavenger to test BiVO4 

photoanodes and compared it with the performance in the same electrolyte but without 

H2O2.65 The ηinj for water oxidation was less than 60% at 1.2 V, which was improved 

significantly to near 100% after the deposition of Co-Pi. This demonstrated the 

effectiveness of Co-Pi to enhance the charge injection efficiency for water oxidation and 

reduce the surface charge recombination. Similarly, Liu et al. compared the performance 

of bare Ta3N5 and Ta3N5 with Co3O4 nanoparticles using H2O2 as the hole scavenger.28 

The ηinj for water oxidation increased from less than 20% to 70% at 1.23 V after the 

deposition of Co3O4, supporting the enhanced charge injection from photoanodes to 

water. In addition to studying the effect of passivation layer, the hole scavenger was also 

used to compare the extent of surface/bulk recombination in photoelectrodes prepared 

from different synthesis methods. For instance, Dotan et al. reported that hematite 
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photoanodes prepared via ultrasonic spray pyrolysis (USP) and APCVD showed different 

water oxidation performance.64 With the help of H2O2 as the hole scavenger, higher 

values of ηsep and ηinj for water oxidation were obtained for hematite synthesized by 

APCVD, indicating less bulk and surface recombination as well as better performance. 

Using scavengers is a convenience yet powerful tool to understand the charge 

transfer behaviours in photoelectrodes. However, it also features some limitations. The 

ηinj derived here only represented the overall charge transfer from photoelectrodes to the 

electrolyte. It’s hard to distinguish whether the change of ηinj is due to the change of 

reaction kinetics or surface charge recombination, especially when some passivation 

layers and catalysts are present. In addition, it is critical to choose suitable scavengers in 

order to obtain reasonable values of ηinj. For instance, Gao et al. found that the ηinj of 

CuWO4 photoanodes for water oxidation was underestimated when H2O2 was used as the 

hole scavenger.66 The reason was the electron injection from the radical intermediate of 

H2O2 oxidation to the conduction band of CuWO4, which made the expected 2-hole 

process becoming 1-hole process and led to current multiplications. Overall, more details 

about charge transfer behaviours can be revealed when more characterization tools such 

as photoelectrochemical impedance spectroscopy, intensity modulated photocurrent 

spectroscopy and so on are combined. More study about other techniques will be 

presented in section 1.7.1. 

1.5.3.2 Passivation layers 

The most straightforward strategy may be to deposit a passivation layer on the surface of 

semiconductor. For instance, thin layer of metal oxides including Al2O3, In2O3 and Ga2O3 

has been deposited on ultrathin hematite (27-30 nm) photoanode via a urea hydrolysis 
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CBD method.67 The idea was to replace the hematite|water interface with a 

hematite|oxide|water one. By doing so, researchers expect to reduce surface 

recombination unique to the hematite|water interface.  The most direct evidence has been 

the reduction of Fermi level pinning effect due to surface states, which is manifested by 

the increase of the photovoltage and, hence, a reduction of the turn-on potentials.  Among 

those tested, Ga2O3 has proven highly effective, which negatively shifted the turn-on 

potential by 400 mV.  The improvement was attributed to the matching crystal structures 

between Ga2O3 and hematite (<2.5% mismatch), resulting in low strains at the interface. 

As will be further discussed later in section 1.7.1, the role played by the so-called 

“passivation layer” can be complex. A simple reduction in the turn-on potentials may be 

explained by at least three distinct mechanisms, including better catalysis, greater 

photovoltage or reduced recombination. These three mechanisms themselves are 

intricately interconnected, as well. For instance, better catalysis generally means faster 

forward charge transfer and, hence, reduced recombination; greater photovoltage implies 

better charge separation, which is typically a result of lower recombination. For this 

portion of discussions, these different functionalities are defined as follows. When the 

surface modification forms a buried junction with the photoelectrode to yield better 

charge separation, it is regarded as mainly improving the photovoltage; when the surface 

layer chiefly removes surface states to reduce recombination, it is considered as a 

passivation layer; when the surface materials speed up forward electron transfer, it is 

treated as a catalyst.  Within this context, effective catalysts have been widely exploited 

to improve the performance of photoelectrodes, especially for the sluggish water 

oxidation reactions.  For example, dual-layered FeOOH/NiOOH was deposited on 
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mesoporous BiVO4 surface by photo-assisted electrodeposition in sequence.35 When 

BiVO4 decorated with dual-layered catalysts was compared with the bare one and the one 

with only FeOOH or NiOOH, in terms of the performance for water oxidation and sulfite 

oxidation, the one with dual-layered catalysts showed the earliest turn-on potentials and 

the highest water oxidation photocurrent densities.  The effectiveness of combining 

FeOOH and NiOOH was attributed to the better interface formed between BiVO4 and 

FeOOH to reduce charge recombination, as well as more negative potential drop within 

the Helmholtz layer at the NiOOH/electrolyte interface (for more negative turn-on 

potentials) and better water oxidation kinetics.  More examples will be discussed in the 

section 1.7 and the role of catalysts on semiconductor surfaces will be discussed in 

greater detail there. 

Overall, using passivation layers to reduce surface recombination has been widely 

applied to improve the performance of photoelectrodes. Such a strategy offers a variety of 

materials’ choices to serve as passivation layers, which makes it versatile for different 

types of study platforms. In addition, the deposition of passivation layer may also shed 

light on solving other limitations of photoelectrodes. For instance, metal oxides 

passivation layers can also serve as protective layers to enhance the stability. Catalytic 

passivation layer, on the other hand, may improve the kinetics of desired reactions. At the 

same time, however, it also requires deep understanding for the origins of surface 

recombination in order to choose suitable passivation layer. In addition, the deposition of 

extra layer on semiconductors may have the chance to introduce unexpected interfacial 

states, affecting charge transfer behaviors. 
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1.5.3.3 Surface reconstruction 

Another strategy to deal with surface recombination is to change the crystal structure at 

the surface.  For instance, Jang et al. reported a regrowth method to improve the 

performance of bare hematite.25  By repeating the solution-based synthesis of FeOOH 

and post-annealing procedures in air, the authors found the photovoltage generated by 

bare hematite photoelectrode could be increased by 27%.  During the re-growth, the 

surface structures of hematite were dissolved, and the newly grown structures favor the 

<110> directions, which reduced the short-range structure disorder on the surface.  In 

another study, NaBH4 was used as the H2 source to treat the hydrothermally synthesized 

hematite at 500 °C.68  Such a treatment mainly introduced oxygen vacancies on the 

surface of hematite, which was supported by the decrease of pre-peak intensities in the 

surface-sensitive soft X-ray O K-edge XAS spectra in combination with the unchanged 

peak intensities in the bulk-sensitive hard X-ray Fe K-edge XAS spectra.  The authors 

argued that the optimized oxygen vacancy content on the surface improved the 

conductivity of hematite and reduced the hole-electron recombination.  As a result, the 

photocurrent density at 1.23 V increased from 0.88 mA/cm2 for pristine hematite to 2.28 

mA/cm2 for the H2-treated hematite. 

As is true in other complex systems, changes intended for the improvement of one 

aspect of the system may inadvertently impact another aspect negatively.  For instance, 

increasing oxygen vacancies could be an effective strategy to increase carrier 

concentrations in WO3 (e.g., Section 1.5.2.2), but they may also induce surface 

recombination.  In an effort to achieve the positive effect of oxygen vacancies while 

minimizing its negative impacts, Zhang et al. reported a synthesis procedure combining 
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H2 annealing and O3 treatment, in which case H2 annealing was shown to increase 

oxygen vacancies in the bulk of WO3 while the subsequent O3 treatment decreased 

oxygen vacancies on the surface.69  The Mott-Schottky analysis supported the increase of 

donor densities after H2 treatments, which remained after O3 treatment.  The lowest peak 

intensities in photoluminescence spectra for H2/O3 treated samples indicated effective 

suppression of surface charge recombination, supporting the effect of reducing surface 

oxygen vacancies.  As a result, the H2/O3 treated photoelectrode showed a cathodic shift 

of turn-on potential (0.15 V) and increased photocurrent densities at 1.23 V in 

comparison to the samples that were just treated by H2. 

Compared with depositing passivation layer to reduce surface recombination, 

surface reconstruction avoids the formation of additional interface, lowering the risk of 

generating more interfacial defects. However, such a strategy is material-specific and the 

knowledge obtained from one case study needs to be justified before being transferred to 

other study platforms. 

1.5.4 Mismatch of energetics 

For successful solar-to-chemical conversion reactions, it is of critical importance to 

match the energetics of the photoelectrode with the desired chemical reactions.  In the 

case of significant mismatches, the photo-generated charges collected from the 

photoelectrode would not be energetic enough to drive the chemistry in the electrolyte.  

For instance, while CdSe is efficient in absorbing light and separating charges, photo-

generated holes in this material would feature electronic energies too negative for H2O 

oxidation.70  As such, examples of using this material for H2O oxidation applications are 
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rare. Instead, sacrificial electron donors are often involved when CdSe is studied in the 

context of solar fuel synthesis.  A more common issue that concerns energetic mismatch 

is the relatively low photovoltages.  Si is a good example.  In vacuum, the potential of 

valence band maximum (EVB) of Si would be too negative for H2O oxidation; yet, due to 

the existence and/or formation of native oxides on the surface, Si photoanodes have been 

successfully used for PEC H2O oxidation, albeit with a low photovoltage as featured by 

the late turn-on potentials (Figure 1.6a).71  Two general strategies have been tested to 

address this issue, forming buried junctions or tuning the band edge positions. 

 

Figure 1.6 (a) The schematic shows the band edge positions of n-Si in the vacuum before in contact with H2O (left) 

and n-Si/SiO2/metal in contact with H2O (right). E(O2/H2O): water oxidation potential; EM: work function of the metal; 

ECB/EVB: the conduction band minimum/valence band maximum positions; EF: Fermi level. Equilibrium band-edge 

diagrams of Cu2O/AZO (Al doped ZnO) (b) and Cu2O/Ga2O3 (c) heterojunctions with different conduction band edge 

discontinuity (∆ECB). (c) and (d) reproduced from “L. Pan, J. H. Kim, M. T. Mayer, M.-K. Son, A. Ummadisingu, J. S. 

Lee, A. Hagfeldt, J. Luo and M. Grätzel, Nat. Catal., 2018, 1, 412-420.” with permission from Springer Nature. 
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1.5.4.1 Forming buried junctions 

The flat-band potential of Cu2O has been reported at around 0.7 V, which limits the 

maximum photovoltage when used for H2O reduction.  In order to address this issue, 

buried p-n junction has been applied to enhance the photovoltage.  One example is to 

replace the Cu2O/H2O interface with a Cu2O/ZnS interface.22  Due to the more negative 

conduction band edge position and the more negative Fermi level of ZnS relative to the 

HER potential, the strategy increased the band bending within Cu2O for a turn-on 

potential of 0.72 V; by comparison, Cu2O without ZnS showed a Von of only 0.6 V in 0.2 

M KH2PO4 at pH 7.  The increased photovoltage was confirmed by the light open-circuit 

potential measurements under various light intensities.  Another example is reported by 

Li et al., in which the authors deposited a thin layer of Ga2O3 buffer between Cu2O and 

TiO2 (as a protection layer) by ALD.72  The idea was to maximize band bending within 

Cu2O by introducing Ga2O3.   Through photoelectron spectroscopy measurements, they 

found the conduction band offset between Cu2O and Ga2O3 was in the range of -0.37 to 

+0.01 eV, suggesting that in addition to a large degree of band bending, electron transfer 

across the Ga2O3 layer should be facilitated.  A stark comparison could be made between 

Ga2O3 and ZnO, which would also serve the purpose of increasing band bending when 

integrated with Cu2O.  But ZnO features a significant mismatch with Cu2O in terms of 

potential of conduction band minimum (ECB), which would impede electron transfer from 

Cu2O to ZnO.  As such, ZnO is much less desired for the same purpose (Figure 1.6b&c).   

Indeed, a turn-on potential of 1.02 V was achieved for the integrated Cu2O|Ga2O3|TiO2 

photoelectrode in 0.5 M Na2SO4 buffered at pH 4.26.  Pan et al. further advanced this 

strategy by integrating nanowire nanostructuring, a Ga2O3 buffer layer, a TiO2 protection 
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layer and RuOx as HER catalysts.33  Together, a turn-on potential >1 V and a 

photocurrent density of -10 mA/cm2 at 0 V, as well as stability over 100 h were obtained 

at pH 5. 

Using a similar strategy on a different material, Digdaya et al. improved the 

performance of amorphous SiC.73  They deposited a thin layer (25 nm) of n-TiO2 on a-

SiC (100 nm) by ALD, replacing the original semiconductor/liquid electrolyte interface 

with a p-i-n solid junction.  Under illumination, photo-generated holes would drift to the 

p-type amorphous SiC layer and electrons to the n-type TiO2.  Due to the formation of a 

buried junction, the photovoltage was increased by 300 mV.  After the electrodeposition 

of active HER catalysts, Ni-Mo, the integrated thin-film photocathode achieved a turn-on 

potential of 0.8 V and a photocurrent density of -8.3 mA/cm2 at 0 V in pH 4 phosphate 

buffer.  In addition to forming a buried junction, the TiO2 layer also enhanced the 

adhesion of the catalysts to the surface, leading to stable HER operation for 12 h. 

In addition to aforementioned examples, forming buried junction has been applied 

in various semiconductor materials such as Si, III-V compounds, etc., which has been 

shown as an effective way to improve the photovoltage output. However, some 

challenges still need to be addressed in this process, such as how to create defect-free 

interface and how to achieve uniformly deposition on high-aspect-ratio substrates, etc. 

1.5.4.2 Tuning band edge positions 

Although Si features high photocurrent density as photoelectrodes, its photovoltage has 

been limited.  When it was used as a photocathode, the photovoltage has been limited to 

400 mV without additional buried junctions.  As a photoanode, theoretically it cannot 

oxidize water due to the negative position of the EVB.  The issue has been shown to be 
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partially addressable by strategies such as forming a metal-insulator-semiconductor 

interface (e.g., Ni-SiO2-Si), where high photocurrent density was measured.  But the turn-

on potential was still relatively positive (1 V), representing a photovoltage of only 0.23 

V.74  To further address this problem, amorphous silicon has been developed.  

Hydrogenated amorphous silicon has a continuously random bonding network, resulting 

in a relatively large band gap (1.7 eV) and more positive EVB for improved photovoltage 

and better alignment with water oxidation energy levels.  Additionally, a-Si has been 

shown to be a much more efficient light absorber due to the direct nature of the band gap.  

Importantly, knowledge of semiconductor thin film growth makes it facile to control the 

doping type and level of a-Si with ease, making it possible to utilize it for both oxidation 

and reduction reactions readily.  To this end, Lin et al. reported a-Si with a buried p-i-n 

structure.19  Using a glass substrate decorated with 1.8 μm thick pyramidally textured 

ZnO, 250 nm intrinsic a-Si (active light absorber) were sandwiched between thin layers 

of p-type and n-type nanocrystalline silicon via plasma-enhanced CVD.  After further 

decoration of a TiO2 protection layer and Pt HER catalysts, the photocathode showed a 

turn-on potential of 0.93 V and a photocurrent density of 11.6 mA/cm2 at 0 V in pH 4 

phosphate buffer under 1 sun illumination.  The reported turn-on potential was even more 

positive than what was obtained on n+p-Si (usually limited to 0.54 V). 

Compared with forming buried junctions, tuning the band edge positions of 

semiconductors to solve the mismatch of energetics can avoid the risk of forming 

interfacial defects between different layers. However, only a handful of materials can be 

modified using such a method, which limits its applications. 
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1.5.5 Instability 

Among the issues discussed in this section, instability of photoelectrodes is arguably the 

most unique to photoelectrochemical applications.  Concerns such as narrow light 

absorption, bulk and surface recombination and charge transport are shared by other 

semiconductor-based applications.  But instability defines photoelectrochemical systems 

because only for this application does one need to subject a semiconductor material to 

harsh conditions – intense illumination plus extreme pH environments with high salt 

concentrations.  Broadly speaking, we refer to instability as the rapid degradation of the 

photoelectrode performance.  The phenomenon may be attributed to at least three 

distinctly different causes: 1. The deactivation of the active sites by mechanisms such as 

accumulation of by-products; here little change to the photoelectrode itself occurs; 2. The 

deactivation of the photoelectrode due to the loss of photovoltages, where the 

photoelectrode loses or gains little in a physical sense; 3. Significant changes to the 

photoelectrode due to corrosion during the chemical and/or photoelectrochemical 

reactions. 

1.5.5.1 The accumulation of byproducts due to parasitic chemical reactions 

It has been shown that the formation and accumulation of peroxo species on WO3 

surfaces during water oxidation may lead to the loss of photoactivities.75  The mechanism 

is to be differentiated from corrosion, which is well known for WO3 at higher pH (e.g., 

>4) due to the loosely bound WO3(H2O)x species on the surface.76 How to suppress the 

side reaction will be the key to reactivate the photoelectrode.  Seabold et al. reported that 

the deposition of Co-Pi on WO3 improved the photocurrent to O2 conversion efficiency 
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from 61% to 100%.77  At the same time, the WO3 was shown to be stable under water 

oxidation condition for 12 h after the deposition of Co-Pi in pH 7 phosphate buffer, while 

the bare one lost 63% of its initial photocurrent density within 1 h.  Other than 

introducing OER catalysts, Ma et al. used a solution-based reducing reagent, LEDA 

(lithium dissolved in ethylenediamine), to create an amorphous overlayer on mesoporous 

WO3 photoanode.26  Consisted of both oxygen vacancies and tungsten vacancies, such an 

amorphous layer improved charge transfer efficiency, reducing the formation of peroxide 

species due to hole accumulation.  As a result, both the photocurrent density/turn-on 

potential and the stability were improved.  In a different approach, Wang et al. tailored 

the orientation of exposed facets during the hydrothermal growth of WO3.78  With 

increased (002) facets as opposed to (200) facets in WO3, the photocurrent density at 1.23 

V was improved from 2.1 mA/cm2 to 3.1 mA/cm2, with the stability also enhanced.  Such 

a result was attributed to the reduced electron-hole recombination and inhibited peroxo-

species on (002) facets. 

1.5.5.2 Deactivation of the photoelectrode due to loss of photovoltages 

It has been commonly observed that the performance of Ta3N5 quickly decayed during 

water oxidation, which was generally attributed to the oxidation of nitrides.  Indeed, 

nitride oxidation was observed after water oxidation, confirming the formation of oxides.  

However, it was unclear how the surface oxidation was related to the performance decay.  

Another puzzle about Ta3N5 is the positive turn-on potentials for water oxidation (>0.6 

V), which is significantly higher than what one would expect from the material based on 

measurements of the band edge positions and Fermi levels in vacuum.  He et al. reported 

a detailed study on the detailed changes on the surface of Ta3N5 during water oxidation 
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using a combination of photoelectrochemical methods, high-resolution electron 

microscopy and X-ray core-level spectroscopy.79  It was found that the oxidation of 

Ta3N5 nanotubes (NTs) to tantalum oxide was self-limited on the surface during water 

oxidation, leading to the formation of a relatively thin amorphous oxide layer (~ 3 nm).  

The surface oxidation process not only introduced increased charge transfer resistance, 

but also shifted the Fermi level positively by 200 mV, leading to significant Fermi-level 

pinning that greatly limits the measurable photovoltages.  Moreover, chemisorption of 

H2O onto Ta3N5 alone was found to introduce an additional positive shift of the flat-band 

potential by nearly 600 mV.  This shift explains why most reports on Ta3N5 only 

observed highly positive turn-on potentials when characterizing the material in water.  By 

comparison, a much less positive potential could be measured in nonaqueous systems, 

such as acetonitrile.  The results imply that even though surface oxidation is relatively 

mild when measured by thickness, the reaction could suppress the achievable 

performance of nitrides by a large margin. More details about the study will be discussed 

in Chapter 2. 

1.5.5.3 Corrosion 

BiVO4 in near-neutral and alkaline solution is known to be susceptible to chemical and 

photochemical corrosion, although thermodynamically it is expected be stable.  Toma et 

al. studied the instability of polycrystalline BiVO4 using various methods, including 

SEM, TEM, Rutherford backscattering spectrometry (RBS), in-situ electrochemical 

AFM, ICP-MS and computational prediction.80  It was found that the V in BiVO4 

dissolved in the electrolyte. Thermodynamically, a self-passivation process should take 

place via the formation of a chemically stable bismuth oxide on BiVO4 surface.  
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However, such a process is kinetically hindered at room temperature in aqueous 

solutions, leading to the formation of defective and unstable bismuth oxide or hydroxide.  

As a result, bulk dissolution of BiVO4 occurs, which would be accelerated by 

illumination, increased pH and/or applied bias.  It was hypothesized that the photo-

induced chemical instability may be a result of the accumulation of holes on the surface 

and the formation of reactive oxygen species, which could oxidize Bi3+ to Bi5+ or oxidize 

O2- to O-.  To address the instability issue, one common strategy was to protection layer 

to avoid the contact between BiVO4 and H2O, and introduce the OER catalyst to guide 

the hole transfer for water oxidation instead of self-oxidation.  Another class of materials 

that have been intensely studied for their corrosion problems are high-efficiency 

phosphides and/or arsenides.  More details will be discussed next in the strategies on how 

to protect them. 

1.5.5.4 Protection strategies 

One common strategy to protect unstable materials is to conceal the reactive surface 

altogether by one or multiple protection layers.  Stable oxide materials (e.g., TiO2) have 

been used to serve this purpose.  The key here is to achieve uniform and compact 

deposition of protective materials with appropriate thicknesses, so that the contact 

between the electrolyte and the semiconductor can be separated to prevent corrosion, yet 

efficient charge transfer across the protection is ensured.  Due to the lack of inherent 

catalytic activities on such protection layers, catalysts are often required.  In addition, one 

should manage light absorption so that the protection layer does not compete with the 

active material in absorbing in the visible range.  For the ease of discussions, we 

summarize materials studied for the purpose of protection based on their types below. 
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Catalytically-inactive oxide/nitride materials 

Metal oxides with wide band gaps have been studied extensively as a protection 

layer for both photocathodes and photoanodes.  TiO2 is one of the most representative 

examples for this purpose, which has been applied to various photoelectrode materials 

including Si,13, 19, 71 III-V semiconductors,71, 81-83 unstable metal oxides (Cu2O,22, 33, 55, 84 

BiVO4,23 etc.) and metal chalcogenides (CZTS,27 etc.).  For instance, TiO2 has been 

reported to serve as a protective material on various photocathodes.  Gu et al. reported a 

bilayer protection of GaInP2 photocathode by amorphous TiOx and MoSx,83 which were 

deposited by ALD and electrochemical deposition, respectively.  Further annealing in Ar 

atmosphere at 450 °C improved the crystallinity of MoS2 and TiO2, as well as forming a 

hybrid interface between MoS2 and TiO2 in the form of MoSx/MoOyOz/MoOx/TiO2.  

Compared with the as-deposited photoelectrode, the annealed one showed not only better 

fill factors but also enhanced stability.  After 20 h photoelectrolysis at 0 V in 0.5 M 

H2SO4, the photocurrent density of the as-deposited one decreased from 10 mA/cm2 to 5 

mA/cm2, while the annealed one only decreased by less than 20%.  In terms of using 

TiO2 to protect photoanodes, Verlage et al. synthesized III-V tandem cells using 

MOCVD on n+-GaAs (100).81  The tandem light absorber consisted of an InGaP top cell 

(Eg=1.84 eV, 550 nm) and a GaAs bottom cell (Eg=1.42 eV, 3200 nm), connected by an 

AlGaAs/GaAs tunnel junction (40 nm).  An amorphous, hole-conducting TiO2 layer (62.5 

nm) was deposited on the light absorber surface by ALD to prevent photocorrosion as 

well as serving as an anti-reflection coating, with additional 2 nm Ni as the OER 

catalysts.  When connected to a Ni-Mo cathode in 1 M KOH electrolyte, the device was 

shown to split water without external bias at a current density of 8.5 mA/cm2 under 1 sun 
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illumination, which decreased to 7.3 mA/cm2 after 80 h operations.  Similar protection 

layer/catalyst combinations have been shown effective in protecting photoanodes of a 

variety compositions, including Si, GaP, GaAs and BiVO4.71  . 

Oxide materials as a protection layer face limitations when directly applied to 

nitride semiconductors (e.g., Ta3N5), which are often sensitive to oxidative conditions.  

To address this issue, Zhong et al. reported a GaN-protected Ta3N5 photoanode.11  In this 

study, GaN (50 nm) was synthesized by e-beam evaporation and subsequent nitridation.  

With Co-Pi as the OER catalysts, the protected photoanode showed a turn-on potential of 

0.65 V and a photocurrent density of 8 mA/cm2 at 1.23 V in 0.5 M phosphate buffer (pH 

13).  Importantly, it achieved stable water oxidation at 1.2 V for 10 h.  Control samples of 

Ta3N5 without GaN quickly decayed within 1 h, due to the formation of surface oxides. 

Catalytically-active materials 

Another strategy to protect the photoactive material is to minimize parasitic 

chemical reactions such as corrosion by speeding up the desired chemical reactions.  That 

is, using catalysts to facilitate charge transfer for desired solar fuel synthesis may be 

regarded as a good strategy for protection purposes.  For water oxidation, transition metal 

oxide/hydroxides (e.g., CoOx,28, 85 Co(OH)2,29, 86 Ni(OH)2,24, 87, 88 NiFe-LDH,30 etc.) have 

been commonly used.  For water reduction, precious metal catalysts (e.g., Pt22, 89, 90) or 

non-noble-metal catalysts (e.g., MoS2
83, 91) are usually applied.  For example, efficient 

electrocatalysts such as Pt and MoS2 have been shown to stabilize high-performance 

photocathodes.  MoS2 has been used to protect GaInP2, as reported by Britto et al.91  

Thin-film GaInP2 (~200 nm) was coated by a thin layer (3.6 nm) of Mo metal, which was 

partially converted to MoS2 through sulfurization.  In a sulfuric acid electrolyte (cc. 3 M), 
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bare GaInP2 showed quick performance decay (within minutes) and complete failure after 

several hours due to dissolution.  In stark contrast, GaInP2 coated with Mo/MoS2
 showed 

enhanced turn-on potentials during the initial test (presumably due to more exposed edge 

sites of MoS2) and stable HER performance for 60 h.  Along this line, Kumagai et al. 

reported that the performance of CIGS photocathode could be improved significantly by 

adding a thin layer of Ti/Mo between CIGS/CdS and Pt.10  The authors attributed the 

phenomenon to better electron transfer from CIGS/CdS to Pt.  The stability of the 

integrated photocathode was improved to 10 days. 

It is important to note that the protection effect by similar materials is apparent as 

long as efficient charge extraction from the semiconductors is achieved.  For instance, 

Liu et al. reported a hydrothermally-deposited ferrihydrite layer on Ta3N5, when coupled 

with Co3O4 OER catalysts, could significantly improve the stability of the latter to up to 6 

h.28  As a comparison, Ta3N5 with only Co3O4 showed 70% of decay within 2 h.  The role 

of the ferrihydrite was revealed as a storage layer for photogenerated holes in the form of 

positively charge states.  Besides the ferrihydrite, the combination of Ni(OH)x and MoO3 

was shown to work well as a hole storage layer for the protection of Ta3N5.87  When used 

alone on Ta3N5, the Ni(OH)x/MoO3 layer featured low charge injection efficiency (<15%) 

and, therefore, is an inefficient OER catalyst. 

Overall, protective layers have become a critical component for high-efficiency 

but unstable semiconductor materials. Numerous research efforts have been devoted to 

this research direction, and various types of protective materials have been reported, 

providing a rich knowledge base for its applications in different study platforms. 

Other strategies 
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In addition to depositing protection materials, modifying the 

photoelectrode|electrolyte interface by strategies such as changing the structures of the 

semiconductors or altering the compositions of the electrolyte has been reported as 

effective in addressing the instability issues.  To this end, Kuang et al. reported that the 

crystallinity of BiVO4 nanoparticles was enhanced after a two-step high temperature 

annealing treatment (800°C-ball milling-700°C).92  These nanoparticles exhibited 

inherently better stability against photocorrosion in comparison to nanoworm BiVO4, 

which was obtained by annealing at 450°C.  With the introduction of self-generation and 

regeneration of NiFe-based OER catalysts, the stability was further extended to >1000 h.  

In terms of surface modifications, by tuning the exposed surface of single crystalline GaN 

to be N-terminated, Kibria et al. found that MBE-grown GaN showed better 

photostability than the ones grown by conventional MOCVD, whose Ga-terminated 

surfaces could be easily oxidized to Ga2O3 in the presence of oxygen/H2O and dissolved 

in the electrolyte, leading to the photocorrosion as well as Fermi level pinning.44  

Moreover, since the loss of V5+ was involved in the photocorrosion of BiVO4, Lee et al. 

introduced a V5+-saturated 1 M borate buffer (pH 9.3) for water oxidation test.93  Based 

on the Le Châtelier principle, the dissolution of V5+ was hindered.  As a result, the 

stability of the BiVO4 photoelectrode was improved.  With additional decorations of 

FeOOH/NiOOH OER catalysts, the stability of BiVO4 in the V5+-saturated electrolyte 

was extended to 500 h. 

Compared with the deposition of protective layers, the aforementioned strategies 

reduced the decoration materials on semiconductors, simplifying the photoelectrode 
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configurations. However, the broad applications of these strategies beyond the case 

studies remain to be seen. 

1.5.6 Other issues 

1.5.6.1 High fabrication cost 

In addition to materials cost, the fabrication process itself could incur significant cost.  In 

general, the cost concern limits the scale of implementation for many high-performance 

materials, especially III-V semiconductors (e.g., GaAs, InGaP, etc.).  Many strategies 

developed to reduce costs of solar cells are expected to be transferrable to solar fuel 

synthesis, as well.  For example, while effective in synthesizing high quality 

semiconductor thin films, MOCVD tends to be an expensive process.  An even more 

expensive part, however, comes from the usage of single-crystalline III-V substrates for 

epitaxial growth of solar cell-grade materials.  To address this problem, researchers have 

optimized the synthesis so that the expensive substrates may be recycled for repeated 

growths.  Moreover, other less expensive synthesis methods have been explored to 

replace the MOCVD, which has been reviewed elsewhere94.  Similar arguments are 

equally applicable to MBE processes.95 

As an example of transferring knowledge learned in research on photovoltaics to 

solar fuel applications, Kang et al. fabricated GaAs/AlxGa1-xAs based photocathodes and 

photoanodes using epitaxial lift-off and printing-based assemblies (Figure 1.7).14  During 

the synthesis, a p-on-n or n-on-p epitaxial GaAs solar cells were first grown on a GaAs 

wafer, which were later lifted off and printed on glass substrates.  Pt and IrOx·nH2O was 

deposited to serve as the water reduction and oxidation catalysts, respectively.  Such a 
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design allows the reuse of expensive growth wafer, offering a significant reduction of 

material costs.  Similarly, Young et al. reported the synthesis of inverted metamorphic 

multi-junctions for water splitting.96  The growth substrate (GaAs) was ca. 100 times 

thicker than the active light absorbers, which would be a significant waste of expensive 

materials.  A selective chemical etching process was introduced to remove the GaAs 

substrate after the device was bonded to a flat, rigid Si wafer as a handle.  As a result, the 

expensive GaAs substrate could be reused for the next growth. 

 

Figure 1.7 (a) The schematic shows the fabrication process for integrated GaAs photocathodes printed on a glass 

substrate. (b) The schematic shows the cross-sectional view of the integrated GaAs photocathode, where the 

photocurable polymer (NOA) was used as the transparent printing medium. (c) The photograph showed the exposed 

n+-GaAs after the printing-based assemblies. The insets showed the magnified view of photoelectrode surfaces. (a-c) 

reproduced from “D. Kang, J. L. Young, H. Lim, W. E. Klein, H. Chen, Y. Xi, B. Gai, T. G. Deutsch and J. Yoon, Nat. 

Energy, 2017, 2, 17043.” with permission from Springer Nature. 
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1.5.6.2 Charge recombination at semiconductor/substrate interface 

As discussed in Sections 1.5.2 and 1.5.3, charge recombination in the bulk or near the 

surface can lead to decreased charge collection efficiency.  In another case, charge 

recombination can take place at the semiconductor/substrate interface.  For example, the 

formation of a “dead layer” at the hematite-substrate interface, especially in ultrathin film 

(with thickness < 50 nm), was believed as the result of lattice strains between hematite 

and the substrate (usually FTO), which would lead to imperfect crystal structures near the 

interface and induce charge recombination.97  Hisatomi et al. reported a thin layer of 

Ga2O3 (2 nm) between the FTO substrate and hematite can serve as an isomorphic 

structure template for the growth of ultrathin hematite (27 nm) due to their similar crystal 

structures.  After the FTO substrate was modified with Ga2O3, the crystallinity of 

hematite was improved based on the increased peak intensity observed in XRD.  As a 

consequence, the turn-on potential was cathodically shifted by 200 mV and the 

photocurrent density at 1.23 V was improved by 15 times.67  Zandi et al used ALD to 

synthesize Ti-doped hematite by tuning the numbers of Ti precursor (titanium 

isopropoxide) pulses and Fe precursor (ferrocene) pulses during the ALD process.98 

Although Ti4+ has been reported to serve as the dopant to improve the donor density in 

hematite, the introduction of Ti in this study showed no effect on carrier concentration. 

Instead, the bulk properties were improved with hole mobility and/or the hole lifetime 

enhanced after the introduction of Ti, which was due to the elimination of dead layer. In 

addition, EIS analysis indicated a higher density of active sites for water oxidation was 

achieved after the Ti doping. 
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1.6 THIN FILM PROTECTION LAYER 

Thin-film protection materials for photoelectrodes have been recently reviewed in 

detail.99, 100 Here those thin-film protection materials based on their method of protection 

are briefly summarized. One method protects the semiconductor by isolating the unstable 

surface from the aqueous electrolyte, which inhibits the photoelectrochemical or 

chemical dissolution of the semiconductor. We refer to this protection method as a 

physical barrier layer. The other method inhibits photocorrosion of semiconductors by 

selectively tuning the pathway of photogenerated charge carriers to the desired chemical 

reactions opposed to the corrosion. Since this method of protection relies on optimizing 

relative rates of reactions, we refer to it as a kinetic protection layer. Some examples of 

thin-film protection layers have been discussed in section 1.5.5.4. 

1.6.1 Physical barrier protection layer 

In order to fully isolate the unstable semiconductors from the aqueous electrolyte, the 

protection layers are required to be ion-impermeable and pin-hole free. Therefore, 

deposition techniques that feature uniform coating of dense material, such as PVD and 

CVD, are usually applied to deposit the films. On the other hand, since this type of 

materials is catalytic non-active, it’s important to control its thickness to be thin and 

conductive so that the photo-generated charge carriers can be transferred to the 

catalyst/electrolyte. 

Metal thin films such as Ti101 or Pd102, have been demonstrated to protect 

crystalline Si photocathodes and photoanodes. The metals can form Schottky-junctions 
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with semiconductors and serve as conductive layers, and the photogenerated electrons or 

holes can be separated and transferred to solution. One limitation of using metal 

protection layers is the competition of light absorption with the semiconductor 

underneath. One way to overcome this drawback is to illuminate from the back side of 

photoelectrode instead of the electrolyte side. For example, Bae et al. reported that by 

thinning the p-Si photocathode from 350 μm to 30 μm by wet etching, increased 

photocurrent density was observed by illuminating the Si from the back side.103 In this 

configuration, the protection was achieved by depositing Ti/TiO2 (5/100 nm) on the 

surface. Kang et al. changed the catalytic side of photoelectrode from the 

semiconductor/electrolyte junction to the ohmic contact/electrolyte interface using 

printing-based material assemblies.14 In this case, the “thick” layer of metal contact 

(AuGe/Ni/Au: 100 nm/30 nm/150 nm) was used to separate the GaAs photocathode from 

an aqueous electrolyte, realizing 8 hours stable HER. The unprotected one showed quick 

performance decay with 2 hours. 

As discussed in section 1.5.5.4, stable metal oxides and nitrides have been 

developed as protection layers. For example, amorphous TiO2 has been deposited on 

BiVO4 photoanode by ALD, followed by sputtering of Ni on the surface as the OER 

catalyst.23 With the thickness around 1 nm, this amorphous protection layer achieved 

stable water oxidation in pH 13 electrolyte for 120 min, while the bare BiVO4 showed 

quick decay of performance within 20 min due to the chemical and photoelectrochemical 

dissolution. On the photocathode side, it has been reported that Cu2O photocathodes can 

be stabilized via the deposition of ZnO (20 nm) and TiO2 (10 nm) by ALD.84 It should be 

noted here that the deposition of TiO2 alone didn’t stabilize the photocathode, which was 



 56 

attributed to the formation of pin-holes between the Cu2O / TiO2 interface due to non-

uniform growth even using ALD. The insertion of ZnO between Cu2O and TiO2 might 

provide a more uniform hydroxylated surface for TiO2 to achieve conformal deposition. 

This demonstrates the important synthetic challenge of depositing pin-hole free 

protection layers to achieve long-term stability. 

In addition, some carbon-based materials, such as graphene, have also been used 

to protect photoelectrodes like macroporous silicon wafers.104 Zhang et al. reported 

carbon-protected Cu2O nanowire arrays that showed improved stability with a carbon 

layer compared with the bare nanowires.105 The thin, uniform layer of carbon (20 nm) 

was deposited via the decomposition of a glucose solution on Cu2O at 550 °C in an N2 

atmosphere. The carbon-protected Cu2O also showed photocurrent enhancement from -

2.28 mA/cm2 to -3.95 mA/cm2 at 0 V, and the photocurrent decay was inhibited from 

87.4% to 19.3% over a 20 min stability test. 

1.6.2 Kinetic protection layer 

As discussed above, catalysts are usually necessary to improve water oxidation and 

reduction performance no matter which semiconductors are studied as the 

photoelectrodes. Since the nature of photocorrosion is usually the reaction between 

semiconductors and photo-generated carriers in the presence of H2O, it should be 

effective to protect the material by transferring the photo-generated carriers from the 

semiconductor to the desired chemical reaction. Indeed, various OER and HER catalysts 

have been demonstrated to reduce the degree of photocorrosion (some examples have 

been discussed in section 1.5.5.4). 
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For example, ultrathin Ni metal (2 nm) films have been demonstrated to protect 

planar n-Si photoanodes.74 The role of Ni was shown to form semiconductor-insulator-

metal (Si-SiO2-Ni) junction to improve the charge separation of Si, as well as forming 

OER catalyst species on the surface. Combined with a potassium borate and lithium 

borate electrolyte, the integrated photoanode was shown to be stable against 

photocorrosion for 3 days. It was suspected that the Li+ helped eliminate the formation of 

α-phase Ni(OH)2, thus avoiding large volume expansion of Ni layers during the oxidation 

process and enhancing the stability.  

One important factor limiting the protection ability of thin-film catalysts is the 

chemical instability of catalysts under operating conditions. To address this issue, Kuang 

et al. recently reported an in-situ regeneration method to deposit a NiFe-based OER 

catalyst on BiVO4 to extend its stability.92 With Ni as the substrate, the BiVO4 

photoanode showed gradual performance enhancement during the stability test in a borate 

buffer (pH 9). This was attributed to the formation of an amorphous NiFe-based catalyst 

(~ 5 nm), where the Ni2+ comes from dissolution of the NiO and Ni(OH)2 layers on the 

Ni substrate and the Fex+ species comes from impurities in the electrolyte. Long-term 

stability of over 1000 hours has been achieved, due to the regeneration of NiFe-based 

catalyst on BiVO4 sites where the catalyst has been exfoliated or dissolved. Low 

concentration of Ni2+ (< 1μM) and the borate electrolyte are key factors for this strategy. 

Higher concentration of Ni2+ caused overloading of the catalyst to increase surface charge 

recombination, while the choice of other electrolytes, such as phosphate, accelerated the 

catalyst dissolution. 
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The application of catalysts as protection layers has its own limitations. First, the 

relatively slow kinetics of water oxidation and water reduction makes it difficult to fully 

inhibit the photocorrosion via kinetic control. Second, the stability of catalysts can be an 

issue. The stability includes both the structural stability of catalysts and their attachment 

to the substrate. Third, there are more and more reports indicating that porosity and ion-

permeability is critical to achieve high-performance OER catalyst and form a favorable 

interface with semiconductors, such as the transition-metal-based (oxy)hydroxide. As a 

result, the contact between unstable semiconductors and water may not be completely 

avoided. Therefore, the combination of both types of protection layer may ultimately be 

the winning strategy to achieve optimized stability and performance of photoelectrodes. 

1.7 THIN FILM CATALYSTS 

The performance of thin film catalysts on photoelectrodes is not only affected by the 

electrocatalytic activity of the catalyst, but also by the interface between catalyst and 

semiconductor. Understanding along this direction is critical to design efficient 

photoelectrode systems. In addition, the problems introduced by the catalysts, such as the 

parasitic light absorption, need to be carefully considered in order to optimize the overall 

performance. 



 59 

1.7.1 The role of catalysts on photoelectrodes 

It has become widely recognized that catalysts are critical components in photoelectrode 

configurations in order to achieve high performance for both OER and HER. For OER, 

various catalysts including precious metal (e.g. Ir106-109) and transition metal (e.g. Co, Ni 

and Fe) oxides15, 85, 110 and (oxy)hydroxides25, 30, 86, 111 have been studied extensively and 

shown promising results. For HER, precious metal (e.g. Pt22, 89, 90) and transition metal 

based catalysts (e.g. MoS2,83, 91 CoP,89 etc.) have been employed. Many examples have 

been discussed in section 1.5. Despite the critical importance of the semiconductor-

catalyst junction and the large number of studies investigating the behavior, the 

mechanism(s) concerning how the catalysts affect the performance remains a topic of 

current debate. One of the complications is that different synthetic methods of a given 

semiconductor can influence the behavior with a given catalyst, coupled with many 

different semiconductor materials and catalyst compositions that have been investigated 

using different methods. Below selected examples are summarized to unify the 

interpretations to present a general picture of the semiconductor / catalyst junction. 

Typically, when semiconductors are coated with catalysts, either the turn-on potential or 

photocurrent density or both can be improved. From a fundamental perspective, the 

photocurrent density can be described by the following two equations (using a 

photoanode as the example).8 

 𝑃𝑃𝑆𝑆
𝑃𝑃𝑆𝑆
0 = exp(−𝑞𝑞𝑞𝑞

𝑘𝑘𝑘𝑘
) = exp[−𝑞𝑞(𝑉𝑉𝑎𝑎𝑝𝑝𝑝𝑝+𝑉𝑉𝑝𝑝ℎ−𝑉𝑉𝑓𝑓𝑏𝑏)

𝑘𝑘𝑘𝑘
] (1.6) 

 𝑖𝑖𝑝𝑝 = 𝑖𝑖𝑝𝑝0{𝑃𝑃𝑆𝑆
𝑃𝑃𝑆𝑆
0 exp(𝑞𝑞𝛼𝛼𝑝𝑝𝜂𝜂

𝑘𝑘𝑘𝑘
) − exp[−𝑞𝑞(1−𝛼𝛼𝑝𝑝)𝜂𝜂

𝑘𝑘𝑘𝑘
]} (1.7) 
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In equation  (1.6), Ps is the concentration of surface holes; Ps
0 is the equilibrium 

concentration of surface holes; q is the charge of electrons; k is the Boltzmann constant; T 

is the temperature; Ф is the magnitude of band bending, which is determined by the 

combination of applied potential (Vapp), photovoltage (Vph, defined as the difference of 

Fermi level under dark and light conditions) and the flat-band potential (Vfb). The 

equation  (1.7) is derived from the Butler-Volmer equation assuming that charge 

transfer kinetics is dependent on the surface hole concentration. In equation  (1.7), 

ip is the photocurrent of holes under light; ip
0 is the exchange current under dark; αp is the 

hole transfer coefficient; η is the overpotential to drive the water oxidation reaction. 

From those two equations, it is clear that the photocurrent generated from 

photoanodes is determined by a convolution of thermodynamic and kinetic factors 

(Figure 1.8). The extent of band bending at the semiconductor/electrolyte interface is 

determined by the band edge positions and photovoltage which controls the surface 

electron and hole concentrations. In addition, reduced hole/electron recombination on the 

surface can also increase the surface hole concentration. The photovoltage determines the 

position of the hole quasi-Fermi level, which must ultimately be sufficiently positive of 

the water oxidation formal potential to drive the reaction. 
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Figure 1.8 The schematic shows that how the hole quasi Fermi level (EF,p) affected the performance of 

photoelectrodes. When there are no surface states (SS) on the semiconductor/liquid interface, the overpotential is 

mainly the kinetic overpotential (η); when there are SS, recombination decreased the photovoltage, leading to increased 

overpotential (Vloss). EF, n: the electron quasi Fermi level. 

Similarly, the turn-on potential, another important parameter to describe the 

photoelectrode performance, is affected by both thermodynamic and kinetic factors. 

Since the photovoltage determines position of the hole quasi-Fermi level, it also limits 

Von. Therefore, reducing the overpotential of the reaction can further shift the Von to its 

theoretical value. As a result, the “catalysts” on photoelectrodes can either serve the true 

catalyst to reduce the kinetic overpotential, as the conventionally defined, or tuning the 

surface energetics at the semiconductor/electrolyte interface, or both. 

In order to understand the role of catalysts on semiconductor surfaces, various 

techniques have been applied, including transient absorption spectroscopy (TAS)112, 113, 

photoelectrochemical impedance spectroscopy (PEIS)106, 114-116, intensity modulated 

photocurrent spectroscopy (IMPS)88, 89, 106, 117, 118, dual-working-electrode (DWE) 

technique119-122 and more recently potential-sensing electrochemical atomic force 

microscopy (PS-EC-AFM)123. With more and more evidence being discovered, the roles 
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of catalysts on the semiconductor surface become gradually clear. Here we reviewed 

thin-film semiconductor/catalyst systems that studied by different techniques, and 

corresponding conclusions to reveal the role of catalysts. 

1.7.1.1 Transient absorption spectroscopy 

Barroso et al. reported a TAS study on hematite photoanodes with different material 

added to modify the surface.113 In one system, CoOx was added to serve as the co-

catalysts, while a Ga2O3 overlayer was added in another system, which is 

electrocatalytically inert. Interestingly, a negative shift of Von was observed in both cases. 

The TAS study under applied bias showed that both treatments increased the absorption 

signals attributed to long-lived holes, and the shift of signal amplitude was consistent 

with the negative shift of Von observed in J-V curves. From this, the authors concluded 

that both CoOx and Ga2O3 treatments likely passivate surface states thereby reducing 

electron/hole recombination and increasing the yield of long-lived holes at the electrode 

surface. 

Similarly, Barroso et al. studied the role of Co-Pi, another widely used OER 

catalyst, on the surface of hematite photoanodes.112 The electrodeposited Co-Pi on 

mesoporous hematite thin-film photoanodes also shifted the Von to more negative values 

and increased the Jph at 1.4 V by 0.1 mA/cm2. The TAS results in the absence of applied 

bias indicated the addition of Co-Pi significantly increased the lifetime of the transient 

signal by more than 3 orders of magnitude, with the half-life (t1/2) increased from ~15 μs 

to ~30 ms. The authors interpreted this behavior as retarded charge recombination in 

hematite due to the formation of Schottky-type heterojunction between hematite and Co-

Pi. 
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1.7.1.2 Photoelectrochemical impedance spectroscopy 

PEIS has been widely used to measure the charge transfer processes of photoelectrodes. 

The key of PEIS lies in constructing meaningful equivalent circuit models that accurately 

describe the relevant charge-transfer processes which ultimately control the J-V behavior. 

The development of appropriate equivalent circuit for photoelectrodes has been 

extensively investigated by Bisquert et al. during the past decade.114, 124-127 By studying 

the PEIS results for the bare photoelectrodes and the one with catalyst on the surface, the 

role of catalysts can be clarified. 

Klahr et al. studied hematite thin-film photoanodes grown via ALD with different 

thicknesses of cobalt phosphate (Co-Pi) as an OER catalyst.114 To overcome 

complications in interpretation due to heterogeneity of mesoporous photoelectrodes and 

competitive light absorption by the catalysts, light was illuminated from the back side of 

FTO-glass substrates. It was found that the photocurrent and turn-on potential of hematite 

was improved when the thickness of Co-Pi increased. After fitting analysis in the 

corresponded equivalent circuit for Co-Pi decorated hematite, it was found that the 

capacitance for Co-Pi (CCo-Pi) increased and the charge transfer resistance from the Co-Pi 

layer (Rct, Co-Pi) decreased as the increased thickness of Co-Pi layer. Together with the 

transient photocurrent measurement and chopped light measurement, it was concluded 

that Co-Pi improved the performance of water oxidation by efficiently collecting and 

storing photogenerated holes from hematite. The increased charge separation was 

invoked to explain the improved performance as it led to reduced charge recombination 

at the semiconductor/electrolyte interface.  
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Riha et al. studied the effect of sub-monolayer Co(OH)2/Co3O4 catalyst on the 

performance inverse-opal scaffolded hematite photoanode.115 Deposition of only 1 ALD 

cycle, the sub-monolayer Co-based catalyst shifted the Von by 200 mV and increased Jph 

from 1.4 to 2.1 mA/cm2 at 1.53 V. By performing the PEIS measurement on planar thin-

film hematite photoanode and assuming the charge transfer occurred through the surface 

states, it was found the capacitance of surface states decreased after ALD modification 

when water oxidation occurred, indicating faster hole transfer resulting lower steady-state 

hole concentration. In addition, the charge transfer resistance from the surface states was 

much lower compared with the un-modified hematite. Together, these results were 

interpreted as the Co-based catalyst accelerating the hole transfer kinetics, thereby acting 

as the water oxidation catalyst in the conventional sense. 

1.7.1.3 Intensity modulated photocurrent spectroscopy 

The IMPS technique was developed by Peter et al. in late 1980s, which measures the 

phase shift in photocurrent in relation to a sinusoidal modulation of light intensity.128-131 

Several assumptions need to be satisfied in order to obtain meaningful IMPS data: (1) the 

surface hole concentration (taking a photoanode as the example) changes linearly with 

the light intensity; (2) the light intensity modulation is sufficiently low so that only the 

surface hole concentration is altered instead of the degree of band bending; (3) the 

reaction process is dominated by a single step kinetically and the surface hole 

concentration falls into the first-order reaction region. By analyzing the complex 

photocurrent as a function of light modulation frequency, the surface charge transfer rate 

constant (ktran) and surface charge recombination rate constant (krec) can be derived, using 

which the charge transfer efficiency (TE, TE=ktran/(ktran+krec)) can be obtained. The rate 
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constants describe the charge transfer process on photoelectrode/electrolyte interface 

thermodynamically (krec) and kinetically (ktran). 

Du et al. found that decoration of a hematite surface with NiFeOx via a 

photochemical decomposition method could shift the Von negatively by 400 mV.111 

Measurements of the photovoltage by comparing the open circuit potential in the dark 

and under illumination revealed that NiFeOx increased the photovoltage by reducing 

Fermi level pinning, which was caused by the hematite surface states. With the help of 

IMPS measurements, detailed kinetics parameters were extracted for the NiFeOx/hematite 

system.117 By comparing the bare hematite and the one with NiFeOx, it was found that 

ktran remained the same for both photoanodes at 1.1 V for water oxidation, but the one 

with NiFeOx showed lower krec compared with the bare one.117 The result indicated that 

NiFeOx improved the water oxidation performance by reducing the surface charge 

recombination. 

Li et al. studied the effect of two different Ir-based catalysts on the performance 

of hematite photoanode.106 It was found the addition of either IrOx or a heterogenized 

molecular Ir catalyst on the hematite surface led to a negative shift of Von and increased 

Jph in 0.1 M KNO3 (pH 1.01). While the IrOx was deposited on hematite as a dense thin 

film, the Ir molecular catalyst was anchored on the surface via the direct binding with Ir 

centers, with the molecular identity remained. IMPS study revealed that compared with 

the bare hematite, the IrOx-decorated one showed increased ktran and decreased krec, while 

the one with the heterogenized molecular Ir catalyst showed only increased ktran but 

similar krec as the bare one. By increasing the loading amount of these two catalysts, it 

was found that only krec increased for Ir molecular catalyst, while both ktran and krec were 
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improved for IrOx. As a result, it was concluded that the application of Ir molecular 

catalyst provided additional hole transfer pathway while the surface recombination still 

occurs via surface states at the hematite/H2O interface. As a comparison, the IrOx dense 

thin film replaced the original hematite/H2O interface to reduce the charge recombination 

and increased the hole transfer at the same time. 

In addition to hematite, IMPS studies have also been applied to other 

semiconductor/catalyst systems. For example, Zachӓus et al. studied the influence of Co-

Pi on the charge transfer processes on BiVO4 photoanodes.118 It was found that the 

performance of BiVO4 was mainly limited by the surface charge recombination instead of 

water oxidation kinetics. By comparing the ktran and krec of bare BiVO4 and the one with 

Co-Pi, it was found that the addition of Co-Pi decreased the krec by a factor of 10-20 over 

the entire potential range (0.6-1.5 V), while the ktran remained unchanged when the 

potential was less than 1 V. Furthermore, the addition of the efficient RuOx OER 

electrocatalyst decreased the performance because it failed to passivate the surface states 

on BiVO4. Moreover, Liu et al. reported the decoration ferrihydrite and Ni(OH)x as 

“hole-storage” layer on Ta3N5 photoanode significantly increased its performance.88 

IMPS study revealed that the charge carrier lifetime was prolonged by 2 to 6 times after 

the hole-storage layer deposition. Meanwhile, the krec decreased dramatically while ktran 

was not improved, indicating reducing surface recombination rather than enhancing 

surface hole transfer was the main function of such a hole-storage layer. 

In addition to OER catalysts, the effect of HER catalysts on photocathodes has 

been studied via IMPS.89 Using a Si photocathode with GaN nanowires grown on it, 

different HER catalysts were deposited including Pt, Ag and cobalt phosphide (CoP). It 
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was found that under all three cases the Von and Jph was improved and Pt was the most 

effective one, followed by CoP and Ag. The IMPS results revealed that adding Ag or Pt 

reduced krec by one order of magnitude over a wide range of potential window (even 

before Von), while adding CoP only reduced the krec after the turn-on potential. This 

indicated that CoP functioned as a HER catalyst quite differently from the metals on the 

semiconductor. For CoP, it couldn’t accept the charge from the photocathode at low 

applied potential, leading to severe charge recombination and limited photovoltage. On 

the other hand, the metals (Pt or Ag) can extract the charge through the formation of 

Schottky junctions and reduce charge recombination. With further enhanced charge 

transfer kinetics, such as with Pt, the highest performance was achieved. 

More details about using IMPS to study the interfacial charge transfer kinetics 

will be illustrated in Chapter 3 and Chapter 4. 

1.7.1.4 Dual-working-electrode technique 

In 2007 Peter employed a second evaporated Ti working electrode to sense the potential 

of TiO2 nanoparticles away from the conductive substrate to establish working model of 

such electrodes used in dye-sensitized solar cells.132 A similar dual working electrode 

(DWE) technique was used by Lin et al. for dense IrOx and ion-permeable Ni(OH)x OER 

catalysts integrated on TiO2 photoanodes.119 By depositing a thin layer of porous Au on 

the surface of the catalyst, without forming direct contact with the semiconductor, they 

were able to simultaneously sense and control the current and potential of both the TiO2 

semiconductor and the catalyst under working conditions. Unlike TA, EIS, IMPS 

methods which are indirect and model-dependent for results interpretation, the DWE 

offers a direct measure of the catalyst and the interpretation is less ambiguous. 
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It was found that the dense, ion-impermeable IrOx formed a Schottky-type buried 

junction with TiO2, leading the constant photovoltage of only 0.2 V, which explains the 

relatively poor performance of this system despite IrO x as one of the best OER catalysts. 

However, since the Ni(OH)x catalyst is ion-permeable, it can store charge via redox 

reactions of the Ni ions. Since oxidation of the Ni ions lowers to catalyst potential, the 

photovoltage of the junction with TiO2 increases and this is therefore termed an “adaptive 

junction”. Since the catalyst potential was measured directly, as well as the current at the 

catalyst which matched the current at TiO2, it was concluded that hole transfer was 

efficient from TiO2 to Ni(OH)x and the OER occurred primarily via the catalyst. As a 

result, improved turn-on potential and fill factor was observed for the TiO2/Ni(OH)x 

system.  

Qiu et al. later reported the application of DWE technique on hematite 

photoanodes coated with the Ni0.8Fe0.2Ox catalyst where a thin layer of porous Au was 

deposited on the surface of Ni0.8Fe0.2Ox to form the second working electrode.121 It was 

found that the conductivity of catalyst increased sharply after oxidation of the Ni species, 

no matter the catalyst was on conductive substrate (ITO) or hematite photoanode. By 

monitoring the photocurrent of hematite and the current of catalyst at the same time over 

a wide range of applied bias, it was found that hole transfer from hematite to the catalyst 

occurs with an efficiency up to 95%. This result indicates that the Ni0.8Fe0.2Ox not only 

serves as a hole-collecting contact but also as the catalyst to drive water oxidation. In 

addition, the authors found that the heterogeneity of the catalyst could affect the hole 

collection from semiconductor to the catalyst, which may explain the difference between 

various reported results for the role of catalyst. 
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Qiu et al. later reported the effect of semiconductor morphology and catalyst 

conductivity on the photoelectrode performance via the DWE technique.122 Two types of 

hematite with different morphologies and two types of NiFeOxHy with different 

conductivities (as well as OER activity) were combined to illustrate the effect. 

Electrodeposited (ED) hematite on FTO substrates featured a porous morphology while 

the ALD electrode forms a compact, dense thin film. Ni0.8Fe0.2OxHy has better 

conductivity and OER activity compared with Ni0.2Fe0.8OxHy. However, the 

Ni0.2Fe0.8OxHy decorated ED hematite showed much worse performance than the one 

with Ni0.8Fe0.2OxHy, while the ALD hematite showed good performance after the 

deposition of both catalysts. By measuring the potential of the catalyst as a function of 

semiconductor potential, it was found that charge recombination due to the direct contact 

between the conductive catalyst and FTO substrate occurred which inhibited the 

performance. To avoid this shunting, photo-assisted electrodeposition of catalyst on ED 

hematite was carried to avoid the direct contact between FTO and catalyst, which shown 

much better performance compared with one deposited via photochemical 

decomposition. The study pointed out the importance to avoid shunting using porous 

semiconductors with catalysts, which could be achieved by photo-assisted 

electrodeposition method, or preventing the direct contact between catalyst and 

conductive substrate by inserting insulating layer or electronically insulating catalyst 

between them. 

1.7.1.5 Potential-sensing electrochemical atomic force microscopy 

Although the DWE technique can reveal the electrochemical information of catalyst 

layers during the reaction, its application is generally limited to planar photoelectrodes. 
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High-aspect-ratio substrates can lead to the non-uniform coverage of second working 

electrode layer, resulting in direct electrical shorting to the semiconductor. To overcome 

this problem, Nellist et al developed a method to use an electrochemical AFM to sense 

the local potential of catalysts on different morphologies of photoanodes.123 In this 

configuration, an electrically insulated AFM cantilever was modified with a conductive 

nanotip of Pt. As a result, the tip-substrate interaction could be controlled by force 

feedback through cantilever deflection, so that the potential of substrate (the catalyst 

layer) could be detected without damaging the catalyst layer (Figure 1.9a). 

The PS-EC-AFM was used to study the effect of Co-Pi on both planar and 

nanostructured hematite photoanodes. The tip potential didn’t track the increase of 

substrate potential until the Co2+ ions were oxidized and the catalyst layer became 

conductive (Figure 1.9c). It was observed that similar tip potentials were achieved for 

both Co-Pi coated ITO substrate under dark and Co-Pi coated hematite photoanode under 

light when the current density was the same, indicating the photogenerated holes were 

transferred from hematite to Co-Pi layer to drive the water oxidation reaction (Figure 

1.9b). Study for other semiconductor/catalyst systems based on this technique can be 

promising to further reveal the role of catalysts on the semiconductors. 
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Figure 1.9 (a) The schematic shows the electrochemical AFM set up to measure the catalyst potential during 

(photo)electrochemical water oxidation. The inset is a TEM image of the AFM tip. The band diagram shows the 

equilibrium of tip potential (Etip) with the catalyst potential (Ecat) during the PEC measurement. (b) The J-V curve of 

Co-Pi coated ITO electrode in 0.1 M phosphate buffer (pH 6.9) and the corresponding tip potentials. (c) The J-V curve 

of Co-Pi coated planar hematite photoelectrode in the same electrolyte and the corresponded tip potentials. Light 

source: 405 nm light with 27 mW/cm2. A clear switching of tip potential was observed in both (b) and (c). (a-c) 

reproduced from “M. R. Nellist, F. A. L. Laskowski, J. Qiu, H. Hajibabaei, K. Sivula, T. W. Hamann and S. W. 

Boettcher, Nat. Energy, 2018, 3, 46-52.” with permission from Springer Nature. 

1.7.2 The effect of catalysts on the light absorption 

The loading amount of catalysts has a great impact on the water oxidation/reduction 

performance. In order to achieve the optimized performance, the catalyst loading is 

considerably high, which introduced another problem in photoelectrodes. That is, the 

usually opaque electrocatalysts compete with the underneath semiconductors in terms of 

light absorption. To avoid this competition, mainly two strategies have been employed in 

the literature: (1) decoupling the reaction sites with light absorption sites; (2) synthesis of 

catalysts with high intrinsic activity to reduce the loading amount, which will be 

transparent for the incident light. 
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1.7.2.1 Decoupling reaction sites and light absorption sites 

The most convenient method to overcome competitive light absorption by the catalyst 

layer is to illuminate the photoelectrode from the back side (the ohmic contact side) 

instead of front side (the catalyst side). Such a method requires the deposition of 

semiconductor thin films on the transparent and conductive substrate, such as the 

conductive oxide coated glass (e.g., FTO and ITO). In addition, the thickness of 

semiconductors needs to be controlled so that the photo-generated carriers can reach the 

surface before recombination. For example, Du et al. synthesized the amorphous NiFeOx 

layer on the surface of ALD grown hematite (25 nm) via a photochemical decomposition 

method.111 Due to the brown color of NiFeOx, it competed with the light absorption of 

hematite. With illumination from the back side of photoelectrode, the Jph at 1.23 V was 

enhanced by almost 70%. Similarly, Klahr et al. reported that Co-Pi decorated hematite 

thin film photoanode.114 Since Co-Pi broadly absorbed visible light, back illumination 

was used so that the performance of hematite could be optimized by controlling the 

thickness of Co-Pi thin films. 

Another method to achieve this goal is to selectively deposit the catalyst instead 

of a uniform deposition on the surface of photoelectrodes so that only a small portion of 

incident light will be blocked by the catalysts even under the front illumination. Such a 

strategy often requires the synthesis of high-aspect-ratio semiconductors. For example, 

Shaner et al. reported a Si microwire design consisting of Si microwire arrays with the 

height of 100 μm, 5-10 μm of Ni-Mo HER catalyst on the bottom of microwire, with 

additional 1-3 μm of light-scattering TiO2 particles.133 The light absorption was enabled 

by the exposed Si microwires, while the photo-generated carriers were transferred to Ni-
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Mo HER catalyst on the bottom of microwires. The addition TiO2 further enhanced the 

light absorption by light-scattering. In addition, Vijselaar et al. reported the selective 

deposition of Ni-Mo HER catalysts on the top of Si microwires.134 The Si surface was 

first conformally covered with SiO2, followed by addition of a photoresist layer, which 

was etched in O2 plasma to expose the top of wires. Then the exposed SiO2 was etched 

away so that only the top of Si could be electrodeposited with Ni-Mo HER catalyst. 

Through the selective deposition, it was found the light absorption by Ni-Mo was 

inhibited compared with the one with fully exposed Si surface after the same catalyst 

deposition time. As a result, the Jph was improved by over 6 times. 

In addition, the decoupling of light absorption with photocatalytic activity can be 

achieved by changing the assembly method of semiconductors. For example, Kang et al. 

reported an epitaxial lift-off and printing-based assemblies to prepare the GaAs-based 

photocathode.14 After removing from the growth substrate of GaAs wafers, the 

photocathode was sealed into transparent, photocurable polymer, which was further 

assembled onto glass substrate. As a result, the back ohmic contact layer was facing the 

electrolyte side, with Pt HER catalysts on it (Figure 1.7b). In this bifacial configuration, 

the light penetrated from the glass side while the electrons were collected on the backside 

to electrolyte. 

1.7.2.2 Synthesis of transparent catalysts 

There are limitations of using geometrical approaches to reduce the effect of light 

absorption by catalysts. For example, in conventional tandem cell configurations, it is 

critical to allow the light absorption by the smaller band gap photo absorber underneath 

the top absorber. Thus, light must pass through the top catalyst layer before reaching the 



 74 

bottom cell. Therefore, a more ideal approach is to synthesize a transparent catalyst layer 

with high activity. 

For instance, Morales-Guio et al. reported the synthesis of semi-transparent 

FeNiOx catalysts on hematite photoanodes via photo-assisted electrodeposition.135 It was 

found that the oxidative deposition of NiOx in pH 5.3 was much slower due to faster 

corrosion of NiOx films, with Fe incorporation further accelerating the corrosion process. 

As a result, the loading amount of FeNiOx was low (4-7 nm in thickness), leading to low 

light absorption by the catalyst layer. In addition, the as-deposited FeNiOx featured a high 

turnover frequency (TOF) of 1.1 s-1 with an overpotential of 0.35 V, which was almost 10 

times of that for NiOx at the similar loading amount. The FeNiOx decorated hematite 

achieved higher Jph and better Von compared with the bare or NiOx -decorated hematite. 

Another approach that has also been reported recently is to reduce the size of the 

catalyst to the atomic scale, which can result in improved intrinsic activity of the catalyst 

with high atomic efficiency and negligible light absorption. Zhao et al. recently reported 

the synthesis single-atom catalysts (SACs) and dinuclear heterogeneous catalysts (DHCs) 

of Ir on hematite photoanodes.109 The DHCs were synthesized via the photochemical 

decomposition of the organic ligands in Ir homodimers, consisting of two Ir atoms per 

catalytic site in the form of Ir-O-Ir arrangement. The Ir DHCs decorated hematite showed 

the best Von (0.55 V) and highest Jph compared with Ir SACs and Ir nanoparticles in pH 6 

electrolyte. The measured TOF for Ir DHCs is 2.6 and 5 times higher than the 

corresponding Ir SACs and nanoparticles. DFT calculation indicated that the energy 

required after the second proton-coupled electron transfer (PCET) process was much 

lower in DHCs compared with the Ir SACs. Similarly, DHCs of Ir was synthesized on 
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WO3 photoanode, but with different bonding configuration compared with the one on α-

Fe2O3 surfaces.108 It was found that only one Ir atom was anchored on the WO3 surface 

with second Ir atom on top of the first Ir (end on bonding), while two Ir atoms were 

anchored on the α-Fe2O3 surfaces. The difference comes from the density and distance of 

binding sites on different surfaces. In addition, the WO3 photoanode coated with DHCs 

of Ir showed higher product selectivity for O2 instead of peroxide species compared with 

bare WO3 and the one coated with SACs of Ir, which was explained as more favorable 

water oxidation pathways having a second Ir site.  

In addition to OER catalysts, synthesis of semi-transparent HER catalysts have 

also been explored. For instance, Roger et al. reported a hydrothermal synthesis method 

to deposit Co2Mo9S26 thin films on FTO-coated glass from aqueous solution of cobalt 

sulfate, ammonia heptamolybdate and thiourea at 180 °C for 72 hours.136 With a 

thickness of 300 nm, such a thin film showed a translucent nature, but it still delivered 

current densities of 10 mA/cm2 at 260 mV overpotential in 0.5 M H2SO4. Furthermore, 

Ding et al. deposited amorphous MoSxCly catalysts on n+pp+-Si micropyramid 

photocathodes through a low temperature CVD method.137 With a thickness between 40 

and 60 nm, the MoSxCly catalysts showed little light absorption in the 500 to 1200 nm 

wavelength region where Si absorbs strongly. As a result, the integrated photocathode 

showed Von of 0.41 V and Jph of 43.0 mA/cm2 at 0 V in 0.5 M H2SO4. 
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1.8 SUMMARY 

Storing solar energy to overcome the intermittent nature of this abundant resource is of 

paramount importance to a future society that is primarily powered by renewable sources.  

PEC water splitting provides a promising route to solving this problem, but the solar 

hydrogen production technology, using PEC or other methods, is still far from being 

ready for commercialization. The critical issue lies in the development of photoelectrodes 

for harvesting solar energy and carrying out the desired chemical reactions efficiently and 

stably.  Among them, thin-film photoelectrodes are unique thanks to features such as 

serving as a good model platform for fundamental understanding of important processes 

and the rich knowledge on thin-film materials.  The strategies developed for thin-film 

materials with the purpose of overcoming challenges for efficient and inexpensive solar 

fuel synthesis are summarized. 

A variety of synthetic methods have been applied to produce thin-film 

components of photoelectrodes including semiconductors, protection layers and catalysts. 

Those approaches can be categorized into physical vapor depositions, chemical 

depositions and (photo)electrochemical depositions, with corresponding advantages and 

caveats for each of them. How to balance the cost and material qualities would be a 

critical criterion to consider in choosing the suitable synthesis methods. 

As the key component in thin-film photoelectrodes, the light absorbers have been 

explored using various semiconductors with different compositions, structures and 

morphologies. However, it is extremely difficult to find a single material that can meet all 

the needs.  Common issues that limit the performance of a given material include light 

absorption, bulk/surface recombination, mismatch of energetics, instabilities and other 
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issues such as fabrication cost. Representative strategies to address those issues on 

prototypical materials are summarized.  (1) To address the light absorption problems, two 

common strategies are usually applied, either to narrow down the band gaps by tuning the 

compositions, or to reduce the optical loss due to reflection. (2) To reduce the bulk 

recombination, nanostructuring is usually applied to overcome the short diffusion lengths, 

and doping is applied to decrease the minority carrier concentrations and improve the 

transport of the majority carriers. (3) The charge recombination on the surface can be 

addressed by depositing passivation layers or change the crystal structures at the surface. 

(4) To deal with the mismatch of energetics, buried junctions can be constructed or the 

band edge positions can be tuned, resulting larger photovoltage extractions. (5) The 

instability issue need to be considered from its origins, including the accumulation of by-

products, the deactivation due to loss of photovoltages and corrosions. Different 

protection strategies corresponding to the origin of instabilities need to be applied. 

Among them, the deposition thin-film protection layers is the most widely used one, 

divided into physical barrier protection layers and kinetic protection layers. 

Thin-film catalysts have been widely used to improve the performance of 

photoelectrodes. For better design and development of catalysts, a better understanding 

on their roles is critical but still missing.  From a fundamental perspective, the catalysts 

should help to enhance the performance by either reducing the kinetic overpotentials or 

tuning the surface energetics at the semiconductor/electrolyte interfaces or both.  A 

number of techniques have been developed that can be used to discern the various roles, 

including transient absorption spectroscopy (TAS), photoelectrochemical impedance 

spectroscopy (PEIS), intensity modulated photocurrent spectroscopy (IMPS), dual-
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working-electrode (DWE) technique and potential-sensing electrochemical atomic force 

microscopy (PS-EC-AFM).  In addition, to deal with the effect of catalysts on light 

absorption, two common strategies have been applied: (1) decoupling reaction sites and 

light absorption sites; (2) synthesis of transparent catalysts. 

It is envisioned that further development of research on solar fuel synthesis will 

continue to demand and benefit from detailed understanding of the photoelectrode 

materials.  New device engineering on using PEC for practical solar fuel synthesis will 

likely be needed, as well.  Both aspects will require studies on model material systems 

that are thin-films in form factors.  Such efforts will progress hand in hand with efforts 

aimed at understanding the catalysis, as well as new concepts of creative light utilization.  

Together, these efforts will see a convergence, where practical solutions to the grand 

challenge of artificial photosynthesis become possible. 
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CHAPTER 2 WHAT LIMITS THE PERFORMANCE OF TANTALUM NITRIDE FOR 

SOLAR WATER SPLITTING? 

2.1 TANTALUM NITRIDE PHOTOANODE AS A PROTOTYPICAL 

PLATFORM FOR WATER OXIDATION 

Solar water splitting has received significant attention as a promising route to direct solar 

energy harvesting and storage.1  A key challenge that prevents its development into a 

practical technology is the availability of efficient and inexpensive photoactive 

materials.2  Based on the considerations of light absorption, charge separation, charge 

transfer, and stability, the issues that limit the performance of photoactive materials may 

be categorized into five groups (Figure 2.1), and the strategies to tackle those problems 

have been summarized in Chapter 1.  First, narrow light absorption within the solar 

spectrum makes it difficult to achieve high photocurrents on a number of otherwise 

highly promising materials. One of the best examples in this category is TiO2, which 

exhibits desired properties in almost every aspect for solar water splitting other than 

broad light absorption (TiO2 only absorbs in the UV region).3   Second, shallow space 

charge region is a critical issue faced by materials such as pyrite (FeS2).  Third, strong 

bulk recombination is perhaps the most investigated issue within the field of solar-to-

chemical energy conversion.  It is a common challenge shared by a large number of 
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materials, especially metal oxides (e.g., Fe2O3).4-6 Fourth, poor stability due to 

photocorrosion is a common issue faced by many semiconductors that are efficient at 

converting light to electricity, such as GaAs and GaP.7, 8   Fifth, poor stability due to non-

corrosion surface chemical reactions is yet another mechanism that contributes to the 

degradation of photoelectrodes.  While the behavior (i.e., rapid decay of water splitting 

performance) appears to be similar to photocorrosion, the non-corrosion nature makes the 

issue unique.  Such a nature provides opportunities to tackle the problem differently from 

brute force passivation used to stabilize photoelectrodes such as GaP.9  Most importantly, 

the issue due to non-corrosion surface chemical reactions has received little attention 

previously and is a missing link in the understanding of photoactive materials for solar-

to-chemical energy conversion research.  To make up for the deficiency, here we present 

a systematic study focusing on the last issue. 

 

Figure 2.1 Schematics of the main issues that limit the performance of photoactive materials for solar water splitting. 

The representative materials corresponding to each issue are shown in the center. 
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The prototypical material platform we chose for the present study is Ta3N5.  It 

features a direct bandgap of 2.1 eV and promises high photocurrent densities, which has 

been recently realized experimentally by Li et al.10-12   A record photocurrent current 

density of 12.1 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE; unless noted, 

all voltages in Chapter 2 are vs. RHE) was reported.12  This impressive progress 

notwithstanding, Ta3N5 still faces two critical issues, namely low photovoltage and poor 

stability.  The low photovoltage is manifested as the late turn-on potentials (Von; the 

lowest potential at which non-zero photocurrent is measured), typically >0.6 V.11-16  

Given that the conduction band minimum (ECB) of Ta3N5 has been predicted by density 

functional theory (DFT) calculations to be more negative than water reduction potential, 

the reported Von’s are unreasonably high.17, 18  Significant efforts have been attracted to 

address the issue.  For instance, Domen et al. recently improved the Von to 0.55 V through 

a combination of doping and surface treatment.19  Nevertheless, the true reasons behind 

the poor performance in terms of photovoltages remain poorly understood.  Similarly, 

little is known about the degradation mechanism.  For instance, without passivation, the 

photocurrent of Ta3N5 would decrease >50% within the first few minutes of water 

splitting reactions.11, 20  It has not been discussed previously in detail how the degradation 

is related to the photo-oxidation of Ta3N5.11, 20-22  Here we show that these two critical 

issues are intimately connected. Most strikingly, through systematic 

photoelectrochemical (PEC) and X-ray spectroscopic studies, we discovered that photo-

oxidation of Ta3N5 is self-limiting and not the direct origin of the performance 

degradation.  Instead, surface Fermi level pinning due to the thin oxidation formation 
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plays a key role in defining the photovoltage and stability.  A quantitative correlation 

between the extent of surface oxidation and the degree of Fermi level pinning was 

established. The new insight permitted us to develop a strategy to improve the 

performance of Ta3N5 using ultra-thin MgO grown by ALD, coupled with nickel-iron 

oxyhydroxide (NiFeOOH) oxygen evolution reaction catalysts. 

2.2 MATERIALS AND METHODS 

2.2.1 Material synthesis 

The Ta3N5 nanotubes were synthesized through the anodization of Ta foil to form 

tantalum oxide nanotubes followed by a post annealing in NH3 to form tantalum nitride 

based on a modified procedure reported previously.23 For the anodization procedure, 

tantalum foil (0.127 mm thick, Alfa Aesar) was firstly cut into 1cm x 4cm pieces. Then 

one side of the Ta foil was roughened using sandpaper for about 10 min. After the 

roughening, the Ta foil was cleaned by ultrasonication in acetone, methanol, isopropanol 

as well as deionized (DI) water and dried by flowing air. The electrolyte for anodization 

was made by mixing 38 mL sulfuric acid (95-98%, Sigma-Aldrich), 0.4 mL hydrofluoric 

acid (48%, Sigma-Aldrich) and 1.6 mL DI water with vigorous stirring during 

preparation. The Ta foil was anodized with a Pt gauze as the counter electrode at 60 V 

DC bias for 10 min without stirring. After thoroughly washing with ethanol and DI water, 

the as-prepared tantalum oxide nanotubes were naturally dried in air. The conversion of 

oxide to nitride was performed in a quartz tube furnace (Lindberg/Blue M). The 
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temperature was raised from room temperature to 1000 oC at the rate of 10 °C/min and 

held at 1000 °C for 2 hours. After that, the furnace was naturally cooled down to room 

temperature. During the whole process, 75 sccm anhydrous NH3 flowed through the 

quartz tube and the pressure in the tube remained as 300 torr. The Ta3N5 sample was 

scratched on the edge to expose the underneath conductive Ta. Tinned Cu wire was 

secured to the exposed Ta substrate by Ag epoxy (M.G. Chemicals Ltd.). Non-conductive 

hysol epoxy (Loctite 615) was used to seal the sample except for the exposed area for 

testing. Typical electrodes were ~0.05 cm2 in area. 

MgO was deposited on Ta3N5 nanotube using the Cambridge nanotech (Savannah 

100) ALD system based on previous reports.24, 25 The Mg precursor was 

bis(ethylcyclopentadienyl)magnesium (Mg(CpEt)2, min. 98%, Strem Chemicals) and DI 

water was used as oxygen precursor. During growth, the Mg precursor was heated to 90 

oC and the growth temperature was 200 oC. During each growth cycle, the pulse time for 

Mg(CpEt)2 and H2O is 0.05s and 0.015s, respectively. The total growth cycles were 

varied from 5 to 25 cycles. After the growth, the MgO/Ta3N5 sample was irradiated with 

UV light (UVO cleaner 42) for 3 hours to remove the organic residue. Then the sample 

was heated in the furnace at 1000 oC for 1 hour under 50 sccm anhydrous NH3 flow. 

The Co(OH)x was deposited using a soaking method. The Co(OH)x precursor 

solutions was made by mixing 0.1M cobalt(II) nitrate hexahydrate (Co(NO3)2·6H2O, 

ACS reagent, 98%, Sigma-Aldrich) and 0.1M NaOH solution in the volume ratio of 1:1. 

Then the Ta3N5 and MgO/Ta3N5 photoelectrodes were immersed in the precursor solution 

for 1hr. After that, the electrodes were rinsed with DI water and dried naturally in the air. 
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NiFeOOH and CoFeOOH catalyst was deposited using cathodic 

electrodeposition. For NiFeOOH deposition a 0.09 M solution of nickel(II) nitrate 

hexahydrate (Ni(NO3)2·6H2O, 98%, Alfa Aesar) was purged with N2 for 20 min. Then 

0.01 M of iron(II) chloride (FeCl2, 98%, Sigma-Aldrich) was added. The deposition was 

carried out galvonostatically at -0.1 mA/cm2 for 10 min while stirring. The electrodes 

were then washed thoroughly with DI water. For the CoFeOOH deposition a 0.06 M of 

Co(NO3)2·6H2O and 0.04 M FeCl2 solution was used and the deposition rate of -4 

mA/cm2 was used for 1 minute. These procedures follow a previously reported method 

by the Boettcher group.26, 27 

2.2.2 PEC measurement 

PEC measurement was carried out using a potentiostat (Modulab® XM, coupled with the 

Modulab® XM ECS software) in a three-electrode configuration. The light source was an 

AM 1.5 solar simulator (100 mW/cm2, Solarlight Model 16S-300-M Air Mass Solar 

Simulator). There were three kinds of testing electrolyte, including 1M NaOH (pH 13.6), 

1M NaOH with 0.1M H2O2 (pH 13.6), 0.1M phosphate solution (mixing of 0.1M 

K2HPO4 and 0.1M K3PO4) with 0.1M K4Fe(CN)6 and 0.1mM K3Fe(CN)6 (pH 10). The 

Ta3N5 photoanode served as the working electrode, with an Ag/AgCl electrode (for pH 

10 testing electrolyte) or an Hg/HgO electrode (for pH 13.6 testing electrolyte) as the 

reference electrode, and a Pt wire as the counter electrode. The potential was corrected to 

RHE scale according to the Nernst equation: 

 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐸𝐸𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.059 × 𝑝𝑝𝑆𝑆 + 0.197 (2.1) 

 𝐸𝐸𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐸𝐸𝑅𝑅𝐴𝐴/𝑅𝑅𝐴𝐴𝐻𝐻 + 0.059 × 𝑝𝑝𝑆𝑆 + 0.098 (2.2) 
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In a typical linear sweep voltammetry (LSV) measurement, the potential was 

swept from negative to positive at a rate of 20 mV/s with stirring. The turn-on potential is 

defined as the potential where the logarithm of absolute photocurrent reaches the lowest 

value in the J-V curves. In a typical open circuit potential (OCP) measurement in aqueous 

solution, the OCP values were recorded after a minimum of 15 min of stabilization under 

open-circuit conditions with vigorous stirring. The photoelectrochemical impedance 

spectroscopy (PEIS) was measured in 0.1M phosphate solution (mixing of 0.1M K2HPO4 

and 0.1M K3PO4) with 0.1M K4Fe(CN)6 and 0.1mM K3Fe(CN)6 (pH 10) using the same 

three-electrode configuration and illumination intensity as mentioned above. The PEIS 

data were obtained by a 10 mV perturbation between 1 MHz to 1 Hz at 1.9 V. 

For the PEC measurement in non-aqueous electrolyte, acetonitrile (CH3CN, 

anhydrous, 99.8%, Sigma-Aldrich) used in the experiment was dried through atmospheric 

vacuum distillation and stored over activated 3 Å sieves. All the solution preparation and 

measurement was done in a N2-filled glovebox. To prepare the solution, 

tetrabutylammonium hexafluorophosphate (TBAPF6, 98%, Sigma-Aldrich) was added to 

the dry CH3CN to make 0.1 M TBAPF6/CH3CN supporting electrolyte. The reduced form 

of the redox couples, including lithium sulfide (Li2S, 99.9%, Alfa Aesar), potassium 

iodide (KI, 99+%, ACROS Organics), 1,1’-dimethylferrocene (Me2Fc, 95%, Sigma-

Aldrich), ferrocence (Fc, 98%, Sigma-Aldrich), (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl 

(TEMPO, 98%, Sigma-Aldrich) and lithium bromide (LiBr, ReagentPlus, 99%, Sigma-

Aldrich) with the concentration of 0.1 M was dissolved in the supporting electrolyte, 

respectively. The measurement was carried out using a potentiostat (CH Instrument, 

CHI6008C) in a three-electrode configuration similar as the aqueous solution case, but 
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the reference electrode was changed to Ag+/Ag reference electrode (CH Instrument, CHI 

112, filled with 10 mM AgNO3 in 0.1 M TBAPF6/CH3CN). The reference electrode was 

calibrated using Fc+/0 redox couple and referred to the normal hydrogen electrode (NHE) 

based on the redox potential of Fc+/0 (0.623 V vs NHE).28 For each redox couple, the 

redox potential was determined by cyclic voltammetry of the Pt wire electrode using the 

same Ag+/Ag reference electrode. The light source was a 150 W Xenon lamp (model 

71228, Newport, CA, USA) equipped with an AM 1.5G filter and the illumination 

intensity was calibrated to be 100 mW/cm2 using a Si photodiode (UV 005, OSI, 

Optoelectronic, CA, USA). In a typical light OCP measurement, the OCP value was 

recorded after at least 15 min stabilization with continuous stirring. Then the OCP value 

was referred to the NHE. 

2.2.3 Material characterization 

Regular X-ray photoelectron spectroscopy (XPS) measurements were performed using a 

PHI 5400 XPS system equipped with an Al x-ray source (incident photon energy 1486.7 

eV). The aperture size was set to 1.1 mm in diameter. The binding energy of the obtained 

XPS spectra was calibrated with respect to the C1s peak of adventitious carbon at 284.4 

eV. XPS depth profiles and work function measurements using gas phase Ar were 

measured at the ambient-pressure XPS endstation at Beamline 9.3.2 in the Advanced 

Light Source, Lawrence Berkeley National Laboratory. To avoid cross-contamination 

from previous experiments, the XPS chamber was freshly backed before the 

measurements. With different incident photon energies, the binding energy of each 

element was calibrated with respect to C1s peak of the adventitious carbon, except the 
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case of lowest photon energy 325 eV. In this case, binding energy of Ta4f was simply 

aligned to the spectra collected under 560 eV photons. All the XPS spectra were 

quantitatively analyzed by deconvoluting Voigt-type line shapes, preceded by subtracting 

Shirley-type background or linear background (only for N1s/Ta4p3 regions). X-ray 

absorption spectroscopy (XAS) measurements were carried out at the wet-RIXS 

endstation at Beamline 8.0.1 and the ISAAC endstation at Beamline 6.3.1.2, both at the 

Advanced Light Source, Lawrence Berkeley National Laboratory. Fluorescence signal 

was collected using a Channeltron device, whereas total electron yield was measured as 

the drain current from the sample to the ground upon illumination, using a current 

amplifier. The energy scales of O1s and N1s XAS spectra were calibrated using a TiO2 

and a BN standard sample, respectively. All the XAS spectra were normalized by setting 

the pre-edge intensity to zero and the intensities well above the edge to unity, preceded 

by subtracting a linear background based on the slope of the pre-edge regions. 

The scanning electron microscope (SEM, JSM6340F) was used to obtain the 

perspective and front view images. The fresh and tested Ta3N5 samples were imaged by 

the transmission electron microscope (TEM, JEOL 2010F) operated at an accelerating 

voltage of 200 kV. The nanotube samples were first scratched from Ta foils and 

dispersed in isopropanol by ultrasonication. Then the dispersion was dropcasted onto Cu 

grid for TEM measurement.  X-ray diffraction was performed on Bruker D2 PHASER 

with Cu Kα radiation. Raman spectra were acquired using a Micro-Raman system 

(XploRA, Horiba) with a 532 nm laser excitation. The Kubelka-Munk function (𝐹𝐹(𝑅𝑅∞)) 

was calculated based on the reflectance (𝑅𝑅∞) of Ta3N5 recorded by an integrating sphere 

from SphereOptics and a spectrometer (Ocean Optics USB 4000). Since 𝐹𝐹(𝑅𝑅∞)  is 
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proportional to the light absorption coefficient, it can be substituted into the Tauc plot to 

determine the band gap of Ta3N5.29 The band gap was determined by finding the intercept 

of the straight line in the low energy region of Tauc plot ([𝐹𝐹(𝑅𝑅∞)ℎ𝜈𝜈]1/𝑖𝑖 vs. ℎ𝜈𝜈, when 

n=1/2, the measured band gap is the direct band gap). 

 𝐹𝐹(𝑅𝑅∞) = (1−𝑅𝑅∞)2

2𝑅𝑅∞
 (2.3) 

 (ℎ𝜈𝜈𝐹𝐹(𝑅𝑅∞))1/𝑖𝑖 = 𝐴𝐴(ℎ𝜈𝜈 − 𝐸𝐸𝐴𝐴) (2.4) 

The ℎ𝜈𝜈 is the incident photon energy. The 𝐸𝐸𝐴𝐴  is the optical band gap. 𝐴𝐴 is the 

constant. 

2.3 RESULTS AND DISCUSSIONS 

2.3.1 Material characterization and PEC performance 

The crystal structure of the Ta3N5 NTs was confirmed by X-ray diffraction patterns 

(XRD, Figure 2.2a).  The optical properties were characterized by ultraviolet-visible 

(UV-Vis) absorption spectra (Figure 2.2c), indicating the band gap of Ta3N5 is 2.08 eV.  

The morphology and microstructures were studied using scanning electron microscopy 

(SEM, Figure 2.2b) and transmission electron microscopy (TEM, Figure 2.2d-e), 

showing the nanotube morphologies with porous structures after NH3 annealing.  The 

base performance of the resulting materials for PEC water oxidation was plotted in 

Figure 2.3a, where two representative samples (with and without oxygen evolution 

reaction catalyst) were compared.  With the addition of electrodeposited NiFeOOH 
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catalyst, the photocurrent density of Ta3N5 at 1.23 V was 6.3 mA/cm2, and the Von was 

0.64 V.  These performance metrics are comparable to the base performance of most 

existing reports on Ta3N5.10, 11, 15, 16 

 

Figure 2.2 (a) XRD patterns of Ta foil, tantalum oxide on Ta foil after anodization and Ta3N5 on Ta foil after 

nitridization. The reference pattern of Ta3N5 (PDF No. 65-1247) was also listed as comparison. (b) The side-view SEM 

image of Ta3N5 NTs. (c) The Tauc plot of the as-prepared Ta3N5 sample. TEM images of (d) TaOx nanotubes after the 

anodization and (e) Ta3N5 nanotubes after nitridation. 

For bare Ta3N5, its PEC performance in 1 M NaOH is unstable, showing 

photocurrent decay from 3 mA/cm2 to 0.5 mA/cm2 within 1 min. A photocurrent of < 

0.03 mA/cm2 was measured after 3 hr.  The stability issue is also consistent with other 

reports on bare Ta3N5.11  Similar performance degradation has been frequently observed 

on non-oxide photoactive materials such as GaP, GaAs and CdSe (or CdS), where 

photocorrosion was identified as the reason.7, 8, 30  High-resolution TEM was carried out 

to compare Ta3N5 with different history of water oxidation (as prepared, 1 cycle of CV, 

and 3 hr photoelectrolysis of H2O). As shown in Figure 2.3b-d, while an amorphous layer 
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appeared after the initial CV scan, it only grew from ca. 0.5 nm to ca. 1 nm after 3 hr of 

photoelectrolysis. When the photoelectrolysis time was extended to 6 hr and 13 hr, the 

thickness of surface amorphous layer remained unchanged (ca. 3 nm), supporting that 

surface oxidation is self-limiting. The change of other properties including morphologies 

and crystal structures of Ta3N5 remained undistinguishable before and after performance 

degradation, supporting that the change of the bulk properties is not a reason for the 

performance decay.  Next the changes of surface electronic properties were examined to 

understand the performance decay. 

 

Figure 2.3 Base Performance and TEM Characterization of Ta3N5 (a) The current-voltage relationship of Ta3N5 in 1 M 

NaOH (pH 13.6). Illumination condition =100 mW/cm2, AM 1.5; scan rate = 20 mV/s. (b-d) TEM image of the Ta3N5 

surface as prepared (b), after one cycle of CV scan (c), and after 3 hr of photoelectrolysis at 1.23 V (d). Scale bars 

represent 1 nm. 

2.3.2 X-ray core-level spectroscopy studies 

X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) were 

carried out to further study the surfaces.  The total electron yield (TEY) of O 1s and N 1s 

X-ray absorption spectra were shown in Figure 2.4a&b, respectively.  As shown in Figure 

2.4a, there is indeed an increase of O intensity on the surface as Ta3N5 performs PEC 
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water oxidation.  The trend supports that the amorphous layer as shown in Figure 2.3c&d 

contains oxygen.  The evolution of a shoulder peak at 401 eV for N 1s TEY spectra 

(Figure 2.4b) may be assigned to the feature corresponding to trapped molecular N2, a 

product from the surface oxidation of N3- (Ref. 31). 

 

Figure 2.4 X-ray spectra of Ta3N5 (a and b) Total electron yield of O 1s and N 1s X-ray absorption spectra. The dotted 

vertical line in (b) serves as a visual guide. (c–e) Binding energies of O 1s (c), N 1s (d), and Ta 4f (e) electrons as 

measured by XPS. Samples compared in this figure include as-prepared Ta3N5 (fresh), Ta3N5 after one cycle of CV (1 

CV), and Ta3N5 after 3 hr of photoelectrolysis (3 hr). The dotted vertical line in (e) serves as a visual guide. 

In Figure 2.4c-d, the XPS spectra of O 1s, N 1s and Ta 4f electrons for samples of 

different history were compared. In Figure 2.4c, the O 1s peak at 532.5 eV corresponds to 

the O-contamination species (e.g., surface chemisorbed H2O/hydroxyl group, NaOH 

residue), while the one at 530.5 eV belongs to TaOx species.  A clear trend of O signal 
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intensity increase, N signal intensity decrease and the growth of TaOx upon water 

oxidation is obvious from this set of data, which is consistent with the conclusion that 

surface N is displaced by O as a function of photoelectrolysis.  Close examinations of the 

Ta 4f spectra revealed a shift of the binding energies, from 23.6 eV to 23.1 eV.  Because 

XPS measures the energy difference between the Fermi level (EF) and the core electrons, 

the shift as shown in Figure 2.4e strongly suggests a shift of the Ta3N5 Fermi level 

toward the positive direction by 0.5 eV. The shift will be further studied in section 2.3.3 

by ambient pressure XPS (APXPS), which is more surface sensitive.  It is important to 

note here that in the XPS depth-profile (using different incident photon energies, Figure 

2.5), a sharp increase of oxide component in the Ta 4f XPS spectra with the decreasing 

incident photon energies (thus shallower probing depth) was observed.  Comparison of 

this set of data for samples after 1 cycle of CV and 3 hr photoelectrolysis strongly 

supported the self-limiting feature of the surface oxidation.  This feature distinguishes 

Ta3N5 from other non-oxide photoanode materials such as GaP, GaAs and CdSe. 
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Figure 2.5 (a) The XPS depth profile of fresh Ta3N5, Ta3N5 after one light CV and 3 hours photoelectrolysis at 1.23 

VRHE in 1M NaOH. The photo energy varied from 325 eV to 810 eV. (b) The peak intensity ratio of oxide vs. nitride 

based on the XPS spectrum in (a). 

2.3.3 Energetics evolution due to surface reaction 

Previous results have pointed out the surface oxide formation for Ta3N5 during PEC 

water oxidation process. In this section, how this process affected the surface energetics 

(e.g., Fermi level) was studied, which led to the explanation for the limited photovoltage 

of Ta3N5 during water oxidation. 
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2.3.3.1 PEC characterization with hole scavengers 

A conclusion we can draw from the aforementioned experiments is that O is a critical 

species connected to the performance degradation of Ta3N5 because its appearance 

appears to be associated with the performance degradation.  To test this understanding, 

PEC characterization was conducted with hole scavengers, which are expected to be 

effective in extracting holes from the photoelectrode under PEC conditions, but do not 

involve O as a necessary intermediate or product.  For this purpose, Fe(CN)6
4- was used, 

which possesses the redox potential of 1.02 V in the pH 10 buffer solution.  Within the 

first 60 s of chronoamperometry, a negligible decay of the photocurrent was observed 

when Fe(CN)6
4- was present (Figure 2.6a).  In stark contrast, the photocurrent decreased 

>50% within the first 5 s in 1 M NaOH. TEM studies of the Ta3N5 surfaces with and 

without Fe(CN)6
4- also revealed a striking difference: Little change was observed when 

Fe(CN)6
4- was present.  When H2O2 was used as a hole scavenger, although effective in 

receiving holes, the oxidation of H2O2 does involve O species.  An intermediate stability, 

better than without hole scavengers but worse than with Fe(CN)6
4-, was observed.   

Taken as a whole, it is concluded that the performance degradation of Ta3N5 is 

connected to surface oxidation.  The displacement of N by O yields surface states that pin 

the Fermi level, which compromises the charge separation capability (i.e., the decreased 

band bending).   Although the surface oxidation process is self-limiting, the electronic 

states it creates are sufficient to suppress the photoactivity of Ta3N5.  Further comparison 

of the PEC characteristics of Ta3N5 in H2O, with Fe(CN)6
4- and with H2O2, respectively, 

shows that in addition to better stability, better Von’s (0.35 V) were also measured in the 

presence of hole scavengers (Figure 2.6b).  The data suggest that both the performance 
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degradation and the late Von are connected to surface oxidation.  While the impact of 

surface Fermi level pinning on the PEC performance of photoelectrode has been 

frequently discussed in the literature,32-36 here the clear link between surface oxidation 

and surface Fermi level pinning was explicitly demonstrated.   It points to a direction 

where complete blocking of O-containing species from contacting Ta3N5 is necessary to 

maintain the performance of Ta3N5. 

 

Figure 2.6 PEC performance in the presence of hole scavengers. (a) The stability of bare Ta3N5 was much better when 

H2O2 (0.1 M; 1 M NaOH [pH 13]) was added and the best when K4Fe(CN)6 (0.1 M; potassium phosphate buffer [pH 

10] with 0.1 mM K3Fe(CN)6) was present. Applied potential (Vapp) = 1.23 V. (B) The initial current-voltage 

relationship of Ta3N5 in the solutions as identified above. Scan rate = 20 mV/s. 

2.3.3.2 Flatband potential shift due to H2O 

In this section, the answer to an important question was explored. That is, what is the 

origin of the significant difference between the predicted flat-band potential (Vfb) and the 

measured Von in H2O?  DFT calculations showed that the ECB and Vfb should be more 

negative than 0 V vs. NHE.17, 18  The prediction was consistent with the measurements 

carried out by Domen et al. using UPS (ultraviolet photoelectron spectroscopy) and Mott-

Schottky techniques.37  However, the reported Von’s are typically much more positive 
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than the predicted/measured Vfb, by >0.6 V.10-12, 14-16  To help understand the difference, 

open-circuit potential (OCP) measurements were carried out under illumination in both 

aqueous and non-aqueous solutions.  The assumption is that illumination would flatten 

the band, and the probed OCPs report on the pseudo-Vfb.  Under similar lighting 

conditions, the comparison of these pseudo-Vfb provides a reasonable measure of how the 

true Vfb changes for different samples.38  As shown in Figure 2.7, the OCPs of Ta3N5 in 

H2O (ca. 0.44 V vs. RHE) and that in acetonitrile (ca. -0.23 V vs. NHE) are different by 

ca. 0.67 V.  The difference (>0.6 V) was attributed as the band edge shift due to the 

chemisorption of H2O on the surface of Ta3N5.  It explains why the Von as measured in 

H2O is always so positive.  Furthermore, the result suggests that in order to actualize the 

full potentials of Ta3N5 (both high photocurrent and high photovoltage), it would require 

fully isolating its surface from H2O to avoid the polarization effect of H2O that induces 

severe positive shift of the band edge positions. 

 

Figure 2.7 (a) Light OCPs of three groups of Ta3N5 electrodes as measured in phosphate buffer with 0.1 M K4Fe(CN)6 

and 0.1 mM K3Fe(CN)6. The samples in (I) were tested in 1 M NaOH for one cycle of CV and 3 hr of 

photoelectrolysis. Similarly, the samples in (II) were tested in 1 M NaOH with 0.1 M H2O2. The samples in (III) were 

tested in phosphate buffer (pH 10) with 0.1 M K4Fe(CN)6 and 0.1 mM K3Fe(CN)6. Vapp for all tests = 1.23 V. (b) The 

light OCPs (orange square) of Ta3N5 in the solution of 0.1 M TBAPF6/CH3CN with 0.1M different redox couples. The 

redox potential of each redox pair is labelled as green square. The average value of light OCP is -0.23 V vs. NHE. 
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2.3.3.3 Surface Fermi level pinning due to oxidation 

The aforementioned >0.6 V shift is global (both the band edge positions and the Fermi 

level) upon contact with H2O.  As Ta3N5 is subjected to H2O oxidation, the surface is 

chemically oxidized, and N is displaced by O.  This process is expected to introduce 

additional states within the bandgap and lead to the shift of the Fermi level relative to the 

band edge positions, a phenomenon known as Fermi level pinning.32-36  Such a shift has 

already been shown by XPS studies of Ta3N5 in Figure 2.4e.  To further study this shift, 

the work functions of Ta3N5 electrode with different history of PEC water oxidation was 

measured using ambient pressure XPS (APXPS).  The basic idea was to use the shift in 

the apparent binding energy of gas molecules near the sample surface as a probe to 

measure the work function.39  In the experiments, the measurements were carried out in a 

chamber where 100 mTorr of Ar was present.  By probing the changes of the apparent 

binding energies of Ar, a direct measure on how the surface Fermi level changes for 

different samples was obtained.  As shown in Figure 2.8, three different samples were 

compared, fresh Ta3N5, Ta3N5 after 1 cycle of CV, and Ta3N5 after 3 hr photoelectrolysis.  

The binding energies of Ar 2p electrons shifted a total of ca. -0.4 eV, corresponding to a 

shift of the Ta3N5 EF by +0.4 eV.  The shift is comparable to that observed in Figure 2.4e.  

It can be understood as the continued photoelectrolysis by Ta3N5 and, hence, surface 

oxidation of Ta3N5, leads to the Fermi level shift toward the EVB by 0.4-0.5 V. In 

addition, since the measurement of XPS/APXPS tells about the interface in vacuum or Ar 

where no condense phase of water exists, it confirms the Fermi level pinning happens on 

the Ta3N5/TaOxNy interface. 
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Figure 2.8 Ar 2p XPS spectra of 100 mTorr Ar gas phase at the near surface region of Ta3N5. The testing samples 

included fresh Ta3N5, Ta3N5 after one cycle of CV under illumination, and Ta3N5 after 3 hr of photoelectrolysis at 1.23 

V. The test electrolyte was 1 M NaOH, and the light intensity was 100 mW/cm2 (AM 1.5). The dotted vertical line 

serves as a visual guide. 

However, there is an important feature in this group of data as compared to that in Figure 

3E that is worth discussing.  That is, the shift as measured by XPS (Figure 2.4e) was 

gradual (0.2 eV for fresh sample to after 1 cycle of CV; and 0.3 eV after 3 hr 

photoelectrolysis), while that measured by APXPS was almost complete after 1 cycle of 

CV (0.4 eV).  The difference may be explained by the characteristic probing depth of 

XPS and APXPS under different incident photon energies.31  For Figure 2.4e, 

photoelectrons with kinetic energies around 1450 eV (Ta 4f electrons) were measured, 

featuring a typical escape depth of 2-2.5 nm.  For Figure 2.8, photoelectrons 

corresponding to Ar 2p orbitals were measured, reporting on the surface energies of 

Ta3N5 <1nm deep.  As such, the information as shown in Figure 2.8 is far more surface 

sensitive than that in Figure 2.4e.  This group of data strongly suggests that the Fermi 

level pinning due to surface oxidation starts on the very top surface of Ta3N5.  After 1 

cycle of CV, the effect is already fully measured by APXPS.  As the photoelectrolysis 

continues, the oxidation continues into the underlayers of the surface atoms, whose effect 
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becomes obvious over time as measured by XPS.  The understanding is supported by the 

compositional depth profile as shown in Figure 2.5. 

2.3.3.4 The evolution of tantalum nitride surface energetics 

The combination of OCP, XPS and APXPS measurements offered a complete picture of 

how the surface energetics evolve as a function of surface adsorption and/or oxidation.  

As shown in Figure 2.9, three key conclusions can be drawn to understand the evolution 

of the surface energetics. 

 

Figure 2.9 The evolution of Ta3N5 surface energetics. Stage I: fresh Ta3N5 free of H2O. Stage II: Ta3N5 with partial 

H2O adsorption due to exposure to ambient air. Stage III: Ta3N5 immersed in H2O. Stage IV: Ta3N5 with surface 

oxides. The horizontal lines correspond to the surface Fermi-level position of Ta3N5 in stages I–IV. 

(1) Truly fresh Ta3N5 (without H2O adsorption on the surface; stage I in Figure 

2.9) features a Vfb close to -0.2 V vs. NHE.  This is supported by the OCP measurements 

carried out in non-aqueous solutions.  It is also consistent with the UPS measurements 

reported by Domen et al.37  Once such a surface is exposed to liquid H2O, due to the 

strong surface adsorption and the solvent effect, a dramatic shift of the band edge 
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positions toward the positive direction by 0.6 V takes place (stage III in Figure 2.9).  The 

shift is measured by the difference between the OCP in non-aqueous and aqueous 

solutions (Figure 2.7).  Similar band edge shift due to the solvation effect is well known 

for non-oxide semiconductors when characterized in H2O.40  It is noted that such a global 

shift of the band edge positions (as well as the Fermi level) is detrimental to the 

application of H2O photo-oxidation as it reduces the measureable photovoltage.  It may 

be necessary to fully isolate Ta3N5 from H2O in order to fully realize the energy 

conversion capability of Ta3N5. 

(2) When Ta3N5 oxidizes H2O under illumination, its surface N atoms are 

displaced by O atoms, and this change leads to a relative change of the Fermi level to the 

band edge positions by 0.2 V toward the positive direction (stage IV in Figure 2.9).  The 

shift of the Fermi level is probed by the OCP measurements in H2O (Figure 2.7a).  The 

final position of the Fermi level defines the relatively high Von as measured on bare Ta3N5 

in most reports, ca. >0.6 V.  Collectively, ca. 0.8 V shift of the Fermi level can be 

observed from fresh, H2O-free Ta3N5 surface (stage I in Figure 2.9) to the oxidized, H2O-

adsorbed Ta3N5 surface (stage IV in Figure 2.9).  The understanding is consistent with a 

recent study on the surface of GaN due to reactions with H2O.41 

(3) The Fermi level shift as measured by XPS (and APXPS) reflects the 

difference between the final stage (IV in Figure 2.9) and an intermediate stage (II in 

Figure 2.9) where there is partial surface H2O adsorption due to exposure to ambient air.  

From the comparison between the shift as measured by APXPS (Figure 2.8) and that by 

XPS (Figure 2.4e), the initial shift (after 1 cycle of CV) may be non-permanent and is 

reversible, which is tested in the next section. 
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2.3.4 Recovery of the initial performance degradation by water oxidation catalysts 

Previous sections have shown that Ta3N5 surface can be oxidized in the presence of 

photogenerated holes.  Not only does the process compete with H2O oxidation, it also 

leads to severe surface Fermi level pinning that compromises the charge separation 

capabilities of Ta3N5.  As shown in Figure 2.10, the gray trace from a to c indicated a 

rapid performance degradation.  After 25 cycles of continued CV, little photocurrent was 

observed in Figure 2.10c (gray trace). Additional PEIS measurement showed that the 

charge transfer resistance across Ta3N5 and electrolyte interface increased from around 

500 Ω to over 20000 Ω after just 1 CV scan in 1 M NaOH, indicating that the surface 

oxidation introduced an extra charge transfer barrier on Ta3N5 surface. It has been shown 

that the addition of water oxidation catalyst, such as NiFeOOH, can promote forward 

hole transfer.42 Such an addition (the catalyst) is expected to reduce the competing 

reaction of surface oxidation of the photoelectrode itself as well as facilitate the hole 

transfer from Ta3N5 to water.  Indeed, immediately after the 1st CV, the addition of 

NiFeOOH led to a significant increase of the photocurrent (from 1.2 mA/cm2 to 3.2 

mA/cm2 at 1.23 V).  The effect also supports that the initial surface Fermi level pinning 

as measured by APXPS (Figure 2.8) does not fully suppress the performance of Ta3N5.  

As the photoelectrode was subjected to prolonged H2O oxidation reactions without the 

presence of a water oxidation catalyst, however, the effect due to surface Fermi level 

pinning as a result of Ta3N5 oxidation becomes more permanent, as evidenced by the 

continued reduction of the photocurrent even with the presence of NiFeOOH (Figure 

2.10b&c).  This group of experiments highlights the nature of Ta3N5 surface oxidation 

and that its negative impact on the PEC performance is gradual, consistent with our 
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discussions in the previous section.  To provide a baseline for comparison, the 

performance of fresh bare Ta3N5, with NiFeOOH, and with CoFeOOH (another water 

oxidation catalyst) is shown in Figure 2.10d. 

 

Figure 2.10 Recovery of the initial performance degradation by water-oxidation catalysts. (a–c) The current-voltage 

relationships for bare Ta3N5 with different cycles of water oxidation tests (a, 1st scan; b, 10th scan; c, 25th scan) and 

the performance with re-deposited NiFeOOH. (d) The J-V curve of freshly prepared Ta3N5 with NiFeOOH or 

CoFeOOH as the catalyst. 

2.3.5 Strategies for improving tantalum nitride 

It is seen from previous discussions that the isolation of Ta3N5 from H2O (and other 

reactive oxygen species) is critical to stabilizing its performance.  For instance, while the 

deposition of water oxidation catalyst such as NiFeOOH, CoFeOOH, and Co(OH)x all 
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resulted in higher photocurrents, their effect in improving the stability was limited.  

Moreover, they showed little effect in improving the Von.  This is likely due to the 

inclusion of water during the deposition of these catalysts as well as the H2O permeable 

nature of these catalysts.43-45 Therefore, the possibility of introducing a compact 

interlayer of MgO by atomic layer deposition (ALD) was explored.  The idea was to use 

the MgO layer as a barrier to separate Ta3N5 from contacting H2O and reactive O species.  

MgO was chosen because it was previously shown as an effective interlayer to improve 

the attachment of catalysts on Ta3N5 particles.46  As shown in Figure 2.11a, the ALD 

growth of MgO on Ta3N5 was successful. Even after soaked in NaOH solution for 1 hour, 

such a protection layer still remained on the surface of Ta3N5 based on the high-

resolution TEM image (Figure 2.11b).  Since MgO itself is not a water oxidation catalyst, 

we deposited Co(OH)x on top.  Here Co(OH)x was chosen because its deposition 

conditions are compatible with MgO, whereas the deposition of NiFeOOH and other 

catalysts would etch MgO due to the low pH required.  The effect of MgO in protecting 

Ta3N5 was clearly observed in Figure 2.11.  In addition to better stability, the addition of 

MgO also improved the fill factor, suggesting better charge collection, presumably due to 

reduction of surface recombination.  It is noted that great progress along the direction of 

stabilizing Ta3N5 has been made by the Li and the Domen groups separately.10-12, 19  

However, the true nature of the performance degradation has not been asked previously 

in detail (for instance, the difference between photocorrosion and self-limited oxidation 

was not compared).  In their cases, the deposition of a thick layer was necessary.  Li et al. 

ascribed the necessity to the need to store holes, which would minimize the oxidation of 

Ta3N5 itself.11, 12  The results reported here provide new insight into this critical issue.  
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They support that the isolation of Ta3N5 from H2O is critical to its stabilization.   While 

there is still much room for further improvement with the ALD-grown MgO idea (e.g., 

the Von still remains high), the initial results are promising, given the thinness of the layer 

(<3 nm).  Further research along this direction will likely significantly improve its 

performance in the future. 

 

Figure 2.11 (a) The TEM image of Ta3N5 with 15 cycles of MgO growth by ALD. (b) The TEM image of Ta3N5 with 

25 cycles of MgO which has been soaked in 0.1 M NaOH for 1 hour. The J-V curves (c) and the stability of Ta3N5 (d) 

with and without MgO as a protection layer and Co(OH)x as the catalyst in 1 M NaOH. For the stability test, the 

potential was fixed at 1.23 V. 
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2.4 SUMMARY 

In conclusion, the issues that limit the performance of Ta3N5 as a solar water oxidation 

electrode are the surface oxidation.  Although this process is self-limiting, and the oxide 

remains ca. 3 nm in thickness, the electronic states it generates are more than enough to 

fully pin the Fermi level, which leads to almost complete suppression of the 

photoactivity.  Using X-ray core-level spectroscopy characterization, the effect was 

quantitatively measured.  Together with photoelectrochemical and open circuit potential 

measurements, a complete picture on how the surface energetics evolved as a function of 

surface oxidation and adsorption of H2O was obtained.  Upon contact with liquid H2O, a 

global shift of both the band edge and the Fermi level by more than 0.6 V was observed.  

Further oxidation of the surface will result in another shift of the Fermi level relative to 

the band edge positions by 0.2 V.  Mere exposure to ambient air can cause the Fermi 

level shift by up to 0.5 V.  Together, the information sheds light on future strategies to 

improve the performance of Ta3N5.  It is suggested that complete isolation of Ta3N5 from 

not only H2O but also other reactive O species is necessary. 
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CHAPTER 3 PHOTO-INDUCED PERFORMANCE ENHANCEMENT OF TANTALUM 

NITRIDE FOR SOLAR WATER OXIDATION 

3.1 TANTALUM NITRIDE AS A PLATFORM FOR INTERFACIAL STUDY 

BETWEEN SEMICONDUCTORS AND CATALYSTS 

Photocatalysis by semiconducting materials represents an important class of chemical 

reactions.1, 2  Key to the functionality and performance of a photocatalyst is the interface 

between the semiconductor and the electrolyte.3-5  On the one hand, the interface is 

critical to the separation of photogenerated charges within the semiconductor.  On the 

other hand, the interface plays a vital role in transferring the separated charges for desired 

chemical reactions in the liquid electrolyte.  Challenges that limit the overall performance 

of a photocatalyst such as poor charge separation or low stability are often connected to 

issues at the interface.  For instance, previous studies on Fe2O3
6-10 have revealed that 

surface states at the semiconductor/liquid interface (SCLI) are a critical reason for the 

low photovoltages, the understanding of which has led to significantly improved 

performance of Fe2O3 for solar water oxidation.11, 12 Similarly, detailed analysis on Ta3N5 

has uncovered that rapid surface states formation due to displacement of N atoms by O is 

the real reason for the fast performance degradation (see Chapter 2).  These previous 

successes highlight the importance of studying the SCLI in details. However, most prior 
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studies fail to account for the dynamic nature of the interface, particularly for systems 

where co-catalysts are present.4, 13  Given that the application of co-catalyst has been 

increasingly recognized as critical for complex reactions such as water oxidation14 and 

CO2 reduction15, it is important to correct such a deficiency.  In this chapter, the study 

focused on the interactions between the co-catalyst (Co(OH)2) and the photoactive 

semiconductor (Ta3N5).  It is found that only under illumination conditions does a 

favorable interface form, leading to a continuous improvement of the performance of 

Ta3N5.  The effect is in stark contrast to bare Ta3N5, which would degrade rapidly under 

similar conditions.   

Ta3N5 is chosen as the prototypical material platform for the present study for two 

important reasons.  First, the physical properties of Ta3N5 render it an appealing material 

choice for solar water splitting applications, as described in Chapter 2. Second, poor 

stability is a critical issue that limits the prospect of Ta3N5 as a practical photoelectrode 

material for solar water splitting.  The large gap between the promises and the measured 

performance makes it significant to stabilize Ta3N5 under PEC water oxidation 

conditions.16-19  While encouraging results have been recently obtained in this front by 

the introduction of, for instance, hole storage layers20, 21 or GaN22, these efforts do not 

involve chemical reactions between Ta3N5 and the co-catalyst and/or the passivation 

layer.  The approach in this study therefore represents a new direction toward stabilizing 

Ta3N5.  The efforts are also inspired by recent observations that the performance of 

BiVO4 can be improved by a photocharging effect.23, 24  Nevertheless, the study on 

BiVO4 photocharging primarily focused on how the semiconductor changes in response 
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to light.  This study takes an important step forward by examining the interactions 

between the semiconductor and the co-catalyst. 

3.2 MATERIALS AND METHODS 

3.2.1 Material synthesis 

The synthesis of Ta3N5 NTs can be found in section 2.2.1. To deposit Co(OH)2 

nanosheets on Ta3N5, the Co(OH)(OCH3) powders was first synthesized based on a 

modified method.25 0.2910 g of cobalt nitrate hexahydrate (Co(NO3)2·6H2O, ACS 

reagent, 98%, Sigma-Aldrich) was dissolved in 15 mL of methanol (99.8% ACS reagent, 

Sigma-Aldrich). The solution was sealed in a Teflon autoclave and placed in 180 °C oven 

for 24 hours. The obtained precipitate was washed by ethanol and H2O and collected after 

centrifuging for 10 min at 3000 rpm. Pink powders were obtained after drying the 

precipitate in 80 °C oven for 10 hours.  Then certain amount (2-4 mg based on PEC 

performance) of Co(OH)(OCH3) powder was added to 10 mL of DI water and 

ultrasonicated for 30 min. The supernatant was added to Teflon autoclave with Ta3N5 

NTs faced up, which has been etched in a mixture of HF:HNO3:H2O (1:2:7 in v/v) for 30 

s. The container was placed in 120 °C oven for 1 hour. After that, the sample was washed 

mildly by DI water and dried in air. 

 As the control experiment, α-Co(OH)2 was synthesized based on a reported 

method26. 0.2922 g of potassium chloride (KCl, 99%, Alpha Aesar), 0.2379 g of cobalt 

chloride hexahydrate (CoCl2·6H2O, ACS reagent, 98%, Sigma-Aldrich) and 1.68 g of 
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hexamethylenetetramine (ACS reagent, 99%, Sigma-Aldrich) were dissolved in 100 mL 

9:1 mixture of DI water and ethanol. The solution was heated at 90 °C under stirring for 1 

hour. The product was washed by ethanol and H2O and collected by centrifuging at 3000 

rpm for 10 min. Green powder was obtained after drying the product in 80 °C oven for 2 

hours. The Co(OH)2 was deposited on the Ta3N5 following the same procedure as the 

Co(OH)2 nanosheet case. 

Co-Pi and NiFeOx were deposited on the prepared Ta3N5 NTs photoelectrodes 

(photoelectrode fabrication procedures see section 2.2.1). For Co-Pi, it was deposited 

onto Ta3N5 using photo-assisted electrodeposition reported previously.17 Before the 

deposition, the Ta3N5 photoelectrode was etched in a mixture of HF:HNO3:H2O (1:2:7 in 

v/v) for 30 s and rinsed by DI water. The deposition was conducted in a three-electrode 

cell containing Ta3N5 as the working electrode, Pt gauze as the counter electrode and 

Ag/AgCl reference electrode. The electrolyte contained 0.5 mM Co(NO3)2 in 0.1 M 

potassium phosphate buffer with pH 7. The deposition was conducted at 10 μA/cm2 

constant current under 100 mW/cm2 illumination for 10 min with stirring. After the 

deposition, the photoelectrode was rinsed by DI water. Ta3N5/Co(OH)2/Co-Pi was 

synthesized following the same procedures (no etching step) with different deposition 

time, but with Ta3N5/Co(OH)2 nanosheets as the starting material. For NiFeOx, it was 

deposited on Ta3N5 through a photochemical decomposition method.27 Iron (III) 2-

ethylhexanoate (50% w/w in mineral spirits, Strem Chemicals) and nickel (II) 2-

ethylhexanoate (78% w/w in 2-ethylhexanoic acid, Strem Chemicals) were mixed in 

hexane solvent to achieve a total concentration of 15% w/w metal complex solution. The 

solution was diluted by hexane by 10 times and about 10 μL/cm2 of the diluted solution 
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was dropcasted onto the exposed surface of Ta3N5 photoelectrode. Then the electrode 

was irradiated with UV light (UVO cleaner 42) for 5 min and placed in 100 °C oven for 

10 min. Ta3N5/Co(OH)2/NiFeOx was synthesized following the same method, but with 

Ta3N5/Co(OH)2 nanosheets as the starting material. 

Hematite and TiO2 photoanodes were synthesized as the control samples. The 

hematite was synthesized using a chemical bath deposition.11 FeOOH was grown on 

fluorine-doped tin oxide (FTO) substrates (~7 Ω/sq, Sigma-Aldrich) in a solution 

containing 0.15 M iron chloride (FeCl3, 97% Alfa Aesar) and 1 M sodium nitrate 

(NaNO3, 99% Alfa Aesar). After reacting in 100 °C oven for 1 hour, the sample was 

taken out and rinsed by DI water. Then it was annealed in 800 °C furnace for 5min in air. 

The whole process was repeated for another two times. The TiO2 was deposited on FTO 

substrates using a Cambridge nanotech (Savannah 100) atomic layer deposition (ALD) 

system.28 Titanium (IV) isopropoxide (99.999% trace metal basis, Sigma-Aldrich) was 

heated to 75 °C to serve as Ti precursors and DI H2O at room temperature served as O 

precursor. The growth temperature was 275 °C. The thickness of TiO2 was about 40 nm. 

The deposition procedures for Co(OH)2 nanosheets on hematite and TiO2 followed the 

same one mentioned above. 

3.2.2 EC measurement 

PEC measurement was carried out with a potentiostat (Modulab XM coupled with 

Modulab XM ECS software) in a three-electrode configuration. The light source was an 

AM 1.5 solar simulator (100 mW/cm2, Solarlight Model 16S-300-M Air Mass Solar 

Simulator). For water oxidation, the electrolyte was 1 M NaOH (pH 13.6) and the 
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reference electrode was Hg/HgO. For hole scavenger oxidation, the electrolyte was 0.1 M 

potassium phosphate with 0.1 M K4Fe(CN)6 (pH 10) and the reference electrode was 

Ag/AgCl. Particularly, the hole scavenger solution used in Figure 3.12 was 1 M NaOH 

with 0.1 M K4Fe(CN)6 and the reference electrode was Hg/HgO. In typical cyclic 

voltammetry test, the potential was swept between 0.4 V and 1.4 V at a scan rate of 20 

mV/s. In a typical light OCP measurement, the OCP value was recorded after a minimum 

of 20 min stabilization under open-circuit condition with vigorous stirring. 

 IMPS spectra were recorded with a potentiostat (Modulab XM coupled with a 

frequency response analyzer, a 405 nm LED and Modulab XM DSSC software) in the 

same three-electrode cell as the PEC test condition. The IMPS data were obtained at 

different applied potential between 0.43 V and 1.63 V, and at each potential 10 % light 

intensity modulation was varied between 10 kHz and 0.1 Hz. The light intensity at the 

electrode was about 134 mW/cm2. 

 PEIS spectra were measured with a potentiostat (Modulab XM coupled with 

Modulab XM ECS software) in the same three-electrode cell as the PEC test condition. 

The data were recorded at 1 V with 10 mV perturbation between 100 kHz and 0.05 Hz. 

The data was fitted to the equivalent circuit as shown in Figure 3.10 using the Z-view 

software. 

3.2.3 Material characterization 

The sample were imaged by a field-emission scanning electron microscopy (FE-SEM, 

JEOL 6340F) at 10 kV and a transmission electron microscopy (TEM, JEOL 2010F) at 

200 kV. The surface species and oxidation states were measured by X-ray photoelectron 
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spectroscopy (K-alpha+ XPS, Thermo Scientific, Al Kα=1486.7 eV). The X-ray 

diffraction was performed on a Rigaku D/max-III A diffractometer. 

 The O2 evolved during the PEC water oxidation was detected in-situ by a Clark-

type BOD oxygen electrode (Thermo Scientific 9708 DOP). The Ta3N5/Co(OH)2 

working electrode, Hg/HgO reference electrode, Pt counter electrode and oxygen sensor 

were tightly sealed in a three-neck flask with 130 mL 1 M NaOH by plastic rubbers and 

Para film. Vacuum grease was used to prevent leaking. Before the PEC test, Ar was 

purged into the electrolyte for at least 30 min to remove the dissolved O2 as well as the 

O2 in the headspace. After the needle to purge Ar was removed, the reading of oxygen 

sensor was stabilized for 10 min. Once the PEC test started, the O2 concentration was 

recorded on a pH meter connected with the oxygen sensor. 

3.3 RESULTS AND DISCUSSIONS 

3.3.1 Material characterization and PEC performance 

As shown in Figure 3.1a, Co(OH)2 was deposited on Ta3N5 NT using a hydrothermal 

method. The crystal structure of Co(OH)2 was confirmed by XRD, and its nanosheet 

morphology was confirmed using SEM (Figure 3.1b-e). In addition, the morphology 

remained the same even after PEC water oxidation test (Figure 3.1f-g). 
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Figure 3.1 (a) Schematics illustrating the surface oxidation of bare Ta3N5 and the formation of new interfaces between 

Ta3N5 and Co(OH)2 during solar water oxidation. The SEM images for side walls (b, d, f) and top (c, e, g) of Ta3N5 

before (b, c) and after (d, e) the deposition of Co(OH)2 as well as Ta3N5/Co(OH)2 after the PEC test (f, g, at 1.23 V for 

1hr in 1M NaOH, light intensity: 100 mW/cm2). 

The characteristic photocurrent density-voltage relationship (J-V) for Ta3N5 with 

Co(OH)2 was plotted in Figure 3.2a.  It is highly surprising that repeated PEC scans led to 

obvious increase of the photocurrent, which is opposite to how bare Ta3N5 

photoelectrodes behave (Figure 2.6).  For easy comparison of the effect, the Jph at 1.23 V 

(vs. RHE) and Von were plotted as a function of PEC scans in Figure 3.2b.  It is seen that 

at the 14th cycle, the photocurrent (3.1 mA/cm2) was 3 times of the first scan (1.0 

mA/cm2). In addition, Von shifted negatively by 110 mV after 20 CV scans.  The effect 

was also obvious from the chronoamperometry data as shown in Figure 3.2c, where the 

photocurrent densities of two samples, bare Ta3N5 and Ta3N5 with Co(OH)2 nanosheets 

(denoted as Ta3N5/Co(OH)2), were recorded as a function of time.  While the initial 

photocurrent densities for the two samples were comparable (ca. 0.8 mA/cm2), it 

increased to 3.2 mA/cm2 for the sample with Co(OH)2 co-catalyst and decreased to 0.1 
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mA/cm2 for bare Ta3N5 within 30 min. Stability up to 5 h can be achieved for 

Ta3N5/Co(OH)2, which was much better than bare Ta3N5 (Figure 3.2d).  More 

interestingly, dark electrochemical (EC) water oxidation performance did not improve 

under similar electrolysis conditions. The dark current density appeared to be higher 

compared with that under light condition because of the high applied potentials (2 V vs. 

RHE for the measurements of dark currents; 1.23 V vs. RHE was applied for the light 

current measurements).  At this potential, the diode formed at the Ta3N5/electrolyte 

interface is effectively operating in the breakdown regime, acting as a conductive 

substrate to support Co(OH)2 as OER catalysts.  To exclude the possibility that the 

observed increase of photocurrent was due to parasitic reactions (e.g., the oxidation of 

Co2+) instead of water oxidation, O2 as a product during photoelectrolysis was detected, 

and a faradic efficiency close to 100% was measured (Figure 3.2e). 

 

Figure 3.2 (a) J-V curves of Ta3N5/Co(OH)2 at different cycle numbers. (b) Photocurrent densities at 1.23 V from 20 

cycles of consecutive CV scans of Ta3N5/Co(OH)2. (c) Photocurrent density-time data of Ta3N5/Co(OH)2 and bare 
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Ta3N5 at 1.23 V. Dark current density-time data of Ta3N5/Co(OH)2 at 2 V. (d) The photovoltage-time curve for Ta3N5 

with and without Co(OH)2 at 1.23 V. The Ta3N5/Co(OH)2 sample has been tested for 20 CV scans under light before 

the photoelectrolysis. (e) The O2 amount experimentally detected (square dot) and calculated based on the charges 

assuming 100% faradaic efficiency (solid line). Nearly 100% faradaic efficiency was obtained within the two hours’ 

photoelectrolysis at 1.23 V. The electrolyte (1 M NaOH) and the lighting conditions (AM 1.5 illumination at 100 

mW/cm2) were the same for the data shown from (a) to (d). All voltages are relative to RHE. 

3.3.2 Explore possible hypotheses for the performance enhancement 

To understand the reasons for the performance enhancement, both the semiconductor and 

the co-catalyst were inspected next.   

3.3.2.1 Catalyst activation 

The improvement of water oxidation catalysts under photo-oxidation conditions has been 

reported by Li et al., which was attributed to the charging effect of Ni(OH)2.21  Similarly, 

EC activation of catalysts has been observed for Co(OH)2 and Ni(OH)2 by Boettcher et 

al.29, 30  To understand whether the phenomenon as shown in Figure 3.2 can be explained 

by catalyst activation, the J-V curves of Ta3N5/Co(OH)2 under two different conditions 

were measured and compared: (1) after photoelectrolysis at 1.23 V for 10 min; (2) 

continuous electrolysis at 2 V for 10 min.  As shown in Figure 3.3a, the photocurrent at 

1.23 V increased 16% in the absence of light.  By stark contrast, it increased a factor 2 

under PEC conditions.  Further increasing the applied potential and time for the EC 

treatment showed little enhancement for both photocurrent densities and turn-on 

potentials (Figure 3.3b and c). In addition, the possibility that the EC treatment will 

damage the photoelectrode was excluded, as shown in Figure 3.3d.  The results suggest 
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that electrochemical activation of Co(OH)2 is modest (16% only) and cannot account for 

the observed enhancement.  Moreover, Co(OH)2 was confirmed to be oxidized to 

CoOOH under both EC and PEC conditions, further supporting that changes of the 

catalyst were not the key reason for the performance enhancement. 

 

Figure 3.3 (a) J-V data of Ta3N5/Co(OH)2 as-prepared and after EC and PEC treatment in 1 M NaOH. EC treatment, 

dark electrolysis at 2 V for 10 min; PEC treatment, photo-electrolysis at 1.23 V for 10 min. The arrows highlight the 

improvement of photocurrent densities and turn-on potentials after PEC treatments. (b) The photocurrent in 1M NaOH 

for Ta3N5/Co(OH)2 at 1.23 V for sample 1 (as-prepared), sample 2 (after electrochemical water oxidation at 1.6 V for 

10 min), sample 3 (after electrochemical water oxidation at 2 V for 10 min) and sample 4 (after electrochemical water 

oxidation at 2.4 V for 10 min). The sample 4’ is sample 4 after another 3 min’s photoelectrolysis at 1.23 V. The light 

illumination condition is the same for all 4 samples. (c) The J-V curve of Ta3N5 after 30 min and 60 min 

electrochemical water oxidation at 2 V. The Von and photocurrent is still worse than the sample after PEC test in Figure 

3.2a. (d) The photocurrent-time curve for Ta3N5/Co(OH)2 after EC treatment at 2 V for 10 min.  The electrolyte (1M 

NaOH) and lighting condition (AM 1.5, 100 mW/cm2) is the same from (a) to (d). 
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In addition, the possibility of photoelectrochemical activation for Co(OH)2 was 

examined by replacing Ta3N5 with other photoanode materials. The first choice is Fe2O3, 

which is a well-studied photoelectrode material that does not exhibit photocharging 

effect. As shown in Figure 3.4a, the photocurrent of Fe2O3 with Co(OH)2 did not increase 

as a result of PEC water oxidation.  A small increase (<5%) for the photocurrent of bare 

Fe2O3 sample was observed, but it is mostly likely induced by the formation of FeOOH 

on the surface as a more effective water oxidation catalyst than Fe2O3.31  Similar 

conclusions (no performance enhancement upon PEC) were obtained on TiO2 as well 

(Figure 3.4b), indicating that the activation of Co(OH)2 was not responsible for the 

performance enhancement of Ta3N5/Co(OH)2. 

 

Figure 3.4 Photocurrent density-time data for (a) hematite and (b) TiO2 with and without Co(OH)2 in 1 M NaOH at 

1.23 V. The photocurrent was normalized to the value at the initial time. 

3.3.2.2 Ta3N5 improvement 

Next, experiments were conducted to understand whether Ta3N5 was improved as a result 

of illumination under PEC conditions.  Previously, the photocharging effect was observed 

on BiVO4.23, 24  For this portion of the work, photo-oxidation of Fe(CN)6
4- instead of H2O 
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oxidation was employed.  This is because as a hole scavenger Fe(CN)6
4- is expected to 

more effectively collect holes reaching the SCLI, thereby offering a reliable evaluation of 

the true properties of Ta3N5.32-34  As shown in Figure 3.5, three different samples were 

compared, including as-made Ta3N5/Co(OH)2 (Sample 1), bare Ta3N5 prepared by 

dissolving Co(OH)2 in as-made Ta3N5/Co(OH)2 (Sample 2), and Ta3N5 prepared by 

dissolving Co(OH)2 in Ta3N5/Co(OH)2 after PEC water oxidation (Sample 3).  Two 

important observations were made.  First, Samples 1 and 2 exhibited similar 

performance.  It indicates that the deposition and removal of Co(OH)2 had little influence 

on Ta3N5 itself.  While careful examinations of the data may reveal slight differences in 

the onset characteristics (better performance for Sample 2), the difference is within the 

range of variations observed in different batches of samples.  Second, Sample 3 exhibited 

poorer performance than Sample 2.  The result was surprising because Ta3N5/Co(OH)2 

after PEC test (but prior to the removal of Co(OH)2) would exhibit better performance 

than Sample 2 (see Figure 3.2).  The results strongly support that Co(OH)2 had to be 

present for the performance enhancement. 

 

Figure 3.5 (a) Schematic showed the compositions of sample 1 to 3. (b) J-V data of three different Ta3N5 samples in 

0.1 M phosphate buffer with 0.1 M K4Fe(CN)6 (pH 10). Sample 1, as-prepared Ta3N5/Co(OH)2; sample 2, Ta3N5 by 
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dissolving Co(OH)2 in Ta3N5/Co(OH)2; sample 3, Ta3N5 by dissolving Co(OH)2 in Ta3N5/Co(OH)2 after PEC water 

oxidation. PEC water oxidation conditions: 20 consecutive CV scans from 0.4 to 1.43 V and 30 min photo-electrolysis 

at 1.23 V in 1 M NaOH. 

3.3.2.3 Unique to the combination of Ta3N5 and Co(OH)2 

The last possibility was whether the effect is unique to the Ta3N5/Co(OH)2 combination.  

For this purpose, Co(OH)2 was replaced with other two popularly studied co-catalysts, 

NiFeOx and Co-Pi.27, 35, 36 Compared with Ta3N5/Co(OH)2, both Ta3N5/Co-Pi and 

Ta3N5/NiFeOx showed quick photocurrent decays during photoelectrolysis (Figure 3.6a).  

For instance, only 30% of the original photocurrent remained for Ta3N5/Co-Pi after 30 

min photoelectrolysis.  At this stage, it is still not fully understood what compositions in 

Co-Pi prevent it from reacting with Ta3N5 the same way as Co(OH)2 under identical 

conditions, but the results are highly reproducible (observed on over 10 different batches 

of samples).  The decay for Ta3N5/NiFeOx was even more severe (12% of the original 

photocurrent remained).  However, when Co(OH)2 was combined with NiFeOx, similar 

phenomenon as in the Co(OH)2 case could be observed, but with 30% higher 

photocurrent density at 1.23 V and comparable stability (Figure 3.6b and c). Furthermore, 

when Co(OH)2 was combined with Co-Pi, the photocurrent density at 1.23 V could be 

improved to 6 mA/cm2 (Figure 3.6d) with the adjustment of Co-Pi deposition time. The 

hybrid photoelectrode showed similar stability as Ta3N5/Co(OH)2, which was much 

better than Ta3N5/Co-Pi alone (Figure 3.6e and f). In addition, although the stability of 

Ta3N5/Co-Pi in Figure 3.6e was better than that in Figure 3.6a with the deposition time 

increased, the trend of performance decay remained the same, which further revealed the 

important role of Ta3N5/Co(OH)2 interface to achieve good stability. 
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Figure 3.6 (a) Photocurrent density-time data for Ta3N5 with Co(OH)2, NiFeOx, and Co-Pi (10 min deposition time) 

catalyst in 1M NaOH at 1.23 V. The photocurrent density was normalized to the value at the initial time. (b) The 

negative to positive scan of the 1st CV and the one after 3hr potentiostatic test at 1.23 V for Ta3N5/Co(OH)2/NiFeOx. (c) 

The photocurrent vs. time curve of Ta3N5/Co(OH)2/NiFeOx at 1.23 V. 20 consecutive CV scans between 0.43 V and 

1.33 V have been tested before the potentiostatic test. (d) J-V data of Ta3N5/Co(OH)2 and Ta3N5/Co(OH)2/Co-Pi after 

photo-electrolysis at 1.23 V for 30 min in 1 M NaOH. The deposition time of Co-Pi was 30 min. (e) Photocurrent 

density-time data for Ta3N5/Co-Pi and Ta3N5/Co(OH)2/Co-Pi in 1 M NaOH at 1.23 V. The deposition time of Co-Pi 

was 40 min. (f) The J-V curves of Ta3N5/Co(OH)2/40 min Co-Pi after different period of potentiostatic test at 1.23 V. 

The lighting conditions (AM 1.5 illumination at 100 mW/cm2) were the same from (a) to (f). 

It has been previously reported that different degree of surface oxidation of Ta3N5 

would have different influence to the properties.37  Because the extent of surface 

oxidation as a function of time was similar for Ta3N5/Co(OH)2, Ta3N5/NiFeOx and 

Ta3N5/Co-Pi, such an explanation is unlikely responsible for the observed performance 

enhancement (Figure 3.7a).  Lastly we also studied whether the observed performance 

enhancement was a result of the reactions between Ta3N5 and the precursor to Co(OH)2,26 
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and it was found that the effect was not dependent on the type of precursors used (Figure 

3.7b). 

 

Figure 3.7 (a) The peak ratio of surface tantalum oxide to tantalum nitride derived from XPS Ta 4f spectra. 

PEC test condition: 3 min photoelectrolysis at 1.23 V in 1 M NaOH under 100 mW/cm2 illumination. (b) 

The photocurrent of Ta3N5/α-Co(OH)2 at 1.23 V in 1 M NaOH as a function of PEC water oxidation time. 

Although the synthesis method of Co(OH)2 has changed (details in the section 3.2.1), similar performance 

enhancement phenomenon can be observed. 

3.3.3 Evolution of interfacial kinetics and energetics 

To summarize the experimental observations to this point, a profound performance 

enhancement was obtained when Co(OH)2-coated Ta3N5 was subjected to PEC reactions. 

The effect was unique to the Ta3N5/Co(OH)2 combination, and light was critical.  

Inspired by the previous understanding in Chapter 2 that the rapid degradation of Ta3N5 is 

due to surface Fermi level pinning as a result of displacement of N atoms by O, the 

surface energetics and kinetics were assessed by the open circuit potential (OCP) and 

intensity modulated photocurrent spectroscopy (IMPS) techniques, respectively.  The 

goal was to observe whether the PEC treatment in the presence of Co(OH)2 leads to 

reduced surface Fermi level pinning.  Indeed, as shown in Figure 3.8a, the OCP of 
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Ta3N5/Co(OH)2 as measured in light shifted negatively due to PEC reactions by 0.14 V, 

indicating that the surface Fermi level shifted toward the conduction band edge.  The 

value was consistent with the change of Von (Figure 3.2a).  In contrast, the OCP of bare 

Ta3N5 showed positive shift after PEC water oxidation, indicating that the surface Fermi 

level has shifted toward the valence band edge due to surface oxidation.38  In addition, 

the OCP of Ta3N5/Co(OH)2 after EC treatment was more positive than the one after PEC 

treatment, further illustrating the unique effect of light on the surface energetics (Figure 

3.8c). Taken as a whole, it was clearly observed that greater photovoltages by measuring 

the difference between the dark OCPs (Figure 3.8b) and light OCPs (Figure 3.8a) owing 

to the suppression of the Fermi level pinning effect.13 

 

Figure 3.8 (a) Light open-circuit potential of bare Ta3N5 and Ta3N5/Co(OH)2 with different photo-electrolysis times at 

1.23 V in 1 M NaOH (AM 1.5 illumination at 100 mW/cm2). (b) The dark open-circuit potentials of bare Ta3N5, 

Ta3N5/Co(OH)2 and Ta3N5/Co(OH)2 after 30 min photoelectrolysis at 1.23 V in 1 M NaOH. (c) The light open-circuit 

potentials of Ta3N5/Co(OH)2 after different PEC water oxidation time. Different from the as-prepared Ta3N5/Co(OH)2 

sample as shown in (a), the Ta3N5/Co(OH)2 was first tested for electrochemical water oxidation at 2V for 10 min before 

the light open-circuit potential measurement. 

The Nyquist plots obtained from IMPS was shown in Figure 3.9. Several 

assumptions are required to interpret the data (see section 1.7.1.3), which is supported by 

recent studies.39 The data for Ta3N5 and Ta3N5/Co(OH)2 at different PEC test stages were 
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first normalized to the largest real photocurrent so that the highest intercept at the real 

photocurrent axis (x axis) is 1. The rate constant for hole transfer (ktran) as well as 

electron and hole recombination (krec) on the photoelectrode surface can be obtained by 

the following equations: 

 𝑆𝑆𝐸𝐸 = 𝑘𝑘𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖/(𝑘𝑘𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖 + 𝑘𝑘𝑡𝑡𝑠𝑠𝑠𝑠)   (3.1) 

 𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑘𝑘𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖 + 𝑘𝑘𝑡𝑡𝑠𝑠𝑠𝑠   (3.2) 

In Equation (3.1), TE is the overall hole transfer efficiency. The value can be 

obtained from the intercept of low frequency end at the real photocurrent axis (in Figure 

3.9). In some cases, where the low frequency end didn’t intercept with the real 

photocurrent axis, the semicircle was fitted using the low frequency end and the highest 

intercept at the real photocurrent axis. In Equation (3.2), 𝜔𝜔𝑚𝑚𝑎𝑎𝑚𝑚 is the frequency at the 

apex of the semicircle, in which the imaginary photocurrent reached the highest value. 

Together, ktran and krec at each applied potential can be obtained. 

 

Figure 3.9 Normalized IMPS response of (a) bare Ta3N5, (b) Ta3N5/Co(OH)2 after one CV test, (c) Ta3N5/Co(OH)2 

after 20 min photoelectrolysis at 1.23 V. The low frequency intercept was determined by fitting the semicircle. 

The IMPS data clearly confirmed that krec at 0.9 V decreased by a factor of 3 

when the PEC treatment was extended from 1 CV scan to 20 min photoelectrolysis 

(Figure 3.10a).  Bare Ta3N5 featured krec’s 80 times higher than those of Ta3N5/Co(OH)2 
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after PEC treatment.  Moreover, charge transfer kinetics was also improved after the PEC 

treatment, as supported by the increase of ktran obtained from IMPS (Figure 3.10b) and 

the decrease of charge transfer resistance obtained from PEIS (Figure 3.10d).  It should 

be noted that as an analytic tool designed to represent a simplified model with a simple 

photoelectrode|electrolyte interface, IMPS has inherent deficiencies in describing 

complex systems such as the one studied here.  As such, the over-interpretation of the 

data in a quantitative fashion should be avoided.  Taken as a whole, this set of data 

support that under PEC conditions, the presence of Co(OH)2 on Ta3N5 leads to a better 

SCLI by not only decreasing surface recombination, but also increasing charge transfer. 

 

Figure 3.10 (a) Charge recombination rate constants (krec), (b) charge transfer rate constants (ktran) and (c) transfer 

efficiency (TE) of bare Ta3N5, Ta3N5/Co(OH)2 after the first CV and after photoelectrolysis at 1.23 V in 1 M NaOH for 

20 min. (d) The PEIS spectra of Ta3N5/Co(OH)2 after 1CV scan, 30 min and 60 min photoelectrolysis at 1.23 V in 1 M 

NaOH. The applied bias is 1 V. Lighting condition: AM 1.5 100 mW/cm2. (e) The equivalent circuit used to fit the 
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PEIS data. The equivalent circuit used for fitting is based on the study of hematite with Co-Pi catalyst.9 Rs represents 

the series resistance of back electron transfer; Cbulk is the capacitance of the bulk Ta3N5; Rct, bulk is the charge transfer 

resistance within the depletion region; Csurface  is the capacitance ofTa3N5/Co(OH)2 surface; Rct, surface is the charge 

transfer resistance on the surface. Clearly, the Rct, surface decreased by one order of magnitude after 30 min 

photoelectrolysis, indicating the faster charge transfer from the photoelectrode to the electrolyte. 

3.3.4 Probe the photo-induced interface 

To further understand the origin of such an effect, XPS was used to probe the binding 

energies of Ta 4f electrons. The data for three samples with different histories (as-

prepared, after PEC treatment and after EC treatment) are shown in Figure 3.11a.  The 

peaks at 25.1 eV can be deconvoluted into three key components, including contributions 

from N-Ta-N, O-Ta-N and O-Ta-O bonding.  For the as-prepared sample, the binding 

energies of each component was consistent with the literature reported values.40  The 

position of each component remained the same after the EC treatment.  However, after 

the PEC treatment, the peak representing O-Ta-O bonds shifted to the negative direction 

by 0.4 eV (red bar highlighted in the inset of the bottom panel in Figure 3.11a).  The peak 

corresponding to O-Ta-N bonds showed a similar shift, but with a smaller magnitude (0.2 

eV).  By contrast, the peak assigned to N-Ta-N bonds shifted positively by ca. 0.1 eV, 

representing a shift of the surface Fermi level toward the conduction band edge.  The 

result is consistent with the light OCP results as shown in Figure 3.8a.  The negative shift 

of the O-Ta-O and O-Ta-N binding energies after PEC treatment may be explained by the 

interaction of Co with Ta in the form of Ta-O-Co bonding, in which case the introduction 

of Co weakened the neighboring Ta-O bonding, thus leading to smaller binding energies 

of Ta.  Similar shifts of binding energies have been reported for Ti-O-Co bond 
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formation.41  It is envisioned that highly surface sensitive spectroscopic techniques such 

as attenuated total reflectance IR (ATR) or synchrotron-enabled extended X-ray 

absorption fine structure spectroscopy (EXAFS) may be used in the future to provide 

more details of the bonding nature.  It is noted that when Co(OH)2 was removed, the 

binding energies of all three components (N-Ta-N, O-Ta-N, and O-Ta-O bonds) were the 

same as the as-prepared sample (Figure 3.11b to e), providing further strong support that 

the Ta3N5/Co(OH)2 combination is unique to the unusual performance enhancement 

observed here. 

 

Figure 3.11 (a) Ta 4f XPS spectra of Ta3N5/Co(OH)2 as-prepared, and after EC treatment and PEC treatment. The 

shifts of the individual components are highlighted in the bottom panel. EC treatment, 1.7 V in 1 M NaOH for 1 hr; 

PEC treatment, 1.23 V in 1 M NaOH for 30 min. The XPS Ta 4f peak for (b) bare Ta3N5, (c) bare Ta3N5 after the 

H2SO4 treatment and (d) Ta3N5/Co(OH)2 after 30 min photoelectrolysis at 1.23 V and after the H2SO4 treatment. H2SO4 

treatment: immersing the electrode in 1M H2SO4 under 90 °C for 10 min. (e) The XPS Co 2p spectra for sample in (d). 
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The peak positions of Ta 4f7/2 for different components were also listed, which is almost the same as the as-prepared 

Ta3N5/Co(OH)2 samples. 

3.3.5 Mechanism for the photo-induced interface 

To explain the unusual phenomenon as summarized above, a mechanism is proposed as 

shown in Figure 3.12a.  Previous research and Chapter 2 has shown that surface oxidation 

of Ta3N5 leads to severe surface Fermi level pinning and is the key reason for the rapid 

performance degradation under PEC or EC conditions (top route in Figure 3.12a).38, 42, 43   

It is understood that the presence of Co(OH)2 promotes for the formation of Ta-O-Co 

bonds instead of Ta-O-Ta ones.  It is nonetheless curious that such an effect was only 

observed when light was present.  To illustrate the critical role of light, O• radical 

formation under PEC conditions is proposed to be the key.  As shown in Figure 3.12a, the 

Ta-O-Co bonds are less likely to form under EC conditions due to the lack of O• radicals 

in the absence of light.44 To support this hypothesis, control experiments were carried out 

in the electrolyte with hole scavengers.  It has been shown previously that the formation 

of O• radical was an important step for photocatalytic water oxidation on semiconductors 

such as TiO2 and TaON.44, 45  When an efficient hole scavenger was present in the 

electrolyte, such as Fe(CN)6
4-, direct valence band hole transfer to solution would 

dominate under PEC conditions, bypassing water oxidation processes and possibly 

eliminating radical formation.46  Based on this rationale, it is expected that if the 

formation of Ta-O-Co bond indeed requires O• radical as a water oxidation intermediate, 

the presence of hole scavenger would inhibit its formation.  Indeed, as shown in Figure 

3.12b and c, Ta3N5/Co(OH)2 tested with hole scavengers showed much worse 
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performance compared to the one without hole scavengers (1M NaOH only) under 

otherwise identical PEC conditions.  Nevertheless, it is noted that more direct evidence to 

support the radical mediated interface behavior still requires the detection of the O• 

radicals. For example, in-situ electron spin resonance (ESR) spectroscopy can be an 

effective method for this goal.47, 48 

 

Figure 3.12 (a) Proposed mechanism for the formation of the Ta-O-Co bond under PEC conditions. The surface 

oxidation of bare Ta3N5 and the electrochemical oxidation of Ta3N5/Co(OH)2 are included for comparison. (b) The 

photocurrent vs. time for Ta3N5/Co(OH)2 at 1.23 V in 1 M NaOH with 0.1 M Fe(CN)64-; (c) The J-V of Ta3N5/Co(OH)2 

after potentiostatic test at 1.23 V in 1 M NaOH or 1 M NaOH with 0.1 M Fe(CN)64-. Illumination condition: AM 1.5 

with 100 mW/cm2. 
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3.4 SUMMARY 

In summary, a unique phenomenon has been observed that the water oxidation 

performance of Ta3N5/Co(OH)2 photoanode is improved under PEC conditions.  The 

result is highly different from bare Ta3N5, which would undergo rapid performance 

degradation.  Experimental characterization confirmed that the effect is due to the unique 

chemical interactions between Ta3N5 and Co(OH)2 in the presence of light, which leads 

to reduced surface Fermi level pinning and the reduction of surface charge recombination 

as well as the increase of surface charge transfer.  An O• radical-mediated Ta-O-Co 

formation is proposed to explain the unusual phenomenon.  In addition, with the 

combination of Co(OH)2 as the immediate contact layer to Ta3N5 and another highly 

effective water oxidation catalyst (NiFeOx or Co-Pi) as the outer layer, both good 

stability and high photocurrent was achieved on Ta3N5. 
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CHAPTER 4 DEPENDENCE OF INTERFACE ENERGETICS AND KINETICS ON 

CATALYST LOADING IN A PHOTOELECTROCHEMICAL SYSTEM 

4.1 INTERFACIAL STUDY IN A COMPLEX PEC SYSTEM 

In a “simplistic” form, a PEC system usually consists of one or more semiconductor(s) as 

the light absorber(s), catalysts to drive the water splitting reactions and, often than not, 

protection layers to slow down or, ideally, prevent (photo)corrosions.1, 2 It is increasingly 

recognized that a working system is likely one composed of multiple components. The 

interface between the various components, including that at photoelectrode|electrolyte, is 

of paramount importance to the proper function of the integrated system. Such an insight 

has inspired significant research activities to understand the interface behaviors of a PEC 

system, as mentioned in section 1.7.1 in Chapter 1. These studies have led to a general 

consensus that the application of co-catalysts either reduces surface recombination on the 

photoelectrode or facilitates charge transfer or both. However, few prior studies have 

shown a fundamental difference between low and high catalyst loadings. Here an 

intriguing observation was found where the surface energetics appears to depend on the 

catalyst loading amount, with high catalyst loading not only affecting interface kinetics 

but also energetics. Most interestingly, such a dependence was only observed when a 

protection layer was present. 
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The prototypical study platform employed by this study was a Si photocathode. 

Earlier research has shown that GaN nanowires, grown by molecular beam epitaxy 

(MBE), could serve as an effective protection layer to permit highly stable operations for 

up to 113 hours under hydrogen evolution conditions in acidic solutions (0.5 M H2SO4) 3. 

Notably, the study platform features a buried n+/p junction, which represents one of the 

best developed in terms of technology readiness levels (TRL) for practical solar hydrogen 

generation. Canonical semiconductor physics would predict that the energetics of such a 

buried junction should be insensitive to environments beyond the 

semiconductor/protection layer. However, the results in this Chapter prove otherwise. At 

low loading amount of Pt (e.g., 0.01 µg/cm2), a low photovoltage (0.41 V) was measured; 

at high loading amount of Pt (e.g., 4 µg/cm2), a higher photovoltage (0.57 V) was 

measured. The surprising discovery sheds new lights on how the energetics is defined by 

recombination at the Si/GaN interface and reveals that careful optimization would be 

critical for systems even with buried junctions. Control experiments where the GaN 

protection layer was absent showed no such dependence on catalyst loading amount, 

which helps see why the phenomenon was not reported previously. 

4.2 MATERIALS AND METHODS 

4.2.1 Material synthesis 

The synthesis method for GaN/n+p-Si photocathodes has been reported previously 3-7. 

Briefly, it consists of planar n+p-Si substrate and n+-GaN nanowire arrays. The n+p-Si 
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was prepared from p-Si (100) substrate using a standard thermal diffusion process. The 

n+-GaN nanowires were grown on n+p-Si substrates via plasma-assisted molecular beam 

epitaxy (PAMBE) under growth temperatures between 700 – 750 °C for 120 min. The 

plasma power was maintained at 350 W, with a Ga beam equivalent pressure of 6 × 10-8 

Torr and a nitrogen flow rate of 1 sccm (standard cubic centimeter per minute). 

The Si nanowires (NWs) without GaN as a control were prepared by electroless 

etching method reported previously 8-10. Typically, the p-Si (100) wafer was cleaned 

sequentially in acetone, methanol, isopropanol and then oxidized in H2O2/H2SO4 (v/v 

1:3) at 90 °C for 15 min to remove heavy metals and organic species. Then the Si wafer 

was immersed into an HF/AgNO3 solution (4.6 M HF and 0.02 M AgNO3) for 30 min at 

50 °C. The Ag residue was removed using HNO3 (70 % w/w) for 20 min. Once prepared, 

the Si NWs were etched in HF (aqueous, 5%) for 2 min and dried in a stream of N2. To 

make ohmic contact, Al (300 nm) was sputtered onto the backside of Si substrates by 

radio frequency magnetron sputtering. Finally, the samples were annealed in flowing Ar 

(5000 sccm) at 450 °C for 5 min. 

For GaN/n+p-Si, one drop of Ga-In eutectic (≥99.99%; Sigma-Aldrich) was 

spread on the backside of the Si substrate, with a tinned Cu wire secured to it using Ag 

epoxy (M.G. Chemicals). Non-conductive hysol epoxy (Loctite 615) was used to seal the 

sample, with exposed surface area of ca. 0.1 cm2. The fabrication of Si NWs 

photoelectrode followed a similar procedure without using the Ga-In eutectic. 

 For Pt on GaN/n+p-Si photocathodes, a photoelectrochemical deposition method 

was used. It was carried out with a potentiostat (Modulab® XM coupled with Modulab® 

XM ECS software) in a three-electrode configuration, with GaN/n+p-Si as the working 
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electrode, Ag/AgCl as the reference electrode and glass coated with fluorine-doped tin 

oxide (FTO) as the counter electrode. During the deposition, the working electrode was 

kept at 0 V vs. RHE (all potentials henceforth in this Chapter are vs. RHE unless noted) 

in 0.5 M H2SO4 with varying concentrations of H2PtCl6 (5 – 500 µM) for different 

periods of time (10 – 600 s). During the deposition, the electrode was illuminated by an 

AM 1.5 solar simulator (100 mW/cm2, Solarlight Model 16S-300-M Air Mass Solar 

Simulator). After deposition, the electrode was rinsed with DI water and dried with N2. 

For Pt on Si NWs without GaN, an electroless deposition method was utilized 11. 

First, the Si NWs electrode was etched in 5% HF aqueous solution for 2 min to remove 

surface oxides. It was then immediately immersed into 0.4 M HF solutions with different 

concentrations of H2PtCl6 (1 – 1000 µM) for 30 s. Afterwards, the electrode was rinsed 

with DI water and dried with N2. 

4.2.2 PEC measurement 

IMPS and LSV were conducted in a two-chamber glass cell separated by a Nafion 

membrane (Nafion 211; Fuel Cell Store) in a three-electrode configuration. In one 

chamber, the photocathode was exposed to illumination with saturated calomel electrode 

(SCE) on the side as the reference electrode. In the other chamber, a Pt mesh was used as 

the counter electrode. The electrolyte, 0.5 M H2SO4, was purged by N2 (99.999%; 

Airgas) for 30 min before and continuously during the measurement to remove dissolved 

oxygen. The electrolyte was stirred during all measurements. For IMPS, a ModuLab® 

XM potentiostat (with the ModuLab® XM DSSC software) including a frequency 

response analyzer (FRA) and a 405 nm LED (ThorLabs, with a power of 26 mW/cm2) 
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was used. The spectra were collected using a 10% light intensity modulation, and the 

frequency of modulation was varied from 10 kHz to 0.1 Hz. For LSV, the light source 

was changed to simulated solar light (Solarlight Model 16S-300-M Air Mass Solar 

Simulator) at 100 mW/cm2. The potential was swept from negative to positive, at a rate 

of 10 mV/s. The OCP was recorded using a potentiostat (CH Instruments CHI604C) in 

the fume hood. The electrolyte was continuously stirred and purged with H2 to maintain a 

reversible HER condition at or near the standard conditions. The light source was an AM 

1.5 solar simulator (100 mW/cm2, Newport Oriel 96000). 

For IMPS and OCP measurements, each data point was the average of at least 

three different electrodes, the error bars being the variations between the 

maximum/minimum measured values. 

4.2.3 Material characterization 

A field-emission scanning electron microscope (SEM, JEOL 6340F) at 10 kV and a 

transmission electron microscope (TEM, JEOL 2010F) at 200 kV were used for sample 

imaging. The surface species were measured by X-ray photoelectron spectroscopy (K-

alpha+ XPS, Thermo Scientific, Al Kα = 1486.7 eV). The loading amount of Pt was 

determined by inductively coupled plasma optical emission spectrometry (ICP-OES, 

Agilent 5100 ICP-OES). Before each measurement, the photocathodes with Pt were 

soaked in 0.5 mL aqua regia (70 wt% HNO3:37 wt% HCl=1:4 v/v) for 24 h to dissolve 

Pt. Then 6 mL of DI water was added to dilute the aqua regia. 
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4.3 RESULTS AND DISCUSSIONS 

4.3.1 Controlling Pt loading amount and the corresponding PEC performance 

PEC deposition was carried out to deposit Pt on GaN/n+p-Si. The TEM images (Figure 

4.1) showed that Pt nanoparticles (NPs) were distributed along the GaN nanowires with 

diameters of 2 to 4 nm, indicating the efficient charge transfer from Si to GaN during Pt 

deposition. As reported recently on a similar material platform, it is important to note that 

Pt was only deposited on GaN, which completely covered the surface of Si prior to 

forming nanowires 3. Based on the TEM data, the number of Pt NPs increased with 

higher H2PtCl6 concentrations and longer deposition times. Furthermore, Pt 4f7/2 XPS 

spectrum for GaN/n+p-Si after Pt deposition showed the peak position at the binding 

energy of 70.5 eV, indicating the metallic nature of Pt NPs. To quantitatively determine 

the Pt loading amount, ICP-OES was applied. As shown in Figure 4.1k, the Pt loading 

amount could be tuned from 0.01 to 4 µg/cm2
 on GaN/n+p-Si by varying the deposition 

conditions. Note that the loading amount was normalized to the geometric area of the 

photoelectrode. 
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Figure 4.1 The TEM images of GaN nanowires peeled off from GaN/n+p-Si with different Pt deposition conditions. (a, 

f) 5 µM H2PtCl6 for 20 s; (b, g) 50 µM H2PtCl6 for 20 s; (c, h) 50 µM H2PtCl6 for 60 s; (d, i) 0.5 mM H2PtCl6 for 10 s; 

(e, j) 0.5 mM H2PtCl6 for 600 s. Scale bar: 50 nm (a-e) and 10 nm (f-j). Pt loading amount determined by ICP-OES for 

(k) GaN/n+p-Si and (l) p-Si NWs photocathodes under different H2PtCl6 concentrations and deposition times. The error 

bars represent the difference among three separate measurements. 

To understand how the Pt loading amount impacts the performance of 

photocathodes, LSV was used to investigate the PEC behaviors. The photocurrent 

densities vs. applied potentials (J-V) for GaN/n+p-Si with different Pt loading amount 

were plotted in Figure 4.2a. Two parameters, the turn-on potential (Von) and the fill factor 

(FF), were extracted from the J-V curves, and the results were summarized in Table 4.1. 

Here Von was defined as the potential where reduction photocurrent showed up (Figure 
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4.2c). The photovoltage (Vph) was defined as the difference between the Von and the 

equilibrium HER potential, which was 0 V vs. RHE. The calculation method for FF was 

based on equation (4.1). 

 𝐹𝐹𝐹𝐹 = 𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚/(𝐽𝐽𝑠𝑠𝑠𝑠 × 𝑉𝑉𝑜𝑜𝑖𝑖)   (4.1) 

 𝑃𝑃𝑚𝑚𝑎𝑎𝑚𝑚  is the maximum power point, which is the highest absolute value of 

photocurrent density multiplied with the applied potential.  𝐽𝐽𝑠𝑠𝑠𝑠 is the photocurrent density 

at the equilibrium hydrogen evolution potential (0 V). 

 

Figure 4.2 J-V curves of (a) GaN/n+p-Si and (b) p-Si NWs under different H2PtCl6 concentrations and deposition 

times. Testing electrolyte: 0.5 M H2SO4; Scan rate: 10 mV/s; Light intensity: 100 mW/cm2. Representative J-V curves 

to determine the Von of GaN/n+p-Si (c) and p-Si NWs (d). The absolute values of photocurrent densities were in 

logarithmic scale. The lowest point in the curve is the corresponded Von. 
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For GaN/n+p-Si photocathodes, increased Vph was observed with higher Pt 

loading amount, with a maximum increase of 170 mV. At the same time, the fill factor 

increased from 0.067 to 0.534. It has been reported previously by Kemppainen et al. that 

decreasing Pt loading amount on TiO2-protected Si buried junction from 1 µg/cm2 to 10 

ng/cm2 led to similar Von but worse FF, mainly due to the limitation of water reduction 

kinetics 12. The change of Vph observed here, however, is new. It suggests that in addition 

to improving the water reduction kinetics, which is manifested as better FF with higher 

loading, the presence of Pt also affected the interface energetics, leading to the change of 

Von’s. 

Table 4.1 Summary of Pt loading amount, turn-on potentials and fill factors for GaN/n+p-Si and p-Si NWs under 

different Pt deposition conditions. 

Photocathodes 

H2PtCl6 

concentration 

(μM) 

Deposition time 

(s) 
Loading (μg/cm2) Von (V vs. RHE)a FFb 

GaN/n+p-Si 

5 20 0.010 ± 0.008 0.416 ± 0.033 0.067 ± 0.011 

50 20 0.075 ± 0.016 0.530 ± 0.020 0.077 ± 0.006 

50 60 0.126 ± 0.033 0.571 ± 0.014 0.159 ± 0.040 

500 10 1.72 ± 0.07 0.582 ± 0.022 0.307 ± 0.130 

500 600 4.00 ± 0.24 0.574 ± 0.010 0.534 ± 0.044 

p-Si NWs 

1 30 0.006 ± 0.01 0.240 ± 0.015 0.086 ± 0.007 

100 30 0.34 ± 0.07 0.241 ± 0.013 0.135 ± 0.019 

1000 30 3.81 ± 0.08 0.198 ± 0.009 0.174 ± 0.003 
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a, bThe values are averaged from at least three different photoelectrodes 

4.3.2 Dependence of interface kinetics and energetics on Pt loading amount 

To probe whether the charge transfer kinetics was impacted by the Pt loading amount, the 

kinetic parameters were quantified using IMPS. The theoretical basis of IMPS and 

experimental data interpretation have been reported previously 13-15. Briefly, the IMPS 

measures the phase shift in the photocurrent under a sinusoidal modulation of the light 

intensities. With the assumption that the change of light intensity only changes the 

surface charge concentrations (electron concentration in photocathodes), the reaction 

rates changes under different light intensity can be used to extract the kinetic parameters 

such as the charge transfer rate constant (ktran), recombination rate constant (krec) and 

transfer efficiency (TE). The data interpretation can be found in Equation (3.1) and (3.2) 

as well as Figure 4.3.  

 

Figure 4.3 Representative Nyquist plots obtained from IMPS for GaN/n+p-Si (a) and p-Si NWs (b) under different 

H2PtCl6 concentrations and deposition times. 

The calculated kinetics parameters including ktran and krec at different applied 

potentials for GaN/n+p-Si with different Pt loading amount were shown in Figure 4.4a 
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and d, where increasing ktran’s with higher Pt loading amount was observed. While krec 

followed an opposite trend, decreasing with more Pt loading, there appeared to be a 

threshold loading (0.1 µg/cm2), below which the changes were insignificant. The trend of 

how ktran and krec changed with Pt loading was more clearly observed in Figure 4.4c and f, 

where the values at 0.2 V were plotted vs. the Pt loading amount. The ktran increased by 

10,000 times when Pt loading amount increased from 10-2 to over 1 µg/cm2, whereas krec 

remained similar with Pt loading amount < 0.1 µg/cm2 but started to decrease 

dramatically with higher Pt loading. The values at other applied potentials more negative 

than Von shared a similar trend. As reported by Thorne et al. previously, using IMPS to 

study complex systems such as catalysts/GaN/n+p-Si faces challenges 15. However, since 

the time scales of the different processes in different parts of the system are well 

separated, we interpret the IMPS data as mainly revealing the kinetics at the Si/GaN 

interface. It is noted that due to unfavorable alignment between the valence band 

maximums (EVB) between Si and GaN, holes are unlikely to reach the GaN|H2O 

interface.  As such, the influence by surface states on GaN to the charge behaviors is 

considered to be minimum. Taken as a whole, the increase of ktran with higher Pt loading 

amount is likely a result of faster water reduction kinetics, which leads to more facile 

charge transfer from the photoactive component (Si) to the surface, through the GaN 

protection layer. Similarly, increased Pt loading reduces electrons trapped at the Si/GaN 

interface, minimizing recombination as measured by lower krec. In a way, Pt catalysts 

may be regarded as a storage medium to facilitate electron transfer from GaN to the 

electrolyte. More details of this understanding and how it can be used to explain the 

experimental observations will be discussed next. 
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Figure 4.4 The calculated kinetic parameters including ktran and krec from the IMPS Nyquist plots for GaN/n+p-Si (a, d) 

and p-Si NWs (b, e) with different Pt loading amount. The concentration of H2PtCl6 and deposition time for Pt were 

described in the figure legends. The ktran (c) and krec (f) versus Pt loading amount for GaN/n+p-Si at 0.2 V and p-Si NWs 

at 0 V. 

While how the Pt loading amount affects the kinetics was indeed expected, the 

dependence of Vph on the loading amount was new and surprising. It implies that the 

catalyst loading actually also impacts the surface energetics of a buried junction, through 

the GaN protection layer. To further test this understanding, open-circuit potential (OCP) 

measurements under dark and light were carried out. The premise of these experiments 

was that the measured OCPs report the Fermi (or quasi-Fermi) levels of the 

photoelectrodes under equilibrium (or quasi-equilibrium) conditions. Under ideal 

conditions, the dark OCP should be at the water reduction potential, whereas the light 
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OCP should be close to the flat-band potential (Vfb) of the photoelectrode due to band 

flattening effect by photogenerated charges. The difference between them reports the Vph. 

In order to measure the OCPs accurately, H2 was continuously bubbled to maintain the 

reversible HER at or near the standard conditions, which has been proven essential by 

previous reports 16 and this work (Figure 4.5d). The OCPs under dark and light conditions 

for GaN/n+p-Si with different Pt loading amount were shown in Figure 4.5a. That the 

light OCPs were similar for different samples were expected because they report the Vfb 

of the Si substrate, which was identical. The dark OCPs, however, decreased dramatically 

from 0.55 V to 0 V when the loading was changed from 0.01 to 4 µg/cm2, with an 

obvious change at the loading density of 0.1 µg/cm2 (Figure 4.5c). The results strongly 

suggest that at no or low Pt loading (<0.1 µg/cm2), the photoelectrode would be in 

equilibrium with an electronic potential away from the reversible HER potential (as 

shown in the inset of Figure 4.5a). Most likely, the electronic potential indicates the 

existence of interface states between Si and GaN. The addition of Pt competes with the 

electronic states in receiving electrons, effectively reducing the influence on the buried 

junction energetics by these interface electronic states. As a result, a greater degree of 

band bending was achieved, leading to increased Vph. It should be noted that cautions 

must be taken when one attempts to quantitatively compare the data obtained here and 

those by LSV (Figure 4.2). This is because the data were obtained under different 

conditions. While OCP measurements were conducted under equilibrium conditions with 

no current flowing, the LSV experiments were performed under steady-state conditions. 

More studies would be needed to fully make sense of the difference. Notwithstanding, the 

trends observed in these two different measurements are qualitatively consistent. 
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Figure 4.5 The dark and light OCPs of GaN/n+p-Si (a) and p-Si NWs (b) with different Pt loading amount. (c) The 

photovoltages of GaN/n+p-Si and p-Si NWs with different Pt loading amount. The inset band diagrams in (a) showed 

the equilibrium conditions under dark and light without Pt. (d) The difference between light open-circuit potentials 

(OCP) when the testing electrolyte was bubbled with N2 or H2. The photocathodes were GaN/n+p-Si with the Pt 

deposited from 0.5 mM H2PtCl6 for 600 s. When the electrolyte was bubbled with N2, the obtained OCP was much 

more positive than Von. When the electrolyte was bubbled with H2, the obtained OCP was close to Von. 

4.3.3 Discussions of the photoelectrode|electrolyte interface in a PEC system 

Under ideal conditions, in a photoelectrode consisting of buried junctions, the Vph should 

be defined by the difference of the Fermi levels on each side of the junction 17. In a 

conventional solid-state device, the Fermi levels tend to be well-defined on both sides. In 
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a PEC device, however, the side in contact with the electrolyte is often difficult to 

describe or study. In model systems where a redox system featuring fast charge transfer 

kinetics with the photoelectrode is present, the Fermi level of the photoelectrode on the 

electrolyte side is expected to equilibrate with the redox potential of this redox system 18. 

In practical systems where the redox system is less well defined, such as water reduction 

or oxidation reactions that involve multiple steps whose charge transfer kinetics is often 

sluggish, what the equilibrium potential is can be extremely difficult to determine. 

Sometimes, the addition of an effective catalyst could partially solve the problem, with 

the catalyst serving as a charge storage medium so as to help define the equilibrium 

potentials of the electrolyte 19-21. The addition of protection layers, which are often 

necessary, however, further complicates the understanding of the interface greatly. New 

research questions emerge. For instance, how does the electrolyte (with or without 

effective catalysts) affect the photoelectrode through the protection layer? It has been 

shown previously that the existence of effective catalysts may be critical. For example, 

Hu et al. reported that Ni catalysts were essential for the amorphous-TiO2-protected 

photoanodes with buried junctions 22. The critical role played by the catalyst is 

understood as being to effectively extract charges from the buried junction; otherwise 

electronic states between the buried junction and the protection layer or within or on the 

protection layer would dominate the energetics of the photoelectrode. This understanding 

is schematically illustrated in Figure 4.6. An important premise of this understanding is 

that non-ideal factors would always create electronic states at the various parts of an 

integrated complex system 20. One way around the caveat could be to form a truly buried 

junction, complete with metallic contacts on both sides. That is, a metallic contact with a 
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well-defined, desired workfunction introduced between the photoelectrode and the 

protection layer may help better define the Vph of the buried junction 23. In such a case, it 

would be expected the energetics of the system to be less sensitive to the catalyst loading. 

Nevertheless, such a system would introduce new concerns. For example, how is it 

different from a photovoltaic plus electrolyzer configuration, in which case cost of 

fabrication would become an overwhelming concern? 

 

Figure 4.6 Schematics showing how the addition of Pt affected the charge transfer kinetics and surface energetics for 

GaN/n+p-Si (a) and p-Si NWs (b). The green arrows represent the forward charge transfer pathway and the red arrows 

represent the charge recombination. The weights of the arrows represent the relative rates of these processes. 
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4.3.4 Control experiments on Si photocathode without GaN 

To further verify the influence of Pt loading amount on the interface kinetics and 

energetics when a protection layer was present, p-Si NWs without GaN were utilized as 

control samples. An ideal control sample for this portion of our study should be planar 

n+p-Si sample without GaN. However, attempts to obtain stable operations during 

catalyst deposition on these samples failed. Similar to the n+p-Si sample, p-Si NWs were 

not stable under PEC Pt deposition, but they permitted Pt deposition by an electroless 

procedure. As shown in Figure 4.7, Pt NPs (20 to 120 nm) were deposited on the surface 

of Si NWs. The Pt loading amount on p-Si NWs was controlled within 3 orders of 

magnitude when the H2PtCl6 concentrations increased 1000-fold (Figure 4.1l). Compared 

with GaN/n+p-Si, p-Si NWs showed similar Von with increased Pt loading amount, and 

only the FF was improved (Figure 4.2b and Table 4.1). IMPS and OCP measurements 

were carried out to quantify the interface kinetics and energetics. As shown in Figure 4.4, 

higher Pt loading amount resulted in increased ktran. However, the krec remained within the 

same order of magnitude even though the Pt loading amount has been changed by 100 

times. The OCP measurements under different Pt loading amount indicated that for p-Si 

NWs the Vph remained similar (Figure 4.5). 
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Figure 4.7 The SEM images of Si nanowires with different Pt deposition conditions. (a) bare; (b) 1 µM H2PtCl6 for 30 

s; (c) 0.1 mM H2PtCl6 for 30 s; (d) 1 mM H2PtCl6 for 30 s. 

For p-Si NWs in solutions, it featured Si/H2O, Si/Pt and Pt/H2O interfaces. Since 

Pt was dispersed as nanoparticles on the Si surface and most of the Si surface was still in 

contact with the electrolyte, it was likely that the Si/H2O interface dominated the 

interface energetics, as supported by the OCP results. Therefore, charge recombination 

was likely to happen at the electronic states at the Si/H2O interface. This was consistent 

with the observation that similar krec was measured for p-Si NWs even with different Pt 

loading amount. The improved performance for p-Si NWs after Pt deposition was mainly 

due to enhanced water reduction kinetics, as evidenced by the increased ktran with higher 

Pt loading amount. The charge transfer process on p-Si NWs with different Pt loading 
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was summarized in Figure 4.6b. The contrast between the control samples and that with 

GaN protection highlights the importance to understand the details at the 

photoelectrode|electrolyte interface. While the protection layer is expected to improve the 

performance of the buried junction, non-ideal factors still introduce significant electronic 

states, whose influence cannot be ignored in practical systems. This is where co-catalyst 

could play critical roles to further improve the system, beyond the simple expectations of 

faster kinetics. 

4.4 SUMMARY 

In summary, the PEC performance of two typical Si-based photocathodes with different 

Pt loading amount was compared. One was a Si buried junction with GaN as the 

protection layer, and the other one was p-Si NWs without the buried junction or the 

protection layer. The surface kinetics and energetics were systematically investigated by 

methods such as IMPS and OCP. It was found that the addition of Pt affected both the 

interfacial kinetics and energetics for GaN/n+p-Si. That the energetics of a photoelectrode 

with buried junctions could be influenced by co-catalysts beyond the protection layer is 

new and significant. Future efforts should be guided to further optimize the 

photoelectrode|protection layer, as well as the co-catalysts, in an integrated fashion. By 

contrast, only surface kinetics was influenced for bare photoelectrodes (i.e., p-Si NWs) 

without protection layer, and this is because the interface energetics is already dominated 

by the semiconductor|electrolyte interface. Such a system (without buried junction and 

protection layer) is far more difficult to optimize for practical applications. 



 159 

4.5 REFERENCE 

1. Y. He and D. Wang, Chem, 2018, 4, 405-408. 
2. Y. He, T. Hamann and D. Wang, Chem. Soc. Rev., 2019, 48, 2182-2215. 
3. S. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter and Z. Mi, Nano 

Lett., 2018, 18, 6530-6537. 
4. S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton and Z. Mi, Nano Lett., 

2015, 15, 2721-2726. 
5. Y. Wang, S. Fan, B. AlOtaibi, Y. Wang, L. Li and Z. Mi, Chemistry - A European 

Journal, 2016, 22, 8809-8813. 
6. Q. Cheng, W. Fan, Y. He, P. Ma, S. Vanka, S. Fan, Z. Mi and D. Wang, Adv. 

Mater., 2017, 29, 1700312. 
7. S. Chu, P. Ou, P. Ghamari, S. Vanka, B. Zhou, I. Shih, J. Song and Z. Mi, J. Am. 

Chem. Soc., 2018, 140, 7869-7877. 
8. G. Yuan, K. Aruda, S. Zhou, A. Levine, J. Xie and D. Wang, Angew. Chem. Int. 

Ed., 2011, 50, 2334-2338. 
9. R. Liu, G. Yuan, C. L. Joe, T. E. Lightburn, K. L. Tan and D. Wang, Angew. 

Chem. Int. Ed., 2012, 51, 6709-6712. 
10. R. Liu, C. Stephani, J. J. Han, K. L. Tan and D. Wang, Angew. Chem. Int. Ed., 

2013, 52, 4225-4228. 
11. P. Dai, J. Xie, M. T. Mayer, X. Yang, J. Zhan and D. Wang, Angew. Chem. Int. 

Ed., 2013, 52, 11119-11123. 
12. E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. 

K. Vesborg, J. Halme, O. Hansen, P. D. Lund and I. Chorkendorff, Energy 
Environ. Sci., 2015, 8, 2991-2999. 

13. E. A. Ponomarev and L. M. Peter, J. Electroanal. Chem., 1995, 396, 219-226. 
14. L. M. Peter, E. A. Ponomarev and D. J. Fermín, J. Electroanal. Chem., 1997, 427, 

79-96. 
15. J. E. Thorne, Y. Zhao, D. He, S. Fan, S. Vanka, Z. Mi and D. Wang, Phys. Chem. 

Chem. Phys., 2017, 19, 29653-29659. 
16. P. Dai, W. Li, J. Xie, Y. He, J. Thorne, G. McMahon, J. Zhan and D. Wang, 

Angew. Chem. Int. Ed., 2014, 53, 13493-13497. 
17. A. C. Nielander, M. R. Shaner, K. M. Papadantonakis, S. A. Francis and N. S. 

Lewis, Energy Environ. Sci., 2015, 8, 16-25. 
18. N. S. Lewis, Inorg. Chem., 2005, 44, 6900-6911. 
19. G. Liu, J. Shi, F. Zhang, Z. Chen, J. Han, C. Ding, S. Chen, Z. Wang, H. Han and 

C. Li, Angew. Chem. Int. Ed., 2014, 53, 7295-7299. 
20. C. Ding, J. Shi, Z. Wang and C. Li, ACS Catal., 2017, 7, 675-688. 
21. C. Du, M. Zhang, J.-W. Jang, Y. Liu, G.-Y. Liu and D. Wang, J. Phys. Chem. C, 

2014, 118, 17054-17059. 
22. S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig and N. S. 

Lewis, Science, 2014, 344, 1005-1009. 
23. D. Kang, J. L. Young, H. Lim, W. E. Klein, H. Chen, Y. Xi, B. Gai, T. G. 

Deutsch and J. Yoon, Nat. Energy, 2017, 2, 17043. 
 



 160 

 Chapter 4 is adapted with permission from “Y. He, S. Vanka, T. Gao, D. He, J. 

Espano, Y. Zhao, Q. Dong, C. Lang, Y. Wang, T. W. Hamann, Z. Mi and D. Wang, Nano 

Res., 2019, https://doi.org/10.1007/s12274-019-2346-3.” Copyright 2019 Springer 

Nature. 

 

 

  

https://doi.org/10.1007/s12274-019-2346-3


 161 

PUBLICATION LIST 

1. Y. He, S. Vanka, T. Gao, D. He, J. Espano, Y. Zhao, Q. Dong, C. Lang, Y. Wang, T. 

Hamann, Z. Mi, D. Wang, “Dependence of Interface Energetics and Kinetics on 

Catalyst Loading in a Photoelectrochemical System,” Nano Res. 2019, 

https://doi.org/10.1007/s12274-019-2346-3 

2. Y. He, T. Hamann, D. Wang, “Thin Film Photoelectrodes for Solar Water Splitting,” 

Chem. Soc. Rev. 2019, 48, 2182-2215 

3. S. Zhu, Y. Zhao, Y. He, D. Wang, “Selectivity of H2O2 and O2 on Metal Oxide 

Surfaces by Water Oxidation,” J. Chem. Phys. 2018, 150, 04172 

4. W. Li, K. Yang, X. Yao, Y. He, Q. Dong, G. Brudvig, V. Batista, D. Wang, “Facet-

dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions,” 

ACS Appl. Mater. Interfaces 2019, 11, 5616-5622 

5. Y. He, D. Wang, "Toward Practical Solar Hydrogen Production," Chem 2018, 4, 405-

408 

6. Q. Dong, X. Yao, Y. Zhao, M. Qi, X. Zhang, H. Sun, Y. He, D. Wang, “Cathodically 

Stable Li-O2 Battery Operations Using Water-in-Salt Electrolyte,” Chem 2018, 4, 

1345-1358 



 162 

7. Y. He, P. Ma, S. Zhu, M. Liu, Q. Dong, J. Espano, X. Yao, D. Wang, "Photo-induced 

Performance Enhancement of Tantalum Nitride for Solar Water Oxidation," Joule, 

2017, 1, 290-305 

8. E. Liu, J. Thorne, Y. He, D. Wang, "Understanding Photocharging Effects on 

Bismuth Vandate," ACS Appl. Mater. Interfaces 2017, 9, 22083-22087 

9. Q. Cheng, W. Fan, Y. He, P. Ma, S. Vanka, Z. Fan, Z. Mi, D. Wang, 

"Photorechargeable High Voltage Redox Battery Enabled by Ta3N5 and GaN/Si 

Dual-Photoelectrode," Adv. Mater., 2017, 29, 1700312 

10. Y. He#, J. Thorne#, C. Wu#, P. Ma, C. Du, Q. Dong, J. Guo, D. Wang, "What Limits 

the Performance of Ta3N5 for Solar Water Splitting?" Chem 2016, 1, 640-655 (# co-

first author) 

11. W. Li, D. He, S. Sheehan, Y. He, J. Thorne, X. Yao, G. Brudvig, D. Wang, 

"Comparison of Heterogenized Molecular and Heterogeneous Oxide Catalysts for 

Photoelectrochemical Water Oxidation," Energy Environ. Sci 2016, 9, 1794-1802 

12. J. Thorne, Y. He, D. Wang, Nanostructured Materials. In: Giménez S., Bisquert J. 

(eds) Photoelectrochemical Solar Fuel Production. Springer, Cham, 2016, 463-492 

13. W. Li, S. Sheehan, D. He, Y. He, X. Yao, R. Grimm, G. Brudvig, D. Wang, 

“Hematite-Based Solar Water Splitting in Acidic Solutions: Functionalization by 

Mono- and Multi-layers of Ir Oxygen-evolution Catalysts,” Angew. Chem. Int. Ed. 

2015, 54, 11428-11432 

14. X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, D. Wang, "Enabling Practical 

Electrocatalysts-Assisted Photoelectrochemical Water Splitting with Earth Abundant 

Materials," Nano Res. 2015, 8, 56-81 



 163 

15. P. Dai, W. Li, J. Xie, Y. He, J. Thorne, G. McMahon, J. Zhan, D. Wang, "Forming 

Buried Junctions to Enhance Photovoltage by Cuprous Oxide in Aqueous Solutions," 

Angew. Chem. Int. Ed. 2014, 53, 13493-13497 

 


	Table of Contents
	Table of Abbreviations
	Acknowledgements
	Chapter 1 Thin film photoelectrodes for solar water splitting
	1.1 Demand for solar energy storage
	1.2 Principles of photoelectrochemical water splitting
	1.3 Definition of thin-film photoelectrodes
	1.4 Thin film synthesis
	1.4.1 Physical vapor deposition (PVD)
	1.4.2 Chemical deposition
	1.4.3  (Photo)electrochemical deposition

	1.5 Common problems and corresponded strategies for representative thin-film semiconductors
	1.5.1 Poor light absorption
	1.5.1.1 Narrow the band gaps or add another light absorber to enhance light absorption
	1.5.1.2 Reduce reflection to avoid light absorption losses

	1.5.2 Bulk recombination
	1.5.2.1 Nanostructuring to match the short diffusion length
	1.5.2.2 Doping to enhance charge transport

	1.5.3 Surface recombination
	1.5.3.1 Use electron/hole scavengers to study the extent of surface recombination
	1.5.3.2 Passivation layers
	1.5.3.3 Surface reconstruction

	1.5.4 Mismatch of energetics
	1.5.4.1 Forming buried junctions
	1.5.4.2 Tuning band edge positions

	1.5.5 Instability
	1.5.5.1 The accumulation of byproducts due to parasitic chemical reactions
	1.5.5.2 Deactivation of the photoelectrode due to loss of photovoltages
	1.5.5.3 Corrosion
	1.5.5.4 Protection strategies

	1.5.6 Other issues
	1.5.6.1 High fabrication cost
	1.5.6.2 Charge recombination at semiconductor/substrate interface


	1.6 Thin film protection layer
	1.6.1 Physical barrier protection layer
	1.6.2 Kinetic protection layer

	1.7 Thin film catalysts
	1.7.1 The role of catalysts on photoelectrodes
	1.7.1.1 Transient absorption spectroscopy
	1.7.1.2 Photoelectrochemical impedance spectroscopy
	1.7.1.3 Intensity modulated photocurrent spectroscopy
	1.7.1.4 Dual-working-electrode technique
	1.7.1.5 Potential-sensing electrochemical atomic force microscopy

	1.7.2 The effect of catalysts on the light absorption
	1.7.2.1 Decoupling reaction sites and light absorption sites
	1.7.2.2 Synthesis of transparent catalysts


	1.8 Summary
	1.9 Reference

	Chapter 2 What limits the performance of tantalum nitride for solar water splitting?
	2.1 Tantalum nitride photoanode as a prototypical platform for water oxidation
	2.2 Materials and methods
	2.2.1 Material synthesis
	2.2.2 PEC measurement
	2.2.3 Material characterization

	2.3 Results and discussions
	2.3.1 Material characterization and PEC performance
	2.3.2 X-ray core-level spectroscopy studies
	2.3.3 Energetics evolution due to surface reaction
	2.3.3.1 PEC characterization with hole scavengers
	2.3.3.2 Flatband potential shift due to H2O
	2.3.3.3 Surface Fermi level pinning due to oxidation
	2.3.3.4 The evolution of tantalum nitride surface energetics

	2.3.4 Recovery of the initial performance degradation by water oxidation catalysts
	2.3.5 Strategies for improving tantalum nitride

	2.4 Summary
	2.5 Reference

	Chapter 3 Photo-induced performance enhancement of tantalum nitride for solar water oxidation
	3.1 Tantalum nitride as a platform for interfacial study between semiconductors and catalysts
	3.2 Materials and methods
	3.2.1 Material synthesis
	3.2.2 EC measurement
	3.2.3 Material characterization

	3.3 Results and discussions
	3.3.1 Material characterization and PEC performance
	3.3.2 Explore possible hypotheses for the performance enhancement
	3.3.2.1 Catalyst activation
	3.3.2.2 Ta3N5 improvement
	3.3.2.3 Unique to the combination of Ta3N5 and Co(OH)2

	3.3.3 Evolution of interfacial kinetics and energetics
	3.3.4 Probe the photo-induced interface
	3.3.5 Mechanism for the photo-induced interface

	3.4 Summary
	3.5 Reference

	Chapter 4 Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system
	4.1 Interfacial study in a complex PEC system
	4.2 Materials and methods
	4.2.1 Material synthesis
	4.2.2 PEC measurement
	4.2.3 Material characterization

	4.3 Results and discussions
	4.3.1 Controlling Pt loading amount and the corresponding PEC performance
	4.3.2 Dependence of interface kinetics and energetics on Pt loading amount
	4.3.3 Discussions of the photoelectrode|electrolyte interface in a PEC system
	4.3.4 Control experiments on Si photocathode without GaN

	4.4 Summary
	4.5 Reference

	Publication list

