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The format of our quantity representations is a contentious topic of study in the 

field of numerical cognition with researchers debating whether we use discrete (i.e. 

number) or continuous (e.g. area, time, volume or density) cues to make quantity 

judgements. It has been proposed (through the Sense of Magnitude Theory) that 

continuous quantities are more perceptual in nature and thus do not require the higher 

order cognitive processes needed to represent abstract number, making it unlikely that 

number is tracked in the presence of perceptual quantities. In the current dissertation, I 

examined claims made by the Sense of Magnitude theory by 1) investigating the accuracy 

with which we represent continuous quantities and the mental processes we may engage 

in when representing these quantities and by, 2) comparing the relative salience of 

discrete and continuous quantities and how this may change across development. In 

Project 1, I investigated the accuracy with which infants make element size 

discriminations and whether this ability becomes more precise with age. Project 2 

examined the precision with which adults track cumulative area and uncover the process 

by which they do so. Lastly, Project 3 explored the relative salience of number for 

preschoolers by assessing their “Spontaneous Focusing on Number.” Together, findings 

from these three projects undermine claims stating that humans at all stages of 

development are better at, and prefer to, attend to continuous quantities over discrete 
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number. Instead I propose that this dissertation suggests that humans at all stages of 

development are strongly attuned to number in their environment. This work not only 

provides insight into the way we represent quantity in our day to day lives, but it can help 

us understand where individual difference in mathematical achievement in school may 

stem from.
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INTRODUCTION 

There is no doubt that human and non-human animals can represent quantities 

(Brannon, Lutz, & Cordes, 2006; Halberda & Feigenson, 2008d; Odic, Libertus, 

Feigenson, & Halberda, 2013; Xu & Spelke, 2000). However, the format of these 

representations and how we process these quantities at different stages of development is 

a much more contentious topic of study. There are a variety of dimensions of quantities 

we can represent – discrete quantity (i.e. number) and continuous quantities (e.g. area, 

time, volume or density) – and they are often strongly correlated with one another. For 

example, 8 cookies will not only be more numerous than 4 cookies, but 8 cookies will 

also take up a larger area on the plate, and the density of cookies compared to the empty 

space of the plate will also be greater. This inherent correlation between these different 

quantity dimensions means that it is difficult to determine which quantitative dimension 

infants, children, or adults might use when making quantity judgements, and it brings into 

question whether we can track these quantities independently of one another at all. 

Although a large amount of research has investigated our ability to represent discrete 

number, much less research has investigated our ability to represent continuous 

quantities. In order to paint a full picture of how infants, children, and adults represent 

quantity, it is important that we examine our abilities to represent both discrete and 

continuous quantities, independently of the others, as well as investigate the relative 

saliency of these different quantities. Given the lack of research investigating our abilities 

to represent continuous quantities, the current research aims not only to investigate more 

generally our ability to discriminate these continuous quantities, but I also examined the 
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ways in which number can interfere with our judgements of continuous quantity, and how 

the relative saliency of discrete and continuous quantities may impact our attention to 

number in the world. 

Theoretical framework 

Piaget was one of the first researchers to examine children’s understanding of 

quantities and also one of the first to suggest that number was simply too abstract of a 

concept for young children to grasp (Piaget, 1952, 1977). Instead Piaget suggested that 

children relied upon continuous quantities (also referred to as continuous extent) as a 

proxy for number. Since then a large body of research has continued to investigate the 

development of quantity understanding and the extent to which we use continuous and 

discrete cues to make quantity judgements. Proponents of the “Sense of Magnitude” 

(SoM) theory claim, similar to Piaget, that our abilities to track number are fully reliant 

upon an ability to track continuous quantities (Gebuis & Reynvoet, 2012b; Leibovich, 

Katzin, Harel, & Henik, 2017). They make this claim because they suggest that 

continuous cues are dependent on, and derived from, perceptual cues in nature (i.e. they 

are tied to a specific sensory modality) which makes them much easier to track than 

number which is abstract (i.e. we can track this regardless of the sensory modality). They 

further postulate that the abstract nature of number means that representing number 

requires many more higher order cognitive processes than tracking continuous quantities, 

and thus it is unlikely that number is tracked in the presence of perceptual quantities. 

Others claim that number is not too abstract for us to represent, citing evidence 

that has shown that even young infants are able to discriminate number at a very early 

age (Lipton & Spelke, 2003; Xu & Spelke, 2000). Furthermore, they find that infants are 
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in fact often more accurate at discriminating number compared to continuous quantities 

such as cumulative area or element size (Cordes & Brannon, 2011; M. E. Libertus, Starr, 

& Brannon, 2014).  

Given these two contradictory frameworks, it is important that I briefly examine 

what the literature has found so far with respect to our ability to discriminate both 

discrete and continuous quantities. 

Discrete Quantity Discrimination in Humans 

Most investigations of our ability to represent number have tested infants, 

children or adults on their ability to discriminate two different quantities (e.g., two set 

sizes, two amounts of cumulative area) from one another. In particular, given the strong 

correlation between number and continuous quantities, to investigate whether we can 

discriminate number independently of other quantities, a number of sophisticated designs 

have been developed that control for continuous cues isolating number as the only 

relevant cue. For example, in the infant literature on number discrimination, habituation 

studies have been developed where infants are presented with a series of displays, where 

the number of items in the display remains constant throughout habituation but where 

continuous cues such as the size of the dots, and thus the cumulative surface area and 

contour of the items vary across habituation. Then in test, infants are shown displays with 

either a novel or familiar number of items, while controlling for continuous variables. 

Similar designs with adults have also been developed: continuous quantities are varied in 

such a way that it makes relying upon continuous quantities when performing numerical 

discriminations, a less reliable strategy.  Using these designs, research has consistently 

shown that infants (Lipton & Spelke, 2003; Xu & Spelke, 2000), children (Halberda, 
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Mazzocco, & Feigenson, 2008; Odic, Le Corre, & Halberda, 2015; Odic et al., 2013), and 

adults (Odic et al., 2013) can use number alone to make discriminations between two sets 

of items, suggesting that number can be tracked independently of continuous quantities.  

Based on this literature, it has been determined that humans’ ability to 

discriminate number is ratio-dependent and improves with age. Although 6-month-old 

infants need as much as a 1:2 ratio of change between two sets of items to notice a 

change in number (M. E. Libertus & Brannon, 2010; Lipton & Spelke, 2003, 2004; Xu & 

Spelke, 2000; Xu, Spelke, & Goddard, 2005), by 9-10 months infants are able to 

discriminate a 2:3 ratio (M. E. Libertus & Brannon, 2010; Lipton & Spelke, 2003, 2004; 

Xu & Arriaga, 2007) and by the time children reach the age of 3 they can accurately 

discriminate a 3:4 ratio (Halberda & Feigenson, 2008b), with adults discriminating even a 

9:10 ratio (Odic et al., 2013). 

Continuous Quantity Discrimination in Humans  

The literature on number discrimination is quite extensive and suggests that 

humans can represent number independent of other continuous quantities. However, 

relatively less work has examined human’s ability to discriminate continuous quantities, 

and the findings from this literature are much more ambiguous. Taking a closer look at 

the infant literature, a few studies have used paradigms similar to that used with number, 

examining whether infants can discriminate using a single continuous dimension, while 

controlling for all other quantity dimensions. Studies on element size have for example 

found that 6-month olds were able to discriminate up to a 1:2 ratio, but not a 2:3 ratio in 

the size of a single Elmo face (Brannon et al., 2006). Similarly, 6-month-old infants are 

able to detect a 1:2 ratio of difference in the duration of a single visual or auditory 
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stimulus (Wynn & VanMarle, 2006). This suggests that infants can make continuous 

quantity (size or duration) discriminations at a similar level of accuracy as that of 

number, for single items.  

However, one key difference between these studies and those of number 

discrimination is that these element size studies have examined quantity discrimination in 

the context of a single item, while number discrimination studies by definition present 

stimuli in the context of sets. Therefore, taking a look at the few studies that have studied 

continuous extent discrimination, specifically when stimuli are presented in sets, the 

evidence is not as clear. Studies examining element size discrimination in the context of 

sets have found that 7-month olds need as much as a 4-fold change to detect a difference 

(Cordes & Brannon, 2011). Furthermore, studies examining other continuous dimensions 

have found that 7-month olds successfully detect a 4-fold but not a 3-fold change in 

cumulative area (Cordes & Brannon, 2008), and successfully detected a 3-fold but not a 

2-fold change in contour (Starr & Brannon, 2015). Thus at least with infants, the research 

suggests that, within the context of sets of items, infants are more precise at making 

numerical discriminations compared to continuous extent discriminations. Only when 

tracking continuous extent across a single item do infant’s abilities match their number 

discrimination abilities. In Project 1, I extended these findings by investigating element 

size discriminations in the context of sets at two different ages to determine whether, like 

number, element area discriminations become more precise with age.  

The evidence on continuous extent representations in children and adults is even 

sparser. Two studies did directly compare children’s and adult’s number and element size 

discriminations by presenting them either with two arrays of dots (number task) or a 
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single irregular shape that had two different color sections (area task) and asked 

participants to judge which color had more (Leibovich & Henik, 2014; Odic et al., 2013). 

Although children and adults were more accurate and had quicker reaction times for the 

area task compared to the number task – similar to many studies in the infant literature – 

they only assessed area discrimination in the context of a single item, making a 

comparison to numerical discriminations involving multiple items inappropriate. 

Although a few studies have examined the salience of CA in the context of multiple items 

(Barth, 2008; Hurewitz, Gelman, & Schnitzer, 2006), very few studies have 

systematically compared these tracking abilities to that of number.  

The Relative Salience of Discrete and Continuous Quantities  

One way we can begin to answer which dimension of quantity we represent most 

readily is to examine the relative saliency of these different dimensions and the ways in 

which these different quantities might interfere with one another. A line of work with 

adults has investigated this question by presenting adults with interference tasks where 

adults are presented with arrays of dots where discrete and continuous quantity are either 

congruent with one another (e.g. the larger number array has a larger cumulative area) or 

incongruent with one another (e.g. the larger number array has a smaller cumulative 

area). This allows researchers to test whether number interferes with cumulative area 

judgements or vice versa, whether cumulative area judgements interfere with number 

judgements. All previous studies using this type of paradigm have examined the ways in 

which continuous cues may interfere with number judgements, finding that adults 

perform worse on incongruent trials, suggesting that continuous dimensions interfere 

with discrete quantity judgements (Barth, 2008; DeWind & Brannon, 2012; Gebuis & 
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Reynvoet, 2012a; Hurewitz, Gelman, & Schnitzer, 2006). The few studies that have 

examined how number interferes with continuous extent judgements (Barth, 2008; 

Hurewitz, Gelman, & Schnitzer, 2006) have not systematically tested how different 

factors such as set size (the number of items in each array) or ratio (i.e. the ratio between 

the number of items in each array) affected performance. This is what I investigated in 

Project 2 by presenting adults with a cumulative area discrimination task in which I 

manipulated the set size and ratio of the arrays of items. By manipulating factors such as 

set size, I was also able to get a better sense of the mental processes by which adults track 

these different types of quantities (e.g. whether adults perform any type of mental 

computations to represent continuous quantities like cumulative area) and how the 

presence of one type of quantity may affect their representation of other quantities.  

Another way that we can begin to understand the relationship between our 

abilities to represent number and continuous extent is to investigate how salient these 

different dimensions are to humans. One line of work that has investigated the relative 

salience of quantitative information has examined the construct of “Spontaneous 

Focusing on Number” (SFON) which is usually defined as one’s propensity to focus on 

number without being prompted to do so. While most tasks examining SFON measure 

children’s tendency to use number words to describe a picture or the frequency with 

which children imitate the number of repetitive actions performed by an experimenter, 

more recent SFON tasks have specifically examined SFON when pitted against another 

quantitative dimension. In these match-to-sample type tasks, children can complete the 

task by either choosing to match based on number or another continuous dimension such 

as cumulative area, and greater matching using the dimension of number is considered as 
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evidence of children being more attuned to number in their environment, at least when 

pitted against continuous quantities. What is still unclear from this line of research is to 

what extent children’s SFON as measured in different types of tasks related to children’s 

actual knowledge about number. This is what I explored in Project 3. 

All in all, before we can make any claims about the ways in which humans 

represent quantity, we need not only investigate the accuracy with which we represent 

both discrete and continuous quantities, but it is also important that we investigate the 

relative salience of these different types of quantities, and how this may change across 

development. This will give us greater insight into how we inherently represent quantities 

and how we navigate our quantitative world.   

The Proposed Dissertation 

Although many studies have investigated infant’s, children’s, and adult’s abilities 

to represent discrete number, relatively little work has explored our abilities to represent 

continuous quantities such as element area or cumulative area, specifically in the context 

of sets. One prominent theory in the literature, the “Sense of Magnitude” theory has 

claimed that our abilities to track number (an abstract quantity) are fully reliant upon an 

ability to track continuous quantities, which are more perceptual in nature and thus do not 

require the higher order cognitive processes needed to represent abstract number (Gebuis 

& Reynvoet, 2012b; Leibovich et al., 2017). However, before we can make any claims 

about the ways we represent these different quantities, it is important that we have a 

thorough sense of infant’s, children’s, and adult’s acuity in representing these different 

quantities, specifically continuous quantities which have been examined relatively little 

in the literature. Additionally, it is important that we examine the relative saliency of 
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these different dimensions and the ways in which these different quantities might 

interfere with one another. 

Through the following three projects, I investigated human abilities to represent 

both discrete and continuous quantity, the mental processes they may have engaged in to 

represent continuous quantities, and the relative saliency of these quantities, across 

development. In doing this, I have also brought into question whether we truly rely on 

perceptual, continuous cues when tracking quantity, as the “Sense of Magnitude” theory 

has suggested (Gebuis & Reynvoet, 2012b; Leibovich et al., 2017). Below is a short 

outline of the three projects. 

Project 1: Tracking the size of one item among many: element area discrimination 

in infancy 

This project investigated the accuracy with which infants make element size 

discriminations. Only a few studies have examined continuous extent discriminations in 

infancy, and they suggest that while infants may be capable of discriminating relatively 

small (i.e., 2-fold ratio; (Brannon et al., 2006)) changes in element size when presented 

with a single item, when presented with an array of items, they are much less precise, 

requiring as much as a 4-fold change in order to detect change (Cordes & Brannon, 

2011). I replicated and extended these previous findings by exploring whether element 

area discriminations, like that of number, become more precise with age. In particular, I 

tested whether 7- and 12-month old infants succeed in detecting a 3-fold change in 

element area of items within an array and determined whether continuous extent 

discriminations become more precise with age. I found that 7-month olds failed and 12-

month old marginally succeeded at discriminating a 3-fold change in the element area of 
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items within an array suggesting that infants are not only starting off with a lower level of 

element area acuity at around 6-7 months of age compared to number (i.e., infants can 

discriminate a 2-fold change in number at this age; Xu & Spelke, 2000), but they are also 

improving at a much slower rate in tracking element area than for number. These findings 

further undermine claims that infants are better at discriminating continuous quantities 

compared to number. 

Project 2: The Impact of Set Size on Cumulative Area Judgements 

Although we know a lot about the precision with which humans discriminate 

number, less is known about how precisely we are capable of tracking cumulative area, 

and how numerical information may or may not interfere with this ability. The aim of this 

project was to determine the precision with which adults track cumulative area and to 

uncover the process by which they do so. I presented adults with arrays of dots (of 

differing set sizes) and asked them to judge the relative cumulative area of the displays. 

Two experiments were conducted for this project, with Experiment 1 controlling for item 

density (i.e. the number of items in the display per unit of the background) and 

Experiment 2 controlling for area density (i.e. the cumulative area of the items per unit of 

the background). This design allowed me to investigate the following research questions: 

(1) Does numerical congruency matter for cumulative area judgements?; (2) How does 

set size impact cumulative area representations?; and finally (3) By what process do 

adults represent cumulative area when presented with an array of items? Similar to the 

number discrimination literature, I found cumulative area judgements to be ratio-

dependent. More interestingly, however, I found that participants not only performed 

worse on trials where number was incongruent with cumulative area, but that adults 
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performed worse as set size increased. These findings suggest that number interferes with 

continuous quantity judgements, suggesting that it is at least as salient as continuous 

variables, undermining claims in the literature suggesting that continuous properties are 

easier to represent, and more salient to adults. 

Project 3: Relative Salience of Number: Preschooler’s Cardinal Knowledge Relates 

to Spontaneous Focusing On Number for Small, but not Large, Sets 

The final project of this dissertation examined the relative salience of number for 

preschoolers across different contexts, assessing their “Spontaneous Focusing on 

Number” (SFON). The main aim of this project was to examine the relation between 

children’s number knowledge abilities and SFON, to assess how dependent SFON may 

be upon a child’s ability to verbally encode the numbers presented. To do this, I 

manipulated multiple variables. First of all, given that prior studies have investigated 

SFON in the context of small sets exclusively, with no work exploring SFON in the 

context of large sets, my primary goal was to determine whether children’s SFON for 

small and large sets similarly relate to their knowledge of number. Second of all, given 

that many different tasks have been used to assess SFON that have distinct task demands 

(verbal vs. behavioral) and stimuli (different types and quantities of other features 

available to the child to focus on outside of number), I examined to what extent these 

tasks are measuring the same underlying construct. To do this, I presented preschoolers 

with four distinct SFON tasks assessing their spontaneous attention to number for small 

(Experiment 1) and large (Experiment 2) sets of numbers. Results not only revealed no 

relation in SFON performance across the four distinct SFON tasks, but I found 

preschooler’s SFON for small sets (1-4 items) to be significantly stronger than that for 
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large sets (10-40 items). Furthermore, analyses revealed that number knowledge was only 

associated with SFON for small sets, but not large. Together, these findings suggest that 

SFON may not be a set-size independent construct, and instead may hinge upon a child’s 

number knowledge, at least in the preschool years. 
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CHAPTER 1: TRACKING THE SIZE OF ONE ITEM AMONG MANY: 

ELEMENT AREA DISCRIMINATION IN INFANCY 

Abstract 

What quantitative properties infants represent when encountering a set of objects 

has been a topic for debate in the field of numerical cognition, with some suggesting that 

it should be easier to represent continuous quantities (that are perceptual in nature) than 

discrete number (which is not tied to any particular percept). Although we know that 

around 6-7 months of age, infant’s representations of number are more precise than that 

of continuous quantities (they can discriminate a 1:2 ratio of change in number, but fail at 

a 1:3 ratio of change in element area), it is unclear whether continuous quantity tracking 

becomes more precise over the course of development similar to numerical 

discriminations. In particular, do continuous tracking abilities “catch up” to number 

discrimination at some point in infancy? Thus, in the current study, we examined 7- and 

12-month-olds’ element area discriminations, to determine whether like number their 

element area discrimination precision increases with development. We found that 7-

month-olds failed to discriminate a 1:3 ratio of change in element area with only marginal 

success at this same ratio at 12 months of age. Therefore, even by 12 months, infant 

abilities to track element area are weak, and not anywhere near their numerical tracking 

capacities. Findings are discussed in light of claims made the Sense of Magnitude theory 

about how humans represent quantity. 
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Tracking the size of one items among many: element area discrimination in infancy 

What quantitative properties do infants represent when encountering a set of 

objects, such as rubber ducks in their bath? One possibility is that they track number, 

monitoring how many individual ducks are in the bathtub. Additionally, they could track 

the cumulative surface area, estimating how much total yellow they see in the water. Or, 

they could pay attention to the size of each individual duck. Which of these quantitative 

properties is most salient to infants is a question that has long been debated in the 

literature (Piaget, 1952, 1977).  

Historically, it has been suggested that number may be too abstract of a 

quantitative dimension for infants to track. Unlike continuous quantities which are 

“perceptual” in nature (i.e., dependent upon and tied to the percept), number can be 

tracked across multiple sensory modalities and is thought to be represented independent 

of perceptual qualities of the display (i.e. 3 ducks, 3 sounds, and 3 ideas are all instances 

of the number 3 even though each is associated with very distinct percepts). Proponents 

of the Sense of Magnitude (SoM) Theory have suggested that rather than tracking 

number (which presumably requires much higher order cognitive processes), infants are 

thought to rely upon perceptual, continuous quantities such as surface area or perimeter 

of visual items to track quantity (Henik, Leibovich, Naparstek, Diesendruck, & 

Rubinsten, 2011; Mix, Levine, & Huttenlocher, 1997).  

However, we now know this isn’t the case. A myriad of studies have examined 

infant number discrimination abilities, finding that preverbal infants can track number 

even as newborns (Coubart, Izard, Spelke, Marie, & Streri, 2014; Izard, Sann, Spelke, & 

Streri, 2009), and that they do so even when all other continuous quantitative cues are 
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controlled (Xu & Spelke, 2000; Xu et al., 2005). On the other hand, although a 

substantial amount of research has examined infant numerical abilities, much less is 

known about the developmental trajectory of infant abilities to track continuous 

quantities. The few studies that have examined this question have found that around 6-7 

months of age, infants are relatively poor discriminators of cumulative area (CA) and 

element area (EA) compared to their numerical discrimination abilities (Brannon, Abbott, 

& Lutz, 2004; Cordes & Brannon, 2008, 2011; M. E. Libertus et al., 2014). However, this 

previous work has focused on continuous quantity tracking only in 6-7 month olds. 

Although we know that numerical discrimination abilities become more precise over the 

course of development, it is unknown whether continuous quantity tracking increases in 

parallel, and in particular, whether at some point in infancy continuous tracking abilities 

may “catch up” to number discrimination in infancy. Thus, in the current study, we 

examined 7-month olds’ (to replicate prior work) and 12-month-olds’ (to extend this 

work to an older age range) EA discriminations, to determine whether like number their 

EA discrimination precision increases with development.  

One recurring problem in the literature examining infant quantitative 

discrimination abilities is that because discrete (i.e. number) and continuous (e.g. 

cumulative area, density, element area) quantitative properties are highly correlated with 

one another, it is difficult to determine which quantitative dimension infants attend to. 

This has led researchers to design paradigms that isolate one quantitative dimension (e.g. 

number) while controlling for the others (e.g. CA, EA or density). For example, to assess 

infant number discrimination abilities independent of continuous variables, habituation 

studies have presented infants with displays where the number of items remains identical 
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across habituation trials but the element area (and thus cumulative area and contour 

length) of the items varies across displays, making these continuous variables unreliable 

cues for tracking (e.g., Xu & Spelke, 2000). The use of this type of paradigm has led to 

the discovery that while 6-month-old infants are able to make numerical discriminations 

of a 1:2 ratio (e.g. 8 vs. 16 items), they fail at a 2:3 ratio (e.g. 8 vs. 12 items; Lipton & 

Spelke, 2004; Wynn & VanMarle, 2006; Xu & Spelke, 2000; Xu, Spelke, & Goddard, 

2005), suggesting that the ease with which infants compare two sets of items depends on 

the ratio between them. Furthermore, by 9 months of age, infants succeed at detecting a 

2:3 ratio change in number (Wood & Spelke, 2005; Xu & Arriaga, 2007), and by 3 or 4 

years, children successfully discriminate a 3:4 ratio (Odic et al., 2013), indicating that 

with age and experience, children are able to discriminate smaller ratios of change in 

number.  

Despite the evidence showing that infants can use number alone to track 

quantities, some theorists continue to believe that in actuality, infants, children and adults 

rely on perceptual continuous quantities such as EA or CA when estimating or tracking 

number (Gebuis & Reynvoet, 2012a, 2012b; Leibovich et al., 2017; Mix, Huttenlocher, & 

Levine, 2002).These claims come from research revealing that numerical estimates (in 

children and adults) are impacted by changes in the continuous perceptual qualities of a 

display, such that e.g., an array of 10 items may be judged to have more items if the 

individual items within the array are smaller in size (Ginsburg & Nicholls, 1988; Tokita 

& Ishiguchi, 2010, 2013). Although it is undisputed that continuous quantities may bias 

numerical estimates, it is debated whether these biases reflect an inherent reliance upon 

continuous cues (instead of number; Leibovich et al., 2017) or instead an inability to 
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inhibit attention to irrelevant quantitative information when tracking number (Cantrell, 

Boyer, Cordes, & Smith, 2015; Cantrell & Smith, 2013). This is where the infant work 

becomes relevant. 

If it was the case that numerical abilities were dependent upon tracking of 

continuous quantities, we would expect infant abilities to discriminate area (and other 

continuous quantities) to be comparable to, or even more precise than, that of number. 

That is, given that infants can discriminate a 1:2 ratio of change in number at 6 months, 

we would expect this same age group to also be able to discriminate 1:2 ratio of change 

in area. Note, however, given claims that infants rely upon continuous quantities when 

tracking number – in the context of sets of objects – it is important to assess infant 

abilities to track continuous quantities using comparable stimuli – that is, in the context 

of sets of objects. Only a handful of studies have examined the acuity of infant 

discriminations of continuous properties in the context of sets, and the ones that have 

suggest that infants are relatively poor discriminators of continuous extent in numerical 

contexts. For example, when CA is the sole relevant cue for discrimination (i.e., number 

and other continuous cues are controlled for), 6-month olds have been found to require as 

much as a 4-fold change in CA to detect a change (Brannon et al., 2004; Cordes & 

Brannon, 2008; M. E. Libertus et al., 2014). This low precision is remarkable given that 

infants of this age are able to track a 2-fold change in number. Thus, 6-month old infants 

are able to track number with significantly greater precision than changes in CA, 

contradicting claims of a Sense of Magnitude Theory (Leibovich et al., 2017). 

However, it may be that CA discriminations are particularly difficult because 

representing cumulative area requires tracking surface area across multiple sets of 
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objects, a process which could potentially require the engagement of a computation 

process (e.g. summing across all the items in the array to get a total estimate). If that is 

the case, one would imagine that tracking the size of an individual object within the 

context of an array of objects should be a significantly simpler process since it should not 

involve any computational processing – simply the representation of area of a single item. 

While it is true that research has revealed that 6-7-month-old infants can discriminate the 

area of a single item (presented in isolation) with comparable precision to that of their 

number tracking abilities (i.e., they can detect a 1:2 ratio change in EA, but not a 2:3 ratio 

– identical patterns as that found with number in this age group; Brannon, Lutz, & 

Cordes, 2006; see Feigenson, 2005 for a review) – research involving sets of objects have 

provided less support for SoM. Only one study to date has done this, and unlike the 

findings with a single element, Cordes and Brannon (2011) found that 7-month-olds 

failed to discriminate 1:3 ratio of EA when presented in the context of an array of items. 

In fact, infants needed as much as a 1:4 ratio of change to detect a difference. This 

finding is particularly surprising given that (in theory) the task demands should be 

identical whether infants are asked to track the area of a single element when it is 

presented singly, or in the context of an array of items; to succeed infants need only pay 

attention to the size of one item in the set. In practice, however, it seems that EA 

discriminations prove significantly more challenging for infants in the context of a set of 

items.  

Together, the few studies that have examined continuous extent discriminations in 

infancy suggest that they are remarkably poor at using area alone to track quantity. 

Notably, however, since these studies have only tested infants around 6-7 months of age, 
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it is unclear whether infants show a similar developmental trajectory in their area 

discriminations compared to number. If, as proponents of the Sense of Magnitude Theory 

suggest, continuous quantities are easier to discriminate than number, we would not only 

expect infants to discriminate EA with similar (or better) precision than number, but we 

would expect a parallel increase in acuity with age, similar to what we see in number. In 

terms of number, we know that infants can discriminate a 1:2 ratio of change at 6 months 

and a 2:3 ratio at 9 months. In terms of element area, previous studies suggest that they 

fail to discriminate a 1:3 ratio at 7 months, yet it is still unclear whether they improve in 

their area tracking abilities over the infancy period, and whether their area tracking 

abilities may eventually “catch up” to that of their numerical tracking abilities. In the 

current study, we examined the developmental trajectory of infant EA discriminations to 

determine whether infants improve in their EA discriminations with age. To do this, we 

tested 7- and 12-month-old infants on an EA discrimination task where both age groups 

were presented with a 1:3 ratio of change in area – a ratio of change 7 month olds have 

previously been shown to fail to detect. Replicating prior findings, we expected 7-month-

olds to again fail to notice a 1:3 ratio of change (Cordes & Brannon, 2011); however, if 

infant area discriminations – like that of number – improve over the course of 

development and even potentially catch up to their numerical tracking abilities – we 

predicted that 12 month olds should succeed in detecting a 1:3 ratio of change. 

Methods 

Participants 

Twenty 7-month olds (M = 6m29d, Range = 6m16d – 7m13d) and twenty 12-

month olds (M = 12m4d, Range = 11m17d – 12m24d) participated in this study. An 
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additional ten 7-month olds were excluded due to: parental or sibling interference (N=2), 

technical problems (N=2) or not finishing at least 4 out of 6 test trials (N=6). 

Furthermore, an additional eight 12-month olds were excluded for parental or sibling 

interference (N=2) or not finishing at least 4 out of 6 test trials (N=6). 

Apparatus 

Stimuli were presented on one 19’’ inch computer monitor mounted on a black 

wall in a dimly lit room. Infants sat in a highchair or on their parent’s lap facing the 

monitor, approximately 20” from the screen, with the video camera recording the infant’s 

looking towards the monitor. For the purposes of online coding, a recording of the 

infant’s face was presented on a large TV monitor in a separate experimental room. 

Using a gamepad, the online coder recorded the infant’s eye gaze throughout the duration 

of the study. For the purposes of offline coding, the recording of the infant’s face as well 

as a recording of the stimuli the infant saw was multiplexed and recorded using digital 

recording software. 

Design 

All infants were habituated to homogeneous sets of dots that were identical in EA. 

Across trials, the EA of the dots was kept constant, but the number of dots in each display 

varied (and thus CA of the arrays varied from trial-to-trial too). Following habituation, 

infants were presented with six test trials that alternated between two types: 1) novel EA 

trials, where the EA of the dots involved a 3-fold increase (or decrease, dependent upon 

condition) compared to habituation or, 2) familiar EA trials, where the EA of the dots 

was identical to those in habituation. The number of items in the two arrays differed from 

the average number of items in habituation by an equal proportion – making number an 
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irrelevant cue for discrimination. Moreover, the CA of the two test arrays were equated, 

making CA an irrelevant cue as well. Whether participants’ first test trial was novel or 

familiar was counterbalanced across participants. Additionally, as in Cordes & Brannon, 

2011, for the novel test trials, half of participants were presented with trials where the 

novel arrays involved a 3-fold decrease in element area (Test Condition A), while the 

other half of participants were presented with novel arrays that involved a 3-fold increase 

in element area (Test Condition B). 

Procedure 

Infants were first presented with a short attractor video to orient them to the 

computer monitor. Once they looked at the attractor video for at least 2 consecutive 

seconds, they began the habituation portion of the experiment. During habituation, each 

display was presented until either 1) the infants had looked a minimum of .5 seconds to 

the display and then looked away for 2 consecutive seconds or 2) the infants had looked 

to the display for a maximum of 60 seconds. Infants moved to test once they met the 

habituation criteria, such that looking during the last three trials had declined 50% 

compared to the first three habituation trials in which the infant had looked for a total of 

at least 12 seconds (as per Cordes & Brannon, 2009, 2011; Xu & Spelke, 2000). Infants 

were presented with a minimum of 6 habituation trials and a maximum of 16 trials. If 

infants had still not met the habituation criteria after the maximum 16 habituation trials, 

they moved onto test anyway. There were a total of 6 different habituation stimuli that 

were presented in blocks such that each of the 6 stimuli were presented once before the 

set repeated a second time. The order of the trials within each block was randomized.  
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In test, infants were shown 6 test trials, alternating between novel and familiar test 

trials. Identical to habituation, the stimuli remained on the monitor until the infant looked 

to the display for a minimum of .5 seconds and then looked away for 2 consecutive 

seconds or if the infant looked to the display for a total of 60 seconds.  

Stimuli 

All dot arrays were green dots on a white background, created with Adobe 

Illustrator CS5 Software (See Figure 1.1 for stimuli). In habituation, each dot had an 

element area of 3cm2, with the number of dots used for each display spaced 

logarithmically between 6-30 dots, averaging out to 15.67 dots per display and thus with 

an average CA of 47cm2. In test, the number of dots in the display (8 or 24 dots) was 

approximately equidistant from the number of dots in habituation. Thus, for participants 

in Test Condition A (where the novel test display involved a 3-fold decrease in EA), the 

familiar test trials contained 8 dots of 3cm2 and the novel displays contain 24 dots of 

1cm2, resulting in a CA of both test displays being 24cm2. For participants in Test 

Condition B (where the novel test display involved a 3-fold increase in EA), the familiar 

test trials contained 24 dots that were each 3cm2 and the novel displays contain 8 dots 

that were each 9cm2, resulting in a CA of 72cm2 for both types of test displays. The 

background display size was identical across habituation and test, making the density of 

the arrays in test also approximately equidistant from the average density in habituation.  
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Data Processing & Coding  

All videos were coded online by one experienced coder blind to the experimental 

condition, and offline by a second blind coder using Preferential Looking Coder (K. 

Libertus, 2008), a program that codes each frame (100ms) of the video. If reliability 

between these coders was less than 85% overall, or if any individual test trial reliability 

was less than 85%, a third coder recoded the video offline. Reliability was then calculated 

between all three coders, and the coder with the highest reliability with the other codes 

NovelFamiliar
Test	Set	A

NovelFamiliar
Test	Set	B

Habituation

Figure 1.1 Sample stimuli  
Infants were habituated to arrays that were constant in EA, but that varied in number and 
CA. In test, infants were presented with displays that were the same EA as in 
habituation (familiar displays) and displays that changed in EA by a 3-fold change. Test 
Set A decreased in EA 3-fold, Test Set B increased in EA 3-fold. 
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was used for data analysis. Using this coding system, reliability between coders was 

found to be 94.7%. 

Looking times that were longer than 3 standard deviations away from the mean 

were treated as outliers and were replaced with the next longest looking time that was 

within 3 standard deviations (as per Cordes & Brannon, 2009, 2011).  

Results 

7-month olds 

A paired samples t-test revealed that infants significantly reduced their looking 

from the first three (M = 10.62, SE = 1.39) to last three habituation trials (M = 6.57, SE = 

.89; t(19) = 2.63 , p = .02). Seven babies met the habituation criterion.  

A 2 x 2 repeated measures ANOVA testing the within-subjects factor of Test 

Trial Type (Novel or Familiar) and the between-subjects’ factor of Test Condition 

(Decrease in Size vs Increase in Size) found no main effect of either Test Trial Type 

(F(1,18) = .08, p = .78 , ηp
2 = .004) or Test Condition (F(1,18) = .28, p < .59 , ηp

2 = .02), 

nor any interaction (F(1,18) = .44, p = .52 , ηp
2 = .02; See Figure 1.2). Only 9 out of 20 

infants looked longer to the novel test trials, which was not significantly different from 

chance (p = .75, Binomial statistic). Replicating prior research Cordes & Brannon (2011) 

our findings reveal that 7-month olds failed to detect a 3-fold change in EA in the context 

of sets.  

12-month olds 

We again ran a paired samples t-test and found a significant reduction in looking 

from the first three (M = 6.72, SE = .55) to last three habituation trials (M = 3.86, SE = 

.49; t(19) = 4.11 , p < .001). Eleven babies met the habituation criteria.  
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A 2 x 2 repeated measures ANOVA testing the within-subjects factor of Test 

Trial Type (Novel or Familiar) and the between-subjects’ factor of Test Condition 

(Decrease in Size vs Increase in Size) found a marginal main effect of Test Trial Type 

(F(1,18) = 2.95, p = .10 , ηp
2 = .14) and a significant effect of Test Condition (F(1,18) = 

190.99, p < .001 , ηp
2 = .91) such that participants had longer looking times (M = 6.38, SE 

= .54) overall in the Increasing condition (when the items in test were 3 times larger than 

those in habituation) compared to the decreasing condition (M = 4.26, SE = .54; when the 

items in test were 3 times smaller than those in habituation). There was no significant 

Test Trial Type by Test Condition interaction (F(1,18) = .47, p = .50 , ηp
2 = .03). 

Importantly, 15 out of 20 infants looked longer to the novel test trials (p = .02, 

Binomial statistic) which was significantly above chance. Furthermore, when we looked 

at the first pair of test trials, we did find that infants looked significantly longer to the first 

novel (M = 7.49, SE = 1.05) compared to the first familiar test trial (M = 5.15, SE = .68; 

t(19) = 2.07, p = .053 , d = .46) although this was not the case for the second or third pair 

of test trials (p’s > 29). This suggests that although infants as a group only revealed a 

marginal preference in looking towards the novel test trial, when examining the first test 

trials alone infants did show a stronger preference for the novel test trials. Additionally, 

individually a significant majority of infants looked longer to the novel test trials. 

Although we do not have strong evidence for 12-month olds successfully 

discriminating a 3-fold change in EA, this ability does seem to have improved marginally 

with age.  

Combined Analysis 
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Next, we conduct an omnibus ANOVA testing the within-subjects factor of Test 

Trial Type (novel or familiar) and the between-subjects factor of Age Group (7 or 12 

months). Similar to our findings with each age group separately, there was no main effect 

of Test Trial Type (F(1,18) = 1.86, p = .18 , ηp
2 = .05), nor was there a main effect of Age 

Group (F(1,18) = .28, p = .60, ηp
2 = .01). However, there was a (barely) marginally 

significant interaction between these two variables (F(1,18) = 2.72, p = .11, ηp
2 = .07).  

Discussion 

Although a myriad of studies have examined infant abilities to make numerical 

discriminations, less is known about the developmental trajectory of infant abilities to 

Figure 1.2. Mean looking times for the novel and familiar test trials for 7- and 12-month 
olds. Error bars represent standard error. 
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track continuous quantities such as cumulative or element area. This is particularly 

relevant given that proponents of the Sense of Magnitude (SoM) Theory suggest that 

infants rely on perceptual, continuous quantities to track quantities (Gebuis & Reynvoet, 

2012a; Henik et al., 2011; Leibovich et al., 2017; Mix et al., 1997) and, as such, should 

be better at discriminating continuous quantities than number. If so, we would not only 

expect infants to be able to discriminate smaller ratios of change for EA than that of 

number, but they should also demonstrate improvements in their EA discrimination 

abilities during infancy, at the very least at the same pace as that of number.  

In the current study, we provided the first test of infant EA discrimination abilities 

at two different developmental time points: 7 and 12 months. We found that at 7-months, 

infants failed to discriminate a 1:3 ratio of change in EA, replicating previous findings 

(Cordes & Brannon, 2011). At 12 months, however, the data area somewhat mixed, 

revealing marginal success in detecting a 3-fold change in EA. While the findings are not 

robust, the implications are. Importantly, it is clear that even by 12 months of age, infant 

abilities to track EA are weak, and not anywhere near their numerical tracking capacities.  

Prior research suggests that infants at this age are able to discriminate a 2:3 ratio change 

in number (or possibly even finer ratios, Lipton & Spelke, 2003), suggesting that they are 

almost 200% more precise at discriminating changes in number compared to EA. 

Furthermore, this means that infants not only start off with a lower level of area tracking 

acuity in early infancy (around 6-7 months of age), but their precision in area tracking 

improves at a much slower rate than that of number over the course of the infant period.   

All in all, these findings further undermine claims made by the SoM theory 

positing that infants rely upon perceptual quantities, such as EA, instead of number to 
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track quantities (Gebuis & Reynvoet, 2012a; Henik et al., 2011; Leibovich et al., 2017; 

Mix et al., 1997). Not only does previous research suggest that infants can make 

numerical discriminations independent of continuous cues (Lipton & Spelke, 2003; Xu & 

Spelke, 2000; Xu et al., 2005), our research (together with others: Brannon et al., 2004; 

Cordes & Brannon, 2009, 2011; Starr & Brannon, 2015) reveals that infants are 

remarkably poor trackers of continuous quantities in the context of numerical sets. As 

such, it seems highly unlikely that infants would resort to tracking continuous quantities 

over number when presented with a set of objects.  

How do we interpret the finding that infants are able to discriminate EA with a 

higher level of precision when presented with a single item (Brannon et al., 2006), 

compared to when presented with an array of items? In theory, the process by which 

children complete these tasks should be the same; to succeed infants need only pay 

attention to the size of one item, whether or not those items are presented in the context 

of an array of items or as a single item. In practice, however, EA discriminations become 

much more difficult in the context of a set of items. Why might this be the case? One 

possibility is that the presence of multiple items in an array encourages infants to pay 

attention to all items, and this spreading of attention across items takes away from the 

level of attention they pay to any single item, decreasing their precision in representing 

EA. Another possibility is that the mere presence of multiple items encourages infants to 

focus on quantitative features that pertain to the set as a whole, such as the number of 

items in the set or their CA (although this seems unlikely given previous evidence 

showing that infants are also poor discriminators of CA; Brannon et al., 2004; Cordes & 

Brannon, 2008). However, since infants are not given any reliable cues for number or CA 
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during the habituation trials, they fail to form a coherent representation of items in 

habituation which leads to failure to dishabituate to the novel display in test. That is, 

changes in number across the sets may, in fact, detract from EA discriminations in this 

context. Future work would benefit from addressing to what extent the size of the set 

(whether presented with a single item or an array of items) may affect how infants 

represent quantity.  

The current study provides further evidence in the longstanding debate as to 

which quantitative dimensions are most salient to infants: number or continuous 

quantities. Not only did we replicate previous findings showing that infants start off with 

a lower level of EA acuity at 6-7 months compared to that of number (failing at a 1:3 

ratio for EA but succeeding at a 1:2 ratio for number; Xu & Spelke, 2000), we also 

demonstrated that infants improve at a slower rate for EA discriminations compared to 

that of number. Our findings, along with others from the previous literature, continue to 

undermine claims made by SoM theory, instead providing strong support for the idea that 

infants may, in fact, rely upon number when tracking quantity.   
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CHAPTER 2: THE IMPACT OF SET SIZE ON CUMULATIVE AREA 

JUDGEMENTS 

Abstract 

The ability to track number has long been considered more difficult than tracking 

continuous quantities. Evidence for this claim comes from work revealing that continuous 

properties (specifically cumulative area) influence numerical judgements, such that adults 

perform worse on numerical tasks when cumulative area is incongruent with number. If 

true, then continuous extent tracking abilities should be relatively precise, and unimpeded 

by numerical features. However, few studies have directly examined this hypothesis by 

characterizing adult abilities to discriminate arrays on the basis of continuous quantities. 

The aim of the present study was to determine the precision with which adults track 

cumulative area and to uncover the process by which they do so. We presented adults 

with arrays of dots (of differing set sizes) and asked them to judge the relative cumulative 

area of the displays. Similar to the number discrimination literature, we found cumulative 

area judgements to be ratio-dependent. More interestingly, however, we found that 

participants not only performed worse on trials where number was incongruent with 

cumulative area, but that adults performed worse as set size increased. These findings 

suggest that number interferes with continuous quantity judgements, suggesting that it is 

at least as salient as continuous variables, undermining claims in the literature suggesting 

that continuous properties are easier to represent, and more salient to adults. 
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The Impact of Set Size on Cumulative Area Judgements 

Representing quantity is an important skill for human and non-human animals 

alike. Whether you are a human deciding just how many apples you will need to make 

your favorite apple pie, or a mosquitofish deciding where in the ocean you can find the 

highest density of zooplankton, the ability to represent approximate quantities is 

important for day-to-day life. However, which quantities we rely upon for these 

important decisions has been a topic of debate (Gebuis & Reynvoet, 2012a; Leibovich et 

al., 2017; Savelkouls & Cordes, 2017). Human and non-human animals can represent 

discrete quantity (i.e. number; Humans: e.g., Halberda & Feigenson, 2008; Non-human 

animals: e.g., Brannon & Terrace, 1998; Meck & Church, 1983) but they can also 

represent continuous quantities (also referred to as continuous extent1) such as area, 

volume, length or density (Humans: e.g., Brannon, Lutz, & Cordes, 2006; Odic, 2018; 

Non-human animals: e.g., Boysen, Berntson, & Mukobi, 2001). Furthermore, these 

discrete and continuous quantities are strongly correlated with one another: e.g., 10 

apples are not only more numerous than 5 apples, but their cumulative volume, weight, 

surface area, and density are also greater. This naturally strong correlation between 

discrete and continuous variables has led researchers to question the extent to which we 

track these quantities independently of each other. 

A majority of the research investigating humans’ quantitative abilities has focused 

on our ability to represent discrete number. While substantial research has supported the 

idea that infants, children, and adults are remarkably good at representing number 

(Halberda & Feigenson, 2008a; Odic et al., 2015; Xu & Spelke, 2000), not everyone 

																																																								
1 Note: For the purposes of this paper, “continuous quantity” will exclusively refer to 
visual quantities, not e.g., time.   
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agrees. Proponents of the “Sense of Magnitude” (SoM) theory take a neo-Piagetian 

approach to number representation, suggesting that our abilities to track number are fully 

reliant upon an ability to track continuous quantities (Gebuis & Reynvoet, 2012b; 

Leibovich et al., 2017). The premise of this argument is that continuous quantities such as 

element area (EA), cumulative area (total area of all items in an array; CA) or density 

(the ratio of the number/area of items and the size of the display) are derived from and 

dependent upon the perceptual qualities of the display, and thus are significantly easier to 

track than number. In contrast, number is considered to be an abstract quantity –it can be 

tracked using many different sensory modalities (vision, sound and even touch), and even 

compared across modalities (e.g. it is possible to compare the number of voices heard to 

the number of people seen). As such, the ability to track number has been considered to 

involve much higher order cognitive processes than tracking continuous quantities, 

making it unlikely that number is tracked in the presence of other perceptual quantities. 

As a direct test of these claims, researchers have investigated whether we can 

track number independent of continuous properties. Although substantial work reveals 

that continuous properties can bias numerical judgements (Gebuis & Reynvoet, 2012a; 

Hurewitz et al., 2006; Leibovich, Henik, & Salti, 2015), researchers have successfully 

developed paradigms that systematically control for continuous properties that typically 

correlate with number, providing strong evidence that humans are capable of tracking 

number independent of continuous perceptual variables (Halberda & Feigenson, 2008b; 

Lipton & Spelke, 2003; Odic et al., 2013; Starr, Libertus, & Brannon, 2013a; Xu & 

Spelke, 2000; Xu et al., 2005). However, less work has explored the converse; that is, 

how well can we track continuous properties independent of number? Are continuous 
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properties easier to track? Notably, as posited by the SoM theory, numerical abilities 

would only be dependent upon continuous extent tracking if and only if continuous extent 

representations are more precise and more salient than numerical ones. If our abilities to 

track continuous properties are less refined than our abilities to track number, then it is 

unlikely that we would rely upon less precise continuous representations. Although a 

myriad of studies have examined number discrimination abilities in the context of 

competing continuous extent information (Barth, 2008; DeWind & Brannon, 2012; 

Gebuis & Reynvoet, 2012a; Hurewitz, Gelman, & Schnitzer, 2006), little research has 

directly examined our abilities to discriminate arrays on the basis of continuous quantity 

in the context of competing numerical information. The aim of the present study was to 

examine adult abilities to discriminate CA across arrays with differing numerical 

information. We had two goals: (1) to determine the precision with which adults track 

CA across various set sizes and (2) to investigate if and how CA discriminations are 

influenced by numerical information. That is, we aimed to understand the process by 

which we track continuous quantities – are CA representations dependent upon number? 

This latter question is of theoretical importance because it can speak to how our 

representations of number and continuous quantities may be related. 

How well do adults discriminate CA? 

Most studies that have examined adult CA tracking abilities have used 

discrimination or numerical Stroop type tasks. In these types of tasks, on some trials 

continuous properties and number are incongruent with one another (e.g. the array with a 

greater number of items has a smaller CA) and on other trials, number and continuous 

properties are congruent (e.g. the array with the greater number of items also has a 
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greater CA). Although explicit instructions are to judge the relative numerosity of the 

displays (i.e., not to attend to cumulative area), multiple studies have found that adults 

consistently perform worse on incongruent compared to congruent trials (Barth, 2008; 

DeWind & Brannon, 2012; Gebuis & Reynvoet, 2012a; Hurewitz, Gelman, & Schnitzer, 

2006). This has been taken as evidence that even when given explicit instructions to pay 

attention to number, adults automatically process continuous properties of the set (even 

when irrelevant to the task). These findings have provided the basis for claims that 

continuous perceptual properties are more readily and precisely tracked than number.  

However, is it true that adults track CA with relatively greater precision than that 

of number? If numerical judgements were fully dependent upon continuous properties, 

then one would expect our ability to track continuous quantities to be more refined than 

that of number. That is, humans should be at least as good at discriminating arrays based 

upon continuous quantities as they are at discriminating arrays based upon number. 

However, very few studies have specifically examined adult abilities to discriminate 

continuous properties. A handful of studies have compared area and numerical tracking 

abilities in infants, children, and adults reporting similar, or even more precise, abilities 

to discriminate the area of a single item relative to their abilities to discriminate number 

(Brannon et al., 2006; Leibovich & Henik, 2014; Odic et al., 2013). Yet, critically, the 

only way to address claims (such as those made by SoM theory) that continuous extent is 

more readily tracked over number is to examine the precision of CA representations in 

the context of sets where numerical information is available. Importantly, these studies 

have found performance costs for incongruent trials such that CA judgements are less 
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accurate when number is incongruent with CA (Barth, 2008; Hurewitz et al., 2006)2 . 

That is, number may be just as salient as number in the context of sets3.  

There is some evidence to suggest that continuous quantity discriminations may 

be less precise than numerical discriminations, at least in human infants. Studies that 

have investigated 6-7-month-olds’ abilities to track the size of individual objects (element 

area, or EA) when presented in the context of an array of items, or the CA of an array of 

items have found that infants needed as much as a 1:4 ratio of change in both EA and CA 

to detect a change. This 1:4 ratio of change is notably greater than the 1:2 ratio of change 

necessary to detect changes in number (Brannon et al., 2004; Cordes & Brannon, 2008, 

2011). In sum, the infant literature suggests that infants are better at tracking number than 

continuous dimensions in the context of sets.  

However, research with infants presents some limitations that make it difficult to 

fully uncover the extent of human CA representations. First of all, infant measures of 

quantity discrimination are always implicit (i.e. one cannot give infants any instructions 

as to what they should do in a task), thus one has little control over what they are doing in 

a task. It is impossible to be explicit about task demands to the infant, confounding 

salience of a dimension with precision. That is, it is conceivable that infants are 

																																																								
2 Barth (2008) ran additional models of the data and concluded that this decreased 
performance in incongruent trials was not due to interference between the two 
dimensions of number, but instead could be explained by the fact that participants 
underestimated individual element areas resulting in more difficult discriminations. 
Importantly, we highlight that these findings are consistent with claims that area 
judgements are more difficult than numerical ones.  
3 Note Hurewitz et al. (2006) reported CA interfered with numerical judgements more so 
than number interfered with CA judgements. Importantly, however, the authors did not 
systematically match the ratio of change across the two dimensions, such that numerical 
differences across displays may have been significantly smaller (and thus less salient) 
than CA differences. As such, it is inappropriate to judge relative salience of the two 
quantities.  
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incredibly precise trackers of CA, but simply less likely to focus on this dimension in 

general. Secondly, infant’s limited attention abilities mean that researchers can only 

present infants with a few trials, which limits the types of questions researchers can 

answer. Questions regarding whether changes in number may influence CA tracking 

abilities and/or how precisely we can track small changes in CA are not addressable with 

this population. Moreover, CA tracking abilities may change over the course of 

development, likely due to changes in maturation, other domain-general abilities (i.e., 

working memory, attention), and visual acuity, making it important to investigate CA 

tracking in adult populations in addition to younger populations.  

Processes involved in CA representation 

So how do we represent CA when presented with an array of items? The previous 

literature has presented us with two mutually exclusive theoretical possibilities.  

One possibility, which we will refer to as the ‘Direct Perception’ hypothesis, is 

consistent with assumptions of the Sense of Magnitude (SoM) theory. According to the 

Direct Perception hypothesis we are able to track surface area directly from the 

perception – that is, we directly perceive exactly how much area is covered just as readily 

as we notice the color or luminance of the items. Importantly, this direct abstraction does 

not require extensive cognitive processing, such as summing surface area across 

individual items, and thus does not require individuating items in the array. As such, the 

number of items in the display – that is the number of items over which CA is tracked – 

is irrelevant to CA tracking and thus set size should have no impact on the precision of 

CA acuity. Support for this hypothesis comes from studies revealing similar infant CA 
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discrimination abilities for small sets (2-3 items) as that of large sets (10-15 items)4, 

suggesting that CA acuity is unaffected by set size (Cordes & Brannon, 2008). This 

Direct Perception Hypothesis underlies many neo-Piagetian claims (e.g. Gebuis & 

Reynvoet, 2012b; SoM: Leibovich et al., 2017; Mix, Huttenlocher, & Levine, 2002) 

positing the direct perception of continuous extent quantities, thus making them easier to 

track than abstract quantities, like number.  

On the other hand, we propose an alternative possibility, known as the 

‘Computation’ hypothesis (see also Barth, 2008). Rather than representing CA directly, 

according to the Computation hypothesis, we may track CA by representing the surface 

area of individual items within an array (likely through direct perception of the surface 

area of individual items) and then summing across these representations (e.g. adding 

representations of individual areas together). Because prior research suggests that mental 

summation is not a completely noiseless process (Cordes et al., 2007), each addition 

process contributes noise to the representation. Thus, precision in the representation of 

CA should decrease as the number of elements in the display increases. Unlike the Direct 

Perception hypothesis, under the Computation hypothesis CA acuity should be affected 

by the number of items in the display, with worse acuity as the set size increases. The 

Computation hypothesis is supported by prior research revealing infants are significantly 

better (i.e., more precise) at tracking the area of a single item, compared to tracking the 

CA of multiple items (Brannon, Abbot, & Lutz, 2004; Brannon, Lutz, & Cordes, 2006; 

																																																								
4 This study relied upon a standard habituation looking-time paradigm, revealing that 
infants were capable of discriminating a 4-fold, but not a 3-fold, change in CA, across 
exclusively small and exclusively large sets. Because infant habituation techniques do not 
lend themselves to fine-grained assessments of discrimination abilities, it is not possible 
to determine whether discrimination capabilities may have varied somewhat as a function 
of set-size between the 4-fold and 3-fold changes.  
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Cordes & Brannon, 2008). Additionally, Barth (2008) compared quantitative models of 

adult CA judgements and determined that a summation account provided the best 

explanation for the data.  

The Current Study 

Importantly, no studies have directly examined the effect of set size on 

cumulative area tracking abilities in adults. With supporting evidence for both the Direct 

Perception and Computation hypotheses, it is still unclear how we track CA and how 

these abilities may hinge upon numerical information in the display. One key distinction 

between the two hypotheses is in the role that number plays in CA discriminations. While 

the Direct Perception hypothesis assumes that number should have no effect of CA 

acuity, the Computation hypothesis predicts less CA acuity with increasing set size. In 

the current study, we presented adults with a CA discrimination task in which they 

judged which of two arrays of items had a greater CA. We manipulated 4 variables: the 

CA Ratio (the ratio between the CAs of two displays – a way of varying the relative 

difficulty of the comparison to provide a means of assessing CA acuity), Set Size (how 

many items were in each display), the Number Ratio (the ratio between the number of 

items in the two displays) and Congruency (whether the display with the larger number of 

dots had the smaller or greater CA). By manipulating these 4 variables, we explored the 

following questions:  

(1) Does numerical congruency matter for CA judgements? If (according to the 

SoM theory) CA is relatively more salient than number, then CA judgements should be 

unaffected by whether or not numerical information is consistent or inconsistent with CA 

magnitude. On the other hand, some prior work suggests that numerical information is 
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automatically processed, even in the context of a CA judgement task (Barth, 2008; 

Hurewitz et al., 2006), suggesting both quantities may be similarly salient. If so, then 

congruent numerical information should promote CA discrimination performance and/or 

incongruent numerical information should hinder CA discrimination performance. We 

aim to both explore whether numerical congruency has an impact and then, by comparing 

performance to a number neutral condition (in which both displays have an equal number 

of items), we will determine whether numerical congruency either facilitates and/or 

hinders CA judgements.  

(2) Do numerical differences across the displays impact our CA tracking 

abilities? That is, do participants perform worse on incongruent trials when the difference 

in number between the two arrays (i.e., the ratio between the number of dots in each 

array) is more salient than when it is less salient (i.e. the ratio between the two set sizes is 

closer to 1)? Conversely, might bigger numerical differences on congruent trials support 

CA judgements? To investigate this question, we presented 3 distinct Number Ratios (1, 

1.33 and 1.5) across trials to explore how numerical changes may matter for CA 

judgements.  

(3) How does set size impact CA acuity? To investigate whether larger sets 

produce less accurate CA representations (as predicted by the Computation hypothesis), 

we presented participants with arrays containing exclusively small (2-4 dots), medium (6-

9 dots), or large (9-15) sets. Furthermore, since evidence suggests infants can track the 

area of a single item with greater precision than the CA of multiple items (Brannon, Lutz, 

& Cordes, 2006; Cordes & Brannon, 2008), we also presented participants with single 

item size comparisons to assess whether a similar pattern is found later in development.  



	40	

Across two experiments, we addressed these research questions by asking adult 

participants to rapidly judge which of two simultaneously presented visual arrays had the 

larger CA. Importantly, number was irrelevant to our task demands and thus should have 

had no influence on performance. In both experiments, we manipulated the numerical and 

CA ratio, set size and numerical congruency.  

Experiment 1  

Given that few studies have examined adult CA judgements, Experiment 1 

examined the effect of Set Size on adults’ CA discrimination performance. Participants 

completed a discrimination task in which they were asked to choose which of two arrays 

of blue dots had a greater CA. 

Methods 

Participants 

Seventy-eight Boston College students participated in our study in exchange for 

cash or course credit (66 female, M = 18.89 years, Range = 18-26 years). Informed 

consent was obtained from all participants.  

Procedure 

Each participant completed the study on a computer with a 22’’ monitor. 

Participants were first presented with an instruction screen that informed them that on 

each trial, they should choose the display of dots with the “greater amount of blue, 

therefore the greater cumulative area of blue.” Each trial consisted of two side-by-side 

displays of blue dots and participants made a forced choice judgement about the 

presented pair of displays by pressing the left or right arrow key on the keyboard. They 

were first presented with a minimum of four practice trials; only once they had responded 
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correctly on three of the four practice trials did they move onto the test trials (all 

participants moved to the test trials after the first set of four practice trials). The practice 

trials were designed to be very easy for the participant, with the CA Ratio changing 3-

fold across the two displays, and the number of items (set size) varying from 2-12 dots 

(this was identical in range to the test trials). Next, participants received 190 test trials, 

with a break every 50 trials (3 breaks total). Participants were encouraged to look away 

from the computer and talk to the experimenter during the break. The order of the trials, 

as well as which display was presented on the left or right side of the screen was 

randomized for each participant. 

Across trials we manipulated the following variables: CA Ratio (1.15, 1.33, 1.45, 

1.6, or 1.9), Number Ratio (1, 1.33 or 1.5), Congruency (Congruent, Incongruent), and 

Set Size (Small (2-4), Medium (6-9) or Large (9-15) sets) to determine how these factors 

influenced participants’ CA judgements. Participants experienced a total of 180 trials 

involving arrays of multiple items: 5 CA ratios x 3 Number Ratios x 2 Congruency x 3 

Set Sizes x 2 trials. In addition, intermixed amongst the multiple item trials were 10 

single item trials: 2 trials x 5 CA ratios (See Table 2.1 for breakdown of trials). 

Importantly, however, trials involving the Number Ratio 1 were neutral trials since they 

were neither congruent nor incongruent. Lastly, for each CA Ratio, we included two trials 

that were “single” trials in which each display contained only one dot. These trials would 

allow us to compare participants’ area discriminations involving a single item compared 

to CA discriminations involving multiple items (trials with small, medium  

and large set sizes). 
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Upon completing the test trials, participants were asked two questions. The first 

question was open-ended and asked participants to briefly describe the strategies they 

used to make their decisions in the task. We included this question as a general gauge of 

the approaches people took when comparing cumulative areas. The second question was 

multiple-choice and asked participants which of the following choices best described 

what cues they used to make their decision(s). Participants chose one from a list of five 

possible answers: (1) I squished all the dots together for each image and used that as a 

cue, (2) I used the number of dots in each image as a cue, (3) I used the density of dots in 

each image as a cue, (4) I estimated the average size of the dots on each image and used 

that as a cue, (5) I tried to find the smallest/biggest dot in each image and used that as a 

Number 

Ratio 
1, 1.33 or 1.5  

Single 

Trials Set Size Small Medium Large 

Congruency Cong.  Incong. Cong.  Incong. Cong.  Incong. 

Table 2.1. Experiment 1: Breakdown of the number of stimuli per variable manipulated.  
Participants were tested on 5 CA Ratios (1.15, 1.33, 1.45, 1.6, or 1.9). Then for each CA 
Ratio, trials were broken down as illustrated above for the variables of Number Ratio, 
Set Size and Congruency. This resulted in total of 180 multiple items trials (5 CA ratios 
x 3 Number Ratios x 2 Congruency x 3 Set Sizes x 2 trials = 180 trials). Additionally, 
participants were tested on 2 single trials per CA Ratio, for a total of 10 single trials. In 
total, participants therefore were presented with 190 trials (180 multiple items trials + 10 
single trials). 
 



	43	

cue. We included these options because we predicted that these would encompass the 

most commonly used strategies5.  

Stimuli 

Stimuli were created using Adobe Illustrator (See Figure 2.1 for stimuli). For our 

CA values, we generated a list of 12 random CA values between 20-45 cm2 (this range 

was deemed reasonable for our display size, ensuring that each individual dot would not 

become so small that they would be hard to see, or so big that they would not fit within 

the stimulus background) and used these 12 values for each Number and CA Ratio. These 

random numbers were then multiplied by the appropriate CA Ratio to determine the CA 

of the comparison display. Thus, across all CA Ratios tested, the CA values ranged 

between 23-83.6 cm2. 

To ensure that participants would not be able to use the size of individual dots as a 

cue for discrimination, the dots in each array were heterogeneous in size. The individual 

dot sizes were randomly chosen to fall within 35% of the average element area (as per 

Lidz, Pietroski, Halberda, & Hunter, 2011). We also controlled for item density (which 

we here defined as the number of items per given display size) so that the two arrays 

being compared had identical densities, although across trials densities did vary from 

.009 - .03 items/cm2. Thus, the item background ranged from 226.7 cm2 to 460cm2.  

																																																								
5 Participants’ responses on these two questions was not related to their actual 
performance on the task and therefore these questions have not been further analyzed in 
our results section. 
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Data Processing 

 Our primary dependent measure involved accuracy on the task. Participants 

whose performance fell 3 standard deviations above or below the mean for their overall 

percentage correct on the task were excluded from any analyses (N=1). We also 

calculated Weber fractions for each participant using only the data from the trials with 

sets greater than 1. Weber fractions (w) are defined as the smallest change between two 

quantities that can be reliably be detected. We estimated w using a psychophysical model 

using Gaussian random variables as has been done in previous research (Halberda & 

Feigenson, 2008b; Izard, Pica, Spelke, & Dehaene, 2008; Moyer & Bayer, 1976). In 

short, we inputted each participants’ accuracy on the four hardest CA Ratios (1.15, 1.3, 

Set Size and Congruency

Small (congruent) Medium (incongruent) Large (congruent)
N

um
be

r R
at

io

1 
1.

34
1.

5

Figure 2.1. Example stimuli pairs for the 1.6 CA Ratio.  
Stimuli are broken down by Number Ratio, Set Size, and Congruency. For each stimuli 
pair, the image on the left with the darker border has the larger CA. 
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1.45 and 1.6) and manipulated a single free parameter w until we found a Weber curve 

that best fitted the data and that minimized error (Halberda & Feigenson, 2008b).  

Results & Discussion 

On average, participants performed well on our task with 85.76% accuracy 

(Range = 60.53-98.42%). The average Weber fraction across all trials with multiple items 

was w = .23, (Range = .07-1.2; SD = .16, SE = .018). We compared this Weber fraction 

to the Weber fraction previously reported by Odic et al. (2013) with adults on a number 

discrimination task (w = .13, SE = .02, SD = .057, N = 8). Since the two samples varied 

so widely in their standard deviations and the number of participants tested, we 

conducted an independent samples t-test assuming unequal variances using the Welch-

Satterthwaite procedure for unequal variances. This revealed that the weber fraction for 

our CA discrimination task was significantly higher than that reported for the numerical 

discriminations, t(16.22) = 3.35, p < .01, suggesting that CA acuity in our study was 

significantly worse than prior reports of numerical acuity (a higher weber fraction 

indicates lower acuity).  

Does numerical congruency matter for CA judgements?  

To explore our first research question, we specifically examined accuracy on 

those trials involving arrays with more than one item (excluding single item trials) in 

which the number of items differed across arrays (i.e., where numerical ratio did not 

equal one). We ran a 5 (CA Ratio: 1.15, 1.3, 1.45, 1.6, 1.9) x 2 (Number Ratio:1.33 or 

1.5) x 2 (Congruency: Congruent vs. Incongruent) repeated measures ANOVA on data 

from those trials. Not surprisingly, results revealed a main effect of CA ratio (F(4, 304) = 

192.92, p < .001, ηp
2 = .72) such that performance improved as CA ratio got larger. A 
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paired samples t-test between all 5 levels revealed that performance on all CA ratios was 

significantly different from one another (p’s < .001). Analyses also revealed a main effect 

of congruency (F(1,76) = 19.06, p < .001, ηp
2 = .54), such that participants performed 

significantly better on congruent (M = 93.55%) compared to incongruent trials (M = 

71.30%), in line with previous research (Barth, 2008; Hurewitz et al., 2006) and in 

contradiction of predictions of the SoM Theory. Results also revealed a significant CA 

ratio x Congruency interaction (See Figure 2.2), F(4,304) = 28.40, p < .001, ηp
2 = .27. 

Paired samples t-tests revealed that regardless of CA ratio, participants performed 

significantly better on the congruent compared to incongruent trials (p’s < .001); 

however, this difference became smaller as the CA ratio became easier (i.e., further from 

1). That is, not surprisingly, numerical congruency had a greater impact on more difficult 

Figure 2.2. Experiment 1: Percent Correct as a function of CA Ratio (1.15, 1.3, 1.45, 
1.6 and 1.9) and Congruency (Congruent and Incongruent).  
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CA discriminations. Lastly, analyses revealed a main effect of Number Ratio (F(1,76) = 

20.68, p < .001, ηp
2 = .21) which was qualified by a significant Number Ratio x 

Congruency interaction (F(1,76) = 16.03, p < .001, ηp
2 = .17). Although adults performed 

better on congruent compared to incongruent trials for both numerical ratios (1.33 ratio: 

t(76) = 8.26, p < .001, d = 1.40; 1.5 ratio: t(76) = 9.73, p < .001, d = 1.67), the impact of 

congruency was greater when the numerical ratio between the two arrays was greater 

(that is, number mattered more when the numerical difference was more salient; 1.33 

numerical ratio: Mdifference = 19.61%, t(76) = 4.00, p < .001, d = .24; 1.5 numerical ratio: 

Mdifference = 24.89%; t(76) = 4.00, p < .001, d = .24;  see Figure 2.3). Furthermore, 

although there was no difference in performance between the two Number Ratios for 

congruent trials (Mdifference = 0.52%; t(76) = .81, p = .41, d = .13) there was for 

Figure 2.3. Experiment 1: Percent Correct as a function of Number Ratio (1.33 and 
1.5) and Congruency (Congruent and Incongruent).  
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incongruent trials (Mdifference = 5.80%, t(76) = 4.85, p < .001, d = .32).  

Do numerical differences across the displays impact our CA tracking abilities? 

Next, we examined the impact of numerical congruency. That is, relative to 

neutral trials (trials where the number of items was the same in both displays i.e., Number 

Ratio 1) did numerical congruency promote performance, did numerical incongruency 

detrimentally impact performance, or both? We performed a repeated measures ANOVA 

comparing performance across all three types of trials (neutral, congruent, incongruent; 

collapsing across all numerical and CA ratios). The main effect of congruency was 

significant, F(2, 152) = 90.86, p < .001, η2 = .55. Paired samples t-tests revealed that 

performance on the incongruent trials (71.30%) was significantly worse than on the 
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Figure 2.4. Experiment 1: Percent Correct as a function of Number Ratio (1.33 and 
1.5) and Congruency (Congruent and Incongruent). Error bars represent standard 
error. 
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neutral trials (90.91%, t(76) = 10.93, p < .001, d = 1.36) and that performance on the 

congruent trials (93.55%) was significantly better than the neutral trials (t(76) = 2.80, p < 

.01, d = .053, See Figure 2.4). Thus, conflicting numerical information (i.e., 

incongruency) detrimentally impacted performance relative to neutral trials, but 

consistent numerical information (i.e. congruency) also facilitated performance relative to 

neutral trials. Although incongruent numerical information appeared to detrimentally 

impact performance significantly more so than congruent numerical information 

benefited performance, it should be noted that the high level of performance on congruent 

trials may have led to ceiling effects in performance, limiting the extent to which 

performance could benefit from congruent numerical information. 

How does set size impact CA acuity?  

To investigate how differing set sizes impacted CA discrimination performance, 

we ran a repeated measures ANOVA comparing performance across the four set sizes 

(single item, small set, medium set, large set). Importantly because single item trials 

necessarily were number neutral (i.e., a comparison of one item to one item cannot 

involve congruent or incongruent trials), we limited this analysis to only number neutral 

trials (those trials where number was identical in both arrays i.e., Number Ratio 1). 

Analyses revealed a significant effect of set size (F(3,228) = 8.05, p < .001, η2 = .10), 

driven by significantly better performance on the Single trials (M = 94.36) compared to 

Small (M = 91.22), Medium (M = 90.26), or Large sets (M = 89.81, p’s < .01, d’s > .95). 

Although performance tended to decrease as a function of increasing set size, the 

difference in performance across Small, Medium, and Large set sizes did not reach 

significance (p’s > .15; See Figure 2.5).  
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Because it is conceivable that the processes involved in tracking area in our single 

item trials may have been distinct from those involving more than one item (i.e., direct 

perception of area of a single item versus a potential computation process for tracking CA 

of a group of objects), we performed one additional analysis to explicitly compare 

performance as a function of set size for only those trials involving arrays of items. We 

calculated the slope relating performance to small, medium, and large set sizes (dummy 

coding small as 1, medium as 2, and large as 3), examining only performance on the 

neutral trials, with a Number Ratio 1. We found a negative slope of -.006 that did not 
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Figure 2.5. Experiment 1: Percent Correct as a function of Set Size (Single, Small, 
Medium and Large). Error bars represent standard error.  
* p< .05, ** p< .01, *** p<.001 
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differ significantly from 0, t(77)=1.38, p=.17, d = -.156. This suggests that although 

performance decreased as set size increased, this trend was not significant.  

Altogether, results from Experiment 1 suggest that CA discriminations in adults 

are ratio-dependent, hindered and possibly facilitated by numerical congruency, but less 

impacted by set size. Furthermore, we found that although adults are significantly better 

at discriminating the size of a single item compared to discriminating CA across multiple 

items, the size of the actual set (e.g. whether there were 2-3 items or 7-8 items) did not 

have an effect on CA performance, consistent with the Direct Perception Hypothesis.  

Experiment 2 

The goal of Experiment 2 was the replicate findings of Experiment 1 with some 

small changes. Firstly, in Experiment 1, we controlled for item density by holding 

constant the number of items in the display per unit background area. Although this 

controlled for density of the items within the display, it did not allow us to rule out that 

participants relied upon the relative amount of white background within the display. In 

Experiment 2, we controlled for area density by holding constant the relevant surface 

area (to be tracked) per unit background to ensure that density did not drive our pattern of 

results. Moreover, in Experiment 2, we eliminated the 1.9 CA Ratio since adults 

performed at ceiling on this ratio, thus Experiment 2 tested adults on only 4 CA Ratios: 

1.15, 1.3, 1.45 and 1.6. 

																																																								
6 Even when we excluded the easiest 1.9 ratio where participants were performing at 
ceiling, we found a negative slope of -.005 that did not differ significantly from 0, t(76) = 
.87, p = .39, d = -.10. 
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Methods 

The methods of Experiment 2 were identical to Experiment 1 except for the 

following: 

Participants 

A total of 54 undergraduate students from Boston College participated in our 

study in exchange for cash or course credit (41 female, M = 19.65 years, Range = 18-26 

years). Since the effect sizes we obtained in Experiment 1 were larger than expected, we 

reduced our sample size in this Experiment. All participants provided informed consent. 

Procedure 

Experiment 2 included the following variables and their levels: CA Ratio (1.15, 

1.33, 1.45, 1.6), Number Ratio (1, 1.33 or 1.5), Congruency (Congruent, Incongruent), 

and Set Size (Small, Medium, Large). Similar to Experiment 1, we continued to have 38 

trials per CA Ratio (this includes 2 single item trials per CA Ratio), leading to a total of 

152 unique trials. To increase the precision in our measurement, we presented 

participants with the 152 unique trials 3 times over the course of the experiment (yielding 

456 trials total). The trials were organized in blocks such that a participant was presented 

with all 152 unique trials before the trials would be repeated, with an unlimited break 

every 100 trials (5 breaks total). Otherwise, procedures were identical to Experiment 1.  

Stimuli 

The only changes made to the stimuli was that we now controlled for density by 

dividing the CA by the size of the display. The density was identical across the two 

arrays to be compared in each trial, although across trials densities did vary from .08-.15 
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(CA/background area in cm2). Thus, the area of our background ranged from 193.3 – 300 

cm2.  

Results & Discussion 

Consistent with the fact that we dropped the easiest CA ratio in this experiment, 

performance was significantly less accurate here compared to Experiment 1 (t(116) = 

2.19, p = .03, d = .40), with an average of 80.19% correct (Range = 50.00-96.05%). Since 

we suspected that this was due to the exclusion of the easiest 1.9 CA Ratio, we performed 

a second independent samples t-test this time comparing performance on Experiment 1 

and 2 excluding the easiest 1.9 CA Ratio in Experiment 1 as well (M = 83.47%, Range = 

58.55-98.02%) and the difference in performance was no longer statistically significant 

(t(116) = 1.03, p = .31, d = .19), suggesting that lower performance in this Experiment 

was due to the fact that we eliminated our easiest CA Ratio.  

The average weber fraction across participants was w = .32, (Range = .09-2.1, SD 

=.36, SE=.05), this was marginally worse than in Experiment 1, (t(127) = 1.90, p = .06, d 

= .32). We again using the Welch-Satterthwaite procedure for unequal variances to 

compare our weber fraction to that which has been previously reported by Odic et al. 

(2013) and found a significant difference in performance, t(54.96) = 3.43, p < .01, 

suggesting that CA acuity in our study was significantly worse than prior reports of 

numerical acuity. 

Does numerical congruency matter for CA judgements?  

As in Experiment 1, we examined accuracy on trials involving arrays of multiple 

items in which number was either congruent or incongruent. A 4 (CA Ratio: 1.15, 1.3, 

1.45, 1.6) x 2 (Number Ratio: 1.33 or 1.5) x 2 (Congruency: Congruent vs. Incongruent) 
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repeated measures ANOVA again revealed a main effect of CA ratio, F(3, 159) = 167.88, 

p < .001, ηp
2 = .76. Performance on all 4 CA ratios was significantly different from one 

another (p’s<.001), with performance improving as the CA Ratio increased, replicating 

our previous finding that cumulative area discriminations adhere to Weber’s Law. In 

contradiction of predictions of the SoM Theory, we found a significant main effect of 

Congruency, (F(1,53) = 60.62, p<.001, ηp
2 = .53) such that participants performed 

significantly better on congruent (M = 91.70%) compared to incongruent (M = 62.90%) 

trials. We also again found a CA ratio x Congruency interaction, F(3,159) = 24.89, p < 

.001, ηp
2 = .32. Paired samples t-tests revealed that regardless of CA ratio, participants 

performed significantly better on the congruent compared to the incongruent trials; 

Figure 2.6. Experiment 2 Percent Correct as a function of CA Ratio (1.15, 1.3, 1.45, 
1.6 and 1.9) and Congruency (Congruent and Incongruent).  
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however, again the impact of congruency lessened as the CA ratio increased (i.e., became 

easier; p’s < .001; See Figure 2.6).  

Lastly, we replicated our main effect of Number Ratio (F(1,53)=14.19, p<.001, 

ηp2	= .21) with participants performing better on the 1.33 Ratio (M = 78.49%) compared 

to the 1.5 Ratio (M = 76.12%; See Figure 2.7). However, unlike Experiment 1, we did not 

find a Number Ratio x Congruency interaction, F(1,53) = 2.33, p = .13, ηp2	= .04 

(although the pattern of results was identical across experiments). 

 

Do numerical differences across the displays impact our CA tracking abilities?  

As in Experiment 1, we examined to what extent congruency or incongruency 

between number and CA was helping or hurting performance in this task. Therefore, we 

Figure 2.7. Experiment 2: Percent Correct as a function of the Number Ratio (1.33 
and 1.5) and Congruency (Congruent and Incongruent). 
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ran a repeated measures ANOVA comparing performance on the number-neutral trials 

(trials of the Number Ratio 1) with performance of congruent trials and incongruent trials 

(again, collapsing all analyses across the 1.33 and 1.5 Number Ratio and across all CA 

ratios). Once again the ANOVA was significant, F(2, 106) = 61.29, p < .001, ηp
2 = .54. 

Paired samples t-tests revealed that performance on congruent trials (91.72%) was 

significantly better than the neutral trials (84.28%, t(53) = 4.82, p < .001, d = 1.49), 

performance on the incongruent trials (62.90%) was significantly worse than the neutral 

trials (84.28%, t(53) = 8.85, p<.001, d = 1.07). Once again, this suggests that competing 

numerical information interferes with CA judgements, and consistent numerical 

information also facilitates CA judgements (See Figure 2.8). 
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Figure 2.8. Experiment 1: Percent Correct as a function of Congruency 
(Congruent, Neutral and Congruent). Error bars represent standard error.  
�p < .10, * p< .05, ** p< .01, *** p<.001 
 



	57	

How does set size impact CA acuity? 

To examine the effect of set size on CA discriminations, we again looked at those 

trials where number was held constant within trials, but differed across trials. That is, we 

compared performance on Single trials to Small, Medium and Large trials involving the 1 

Number Ratio. A within-subjects ANOVA again revealed a significant effect of set size 

(F(3,159) = 20.55, p < .001, ηp
2 = .28), and follow-up paired samples t-tests revealed this 

was once again driven by the Single trials (M = 90.35%) where participants performed 

significantly better than Small (M = 86.84%), Medium (M = 82.94%) or Large trials (M = 

83.06%; p’s < .001). In contrast to Experiment 1, however, we found participants 

performed significantly better on Small compared to Medium and Large trials (p’s < 

.001; See Figure 2.9) 

Next, to specifically address the impact of set size on performance on trials 

involving sets, we calculated the slope for performance on small, medium, and large set 

sizes. Here we examined only performance on the neutral trials, with a Number Ratio 1, 

and found a negative slope (slope = -.019) that differed significantly from 0 (t(53) = 3.54, 

p < .001, d = -.48). This suggests that there was a steady decrease in performance as set 

size increased. 

Results from Experiment 2 replicate our findings in Experiment 1. Not only did 

we replicate previous findings revealing that CA discriminations abide by Weber’s law, 

congruency between number and CA plays an important role in discrimination 

performance. Once again, our results suggest that number is more likely to interfere with 

CA judgements than to assist them. Moreover, Set Size mattered in that adults were 

significantly better at discriminating the size of single items compared to the CA of 
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multiple items, and the size of the actual set (e.g. whether there were 2-3 items or 7-8 

items) did have some (although not a robust) effect on CA performance.  

 

Combined Analysis 

We combined data from Experiment 1 and 2 and compared the average weber 

fraction across participants across Experiments, which was w = .27, (Range = .07-2.1), to 

weber fractions previous reported by Odic et al. (2013) for adult numerical discrimination 

tasks (using the Welch-Satterthwaite procedure for unequal variances) and once again 

found a significant difference in performance, t(23.17) = 4.09, p < .001, with participants 

performing significantly worse on the CA task. 
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Figure 2.9. Experiment 2: Percent Correct as a function of Set Size (Single, Small, 
Medium and Large). Error bars represent standard error. 
* p< .05, ** p< .01, *** p<.001 
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Given that our results regarding the effect of set size on performance were 

inconclusive (we found a significant effect of set size in Experiment 2 but not 1), we 

combined our data from Experiments 1 and 2 to run another slope analysis (excluding 

data from the 1.9 ratio in Experiment 1), again looking only at the neutral trials with 

Number Ratio 1. We found a negative slope of -.011, which was significantly different 

from 0, t(130) = 2.59, p = .011, d = -.21 suggesting that overall, participants did show 

increasingly worse performance as set size increased.  

General Discussion 

The aim of this study was to investigate if and how CA discriminations are 

influenced by numerical information in adults. Although many previous studies have 

investigated adult abilities to discriminate discrete quantity (i.e. number discrimination; 

Halberda & Feigenson, 2008c; Odic et al., 2013), very few studies have examined adults’ 

performance on discrimination tasks that involve continuous properties, such as CA. This 

is a particularly interesting question given the claims made by proponents of the SoM that 

continuous quantities should be more easily represented than number because unlike 

number which is abstract, continuous quantities are perceptual in nature and are not tied 

to any specific sensory modality (Gebuis & Reynvoet, 2012b; Leibovich et al., 2017). As 

a direct test of these claims, many studies have investigated whether we can track number 

independent of continuous properties, finding that even human infants can do so 

(Halberda & Feigenson, 2008b; Lipton & Spelke, 2003; Odic et al., 2013; Starr et al., 

2013a; Xu & Spelke, 2000; Xu et al., 2005). However, less work has explored the 

converse; that is, how well can we track continuous properties independent of number?  
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Our first aim was to examine whether congruency between number and area 

played a role in adults’ discrimination performance. If CA is significantly more salient 

and easy to represent than number, then CA acuity should be more precise than that of 

number. This did not appear to be the case. In addition to replicating previous findings 

suggesting that CA discriminations were ratio-dependent (Halberda & Feigenson, 2008a; 

Odic et al., 2013), we also found that the average weber fraction associated with CA 

discriminations was not significantly lower than those previously reported for number 

discrimination (Odic et al., 2013), contradicting any claims that adults are better at 

discriminating continuous quantities compared to number (Leibovich & Henik, 2014). 

Moreover, if CA is more salient and easy to represent than number, then numerical 

information should be less likely to interfere with CA representations than vice versa. 

Again, this did not appear to be the case. Across two experiments, we found that 

participants overwhelmingly performed better on congruent trials (e.g. when the arrays 

with the larger number of dots also have a greater CA) compared to incongruent trials 

(e.g. when the larger number array has a smaller CA), replicating previous findings 

(Barth, 2008; DeWind & Brannon, 2012; Gebuis & Reynvoet, 2012a; Hurewitz, Gelman, 

& Schnitzer, 2006). Not surprisingly, numerical information had a greater impact on 

adult performance for the most difficult CA judgements. That is, we found that numerical 

congruency had a larger effect for harder CA discriminations and for trials where the 

ratio in number between the two arrays was larger.  

Moreover, our study expanded upon previous research by exploring whether 

numerical congruency facilitated CA judgements, whether numerical incongruency 

hindered CA judgements, or both, specifically when compared to neutral trials where the 
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number of items in both arrays is identical (i.e. trials where the ratio of number was 1). 

We found both to be the case: incongruency between Number and CA significantly hurt 

performance and congruency between these two variables boosted performance, 

suggesting that adults can and will use all available quantity information in making 

quantitative judgements, whether or not this information is helpful or hurtful.  

The final, and most important goal of this study was to understand the process by 

which adults represent CA when presented with an array of items. In particular, we 

compared two possible hypotheses. On the one hand, the ‘Direct Perception’ hypothesis 

assumed that we extract how much surface area we see in the display without any 

reliance upon individuating the items in the array, which is consistent with SoM theory 

(Gebuis & Reynvoet, 2012b; SoM: Leibovich et al., 2017; Mix, Huttenlocher, & Levine, 

2002). On the other hand, the ‘Computation’ hypothesis proposed that adults track the 

sizes of each individual item within the array and perform a summation process to arrive 

at an estimate of the CA of the array (as proposed by Barth, 2008). To distinguish 

between these two accounts, we investigated how set size affected performance on this 

task. Assuming that this summation process contributes error to the representation 

(Cordes et al., 2007), the ‘Computation’ hypothesis would predict a decrease in 

performance as the number of items in the array increased since each additional item adds 

to the error in the summation or computation process. The ‘Direct Perception’ hypothesis 

would not predict a relationship between CA acuity and set size. Indeed, we found that 

adults performed significantly more accurately on trials where they were presented with 

single items (trials that required them to make element area comparisons) compared to 

trials with small (2-4 dots), medium (6-9 dots), or large (9-15) sets. Furthermore, 
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although analyses were mixed across experiments, slope analyses combining data from 

Experiments 1 and 2 demonstrated that as set size increased, accuracy in making CA 

judgements decreased. This provides support for the Computation Hypothesis, suggesting 

that when making CA judgements, adults represent the surface area of individual items 

within an array and sum across these representations to gain a representation of the 

array’s CA. These findings are in line with previous findings by Barth (2008), whose 

computational model suggested that a computational account of CA representation 

provided the best explanation for the data.  

Furthermore, our finding that adults find it easier to discriminate single items 

compared to sets of items suggests that distinct processes may be at play when tracking 

the area of an individual item versus tracking the area of an array. In the former case, 

other continuous quantities – such as the diameter of the item – may serve as a reasonable 

cue for discrimination and thus area may not even be tracked under these circumstances. 

In the case of an array of items, though, it is unlikely that successful discrimination can 

take place without tracking the area of the items within the array. Moreover, the fact that 

differences in acuity persist in judging the area of a single item versus an array of items 

emphasizes that if we do want to make comparisons between adult abilities to represent 

discrete and continuous properties, or make claims about the saliency of continuous 

variables in the context of numerical stimuli, it is important that we test both in the same 

context – that is, within arrays of objects. Given that tests of numerical discrimination by 

definition require adults to make estimates or computations across multiple items, one 

should similarly examine the representation of continuous dimensions in the context of 

sets. In fact, evidence with infants supports this: Brannon et al. (2006) found that while 7 
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month olds infants were to discriminate a 1:2 ratio in EA of a single item, when presented 

with arrays of items this same age group needed as much as a 1:4 change to detect a 

difference in the EA (Cordes & Brannon, 2011). Although infants were asked to do the 

same exact type of task, the mere presence of multiple items detracted from infant’s 

abilities to represent EA.  

In conclusion, our results are in stark contrast with claims of a SoM theory. In 

particular, our results suggest that CA discriminations – in the context of multiple items – 

are not more precise than that of numerical discriminations, and may in fact be even 

marginally less precise. Moreover, though it was completely irrelevant to the task 

demands and thus not a reliable cue for tracking, we find that number is automatically 

processed in the context of CA judgements suggesting that number is at least as salient as 

this continuous quantity. Importantly, by examining the effect of set size on these 

discriminations, we found support for the Computation hypothesis, suggesting that adults 

represent CA by summing across individual items with an array. Future work will be 

needed to determine whether the computation mechanisms that adults are engaging in 

when making these discriminations are present early on in development or whether they 

are learned over time. That is, it would be interesting to investigate whether infants and 

children show similar set size signatures in their CA judgements as adults. 
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CHAPTER 3: RELATIVE SALIENCE OF NUMBER: PRESCHOOLER’S 

NUMBER KNOWLEDGE RELATES TO SPONTANEOUS FOCUSING ON 

NUMBER FOR SMALL, BUT NOT LARGE, SETS 

Abstract 

Much research has examined the reciprocal relationship between a child’s 

spontaneous focus on number (SFON) in the preschool years and later mathematical 

achievement. However, many different tasks have been used in the literature to assess 

SFON that have distinct task demands (verbal vs. behavioral) and stimuli (different types 

and quantities of other features available to the child to focus on outside of number) and 

it is unclear to what extent these tasks are measuring the same underlying construct. 

Moreover, prior studies have investigated SFON in the context of small sets exclusively, 

but no work has explored whether individual differences exist in SFON for large sets and 

whether these differences relate to math ability. In the current study, preschoolers were 

presented four distinct SFON tasks assessing their spontaneous attention to number for 

small (Experiment 1) and large (Experiment 2) sets of number. Results revealed no 

relation in SFON performance across the four distinct SFON tasks. Moreover, in contrast 

to predictions of a single construct of SFON, preschooler’s SFON for small sets (1-4 

items) was significantly stronger than that for large sets (10-40 items) and analyses 

revealed that number knowledge was only associated with SFON for small sets, but not 

large. Together, findings suggest that SFON may not be a set-size independent construct, 

and instead may hinge upon a child’s number knowledge, at least in the preschool years. 

The role of number language and how it relates to children’s SFON are discussed.  
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Relative Salience of Number: Preschooler’s Number Knowledge Relates to Spontaneous 

Focusing on Number for Small, but not Large, Sets 

There are documented individual differences in children’s tendencies to pay 

attention to number in their natural environment, with some children naturally attending 

to number in their day-to-day lives more than others (Hannula-Sormunen & Lehtinen, 

2005; Hannula et al., 2007). A child’s propensity to focus on number without any 

prompting has been called Spontaneous Focusing on Number (SFON; Hannula & 

Lehtinen, 2005). Much research has examined the reciprocal relationship between SFON 

and math skills; finding not only that individual differences in SFON in the preschool 

years predict later long-term measures of math achievement (Hannula-Sormunen, 

Lehtinen, & Räsänen, 2015; Hannula-Sormunen, Lepola, & Lehtinen, 2010; McMullen, 

Hannula-Sormunen, & Lehtinen, 2015), but also that early number skills acquired in the 

preschool years (such as counting abilities) relate to SFON a few years later (Hannula-

Sormunen & Lehtinen, 2005).  

However, the limits of SFON are still unclear. That is, is SFON a general attribute 

pertaining to attention to any numerical information in the environment, or might it be set 

size- or task- specific? In the current study, we investigated two different research 

questions: (1) How does children’s SFON differ as a function of the task used to assess 

it? Multiple tasks have been used to assess SFON, some that are verbally-based and 

others that are purely behavioral (i.e. not reliant upon language), yet little is known about 

how SFON may differ as a function of these tasks. There is some evidence to suggest that 

a child’s SFON may vary substantially across distinct SFON tasks (Batchelor, Inglis, & 

Gilmore, 2015), however this study did not explore all SFON tasks in the literature, 
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choosing instead to focus on the two most prominent SFON tasks. A systematic 

comparison in performance on different SFON measures can therefore help elucidate 

how task demands may affect a child’s likelihood of focusing on number spontaneously. 

We also asked: (2) How does set size affect preschooler’s SFON? To date, investigations 

of SFON in preschoolers have mostly been limited to small (<5 items) sets of items 

which young children are more likely to be able to enumerate and count compared to 

larger sets. Do children spontaneously attend to number even when they may be unable to 

accurately track the exact number of items present? Or might evidence of SFON be 

dependent upon their enumeration abilities? Getting an answer to these questions is 

important in furthering our understanding of the construct of SFON and the nature of its 

relationship with other numerical abilities.  

Spontaneous Focus on Number 

In the literature, an important distinction is made between knowing specific 

numerical skills (e.g., how to count), and knowing that these skills are relevant to the task 

at hand (e.g., that counting might be a relevant strategy for a particular task; Hannula-

Sormunen & Lehtinen, 2005). Although the majority of research in this domain tends to 

focus on the former (what mathematical knowledge do children possess and how can we 

teach it to them?), recent studies have also begun to focus on the latter (when do children 

realize that number might be an important dimension to focus on and/or relevant to the 

task?). SFON has been described as an attentional process that precedes (and is distinct 

from) enumeration (i.e., counting, identifying cardinality) with the idea being that SFON 

may predispose children to realize that they should individuate and enumerate objects 

(Hannula-Sormunen & Lehtinen, 2005). These ideas are supported by research revealing 
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that SFON around ages 3-4 predicts children’s enumeration and counting skills at ages 5-

6 (Hannula-Sormunen & Lehtinen, 2005; Hannula et al., 2007) and rational number 

knowledge at age 12 (McMullen et al., 2015). Moreover, SFON at age 6 is positively 

correlated with arithmetic skills but not reading skills two years later, suggesting that 

SFON is truly domain-specific (Hannula-Sormunen et al., 2010) and not simply a proxy 

for domain-general capacities such as IQ or working memory.  

One limitation of this research, however, is that SFON has only been tested with 

small sets (<5 items). In theory, SFON should pertain to attention to all numerical 

information, and should not be dependent upon an ability to enumerate the number of 

items, but instead reflect the recognition that number is a relevant dimension to attend. 

Since tests of SFON in preschoolers have only involved sets that they are also able to 

enumerate (i.e., count and identify the cardinality), it is unclear whether the ability to 

enumerate is a component of, or a necessary precursor to, demonstrating SFON for this 

age group. If SFON is truly a generalized attention to number, then it should not depend 

on the size of the sets involved nor on the child’s ability to enumerate the sets. That is, 

children should demonstrate similar levels of SFON for large sets as they do for small 

sets.  

The distinction between testing children on small and large sets is particularly 

important given what we know about children’s developing number knowledge. Even 

before children master the count procedure – that is, before they acquire a full 

understanding of cardinality and the meaning of all number words – they can have an 

understanding of the meaning of some of the number words (Le Corre & Carey, 2007). 

The process of learning to count is a lengthy process that progresses through a series of 
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stages over a period of 1-2 years. Research suggests that between the ages of 2.5 – 4, 

children start off as “subset knowers,” meaning that they have an understanding of the 

meaning of a subset of numbers but have yet to grasp the cardinal principle more 

generally (i.e., that the last number word used in a count list is the cardinality of the set). 

Subset knowers go through a step-wise process where they learn the meaning of the 

number word “one”, then “two” and so on. Not until after children learn the meaning of 

“four” do children acquire the cardinal principle – that the last number word used in a 

count refers to the cardinality of the set – and begin to understand the purpose of counting 

(thus becoming “cardinal-principle knowers” or CP-knowers; Wynn, 1992). At this point, 

it is expected that they now understand the meaning of all number words within their 

count list. This distinction between subset knowers and cardinal principle knowers is an 

important one because it represents qualitative differences in children’s behavior. For 

example, cardinal principle knowers more consistently recognize that counting is an 

effective strategy, whereas subset-knowers are less likely to spontaneously count in the 

face of a numerical task (Gordon, Chernyak, & Cordes, submitted; Le Corre & Carey, 

2007; Posid & Cordes, 2018; Wynn, 1992).  

Given that subset-knowers are able to accurately identify the cardinality of a small 

set, but not a large one, it is important to determine how this cardinal understanding may 

impact the likelihood of the child demonstrating SFON. That is, do subset-knowers 

demonstrate SFON at similar levels for small and large sets? Do we see differences 

between subset-knowers and CP-knowers? If, as Hannula-Sormunen and collegues 

(2010) claim, SFON is truly a domain-specific attentional phenomenon that is distinct 

from children’s actual numerical abilities, one would not only expect similar levels of 
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SFON for small and large sets, but (similar to previous findings) one would expect SFON 

for both small and large sets to correlate with number knowledge. To our knowledge only 

one study has tested SFON with both small and large sets. Cantlon et al. (2010) tested 

children on a match-to-sample task where children could either match stimuli using 

number or cumulative surface area, presenting them with sets ranging from 1-12, and 

they found that regardless of set size, children chose the number match over the 

cumulative surface area match at above chance levels. Although they found that children 

performed better on any comparison that involved set size one, because their trials had 

small and large sets intermixed, they were not able to address whether the degree of 

SFON differed as a function of set size. Furthermore, since they did not test children’s 

number knowledge, they were not able to address whether their SFON differed as 

function of the child’s number knowledge (i.e., subset- versus CP-knower). 

Current Measures of SFON 

A secondary research question concerned reconciling different measures of SFON 

that have been used in prior literature. Three types of tasks have traditionally been used to 

measure SFON: A) Imitation tasks, B) Picture tasks, and C) Choice tasks. Although all 

three have been used across studies, it is unknown whether these tasks assess the same 

underlying SFON construct.  

In Imitation tasks, children as young as 3 years are shown a series of repetitive 

actions by an experimenter and are asked to imitate the experimenter (Hannula-Sormunen 

& Lehtinen, 2005; Hannula-Sormunen et al., 2015, 2007). For example, Hannula and 

Lehtinen (2005) showed participants a mailbox and letters of two different colors. The 

experimenter would put a certain number of letters of each color in the mailbox and the 
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child was asked to “do exactly like I just did” without any mention of number. The 

dependent variable in this task is whether or not the child imitates the number of actions 

the experimenter undertook, or alternatively whether they use number words while doing 

their imitation. Thus, this task relies very little upon a child’s linguistic capacities and 

instead requires a purely nonverbal behavioral response.  

Picture tasks are newer in the literature (Batchelor et al., 2015) and have typically 

been used with slightly older children (4-6 year olds) compared to the Imitation task. In 

the Picture task, children are presented with a picture containing a complex scene 

including sets of items and are asked to describe what they see in the picture. As in other 

SFON tasks, the child is not told about the nature of the task or what the experimenter is 

looking for in their description. In this case, the dependent variable is whether or not the 

child uses any number or quantity words in their descriptions. Importantly, both of these 

tasks hinge upon the ability to track exact number either verbally or behaviorally. Thus, 

any measure of SFON obtained from these measures necessarily correlates with an ability 

to encode exact number, something thought to be dependent upon number word learning.  

Choice tasks have more recently been designed as another way to measure SFON 

(Cantlon, Safford, & Brannon, 2010; Chan & Mazzocco, 2017). The Choice task involves 

an ambiguous match-to-sample game where children are asked to select the picture that 

“best matches” a sample picture (typically involving an array of items). On critical trials, 

one of the choice pictures matches the sample picture on the dimension of number, while 

the other matches the sample on another quantitative dimension such as Cumulative Area 

(CA; Cantlon, Safford, & Brannon, 2010), color, or shape (Chan & Mazzocco, 2017). By 

directly pitting number against other dimensions, these critical trials provide a measure of 
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children’s SFON, by measuring their relative preference for number over this other 

dimension. Cantlon et al. (2010) found that 3-5 year old children spontaneously focused 

on number over CA at a rate higher than chance alone, a finding that has been replicated 

with English and Japanese populations (see also Cantrell, Kuwabara, & Smith, 2015). 

Chan and Mazzocco (2017) found that the degree to which children matched based upon 

number depended on which other dimension number was pitted against. For example, 4-5 

year olds were much more likely to pick the number match when the other available 

choices involved relatively low-salience features (e.g., pattern and orientation) compared 

to highly salient features (e.g., color and shape).  

There are some important differences between these three SFON tasks that call 

into question whether they measure the same underlying construct. Although the Picture 

task relies upon a verbal response, both the Imitation and Choice tasks are behavioral 

measures of SFON. The verbal requirements of the Picture task may prevent some 

children with limited communication abilities from being able to demonstrate an attention 

to number and even furthermore it may require a level of comfort with number words that 

children in the preschool years (when this task has been used) simply do not have. This 

may explain why previous research has found that although performance on both the 

Picture and Imitation tasks predict arithmetic skills years later (Picture Task: Batchelor et 

al., 2015; Imitation Task: Hannula-Sormunen et al., 2010), performance on the two tasks 

do not correlate with one another (Batchelor et al., 2015; Rathé, Torbeyns, Hannula-

Sormunen, & Verschaffel, 2016). This suggests that these tasks may tap into distinct 

aspects of SFON (verbal vs. behavioral) or alternatively, the verbal demands of the 
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picture task may mask individual differences in underlying attention to number that 

children are unable to fully express verbally. 

 Furthermore, all three tasks vary in terms of the quantity and type of other 

features (outside of number) available to the child. While the Choice task presents 

children with a limited number of other dimensions to attend to over number (in that it 

pits one or two dimensions against number while controlling for other features), the 

Picture and Imitation tasks place few, if any, limits on the dimensions that a child may 

deem relevant for responding. For example, in the Imitation task, children could attend to 

the color or orientation of the cards placed in the mailbox, the facial expressions of the 

experimenter, or many other possible features. In the Picture task, anything in the picture 

is fair game. The Choice task, on the other hand, was specifically designed to measure the 

relative salience of number when pitted against only one or two other dimensions (e.g., 

number pitted against cumulative area or ratio), and as such it is allows for a more 

systematic interpretation of SFON. Therefore, in addition to systematically measuring 

SFON, it allows researchers to measure just how salient number is when compared to 

other quantities such as cumulative area (Cantlon et al., 2010).  

Importantly, unlike the other two SFON tasks, the Choice task is the only task that 

allows for an assessment of SFON for large sets. Whereas the imitation task would be too 

cumbersome if children were expected to imitate as many as 5-10 actions, and the picture 

task requires a specific enumeration of a large set of objects which may be taxing for the 

child, the choice task allows children the opportunity to match based upon an 

approximate estimate of the number of items within the set.  
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Thus, across two experiments, we administered three different SFON tasks to 2.5-

5 year old children: the Picture Task (Batchelor et al., 2015), the Mailbox Imitation task 

(Hannula-Sormunen & Lehtinen, 2005) and an Area Choice Task in which number was 

pitted against Cumulative Area. Following these SFON tasks, children were administered 

the Give-N task - a standard measure of children’s number knowledge and cardinal 

understanding (Wynn, 1992). To explore SFON for small and large sets, we manipulated 

the size of the sets presented in the Area Choice task across experiments, such that 

children were presented with exclusively small sets (<4 items) in Experiment 1, and 

exclusively large sets (10-40 items) in Experiment 2. Since the Picture and Imitation 

tasks do not lend themselves to testing SFON for large sets, we manipulated set size only 

on the Area Choice task.  

Our first aim was to examine the relationship between our four SFON measures to 

see 1) whether they were correlated with one another and 2) which measure of SFON 

correlated most strongly with Number Knowledge. Our second aim was to compare 

preschoolers’ SFON for small and large sets by examining whether there were similar 

levels of SFON when presented with small (Experiment 1) and large (Experiment 2) sets 

in the Area Choice task. Given that previous research has shown a strong relationship 

between SFON (when tested with small sets) in the preschool years and number 

knowledge, we assessed whether children’s SFON for small and large sets similarly 

relate to their knowledge of number. If as has been suggested by Hannula-Sormunen and 

collegues (2010), SFON is a generalized attention to number (i.e., regardless of what 

number) then we should expect 1) similar levels of SFON for small (Experiment 1) and 

large sets (Experiment 2) and, 2) a child’s actual knowledge of number (i.e. whether they 
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are a Subset- or CP- knower) should be similarly related to performance on the small and 

large SFON tasks. On the other hand, if number knowledge does play a role in children’s 

level of SFON, and these two are not as distinct as has been suggested in the literature, 

we may find 1) children to show greater SFON for small compared to large sets in the 

Area Choice task, and, 2) children’s number knowledge should only relate to SFON in 

cases in which the child is able to enumerate the sets involved. That is, CP knowers, who 

are able to count and have knowledge of number words for small and large sets, may 

show SFON for both small and large sets, but Subset knowers may only demonstrate 

SFON for small sets.  

Experiment 1 

Methods 

Participants 

Participants were 118 preschoolers (Range 2.5-5.1 year olds; Mean age = 3.65, 

SD = .65, 73 Female). An additional 6 participants were excluded for experimenter error 

(n = 3) or for only completing a single task or less (n = 3). Of our 118 participants, 66 

participants completed all four of our tasks with the rest of our participants completing at 

least 2 or more of our tasks (See Table 3.1 for a breakdown of participants included in 

each task). Given that a substantial number of participants were not able to complete all 

tasks, many of our analyses will look at a subset of participants.  

Participants were recruited from the Greater Boston Area and either participated 

in lab or at their preschool or after school program. Of the 56% of our sample that 

provided demographic information, 86% of families identified as Caucasian, 5% as 
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Asian, and 9% as biracial. Furthermore, 98% of mothers and 83% of fathers responded as 

having completed a Bachelor’s Degree or higher. 

 Included  Excluded  Exclusion 
reasons 

Average 
Age 
Included 

Average 
Age 
Excluded 

Picture Task 106 12 (1) N = 10 
(2) N = 2 

3.66  
(2.5 - 5.1) 

3.60  
(2.5 - 4.8) 

Area Choice 
Task 105 13 (1) N = 4 

(2) N = 9 
3.69  
(2.5 – 5.1) 

3.37  
(2.5 - 4.3) 

Mailbox Task 99 19 (1) N = 17 
(2) N = 2 

3.68  
(2.5 - 5.1) 

3.49  
(2.5 - 4.5) 

Give-N 97 21 (1) N = 12 
(2) N = 9 

3.66  
(2.5 - 4.9) 

3.60  
(2.5 - 5.1) 

 

 

 

 

 

Design 

Participants completed four different tasks in the following order: Picture Task, 

Area Choice Task, Mailbox Imitation Task, and the Give-N Task7. The Give-N task was 

presented last because it is a measure of number knowledge and we did not want to cue in 

the participants that we were assessing number until after all the SFON tasks were 

administered.  

																																																								
7 Participants completed a fourth SFON task, the Proportion Choice Task, that was 
identical to the Area Choice task, except that the alternative (non-number) feature for 
participants to match on was the proportion of red to blue items in the display. This task 
was completed between the Mailbox Imitation Task and the Give-N Task. Since 
participants performed very poorly on this task – only 30 participants performed above 
chance on the standard trials – we will not include this task in the rest of this dissertation. 
 

Table 3.1. Participant Exclusions Experiment 1.  
Exclusions were divided into two categories: (1) experimenter errors or errors with 
equipment (video cameras, computers etc.) or (2) a failure on the participant’s part to 
finish the task (for the Area Choice task, participants needed to complete more than 
2/3 of Probe trials to be included, for all other tasks participants needed to complete 
all trials to be included. 
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Tasks & Procedure 

Picture Task. Adapted from Batchelor, Inglis, & Gilmore (2015). Children were 

presented with three cartoon pictures taken from children’s books, presented on 

laminated cardboard (21 x 21 cm). The pictures were chosen because they were fairly 

simple pictures that clearly contained small sets of items, in a numerical range (1-4 items) 

that children could attend to and have a verbal label for. The pictures also contained 

many different colors, shapes, and animal characters, providing many other options to 

label and talk about, other than number.  

Children were given three opportunities to talk about each of three pictures, in a 

set order. The experimenter introduced the task by saying: “This game is all about 

pictures. I am going to show you a picture and I want you to tell me everything you can 

see in the picture. Are you ready?” The researcher then put the first picture in front of the 

child and asked “What do you see in this picture?” When the child was finished talking, 

the experimenter prompted the child twice more saying: “Great! What else do you see?” 

After the final, third prompt, the researcher moved onto the next picture. Children were 

given 3 prompts to talk for each picture (unlike the original version, which provided only 

a single opportunity; Batchelor et al., 2015) because pilot testing revealed the additional 

prompting helped children overcome their initial shyness and reluctance to talk. If, after 

any of the prompts, the child said they did not see anything else in the picture, the 

experimenter moved onto the next picture.  

Area Choice Task. Adapted from Cantlon, Safford, & Brannon (2010). The aim 

of this tasks was to measure which of two quantitative dimensions, number vs. 

cumulative area (CA), children would spontaneously use in a delayed match-to-sample 
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task on a tablet. Children were first shown a single sample stimulus in the center of the 

tablet screen and were told: “I want you to look at this picture very carefully and when 

you are done remembering the picture, I want you to touch it.” If the child seemed 

reluctant to touch the tablet on the first few trials, the experimenter would prompt the 

child again or touch the tablet for them if they indicated they were done remembering the 

picture. Next, participants were shown two options and were asked: “Which picture best 

matches the one you just saw? This picture, or this one?” The experimenter would point 

to or circle each picture, to make it explicit what the two options were. The task was self-

paced, meaning participants could choose when to move on from the sample stimulus and 

take as much time as needed to make their choice. Instructions were only repeated on the 

first few trials or whenever participants became distracted and needed re-prompting. At 

no point were children given any explicit instructions on how they should match the 

pictures. 

This task included two types of trials. In Standard trials, one of the two choice 

stimuli matched the sample stimulus on both dimensions (i.e., number and CA; the 

correct match), while the other choice stimulus did not match on either of the two 

dimensions (incorrect match). In Standard trials, children were rewarded only for 

choosing the ‘correct match’, in this case a positive auditory and visual stimulus played 

on the tablet. Choosing the ‘incorrect match’ resulted in a red ‘x’ appearing on the screen 

with no auditory stimulus. In Probe trials, one of the choice stimuli matched the sample 

in terms of number, but not on CA (number match), while the other stimulus matched the 

sample in terms of CA, but not on number (area match). In Probe trials, participants were 
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rewarded regardless of their choice. See Figure 3.1 for an example of Standard and Probe 

trials.  

 

 

To familiarize participants with the task, they were first shown 6 Standard trials 

(referred to as ‘Practice trials’), followed by 12 Test trials (a randomized mix of 6 new 

Standard trials and 6 Probe trials). To keep participants motivated, a short (16 secs) 

Standard Trials Probe Trials 

Sample Sample

Correct Match Incorrect Match Number Match Area Match

Figure 3.1. Stimuli from the Area Choice task from Experiment 1.  
For all trials, participants first saw a sample picture, followed by two choice pictures. 
For Standard Trials (left pane), the Correct choice matched the sample on both 
Number and Area and an Incorrect choice matched the sample on neither Number or 
Area. For Probe Trials (right pane), the Number Choice matched the Sample on 
Number not Area, and the Area Choice matched the sample on Area not Number. 
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attractor video played halfway through the task. Thus, the entire task consisted of 18 

trials (6 practice + 12 test), with an attractor video after the first nine trials.  

Stimuli consisted of orange squares randomly placed on a white background (17 x 

11 cm) with the element size of the squares homogenous within displays. For Standard 

trials, the number of items within the sample stimulus consisted of the numbers 1 through 

4 and the CA of the sample items were chosen from one of three possible cumulative 

areas (4800, 8800 and 12800 pixels2), ensuring that each CA was paired with equal 

frequency with each number. For the choice stimuli, the correct match had the same exact 

number of items and CA (and thus the same element area) as the sample stimulus, with 

only the placement of the squares in the display differing between the sample and the 

correct match. To determine the number and CA of the incorrect match we first of all 

ensured that we had all pairwise combinations of the numbers 1 through 4 between the 

sample and incorrect match stimulus (e.g., if the sample had 1 item, the incorrect match 

had 2, 3 or 4 items with equal frequency). This meant that the number ratio between the 

sample and incorrect match stimulus ranged from 0.25 to 0.75. Then to determine the CA 

of the incorrect matches, we took all element sizes generated from the sample stimuli, 

and randomly assigned those across the incorrect matches. In doing so, we made sure that 

1) the size of items for the incorrect match were not identical to those of the 

sample/correct match and 2) the CAs for the incorrect match stimuli were larger than the 

CAs for the sample/correct match stimuli for half of trials and smaller for the other half. 

We decided to choose our incorrect match CA in this way because this would allow for 

the CA ratios between the sample and incorrect choice stimuli to be similar in range 

(Range: 0.38 to 0.73) to the number ratio range of .25-.75. 
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For Probe Trials, the sample stimuli were identical in number and CA as the 

sample stimuli of the Standard trials, with only the placement of the squares in the 

display differing. The Area Choice stimulus was identical in CA to the sample stimulus, 

and the Number Choice stimulus was identical in number to the sample stimulus. Then, 

to determine the number of items in the Area Choice stimulus, and the CA of the Number 

Choice stimulus, we made sure that the ratio of difference between the number of items 

in the sample and area match stimuli was identical to the ratio of difference between the 

CA in the sample and number match stimuli. For example, if the number ratio between 

the sample (e.g., 1 item) and the area match stimuli (e.g., 2 items) was .5, then the CA 

ratio between the sample (e.g., 4800 pixels2) and the number choice stimuli (e.g., 9600 

pixels2) was also .5. For half of the probe trials, the CA of the number choice was greater 

than the sample, while the other half was smaller than the sample (by either multiplying 

or dividing by the given ratio).  

Mailbox (Imitation) Task. Adapted from Hannula & Lehtinen (2005). Materials 

included a small mailbox placed in front of the child and 15 yellow laminated letters 

spread out across the table. Given that we were working with a younger age group than 

previous research using this task, we did some pilot testing and chose to simplify the task 

in several ways. First, children were presented with envelopes all of a single color, rather 

than two different colored sets. We also chose to test children only on very small 

quantities, 1 on the first trial and 2 on both the second and third trial. Lastly, rather than 

placing the letters in a pile, we fanned out all the letters because pilot testing revealed that 

our younger age group had trouble picking up an individual letter when placed in a pile, 

and often accidentally picked up multiple letters without realizing.  
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The experimenter introduced this task by pointing to the mailbox and the letters, 

saying, “This is my mailbox and these are my letters. In this game, I want you to watch 

very carefully what I do, and then I want you to do exactly like I did.” The experimenter 

then proceeded by picking up one letter and putting it in the mailbox, then asking: “Now 

can you do exactly like I did and tell me when you are done?” If the child stopped putting 

letters in the mailbox, but did not tell the researcher that they were done, the 

experimenter would ask “Are you done doing exactly like I did?” waiting for the child’s 

confirmation before proceeding. For both the second and third trial, the experimenter put 

2 letters in the mailbox, each with a separate motion, repeating the exact same 

instructions. To avoid children putting all letters in the mailbox on the first or second 

trial, leaving no letters for the next trial(s), the experimenter always interrupted the child 

after they had put three letters in (a clear indication they were not imitating number) and 

told the participant “Ok, now it’s my turn!” If a child attempted to put envelopes in 

during the experimenter’s demonstration, the experimenter would stop the child and tell 

them “Wait, it is still my turn, it will be your turn next.”  

Give-N Task. Adapted from Wynn (1992). Children were introduced to a pond (a 

small blue basket) and 20 small yellow rubber ducks and were told that the ducks like to 

go into the pond. The experimenter started by showing one duck jumping into the pond, 

and then after removing the duck, asked the child “Can you put one duck into the pond?” 

Once the child was done putting ducks into the pond, the experimenter verified “Is that 

one duck?” If the child said yes, the experimenter went onto the next trial; if the child 

said no, they were given an opportunity to fix what they had done until they were happy 

that there was one duck in the pond. If the child correctly put one duck into the pond, the 
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experimenter asked for larger set sizes, with the number of ducks requested, N, increasing 

from 1-6. Using a titration method, each time the child successfully put N ducks into the 

basket, they were asked for N + 1 ducks, but if the child failed on N ducks, they were 

then asked for N – 1. To reduce the number of trials children had to perform, the 

experimenter skipped the set sizes of 2 and 5 ducks when going up the titration ladder. 

However, if the child failed to correctly place 3 or 6 ducks into the pond, then the 

experimenter asked for 2 or 5 ducks respectively. The task ended when the child: 1) 

succeeded in correctly placing N ducks into the pond twice and failed on N + 1 twice or 

2) succeeded twice on the N = 6 trial.  

Data Processing & Coding  

Picture Task. This task was transcribed using Computerized Language Analysis 

(CLAN), which was made available through the Child Language Data Exchange System 

(CHILDES; MacWhinney, 2000). We used the CHAT (Codes for the Human Analysis of 

Transcripts) transcription format at the utterance level. For each of the three pictures 

(trials), we used CLAN software to perform a frequency count of any number or 

quantity-related words found in the transcripts that were said by the participants. The 

number and quantity words that we searched for included: the number words 1-10, many, 

more, less, little, lot, count, big, and small. As per Batchelor et al., (2015), on each trial 

children received a score of 1 if they used any number or quantity words (regardless of 

how many) and a score of 0 if they did not. Therefore, children could get a maximum 

score of 3 on this task. Twenty percent of participants were transcribed by a second 

coder, frequency analyses of quantity word use were done on these transcripts, and then 

these participants were also given a score 0-3. The level of consistency between both 
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coders’ scores were calculated using linear weighted Kappa, which resulted in a Kappa 

score of .81.  

Area Choice Task. Performance on the Practice trials was not analyzed since 

participants were still attempting to understand the rules of the task. Although 

performance on Standard trials was used to measure participants’ degree of 

understanding of the aim of the task, these trials were not a measure of SFON since 

participants could use number and/or area as a cue for matching. Thus, our only measure 

of SFON in this task was the proportion of number matches on Probe Trials with higher 

scores on the Probe Trials reflecting a greater tendency to match on number rather than 

on the other quantitative dimension (i.e., CA).  

Mailbox Task. As per Hannula and Lehtinen (2005), children were considered to 

have spontaneously focused on number for any trial if participants met any of the 

following requirements: a) they put the same number of letters in the mailbox as the 

experimenter, b) their utterances included number words - regardless of whether they 

were the correct number words -  (e.g., “I am putting in two at the same time”) or 

quantity more generally (e.g., “How many did you put in?”), and/or c) they used 

gestures/fingers to denote numbers. Thus, children are given credit for displaying the 

correct numerical behavior (requirement a) and/or a numerical/quantitative 

verbal/gestural response (requirements b-c). Scores for this task were binary such that 

children scored 1 on a trial if they demonstrated any or all of the above measures of 

SFON, and a score of 0 if they did not. Therefore, children could get a maximum score of 

3 on this task. Twenty percent of participants were coded by a second coder and 
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reliability between the two coders was calculated using linear weighted Kappa, which 

resulted in a Kappa score of .80.  

Give-N. The child’s Give-N score was the highest number of ducks they 

successfully put into the basket8. 

Results  

Individual SFON Measures 

Picture Task. Overall, very few quantity words were produced in this task. On 

average, participants used number words on .97 of the three trials (See Figure 3.2).  

Mailbox Task. Participants focused on number more on this task, with 80.8% of 

participants imitating the number of actions or using number words on at least one trial 

																																																								
8 About three quarters of our participants were tested on an extended version of Give-N 
in which they were asked for N from 1-10. For consistency, we will only be reporting 
participants score as 1-6. For those participants that received the extended version, we 
gave them a score of 6, if 1) they correctly placed 6 ducks into the pond twice or 2) if 
they correctly placed both 6 and 7 ducks into the pond. 

Figure 3.2 Histograms depicting the number of trials on which participants used 
quantity words (Picture Task, left) or imitated number (Mailbox Task, right) in 
Experiment 1.  
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(See Figure 3.2). On average, participants matched on number on 1.71 of the three trials. 

The majority of numerical responses involved correctly imitating the number of actions 

(84% of numerical responses were due to a correct imitation of the experimenter’s 

actions) suggesting higher evidence of SFON on the Mailbox task was due to the fact that 

children were able to give a behavioral response, rather than relying on their verbal skills 

alone (for literature on how emerging knowledge is expressed through behavior before 

speech see (Goldin-Meadow & Breckinridge Church, 1986; Hamamouche, Chernyak, & 

Cordes, under review).   

Area Choice Task. Children performed significantly above chance on Standard 

Trials (65.5%; t(104) = 6.05, p < .001) and on Probe Trials children chose the ‘number 

match’ significantly more often than chance (65.1%; t(104) = 6.76 , p < .001). Thus, 

when number was pitted against area for small sets, children were more likely to attend to 

numerical information, relative to area. Children’s performance on both the Standard and 

Probe trials correlated positively with age (Standard: r = .41, p < .001; Probe: r = .29, p < 

.01; See Table 3.2 for all correlations of Experiment 1). 

Relations between SFON tasks 

Aligning with other work, there were no significant correlations in performance 

on any of our SFON tasks when controlling for age (p’s > .20; See Table 3.2 for all 

correlations of Experiment 2). However, to determine whether the response mode (verbal 

vs. behavioral) could explain why we did not find a correlation between the different 

tasks, we separated those trials in the Mailbox task in which children gave a behavioral 

vs. a verbal response, and correlated those to the other SFON tasks. Not only did verbal 

responses in the Mailing Task correlate positively with the Picture task (r = 0.21, p <.05),  
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behavioral responses in the Mailing task correlated with the Area Choice task for 

Standard (r = 0.22, p <.05), but not Probe trials (r = 0.11, p <.29). This suggests that 

response mode played a significant role in determining how a child performed on each of 

the particular tasks. 

The Relation Between Number Knowledge and SFON Measures 

Children’s performance on Give-N was quite variable (M = 3.65, Range: 0-6) and 

as expected, was highly correlated with age (r = .72, p < .001). Therefore, all analyses 

examining the relation between our SFON tasks and Give-N controlled for age (in 

months). Surprisingly, Give-N performance was only positively correlated with 

performance on one SFON task - the Standard (r = .27, p < .05) and Probe trials (r = .29, 

p < .01) of the Area Choice task when controlling for age. None of the other SFON 

measures correlated with Give-N performance (p’s > 0.3). Follow-up analyses explored 

Variable Age 2 3 4 5 

1. Picture Task . 01 
(N=106) 

-.02 
(N=94) 

.04 
(N=94) 

-.11 
(N=93) 

-.04 
(N=87) 

2. Area Task– Standard .41*** 
(N=105)  .46*** 

(N=105) 
.13 
(N=89) 

.25* 
(N=89) 

3. Area Task – Probe .28**  
(N=105)   .04 

(N=89) 
.27* 
(N=89) 

4. Mailbox Task .28***  
(N=99)    .003 

(N=83) 

5. Give-N .72***  
(N=97)     

Table 3.2. Correlation Matrix Experiment 1.  
The second column with the “Age” heading lists the correlations of each of our tasks 
with age. The rest of the table are pairwise partial correlations between our difference 
tasks when controlling for age. 
 *p< .05, **p<.01*** p<.005 
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whether the relation between Give-N performance and Probe Trial performance on the 

Area Choice task held across knower-levels, or if it was specifically driven by the 

distinction between Subset and CP- knowers. To answer this question, we divided our 

participants in 2 groups: Subset knowers (0-5 knowers) and CP knowers. First of all, 

independent samples t-tests found that both Subset (57.8%; t(51) = 2.46 , p = .02, d = .32) 

and CP knowers (76.5%; t(36) = 7.98 , p < .001, d = 1.29) performed above chance on 

probe trials, yet an ANCOVA comparing performance between Subset and CP knowers 

with Age as a covariate did find CP knowers to be performing significantly better than 

Subset knowers on Probe trials (F(2, 86) = 10.26 , p < .01, ηp
2 =.11).   

Next, we determined to what extent performance on the Probe trials held across 

all Subset knower levels (i.e. 0-5 knowers). A step-wise regression model with Age and 

Give-N predicting Probe trial performance was not significant (R2=.06, F(2, 49) = 1.01, 

p=.37).  The fact that the regression model did not hold for all knower-levels, but that 

subset knowers did perform above chance on these probe trials, suggests that it is 

specifically participants’ knowledge of the cardinal principle that related to how strongly 

children paid attention to number in our task. 

Discussion 

Overall, findings from Experiment 1 revealed significant variability across our 

individual measures of SFON in preschoolers. In particular, whereas the Picture task 

revealed near floor performance – likely due to the verbal requirements of the task – 

preschoolers were significantly more likely than chance to match number on both the 

Mailbox task and the Area Choice task. Thus, adding to other work in this domain, results 

of Experiment 1 reveal no consistency in SFON performance across distinct SFON tasks. 
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The findings that verbal SFON on the Mailbox task correlated with SFON in the verbal 

Picture task, and that behavioral performance on the Mailbox task correlated with 

behavioral performance on the standard trials of the Area Choice task, suggest that 

response mode played a large role in determining the extent of SFON that children 

demonstrated across these three tasks. Otherwise, we saw no correlations between tasks 

that had different response modes (i.e. no correlations between the Picture and Area 

Task). These various SFON tasks, that have all traditionally been used to measure SFON 

therefore may measure distinct aspects of a child’s cognition (i.e. fluency with language), 

either separate from or in addition to measuring SFON.  

Interestingly, we also found that despite prior reports relating SFON in these 

different tasks with counting and later math ability, our findings revealed that the only 

SFON measure that related to our measure of a precursor to formal math - Give-N 

performance - was the Area Choice Task. In particular, children’s mastery of the cardinal 

principle – not their number knowledge per se - significantly related to their tendency to 

demonstrate an attention to number in the Choice task. Although, it is not clear why only 

one of the tasks – the Area Choice Task - correlated with children’s cardinal knowledge, 

given that this task may have been the least ambiguous of them all, it seems possible that 

the Area Choice task was simply the most straightforward task in measuring SFON. 

Experiment 2 

All of our SFON tasks in Experiment 1 presented children with sets of items in 

the small number range (< 4 items), replicating prior SFON studies where children were 

likely able to easily quantify the set sizes present. In Experiment 2, we examined SFON 

for large sets of items, specifically exploring whether this positive correlation between 
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cardinal knowledge and SFON is exclusive to small sets or holds across all set sizes. If 

SFON is a truly general numerical construct, then we should see comparable levels of 

SFON for large sets as we do for small sets. Moreover, cardinal knowledge should also 

correlate with SFON for large sets – just as it does for small sets.  

In Experiment 2 we presented children with large sets of items (10-40) in the Area 

Choice Task. Since measuring SFON via the Picture and Mailbox tasks is less conducive 

to large sets (doing so would be cumbersome and taxing for the child), we continued to 

present participants with small sets for these two SFON tasks.  

Methods 

Participants 

Participants were 103 2.5 – 5.1 year olds (Mean age = 3.70, SD = .78, 52 

Females). An additional 5 participants were excluded for experimenter error (n=1), 

parental interference (n=1), or failure to complete more than one task (n = 3). Of our final 

sample of 103 participants, 74 participants completed all 5 tasks, with the rest completing 

a subset of the tasks (See Table 3.3 for a breakdown of participants included in each 

task). Of the 45% of participants that provided us with demographic information, 74% 

identified as Caucasian, 8% as Asian, and 8% as biracial. Furthermore, 93% of mothers 

and 91% of fathers completed a Bachelor’s Degree or higher. 

Design 
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Participants completed four tasks in the following order: Picture Task (identical to 

Experiment 1), Area Choice Task (same structure as Experiment 1 with new stimuli), 

Mailbox Task (identical to Experiment 1), and Give-N (identical to Experiment 1)9.  

 

 

 

 

Tasks & Procedure 

All tasks were identical to Experiment 1 except for stimuli in the Area Choice 

Task: 

Area Choice Task. The procedures for this task were identical to Experiment 1, 

but the set sizes involved were larger and stimuli involved sets of purple squares (See 

Figure 3.3). To match the parameters to that of Experiment 1, for Standard trials, the 

number of items within the sample stimulus were increased 10-fold from Experiment 1 

																																																								
9 Since we found that participants performed very poorly on the Proportion Choice Task 
in Experiment 1, we made some modifications on this task for Experiment 2 in an attempt 
to make it easier, as well as including a second Proportional Reasoning Task. However, 
even with these modifications, participants continued to performed below chance on both 
these tasks and therefore we have excluded both tasks from further analyses. 

 Included  Excluded  Exclusion 
reasons 

Average 
Age 
Included 

Average 
Age 
Excluded 

Picture Task 92 11  
(1) N = 6 
(2) N = 3 
(3) N = 2 

3.77  
(2.5 – 5.1) 

3.12  
(2.5 – 4.1) 

Area Choice 
Task 96 7 (1) N = 1 

(2) N = 6 
3.72  
(2.5 – 5.1) 

3.51  
(2.5 – 5.0) 

Mailbox Task 100 3 (1) N = 2 
(2) N = 1 

3.70  
(2.5 – 5.1) 

4.04  
(2.7 – 5.1) 

Give-N 96 7 (1) N = 2 
(2) N = 5 

3.75  
(2.5 – 5.1) 

3.21  
(2.5 – 4.1) 

Table 3.3 Participant Exclusions Experiment 2.  
Exclusions were divided into three categories: (1) experimenter errors or errors with 
equipment (video cameras, computers etc.), (2) a failure on the participant’s part to 
finish the task (for the Area Choice task, participants needed to complete more than 2/3 
of Probe trials to be included, for all other tasks participants needed to complete all 
trials to be included) or (3) interference from the parent (e.g. telling the child how to 
complete a task). 
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and consisted of the numbers 10, 20, 30 and 40 and the CAs for the sample stimuli were 

chosen from the following three possible CAs: 7200, 13200 and 19200 pixels. The CA’s 

were larger than Experiment 1 to account for the fact that the number of items increased 

and we wanted to make sure no individual item was so small that they would become 

difficult to individuate by the participant. Our design manipulations for the correct and 

incorrect match stimuli were identical to Experiment 1: the correct match stimulus had 

the same exact number of items and CA as the sample stimulus and for the incorrect 

match, the number ratio between the sample and incorrect match stimulus still ranged 

from 0.25 to 0.75 and the CA ratios ranged between 0.38 to 0.73. Probe trials were 

designed in the exact same way as Experiment 1 but using the new set sizes and CAs. 

Figure 3.3. Stimuli from the Number vs. Area task from Experiment 2.  
The procedure was identical to the Number vs. Area task from Experiment 1. The 
stimuli were changed such that the number of items in each display in Experiment 1 
were multiplied by 10, thus creating large sets (ranging from 10-40 items). 

Standard Trials Probe Trials 

Sample Sample

Correct Match Incorrect Match Number Match Area Match
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Data Processing & Coding  

All tasks were scored identically to Experiment 1. For the Picture and Mailbox 

task, data from 20% of participants were transcribed and/or recoded by a second coder 

and reliability between the two coders was calculated using linear weighted Kappa which 

resulted in Kappa values of .93 and .87 for the Picture and Mailbox task respectively.  

Results  

Measures of SFON 

Picture Task. Similar to Experiment 1, there were very few number words used 

on this task, with participants using number words on only .79 of the three trials on 

average (See Figure 3.4). However, unlike Experiment 1, we did find a significant 

correlation between number word usage on this task and age (r = .34, p < .001; See Table 

3.4 for all correlations for Experiment 2). 

Figure 3.4. Histograms depicting the number of trials on which participants used 
quantity words (Picture Task, left) or imitated number (Mailbox Task, right) in 
Experiment 2.  
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Mailbox Task. SFON on the Mailbox task was again higher than that of the 

Picture task, with 72% of our participants imitating number on one or more trials (See 

Figure 3.4). On average, participants matched on number on 1.41 of the 3 trials. Similar 

to Experiment 1, it appears that better performance on the Mailbox task was driven by 

children’s behavioral nonverbal responses (93.9% of SFON scores were behavioral, not 

verbal). Similar to the Picture task, here too performance was correlated with age (r = 

.21, p = .03).  

Area Choice Task. Even in the context of large sets, participants performed 

significantly above chance on Standard trials (57.8%; t(95) = 2.83, p < .01, d = .22). 

However, participants were not more likely than chance to select the number match on 

Probe trials (50.2%; t(95) = .09 , p = .93, d =.009). Therefore, although children were 

able to make a match when both area and number were confounded in Standard trials, 

Variable Age 2 3 4 5 

1. Picture Task .34*** 
(N=92) 

.22* 
(N=85) 

.12 
(N=85) 

-.05 
(N=89) 

.16 
(N=87) 

2. Area Task– 
Standard 

.39*** 
(N=95)  .09 

(N=95) 
-.11 
(N=92) 

.08 
(N=90) 

3. Area Task – Probe .08 
(N=95)   .08 

(N=92) 
.06 
(N=91) 

4. Mailbox Task .21* 
(N=100)    .08 

(N=93) 

5. Give-N .74*** 
(N=96)     

Table 3.4. Correlation Matrix Experiment 2.  
The second column with the “Age” heading lists the correlations of each of our tasks 
with age. The rest of the table are pairwise partial correlations between our 
difference tasks when controlling for age. 
 *p< .05, **p<.01*** p<.005 
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when number was pitted against area in the Probe trials, number did not continue to be a 

salient cue for matching. This suggests that for large sets participants no longer 

demonstrated a clear reliance on number and instead showed no preference for either 

number or area. This could either mean that some participants matched on number and 

others matched on CA – in which case we would expect to see a bimodal distribution of 

results – or, alternatively, that participants responded randomly and did not have a 

consistent strategy – in which case we would expect an approximately normal 

distribution. A histogram of the number of children choosing number at different levels 

(see Figure 3.5) was found to be fairly normally distributed suggesting that most children 

randomly selected their responses on Probe Trials, with no clear strategy. Despite the 

Figure	3.5.	Histogram	depicting	the	number	of	participants	choosing	number	on	
the.	Area	Choice	task	in	Experiment	2.		
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poor performance on Probe trials we did find age to correlate positively with performance 

on the Standard but not the Probe trials (Standard: r = .39, p < .001; Probe: r = .08, p = 

.44). 

Relations between SFON tasks 

There were no significant correlations between any of our SFON tasks when 

controlling for age (p’s >.05; see Table 3.4). As in Experiment 1, we separated those 

trials in the Mailbox task in which children gave a behavioral vs. a verbal response to 

determine the extent to which task demands may have played a role in performance on 

these SFON tasks. Again, verbal responses in the Mailing Task correlated positively with 

performance on the Picture task (r = 0.26, p <.05), however the behavioral responses did 

not correlate with any of the SFON tasks (p’s > .25).  

Number Knowledge and SFON 

Performance on our Give-N task was again highly variable (M = 4.13, Range: 0-

6) and was again strongly correlated with age (r = .74, p < .001). In contrast to 

Experiment 1, we found no correlation between any of our SFON tasks and number 

knowledge when age was controlled for (p’s > .10). This suggests that while number 

knowledge correlated with children’s spontaneous focusing on number in the Are Choice 

Task when sets were small, this was not the case with large sets.  

However, although the relationship between Give-N performance and SFON 

performance does not hold across all knower-levels, it is possible that we do see a 

different pattern of performance based on whether participants were Subset or CP- 

knowers. Breaking our participants down into Subset knowers (0-5 knowers) and CP 

knowers, we found neither Subset (46.8%; t(49)=1.08, p =.29, d = -.15) or CP knowers 
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(54.3%, t(39)=1.23, p =.23, d = .19) matched based on number above chance, nor did 

Subset and CP knowers differ significantly in their performance on Probe trials 

(t(88)=1.65, p =.10, d = .33) .  

Discussion 

Mirroring findings of Experiment 1, our four measures of SFON revealed no 

consistency within participants. Although we did find that verbal responses in the 

Mailing Task correlated positively with performance on the Picture task, none of our 

other SFON measures were correlated with one another. Again, these findings suggest 

that these four tasks measure distinct aspects of a child’s cognition, and not a singular 

pure construct of SFON. These findings raise questions regarding the validity of these 

measures in assessing children’s SFON since tasks demands in particular seem to play a 

role in the level of SFON preschoolers demonstrate. 

In contrast to Experiment 1, when presented with large sets in the Area Choice 

Task of Experiment 2, children 2.5 – 5 years of age did not focus on number over 

cumulative area more than chance. Given that children, of all knower levels, should have 

easily been able to discriminate between the large numbers we presented them 

(preschool-aged children have been shown to discriminate a 3:4 of change, the hardest 

ratio tested here; Odic, Libertus, Feigenson, & Halberda, 2013), this finding suggests that 

a lack of focusing on number cannot be explained by an inability to discriminate the 

numerosities presented. Instead these findings lead us to conclude that when sets are 

large, number becomes less salient to children with less number knowledge. Notably, 

although children did not select the numerical match at above chance levels, they also did 

not select the area match at above chance levels either. Thus, it is not the case that 
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children found area to be more salient in the context of large sets, but simply that number 

was not a salient dimension.  

Furthermore, we also did not see a relationship between children’s preference for 

number in the context of large sets (Area Choice Task) and their cardinal knowledge. 

Combined with findings from Experiment 1, this suggests the possibility that SFON may 

not necessarily be an independent construct of numerical attention in general, but instead 

may reflect a child’s ability to attend to numbers that s/he can quantify in the world 

around her/him. When tested only on small sets, those children with greater number 

knowledge focused on number. However, when tested on large sets – sets that went 

beyond the scope of children’s number knowledge – we no longer saw this relationship 

between children’s knowledge of number words and their SFON. A direct comparison 

between our findings in Experiment 1 and 2, may be able to tell us more about this 

different pattern of results for Small and Large sets. 

Combined Analyses Experiment 1 & 2 

Before analyzing the effect of set size (i.e. Experiment) on SFON, we wanted to 

verify that there was no significant difference between participants in either Experiment 

in age or Give-N performance and found this not to be the case (p’s >.5). We ran an 

ANCOVA with Age as a covariate comparing performance on the Standard trials of the 

Area Choice Tasks in Experiments 1 and 2 and found a significant effect of Experiment 

(F(1, 197) = 5.51 , p = .02, η =.03), with participants performing significantly better on 

Standard trials when presented with small (65.5%) compared to large (57.8%) sets. A 

similar analysis on probe trial performance similarly revealed that participants were 
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significantly more likely to select the number match on probe trials when presented with 

small (65.1%) compared to large sets (50.2%; F(1, 197) = 22.58 , p < .001, ηp
2 =.10)10. 

Given that previous studies found that children perform better on trials where the 

sample stimulus contained only a single item (1-item arrays; Cantlon et al., 2010), we 

wanted to verify that our previous findings showing better performance on small sets was 

not driven by those trials that included 1 item in the sample. Thus, we reran the above 

analyses excluding trials that included 1 item in the sample for Experiment 1 and those 

matched trials in Experiment 2 that included 10 items in the sample.  An ANCOVA with 

Age as a covariate found no significant difference in performance on small (62.0%) and 

large sets (57.0%) for standard trials (F(2, 197) = 1.80 , p = .18, ηp
2 =.01), although 

participants continued to be significantly more likely to select a number match on probe 

trials when presented with small (66.3%) compared to large sets (52.3%; F(2, 195) = 

17.65 , p < .001, ηp
2 =.08)11. Thus, performance on the Standard trials of the Area Choice 

Task of Experiment 1 may have been slightly boosted by performance on trials involving 

a single item – likely because those trials included the largest ratio difference of 1 vs 4, 

making it easiest for children to notice numerical changes. However, importantly, Probe 

trial performance was unaffected by the exclusion of single item trials, suggesting that the 

pattern of greater numerical matching in Experiment 1 compared to Experiment 2 was 

not driven by single-item trials, but instead by the distinction in set sizes.  

Next, we ran a regression to test to what extent performance on the Probe trials 

was dependent on Age, Set Size (Experiment 1 vs Experiment 2), and Number 

Knowledge (Give-N; see Table 3.5). Age, the two predictors (Experiment and Give-N) 

																																																								
10 These findings held when Give-N was used as a covariate instead of Age, p’s <.01 
11 This pattern of results held when Give-N performance was used as a covariate. 
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and their interaction was entered into a step-wise regression model and the model was 

significant (R2=.18, F(4, 174) = 9.31, p < .001). We found that better number knowledge 

was associated with better performance on the probe trials (b = .045, SEb =.014. ß = 38, p 

< .01) and there was also a significant interaction (b = -.05, SEb =.02. ß = -37, p < .05) 

consistent with our finding that the effect of Number Knowledge on Probe trial 

performance was dependent on Set Size (i.e. Experiment). In particular, when presented 

with small sets (Experiment 1) each increase in Knower Level resulted in a .05 increase 

in performance on Probe trials. We reversed our dummy coding of the Experiment 

Figure 3.6. Scatterplot displaying the relationship between participants’ Number 
Knowledge (measured through Give-N task) and their percentage choosing the 
number match on the Number vs. Area Task (using unstandardized residuals), when 
controlling for age on Experiments 1 and 2.  
Data points have been jittered to reduce overplotting. 
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variable to determine whether Number Knowledge was still significant for large Sets 

(Experiment 2), and found this was not the case (b = .01, SEb =.02. ß = .09, p = .48). This 

confirms previous findings indicating that Number knowledge only had an effect on 

Probe trial performance, when the Probe trials included small sets (See Figure 3.6)12. 

  

																																																								
12 A third experiment was conducted with adults, testing them on the Pictures Task and 
the Small and Large version of the Area Choice task, along with a few measures of math 
abilities. This Experiment generally showed high levels of SFON on all tasks, although 
again a significantly greater likelihood of selecting the number match for small, 
compared to large, sets. See Supplementary materials for a full report of Experiment 3.  
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Variable B Std. Error ß t p R2 R2 change 

Step 1      .02 .02 

   Age .05 .03 .14 1.84 .07   

Step 2      .16 .14 

   Age -.01 .03 -.04 .34 .74   

   Experiment -.16 .03 -.33 4.70 <.001   

   Give-N .03 .01 .25 2.42 <.05   

Step 3      .18 .02 

   Age -.004 .03 -.01 .12 .90   

   Experiment -.01 .08 -.03 .18 .86   

   Give-N .05 .01 .38 3.19 <.01   

   Experiment x Give-N -.05 .02 -.37 2.11 <.05   

 
 
 
 
 
 
 

Table 3.5. Regression with Probe Trials as our dependent measure. Experiment 1 (Small sets) was coded as 0, and Experiment 2 (Large 
sets) was coded as 1.  
*p< .05, **p<.01*** p<.005 
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General Discussion 

The aim of the current study was to examine the relationship between four 

different SFON measures that have been used in the literature to determine 1) whether 

these measures were correlated with one another and 2) which measure of SFON 

correlated most strongly with Number Knowledge. Secondly, we were interested in 

comparing preschooler’s SFON for small and large sets by examining whether there were 

similar levels of SFON when presented with small (Experiment 1) and large (Experiment 

2) sets in the Area Choice task. Given the evidence showing that SFON, tested in the 

preschool years, is predictive of later long-term measures of math achievement (Hannula-

Sormunen et al., 2015, 2010; McMullen et al., 2015), it is important that we get a better 

understanding of what the limits of SFON are to further our understanding of its 

relationship with other numerical and mathematical abilities.  

Our first research question pertained to how performance on different SFON tasks 

may be related, allowing us to measure how context and task demands affects children’s 

tendencies to pay attention to number. We tested children on three different tasks 

(Imitation Task, Picture Task, and Number vs. Area Choice Task) and found that none of 

our SFON tasks correlated with one another (controlling for age). The only exception was 

that when breaking down performance on the Mailbox task down by whether children 

had given a verbal or behavioral response, verbal responses alone correlated with Picture 

task performance in both Experiment 1 and 2, and the behavioral responses correlated 

with the Area Choice task in Experiment 1 only. These findings therefore replicate to 

some extent previous research showing that performance on the Picture and Imitation 
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tasks as a whole do not correlate with one another (Batchelor et al., 2015; Rathé et al., 

2016).  

Instead, these findings suggest that the difference in response modes of the three 

tasks may play a role in the level of SFON children show. Although the Picture Task 

relied entirely on verbal expression of numerical information, the Mailbox task allowed 

children to express their attention to number either verbally or through behavioral 

imitation. Our finding that only verbal responses, but not behavioral responses, in the 

Mailing task correlated with Picture task performance, and that verbal responses made up 

a very small percentage of numerical responses in the Mailing task (in Experiments 1 and 

2 respectively, 84% and 93.9% of numerical responses were behavioral, not verbal), 

suggests that the verbal nature of the Picture Task may hinder children’s expression of 

SFON. It seems likely that being able to talk spontaneously about number is a skill that 

develops after the ability to imitate or act using number (as in the Mailbox or Choice 

Task). This is in line with other literature on children’s use of gesture for example, 

showing that while children may not verbally be able to express any emerging knowledge 

or skills that they are learning, they may be able to express it using a behavioral mode 

like gesture (Goldin-Meadow & Breckinridge Church, 1986). In fact, when adult 

participants (who are significantly more verbal than children) were asked to perform the 

same SFON tasks (see Supplementary materials for Experiment 3, our adult participants), 

we found adults were significantly more likely to talk about number than our child 

participants, suggesting that the verbal limitations of the task may have played a role in 

the low numerical performance. As such, on top of measuring SFON, the different SFON 

tasks may also capture individual differences in other basic cognitive skills related to 
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response mode. One way to investigate this possibility would be to include a test of 

children’s verbal abilities in future studies using the Picture task to determine to what 

extent children’s verbal proficiency may impact their ability to display SFON in this task.  

Another, non-mutually exclusive possibility for why participants performed so 

differently on these different tasks is that the different SFON measures may not measure 

the same underlying SFON construct. When we take a look at the three existing measures 

of SFON and what they have in common and where they differ, it becomes clear that 

there seem to be some discrepancies in what they are measuring. For example, it is 

unclear what role accuracy plays in SFON. In the Mailbox task (apart from the rare case 

where children used number words during the task) the measure of SFON is also an 

accuracy measure. Children who may have been attending to number, but fail to 

accurately imitate the correct number of actions, would not be considered to be engaging 

in SFON. While this is also the case in our Choice task, it was less of an issue because 

the particular numbers presented were expected to be within the range of values that 

children can track and compare using basic estimation abilities (Halberda & Feigenson, 

2008). On the contrary, in the Picture task, regardless of whether children’s number word 

use refers to the correct amount, as long as they use number words, they are given credit 

for engaging in SFON. Although, this was not an issue in our study (since participants 

attended less to number overall on the Picture task), this may be masked by the high 

verbal demands of this task.  

Our second research question concerned how set size may impact the likelihood 

of a child demonstrating SFON. Prior research has only tested SFON with small sets (<4 

items), sets that preschoolers are typically able to enumerate and have the number words 



	105	

for, making it difficult to determine whether SFON is a general numerical construct, or 

specific to enumerable numerosities. If, as Hannula-Sormunen and collegues (2010) 

claim, SFON is general attention to discrete numerical information, then we should 

expect two things: (1) SFON should vary very little across set sizes and (2) SFON for all 

set sizes, small and large alike, should relate to number knowledge. To explore these 

possibilities, we presented children with an Area Choice Task involving small sets 

(Experiment 1) and large sets (Experiment 2), allowing us to compare levels of SFON 

across set sizes. In contrast to predictions of a single construct of SFON, preschooler’s 

SFON (as measured by probe trial performance on the Area Choice task) for small sets 

(1-4 items) was significantly greater than that for large sets (10-40 items). Moreover, 

regression analyses revealed that number knowledge was only associated with SFON for 

small sets, but not large. 

These findings suggest that children’s number knowledge may play an integral 

role in SFON, at least in the preschool years. Support for this idea comes from research 

suggesting that language plays an important role in solidifying certain concepts, and even 

remembering them across time. For example, in the domain of color, participants perform 

better at color discrimination tasks (Winawer et al., 2007) and have better memory for 

colors (Uchikawa & Shinoda, 1996) when the colors they are tested on have distinct 

linguistic labels (e.g., shades of green vs. blue), compared to when they are part of the 

same linguistic category (e.g., shades of blue). Similarly, in the domain of number, 

societies such as the Amazonian Pirahã tribe that speak a language that does not have 

words to represent exact numerical quantities show deficits in remembering the exact 

cardinality of large sets, suggesting that language for number may be particular useful in 
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terms of memory and attention for number concepts (Frank, Everett, Fedorenko, & 

Gibson, 2008).  

Relating these findings to what we know about SFON, it is possible that in the 

preschool years when children are learning number words, these words allow for the 

encoding of numerical information in their memory, and this improved memory for, and 

awareness of, number may be the primary driver of individual differences in SFON at 

this age. Thus it is possible that at least in the preschool years, SFON when assessed may 

be in part a reflection of a child’s ability to encode number exactly – that is, SFON may 

be better described as a proxy for children’s enumeration abilities - but not their 

spontaneous focusing on any numerical information (i.e., children’s representation of 

large sets). Furthermore, this could mean that findings showing that SFON in the early 

preschool years (Hannula-Sormunen & Lehtinen, 2005) predicts later math ability, may 

be accounted for by the fact that number knowledge predicts later math ability (e.g., 

Libertus, Feigenson, & Halberda, 2011). Future studies should explore whether the 

relationship between SFON and later math abilities holds when controlling for 

differences in number knowledge.  

Importantly however, our findings cannot make any claims about the relationship 

between SFON and enumeration in older children. Since, by the age of 5-6, children 

typically have already mastered the cardinal principle, individual differences in SFON for 

these older children may still reflect a true spontaneous attention to number and/or a 

mastery of verbal counting. Given that we only tested 2.5 – 5-year-olds, an age at which 

children are in the process of learning the meaning of number words and the cardinality 

principle, we cannot make claims regarding SFON for older children.  
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One surprising finding was that we did not replicate previous research showing a 

relationship between children’s performance on the Imitation task (i.e., the Mailbox 

Task) and their number knowledge (Hannula-Sormunen & Lehtinen, 2005; Hannula et 

al., 2007). We believe this can be explained by a difference in our measures of number 

knowledge. Hannula-Sormunen and Lehtinen (2005) measured cardinality using the 

“caterpillar task” which presents children with caterpillars with a different number of 

legs, and they are then asked to bring “just enough” socks for all the legs. This task in 

many ways resembles an imitation or choice task, since children are first presented with 

the quantity (e.g., number of legs) that they then need to imitate (e.g., number of socks). 

On the other hand, our measure of cardinality was the more commonly used Give-N task 

where children are verbally instructed to put a certain number of ducks into a pond, 

however this task cannot be solved through imitation or matching. It is therefore possible 

that the structural similarity between the caterpillar task and the SFON imitation task 

could explain why Hannula-Sormunen and Lehtinen (2005) found a relationship between 

number knowledge and the Imitation task, while we did not.  

In light of our findings, how should we interpret past research showing that SFON 

relates to children’s later arithmetic and math achievement (Hannula-Sormunen & 

Lehtinen, 2005; Hannula-Sormunen et al., 2010)? Although we do not doubt that the 

ability to attend to number plays an important role in children’s numerical development, 

given that preschool-aged children only demonstrate SFON for small sets once they have 

reliably learned how to track number via the counting process, it is clear that acquiring a 

symbolic system (i.e., language) that encodes number plays a very important role in what 

children pay attention to. In fact, we propose that in preschool, SFON is not a truly 
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independent construct from cardinal knowledge and enumeration and that instead it is a 

reflection of an ability to encode exact number (i.e., small sets). In that case, the 

relationship between SFON and later math ability may be driven by the strong correlation 

between number knowledge and math ability. Furthermore, the fact that task demands 

played such an important role in whether or not children demonstrated SFON, further 

supports our hypothesis that SFON as has been tested in the current literature, does not 

seem to be a distinct construct from number knowledge in the preschool years.  

In breaking down how different measures of SFON relate to children’s number 

knowledge, we have gained a better understanding of some of the informal and self-

initiated practices that young children engage in with respect to number and math. We 

hope that this in turn can inspire educators to develop tools and practices that continue to 

promote this spontaneous interest in number and math later in children’s academic career.  
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Supplementary Materials 

Our findings from Experiments 1 and 2 that children are more likely to focus on 

number when presented with small sets compared to large sets, suggest that children may 

pay attention to number when presented with numbers that they know and have number 

words for. If that is the case, then one would expect adults, who are able to enumerate 

and have number words for both small and large sets, to show SFON equally for small 

and large sets. Therefore, in Experiment 3, we tested adult participants on both the small 

and large Area Choice task, so we could determine whether adult participants would 

show differential SFON based on set size. We also tested our adults on the SFON Picture 

Task. In Experiments 1 and 2, we saw no correlation between our Picture task and any of 

the other SFON tasks. Since it is possible that this lack of correlation is due to the fact 

that the Picture task is a verbal task, and therefore is more demanding on children who 

have limited vocabularies, we wanted to compare whether adults would not just show 

higher levels of SFON, but also whether we would see a correlation between adult 

performance on the Picture task and the choice tasks. Lastly, we included two math 

measures for adults to complete. Since previous studies have found that SFON in children 

is predictive of their later math abilities, we wanted to investigate whether this 

relationship may also hold in adults. 

Methods 

Participants 

Twenty-five undergraduate students (Mean age = 19.13, SD = 1.04, 20 Females) 

participated in this study. An apriori power analysis with G*power (Faul, Erdfelder, 

Buchner, & Lang, 2009) indicated that we would need 20 subjects to have 80% power for 
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detecting a difference in performance between the small and large Number vs. Area task, 

with the traditional .05 statistical significance criteria and an effect size of .66 (the same 

effect we found comparing Experiment 1 and 2 Probe trials with our preschoolers). All 

participants completed all tasks, except one participant who did not complete the picture 

task due to experimenter error. 

Design 

Participants completed seven tasks: Synonym Task (a distractor task), Picture 

Task (identical to Experiment 1 and 2), Small Area Choice Task (identical to Experiment 

1), Large Area Choice Task (identical to Experiment 2), Subjective Numeracy Task, 

Math Fluency Task, and Applied Problems. The tasks were completed in the above order 

except that the order of the two Area Choice Tasks (Small vs. Large) was 

counterbalanced across participants.  

Measures 

All tasks were identical to Experiments 1 and 2 except for the following:  

Synonym Task. This task was used as a distractor task. Since some participants 

may have been familiar with the focus of research in our lab (numerical cognition), 

participants were first given a non-numerical task to make it seem as though number was 

not the primary focus of the study.  

The synonym task is subtest from the Oral Vocabulary section of the Woodcock 

Johnson Test of Achievement (Woodcock, McGrew, & Mather, 2001). During this task, 

participants were presented with 9 words and were asked to read the word out loud and 

then to provide a synonym for that word. Since this was a distractor task, performance on 

this task was not recorded. 
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Picture Task. We presented adults with the same 3 pictures, in the same order, as 

Experiments 1 and 2. However, since pilot testing revealed that adults did not need more 

than one prompt to describe the pictures in great detail, we changed the instructions for 

adult participants so that they were given a time limit of 30 seconds to describe 

everything they saw on the picture. We recorded both whether participants used number 

words on each of the three pictures as well as the quantity of number words that were 

used. 

Area Choice Tasks. Participants were presented with both the Small version of 

the task (identical to the Choice task of Experiment 1) and the Large version (identical to 

the Choice task of Experiment 2) separately. Since the task order was counterbalanced 

across participants, adults were given instructions only for the first Area Choice task that 

they completed and these instructions were identical to the instructions given to children 

in Experiments 1 and 2. For the second task, participants were told that they would “do 

another matching task that is a little different”. 

Subjective Numeracy Scale (SNS). To measure participants’ level of confidence 

with mathematical tasks as well as their preference for numerical information over prose 

information, we administered the SNS, a measure that has been validated and found to 

correlate well with objective measure of mathematical achievement (Fagerlin et al., 

2007). This scale presents participants with 8 questions, with the first four questions 

measuring how able and comfortable they are with everyday scenarios that involve 

number or mathematical calculations (e.g. “How good are you with calculating a 15% 

tip?”) and the second set of four questions measures participants’ preference for 

information presented numerically or with prose (“When people tell you the chance of 
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something happening, do you prefer that they use words (“it rarely happens”) or numbers 

(“there's a 1% chance”)). Participants responded on a 1 – 6 scale where low scores (1-3) 

signified less comfort with numerical representations while larger scores (4-6) suggest 

that participants preferred numerical information. A separate score for participants’ 

ability/comfort and preference for number is also calculated. 

Math Fluency Task. This was another subtest of the Woodcock Johnson Test of 

Achievement (Woodcock et al., 2001) and it measured participant’s abilities to solve 

simple arithmetic problems involving addition, subtraction and multiplication. The 

subjects were given a double-sided piece of paper with 160 questions and were given 3 

minutes to complete as many problems as possible. Participants’ accuracy on the 

problems as well as the total amount of problems completed was recorded.  

Applied Problems. We modified this from the Applied Problems subtest of the 

Woodcock Johnson Test of Achievement (Woodcock et al., 2001), a subtest that is 

designed to measure participants’ ability to solve complex word problems. The problems 

are organized in order of difficulty, with the first few questions designed to be 

challenging for children but easy for adults. Therefore, since pilot testing revealed that 

adult participants were performing at ceiling on the first set of questions, to reduce the 

number of questions participants would have to answer, we chose to only test participants 

on the 8 last questions of the test (the 8 most difficult questions). Participants were 

instructed to complete all problems and were told that they would be timed. In our 

analyses, we measured performance both by looking at percent correct as well as the time 

taken to complete the questions. If participants had not completed all problems after 15 

minutes, they were stopped. The questions included real life scenarios that required 
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mathematical computations to complete. An example question is: “Doug works part time 

at a music store. As an employee, he received a discount of 10 percent on all purchases 

he makes. How much does he have to pay for a CD that sells for six dollars and ninety 

cents?” 

Data Processing & Coding  

Since we were interested in examining more generally how adult math 

performance correlated with SFON, but not how any particular math task (Math Fluency 

or Applied Problems) related to SFON, we created a combined Math Score by 

transforming raw scores on the two tasks into z-scores, and then averaging across those 

the z-scores. We used this combined Math score in further analyses 

Results and Discussion 

Measures of SFON 

Picture Task. Of the 23 participants that completed this task, only 2 participants 

did not use number words on all three trials. Given these ceiling effects, it was more 

useful to examine the average quantity of number words used . On average, summed 

across the three trials, participants used 14.74 number words (Range: 6 – 24).  

Area Choice Tasks. For the Standard trials, all participants got 100% of trials 

correct on the Small Choice Task and performed slightly less well, but still significantly 

above chance on the Large Choice Task (93.1%; t(24) = 15.25, p < .001). However, 

performance was significantly better on the Small compared to the Large Choice task 

(t(23) = 2.46, p < .02). Furthermore, for the Probe trials, participants matched on number 

significantly above chance for both the Small (98.6%; t(24) = 50.61, p < .001) and Large 

Choice Task (73.6%; t(24) = 6.82, p < .001), but once again participants were more likely 
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to select the numerical match on the Small compared to the Large Choice Task (t(23) = 

6.66, p < .001). 

Relations between our three SFON Measures. None of our measures of SFON 

were significantly correlated with one another (p’s >.13) 

Measures of Mathematical Ability 

SNS. The maximum score on the SNS was 40 points, indicating a high level of 

comfort with numerical information in everyday situations. On average participants 

scored 26.56 (Range:14-33), which suggests a slight preference for numerical over non-

numerical information in everyday situations.  

Math Fluency. Of the 160 problems, on average participants attempted 133.08 

problems (Range: 96 - 160) in the 3-minute allotted time period, with 4 participants 

completing all 160 problems. When only taking into account the number of problems 

participants attempted, we see that the average performance was very high (95.49%). 

Applied Problems. Participants completed all problems and on average got 

52.08% of problems correct (Range: 25.00 – 75.00%). In terms of time, participants on 

average took 8mins 28secs to complete the 8 problems. 

Relationship between SFON and Mathematical Ability  

There were no significant correlations between our two Choice Tasks and our 

combined Math score. There was however a negative relationship between the quantity of 

number words used in the Picture Task and adult Math performance (r = -.44 p = .03). No 

other significant correlations were found.  

Overall, we find that performance on neither the small or large choice tasks 

correlated with adult math scores. Given our findings in Experiment 1 and 2 that children 
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showed greater SFON when they had more number knowledge (higher Give-N score), we 

expected that since adults have knowledge of both small and large sets, that we would see 

a positive correlation between both the small and large choice task and math ability. 

However, given that adults were at ceiling in the Small Choice task and performing very 

highly on Large Choice task, this may explain why we did not find any correlations here.  
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IMPLICATIONS AND FUTURE DIRECTIONS 

The ability to represent quantities is extremely important for our day-to-day 

functioning. We use our ability to track quantities to judge how much food to buy at the 

grocery store, to notice how fast we are driving, or to determine whether we have enough 

time to finish our favorite TV show. Although many of these actions have become 

automatic to us as adults, how do young infants and children represent quantities in the 

world and how salient are different quantities to them? Furthermore, can adults track 

number alone or must they rely upon cues from continuous quantities as well? These 

questions have been of interest to some of the first developmental psychologists such as 

Piaget, but to this day continue to attract researchers in the field of numerical cognition.  

One reason the nature of our quantitative representations has interested so many 

researchers is that number is the only quantity we learn about extensively through formal 

training in school, and children’s abilities to represent discrete number at an early age is 

predictive of later math achievement (Geary, 2011; Jordan, Kaplan, Locuniak, & 

Ramineni, 2007; Starr, Libertus, & Brannon, 2013b). Furthermore, math achievement has 

been shown to be one of the most important predictors of later academic success (Duncan 

et al., 2007; Romano, Babchishin, Pagani, & Kohen, 2010), yet many children fall behind 

in math achievement in school (Byrnes & Wasik, 2009; Chatterji, 2005; Cross, Woods, & 

Schweingruber, 2009). To develop tools that can help children struggling in math, it is 

important not only that we understand how we represent quantity at an early age, but also 

how these representations of quantity may change throughout development.  
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Aside from discrete number which children are exposed to extensively through 

formal education, there are a variety of continuous quantities that we can also represent 

such as size, cumulative area, time, or density, for example. Furthermore, there is 

naturally strong correlation between discrete and continuous variables such that a basket 

of 10 apples will not only be more numerous than 5 apples, but will also have a larger 

cumulative surface area and will also be more densely packed in a basket. Due to the fact 

that these quantities are so highly correlated with one another, researchers have 

questioned the extent to which we track these quantities independently of one another. In 

particular, proponents of the neo-piagetian “Sense of Magnitude” theory claim that 

because continuous quantities are “perceptual” in nature (they can be represented directly 

from the percept) they must be much easier to track than number, a quantitative 

dimension thought to be tracked independent of perceptual qualities of the display (i.e. 

number is abstract in nature; Gebuis & Reynvoet, 2012; Leibovich, Katzin, Harel, & 

Henik, 2017). Due to this, Sense of Magnitude theorists suggest that young infants who 

have yet to be formally taught about number, should only be able to discriminate 

quantities using continues cues because continuous quantities do not require higher order 

cognitive processes needed to represent abstract number. Then, once infants develop an 

understanding of the correlation between discrete and continuous quantities, often after 

formal education, children and adults learn how to disentangle number from continuous 

quantities. Importantly though, even though older children and adults can use number to 

represent quantity, they will only do this as a last resort. Thus, two important implications 

of this theory are that 1) infants, children and adults should represent number with less 



	118	

accuracy than continuous cues and 2) when presented with both discrete and continuous 

quantities, number should be less salient. 

The aim of this dissertation was to investigate these two implications of the Sense 

of Magnitude theory as a way to determine whether this theory accurately models how 

humans represent quantity at different stages of development. To do this, I presented 

three separate projects, each examining a different stage in development. In Project 1, I 

investigated infant abilities to discriminate continuous quantities (specifically element 

area) and compared these abilities to previous work on infant number discrimination 

abilities. If continuous quantities are easier to represent than number in infancy, then we 

would not only expect infants to discriminate element area with similar (or better) 

precision than number, but we would expect a parallel increase in acuity with 

development, similar to what we see in number. Not only did we replicate previous 

findings showing that 7 month olds cannot discriminate a 1:3 ratio of change in element 

area (when this same age group has successfully discriminate a 1:2 ratio in number; Xu & 

Spelke, 2000) by 12 months of age our infants still failed to discriminate this large ratio 

of change. Thus, not only are infants less accurate at representing element area compared 

to number, but even by 12 months of age, infant element area tracking capacities are not 

anywhere near that of number.  

Next, in Project 2 we continued to investigate human abilities to represent 

continuous quantities by investigating the extent to which discrete quantity may interfere 

with adult’s judgements of continuous quantity. If continuous quantities are truly easier 

to represent and more salient than number, then conflicting numerical information should 

not affect adult abilities to make cumulative area discriminations. In two experiments, we 
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found adult cumulative area discriminations to be similar to that of number – a finding in 

contrast to Sense of Magnitude theorists positing that continuous extent discriminations 

should be relatively more precise than that of number. Moreover, numerical information 

interfered with cumulative area judgements such that as the number of items in the 

display increased, adults performed progressively worse. Together, these findings suggest 

that number is at least as salient as continuous variables and thus, together with our 

findings from Project 1, we have found no evidence to suggest that continuous quantities 

are easier to represent than number.  

Lastly, in Project 3, I addressed the second implication of Sense of Magnitude 

theory which is that continuous quantities should be more salient than number. To 

examine this question of the relative salience of different quantities, I assessed 

preschoolers on Spontaneous Focusing on Number (SFON) tasks, which examine 

children’s tendencies to spontaneously focus on number without being prompted. The 

previous literature on SFON has shown that number is very salient to preschool aged 

children, with levels of SFON correlating with later math achievement (Hannula-

Sormunen & Lehtinen, 2005; Hannula-Sormunen et al., 2010), however few SFON 

investigations have pitted number against another quantitative dimension. In two 

experiments, we found that when number was pitted against cumulative area, preschool 

aged children found number to be more salient than cumulative area but only when 

presented with small sets of items (1-4 items; Experiment 1). Thus, again contradicting 

claims of SoM, we find cumulative area to be less salient than number to young 

preschoolers, at least for small sets. Notably, when presented with larger arrays (10-40 

items; Experiment 2) children showed no preference for either number or cumulative area 
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suggesting that – at least in the preschool period – SFON may simply reflect a child’s 

ability to enumerate particular set sizes. Relating these findings back to Sense of 

Magnitude theory, Project 3 found no evidence to suggest that continuous quantities are 

more salient to children than number. When number was directly pitted against 

cumulative area, preschool aged children did not show a preference for cumulative area; 

in fact, when presented with small sets, children showed a strong preference for number.  

Building on previous work that has investigated how humans at different stages of 

development represent quantity, these three projects demonstrate that discrete number is 

represented more accurately, and is more salient to infants, children and adults than are 

most continuous quantities. These findings, along with previous findings in the numerical 

cognition literature, undermine claims made by proponents of the Sense of Magnitude 

theory stating that humans at all stages of development are better at, and prefer to attend 

to continuous quantities. Instead our findings align more closely with the idea that we are 

born with a “sense of number” (Dehaene, 1997; Feigenson, Dehaene, & Spelke, 2004). 

Evidence for this comes from studies that have tested infants (even newborns, Izard, 

Sann, Spelke, & Streri, 2009) on their ability to discriminate number across visual (Xu & 

Spelke, 2000; Xu et al., 2005) or auditory displays (Lipton & Spelke, 2003), to match 

number across modalities (Coubart et al., 2014; Izard et al., 2009), and to distinguish 

increases in number from decreases in number (Brannon, 2002; de Hevia & Spelke, 

2010).  

An earlier theory proposed by Spelke, in fact suggests that number is one of the 

five core knowledge systems that we are endowed with from birth (Kinzler & Spelke, 

2007; Spelke, 2000, 2003, 2017). Spelke proposed that all humans, regardless of culture, 
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are equipped with five core systems that are innate and evolutionary ancient, that are the 

basis for any other knowledge we may gain throughout our experiences in the world. 

Under this view, our ability to discriminate number from an early age is due to the fact 

that we are born with a core knowledge system for number (an approximate number 

system) that is present across cultures and species. Then, as we are exposed to the natural 

language in our culture, our approximate sense of number develops into a more exact 

sense of number. Importantly though, the extent to which we develop an understanding of 

exact number is fully dependent on our culture and its natural language. That is, while the 

core systems are not unique to humans, the development of an exact numerical 

representation is, and our species is able to develop this ability specifically because we 

are the only species that have a developed language faculty.  

Evolutionary Perspective: why have we developed a sense of quantity 

Why might humans have evolved the ability to track quantity? Taking a look at 

the animal literature may be particularly useful here as it suggests that there are at least 

two important benefits of having a sense of quantity. The first is that it allows human and 

non-human animals to maximize food intake that is crucial for survival. Studies that have 

tested animals on their ability to choose the larger of two sets of foods items have shown 

that dogs (Ward & Smuts, 2007), coyotes (Baker, Shivik, & Jordan, 2011) and 

orangutans (Call, 2000) reliably choose the set that is largest in both number and 

cumulative area. Furthermore, studies that have tried to determine which quantitative cue 

non-human animals use when making quantitative discriminations in food related 

contexts have found that although many animal species can use number alone to make 

food comparisons, they are often biased by other continuous cues that may be present, 
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such as the size of the largest individual item in a set (Chimpanzees: Beran & Rumbaugh, 

2001; Guppies: Lucon-Xiccato, Miletto Petrazzini, Agrillo, & Bisazza, 2015) or even the 

amount of movement of the prey (Salamanders: Krusche, Uller, & Dicke, 2010). 

A second evolutionary important reason for having developed a sense of quantity 

is for the purpose of avoiding predators or hunting for prey. Angelfish will choose the 

larger of two shoals of conspecifics to join because this is more likely to provide safety 

against predators (Gómez-Laplaza & Gerlai, 2011). Female African Lions are less likely 

to approach and contest another social group when they hear calls of three intruding lions 

nearby, as opposed to only one, suggesting that they use number to make assessments 

about the safety of their approach (McComb, Packer, & Pusey, 1994). Similarly, male 

chimpanzees will make their decision on whether to approach based on their relative 

numbers compared to an intruding group of chimpanzees (Wilson, Hauser, & Wrangham, 

2001). Lastly, counting even plays a role in the egg-laying practices of American coots 

(Lyon, 2003). American coots engage in brood parasitism, the practice whereby female 

birds lay some of their eggs in the nests of conspecifics. In protection of their own brood, 

research suggests that coots will count their eggs, discounting ‘parasitic’ eggs, as a way 

to make decisions about how many future eggs to lay. Thus, the ability to visually keep 

track of the number or surface area of the eggs in the nest is crucial for decisions related 

to clutch sizes, which in turn has important consequences for the fitness of the American 

coot. Therefore, it is clear that for social human and non-human animals, representing 

quantity is crucial for survival. Not only does it allow animals to keep track of the 

relative sizes of different social groups, it allows them to make efficient choices when 

hunting for prey, all to ensure the survival of their species. Importantly, in the context of 
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tracking predator/prey relationships, continuous quantities are significantly less important 

than relative number (i.e., the number of approaching lions is more important than the 

duration of their calls), perhaps suggesting that social relationships may underlie the 

evolution of discrete number tracking abilities in humans.  

The role of education in our preference for number 

Even if Spelke’s core knowledge theory is correct and our ability to represent 

number (at least approximate number) is innate, it is likely that the emphasis on number 

in most formal education systems further drives the preference for number later on in 

development. In fact, my finding in Project 3 that children’s knowledge of number was 

correlated with the children’s preference for number over cumulative area suggests that 

children’s preference for and knowledge of number go hand in hand. Furthermore given 

that a myriad of studies continue to find a strong relationship between children’s number 

understanding or counting skills in the preschool years and their later math achievement 

(Aunio & Niemivirta, 2010; Jordan et al., 2007; Jordan, Kaplan, Ramineni, & Locuniak, 

2009), it is not surprising that such a strong emphasis has been put on developing 

counting skills in the United States common core standards for example (Common Core 

Standards initiative, 2010).  

Unfortunately, attention to number early in development can be at the expense of 

other important quantitative information. For example, recent work has revealed 

children’s overt attention to number may compromise their abilities to track non-

symbolic proportional information – a skill necessary for the later acquisition of formal 

fractions (Boyer & Levine, 2015; Boyer, Levine, & Huttenlocher, 2008; Hurst & Cordes, 

2018; Jeong, Levine, & Huttenlocher, 2007). For example, in non-symbolic proportional 
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matching tasks (e.g. the “Wally-Bear Juice Task” in which children have to find the cup 

that has the same proportion of juice/water as a target cup), children are more 

successfully at finding the correct match when the non-symbolic fraction (e.g. 4/6) is 

depicted continuously (e.g. the cup has 2/3 juice and 1/3 water) versus discreetly (e.g. the 

cup would have 4 juice pieces and 2 water pieces; Boyer & Levine, 2015; Boyer et al., 

2008; Hurst & Cordes, 2018). This discrepancy in performance has been attributed to the 

fact that children are biased towards number in discrete situations (they will count the 

pieces) at the expense of proportional information. Although various hypotheses have 

been put forth as to why this bias may exist (e.g. over-emphasis of number in early 

education or under-emphasis of proportional information), it is clear that this strong 

preference for number is not always helpful. It seems therefore that a combination of an 

innate system for number along with our educational system that strongly emphasizes 

number, even to the detriment of developing other quantitative skills, explains why 

humans, from infants to adults, show such a strong preference for number over other 

quantitative information.  

Future Directions: The origin of individual differences in number sense 

 The current dissertation has highlighted just how attuned humans of all ages are 

to number in their environment. Yet, the reality is that there are great disparities in math 

proficiency in children even as early as first grade. This begs the question at what point in 

a child’s formal or informal education, this gap in number and math understanding 

emerges. Only one study has directly examined the relationship between infant’s early 

number sense and how this relates to their mathematical achievement years later, finding 

that number sense at 6 months predicted math achievement at 3 years, even when 
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controlling for general intelligence (Starr et al., 2013b). What this study was not able to 

address, however, is what led to these individual differences at 6 months. Similarly, 

research in the domain of SFON suggests that individual differences in SFON in 

kindergarten was also predictive of mathematical achievement in second grade, although 

again it is not clear what the source of these early individual differences are (Hannula-

Sormunen, 2014; Hannula-Sormunen et al., 2010). One possibility, that we addressed in 

Project 3, is that SFON in the preschool years, may really be a proxy for children’s 

enumeration abilities, and thus perhaps the individual differences we see in SFON are 

really due to individual differences in children’s counting abilities. 

Future work would benefit from examining the source and onset of these 

individual differences, especially given that the ability to discriminate number is present 

even in newborns (Izard et al., 2009). One way to examine this question would be to 

track individual differences in number discrimination throughout infancy. Although we 

know that infants generally follow a steady developmental trajectory of improving in 

their number discrimination such that newborns can discriminate a 1:3 ratio, 6-month-

olds discriminate a 1:2 ratio and 9-month-olds discriminate a 2:3 ratio (Lipton & Spelke, 

2004; Xu & Spelke, 2000), it is unclear whether on an individual basis, infants start off 

with the same number sense at birth, and if infants that fall behind at some point in 

infancy, continue to stay behind in their number discrimination abilities a few months 

later. On the other hand, another non-mutually exclusive possibility is that the difficulties 

we see in math achievement in grade school develop in early childhood when children are 

being exposed to early number skills such as counting in the home and school 

environment. In fact, a myriad of studies have shown that there is a large discrepancy in 
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the quantity and quality of math talk in the home and at school (Elliott, Braham, & 

Libertus, 2017; Gunderson & Levine, 2011; Klibanoff, Levine, Huttenlocher, Vasilyeva, 

& Hedges, 2006; Rowe, Levine, Suriyakham, Gunderson, & Huttenlocher, 2010). 

Another possibility is that differences in the exposure to number and counting skills in 

the home and school already has an effect on young infant’s development of a number 

sense, and that this delay in reaching number discrimination milestones, affects their later 

math achievement. As such, it is not clear from the current research when these individual 

differences first occur which makes implementing successful interventions difficult.  

Conclusion  

In conclusion, this dissertation examined infant, child, and adult abilities to 

represent continuous quantities and the relative saliency of these continuous quantities 

compared to number. Not only did I demonstrate that infants and adults are poor at 

discriminating continuous quantities, adult representations of continuous quantities were 

affected by the presence of numerical information, suggesting that number is at least as 

salient as continuous quantity. Lastly, when pitted against each other, preschool aged 

children preferentially attended to number over continuous quantities. By examining 

these questions across development, and in combination with previous findings in the 

literature, I have shown not only that humans are not very accurate at representing 

continuous quantities but also that they do not find those perceptual cues to be 

particularly salient in their environment, undermining claims made by the prominent 

Sense of Magnitude Theory (Gebuis & Reynvoet, 2012a; Leibovich et al., 2017). By 

investigating these questions, I have provided insight into the way we represent and use 

different dimensions of quantity in our day to day lives, helping us understand how 
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individual differences in the salience of these early representations may affect the way 

children and adults perform on tests of mathematical achievement in later life.   
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