

This Time It's Different: Speculative Asset Bubbles & Adaptive Expectations Conor Sheehy Senior Honors Thesis Department of Economics Boston College

Advisor: Harold Petersen

For Caroline and Shawn Sheehy

I would like to thank my advisor, Harold Petersen, for all of the time and wisdom that he has put into this project. I've learned a tremendous amount about the functioning of financial markets from Professor Petersen, and have been honored to pull him out of retirement this year. I could not have asked for a better mentor to work with on the nature of speculative bubbles.

I would like to thank Alan Marcus, Amy Hutton, Arvind Navaratnam, Dmitriy Muravyev, Michael Barry, and Pete Wilson for inspiring me to explore and evaluate the functioning of financial markets. I'd also like to thank Peter Ireland and Rosen Valchev for their comments on this paper. Without your mentorship, I would not have completed this undertaking.

ABSTRACT

Using insights from Hyman Minsky's Financial Instability Hypothesis (FIH), we develop a theoretical framework for how speculative bubbles may materialize in securities markets. Our model and empirical analysis show that agents place undue emphasis on recent experience of risk and returns when developing future expectations.

We use the aggregate investor allocation to equities (aggregate total market capitalization of equities divided by the price of all real liabilities outstanding), Tobin's Q (the aggregate market price of equities divided by the replacement cost of nonfinancial firms' assets), Shiller Total Return Cyclically Adjusted Price to Earnings Ratio (TR CAPE), and Shiller Cyclically Adjusted Price to Earnings Ratio (CAPE) as proxy variables for bubbles. We find statistically significant, negative relationships between all four of these proxy variables and two dependent variables, Subsequent Ten-Year Annualized Cumulative Equity Market Returns (Nominal and Real), and also Subsequent 10-year Average Losses, thereby providing evidence against the Efficient Market Hypothesis and suggesting the possibility of speculative bubbles.

Keywords: Financial Instability Hypothesis (FIH), Efficient Market Hypothesis (EMH), Joint-Hypothesis Problem, Asset-Pricing Model, Mutual Funds, Stock Market, Equities, Debt, Speculative Bubbles, Stability, Business Cycles, Fama-French 3-Factor Model, Black-Scholes Option Pricing, Random Walk, Ten-Year Returns, Real Returns, Systematic Risk, Size Premium, Value Premium, Hyman Minsky, Eugene Fama, Kenneth French, Michael Burry, Capital Asset Pricing Model (CAPM), Risk, Average Loss, Adaptive Expectations, Market Psychology, Aggregate Investor Allocations, Cyclically Adjusted Price to Earnings Ratio, Tobin's Q

I. Introduction

The Efficient Market Hypothesis is by far the most important and commonly accepted theory regarding the functioning of financial markets. Its essential truth that financial markets quickly incorporate new information into prices serves as a bedrock of modern financial theory. However, the assumptions that the hypothesis relies on are questionable. Milton Friedman explains how these two statements can hold simultaneously for such an important theory:

"In so far as a theory can be said to have 'assumptions' at all, and in so far as their 'realism' can be judged independently of the validity of predictions, the relation between the significance of a theory and the 'realism' of its 'assumptions' is almost the opposite of that suggested by the view under criticism. Truly important and significant hypotheses will be found to have 'assumptions' that are wildly inaccurate descriptive representations of reality, and, in general, the more significant the theory, the more unrealistic the assumptions (in this sense). The reason is simple. A hypothesis is important if it 'explains' much by little, that is, if it abstracts the common and crucial elements from the mass of complex and detailed circumstances surrounding the phenomena to be explained and permits valid predictions on the basis of them alone. To be important, therefore, a hypothesis must be descriptively false in its assumptions; The converse of the proposition does not of course hold: assumptions that are unrealistic (in this sense) do not guarantee a significant theory takes account of, and accounts for, none of the many other attendant circumstances, since its very success shows them to be irrelevant for the phenomena to be explained."¹

One of the core tenets of the Efficient Market Hypothesis is that investors are rational, and maximize expected returns for a given level of expected risk. While this seems to be fairly reasonable, the hypothesis also stipulates that investors have homogenous expectations, and that they incorporate all accessible information into these expectations.

We disagree with this assumption; we believe that people develop irrational expectations. Since the value of financial assets are not directly observable, investors must make guesses as to the actual value of the underlying asset. Investors can vary wildly in their methods of analysis, expected holding periods, risk preferences, as well as any number of other factors. The market is a voting mechanism by which investors cast their ballots and hope that their analysis of a financial asset is closer to true value than everyone else. If they are correct (or lucky) they profit, and if they are wrong (or unlucky) they take losses. As a result, we imagine "market price fluctuations as a consequence of a seesaw or pendulum-like mechanism, by which prices 'orbit' around value, such that $P_t \approx V_t$, most of the time."²

We believe that prices can (and do) diverge so far away from this unobservable value that it may constitute a speculative bubble; the presence of which is hypothetically impossible under the

¹ Milton Friedman "The Methodology of Positive Economics" Essays In Positive Economics (Chicago: Univ. of Chicago Press, 1966), pp. 3-16, 30-43.

² Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

Efficient Market Hypothesis. We hypothesize that this is because investors place undue emphasis on recent experience of returns and risk when developing expectations of the future.

II. Background

Empirical testing of the Efficient Market Hypothesis must be done with regard to an asset pricing model. The difficulty in testing the hypothesis is that pricing models that appear to be empirically invalid do not necessarily invalidate the EMH. Most proponents would argue that the asset pricing specifications are simply incorrect, and that the theoretical basis for these asset pricing tests is still correct. This is the famous joint hypothesis problem.

Since asset pricing tests are incapable of invalidating the hypothesis, we take a different approach. Some of the most commonly used asset pricing models, in particular the Capital Asset Pricing Model³ and the Black-Scholes Option Pricing Formula⁴, both assume that stock prices exhibit Brownian motion (stochastic price movements with drift) which is broadly consistent with the idea that price shocks are the result of new information being incorporated into prices.

The presence of these price shocks from new information could have significant effects when people extrapolate out recent experience of returns and risk when forming expectations of the future. A series of random shocks in one direction could result in a slight divergence in value, however, if "investors start to believe that there is something new about the market"⁵, the implication is that future expectations of returns and risk will be biased.⁶ Following a series of positive shocks, expected returns will be biased upwards while expectations of risk will be biased downwards, and vice versa. In the paper "Contrarian Investment, Extrapolation, and Risk", the authors evaluated the "Value" factor that is commonly used in many models constructed using Arbitrage Pricing Theory, and hypothesized why high book to market firms may have outperformed low book to market firms over their analysis period:

"Individual investors might focus on glamour strategies for a variety of reasons. First, they may make judgment errors and extrapolate past growth rates of glamour stocks, such as Walmart or Home Depot, even when such growth rates are highly unlikely to persist in the future. **Putting excessive weight on recent past history, as opposed to a rational prior, is a common judgment error in psychological experiments, and not just in the stock market.** Alternatively, individuals might just equate well-run firms with good investments regardless of price. After all, how can you lose money on Microsoft or

³Although every asset pricing model is a capital asset pricing model, the finance profession reserves the acronym CAPM for the specific model of Sharpe (1964), Lintner (1965), and Black (1972) discussed here. Thus, throughout the paper we refer to the Sharpe – Lintner – Black model as the CAPM. (Fama French 2003)

⁴ Black, Fischer, and Myron Scholes. "The Pricing of Options and Corporate Liabilities." *Journal of Political Economy*, vol. 81, no. 3, 1973, pp. 637–654. *JSTOR*, www.jstor.org/stable/1831029.

⁵ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

⁶ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

Walmart? Indeed, brokers always recommend "good" companies, with "steady" earnings and dividend growth."⁷

The authors go on to explain that while institutional investors should be freer from these sorts of judgement biases than individuals, and would ordinarily flock to these types of strategies that appear to be a "free lunch", there are other concerns that they need to deal with:

"Another important factor is that most investors have shorter time horizons than are required for value strategies to consistently pay off (<u>De Long *et al.* (1990)</u> and <u>Shleifer</u> <u>and Vishny (1990)</u>). Many individuals look for stocks that will earn them high abnormal returns within a few months, rather than 4 percent per year over the next 5 years. Institutional money managers often have even shorter time horizons. They often cannot afford to underperform the index or their peers for any nontrivial period of time, for if they do, their sponsors will withdraw the funds."⁸

This career risk that institutional investors face is just one of a few reasons why money managers may make decisions that are not in the best interests of their clients when incentives are not perfectly aligned. Note that this is largely because of client demands on managers though. If investment managers were able to act without constraints, they would likely arbitrage a situation where investment expectations are biased, and make money for his/her clients. This major constraint on the "smart money" managers in the marketplace further emphasizes the point that financial asset markets may develop speculative bubbles based on biased expectations because aggregate level asset allocations are not being made by the "smart money"; it is being made by the average person who knows very little about the stock market.

a. Asset Pricing Models

Since the EMH can only be tested against a model of asset pricing, the EMH is essentially impossible to disprove with this method. Any empirical test of the EMH using an asset pricing model that fails to explain returns cannot be used to disprove the EMH; the focus always comes back to the variables utilized in the asset pricing model. According to John Sherman, "All asset-pricing models depend on an accurate assessment of risk to determine value."⁹

Prior to the 1990s, the most commonly accepted asset pricing model was the Capital Asset Pricing Model based on the work of William F. Sharpe (1964)¹⁰, John Lintner (1965)¹¹, and

⁷ LAKONISHOK, J., SHLEIFER, A. and VISHNY, R. W. (1994), Contrarian Investment, Extrapolation, and Risk. The Journal of Finance, 49: 1541-1578. doi:<u>10.1111/j.1540-6261.1994.tb04772.x</u>

⁸ LAKONISHOK, J., SHLEIFER, A. and VISHNY, R. W. (1994), Contrarian Investment, Extrapolation, and Risk. The Journal of Finance, 49: 1541-1578. doi:<u>10.1111/j.1540-6261.1994.tb04772.x</u>

⁹ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

¹⁰ Sharpe, William F. "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." *The Journal of Finance*, vol. 19, no. 3, 1964, pp. 425–442. *JSTOR*, www.jstor.org/stable/2977928.

¹¹ Lintner, John. "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets." *The Review of Economics and Statistics*, vol. 47, no. 1, 1965, pp. 13–37. *JSTOR*, www.jstor.org/stable/1924119.

Fischer Black $(1972)^{12}$. The model stipulates that the expected return for a given asset *i* is equal to the risk-free rate (for the holding period) plus beta of the asset times the expected market risk premium over the risk-free rate:

$$E(R_i) = r_f + \beta_i * [E(R_m) - r_f]$$

where $\beta = \frac{covariance \ of \ returns_{i,m}}{variance \ of \ returns_{m}}$ and the United States Treasury Yield (over the holding period) usually acts as a proxy for the risk-free rate. The ex-post version of the test is as follows:

$$R_i = r_f + \beta_i * [R_m - r_f] + \varepsilon$$

Eugene Fama and Kenneth French summarize the attractiveness and issues of the model:

The attraction of the CAPM is that it offers powerful and intuitively pleasing predictions about how to measure risk and the relation between expected return and risk. **Unfortunately, the empirical record of the model is poor – poor enough to invalidate the way it is used in applications.** The CAPM's empirical problems may reflect theoretical failings, **the result of many simplifying assumptions.** But they may also be caused by difficulties in implementing valid tests of the model. For example, **the CAPM says that the risk of a stock should be measured relative to a comprehensive "market portfolio" that in principle can include not just traded financial assets, but also consumer durables, real estate, and human capital.** Even if we take a narrow view of the model and limit its purview to traded financial assets, is it legitimate to further limit the market portfolio to U.S. common stocks (a typical choice), or should the market be expanded to include bonds, and other financial assets, perhaps around the world? In the end, we argue that whether the model's problems reflect weaknesses in the theory or in its empirical implementation, the failure of the CAPM in empirical tests implies that most applications of the model are invalid.¹³

Ordinarily, empirical tests of asset pricing models include the stock market as a proxy for the market because of ease of access to data; this fact alone makes empirical pricing tests extremely questionable because the true theoretical market return is nearly impossible (if not impossible) to observe. Using the expected market premium denoted by $[E(R_m) - r_f]$ is also questionable. The "risk-free" rate of return isn't actually risk-free. There is risk inherent in holding the United States' Federal Treasury Securities. The United States can only sustain a debt burden of so much before it would be unable to pay back its creditors in real terms – a country can only increase tax receipts by so much through explicit taxes and/or seigniorage before economic output falls due to overly burdensome taxes and/or hyperinflation causing instability.

¹² Black, Fischer, (1972), <u>Capital Market Equilibrium with Restricted Borrowing</u>, *The Journal of Business*, **45**, issue 3, p. 444-55.

¹³ Fama, Eugene F. and French, Kenneth R., The Capital Asset Pricing Model: Theory and Evidence (August 2003). CRSP Working Paper No. 550; Tuck Business School Working Paper No. 03-26. Available at SSRN: <u>https://ssrn.com/abstract=440920</u> or <u>http://dx.doi.org/10.2139/ssrn.440920</u>

While Fama mentions that the CAPM has been a failure at least empirically, and possibly theoretically, it does not necessarily preclude the presence of another superior asset pricing model that is empirically valid. Arbitrage Pricing Theory is the study of market factors which may close the gap between the predicted returns of a basic model like CAPM and provide portfolio managers with superior returns by closing these gaps. However, the EMH implies that any variable incorporated into an asset pricing model should account for some risk related to the asset being valued. The problem is compounded when variables which appear to carry no risk are incorporated into models show greater explanatory power than those with seemingly solid theoretical risks.

Eugene Fama and Kenneth French created an empirically superior model to the CAPM in 1992.¹⁴ Their 3-factor model of asset pricing in 1992 uses market beta as well as 2 additional factors: "size" (market capitalization) and "value" (book price of equity/market price of equity).

$$E(R_i) = r_f + \beta_{i1} * [E(R_m) - r_f] + \beta_{i2} * E(SMB) + \beta_{i3} * E(HML)$$

Where SMB is the market capitalization premium (small minus big), and HML is the value premium (high B/M minus low B/M). While empirical tests of this model tend to perform better than the CAPM, the evidence suggesting that these are additional risk factors is weak. Eugene Fama himself has argued that the three-factor model's grounding is very weak:

"I've spent a good part of the last 40 years testing those models. And a result of a lot of that is the so-called Fama-French three-factor model. It's widely used both by academics and in industry. [He chuckles.] I'm laughing because the theoretical basis for the model is quite shaky. Basically, we saw these patterns in returns and our motivation was to try to explain them."¹⁵

Whether these proxy for risk is also questionable. Fama explains:

The discussion [...] assumes that the asset-pricing effects captured by size and book-tomarket equity are rational. For BE/ME (book price of equity to market price of equity), our most powerful expected-return variable, there is an obvious alternative. The crosssection of book-to-market ratios might result from market overreaction to the relative prospects of firms. If overreaction tends to be corrected, BE/ME will predict the cross-section of stock returns.¹⁶

While the theoretical basis for the CAPM seems to make sense (despite its empirical failings) because it captures some element of the systematic risk that portfolios may fall with the market, size and value are both highly questionable in comparison. Do small stocks outperform because they are riskier, or because investment managers have discounted their value irrationally? Do

¹⁴ Fama, Eugene F., and Kenneth R. French. "The Cross-Section of Expected Stock Returns." *The Journal of Finance*, vol. 47, no. 2, 1992, pp. 427–465. *JSTOR*, www.jstor.org/stable/2329112.
 ¹⁵ Sommer, Jeff. "Eugene Fama: King of Predictable Markets". *The New York Times*

https://www.nytimes.com/2013/10/27/business/eugene-fama-king-of-predictable-markets.html

¹⁶ Fama, Eugene F., and Kenneth R. French. "The Cross-Section of Expected Stock Returns." *The Journal of Finance*, vol. 47, no. 2, 1992, pp. 427–465. *JSTOR*, www.jstor.org/stable/2329112.

high B/M firms outperform because there is something inherently riskier about them, or is it because low B/M tend to have overly optimistic prospects that lead to disappointment?¹⁷ Whether or not they proxy for risk, there is cause to believe that there are other additional indicators which may provide insight into returns.

Quantitative analysts spend their time working on developing asset pricing models and arbitrage strategies to find profitable strategies that exploit mispricing in financial markets. They work tirelessly in effort of finding the best combination of indicators that capture variation in returns; they conduct principle component analyses to minimize the number of real-time variables in models to avoid overfitting.

However, the methods by which quantitative analysts manufacture valuation models are often flawed. Since the volume of data about companies that can be produced in real-time has increased substantially since the late 1980s, there has been a shift to focus on building asset pricing models which incorporate the most cross-sectional information at the expense of the length of the time series. There is an enormous responsibility of quantitative analysts to balance the amount of real-time information incorporated into a model and the quality/variation in the data going into the models. Since many firms only use data collected since the late-1980s for their models, it is unlikely capturing very many rare event occurrences in the markets. These rare "black-swan" events fall far outside of the ordinarily predicted normal distribution that some asset pricing models use (for the sake of elegance). Rare events are difficult enough to predict with 150 or so years of data; reducing the number of years in the sample can only make the models less effective at making inferences about out of sample data.

While the empirical faults of pricing model building are unfortunate, the real harm caused by the models lies in their widespread applications. Despite the overwhelming evidence showing that CAPM is empirically invalid, investment banks tend to use CAPM with modifications to calculate the discount rate used in valuation models for individual companies. The betas that are inappropriately used in these models should really only be used to evaluate the undiversifiable "risk" of a diversified portfolio of stocks (not individual companies). Regressions that attempt to test covariance of individual stocks with the market often return standard errors that produce extremely large and useless confidence intervals for beta of an individual security. Unscrupulous investment bankers may use these large confidence intervals to their advantage, and deliberately reduce the discount rate in valuation models by using CAPM to calculate cost of equity in order to inflate valuations. Investment practitioners may even use the 3-factor model as a substitute for fundamental stock analysis and good judgement.

The truth is that "the more we learn about financial markets, the more it seems that we are unable to accurately determine the inherent risk of various financial securities.¹⁸"

b. Hyman Minsky's Financial Instability Hypothesis & Instability Inherent in Capitalist Economies

 ¹⁷ LAKONISHOK, J., SHLEIFER, A. and VISHNY, R. W. (1994), Contrarian Investment, Extrapolation, and Risk. The Journal of Finance, 49: 1541-1578. doi:<u>10.1111/j.1540-6261.1994.tb04772.x</u>
 ¹⁸ Sherman, John, "The Efficient Market Hypothesis: the Einancial Instability Hypothesis and Speculative."

¹⁸ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

In May of 1992, Hyman Minsky's paper entitled "The Financial Instability Hypothesis" was published; the paper provides a framework to distinguish between stabilizing and destabilizing capitalist debt structures:

"Three distinct income-debt relations for economic units, which are labeled as hedge, speculative, and Ponzi finance, can be identified. Hedge financing units are those which can fulfill all of their contractual payment obligations by their cash flows: the greater the weight of equity financing in the liability structure, the greater the likelihood that the unit is a hedge financing unit. Speculative finance units are units that can meet their payment commitments on "income account" on their liabilities, even as they cannot repay the principle out of income cash flows. Such units need to "roll over" their liabilities: (e.g. issue new debt to meet commitments on maturing debt). Governments with floating debts, corporations with floating issues of commercial paper, and banks are typically hedge units. For Ponzi units, the cash flows from operations are not sufficient to fulfill either the repayment of principle or the interest due on outstanding debts by their cash flows from operations. Such units can sell assets or borrow. Borrowing to pay interest or selling assets to pay interest (and even dividends) on common stock lowers the equity of a unit, even as it increases liabilities and the prior commitment of future incomes. A unit that Ponzi finances lowers the margin of safety that it offers the holders of its debts. It can be shown that if hedge financing dominates, then the economy may well be an equilibrium seeking and containing system. In contrast, the greater the weight of speculative and Ponzi finance, the greater the likelihood that the economy is a deviation-amplifying system."19

Minsky goes on further to explain how these various unstable financing regimes come about as the result of prolonged periods of stability:

"The first theorem of the financial instability hypothesis is that the economy has financing regimes under which it is stable, and financing regimes in which it is unstable. The second theorem of the financial instability hypothesis is that over periods of prolonged prosperity, the economy transits from financial relations that make for a stable system to financial relations that make for an unstable system. **In particular, over a protracted period of good times, capitalist economies tend to move from a financial structure dominated by hedge finance units to a structure in which there is large weight to units engaged in speculative and Ponzi finance.** Furthermore, if an economy with a sizeable body of speculative financial units is in an inflationary state, and the authorities attempt to exorcise inflation by monetary constraint, then speculative units will become Ponzi units and the net worth of previously Ponzi units will quickly evaporate. Consequently, units with cash flow shortfalls will be forced to try to make position by selling out position. This is likely to lead to a collapse of asset values. The financial instability hypothesis is a model of a capitalist economy which does not rely upon exogenous shocks to generate business cycles of varying severity. The hypothesis

¹⁹ Minsky, Hyman P., The Financial Instability Hypothesis (May 1992). The Jerome Levy Economics Institute Working Paper No. 74. Available at SSRN: <u>https://ssrn.com/abstract=161024</u> or <u>http://dx.doi.org/10.2139/ssrn.161024</u>

holds that business cycles of history are compounded out of (i) the internal dynamics of capitalist economies, and (ii) the system of interventions and regulations that are designed to keep the economy operating within reasonable bounds."²⁰

Minsky's insights about the nature of speculative and Ponzi financing in the late stages of the business cycle align perfectly with those of Michael Burry, who is widely believed to have been the first portfolio manager to bet against the housing market in 2005 by harassing Wall Street banks into selling him credit default swaps (insurance contracts that pay off in the event that the underlying bond defaults):

In the second quarter of 2005, credit-card delinquencies hit an all-time high—even though house prices had boomed. That is, even with this asset to borrow against, Americans were struggling more than ever to meet their obligations. The Federal Reserve had raised interest rates, but mortgage rates were still effectively fallingbecause Wall Street was finding ever more clever ways to enable people to borrow money. Burry now had more than a billion-dollar bet on the table and couldn't grow it much more unless he attracted a lot more money. So, he just laid it out for his investors: the U.S. mortgage-bond market was huge, bigger than the market for U.S. Treasury notes and bonds. The entire economy was premised on its stability, and its stability in turn depended on house prices continuing to rise. "It is ludicrous to believe that asset bubbles can only be recognized in hindsight," he wrote. "There are specific identifiers that are entirely recognizable during the bubble's inflation. One hallmark of mania is the rapid rise in the incidence and complexity of fraud.... The FBI reports mortgage-related fraud is up fivefold since 2000." Bad behavior was no longer on the fringes of an otherwise sound economy; it was its central feature. "The salient point about the modern vintage of housing-related fraud is its integral place within our nation's institutions," he added.²¹

Even in the face of overwhelming evidence that the market was unsustainable, the market kept on chugging until 2007.

"As early as 2004, if you looked at the numbers, you could clearly see the decline in lending standards. In Burry's view, standards had not just fallen but hit bottom. The **bottom even had a name: the interest-only negative-amortizing adjustable-rate subprime mortgage.** You, the homebuyer, actually were given the option of paying nothing at all, and rolling whatever interest you owed the bank into a higher principal balance. It wasn't hard to see what sort of person might like to have such a loan: one with no income."

Despite all of these very clear issues with the housing market, Burry's investors still doubted him because of the short-term changes in the portfolio's value due to the premiums paid to maintain the credit default swap positions:

²⁰ Minsky, Hyman P., The Financial Instability Hypothesis (May 1992). The Jerome Levy Economics Institute Working Paper No. 74. Available at SSRN: <u>https://ssrn.com/abstract=161024</u> or <u>http://dx.doi.org/10.2139/ssrn.161024</u>

²¹ Lewis, Michael M. The Big Short : [inside the Doomsday Machine]. New York :Simon & Schuster, 2010.

"Now he had to explain that they had to subtract from that number these & subprimemortgage-bond insurance premiums. One of his New York investors called and said ominously, 'You know, a lot of people are talking about withdrawing funds from you.' As their funds were contractually stuck inside Scion Capital for some time, the investors' only recourse was to send him disturbed-sounding e-mails asking him to justify his new strategy. 'People get hung up on the difference between +5% and -5% for a couple of years,' Burry replied to one investor who had protested the new strategy. 'When the real issue is: over 10 years who does 10% or better annually? And I firmly believe that to achieve that advantage on an annual basis, I have to be able to look out past the next couple of years.... I have to be steadfast in the face of popular discontent if that's what the fundamentals tell me.' In the five years since he had started, the S&P 500, against which he was measured, was down 6.84 percent. In the same period, he reminded his investors, Scion Capital was up 242 percent."²²

Despite Burry's significant outperformance of the market based on clear value investing principles, his clients still didn't trust him to make investment decisions because of their unrelenting focus on short term price changes. Burry had the benefit of running a hedge fund that allowed him to lock up investor funds and forbid withdrawals in the face of this change in sentiment among his clients. Even with these provisions, Burry's clients whom he had once respected constantly harassed him and made his job miserable while waiting for the bet to pay off. Investors like Michael Burry are unable to make these kinds of bets within the structure of ordinary mutual funds (excluding separately managed accounts). Mutual fund managers are subject to liquidity requirements and are forbidden from preventing withdrawals of investor capital. This once again underscores how the "smart money" investors are often at the whims of the masses when it comes to asset allocation strategies.

This still doesn't explain why investors were willing to purchase mortgage-backed securities that supported loans made to Speculative Borrowers and Ponzi Borrowers. Creditors lend to Ponzi borrowers because they also believe that prices of the underlying asset will increase and/or the borrower will be able to refinance the loan. Minsky argued that protracted periods of stable good economic conditions will ultimately lead to a greater proportion of debt in the hands of speculators and Ponzi borrowers; we believe that this is because of people irrationally placing emphasis on recent experience when developing their expectations of the future.

c. The Aggregate Investor Allocation to Equities, Tobin's Q, TR CAPE, CAPE, and Long-Term Reversion in Returns

As John Sherman points out, "One of the most fascinating anomalies in securities markets is that of long-term reversals—that a series of high returns tends to be followed by low returns and vice versa."²³ As Eugene Fama explains:

²² Lewis, Michael M. The Big Short : [inside the Doomsday Machine]. New York :Simon & Schuster, 2010.

²³ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

"Ratios involving stock prices have information about expected returns missed by market betas. On reflection, this is not surprising. A stock's price depends not only on the expected cash flows it will provide, but also on the expected returns that discount expected cash flows back to the present. **Thus, in principle the cross-section of prices has information about the cross-section of expected returns.** (A high expected return implies a high discount rate and a low price.) The cross-section of stock prices is, however, arbitrarily affected by differences in scale (or units). But with a judicious choice of scaling variable X, the ratio X/P can reveal differences in the cross-section of expected stock returns. **Such ratios are thus prime candidates to expose shortcomings of asset pricing models – in the case of the CAPM, shortcomings of the prediction that market betas suffice to explain expected returns** (Ball, 1978)²⁴²⁵."

The Aggregate Investor Allocation to Equities, Tobin's Q, TR CAPE, and CAPE are some of these pricing indicators which fit Fama's criteria; coincidentally all 4 show statistically significant negative correlation with subsequent 10-year real returns.

Here is a graph of these indicators over time:

²⁴ Ball, Ray. 1978. "Anomalies in Relationships Between Securities' Yields and Yield-Surrogates." Journal of Financial Economics. 6:2, pp. 103-126.

²⁵ Fama, Eugene F. and French, Kenneth R., The Capital Asset Pricing Model: Theory and Evidence (August 2003). CRSP Working Paper No. 550; Tuck Business School Working Paper No. 03-26. Available at SSRN: <u>https://ssrn.com/abstract=440920</u> or <u>http://dx.doi.org/10.2139/ssrn.440920</u>

The Aggregate Investor Allocation to Equities is of particular interest to us. Financial assets are unique in that someone must be in possession of them at any given time. When investors purchase and sell financial assets, they implicitly make decisions about the relative proportions of various assets that they hold. An investor may decide to allocate 40% of their savings to stocks, and another 60% to corporate bonds. Another may allocate 10% to treasury bills, 70% in mortgage-backed securities, and 20% in cash. Since these assets are always held by someone, we can aggregate the value of all of these securities across asset classes to determine the aggregate allocations to various classes of financial assets. This is of particular interest because of its relationship to the Efficient Market Hypothesis; rational expectations dictate that an individual investor's allocation to a particular asset class will only increase if this investors' risk-adjusted expected return has increased. This relationship must also hold in aggregate. The historical average aggregate investor allocation to equities between 1945 and 2018 has been roughly 34.7%. If historically high levels of the Aggregate Investor Allocation are associated with lower returns and higher levels of risk, this casts doubt upon the rational investor assumption of the EMH.

Below is a graph of the aggregate investor allocation to stocks and subsequent 10-year real returns:

Notice in the graph the two red reference lines. One corresponds to a real 10-year annualized return of 0%, and the other corresponds to 6.8% real annualized 10-year returns. 6.8% is roughly the geometric average real return from the end of 1871 to the end of 2018 (see appendix).

Tobin's Q was developed by Nobel Laureate James Tobin in 1968. It is the ratio between the market value and replacement value of an asset:

 $Tobin's \ Q = \frac{Market \ Valuation}{Replacement \ Cost}$

"One, the numerator, is the market valuation: the going price in the market for exchanging existing assets. The other, the denominator, is the replacement or reproduction cost: the price in the market for the newly produced commodities. We believe that this ratio has considerable macroeconomic significance and usefulness, as the nexus between financial markets and markets for goods and services." ^{26 27}

When the market price for a corporation is high relative to its replacement cost of net assets, this may attract new entrants; new entrants could effectively replicate the asset and then sell it in the market for a profit. The ensuing dynamics of competition would lead the market value to come down relative to its replacement cost. While a mean value of 1 for the total market would be expected, the historical average is actually around 0.6. This may be due to measurement error in the replacement cost of nonfinancial firms' assets, which is estimated by the Federal Reserve Bank. It may be that the replacement cost of firms is overstated because GAAP depreciation methods understate depreciation expenses. We will not focus that much on the accounting nuances, but the end result is that replacement cost may biased upwards due to systematic measurement error, which leads Tobin's Q to be biased downwards.

The Cyclically Adjusted Price to Earnings ratio (CAPE) and Total Return CAPE (TR CAPE) are metrics created by Robert Shiller.

$$CAPE = \frac{Market \ Price \ of \ Equities}{Average \ of \ the \ Past \ 10 \ years \ of \ Real \ Earnings}$$

Total Return CAPE is nearly identical to CAPE; however, it makes corrections for changes in corporate dividend/buyback policy. TR CAPE and CAPE are interesting because historically high levels of CAPE indicate that the neither the overall level of earnings, nor earnings growth over the period have kept up with price increases over the same period. TR CAPE and CAPE have the most observations in our data since earnings and prices have been accurately recorded for indices since 1871. In contrast, the Aggregate Investor Allocation to Equities and Tobin's Q have only been consistently estimated since 1945.

²⁶"Asset Markets and the Cost of Capital." James Tobin and W.C. Brainard, 1977, Economic Progress, Private Values and Public Policy

²⁷Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

d. The Random Walk Assumption

As mentioned earlier, both the Capital Asset Pricing Model²⁸ and the Black-Scholes Option Pricing Formula assume that stock prices exhibit Brownian motion (stochastic price movements with drift) which is broadly consistent with the idea that price shocks are the result of randomly generated new information being incorporated into prices.

This "random walk" is a fundamental assumption of the EMH, and has been broadly incorporated into financial theory (as exemplified by the CAPM and Black-Scholes models mentioned above). Here is an algebraic representation:

$$V_t = V_{t-1} + \Phi_t + \varepsilon_t$$

Where V_t is the natural log of the value of an asset, Φ_t is the drift trend, and ε_t is a random shock in value which has the following properties:

$$E(\varepsilon_t) = 0$$
 $Var(\varepsilon_t) = \sigma^2$ $Cov(\varepsilon_t, \varepsilon_{t-1}) = 0$

The expected value of the shock ε_t is zero. Price shocks are assumed to have a log-normal distribution. Covariance between price shocks is zero, so price shocks are all independent of one another; historical price changes do not influence prices today.

Our empirical regressions clearly indicate that past price shocks do have some relationship to future shocks, so in reality $Cov(\varepsilon_t, \varepsilon_{t-1}) \neq 0$.

Now in reality, prices do not follow a log-normal distribution. The log distribution of stock returns has fat-tails (kurtosis):

"From 1916 to 2003, the daily index movements of the Dow Jones Industrial Average do not spread out on graph paper like a simple bell curve. The far edges flare too high: too many big changes. Theory suggests that over that time, there should be fifty-eight days when the Dow moved more than 3.4 percent; in fact, there were 1,001. Theory predicts six days of index swings beyond 4.5 percent; in fact, there were 366. And index swings of more than 7 percent should come once every 300,000 years; in fact, the twentieth century saw forty-eight such days. Truly, a calamitous era that insists on flaunting all prediction. Or, perhaps, our assumptions are wrong."²⁹

III. Restructured Model with Endogenously Determined Expected Returns

Now equity returns for individual companies (or the market) can conventionally be thought of this way:

²⁸Although every asset pricing model is a capital asset pricing model, the finance profession reserves the acronym CAPM for the specific model of Sharpe (1964), Lintner (1965), and Black (1972) discussed here. Thus, throughout the paper we refer to the Sharpe – Lintner – Black model as the CAPM. (Fama French 2003)

²⁹ Mandelbrot, Benoit; Hudson, Richard L. (2007-03-22). The Misbehavior of Markets: A Fractal View of Financial Turbulence (pp. 11-13).

$Total Return_t = \text{Return from } \Delta \frac{\frac{Price_t}{Earnings_t}}{(holding earnings constant)} + Return from \Delta Earnings_t (holding the \frac{P}{E} multiple constant) + Dividend Return$

Returns over a given period are a function of price changes and dividend returns. Returns from the price change can be further disaggregated into return from a change in the price to earnings ratio (holding earnings constant) and return from a change in earnings (holding the price to earnings multiple constant).

As mentioned earlier, price shocks can have significant effects if we relax the random walk assumption. If people extrapolate out recent experience of returns and risk when forming expectations of the future; a series of random shocks in one direction could result in a slight divergence in value, however, if "investors start to believe that there is something new about the market"³⁰, future expectations of returns and risk will be biased. This bias in aggregate expected returns and aggregate expected risk leads to price ratios having explanatory power of subsequent returns (because they implicitly contain information about expected returns).

The aggregate investor allocation is shown to explain the most variation in subsequent 10-year annualized real returns in our empirical section; now there is another very intuitive way to think about returns by substituting in the aggregate investor allocation for the price to earnings ratio. Instead of prices being linked to the underlying earnings of an asset, we link equity prices to the outstanding value of cash and bonds outstanding in the market.

Now first, there are particular attributes of financial assets that allow this to be the case. All cash, bonds, and equities must be held by someone at any given point in time. When investors make explicit decisions about the proportions of each asset they will hold in their individual portfolio, the aggregate market allocations of these assets must implicitly shift through price changes to allow individuals to meet their explicit allocation targets. When cash and bonds increase in tandem with growth of the real economy, prices of equities must rise commensurately to maintain the same portfolio allocation.

We create a model of equilibrium demand and supply for the aggregate investor allocation:

In the equities market, demand is a function of expected returns and expected risk. Supply is a function of the # of shares available for purchase in the equities market and new share issuance. Demand shifts are a function of changes in expected returns and changes in expected risk. Supply shifts are a function of new issuance of equity. The vertical axis of the graph is the aggregate allocation to equities. Now demand is downward sloping to the right with a vertical intercept of 100% because the maximum percentage of a portfolio that an individual investor can own is 100%. The demand schedule consists of the target allocations of individual investors to equities. Supply is relatively inelastic and upward sloping since entrepreneurs are slightly responsive to high levels of the aggregate investor allocation; new companies can be sold at high prices

³⁰ Sherman, John. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles". BA, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>

relative to the replacement cost of net assets (Tobin's Q is somewhat correlated with the aggregate investor allocation, but the allocation carries more explanatory power). We assume supply is inelastic because ideas that warrant significant new equity issuance are not really responsive to the allocation, as the equity issuance would occur anyway to provide capital to fund the new business idea. Since average net issuance of equity in any given year tends to be very slightly negative because of stock buybacks (at least since the beginning of the 1980s), and expectations are more volatile, aggregate demand shifts tend to have a greater impact on the equilibrium market clearing aggregate investor allocation.

Coincidentally, we can represent returns over any given period with a similar framework to the price to earnings framework described above:

By thinking of price returns in terms of shifts in the aggregate investor allocation to equities and growth in the supply of bonds and cash (which tend to grow with the economy as a whole), we get a much more realistic picture of how demand and supply functions in financial markets. A significant proportion of subsequent 10-year annualized real returns can be explained in relation to changes in the aggregate investor allocation, much in the way that we think about price to earnings multiples. People intuitively react to high P/E multiples negatively because the earnings yield is implicitly low, and vice versa with low P/E multiples. We think much the same way with regards to the percentage of financial capital invested in the equities market; preferences for individual allocations may mean revert over time, and variation in preferences can be accounted for by a number of factors which we discuss in the second part of the empirical section.

³¹ See page 19 in the empirical results data section for a more in-depth explanation of how the aggregate investor allocation is calculated

IV. Empirical Results (2 sections)

a. Subsequent Ten Year Cumulative Annualized Return Regressions

1. Data

Stock return, Shiller CAPE ratios, and the long interest rate come from Robert Shiller's stock market data. This dataset can be found on Yale's website at: http://www.econ.yale.edu/~shiller/data.htm

Shiller explains how he constructed the dataset we pulled from his website³²:

"Stock market data used in my book, Irrational Exuberance [Princeton University Press 2000, Broadway Books 2001, 2nd ed., 2005] are available for download, U.S. Stock Markets 1871-Present and CAPE Ratio. This data set consists of monthly stock price, dividends, and earnings data and the consumer price index (to allow conversion to real values), all starting January 1871. The price, dividend, and earnings series are from the same sources as described in Chapter 26 of my earlier book (Market Volatility [Cambridge, MA: MIT Press, 1989]), although now I use monthly data, rather than annual data. Monthly dividend and earnings data are computed from the S&P fourquarter totals for the quarter since 1926, with linear interpolation to monthly figures. Dividend and earnings data before 1926 are from Cowles and associates (Common Stock Indexes, 2nd ed. [Bloomington, Ind.: Principia Press, 1939]), interpolated from annual data. Stock price data are monthly averages of daily closing prices through January 2000, the last month available as this book goes to press. The CPI-U (Consumer Price Index-All Urban Consumers) published by the U.S. Bureau of Labor Statistics begins in 1913; for years before 1913 1 spliced to the CPI Warren and Pearson's price index, by multiplying it by the ratio of the indexes in January 1913. December 1999 and January 2000 values for the CPI-U are extrapolated. See George F. Warren and Frank A. Pearson, Gold and Prices (New York: John Wiley and Sons, 1935). Data are from their Table 1, pp. 11–14.

As of September 2018, I now also include an <u>alternative version of CAPE</u> that is somewhat different. As documented in Bunn & Shiller (2014) and Jivraj and Shiller (2017), changes in corporate payout policy (i.e. share repurchases rather than dividends have now become a dominant approach in the United States for cash distribution to shareholders) may affect the level of the CAPE ratio through changing the growth rate of earnings per share. This subsequently may affect the average of the real earnings per share used in the CAPE ratio. A total return CAPE corrects for this bias through reinvesting dividends into the price index and appropriately scaling the earnings per share. "

Shiller's dataset includes monthly data; however, we use annual end of year data to construct our key dependent variable: Ten Year Annualized Returns (Real & Nominal). We use cumulative annualized returns in order to explore the lagged or "persistence effect" of past price shocks. Ten years is a crude estimation that is roughly close to the average length of an average U.S. business

³² Robert Shiller's data webpage: <u>http://www.econ.yale.edu/~shiller/data.htm</u>

cycle (5-7 years). Periods significantly longer than 10 years may not be as memorable to investors so there may be less price to price feedback. Shiller's stock data on the S&P 500 goes back until 1871, giving us 137 observations between 1871 and 2008.³³

Data for the aggregate investor allocation to equities can be calculated using Federal Reserve Data. The formula is calculated by dividing (Nonfinancial corporate business; corporate equities; liability, level + Financial business; corporate equities; liability, level) by (Nonfinancial corporate business; corporate equities; liability, level + Financial business; corporate equities; liability, level + Nonfinancial Corporate Business; Credit Market Instruments; liability + Households and Nonprofit Organizations; Credit Market Instruments; liability, level + Federal Government; Credit Market Instruments; Liability, Level + State and Local Governments, Excluding Employee Retirement Funds; Credit Market Instruments; Liability, Level + Rest of the World; Credit Market Instruments; Liability, Level). The FRED codes are as follows: ((NCBEILQ027S+FBCELLQ027S)/1000)/(((NCBEILQ027S+FBCELLQ027S)/1000)+BCNSD ODNS+CMDEBT+FGSDODNS+SLGSDODNS+DODFFSWCMI). The 1000s are there to convert all of the numbers to the same units. A chart of the metric can be found at this link: https://fred.stlouisfed.org/graph/?g=qis. Data on the aggregate investor allocation to equities begins in 1945, leaving us with 73 observations. *Note that this is significantly fewer than with Shiller's TR CAPE or Shiller's CAPE*.

Data for Tobin's Q was calculated using the Federal Reserve Statistical Release Z.1 Financial Accounts of the United States and can be found at:

http://www.federalreserve.gov/releases/z1/current/z1.pdf. Tobin's Q ratio can be calculated from the most recent Federal Reserve Flow of Funds release. The ratio is calculated by dividing line 36 of table B.102 by line 33. We calculate Tobin's Q through 2018. The Federal Reserve has data on Tobin's Q beginning in 1945, leaving us with 73 observations. Note that when we complete regressions on 10-year returns, we will drop 10 observations from each one we run since we don't have subsequent ten-year cumulative returns for 2009-2018, despite having other data for these years.

I paraphrase John Sherman's senior thesis, one of professor Petersen's former students, to describe the nature of Tobin's Q:

Interestingly, Tobin's Q is calculated using data from nonfinancial firms (i.e. it excludes data from banks, insurance companies, etc.). High values of Tobin's Q are presumably a consequence of high growth and/or high profits, which pushes asset prices above their average replacement costs. If markets are efficient, high values of Q should be self-correcting or self-reversing, so we shouldn't get very high values of Q for sustained periods because profits attract new entrants. New firms enter the market and existing firms expand, and as investment in plant and equipment grows, a corresponding increase in the aggregate capital-labor ratio will result. Basic microeconomic theory suggests diminishing returns to capital set in and the profit rate will fall. Therefore, following high values of Q, we should expect lower returns in the following years.³⁴

 ³³ Sherman, John, and Harold Petersen. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles," pg. 29, 2014. <u>https://dlib.bc.edu/islandora/object/bc-ir%3A102322</u>
 ³⁴ Ibid

The theoretical basis for the aggregate investor allocation to equities is also very interesting. Since the allocation should be primarily determined by investors' expected returns and risk, any variation must be accompanied by either change in the market's expectation of return or risk (within the context of all assets available for purchase) according to the Efficient Market Hypothesis. As we will present in our regression results, subsequent return data directly contradicts the idea that higher allocations are met with higher returns and/or less risk, and vice versa (as would be suggested by the EMH).

2. Dependent Variables for Subsequent Return Regressions

We constructed cumulative returns in order to test if investors' expectations of risk and return are consistent with the Efficient Market Hypothesis. Specifically, we use:

- a. Ten Year Annualized Returns (Nominal)
- b. Ten Year Annualized Returns (Real adjusted by CPI in Shiller's data)
- c. Average Annual Losses Over Next 10 Years (only includes years with losses)

3. Independent Variables for Subsequent Return Regressions

- a. The Aggregate Investor Allocation to Equities
- b. Tobin's Q
- c. Shiller's TR CAPE (Cyclically Adjusted Price to Earnings ratio adjusted for dividend and buyback payout policy)
- d. Shiller's CAPE
- e. Long Interest Rate (GS10)
- f. Greenspan Put

Our first 4 independent variables all contain aggregate market prices for equities (whether financial, nonfinancial, or all) as well as some other data that informs investors about the asset they are purchasing and/or data about the broader market and past market behavior. The Long Interest Rate comes from Shiller's data, and reflects historical 10-year Treasury yields in the United States. We construct another independent variable: Greenspan Put is a binary variable where every year including and following 1987 is equal to 1, otherwise 0. We construct this to denote Alan Greenspan's suggestion in 1987 that Federal Reserve Monetary Policy will be eased to prop up equity valuations in the event of crises. Subsequent Federal Reserve Chairmen have been believed to follow similar strategies to attempt to prop up equity valuations, however it should be noted that regressions which included the Greenspan Put may just lead to spurious correlation. Since the mid-1990s equity valuations have been historically been on the higher side according to the other independent variables presented; as a result, the binary variable essentially creates a piecewise best fit function that jumps in 1987. Since the greatest stock market collapses have tended to coincide with recessions and reasonable Federal Reserve Policy in recessions would generally include monetary easing, the period following Greenspan's announcement may simply coincide with more effective monetary policy implementations (on average) which have the added effect of leading investors to shift asset allocations towards risky assets; this is exactly what the Federal Reserve Bank intends in recessions as it stimulates greater economic productivity and reduces labor market slack. Despite this, we think that it would be interesting to run regressions with this indicator to see if it adds explanatory power to our other models (after first comparing them without the Greenspan Put).

4. Regression Specifications & Results

We present evidence that is inconsistent with the Efficient Market Hypothesis. First, we assess the significance of these market indicators listed above and their relationship with subsequent 10-year returns (nominal and real). Secondly, we test to see if our indicators may predict years of minimal losses over the following 10-year period. Thirdly, we assess possible determinants of the primary indicator of greatest significance: the aggregate investor allocation to equities.

It is important to note that due to our current specifications, our observations are not independent because ten-year equity returns consist of an overlapping moving average. To correct for autocorrelation, which biases standard errors downwards (and t-statistics upwards), we run a Newey-West (1987)³⁵ estimator; this is commonly used to correct for specifiable bias between observations in moving average variables. We specify a maximum of 9 lags since 10-year returns reported annually will have at most 9 years of overlapping annual returns. Our Newey-West corrections are stated alongside all of our regressions which require autocorrelation corrections below (those with moving average time series data).

³⁵ Newey, Whitney K., and Kenneth D. West. "A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix." *Econometrica*, vol. 55, no. 3, 1987, pp. 703–708. *JSTOR*, www.jstor.org/stable/1913610.

Our specification for subsequent nominal returns regressed on the aggregate investor allocation is as follows:

. reg TenYearA	Annu	alizedReturnNo	om Perc	entI	nStocks				
Source		SS	df		MS	Number o	f obs	=	64
						F(1, 62)		=	406.35
Model		.15270944	1	.1	5270944	Prob > F		=	0.0000
Residual		023299804	62	.00	0375803	R-square	d	=	0.8676
						Adj R-sq	uared	=	0.8655
Total		176009245	63	.00	2793798	Root MSE		=	.01939
	•								
TenYearAnnual~	~m	Coef.	Std. E	rr.	t	P> t	[95%	Conf.	Interval]
PercentInStock	cs	6935454	.03440	51	-20.16	0.000	762	3201	6247707
_ ^{cor}	15	.3442421	.01195	86	28.79	0.000	.320	3373	.3681469

$TenYearAnnualizedReturnNom = \alpha + \beta * PercentInStocks + \varepsilon$

. *Regress Ten Year Annualized Nominal Returns on the Aggregate Investor Allocation to Stocks*

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom PercentInStocks, lag(9)

Regression with 1 maximum lag: 9	Newey-West st	andard error	3	Number of F(1, Prob > F	obs = 62) = =	64 196.04 0.0000
TenYearAnnual~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
PercentInStocks _cons	6935454 .3442421	.0495337 .0200147	-14.00 17.20	0.000	7925619 .3042332	5945289 .384251

The aggregate investor allocation captures 86.6% of variation in ten year annualized nominal stock returns, and is statistically significant at an α =.01 (t-stat=-13.86). Note that based on the model, each additional 1% of financial assets in equities reduces subsequent ten year annualized nominal returns by roughly .7% per year. Let's see how the indicator performs on real returns.

Our specification for subsequent real returns regressed on the aggregate investor allocation is as follows:

Source		SS	df		MS	Number o	f obs	=	64
Model Residual		146564614	1	.14	46564614	F(1, 62) Prob > F R-square	d	= = =	140.80 0.0000 0.6943
Total		211102494	63	. 00	03350833	Adj R-sq Root MSE	uared	= =	0.6894
TenYearAnnual~	·1	Coef.	Std. E	rr.	t	P> t	[95%	Conf.	Interval]
PercentInStock	(S 15	6794485 .3011658	.05726	D3 26	-11.87 15.13	0.000	793	9101 3811	5649868 .3409505

$TenYearAnnualizedReturnReal = \alpha + \beta * PercentInStocks + \varepsilon$

. *Regress Ten Year Annualized Real Returns on the Aggregate Investor Allocation to Stocks* . reg TenYearAnnualizedReturnReal PercentInStocks

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnReal PercentInStocks, lag(9)

Regression with 1 maximum lag: 9	Newey-West st	andard errors		Number of F(1, Prob > F	obs = 62) = =	64 46.37 0.0000
TenYearAnnual~1	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
PercentInStocks	6794485 .3011658	.0997752 .0373349	-6.81 8.07	0.000	8788962 .2265345	4800007 .3757972

While the variation in subsequent real returns is lower than in the nominal return regression, it still captures a significant amount of variation in real returns – notice the coefficient is very similar to the coefficient in the nominal return regression. Adjusted R² of 68.9% is a fairly good fit, and the corrected t-statistic of -6.81 is still statistically significant on an α =.01 basis.

Since the objective for an investor is to maximize real returns (per unit of risk), we regress on both nominal and real subsequent 10-year returns for all of our indicators. Notice that each additional percent of assets allocated to stocks corresponds with a decline of -0.68% in ten year annualized real returns. We find statistically significant negative correlations for all of our indicators, albeit with less correlation below.

Our specification for subsequent nominal returns regressed on Tobin's Q is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta * TobinsQ + \varepsilon$

- . *Regress Ten Year Annualized Nominal Returns on Tobin's Q*
- . reg TenYearAnnualizedReturnNom TobinsQ

Source	SS	df	MS	Number of obs	=	64
				F(1, 62)	=	182.22
Model	.131326294	1	.131326294	Prob > F	=	0.0000
Residual	.044682951	62	.000720693	R-squared	=	0.7461
				Adj R-squared	=	0.7420
Total	.176009245	63	.002793798	Root MSE	=	.02685
			-			

TenYearAnn~m	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
TobinsQ	1600386	.0118556	-13.50	0.000	1837377	1363396
_cons	.214524	.0085629	25.05		.1974071	.231641

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom TobinsQ, lag(9)

Regression with Newey-West standard errors	Number of obs	=	64
maximum lag: 9	F(1,	62) =	88.36
	Prob > F	=	0.0000

		Newey-West				
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TobinsQ	1600386	.0170255	-9.40 20.68	0.000	1940721 .1937836	1260051

Our specification for subsequent real returns regressed on Tobin's Q is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta * TobinsQ + \varepsilon$

```
. *Regress Ten Year Annualized Real Returns on Tobin's Q*
```

. reg TenYearAnnualizedReturnReal TobinsQ

Source	SS	df	MS	Numbe	r of ob	s =	64
				- F(1,	62)	=	73.20
Model	.114295702	1	.114295702	Prob	> F	=	0.0000
Residual	.096806792	62	.0015614	R-squ	ared	=	0.5414
				- Adj R	-square	d =	0.5340
Total	.211102494	63	.003350833	Root I	MSE	=	.03951
TenYearAnn~l	Coef.	Std. Err.	t	P> t	[95%)	Conf.	Interval]
TobinsQ	1493014	.0174504	-8.56	0.000	1841	843	1144185
_cons	.1691112	.0126038	13.42	0.000	.1439	165	.1943058

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnReal TobinsQ, lag(9)

Regression wit maximum lag: 9	:h Newey-West	standard er	rors	Number F(1, Prob >	of obs (F	= 52) = =	64 26.12 0.0000
TenYearAnn~l	Coef.	Newey-West Std. Err.	t	P> t	[95%	Conf.	Interval]
TobinsQ _cons	1493014 .1691112	.0292114 .0201902	-5.11 8.38	0.000	2076	5941 7515	0909087

Notice that once again that our indicator, Tobin's Q, captures less variation in real returns than in nominal returns. An adjusted R^2 of 53.4% is still fairly respectable though. Note while Tobin's Q is statistically significant, it's less significant than the aggregate investor allocation to equities with a t-statistic of -5.11 compared to -6.81 (for the aggregate allocation).

Our specification for subsequent nominal returns regressed on Total Return CAPE is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta * TRCAPE + \varepsilon$

- . *Regress Ten Year Annualized Nominal Returns on TR CAPE*
- . reg TenYearAnnualizedReturnNom TRCAPE

Source	SS	df	MS	Number of obs	=	129
Model	.118199008	1	.118199008	F(1, 127) Prob > F	=	69.93 0.0000
Residual	.214676342	127	.001690365	Adj R-squared	=	0.3551
Total	.33287535	128	.002600589	Root MSE	=	.04111
TenYearAnn~m	Coef.	Std. Err.	t	P> t [95% C	onf.	Interval]
TRCAPE _cons	0043597 .1783462	.0005214 .0110044	-8.36 16.21	0.00000539 0.000 .15657	13 05	003328 .2001219

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnNom TRCAPE, lag(10)

Regression with Newey-West standard errors	Number of obs	=	129
maximum lag: 10	F(1, 127)	=	30.93
	Prob > F	=	0.0000

TenYearAnn~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE _cons	0043597 .1783462	.0007839 .0211014	-5.56 8.45	0.000	0059109 .1365905	0028085

Our specification for subsequent real returns regressed on Total Return CAPE is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta * TRCAPE + \varepsilon$

```
. *Regress Ten Year Annualized Real Returns on TR CAPE*
```

. reg TenYearAnnualizedReturnReal TRCAPE

-.0040282

.1442785

TRCAPE

_cons

Source	SS	df	MS	Number of ob	s =	129
				F(1, 127)	=	55.16
Model	.100909843	1	.100909843	Prob > F	=	0.0000
Residual	.23233273	127	.001829392	R-squared	=	0.3028
				• Adj R-square	d =	0.2973
Total	.333242573	128	.002603458	Root MSE	=	.04277
TenYearAnn~l	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]

-7.43

12.60

0.000

0.000

-.0051015

.121625

-.002955

.1669321

. *Run Newey-West Estimator to correct for overlapping Moving Average*

.0005424

.011448

. newey TenYearAnnualizedReturnReal TRCAPE, lag(9)

Regression wit maximum lag: 9	th Newey-West 9	standard e	rrors	Number F(1, Prob >	of obs = 127) = F =	129 31.73 0.0000
TenYearAnn~l	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE _cons	0040282 .1442785	.0007152 .0188775	-5.63 7.64	0.000	0054434 .1069234	002613 .1816337

Notice that once again that Total Return CAPE captures less variation in real returns than in nominal returns. While the adjusted R² starts to fall off at 29.7% of variation. TR CAPE is still testing as significant – while the t statistic is too close to that of Tobin's Q to really be able to make a very clear indication of strength, the R² of the Tobin's Q regression was fitted much better. It is important to note that there is a significant disparity in observations between these two regressions, which could ultimately be leading to the disparity in fit. For this reason, it is unclear which indicator is stronger because there are no data to test the out of sample observations that are included in the TR CAPE regression on Tobin's Q. The Tobin's Q t-statistic could go either way in the future, especially considering the limitation of the sample. The Tobin's Q and aggregate investor allocation are clearly more comparable because they sample the same years of observations (1945-2008 and subsequent return periods).

It is possible that the 10-year treasury yield (or historical equivalent) could add explanatory power to our regressions, on grounds that investors would accept lower expected returns on stocks if bond yields were lower, so we add the long interest rate to our regressions which include TR CAPE and CAPE.

Our specification for subsequent nominal returns regressed on both Total Return CAPE and the 10-year interest rate is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta_1 * TRCAPE + \beta_2 * LongInterestRate + \varepsilon$

- . *Regress Ten Year Annualized Nominal Returns on TR CAPE & 10 Year Interest Rate*
- . reg TenYearAnnualizedReturnNom TRCAPE LongInterestRate

Source		SS	df		MS	Number of	obs	=	129
Model Residual	. 1 . 2	131645923 201229427	2 126	. 065 . 001	5822962 1597059	F(2, 126) Prob > F R-squared Adj R-squa	red	= = =	41.22 0.0000 0.3955 0.3859
Total	.	33287535	128	.002	2600589	Root MSE		=	.03996
TenYearAnnuali	i∼m	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
TRC2 LongInterestRa _cc	APE ate ons	0041176 .444031 .1528446	.0003 .153 .0138	5136 3025 8438	-8.02 2.90 11.04	0.000 0.004 0.000	00 .14 .125	5134 1199 4482	0031012 .746863 .1802411

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom TRCAPE LongInterestRate, lag(9)

Regression with Newey-West standard errors	Number of	fobs =	129
maximum lag: 9	F(2,	126) =	64.40
	Prob > F	=	0.0000

TenYearAnnuali~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE	0041176	.0007953	-5.18	0.000	0056915	0025437
LongInterestRate	.444031	.3405742	1.30	0.195	2299553	1.118017
_cons	.1528446	.0356055	4.29	0.000	.0823824	.2233069

Our specification for subsequent real returns regressed on both Total Return CAPE and the 10-year interest rate is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * TRCAPE + \beta_2 * LongInterestRate + \varepsilon$

. *Regress Ten Year Annualized Real Returns on TR CAPE & 10 Year Interest Rate* . reg TenYearAnnualizedReturnReal TRCAPE LongInterestRate

Source	SS	df	MS	Number of obs	=	129
				F(2, 126)	=	27.44
Model	.101094954	2	.050547477	Prob > F	=	0.0000
Residual	.232147619	126	.001842441	R-squared	=	0.3034
				Adj R-squared	=	0.2923
Total	.333242573	128	.002603458	Root MSE	=	.04292

TenYearAnnuali~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE	0039998	.0005516	-7.25	0.000	0050915	0029082
LongInterestRate	.0520977	.164361	0.32	0.752	2731679	.3773633
_cons	.1412865	.0148693	9.50	0.000	.1118605	.1707124

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnReal TRCAPE LongInterestRate, lag(9)

.1412865

cons

Regression with Ne maximum lag: 9	Nui F(Pro	mber of o 2, ob > F	bs = 126) = =	129 21.74 0.0000		
TenYearAnnuali~1	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE LongInterestRate	0039998 .0520977	.000831 .3669816	-4.81 0.14	0.000 0.887	0056443 6741481	0023553 .7783434

Notice that the adjusted R^2 value drops in both regressions compared to their respective regressions which do not include the long interest rate. After making Newey-West adjustments, the long interest rate does not appear to have any statistical significance. It is for this reason that we do not include the long interest rate in all of our regressions.

4.31

0.000

.0763438

.2062292

.0328164

Our specification for subsequent nominal returns regressed on CAPE is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta * CAPE + \varepsilon$

```
. *Regress Ten Year Annualized Nominal Returns on CAPE*
```

. reg TenYearAnnualizedReturnNom CAPE

Source	SS	df	MS	Number of ob	s =	129
				- F(1, 127)	=	58.50
Model	.104977131	1	.104977131	. Prob > F	=	0.0000
Residual	.227898219	127	.001794474	R-squared	=	0.3154
				 Adj R-square 	d =	0.3100
Total	.33287535	128	.002600589	Root MSE	=	.04236
	-					
TenVeanlangem	Coof	Std Frr	+	DN1+1 1058	Conf	Intervall

TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0043116	.0005637	-7.65	0.000	0054271	0031961
_cons	.1621629	.0099696	16.27	0.000	.1424349	.1818909

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom CAPE, lag(9)

Regression with Newey-West standard errors	Number of	obs =	129
maximum lag: 9	F(1,	127) =	24.86
	Prob > F	=	0.0000

		Newey-West				
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0043116	.0008648	-4.99	0.000	0060229	0026003
_cons	.1621629	.0199546	8.13	0.000	.1226763	.2016495

Our specification for subsequent real returns regressed on CAPE is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta * CAPE + \varepsilon$

```
. *Regress Ten Year Annualized Real Returns on CAPE*
```

```
. reg TenYearAnnualizedReturnReal CAPE
```

CAPE

cons

Source	SS	df	MS	Number of ob:	s =	129
Model Residual	.098887675 .234354898	1 127	.098887675	F(1, 127) Frob > F R-squared	=	53.59 0.0000 0.2967
Total	.333242573	128	.002603458	- Adj R-squared Root MSE	d = =	0.2912 .04296
TenYearAnn~1	Coef.	Std. Err.	t	P> t [95% (Conf.	Interval]

-7.32

13.12

0.000

0.000

-.0053158

.1126146

-.0030535

.1526256

. *Run Newey-West Estimator to correct for overlapping Moving Average*

.0005716

.0101098

. newey TenYearAnnualizedReturnReal CAPE, lag(9)

-.0041847

.1326201

Regression wit maximum lag: 9	h Newey-West	standard e	errors	Number F(1, Prob >	of obs = 127) = F =	129 24.55 0.0000
TenYearAnn~l	Coef.	Newey-West Std. Err.	t t	P> t	[95% Conf.	Interval]
CAPE _cons	0041847 .1326201	.0008446 .0176741	-4.95 7.50	0.000	005856 .0976462	0025133 .167594

Notice that neither the adjusted R², nor the t statistic for CAPE drop off between the real and nominal regressions. Like TR CAPE, CAPE comes up as statistically significant when testing on many more observations than Tobin's Q and the Aggregate Investor Allocation to Equities (129 obs. Vs. 64). Just like TR CAPE, this makes them impossible to directly compare, however when TR CAPE and CAPE are regressed on the same 64 observations (1945-2008) as Tobin's Q and the Aggregate Investor Allocation to Equities, they capture less variation over the time period, with CAPE coming in behind TR CAPE.

As mentioned in the TR CAPE & long interest rate regressions, the long interest rate does not add any considerable explanatory power; this also holds true in the CAPE regressions below.

Our specification for subsequent nominal returns regressed on both CAPE and the 10-year interest rate is as follows:

 $\label{eq:constraint} \begin{array}{l} TenYearAnnualizedReturnNom = \alpha + \beta_1 * CAPE + \beta_2 * LongInterestRate + \varepsilon \\ \text{. *Regress Ten Year Annualized Nominal Returns on CAPE & 10 Year Interest Rate*} \end{array}$

. reg TenYearAnnualizedReturnNom CAPE LongInterestRate

Source		SS	df		MS	Number of	obs	=	129
Model Residual	.1	24221061	2 126	00. 100.	5211053 L655986	F(2, 126) Prob > F R-squared		= = =	37.51 0.0000 0.3732
Total		33287535	128	.002	2600589	Adj R-squa Root MSE	rea	=	.04069
	.~m	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
CA LongInterestRa	PE te	004127	.0005	5442 5197	-7.58 3.41	0.000	00	5204 9573	00305

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom CAPE LongInterestRate, lag(9)

Regression with Newey-West standard errors	Number of obs	=	129
maximum lag: 9	F(2,	126) =	56.57
	Prob > F	=	0.0000

TenYearAnnuali~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	004127	.0008357	-4.94	0.000	0057808	0024733
LongInterestRate	.5267472	.327136	1.61	0.110	1206453	1.17414
_cons	.1346077	.0331969	4.05	0.000	.0689119	.2003034

Our specification for subsequent real returns regressed on both CAPE and the 10-year interest rate is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * CAPE + \beta_2 * LongInterestRate + \varepsilon$

. *Regress Ten Year Annualized Real Returns on CAPE & 10 Year Interest Rate*

. reg TenYearAnnualizedReturnReal CAPE LongInterestRate

Source	SS	df	MS	Number of obs	=	129
				F(2, 126)	=	27.03
Model	.100037553	2	.050018777	Prob > F	=	0.0000
Residual	.23320502	126	.001850833	R-squared	=	0.3002
				Adj R-squared	=	0.2891
Total	.333242573	128	.002603458	Root MSE	=	.04302

TenYearAnnuali~l	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0041396	.0005754	-7.19	0.000	0052782	003001
LongInterestRate	.1287601	.1633575	0.79	0.432	1945196	.4520397
_cons	.1258844	.0132492	9.50	0.000	.0996647	.1521042

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnReal CAPE LongInterestRate, lag(9)

Regression with Newey-West standard errors	Number of	obs =	129
maximum lag: 9	F(2,	126) =	19.12
	Prob > F	=	0.0000

TenYearAnnuali~1	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0041396	.0009019	-4.59	0.000	0059245	0023547
LongInterestRate	.1287601	.3485908	0.37	0.712	5610909	.8186111
_cons	.1258844	.0299891	4.20	0.000	.0665368	.185232

Now we turn our attention to the models that include the Greenspan Put. As mentioned earlier, the correlation may be spurious, and regression fit may be high; this does not necessarily suggest a causal relationship, as all of the valuation indicators have been at historically high valuation levels on average since 1987. However, we may find some interesting results from the regressions.

Our specification for subsequent nominal returns regressed on both the aggregate investor allocation and the Greenspan Put is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta_1 * PercentInStocks + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Nominal Returns on %Invested in Stocks and the Greenspan Put*

. reg TenYearAnnualizedReturnNom PercentInStocks GreenspanPut

Source	SS	df	MS	Number of	obs	=	64	
Model Residual	.152811282 .023197963	2 .07 61 .00	76405641 00380294	F(2, 61) Prob > F R-squared		= = =	200.91 0.0000 0.8682	
Total	.176009245	63 .00	2793798	Root MSE	ared	=	.0195	
TenYearAnnual~	m Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval	.]
PercentInStock GreenspanPu _con	6892188 t0027323 s .3437087	.0356056 .00528 .0120739	-19.36 -0.52 28.47	0.000 0.607 0.000	7604 0132 .319	4165 2902 5655	618021 .007825 .367851	.1 ;6

. *Run Newey-West Estimator to correct for overlapping Moving Average* . newey TenYearAnnualizedReturnNom PercentInStocks GreenspanPut, lag(9)

Regression with M maximum lag: 9	Newey-West st	andard error	3	Number of F(2, Prob > F	f obs = = 61) = ;	=	64 122.21 0.0000
TenYearAnnual~m	Coef.	Newey-West Std. Err.	t	P> t	[95% (Conf.	Interval]
PercentInStocks GreenspanPut cons	6892188 0027323 .3437087	.046034 .0068981 .0193739	-14.97 -0.40 17.74	0.000 0.693 0.000	7812) 016 .3049)	694 526 683	5971682 .0110613 .3824491

The inclusion of the Greenspan Put adds no additional explanatory power. It is highly likely that the Aggregate Investor Allocation to Equities already incorporates information from the Greenspan Put when determining the allocation. As a result, the two variables are likely to be collinear, with the aggregate allocation including much more other information that is statistically significant. This may be why the Greenspan Put is not statistically significant in this regression. Our specification for subsequent real returns regressed on both the aggregate investor allocation and the Greenspan Put is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * PercentInStocks + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Real Returns on %Invested in Stocks and the Greenspan Put* . reg TenYearAnnualizedReturnReal PercentInStocks GreenspanPut

Source		SS	df	MS	Number o	of obs	=	64
					F(2, 61)		=	75.63
Model		150437155	2	.075218578	Prob > 1	5	=	0.0000
Residual		.060665339	61	.000994514	R-square	ed	=	0.7126
					Adj R-so	quared	=	0.7032
Total		.211102494	63	.003350833	Root MSI	2	=	.03154
TenYearAnnual	-1	Coef.	Std. Er	r. t	P> t	[95%	Conf.	Interval]
PercentInStoc)	cs	7061283	.057578	39 -12.26	0.000	8212	2644	5909922
GreenspanPu	ıt	.0168488	.008538	1.97	0.053	000	2248	.0339223
_cor	15	.3044551	.01952	25 15.59	0.000	.2654	4123	.3434978

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnReal PercentInStocks GreenspanPut, lag(9)

Regression with 1 maximum lag: 9	Newey-West st	andard errors		Number of F(2, Prob > F	obs = 61) = =	64 35.44 0.0000
TenYearAnnual~1	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
PercentInStocks GreenspanPut _cons	7061283 .0168488 .3044551	.0847997 .0154232 .034531	-8.33 1.09 8.82	0.000	8756959 0139919 .235406	5365607 .0476894 .3735042

Once again, the Greenspan Put variable carries no additional statistically significant explanatory power. Any power that it adds to the following regressions could ultimately be from chance correlation, which divides the time series into a piecewise function where both sides have the same coefficient/slope for the allocation to equities.

Our specification for subsequent nominal returns regressed on both Tobin's Q and the Greenspan Put is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta_1 * TobinsQ + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Nominal Returns on Tobin's Q and the Greenspan Put*

. reg TenYearAnnualizedReturnNom TobinsQ GreenspanPut

Source	SS	df	MS	Num	ber of obs	=	64
				- F(2)	, 61)	=	235.77
Model	.15584843	2	.077924215	Prol	0 > F	=	0.0000
Residual	.020160815	61	.000330505	R-se	quared	=	0.8855
				Adj	R-squared	=	0.8817
Total	.176009245	63	.002793798	Root	t MSE	=	.01818
	I						
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
TobinsQ	2146139	.0102275	-20.98	0.000	2350649		1941628
GreenspanPut	.0525005	.006095	8.61	0.000	.0403128		.0646881
_cons	.2327418	.0061724	37.71	0.000	.2203993		.2450843

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnNom TobinsQ GreenspanPut, lag(9)

Regression with Newey-West standard errors maximum lag: 9	Number of obs F(2, Prob > F	61) = =	64 110.75 0.0000

		Newey-West				
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TobinsQ	2146139	.0144897	-14.81	0.000	2435877	18564
GreenspanPut	.0525005	.0088702	5.92	0.000	.0347634	.0702375
_cons	.2327418	.0091239	25.51	0.000	.2144975	.2509861

Our specification for subsequent real returns regressed on both Tobin's Q and the Greenspan Put is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * TobinsQ + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Real Returns on Tobin's Q and the Greenspan Put*

. reg TenYearAnnualizedReturnReal TobinsQ GreenspanPut

Source	SS	df	MS	Numb	er of obs	s =	64
				- F(2,	61)	=	115.13
Model	.166891356	2	.083445678	Prob) > F	=	0.0000
Residual	.044211137	61	.000724773	R-sq	quared	=	0.7906
				- Adj	R-squared	= b	0.7837
Total	.211102494	63	.003350833	Root	: MSE	=	.02692
TenYearAnn~l	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
TobinsQ	229228	.0151454	-15.14	0.000	2595:	131	198943
GreenspanPut	.076888	.0090258	8.52	0.000	.05883	399	.0949362
_cons	.1957915	.0091404	21.42	0.000	.1775:	141	.2140689

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnReal TobinsQ GreenspanPut, lag(9)

Regression wi maximum lag:	th Newey-West 9	standard er	rors	Number of F(2, Prob > F	obs = 61) = =	64 40.50 0.0000
TenYearAnn~l	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TobinsQ GreenspanPut _cons	229228 .076888 .1957915	.0261429 .0135442 .0194533	-8.77 5.68 10.06	0.000 0.000 0.000	281504 .0498047 .1568921	1769521 .1039714 .2346908

This regression is particularly interesting because it is actually fit slightly better than the regression using the aggregate equity allocation. Both Tobin's Q and the Greenspan Put are statistically significant after NW corrections. However, as noted earlier we cannot draw conclusions about causality about the Greenspan Put, as **there are numerous omitted variables that may have changed over the period**. For example, if we had created a binary variable that included and followed the flash crash of 1987, we would have had the same exact regression results. If we go down the rabbit hole, we could have also constructed a binary variable that denoted years including and following the release of the Stanley Kubrick film, "Full Metal Jacket". Once again, the results would be the exactly the same. The era of "high valuations" that began in the 1990s coincides with this **artificial indicator**, and a much longer time series would

be required to draw significant conclusions about the nature and cause of these elevated valuations.

These remarks also apply to the subsequent return regressions on variations of TR CAPE and CAPE that include the Greenspan Put below.

Our specification for subsequent nominal returns regressed on both Total Return CAPE and the Greenspan Put is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta_1 * TRCAPE + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Nominal Returns on TR CAPE and the Greenspan Put*

. reg TenYearAnnualizedReturnNom TRCAPE GreenspanPut

Source	SS	df	MS	Numb	er of obs	; =	129
				- F(2,	126)	=	59.31
Model	.161419856	2	.080709928	Prob	> F	=	0.0000
Residual	.171455494	126	.001360758	R-sq	uared	=	0.4849
				- Adj	R-squared	i =	0.4768
Total	.33287535	128	.002600589	Root	MSE	=	.03689
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
TRCAPE	0059915	.0005501	-10.89	0.000	00708	802	0049028
GreenspanPut	.057236	.0101558	5.64	0.000	.0371	.38	.0773339
_cons	.2011106	.0106677	18.85	0.000	.17999	96	.2222217

. *Run Newey-West Estimator to correct for overlapping Moving Average*

. newey TenYearAnnualizedReturnNom TRCAPE GreenspanPut, lag(9)

Regression with Newey-West standard errors	Number of	obs =	129
maximum lag: 9	F(2,	126) =	28.92
	Prob > F	=	0.0000

TenYearAnn~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE	0059915	.0007901	-7.58	0.000	0075551	0044279
GreenspanPut	.057236	.0138615	4.13	0.000	.0298044	.0846675
_cons	.2011106	.0203463	9.88	0.000	.1608459	.2413754

Our specification for subsequent real returns regressed on both Total Return CAPE and the Greenspan Put is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * TRCAPE + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Real Returns on TR CAPE and the Greenspan Put* . reg TenYearAnnualizedReturnReal TRCAPE GreenspanPut

Source	SS	df	MS	Numbe	r of obs	s =	129
Model	141580200	2	07070465	Prob	126) N F	_	46.34
Hoder	.141509299	2	.07079403	FLOD	- E	-	0.0000
Residual	.191653274	126	.001521058	R-squ	ared	=	0.4249
				· Adj R	-squared	i =	0.4158
Total	.333242573	128	.002603458	Root	MSE	=	.039
TenYearAnn~l	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
TRCAPE	0056113	.0005816	-9.65	0.000	00676	524	0044603
GreenspanPut	.0555277	.0107373	5.17	0.000	.03427	789	.0767766
_cons	.1663635	.0112785	14.75	0.000	.14404	437	.1886834

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnReal TRCAPE GreenspanPut, lag(9)

Regression with Newey-West standard errors	Number of ol	os =	129
maximum lag: 9	F(2,	126) =	28.08
	Prob > F	=	0.0000

TenYearAnn~l	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
TRCAPE	0056113	.0007509	-7.47	0.000	0070974	0041253
GreenspanPut	.0555277	.0145257	3.82	0.000	.0267818	.0842737
_cons	.1663635	.0176037	9.45	0.000	.1315262	.2012008

Our specification for subsequent nominal returns regressed on both CAPE and the Greenspan Put is as follows:

$TenYearAnnualizedReturnNom = \alpha + \beta_1 * CAPE + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Nominal Returns on CAPE and the Greenspan Put*

. reg TenYearAnnualizedReturnNom CAPE GreenspanPut

Source	SS	df	MS	Numb	er of obs	= 8	129
				- F(2,	126)	=	57.79
Model	.159253558	2	.079626779	Prob	> F	=	0.0000
Residual	.173621792	126	.001377951	R-sq	uared	=	0.4784
				- Adji	R-squared	= E	0.4701
Total	.33287535	128	.002600589	Root	MSE	=	.03712
TenYearAnn~m	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
CAPE	0065904	.0006131	-10.75	0.000	00780	036	0053771
GreenspanPut	.0676855	.0107847	6.28	0.000	.04634	429	.089028
_cons	.1879944	.0096572	19.47	0.000	.1688	383	.2071058

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnNom CAPE GreenspanPut, lag(9)

Regression with Newey-West standard errors	Number of obs	=	129
maximum lag: 9	F(2, 126)	=	30.11
	Prob > F	=	0.0000

TenYearAnn~m	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0065904	.0008835	-7.46	0.000	0083388	004842
GreenspanPut	.0676855	.0119985	5.64 9.57	0.000	.0439408	.0914302

Our specification for subsequent real returns regressed on both CAPE and the Greenspan Put is as follows:

$TenYearAnnualizedReturnReal = \alpha + \beta_1 * CAPE + \beta_2 * GreenspanPut + \varepsilon$

. *Regressing Ten Year Annualized Real Returns on CAPE and the Greenspan Put* . reg TenYearAnnualizedReturnReal CAPE GreenspanPut

Source	SS	df	MS	Number of obs	=	129
				F(2, 126)	=	54.66
Model	.154814092	2	.077407046	Prob > F	=	0.0000
Residual	.178428482	126	.001416099	R-squared	=	0.4646
				Adj R-squared	=	0.4561
Total	.333242573	128	.002603458	Root MSE	=	.03763

TenYearAnn~l	Coef.	Std. Err.	t	₽> t	[95% Conf.	Interval]
CAPE	0064978	.0006215	-10.46	0.000	0077277	0052679
GreenspanPut	.0687066	.0109329	6.28	0.000	.0470706	.0903425
_cons	.1588413	.00979	16.22	0.000	.1394672	.1782155

Run Newey-West Estimator to correct for overlapping Moving Average
 newey TenYearAnnualizedReturnReal CAPE GreenspanPut, lag(9)

Regression with Newey-West standard errors	Number of o	bs =	129
maximum lag: 9	F(2,	126) =	32.52
	Prob > F	=	0.0000

TenYearAnn~l	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
CAPE	0064978	.0008057	-8.06	0.000	0080923	0049033
_cons	.1588413	.0157004	10.12	0.000	.1277706	.1899121

The aggregate allocation to equities is of particular interest to us, not simply because it appears that it may have the best correlation to subsequent real returns over the following 10 years, but because the efficient market hypothesis' implications directly affect the metric. The efficient market hypothesis' claim that all investors pursue the highest return for an equivalent measure of risk has a corollary: **in equilibrium the aggregate allocation to equities should only move higher if its expected returns per unit of expected risk increase in aggregate.** Either expected return should be greater (holding expected risk constant) or expected risk should be lower (holding expected returns constant) when the allocation is higher. The regression of annualized real returns over the subsequent 10 years above clearly shows that when the investor allocation is high, investors' subsequent returns are lower; however, if risk declined over the following period by more than returns declined, the shift upwards in the equity allocation could still be considered rational under efficient market theory. We construct a measure of risk below to test if historically high values of the aggregate investor allocation have been correlated with lower amounts of risk.

We construct the average annual loss as a measure of risk. First, we identify years with gains and years with losses. Then we create a binary variable equal to 1 for years with losses and multiply it by the LN(return) vector to create a vector which only includes the size of losses in years of losses. For each year, we then average the size of those losses over the subsequent 10 years.

Our Specification for average annual nominal losses (in years where losses occur) over the subsequent 10-year period regressed on the aggregate investor allocation is as follows:

AverageAnnualLossOverNext10 = $\alpha + \beta * PercentInStocks + \varepsilon$

. *Regress Average Annual Loss (for years with losses) over the Next 10 Years on % Invested In Stocks*

. *This is to determine if % Invested In Stocks successfully predicts periods of lower than average risk* . reg AverageAnnualLossOverNext10 PercentInStocks

Source		SS	d	f	MS	Number o	of obs	=	64	
Model Residual	. 02	5805655 5768004	6	1 .02 2 .00	26805655 00109161	F(1, 62) Prob > 1 R-square) F ed	= = =	245.56 0.0000 0.7984	
Total	. 03	3573659	6	3.00	0532915	Root MSI	guareo E	=	.01045	
AverageAnnua~1	.0	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
PercentInStock	(S -	2905729 .0683643	.018	5428 4451	-15.67 10.61	0.000	327	5396 4806	253506	3 9

. *Run Newey-West Estimator to correct for overlapping Moving Average* . newey AverageAnnualLossOverNext10 PercentInStocks, lag(9)

Regression with Newey-West standard errors	Number of ob	s =	64
maximum lag: 9	F(1,	62) =	229.06
	Prob > F	=	0.0000

AverageAnnua~10	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
PercentInStocks	2905729 .0683643	.0191989 .0066221	-15.13 10.32	0.000	328951 .0551268	2521948 .0816018

The regression above demonstrates that the aggregate equity allocation has a statistically significant negative relationship with the average annual nominal loss over subsequent 10-year periods (for years with losses). Since losses are measured as zero or negative, the negative sign on the regression coefficient indicates that losses are significantly greater following years of a high allocation to equities.

While volatility is a common proxy for risk we disagree with its use as an indicator of risk. In an efficient market where actual returns are log-normally distributed, volatility as a primary indicator of risk would make sense since there is an equal chance of excess returns and excess declines over any given period. Volatility would be important because it would be an indicator of how far away portfolio value could diverge from the long-run return over a given period of time. While portfolio returns should revert back to this hypothetical mean return for portfolios of equivalent risk over a long enough time period, people are concerned about short term deviations because our lives are short. Another issue with volatility is that it increases when the size of positive excess returns increases (relative to historical excess returns); rational investors would generally accept this as a good thing. We believe that investors are ultimately concerned about the risk of losses (divergence below long-run expected returns) because investors may be forced to sell at unfavorable valuations due to unforeseen life circumstances.

If we take this as a proxy for risk, it is implied that high equity allocations are in fact shown to have greater risk. A high equity allocation should only be consistent with higher expectations of return and/or lower expectations of risk. Our analysis shows that these expectations are likely to be irrational, as subsequent returns are lower and risk is greater. Below we conduct an empirical analysis of the factors which explain the level of the aggregate investor allocation:

b. Aggregate Investor Allocation to Equities Regressions

- 1. Data is the same as above.
- Dependent Variables for Aggregate Investor Allocation Regressions

 Aggregate Investor Allocation to Equities

3. Independent Variables for Aggregate Investor Allocation Regressions

- a. Inflation Rate (current year)
- b. Inflation Rate over the Past 10 Years (annualized)
- c. Civilian Unemployment (U-3)
- d. The Ten-Year U.S. Treasury Yield (GS10) or Historical Equivalent
- e. Greenspan Put
- f. Expected Return (Koyck Lag $\lambda = 1\%$)
- g. Expected Return (Koyck Lag $\lambda = 3\%$)
- h. Nominal Expected Earnings Growth (Koyck Lag $\lambda = 1\%$)
- i. Nominal Expected Earnings Growth (Koyck Lag $\lambda=3\%$)
- j. Real Expected Earnings Growth (Koyck Lag λ =1%)
- k. Real Expected Earnings Growth (Koyck Lag λ =3%)

Since we have shown that a higher aggregate investor allocation is associated with lower returns and greater risk, we now turn our attention to the determinants of this metric. We use the current year inflation rate, civilian unemployment, and the inflation rate over the prior 10 years (annualized) in addition to the variables mentioned earlier.

We construct Koyck distributed lag functions for a number of variables which denote expectations for the associated metric. λ denotes the proportional weight of the current year. $(1 - \lambda)$ denotes the proportional weight of the previous expectation. For each variable being tested we test two versions of the lag where $\lambda=1\%$ and 3%. When lambda is included in the Koyck distributed lag variables below it does not include the percentage symbol. All of the expectations are annualized. The functional form of the Koyck lag for expected nominal returns is as follows:

$$ERKoyck0\lambda_{t} = \lambda * ln\left(\frac{S_{t}}{S_{t-1}}\right) + (1-\lambda) * ERKoyck0\lambda_{t-1}$$

 ER_t is the expected future return at time t, and ER_{t-1} is the expected future return at time t-1. S_t is the nominal portfolio value (with dividends reinvested) at time t, and S_{t-1} is the nominal portfolio value (with dividends reinvested) at time t-1. We use the natural log to calculate returns because it is additively symmetric while arithmetic returns are not.

The functional form of the Koyck lag for expected real earnings growth is as follows:

$$\textit{EEG0} \\ \textit{Real}_{t} = \lambda * ln \left(\frac{\textit{Real Earnings}_{t}}{\textit{Real Earnings}_{t-1}} \right) + (1 - \lambda) * \textit{EEG0} \\ \textit{Real}_{t-1}$$

EEGO λ **Real**_t is the expectation of future real earnings growth at time t, and **EEGO** λ **Real**_{t-1} is the expectation of future real earnings growth at time t - 1. **Real Earnings**_t is the current year's real earnings growth, and **Real Earnings**_{t-1} is the prior year's real earnings.

The functional form of the Koyck lag for expected nominal earnings growth is as follows:

$$EEG0\lambda Nominal_{t} = \lambda * ln\left(\frac{Nominal \ Earnings_{t}}{Nominal \ Earnings_{t-1}}\right) + (1 - \lambda) * EEG0\lambda Nominal_{t-1}$$

EEGO λ **Nominal**_t is the expectation of future nominal earnings growth at time t, and **EEGO** λ **Nominal**_{t-1} is the expectation of future nominal earnings growth at time t – 1.

Now since the Koyck weights for the present year are very low, this means that it can take a significant period of time for past years to drop out. When evaluating an approach to the model, we considered using higher weights on the present year, and dropping the earliest data in the sample when running regressions. We decided against this because the Koyck expected return was far too volatile, and frequently fell below zero in the event of a market crash or a prolonged decline. Expected long-run returns should always be positive, otherwise no one would hold the asset, and the aggregate investor allocation to equities would be zero.

What we decided to do instead may be problematic: we maintained low weights on the current year, and entered in the geometric average return from the end of 1871 to the end of 2018 as the first expected Koyck return in the data.

Theoretically this is not reasonable – someone in 1871 simply could not have perfect foresight of 150 years of data and then decided what their expected return is was going to be. **However, we insert the geometric average return in the first year because our analysis is concerned with time variation in expected returns due to recent experience being built into expectations.** Had we used these small weights on the current year and utilized the first year's return, this also would have theoretical problems; clearly one year of returns is not enough to develop expectations for the long-run. We figured that by using the geometric average, any deviation from a "reasonable" long-run return would be captured by our Koyck distributed lags.

4. Regression Specifications and Results

Our specification for the aggregate investor allocation regressed on Nominal Expected Earnings Growth (Koyck Lag λ =1%) is as follows:

$PercentInStocks = \alpha + \beta * EEG01Nominal + \varepsilon$

. *Regressing % in Stocks on Expected Nominal Earnings Growth (Koyck .01)

. reg PercentInStocks EEG01Nominal

Source	SS	df	MS	Number of obs	, =	73
				F(1, 71)	=	4.55
Model	.020973192	1	.020973192	Prob > F	=	0.0364
Residual	.327389014	71	.004611113	R-squared	=	0.0602
				Adj R-squared	1 =	0.0470
Total	.348362205	72	.004838364	Root MSE	=	.06791
PercentInS~s	Coef.	Std. Err.	t	P> t [95% C	Conf.	Interval]
EEG01Nominal	3.286876	1.541182	2.13	0.036 .21384	63	6.359905
_cons	.2212987	.0589567	3.75	0.000 .10374	24	.3388551

Our specification for the aggregate investor allocation regressed on Nominal Expected Earnings Growth (Koyck Lag λ =3%) is as follows:

$PercentInStocks = \alpha + $	$\beta * EEG03Nominal + \varepsilon$
-------------------------------	--------------------------------------

 *Regressing reg Percentl 	% in Stocks o InStocks EEG03	n Expected Nominal	Nominal Ea	rnings	Growth (Koyck	.03)
Source	SS	df	MS	Numb	er of ob	s =	73
				- F(1,	71)	=	2.68
Model	.012669186	1	.012669186	5 Prob) > F	=	0.1061
Residual	.335693019	71	.004728071	. R-sq	uared	=	0.0364
				- Adj	R-square	d =	0.0228
Total	.348362205	72	.004838364	Root	MSE	=	.06876
PercentInS~s	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
EEG03Nominal	1.186208	.7246502	1.64	0.106	2587	036	2.631119
_cons	.2906226	.0347073	8.37	0.000	.2214	182	.359827

Our specification for the aggregate investor allocation regressed on Real Expected Earnings Growth (Koyck Lag λ =1%) is as follows:

$PercentInStocks = \alpha + \beta * EEG01Real + \varepsilon$

. *Regressing % in Stocks on Expected Real Earnings Growth (Koyck .01)

[.] reg PercentInStocks EEG01Real

Source	SS	df	MS	Numbe	r of obs	=	73
Model Residual	.064186842 .284175363	1 71	.064186842 .00400247	Prob R-squ	/l) > F ared	=	0.0002
Total	.348362205	72	.004838364	Adj R Root 1	Adj R-squared Root MSE		0.1728
PercentInS~s	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
EEG01Real _cons	9.968397 .179944	2.489238 .0420947	4.00 4.27	0.000 0.000	5.0049 .09600	98 96	14.9318 .2638785

Our specification for the aggregate investor allocation regressed on Real Expected Earnings Growth (Koyck Lag λ =3%) is as follows:

. *Regressing % in Stocks on Expected Real Earnings Growth (Koyck .03)

. reg Percentl	InStocks EEG03	Real					
Source	SS	df	MS	Numbe	r of ob	s =	73
				· F(1,	/1)	=	16.16
Model	.064592177	1	.064592177	Prob	> F	=	0.0001
Residual	.283770029	71	.003996761	R-squ	ared	=	0.1854
				Adj R	-square	d =	0.1739
Total	.348362205	72	.004838364	Root 1	MSE	=	.06322
PercentInS~s	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
EEG03Real _cons	3.354449 .2857901	.8344212	4.02 17.13	0.000	1.69	066 305	5.018237 .3190498

$PercentInStocks = \alpha + \beta * EEG03Real + \varepsilon$

The expected real earnings growth metrics seem to have some explanatory power on the Aggregate Investor Allocation to Equities. We move on to more extensive models below.

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), Greenspan Put, Expected Return (Koyck Lag λ =1%), and Real Expected Earnings Growth (Koyck Lag λ =1%) is as follows:

 $PercentInStocks = \alpha + \beta_1 * InflationRate + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * GreenspanPut + \beta_5 * ERKoyck01 + \beta_6 * EEG01Real + \varepsilon$

Source		SS	df		MS	Number of	obs	=	71
					F(6, 64)		=	47.16	
Model	2	281010945	6	.046	835157	Prob > F		=	0.0000
Residual	. (063563616	64	.000	993181	R-squared		=	0.8155
						Adj R-squa	ared	=	0.7982
Total	. 3	344574561	70	.004	922494	Root MSE		=	.03151
		1							
PercentInStoc	cks	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
InflationRa	ate	.406676	.1820	6087	2.23	0.029	.041	8731	.7714789
CivUnemployme	ent	0612897	.3031	7391	-0.20	0.841	668	0783	.5454989
LongInterestRa	ate	-1.612037	.2127	7576	-7.58	0.000	-2.03	7069	-1.187004
GreenspanH	Put	0933793	.013	7667	-6.78	0.000	120	8814	0658771
ERKoyck	c01	17.92264	1.645	5895	10.89	0.000	14.6	3459	21.21069
EEG01Re	al	3.940566	1.500	0939	2.63	0.011	.942	0952	6.939037
_~~	ons	-1.145791	.1380	0525	-8.30	0.000	-1.42	1583	8699995

. reg PercentInStocks InflationRate CivUnemployment LongInterestRate GreenspanPut ERKoyck01 EEG01Real

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), Greenspan Put, Expected Return (Koyck Lag λ =3%), and Real Expected Earnings Growth (Koyck Lag λ =3%) is as follows:

$PercentInStocks = \alpha + \beta_1 * InflationRate + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * GreenspanPut + \beta_5 * ERKoyck03 + \beta_6 * EEG03Real + \varepsilon$

Source		SS	df		MS	Number of	obs	=	71
						F(6, 64)		=	26.46
Model	. 2	245565949	6	.040	927658	Prob > F		=	0.0000
Residual	. (099008611	64	.00	154701	R-squared		=	0.7127
						Adj R-squ	ared	=	0.6857
Total	. 3	344574561	70	.004	922494	Root MSE		=	.03933
PercentInStoc	cks	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interval]
InflationRa	ate	.3449966	.2309	307	1.49	0.140	116	53405	.8063337
CivUnemployme	ent	.3061761	.4113	871	0.74	0.459	515	6642	1.128016
LongInterestRa	ate	-1.486662	.2726	273	-5.45	0.000	-2.03	81298	9420267
GreenspanH	Put	0299034	.0128	497	-2.33	0.023	055	5738	0042331
ERKoyc)	c03	5.413998	.7285	784	7.43	0.000	3.95	68496	6.869501
EEG03Re	eal	1.9733	.6208	256	3.18	0.002	.733	80581	3.213541
_cc	ons	1343653	.0755	511	-1.78	0.080	28	5296	.0165654

reg PercentInStocks InflationRate CivUnemployment LongInterestRate GreenspanPut ERKoyck03 EEG03Real

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), Greenspan Put, and Expected Return (Koyck Lag λ =1%) is as follows:

$\begin{aligned} \textit{PercentInStocks} &= \alpha + \beta_1 * \textit{InflationRate} + \beta_2 * \textit{CivUnemployment} + \beta_3 * \\ \textit{LongInterestRate} + \beta_4 * \textit{GreenspanPut} + \beta_5 * \textit{ERKoyck01} + \epsilon \end{aligned}$

. reg PercentInStocks InflationRate CivUnemployment LongInterestRate GreenspanPut ERKoyck01

Source		SS	df MS		MS	Number	of obs	=	72
Model Residual	. 2 . (277309585 071197358	5 .055461917 66 .001078748		F(3, 66) 5461917 Prob > F 1078748 R-squared Adi R-squar		F(5, 66) = Prob > F = R-squared = Idi R-squared =		51.41 0.0000 0.7957 0.7802
Total	.3	348506943	71	.004	908548	Root M	SE SE	=	.03284
PercentInStoc	cks	Coef.	Std. H	Err.	t	P> t	[95	5% Conf	. Interval]
InflationRa CivUnemployma LongInterestRa Greenspan ERKoyc) C	ate ent ate Put k01	.5545544 3173457 -1.718076 0953025 18.71101 -1.130941	.18061 .30133 .2173 .01411 1.6693 .14309	177 379 397 137 313 987	3.07 -1.05 -7.90 -6.75 11.21 -7.90	0.003 0.296 0.000 0.000 0.000 0.000	.19 91 -2.1 12 15.	39395 89863 52123 34814 37812 16646	.9151694 .2842949 -1.284029 0671235 22.0439 8452347

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), Greenspan Put, and Expected Return (Koyck Lag λ =3%) is as follows:

$PercentInStocks = \alpha + \beta_1 * InflationRate + \beta_2 * CivUnemployment + \beta_3 *$ $LongInterestRate + \beta_4 * GreenspanPut + \beta_5 * ERKoyck03 + \varepsilon$

Source		SS	df		MS	Number of	obs	=	72	
						F(5, 66)		=	26.04	
Model	. 2	231268377	5	.046	253675	Prob > F		=	0.0000	
Residual	. 1	17238566	66	.001	776342	R-squared		=	0.6636	
						Adj R-squa	red	=	0.6381	
Total	.3	348506943	71	.004	908548	Root MSE		=	.04215	
I										
PercentInStoc	:ks	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interv	7al]
InflationBa	te	5105188	238	812	2 14	0.036	033	7153	9873	3224
CivUnemployme	nt	- 1892226	4121	393	-0.46	0.648	-1 01	2085		3364
CTAQUE TO AUG		-,1092220	. 4121	.555	0.40	0.040	-1.01	2005	.03	1004
LongInterestRa	ite	-1.591612	.287	841	-5.53	0.000	-2.16	6305	-1.016	5918
GreenspanF	Put	0258501	.0134	458	-1.92	0.059	052	6955	.0009	952
ERKoyck	:03	5.427385	.7646	578	7.10	0.000	3.90	0697	6.954	1074
_cc	ons	0719803	.0779	089	-0.92	0.359	227	5305	.0835	5698
_										

. reg PercentInStocks InflationRate CivUnemployment LongInterestRate GreenspanPut ERKoyck03

Our specification for the aggregate investor allocation regressed on the annualized inflation rate over the past 10 years, U-3, the 10-year treasury (GS10), Greenspan Put, and Expected Return (Koyck Lag $\lambda = 1\%$) is as follows:

$PercentInStocks = \alpha + \beta_1 * Past10Y earsInflationAnnualized + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * GreenspanPut + \beta_5 * ERKoyck01 + \varepsilon$

. reg PercentInStocks Past10YearsInflationAnnualized CivUnemployment LongInterestRate GreenspanPut ERKoyck01

Source	SS	df	MS		Numbe	r of obs	=	72	
Model Residual	.284984159 .063522784	5 66	.056996832		F(5, 66) Prob > F R-squared Adi R-squared		= = =	59.22 0.0000 0.8177	
Total	.348506943	71	.00490	8548	Adj R-squared Root MSE		=	.03102	
	PercentInStocks		Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
Past10YearsInf	flationAnnualized CivUnemployment LongInterestRate GreenspanPut ERKoyckO1 _cons	-1. 6 3 0 11 4	589304 858577 680635 580999 .00428 555884	.369 .289 .274 .014 1.93 .168	1103 8149 4638 4423 4407 1488	-4.31 -2.37 -1.34 -4.02 5.69 -2.71	0.000 0.021 0.185 0.000 0.000 0.009	-2.326256 -1.264492 9160482 0869349 7.142108 7913084	8523514 1072236 .1799212 0292649 14.86645 1198685

Our specification for the aggregate investor allocation regressed on the annualized inflation rate over the past 10 years, U-3, the 10-year treasury (GS10), Greenspan Put, and Expected Return (Koyck Lag λ =3%) is as follows:

$PercentInStocks = \alpha + \beta_1 * Past10Y earsInflationAnnualized + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * GreenspanPut + \beta_5 * ERKoyck03 + \varepsilon$

. reg PercentI	inStocks Past10Year	sInflat	tionAnnua	lized Civ	Unemploym	ent Lo	ngInterestRate	GreenspanPut	ERKoyck03
Source	SS	df	MS	Numbe	er of obs	=	72 41,96		
Model Residual	.26510745 .083399493	5 66	.0530214 00126362	9 Prob 9 R-squ	> F ared	= =	0.0000		
Total	.348506943	71 .004908548		- Adj F 8 Root	l-squared MSE	=	0.7426 .03555		
	PercentInStocks	(Coef. S	td. Err.	t	P> t	[95% Conf.	Interval]	
Past10YearsInf	lationAnnualized CivUnemployment	-2.21 849	78536 91326 .	.395425 3522688	-5.76 -2.41	0.000 0.019	-3.068028 -1.55246	-1.489045 1458052	
	LongInterestRate GreenspanPut EPKovck03	.13	54658 . 99332 .	2998884 0113933 7179421	0.45	0.653	4632807 0326805 7106697	.7342124 .0128142 3.577505	
	_cons	.278	31538 .	0752446	3.70	0.000	.127923	. 4283845	

Now we drop the Greenspan Put variable. Our specification for the aggregate investor allocation regressed on the annualized inflation rate over the past 10 years, U-3, the 10-year treasury (GS10), and Expected Return (Koyck Lag λ =1%) is as follows:

 $PercentInStocks = \alpha + \beta_1 * Past10Y earsInflationAnnualized + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * ERKoyck01 + \varepsilon$

. reg PercentInStocks Past10YearsInflationAnnualized CivUnemployment LongInterestRate ERKoyck01

Source	SS	df MS		Numbe	r of obs	=	72		
Model Residual	.269407861 .079099082	4 67	F(4, 67) .067351965 Prob > F .001180583 R-squared		= = =	57.05 0.0000 0.7730			
Total	.348506943	71	.004908	3548	Root	-squared MSE	=	.03436	
	PercentInStocks		Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
Past10YearsIn:	flationAnnualized CivUnemployment LongInterestRate ERKoyck01 _cons	-2. -1. .2 4. .0	240873 215093 864329 513156 977933	.367 .28 .244 1.18 .107	3425 6004 8155 1695 1037	-6.10 -4.25 1.17 3.82 0.91	0.000 0.000 0.246 0.000 0.364	-2.974091 -1.78596 2022208 2.154483 1159867	-1.507654 6442267 .7750866 6.87183 .3115732

Our specification for the aggregate investor allocation regressed on the annualized inflation rate over the past 10 years, U-3, the 10-year treasury (GS10), and Expected Return (Koyck Lag $\lambda=3\%$) is as follows:

$\begin{aligned} PercentInStocks &= \alpha + \beta_1 * Past10Y earsInflationAnnualized + \beta_2 * \\ CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * ERKoyck03 + \varepsilon \end{aligned}$

Source	SS	df MS I		Numbe	r of obs	=	72		
Model	.264146951	4 .066036738		F(4, 67) Prob > F		=	0.0000		
Residual	.084359993	67	.001259	9104	R-squ	ared	=	0.7579	
					Adj R	-squared	=	0.7435	
Total	.348506943	71	.004908	3548	Root	MSE	=	.03548	
	PercentInStocks		Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval]
Past10YearsIn:	flationAnnualized	-2.	339574	.388	4808	-6.02	0.000	-3.114984	-1.564163
	CivUnemployment	9	840466	.315	8933	-3.12	0.003	-1.614572	3535209
	LongInterestRate	.2	415173	.273	6196	0.88	0.381	3046297	.7876643
	ERKoyck03	1.	769478	.574	1394	3.08	0.003	.6234909	2.915465
	_cons	.3	132953	.063	4243	4.94	0.000	.1867	.4398907

. reg PercentInStocks Past10YearsInflationAnnualized CivUnemployment LongInterestRate ERKoyck03

Notice that the explanatory power only decreased slightly when eliminating the Greenspan Put. This seems to suggest that both the Greenspan Put and past annualized 10-year inflation rate may act as proxies for periods where monetary policy is effective. Since the Greenspan Put is marked at a relatively arbitrary date (1987), we drop the Greenspan Put since the past 10 years of inflation annualized is likely a better proxy.

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), and Expected Return (Koyck Lag λ =1%) is as follows:

$\begin{aligned} PercentInStocks &= \alpha + \beta_1 * InflationRate + \beta_2 * CivUnemployment + \beta_3 * \\ LongInterestRate + \beta_4 * ERKoyck01 + \varepsilon \end{aligned}$

Source		SS	df		MS	Number of	obs	=	72	
						F(4, 67)		=	31.74	
Model	. 2	228123093	4	.057	030773	Prob > F		=	0.0000	
Residual		12038385	67	.001	796774	R-squared		=	0.6546	
						Adj R-squ	ared	=	0.6340	
Total	. 3	348506943	71	.004	908548	Root MSE		=	.04239	
		[
PercentInStoc	cks	Coef.	Std.	Err.	t	P> t	[95%	Conf.	Interva	1]
InflationRa	ate	.2754753	.2269	178	1.21	0.229	177	4545	.72840	51
CivUnemployme	ent	-1.173669	.3527	861	-3.33	0.001	-1.87	7833	46950	52
LongInterestRa	ate	-1.003877	.2451	246	-4.10	0.000	-1.49	3148	51460	64
ERKoyc	c01	9.554196	1.256	374	7.60	0.000	7.04	6462	12.061	93
co	ons	3635637	.1122	314	-3.24	0.002	587	5785	13954	88
_										

. reg PercentInStocks InflationRate CivUnemployment LongInterestRate ${\tt ERK} oyck 01$

Our specification for the aggregate investor allocation regressed on the inflation rate, U-3, the 10-year treasury (GS10), and Expected Return (Koyck Lag λ =3%) is as follows:

$PercentInStocks = \alpha + \beta_1 * InflationRate + \beta_2 * CivUnemployment + \beta_3 * LongInterestRate + \beta_4 * ERKoyck03 + \varepsilon$

. reg PercentInStocks InflationRate CivUnemployment LongInterestRate ERKoyck03

Source		SS	df		MS	Number of	obs	=	72
						F(4, 67)		=	30.40
Model	. 2	224702692	4	.056	175673	Prob > F		=	0.0000
Residual	.1	23804251	67	.001	847825	R-squared		=	0.6448
						Adj R-squa	ared	=	0.6235
Total	. 3	348506943	71	.004	908548	Root MSE		=	.04299
	•								
	1	06	0.5.4	Para		Do 1 + 1		06	T
Percentinatoo	cks	coer.	sta.	Err.	t	PS[C]	[324	Conr.	Intervalj
InflationRa	ate	441937	240	1837	1 84	0 071	- 038	7757	9226497
Cially and Leave		5206204	2202	0005	1.04	0.071	1 00	7737	. 9220497
Civunempioyme	ent	5306304	.3793	285	-1.40	0.166	-1.28	1113	.2265124
LongInterestRa	ate	-1.35558	.2655	i323	-5.11	0.000	-1.88	5584	8255748
ERKoyc)	c03	4.517626	.6126	5144	7.37	0.000	3.29	4843	5.74041
_cc	ons	.011349	.066	6029	0.17	0.864	120	4453	.1431434

Interpretations of Results

a. Investor/Expert Conflict of Interest – Division of funds by asset class, Long term nature of the indicators, and Career Risk/Lack of a "Permanent Capital Base"

Since most funds tie investment manager salary and bonuses to assets under management (AUM), and they are generally restrained to a particular asset class, managers may advocate to keep assets within the asset classes that they manage in order to maximize short term compensation, despite lower expected returns due to overbidding of financial assets. While the

Even large asset managers which have AUM across the whole spectrum of asset types may face restrictions when optimally allocating capital. The client-facing side of the business, wealth management, is often disjoint from fund managers. Since all clients have different needs based primarily on household income/wealth, and age, wealth managers will often advocate for a certain type of portfolio mix based off of long-run historical return, risk/volatility metrics, and individualized needs, despite evidence suggesting that asset returns may be relatively predictable in the medium term (10-15 years). Since equities tend to outperform all other asset classes over long periods of time, there is a tendency for a large percentage of financial capital to cluster in equities because of a systemic failure of wealth managers to rebalance client portfolios.

b. Portfolio Rebalancing

If the evidence seems to indicate that prices are getting to be too high, why don't people decide to sell? Why don't people periodically rebalance toward fixed portfolio weights? The evidence seems to suggest that wealth managers and their clients just "let it ride", and since equity returns tend to be greater than most other assets the equity weight steadily climbs up. There may be a belief among many people that equities always outperform in the long-run, but then you would generally expect the equity allocation to be much higher if this were true.

We think that the people fail to periodically rebalance portfolios because it is difficult to sell when prices are increasing or to buy when prices are falling. In *Manias, Panics, and Crashes*, Charles Kindleberger claims that "There is nothing as disturbing to one's well-being and judgment as to see a friend get rich."³⁶ When everyone around you is getting rich while you wait on the sidelines, it can be very isolating and difficult to stick with your strategy. Being comfortable with being a contrarian is one of the most useful attributes that a fund manager can have (of course when it is backed up by well thought out research).

The world can be very cruel to people who say that the party's over – which is effectively what you are doing when you sell out positions; company executives absolutely hate short sellers because there is a perception that they want the company to fail. More often times, short sellers believe that investor expectations are too high, even in scenarios where managers meet all of their own goals, and so they take short positions.

³⁶ Kindleberger, Charles P., and Aliber, Robert Z., *Manias, Panics, and Crashes: A History of Financial Crises*, 6th edition, 2011, p. 30.

Imagine then how people react when an investor says that they aren't holding any equities whatsoever. If there is a perception that short sellers want individual companies to fail, then people may extrapolate this and suggest that getting out of the market or shorting it means that you want all businesses to fail. While contrarian investors are just trying to correct mispricing, everyone around them treats them with suspicion because of a lack of understanding about the reasons for investment/divestment.

In order to achieve materially different returns from the market you must differentiate your positions from that of the overall market. In the pursuit of superior risk-adjusted returns, an investor has to think that they are smarter than the overall market at pricing securities. When you take positions that significantly differentiate your portfolio from the rest of the market people may look at you odd. No one likes someone who is smarter than them, and you have to think that you are smarter than most to succeed and try differentiated strategies. People will interpret your decision to differentiate as an insult because they feel you saying that everyone else is wrong. Perhaps this is why many people have a specious attitude that connects a person's wealth with their supposed level of intelligence. When you have money at risk in the market, and there are rich people making the same decision as you, believing that they are smart is comforting because it allows you to rationalize making the same decision.

c. Chance Correlation

Do stock returns follow a random walk, or are the findings on the aggregate investor allocation to equities, Tobin's Q, TR CAPE, and CAPE compelling? A skeptical manager might reasonably think as follows: might this just be another case of finding relationships which have happened to hold in the past, such as that of the "Super Bowl Indicator," (which held up through 2008) but may not hold in the future? **Before urging clients to act on these indicators, wealth managers need compelling arguments as to why these relationships hold, need evidence that they will continue to hold after first being brought to attention.**

Wealth managers need accurate estimates of expected returns over the next ten years using these indicators. I can do my best to give my client full information, but what would I give as my best estimate if forced to give a single number and a confidence interval? Is our level of confidence high enough to rely on these regressions rather than the long-run average return?

Our regression on subsequent ten-year annualized returns utilizing the aggregate investor allocation to equities had a 95% confidence interval for our coefficient; This shows that each additional percent of total capital (shown in the denominator in the model section) in equities leads to reduction of subsequent annualized real return over ten years between -0.5% and -0.9%.

d. Limitations

Our paper is ultimately limited by practical difficulties in data analysis related to observing the theoretical market portfolio. While basic models such as CAPM utilize the equity market as a proxy for the diversified market portfolio, our study is also limited in that we do not observe all constituent elements of the market portfolio. While the CAPM and Black-Scholes model both utilize the United States Treasury Yield as a proxy for the risk-free rate which is ultimately tied

to U.S. Treasury bond issuance, our theoretical model differs from others in that we consider non-equity, non-treasury bond/bill financial assets' value when evaluating subsequent return data. Evaluating equity valuations within a fully contextualized investment environment is conducive to finding more theoretically plausible relationships because asset allocation choices are generally made with regard to the entire spectrum of asset class opportunities. Excluding anyone of these from an analysis can lead to significant distortions, since financial assets are slightly imperfect substitutes – while various financial assets carry individual characteristics which make them particularly attractive to various investor classes, the ultimate pursuit of any coldly rational investment activity is to maximize expected returns with minimal expected risk.

V. Discussion & Conclusions

The Efficient Market Hypothesis presents a compelling way to understand securities markets, and the tremendous difficulty in outperforming the market on a risk-adjusted basis. However, while the EMH presents a straightforward way to understand how market prices incorporate new information, anomalies in models of asset pricing which do not carry risks present a hiccup in the rationalist theory that expected returns are developed to reward investors for taking on commensurate levels of risk. It is foolish to deny the recurrences of speculative mania driven by greed (or fear) and short-sightedness. While speculative bubbles do not necessarily occur often, they appear infrequently and may expand and deflate over long periods of time or in an explosive fashion. It is because of this tendency of capital markets, that it is of absolute necessity to research how financial assets prices are reached.

We use the aggregate investor allocation to equities as a proxy measure for overvaluation in securities markets (as well as Tobin's Q, Shiller TR CAPE, and Shiller CAPE). Between 1945 and 2008 (year-end), historically high values for the aggregate investor allocation to equities have been highly correlated with much lower real returns over subsequent 10-year time periods (1945-1955 through 2008-2018). High values for equity allocation to equities are also correlated with higher average losses over the subsequent 10-year periods. Following high allocation to equities, we find lower average returns and greater losses. All of the other indicators listed also show a statistically significant inverse relationship with subsequent real returns as well, though with varying levels of correlation and different sample sizes. The Efficient Market Hypothesis does not account for this relationship, and we feel that ultimately Hyman Minsky's Financial Instability Hypothesis presents a more realistic view of booms and busts in securities markets. While Eugene Fama argues that there is no effective way to test for speculative bubbles, we disagree; the aggregate investor allocation to equities acts as a highly significant indicator for subsequent returns, and in particular this indicator is significantly related to return and risk expectations that place an emphasis on recent experience. Our analysis of expectation development shows that investors mistakenly perceive a combination of higher returns and lower risk for future returns following periods of relative prosperity, and vice versa.

While we do not exhaustively go into Minsky's thoughts about the various types of debt financing that drive instability, this empirical evidence substantiates his contention that "stability is destabilizing". Periods of high returns are predictably followed by lower returns; this stands in contrast to the idea that stock prices exhibit Brownian motion as forwarded by efficient market proponents. While there is no rule which stipulates that stock prices must exhibit some form of mean reversion in pricing, we can make an argument for it using our analysis. Our analysis shows that a significant portion of variation in stock returns over subsequent 10-year periods can be explained by variation in the aggregate allocation to stocks.

It is important to note that while this metric provides a great deal of insight into future real returns, another significant component of real returns is the growth in real liabilities in the economy, which is of course not a real-time variable. It can only be observed ex-post, and so it is of no use to investors today. However, the theoretical implications of this other component are very useful for understanding the various factors at play that determine stock returns. Investors can guess how the aggregate allocation to equities may change over the next 10 years, and forecast real liability growth to develop expectations of return given various assumptions to better evaluate their current asset allocation strategies.

Various economists and financial economists have brought forward the proposition that investors may have improved return prospects when investing during recessionary periods because they are willing to accept cyclical risks. This is an interesting proposition that casts doubt on the idea that investors are acting irrationally, as we propose. When you're in a crumbling castle and you're unable to see the light out, should those who have faith be duly rewarded? This is truly the epitome of Warren Buffet's famous quote, "be fearful when others are greedy and greedy when others are fearful."

But what about economies that did crumble? The stock market during the Weimar Hyperinflation is just one example. In an attempt to avoid hyperinflation, investors sunk their money into the stock market and drove respectable dividend yields down to below 1%, and investors never recouped their money.

Investors who stayed invested certainly took on significant risks, and they were harmed when the system fell apart. When setting expectations of the future, nothing is truly certain; this conundrum is difficult to assess. It is important to note however, that equity prices did not suddenly jump back up to historical values following events like the end of WWII.

When looking back in economic history, there have clearly been instances of speculative bubbles fueled by irrational behavior (whether driving asset prices up or down significantly); the Dutch tulip bubble, the 1920s Florida Housing Boom, the 1929 stock market bubble, the U.S. Market Crash of 1987, the rise and fall of Japanese stocks and real estate in the 1990s, the dot-com bubble, & the ownership society bubble are some examples of positive bubbles. Negative bubbles include the slump in stock prices during WWII, and the market bottom in 1982 during the Volcker Disinflation. While our proxy is a valuable indicator for equity overvaluation and undervaluation, it is because of these types of out of sample observations that we cannot conclude that it is the only metric that ought to be considered when evaluating whether or not financial assets deviate significantly from intrinsic value.

<u>Bibliography</u>

- Ball, Ray. 1978. "Anomalies in Relationships Between Securities' Yields and Yield-Surrogates." Journal of Financial Economics. 6:2, pp. 103-126.
- Black, Fischer, and Myron Scholes. "The Pricing of Options and Corporate Liabilities." *Journal* of Political Economy, vol. 81, no. 3, 1973, pp. 637–654. JSTOR, www.jstor.org/stable/1831029.
- Black, Fischer, Capital Market Equilibrium with Restricted Borrowing, The Journal of Business, 45, issue 3, 1972, p. 444-55.
- Fama, Eugene F. "Efficient Capital Markets: A Review of Theory and Empirical Work." The Journal of Finance, vol. 25, no. 2, 1970, pp. 383–417. JSTOR, www.jstor.org/stable/2325486.
- Fama, Eugene F. and French, Kenneth R., The Capital Asset Pricing Model: Theory and Evidence (August 2003). CRSP Working Paper No. 550; Tuck Business School Working Paper No. 03-26. Available at SSRN: <u>https://ssrn.com/abstract=440920</u> or <u>http://dx.doi.org/10.2139/ssrn.440920</u>
- Fama, Eugene F., and Kenneth R. French. "The Cross-Section of Expected Stock Returns." *The Journal of Finance*, vol. 47, no. 2, 1992, pp. 427–465. *JSTOR*, www.jstor.org/stable/2329112.
- James Tobin and W.C. Brainard, Asset Markets and the Cost of Capital." 1977, Economic Progress, Private Values and Public Policy
- Kindleberger, Charles P., and Aliber, Robert Z., *Manias, Panics, and Crashes: A History of Financial Crises*, 6th edition, 2011, p. 30.
- Lakonishok, J., Shleifer, A. and Vishny, R. W. (1994), Contrarian Investment, Extrapolation, and Risk. The Journal of Finance, 49: 1541-1578. doi:<u>10.1111/j.1540-6261.1994.tb04772.x</u>
- Lewis, Michael M. The Big Short : [inside the Doomsday Machine]. New York :Simon & Schuster, 2010.
- Lintner, John. "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets." *The Review of Economics and Statistics*, vol. 47, no. 1, 1965, pp. 13–37. *JSTOR*, <u>www.jstor.org/stable/1924119</u>.
- Mandelbrot, Benoit; Hudson, Richard L. (2007-03-22). The Misbehavior of Markets: A Fractal View of Financial Turbulence (pp. 11-13).
- Milton Friedman "The Methodology of Positive Economics" Essays In Positive Economics (Chicago: Univ. of Chicago Press, 1966), pp. 3-16, 30-43.
- Minsky, Hyman P., The Financial Instability Hypothesis (May 1992). The Jerome Levy Economics Institute Working Paper No. 74. Available at SSRN: https://ssrn.com/abstract=161024 or http://dx.doi.org/10.2139/ssrn.161024
- Robert Shiller's data webpage: http://www.econ.yale.edu/~shiller/data.htm
- Sharpe, William F. "Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk." *The Journal of Finance*, vol. 19, no. 3, 1964, pp. 425–442. *JSTOR*, <u>www.jstor.org/stable/2977928</u>.
- Sherman, John, and Harold Petersen. "The Efficient Market Hypothesis, the Financial Instability Hypothesis, and Speculative Bubbles," pg.29, 2014. https://dlib.bc.edu/islandora/object/bc-ir%3A102322

Sommer, Jeff. "Eugene Fama: King of Predictable Markets". *The New York Times* <u>https://www.nytimes.com/2013/10/27/business/eugene-fama-king-of-predictable-markets.html</u>

Appendix

Summary Statistics

Aggregate Investor Allocation to Stocks (%) (end of year/end of 4th quarter) ((N

	Percentiles	Smallest		
1%	.2352095	.2352095		
5%	.242804	.2418698		
10%	.2513441	.2420979	Obs	74
25%	.2874888	.242804	Sum of Wgt.	74
50%	.3504783		Mean	.3467576
		Largest	Std. Dev.	.0694842
75%	.4072572	.452534		
90%	.4284154	.468883	Variance	.0048281
95%	.452534	.4762677	Skewness	.0985146
99%	.5112216	.5112216	Kurtosis	1.967084
		Tobin's (2	
	Percentiles	Smallest		
1%	.3114934	.3114934		
5%	.3374382	.3200855		
10%	.3535823	.3280141	Obs	74
25%	. 4276936	.3374382	Sum of Wgt.	74
50%	.721739		Mean	.7145651
		Largest	Std. Dev.	.2964451
75%	.9086709	1.182222		
90%	1.085685	1.196638	Variance	.0878797
95%	1.182222	1.332919	Skewness	.4527678
99%	1.594446	1.594446	Kurtosis	2.506084

	or TH	CAPE (Correcte	ed for Chan	
	Percentiles	Smallest		
1%	8.093561	7.060923		
5%	10.54989	8.093561		
10%	11.69074	8.124581	Obs	139
25%	15.42706	8.595793	Sum of Wgt.	139
50%	20.3122		Mean	20.52893
		Largest	Std. Dev.	7.159536
75%	24.19377	36.82863		
90%	28.70736	39.71281	Variance	51.25895
95%	33.59094	44.81105	Skewness	.8331475
99%	44.81105	47.58769	Kurtosis	4.442043
	Cyclically Adj	usted Price to	Earnings Ratio	P/E10
		or CAPE		
	Percentiles	Smallest		
1%	5.989668	5.122184		
5%	8.072249	5.989668		
10%	9.257637	6.098468	Obs	139
25%	11.89576	6.287087	Sum of Wgt.	139
50%	16.37848		Mean	17.03341
		Largest	Std. Dev.	6.864903
75%	20.97858	33.30734		
90%	26.4923	36.97887	Variance	47.1269
95%	28.33287	40.57696	Skewness	1.032358
99%	40.57696	43.77258	Kurtosis	4.715962
	Long Inter	est Rate (10 ye	ear from Shiller)	
	Percentiles	Smallest		
1%	.0191	.0188		
5%	.0225	.0191		
10%	.0246	.0195	Obs	148
25%	.03235	.0197	Sum of Wgt.	148
50%	.03835		Mean	.045223
		Largest	Std. Dev.	.022569
75%	.0508	.1138		
90%	.0778	.1167	Variance	.0005094
95%	.091	.1257	Skewness	1.830866
99%	.1257	.1459	Kurtosis	6.762829

Cyclically Adjusted Price to Earnings Ratio P/E10 or TR CAPE (Corrected for Chan

	011	iiidii olicmpioyi	actio Nuoc	
	Percentiles	Smallest		
1%	.027	.027		
5%	.035	.031		
10%	.039	.034	Obs	72
25%	.0445	.035	Sum of Wgt.	72
50%	.055		Mean	.0573889
		Largest	Std. Dev.	.0163065
75%	.066	.085		
90%	.079	.093	Variance	.0002659
95%	.085	.099	Skewness	.7234764
99%	.108	.108	Kurtosis	3.450264
	Expected Ret	urn from Koyck	Lag= .01 (8.5%	is
	Arithme	tic Average fro	om 1871-2018)	
	Percentiles	Smallest		
1%	.0719871	.0718248		
5%	.0745813	.0719871		
10%	.0757587	.073025	Obs	148
25%	.0782796	.0735019	Sum of Wgt.	148
50%	.0822452	_	Mean	.0824918
		Largest	Std. Dev.	.0053609
75%	.0862773	.0943176		
90%	.0897534	.0948932	Variance	.0000287
95%	.0910984	.0958694	Skewness	.2900821
99%	.0958694	.0967806	Kurtosis	2.510309
	Expected Ret	urn from Koyck	Lag= .03 (8.5% :	is
	Arithme	tic Average fro	om 1871-2018)	
	Percentiles	Smallest		
1%	.0581301	.055517		
5%	.0635853	.0581301		
10%	.0656804	.0601475	Obs	148
25%	.0722549	.0616596	Sum of Wgt.	148
50%	.0819737		Mean	.0833519
		Largest	Std. Dev.	.0138946
75%	.0948249	.1146367		
90%	.1005204	.1149498	Variance	.0001931
95%	.104204	.1189862	Skewness	.3073426
99%	.1189862	.1210264	Kurtosis	2.410419

Civilian Unemployment Rate

		EEG)		
	Percentiles	Smallest		
1%	.0040205	.0015603		
5%	.0108492	.0040205		
10%	.0118304	.0076187	Obs	147
25%	.015152	.008053	Sum of Wgt.	147
	0170000		Masa	01/55/5
508	.01/2292	Tawaaat	Mean Std Dow	.016363
759	0197005	Largest	sta. Dev.	.0033235
1015	.0107203	.0213606	Vaniango	000011
90%	.0200300	.0214340	Shormond	1 217426
938	.0207230	.0210030	Skewness	-1.31/430
998	.0216656	.023931	Kurtosis	6.143224
	Real Expected	d Earnings Growth	(Koyck=.03)	(Real
		EEG)		
	Percentiles	Smallest		
1%	0241643	0282741		
5%	0004808	0241643		
10%	.0022751	0111058	Obs	147
25%	.0107836	0092411	Sum of Wgt.	147
50%	.0181595		Mean	.0159888
		Largest	Std. Dev.	.009739
75%	.0224722	.0291684		
90%	.0260095	.0297751	Variance	.0000948
95%	.0280285	.0317751	Skewness	-1.483782
99%	.0317751	.0351789	Kurtosis	6.773432
	Nominal Expe	ected Earnings Gro	wth (Koyck=.(01)
		(Nominal EEG)		
	Percentiles	Smallest		
1%	.0201464	.019602		
5%	.0242845	.0201464		
10%	.0262004	.0204148	Obs	147
25%	.030286	.0221144	Sum of Wgt.	147
			-	
50%	.0333604		Mean	.0340697
		Largest	Std. Dev.	.0061456
75%	.0384232	.0455166		
90%	.043483	.0457904	Variance	.0000378
95%	.0447992	.0458888	Skewness	.0585381
99%	.0458888	.0468113	Kurtosis	2.541132

Real Expected Earnings Growth (Koyck=.01) (Real

		EEG)		
	Percentiles	Smallest		
1%	.0040205	.0015603		
5%	.0108492	.0040205		
10%	.0118304	.0076187	Obs	147
25%	.015152	.008053	Sum of Wgt.	147
50%	.0172292		Mean	.016565
		Largest	Std. Dev.	.0033235
75%	.0187205	.0213606		
90%	.0200368	.0214346	Variance	.000011
95%	.0207238	.0216858	Skewness	-1.317436
99%	.0216858	.023951	Kurtosis	6.145224
	Real Expected	d Earnings Growth	(Koyck=.03)	(Real
		EEG)		
	Percentiles	Smallest		
1%	0241643	0282741		
5%	0004808	0241643		
10%	.0022751	0111058	Obs	147
25%	.0107836	0092411	Sum of Wgt.	147
50%	.0181595		Mean	.0159888
		Largest	Std. Dev.	.009739
75%	.0224722	.0291684		
90%	.0260095	.0297751	Variance	.0000948
95%	.0280285	.0317751	Skewness	-1.483782
99%	.0317751	.0351789	Kurtosis	6.773432
	Past 10) Years Inflation	Annualized	
	Percentiles	Smallest		
1%	0323669	0324502		
5%	0268273	0323669		
10%	0229136	0309233	Obs	138
25%	.0092444	0300764	Sum of Wgt.	138
50%	.0244494		Mean	.0230301
		Largest	Std. Dev.	.0299409
75%	.0419401	.0813434		
90%	.0631555	.0813812	Variance	.0008965
95%	.0731032	.0865932	Skewness	1080774
99%	.0865932	.0866581	Kurtosis	2.384363

Real Expected Earnings Growth (Koyck=.01) (Real

		Only lears with	rosses)	
	Percentiles	Smallest		
1%	1297393	1317376		
5%	0913641	1297393		
10%	08144	1290485	Obs	138
25%	0529176	1290485	Sum of Wgt.	138
50%	0351887		Mean	0390613
		Largest	Std. Dev.	.0286508
75%	017971	0028959		
90%	0074124	0028959	Variance	.0008209
95%	0028959	0028959	Skewness	-1.145708
99%	0028959	0028959	Kurtosis	4.407303
	Ten Y	ear Annualized	Return (Real)	
	Percentiles	Smallest		
1%	0385598	0388744		
5%	0237871	0385598		
10%	0092299	0380158	Obs	138
25%	.0366089	0338463	Sum of Wgt.	138
50%	.0651877		Mean	.0667538
		Largest	Std. Dev.	.0505527
75%	.1035609	.1627147		
90%	.1389841	.1641179	Variance	.0025556
95%	.1495471	.1724507	Skewness	1078399
99%	.1724507	.1764039	Kurtosis	2.52658
	Ten Year	r Annualized Ret	turn (Nominal)	
	Percentiles	Smallest		
1%	009305	0135801		
5%	.0137493	009305		
10%	.031201	0063588	Obs	138
25%	.0577243	.0011194	Sum of Wgt.	138
50%	.0833229		Mean	.0907444
		Largest	Std. Dev.	.0495387
75%	.1314292	.1806133		
90%	.1633475	.1886476	Variance	.0024541
95%	.1780842	.1897052	Skewness	.2191058
99%	.1897052	.1948497	Kurtosis	2.257802

Average Annual Loss over next 10 Years (Including Only Years with Losses)