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 Throughout early childhood, children learn various symbolic systems to represent 

abstract concepts such as quantity. Yet it is unclear how the acquisition of symbols for 

quantity (e.g., number words; measurement concepts of “seconds”, “minutes”… for time, 

etc.) may shape nonsymbolic representations of these quantities. While previous work 

hints at the possibility that acquiring numerical symbols refines numerical acuity (i.e., 

“refinement hypothesis”), these data are correlational in nature, making it impossible to 

assess causality. As such, experimental manipulations training the symbolic system are 

necessary in order to determine whether a causal relation exists. Moreover, these 

investigations have been limited to the domain of number, making it unclear if similar 

relations exist in continuous quantities, such as time and space. My dissertation tests 

whether the relation between symbolic and nonsymbolic abilities holds for the inherently 

continuous quantity of time, while also providing one of the first investigations of the 

refinement hypothesis outside of the domain of number. Results reveal that nonsymbolic 

and symbolic timing are related in childhood, both before and during formal instruction 

on temporal units of measurement (Experiment 1 & 2), but not in adulthood (Experiment 

3). Further, I find no support for the refinement hypothesis: learning temporal symbols 

did not result in improved temporal acuity (Experiment 2), nor did shifting adults’ 

symbolic mapping of time shape temporal acuity (Experiment 3). Similarly, learning 

labels for surface area did not enhance adults’ spatial acuity (Experiment 4). Broader 

educational implications and areas of future investigation are also discussed.
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CHAPTER 1: GENERAL INTRODUCTION 

Symbols are culturally acquired representations that do not inherently convey 

information about the item they are representing. These symbols take many forms - written 

and spoken language, Arabic numerals, and even road signs. Given the importance of 

symbols in our everyday lives, it is not surprising that over the course of development, we 

learn various symbolic systems and regularly use them to convey abstract concepts, such 

as quantity (e.g., number is represented with Arabic numerals, time with seconds, minutes, 

hours…etc.). While research suggests that symbolic knowledge, such as language, shapes 

our perceptions of the world around us (e.g., Athanasopoulous, Wiggett, Derning, Kuipers, 

Thierry, 2009; Boroditsky, 2001; Boroditsky, 2009; Boroditsky, 2011; Boroditsky, 

Fuhrman, & McCormick, 2011; Casasanto, 2008; Casasanto, et al., 2004; Fausey, Long, & 

Boroditsky, 2009; Winawer, Witthoft, Frank, Wu, Wade, & Boroditsky, 2007), it is 

unknown whether the acquisition of quantitative symbols may shape approximate, 

nonsymbolic representations of these concepts. For example, does acquiring formal 

symbols for time (e.g., knowing exactly how long a second is) shape our ability to track 

temporal intervals?  

Past work, particularly in numerical cognition, has identified nonsymbolic 

representations of number as the foundation upon which formal, symbolic math is built 

(“scaffolding hypothesis”; Barth, La Mont, Lipton, & Spelke, 2005; Gilmore, McCarthy, 

& Spelke, 2007; Holloway & Ansari, 2009; Mazzocco, Feigenson, & Halberda, 2011). 

That is, nonsymbolic representations of number mold our symbolic understanding of 

number. A second less explored possibility is that acquiring symbolic knowledge shapes 

approximate, nonsymbolic (i.e., not linguistically-dependent) representations of quantity 
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(“refinement hypothesis”; e.g., Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018; Matejko 

& Ansari, 2014; Mussolin, Nys, Content, & Leybaert, 2014; Shusterman, Slusser, 

Halberda, Odic, 2016; Suárez-Pellicioni & Booth, 2018). In my dissertation, I 

systematically investigate the refinement hypothesis in the domains of time and space.  

Nonsymbolic Quantity Representation  

Throughout the lifespan, humans and non-human animals are capable of 

representing nonsymbolic numerosities, durations, and spatial extents (e.g., surface area, 

cumulative area, etc.; Brannon & Terrace, 1998; Feigenson, Dehaene, & Spelke, 2004; 

Izard, Sann, Spelke, & Streri, 2009; Pica, Lemer, Izard, & Dehaene, 2004; Provasi, Rattat, 

& Droit-Volet, 2011; Brannon, Luz, & Cordes, 2006). These abilities are important for 

everyday activities such as learning language (Conway, Bauernschmidt, Huang, & Pisoni, 

2010; Romberg & Saffran, 2010; Saffran, Aslin, & Newport, 1996), and decision-making 

(Lusardi, 2012; Peters, Västfjäll, Slovic, Mertz, Mazzocco, & Dickert, 2006; Reyna, 

Nelson, Han, & Dieckmann, 2009). Moreover, nonsymbolic temporal, numerical, and 

spatial acuity predict formal, symbolic mathematics (time, space, and number: Skagerlund 

& Träff, 2016; time and number: Odic, Lisboa, Eisinger, Olivera, Maiche, & Halberda, 

2015; number and space: Lourenco, Bonny, Fernandez, & Rao, 2012; space: Bonny & 

Lourenco, 2015; number: Holloway & Ansari, 2009; Halberda, Mazzocco, & Feigenson, 

2008; Mazzocco, et al., 2011; Starr, Libertus, & Brannon, 2013) and nonsymbolic temporal 

judgments are related to formal reading abilities (Casini, Pech-Georgel, & Ziegler, 2017; 

Cohen-Mimran & Sapir, 2007; Hood & Canlon, 2004; Plourde, Gamache, Laflamme, & 

Grondin, 2017; Tallal, 1980; for a review: Farmer & Klein, 1995).  
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Discrimination tasks, in which participants are asked to judge which of two 

numerical dot arrays (e.g., 4 versus 8 dots), durations (e.g., which of two ovals is displayed 

longer), or amounts (e.g., which of two arrays takes up more area or which of two lines is 

longer) is larger/longer, are commonly used to assess nonsymbolic representations of 

quantity. Numerous studies have revealed that over development and in non-human 

species, quantity discriminations adhere to Weber’s Law, such that the speed and accuracy 

with which discriminations are made is dependent upon the ratio between the two 

quantities, rather than the absolute difference between them (Meck & Church, 1983; Moyer 

& Landauer, 1967; Stevens, 1957; for reviews: Gallistel, 1990; Feigenson, 2007). 

According to Weber’s Law, discriminating 100 ms from 200 ms should be just as easy as 

discriminating 500 ms from 1000 ms because both comparisons involve a 1:2 ratio.  

In addition to adhering to Weber’s Law, representations of nonsymbolic quantities 

become more precise with age (e.g., Odic, Libertus, Halberda, Feigenson, 2013; Droit-

Volet, Clément, Fayol, 2008). For instance, 6-month olds consistently detect a 1:2 ratio 

change in numerosity, duration, and surface area, but fail to detect a 2:3 ratio change 

(Brannon, et al., 2006; Brannon, Suanda, & Libertus, 2007; Xu & Spelke, 2000; Feigenson, 

2007). Discrimination precision continues improving throughout development, such that 

the ratio that can be discriminated becomes narrower with age regardless of the quantity 

(see Odic, 2018). Although it is clear that quantity discriminations become more precise 

throughout development, the source of developmental change has been left to speculation. 

Maturation of neural mechanisms subserving these quantity representations (e.g., Lipton 

& Spelke, 2003) and/or burgeoning linguistic capacities, specifically pertaining to the 

domain of relevance (i.e., learning number words may shape approximate numerosity; 
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Shusterman et al., 2016; Posid & Cordes, 2015) have both been suggested as potential 

sources of increased precision. However, experimental tests of these possibilities have been 

lacking. As such, I investigate the possibility the acquisition of symbolic knowledge results 

in increased precision in nonsymbolic quantity judgments over the course of development 

(e.g., Lyons et al., 2018; Matejko & Ansari, 2014; Mussolin et al., 2014; Piazza, Pica, Izard, 

Spelke, & Dehaene, 2013; Shusterman et al., 2016; Suárez-Pellicioni & Booth, 2018).  

Relation between Symbolic and Nonsymbolic Representations of Number  

Scaffolding Hypothesis 

 Being able to track approximate quantities is critical for the development of 

symbolic thought. As such, many studies suggest that symbolic knowledge of number is 

acquired by mapping abstract symbols (e.g., Arabic numerals) onto the approximate 

number system - the analog magnitude system specifically used for representing number 

(Holloway & Ansari, 2009; Izard & Dehaene, 2008; Lipton & Spelke, 2005; Mazzocco, et 

al., 2011; Mundy & Gilmore, 2009). Evidence in favor of the scaffolding hypothesis comes 

from work exploring symbolic number comparisons. Similar to the nonsymbolic 

comparisons described above, symbolic number comparisons require participants to make 

judgments as to which of two simultaneously presented Arabic numerals is larger. Results 

of these studies have shown that the speed with which the larger of two Arabic numerals 

is selected is also ratio-dependent (Moyer & Landauer, 1967). In addition to behavioral 

evidence, neural and clinical data also reveal relations between symbolic and nonsymbolic 

representations of number. For instance, the intraparietal sulcus (IPS) is activated during 

both symbolic (e.g. Pinel, Dehaene, Riviere, & LeBihan, 2001) and nonsymbolic (e.g., 

Ansari, Dhital, & Siong, 2006) numerical processing. These direct parallels between 
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symbolic and nonsymbolic comparisons have led researchers to conclude that symbolic 

representations are mapped onto nonsymbolic representations, at least in the domain of 

number.  

Mapping symbolic representations onto nonsymbolic ones not only shapes our 

understanding of Arabic numerals, but also forms the foundation for more complicated 

mathematics. A substantial literature reveals that nonsymbolic representations of number 

predict later mathematics success (e.g., Bonny & Lourenco, 2015; Halberda, Mazzocco, & 

Feigenson, 2008; Starr, Libertus, & Brannon, 2013; for a review, see: Feigenson, Libertus, 

& Halberda, 2013; for meta-analyses: Chen & Li, 2014; Schneider, Beeres, Coban, Merz, 

Schmimdt, Stricker, & De Smedt, 2017). For example, numerical discrimination in early 

infancy is predictive of performance on standardized math assessments several years later 

(Starr et al., 2013), and preschoolers’ approximate sense of number predicts their math 

abilities at age six (Halberda et al., 2008). These studies have been taken as further evidence 

that preverbal representations of number may form the foundation for later formal 

mathematics knowledge. This relation has also been found in adulthood, although less 

consistently (Libertus, Odic, & Halberda, 2012, but see Gilmore et al., 2013; Inglis, 

Attridge, Batchelor, & Gilmore, 2011; Skagerlund & Träff, 2016).  

Additional evidence for this relation comes from training studies, in which a brief 

nonsymbolic addition or numerical comparison training, but not a comparable line length 

or brightness training, enhanced the speed with which children completed a symbolic math 

task (Hyde, Khanum, & Spelke, 2014; Khanum, Hanif, Spelke, Berteletti, & Hyde, 2016). 

Similarly, three to five-year olds from low income families who complete a nonsymbolic 

addition and subtraction training show select improvements in math compared to their 
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peers who completed a memory training (Park, Bermudez, Roberts, & Brannon, 2016). In 

particular, math gains following approximate arithmetic training may be particularly 

beneficial for children who begin with low initial scores (Szkudlarek & Brannon, 2018). 

Training adults’ approximate number sense also results in enhanced math abilities (Park & 

Brannon, 2013), although it less clear if this is a direct effect of increasing the precision 

with which we perceive number, or a broader manipulation of one’s working memory 

abilities (Park & Brannon, 2014).  

Refinement Hypothesis 

While many studies support a causal relation such that nonsymbolic numerical 

abilities predict and shape symbolic ones, very few studies have tested the refinement 

hypothesis, or the idea that acquiring symbolic knowledge of number also impacts one’s 

nonsymbolic numerical abilities. A small, but growing literature revealing math abilities 

predict later numerical acuity supports this possibility (Lyons et al., 2018; Matejko & 

Ansari, 2014; Mussolin et al., 2014; Piazza, Pica, Izard, Spelke, & Dehaene, 2013; Suárez-

Pellicioni & Booth, 2018). In a related study, preschoolers’ nonsymbolic numerical acuity 

improved dramatically after acquiring the cardinal principle (i.e., understanding that the 

final number in the count list indicates the set size) even while controlling for age 

(Shusterman et al., 2016), suggesting that the acquisition of numeric symbols resulted in 

improved nonsymbolic numerical acuity. Furthermore, children with dyscalculia, a 

developmental disorder that effects symbolic number processing, show nonsymbolic 

processing deficits (e.g., Mazzocco et al., 2011). This finding hints at the possibility that 

children who lack symbolic knowledge may experience less refinement of their 

nonsymbolic abilities.  
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While correlational research supports the refinement hypothesis, only a single study 

has investigated this relation experimentally. This work revealed that six sessions of 

symbolic arithmetic training did not impact adults’ subsequent numerical acuity (Lindskog, 

Winman, & Poom, 2016). Given that the research investigating the refinement hypothesis 

has been largely correlational in nature, and several recent cross-lagged design studies have 

provided support for this hypothesis (e.g., Lyons et al., 2018; Mussolin et al., 2014), 

experimental manipulations are necessary to determine whether acquiring symbolic 

knowledge causes improvements in nonsymbolic acuity. My dissertation aims to shed light 

on the causal nature of this relation across development by experimentally manipulating 

individuals’ symbolic knowledge of time (Experiments 2 & 3) and space (Experiment 4).  

Why Symbols Shape our Perception: Evidence from Language 

If there is support for the refinement hypothesis, one might question the underlying 

mechanism(s). That is, why might symbol acquisition impact nonsymbolic abilities? 

Borrowing from language literature, I propose that acquiring symbolic knowledge may (1) 

guide attention towards relevant cues and/or (2) facilitate memory encoding of relevant 

information (Boroditsky, 2001).  

Heightened Attention 

A plethora of work suggests that hearing a verbal label directs one’s attention (e.g., 

Balaban & Waxman, 1997; Boutonnet & Lupyan, 2015; Lupyan & Ward, 2013). For 

instance, infants pay more attention to labeled compared to unlabeled objects (Balaban & 

Waxman, 1997), suggesting that hearing a word directs their attention towards the object. 

Similarly, in adulthood hearing a label enhances visual processing of that item (Boutonnet 

& Lupyan, 2015) by directing one’s attention towards a previously unseen object (Lupyan 
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& Ward, 2013). For example, adults were quicker to find the letter e.g., “b” among a series 

of e.g., “p’s” if they heard “bee” beforehand (Lupyan, 2008, see also Lupyan & Spivey, 

2010). Given this work, it is possible that learning symbols to represent quantities may 

similarly heighten attention towards that quantity dimension. That is, one’s attention 

towards e.g., time may be heightened after learning temporal units of measurement because 

temporal durations become more salient and relevant to other learning.  

Memory Encoding 

Likewise, a broad literature reveals memory encoding of information to be 

dependent upon one’s language (e.g., Fausey & Boroditsky, 2011; Tosun, Vaid, & Geraci, 

2013). For instance, there is a memory advantage for bilinguals if they encode and retrieve 

information in the same language (for a review: Schroeder & Marian, 2014). Other work 

shows that although English and Spanish speakers remember agents involved in 

intentionally events similarly, English speakers remember agents in accidental events 

better than Spanish speakers. It has been hypothesized that distinctions in the way each 

language encodes intentional versus accidental events subsequently impacts their memory 

of the event itself (Fausey & Boroditsky, 2011). Relatedly, Turkish, but not English, 

speakers remember information from first hand sources better than non-firsthand sources, 

likely because the Turkish language requires speakers to specify the knowledge source, 

whereas English does not (e.g., Tosun et al., 2013). Thus, learning quantity symbols may 

make it easier to encode information about that quantity in memory, resulting in enhanced 

processing of that quantity and thus refinement of nonsymbolic representation.  

While investigations with language provide some insight into how symbolic 

knowledge may shape our perception of the world around us, it is unknown whether the 
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same mechanism(s) may explain how the acquisition of quantitative symbols shapes 

nonsymbolic representations of quantity. Although Shusterman and colleagues (2016) 

argue that acquiring the cardinal principle (i.e., symbolic knowledge of number) likely 

heightened children’s attention to number, resulting in improved numerical acuity, no work 

has experimentally investigated this possibility. Thus, the final experiment of my 

dissertation explores whether the acquisition of spatial symbols leads to heightened 

attention towards spatial dimensions and/or enhanced memory encoding of spatial 

dimensions.  

The Current Dissertation 

Across four experiments, I investigate the broad question of how the acquisition of 

formal, symbolic representations of quantity shapes our nonsymbolic quantity 

representations. Although the domain of number has been inundated with investigations 

exploring the relation between symbolic and nonsymbolic representations (e.g., Halberda, 

et al., 2008; Starr, et al., 2013), it is unknown whether these relations hold in other 

quantities such as time and space. Studying these relations in time and space is particularly 

fruitful for several reasons. First, both nonsymbolic number and numeric symbols are 

discrete in nature, leaving it is unclear what role these structural similarities may play in 

promoting a relation between symbolic and nonsymbolic quantities. If structural 

isomorphisms support this relation, then it might be more difficult for discrete symbols to 

impact nonsymbolic representations of continuous quantities, such as time or space. 

Despite this, no work has explored whether a similar relation holds when mapping discrete 

symbols onto inherently continuous quantities.  
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Secondly, children acquire count words early in development (i.e., preschool 

years), a period during which children experience several gains in relevant cognitive skills 

(e.g., executive functions; Epsy, 1997) and neurological maturity (Emerson & Cantlon, 

2015), thus making it unclear how much these other developmental factors may contribute 

to changes in nonsymbolic acuity improvements. By exploring the acquisition of temporal 

and spatial symbols, which take place at a later point in development, I aim to disentangle 

the effects of maturity and other developmental milestones on increasing quantity acuity 

throughout development.  

In Experiments 1 and 2, I first investigate whether a relation exists between 

children’s understanding of temporal units of measurement (i.e., symbolic understanding 

of time) and their nonsymbolic temporal acuity. After the relation has been established, I 

then test the possibility that acquiring symbols for time refines children’s temporal acuity 

(Experiment 2). Extending this work to adults, in Experiment 3, I determine whether a 

similar correlation between nonsymbolic and symbolic temporal abilities exists beyond 

childhood. Because adults already have a substantial understanding of symbolic time, I 

cannot test the causal nature of this relation by teaching adults about temporal symbols. 

Instead, I shift their symbolic mapping of time through feedback to determine whether this 

impacts their subsequent temporal acuity. Finally, in Experiment 4, I study the relation in 

the domain of space (e.g., surface area), to (1) provide converging evidence in a distinct 

quantitative domain and (2) assess whether linguistic symbols may serve to heighten 

salience and/or provide more efficient encoding of the relevant quantity. Together, my 

dissertation serves as one of the first systematic experimental investigation of the 

acquisition of quantity symbols.  
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CHAPTER 2: KNOWLEDGE OF FORMAL TIMING SYMBOLS IS RELATED 

TO INDIVIDUAL DIFFERENCES IN TEMPORAL PRECISION 

Abstract 

Throughout the lifespan, we are capable of representing quantities in the absence of 

language, or nonsymbolically. Additionally, over the course of development, we learn 

many symbolic measurement systems for representing quantities such as time and 

number. Despite substantial evidence of a relation between the acquisition of symbolic 

and nonsymbolic numerical acuity (see Halberda et al., 2008), no work has explored 

whether a similar relation exists between understanding temporal units of measurement 

and timing precision. That is, does a child’s understanding of words like “second”, 

“minute”, and “hour” have any relation to their ability to tell which of two events lasted 

longer? Six and seven-year-old children (N = 102, Mage = 83.44 months, 52 females), 

who are in the process of learning temporal units of measurement, completed a temporal 

discrimination task (assessing nonsymbolic temporal acuity) and a symbolic timing 

assessment. Results revealed a positive correlation between children’s nonsymbolic 

temporal acuity and their understanding of temporal units of measurement. Importantly, 

this correlation held when controlling for age and numerical acuity, suggesting a unique 

relation between children’s temporal acuity and their understanding of temporal units of 

measurement. This study is the first to show a relation between symbolic and 

nonsymbolic representations of time. 
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Over development, children learn various measurement systems (i.e., symbol 

systems) to represent abstract quantity concepts (i.e., number, time, space, etc.). While 

these symbols (e.g., Arabic numerals for number, units of measurement for time, etc.) allow 

for the exact measurement of quantity, it is unknown whether an understanding of these 

systems may be related to our ability to perceive and/or discriminate these quantities in the 

absence of symbols (often referred to as nonsymbolic representations of quantity). Despite 

a plethora of research demonstrating a link between nonsymbolic numerical acuity and 

symbolic representations of number (i.e., counting, mathematics achievement; Bonny & 

Lourenco, 2015; Chen & Li, 2014; Libertus, Feignson, & Halberda, 2011; Mazzocco, 

Feigenson, & Halberda, 2011a; Mazzocco, Feigenson, & Halberda, 2011b; Halberda, 

Feigenson, & Mazzocco, 2008; Schneider et al., 2016), it is unknown whether a similar 

relation holds for other quantities such as time. In the current study, we tested the relation 

between nonsymbolic and symbolic representations of time in 6-7-year olds, children who 

are in the process of learning temporal units of measurement in school.  

The current study is important for several reasons. First, while age-related increases 

in temporal precision are well-documented (see Brannon, Suanda, & Libertus, 2007; Droit-

Volet, 2013; Odic, 2018), the source of these changes is unknown. One possibility is that 

brain maturation and/or other general cognitive abilities may contribute to more precise 

quantity tracking (e.g., Lipton & Spelke, 2003). However, it has also been suggested that 

the acquisition of quantity symbols may play a role in altering the precision with which 

quantities are tracked nonsymbolically (e.g., Pica, Lemer, Izard, & Dehaene, 2004; Posid 

& Cordes, 2015; Shusterman, Slusser, Halberda, & Odic, 2016). While the current 

investigation is correlational and thus cannot speak to the question of causality (i.e., 
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whether nonsymbolic timing abilities form the foundation for learning about symbolic 

representations of time, or alternatively, whether learning about temporal symbols may 

shape our nonsymbolic timing abilities), this study sets the stage by providing the first data 

to establish the existence of such a relation. Secondly, although a relation between 

symbolic and nonsymbolic numerical abilities has been established, it is important to note 

that both numerical symbols and nonsymbolic representations of number are discrete in 

nature, which may facilitate this relation. If structural isomorphisms underlie this link, then 

it may be more difficult to find a similar association between temporal acuity and an 

understanding of discretized temporal units of measurement (e.g., an understanding of 

seconds, minutes, etc.), as nonsymbolic representations of time are inherently continuous. 

Lastly, recent work identifying links between timing abilities and formal mathematics 

(Hamamouche & Cordes, 2019; Kramer, Bressan, & Grassi, 2011; Odic et al., 2016; 

Skagerlund & Träff, 2016) further emphasizes the importance of understanding children’s 

developing temporal abilities. Thus, understanding if a relation exists between symbolic 

and nonsymbolic timing may provide hints at the source of age-related increases in timing 

precision, shed light on the mechanisms underlying the relation between numerical acuity 

and verbal counting, and also inform our understanding of temporal development in 

childhood.  

Nonsymbolic Temporal Processing 

Throughout the lifespan, humans and non-human animals are capable of 

representing time in the absence of language (e.g., Brannon et al., 2007; Droit-Volet, 2013; 

Droit-Volet & Wearden, 2001; Meck & Church, 1983; Platt & Davis, 1983; Provasi, Rattat, 

& Droit-Volet, 2011; van Marle & Wynn, 2006). This ability, referred to as our 
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nonsymbolic representations of time, is considered the most basic and intuitive form of 

quantity representation. Critically, nonsymbolic representations of time do not rely on 

linguistic or symbolic information. These representations are often measured using 

discrimination tasks, in which participants are asked to determine which of two durations 

was longer.  

Substantial work has characterized our nonsymbolic timing abilities. Like other 

quantities, nonsymbolic representations of time adhere to Weber’s Law (Gibbon, 1977; 

Hamamouche & Cordes, 2019); such that the speed and accuracy with which 

discriminations are made is dependent upon the ratio between the two durations, rather 

than their absolute difference (Stevens, 1957). For example, the ease with which 1 second 

is discriminated from 2 seconds is comparable to that with which 5 seconds is discriminated 

from 10 seconds because both comparisons involve a 2-fold ratio change. Moreover, our 

ability to make these discriminations becomes more precise with age (e.g., Odic, 2018; 

Odic, Libertus, Halberda, Feigenson, 2013; Droit-Volet, Clément, Fayol, 2008). Six-month 

old infants reliably detect a 2-fold change in duration of two stimuli, but fail to detect a 

1.5-fold change. Within a few months, however, their timing abilities improve such that 

10-month old infants can detect a 1.5-fold change (Brannon et al., 2007; Feigenson, 2007; 

vanMarle & Wynn, 2006). The precision with which we discriminate time continues to 

improve throughout childhood, such that the ratio that can be discriminated approaches one 

with age (see Odic, 2018).  

Although it is clear that quantity discriminations become more precise throughout 

development, the source of developmental change is unclear. Maturation of neural 

mechanisms subserving these quantity representations (e.g., Lipton & Spelke, 2003) and/or 
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burgeoning linguistic capacities, specifically pertaining to the domain of relevance (e.g., 

learning temporal units of measurement; Shusterman et al., 2016; Posid & Cordes, 2015) 

have both been suggested as potential sources of increased precision, at least in the domain 

of number. In this study, we explore the possibility that the acquisition of temporal units 

of measurement may be related to increased precision in temporal acuity over the course 

of development (see Piazza, Pica, Izard, Spelke, & Dehaene, 2013).  

Symbolic Representations of Time 

Although nonsymbolic representations of time have been extensively explored, few 

studies have assessed children’s symbolic understanding of time (i.e., understanding of 

temporal units of measurement). Just as temporal acuity increases over development, an 

understanding of temporal units of measurement also increases, but through learning. For 

example, children’s use of temporal vocabulary (e.g., words such as “seconds”, “minutes”, 

etc.) increases particularly during the early elementary years (e.g., Ames, 1946; Bradley, 

1947; Harrison, 1934; Oakden & Sturt, 1922; Tillman & Barner, 2015). However, despite 

using temporal vocabulary early on, children often lack a full understanding of the words’ 

meanings (Ames, 1946; Shatz, Tare, Nguyen, & Young, 2010). For example, children as 

young as four years old are able to successfully order durations associated with these words 

(e.g., a minute is less than an hour) without knowing the approximate duration associated 

with each temporal word (Tillman & Barner, 2015; see also Friedman, 1977). In addition 

to understanding temporal vocabulary, children also learn to use clocks and stopwatches to 

track time during early childhood. Much like understanding the meaning of temporal 

words, this process takes several years to master (Friedman & Laycock, 1989).  



 16 

It is unknown whether a relation exists between temporal acuity and an 

understanding of temporal units of measurement; however, one study hints at the likelihood 

of this relation. Arlin (1990) asked children whether clocks move faster, slower, or do not 

change speed while they sleep – an indicator of children’s symbolic understanding of time. 

Then, children watched as two puppets danced for the same amount of time (15 seconds), 

but at different speeds (140 beats per minute versus 40 beats per minute) and were asked 

whether one puppet danced longer than the other or if the puppets danced for the same 

amount of time (a proxy for nonsymbolic timing). Results revealed that children who 

understood that the clock maintains its speed at night were more likely to say that the 

puppets danced for the same amount of time, suggesting that a relation may exist between 

symbolic and nonsymbolic timing (Arlin, 1990). While these data point to a possible 

relation between representations of time, the tasks used were not pure measures of 

nonsymbolic and symbolic timing. Thus, the current study is the first to characterize this 

relation by using a standard nonsymbolic temporal discrimination task and a broader 

assessment of children’s symbolic timing abilities.     

Relations between Symbolic and Non-Symbolic Quantity Representations 

While the relation between symbolic and nonsymbolic timing has been left 

untested, numerous studies have reported a link between symbolic and nonsymbolic 

numerical acuity (e.g., Chen & Li, 2014; Schneider et al., 2016). Numerical discriminations 

in early infancy have been found to predict performance on standardized math assessments 

several years later (Starr et al., 2013), and preschoolers’ approximate sense of number 

predicts their math abilities at age six (Halberda et al., 2008). This relation holds even in 

adulthood (e.g., Libertus, Odic, & Halberda, 2012), although less consistently so (Gilmore, 
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McCarthy, & Spelke, 2013; Inglis, Attridge, Batchelor, & Gilmore, 2011; Skagerlund & 

Träff, 2016).  

Importantly, while a well-documented relation exists between symbolic and 

nonsymbolic numerical abilities (e.g., Bonny & Lourenco, 2015; Halberda, et al., 2008; 

Starr, et al., 2013; for a review, see: Feigenson, Libertus, & Halberda, 2013), it is unclear 

whether this relation is specific to number, or if it holds for other quantities. Thus, in the 

present study, we investigate whether a relation exists between nonsymbolic and symbolic 

timing. That is, does the acquisition of formal measurement terms in the timing domain 

(such as learning how long a “second” or a “minute” lasts; hereafter referred to as 

“temporal units of measurement”) relate to our ability to perceive the duration of a 

stimulus? Unique to number, both symbolic and nonsymbolic representations of number 

are discrete in nature, such that structural similarities may support the link between the 

two. Such structural isomorphisms fail to hold for non-discrete quantities, such as time, 

making the existence of a relation between the two less straightforward. Despite this, recent 

work suggests that this relation holds in the domain of space (Lauer & Lourenco, 2016; 

Lourenco & Bonny, 2017). For example, Lourenco and Bonny (2017) found children’s 

ability to discriminate cumulative surface area to be related to a formal understanding of 

geometry. Importantly, nonsymbolic representations of space are continuous, whereas 

spatial units of measurement are discrete. Moreover, there is evidence that children are not 

only able to map between continuous and discrete magnitudes (see Babai, Nattiv, & Stavy, 

2016), but they are also capable of employing strategies used to compare continuous 

magnitudes to situations in which magnitudes are discretized (Boyer & Levine, 2015). 

Given these findings, we predict a relation between nonsymbolic and symbolic timing.  
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  Additionally, many similarities between temporal, spatial, and numerical 

processing (see Walsh, 2003) also lend support for our hypothesis that children’s 

nonsymbolic and symbolic timing abilities are correlated. For instance, numerical, spatial, 

and temporal discriminations adhere to Weber’s Law (e.g., Brannon, Lutz, & Cordes, 2006; 

Izard, Sann, Spelke, & Streri, 2009; Provasi et al., 2011) and precision in these domains 

increases over development (Odic, 2018). Moreover, the precision of temporal, numerical, 

and spatial discriminations follow comparable developmental trajectories in infancy (for a 

review: Feigenson, 2007). In addition, temporal, numerical, and spatial acuity predict math 

achievement (see Lourenco, Bonny, Fernandez, & Rao, 2012; Odic et al., 2016). These 

similarities and others have led many to contend that a single common magnitude system 

is responsible for processing quantities (Cantlon, Platt, & Brannon, 2009; Walsh, 2003). 

That is, it has been posited that it is no coincidence that temporal, numerical and spatial 

processing show similar behavioral signatures because all three quantitative magnitudes 

are thought to be represented via a common neural locus and neural code. Thus, those in 

favor of the common magnitude system would also predict a relation between nonsymbolic 

and symbolic timing given (1) the similarities between numerical, spatial, and temporal 

processing and (2) the presence of relations between nonsymbolic and symbolic in other 

quantitative domains.  

 Even in the absence of a common magnitude system wherein each magnitude relies 

upon a unique system (see Hamamouche & Cordes, 2018; Odic, 2018), one might still find 

reason to predict a relation between nonsymbolic and symbolic timing. For one, individuals 

who have a greater symbolic understanding of time may be better able to encode time. 

Moreover, people with a greater understanding of temporal units of measurement may 
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employ more efficient strategies when timing, again leading to enhanced nonsymbolic 

timing abilities. Thus, regardless of the system(s) responsible for quantity processing, we 

predict a relation between nonsymbolic and symbolic timing in children.  

While we predict a relation between nonsymbolic and symbolic timing, what if the 

relation does not exist? Such a finding would be surprising, as it would suggest that our 

acquisition of symbolic time is entirely unrelated to our timing abilities. While the null 

results may be due to noise in the data, this lack of relation could also point to a striking 

dissociation between symbolic and nonsymbolic timing abilities, while possibly leading 

some to question current theories of numerical development. Moreover, a lack of relation 

would also hint at differences in temporal and numerical processing.  

The Current Study 

In the current study, we investigated whether a relation exists between nonsymbolic 

and symbolic timing abilities in 6-7-year old children. Because people tend to master 

temporal symbols by adulthood, we purposely explored this relation in a population likely 

to show maximal variability in temporal symbol understanding – children who are in the 

process of learning temporal symbols in school. Children completed a nonsymbolic timing 

task (Temporal Discrimination), and two assessments of symbolic timing (Temporal Units 

of Measurement Questionnaire and a Temporal Estimation task).  

Methods 

Participants 

One hundred and two 6-7-year olds (Mage = 83.44 months, 52 females) participated. 

An additional seven children completed only a single task in its entirety and were not 

included in the analyses. This age range was chosen to focus on a period of development 
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during which children begin acquiring formal units of measurement for time in the 

classroom (National Governors Association Center for Best Practices, 2010). In particular, 

according to the Common Core standards, first graders are learning how to tell time to the 

nearest hour and half hour. By second grade, students should be able to recognize the 

relations between different temporal units of measurement (e.g., a minute is longer than a 

second). As such, this age range was chosen so as to maximize variability in symbolic 

understanding across our sample. 

Children from the greater Boston area were recruited at afterschool programs (n = 

7), local museums or parks (n = 54), or during a short visit to the lab (n = 41). The battery 

of tasks took approximately 15 minutes to complete. Required sample size was based on a 

priori calculations in G*Power (Faul, Erdfelder, Buchner, & Lang, 2009) requiring 0.80 

power for detecting a medium effect size on central analyses. All methods were approved 

by the Boston College IRB. 

Procedure 

After parental consent was obtained, the experimenter gave parents a Parent Timing 

Questionnaire (modeled after LeFevre, Skwarchuk, Smith-Chant, Fast, & Kamawar, 

2009). Like LeFevre et al. (2009), we included questions about the frequency of using 

calendars and dates (separated into two questions as opposed to a single question in 

LeFevre et al., 2009), and wearing a watch. We also added new questions that related to 

reading digital and analog clocks, discussing time, and using a timer1. Because responses 

                                                                 
1 In our sample, we found higher rates of using calendars and dates (M = 3.79, SD = 1.23 
compared to LeFerve et al., 2009, M = 3.0, SD = 1.1, t(244) = 5.27, p < .001), and wearing 
watches (M = 1.7, SD = 1.18 versus LeFevre et al., 2009 M = 1.2, SD = 1.4, t(244) = 2.93, 
p < .01), likely due to differences in the age range our samples.  
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to this questionnaire were not correlated with any of the child timing measures, we 

concluded that it was not an accurate depiction of the children’s timing abilities and thus 

excluded it from the main analyses.  

Children were tested in a quiet testing space. Children completed the following 

tasks in a single session in a set order: (1) temporal discrimination (assessment of 

nonsymbolic timing abilities), (2) temporal units of measurement Questionnaire 

(assessment of symbolic timing abilities), (3) temporal estimation task (assessment of 

symbolic mapping), and (4) numerical discrimination Task (assessment of nonsymbolic 

numerical abilities).  

(1) Temporal discrimination (modeled after Hamamouche & Cordes, 2019) 

The temporal discrimination task served as an assessment of the children’s 

nonsymbolic temporal acuity. Children saw a cartoon chicken and cow presented side-by-

side on the computer screen. Children were told that the chicken and cow were going to 

take turns playing musical instruments for a certain amount of time and their task was to 

decide which animal played their instrument longer. On every trial, the chicken (always 

located on the left) played its trumpet first, followed by a 1500 ms inter-stimulus interval, 

and then the cow (always located on the right) played its trumpet. When each animal played 

their trumpet, children heard a sound accompanied by the presence of a box around the 

relevant animal (both a visual and auditory cue). The trumpet of each animal made a unique 

sound, such that the chicken’s trumpet always sounded like a horn and the cow’s trumpet 

sounded like a train. Children indicated which animal played the trumpet longer by 

pointing and the experimenter recorded the response by pressing specified keys on a 

keyboard.  
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Children completed eight practice trials, during which children were encouraged to 

ask the experimenter questions. The practice trials were identical to the test trials except 

that the ratio between the two durations presented was 3.2. In order to ensure that children 

could clearly hear the stimuli, after completing the practice trials, the experimenter asked 

all children to put headphones on for the remainder of the task. Although the experimenter 

could not hear the sound of the discrimination stimuli, (s)he could still see the box 

appearing around each character, and thus the experimenter was not naïve to the stimuli.  

During test, the durations of the stimuli ranged from 200 ms – 4000 ms. The pairs 

of durations presented on every trial differed by one of four ratios: 1.25, 1.5, 2, 2.25 

(modeled after Hamamouche & Cordes, 2019; Odic et al., 2016). The cow played the 

instrument longer on exactly half of all trials. In test, children completed 32 trials: 4 ratios 

(1.25, 1.5, 2, 2.25) x 8 times each, with all manipulations intermixed in the same block of 

trials2. All stimuli were presented and data were recorded using a Xojo program on a Mac 

laptop.  

(2) Temporal units of measurement questionnaire (modeled after Oakden & Sturt, 1922 

and Tillman & Barner, 2015) 

This was a measure of children’s temporal symbol understanding. An experimenter 

read children 13 questions relating to how long it takes to do everyday activities (e.g., 

“How long does it take you to brush your teeth?”), reading analog and digital clocks, and 

identifying which duration is longer (e.g., “Which is longer a minute or a second?”). The 

                                                                 
2 A programming error led 19 participants to only receive 6 iterations of a 2-fold ratio 
change (and 2 iterations of a 1.75 change) on the time discrimination task. While these 
trials were included in analyses involving overall time discrimination performance, these 
trials were excluded in analyses concerning ratio effects.   
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experimenter read each question to the child and recorded their responses using pen and 

paper. The measure showed strong internal consistency,  = .861. See Appendix A.  

(3) Temporal estimation (modeled after Bueti, Walsh, Frith, & Rees, 2008) 

This task served as a second assessment of children’s symbolic mapping abilities. 

On a laptop using a Xojo program, children were asked to hold the left arrow key on a 

keyboard for a set amount of time (5, 9, 14 seconds; order counterbalanced). On each trial, 

the experimenter prompted the child by saying, “Hold down this key [pointing to the left 

arrow key] for [5, 9, or 14] seconds.” The experimenter did not suggest strategies to the 

child; however, if the child began using a strategy such as counting, they were not stopped.  

(4) Numerical discrimination: Panamath (Halberda et al., 2008) 

The numerical discrimination task was added to the battery of tasks half-way 

through data collection, thus only a subset of children (n = 59) completed the task. We 

included this to assess whether discrimination performance in general, or temporal 

discrimination in particular, was related to an understanding of temporal units of 

measurement. During the numerical discrimination task, children saw two separate, but 

simultaneously presented, dot arrays containing either blue or yellow dots on the computer 

screen and were asked which color contained more dots. Children completed 88 trials in 

which dot arrays ranged from 5-21 dots. All dot arrays were displayed for 1951 ms and the 

two arrays differed by one of the following ratios: 1.28, 1.47, 1.75, 2.75. In half of the 

trials, the cumulative area of each dot array was equated, such that the larger dot array 

contained smaller individual dots on average. In the other half of the trials, the dots in both 

arrays were the same size on average. As such, the larger numerosity also contained a larger 
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surface area. Children stated their answer out loud and the experimenter recorded their 

responses by pressing corresponding keys on the keyboard.  

 After completing all tasks, children and their parents were debriefed, and children 

picked out a prize for participation.  

Data Coding and Analyses   

Temporal units of measurement questionnaire 

Accuracy (percent correct) was the dependent variable for the temporal units of 

measurement questionnaire. Responses indicating uncertainty (i.e., “I don’t know”, “I 

haven’t learned that yet”) were counted as incorrect. One child did not complete the 

temporal units of measurement questionnaire.  

Temporal discrimination  

Percent correct was the dependent variable for the temporal discrimination task. 

One child’s score was three standard deviations below the mean, and thus was excluded 

from the analyses. The data from one child was not saved due to a computer error, and one 

child showed a side bias by always choosing one of the characters, and thus, these 

children’s responses were not included in the analyses.  

Temporal estimation 

Absolute average error was calculated and used as the dependent variable for the 

temporal estimation task. Error was calculated by taking the absolute value of the 

difference between the child’s response to each duration and the actual duration to be 

estimated. This value was then divided by the duration to be estimated. Then, the average 

error across the three trials was calculated. Two participants did not understand the task 

and thus were excluded from the analyses. The average error from two participants was 
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more than three standard deviations above the mean, and these participant’s data was 

excluded from analyses involving temporal estimation. Four children did not complete this 

task (time constraints, wanting to discontinue participation, etc.).  

Numerical discrimination 

Percent correct was the dependent variable for numerical discrimination task. Two 

children had overall scores more than three standard deviations below the mean, and thus 

their performance was excluded. After implementing the task, 11 children (n = 7 due to 

time constraints, n = 4 program error) did not complete the numerical discrimination task, 

and thus their scores were not included. One additional child was excluded due to parental 

interference during the numerical discrimination task.  

Results 

See Table 2.1 for average performance on each task. Children performed above 

chance on the temporal discrimination (t(98) = 23.84, p < .001, N = 99) and the numerical 

discrimination (t(44) = 32.78, p < .001, N = 45). Table 2 shows the correlations between 

tasks.  

Temporal 
discrimination 

Temporal units of 
measurement questionnaire 

Temporal estimation 
error 

Numerical 
discrimination 

79.48% (1.24) 
N = 99 

 76.00% (1.81) 
N = 101 

.54 (.03) 
N = 94 

91.74% (1.27) 
N = 45 

 
Table 2.1. Mean performance (standard error in parenthesis) on each task. 
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 1. 2. 3. 4. 
1. Temporal discrimination  .499** 

N = 98 
-.260*  
N = 92 

.321* 
N = 42 

2. Temporal units of measurement     
    questionnaire 

.469** 
N = 98 

 -.319** 
N = 97 

.410** 
N = 45 

3. Temporal estimation -.265* 
N = 92 

-.376** 
N = 94 

 -.070 
N = 44 

4. Numerical discrimination .285 
N = 42 

.450** 
N = 45 

-.124 
N = 45 

 

** p < .01, * p < .05 
Table 2.2. Correlations between performance on tasks (below diagonal), controlling for  
Age (above diagonal).  
 

Ratio Effects for Temporal and Numerical Discrimination 

 Previous research has reported ratio effects in temporal and numerical 

discriminations, such that larger ratios are easier to discriminate (indicative of Weber’s 

Law; see Gibbon, 1977; van Marle & Wynn, 2006). To test for ratio effects in our temporal 

data, we conducted a repeated measures ANOVA on performance on trials for each of the 

four ratios in our temporal discrimination task. There was a significant effect of Ratio, F(3, 

294) = 44.47, p < .001, 𝜂𝑝
2 = .312, N = 99,  such that performance was worse on smaller 

ratios compared to larger ratios (p’s < .001, except for the comparison between the two 

easiest ratios, p = 1.0; See Figure 2.1a). A comparable repeated measures ANOVA testing 

for ratio effects in our numerical discrimination data also revealed a main effect of Ratio, 

F(3, 132), = 33.49, p < .001, 𝜂𝑝
2 = .432, N = 45, indicating better performance on trials 

consisting of a larger ratio (all p’s < .01, except for the comparison between the two middle 

ratios, p = .08; See Figure 2.1b).   
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Figure 2.1a. Performance on the Temporal Discrimination task by Ratio (N = 99). Error 
bars represent standard error.  
 

 

Figure 2.1b. Performance on the Numerical Discrimination task by Ratio (N = 45).  Error 
bars represent standard error.  
Temporal Estimation Performance  

Children’s estimates increased with increasing duration on the temporal estimation 

task (F(2, 186) = 27.36, p < .001, 𝜂𝑝
2  = .227, N = 94; all p’s < .01). Despite this, the amount 

of error was comparable regardless of the duration children were asked to produce (F(2, 

186) = 1.94, p = .15, 𝜂𝑝
2  = .020).  
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Performance on our two measures of children’s symbolic timing understanding, the 

temporal estimation task and the temporal units of measurement questionnaire, were 

correlated, r = -.376, p <. 001, N = 94. As such, we calculated a composite symbolic timing 

score by averaging children’s performance on the temporal units of measurement 

questionnaire and the temporal estimation task to be used for all analyses. Because a higher 

score on the temporal units of measurement questionnaire was indicative of better 

performance, but a higher error score on the temporal estimation task was indicative of 

lower performance, we calculated a z-score for each task separately, and then multiplied 

the temporal estimation z-score by -1. Finally, we averaged the two z-scores into a single 

composite symbolic timing score. Five participants only had one of the symbolic timing 

measures, and thus were not included in the analyses involving the composite symbolic 

timing score. All analyses remain consistent when considering only one of the symbolic 

timing measures, except where indicated.  

Previous work has shown that both nonsymbolic and symbolic abilities improve 

with age (Brannon et al., 2007; Tillman & Barner, 2015; van Marle & Wynn, 2006). To 

test this, we conducted separate correlations between age (in months) and performance on 

the temporal discrimination task, and age and performance on the numerical discrimination 

task. We also conducted a comparable correlation with age and our composite symbolic 

timing score. While age was correlated with symbolic timing ability, r = .390, p < .001, N 

= 94, it was not correlated with nonsymbolic timing abilities3, r = .045, p = .657, N = 99, 

or nonsymbolic numerical abilities, r = .277, p = .066, N = 45.  

                                                                 
3 Based on other work suggesting a distinction in performance on sub- and supra-second 
timing emerges in childhood (Hamamouche & Cordes, 2019), we explored whether 
discrimination performance differed between sub and supra second ranges in our study; 
however, they did not, p >.26, N = 100. 
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Given prior work demonstrating a relation between numerical acuity and symbolic 

math (e.g., Halberda et al., 2008; Starr et al., 2013), it was predicted that children with a 

greater symbolic understanding of time would also have more precise nonsymbolic 

representations of time. Specific to this hypothesis, we conducted a correlation between 

children’s symbolic and nonsymbolic timing abilities. The correlation was significant, r = 

.450, p < .001, N = 92, suggesting that greater temporal precision is related to a stronger 

understanding of temporal symbols. We next conducted a partial correlation controlling for 

age (in months) to test the relation between symbolic and nonsymbolic timing in childhood 

independent of age-related changes. Importantly, the correlation remained significant, r = 

.464, p < .001, N = 92, suggesting that this relation holds above and beyond age related 

changes4. See Figure 2.2.  

 

 
Figure 2.2. A strong positive relation exists between nonsymbolic timing abilities and 
symbolic timing abilities when controlling for age.  

                                                                 
4 This correlation remains significant when controlling for pairwise comparisons.  
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To assess whether symbolic timing abilities predict nonsymbolic timing precision, 

even when controlling for differences in developmental maturity (i.e., age) and basic 

discrimination capacities, we conducted a hierarchical regression. In the first step, we 

entered age and numerical discrimination as a predictor of nonsymbolic timing. Although 

the model did not reach significance, F(2, 39) = 2.670, p = .082, numerical discrimination 

(B = .006 p = .041), but not age (B = -.004, p = .195) predicted nonsymbolic timing. Adding 

symbolic timing into the second step added additional variance (R2 change = .140, p = 

.011), allowing the model to reach significance, F(3, 38) = 4.462, p = .009. Symbolic timing 

(B = .060, p = .011) significantly predicted nonsymbolic timing, while age (B = -.005, p = 

.065) and numerical discrimination (B = .005, p = .070) marginally predicted nonsymbolic 

timing5. See Table 2.3. Thus, even when controlling for Age and for performance on a task 

with comparable demands in the domain of number, nonsymbolic timing was uniquely 

related to an understanding of temporal units of measurement.   

Step 1: B SE B β p-value 
  Age -.004 .003 -.202 .195 
  Numerical Discrimination .006 .003 .324 .041 
Step 2:        
  Age -.005 .003 -.275 .065 
  Numerical Discrimination .005 .003 .267 .070 
  Symbolic Timing .060 .022 .387 .011 

Note: Only the second model was significant, p = .009. The R2 change for Model 2 (.140, 
p = .011) reached significance.  
 
Table 2.3. Hierarchical regression showing the unique relation between symbolic and 
nonsymbolic timing. 

 

 

                                                                 
5 Adding performance on the temporal estimation task alone did not contribute additional 
variance (R2 change = .033, p = .230) to the model, and both models remined non-
significant, p’s > .05.  
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Discussion 

While the field of mathematical cognition has been immersed with investigations 

of the relation between symbolic and nonsymbolic number and to a lesser degree, in space 

as well (number: Gilmore et al., 2010; Halberda et al., 2008; Libertus et al., 2011; 

Mazzocco et al., 2011; Starr et al., 2013; space: Lauer & Lourenco, 2016; Lourenco & 

Bonny, 2017), no work has explored this relation in the domain of time. Our study is the 

first to report a relation between symbolic and nonsymbolic timing abilities in children. As 

predicted, we found that nonsymbolic temporal acuity, as assessed by a temporal 

discrimination task, was significantly correlated with an understanding of temporal units 

of measurement in childhood. Importantly, these findings held even when controlling for 

age, revealing that these relations could not be accounted for by maturational changes that 

are expected to occur over the course of development. While investigations in numerical 

cognition have found this relation across a wide age span, we chose to test only 6-7-year 

olds as this is the age at which temporal units of measurement are taught in the classroom 

and thus the point at which the greatest changes in symbolic knowledge occur. Future work 

testing the consistency of this relation across a larger age range may be important for 

further characterizing this link. While one might expect this relation to exist in adults, a 

growing body of evidence has questioned the presence of a relation between adult’s 

symbolic and nonsymbolic representations of number (e.g., Gilmore et al., 2013; Inglis et 

al., 2011; Skagerlund & Träff, 2016). Moreover, adults are likely to adapt timing strategies, 

such as counting, that may not rely upon nonsymbolic representations of time, making it 

less likely this relation might hold in adulthood.  
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Our analyses also revealed that the relation between symbolic and nonsymbolic 

timing abilities held strong in a subset of participants even when controlling for numerical 

discrimination abilities and age, indicating that the link between symbolic and nonsymbolic 

timing abilities is unlikely to be dependent upon basic maturation and/or more domain-

general task demands (i.e., decision-making, perceptual acuity, and/or working memory 

demands). Although previous work has linked domain-general abilities like information 

processing speed and working memory to explicit timing performance (Droit-Volet & 

Zélanti, 2013a, b; Zélanti & Droit-Volet, 2011), our analyses suggest that these domain 

general abilities – likely implicated in performance in both the numerical and temporal 

discrimination tasks – are not the source of the link between nonsymbolic and symbolic 

timing abilities in our dataset.  

While we believe our temporal discrimination task tapped into children’s 

nonsymbolic timing abilities, it is also possible that children may have relied upon some 

other quantitative dimension, such as the cumulative intensity of the stimuli, in order to 

make their responses. Although this remains a possibility, we do not believe this to be the 

case. While we predicted a relation between nonsymbolic and symbolic timing, there 

would be little reason to expect a relation between nonsymbolic cumulative intensity and 

symbolic timing. Thus, the strong correlation found between nonsymbolic and symbolic 

timing in the present study suggests that the temporal discrimination task is indeed tapping 

into children’s timing abilities. Moreover, performance on our temporal discrimination task 

mimicked that of other studies investigating nonsymbolic timing using empty intervals, in 

which the duration to be timed is denoted by two brief tones at the beginning and end of 

the interval, in which cumulative intensity would not be an available cue (Grondin, 1993). 
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To fully investigate this possibility, future work should ask children to discriminate 

between two empty intervals.  

Although we found a significant relation between nonsymbolic and symbolic 

timing abilities, our data cannot speak to whether this relation is causal or not, and if so, in 

which direction. One possibility is that learning symbolic temporal units of measurement 

may give children a more accurate understanding of the timing process. In this instance, 

after learning temporal symbols, children may be better able to encode durations and/or 

have heightened attention towards stimulus durations, leading to a more advanced ability 

to track time. Hints of a causal relation of this nature in the domain of number is supported 

by the work of Shusterman et al. (2016), in which it was found that young children learning 

to count demonstrate dramatic increases in nonsymbolic numerical acuity as soon as they 

master the basic counting principles. Similarly, Piazza et al. (2015) found adults in the 

Munduruku tribes of Brazil with zero years of formal schooling to have significantly less 

precise numerical acuity than individuals with one or more years of schooling, suggesting 

that formal education shapes nonsymbolic numerical abilities. However, whether the 

acquisition of timing symbols similarly leads to improvements in nonsymbolic timing 

abilities is an open question.  

If it is the case that nonsymbolic timing is shaped by the acquisition of temporal 

symbols, what is the source of the improvement in timing? The acquisition of symbols may 

make temporal durations more salient and relevant to children, leading to heightened 

attention and temporal acuity. Alternatively, learning a system of measurement may 

provide children with strategies for tracking time, such as counting seconds. Although 

anecdotally, none of the children in our study overtly counted and the durations included 
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in our temporal discrimination task were too short to make counting a less effective 

strategy, this possibility should be explored in future research. 

Alternatively, the link between symbolic and nonsymbolic timing abilities may hint 

at the possibility that children with greater nonsymbolic temporal precision may have a 

better foundation upon which to learn temporal units of measurement. That is, it may be 

easier for children to learn temporal units of measurement when they already have a precise 

ability to track time and discriminate between durations. Again, evidence in the domain of 

number has suggested that nonsymbolic numerical abilities may form the foundation for 

the acquisition of numerical symbols. For example, nonsymbolic numerical discrimination 

abilities in infancy predict formal math achievement years later in preschool (Starr et al., 

2013). Similarly, there is some evidence to suggest that training of nonsymbolic numerical 

abilities may even lead to improved math achievement in childhood (Hyde, Khanum, & 

Spelke, 2014; Park & Brannon, 2016; Wang, Odic, Halberda, & Feigenson, 2016). Future 

experimental work should investigate the nature of the relation between symbolic and 

nonsymbolic timing abilities to determine whether nonsymbolic timing abilities are 

predictive of symbolic acquisition and/or whether the acquisition of temporal symbols 

leads to subsequent improvements in nonsymbolic timing abilities.  

If it is the case that a causal relation exists between symbolic and nonsymbolic 

timing, it would be important to explore why this may be and if other experiences may 

similarly shape timing abilities. For example, we know that nonsymbolic timing abilities 

become more precise over the course of development, even long before children acquire 

temporal symbols (Brannon et al., 2007; Feigenson, 2007; vanMarle & Wynn, 2006). Are 

there particular types of experiences that may promote temporal acuity more than others? 
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If so, is it possible to promote nonsymbolic timing in the service of acquiring more precise 

symbolic understandings?  The answers to these questions are important for shedding light 

on timing processes while also having educational implications. 

In conclusion, our data are the first to indicate that children’s understandings of 

temporal units of measurement are correlated with individual differences in temporal 

acuity. Future work will be important for better characterizing this relation. Is this relation 

casual? If so, in which direction? Does the acquisition of symbolic timing sharpen 

nonsymbolic temporal acuity or does improving nonsymbolic temporal acuity promote the 

acquisition of temporal symbols? Or might a third variable contribute to this relation? 

Together, our study joins others in the field of numerical cognition suggesting that a child’s 

ability to perceive quantity nonsymbolically is intricately linked to their formal 

understanding of symbols in that same quantitative domain.  
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Appendix. Temporal Units of Measurement Questionnaire 

1. How many minutes are in an hour? 

2. How many seconds are in a minute? 

3. How many hours are in a day? 

4. A. What is longer a minute or a second? 

B. What is longer a minute or an hour? 

C. What is longer a second or an hour? 

5. A. What is longer a month or a day? 

B. What is longer a day or a week? 

C. What is longer a week or a year? 

D. What is longer a year or a month?  

6. How many minutes does it take you to brush your teeth? 

7. How many minutes does it take you to eat dinner?  

8. How many minutes have you been talking to me? 

9. Kristen jumped for a week, John jumped for a day. Who jumped longer? 

10.  Jennifer jumped for 5 seconds, Ben jumped for 2 minutes. Who jumped longer? 

11. What does this clock say?    

12. What time does this clock say? 

                                                          
13. Kit left home this morning at 9:05. Jane left home 20 minutes after Kit left. What 

time did Jane leave at? 
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CHAPTER 3: LEARNING ABOUT TIME DOES NOT REFINE CHILDREN’S 

TEMPORAL ACUITY 

Abstract 

Over development, children acquire symbols to represent abstract concepts such as time 

and number. Despite the importance of quantity symbols, it is unknown how acquiring 

these symbols impacts one’s ability to perceive quantities (i.e., nonsymbolic 

representations). While it has been proposed that learning symbols shapes nonsymbolic 

quantitative abilities, this hypothesis has been understudied. Moreover, the research in 

support of this hypothesis has been solely correlational in nature, and thus, experimental 

manipulations are critical for determining whether this relation is causal. In the present 

study, kindergarteners and first graders (N = 133; who have yet to learn about temporal 

symbols in school) completed a temporal estimation task during which they were trained 

on (1) temporal symbols and effective timing strategies (“2 seconds” and counting on the 

beat), (2) training on temporal symbols only (“2 seconds”), or (3) a control training. 

Children’s nonsymbolic and symbolic timing abilities were also assessed before and after 

training. Results revealed a strong correlation between children’s nonsymbolic and 

symbolic timing abilities at pre-test (even when controlling for age), indicating this relation 

exists prior to formal classroom instruction on temporal symbols. Despite this, we found 

no support for the refinement hypothesis, as learning temporal strategies and/or symbols 

did not impact children’s nonsymbolic timing abilities. Implications and future directions 

are discussed. 
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“How many blocks are you building with?” “How many minutes are in an hour?” 

Early education places a great emphasis on teaching young children units of measurement, 

or symbols (e.g., number words for number; minutes, seconds, hours…etc., for time), to 

represent quantities. During preschool and kindergarten, children’s primary focus is 

learning numerical symbols (i.e., counting), and a shift to learning temporal symbols (i.e., 

minutes, seconds, hours…etc.) begins in early elementary school (National Governors 

Association Center for Best Practices, Council of Chief State School Officers, 2010). 

Despite the ubiquity of quantity symbols, it is relatively unknown how knowledge of these 

symbols impacts one’s ability to track these quantities (i.e., nonsymbolic representations). 

Does acquiring symbolic knowledge subsequently shape nonsymbolic abilities? The idea 

that formal symbolic knowledge may refine basic quantitative abilities – termed “the 

refinement hypothesis” (e.g., Mussolin, Nys, Content, & Leybaert, 2014; Suárez-Pellicioni 

& Booth, 2018) - has received some support from the numerical cognition literature, such 

that children’s early math abilities and/or symbolic knowledge has been shown to predict 

their later nonsymbolic numerical abilities (Lyons, Bugden, Zheng, De Jesus, & Ansari, 

2018; Matejko & Ansari, 2014; Mussolin et al., 2014; Shusterman et al., 2016). Notably, 

however, these investigations have been solely correlational in nature. In order to 

understand whether this relation is truly causal, experimental manipulations must be 

employed. In the present study, we conduct one of the first experimental investigations of 

the refinement hypothesis by testing whether learning temporal units of measurement – 

specifically acquiring knowledge about seconds – impacts children’s ability to perceive 

time.  

Evidence from number  
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 A plethora of work has shown a relation between children’s nonsymbolic numerical 

acuity and formal math abilities (i.e., symbolic abilities). This relation holds across all ages 

tested and across several math tasks (Bonny & Lourenco, 2013; Chen & Li, 2014; Libertus, 

Feigenson, & Halberda, 2011; Mazzocco, Feigenson, & Halberda, 2011; Odic, Lisboa, 

Eisinger, Olivera, Maiche, & Halberda, 2016; Schneider, Beeres, Coban, Merz, Schmidt, 

Stricker, & De Smedt, 2017). While researchers have promoted these findings as support 

for the idea that nonsymbolic numerical abilities form the foundation for the learning of 

formal symbolic number (e.g., Mazzocco et al., 2011; Starr, Libertus, & Brannon, 2013), 

it is also possible that the acquisition of formal symbols refines nonsymbolic numerical 

abilities. Evidence in favor of this hypothesis reveals 3-4 year olds’ performance on a 

symbolic number battery (e.g., counting, cardinality, etc.) predicted nonsymbolic number 

performance seven months later, whereas nonsymbolic number performance did not 

predict later symbolic abilities (Mussolin, Nys, Content, & Leybaert, 2014; see also Lyons, 

Bugden, Zheng, De Jesus, & Ansari, 2018). In a related study, Matejko and Ansari (2014) 

found both symbolic and nonsymbolic performance at the beginning of the school year 

predicted later nonsymbolic performance, whereas earlier symbolic performance was the 

only significant predictor of symbolic performance. Relatedly, Shusterman et al. (2016) 

discovered that as soon as preschoolers acquired an understanding of cardinality (the last 

number counted represents the size of the set), they demonstrated enhanced nonsymbolic 

numerical discrimination. Neuroimaging data also support the refinement hypothesis: math 

performance predicted bilateral IPS activity during a numerical discrimination task two 

years later, but not in the other direction (Suárez-Pellicioni & Booth, 2018).  
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Although these cross-lagged, correlational studies provide support for the 

refinement hypothesis by testing children’s symbolic and nonsymbolic abilities at two or 

more time points, only a single study has experimentally manipulated symbolic knowledge 

in order to test possible changes in nonsymbolic abilities. In this work, adults were 

explicitly trained on an arithmetic task (outside of the traditional classroom experience) 

and their numerical acuity was tested before and after training (Lindskog, Winman, & 

Poom, 2016). While the arithmetic training did not impact subsequent numerical acuity, 

the study was conducted with adults, who already have a substantial understanding of 

symbolic number. Given children’s limited symbolic knowledge, and the malleability of 

children’s nonsymbolic abilities (see Wang, Odic, Halberda, & Feigenson, 2016), 

determining whether explicit instruction of symbols would enhance children’s 

nonsymbolic acuity may be a stronger test of the refinement hypothesis.  

What about time?  

While the field of numerical cognition has been inundated with investigations of 

this relation, little work has investigated similar relations in other quantitative domains, 

such as time. Mirroring the numerical literature, recent work found a correlation between 

6-7 year olds’ ability to discriminate durations (i.e., their nonsymbolic representations of 

time) and their understanding of temporal units of measurement (i.e., symbolic 

representations of time; Hamamouche & Cordes, accepted). This study tested 6-7 year olds 

because that is the age at which children typically begin receiving formal instruction on 

temporal units of measurement in the classroom. However, it is an open question whether 

this relation holds in children who have yet to receive formal instruction on temporal units 

of measurement. Moreover, while a correlation has been established, it is unclear whether 
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this relation is causal, and specifically, whether the refinement hypothesis holds in the 

domain of time. That is, it is unknown whether acquiring temporal units of measurement 

subsequently shapes children’s nonsymbolic timing abilities. The relation in the domain of 

number may be facilitated as both numerical symbols and nonsymbolic abilities are 

discrete. It may be more difficult, however, for discrete symbols to shape continuous, 

nonsymbolic quantities, as is the case for time. Thus, in the current work, we test 1) whether 

a correlation exists between children’s symbolic and nonsymbolic abilities prior to formal 

instruction on time, and 2) if learning temporal units of measurement results in enhanced 

nonsymbolic timing abilities.  

The Current Study 

In the current study, we investigate the role that learning temporal units of 

measurement plays in children’s perception of time. We specifically chose to study 

kindergarten and first semester first graders who have yet to receive extensive instruction 

on temporal units of measurement in the classroom (National Governors Association 

Center for Best Practices, Council of Chief State School Officers, 2010) and whose 

nonsymbolic temporal acuity is still improving (Odic, 2018). In order to determine whether 

acquiring symbolic knowledge impacted children’s nonsymbolic representations of time, 

children participated in one of three symbolic training conditions: (1) in the Strategies 

condition, children were taught to keep track of seconds by counting on a beat; (2) in the 

Symbols condition, children only received instruction on temporal symbols without 

information about how to track the time; or (3) in a Control condition, in which children 

received no instruction on temporal symbols. Symbolic and nonsymbolic timing abilities 

were measured before and after training. Children also completed a nonsymbolic numerical 
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task, in order to test whether acquiring temporal symbols uniquely impacted children’s 

temporal acuity, or impacts nonsymbolic quantitative abilities more generally.  We 

predicted that children in both the Strategies and Symbols condition should have enhanced 

temporal discrimination task after training. However, those in the Strategies condition may 

show even greater improvements in nonsymbolic abilities.  

Methods 

Participants 

Kindergarten and first grade children (N =133; Mage = 76.37 months, 69 females) 

were recruited from the greater Boston (n = 44) and greater Indianapolis area (n = 89). All 

children were tested in their schools during the school day. One additional participant 

completed the study in the lab. Required sample size was determined on a priori 

calculations in G*Power (Faul et al., 2009) requiring 0.80 power for detecting a medium 

effect size on central analyses. 

An additional 33 participants were excluded for the following reasons: 18 

participants did not have a complete data set (completing the wrong estimation task: n = 1, 

opting out of the study: n = 6, missing data due to computer error: n = 5, or only completing 

the first visit due to scheduling restraints: n = 6); 7 participants were highly distracted 

during the training task; 3 participants did not understand the training task; and 5 performed 

below chance at both pre- and post-test.  

Procedure 

Children completed two test sessions which occurred within seven days. Children 

completed tasks in a fixed order. At pre-test, children completed 1) temporal discrimination 

(an assessment of nonsymbolic timing abilities), 2) two temporal estimation tasks (an 
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assessment symbolic mapping; order counterbalanced), 3) numerical discrimination 

(assessing nonsymbolic numerical abilities), 4) the temporal units of measurement 

questionnaire (assessing symbolic abilities), and 5) training (dependent upon condition). 

At post-test, children began with the training task, and then completed the pre-test measures 

in the same order. Children did not complete the temporal units of measurement 

questionnaire at post-test.  

(1) Temporal discrimination (Hamamouche & Cordes, 2019)  

The temporal discrimination task was a measure of children’s nonsymbolic timing 

abilities. Children saw two animals (a chicken and a cow) on the computer screen and each 

animal took turns playing a musical instrument for a certain amount of time. The chicken 

always played first followed by the cow. While the animal played, children heard a sound 

(horn for chicken, train for cow) and saw a box appear around the animal (i.e., both visual 

and auditory stimuli). Children were asked to indicate which animal played their instrument 

longer on every trial. Children completed two practice trials (involving a 3-fold difference 

in the two durations), during which they could ask the experimenter questions about the 

task. After the practice trials, children put on headphones so they could clearly hear the 

stimuli. Because temporal strategies are only useful during supra-second timing (Grondin, 

Meilleur-Wells, & Lachance, 1999), we predicted that timing supra-second durations 

(durations > 1000ms) may be more susceptible to modification following the learning 

temporal symbols and strategies compared to sub-second duration timing (durations < 

1000ms). Thus, half of the trials involved durations in the sub-second range (< 1000ms) 

and half involved durations in the supra-second range (> 1000ms). Moreover, to vary the 

difficulty of the task, pairs of durations presented on every trial differed by one of three 
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ratios: 1.25, 1.5, and 2. Children completed 18 test trials (2 duration ranges x 3 ratios x 3 

times each).  

(2) Temporal estimation  

Children completed two distinct temporal estimation tasks (order counterbalanced) to 

test the mapping between nonsymbolic and symbolic representations of time. We included 

two different tasks as they tapped into different directions of mapping. By doing so, we 

hoped to explore bidirectional mappings between nonsymbolic and symbolic 

representations of time and determine whether either direction of mapping was more 

accessible for young children.  

In the symbolic to nonsymbolic temporal estimation task, children were asked to hold 

a specified key for “three seconds”, “seven seconds”, and “nine seconds” (order 

counterbalanced). A blue oval appeared on the screen while children pressed the key. In 

the nonsymbolic to symbolic temporal estimation task, children saw a blue oval displayed 

for a certain duration (6 seconds at pre-test and 4 seconds at post-test) and were asked to 

verbally estimate how many seconds the oval was on the screen.  

(3) Numerical discrimination Task (Panamath; Halberda et al., 2008) 

 On every trial of the numerical discrimination task, children saw two arrays of dots 

(one blue and one yellow) and were asked to identify which array contained more dots. 

The arrays were displayed briefly (1951 ms), so that children were unable to count the 

number of dots in each array. Because the Panamath program (Halberda et al., 2008) 

adjusts the difficulty and number of trials based on the age of the participants, we set the 

age parameter to 5 and the test duration to 1 minute for all participants. 

(4) Temporal symbols questionnaire (modeled after Hamamouche & Cordes, accepted) 
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The temporal symbols questionnaire consisted of nine questions regarding children’s 

symbolic understanding of time. The experimenter read the questions aloud to the child 

and recorded their responses. Questions included asking factual information about 

temporal units (e.g., How many minutes are in an hour?), deciding which of two temporal 

units of measurement was longer (e.g., What is longer a minute or a second?), and 

estimating how long it took to do everyday activities (e.g., eat dinner, brush teeth).   

(5) Training 

 Children were randomly assigned to one of three training conditions: Strategies (n 

= 45, Mage = 76.22 months), Symbols (n = 44, Mage = 76.32 months), and Control (n = 44, 

Mage = 76.57 months). The training task was identical on both testing days. 

Strategies Condition. To introduce children to the task, the experimenter told 

children they were going to learn about time, and specifically see what 10 seconds felt like. 

To do so, the experimenter held a timer, and counted by saying One Mississippi, Two 

Mississippi,…etc. as each second passed to introduce a counting strategy to the children. 

After one example, the experimenter explained that it was easier to keep track of the 

seconds by counting them on a specific beat. Then, the experimenter repeated this process 

and encouraged children to count the seconds with them using the new Mississippi strategy. 

After this introduction to timing, children began the training task in which they were told 

that they would be playing hide and seek with a cat on a computer screen. In order to play 

the game, children would watch the cat on the screen, and when it disappeared, children 

would press the space bar for the same amount of time the cat had been on the screen. At 

the beginning of each trial, the experimenter stated how long the cat would appear on the 

screen (e.g., “The cat is going to be there for 2 seconds.”). After the cat disappeared, the 
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experimenter prompted children by saying e.g., “That was 2 seconds. Can you press the 

space bar for 2 seconds?” Trial-by-trial feedback was provided. When a response was 

within 20% of the correct response (e.g., responses between 4-6 seconds were considered 

correct when asked to produce 5 seconds), a smiley face appeared on the screen for 

5000ms. If the response was outside of the 20% range, a frowning face appeared on the 

screen for 5000ms, with feedback “That was too long [short]. Try to hold the space bar for 

shorter [longer] next time.” At both pre- and post-test, children completed 10 practice trials 

(5 trials involving 2 seconds followed by 5 trials involving 3 seconds) followed by 15 test 

trials (3 trials using 2 seconds, then 3 trials using 3 seconds,…continuing through 6 

seconds). To increase the amount of exposure to the counting strategy, the experimenter 

counted the seconds as the cat was on the screen during the practice trials. During the test 

trials, if children did not explicitly count while pressing the space bar, the experimenter 

reminded children to count the seconds to help them. Moreover, when children did not 

count on two trials in a row, the experimenter counted the seconds that the cat appeared on 

the screen for the next trial.  

Symbols Condition. The symbols condition was identical to the temporal strategies 

condition with the following exceptions. The experimenter told the child they would learn 

about 10 seconds and showed children a timer and allowed 10 seconds to pass; however, 

at no point during the training did the experimenter provide children with any strategies to 

help them, nor did they encourage children to use counting strategies to complete the 

training task. The prompts before and after each training trial were identical to the temporal 

strategies condition. Again, trial-by-trial feedback was provided.  
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Control Condition. Children assigned to the control condition did not receive the 

introduction to the task using the timer. Moreover, before each trial, the experimenter 

alerted children to the start of the trial by saying, “The cat is going to be there.” After each 

trial, the experimenter prompted the child by saying, “Can you press the space bar for the 

same amount of time?” Children continued to receive trial-by-trial feedback. 

On the second day of testing, children first completed the training (which was 

identical to pre-test training) and then subsequently completed the temporal discrimination 

task, temporal estimation task (order counterbalanced, in the same order as pre-test), and 

the numerical discrimination task. At the end of both sessions, children received two 

stickers for participating.  

Data Coding 

Temporal discrimination 

 Proportion correct served as the dependent variable for the temporal discrimination 

task. We also calculated the proportion correct for performance in the sub- and supra- 

second ranges, as well as, for each individual ratio. Only one participant had an overall 

temporal discrimination performance that was an outlier (Pre-Test, performance three 

standard deviations below the mean) and thus was excluded from analyses involving the 

temporal discrimination task.  

Temporal estimation: symbolic to nonsymbolic 

Average estimate and slope were the dependent variables for the symbolic to 

nonsymbolic temporal estimation task. The measure of average estimate allows us to 

determine whether participants are over- or underestimating, whereas the slope analysis 

indicates whether participants are adjusting their estimates based on the duration of the 
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stimulus. Data points three standard deviations above/below the mean were excluded from 

analyses (Average Estimate: Pre-Test: nAbove = 3; Post-test: nAbove = 3; Slope: Pre-Test: 

nAbove = 2, nBelow = 1; Post-Test: nAbove = 1, nBleow = 2).  

Temporal estimation: nonsymbolic to symbolic 

 Because the duration presented differed from pre-test to post-test, we calculated 

absolute average error as the dependent variable for the nonsymbolic to symbolic temporal 

estimation task. We first removed any responses that were non-numerical (i.e., “a little”, 

“circle”; Pre-test: n = 3, Post-test: n = 1). Then, we excluded any values that were three 

standard deviations above/below the mean. Two participants at pre-test and another at post-

test had responses three standard deviations above the mean, and were thus excluded from 

analyses involving this estimation task.  

Numerical Discrimination 

 Percent correct was the dependent variable for the numerical discrimination task, 

as this has been shown to be the most reflective of performance (Inglis & Gilmore, 2014). 

Data points three standard deviations above or below the mean (Pre-test: nBelow = 3, Post-

test: nBelow = 3) were excluded from analyses involving this task.  

Temporal symbols questionnaire 

 Performance on the temporal symbols questionnaire was scored for accuracy. 

Instances in which the child refused to provide a response, or indicated that they did not 

know the answer, were scored as incorrect. There were no outliers.   

Training 

 Accuracy was recorded during the test trials of the training task. Given predicted 

differences in accuracy across the conditions (performance should be most accurate in the 
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strategies condition, followed by the symbols, and lastly the control condition), we did not 

exclude participants based on their performance on the training task.    

Results 

Average performance on each task at pre- and post-test can be found in Table 3.1, 

and correlations between pre- and post-test performance can be found in Table 3.2. There 

were no differences in performance at pre-test across our two research sites (p’s >.15) or 

conditions (p’s > .3). Pre-test performance on all tasks (p’s < .01) was found to be 

correlated with age; except the nonsymbolic to symbolic estimation and symbolic to 

nonsymbolic (slope) p’s > .3; thus, analyses included age as a covariate to control for 

potential age differences.
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Temporal 
Discrimination 

Temporal 
Estimation 
(Nonsymbolic – 
Symbolic) 
Average Error 

Temporal 
Estimation 
(Symbolic – 
Nonsymbolic) 
Average Estimate 

Temporal 
Estimation 
(Symbolic – 
Nonsymbolic) 
Slope 

Temporal 
Symbols 
Questionnaire 

Numerical 
Discrimination Training 

Strategies             
Pre-Test .75 (.01) .77 (.07) 11.73 (2.21) 1.30 (.40) .56 (.04) 92.05 (1.29) .61 (.04) 
Post-Test .72 (.02) .35 (.07) 6.02 (.41) .92 (.09) -- 91.90 (1.31) .68 (.04) 
Symbols              
Pre-Test .74 (.02) .80 (.08) 8.77 (1.70) 1.05 (.26) .52 (.04) 93.46 (1.26) .44 (.04) 
Post-Test .69 (.02) .84 (.09) 4.30 (.41) .62 (.07) -- 91.28 (1.14) .45 (.04) 
Control               
Pre-Test .73 (.02) .67 (.08) 12.46 (1.93) 1.38 (.45) .52 (.04) 91.68 (1.35) .42 (.04) 
Post-Test .70 (.02) .88 (.10) 3.47 (.26) .44 (.05) -- 92.73 (1.31 .44 (.03) 

Table 3.1. Average performance (SE) on each task at pre- and post-test.  
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Temporal 
Discrimination 

Temporal 
Estimation 
(Nonsymbolic – 
Symbolic) 
Average Error 

Temporal 
Estimation 
(Symbolic – 
Nonsymbolic) 
Average Estimate 

Temporal 
Estimation 
(Symbolic – 
Nonsymbolic) 
Slope 

Numerical 
Discrimination 

Strategies .357* -.023 .489** -.239 .522** 
Symbols .370* .573** .186 .442** .423* 
Control .276+ .551** .383* -.041 .510* 

Table 3.2 Correlations between pre- and post-test performance.  
**p < .001, *p < .05, +p < .1 
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Correlation between Nonsymbolic and Symbolic Timing. We first tested for a 

correlation between nonsymbolic and symbolic timing abilities (as measured by the 

temporal units of measurement questionnaire) at pre-test. This correlation held when 

controlling for age, r = .212, p = .015, See Figure 3.1.  

 

Figure 3.1. There was a strong correlation between temporal discrimination performance 
and an understanding of temporal units of measurement when controlling for age.  
 
Effect of Training 

We next investigated whether accuracy on the training task differed amongst the 

conditions. To do so, we conducted a univariate ANOVA exploring the effect of Condition 

(as a fixed factor) and Age (as a covariate) on accuracy on the training task. Both Condition, 

F(2, 129) = 16.620, p < .001, and Age (F(1, 129) = 21.590, p < .001) predicted training 

performance. Parameter estimates revealed that with each additional month of age, children 

responded correctly on an additional half item (B = .011). Moreover, children in the 

Strategies (M = .646, SE = .030) condition outperformed those in both the Symbols (M = 
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.447, SE = .030, p < .001) and the Control (M = .428, SE = .030, p < .001) conditions. There 

was no significant difference between those in the Symbols or Control conditions (p = 

.659), See Figure 3.2.  

 

Figure 3.2. Children who learned strategies outperformed their peers on the training task.   

Temporal Discrimination  

Performance was above chance at both pre-test and post-test on the temporal 

discrimination (Pre-Test: M = .74, SE = .01; t(131) = 24.942, p < .001; Post-Test: M = .71, 

SE = .01; t(132) = 18.403, p <.001). Moreover, a 2 (Time: Pre- versus Post-test) x 3 (Ratio: 

1.25, 1.5, 2) repeated measures ANOVA on temporal discrimination performance revealed 

a main effect of Time, F(1, 131) = 7.564, p = .007, 𝜂𝑝
2 = .055, such that performance was 

worse at post-test (M = .707, SE = .011) compared to pre-test (M = .741, SE = .010). There 

was also a main effect of Ratio, F(2, 262) = 88.270, p < .001, 𝜂𝑝
2  = .403, such that 

performance increased as the ratio between the two durations increased. The Time x Ratio 

interaction did not reach significance, p > .5.  
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In order to determine whether the training directly impacted children’s temporal 

discrimination performance, we first conducted a 2 (Time: Pre- versus Post-Test) x 3 

(Condition: Strategies, Symbols, Control) mixed measures ANCOVA with age as a 

covariate on children’s performance on the nonsymbolic temporal discrimination task. Age 

was related to discrimination performance, F(1, 128) = 14.170, p < .001, 𝜂𝑝
2  = .100. 

Parameter estimates revealed that with each additional month, children responded correctly 

on approximately one additional trial (Pre-Test: B = .004; Post-Test: B = .005). No other 

main effects or interactions emerged, p’s > .2, suggesting that our training conditions did 

not have a differential impact on temporal discrimination performance, See Figure 3.3.  

 

Figure 3.3. Regardless of Condition, temporal discrimination performance was comparable 
at pre- and post-test.  
 
 Sub- and Supra-Second Temporal Discrimination. A secondary question concerned 

whether temporal precision may be differentially impacted depending on the range of 

durations tested. That is, we reasoned that our training may specifically impact durations 

in the supra-second range (compared to the sub-second range) as supra-second duration 

timing may be more effectively measured via counting strategies (it is hard to count more 
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than one beat for durations less than a second) and because our symbols specifically trained 

children on supra-second durations (i.e., children were taught about seconds, not about 

milliseconds). To investigate this possibility, we performed identical repeated measures 

ANCOVAs using sub-second and supra-second performance (separately, again controlling 

for age). Both ANCOVAs revealed a main effect of Age, (sub-second: F(1, 128) = 8.058, 

p = .005, 𝜂𝑝
2 = .059; supra-second: F(1, 128) = 11.083, p = .001, 𝜂𝑝

2 = .080) and no other 

main effects or interactions reached significance, p’s > .2.  

Temporal Estimation (Symbolic to Nonsymbolic)  

Average Estimate. Children’s average estimates was greater than the true mean (M 

= 6.34) at pre-test, but smaller than the true mean at post-test (Pre-Test: M = 10.97, SE = 

1.13; t(129) = 4.10, p < .001; Post-Test: M = 4.58, SE = .23, t(129) = -7.657, p < .001).  

We ran a comparable 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, 

Symbols, Control) mixed measures ANCOVA on children’s performance on the symbolic 

to nonsymbolic temporal estimation task with age as a covariate. There was a main effect 

of Time, F(1, 124) = 11.030, p = .001, 𝜂𝑝
2= .082, such that the average estimate was smaller 

at post-test (M = 4.62, SE = .215) compared to pre-test (M = 10.38, SE = 1.037). There was 

also a main effect of Age, F(1, 124) = 6.134, p = .015, 𝜂𝑝
2 = .047, that was qualified by a 

Time x Age interaction, F(1, 124) = 7.748, p = .006, 𝜂𝑝
2  = .059. To follow-up on this 

interaction, we first looked for a correlation between age and change in estimates. A 

significant correlation emerged, r = .236, p = .007. Plotting this correlation indicated that 

younger children substantially lowered their estimates from pre-test to post-test, whereas 

older children did not change their estimates as much, See Figure 3.4. Finally, there was a 

marginal Time x Condition interaction, F(2, 124) = 2.817, p = .064, 𝜂𝑝
2 = .043. Children in 
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all conditions produced significantly shorter estimates at post-test compared to pre-test 

(Strategies: Pre-Test: M =  9.91, SE = 1.88; Post-Test: M = 6.02, SE = .42; p = .029; 

Symbols: Pre-Test: M = 8.77, SE = 1.7; Post-Test: M = 4.30, SE = .41; p = .010; Control: 

Pre-Test: M = 12.46, SE = 1.93; Post-Test: M = 3.45, SE = .27; p < .001). To further explore 

this interaction, we conducted a univariate ANCOVA with Age as the covariate and 

Condition as the fixed factor predicting the difference in average estimate. Results revealed 

that the change in estimates in the Control condition was significantly greater than the 

change in the Strategies condition (p = .034) and marginally greater from those in the 

Symbols condition (p = .053). The Strategies and Symbols condition showed a similar 

change in estimates over time (p = .820). See Figure 3.5. The main effect of Condition did 

not reach significance, p = .454. 

 

Figure 3.4. Older children maintained comparable estimates over time, whereas younger 
children provided shorter estimates.  
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Figure 3.5. Children’s estimates were significantly shorter at post-test for children in all 
conditions.  
 

Next, we conducted one sample t-test to determine whether the average estimate at 

post-test was different from the true average in each condition separately. Results revealed 

that those in the Strategies condition had accurate estimates at post-test (M = 6.02, SE = 

.41, t(41) = -.778, p = .441), whereas those in the Symbols and Control condition 

significantly underestimated at post-test (Symbols: M = 4.30, SE = .21, t(43) = -4.937, p < 

.001; Control: M = 3.47, SE = .26, t(43) = -10.994, p < .001). Thus, children who acquired 

timing strategies were more accurate after training.  

Slope. A one sample t-test revealed that children’s slopes were significantly greater 

than 0, indicating that estimates increased as the duration to be estimated increased at pre- 

and post-test (Pre-Test: M = .66, SE = .06; t(89) = 10.225, p < .001; Post-Test: M = .66, SE 

= .04; t(129) = 14.775, p < .001).  
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temporal estimation was conducted, with age as a covariate. No main effects or interactions 

reached significance, p’s > .1.  

To determine whether performance became more precise at post-test (as indicative 

of a slope closer to 1), we performed one-sample t-tests on post-test slope for each 

condition separately. While performance in the Strategies condition was very precise and 

did not differ from 1 (M = .92, SE = .09, t(42) = -.935, p = .355), those in the Symbols and 

Control conditions had slopes significantly less than 1 (Symbols: M = .62, SE = .07; t(42) 

= -5.331, p < .001; Control: M = .44, SE = .05; t(43) = -10.231, p < .001). See Figure 3.6. 

 

Figure 3.6. The slope indicated more precise performance at post-test for those in the 
Strategies condition.  
 

Temporal Estimation (Nonsymbolic to Symbolic)  

Absolute Error. A 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, 

Symbols, Control) mixed measures ANCOVA on children’s performance on the symbolic 

to nonsymbolic temporal estimation task (with Age as a covariate) revealed a main effect 

of Condition, F(2, 122) = 1.673, p = .024, 𝜂𝑝
2  = .059, that was qualified by a Time x 

Condition interaction, F(2, 122) = 14.318, p < .001, 𝜂𝑝
2 = .190. Children assigned to the 

Strategies (Pre-Test: M = .77, SE = .07; Post-Test: M = .34, SE = .07; t(41) = 4.123, p < 
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.001) produced responses with significantly less error at post-test compared to pre-test, 

whereas those in the Control condition produced more error at post-test (Pre-Test: M = .63, 

SE = .08; Post-Test: M = .90, SE = .11; t(41) = -2.93, p = .006). Those in the Symbols 

condition showed no improvement after training (Pre-Test: M = .80, SE = .09; Post-Test: 

M = .84, SE = .09; t(41) = -.456, p = .651). Moreover, while children in the Strategies and 

See Figure 3.7. No other main effects or interactions reached significance, p’s > .3.  

 

Figure 3.7. Error decreased significantly in the Strategies condition but not in the Symbols 
or Control conditions.  
 

Numerical Discrimination.  

Numerical discrimination performance was above chance at both time points (Pre-

Test: M = 92.45, SE = .75; t(129) = 56.61, p < .001; Post-Test: M = 91.97, SE = .72; t(129) 

= 58.044, p <.001). A 2 (Time: Pre- versus Post-Test) x 4 (Ratio: 1.28, 1.47, 1.75, 2.75) 

repeated measures ANOVA revealed a main effect of Ratio, F(3, 381) = 36.475, p < .001, 

𝜂𝑝
2 = .223, such that performance improved as the ratio between the two numbers increased. 

No other main effects or interactions reached significance, p’s > .4.  
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Finally, to test whether learning about temporal units of measurement uniquely 

impacted nonsymbolic timing or nonsymbolic abilities more generally, we conducted a 

comparable 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, Symbols, Control) 

mixed measures ANCOVA on children’s performance on the numerical discrimination 

task, including Age as a covariate. There was a main effect of Age, F(1, 124) = 12.664, p 

= .001, 𝜂𝑝
2 = .093. With each increasing month of age, children answered ~5 more trials 

correct at pre-test (B = .310) and ~4 more trials correct at post-test (B = .268) better at post-

test. No other main effects or interactions reached significance, p’s > .2.  

Discussion 

 We began this work with two questions: 1) Is there a correlation between children’s 

understanding of temporal units of measurement and nonsymbolic timing prior to formal 

classroom instruction on temporal symbols? 2) Does learning temporal symbols enhance 

subsequent nonsymbolic timing? By training children on temporal units of measurement, 

we were able to perform the first experimental investigation of the refinement hypothesis 

in children in the domain of time.  

Correlation between Nonsymbolic and Symbolic Timing  

 While a correlation has been found between 6-7 year olds’ understanding of 

temporal units of measurement and nonsymbolic timing (Hamamouche & Cordes, 

accepted), it was previously unknown whether this correlation holds prior to formal 

instruction on temporal symbols. Our results replicate and extend these findings to show 

this correlation is present in children who have yet to receive formal instruction on timing. 

Importantly, this correlation was strong even when controlling for age, indicating that this 

relation is not due to age-related changes in temporal acuity, but instead reflects a unique 
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relation between symbolic and nonsymbolic timing abilities. Joining previous work, this 

finding highlights the strength of the relation between symbolic and nonsymbolic timing 

both before and during the acquisition of temporal units of measurement in the classroom.  

The Refinement Hypothesis 

 Our second aim was to test the refinement hypothesis by teaching children about 

temporal units of measurement and subsequently testing their nonsymbolic timing abilities. 

Importantly, the training task was identical across all conditions, with a few exceptions. 

Children in the Strategies condition learned a timing strategy (specifically counting on the 

beat). The experimenter also labeled the duration before and after each trial for children in 

the Strategies and Symbols conditions. Despite the similarity in training, results revealed 

that children who were introduced to the timing strategy outperformed their peers on the 

training task, indicating that our training was successful. Although we hypothesized that 

both the Strategies and Symbols conditions should help children acquire symbolic 

knowledge of timing, this was not the case – at least based on training performance only. 

As predicted, children in the Strategies condition outperformed their peers in both the 

Symbols and Control conditions. Unexpectedly though, children in the Symbols and 

Control conditions performed comparably on the training. Thus, counter to our predictions, 

being exposed to temporal symbols was no more beneficial than receiving no instruction 

on timing.  

Results of the temporal estimation tasks provide further evidence that the training 

impacted children’s timing abilities. Children in the Strategies condition produced less 

error at post-test compared to pre-test, whereas children in the Control condition produced 

more error at post-test, and those in the Symbols condition produced comparable error at 
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both time points. These results suggest that children who were exposed to strategies did 

indeed learn about timing and were able to transfer this learning to a different temporal 

estimation task. Moreover, analyses of average estimate and slope reflected precise 

performance revealed that children in the strategies condition also showed greater precision 

in the symbolic to nonsymbolic temporal estimation task. Thus, as predicted, acquiring 

temporal strategies showed benefits above and beyond solely learning temporal symbols.  

 Although previous work in the domain of numerical cognition has provided some 

support for the refinement hypothesis, such that acquiring numerical symbols shapes 

numerical acuity (e.g., Lyons et al., 2018; Matejko & Ansari, 2014; Mussolin et al., 2014), 

only a single study has tested this experimentally. Moreover, mapping discrete temporal 

symbols on continuous nonsymbolic representations of time may be more difficult than 

mapping discrete numerical symbols onto discrete nonsymbolic numerical representations. 

As such, testing the effect of learning temporal symbols on temporal acuity may be 

particularly beneficial for determining the importance of structural isomorphisms within 

the refinement hypothesis. Despite the effectiveness of our training, we found no evidence 

of refinement. Regardless of training condition, children’s nonsymbolic timing abilities 

remained consistent from pre- to post-test. Given the present findings, it is possible that 

structural similarities may be important for the refinement hypothesis. However, it is 

important to note that our results mirror Lindskog (2016) in which training adults’ 

arithmetic abilities did not enhance numerical acuity. Thus, although correlational data hint 

at the possibility of the refinement hypothesis, experimental manipulations do not support 

this possibility. If there continues to be little support for the refinement hypothesis, the 

cause of improvements in nonsymbolic acuity remains unclear. While lack of support for 
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the refinement hypothesis discounts the possibility that symbol acquisition enhances 

nonsymbolic representations, general maturation (e.g., Lipton & Spelke, 2003) and/or 

language acquisition (e.g., Posid & Cordes, 2015) may still play a role in improving 

nonsymbolic abilities. Future research will be critical for understanding the cause of 

improving nonsymbolic abilities with development.     

 Although we did not find evidence for the refinement hypothesis, it is important to 

note that our training did not reflect formal classroom instruction on temporal units of 

measurement. While children typically spend months learning about symbols in the 

classroom, our training took place over the course of two days and lasted approximately 

20 minutes total. Additionally, our training focused on learning about seconds, whereas 

early instruction on temporal symbols is typically focused on understanding hours and 

minutes and telling time. A training that more closely reflects traditional classroom 

instruction on temporal units of measurement (i.e., over the course of several weeks) may 

serve as a stronger test of the refinement hypothesis. Although not involving an 

experimental manipulation, it may also be fruitful to test children’s temporal discrimination 

abilities at the beginning and end of 1st grade to determine whether gains in nonsymbolic 

abilities correlates with formal instruction on temporal units of measurement.  

Conclusions 

 In conclusion, the current study replicated the relation between symbolic and 

nonsymbolic timing in a younger group of children. Critically, these children had yet to 

learn formal temporal symbols in school, suggesting that this relation is not contingent 

upon formal symbol acquisition in school. Although this was the first experimental 

manipulation testing the refinement hypothesis in timing, we found learning temporal 
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symbols did not impact subsequent nonsymbolic timing abilities. Given the limited amount 

of work that has been done thus far, exploring the refinement hypothesis remains a rich 

area of future investigation.   
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Appendix. Covariate Analyses 

We also conducted all repeated measures ANCOVAs including pre-test 

performance as a covariate. By doing so, we are able to test how pre-test performance 

interacts with Time and Condition. However, including pre-test performance as a covariate 

in the model adjusts all pre-test performance to be identical, and thus makes it difficult to 

compare Time x Condition interactions as pre-test performance is adjusted and not 

reflective of the true means in each condition. In the following analyses, we highlight 

interactions between our covariates (age and pre-test performance) and Time and Condition 

separately.   

Temporal Discrimination 

The 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, Symbols, Control) 

mixed measures ANCOVA (including age and pre-test temporal discrimination 

performance as covariates) on temporal discrimination performance revealed a Time x Age 

interaction, F(1, 127) = 6.944, p = .009, 𝜂𝑝
2 = .052. Although there was no significant 

correlation between age and change in discrimination performance (r = .081, p = .354), 

plotting the relation between the variables indicated that on average younger children 

tended to show worse performance at post-test, whereas older children showed no change, 

See Figure A3.1. There was also a Time x Pre-Test performance interaction, F(1, 127) = 

47.881, p < .001, 𝜂𝑝
2 = .274. Plotting this relation indicated that children who performed 

poorly at pre-test tended to have improved performance at post-test, whereas children who 

performed better at pre-test tended to have comparable scores or slow slightly worse 

performance at post-test (r = -.488, p < .001), See Figure A3.2. No other main effects or 

interactions reached significance, p’s > .2.  
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Figure A3.1. Younger children tended to show worse performance at post-test.  

 

Figure A3.2. Children who performed poorly at pre-test tended to improve at post-test.  

Sub-second timing. When including sub-second performance as a covariate, the 2 

(Time: Pre- versus Post-Test) x 3 (Condition: Strategies, Symbols, Control) mixed 

measures ANCOVA (including age and pre-test sub-second timing performance as 

covariates) on sub-second performance revealed a Time x Pre-test performance interaction, 

F(1, 124) = 61.381, p < .001, 𝜂𝑝
2 =  .331. As with overall temporal discrimination 
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performance, children with worse performance at pre-test showed greater gains over time 

than children who performed well at pre-test (r = .578, p < .001), See Figure A3.3. No other 

main effects or interactions reached significance, p’s > .05. 

 

Figure A3.3. Children who performed poorly at pre-test showed greater gains.  

Supra-second timing. When including supra-second performance at pre-test, the 2 

(Time: Pre- versus Post-Test) x 3 (Condition: Strategies, Symbols, Control) mixed 

measures ANCOVA (including age and pre-test supra-second performance as covariates) 

on supra-second performance showed a significant Time x Age interaction, F(1, 127) = 

7.973, p = .006, 𝜂𝑝
2 = .059. Although the correlation between pre-test performance and age 

did not reach significance (r = .094, p = .283), a plot revealed that younger children tended 

to show no change in performance, whereas older children showed a slight improvement 

in performance, See Figure A3.4. There was also a significant Time x Pre-Test 

Performance interaction, F(1, 124) = 62.575, p <.001, 𝜂𝑝
2 = .335. Children with lower 

performance at pre-test showed greater improvements compared to children who started 
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with better pre-test performance (r = - .594, p < .001), See Figure A3.5. No other main 

effects or interactions reached significance, p’s > .3.   

 

Figure A3.4. Younger children tended to have worse performance at post-test.  

 

Figure A5. Children who performed lower at pre-test showed greater improvements in 
supra-second timing.  
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Temporal estimation (symbolic to nonsymbolic) 

Average Estimate. The 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, 

Symbols, Control) mixed measures ANCOVA (including age and pre-test estimate as 

covariates) on average estimate showed a main effect of Time, F(1, 78) = 174.82, p < .001, 

𝜂𝑝
2 = .691, such that estimates were smaller at post-test (M = 4.17, SE = .150) compared to 

pre-test (M = 4.91, SE = .000). A main effect of Condition also emerged, F(2, 78) = 32.769, 

p < .001, 𝜂𝑝
2 = .457. Those in the Strategies condition (M = 5.39, SE = .136) had 

significantly larger estimates than those in the Symbols condition (M = 4.37, SE = .120) 

and marginally larger estimates than those in the Control condition (M = 3.86, SE = .136, 

p < .001). Those in the Symbols condition had larger estimates than those in the Control 

conditions (p = .025), See Figure A3.6. Lastly, there was also a significant Time x Pre-Test 

interaction, F(1, 78) = 361. 846, p < .001, 𝜂𝑝
2 = .823. Children who provided larger 

estimates at pre-test did not change their estimates as much as children who provided lower 

estimates (r = -.864, p < .001), See Figure A3.7. No other main effects or interactions 

reached significance, p’s > .2. 
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Figure A3.6. Those in the Strategies condition had the largest estimates, followed by those 
in the Symbols and then Control conditions.  

 

Figure A3.7. Children who provided larger estimates at pre-test were less likely to change 
their estimates significantly.  

 

Slope. The 2 (Time: Pre- versus Post-Test) x 3 (Condition: Strategies, Symbols, 

Control) mixed measures ANCOVA (including age and pre-test slope as covariates) on 

slope revealed a main effect of Condition, F(2, 122) = 11.991, p < .001, 𝜂𝑝
2 = .164, that 

was qualified by a Time x Condition interaction, F(2, 122) = 11.991, p < .001, 𝜂𝑝
2 = .164. 
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All conditions showed shallower slopes at post-test compared to pre-test (Strategies: Pre-

Test: M = 1.138, SE = .001; Post-Test: M = .939, SE = .072, p = .007; Symbols: Pre-Test: 

M = 1.138, SE = .00; Post-test: M = .621, SE = .071, p <.001; Control: Pre-Test: M = 1.138, 

SE = .00; Post-Test: M = .444, SE = .072, p < .001). However, those in the Strategies 

condition had a steeper slope at post-test compared to those in the Symbols (p = .002) and 

Control conditions (p < .001). The slopes of those in the Symbols and Control conditions 

did not differ significantly (p = .085), See Figure A3.8. There was a Time x Pre-Test 

interaction, F(1, 122) = 3052.990, p < .001, 𝜂𝑝
2 = .962. A negative correlation between pre-

test slope and change in slope over time (r = -.816, p < .001), and plotting the data showed 

that children with a negative slope at pre-test showed a positive change in slope whereas 

children with a positive slope at pre-test showed a negative change in slope, See Figure 

A3.9. No other main effects or interactions reached significance, p’s > .4. 

 

Figure A3.8. Those assigned to the Strategies condition had steeper slopes at pre-test, 
whereas those assigned to the Symbols condition had shallower slopes at pre-test.  
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Figure A3.9. Children who had steeper slopes at pre-test showed less movement in their 
slopes at post-test.  
 

Temporal Estimation (Nonsymbolic to Symbolic) 
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less error post-test, whereas those with little error at pre-test also had a minimal amount of 

error at post-test, See Figure A3.11.  No other main effects or interactions reached 

significance, p’s > .08. 

 

Figure A3.10. Children in the Strategies and Symbols condition had less error at post-test.  

 

A3.11. Children with little error at pre-test also had a small amount of error at post-test.  
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Numerical Discrimination. The 2 (Time: Pre- versus Post-Test) x 3 (Condition: 

Strategies, Symbols, Control) mixed measures ANCOVA (including age and pre-test 

numerical discrimination performance as covariates) on numerical discrimination 

performance showed a main effect of Time, F(1,123) = 24.572, p < .001, 𝜂𝑝
2 = .167, such 

that performance was slightly worse at post-test (M = 92.34, SE = .602) compared to pre-

test (M = 92.82, SE = .000). There was also a Time x Pre-Test Performance interaction, 

F(1, 123) = 52.336, p < .001, 𝜂𝑝
2 = .298. Again, a negative correlation between pre-test 

performance and change in performance over time (r = -.536, p < .001) and plotting this 

relation revealed that children with higher performance at pre-test showed no improvement 

(or worse performance) at post-test, whereas children with lower pre-test scores performed 

better at post-test, See A3.12. No other main effects or interactions reached significance, 

p’s > .1. 

 

Figure A3.12. Children with lower pre-test performance showed greater improvements at 
post-test. 
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CHAPTER 4: MANIPULATING ADULTS’ SYMBOLIC MAPPING OF TIME 

DOES NOT IMPACT TEMPORAL ACUITY 

Abstract 

Recent work suggests that children’s understanding of temporal units of measurement is 

correlated with nonsymbolic temporal acuity (Hamamouche & Cordes, accepted). Whether 

this relation holds in adults - after temporal symbols have been mastered - and whether this 

correlation may be indicative of a causal relation, is unknown. In the current study, we 

explore whether temporal symbol understanding causally impacts temporal acuity in 

adulthood. Across two experiments, adults were given feedback to influence their estimates 

of temporal durations, and we explored whether this feedback influenced temporal 

discrimination abilities. Notably, in contrast to findings with children, results revealed no 

correlation between adults’ nonsymbolic (temporal discrimination) and symbolic 

(temporal estimation) abilities. Although feedback successfully shifted adults symbolic and 

nonsymbolic timing estimates, changing one’s mapping had no impact on subsequent 

temporal discrimination performance. Together these studies suggest that nonsymbolic and 

symbolic timing are less strongly related in adulthood, compared to childhood. Future work 

will be necessary for determining whether the relation between symbolic and nonsymbolic 

timing may be more malleable in childhood, when temporal symbols are being acquired, 

and also whether a bidirectional relation may exist in children who are still developing 

symbolic representations of time. 
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Over the course of development, children acquire several symbolic measurement 

systems that allow them to assign exact, discrete measurements to quantities they had 

previously only been able to track approximately. For example, preverbal infants 

successfully discriminate large changes in set sizes (e.g., Lipton & Spelke, 2003; Xu & 

Spelke, 2000; Xu & Arriaga, 2007), but it is only when children learn to verbally count 

that they can represent sets of objects exactly. Similarly, although infants notice two-fold 

changes in duration (e.g., Brannon, Suanda, & Libertus, 2007; vanMarle & Wynn, 2006), 

it is not until they learn the meaning behind the words “second” and “minute” that they 

understand how to track time precisely. Significant research dedicated to understanding the 

relation between nonsymbolic (i.e., approximate) and symbolic (i.e., exact) quantitative 

abilities has revealed a unique relation between these abilities within the domains of time 

and number (e.g., number: Bonny & Lourenco, 2013; Halberda, Mazzocco, & Feigenson, 

2008; Libertus, Feigneson, & Halberda, 2011; for meta-analyses see: Chen & Li, 2014; 

Schneider et al., 2017; time: Hamamouche & Cordes, accepted) such that individuals with 

a better understanding of formal number symbols or temporal measurements are also better 

at discriminating nonsymbolic number/time. These correlational studies however, have 

been unable to address whether these relations are causal. That is, it is an open question 

whether having a more precise ability to track quantities nonsymbolically may lead to 

earlier/better learning of these symbols (scaffolding hypothesis, e.g., Starr, Libertus, & 

Brannon, 2013), and/or whether learning quantitative symbols may contribute to more 

precise nonsymbolic tracking abilities (refinement hypothesis, e.g., Mussolin, Nys, 

Content, & Leybaert, 2014). The current study aims to specifically address the refinement 
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hypothesis within the domain of time by determining whether manipulating adults’ 

symbolic mapping of time shape their temporal discrimination abilities.  

A plethora of research has found a relation between an understanding of numerical 

symbols (i.e., math) and nonsymbolic numerical acuity (see Chen & Li, 2014; Schneider 

et al., 2017). This relation holds across different age ranges and measures of symbolic 

number understanding. For example, infants’ approximate number abilities predict 

preschool-aged math performance (Starr, Libertus, & Brannon, 2013) and preschoolers’ 

performance on a numerical discrimination task predicts school aged math (Mazzocco, 

Feigenson, & Halberda, 2011). Less work has investigated whether a similar relation holds 

in the domain of time. In one recent study, it was found that children’s understanding of 

temporal symbols and their performance on a nonsymbolic temporal discrimination task 

was significantly correlated, even when controlling for age and numerical abilities 

(Hamamouche & Cordes, accepted). It is important to note, however, that the ages of the 

children in this study were specifically chosen in order to explore this relation at the point 

in development when children are learning about temporal symbols (e.g., 1st-3rd grades; 

National Governors Association Center for Best Practices, Council of Chief State School 

Officers, 2010). Given the significant variability of symbolic knowledge in this age group, 

it is possible that the development of other cognitive factors, such as executive functioning, 

academic achievement, etc., may have contributed to this relation. Whether this relation 

holds in adulthood, when cognitive maturation stabilizes, remains an open question. 

Moreover, the study was correlational in nature, preventing us from making any causal 

claims. In the present study, we not only investigate whether this correlation holds in 
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adulthood, but also whether a causal relation exists such that learning temporal units of 

measurement enhances nonsymbolic representations of time.  

How might learning temporal units of measurement impact nonsymbolic 

representations of time? Prior to acquiring symbols, one has noisy representations of time. 

For example, one might perceive any duration between .5-2 seconds as being 

approximately one second. Acquiring an exact representation of that duration, however, 

may lessen the amount of noise in the underlying representation. Importantly, this exact 

measurement likely allows individuals to represent time symbolically even when 

performing nonymbolic temporal discrimination tasks. As such, it seems likely that 

learning temporal units of measurement would refine temporal acuity. Although this 

prediction has yet to be tested in the domain of time, the numerical cognition literature 

supports this possibility. For example, math abilities (i.e., symbolic representations of 

number) predict later nonsymbolic numerical performance, even when controlling for 

earlier nonsymbolic numerical abilities (Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018; 

Matejko & Ansari, 2014; Mussolin et al., 2014; Suárez-Pellicioni & Booth, 2018). 

Moreover, one study found a sharp increase in preschoolers’ numerical acuity following 

an acquisition of the cardinal principle – reflecting mastery of the verbal counting 

procedure (Shusterman et al., 2016). While these investigations hint at the possibility of a 

causal relation, no work has experimentally manipulated symbolic quantity abilities to 

determine whether our understanding of quantitative symbols may directly shape 

nonsymbolic acuity.  

In the present study, adult participants completed a series of timing tasks to explore 

the relation between temporal symbols and nonsymbolic timing in adulthood. However, 
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because adults have already acquired a temporal system of measurement we did not attempt 

to teach them new symbols, but instead provided feedback to shift their understanding of 

the durations represented by those symbols (i.e., to modify the mapping between symbolic 

and nonsymbolic time). In both experiments, participants were given a temporal 

discrimination task (nonsymbolic timing assessment) before and after a symbolic 

(Experiment 1) or nonsymbolic (Experiment 2) temporal estimation task in which they 

were provided with one of three types of feedback (overestimation, underestimation, or 

control) regarding their temporal estimates. Across both experiments, we investigated 

whether shifting either symbolic or nonsymbolic mappings had an impact on later temporal 

discrimination abilities.  

How would modifying the mapping between symbolic and nonsymbolic time 

impact adults’ subsequent nonsymbolic temporal acuity? We suggest two possibilities. 

First, providing feedback may shift the mapping between symbolic and nonsymbolic 

timing, resulting in a consistently higher (or lower) encoding of nonsymbolic temporal 

durations. That is, after receiving feedback that temporal estimates are too long 

(overestimation feedback), then a participant may lower their symbolic understanding of 

each duration by a constant amount. For example, they may map their understanding of 2 

seconds onto a slightly shorter duration, thus encoding a mental magnitude of 1.5 sec as 

actually representing 2 secs. Following this adjustment, if the mapping between temporal 

magnitudes and symbols plays a role in nonsymbolic timing abilities, this participant may 

perceive temporal intervals in the discrimination task as being shorter, resulting in easier 

discriminations (e.g., if durations are encoded as consistently 0.5 sec shorter, then a 

comparison of 2 secs vs. 3 secs (.67 ratio) may be perceived as 1.5 sec vs. 2.5 sec (.6 ratio)). 
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Similarly, a participant receiving feedback indicating that they consistently underestimated 

the value (underestimation feedback) may find temporal discriminations to be more 

difficult following an adjustment of mapping durations to symbolic representations of 

longer durations. Given that adults are known to typically underestimate visually presented 

durations (e.g., Danckert & Allman, 2005; Lustig & Meck, 2011), a second possibility is 

that providing feedback to skew estimates closer to accurate estimates of duration (i.e., 

resulting in longer estimates) may result in more precise timing abilities. In this instance, 

we would expect to find temporal discrimination in the underestimation condition, and 

either unaffected, or worsened, temporal discrimination in the overestimation condition. In 

Experiment 1, we explore the relation between symbolic and nonsymbolic timing. Results 

reveal that shifting adults’ symbolic estimates does not impact temporal acuity. In 

Experiment 2, we follow up on this finding by shifting adults’ nonsymbolic mappings 

during a nonsymbolic estimation task; however, we again see no impact on a subsequent 

temporal acuity.  

Experiment 1  

 In Experiment 1, participants completed a temporal discrimination task, and then a 

symbolic temporal estimation task. Halfway through the estimation task, participants were 

told they were either consistently overestimating, underestimating, or fairly accurately 

estimating the requested durations, and were asked to adjust their estimates accordingly. 

Following the temporal estimation task, participants again completed the temporal 

discrimination task, to explore how feedback on the estimation task influenced 

nonsymbolic temporal abilities.  

Methods 
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Participants 

Undergraduates (N = 196) participated in this study for course credit or cash 

compensation. A surprising number of participants provided responses in the temporal 

estimation task that were not within the realm of reasonable responses (estimating 

durations between 1181-2300ms to be less than 10 ms at either pre- or post-test. These 

participants were excluded from the analyses (n = 52) on the basis that they did not know 

the duration of a millisecond. An additional 13 participants completed the study, but were 

excluded due to program error. Thus, the final sample included 131 adults (nOverestimation  = 

43; nUnderestimation = 44; nControl = 44, Mage = 18.97 years, 90 females).   

Procedure 

Testing took place in a quiet room in the laboratory. Adults completed the following 

three tasks in a single testing session: 1) temporal discrimination (nonsymbolic timing), 2) 

temporal estimation with overestimation, underestimation, or control feedback (symbolic 

timing), 3) temporal discrimination (nonsymbolic timing). 

(1) Temporal discrimination  

During the temporal discrimination task, participants saw two characters (a chicken and 

a cow) presented on the computer screen. On each trial, each character was shown playing 

a musical instrument (chicken always went first) in which a sound was played (horn sound 

for chicken, train sound for cow) and a box appeared around the animal for the duration of 

the instrument’s sound. Participants were instructed to press keys on the keyboard to 

indicate which animal played an instrument longer. Given that adults are better at 

discriminating supra-second durations compared to sub-second durations (Hamamouche 

& Cordes, 2019), half of the comparisons were in the sub-second range (< 1000ms), and 
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half of the comparisons were in the supra-second range (> 1000ms). The durations were 

randomly intermixed throughout the session, and the chicken played the instrument longer 

on approximately half of the trials. Each comparison differed by one of the following ratios: 

1.14, 1.2, 1.5, and 2. Adults completed 32 trials: 2 duration ranges x 4 ratios x 4 times each.  

(2) Temporal estimation with feedback 

After completing the temporal discrimination task, participants began the temporal 

estimation task during which an oval was displayed on the computer screen for one of five 

specified durations (1181, 1461, 1741, 2020, and 2300 ms). After the oval disappeared, 

participants were asked to type the duration of the oval (in milliseconds) into a textbox. 

After completing 30 baseline trials (5 durations, 6 times each), a message appeared 

notifying the participants of their performance. This feedback was based on the condition 

(overestimation, underestimation, or control) to which the participant was randomly 

assigned, and thus all feedback was pre-determined and did not necessarily reflect the 

participant’s true performance. Participants assigned to the overestimation condition saw 

the message, “You’re doing a good job, but, on average, you are OVERESTIMATING by 

391 milliseconds. The goal is to be as accurate as possible. Please adjust your estimates so 

that they are slightly SHORTER in order to be more accurate.” Participants assigned to the 

underestimation condition were told, “You’re doing a good job, but, on average, you are 

UNDERESTIMATING by 391 milliseconds. The goal is to be as accurate as possible. 

Please adjust your estimates so that they are slightly LONGER in order to be more 

accurate.” In a third control condition, participants saw the message, “You’re doing a good 

job. Please continue.” The feedback was specific to the participant’s assigned condition 
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and did not reflect the participant’s true performance. Following the feedback, the 

participants completed another 30 trials of the temporal estimation task.  

After completing the temporal estimation task, participants completed the temporal 

discrimination task again. At the end of the study, participants were debriefed (including 

an explanation of the deceptive feedback) and received course credit or cash compensation 

for their time.  

Data Coding and Analyses 

Temporal discrimination  

The dependent measure for the temporal discrimination task (overall, sub-second, 

and supra-second) was proportion correct.  

Temporal estimation 

Average estimates were calculated before and after feedback and served as the 

dependent measure for the temporal estimation task. To look for outliers, we first checked 

for performance three standard deviations above or below the mean. One participant had 

an average estimate greater than three standard deviations above the mean, and was thus 

excluded from analyses involving estimation. As a secondary measure of temporal 

estimation performance, we calculated the slope between the durations presented and the 

estimates participants provided. The slope allowed us to determine whether participants 

increased their estimates with an increasing target duration. One additional participant had 

a slope greater than three standard deviations above the mean at pre-test and was thus 

excluded from analyses involving estimation performance.   

Results 
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Table 4.1 shows the average performance for each task for each condition 

separately and Table 4.2 shows correlations between pre- and post-test performance for 

each condition separately. 
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 Pre-Test Post-Test 
 Discrimination Estimation Discrimination Estimation 
 Proportion 

Correct 
Estimate  Slope  Proportion 

Correct 
Estimate  Slope 

Overestimation .80 (.01) 1126.87 
(150.30) 

.67 (.09) .82 (.01) 875.07 
(136.02) 

.56 (.09) 

Underestimation .81 (.01) 779.74 
(141.99) 

.43 (.07) .84 (.01) 1089.27 
(141.78) 

.47 (.07) 

Control .78 (.01) 595.19 
(118.70) 

.37 (.08) .80 (.01) 552.42 
(117.99) 

.29 (.06) 

Table 4.1. Average performance (SE) on each task.  

 Discrimination Estimation 
 Proportion Correct Estimate  Slope  
Overestimation .167 .954** .902** 
Underestimation .286+ .964** .904** 
Control .078 .959** .897** 

Table 4.2. Correlations between pre- and post-test performance 
**p < .001, *p <.01, +p <.1 
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Effects of Feedback on Temporal Estimation 

Temporal estimation (average estimate). Overall, participants underestimated the 

average estimate at pre-test (M = 829.43, SE = 80.97) compared to the actual average (M 

= 1740.6), t(129) = -11.254, p < .001. Although participants were randomly assigned to a 

feedback condition, there was a significant difference in the average estimate at pre-test, 

F(2, 127) = 3.820, p = .024. Follow-up independent samples t-tests revealed that 

participants in the overestimation condition provided significantly larger estimates at pre-

test (M = 1126.87, SE = 150.30) compared to those in the control condition (M = 595.19, 

SE = 118.70), t(84) = 2.79, p = .007. There was no significant difference between the 

underestimation (M = 797.74, SE = 141.99) and overestimation conditions (t(84) = 1.68, p 

= .097), nor between the underestimation and control conditions (t(86) = .997, p = .32).  

To ensure that adults shifted performance on the temporal estimation task based on 

the feedback received, we conducted a 2 (Time: Pre- versus Post-Test) x 3 (Condition: 

Overestimation, Underestimation, Control) mixed measures ANOVA on the average 

temporal estimate. There was a marginal effect of Condition, F(2, 127) = 3.01, p = 

.053,𝜂𝑝
2  = .045, which was qualified by a significant Time x Condition interaction, F(2, 

127) = 50.27, p < .001, 𝜂𝑝
2  =  .442. To better understand the interaction, we conducted 

separate paired samples t-tests on the average estimate at pre- and post-test for each 

condition separately. As instructed, participants assigned to the overestimation condition 

significantly shortened their estimates at post-test (Pre-Test: M = 1126.87, SE = 150.30; 

Post-Test: M = 885.82, SE = 138.86; t(41) = 5.304, p < .001) and participants assigned to 

the underestimation condition provided significantly longer estimates after receiving 

feedback (Pre-Test: M =  779.74, SE =141.99; Post-Test: M = 1089.27, SE =141.78; t(43) 
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= -8.11, p < .001). As expected, participants assigned to the control condition did not 

significantly change their estimates after feedback (Pre-Test: M = 595.19, SE =118.70; 

Post-Test: M = 552.42, SE =117.99; t(43) = 1.262, p = .214). The main effect of Time did 

not reach significance, F(1, 127) = .143, p = .706, 𝜂𝑝
2  =  = .001. See Figure 4.1.  

 

Figure 4.1. Average estimates on the temporal estimation task before and after feedback.  

Temporal estimation (slope). Participants’ slopes were significantly greater than 0 

at pre-test (M = .49, SE = .05; t(128) = 10.087, p < .001), indicating a positive slope between 

participants responses and the oval’s duration. Again, inexplicably, the one way ANOVA 

revealed significant differences in participants’ slopes at pre-test, F(2, 126) = 3.831, p = 

.024. Those assigned to the overestimation condition (M = .67, SE = .09) initially had 

greater slopes than those assigned to the underestimation condition (M = .43, SE = .07, 

t(83) = 2.062, p = .042) and the control condition (M = .37, SE = .08, t(84) = 2.513, p = 

.014). There was no significant difference between the underestimation and control 

conditions, p = .572. 
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 The 2 (Time: Pre- versus Post-Test) x 3 (Condition: Overestimation, 

Underestimation, Control) mixed measures ANOVA on slope revealed a main effect of 

Time, F(1, 126) = 5.559, p = .020, 𝜂𝑝
2  =   .042, such that the slope was significantly steeper 

at pre-test (M = .488, SE = .047) compared to post-test (M = .439, SE = .043). There was 

also a main effect of Condition, F(2, 126) = 3.657, p = .029, 𝜂𝑝
2  = .055. Those in the 

overestimation condition (M = .61, SE = .09) had significantly steeper slopes than those in 

the control condition (M = .3304, SE = .07, t(85) = 2.471, p = .015). Slopes in the 

underestimation condition fell between the two (p’s >.18). Importantly, the Time x 

Condition interaction was significant, F(2, 126) = 3.631, p = .029, 𝜂𝑝
2  =.054. Slopes were 

shallower at post-test compared to pre-test for those assigned to the overestimation (Pre-

Test: M = .67, SE = .09; Post-Test: M = .57, SE = .09; t(41) = 2.559, p = .014) and control 

(Pre-Test: M = .37, SE = .08; Post-Test: M = .29, SE = .06; t(43) = 2.026, p = .049) 

conditions. Slopes were comparable at pre- (M = .43, SE = .07) and post-test (M = .46, SE 

= .07; t(42) = -.896, p = .375) for those assigned to the underestimation condition, 

indicative of a constant change in estimates. See Figure 4.2.   

 

 

Figure 4.2. Changes in participants’ slopes on the estimation task before and after feedback.  
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Effects of Feedback on Temporal Estimation 

Temporal discrimination. Prior to feedback, there were no condition differences on 

the temporal discrimination task, F(2, 128) = 1.545, p = .217, indicating that any condition 

differences after feedback were not due to pre-existing differences in the conditions. 

Temporal discrimination performance was above chance at pre- (M = .79, SE = .006; t(130) 

= 48.64, p < .001) and post-test (M = .82, SE = .007; t(130) = 47.833, p < .001). Neither 

average estimate (r = .118, p = .180), nor slope (r = .113, p = .201) was correlated with 

temporal discrimination performance at pre-test.  

 Previous work has shown that adults are more accurate at timing durations longer 

than a second (i.e., supra-seconds) compared to durations shorter than a second (i.e., sub-

seconds; Hamamouche & Cordes, 2019). Moreover, temporal discriminations become 

easier as the ratio between the two durations increases (i.e., ratio effects, Brannon, Suanda, 

& Libertus, 2007; Odic, Lisboa, Eisinger, Olivera, Maiche, & Halberda, 2016; Odic, 2018). 

To determine whether similar patterns emerged in our data, we conducted a 2 (Duration 

Range: Sub- versus Supra) x 4 Ratio (1.14, 1.2, 1.5, 2) repeated measures ANOVA on the 

temporal discrimination data at pre-test. Replicating previous work, there was a main effect 

of Duration Range, F(1, 130) = 28.285, p < .001, 𝜂𝑝
2  =.179, such that performance was 

significantly better in the supra-second range (M = .83, SE = .01) compared to the sub-

second range (M = .75, SE = .01). There was a main effect of Ratio, F(3, 390) = 134.63, p 

<.001, 𝜂𝑝
2  =.509, such that performance improved as the ratio became larger (all p’s <.01). 

There was also a Duration Range x Ratio interaction, F(3, 390) = 7.856, p < .001, 𝜂𝑝
2  =.057. 

Follow-up  paired samples t-tests between sub- and supra-second timing for each ratio 
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separately revealed that performance was significantly better in the supra-second compared 

to the sub-second range for the three most difficult ratios (Means (SE): Ratio 1.14: MSub-

Second = .61 (.02) , MSupra-Second = .71 (.02), t(130) = -3.662, p < .001; Ratio 1.2: MSub-Second = 

.65 (.02), MSupra-Second = .77 (.02), t(130) = -4.695, p < .001; Ratio 1.5: MSub-Second = .82 (.02), 

MSupra-Second = .91 (.01), t(130) = -4.469, p < .001; however, for the easiest ratio, 

performance was comparable in both ranges (MSub-Second = .93 (.01) , MSupra-Second = .92 (.01), 

t(130) = .669, p = .504). See Figure 4.3.  

 

  

Figure 4.3. Performance was significantly better in the supra-second range compared to the 
sub-second range for all ratios, except for the easiest ratio.  
 

To determine whether shifting adults’ perceptions of time on the temporal 

estimation task impacted overall performance on temporal discrimination, we conducted a 

2 (Time: Pre- versus Post-Test) x 3 (Condition: Overestimation, Underestimation, Control) 

mixed measures ANOVA on temporal discrimination performance. There was a main 

effect of Time, F(1, 128) = 7.224, p = .008, 𝜂𝑝
2  =  = .053, revealing that performance was 
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significantly better at post-test (M = .82, SE = .007) compared to pre-test (M = .80, SE = 

.006). There was also a main effect of Condition, F(2, 128) = 4.124, p = .018, 𝜂𝑝
2  =  = .061. 

Follow-up independent samples t-tests revealed that performance in the underestimation 

condition (M = .82, SE = .008) was significantly better than performance in the control 

condition (M = .79, SE = .008, t(86) = 2.903, p = .005). Performance did not differ between 

the overestimation (M = .81, SE = .008) and underestimation conditions (t(85) = -1.324, p 

= .189), nor between the overestimation and control conditions (t(85) = 1.513, p = .134). 

The Time x Condition interaction did not reach significance, p > .5. See Figure 4.46.  

 

Figure 4.4. Across all three conditions, temporal discrimination performance improved 
after receiving feedback.  
 

Finally, we conducted correlations between change in average estimate and post-

test temporal discrimination, change in average slope and post-test temporal 

discrimination, change in average estimate and change in temporal discrimination, and 

change in slope and change in temporal discrimination. In order to test whether providing 

                                                                 
6  We also explored whether the feedback differentially affected sub- or supra-second 
timing. Neither ANOVA revealed a significant Time x Condition interaction, p’s > .2 
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feedback that resulted in more precise symbolic estimates (i.e., underestimation feedback), 

we conducted the correlations for the underestimation and overestimation conditions 

separately; however, none of the correlations reached significance, p’s > .1.  

Discussion 

The first goal of this study was to determine whether a correlation exists between 

symbolic and nonsymbolic timing in adulthood. Our results mirror prior work in the 

numerical cognition literature indicating that although this relation exists in children, it did 

not hold when using an adult sample (see Inglis, Attridge, Batchelor, & Gilmore, 2011 for 

a similar pattern of results with number). Why would a correlation exist in children, but 

not adults? The acquisition of strategies over the course of development may explain this 

difference. While children are in the process of acquiring and mastering symbolic 

representations of quantity, children may have a greater reliance upon nonsymbolic 

representations. However, as individuals become more experienced, they may begin to use 

more advanced strategies that rely less upon nonsymbolic representations and more upon 

explicit timing strategies, such as counting.  

Our second aim was to study if shifting adults’ symbolic mapping subsequently 

shaped their nonsymbolic representations of time. Notably, our feedback manipulation 

worked: participants told that they were overestimating provided significantly smaller 

estimates following feedback, and those told they were underestimating provided 

significantly longer estimates following feedback. Moreover, slope analyses revealed that 

those in the overestimation and control conditions adjusted estimates proportionally, 

whereas those in the underestimation condition adjusted their estimates in a constant 

fashion. Given that only constant changes in mapping should impact subsequent temporal 
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discrimination performance, we would have expected a change in temporal discrimination 

performance in the underestimation condition only. Despite this, the effect of feedback did 

not extend to performance on the temporal discrimination task regardless of condition.  

There are many explanations as to why the temporal discrimination performance 

was unaffected by feedback. First, given that we did not find a correlation between adults’ 

nonsymbolic and symbolic timing, it seems unlikely that manipulating the mapping 

between symbolic and nonsymbolic representations would subsequently affect 

nonsymbolic representations. An alternative possibility is that our feedback manipulation 

was not strong enough. That is, our feedback manipulation may not have been convincing 

enough to impact the actual mapping between symbolic and nonsymbolic representations 

of time. Whether greater transfer between tasks would occur following more extensive 

feedback and practice remains an open question. Additionally, it is possible that feedback 

on a symbolic task may not readily transfer to a second, nonsymbolic task. In other words, 

it may be unlikely that shaping the mapping of symbols transfers to nonsymbolic 

performance as the symbolic and nonsymbolic task have distinct task demands. If this were 

the case, one might expect feedback on a nonsymbolic task to more readily transfer to 

another nonsymbolic task. Thus, in Experiment 2, we provide feedback on a nonsymbolic 

temporal reproduction task to determine whether manipulating one’s nonsymbolic 

mapping impacts performance on a separate nonsymbolic task.   

Experiment 2 also allowed us to investigate how calibrating one’s internal clock 

might impact timing abilities. Previous work has shown that a dose of methamphetamine 

speeds up rats’ internal clocks, resulting in temporal overestimation (Meck & Church, 

1983). Similarly, timing of filled intervals (i.e., continuously presented stimuli), which are 
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thought to be more arousing than timing empty intervals (i.e., timing an interval that is 

denoted by two individual stimuli), increases the rate of one’s internal clock and 

subsequently leads to temporal overestimation (e.g., Thomas & Brown, 1974; Wearden, 

Norton, Martin, Montford-Bebb, 2007). By providing feedback on a nonsymbolic task, 

participants will be able calibrate their own internal clock allowing us to test whether 

feedback on a basic estimation task influences subsequent discrimination abilities.  

Experiment 2  

 Experiment 2 was identical to Experiment 1 except that participants received 

feedback on a nonsymbolic temporal reproduction task, instead of a symbolic temporal 

estimation task.  

Methods 

Participants 

Undergraduates (N = 126, 42 per condition, Mage = 19.39 years, 102 females) 

participated in this study for course credit or cash compensation. Required sample size was 

computed using a priori calculations in G*Power.  

An additional four individuals participated in the study, but were excluded for 

program error (n = 2) or an incomplete data set (n = 2).  

Procedure 

Adults completed the following in a single testing session: 1) temporal 

discrimination, 2) temporal reproduction with feedback (overestimation, underestimation, 

or control feedback), 3) temporal discrimination. The procedure for Experiment 2 was 

identical to Experiment 1 except for the following: Instead of a temporal estimation task, 

participants completed a temporal reproduction task in which they saw an oval displayed 
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on the computer screen (the same durations as Experiment 1: 1181, 1461, 1741, 2020, and 

2300 ms) and were asked to hold down the space bar for the same amount of time that the 

oval had appeared. Identical to Experiment 1, participants received feedback on their 

performance after completing 30 baseline trials (5 durations, 6 times each), and then 

completed an additional 30 trials of the temporal reproduction task.  

Data Coding 

Temporal discrimination  

The dependent measure for the temporal discrimination task (overall, sup-second, 

and supra-second) was proportion correct.  

Temporal reproduction 

We again used average estimate and slope as the dependent variables for the 

temporal reproduction task. First, we calculated average estimate before and after feedback 

as the dependent measure for the temporal reproduction task. Participants with 

performance three standard deviations above (Pre-Test: n = 1) or below (Post-Test: n = 1) 

the mean were excluded from analyses involving the average estimate. We next calculated 

slope. Participants with slopes three standard deviations above/below the mean were 

excluded from slope analyses (Pre-Test: n = 2, Post-Test: n = 1).  

Results 

Table 4.3 shows the average performance for each task and Table 4.4 shows 

correlations between pre- and post-test performance for each condition separately. 
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 Pre-Test Post-Test 
 Discrimination Reproduction Discrimination Reproduction 
 Proportion 

Correct 
Estimate  Slope  Proportion 

Correct 
Estimate  Slope 

Overestimation .81 (.01) 1339.47 
(30.23) 

.77 
(.03) 

.81 (.01) 1181.73 
(37.52) 

.63 
(.03) 

Underestimation .80 (.01) 1360.10 
(31.33) 

.80 
(.03) 

.84 (.01) 1516.84 
(42.57) 

.78 
(.03) 

Control .81 (.01) 1368.94 
(34.07) 

.78 
(.03) 

.82 (.01) 1392.84 
(35.05) 

.71 
(.04) 

Table 4.3. Average performance (SE) on each task.  

 Discrimination Reproduction 
 Proportion Correct Estimate  Slope  
Overestimation .422* .720** .360+ 

 
Underestimation .445* .547** .380* 

 
Control .381* .728** .374* 

Table 4.4 Correlations between pre- and post-test performance in each condition. 
**p < .001, *p < .01, +p < .1 

 

Temporal reproduction (average estimate). Again, participants’ average estimate 

during the reproduction task (M = 1356.30, SE = 18.32) was significantly less than the true 

average of the durations presented (M = 1740.6; t(124) = -20.970, p < .001). Performance 

was comparable across conditions on the temporal reproduction task prior to feedback, 

indicating there were no initial group differences, F(2, 122) = .223, p = .801.   

Next, we determined whether participants changed their reproductions to match the 

feedback received during the temporal reproduction task. To do so, we conducted a 2 

(Time: Pre- versus Post-Test) x 3 (Condition: Overestimation, Underestimation, Control) 

mixed measures ANOVA on the average temporal reproduction. There was a main effect 

of Condition, F(2, 121) = 98.653 p < .001, 𝜂𝑝
2  =.125, which was qualified by a Time x 

Condition interaction, F(2, 121) = 34.925, p < .001, 𝜂𝑝
2  = .366. Follow-up paired samples 
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t-tests revealed that as predicted, those assigned to the overestimation condition 

significantly lowered their estimates at post-test (Pre-Test: M = 1339.47, SE = 31.98; Post-

Test: M = 1181.73, SE = 37.40; t(40) = 6.009, p < .001) whereas those assigned to the 

underestimation condition significantly raised their estimates at post-test (Pre-Test: M = 

1352.03, SE = 31.98; Post-Test: M = 1535.60, SE = 37.40; t(40) = -5.315, p < .001). Those 

in the control condition had comparable estimates at both time points (Pre-Test: M = 

1368.94, SE = 31.60; Post-Test: M = 1392.84, SE = 36.95; t(41) = -.965, p = .340), see 

Figure 4.5. The main effect of time did not reach significance, p > .3.  

 

Figure 4.5. Average estimates on the temporal reproduction task before and after feedback.  

 Temporal reproduction (slope). Again, slopes were significantly greater than 0 at 

pre-test (M = .78, SE = .02), t(123) = 47.22, p < .001, indicating that participants’ provided 

larger estimates as the target duration increased. There were no significant differences in 

reproduction slopes between conditions at pre-test, F(2, 121) = .162, p = .851.  

 We next conducted a 2 (Time: Pre- versus Post-Test) x 3 (Condition: 

Overestimation, Underestimation, Control) mixed measures ANOVA on participants’ 
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slopes. There was again a main effect of Time, F(1, 120) = 11.807, p < .001, 𝜂𝑝
2  =  .090, 

such that slopes were steeper at pre-test (M = .785, SE = .017) compared to post-test (M = 

.713, SE = .021). There was a significant Time x Condition interaction, F(2, 120) = 3.435, 

p = .035, 𝜂𝑝
2  = .054. Follow-up paired samples t-test revealed that those in the 

overestimation condition adjusted their estimates proportionally such that they had 

significantly steeper slopes at pre-test (M = .78, SE = .03) compared to post-test (M = .63, 

SE = .03, t(39) = 3.912, p < .001). However, those in the underestimation condition (Pre-

Test: M = .80, SE = .03; Post-Test: M = .78, SE = .03; t(42) = .509, p = .613) and control 

condition (Pre-Test: M = .78, SE = .03; Post-Test: M = .73, SE = .04; t(39) = 1.317, p = 

.195) had comparable slopes at pre- and post-test, suggestive of a constant shift in temporal 

estimates. See Figure 4.6.   

 

Figure 4.6. Slopes decreased after feedback in the overestimation condition only.  

Temporal discrimination. There were no condition differences at pre-test on the 

temporal discrimination task, F(2, 123) = .385, p = .681. Performance was above chance 

on the temporal discrimination task at pre- and post-test (Pre-Test: M = .81, SE = .007; 

t(125) = 44.316, p < .001; Post-Test: M = .82, SE = .007; t(125) = 43.645, p < .001). 

Although there was no correlation between temporal discrimination performance and 

average reproduction during the temporal reproduction task, r = .048, p = .598, we 
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replicated previous work showing a significant correlation between temporal 

discrimination and reproduction slope at pre-test, r = .211, p = .019 (Cicchini, Arrighi, 

Cecchetti, Giusti, & Burr, 2012).   

We again tested for differences in sub- and supra-second timing and for ratio effects 

by conducting a 2 (Duration Range: Sub- versus Supra) x 4 Ratio (1.14, 1.2, 1.5, 2) repeated 

measures ANOVA on performance on the temporal discrimination task at pre-test. 

Replicating previous work (Hamamouche & Cordes, 2019) and Experiment 1, there was a 

main effect of Duration Range (Sub- versus Supra-), F(1, 125) = 19.63, p < .001, 𝜂𝑝
2  = .136) 

such that performance was significantly better in the supra-second range (M = .83, SE = 

.009) compared to the sub-second range (M = .78, SE = . 009). There was also a main effect 

of Ratio, F(3, 375) = 51.113, p <.001, 𝜂𝑝
2  = .290, such that performance improved as the 

ratio became larger (all p’s <.001, except between the two easiest ratios, p = .756). The 

Range x Ratio interaction also reached significance, F(3, 375) = 15.143, p < .001. 𝜂𝑝
2  = 

.108. Follow-up independent samples t-tests revealed that supra-second (M = .83, SE = .02) 

performance was significantly greater than sub-second performance (M = .65, SE = .02) on 

the most difficult ratio (t(125) = -6.597, p < .001). However, the opposite was true of the 

easiest ratio (Sub-Second: M = .94, SE = .01; Supra-Second: M = .89, SE = .01, t(125) = 

2.917, p = .004). Sub- and supra- second timing was comparable on the two intermediate 

ratios, p’s > .1, See Figure 4.7. 
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Figure 4.7. The effect of duration range appears to be driven by performance on the most 
difficult ratio comparison.  
 

Next, we explored the effect of reproduction feedback on adults’ temporal 

discrimination performance by conducting a 2 (Time: Pre- versus Post-Test) x 3 

(Condition: Overestimation, Underestimation, Control) mixed measures ANOVA on 

temporal discrimination performance. There was a main effect of Time, F(1, 123) = 4405, 

p = .038, 𝜂𝑝
2  = .035), indicating that performance was significantly better at post-test (M = 

.82, SE = .007) compared to pre-test (M = .81, SE = .007). Neither the main effect of 

Condition, p = .918, nor the Time x Condition interaction, p = .166, reached significance. 

See Figure 4.87. 

                                                                 
7 We again tested whether feedback impacted sub- and supra-second timing differently; 
however, neither ANOVA revealed a significant Time x Condition interaction, p’s > .1. 
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Figure 4.8. Performance improved after feedback in the underestimation condition, but not 
in the overestimation or control conditions.  
 

Finally, we tested for correlations between changes in reproduction performance 

and temporal discrimination at post-test in the over- and underestimation conditions 

separately, to determine whether providing accurate feedback (i.e., underestimation 

feedback) resulted in better temporal discrimination performance. There was a significant 

correlation between change in average estimate and post-test temporal discrimination 

performance for those assigned to the overestimation condition only, r = .475, p = .002. 

That is, the degree to which participants in the overestimation condition adjusted their 

responses to be closer to the accurate duration was related to performance on the 

discrimination task at post-test. No other correlations reached significance, p’s > .1.   

Discussion 

 In Experiment 1, we found that shifting adults’ symbolic mapping did not 

subsequently impact their performance on a nonsymbolic timing task. However, we wanted 

to ensure that this effect did not reflect difficulty of transferring the mapping from a 
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symbolic task to a nonsymbolic one. Additionally, we wanted to determine whether 

individuals were able to calibrate their own internal clock according to the feedback 

provided. As in Experiment 1, adults attended to the feedback and modified their 

performance during the initial reproduction task: participants assigned to the 

overestimation condition again adjusted their slopes proportionally, whereas those in the 

underestimation and control conditions adjusted their estimates in a constant fashion. 

Although participants received feedback and thus adjusted their estimates on a 

nonsymbolic temporal reproduction task, performance on the subsequent temporal 

discrimination task was unaffected. While we found a positive correlation between the 

amount of change from pre- to post-test on the temporal reproduction task and post-test 

temporal discrimination performance, this appeared to be driven by those in the 

overestimation condition. Thus, counter to our predictions, making participants estimates 

more precise (as was true of the underestimation condition) did not lead to enhanced 

temporal discrimination performance.  

General Discussion 

We began this study with two aims: 1) to determine whether a correlation exists 

between symbolic and nonsymbolic timing in adults, and 2) to determine whether shifting 

adults’ symbolic mapping of time subsequently impacted their nonsymbolic temporal 

discrimination performance. In addition, we tested whether using feedback to calibrate 

one’s internal clock subsequently impacted nonsymbolic temporal discrimination 

performance. Across both experiments, adults attended to the feedback provided and 

adjusted their estimates accordingly. Counter to our predictions, however, we found no 

correlation between adults symbolic and nonsymbolic timing abilities, nor did adjusting 
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adults’ symbolic or nonsymbolic mapping impact performance on a subsequent 

nonsymbolic task.  

Relation between Symbolic and Nonsymbolic Timing 

Despite recent working showing a correlation between children’s symbolic and 

nonsymbolic timing (Hamamouche & Cordes, accepted), this relation does not hold in 

adulthood. Given comparable findings in the numerical cognition literature, our study joins 

others questioning the strength of the relation between nonsymbolic and symbolic quantity 

processing beyond childhood (Inglis et al., 2011; Price, Palmer, Battista, & Ansari, 2012). 

While there was no correlation between symbolic and nonsymbolic timing, Experiment 2 

replicated prior work showing a strong correlation between temporal reproduction and 

temporal discrimination in adults (see Cicchini et al., 2012).  

Effects of Adjusting Mapping Using Feedback 

In the present study, we used feedback in order to modify participants’ symbolic 

and nonsymbolic mapping of time. Importantly, participants attended to feedback and 

adjusted their estimates accordingly: Individuals who received overestimation feedback 

lowered their estimates, whereas those in the underestimation condition raised their 

estimates. Given that we found this pattern to hold across both experiments, it seems likely 

that our feedback manipulation was convincing. However, we found that the way in which 

participants adjusted their feedback depended upon the feedback received. Across both 

experiments, receiving underestimation feedback led to a constant shift in temporal 

estimates, whereas receiving overestimation feedback led to a proportional shift in 

temporal estimates. Given that those in the overestimation condition only had so much 

room to reduce their estimates, it is likely that they only adjusted their estimates of longer 
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durations that had more room for adjustment. Those in the underestimation condition 

however, did not have this issue as they could increase their estimates regardless of the 

duration, resulting in a constant shift.  

Our main question was determining whether shifting one’s symbolic or 

nonsymbolic mapping of time subsequently impacted performance on a nonsymbolic task. 

We predicted that adjusting the mapping would impact temporal discrimination in one of 

two possible ways: 1) adjusting estimates constantly may impact subsequent temporal 

discrimination performance, or 2) accurately adjusting estimates through underestimation 

feedback may improve temporal discrimination performance. Despite these predictions, 

neither experiment revealed a significant Time x Condition interaction, nor was there a 

unique relation between change in temporal discrimination performance and change in 

temporal estimation in the underestimation condition. Taken together with the lack of 

correlation between nonsymbolic and symbolic timing, it seems like these two abilities 

may be less related in adulthood. Moreover, these data appear to undercut the refinement 

hypothesis, suggesting that one’s symbolic mapping does not impact one’s nonsymbolic 

abilities. However, it remains possible that children who are still in the process of learning 

temporal symbols may show evidence of the refinement hypothesis, such that learning 

symbols shapes nonsymbolic abilities earlier in development. Future work with children 

will be critical for testing this possibility.   

Conclusions 

Together, these data suggest that while temporal estimates are malleable given 

feedback, temporal discrimination performance remained unaffected. This indicates that 

symbolic and nonsymbolic timing may be less related in adulthood. Given that these 
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abilities seem more closely linked in childhood, future research will be important for 1) 

assessing the strength of this relation in childhood and 2) determining whether shifting 

children’s symbolic mapping subsequently impact nonsymbolic temporal abilities.  
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Appendix. Covariate Analyses 

We also conducted the mixed measures ANOVAs including pre-test performance 

as a covariate. By doing so, we were able to test the effect of pre-test performance on Time 

and Condition separately. However, because entering the covariate adjusts pre-test 

performance in all conditions to be equivalent, we must cautiously interpret any Time x 

Condition interactions found as they do not necessarily reflect accurate changes in 

performance.  

Experiment 1 

When including pre-test average estimate as a covariate, the 2 (Time: Pre- versus 

Post-Test) x 3 (Condition: Overestimation, Underestimation, Control) mixed measures 

ANCOVA on average estimate revealed a main effect of Time, F(1,126) = 4.975, p = .027, 

𝜂𝑝
2 =  .038, such that estimates were longer at post-test (M = 838.316, SE = 22.064) 

compared to pre-test (M = 829.425, SE = .000). There was also a main effect of Condition, 

F(2, 126) = 49.151, p < .001, 𝜂𝑝
2 = .438, that was qualified by a significant Time x 

Condition interaction, F(2, 126) = 49.151, p < .001, , 𝜂𝑝
2 = .438. Follow-up analyses 

revealed that those in the overestimation condition significantly reduced their estimates 

(Pre-Test: M = 829.425, SE = .000; Post-Test: M = 609.333, SE = 39.498, p < .001) and 

those in the underestimation condition significantly increased their estimates (Pre-Test: M 

= 829.425, SE = .000; Post-Test: M = 1135.46, SE = 37.94, p < .001). Participants assigned 

to the control condition however, showed no changes in their estimates (Pre-Test: M = 

829.425, SE = .000; Post-Test: M = 770.16, SE = 38.355; p = .125), See Figure A4.1. 

Finally, there was a significant Time x Covariate interaction, F(1, 126) = 8.137, p = .005, 

𝜂𝑝
2 =  .061.  A negative correlation between pre-test average estimate and change in 
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average estimate (r = -.254, p = .004) suggested that participants with greater estimates at 

pre-test reduced their estimates more than those who started out with lower estimates, See 

Figure A4.2.  

 

Figure A4.1. Participants adjusted their estimates according to the feedback provided.  

 

Figure A4.2. Participants who provided a larger estimate at pre-test showed a greater 
reduction in their estimates over time.  
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When including pre-test slope as a covariate, the 2 (Time: Pre- versus Post-Test) x 

3 (Condition: Overestimation, Underestimation, Control) mixed measures ANCOVA on 

slope showed a main effect of Condition, F(2, 125) = 3.231, p = .043, 𝜂𝑝
2 =.049, that was 

qualified by Time x Condition interaction, F(2, 125) = 3.231, p = .043, 𝜂𝑝
2 = .049. Follow-

up analyses revealed that those in the overestimation and control conditions had 

significantly shallower slopes at post-test (Overestimation: Pre-Test: M = .485, SE = .000; 

Post-Test: M = .417, SE = .034, p = .044; Control: Pre-Test: M = .485, SE = .000; Post-

Test: M = .392, SE = .032, p = .005), whereas those in the underestimation condition had 

comparable slopes at both time points (Pre-Test: M = .485, SE = .000; Post-Test: M = .503, 

SE = .033, p = .593), See Figure A4.3. There was also a significant Time x Covariate 

interaction, F(1, 125) = 27.154, p < .001, 𝜂𝑝
2 =  .178.  A negative correlation between pre-

test average slope and the amount of change in slope over time (r = -.428, p < .001), 

suggested that participants with steeper slope at pre-test showed a greater reduction in slope 

compared to participants that started with shallower slopes, See Figure A4.4.  
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Figure A4.3. Slopes were shallower at post-test for those in the overestimation and control 
conditions. 
 

 

Figure A4.4. Participants with a steeper slope at pre-test showed a greater reduction in 
slope over time.  
 

When including pre-test temporal discrimination as a covariate, the 2 (Time: Pre- 
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test (M = .819, SE = .006) compared to pre-test (M = .797, SE = .000). There was a marginal 

effect of Condition, F(2, 127) = 2.980, p = .054, 𝜂𝑝
2 = .045, that was qualified by a marginal 

Time x Condition interaction, F(2, 127) = 2.980, p = .054, 𝜂𝑝
2  =  .045. Performance was 

greater at post-test for those in the underestimation condition (Pre-Test: M = .797, SE 

=.000; Post-Test: M = .840, SE =.011, p < .001). However, those in the overestimation 

(Pre-Test: M = .797, SE = .000; Post-Test: M = .815, SE = .011, p = .116) and control 

conditions (Pre-Test: M = .797, SE =.000; Post-Test: M = .802, SE =.011, p = .672) had 

comparable performance at pre- and post-test, See Figure A4.5. While this shows our 

predicted pattern of results, we must be careful when interpreting this interaction as the 

model adjusts pre-test performance to be identical across conditions. There was also a 

significant Time x Covariate interaction, F(1, 127) = 75.518, p < .001, 𝜂𝑝
2  =  .373. We again 

followed up on the Time x Covariate interaction by conducting a correlational between 

pre-test temporal discrimination and the amount of change on the temporal discrimination 

task (post-test – pre-test). A strong negative correlation (r = -.592, p < .001) indicated that 

participants who had worse performance at pre-test showed a larger amount of change on 

the temporal discrimination than participants who had better pre-test performance, See 

Figure A4.6. 
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Figure A4.5. Participants in the underestimation condition showed improved temporal 
discrimination performance at post-test. 
 

 

Figure A4.6. Participants with worse pre-test performance showed the greatest change in 
their performance over time.  
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average estimate showed a main effect of Time, F(1, 120) = 10.254, p = .002, 𝜂𝑝
2 =  .067, 

such that estimates were on average longer at post-test (M = 1366.95, SE = 15.938) 

compared to pre-test (M = 1353.402, SE = .000). There was also a main effect of Condition, 

F(2, 120) = 38.699, p < .001, 𝜂𝑝
2 = .392, that was qualified by a significant Time x 

Condition interaction, F(2, 120) = 38.699, p < .001, 𝜂𝑝
2 = .392. Follow-up analyses 

revealed that those in the overestimation condition significantly decreased their estimates 

at post-test (Pre-Test: M = 1353.402, SE = .000; Post-Test: M = 1192.343, SE = 27.783; p 

< .001), whereas those in the underestimation significantly increased their estimates at 

post-test (Pre-Test: M = 1353.402, SE = .000; Post-Test: M = 1537.098, SE = 27.717; p < 

.001). Those in the control condition had comparable performance at pre- and post-test 

(Pre-Test: M = 1353.402, SE = .000; Post-Test: M = 1371.516, SE = 27.412; p = .510), See 

Figure A4.7. There was also a significant Time x Covariate interaction, F(1, 120) = 7.894, 

p = .006, 𝜂𝑝
2 =  .067. A negative correlation between pre-test average estimate and change 

in average estimate (r = -.181, p = .044) revealed that participants with shorter estimates at 

pre-test were more likely to increase their estimates over time, whereas those with longer 

estimates at pre-test were likely to decrease their estimates over time, See Figure A4.8.  
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Figure A4.7. Participants attended to feedback and adjusted their estimates accordingly. 

 

Figure A4.8.  Participants with the shortest estimates at pre-test were more likely to 
increase their estimates, whereas participants with larger estimates at pre-test were more 
likely to decrease their estimates.  
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= .000). There was also a main effect of Condition F(2, 118) = 3.224, p = .043, 𝜂𝑝
2 =  .052 

that was qualified by a significant Time x Condition interaction, F(2, 118) = 3.224, p = 

.043, 𝜂𝑝
2 =  .052. Those in the overestimation condition had greater slopes at pre-test (M = 

.789, SE = .000) compared to post-test (M = .637, SE = .035, p < .001), whereas those in 

the underestimation (Pre-Test: M = .789, SE = .000; Post-Test: M = .757, SE = .034, p = 

.357) and control (Pre-Test: M = .789, SE = .000; Post-Test: M = .730, SE = .035, p = .095) 

conditions had comparable slopes across time, See Figure A4.9. Finally, there was a 

significant Time x Covariate interaction, F(2, 119) = 22.416, p < .001, 𝜂𝑝
2 =  .159. A 

negative correlation between pre-test slope and change in slope (r = -.378, p < .001) 

suggested that participants with a steeper slope at pre-test tended to show a reduction in 

slope over time, See Figure A4.10. 

 

Figure A4.9. Participants in the overestimation had shallower slopes at post-test.  
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Figure A4.10. Participants with shallower slopes at pre-test tended to have a positive 
change in slope, whereas those who began with a steeper slope tended to have a negative 
change.  
 

When including pre-test temporal discrimination performance as a covariate, the 2 

(Time: Pre- versus Post-Test) x 3 (Condition: Overestimation, Underestimation, Control) 

mixed measures ANCOVA revealed a main effect of Time, F(1, 122) = 39.071, p < .001, 

𝜂𝑝
2 =  .243, such that performance was better at post-test (M = .821, SE = .007) compared 

to pre-test (M = .806, SE = .000). There was also a significant Time x Covariate interaction, 

F(1, 122) = 36.071, p < .001, 𝜂𝑝
2 =  .243. A negative correlation between pre-test temporal 

discrimination and change in temporal discrimination (r = -.499, p < .001) suggested that 

individuals who had better performance at pre-test did not show as much growth as those 

who started with lower performance, See Figure A4.11. No other main effects or 

interactions reached significance, p’s > .3.  
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Figure A4.11. Participants with worse performance at pre-test showed greater 
improvements over time.   
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CHAPTER 5: MECHANISMS UNDERLING THE REFINEMENT 

HYPOTHESIS: THE CASE OF MEMORY AND ATTENTION  

Abstract 

Studies suggest that learning symbols for quantity is related to our ability to track that 

quantity (e.g., Mussolin, Nys, Content, & Leybaert, 2014; Shusterman et al., 2016). These 

investigations however, have been correlational in nature, leaving it unknown whether 

experimental manipulations may reveal a causal relation between acquiring formal 

symbols and perceiving quantity. In the present study, we investigate whether learning 

symbols to represent different surface area sizes impacts adults’ ability to discriminate 

surface area (in a nonsymbolic manner). We also tested potential mechanisms underlying 

these changes: that is, whether heightened attention and/or led to enhanced memory 

encoding of spatial dimensions may underlie changes in spatial acuity. Adult participants 

(N = 126) completed either a training in which they learned symbols to represent surface 

area (symbol condition), color (control condition), or attended to surface area without 

learning labels (control condition). Before and after training, participants also completed 

area discrimination, area salience, and memory encoding tasks. Performance on the 

symbolic training task was correlated with changes in area discrimination performance and 

memory encoding, but only for those who learned symbols to represent surface area. This 

suggests that learning symbols to represent surface areas may be related to nonsymbolic 

area discrimination performance, and memory encoding may play a role in these changes. 

These findings, however, do not provide support for a causal relation. We end by 

identifying areas of future research that will be fruitful for further understanding the 

relation between symbol acquisition and basic quantity processing.   
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Learning (verbal or written) symbols to represent quantities is a critical component 

of early education. For example, preschool classrooms focus on counting and early math 

concepts, whereas elementary age students are taught temporal units of measurement (e.g., 

a minute is longer than a second; National Governors Association Center for Best Practices, 

Council of Chief State School Officers, 2010). While numerous studies have revealed that 

one’s understanding of symbols is related to their ability to track quantity (e.g., Bonny & 

Lourenco, 2014; Halberda, Mazzocco, & Feigenson, 2008; Hamamouche & Cordes, 

accepted; Inglis, Attridge, Batchelor, & Gilmore, 2011; Libertus, Feigenson, & Halberda, 

2011; Libertus, Odic, & Halberda, 2012; Mazzocco, Feigenson, & Halberda, 2008; Odic, 

Lisboa, Eisinger, Olivera, Maiche, & Halberda, 2016; Starr, Libertus, & Brannon, 2013; 

for meta-analysis see: Schneider, Beeres, Coban, Merz, Schmidt, Stricker, de Smedt, 

2017), the exact effect of learning symbols on one’s ability to track quantities is unknown. 

That is, very few studies have used experimental manipulations to test whether learning 

quantity symbols directly refines one’s ability to perceive quantities (although see 

Lindskog, Winman, & Poom, 2016). In the current study, we investigate whether learning 

symbols to represent surface area affects adults’ spatial acuity.  

Relations between Quantity Representations: The Case of Number and Time 

Substantial evidence suggests that we have two distinct systems for representing 

quantity, symbolic and nonsymbolic systems (see Feigenson, Dehaene, & Spelke, 2004; 

Halberda, Feigenson, & Mazzocco, 2008). Our nonsymbolic representations of quantities 

are approximate and independent of language. For example, our ability to estimate which 

of two plates has a greater number of cookies or which of two cookies is bigger relies upon 

nonsymbolic quantitative abilities. Symbolic representations, on the other hand, are 
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dependent upon language and include verbal labels or signs, discrete gestures, or written 

symbols which allow for an exact system of measurement (e.g., Arabic numerals for 

number, units of measurement for time, etc.). Several studies have found a relation between 

nonsymbolic and symbolic quantitative skills (see Schneider et al., 2017). For example, 

fourteen-year olds’ performance on a nonsymbolic numerical discrimination task predicts 

their math SAT performance (Halberda et al., 2008) and understanding of temporal units 

of measurement is related to nonsymbolic timing abilities in elementary-aged children 

(Hamamouche & Cordes, accepted).  

 Not only do correlations exist between nonsymbolic and symbolic quantitative 

abilities, newer work suggests that this relation may be causal. Hyde, Khanum, & Spelke 

(2014) showed that training on a nonsymbolic numerical task led to enhanced math abilities 

in children, suggesting that nonsymbolic abilities may form the foundation for learning 

about symbolic representations. While this points to a causal relation between nonsymbolic 

and symbolic abilities, it remains unknown whether this relation is bidirectional, such that 

learning symbols might also refine nonsymoblic acuity. However, a few studies hint at this 

possibility. Cross-lagged longitudinal studies show that children’s symbolic understanding 

of number predicts their later nonsymbolic numerical acuity (Lyons, Bugden, Zheng, De 

Jesus, & Ansari, 2018; Matejko & Ansari, 2014; Mussolin, Nys, Content, & Leybaert, 

2014). However, none of these studies involved experimental manipulations. In a similar 

investigation, young children’s nonsymbolic representations of number – as assessed by a 

numerical discrimination task – were tracked over a period of six months as they became 

proficient counters. As soon as children acquired the cardinal principle – indicative of 

mastery of verbal counting, a symbolic representation of number - their nonsymbolic 
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numerical acuity drastically improved (Shusterman, Slusser, Halberda, & Odic, 2016). The 

authors concluded that learning symbols for quantities refines one’s nonsymbolic 

representations of that quantity; however, it is also possible that a drastic shift in their 

numerical acuity led to learning the counting principle. While this finding is suggestive of 

a causal relation, only one study has intentionally manipulated symbol learning to explore 

this relation (Lindskog et al., 2016). Thus, the current study serves as one of the first 

investigations of the effect of symbol acquisition on nonsymbolic quantity processing.  

Why Symbols Shape our Perception: Evidence from Language  

In addition to testing whether learning symbols shapes nonsymbolic representations 

of time, it is also important to determine the mechanism(s) underlying this change. As such, 

the second aim of this study was to assess the mechanism(s) underlying improved 

nonsymbolic acuity following symbol acquisition. Why might the acquisition of quantity 

symbols impact nonsymbolic representations of quantity? Lera Boroditsky – a cognitive 

scientist who explores how language shapes cognition – argues that, “Languages force us 

to attend to certain aspects of our experience by making them grammatically obligatory. 

Therefore, speakers of different languages may be biased to attend to and encode different 

aspects of their experience while speaking.” (Boroditsky, 2001, p. 2; stress added). That is, 

it is possible that acquiring symbolic knowledge may (1) guide attention towards relevant 

cues and/or (2) facilitate memory encoding of relevant information. The present study 

attempts to address each of these hypotheses by assessing whether acquisition of spatial 

symbols heightens attention to and/or enhances encoding of spatial extent.  

Heightened Attention. A substantial literature suggests that the language we learn 

may guide our attention to different aspects of the world. For instance, hearing a verbal 
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label has been shown to direct individuals’ attention towards previously unseen objects at 

the perceptual level (Lupyan & Ward, 2013). Importantly, this effect is unique to hearing 

a verbal label (e.g. “frog”), but not a related, nonverbal sound (e.g., “ribbet”; Boutonnet & 

Lupyan, 2015). Illustrating this effect, Ostarek and Huettig (2017) showed participants a 

binocular fusion, such that each eye saw a different image - one eye saw a visual mask and 

the other eye saw an image (e.g., a bottle, banana, palm tree, etc.), which when looking at 

simultaneously resulted in the images appearing very abstract. Prior to the onset of the 

images, participants heard either a congruent word (e.g. “bottle” if one eye would 

subsequently see a bottle in one eye) or an incongruent word (e.g., “banana” if one eye 

would then see a bottle in one eye). After seeing the images, participants were asked 

whether or not they saw that item. Performance was enhanced on congruent trials, 

compared to incongruent ones (Ostarek & Huettig, 2017), indicating that hearing labels 

guided participant’s attention towards important aspects in their environment.  

If learning area symbols guides attention towards the relevant features, then in our 

study, participants’ attention should be guided towards spatial information and they should 

be better able to discriminate subtle differences in surface area. In order to assess this, 

participants completed an irrelevant task, tapping their numerical discrimination abilities 

(subsequently referred to as the area salience task), in which they were asked to compare 

the relative numerosity of two arrays of dots. Importantly, the surface area of the 

enumerated dots in the task were manipulated such that half of the trials were congruent in 

surface area (the average size of the dots was the same in both arrays, such that the 

cumulative area of the more numerous array was also be greater) and half of the trials were 

incongruent (cumulative surface area remained the same regardless of the numerosity). 
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Prior research reveals adults typically perform better on congruent compared to 

incongruent trials, revealing a slight reliance on cumulative area during the numerical task 

(Clayton & Gilmore, 2015; DeWind & Brannon, 2012; Gilmore et al., 2013; Hurewitz et 

al., 2006; Nys & Content, 2012). If learning area symbols heightens one’s attention to 

surface area, then it is predicted that participants will show a greater attention to surface 

area of the dot arrays during the incongruent trials, resulting in worse performance on 

incongruent trials (and potentially better performance on congruent trials) at post-test.  

Memory Encoding. Memory encoding for surface area may also be enhanced after 

acquiring symbols. In line with this hypothesis is work showing that one’s language often 

determines how information is encoded (Fausey & Boroditsky, 2011). In one study, 

English and Spanish speakers viewed intentional or accidental events. Importantly, while 

the English language uses agentive expressions regardless of whether an event was 

intentional or accidental, Spanish use non-agentive expressions when describing accidental 

expressions. While speakers of both languages remembered the agents involved in 

intentional events equally well, English speakers recalled the agents involved in accidental 

events more accurately than Spanish speakers (Fausey & Boroditsky, 2011). Researchers 

concluded that the English speakers encoded information about the agents in the accidental 

events, suggesting that their language impacted encoding and memory for events. 

Relatedly, other work shows that bilingual speakers remember information differently 

depending on the language in which the information was encoded (Schroeder & Marian, 

2014). If it is the case that language may impact memory encoding, then we would expect 

participants who learn labels for distinct surface areas may be at an advantage for encoding 

surface area information.  
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To test whether learning quantity symbols leads to enhanced memory encoding, 

participants also completed a memory encoding task before and after learning symbols to 

represent surface area. If learning symbols leads to better memory encoding of area, one 

would expect enhanced performance on the memory encoding task at post-test, only for 

those participants who learned symbols to represent surface area.  

The Current Study 

In the current study, participants were randomly assigned to one of three different 

training conditions: (1) learning novel labels to represent distinct measurements of surface 

area, (2) learning labels to represent color (control condition), or (3) exposure to surface 

area without learning labels (control condition). Participants’ nonsymbolic spatial acuity 

was assessed both before and after symbol acquisition. Participants also completed an area 

salience task and memory task allowing us to explore how acquisition of quantitative 

symbols shapes nonsymbolic representations of quantity through either heightened 

attention to surface area and/or enhanced memory encoding of surface area information.  

Methods 

Participants 

Undergraduates (N = 126, 102 females, Mage = 18.77 years) participated for course 

credit. Required sample size was determined a priori using G*Power (Faul, Erdfelder, 

Buchner, & Lang, 2009). An additional 8 participants completed the study, but were 

excluded for performing below chance on three or more tasks (n = 2), or due to computer 

error (n = 6). 

Stimuli 
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The same set of 42 irregular shape stimuli was used for both the memory and 

training tasks. There were 16 versions of each shape that varied by four different sizes (500 

mm2, 750 mm2, 1120 mm2, 1680 mm2) and four different shades of blue (saturation: 53%, 

61%, 70%, and 80%). That is, for each size (e.g., 500 mm2), we had four individual shapes 

in each of the four colors. We did this so that regardless of training condition, all 

participants would see the same shapes. Pilot testing revealed that color discrimination 

precision was higher than that of area discrimination precision, thus the hues varied by a 

more difficult 1.15 ratio compared to the 1.5 ratio change in surface areas. The ratio 

between each color/item size was consistent across the four dimensions. In other words, 

there was a 1.15 ratio difference between the lightest shade and the next lightest shade, the 

second lightest shade and the third shade, etc.  

Procedure 

After consent was obtained, the experimenter took the participant into a quiet room. 

Participants were randomly assigned to one of three training conditions (42/condition). 

Participants completed the area discrimination, area salience, and memory task both before 

(pre-test) and after (post-test) participating in training:  

(1) Area discrimination (adapted from Odic, et al., 2013; Pre-test and Post-test) 

Participants viewed two irregular shapes (one blue and the other yellow) presented 

on a light gray background (See Figure 5.1). The shapes were displayed briefly (1500 ms, 

as per Odic et al., 2013) and the participants were asked to select which shape was larger 

in surface area. Participants made their response by pressing the left arrow key if the yellow 

shape was larger and the right arrow key if the blue shape was larger. Identical to Odic et 

al. (2013), the ratios between each shape differed by 1.14, 1.2, 1.5, 2.0, and 3.0 and each 
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ratio was displayed sixteen times for a total of 80 trials. On each trial, one of the irregular 

shapes contained a surface area (500 mm2, 750 mm2, 1120 mm2, 1680 mm2) on which 

participants would later be trained.  

 

Figure 5.1. Example of area discrimination trial. 

(2) Area salience task (Panamath, Halberda et al., 2008; Pre-test and Post-test) 

Participants then completed an Area Salience task using the Panamath Program 

(Halberda et al., 2008). The experimenter told participants they would see two dot arrays 

and they were to decide which array was more numerous. Because Panamath changes the 

difficulty of trials based on age, to maintain consistency across all subjects, the age was set 

to 18 and the duration was set to 5 minutes. Given these settings, participants completed 

80 trials. Importantly, half of the trials were congruent, such that cumulative surface area 

and numerosity were positively correlated. In the other half of the trials, cumulative surface 

area remained consistent across both arrays, such that the more numerous array contained 

smaller individual dots (i.e., incongruent trials).  

(3) Memory task (Pre-test and Post-test)  

The memory task was a delayed match to sample task used to measure memory 

encoding. During the memory task, participants saw a target shape displayed for a brief 
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period of time (1000 ms). Then, a visual mask appeared on the screen for 2000 ms. After 

the visual mask disappeared, two potential matches were visible on the screen and the 

participant was told to indicate which of the two stimuli matched the target stimulus in 

terms of surface area (See Figure 5.2 for a progression of the task). The three shapes were 

always the same color, but each shape was different, and the incorrect match only differed 

in surface area. The ratio differences between the two choices varied between 1.5, 2.24, 

and 3.36). Participants completed 50 trials. Although the memory task was very similar to 

the training, it differed in two important ways. First, during the memory task, the sample 

image disappeared, whereas the sample remained on the screen during training. Secondly, 

the delay between the match appearing and the choices appearing was longer during the 

memory task compared to training. 

 

Figure 5.2. Progression of the memory task.  

(4) Training 

Participants were randomly assigned to one of three training conditions: Area 

Label, Nonsymbolic Area (control condition), or Color Label (control condition). In the 

Area Label condition, participants learned novel labels to represent distinct surface area 
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measurements. In the Nonsymbolic Area condition, participants did not learn labels, but 

were exposed to the same exact stimuli as the two other conditions and were instructed to 

attend to the surface area of the items. In the Color Label Condition, participants learned 

novel labels for distinct shades of the color blue. We used novel labels rather than exact 

measurements to ensure that participants’ previous knowledge did not influence their 

performance.  

Area Label Training: At the beginning of the Area Label Training, the experimenter 

told the participant they were going to learn words to describe the surface areas of shapes. 

Then participants saw an image containing four different irregular shapes. Each shape was 

one of the training surface areas (500 mm2, 750 mm2, 1120 mm2, or 1680 mm2) and was 

in order from smallest (on the left) to the largest (on the right). The experimenter circled 

and labeled each shape as one dax, two daxes, three daxes, and four daxes, respectively. 

After the introduction to the shapes, the participants completed a match to sample task to 

learn the label. During the match to sample task, participants saw a sample shape at the top 

of the screen. Above the sample shape was the following statement: “The surface area of 

this shape is e.g., two daxes. Can you find the other shape with the surface area of two 

daxes?” After 1000 ms, two potential matches appeared at the bottom of the screen, and 

the participant had an unlimited amount of time to decide which of the two images matched 

the first image in terms of surface area. All three images (one sample, and two possible 

matches) remained on the screen until the participant made a response. Although the 

participant could take as long as they needed to decide, they were told to complete the task 

as quickly and accurately as possible. Participants had equal exposure to each of the four 

surface areas (e.g., 24 trials where the sample shape was 500 mm2, 24 trials where the 
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sample shape was 750 mm2, …etc.), and the distractor shape was one of the other three 

sizes an equal number of times (e.g., if the sample shape was 500 mm2, the distractor was 

750 mm2, 1120 mm2, 1680 mm2 the same number of times). Within each trial, the three 

shapes (sample and two potential matches) were the same shade of blue. However, across 

trials, participants received equal exposure to each of the shades of blue. This was to ensure 

equal exposure of color and size across conditions.  

 Nonsymbolic Area Training: Participants assigned to the Nonsymbolic Area 

condition completed an identical task, however, the surface areas were never labeled. When 

the participants viewed the image of the four shapes increasing in surface area, the 

experimenter circled each shape and said “This is the surface area of this shape.” Then, on 

each match to sample trial, the statement: “This is the surface area of this shape. Can you 

find the other shape with the same surface area?” was written above the sample shape. 

Again, within trials, the three shapes were the same shade of blue, but across trials the 

shades of blue varied.  

 Color Label Training: Participants assigned to the Color Label Condition 

completed an identical task to the Area Label Condition; however, they were told they were 

learning new words to describe the color of the shapes. Thus, participants learned “one 

dax” represented the lightest shade of blue, “two daxes” represented the second lightest 

shade, and so forth such that “four daxes” represented the darkest shade of blue. On each 

trial, a statement prompted participants to find the shape with the specified color. In the 

Color Label Condition, within each trial, the sample and potential matches were all the 

same size; however, across trials, participants received equal exposure to the four different 

surface areas. Thus, within trials, the three shapes were identical in surface area, but across 
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trials the size of the shapes changed so that participants in this condition still received a 

comparable amount of exposure to different sized shapes.  

Across all three training conditions, trial by trial feedback was provided (a green 

check mark appeared for 1000 ms following a correct response, whereas a red X appeared 

for 1000 ms following an incorrect response). Participants completed one training block 

consisting of 96 trials.  

After training, participants again completed the area discrimination task, area 

salience task, and the memory task (in that order).  

Data Coding and Analyses 

 Accuracy (proportion correct) was the dependent variable for all tasks. We first 

excluded performance that was below chance (50%) on all tasks (NMemory Pre-Test  = 7, NMemory 

Post-Test = 1). Then, any data points that were three standard deviations above or below the 

mean were excluded (NArea Salience Post-Test  = 1). We did not exclude training performance 

three standard deviations above/below the mean. For the area saliency task, we calculated 

a difference score (congruent trials performance – incongruent trial performance), thus a 

positive score would be indicative of better performance on the congruent trials, whereas 

a negative score would indicate better performance on the incongruent trials. One 

participants’ difference score at pre-test was three standard deviations below the mean and 

so it was removed from analyses. No difference scores were three standard deviations 

above/below the mean were replaced.  

Results 

 See Table 5.1 for average performance on each task and Table 5.2 for correlations 

between pre- and post-test performance. Performance on all tasks was significantly above 
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chance (Area discrimination: Pre-test: t(125) = 84.416, p < .001; Post-Test: t(125) = 

72.915, p <.001; Area Salience: Pre-test: t(125) = 84.235, p <.001; Post-test: t(125) = 80.64, 

p < .001; Memory: Pre-test: t(118) = 24.419, p <.001; Post-test: t(124) = 26.238, p <.001). 

Pre-test performance on the area discrimination did not correlate with pre-test performance 

on the area salience task (r = .099, p = .271) or the memory task (r = .108, p = .244). 

Significant accuracy ratio effects were found for both the area discrimination (Pre-Test: 

F(4, 500) = 186.53, p < .001, 𝜂𝑝
2  = .602; Post-test: F(4, 500) = 157.32, p <.001), 𝜂𝑝

2 =

 .564) and area salience tasks (Accuracy: Pre-test: F(3, 375) = 378.16 p < .001, 𝜂𝑝
2 = .759; 

Post-test: F(3, 375) = 447.61, p <.001, 𝜂𝑝
2 =  .782).  

 Area Discrimination Area Salience Area Salience 
Difference 
Score 

Memory 

Pre-test .885 (.005) .854 (.004) .900 (.53) .733 (.01) 

Post-test .874 (.005) .853 (.004) 2.26 (.578) .726 (.009)  

Table 5.1. Average performance (standard error) on each task.  

 Area 
Discrimination 

Area Salience Area Salience 
Difference 
Score 

Memory 

Area Labels .674** .622** .187 .475* 
Nonsymbolic 
Area 

.607** .404* .297+ .551**  

Color Labels .611** .385* .438* .380* 
Table 5.2. Correlations between pre- and post-test performance.  
**p < .001, *p < .01, +p <.1 
 

Training Performance 

Although the three training conditions were designed to be comparable, a one way 

ANOVA revealed marginal differences in accuracy on the training task, F(2, 123) = 3.014, 

p = .053. Follow-up independent sample t-tests revealed that participants assigned to the 
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Nonsymbolic Area (M = .884, SE = .008) condition outperformed those assigned to the 

Area Label condition (M = .845, SE = .017; t(56.984) = -2.15, p = .035). Training 

performance for those assigned to the Color Label Condition (M = .882, SE = .01) was 

marginally better than the Area Label condition (t(75.26) = -1.78, p = .078), but not 

different from the Nonsymbolic Area Condition (t(82) = .172, p = .864), See Figure 5.3.  

 

 

Figure 5.3. Performance on the training task.   

Does learning symbols for surface area enhance nonsymbolic representations of area?  

 Area discrimination performance was comparable across the three conditions at 

pre-test, F(2, 123) = 1.115, p = .331. To test whether learning area symbols enhanced 

nonsymbolic representations of area, a 2 (Time: Pre versus Post Test) x 3 (Condition: Area 

Labels, Nonsymbolic Area, Color Labels) mixed measures ANOVA on area discrimination 

accuracy was conducted. There was a main effect of Time, F(1, 123) = 6.852, p = .010 
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= .005) compared to pre-test (M = .885, SE = .005). No other main effects or interactions 

reached significance, p’s > .1, See Figure 5.4.  

 

Figure 5.4. Learning area symbols did not impact nonsymbolic representations of space.  

 To further test the relation between our symbolic training and nonsymbolic 

discrimination task, we next conducted correlations between accuracy on the training task 

and improvement on the area discrimination task from pre- to post- (determined as the 

difference score between accuracy on the area discrimination task at post-test compared to 

pre-test in each condition separately). We controlled for pre-test performance to rule out 

individual differences in overall performance. A partial correlation (controlling for pre-test 
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training correlated with the change in area discrimination performance (r = .399, p = .010), 
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Label (r = -.148, p = .356) conditions. While the correlation in the Area Labels was 

significantly stronger than that of the Color Labels (z = 2.52, p = .005), the difference 

between the Area Labels and Nonsymbolic Area conditions was not significant (z = 0.94, 

p = 0.17). Performance was marginally different between the Nonsymbolic Area and Color 

Labels conditions (z = 1.3, p = 0.055).  

What mechanism(s) might lead to enhanced nonsymbolic representations of area? 

Heightened Attention. One way ANOVAs revealed comparable performance 

among all three conditions at pre-test (Area salience: F(2, 123) = 1.306, p = .275; Area 

salience difference score: F(2, 122) = .382, p = .684). Performance on incongruent trials 

during numerical discrimination tasks (i.e., the area salience task) is typically worse 

relative to congruent trials (DeWind & Brannon, 2012), and this difference in performance 

is attributed to an attention to surface area in the displays. If learning area symbols 

heightens the salience of area information as predicted, then participants in the Area Label 

condition should perform even worse on the incongruent trials of the area salience task at 

post-test relative to the Area without Labels and Color with Labels Conditions. Moreover, 

performance should remain consistent from pre- to post-test in the Nonsymbolic Area and 

Color Label Conditions. In order to determine whether learning domain-specific symbols 

heightens attention to relevant features in that domain, a 2 (Time: Pre versus Post Test) x 

3 (Condition: Area Labels, Nonsymbolic Area, Color Labels) mixed measures ANOVA on 

the area salience difference score was conducted. There was a main effect of Time, F(1, 

122) = 4.347, p = .039, 𝜂𝑝
2=  = .034, such that there was a greater difference between 

congruent and incongruent trials at post-test (M = 2.258, SE = .583) compared to pre-test 
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(M = .900, SE = .532). No other main effects or interactions reached significance, p’s > .3, 

See Figure 5.5.  

 

Figure 5.5. Overall, there was a greater difference in incongruent and congruent trials at 
post-test, such that performance on the incongruent trials worsened over the course of the 
study.  
  

As an additional test of the effect of learning symbols for area on attention towards 

area, we next conducted correlations between training performance and another numerical 

discrimination difference score (difference score at post-test – difference score at pre-test) 

for each condition separately while also controlling for pre-test performance. None of the 

correlations reached significance (Area Label: r = -.02, p = .904; Nonsymbolic Area: r = 

.214, p = .179; Color Label: r = .058, p = .723).  

Memory. Memory performance was comparable between the conditions at pre-test, 

F(2, 116) = 1.33, p = .268. We also predicted that learning symbols may enhance memory 

encoding for surface area. If learning symbols promotes memory-encoding efficiency, then 

participants who acquired symbols for area should perform better on the memory task at 

post-test.  
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 To test this, a 2 (Time: Pre versus Post Test) x 3 (Condition: Area Labels, 

Nonsymbolic Area, Color Labels) mixed measures ANOVA on the accuracy of the 

Memory task was conducted; however, no main effects or interactions reached 

significance, p’s > .1, see Figure 5.6. Although not significant, it is worth noting that 

performance in the Color Label condition decreased after training, whereas performance 

in the both Area conditions increased.  

 

Figure 5.6. Learning symbols for area did not impact memory encoding of spatial 
dimensions.  

 

We again tested the effect of our training on memory performance by conducting 

correlations between training performance and a difference score (post-test memory 
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Area Labels and Nonsymbolic Area (z = 2.53, p = .005) and between the Area Labels and 

Color Labels conditions (z = 1.9, p = .03). Correlations were comparable for those assigned 

to the Nonsymbolic Area and Color Labels conditions (z = -.61, p = .27).  

Discussion 

 The goal of this study was two-fold. Our first aim was to investigate how acquiring 

symbols for surface area impacts adults’ nonsymbolic representations of space. The second 

objective was to test the mechanism(s) that may underlie enhanced nonsymbolic 

representations of quantity following symbol acquisition. Based on the language literature 

(e.g., Boroditsky, 2001), we specifically investigated whether heightened attention and/or 

enhanced memory encoding might drive this change. Together, this study serves as one of 

the first experimental investigations of the effect of acquiring symbols for surface area on 

our nonsymbolic representations of space.  

Does learning symbols for surface area enhance nonsymbolic representations of area?  

 While many studies show relations between an understanding of formal symbols 

for quantities and the basic processing of those quantities (number: Bonny & Lourenco, 

2014; Halberda, Mazzocco, & Feigenson, 2008; Inglis, Attridge, Batchelor, & Gilmore, 

2011; Libertus, Feigenson, & Halberda, 2011; Libertus, Odic, & Halberda, 2012; 

Mazzocco, Feigenson, & Halberda, 2008; Odic, Lisboa, Eisinger, Olivera, Maiche, & 

Halberda, 2016; Starr, Libertus, & Brannon, 2013; for meta-analysis see: Schneider, 

Beeres, Coban, Merz, Schmidt, Stricker, de Smedt, 2016; time: Hamamouche & Cordes, 

accepted), only a single study has experimentally investigated the effect of learning 

symbols on nonsymbolic representations of quantity (Lindskog, Winaman, & Poom, 2014). 

Given that adults do not typically learn spatial symbols but instead tend to rely on 
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measurement tools such as rulers when measuring the spatial dimensions of objects, we 

chose to study this relation in the domain of space so that we could train adults on symbols 

they were less familiar with (compared to time and number).  

 Given previous literature showing symbolic knowledge predicted later 

nonsymbolic acuity (e.g., Lyons et al., 2018; Matejko & Ansari, 2014; Mussolin et al., 

2014), we hypothesized that learning symbols for surface area would subsequently enhance 

performance on a nonsymbolic area discrimination task. Counter to our hypotheses, 

learning symbols for spatial dimensions did not impact adults’ perception of surface area. 

Although there is evidence of a correlation between symbolic and nonsymbolic spatial 

acuity (Lauer & Lourenco, 2016; Lourenco & Bonny, 2017), the current data suggest that 

this relation may not be causal. Why might this be the case? One possibility is that this 

relation is stronger (and possibly causal) in children who have less experience with spatial 

symbols. Alternatively, the scaffolding hypothesis may better explain this link, such that 

nonsymbolic representations form the foundation for symbolic representations, and 

learning symbols does not necessarily shape nonsymbolic abilities. Additionally, it remains 

possible that a third variable such as working memory or processing speed may be 

contributing to this relation.  

Rather than improving after symbol instruction, our results showed that overall 

performance on the area discrimination was worse at post-test regardless of condition. Why 

would learning symbols negatively impact adult’s perception of area? One possibility is 

that participants found the training task quite difficult, and were tired and/or unmotivated 

to complete the area discrimination task for a second time. This, however, seems unlikely 

given that overall performance on the training task was quite high and did not differ 
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between the first half and second half of training (p > .8). Moreover, performance on our 

other two post-test measures did not reveal drops in performance relative to pre-test making 

this explanation doubtful. It remains possible that for some other reason, participants may 

have been less motivated to complete the area discrimination task a second time, leading 

to worse performance at post-test.  

It is also important to note that participants already performed quite well on the area 

discrimination task at pre-test leaving little room for improvement. Although we modeled 

the area discrimination task after previous work (Odic et al., 2013), future research 

employing more difficult ratios may show that learning symbols for spatial dimensions 

improves nonsymbolic representations of space. This seems unlikely, however, given that 

performance on the hardest ratio we tested remained comparable after training (p > .1). 

Additionally, we chose to work with adults who already have some understanding of spatial 

symbols. While we tried to eliminate previous exposure by using nonsense labels, it is 

possible that adults’ prior knowledge may have played a role in our findings. Children’s 

limited experiences with spatial dimensions, and specifically symbols representing surface 

area, may allow for greater changes in their nonsymbolic representations of space after 

symbolic training than that of adults. As such, work with child participants may be a 

worthwhile pursuit.  

Although there was no transfer between the symbolic training and area 

discrimination performance, we found a relation between performance on the symbolic 

training and the overall change in area discrimination performance from pre-test to post-

test in the Area Labels condition only. This suggests that there may be a link between 

learning symbols and nonsymbolic representations of those symbols; however, we were 
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unable to tap into this relation in the present study. In future work, one might consider 

including a more substantial symbolic training that more closely mimics traditional 

learning of symbols in the classroom either in duration (over several weeks) or using more 

iterations (more examples of different surface areas) in order to delve more deeply into this 

relation.  

What mechanism(s) might lead to enhanced nonsymbolic representations of area? 

We also aimed to explore how learning symbols shapes nonsymbolic 

representations. Given work from the language literature suggesting that learning symbols 

may guide attention towards the relevant features (e.g., Boroditsky, 2001; Lupyan & Ward, 

2013), enhance memory encoding (e.g., Fausey & Boroditsky, 2011; Schroeder & Marian, 

2014), or both, we chose to include an attention (area saliency) and memory measure at 

pre- and post-test. Although learning symbols for spatial dimensions did not appear to 

improve nonsymbolic spatial abilities, we still tested whether learning spatial dimensions 

may have an impact on memory and area salience.  

Heightened Attention. Performance on the area salience task indicated that 

participants may have attended more to surface area of the arrays at post-test, as shown by 

an overall greater difference in performance on the incongruent and congruent trials at post-

test compared to pre-test. However, the effect of Time did not interact with Condition. 

Thus, counter to predictions, this change over time was not unique to the Area Labels 

condition, and thus was not a function of learning symbols for spatial dimensions 

specifically. A distinction in the way in which we assessed participant attention towards 

spatial dimensions may explain the lack of a Time x Condition interaction. During each 

training trial, participants attended to a single shape’s surface area; during the area salience 
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task, however, participants saw dot arrays. Thus, during the area salience task, participants 

needed to mentally calculate the cumulative surface area of several dots, or alternatively, 

determine the average size of an array of heterogeneously-sized dots. In this case, attending 

to a single item may not necessarily help (or hinder) performance. Thus, we may see a 

greater effect of training if the assessment of attention also involved a single item like the 

training, and/or if the dots within the arrays were homogeneous in size. Research using an 

assessment of attention in which participants needed to attend to the surface area of a single 

item may result in a more accurate measure of adults’ attention to area following the 

symbolic training.  

Memory Encoding. Although we cannot firmly say that attending to area (with or 

without a label) might enhance memory encoding, we did find a unique relation between 

training performance and the change in memory performance from pre- to post-test, and 

this correlation only held in the Area Labels condition. Importantly, the correlation for 

those assigned to the Area Labels was significantly different than the correlation for those 

assigned to the Nonsymbolic Area and the Color Labels trainings, suggesting that there 

may be a unique connection between learning symbols and memory encoding. While these 

results hint at a possible relation, it is still unclear whether learning area symbols caused 

the change in memory performance. Although we predicted learning area symbols to 

increase memory encoding for area, it is also possible that individuals with better memory 

for surface area performed better on the training task. Alternatively, it is possible that a 

third variable may be at play. For example, greater exposure to surface area through the 

use of symbols may have supported better memory encoding. Investigating the role that 

memory plays in symbol acquisition remains an area ripe for investigation.  
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 Additional Explanations. There are many other possible explanations as to why 

learning symbols did not impact participants’ attention to spatial dimensions and/or 

memory encoding of space. In order to truly test the mechanism(s) impacted during symbol 

acquisition, we would need to see improvement in adults’ area discrimination performance 

after learning symbols. Given that learning symbols for surface area did not impact adults’ 

perception of area, it is hard to determine what mechanism(s) may have been at play. It is 

also possible that we were not testing the right mechanism(s) underlying these changes. 

That is, there may be another means by which learning symbols shapes nonsymbolic 

representations of quantities. Again, this is difficult to determine given the lack of change 

in participants’ nonsymbolic representations of space. It remains important to study the 

impact of symbol acquisition on heightened attention and memory encoding.  

Conclusions 

 In conclusion, we found little support for the refinement hypothesis, such that 

acquiring symbols for surface area did not impact adults’ perception of area. Despite this, 

there was a correlation between performance on the training task and changes in area 

discrimination performance for those in the Area Labels condition, hinting at a possible 

relation. Given the current findings, it remains possible that children, who have less 

experience with symbols, may be more impacted by symbol acquisition. As such, future 

investigations using a younger age range of participants will be particularly fruitful for 

further understanding the refinement hypothesis in the domain of space.  
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Appendix A. Reaction Time 

 We also used reaction time (RT) as a secondary measure of performance on the 

area salience and memory tasks. Unfortunately, a programming error prevented us from 

analyzing RT on the area discrimination task. Scores three standard deviations above or 

below the mean were excluded from the analyses (nMemory Pre-Test = 3, nMemory Post-test = 3; NArea 

Salience Difference Score Pre-test = 2, nArea Salience Difference Score Post-test = 3).  

Pre-test  

Reaction Time revealed significant ratio effects for the area saliency task (Pre-test: 

F(3, 387) = 34.003, p < .001, 𝜂𝑝
2 = .209; Post-test: F(3, 387) = 81.368, p < .001, 𝜂𝑝

2 = .387). 

Heightened Attention. Reaction time was comparable among the three conditions 

at pre-test (F(2, 121) = .409, p = .665). A 2 (Time: Pre-test versus Post-test) x 3 (Condition: 

Area Labels, Nonsymbolic Area, Color Labels) mixed measures ANOVA was run using 

reaction time of the numerical discrimination difference score the dependent variable. No 

main effects or interactions reached significance, p’s > .5.  

Correlational analyses using accuracy on the training and a difference score of the 

reaction time difference score at post-test minus the difference score at pre-test in each 

condition separately did not reach significance, (Area Labels, r = -.163, p = .321; 

Nonsymbolic Area, r = -.088, p = .595; Color Labels, r = -.048, p = .767).  

 Memory. There were no Condition differences at pre-test (F(2, 120) = .226, p = 

.798). We next conducted an identical 2 (Time: Pre-test versus Post-test) x 3 (Condition: 

Area Labels, Nonsymbolic Area, Color Labels) mixed measures ANOVA using reaction 

time on the memory task as the dependent variable. There was a main effect of Time, F(1, 

119) = 96.587, p < .001, 𝜂𝑝
2 =  .448, such that participants were quicker at post-test (M = 
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860.32, SE =21.59) compared to at pre-test (M = 1044.81, SE = 29.72). No other main 

effects or interactions reached significance, p’s > .2. 

Finally, we completed the correlational analyses using accuracy on the training and 

a difference score on reaction time on the memory task at post-test compared to pre-test. 

However, none of the correlations reached significance, (Area Labels, r = -.249, p = .116; 

Nonsymbolic Area, r = .169, p = .298; Color Labels, r = -.295, p = .072). 
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Appendix B. Covariate Analyses 

We also conducted all mixed measures ANOVAs also including pre-test 

performance as the covariate. This allowed us to test for any effects of pre-test performance 

on Time and Condition separately. This analysis, however, adjusts average pre-test 

performance, such that all conditions have identical pre-test performance, making it 

difficult to interpret Time x Condition interactions, as performance is modified.  

When including pre-test area discrimination as a covariate, the a 2 (Time: Pre 

versus Post Test) x 3 (Condition: Area Labels, Nonsymbolic Area, Color Labels) mixed 

measures ANCOVA on area discrimination accuracy again revealed a main effect of Time, 

F(1, 122) = 12.766, p = .001, 𝜂𝑝
2 = .095, such that overall performance was worse at post-

test (M = .874, SE = .004) compared to pre-test (M = .885, SE = .000). There was also a 

significant Time x Covariate interaction, F(2, 122) = 13.957, p < .001, 𝜂𝑝
2 = .103. To further 

explain the Time x Covariate interaction, we plotted pre-test area discrimination 

performance on a difference score (post – pre-test performance on the area discrimination 

task), See Figure A5.1. The negative correlation (r = -.312, p < .001) indicates that 

participants who had better performance at pre-test showed less growth than those who had 

lower performance. No other main effects or interactions reached significance, p’s > .2.  
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Figure A5.1. Individuals with better area discrimination performance at pre-test showed 
less change on the area discrimination task over time. 
 

Heightened Attention. A similar pattern of results emerged when including pre-test 

performance as a covariate in the 2 (Time: Pre versus Post Test) x 3 (Condition: Area 

Labels, Nonsymbolic Area, Color Labels) mixed measures ANCOVA on the area saliency 

score. There was again a main effect of Time, F(1, 121) = 12.009, p = .001, 𝜂𝑝
2=   = .090, 

such that difference in performance on congruent and incongruent trials was greater at post-

test (M = 2.258, SE = .554) compared to pre-test (M = .900, SE = .000). There was also a 

Time x Covariate interaction, F(1, 121) = 47.519, p < .001, 𝜂𝑝
2=   = .282. The interaction 

indicated that those who had smaller difference score at pre-test (indicative of comparable 

performance on the congruent and incongruent trials) showed a larger difference from pre- 

to post-test (r = -.524, p < .001), See Figure A5.2. No other main effects or interactions 

reached significance, p’s > .3. 
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Figure A5.2. Participants with a smaller difference score at pre-test showed more drastic 
differences between congruent and incongruent trials at post-test.  
 

When including pre-test memory performance as the covariate, 2 (Time: Pre versus 

Post Test) x 3 (Condition: Area Labels, Nonsymbolic Area, Color Labels) mixed measures 

ANCOVA on memory performance showed a main effect of Time, F(1, 114) = 60.658, p 

< .001, 𝜂𝑝
2 = .347, such that performance was worse at post-test (M = .732, SE = .007) 

compared to pre-test (M = .735, SE = .000). There was also a main effect of Condition, 

F(2, 114) = 3.362, p = .038, 𝜂𝑝
2 = .056, that was qualified by a significant Time x Condition 

interaction, F(2, 114) = 3.358, p = .038, 𝜂𝑝
2 = .056. While memory performance decreased 

from pre- to post-test for those assigned to the Color Label condition (Pre-test: M = .735, 

SE < .001; Post-test: M = .705, SE = .013, p = .023), those in the Area Labels condition 

(Pre-test: M = .735, SE <.001; Post-test: M = .743, SE = .013, p = .543) and Nonsymbolic 

Area (Pre-test: M = .735, SE < .001; Post-test: M = .748, SE = .013, p = .293) had 

comparable performance over time, See Figure A5.3. Finally, there was a Time x Covariate 

interaction, F(2, 114) = 62.56, p < .001, 𝜂𝑝
2 = .354. Those who began with a high memory 
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score at pre-test showed less change at post-test (r = - .585, p < .001), compared to those 

participants who began with a lower score, See Figure A5.4. 

 

Figure A5.3. Memory performance decreased after training for those in the Color 
condition.  
 

 

Figure A5.4. Individuals with high memory performance at pre-test showed less change 
over time compared to individuals with low memory pre-test performance.   
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CHAPTER 6: IMPLICATIONS AND FUTURE DIRECTIONS 

Learning symbols is a critical part of early education. Despite the importance of 

acquiring symbols to represent quantities, very few studies have investigated how this 

process impacts our ability to perceive quantities in the absence of language. Does learning 

symbols for quantities sharpen our nonsymbolic abilities? A growing body of evidence 

supports this hypothesis by revealing that formal math abilities predict later nonsymbolic 

numerical acuity (Lyons, Bugden, Zheng, De Jesus, & Ansari, 2018; Matejko & Ansari, 

2014; Mussolin, Nys, Content, & Leybaert, 2014; Shusterman, Slusser, Halberda, Odic, 

2016; Suárez-Pellicioni & Booth, 2018). While these findings have been taken as evidence 

in favor of the refinement hypothesis, this work has been largely correlational in nature. 

As such, experimental manipulations are necessary for truly understanding the causal 

nature of this relation. To my knowledge, only one experimental investigation has been 

conducted to investigate the causal nature of this relation. Results revealed no evidence of 

increased numerical precision after a symbolic number training (Lindskog, Winman, & 

Poom, 2016). Although this finding discounts the likelihood of the refinement hypothesis, 

the work was conducted with adults who already had a substantial understanding of 

numerical symbols. These findings left open the possibility that refinement may occur in 

the early stages of symbol acquisition, or in children who are still learning symbols through 

formal education. Moreover, relations between nonsymbolic and symbolic abilities have 

been limited to the domain of number (e.g., Halberda, Mazzocco, & Feigenson, 2008; for 

meta-analyses: Chen & Li, 2014; Schneider et al., 2017). Thus, it is unknown whether 

similar relations hold in the other domains, such as time or space. In other words, does 

learning temporal units of measurement result in increased temporal acuity? Building upon 



 149 

this literature, the main goal of my dissertation was to employ experimental manipulations 

to investigate the refinement hypothesis, or the idea that acquiring symbols for quantities 

shapes our ability to perceive those quantities (e.g., Suárez-Pellicioni & Booth, 2018). I 

tested this hypothesis in children and adults in the domains of time and space.  

Substantial evidence points to a relation between nonsymbolic and symbolic 

numerical abilities (see Chen & Li, 2014; Schneider et al., 2017) and more recently to a 

comparable relation in space (Lauer & Lourenco, 2016; Lourenco & Bonny, 2017). Despite 

this, very few studies have tested whether this relation holds in the domain of time. Given 

that the refinement hypothesis is contingent upon a relation between symbolic and 

nonsymbolic abilities, it was critical to first establish this relation in the domain of time. 

Experiment 1 revealed a relation exists between children’s understanding of temporal units 

of measurement and their temporal acuity as they are learning about temporal symbols 

through formal education. Importantly, this relation held when controlling for age and 

numerical abilities, further indicating the uniqueness of the relation. This link was also 

present in younger children who had yet to receive extensive instruction on temporal 

symbols in the classroom (Experiment 2). Despite the strength of this relation in childhood, 

a similar correlation was not present in adults (Experiment 3). Thus, mirroring previous 

work in the numerical cognition literature, the correlation between nonsymbolic and 

symbolic timing abilities is only present in childhood.   

After establishing this relation, I tested the refinement hypothesis. Surprisingly, I 

found no evidence in support of the refinement hypothesis in children (Experiment 2) or 

adults (Experiments 3-4). Specifically, children showed comparable temporal acuity after 

learning about seconds (Experiment 2). Moreover, modifying adults’ symbolic mapping of 
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time did not change their temporal acuity (Experiment 3), nor did learning labels for surface 

area promote area discrimination performance (Experiment 4). The lack of refinement in 

adulthood was not particularly shocking given the correlation between adults’ symbolic 

and nonsymbolic timing abilities did not hold; however, it was surprising that children, 

who have limited symbolic understanding, also showed no improvements. One might 

suggest that our training was insufficient and did not support symbolic learning. This, 

however, does not seem to be the case. Although learning symbols did not impact 

children’s temporal acuity, children who learned temporal strategies showed more precise 

temporal estimates, suggesting that our training was effective. Relatedly, adults 

immediately adjusted their temporal estimates after receiving feedback, again suggesting 

that participants acquired some relevant knowledge through training. Thus, although our 

training improved certain abilities, namely those most closely related to the symbolic 

manipulation, this improvement did not extend to a subsequent nonsymbolic task. 

Although the refinement hypothesis was not supported, these studies set the stage for future 

investigations of this hypothesis, particularly in the domains of time and space.  

Implications 

Relation between Symbolic and Nonsymbolic Abilities  

 This dissertation provides the first evidence that a relation exists between 

nonsymbolic and symbolic temporal abilities. Although a large body of evidence has found 

this relation in the domain of number (for meta-analyses: Chen & Li, 2014; Schneider et 

al., 2017), it was unclear whether this relation may be supported by structural 

isomorphisms between numerical representations. In particular, I predicted that the relation 

between nonsymbolic and symbolic numerical abilities may be driven by the fact that both 



 151 

representations are discrete in nature. If this were the case, then one would not necessarily 

expect a similar relation in the domain of time in which discrete temporal symbols must be 

mapped onto continuous nonsymbolic representations. Despite this, Experiments 1 and 2 

revealed a strong relation between nonsymbolic and symbolic temporal abilities. These 

studies join others showing this relation holds for quantities in which nonsymbolic 

representations are continuous, such as space (Lauer & Lourenco, 2016; Lourenco & 

Bonny, 2017). Moreover, this finding suggests that structural isomorphisms are not 

underlying this relation in the domain of number, and instead indicates that unique relations 

exist between symbolic and nonsymbolic abilities.   

 Although we found a strong correlation between children’s nonsymbolic and 

symbolic temporal abilities, this link was not present in adulthood. These findings mirror 

work in the numerical cognition literature, indicating that this relation tends to be stronger 

in children than adults (Inglis, Attridge, Batchelor, & Gilmore, 2011). Why would this be 

the case? Strategy use is the most likely explanation. As we age, adults are more likely to 

employ strategies that do not necessarily rely on nonsymbolic representations of that 

quantity. For example, adults tend to use counting strategies when completing a timing task 

instead of relying on nonsymbolic representations (Fraisse, 1963). Learning these 

strategies which do not rely on nonsymbolic representations may result in a decreased 

relation between symbolic and nonsymbolic abilities later in development. Alternatively, 

adults may develop other domain-specific skills that may mediate this relation. For 

example, Lyons & Beilock (2011) found symbolic ordering to mediate the relation between 

adults’ nonsymbolic numerical acuity and math performance. Numerical ordering has also 

been shown to become a better predictor (compared to nonsymbolic acuity) of children’s 
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math abilities throughout elementary school (Lyons, Price, Vaessen, Blomert, & Ansari, 

2014). While this evidence further supports the idea that nonsymbolic abilities may be a 

stronger predictor of symbolic abilities early in development, this does not explain previous 

findings of a similar relation in adulthood (e.g., Agrillo, Piffer, & Adriano, 2013; Libertus, 

Odic, & Halberda, 2012; Guillaume, Nys, Mussolin, & Content, 2013). Additional research 

is needed to determine whether this relation exists throughout development, or 

alternatively, if this relation may only hold prior to developing more advanced strategies.  

Refinement Hypothesis 

 Despite correlational work hinting at the possibility that learning symbols for 

quantities subsequently refines nonsymbolic acuity (see Lyons et al., 2018; Matejko & 

Ansari, 2014; Mussolin et al., 2014; Shusterman et al., 2016; Suárez-Pellicioni & Booth, 

2018), the experimental manipulations we employed revealed no evidence for this 

hypothesis. Although surprising, there are many possible explanations for this finding. 

Firstly, it is possible that counter to the refinement hypothesis, learning symbols does not 

shape nonsymbolic abilities. In this instance, the cause of improving nonsymbolic abilities 

over development remains an open question (see Future Directions). Alternatively, it is 

possible that our training was not sufficient enough to impact nonsymbolic abilities. There 

is evidence to suggest that our trainings increased symbolic knowledge. For example, 

children showed more precise temporal estimates following symbolic time training, and 

adults shifted their symbolic mapping of time after feedback. These adjustments, however, 

did not extend to a subsequent nonsymbolic task. Thus, it remains unknown whether the 

trainings were sufficient to impact subsequent nonsymbolic abilities. A longer and more 

intense symbolic training may further augment symbolic knowledge and consequently 
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result in changes in nonsymbolic abilities. Alternatively, it is possible that this causal 

relation may be specific to the domain of number. While possible, it seems unlikely given 

that the only experimental test of the refinement hypothesis reported no evidence of 

improved nonsymbolic numerical acuity after a symbolic math training (Lindskog et al., 

2016). While the current dissertation serves as one of the first systematic investigations of 

the refinement hypothesis, substantially more work is needed to fully understand whether 

a causal relation between symbolic and nonsymbolic abilities exists, and whether this 

relation is comparable across different quantity domains.  

 In addition to testing the refinement hypothesis, I also intended to investigate the 

impact of symbol acquisition on cognitive mechanisms that may have supported improved 

nonsymbolic acuity. Specifically, I predicted that learning symbols may lead to enhanced 

memory encoding and/or heightened attention to quantity dimensions (see Boroditsky, 

2001). To test this, I measured adults’ attention to and memory of spatial dimensions before 

and after learning symbols to represent surface area. Results revealed no difference in 

attention towards spatial cues after symbol acquisition. However, the data hinted at the 

possibility that learning symbols may enhance memory encoding, although the effect was 

not particularly strong. It remains possible that a more substantial training, in which 

refinement occurs, may point to the mechanism(s) underlying these changes. Moreover, it 

may be fruitful to investigate the cognitive mechanism(s) underlying changes in 

nonsymbolic abilities in children who are still in the process of acquiring units of 

measurement. Finally, it is plausible that mechanism(s) other than the ones chosen in the 

present study are implicated during symbol acquisition.  

Future Directions 
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What causes improvement in nonsymbolic abilities?  

 It is well documented that nonsymbolic abilities improve over development (Droit-

Volet, Clément, & Fayol, 2008; Odic, 2018; for a review: Feigenson, 2007). However, the 

cause of improvement has been left to speculation. In this dissertation, I tested the 

possibility that acquiring symbols for quantities results in enhanced nonsymbolic abilities. 

Counter to my predictions, learning symbols did not appear to impact nonsymbolic 

abilities. What causes improvements in nonsymbolic acuity if not acquiring symbols? 

Related to the refinement hypothesis, development of general linguistic abilities may mold 

nonsymbolic abilities (see Posid & Cordes, 2015; Shusterman et al., 2016). However, this 

account does not explain increases in temporal and numerical precision in infancy (for a 

review: Feigenson, 2007), as this is a time at which language has yet to be acquired. 

General maturation has also been suggested as the mechanism underlying these changes, 

although this prediction is harder to test as general maturation is confounded with many 

other developments. Given evidence that nonsymbolic abilities continue developing into 

adulthood (Odic, 2018), general maturation remains a valid explanation. It is also possible 

that general maturation is responsible for nonsymbolic development in infancy; however, 

burgeoning language abilities and/or general experience with quantities may support 

improvements later in development.   

A slightly less interesting and less explored possibility is that improving domain 

general abilities may cause changes in nonsymbolic acuity. There is substantial work 

suggesting that working memory abilities are related to temporal acuity (e.g., Broadway & 

Engle, 2011; Odic et al., 2016; Zélanti & Droit-Volet, 2011). For example, Zélanti and 

Droit-Volet (2011) found that age related changes in sub-second timing were completely 
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explained by working memory abilities. Processing speed may also play a role in 

nonsymbolic acuity. Work in favor of this possibility demonstrates that both processing 

speed and working memory are important predictors of temporal acuity (Droit-Volet & 

Zélanti, 2013). This work, however, has been limited to correlational studies. Although 

relations exist between domain-general abilities and nonsymbolic acuity, it remains 

unknown whether changes in domain-general abilities cause changes in nonsymbolic 

abilities. Future work employing experimental manipulations will be crucial for 

determining whether domain general abilities may account for enhanced nonsymbolic 

processing throughout development. In particular, it may be beneficial to see whether 

manipulating domain-general abilities subsequently impacts nonsymbolic acuity.  

 Further Investigations of the Refinement Hypothesis 

 While this dissertation serves as one of the first experimental manipulations of the 

refinement hypothesis, the topic remains rich for future investigation. Although we tested 

children and adults’ abilities before and after learning temporal or spatial symbols, our 

symbolic training was relatively brief. In particular, children’s symbolic training lasted no 

more than 20 minutes, and adults’ training was even shorter. Throughout formal education, 

learning symbols is an ongoing activity that lasts several months, or even years. That is, 

although children are born with the ability to represent quantities nonsymbolically, 

acquiring the cardinal principle (a proxy for symbolic numerical abilities) and learning the 

meaning of temporal words (e.g., “tomorrow”, “next week”, “yesterday”) takes children 

several years to master (e.g., time: Tillman & Barner, 2015; Tillman, Marghetis, Barner, 

& Srinivasan, 2017; number: Wynn, 1992). It is possible that trainings which more closely 

mimic typical symbol instruction may be more likely to elicit changes to nonsymbolic 
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abilities. That is, we may be more likely to find support for the refinement hypothesis after 

teaching participants about symbols in a way that more closely reflects traditional learning. 

Future research employing more extensive symbol instruction may be critical for further 

testing the refinement hypothesis. Specifically, it may be beneficial to track children’s 

nonsymbolic acuity over the course of several weeks of symbolic training in a more formal 

setting.  

 In addition to lengthening the training, future work may also investigate how 

acquiring different types of symbolic knowledge may relate to nonsymbolic abilities. In 

our time training, for example, we specifically taught children about seconds, as opposed 

to minutes or hours. Similarly, in the experiment with adults, we targeted timing in the 

millisecond range. I predicted that learning the duration of a second/millisecond may best 

inform symbolic timing abilities by lessening the noise in symbolic representations. That 

is, prior to training children may have estimated anything between 1-3 seconds as being 2 

seconds. After learning the specific duration of 2 seconds, however, children may have a 

more precise understanding of that duration (i.e., lasting 1.5-2.5 seconds). Moreover, 

because the temporal discrimination task took place in the milliseconds and seconds range, 

I reasoned that learning about seconds/milliseconds would be most likely to refine temporal 

acuity. These concepts (i.e., milliseconds, seconds, etc.) however, are rarely, if ever, 

formally taught in the classroom. Instead, the focus tends to be on learning the relations 

between minutes and hours and telling time on clocks (National Governors Association 

Center for Best Practices, Council of Chief State School Officers, 2010). Being able to read 

clocks, however, does not necessarily reflect symbolic representations of time, nor would 

acquiring this skill inevitably lessen the noise in symbolic representations. While it seems 
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unlikely that learning how to tell time and/or read clocks would enhance one’s temporal 

acuity, it would be interesting to determine whether typical classroom instruction improves 

nonsymbolic abilities. Testing this possibility could take many forms. For example, 

tracking children’s temporal acuity throughout 1st and 2nd grade when they are learning 

temporal units of measurement in the classroom would be one method of investigation. 

Alternatively, in collaboration with educators, researchers could design a training that 

teachers would implement in the classroom. The training would include timing concepts 

traditionally taught in the classroom, in addition to, abilities tapping directly into symbolic 

representations of time. Children’s nonsymbolic abilities would be tested before and after 

implementation in order to determine whether learning about temporal symbols in a more 

traditional learning setting might promote temporal acuity.  

Conclusions 

In conclusion, I contend that the relation between symbolic and nonsymbolic 

representations of quantity may be stronger in children who are still in the process of 

acquiring symbolic knowledge compared to adults. Moreover, although acquiring symbols 

did not impact subsequent nonsymbolic acuity, I propose many future directions to further 

test the likelihood of the refinement hypothesis. The present data also hint at the possibility 

that memory encoding, but not heightened attention may underlie changes following 

symbol acquisition. Given the current findings, several open questions remain: If not 

learning symbols, what causes improvements in nonsymbolic acuity over development? 

How much symbolic knowledge is needed before refinement occurs, if ever? Does the 

refinement hypothesis hold at specific points in development? Together these data shed 
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light on the refinement hypothesis in time and space, while also pointing to exciting areas 

for future investigation. 
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