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Abstract: In this thesis we study the class of 3-manifolds that admit a compact exhaustion by

hyperbolizable 3-manifolds with incompressible boundary and such that the genus of the boundary

components of the elements in the exhaustion is uniformly bounded. For this class we give necessary

and sufficient topological conditions that guarantee the existence of a complete hyperbolic metric.
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Chapter 1

Introduction

A question of interest in low-dimensional topology is whether a manifold M admits constant curva-

ture geometric structures and what is the interplay between the geometry and the topology of M .

In low-dimensions people have been particularly interested in hyperbolic manifolds that is manifolds

admitting metrics of constant sectional curvature −1. Necessary and sufficient topological conditions

for the existence of a complete hyperbolic metric in the interior of a compact 3-manifold have been

known since Thurston’s proof that the interior of every atoroidal Haken 3-manifold is hyperboliz-

able (1982, [34]). The result was a step in Thurston’s program on the study of geometric structures

on 3-manifolds, known as the Geometrization conjecture, which was later completed by Perelman

(2003, [41, 42, 43]). These results give a topological characterization of compact 3-manifolds admit-

ting complete hyperbolic metrics in their interiors. On the other hand, by the Tameness Theorem

(2004, [1, 9]) hyperbolic 3-manifolds with finitely generated fundamental group are tame, that is

they are homeomorphic to the interiors of compact 3-manifolds. By combining Geometrization and

the Tameness Theorem we obtain a complete topological characterisation of hyperbolizable finite

type 3-manifolds. We have that an irreducible finite type 3-manifold M is hyperbolizable if and only

if M is the interior of a compact atoroidal 3-manifold M with infinite fundamental group. In this

thesis, we are concerned with the study of infinite-type 3-manifolds. Some interesting examples of

infinite-type 3-manifolds are Antoine’s necklace [2], i.e. an example of a non-tame embedding1 of a

Cantor set in S3, and Whitehead manifolds [61, 62] which were the first examples of non-tame open

3-manifolds. Throughout this work, M is always an oriented, aspherical 3-manifold. A 3-manifold

M is said to be hyperbolizable if it is homeomorphic to H3/Γ for Γ 6 Isom(H3) a discrete, torsion

free subgroup isomorphic to π1(M).
1The complement of the embedding in S3 is not tame.

1
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Geometric structures on infinite-type 3-manifolds are not widely studied. In particular, not much

is known about the topology of hyperbolizable infinite-type 3-manifolds. Nevertheless, some inter-

esting examples of such 3-manifolds are known (see [7, 53, 57]). In [57], they arise as geometric limits

of quasi-Fuchsian hyperbolic 3-manifolds. In [7], the authors constructed infinite-type 3-manifolds

by gluing together collections of hyperbolic 3-manifolds with bounded combinatorics via complicated

pseudo-Anosov maps. An essential element of their proof is the model geometry developed to prove

the Ending Lamination Conjecture [8, 39]. The boundedness comes from gluing together manifolds

from a finite list of hyperbolizable 3-manifolds with incompressible boundary. Other examples arise

in [53] as gluings of acylindrical hyperbolizable 3-manifolds with incompressible boundary and such

that their boundary components have uniformly bounded genus.

There are certain obvious obstructions to the existence of a complete hyperbolic metric. Indeed,

let M ∼= H3/Γ be an hyperbolizable 3-manifold, then by [23] Γ has no divisible subgroups (see Def-

inition 5.2.1), hence neither does π1(M). Moreover, by definition covering spaces of hyperbolizable

manifolds are hyperbolizable as well. We say that a manifold M is locally hyperbolic if every covering

space N �M with π1(N) finitely generated is hyperbolizable.

Given the known obstructions and inspired by the examples [7, 53], we introduce the class MB ,

where B stands for bounded, of 3-manifolds M so that:

(i) M admits a nested compact exhaustion {Mn}n∈N by hyperbolizable 3-manifolds;

(ii) for all n ∈ N, the submanifold Mn has incompressible boundary in M so that π1(Mn) injects

into π1(Mn+1);

(iii) each component S of ∂Mn has uniformly bounded genus, that is genus(S) ≤ g = g(M) ∈ N.

We denote by M the class of 3-manifolds satisfying (i) and (ii). It is natural to address hyper-

bolization questions in this class since, by (i) and (ii), every M ∈M is locally hyperbolic. Moreover,

one can also show that for every manifold M ∈MB π1(M) does not contain any divisible subgroup

(see Remark 4.3.19). Therefore, it is meaningful to look for a characterisation of hyperbolizable man-

ifolds in MB . Since MB already contains hyperbolizable 3-manifolds, namely the ones in [7, 53],

a first question is whether there exists non-hyperbolizable 3-manifolds in MB . In [16] we built an

example M∞ ∈MB answering the following question of Agol [17, 36]:

Question (Agol). Is there a 3-dimensional manifold M with no divisible subgroups in π1(M) that

is locally hyperbolic but not hyperbolic?
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However, the 3-manifold M∞ is homotopy equivalent to a complete hyperbolic 3-manifold. In

[15] we improved the above example by building a 3-manifold N ∈MB such that N is not homotopy

equivalent to any complete hyperbolic 3-manifold.

The main result of this paper is a complete topological characterisation of hyperbolizable mani-

folds in MB . Before stating the result we need to introduce some objects and notation.

For all M ∈ M, we construct a canonical maximal bordified manifold (M,∂M), see Definition

4.1.2, where each component of ∂M is a surface, not necessarily of finite type nor closed. To

construct M , we compactify properly embedded π1-injective submanifolds of the form S× [0,∞) by

adding int(S)× {∞} to M . The bordification M only depends on the topology of M . Specifically,

we have that int(M) is homeomorphic to M , and that any two maximal bordifications for M are

homeomorphic. We then say that an essential annulus (A, ∂A) → (M,∂M) is doubly peripheral if

both components of ∂A are peripheral in ∂M .

Our main result is:

Theorem 1. Let M ∈MB . Then, M is homeomorphic to a complete hyperbolic 3-manifold if and

only if the associated maximal bordified manifold M does not admit any doubly peripheral annulus.

1.1 Topology of manifolds in M

For all M ∈M, we construct a canonical maximal bordified manifold (M,∂M) where each compo-

nent of ∂M is a, not necessarily of finite type, punctured surface. The bordification M only depends

on the topology of M , specifically we have that int(M) is homeomorphic to M and any two maximal

bordifications for M are homeomorphic.

To obtain a bordification M of M we compactify properly embedded π1-injective products sub-

manifolds P : F × [0,∞) ↪→M , where F is a connected compact surface, by adding the boundary at

infinity int(F )×{∞} to M . Since we want to have a notion of a “largest”, or in some sense maximal,

bordification we don’t want to consider products P in which the base surface is a disk D2. This is

because by compactifying properly embedded rays to any bordification M we can always join a new

D2 boundary component. Similarly given a bordification M with components open boundary S1, S2

we do not want two cusps C1 ⊆ S1, C2 ⊆ S2 to be the side boundaries of a properly embedded

submanifold N of the form (S1×I)× [0,∞) since then we can compactify N joining S1 and S2 along

the cusps to get a new bordified manifold M
′ such that (M,∂M) ↪→ (M ′, ∂M ′).

Thus, we can describe a bordification as a pair M and a marking homeomorphism ι : M →

int(M). We also require that bordifications (M, ι) have no disk components in ∂M and that no two
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boundary components S1, S2 of ∂M contain two cusps neighbourhoods C1 ⊆ S1 and C2 ⊆ S2 that

co-bound with an annulus C connecting ∂C1 and ∂C2 as submanifold of the form (S1 × I)× [0,∞).

Definition 1.1.1. Given M ∈M we say that a pair (M, ι), for M a 3-manifold with boundary and

ι : M → int(M) a marking homeomorphism, is a bordification for M if the following properties are

satisfied:

(i) ∂M has no disk components and every component of ∂M is incompressible;

(ii) there is no properly embedded manifold

ψ : (A× [0,∞), ∂A× [0,∞)) ↪→ (M,∂M)

for A an annulus.

Moreover, we say that two bordifications (M,f), (M ′, f ′) are equivalent (M,f) ∼ (M ′, f ′) if we have

a homeomorphism ψ : M '−→M
′ that is compatible with the markings, that is: ψ|int(M)

iso' f ′ ◦ f−1.

We denote by Bor(M) the set of equivalence classes of bordified manifolds

To obtain a maximal bordification M of M ∈M, one takes a maximal collection Pmax
.= {Pn}n∈N

of properly embedded, pairwise disjoint π1-injective product submanifolds Pn : Fn × [0,∞) ↪→ M

such that no Pn is isotopic into Pm for n 6= m. Then, we have:

Theorem 4. Let M ∈MB be an open 3-manifold. Then, there exists a unique maximal bordifica-

tion [(M, ι)] ∈ Bor(M).

This maximal bordification will have the key property that all products submanifolds of the form

F × [0,∞) that are properly embedded in M are properly isotopic into collar neighbourhoods of

∂M .

Thus, to every M ∈ M we can naturally associate a 3-manifold with incompressible boundary

M . Then, for M one wants to recover a notion of characteristic submanifold, extending results

of Johansson and Jaco-Shalen [28, 32]. Intuitively a characteristic submanifold is the minimal

codimension zero submanifold N of M that contains, up to homotopy, all essential annuli and tori

of M . In our setting we define:

Definition 1.1.2. Given a 3-manifold M ∈ M let (M,∂M) be the maximal bordification, which

could be M itself, then we define the characteristic submanifold (N,R) ↪→ (M,∂M) to be a

codimension zero submanifold satisfying the following properties:
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(i) every Σ ∈ π0(N) is homeomorphic to either:

• an I-bundle over a compact surface with Σ ∩ ∂M the lids of the I-bundle;

• a solid torus V ∼= S1 × D2 with V ∩ ∂M a collection of finitely many parallel annuli or

a non-compact submanifold V ′ that compactifies to a solid torus such that V ′ ∩ ∂M are

infinitely many annuli;

• a thickened boundary torus T ∼= T2 × [0, 1] such that T ∩ ∂M is an essential torus and

a, possibly empty, collection of annuli that are parallel in ∂T or a non-compact manifold

T ′ that compactifies to a thickened boundary torus such that T ′ ∩ ∂M is an essential

boundary torus and infinitely many annuli;

(ii) ∂N ∩ ∂M = R;

(iii) all essential maps of an annulus (S1 × I, S1 × ∂I) or a torus T2 into (M,∂M) are homotopic

as maps of pairs into (N,R);

(iv) N is minimal i.e. there are no two components of N such that one is homotopic into the other.

and we prove:

Theorem 5. The maximal bordification (M,∂M) of M ∈ M admits a characteristic submanifold

(N,R) and any two characteristic submanifolds are properly isotopic.

The characteristic submanifold (N,R) of M is obtained by studying how the characteristic sub-

manifold (Nn, Rn) of each compact piece (Mn, ∂Mn) (see [31, 32]) change as we go through the

exhaustion. We construct the characteristic submanifold (N,R) by taking the components Σ of the

various (Nn, Rn) that remain “essential” throughout the exhaustion. By this we mean that for all

m ≥ n Σ is isotopic in Mm to to an essential submanifold of a component of Nm

Given a characteristic submanifold N of M we can make sense of the condition in Theorem 1 by

looking at the characteristic submanifold of the maximal bordification M . By a doubly peripheral

annulus C we mean a properly embedded annulus C in M such that both boundary components

of C are peripheral in the components of ∂M containing them. Then we only need to check the

presence of doubly peripheral annuli in the characteristic submanifold N of M .
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1.1.1 Hyperbolicity of manifolds in MB

Once we have completed the topological constructions we can show how the annulus condition is an

obstruction to hyperbolicity.

Definition 1.1.3. We say that an essential annulus C : (S1 × I, S1 × ∂I) → (M,∂M) is doubly

peripheral if both components of C(S1 × ∂I) are peripheral in ∂M .

Then our characterisation becomes:

Theorem 6. A 3-manifold M ∈MB admits a complete hyperbolic metric if and only the associated

maximal bordification M does not contain any essential doubly peripheral cylinder.

By using arguments similar to the ones developed in [16] we show:

Proposition. If M ∈ MB is hyperbolizable, then M cannot have a properly embedded doubly

peripheral essential annulus C.

The proof of Theorem 1 follows from ideas developed in [53]. For simplicity we will now describe

the case where M is acylindrical so that the characteristic submanifold is empty. This, is obviously

the case when the Mi are acylindrical themselves, as in [53], but one can also make examples in which

the Mn have non-trivial characteristic submanifold Ni. However, if M is acylindrical for all i there

exists ni such that Mi is contained in the acylindrical part of Mni
i.e. we have that Mi ⊆Mni

\Nni
.

Then, by choosing hyperbolic structures ρi : π1(M i) → PSL2(C) on all the M i’s and using

the fact that for pared acylindrical finite type hyperbolic 3-manifold (M,P) the algebraic topology

AH(M,P) is compact, see [56, 7.1], we get that the sequences:
{
ρj |π1(Mi)

}
j≥ni

have converging

subsequences. Then by picking diagonal subsequences we obtain:

Theorem 7. Given a manifold M ∈ M, if the maximal bordification M is acylindrical then there

exists an hyperbolic 3-manifold N and a homotopy equivalence f : M → N .

Then to conclude the proof of the main Theorem 6 we show:

Theorem 8. Given M ∈ MB and ϕ : M → N a homotopy equivalence with N a complete

hyperbolic manifold. If M is acylindrical, then we have a homeomorphism ψ : M → N homotopic

to ϕ.

1.2 Organisation

The remainder of this thesis is organised into three chapters. The first, Chapter 2, serves mainly

to summarise some well-known results about the geometry and topology of 3-manifolds and recall
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some facts and properties of hyperbolic 3-manifolds. In Chapter 3 we construct our two examples

of locally hyperbolic 3-manifold one of which is not hyperbolizable and the other is not homotopy

equivalent to any complete hyperbolic 3-manifold.

In Chapter 4 we study 3-manifolds inM and prove the hyperbolization result. After constructing

a canonical bordification and showing existence and uniqueness of a characteristic submanifold we

finally prove Theorem 6 for manifolds in MB .
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Chapter 2

Background

In this chapter we recall some well-known facts about the topology of 3-manifolds and the geometry

of hyperbolic manifolds.

2.1 Notation and Conventions

We use ∼= for homeomorphic, ' for homotopic and iso' for properly isotopic. By S ↪→ M we denote

an embedding of S into M while S #M denotes an immersion. By a proper embedding (S, ∂S) ↪→

(M,∂M) we mean an embedding of S in M mapping boundary to boundary and such that the

pre-image of compact sets is compact. All appearing 3-manifolds are assumed to be aspherical and

orientable.

By Σg,n we denote an orientable surface of genus g with n boundary components. We say that a

manifold is closed if it is compact and without boundary. Unless otherwise stated we use I = [0, 1]

to denote the closed unit interval and generally by A we denote an annulus A ∼= S1× I and with T2

a torus. By π0(M) we denote the set of connected components of M .

Given an open manifold M by an exhaustion {Mi}i∈N we mean a nested collection of compact

submanifolds Mi ⊆ int(Mi+1). By gaps of an exhaustion {Mi}i∈N we mean the connected com-

ponents of Mi \Mi−1. Given a manifold with non-empty incompressible boundary (M,∂M) and

a π1-injective embedding ι : N ↪→ M we have a decomposition of ι(∂N) into two submanifolds

meeting along simple closed curves. These two complementary submanifolds are the outer boundary:

∂outN
.= ι(∂N) ∩ ∂M and the closure of the complement: ∂intN

.= ι(∂N) \ ∂outN which we call the

interior boundary.

9



10 CHAPTER 2. BACKGROUND

2.2 Some 3-manifold Topology

We now recall some facts and definitions about 3-manifold topology. For more details on the topology

of 3-manifolds some references are [25, 26, 28].

Let M be an orientable 3-manifold, then M is said to be irreducible if every embedded sphere S2

bounds a 3-ball B3. Given a connected properly immersed surface S # M we say it is π1-injective

if the induced map on the fundamental groups is injective. Furthermore, if S ↪→ M is embedded

and π1-injective we say that the surface S is incompressible in M . By the Loop Theorem [26, 28]

if S ↪→M is a two-sided surface that is not incompressible we have that there is an embedded disk

D ↪→M such that ∂D = D ∩ S and ∂D is non-trivial in π1(S). Such a disk is called a compressing

disk.

An irreducible 3-manifold with boundary (M,∂M) is said to have incompressible boundary if

every map of a disk: (D, ∂D) ↪→ (M,∂M) is homotopic via maps of pairs into ∂M . Therefore, a

manifold (M,∂M) has incompressible boundary if and only if each component S of ∂M is incom-

pressible.

Definition 2.2.1. We say that an open 3-manifold M is tame if it is homeomorphic to the interior

of a compact 3-manifold M .

Definition 2.2.2. Given an irreducible, open 3-manifold M we say that a codimension zero sub-

manifold N
ι
↪→M forms a Scott core if the inclusion map is a homotopy equivalence.

If M is an orientable irreducible 3-manifold such that π1(M) is finitely generated we have that

a Scott core exists and is unique up to homeomorphism:

Theorem 2.2.3 (Scott’s Core,[44, 48, 49]). Let M be an orientable 3-manifold with π1(M) finitely

generated, then there exists an embedded compact submanifold ι : C ↪→ M such that ι is an

homotopy equivalence. Moreover, any two cores are homeomorphic.

This Theorem has two important corollaries: one is that finitely generated 3-manifold groups are

finitely presented. The second is that if M has π1(M) finitely generated then it has finitely many

ends and the components of ∂C give a bijection with the ends of M .

Let M be a tame 3-manifold with manifold compactification M . Given a Scott core C ↪→M ⊆M

with incompressible boundary we have that by Waldhausen’s cobordism Theorem [60, 5.1] every

component of M \ C is a product submanifold homeomorphic to S × I for S ∈ π0(∂C). We also

have a relative version:
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Lemma 2.2.4. Let ι : (N,A) → (M,R) be a Scott core for a non-compact irreducible 3-manifold

(M,R) that admits a manifold compactification M with R ⊆ ∂M . If ∂N is incompressible in M rel

R then M ∼= int(N) and N ∼= M .

Proof. Consider a component U in M \N . Then U corresponds to an end of M and since (N,A) ↪→

(M,R) is a homotopy equivalence we have that there exists S ∈ π0(∂N \ A) facing U . Since π1(S)

surjects onto π1(U) and S is incompressible in M by Waldhausen’s cobordism Theorem [60, 5.1] we

get that U ∼= S × I and the result follows. �

Definition 2.2.5. Given an open 3-manifold M with Scott core N ↪→ M we say that an end

E ⊆ M \N is tame if it is homeomorphic to S × [0,∞) for S ∼= ∂E ∈ π0(∂N). For the core N we

say that a surface S ∈ π0(∂N) faces the end E if E is the component of M \ C with boundary S.

It is a known fact that if an end E is exhausted by submanifolds homeomorphic to S× I then E

is a tame end.

Example 2.2.6. Not all manifold with a core are tame, see Example 2, 3 of [59].

Finally we say that a properly embedded annulus (A, ∂A) in a 3-manifold (M,∂M) is essential if

A is π1-injective and it is not boundary parallel, i.e. not isotopic rel ∂A into the boundary. Moreover,

a loop γ in a surface (S, ∂S) is similarly said essential if it is not homotopic into the boundary and

non zero in π1(S).

2.2.1 Haken Manifolds

An important class of 3-manifolds are Haken manifolds:

Definition 2.2.7. A compact, orientable, irreducible 3-manifold M is said to be Haken if every

connected component contains a properly embedded 2-sided incompressible surface.

Whenever we have a Haken manifold M with incompressible surface Σ ↪→ M we can split M

along Σ to get a new Haken manifold M |Σ .= M \Nε(Σ), this is still a compact orientable irreducible

3-manifold and push-offs ∂Nε(Σ) are incompressible two sided surfaces.

The irreducibility follows from the following argument: if S2 ↪→M |Σ is a two-sided sphere then

it bounds a 3-ball in M , if it does not bound a 3-ball in M |Σ it means that Σ ↪→ B3 which gives

a contradiction with Σ being incompressible. We can repeat this splitting as long as the resulting

manifold is Haken, therefore we introduce:
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Definition 2.2.8. If M is Haken a partial hierarchy for M is a sequence of surfaces S0, . . . Sn1 ↪→M

and manifolds:

M = M0
S0−→M1

S1−→ . . .
Sn−1−−−→Mn

where Mi
.= Mi−1|Si and each Si is a two-sided incompressible surface that is not boundary parallel.

If Mn
∼=
∐

B3 then the sequence is called a hierarchy for M .

The reason why Haken manifold have been studied is that they admit finite length hierarchies.

This allows one to implement induction techniques to prove results about Haken 3-manifolds.

If M has boundary and is irreducible then it is a Haken manifold with a specific hierarchy. If we

have some boundary component Σ ⊆ ∂M that is compressible then we can find a compressing disk

D ↪→M which is an embedded 2-sided surface, therefore M is Haken. We can then compress along

all possible compressing disks to get a new manifold M ′ with ∂M ′ incompressible in M ′ and this M ′

is linked to M by a partial hierarchy. If ∂M ′ ∼=
∐

S2 by irreducibility we get that M ′ is a disjoint

union of 3-balls hence we obtain a full hierarchy for M , otherwise we have some incompressible

boundary component Σ.

2.2.2 Finiteness and Decomposition Theorems

We will only state the Finiteness theorem for closed incompressible surface but it also works for

properly embedded surfaces as long as we also assume them to be boundary incompressible.

Theorem 2.2.9 (Kneser-Haken Finiteness, [21]). Let M be a compact irreducible 3-manifold, then

there exists h .= h(M) ∈ N such that if S .= S1
∐
. . .
∐
Sn is a collection of incompressible closed

embedded surfaces in M and n > h then at least two of them are parallel.

In the most general setting we can have the surfaces to have boundary, in which case we need

them to be ∂-incompressible as well, otherwise we might incur in the following phenomena:

Example 2.2.10. Let P be a pair of pants then P × I ∼= H2 and if we pick any simple closed

curve α ↪→ P we have that the annulus α × I is not ∂-incompressible in H2 in fact we get that

P × I|α× I ∼= P × I
∐
H1, hence we can create hierarchies of arbitrary length.

Proposition 2.2.11. There is a constant c = c(M) so that if {(Mi, Si)}i≤n is a partial hierarchy

where every Si is incompressible and boundary incompressible, then there are at most c surfaces

that are not disks.
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Note that this proposition does not give an a-priori bound on the length of the hierarchy. But

as a consequence we get:

Theorem 2.2.12. Let M be Haken, then any maximal partial hierarchy in which every surface is

boundary incompressible must terminate.

2.2.2.1 Decomposition Theorems

A 3-manifold M can be decomposed in various ways to obtain a collection of smaller 3-manifolds.

Theorem 2.2.9 basically gives an existence result of finite decomposition by cutting along surfaces

of fixed genus. We now describe the two most important decompositions.

Prime Decomposition. The prime decomposition is the decomposition in which we cut by genus

zero surfaces, i.e. spheres S2, a 3-manifold M . By M1]M2 we denote the connected sum of M1 and

M2.

Definition 2.2.13. A 3-manifold M is prime if every decomposition M = M1]M2 implies that

either M1 or M2 are homeomorphic to S3. A prime decomposition of M is a decomposition of

M = M1]M2] . . . ]Mk such that each Mi is prime.

Theorem 2.2.14 (Prime Decomposition, [25]). Given a closed, oriented 3-manifold M there exists

a prime decomposition, unique up to reordering.

Note that the existence result follows directly from the Kneeser-Haken finiteness Theorem 2.2.9.

Torus Decomposition Before stating the the Torus decomposition we need to introduce another

important class of compact 3-manifolds.

Definition 2.2.15. A compact, irreducible 3-manifold M is a Seifert Fibered manifold (SF) if M

admits a fibration by circles in which each fiber C has a closed tubular neighbourhood V such that

V ∼= S1 × D2 and the fibration on M induces one on V .

Note that if M is Seifert Fibered then ∂M is a collection of Tori and Klein bottles.

Definition 2.2.16. We say that a surface S ↪→ M with M Seifert Fibered is horizontal if S is

transverse to all fibers and is vertical if it is a union of fibers.

An important property of SF-spaces is:
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Proposition 2.2.17 ([25, 1.11]). If M is a connected, compact, irreducible Seifert-fibered manifold,

then any essential surface in M is isotopic to a surfaces that is either vertical or horizontal.

Theorem 2.2.18 (Torus Decomposition, [25]). Given M a closed, orientable and irreducible 3-

manifold there exists a maximal collection of embedded non-parallel incompressible tori T such that

each component of M |T is atoroidal or Seifert fibered. This collection is unique up to isotopy.

JSJ or annulus-torus decomposition The torus decomposition generalises to 3-manifold with

boundary by adding another type of SF-piece: I-bundles over compact surfaces: Σ× I, Σ ∼× I where

by Σ ∼× I we denote any non-trivial I-bundle.

Definition 2.2.19. Given a SF-space N and a submanifold R ⊆ ∂N a map f : (N,R)→ (M,∂M)

is essential if it is not homotopic rel f(R) into ∂M .

By the Kneser-Haken finiteness Theorem 2.2.9 we get that there is a maximal collection of annuli

and tori A such that M |A is a collection of atoroidal and relatively acylindrical1 3-manifolds. The

issue, as in the torus decomposition, is to show that there is a minimal collection, unique up to

isotopy, such that once we split we get SF-pieces and atoroidal, acylindrical components. Proofs of

this can be found in [28, 32]. The collection of the SF pieces is called the characteristic submanifold

(N,R) of (M,∂M).

This characteristic submanifold has the property that any essential map of a Seifert fibered space

into (M,∂M) is properly homotopic into (N,R).

Definition 2.2.20. Given a compact 3-manifold (M,∂M) with incompressible boundary a char-

acteristic submanifold for M is a codimension zero submanifold (N,R) ↪→ (M,∂M) satisfying the

following properties:

(i) every (Σ, ∂Σ) ∈ π0(N) is an I-bundle or a Seifert fibered manifold;

(ii) ∂N ∩ ∂M = R;

(iii) all essential maps of a Seifert fibered manifold S into (M,∂M) are homotopic as maps of pairs

into (N,R);

(iv) N is minimal, that is no component P of N is homotopic into a component Q of N .

1They are acylindrical relative the annuli in A, otherwise we enlarge the collection A contradicting
its maximality. Thus, every essential annulus is isotopic into an annulus in A.
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Definition 2.2.21. A window in a compact irreducible 3-manifold (M,∂M) with incompressible

boundary is an essential I-subbundle of the characteristic submanifold.

We now state the theorem:

Theorem 2.2.22 (Existence and Uniqueness,[28, 32]). Let (M,∂M) be a compact 3-manifold with

incompressible boundary. Then there exists a characteristic submanifold (N,R) ↪→ (M,∂M) and

any two characteristic submanifolds are isotopic.

Irreducible 3-manifold with incompressible boundary are Haken and one of the main applications

of characteristic submanifold theory is to study homotopy types of Haken 3-manifolds. That is, one

wants to classify all 3-manifold N that are homotopy equivalent to a given Haken 3-manifold M .

Remark 2.2.23. We conclude by pointing out that if one allows M to be non-compact, in particular

of infinite type all these decomposition Theorems are false. It is not too hard to construct examples

where the family of tori/spheres that one wants to decompose along is not locally finite, see [35].

2.2.3 Homotopy Equivalence of Haken manifolds

Homotopy equivalent 3-manifolds do not need to be homeomorphic for example if we take P × S1,

for P a pair of pants, and T̃ ×S1, for T̃ a punctured torus, we get that they are homotopy equivalent

but cannot be homeomorphic since they have a different number of boundary components. Similarly

we can have hyperbolic examples , see book of I-bundles [14], and for closed examples we can look

at Lens spaces L(p, q) which are homotopy equivalent whenever |p| = |p′| and q′q = ±ω2 mod p

while they are homeomorphic if and only if |p| = |p′| and q′ = ±q±1 (this can be done by looking at

Reidemeister Torsion).

A Theorem of Waldhausen that uses induction on the length of a hierarchy states that homo-

topic 3-manifolds are homeomorphic if their boundary structure is preserved, this theorem has been

generalised Johansson does a complete classification.

Theorem 2.2.24 (Waldhausen). Let M , N be Haken 3-manifolds and f : (M,∂M) → (N, ∂N)

injective on π1 and such that the map on the boundary in injective on each component (automatically

true if ∂M is incompressible). Then f is homotopic through maps of pairs to a covering map

g : (M,∂M)→ (N, ∂N) such that one of the following holds:

(i) g : M → N is a covering map;

(ii) M is an I-bundle over a closed surface and g(M) ⊆ ∂N ;
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(iii) N and M are both solid tori and g : M → N is a branched covering over a circle.

The hypothesis of both previous results can be reduced to an algebraic statement since any

isomorphism of the fundamental group of aspherical manifolds is induced by a continuous map, the

issue is that it doe not have to be induced by a boundary preserving map (see exotic homotopies).

For this reason we introduce a peripheral group system for a 3-manifold. Let ∂M .= B1
∐
. . .
∐
Bn

then the peripheral group system is the following collection of data:

{π1(M); ηi : π1(Bi)→ π1(M)}

where each ηi is the homomorphism induced by the inclusion maps and for base-point consideration

is only determined up to inner automorphism of π1(M).

Given two 3-manifolds M,N with boundary components Bi, Ci we say that a group homomor-

phism ϕ : π1(M) → π1(N) preserves the peripheral structure if ∀1 ≤ i ≤ n we can find an integer

j(i) and a homomorphism ψi : π1(Bi)→ π1(Cj(i)) with an inner automorphism αi : π1(N) �such

that:

ϕ ◦ ηi = αi ◦ θi ◦ ψi

for ηi, θi the inclusion of the boundary components of M and N respectively. Then the collection

{ϕ;ψ1, . . . , ψn} is called a homomorphism of peripheral group systems. If each boundary component

is incompressible i.e. if all the boundary inclusion maps are monic we get that a group homomorphism

preserves the peripheral structure if for each i we have that ϕ(ηi(π1(Bi))) is conjugated to a subgroup

of some θj(π1(Cj)). Then, we can rephrase theorem 2.2.24 as:

Theorem 2.2.25. LetM,N be Haken manifolds with a monomorphism of peripheral group systems.

Then, there is a boundary preserving map g : (M,∂M) → (N, ∂N) inducing the monomorphism

such that g satisfies one of the following:

(i) g : M → N is a covering map;

(ii) M is an I-bundle over a closed surface and g(M) ⊆ ∂N ;

(iii) N and M are both solid tori and g : M → N is a branched covering over a circle.
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2.2.3.1 Johansson Theory and Exotic Homotopy equivalences

By the use of the JSJ decomposition the previous theorems can be generalized. In general if one

drops the assumptions on the boundary a homotopy equivalence needs not to be homotopic to a

homeomorphism. These homotopy equivalences are called exotic and have been extensively studied

by Johansson [32].

Example 2.2.26. Let (M,∂M) be a 3-manifold with incompressible boundary with a marked simple

closed curve γ ↪→ ∂M . Fix a neighbourhood of γ and glue two copies of M along this annulus to

get a manifold M1. We can also glue two copies of M via the map h : S1× I → S1× I that flips the

interval: h(x, t) = (x, 1 − t) and let the resulting manifold be M2. Then M1 ' M2 but in general

they are not homeomorphic because they can have non-homeomorphic boundary. For example say

that ∂M ∼= Σ3 and that ∂M \ γ ∼= Σ1,1
∐

Σ2,1, then ∂M1 ∼= Σ4
∐

Σ2 while ∂M2 ∼= Σ3
∐

Σ3.

Definition 2.2.27. Given a homotopy equivalence f : M → N and M ′ ⊆ M we say that f has

singular support in M ′ if and only if there exist N ′ ⊆ N and f ′ : M → N such that:

(i) f ' f ′;

(ii) f ′(M ′) ⊆ N ′;

(iii) f ′(M \M ′) ⊆ N \N ′;

(iv) f ′|M ′ : M ′ → N ′ is a homotopy equivalence;

(v) f ′|
M\M ′ : M \M ′ → N \N ′ is a homeomorphism.

We then have the following amazing theorem:

Theorem 2.2.28. Given a homotopy equivalence f : M → N between 3-manifolds with incom-

pressible boundary it has singular support in the characteristic submanifolds meeting the boundary

of M and N respectively.

Therefore the study of exotic homotopy equivalence is reduced to the study of exotic homotopy

equivalence of the components of of the JSJ.

Definition 2.2.29. A 3-manifold (M,∂M) is acylindrical if any map C : (S1×I, S1×∂I)→ (M,∂M)

is homotopic into ∂M . This, is equivalent to M not having any essential cylinders.
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Corollary 2.2.30. If M is acylindrical then any homotopy equivalence f : M → N is homotopic

to a homeomorphism.

The above Theorem has a more general setting, which involves the use of boundary patterns.

Definition 2.2.31. A boundary pattern for (M,∂M) is a finite collection of subsurfaces Si ↪→ ∂M ,

1 ≤ i ≤ n, such that their pairwise intersection are 1-manifolds. A boundary pattern is said complete

if ∪ni=1Si = ∂M . The completed boundary pattern for {Si}ni=1 is {Si}ni=1∪∂M \ ∪ni=1Si. We denote

a boundary pattern for M by m.

We then need to consider pair maps that also preserve boundary patterns.

Definition 2.2.32. An admissible map is a continuous map f : (M,m) → (N,n) such that ∀Si ∈

m : f(Si) ⊆ Gj(i) ∈ n and

∪mi=1Si = ∪nj=1
{

connected components of f−1(Gj) ∩ ∂M
}

Practically this means that m is induced by n via pull-back along f . We then only consider

homotopies that respect the boundary patterns i.e. for all t : ht is admissible, similarly we define

isotopies and homotopy equivalences.

One then needs to translate incompressibility into this new setting. This will in turn yield a

definition of essential. The reason why this is useful, other than proving the previous theorem, is

that one can talk about bound and free sides. The elements of a given boundary pattern are the

bound sides and the complement are the free sides. Then, bound side will be preserved by the

homotopy equivalence while the free sides can be changed. In particular one only needs to consider

the submanifold of the characteristic submanifold whose boundary is contained in the free sides.

One then needs to define a useful boundary pattern which is the equivalent definition of incom-

pressible and boundary incompressible in the boundary pattern setting. For example the completion

of the empty boundary pattern is useful if and only if ∂M is incompressible. In order to be precise

one has to define small-faced disks.

A small faced disk is a disk with boundary pattern having 3 or fewer sides. Then, a boundary

pattern is useful if every embedded small faced disk has an admissible isotopy to a point.

The Loop Theorem has an analogous in this setting and it gives an alternate definition of useful:

Proposition 2.2.33. Let m be a boundary pattern on an irreducible 3-manifold M . Then m is
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useful if and only if every admissible map of a small-faced disk into (M,m) is admissibly homotopic

to a constant map.

Waldhausen’s Theorem 2.2.24 can then be reformulated as follows:

Theorem 2.2.34. Let (M,m) and (N,n) be connected irreducible 3-manifolds with complete and

useful boundary patterns. If M has non-empty boundary and is not a 3-ball with one or two bound

sides. Then any essential map: f : (M,m) → (N,n) is admissibly homotopic to a covering map.

Moreover if the restriction of f to ∂M is a covering map then the homotopy can be chosen to be

constant on ∂M .

The real strength of boundary patterns is that one can show that any homotopy equivalence

f : (M,m) → (N,n) has singular support in the characteristic submanifold induced by m,n and

Theorem 2.2.28 becomes an application of this result when we consider the empty boundary pattern

∅ on M and N .

Moreover, by using boundary patterns, one arrives to a complete characterization of exotic

homotopy equivalences, which can be summed in combinations of the following examples:

Example 2.2.35.

• Σ1,1
f
' Σ0,3 hence Σ1,1× I

f×id
' Σ0,3× I but there is no homeomorphism in the homotopy class

since the two manifolds do not have the same number of boundary components.

• Let M1,M2 be two 3-manifolds with essential embeddings fi : S1×I ↪→ ∂Mi. Let h : S1×I '−→

S1 × I given by h(x, t) = (x, 1 − t). Then if we construct M = .= M1 ∪f1 S1 × I ∪f2 M2

and N
.= M1 ∪f1◦h S1 × I ∪f2◦h M2 we obtain homotopic manifolds but are in general not

homeomorphic. The idea is that you are flipping the annulus so you might get different

boundary components. This is called a Dehn flip.

In particular ifM is acylindrical relM we have thatM has no characteristic submanifold therefore

any homotopy equivalence f : (M,m) → (N,n) is homotopic to a homeomorphism. Moreover, any

homotopy equivalence is generated by Dehn flips [32, 29.1].

2.2.3.2 Dehn Flips

From example 2.2.26 we define:

Definition 2.2.36. Given an essential properly embedded annulus (A, ∂A) in (M,∂M) a Dehn

flip of M along A is the 3-manifold N obtained by cutting M along A picking a homeomorphism
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f : M |A '−→M |A that is the identity on A and re-gluing f(M |A) along f(A) either via the identity

or via the map ϕ(x, t) = (x, 1− t) where we parametrised A by S1 × [0, 1] ∼= A.

A Dehn flip of M along A naturally gives a homotopy equivalence h : M → N which we will also

denote by a Dehn flip.

Since homotopy equivalences of M are generated by Dehn flips along annuli contained in the

boundary of the haracteristic submanifold of M , see Theorem [32, 29.1]. As a consequence of

Johansson homotopy equivalence theory for Haken 3-manifold we get:

Lemma 2.2.37. If the characteristic submanifold of a Haken 3-manifold M is given by one embed-

ded separating cylinder C then any 3-manifold N homotopy equivalent to M is either homeomorphic

to M or to a Dehn flip along C.

To conclude this discussion of finite type manifold if one wants to study compact 3-manifolds

one does:

Compact orientable 3-manifold

Compact, orientable, irreducible 3-manifold

M compact, orientable, irreducible and incompressible boundary

SFS Atoroidal and acylindrical

Prime Decomposition

Loop Theorem

JSJ

Since SFS are classified one only need to understand M : atoroidal, acylindrical, compact, irreducible

3-manifolds. By a deep Theorem of Thurston these are hyperbolic, that is their interior is homeo-

morphic to H3/Γ for Γ ⊆ Isom(H3) a discrete, torsion free subgroup that is isomorphic to π1(M)

(Geometrization Thurston-Pereleman).

Example 2.2.38. Most knot complements are hyperbolic. In fact out of the 1,701,936 prime knots

with less than 16 crossings all are hyperbolic except 32.
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2.3 Hyperbolic 3-manifolds and Kleinian groups

For proofs see [34, 37].

Definition 2.3.1. A Kleinian group is a subgroup Γ 6 Isom(H3) that is discrete, that is any

sequence γn ∈ Γ such that γn → γ is eventually constant.

Definition 2.3.2. A hyperbolic n-manifold is a complete Riemmanian n-manifold of constant sec-

tional curvature −1.

For example if Γ 6 Isom(H3) is Kleinian and torsion free it acts properly discontinuously on H3,

hence if H3/Γ is a hyperbolic 3-manifold.

By the study of the developing map and the Holonomy representation [54] we have:

Theorem 2.3.3. Given a hyperbolic 3-manifold M then M ∼= H3/Γ for Γ a torsion free Kleinian

group.

2.3.1 Margulis Lemma

We first introduce an important lemma for complete hyperbolic 3-manifolds.

Definition 2.3.4. Let (M, g) a Riemannian manifold, the for ε > 0 define

M[0,ε]
.= {x ∈M |∃ id 6= γ ∈ π1(M,x) : `g(γ) < ε}

this is the ε-thin part and M[ε,∞)
.= {x ∈M |∀ id 6= γ ∈ π1(M,x) : `g(γ) ≥ ε} is the ε-thick part.

Remark 2.3.5. If M is compact we can always find ε such that M[0,ε] = ∅, therefore compact

manifolds do not have thin parts.

Heuristically the Margulis Lemma says the following: for any n ∈ N there is εn > 0 such that

for any complete hyperbolic n-manifold and for all x ∈ M[0,ε] the subgroups of π1(M,x) consisting

of εn short loops at x is ”simple”, i.e. the ε-thin part is generally not complicated.

The Lemma itself will be formulated by means of properly discontinuous subgroups of Iso(Hn).

See [5, 134-139].

Theorem 2.3.6 (Margulis Lemma). For all n ∈ N : ∃εn ≥ 0 such that for any properly discon-

tinuous subgroup Γ ⊆ Iso(Hn) and ∀x ∈ Hn the group Γεn(x) generated by the following set:

Fεn
(x) .= {γ ∈ Γ|dH(x, γ(x)) ≤ εn} is almost nilpotent2.

2It has a finite index subgroup that is nilpotent.
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2.3.1.1 Local Geometry of Hyperbolic Manifolds

We will now look at some geometric consequences of the Margulis Lemma 2.3.6.

Proposition 2.3.7. Let M be a n-dimensional oriented complete hyperbolic manifold and let

x ∈ M , ε > 0, let Γε < Γ < Iso(Hn) the subgroup of loops at x of length less or equal to ε. Then

the ε-ball at x is isometric to a ball in Hn/Γε .

We now examine what are the possibilities for Γε when ε ≤ εn.

Theorem 2.3.8. Let M be a n-dimensional oriented complete hyperbolic manifold and let x ∈M ,

ε > 0, let Γε < Γ < Iso(Hn) the subgroup of loops at x of length less or equal to ε ≤ εn. Then we

have one of the following cases:

1. Γε = {id};

2. Γε ∼= Z generated by a hyperbolic isometry;

3. Γε consists of parabolic elements all having the same fixed point and Γε < Isom(Rn−1)(by

looking at horospheres).

2.3.2 Simplicial Hyperbolic Surfaces

Given a hyperbolic 3-manifold M , a useful simplicial hyperbolic surface is a surface S with a 1-vertex

triangulation T , a preferred edge e and a map f : S →M , such that:

1. f(e) is a geodesic in M ;

2. every edge of T is mapped to a geodesic segment in M ;

3. the restriction of f to every face of T is a totally geodesic immersion.

By [6, 11] every π1-injective map f : S →M with a 1-vertex triangulation with a preferred edge

can be homotoped so that it becomes a useful simplicial surface. Moreover, with the path metric

induced by M a useful simplicial surface is negatively curved and the map becomes 1-Lipschitz.

Lemma 2.3.9 (Bounded Diameter Lemma, Thurston). Assume f : S →M is simplicial hyperbolic

surface and let Sε be the ε-thick part. Then diam(Sε) ≤ 8
ε |χ(S)|.
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2.4 Thurston Hyperbolization Theorem

In this section we outline Thurston’s Hyperbolization Theorem:

Theorem 2.4.1 (Hyperbolization of Haken manifolds). Given a Haken 3-manifold M then it admits

a complete hyperbolic metric if and only if M is atoroidal and |π1(M)| =∞.

The above condition are obviously necessary since if we have a Z2 subgroup it has to be parabolic

hence homotopic to infinity. The proof of the Hyperbolization theorem follows by induction on the

Haken hierarchy for M :

M = N0, N1, . . . , Nn =
∐

B3

where Ni+1 = Ni|Si for Si some incompressible, ∂-incompressible embedded surface that is not

boundary parallel in Ni. Then we have two cases:

1. generic case: when N1 is not an I-bundle, i.e. S1 is not a vertical fiber of N1.

2. exceptional case: we have that N1 ∼= S1×I (or a disjoint union of I-bundles) so that M ∼= Mψ

for some homeomorphism ψ : S1 → S1.

These two phenomena split the proof of 2.4.1 into two cases.

2.4.1 Overview of Non-fibered case

Given M satisfying the hypothesis of 2.4.1 we want to prove the Theorem by induction on the length

of the Haken hierarchy. Obviously if the hierarchy has length zero i.e. M ∼=
∐
B3 then this clearly

admits a hyperbolic metric. This will be the base case.

The induction step requires the solution of a gluing problem, i.e. givenM,N hyperbolic manifolds

with a homeomorphism τ : ∂M → ∂N can we find α ' τ such that α is an isometry?

If we have such a map we can then glue M,N to get a hyperbolic structure on M ∪∂ N , unfor-

tunately this will hardly be the case.

The question we actually want to solve is: are there hyperbolic metrics g, h on M,N such that

τ is homotopic to an isometry.

2.4.1.1 Gluing hyperbolic structures: Maskit Combination and Skinning maps

A recipe for gluing two hyperbolic manifolds is given by looking at the corresponding Kleinian groups

and using the Maskit combination theorems.
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Theorem 2.4.2 (First Maskit combination Theorem). Given Γ0,Γ1 6 PSL2(C) such that Γ0∩Γ1 =

H is a quasi-fuchsian group with limit set ΛH and domain of discontinuity ΩH . Write ΩH = B1
∐
B2.

If ∀i : g ∈ Γi \H : gBi ∩Bi = ∅ then Γ .= 〈Γ0,Γ1〉 is Kleinian and isomorphic to Γ0 ∗H Γ1. Moreover

the Kleinian manifold for Γ is homeomorphic to the gluing of the Kleinian manifolds of Γi along the

boundary components stabilized by H.

Therefore to solve our gluing problem we need to find hyperbolic structures Γ0,Γ1 on M,N such

that they satisfy the conditions of Maskit’s combination theorem.

Since ∂M is incompressible by the Ahlfors-Bers isomorphism Theorem [37] we have that geomet-

rically finite structures on M are parametrized by T (∂M) ∼=
∏
S∈π0(∂M) T (S). Then a hyperbolic

metric on M is uniquely determined by the conformal structures on the components of the boundary

∂M . From now on assume that we want to glue M0,M1 along a surface S ⊆ ∂M0, ∂M1 and let

Hi 6 Γi be the stabilizers of S. Let Z0, Z1 be the conformal structures corresponding to S in the

parametrisation for M0,M1 respectively.

Since covers of geometrically finite manifolds are themselves geometrically finite we get that the

covers Ni(S) of Mi corresponding to S are in QF (S) ∼= T (S) × T (S) and they have Zi as one

element of their parametrisation. This is because each Ni(S) has limit set Λi that splits S2 into

Ωi
.= Bi

∐
B′i and Bi/Hi = Zi.

Then if these subgroups where induced by the same group (as in Maskit’s theorem) one would

hope for:

B′i
/
Hi = Zi+1,

3

This is because the gluing map τ has to reverse orientations hence the two surfaces have to

correspond to complementary regions in ΩH .

In the case of H0 = H1 we have that Hi is the stabilizer of Bi in Γi (the domain of discontinuity

Ω(Γi) is a union of disconnected components that are permuted by Γi). Since no element of Γi \Hi

stabilizes Bi we have that for g ∈ Γi \ Hi : gBi ∩ Bi = ∅ which is what we needed in Maskit’s

combination theorem, hence we can glue.

Then we only need to find structures as above. This is what the skinning map does. We have a

map:

T (∂M0
∐

∂M1)→ CC(M0
∐

M1)

3Indices taken mod 2.
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any geometric structure on the union gives rise to QF structures H0, H1 corresponding to the bound-

ary component S ∈ π0(∂Mi).

Each quasi-fuchsian group Hi is itself parametrized by QF (S) ∼= T (S)× T (S) which we denote

by: Hi = (Zi, Z ′i). We then define the skinning map as:

σ : T (S)× T (S)→ T (S)× T (S)

(Z0, Z1)→ (Z ′0, Z ′1)

Then to reformulate the first Maskit combination theorem we want σ to send Z0 to Z1, alterna-

tively we want σ ◦ τ to have a fixed point.4

The skinning map has always a fixed point if S is incompressible, i.e. Hi ↪→ Γi (this implies that

[Γi;Hi] = ∞). In the acylindrical case this follows from showing that σ has bounded image, since

then by iteration we obtain a fixed point. If the manifold is not acylindrical the image of σ is not

bounded. Let C be the essential cylinder then by the annulus theorem we have simple loops α, β that

are the boundaries of C. For simplicity assume that they are in the same boundary component S.

Then by doing Dehn Twists along α, β we get a sequence of homotopy equivalent 3-manifolds such

that the conformal structure on S are divergent in T (S) and therefore Im(σ) has to be unbounded.

Nevertheless, McMullen [38] showed the existence of fixed points even in the non-acylindrical case.

2.4.2 Fibered Case

Let S be a surface with χ(S) < 0 and ψ : S → S a pseudo-Anosov homeomorphism (pA). We want

to find a hyperbolic structure on Mψ which by Mostow rigidity [5, C.0] will be unique.

In order to get a hyperbolic structure on Mψ one needs a hyperbolic structure on S×R on which

[ψ] is represented by an isometry α since then we get: Mψ
∼= S × R

/
〈α〉 . It is not hard to find

hyperbolic structures on S×R such that ψ is a quasi-isometry (q.i.), for example given any Fuchsian

structure on S × R we have that ψ is a quasi-conformal map and hence a quasi-isometry.

In order to get the required structure on S × R we will first build a hyperbolic 3-manifold

Mψ,Y
∼= S × R such that one end is geometrically finite and parametrized by Y and the other

is geometrically infinite but q.i.-invariant under ψ. Once we have such a Mψ,Y we can look at

sequences:

Mn
.= ψn(Mψ,Y )

4The map τ is an isometry of T (S).
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Where Mn,Mm only differ by the marking of their fundamental group and as n → ∞ the

generators {gi} of π1(S) are represented by more and more complicated geodesics ψn(gi) (mixing

property of pA maps, see [20]) which will be deeper and deeper in the convex core of Mψ,Y .

This is where we will apply the Double Limit Theorem [57] which will give us an algebraic limit

Mn → Mψ, then by taking a sub-sequence we will obtain a geometric limit N which completes the

construction.



Chapter 3

Infinite Type hyperbolic

3-manifolds

3.1 Overview

In this chapter we construct two 3-manifolds M1,M2 such that π1(Mi), i = 1, 2, have no divisible

subgroups and they both admit exhaustions by hyperbolic 3-manifolds with incompressible bound-

ary. Moreover, the exhaustions will have the useful property that the boundary components of the

exhaustions elements have uniformly bounded genus.

A 3-manifold M is hyperbolizable if its interior is homeomorphic to H3/Γ for Γ 6 Isom(H3) a

discrete, torsion free subgroup. An irreducible 3-manifold M is of finite-type if π1(M) is finitely

generated and we say it is of infinite-type otherwise. By Geometrization (2003, [41, 42, 43]) and

Tameness (2004, [1, 9]) a finite type 3-manifold M is hyperbolizable if and only if M is the interior

of a compact 3-manifold M that is atoroidal and with non finite π1(M). On the other hand, if M is

of infinite type not much is known and we are very far from a complete topological characterisation.

Nevertheless, some interesting examples of these manifolds have been constructed in [7, 53]. What

we do know are necessary condition for a manifold of infinite type to be hyperbolizable. If M is

hyperbolizable then M ∼= H3/Γ, hence by discreteness of Γ and the classification of isometries of

H3 we have that no element γ ∈ Γ is divisible ([23, Lemma 3.2]). Here, γ ∈ Γ is divisible if there

are infinitely many α ∈ π1(M) and n ∈ N such that: γ = αn. We say that a manifold M is

locally hyperbolic if every cover N �M with π1(N) finitely generated is hyperbolizable. Thus, local

hyperbolicity and having no divisible subgroups in π1 are necessary conditions. In [17, 36] Agol asks

27
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whether these conditions could be sufficient for hyperbolization:

Question (Agol). Is there a 3-dimensional manifold M with no divisible elements in π1(M) that is

locally hyperbolic but not hyperbolic?

We give a positive answer:

Theorem 3.1.1. There exists a locally hyperbolic 3-manifold with no divisible subgroups in its

fundamental group that does not admit any complete hyperbolic metric.

We will prove this theorem by constructing such a manifold which we call M1. The second

manifold M2 is a strengthening of this result:

Theorem 3.1.2. There exists a locally hyperbolic 3-manifold with no divisible subgroups in its

fundamental group that is not homotopy equivalent to any complete hyperbolic manifold.

3.2 Not homeomorphic

Consider a surface of genus two Σ and denote by α a separating curve that splits it into two punctured

tori. To Σ× I we glue a thickened annulus C .= (S1× I)× I so that S1× I ×{i} is glued to a regular

neighbourhood of α× i, for i = 0, 1. We call the resulting manifold M :

α× {1}sα× {0}

Σ

Figure 3.1: The manifold M .

The manifold M is not hyperbolic since it contains an essential torus T coming from the cylinder

C. Moreover, M has a surjection p onto S1 obtained by projecting the surfaces in Σ × I onto I

and also mapping the cylinder onto an interval. We denote by H the kernel of the surjection map

p∗ : π1(M)� π1(S1).
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Consider an infinite cyclic cover M∞ of M corresponding to the subgroup H. The manifold M∞

is an infinite collection of {Σ× I}i∈Z glued to each other via annuli along the separating curves

α× {0, 1}. Therefore, we have the following covering:

Σi Σi+1 Σi+2

Σ

Figure 3.2: The infinite cyclic cover.

where the Σi are distinct lifts of Σ and so are incompressible in M∞. Since π1(M∞) is a subgroup

of π1(M) and M is Haken (M contains the incompressible surface Σ) by [50] we have that π1(M)

has no divisible elements, thus π1(M∞) has no divisible subgroups as well.

Lemma 3.2.1. The manifold M∞ is locally hyperbolic.

Proof. We claim that M∞ is atoroidal and exhausted by hyperbolizable manifolds. Let T 2 ↪→ M∞

be an essential torus with image T . Between the surfaces Σi and Σi+1 we have incompressible annuli

Ci that separate them. Since T is compact it intersects at most finitely many {Ci}. Moreover, up

to isotopy we can assume that T is transverse to all Ci and it minimizes |π0(T ∩ ∪Ci)|. If T does

not intersect any Ci we have that it is contained in a submanifold homeomorphic to Σ× I which is

atoroidal and so T wasn’t essential.

Since both Ci and T are incompressible we can isotope T so that the components of the inter-

section T ∩ Ci are essential simple closed curves. Thus, T is divided by ∪iT ∩ Ci into finitely many

parallel annuli and T ∩ Ci are disjoint core curves for Ci. Consider Ck such that T ∩ Ck 6= ∅ and
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Σi Σi+1 Σi+2

Ci Ci+1

∀n ≥ k : T ∩ Cn = ∅. Then T cannot intersect Ck in only one component, so it has to come back

through Ck. Thus, we have an annulus A ⊆ T that has both boundaries in Ck and is contained in a

submanifold of M∞ homeomorphic to Σk+1 × I. The annulus A gives an isotopy between isotopic

curves in ∂ (Σk+1 × I) and is therefore boundary parallel. Hence, by an isotopy of T we can reduce

|π0(T ∩ ∪Ci)| contradicting the fact that it was minimal and non-zero.

We define the submanifold of M∞ co-bounded by Σk and Σ−k by Mk. Since M∞ is atoroidal so

are the Mk. Moreover, since the Mk are compact manifolds with infinite π1 they are hyperbolizable

by Thurston’s Hyperbolization Theorem [34].

We now want to prove that M∞ is locally hyperbolic. To do so it suffices to show that given

any finitely generated H 6 π1(M∞) the cover M∞(H) corresponding to H factors through a cover

N � M∞ that is hyperbolizable. Let γ1, . . . , γn ⊆ M∞ be loops generating H. Since the Mk

exhaust M∞ we can find some k ∈ N such that {γi}i≤n ⊆Mk, hence the cover corresponding to H

factors through the cover induced by π1(Mk). We now want to show that the cover M∞(k) of M∞

corresponding to π1(Mk) is hyperbolizable.

Since π : M∞ � M is the infinite cyclic cover of M we have that M∞(k) is the same as the

cover of M corresponding to π∗(π1(Mk)). The resolution of the Tameness [1, 9] and the Geometriza-

tion conjecture [41, 42, 43] imply the Simon’s conjecture, that is: covers of compact irreducible

3-manifolds with finitely generated fundamental groups are tame [12, 51]. Therefore, since M is

compact by the Simon’s Conjecture we have that M∞(k) is tame. The submanifold Mk ↪→M∞ lifts

homeomorphically to M̃k ↪→ M∞(k). By Whitehead’s Theorem [24] the inclusion is a homotopy

equivalence, hence M̃k forms a Scott core for M∞(k). Thus, since ∂M̃k is incompressible and M∞(k)

is tame we have that M∞(k) ∼= int(Mk) and so it is hyperbolizable. �
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In the infinite cyclic cover M∞ the essential torus T lifts to a π1-injective annulus A that is

properly embedded: A = γ × R ↪→M∞ for γ the lift of the curve α ↪→ Σ ⊆M .

Remark 3.2.2. Consider two distinct lifts Σi,Σj of the embedded surface Σ ↪→M . Then we have

that the only essential subsurface of Σi homotopic to a subsurface of Σj is a neighbourhood of γ.

This is because by construction the only curve of Σi homotopic into Σj is γ.

Proposition 3.2.3. The manifold M∞ is not hyperbolic.

Proof. The manifold M∞ has two non tame ends E± and the connected components of the comple-

ment of a region co-bounded by distinct lifts of Σ give neighbourhoods of these ends. Let A be the

annulus obtained by the lift of the essential torus T ↪→ M . The ends E± of M∞ are in bijection

with the ends A± of the annulus A. Let γ be a simple closed curve generating π1(A). Denote by

{Σi}i∈Z ⊆M∞ the lifts of Σ ⊆M and let
{

Σ±i
}
i∈Z be the lifts of the punctured tori that form the

complement of α in Σ ⊆ M . The proof is by contradiction and it will follow by showing that γ is

neither homotopic to a geodesic in M∞ nor out a cusp.

Step 1 We want to show that the curve γ cannot be represented by a hyperbolic element.

By contradiction assume that γ is represented by a hyperbolic element and let γ be the unique

geodesic representative of γ in M∞. Consider the incompressible embeddings fi : Σ2 ↪→ M∞ with

fi(Σ2) = Σi and let γi ⊆ Σi be the simple closed curve homotopic to γ. By picking a 1-vertex

triangulation of Σi where γi is represented by a preferred edge we can realise each (fi,Σi) by a

useful-simplicial hyperbolic surface gi : Si → M∞ with gi(Si) ' Σi (see [6, 11]). By an abuse of

notation we will also use Si to denote gi(Si). Since all the Si realise γ as a geodesic we see the

following configuration in M∞:

On the simplicial hyperbolic surfaces Si a maximal one-sided collar neighbourhood of γ has

area bounded by the total area of Si. Since the simplicial hyperbolic surfaces are all genus two by

Gauss-Bonnet we have that A(Si) ≤ 2π |χ(Si)| = 4π. Therefore, the radius of a one-sided collar

neighbourhood is uniformly bounded by some constant K = K(χ(Σ2), `(γ)) < ∞. Then for ξ > 0

in the simplicial hyperbolic surface Si the K+ ξ two sided neighbourhood of γ is not embedded and

contains a 4-punctured sphere. Since simplicial hyperbolic surfaces are 1-Lipschitz the 4-punctured

sphere is contained in a K + ξ neighbourhood C of γ, thus it lies in some fixed set Mh. Therefore
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Σi Σi+1 Σi+2

γSi Si+1

Figure 3.3: The simplicial hyperbolic surfaces Si exiting the ends.

for every |n| > h we have that Σ±n has an essential subsurface, homeomorphic to a 4-punctured

sphere, homotopic into Σ±h respectively. But this contradicts remark 3.2.2.

Step 2 We now show that γ cannot be represented by a parabolic element.

Let ε > 0 be less then the 3-dimensional Margulis constant µ3 [5] and let P be a cusp neighbour-

hood of γ such that the horocycle representing γ in ∂P has length ε. Without loss of generality we

can assume that P is contained in the end E− of M∞.

Let
{

Σ+
i

}
i≥0 ⊆ {Σi}i≥0 be the collection of subsurfaces of the Σi formed by the punctured tori

with boundary γi that are exiting E+. By picking an ideal triangulation of Σi where the cusp γi

is the only vertex we can realise the embeddings fi : Σ+
i ↪→ M∞ by simplicial hyperbolic surfaces

(gi, S+
i ) in which γi is sent to the cusp [6, 11]. The

{
S+
i

}
i≥0 are all punctured tori with cusp

represented by γ.

All simplicial hyperbolic surface S+
i intersects ∂P in a horocycle fi(ci) of length `(fi(ci)) = ε.

Therefore, in each S+
i the horocycle ci has a a maximally embedded one sided collar whose radius

is bounded by some constant K = K(ε, 2π). Then for ξ > 0 we have that a K + ξ neighbourhood of

ci in S+
i has to contain a pair of pants Pi ⊆ S+

i . Since simplicial hyperbolic surfaces are 1-Lipschitz

the pair of pants of Pi are contained in a K + ξ neighbourhood of fi(ci) in M∞. Thus, the Σi have

pair of pants that are homotopic a uniformly bounded distance from ∂P . Let k ∈ N be minimal

such that Σk lies outside a K + ξ neighbourhood of ∂P . Then for any j > k we have that Σj has a
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Σi Σi+1 Σi+2

S+
i

S+
i+1

Figure 3.4: The ε-thin part is in grey.

pair of pants homotopic into Σk contradicting remark 3.2.2. �

This concludes the proof of Theorem 3.1.1.

3.3 Not Homotopy

Consider the 3-manifold A obtained as a thickening of the 2-complex given by gluing a genus two

surface S and a torus T so that a meridian of T is identified with a separating simple closed curve

γ of S. Note that ∂A is formed by two genus two surfaces both of which are incompressible in A.

Let B,C be two copies of a hyperbolizable, acylindrical 3-manifold with incompressible genus two

boundary (for example see [55, 3.3.12]) and glue B,C to the 3-manifold A one to each boundary

component. Then we obtain a closed 3-manifold X:

Note that the manifold X is not hyperbolizable since it contains the essential torus T and that the

surface S is incompressible and separating in X.

Remark 3.3.1. The 3-manifold Y
.= X|S = X \ Nε(S) is hyperbolizable, with incompressible

boundary and its characteristic submanifold is given by an annulus connecting the two distinct

boundaries. Thus, any annulus with both boundary components on the same surface is boundary

parallel.
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S

B
C

T

Figure 3.5: Schematic of the manifold X where the starting manifold A is
shaded and the essential torus T is dark grey.

The infinite cyclic cover M of X is obtained by gluing infinitely many copies {Yi}i∈N of Y along

their boundaries:

Si−1 Si Si+1 Si+2

A

Bi

Ci

Bi+1

Ci+1

Bi−1

Ci−1

YiYi−1 Yi+1

Figure 3.6

Denote by {Si}i∈Z ⊆M the lifts of S. The surfaces {Si}i∈Z are all genus two and incompressible

in M . Moreover, we denote by Mi,j
.= ∪i≤k≤jYk the compact submanifolds of M co-bounded by

Si, Sj for i < j and by A the properly embedded annulus in M that is the lift of the essential torus

T and we let Ai,j
.= Mi,j ∩ A. With an abuse of notation we denote by γ ∈ π1(Mi,j) the elements

corresponding to π1(A).

In the remainder of this work we will show that the manifold M satisfies the following three

properties:

1. π1(M) has no divisible elements;

2. M is locally hyperbolic;

3. M is not homotopy equivalent to any hyperbolic 3-manifold.
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Which will give us Theorem 3.1.2. We will now show that M is locally hyperbolic and that

π1(M) has no divisible elements.

Lemma 3.3.2. The manifold M has no divisible elements in π1(M).

Proof. The manifold M is the cover of a compact 3-manifold X thus we have that π1(M) ⊆ π1(X).

Since X is irreducible, compact and with infinite π1 by [50] we have that π1(X) it has no divisible

elements in π1. �

Lemma 3.3.3. The manifold M is locally hyperbolic and all covers corresponding to π1(Mi,j) are

homeomorphic to int(Mi,j).

Proof. We first claim that M is atoroidal. Let T ⊆ M be an essential torus. Since T is compact

it intersects at most finitely many {Si}i∈Z. Moreover, up to an isotopy we can assume that T is

transverse to all Si and that it minimises |π0(T ∩ ∪i∈ZSi)|. If T does not intersect any Si we have

that it is contained in a submanifold homeomorphic to Y , see Remark 3.3.1, which is atoroidal and

so T isn’t essential.

Since both the Si’s and T are incompressible by our minimality condition we have that the

components of the intersection T ∩ Si are essential pairwise disjoint simple closed curves in T, Si.

Thus, T is decomposed by ∪i∈ZT ∩ Si into finitely many parallel annuli. Consider Sk such that

T ∩ Sk 6= ∅ and ∀n ≥ k : T ∩ Sn = ∅. Then T cannot intersect Sk in only one component, so

it has to come back through Sk. Thus, we have an annulus A ⊆ T that has both boundaries in

Sk and is contained in a submanifold of M homeomorphic to Y . The annulus A gives an isotopy

between isotopic curves in ∂Y and is therefore boundary parallel, see Remark 3.3.1. Hence, by an

isotopy of T we can reduce |π0(T ∩ ∪i∈ZSi)| contradicting the fact that it was minimal and non-zero.

Therefore, M is atoroidal.

Claim: The Mi,j are hyperbolizable.

Proof of Claim: Since M is atoroidal and for i < j the Mi,j are π1-injective submanifolds they

are also atoroidal. Moreover, since the Mi,j are compact manifolds with infinite π1 they are hyper-

bolizable by Thurston’s Hyperbolization Theorem [34]. �

The manifold M is exhausted by the hyperbolizable π1-injective submanifolds Mi
.= M−i,i.

Claim: The manifold M is locally hyperbolic.
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Proof of Claim: To do so it suffices to show that given any finitely generated H 6 π1(M) the

cover M(H) corresponding to H factors through a cover N � M that is hyperbolizable. Let

γ1, . . . , γn ⊆ M be loops generating H. Since the Mi exhaust M we can find some i ∈ N such that

{γk}1≤k≤n ⊆Mi, hence the cover corresponding to H factors through the cover induced by π1(Mi).

We now want to show that the cover M(i) of M corresponding to π1(Mi) is hyperbolizable.

Since π : M � X is an infinite cyclic cover of X we have that M(i) is the same as the cover

of X corresponding to π∗(π1(Mi)). The resolution of the Tameness [1, 9] and the Geometrization

conjecture [41, 42, 43] imply the Simon’s conjecture1, that is: covers of compact irreducible 3-

manifolds with finitely generated fundamental groups are tame [12, 51]. Therefore, since X is

compact by the Simon’s Conjecture we have that M(i) is tame. The submanifold Mi ↪→ M lifts

homeomorphically to M̃i ↪→ M(i). By Whitehead’s Theorem [24] the inclusion is a homotopy

equivalence, hence M̃i forms a Scott core for M(i). Thus, since ∂M̃i is incompressible and M(i) is

tame we have that M(i) ∼= int(Mi) and so it is hyperbolizable. �

Which concludes the proof. �

Remark 3.3.4. Note that in the manifold M the surfaces Si, Sj have no homotopic simple closed

curve except for the loops γi
.= Si∩A. If not we would have an embedded cylinder C not homotopic

intoAi,j which contradicts the fact that the characteristic submanifold ofMi,j is given by a thickening

of Ai,j . In particular this gives us the important fact that for any homotopy equivalence f : M → N

and any essential subsurface F ⊆ Si not isotopic to a neighbourhood of γ we cannot homotope f(F )

through any f(Sj) for i 6= j.

Lemma 3.3.5 (Homotopy Equivalences). Given a tame 3-manifold N let N be its compactification

and let g : Mi,j → N be a homotopy equivalence. Then, there exists a homotopy equivalence

f : Mi,j → N such that f ' g and:

1. f(Sk) is embedded for all i ≤ k ≤ j;

2. there are essential subsurfaces Tm, Tn of Sm, Sn, respectively, whose components are homeo-

morphic to punctured tori, and where for all i ≤ m < k < n ≤ j, the images f(Tn), f(Tm) are

separated in N by f(Sk). Moreover, the same holds for any surface Σk
iso' f(Sk) intersecting

f(Sn), f(Tm) minimally.

1Final steps completed by Long and Reid, see [12].
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Proof. By Lemma 2.2.37 we get that g : Mi,j → N is either homotopic to a homeomorphism f or is

given by a Dehn flip along the annulus Ai,j of Mi,j . If N is homeomorphic to Mi,j we have nothing

to do since the required map f is the homeomorphism and (1) and (2) are true for Mi,j .

Therefore, we only need to deal with the case in which f : Mi,j → N is a Dehn flip of M along

the annulus Ai,j . We will now explicitly write the Dehn flip f . Let V ∼= S1 × Is × It be a regular

neighbourhood of the annulus Ai,j in Mi,j such that V ∩ Sk, i ≤ k ≤ j, are regular neighbourhoods

S1 × {sk} × It of γ in Sk. Similarly let W ∼= S1 × I × I be a regular neighbourhood of Ai,j in N .

Let F : V →W be given by:

F (x, s, t) .=


(x, 2t(1− s) + (1− 2t)s, t), 0 ≤ t ≤ 1

2

(x, (2− 2t)(1− s) + (2t− 1)s, t), 1
2 ≤ t ≤ 1

and f : Mi,j → N be the homotopy equivalence obtained by extending F via the homeo-

morphism of Mi,j \ V → N \W coming from Lemma 2.2.37. Moreover, for M ′i,j
.= Mi,j \ V the

homeomorphism F is the identity on V ∩M ′i,j . Then f realises the Dehn flip from Mi,j to N . The

homeomorphism of M ′i,j preserves the order of the surfaces, it is the identity on ∂V ∩M ′i,j , hence

for all i ≤ k ≤ j the surfaces f(Sk) are embedded. This concludes the proof of (1).

Bi
Bj

Cj

Ci

Figure 3.7: The surface in blue is an embedded push-off of f(Si) in N '
int(Mi,j) when N is a Dehn flip of Mi,j .

For (2) note that for all i ≤ k ≤ j we have that Sk \ V is given by two essential punctured tori

T±k . Moreover, for all i ≤ n 6= k ≤ j we have that the essential tori T±n are separated by f(Sk), this



38 CHAPTER 3. INFINITE TYPE HYPERBOLIC 3-MANIFOLDS

again follows from the fact that f is the identity on ∂V ∩M ′i,j and so it preserves ordering. Thus,

we always see, up to isotopy, the following configuration:

f(Sn)

f(Sk)

Finally if Σk
iso' f(Sk) and intersects f(Sn), f(Sm) minimally we have that all components of

intersections of f(Sn), f(Sm) and Σk are isotopic to the intersection of f(Sn), f(Sm) with the annulus

Ai,j . If the subsurfaces f(Tn), f(Tm) are not separated by Σk it means that they all lie in the same

component N1 of N \ Σk.

By the isotopy extension Theorem [27, 8.1.3] we have Σn,Σm isotopic to f(Sn) and f(Sm) respec-

tively and subsurfaces T ′n, T ′m isotopic to f(Tn), f(Tm) that are separated in N by Σk. Therefore,

we can find a simple closed loop α in one of the essential subsurfaces T ′n, T ′m that is not contained

in N1. Since we assumed that f(Tn), f(Tm) are contained in N1 the loop α is homotopic into Σk

contradicting Remark 3.3.4. �

Definition 3.3.6. Given a hyperbolic 3-manifold M , a useful simplicial hyperbolic surface is a

surface S with a 1-vertex triangulation T , a preferred edge e and a map f : S →M , such that:

1. f(e) is a geodesic in M ;

2. every edge of T is mapped to a geodesic segment in M ;

3. the restriction of f to every face of T is a totally geodesic immersion.

By [6, 11] every π1-injective map f : S →M with a 1-vertex triangulation with a preferred edge

can be homotoped so that it becomes a useful simplicial surface. Moreover, with the path metric

induced by M a useful simplicial surface is negatively curved and the map becomes 1-Lipschitz.
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Lemma 3.3.7. Let N ∼= H3/Γ be a hyperbolic 3-manifold homotopy equivalent to M then γ is

represented by a parabolic element in Γ.

Proof. Assume that f∗(γ) is represented by a hyperbolic element and let A ⊆ M be the essential

bi-infinite annulus obtained as the limit of the A−i,i. Since all Si are incompressible in M and f is

a homotopy equivalence the maps: f : Si → N are π1-injective. Let τi be 1-vertex triangulations

of Si realising γi
.= Si ∩ A as an edge in the 1-skeleton. Then, by [6, 11] we can realise the maps

f : Si → N by useful simplicial hyperbolic surfaces Σi ⊆ N such that Σi ' f(Si) and the image of

γi is the unique geodesic representative γ of f∗(γ).

In the simplicial hyperbolic surfaces Σi a maximal one-sided collar neighbourhood of γ has area

bounded by the total area of Σi. Since the simplicial hyperbolic surfaces are all genus two by

Gauss-Bonnet we have that A(Σi) ≤ 2π |χ(Σi)| = 4π. Therefore, the radius of a one-sided collar

neighbourhood is uniformly bounded by some constant K = K(χ(Σi), `N (γ)) < ∞ for `N (γ) the

hyperbolic length of γ in N . Then for ξ > 0 in the simplicial hyperbolic surface Σi the K + ξ two

sided neighbourhood of γ is not embedded and contains an essential 4-punctured sphere Xi ⊆ Σi.

Since simplicial hyperbolic surfaces are 1-Lipschitz the 4-punctured sphere is contained in a K + ξ

neighbourhood C of γ in N . The curves αi obtained by joining the seams of the pants decomposition

of Xi induced by γi have length bounded by L .= 2K + 2ξ + `N (γ). Since there are infinitely many

αi and they are all homotopically distinct we have that Γ is not discrete since the αi move a lift of

γ a uniformly bounded amount. �

Proposition 3.3.8. Let f : M → N be a homotopy equivalence, then for all i the maps: f : Si → N

have embedded representatives Σi ' f(Si) in N .

Proof. Fix a triangulation τ of N . Since the f(Si) are π1-injective by taking a refinement τi of

τ outside a pre-compact neighbourhood Ui of f(Si) we can homotope f(Si) to be a PL-least area

surface Σi with respect to a weight system induce by τi, see [22, 30, 34].

We now want to show that they are embedded. To do so it suffices to show that they have

embedded representatives in some cover, see [22, 30, 34]. Consider the cover πi : Ni,i+1 � N with the

triangulation τ̃i induced by τi. The PL-least area surface Σi lifts homeomorphically to Σ̃i ⊆ Ni,i+1

and it is still minimal with respect to τ̃i. Since f(Si) ' Σi has embedded representatives in Ni,i+1,

see Lemma 3.3.5, by [22, 30, 34] we have that Σ̃i is embedded as well, hence Σi = πi(Σ̃i) is. �

We will now prove Theorem 3.1.2 which we now restate.
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Theorem 3.3.9. The manifold M is locally hyperbolic and without divisible elements in π1(M)

but is not homotopy equivalent to any hyperbolic 3-manifold.

Proof. By Lemma 3.3.2 and Lemma 3.3.3 we only need to show that M is not homotopy equivalent

to any hyperbolic 3-manifold N .

The proof will be by contradiction. Assume that we have a homotopy equivalence f : M → N

for N ∼= H3/Γ a hyperbolic 3-manifold. By Lemma 3.3.7 we have that for γ the element of π1(M)

generating the fundamental group of the bi-infinite essential annulus A ⊆M f∗(γ) is represented by

a parabolic element in Γ (with an abuse of notation we will refer to this element by γ as well). Thus,

in N we have a cusp E
.= Eγ corresponding to γ. Moreover, Proposition 3.3.8 gives us a collection

{Σi}i∈Z of embedded genus two surfaces contained in neighbourhoods Ui of f(Si) in N such that

Σi ' f(Si). Moreover the Σi’s are incompressible and separating in N . The fact that they are

separating follows from f∗ being an isomorphism in homology and the fact that the Si’s are not dual

to 1-cycles in M , similarly they are incompressible since the Si are and f is a homotopy equivalence.

Therefore, if we take the surface Σ0 we have that N |Σ0
.= N \ int(Nr(Σ0)) is given by two manifolds

N1, N2 with boundary a surface isotopic in N to Σ0.

The element γ ∈ Γ is parabolic with cusp E and each Σi has a simple closed loop γi homotopic

in N to γ such that Σi \Nr(γi) is given by two punctured tori T±i with boundary isotopic to γi.

Without loss of generality we can assume that E ⊆ N2. Moreover, up to an isotopy of each Σi we

can also assume that for all i ∈ Z the surfaces Σi are transverse to Σ0 and that |π0(Σi ∩ Σ0)| is

minimal.

Claim: Every component α ∈ π0(Σi ∩ Σ0) is isotopic to γi and γ0.

Proof of Claim: Since Σi,Σ0 are incompressible and we minimised Σi ∩ Σ0 we have that every

α ∈ π0(Σi ∩Σ0) has to be essential in both surfaces. By Remark 3.3.4 we have that the only simple

closed curve in Si homotopic into S0 is γi which is homotopic to γ0. �

Thus in N we have that the punctured tori T±i to Σi are either on the same side of Σ0 or on

opposite sides:

Moreover, all the components of Σi ∩ Σ0 are contained in neighbourhoods of γ0 and γi.

Claim: There are infinitely many punctured tori {Tn}n∈N ⊆ N1 such that Tn is a component of

T±in .
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Σ0 Σ0
Σi

Σi

Figure 3.8: Possible configurations of the embedded surfaces Σ0,Σi in N .

Proof of Claim: Consider Σ−i,Σ0,Σi and a cover πj : N−i,i � N corresponding to the subgroup

f∗(π1(M−j,j)) ⊆ π1(N) where Σ0∪Σi∪Σ−i lifts homeomorphically. Assume that there only finitely

many T±i that are contained in N1. Then, for infinitely many T±i in the covers Nj we see the

following configuration:

Σ̃0 Σ0

Σ̃i
Σi

πj
Ñ2 N2

Σ−iΣ̃−i

Ñ1 N1

Figure 3.9: The tori T±i are marked by the surfaces Σi that they are subsurfaces
of.
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Let g be as in Lemma 3.3.5 and homotopic to the homotopy equivalence f̃ : M−j,j → N−j,j .

Since Σ̃k and g(Sk) are incompressible closed surfaces by [60] we have that Σ̃k ' g(Sk) and by (2) of

Lemma 3.3.5 we have that Σ̃k separates the punctured tori g(Q±i ), g(Q±−i) in g(Si) and g(S−i). Thus,

we have a punctured torus, say f(Q+
i ), that is contained in Ñ1 and such that the corresponding

punctured torus T̃+
i ⊆ Σ̃i is contained in Ñ2. Let α ⊆ T+

i be any essential non peripheral curve, then

since α is homotopic into f(Q+
i ) and Σ̃0 separates we have that α is homotopic into Σ̃0 contradicting

Remark 3.3.4. Therefore, we have infinitely many punctured tori {Tn}n∈N with boundary ∂Tn
.= γn

isotopic to γ such that ∀n : Tn ⊆ N1. �

We can now reach a contradiction with the fact that Γ is a discrete group. Let µ .= injN (Σ0)

and let ε .= min {µ, µ3} where µ3 is the 3-dimensional Margulis constant (see [5]). Since the Tn’s are

π1-injective by picking a 1-vertex triangulation τn with preferred edge corresponding to γn we can

realise the Tn’s by useful simplicial hyperbolic surfaces Pn.

The surfaces Pn are mapping γn to the cusps E and cannot be homotoped through Σ0 since again

we would contradict Remark 3.3.4. Hence, we get that for all n Pn ∩ Σ0 6= ∅. Let xn ∈ Pn ∩ Σn,

then injxn
(Pn) ≥ ε. Since the surfaces Pn are negatively curved by the Bounded Diameter Lemma

[6, 54] we get that we can find loops αn, βn ∈ π1(Pn, xn) whose length is bounded by 8
ε and such

that they generate a rank two free group. Since 〈αn, βn〉 ∼= F2 we have that at least one of αn, βn

is not homotopic to γn. Without loss of generality we can assume that this element is always αn.

By Remark 3.3.4 the collection {αn}n∈N are all distinct elements in Γ. Moreover, we have that

`N (αn) ≤ 8
ε . Let D .= diam(Σ0), pick x ∈ Σ0 and fix x̃ to be a lift in Σ̃0 ⊆ H3. Then for lifts x̃n of

xn we have that:

dH3(αn(x̃), x̃) ≤ dH3(αn(x̃), αn(x̃n)) + dH3(αn(x̃n), x̃n) + dH3(x̃n, x̃)

≤ D + 8
ε

+D

= 2D + 8
ε

Thus the family {αn}n∈N has an accumulation point in PSL2(C) contradicting the discreetness

of Γ. �



Chapter 4

Hyperbolization results for MB

4.1 Topological Constructions

We now study the topology of manifolds in the class MB . Specifically we will show that any such

manifold admits a canonical manifold bordification and a characteristic submanifold.

4.1.1 Existence of maximal bordifications for manifolds in M

The aim of this section is to show that an open 3-manifold M with a compact exhaustion by

hyperbolizable 3-manifolds with incompressible boundary admits a “maximal” manifold bordification

M . The boundary components of M are in general open surfaces and come from compactifying

properly embedded product submanifolds of the form F × [0,∞) where F is an incompressible

surface.

We will work in the following class of 3-manifolds:

Definition 4.1.1. An open 3-manifold M lies in the class M if it is irreducible, orientable and

satisfies the following properties:

(i) M = ∪i∈NMi where each Mi is a compact, orientable and hyperbolizable 3-manifold;

(ii) for all i : ∂Mi is incompressible in M .

Moreover, we say that M ∈ Mg if M ∈ M and for all i ∈ N all components of ∂Mi have genus

at most g. We write MB for the class ∪g≥2Mg.

43
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Definition 4.1.2. Given M ∈M we say that a pair (M, ι), for M a 3-manifold with boundary and

ι : M → int(M) a marking homeomorphism, is a bordification for M if the following properties are

satisfied:

(i) ∂M has no disk components and every component of ∂M is incompressible;

(ii) there is no properly embedded manifold

(A× [0,∞), ∂A× [0,∞)) ↪→ (M,∂M)

Moreover, we say that two bordifications (M,f), (M ′, f ′) are equivalent, (M,f) ∼ (M ′, f ′), if we

have a homeomorphism ψ : M '−→ M
′ that is compatible with the markings, that is: ψ|int(M)

iso'

f ′ ◦ f−1. We denote by Bor(M) the set of equivalence classes of bordified manifolds.

Condition (ii) is so that (M,∂M) does not embed into any (M ′, ∂M ′) so that two cusps in ∂M

are joined by an annulus in ∂M
′. Condition (i) is so that we can have maximal bordification since

it is always possible to add disk components to ∂M by compactifying properly embedded rays.

We will build a maximal bordification Mm ∈ Bord(M). The bordified manifold Mm has the key

property that every properly embedded product submanifold of M is compactified in M and M is

homeomorphic to int(M). The main result of the section is:

Theorem 4.1.3. Let M be an orientable, irreducible 3-manifold such that M = ∪i∈NMi and

M ∈M then, there exists a unique bordification [M ] ∈ Bor(M) such that every properly embedded

submanifold F × [0,∞) in M is properly isotopic into a collar neighbourhood of a subsurface of ∂M .

We will first deal with the case in which the manifolds M = ∪i∈NMi have the property that the

genus of S ∈ π0(Mi) is uniformly bounded, i.e. M ∈MB . Then we will show how to generalize the

main technical results to deal with manifolds that have exhaustions with arbitrarily large boundary

components.

4.1.1.1 Existence of maximal bordification for manifolds in MB

For open manifolds we define:

Definition 4.1.4. Given an open 3-manifold M a product P is a proper π1-injective embedding

P : F × [0,∞) ↪→ M for F a, possibly disconnected and of infinite type, surface with no disk

components. Given products P,Q then P is a subproduct of Q if P is properly isotopic to a

restriction of Q to a subbundle. Whenever P is a subproduct of Q we write P ⊆ Q. We say
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that a product P : F × [0,∞) ↪→ M is simple if for {Fi}i∈N the connected components of F no

Pi
.= P|Fi×[0,∞) is a subproduct of a Pj .

Note that the image of every level surface of a product P in M is incompressible in M . With an

abuse of notation we will often use P for the image of the embedding.

Given a compact, irreducible and atoroidal 3-manifold (M,∂M) with incompressible boundary

and two essential properly embedded I-bundles P,Q we can find a characteristic submanifold [31, 32]

N(P ) extending P , i.e. P is contained in a component of N(P ). Then by JSJ Theory [31, 32] we can

isotope Q into the characteristic submanifold N(P ). Then, up to another isotopy of Q supported in

N(P ), either Q and P are disjoint or they intersect in one of the following ways:

(i) their union forms a larger connected I-bundle in N(P );

(ii) both P and Q are products over annuli and they intersect ‘transversally’, that is V ∈ π0(P ∩Q)

is a solid torus containing a fiber of both P and Q.

In case (ii) we have that P and Q are contained in a essential solid torus component of N(P ). We

will refer to the second type of intersection as a cross shape.

Lemma 4.1.5. Let P1, P2 be essential properly embedded thickened annuli in a compact irreducible

3-manifold M with incompressible boundary. If, up to isotopy, P1, P2 intersect in cross shapes more

than twice then M is not atoroidal.

Proof. By JSJ theory we can isotope them, relative to the boundary, into the characteristic subman-

ifold.Then they are either disjoint or they intersect in a cross shape. In the latter case, by JSJ theory

their union gives a solid torus piece in the JSJ decomposition. However, if the ambient manifold is

atoroidal we have that the Pi cannot intersect essentially more than twice. If they intersect at least

twice their union contains two essential tori that are joined by an annulus. This configuration of

essential tori and annuli (see Figure 4.1) contradicts the fact that M is atoroidal.

Figure 4.1: The essential torus is dotted in blue.

�
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Remark 4.1.6. Let P1, P2 be infinite products over annuli in M ∈ M whose component of inter-

section are cross shapes. If P1, P2 have at least two components of intersections we can find k such

that Mk contains an embedded copy of Figure 4.1 contradicting the atoroidality of Mk. Thus, since

P1 ∩ P2 intersect in fibers at most once, after a proper isotopy, we can find a compact set K such

that outside K the products P1, P2 are either parallel or have disjoint representatives.

Definition 4.1.7. Let M ∈ M and let Xk
.= Mk \Mk−1 be the gaps of the exhaustion {Mk}k∈N.

Given characteristic submanifolds (Nk, Rk) ⊆ (Xk, ∂Xk), for Rk
.= ∂Nk ∩ ∂Xk, we say that they

form a normal family N .= {Nk}k∈N if: whenever we have essential subsurfaces S1, S2 of Rk, Rk+1

respectively that are isotopic in ∂Mk we have an essential subsurface S ⊆ Rk ∩ Rk+1 such that

S
iso' S1

iso' S2 in ∂Mk. Thus, if {Nk}k∈N forms a normal family we can assume that if a component

of Rk+1 is isotopic into Rk then it is contained in Rk, i.e. the Nk’s match up along the ∂Mk’s.

Lemma 4.1.8. Given M = ∪k∈NMk ∈M there exists a normal family N of characteristic subman-

ifolds.

Proof. By [31, 32] eachXk
.= Mk \Mk−1 has a characteristic submanifoldsNk and defineRk

.= ∂Nk∩

∂Xk. Consider (N2, R2) and let S ⊆ R2 be the maximal, up to isotopy, essential subsurface of R2

that is isotopic in ∂M1 into R1. Let Σ be a component of S. If Σ is the boundary of a wing of a

solid torus of N2 we can isotope N2 so that Σ ⊆ R1. If Σ is contained into an I-bundle P we can

isotope P so that P ∩R1 contains a subsurface isotopic to Σ. By doing this for all components of S

we obtain that N1, N2 form a normal pair. We then iterate this construction for all Xk and Nk to

obtain the required collection of characteristic submanifolds. �

Definition 4.1.9. Given M ∈M and a normal family N = {Nk}k∈N of characteristic submanifolds

for Xk
.= Mk \Mk−1 a product P : F × [0,∞) ↪→ M is in standard form if for all k ∈ N every

component of Im(P) ∩ Xk is an essential I-bundle contained in Nk or an essential sub-surface of

∂Mk.

Definition 4.1.10. We say that a product P : F × [0,∞) ↪→M is of finite type if the base surface

F is compact and of infinite type if the base surface F is of infinite type.

In the case that P : F×[0,∞) ↪→M is of finite type, i.e. F is a compact surface, we have that P is

in standard form if and only if, up to reparametrization, we have Im(P)∩∪k∈N∂Mk = ∪i∈NP(F×{i})

and each submanifold P(F × [i, i+ 1]) is an essential I-bundle contained in Nki
for some ki ∈ N.
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From now on we will focus on the case of manifolds M that are inMB , i.e. M is inMg for some

g ∈ N. This is so that every product P : F × [0,∞) ↪→ M has the property that every component

is a finite type product, see Corollary 4.1.20. The next pages will be dedicated to the proof of the

following Theorem:

Theorem 3.18. Consider a product P : Σ × [0,∞) ↪→ M with M = ∪k∈NMk ∈ MB and

Pi
.= P|Σi×[0,∞) for Σi a connected component of Σ. Given a normal family N = {Nk}k∈N of

characteristic submanifold for Xk
.= Mk \Mk−1 then, there is a proper isotopy Ψt of P such that

Ψ1 is in standard form.

The proof is fairly technical and involves ideas and techniques coming from standard minimal

position argument. We start by showing that we can properly isotope π1-injective submanifolds so

that the intersections with the boundaries of the exhaustion are π1-injective surfaces.

Lemma 4.1.11. Let Ψ : N ↪→ M ∈ M be a π1-injective proper embedding of an irreducible

3-manifold N . Then, there exists a proper isotopy Ψt of the embedding Ψ0 = Ψ such that all

components of S .= Ψ1(N) ∩ ∪k∈NMk are π1-injective surfaces and no component S of S is a disk.

Proof. By a proper isotopy of Ψ, supported in ε-neighbourhoods of the ∂Mk’s we can assume that

∀k : ∂ Im(Ψ) t ∂Mk so that ∂Mk ∩ Im(Ψ) are properly embedded surfaces in Im(Ψ). Thus, we only

need to show:

Claim: Up to a proper isotopy of Ψ we have that every component of S .= ∪k∈N∂Mk ∩ Im(Ψ) is a

properly embedded incompressible surface in Im(Ψ) and S has no disk components.

Since every component S of S is a subsurface of some ∂Mk and ∂Mk is incompressible in M it

suffices to show that up to a proper isotopy of Ψ we have that every component of S is an essential

subsurface of some ∂Mk. Therefore, we have to show that for every component S of S we have that

∂S is essential in M .

Define Bk
.= π0(∂Mk∩Ψ(∂N)), since Ψ is proper embedding we have that: for all k ∈ N |Bk| <∞.

The first step is to show that up to isotopies we can remove all inessential components of Bk. To

do the isotopies we will need good balls for ∂Mk ∩ ∂ Im(Ψ). These are embedded closed 3-balls

B ⊆ M \Mk−1 with ∂B = D1 ∪∂ D2 where D1, D2 are disks such that D1 ⊆ ∂Mk, D2 ⊆ ∂ Im(Ψ)

and ∂B ∩ ∂ Im(Ψ) = D2. Given a good ball B we can push Ψ through B to reduce Bk. Pushing
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through a 3-ball effectively adds/deletes a 3-ball from Im(Ψ). We now define:

Dk
.= {(D1, D2)|D1 ⊆ ∂Mk, D2 ⊆ ∂ Im(Ψ) disks with: ∂D1 = ∂D2}

Notice that by the Loop Theorem [26, 28] and incompressibility of ∪k∈N∂Mk and of ∂ Im(Ψ) if

Dk = ∅ it means that every component of Bk is essential.

By an iterative argument the key thing to show is that if for all n < k we have that Dn = ∅,

then if Dk 6= ∅ it contains a good ball for ∂Mk.

Since ∂Mk and ∂ Im(Ψ) are properly embedded in every compact subset we see finitely many

components of intersection. Therefore, we can take an innermost component in ∂Mk. Thus, we have

a disk D1 ⊆ ∂Mk such that D1 ∩ ∂ Im(Ψ) = ∂D1 and the loop γ
.= ∂D1 is contained in ∂ Im(Ψ).

Since ∂ Im(Ψ) is incompressible we see that γ bounds a disk D2 ⊆ ∂ Im(Ψ) and since D1 was picked

to be innermost we have that D2 ∩ D1 = γ. By irreducibility of M we have that the embedded

2-sphere S2 .= D1 ∪γ D2 bounds a 3-ball B. The only thing left to check is that B ⊆M \Mk−1.

The disk D2 ⊆ ∂Ψ does not intersect any component of ∂Mn with n < k, otherwise by incom-

pressibility of ∂Mn and by taking an innermost disk of intersection we would have Dn 6= ∅. Hence,

B is a good ball for ∂Mk.

Thus, we can push Im(Ψ) through the good ball B to reduce Bk without changing any Bn for

n < k. This process either adds or deletes a 3-ball to Im(Ψ) therefore the homeomorphism type

does not change. Moreover, since Bk is finite and every time we remove a good ball it goes down by

at least one we have that by pushing through finitely many good 3-balls, i.e. after a proper isotopy

Ψt
k of Ψ supported in M \Mk−1, we have that every component of Bk is essential. The composition

in k ∈ N of all the isotopies Ψt
k is still proper since the support of Ψt

k is contained in M \Mk−1.

Thus we obtain a proper isotopy Ψt .= lim−→k∈N Ψt
k of Ψ such that for all k ∈ N Dk = ∅. �

Before we can prove Theorem 4.1.19 we will need some technical Lemmas about isotopies of

annuli and I-bundles in 3-manifolds.

Lemma 4.1.12. Let (M,∂M) be an irreducible 3-manifold with a collection of properly embedded

pairwise disjoint boundary parallel annuli A1, . . . , An with ∂Ai ⊆ ∂M , for 1 ≤ i ≤ n. Then there

exists pairwise disjoint solid tori V1, . . . , V` in M such that ∪ni=1Ai ⊆ ∪`k=1Vk and for all 1 ≤ k ≤ `

we have that ∂Vk = Ck ∪∂ Aik for Ck’s pairwise disjoint annuli in ∂M .

Proof. Every annulus Ai is properly isotopic rel ∂Ai to an annulus Ci ⊆ ∂M and for all 1 ≤ i ≤ n

each pair Ai, Ci co-bounds a solid torus Vi ⊆M .
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Claim: For i 6= j the annuli Ci, Cj ⊆ ∂M are either disjoint or Ci ( Cj .

Proof of Claim: Since ∂Ci ∩ ∂Cj = ∅ if Ci ∩ Cj 6= ∅ we have that at least one component of

∂Ci
.= α1∪α2 is contained in int(Cj). Then, if we look at the solid torus Vj we see that Vj ∩Ai 6= ∅.

Thus, either Ai ⊆ Vj , which gives us that Ci ( Cj , or it escapes. In the latter case we have that

∂Vj ∩ int(Ai) 6= ∅ but ∂Vj = Cj ∪∂ Aj and int(Ai)∩Cj = ∅. Hence, we must have that Ai∩Aj 6= ∅

contradicting the fact that the annuli A1, . . . , An were pairwise disjoint in M . �

By taking maximal pairs (Cik , Vk), 1 ≤ k ≤ `, with respect to inclusions, we get a collection

V = {V1, . . . , V`} of finitely many solid tori that contain all the annuli A1, . . . , An.

Moreover, for 1 ≤ k ≤ ` the Vk’s are pairwise disjoint. If not we would have two solid tori Vt, Vh

with intersecting boundary and again we contradict the fact that the Ai’s are pairwise disjoint or

the fact that the Vk’s were maximal with respect to inclusion. Thus the required collection of solid

tori is given by V. �

Say we have N ⊆ int(M) and F × I ⊆ int(M) where N,M are irreducible manifolds with

incompressible boundary. If ∂N t F × I by applying Lemma 4.1.12 to F × I we can remove

∂-parallel annuli of ∂N ∩ F × I by pushing F × I through the solid tori. Therefore, we have:

Corollary 4.1.13. Given F × I ⊆ int(M), with N ⊆ int(M) and ∂-parallel annuli A1, . . . , An ⊆

∂N ∩ F × I then there is an isotopy Ψt of F × I that is the identity outside neighbourhoods of the

Vk’s such that for all t ∈ [0, 1] Ψt(F × I) ⊆ F × I and Ai ∩Ψ1(F × I) = ∅.

Lemma 4.1.14. Let V be a solid torus with ∂V
.= C1 ∪∂ C2, for C1, C2 annuli and let A1, . . . , An

be properly embedded π1-injective annuli in V such that for 1 ≤ i ≤ n ∂Ai ⊆ C1. Given a properly

embedded annulus S ⊆ V with ∂S = ∂C1 = ∂C2 there exists an isotopy Ψt of V that is constant on

∂V such that Ψ1(∪ni=1Ai) ∩ S = ∅.

Proof. The annulus S splits the solid torus V into two solid tori V1 and V2 such that ∂Vk = S ∪∂ Ck

for k = 1, 2. Since there are finitely many Ai’s and they all have boundary in C1 ⊆ ∂V we can

find an annulus S′ ⊆ V2 with ∂S′ = ∂S such that all Ai are contained in the component of V \ S′

containing C1. By pushing S′ to S we obtain the required isotopy. �

Lemma 4.1.15. Let P : Σ × [0,∞) ↪→ M be a product, for M = ∪k∈NMk ∈ M and let Pi :

Σi × [0,∞) → M be the restriction of P to the connected components of Σ × [0,∞) in which we

assume that the Σi’s are compact and let A ⊆ Σ be the essential subsurface containing all annular

components. Assume that every component of S .= ∪k∈N∂Mk ∩ Im(P) is properly embedded and
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incompressible and no component S of S is a boundary parallel annulus in Im(P)\P(A×{0}). Then,

there exists a proper isotopy Ψt of the embedding P such that for all t ∈ [0, 1] Ψt(Σ×[0,∞)) ⊆ Im(P)

and for every component S of ∪k∈N∂Mk∩ Im(Ψ1) the surface (Ψ1)−1(S) is a horizontal fiber in some

component of Σ× [0,∞). Moreover, we have that Ψ1 : Σ× [0,∞) ↪→M maps Σ×{0} into S and if

P(Σ× {0}) ⊆ S then the isotopy can be assumed to be constant on P(Σ× {0}).

Proof. Since we will do proper isotopies supported in Pi with image in Pi we can work connected

component by connected component. Therefore, it suffices to prove the proposition in the case that

Σ×[0,∞) is connected. We define Ŝ be the collection of surfaces S ⊆ S such that P−1(S)∩Σ×{0} =

∅. Since P is a proper embedding and Σ× {0} is compact the set Ŝ is not empty .

Claim 1: Given a component S of Ŝ, then P−1(S) is isotopic to a horizontal surface in Σ× [0,∞).

Proof of Claim: Since S is compact and P is a proper embedding we have 0 < t1 <∞ such that

S ⊆ P(Σ× [0, t1]) and since P−1(S) ∩Σ× {0} = ∅ we have ∂S ⊆ P(∂Σ× (0, t1]). By [60, 3.1,3.2]1

we have an isotopy ϕt of P−1(S) supported in Σ × [0, t1] that is the identity on ∂(Σ × [0, t1]) such

that the natural projection map: p : Σ× [0, t1]→ Σ is a homeomorphism on ϕ1(P−1(S)). Moreover,

the surface P−1(S) is also isotopic to a subsurface S′ of Σ× {t1}. Since p is a homeomorphism on

P−1(S) and S is not a ∂-annulus we have that the boundary components of S are in bijection with

a subset of boundary components of ∂Σ. Thus, we have that S′ is a clopen subset of Σ, hence S

must be homeomorphic to Σ. �

All surfaces Ŝ are pairwise disjoint and isotopic to a fiber. Thus, we can label them by {Sn}n∈N
such that for n < m we have that Sn is contained in the bounded component of Im(P) \Nε(Sm).

Consider S1 then we have positive real numbers a1, b1 with: 0 < a1 < b1 < ∞ such that

P−1(S1) ⊆ Σ × [a1, b1]. By Waldhausen Cobordism Theorem [60, 5.1] we can change the fibration

so that P−1(S1) is a horizontal fiber in Σi× [a1, b1] hence in P. Then, since P−1(S1) is a horizontal

fiber in P by a proper isotopy of P supported in Im(P) and with image in Im(P) we can ‘raise’

P(Σ×{0}) to S1 so that ∪k∈N∂Mk∩ Im(P) = Ŝ. Note that, these isotopy preserves all properties of

S and Ŝ. Moreover, since the last isotopy removed all components of intersection of ∪k∈N∂Mk ∩ Pi

that were not in Ŝ we obtain that S = Ŝ.

Also note that if P(Σ × {0}) ⊆ S we don’t have to do ‘raise’ isotopy an we automatically have

that S = Ŝ.

1The exact statement we are using here is an easy consequence of the ones cited. In particular
we are are applying Waldhausen’s result to a an isotopic fiber structure on the I-bundle.
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Claim 2: Assume that for 1 ≤ k ≤ n the surfaces P−1(Sk) are the horizontal fibers Σ× {k − 1}

in Σ× [0,∞). Then, by a proper isotopy that is the identity on Σ× [0, n−1] we can make P−1(Sn+1)

equal to Σ× {n}.

Proof of Claim: Since Sn+1 is compact and P is properly embedded we have 0 < n−1 < tn <∞

such that the surface Sn+1 is contained in Σ× [n−1, tn]. Then, by Waldhausen Cobordism Theorem

[60, 5.1] the submanifolds bounded by Sn, Sn+1 and ∂Σ × [n − 1, tn] is homeomorphic to Σ × [0, 1]

with Σ × {0} = Sn and Σ × {1} = Sn+1 thus by changing the fiber structure we get that Sn+1 is

also horizontal and equal to Σ× {n}. �

By iterating Claim 2 we get that all components of S are horizontal in P. Moreover, since

P(Σ× {0}) ⊆ S we complete the proof. The last statement of the Lemma holds by the observation

before Claim 2 and the fact that the isotopies in Claim 2 are constant on Σ× {0}. �

From now on we will use annular product to indicate a product A : A × [0,∞) ↪→ M where

A = S1 × I is an annulus.

Definition 4.1.16. Given a connected product P : Σ× [0,∞) ↪→M such that for every component

S of ∪k∈N∂Mk ∩ Im(P) the surface P−1(S) is a horizontal fiber of a component of Σ× [0,∞) we say

that Q .= P(Σ× [a, b]) is a compact region of P at ∂Mk if Q ∩ ∂Mk = P(Σ× {a, b}). Whenever the

product and the level is clear we will just write compact region.

Proposition 4.1.17. Let M = ∪k∈NMk ∈M and P : Σ× [0,∞) ↪→M be a product such that for

each component S of S .= ∪k∈N∂Mk∩ Im(P) then P−1(S) is a horizontal surface in some component

of Σ× [0,∞). Consider the subproduct A ⊆ P consisting of all annular products of P. If for k < m

all compact regions of A at ∂Mk are essential in either Mk or M \Mk then, there is a proper isotopy

Ψt
m of P supported in M \Mm−1 such that all compact regions of A at ∂Mm are essential.

Proof. Since Im(P) and ∪k∈N∂Mk are properly embedded there are finitely many annular products

ofA that intersect ∂Mm. Consider a compact region Q .= P(A×[a, b]) ofA at ∂Mm, since Q∩∂Mm =

P(A × {a, b}) we have that Q is either contained in Mm or in M \Mm. Let Am be the collection

of all compact regions of A at ∂Mm that are boundary parallel in either Mm or M \Mm. We have

that |Am| < ∞ and is bounded by bm
.= |π0(∂Mm ∩ ∂ Im(P))| which is finite by properness of the

embedding.
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Claim: Let P(A× [a, b]) be a compact region in An, for n ∈ N such that:

P(A× I) ∩ ∪nk=1∂Mk = P(A× {a, b}) ⊆ ∂Mn

and P(A× [a, b]) is inessential. Then, there is a solid torus V ⊆M \Mn−1 containing P(A× [a, b])

such that all components of Im(P) ∩ V are ∂-parallel I-bundles contained in Im(A).

Proof of Claim: Consider P(∂A × [a, b]) then these are embedded annuli C1, C2 in either Xn or

M \Mn. If P(A × [a, b]) is ∂-parallel so are C1, C2, hence we have that one of them co-bounds

with an annulus C ⊆ ∂Mn a solid torus V containing P(A × [a, b]). Without loss of generality we

can assume that ∂V = C1 ∪∂ C. Since every component of ∪k∈N∂Mk ∩ Im(P) is a horizontal fiber

in some component of Im(P) we have that no component of ∂Mn ∩ Im(P) is a boundary parallel

annulus or a disk. Since every properly embedded π1-injective surface in a solid torus V is either a

disk or an annulus we see that Im(P)∩ V have to be subbundles Q1, . . . , Qn of annular products in

Im(P). Moreover, all Qi, for 1 ≤ i ≤ n, are inessential I-bundles. �

LetQ = P(A×[h, `]) inAk be a compact region. Assume that Q ⊆Mm and thatQ∩∂Mm−1 6= ∅.

Since components of intersection of Q∩∪k∈N∂Mk are horizontal fibers of Q let P(A×{a}),P(A×{b})

with h < a < b < ` be the first and last component of intersections in Q of Q ∩ ∂Mm−1 and let

Q′
.= P(A × [a, b]) ⊆ Q. Since P(A × [h, a]) ⊆ Q and P(A × [b, `]) ⊆ Q have boundaries on

distinct components of Xm
.= Mm \Mm−1 we get that they are essential I-bundles. Therefore,

since Q is inessential in Mm we have some k < m such that Q′ ∩ (Xk

∐
Xk+1) has a component

T
.= P(A×[t1, t2]) that is inessential and T is a thickened annulus intersecting ∂Mk in P(A×{t1, t2}).

Since T ⊆ Q′ we have that Q′ has a compact region that is ∂-parallel in either Mk−1 or M \Mk−1

contradicting the hypothesis that for all k < m all compact regions of A ∩Xk were essential.

Therefore, we have that Q is boundary parallel in either Xm or in M \Mm. By the Claim we

have a solid torus V such that V ∩ Im(P) = Im(A)∩V . By Lemma 4.1.14 we have a proper isotopy

of P supported in a solid torus Nε(V ) contained in M \Mm−1 that removes Q from Am and reduces

bm by at least two.

Thus, we obtain a proper isotopy of P supported in M \Mm−1 that removes Q from Am. Finally,

since Am has finitely many elements the composition of these isotopies gives us a proper isotopy Ψt
m

of P that makes all sub-bundles of A∩Xk for k ≤ m minimal. Moreover, since all the isotopies are

supported in M \Mm−1 we get that Ψt
m is also supported outside Mm−1. �

The last thing we need to prove Theorem 4.1.19 is:
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Proposition 4.1.18. Let P : Σ × [0,∞) ↪→ M be a product with M = ∪k∈NMk ∈ M and let

A ⊆ Σ be the collection of components of Σ that are homeomorphic to annuli. Then, there is a

proper isotopy of P iso' Q such that all components of S .= Im(Q)∩∪k∈NMk are properly embedded

π1-injective surfaces in Im(P) such that no S ∈ S is a ∂-parallel annulus in Im(Q) \ Q(A× {0}) or

a disk.

Proof. Since products are π1-injective by Lemma 4.1.11 we have that:

Step 1: Up to a proper isotopy of P we have that every component of S .= ∪k∈N∂Mk ∩ Im(P) is

a properly embedded incompressible surface in Im(P) and S has no disk components.

Let A : A× [0,∞) ↪→ M be the restriction of P to A ⊆ Σ. We first isotope A(A× {0}) so that

every component of A(A × {0}) is an essential annulus in some ∂Mk. Let A1
.= A(A1 × [0,∞)),

A1 ∈ π0(A), be a component of Im(A) then not all π1-injective annuli S ∩ A1 can have boundary

on a component of ∂A1 \A(A× {0}) since otherwise by a proper isotopy of A1 supported in A1 we

would have that A1 ∩ ∪k∈N∂Mk would be compact which contradicts the fact that A1 is a proper

embedding. Therefore, we must have an essential annulus S ⊆ ∂Mk of S ∩A1 whose boundaries are

on distinct components of ∂A1 \A(A×{0}). Therefore, since S∩A1 and A(A1×{0}) are isotopic in

A1 we can isotope A1 so that A(A1×{0}) is mapped to S ⊆ ∂Mk. By doing this for all components

of A we can assume that A(A× {0}) ⊆ ∪k∈N∂Mk.

Step 2: Up to a proper isotopy of P supported in Im(P) we have that no component S of S is a

boundary parallel annulus in Im(P) \ A(A× {0}).

Let Ak be the collection of annuli of Sk
.= S0 ∩ ∂Mk that are ∂-parallel in Im(P) \ A(A× {0}).

Since P is a proper embedding we have that for all k ∈ N |π0(Ak)| <∞. By an iterative argument

it suffices to show the following:

Claim 1: If for 1 ≤ n < k An = ∅ then via an isotopy ϕtk of P supported in M \Mk−1 ∩ Im(P)

we can make Ak = ∅.

Proof of Claim: For all k ∈ N we have 0 < ak < bk < ∞ such that Ak ⊆ P(Fk × [ak, bk]) for

Fk ⊆ Σ a finite collection of connected components of Σ.

Denote by A1, . . . , An the ∂-parallel annuli in Ak. By applying Corollary 4.1.13 to each compo-

nent of P(Fk × [ak, bk]) we have a local isotopy ϕtk of P that removes all these intersections. The
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isotopy ϕtk is supported in a collection of solid tori Vk ⊆ Fk × [ak, bk] thus it can be extended to the

whole of P. Moreover, if we consider for n < k a component of intersection of ∂Mn ∩ P(Vk) then it

is either a boundary parallel annulus or a disk. However, we assumed that for n < k An = ∅ and by

Step 1 no component of ∪k∈N∂Mk ∩ Im(P) is a disk thus, the solid tori Vk that we push along are

contained in Im(P)∩M \Mk−1. Therefore, we get a collection of solid tori Vk ⊆ Im(P)∩M \Mk−1

such that pushing through them gives us an isotopy ϕtk of P that makes Ak = ∅. �

Since for all k ∈ N supp(ϕtk) = Vk is contained in M \Mk−1 the limit ϕt of the ϕtk gives us a

proper isotopy of P such that for all k ∈ N Ak = ∅.

This concludes the proof of Step 2 and the Lemma follows. �

We can now show that products whose components are of finite type can be put in standard

form.

Theorem 4.1.19. Consider a product P : Σ × [0,∞) ↪→ M with M = ∪k∈NMk ∈ M where the

Σi are the connected component of Σ and are compact. Given a normal family N = {Nk}k∈N
of characteristic submanifold for Xk

.= Mk \Mk−1 there is a proper isotopy Ψt of P such that

Ψ1 : Σ× [0,∞) ↪→M is in standard form.

Proof. From now on we denote the gaps of the exhaustion {Mk}k∈N of M by Xk
.= Mk \Mk−1, by

definition we have that Nk ⊆ Xk. With an abuse of notation we will often confuse a product P with

its image Im(P) and we define Pi
.= P|Σi×[0,∞). By Lemma 4.1.18 up to a proper isotopy of P all

components of S are properly embedded π1-injective surfaces in Im(P) such that no component S

of S is a ∂-parallel annulus or a disk. Then, we are in the setting of Lemma 4.1.15, thus by a proper

isotopy of P and a reparametrization we have that S = {Sni }i,n∈N where Sni
.= P(Σi × {n}) and we

let Ini
.= P(Σi × [n, n+ 1]).

Step 1: Up to a proper isotopy of P we can make for all k ∈ N all I-bundle components Ini ,

i, n ∈ N, of Im(P) ∩Xk essential.

Since every I-bundle Ini over a surface Σi with χ(Σi) < 0 is automatically essential we only need

to deal with annular components of P, i.e. products Pi : Σi× [0,∞) ↪→M where Σi ∼= A. We denote

by A ⊆ P the collection of all annular products. By Proposition 4.1.17 and an iterative argument

we will show that by isotopies supported in M \Mk we can make A ∩Xk essential.

Let Ak be the ∂-parallel compact regions of A at ∂Mk. Since A ⊆ P is properly embedded we

have that for all k each Ak has finitely many components each of which is a compact region over an
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annulus. By applying Proposition 4.1.17 to A1 ⊆ P we obtain a proper isotopy Ψt
1 that makes all

compact regions Q in at ∂M1 are essential in either M1 or M \M1. In particular this gives us that

every I-bundle in Im(P) ∩X1 = Im(P) ∩M1 is essential.

We now proceed iteratively. Assume that we made for 1 ≤ n < k all compact regions Q ∈ An

essential at ∂Mn. Then, by applying Proposition 4.1.17 to Ak ⊆ P we get a proper isotopy Ψt
k

supported in M \Mk−1 that makes all compact regions Q ∈ Ak essential at ∂Mk. In particular

we get that for all 1 ≤ n ≤ k all components of Im(P) ∩ Xn are essential I-bundles or essential

subsurfaces of ∂Xn.

Since the isotopies Ψt
k are supported in M \Mk−1 their composition yields a proper isotopy

Ψt .= lim−→k∈N Ψt
k of P such that for all k ∈ N every component of Im(P)∩Xk is an essential I-bundle

or an essential subsurfaces of ∂Xn given by P(Σ× {0}).

Step 2: By a proper isotopy of P we have that Im(P) ⊆ ∪k∈NNk.

By Step 1 we have that for all k ∈ N the I-bundle components of Im(P) ∩ Xk are essential

and pairwise disjoint. Consider X1 = M1 then by JSJ theory we can isotope Im(P) ∩ X1 so that

Im(P) ∩ X1 ⊆ N1. Moreover, since P(Σ × (0,∞)) ∩ ∂M1 is, up to isotopy, contained in both R1

and R2
2 by definition of normal family we can assume that P(Σ × (0,∞)) ∩ ∂M1 is contained in

R1,2
.= R1 ∩ R2. This isotopy is supported in a neighbourhood of X1, hence it can be extended

to a proper isotopy Ψt
1 of P. Noting that each component of P(Σ × {0}) is isotoped at most

once to obtain the required proper isotopy it suffices to work iteratively by doing isotopies relative

Rk,k+1
.= Rk ∩Rk+1.

Assume that we isotoped P such that for all 1 ≤ n ≤ k we have that P ∩ Xn ⊆ Nn and

such that P(Σ × (0,∞)) ∩ ∂Mn is contained Rn,n+1. Since the components of Im(P) ∩ Xk+1 are

essential I-bundles of Xk+1 with some boundary components contained in Rk,k+1 we can isotope

them rel Rk,k+1 inside Nk+1 so that their boundaries are contained in Rk,k+1
∐
Rk+1,k+2. This can

be extended to an isotopy Ψt
k+1 of P whose support is contained in M \Mk, hence the composition

of these isotopies gives a proper isotopy of P such that ∀k ∈ N : Im(P)∩Xk ⊆ Nk, thus completing

the proof. �

As a consequence of the Theorem we have:

Corollary 4.1.20. If P :
∐∞
i=1 Fi× [0,∞) ↪→M is a product in M ∈Mg then, every Fi is of finite

type and |χ(Fi)| is uniformly bounded by 2g − 2.
2We remind the reader that Ri

.= ∂Ni ∩ ∂Xi.
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Proof. It suffices to show that the statement holds for connected products. Assume that we have a

connected product P : F × [0,∞) ↪→ M with |χ(F )| 6≤ 2g − 2. Without loss of generality we can

assume that:

|χ(F )| = n > 2g − 2

since even if P is not a product of finite type we can find a subproduct Pn
.= P|Fn×[0,∞) where

Fn is an essential connected finite type subsurface of Σ with |χ(Fn)| = n.

By Theorem 4.1.19 up to a proper isotopy of P we can assume P to be in standard form. Then,

the surface F is an essential subsurface of Σh ∈ π0(∂Mk) for some k ∈ N. Since h ≤ g we have that

n = |χ(F )| ≤ 2g − 2, which gives us a contradiction. �

Thus, we have that:

Corollary 4.1.21. Given a product P : Σ× [0,∞) ↪→M if M is in MB = ∪g≥2Mg, then there is

a proper isotopy Ψt of P such that Ψ1 is in standard form.

By isotopying surfaces in general position we have:

Lemma 4.1.22. Let ϕi : (Fi × I, Fi × ∂I) ↪→ (F × I, F × ∂I), i = 1, 2 be essential embeddings in

which ϕi(Fi × {0}). Then by a proper isotopy of ϕ1, ϕ2 we have that Im(ϕ1) ∪ Im(ϕ2) = Im(ϕ3)

where ϕ3 : (F3×I, F3×∂I) ↪→ (F×I, F×∂I) is an essential embedding. Moreover, if ϕ2(F2×{0}) ⊆

ϕ1(F1 × {0}) we can do the isotopy rel ϕ1(F1 × {0}).

Definition 4.1.23. Given a normal family of characteristic submanifolds N = {Nk}k∈N for M =

∪k∈NMk ∈ M and a π1-injective subbundle w .= F × I ↪→ Nk with Nk ⊆ Xk
.= Mk \Mk−1 we say

that w goes to infinity if it can be extended via I-bundles wi ↪→ Nki
, {ki}i∈N ⊆ N and w0 = w, to

a product F × [0,∞) ↪→M .

Note that each F × I ∼= w ⊆ π0(Nk) with χ(F ) < 0 has at most two extensions to infinity since

these I-bundles do not branch in any Nk. On the other hand annular products can branch off in

solid tori in Nk and thus may have infinitely many extensions to infinity.

Remark 4.1.24. Let w1, w2 be subbundles of w ⊆ Nk going to infinity. Say that w
ϕ∼= F × I and

wi
ϕi∼= Fi× I, then if ϕ1(F1×{0})∩ϕ2(F2×{0}) is an essential subsurface F1,2, π1-injective and not

∂-parallel, then w3
.= w1 ∪ w2 gives a product going to infinity containing the ones given by w1, w2

as subproducts.
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Definition 4.1.25. For M = ∪k∈NMk ∈ M we say that a product P : F × [0,∞) ↪→ M starts at

Xk
.= Mk \Mk−1 if Im(P) ∩ Xk contains a component homeomorphic to F × I and k is minimal

with respect to this property.

Recall that a simple product P is a product such that no component of Im(P) is properly isotopic

into any other one, see Definition 4.1.4.

Lemma 4.1.26. Let M = ∪∞k=1Mk ∈ M and N = {Nk}k∈N be a normal family of characteristic

submanifolds for Xk
.= Mk \Mk−1. Then, for all k ∈ N there exists a simple product Pk, in standard

form, starting at Xk that contains, up to proper isotopy, all products at Xk generated by sub-bundles

over hyperbolic surfaces of windows of Nk.

Proof. Let W ⊆ Nk be the collection of I-bundles over hyperbolic surfaces of Nk. Then, W is

homeomorphic, via a map ϕ, to F × I. If no sub-bundle F ′ × I of F × I goes to infinity there is

nothing to do and Pk is just the empty product.

Otherwise let S × I ⊆ F × I be a sub-bundle in which S has maximal Euler characteristic and

fewest number of boundary components going to infinity through F × {1} such that the product

Q : S × [0,∞) ↪→ M it generates is simple and Q(S × {0}) ⊆ F × {1}. By definition we see that

Q is also in standard form. We now need to show that Q contains all subbundles going to infinity.

Let w′ .= ϕ(S′× I) be a product going to infinity not properly isotopic into a product given by some

components of Q. Via an isotopy of S′ we can assume that S′ is in general position with respect to

S. If S′ ⊆ S we are done. Otherwise since S′ and S are in general position no component of S′ \ S

is a disk D such that ∂D = α ∪∂ β with α ⊆ ∂S and β ⊆ ∂S′. Say we have a disk D component in

S′ \ S then ∂D is decomposed into arcs α1, . . . , α2n such that the odd ones are in ∂S ∩ S′ and the

even ones are in ∂S and n ≥ 2. Thus, by adding D to S we get that χ(S∪D) = χ(S)−n+1 < χ(S)

contradicting the maximality of |χ(S)|. Thus, all components Σ of S′ \ S have χ(Σ) ≤ 0.

If we have one Σ ∈ π0(S′ \ S) that is not an annulus with a boundary component in ∂S and

one in ∂S′ we would also get that by adding it to S we would get |χ(Σ ∪∂ S)| > |χ(S)|. Thus, we

must have that all components of S′ \ S are annuli A with one boundary component in ∂S and the

other in ∂S′ or with both boundary components in ∂S. The latter case cannot happen since then

by adding A × I to S × I we would have gotten a new sub-bundle Σ × I going to infinity through

F × {1} such that χ(Σ) = χ(S) but |π0(∂Σ)| < |π0(∂S)|. Hence, S′ is isotopic to a subsurface of S.

Therefore, we obtain a product P1 containing all windows going to infinity going through F×{1}.

By doing the same proof for F × {0} we obtain another product P0, hence the required product Pk

is P0
∐
P1. �
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Example 4.1.27. For example for the manifold constructed in Section 3.3.3 the two annular prod-

ucts start at X1 = M1.

We will now define maximal products which are the products that we will compactify to construct

the maximal bordification.

Definition 4.1.28. A simple product P :
∐∞
i=1 Σi × [0,∞) ↪→ M ∈ M is maximal if given any

other product Q in M then Q is properly isotopic to a subproduct of P.

Theorem 4.1.29. Given M = ∪k∈NMk ∈ MB with N a normal family of characteristic submani-

folds there exists a product in standard form Pmax : F × [0,∞) ↪→M such that any other product

Q is properly isotopic to a sub-product of Pmax.

Proof. Let N .= {Nk}k∈N be the normal family of characteristic submanifolds for Xk
.= Mk \Mk−1.

With an abuse of notation in the proof we will often confuse a product with its image. By tak-

ing a maximal collection of product starting at Xi we will build collections of pairwise disjoint,

disconnected products Pi such that:

(i) for all i ∈ N : Pi ⊆ ∪k∈NNk;

(ii) for all n ∈ N : ∪ni=1Pi is a simple product;

(iii) for all k ∈ N : ∪∞i=1Pi ∩Xk is closed.

Then by defining Pmax
.= ∪∞i=1Pi we obtain a product that we will show to be maximal by our

choice of Pi. The fact that Pmax is a simple product follows by (ii) and (iii) while (i) gives us that

Pmax is in standard form.

With an abuse of notation we will also use Pi to denote the image of the product.

Existence: Consider N1 ⊆ X1 = M1. We add to P1 the products coming from Lemma 4.1.26

applied to the windows of X1 = M1. Note that P1 contains finitely many products since all base

surfaces are isotopically distinct subsurfaces of ∂M1 and each such submanifold generates at most

two non-properly isotopic products. Also note that all such products are necessarily pairwise disjoint

and in standard form since they are in every Nk, k ≥ 1.

Next, consider submanifolds of the form A × I ⊆ N1 that go to infinity. Potentially every such

manifold has countably many extensions. If this is the case we choose one representative A1
h, h ∈ N,

for each extension not isotopic into a subproduct of P1 and we add it to P1. However, there is no

reason why two such products are not intersecting. So far P1 satisfies (i) and the only obstruction
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to (ii) is that annular products may intersect in cross shapes inside solid tori components of Nk.

Moreover, since in each Xk there are finitely many distinct isotopy classes of pairwise disjoint annular

products we can choose the representatives
{
Aih
}
h∈N so that ∀k :

∣∣{h ∈ N |A1
h ∩Mk 6= ∅

}∣∣ < ∞.

Therefore, we can also assume that P1 satisfies (iii).

Let {Qn}n∈N ⊆ P1 be all annular subproducts that are not pairwise disjoint. By Remark 4.1.6

we have that all the intersections of Qn with Qj are contained in some compact set (each annular

product can intersect another one at most twice). Therefore, by flowing each Qj in the “time”

direction so that Qj is disjoint from Qn with 1 ≤ n ≤ j we get a proper isotopy of the Qj ’s so that

in the image they are pairwise disjoint. Moreover, we can also assume that the new
{
A1
h

}
h∈N still

satisfy ∀k :
∣∣{h ∈ N |A1

h ∩Mk 6= ∅
}∣∣ < ∞. By construction P1 satisfies condition (i) and since the

annular products do not accumulate it is a product. Moreover, P1 is simple since by construction

no annular product is isotopic into a product over a hyperbolic surface and by Lemma 4.1.26 the

subproduct of P1 given by products over hyperbolic surfaces is simple. Thus, P1 satisfies conditions

(i), (ii) and (iii).

We now proceed inductively. Assume we defined Pj , 1 ≤ j ≤ n, satisfying (i)-(iii) and so that

we have representatives of products that start at Xj , k ≤ n, and the annular products
{
Ajh

}
h∈N

of

Pj intersecting any given Mk are finite.

Consider Xn+1 and add to Pn+1, as for P1, the collection of products going to infinity coming

from Lemma 4.1.26 applied to Xn+1 that are not properly isotopic into subproducts of Pj , for

1 ≤ j ≤ n. Every product in Pn+1 is, by construction, a sub-bundle of Nk for all k ∈ N. Thus, Pn+1

satisfies condition (i). We now need to make sure that Pn+1 satisfies condition (ii), i.e. that ∪n+1
i=1 Pi

is a simple product. Condition (iii) follows from the fact that no product of Pn+1 intersects Mn,

otherwise it would have been included in Pn. The problem is that the union ∪n+1
i=1 Pi might not be

an embedding, however up to an isotopy of Pn+1 we can make it an embedding so that P1, . . . , Pn+1

satisfy (i), (ii) and (iii).

Let Q ⊆ Pn+1 be a product over a connected compact surface F with χ(F ) < 0. For all

k ≥ n+ 1 Q ∩Nk is a sub-bundle of a, not necessarily connected, window wk ∈ π0(Nk). Therefore,

Q can only intersect products T ⊆ ∪ni=1Pi that are also sub-bundles of the same window wk. Let

{wkn}n∈N ⊆ {wk}k∈N be the windows containing the intersections of T and Q. Then, by Lemma

4.1.22 we have an isotopy of Q supported in wn1 such that (Q ∪ T ) ∩ wn1 is a sub-bundle of wn1 .

By an iterative argument using Lemma 4.1.22 on wnk+1 and doing isotopies rel wnk
∩ wnk+1 we get

a proper isotopy of Q such that now Q∪ ∪ni=1Pi is a product.

By repeating this for the finitely many such Q’s in Pn+1 we obtain a collection of products Pn+1
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such that all products over surfaces F with χ(F ) < 0 can be added to ∪ni=1Pi to define a, possibly

disconnected, product ∪n+1
i=1 Pi. Moreover, this product is still simple by Lemma 4.1.26.

Finally, we add, as for P1, one representative An+1
h , h ∈ N, for each extension to infinity of annular

products starting in Xn+1 and not properly isotopic into any subproduct of Pi, 1 ≤ i ≤ n+ 1. Note

that this condition necessarily implies that for k ≤ n : An+1
h ∩Xk = ∅, otherwise it would have been

added in some Pk with k ≤ n. Therefore, we can assume that:

• ∀k > n :
∣∣{h ∈ N |An+1

h ∩Mk 6= ∅
}∣∣ <∞;

• ∀k ≤ n :
{
h ∈ N |An+1

h ∩Mk 6= ∅
}

= ∅

For the same reasons as before condition (ii) might still fail, however by doing the same isotopies

as for
{
An+1
h

}
h∈N as for P1 so that they become pairwise disjoint and are also disjoint from all

annular products
{
Aih
}
i∈N in Pi, 1 ≤ i ≤ n. Moreover, since no connected subproduct of Pn+1

intersects Mn, otherwise it would have defined a product starting at Xn and so it would have been

added to Pn, we have that:

∀k ≤ n : ∪n+1
i=1 Pi ∩Xk = ∪ni=1Pi ∩Xk

and that ∪n+1
i=1 Pi ∩Xn+1 is compact, hence it also satisfies (iii).

We then define Pmax
.= ∪∞i=1Pi, and Pmax satisfies (i) and (ii). Thus, Pmax

.= ∪∞i=1Pi is homeo-

morphic to F × [0,∞) for F , in general, some disconnected surface F =
∐
n∈N Fn where the Fn are

all essential subsurface of a fixed genus g = g(M) surface. Property (iii) follows from the previous

remark since:

∀k ∈ N : Pmax ∩Xk = ∪∞i=1Pi ∩Xk = ∪ki=1Pi ∩Xk

which is compact by (ii). Therefore, by construction P is a simple a product.

Maximality: Let Q be a product in M ∈ MB . Since we are only interested in Q up to proper

isotopy by Corollary 4.1.21 we can assume that it is in standard form with respect to N . Let

Qi ∼= Fi × [0,∞) be a connected subproduct of Q. This means that there is a minimal ki such that

Qi ∩ Xki is a collection of essential I-bundles each one homeomorphic to F × I. Hence it is, up

to proper isotopy, contained in a component of Pmax. Therefore, we get that each connected finite

type product Qi is properly isotopic into Pmax.

Let P ⊆ Pmax be a connected subproduct and let QP be all the connected subproduct of Q
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isotopic into subproducts of P. Since P and QP are in standard form, up to a proper isotopy of QP

flowing in the‘time’ direction, they are contained in the same collection of components {wn}n∈N for

wn ⊆ Nkn
. Then, by doing isotopies in each wn rel wn−1 we can properly isotope QP into P. By

doing this for all P ⊆ Pmax we complete the proof. �

By the maximality condition we get:

Corollary 4.1.30. If P and Q are both maximal products in M ∈ MB then they are properly

isotopic.

Definition 4.1.31. Given an irreducible 3-manifold (M,∂M) and a product P : F × [0,∞) ↪→

M ∈ M we say that it is ∂-parallel if Im(P) is properly isotopic into a collar neighbourhood of a

subsurface of ∂M . If P is not ∂-parallel we say that it is essential.

Example 4.1.32. Given (M,∂M) with S ∈ π0(∂M) a punctured surface we can build a ∂-parallel

product P by taking a collar neighbourhood of a puncture of S and pushing it via a proper isotopy

inside int(M).

For convenience we recall the definition of a bordification in the following way:

Definition 4.1.33. Given M ∈ M we say that a pair (M, ι), for M a 3-manifold with boundary

and ι : M → int(M) a marking homeomorphism, is a bordification for M if the following properties

are satisfied:

(i) ∂M has no disk components and every component of ∂M is incompressible;

(ii) there is no properly embedded manifold

(A× [0,∞), ∂A× [0,∞)) ↪→ (M,∂M)

Moreover, we say that two bordifications (M,f), (M ′, f ′) are equivalent (M,f) ∼ (M ′, f ′) if we have

a homeomorphism ψ : M '−→M
′ that is compatible with the markings, that is: ψ|int(M)

iso' f ′ ◦ f−1.

We denote by Bor(M) the set of equivalence classes of bordified manifolds

Condition (ii) is so that (M,∂M) does not embed into any (M ′, ∂M ′) in a way that two cusps in

∂M are joined by an annulus in ∂M
′. Condition (i) is so that we can have ’maximal’ bordification

since it is always possible to add disk components to ∂M by compactifying properly embedded rays

and so that collar neighbourhoods of ∂M correspond to products in M .
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Definition 4.1.34. We say that a bordication [(M,f)] ∈ Bor(M) is maximal if M has no essential

products.

Lemma 4.1.35. A bordification [(M,f)] ∈ Bord(M) is maximal if and only if the preimage of a

collar of ∂M in M via f is a maximal product.

Proof. Let (M,f) be a maximal bordification and let ∂M =
∐∞
i=1 Si and Pi

.= f−1(Nε(Si)). Then,

we get a product P .=
∐
Pi in M . Moreover, P is simple since otherwise we would have two compo-

nent S1, S2 of ∂M that can be joined by a submanifold homeomorphic to A× [0,∞), contradicting

property (ii) of the definition of a bordification. Finally, by property (i) of a bordification we see

that P is π1-injective and by maximality of the bordification every product Q in M is isotopic into

P and hence P is a maximal product.

Similarly if for (M,f) a bordification we have that P .= f−1(Nε(∂M) is a maximal product then

M is maximal since if not we would have another bordification: (M ′, f ′) and an embedding:

ψ : (M,∂M) ↪→ (M ′, ∂M ′)

such that ∂M ′\ψ(∂M) contains a non-annular component contradicting the maximality of P. �

We can now prove the main result of the section:

Theorem 4.1.36. Let M ∈ MB then there exists a unique maximal bordification [(M, ι)] ∈

Bor(M).

Proof. Since M ∈ MB by Theorem 4.1.29 we have a maximal product Pmax : F × [0,∞) ↪→ M .

We now want to compactify Pmax by adding int(F ) × {∞} to M . Topologically the subproduct

P .= Pmax|int(F )×[0,∞) can be naturally compactified to P : int(F )× [0,∞] ↪→M ∪ int(F )×{∞} by

adding the boundary at infinity int(F )× {∞} to M .

Define M .= M
∐

int(F ) × {∞} with the topology that makes P : int(F ) × [0,∞] ↪→ M into a

homeomorphism onto its image. To see that M is a 3-manifold it suffices to show that F × [0,∞)∪

int(F )×{∞} is a 3-manifold. This follows from the fact that F × [0,∞)∪ int(F )×{∞} is naturally

an open submanifold of F × [0, 1] and so the smooth structures agree. Moreover, we have that the

inclusion: id : M ↪→ M is an embedding. Since products have no disk components we have that

[(M, id)] ∈ Bord(M) and by Lemma 4.1.35 we get that [(M, id)] is a maximal bordification.
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Uniqueness: Say we have another maximal bordification [(M ′, ι′)], then by Lemma 4.1.35 we

obtain a maximal product P ′. Since the products P and P ′ are maximal by Corollary 4.1.30 we

have a proper isotopy Ht from P to P ′.

We can then extend this proper isotopy to a proper isotopy Ĥt : M → M . The diffeomorphism

H1 : M → M mapping Im(Pm) to Im(P ′) extends to a diffeomorphism ψ : M → M
′ mapping ∂M

to ∂M
′. By construction we have that this gives an equivalence of bordifications concluding the

proof. �

4.1.1.2 Extension to Manifolds in M

Note that in Theorem 4.1.36 we used the fact that the manifold was in MB just to say that we

had maximal products via Theorem 4.1.29. Thus, the aim of this subsection is to show how one can

extend Theorem 4.1.29 to deal with infinite type products. To do so it suffices to show that infinite

type product can be put in standard form, i.e. extending Theorem 4.1.19.

We will use the term window to denote an essential I-subbundle of a component of the charac-

teristic submanifold.

Definition 4.1.37. We say that an I-bundle F ×I embedded in an irreducible 3-manifold (M,∂M)

with incompressible boundary, not necessarily boundary to boundary, is mixed if it is π1-injective

and it contains a window of M .

Example 4.1.38. Let M be a compact, irreducible 3-manifold with incompressible boundary and

let w
ϕ∼= F × I be a window in M with ϕ(F × {i}) ⊆ Si ∈ π0(∂M), for i = 0, 1, and S0 6= S1. If

we denote by N1 a collar neighbourhood of S1 we have that w ∪N1 is a mixed I-bundle with fiber

structure S1 × I.

We now extend Theorem 4.1.19:

Lemma 4.1.39. Given P : Σ × [0,∞) ↪→ M a product in M ∈ M and a normal family of

characteristic submanifolds N = {Nk}k∈N with Nk ⊆Mk \Mk−1, then there is a proper isotopy Ψt

of P such that Ψ1 is in standard form.

Proof. By Lemma 4.1.18 we can assume that after a proper isotopy of P all components of S .= ∪k∈N∂Mk∩

Im(P) are properly embedded π1-injective surfaces in Im(P) and the components S of S are neither

disk nor ∂-parallel annuli in Im(P) \ P(A× {0}) for A the collection of annular components of Σ.
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Step 1 Up to a proper isotopy of P for every component S of S we have that P−1(S) is isotopic

to an essential subsurface of Σ× {0}.

By applying Claim 1 of Lemma 4.1.15 to a finite type sub-product P(ΣS × [0,∞)) containing

P−1(S) we get that every P−1(S) is isotopic rel ∂ to an essential subsurface F of Σ.

Since Σ = ∪∞i=1Σi ∪ ∪∞i=1∆i where the ∆i’s are components of infinite type we have an essential

subsurface T ⊆ Σ such that T .= ∪∞i=1Σi ∪ ∪∞i=1Ti where the Ti 6= ∅ are finite type hyperbolic

essential subsurfaces of the ∆i’s. We denote by PT
.= P|T×[0,∞) ⊆ P the subproduct it generates.

We denote by ST ⊆ S the subcollection of components of S that do not intersect P(T × {0}). By

properness of the embedding P we see that for all i ∈ N:

P(Σi × [0,∞)) ∩ S \ ST
∐
P(∆i × [0,∞)) ∩ S \ ST

has finitely many components.

Note that not all surfaces of P(∆i × [0,∞)) ∩ ST can be ∂-parallel annuli or disks in PT since

then by Lemma 4.1.12 and an iterative argument we have a proper isotopy of P|Ti×[0∞) such that

Im(P|Ti×[0∞)) does not intersect ∪k∈N∂Mk. Therefore, in each P(∆i × [0,∞)) we have a sequence{
Sin
}
n∈N ⊆ ST such that for all n ∈ N : Sin ∩ Im(PT ) is an essential properly embedded surface in

Im(PT ). Thus, in Σ× [0,∞) we have the configuration depicted in Figure 4.2.

We denote by F in the essential subsurface of Σ that P−1(Sin) is isotopic to rel ∂. Since Lemma

4.1.15 does isotopies supported in the image of P we can apply it connected component by connected

component and we can assume that for all n P−1(Sin) ∩ Ti × [0,∞) = Ti ×
{
ain
}

. Thus, we have

that for all n ∈ N the surfaces P−1(Sin) co-bound with Σ I-bundles Hi
n. Moreover, since for all

n ∈ N : Ti × [0,∞) ∩ Hi
n = Ti × [0, an] and Sin ∩ Sin=1 = ∅ we get that Hi

n ( Hi
n+1. Moreover,

by properness of P we have that ∪n∈NHn is an open and closed submanifold of Σ× [0,∞) thus, we

have that ∪∞n=1Hn = Σ× [0,∞).

Moreover, since each component of Im(P) \ ∪n,i∈NSin is essential it is either an I-bundle, if

Sin
iso' Sin+1 or a mixed I-bundle homeomorphic to Sin+1 × I.

We now want to remove all components of intersection of Im(P)∩∪k∈N∂Mk that are not Sin for

some i, n. By Lemma 4.1.15 we have an isotopy supported in the image of the products of finite

type so that they are in standard form. Therefore, we only need to worry about the components of
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T

Σ

Sn

Sn+1

Sn+2

PT

Figure 4.2: Schematic of the intersection of ∪k∈NP−1(∂Mk) in Σ×[0,∞) where
F,G are surfaces in P−1(S \ ST ) and we assume that Σ is a connected infinite
type surface.

P that are of infinite type.

Claim: Let ∆i be a component of infinite type, then up to a proper isotopy of P supported in

Im(P|∆i×[0,∞)) we have that ∪k∈N∂Mk ∩ Im(P|∆i×[0,∞)) = ∪n∈NSin.

Proof of Claim: Via a proper isotopy of P supported in Im(P|∆i×[0,∞)) we can assume that

P−1(S1) ⊆ Σ× {0}

so that P(∆i × [0,∞)) ∩ S = P(∆i × [0,∞)) ∩ ST . We will now do isotopies of the Hi
n relative

to Sin, S
i
n+1. All components of Si .= P(∆i × [0,∞)) ∩ ST that are not

{
Sin
}
n∈N are contained in

a Hi
n
∼= Sn+1 × I and are essential. We denote this collection of components Sin. By properness

of P and the fact that Hi
n is compact we get that Sin has finitely many components L1, . . . , Lk

and P−1(Lj) is isotopic to a subsurface Fj ⊆ Σ × {0}. Moreover, since the P−1(Lj) are pairwise

disjoint and separating in Hi
n we can find an innermost one. That is if Fj ⊆ Σ is the surface that

P−1(Lj) is properly isotopic to then there are no other components Lh of Sin such that P−1(Lh)

is contained in the submanifold J bounded by P−1(Lj) ∪ Fj . Then, by a proper isotopy of P|Hi
n

supported in Im(P|∆i×[0,∞)) that is the identity on Sin, S
i
n+1 we can push Fj to P−1(Lj) to reduce∣∣π0(Sin)

∣∣. Thus, by concatenating these finitely many isotopies we obtain a proper isotopy ψin of P

supported in Im(P|Hn
i

) that is constant on Sin, Sin+1 such that P−1(Sin) = Sin
∐
Sin+1. Since the ψin

are constant on Sin, S
i
n+1 they can be glued together to obtain a proper isotopy of P supported in
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Im(P|∆i×[0,∞)) so that ∪k∈N∂Mk ∩ Im(P|∆i×[0,∞)) = ∪n∈NSin. �

So far we have Σ × [0,∞) = ∪n∈NJn and for all n P(Jn) are mixed I-bundles such that there

exists kn with P(Jn) ⊆ Xkn
. Since P(Jn) is a mixed I-bundle we can decompose it in the window

wn and Qn the non-window part, with an abuse of notation we denote their preimages in Jn by the

same name.

Thus for Σi
.= P−1(Si) in Σ× [0,∞) we have the following configuration:

Sn

Sn+1

Σ× {0}

wn

QnQn−1wn−1

Step 2: Up to a proper isotopy of P we have that for all k all components of Im(P) ∩ Xk are

essential I-bundles.

We will again do isotopies supported in Im(P) so we can assume that all products are connected.

We see that Sn is the boundary of the window wn and the non-window part Qn−1 of the mixed

I-bundle In−1 is isotopic into wn. Via an isotopy of P supported in Xkn
∪ Xkn−1 that is the

identity on Σn−1 and Sn+1 we can isotope Qn−1 into wn ⊆ P(Jn). The n-th isotopy is supported

in neighbourhoods of the non-window part Qn and the image is contained in wn+1. Therefore, the

support of the n + 1 isotopy does not intersect wn−1 thus the composition of these isotopies yields

a proper isotopy of P.

Thus one gets a ”staircase picture” in which every step is isotopic to a window in Nk, hence it

is an essential I-bundle, and Σ× {0} is the boundary of the ”stairs”.

Step 3: Up to proper isotopy Im(P) ∩Xk ⊆ Nk.

This follows from the corresponding Step in Theorem 4.1.19. �
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S1

S6

ΣS2

S3

S4

S5

Figure 4.3: Where the surfaces Si coming from the exhaustion induce products
Pi whose union is P .

Thus we obtain:

Theorem 4.1.40. Let M ∈ M be an open 3-manifold. Then, there exists a unique maximal

bordification [(M, ι)] ∈ Bor(M).

4.1.1.3 Minimal Exhaustions

If M ∈ M we have two types of I-bundles between the boundaries of the gaps in the compact

exhaustion: type I products have as bases compact surfaces while type II products have as bases

closed surfaces.

Figure 4.4: Type I and type II products.
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We now want to show that type II products either correspond to tame ends of M or can be

thrown away by modifying the exhaustion.

Definition 4.1.41. We say that a compact exhaustion {Mi}i∈N of M is minimal if the two following

conditions hold:

(i) for all i < j: there are no pairs of closed orientable surfaces F ∈ π0(∂Mi), F ′ ∈ π0(∂Mj) such

that F ' F ′, unless they bound neighbourhoods U, V of the same tame end E of Mi;

(ii) for all i no component of M \Mi is compact.

These conditions are so that the exhaustion has minimal redundancy.

Lemma 4.1.42. Let M be an irreducible 3-manifold with a compact exhaustion {Mi}i∈N where

each Mi has incompressible boundary then, M has a minimal exhaustion.

Proof. For the second condition of a minimal exhaustion we just look at the various M \Mi and

whenever we see a compact component we add it to all Mj with j ≥ i. By repeating this process for

all components of every ∂Mk we obtain an exhaustion that satisfies the first condition of a minimal

exhaustion. With an abuse of notation we still denote this new exhaustion by {Mi}i∈N.

We now deal with the second condition. Since M \ int(Mi) has no compact component no

component of ∂Mi is homotopic to a component of ∂Mi in M \Mi since then by Lemma [60, 5.1] we

would get that it is homeomorphic to an I-bundle. Assume that for i < j we have two distinct closed

incompressible surfaces Fi, Fj in ∂Mi, ∂Mj , respectively, that are homotopic in Mj . By replacing

Fi and i, if needed, we can assume that i is minimal. By Lemma [60, 5.1] the surfaces Fi, Fj bound

an I-bundle J in Mj . Up to an isotopy of J rel ∂J we can assume that J ∩ ∂Mk, for i ≤ k ≤ j,

are level surfaces in J . Then, either J ⊆ Mj \Mi or by Lemma [60, 5.1] Mi
∼= Fi × I and we have

J ′ ⊆Mj \Mi given an isotopy from a component of ∂Mi to Fj .

Consider the connected component U of the gap Mj \Mi containing the two surfaces. By Lemma

[60, 5.1] we have that: U ∼= Fi × I. Then there are two cases:

(i) either there is k > j such that Fj is not homotopic to any other Fk ∈ π0(∂Mk);

(ii) ∀k > j there is Fk ∈ ∂Mk with Fk ' Fi.

In the first case we have a minimal k ∈ N with k > j > i such that Fi is not homotopic to any

Fk ∈ π0(∂Mk). Then, by Lemma [60, 5.1] the connected component U of Mk−1 \Mi containing
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Fi and the surface Fk−1 that it is homotopic to is an I-bundle over Fi. Hence, we can modify our

exhaustion by adding U to all Ms with i ≤ s < k− 1 and leave the other elements of the exhaustion

unchanged.

In the latter case for all k > i there is a boundary component Fk ∈ π0(∂Mk) homotopic to Fi.

Therefore, ∀k > i : the connected component Uk,i ∈ π0(Mk \Mi) containing Fi, Fk is an I-bundle

over Fi. Hence, we obtain an exhaustion by submanifolds homeomorphic to Fi × I of a connected

component E of M \Mi. Thus E ∼= Fi × [0,∞) and E is a tame end of M .

�

4.1.2 Characteristic submanifold for bordifications of manifolds in M

In this section we construct the characteristic submanifold (N,R) of M . Specifically we will prove

the following Theorem:

Theorem 4.1.43. The maximal bordification (M,∂M) of M ∈M admits a characteristic subman-

ifold (N,R) and any two characteristic submanifolds are properly isotopic.

We will first define characteristic submanifolds for bordifications of manifolds in M and post-

poning the proof of existence we prove some general facts about characteristic submanifolds and

construct families of characteristic submanifolds for the exhaustion. The proof of Theorem 4.1.43 is

divided into two sections, in which we first prove existence of characteristic submanifolds and then

uniqueness.

4.1.2.1 Characteristic submanifolds

In this subsection we define characteristic submanifolds for the bordifications of manifolds inM and

describe their components.

Definition 4.1.44. Given 3-manifolds M,N and a π1-injective submanifold R ⊆ ∂N a continuous

map f : (N,R)→ (M,∂M) is essential if f is not homotopic via map of pairs to a map g such that

g(N) ⊆ ∂M . Similarly we say that a submanifold N is essential in M if by taking R
.= N ∩ ∂M

then the embedding is essential.

In Definition ?? we defined a characteristic submanifold N for a compact irreducible 3-manifold

with incompressible boundary M . In this setting characteristic submanifolds exists and are unique

up to isotopy by work of Johannson [32] and Jaco-Shalen [31]. In the case that M is atoroidal, see

[14, 2.10.2], we get that all components of N fall into the following types:
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(1) I-bundles over compact surfaces;

(2) solid tori V ∼= S1 × D2 such that V ∩ ∂M is a collection of finitely many annuli;

(3) thickened tori T ∼= T2× I such that T ∩∂M is a collection of annuli contained in T2×{0} and

the torus T2 × {1}.

We now show that manifolds in M are also atoroidal.

Lemma 4.1.45. Let M ∈ Bord(M), for M ∈ MB , be the maximal bordification for M ∈ M then

M is atoroidal.

Proof. Let T : T2 →M be an essential torus and {Mi}i∈N the exhaustion of M . By compactness of

T (T2) we have that, up to a homotopy pushing T (T2) off of ∂M , T : T2 →M factors through some

Mi. Since Mi is atoroidal and T (T2) ⊆Mi we have that T (T2) is homotopic into a torus component

T of ∂Mi. For all j > i: by Waldhausen Cobordism’s Theorem [60] T is isotopic in Mj to a torus

component Tj of ∂Mj and so T, Tj cobound an I-bundle Ij . By the arguments of Theorem 4.1.19

up to an isotopy of Ij we can assume that Ij ∩ ∂Mk are level surfaces of Ij for i ≤ k ≤ j. Thus,

either Ij ∩Mi = T or Mi
∼= T2 × I and then for all j > i we have that Mj \Mi

∼= T2 × I
∐

T2 × I.

In either case, we get that the component of Mj \Mi containing T, Tj is homeomorphic to T2 × I

and since j was arbitarys T (T2) is homotopic into ∂M . Therefore, every π1-injective torus in M is

homotopic into ∂M and so inessential. �

In our setting we have M ∈ Bord(M), for M ∈ M, with int(M) exhausted by compact

hyperbolizable 3-manifolds Mi with incompressible boundary. Therefore, we have a collection

(Ni, Ri) ↪→ (Mi, ∂Mi) of characteristic submanifolds whose components are of the form (1)-(3).

Thus, since M is atoroidal for a characteristic submanifold N of M we expect the components of N

to be of the following types:

(i) I-bundles over compact incompressible surfaces;

(ii) solid tori V with finitely many wings3;

(iii) thickened essential tori T2×I corresponding to a torus component of ∂M possibly with finitely

many wings;

(iv) limit of nested solid tori or of nested thickened essential tori.
3Recall that a wing is a thickening of an essential annulus A with one boundary component on

the solid torus V and one on ∂M .
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Except for (iv) these are the same components that one finds in the usual JSJ decomposition of

compact atoroidal 3-manifolds with incompressible boundary.

The difference for manifolds in M is that we can have a countable family of nested solid tori or

thickened essential tori having no parallel wings. One can think of these as infinitely winged solid

tori (IWSD) or infinitely winged essential tori (IWET). These are solid tori V , or thickened tori T ,

with infinitely many wings, specifically in each Mi we have that V ∩Mi, or T ∩Mi, has a component

that is isotopic to a solid torus Vi ⊆ Ni or an essential thickened torus Ti ⊆ Ni with ai-wings and

ai ↗∞.

We will now build such an example.

Example 4.1.46 (A 3-manifold with an infinitely winged solid torus.). Let (N, ∂N) be an acylin-

drical and atoroidal compact 3-manifold with boundary an incompressible genus two surface (for

example see [55, 3.3.12] or Appendix 5.1).

Let T be a solid torus with three wings winding once around the soul of the solid torus. The

boundary of T is decomposed into 6 annuli, one for each wing and one between each pair of wings.

Consider the manifold obtained by gluing the annular end of the wings of T to three copies of

Σ2 × I4 along a neighbourhood of a curve γ ⊆ Σ2 × {0} separating Σ2 × {0} into two punctured

tori. The resulting 3-manifold has for boundary six copies of Σ2. Three boundary components are

coming from the three copies of Σ2×{1} and the other three are coming from gluing two punctured

tori in the Σ2 × {0}’s along an annulus in the boundary of the solid torus.

By gluing 3 copies of N along the second type of Σ2 we obtain a 3-manifold X as in the picture:

N

N N
T

Figure 4.5: An X-piece.

The 3-manifold X is hyperbolizable with incompressible boundary and has the property that

its characteristic submanifold is given by the solid torus with three wings T . We now construct

a 3-manifold M by gluing together countably many copies {Xi}∞i=1 of X and product manifolds

4By Σ2 we mean a genus two surface.
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P
.= Σ2 × [0,∞). We denote by Ti the three winged solid torus in Xi. The gluing is given by the

following tree pattern in which the gluing maps are just the identity:

X1 X2

P

P

X3

P

P

Figure 4.6: The gluing pattern for M .

The manifold M has a compact exhaustion given by taking Mi to be the manifold up to the i-th

copy of X and the compact submanifolds of the product ends given by Σ2 × [0, i]. Hence, ∂Mi is

formed by 2+i copies of Σ2 all of which are incompressible. At eachMi the characteristic submanifold

is a solid torus τi with 2 + i wings. Moreover, since the Mi are atoroidal Haken 3-manifold by the

Hyperbolization theorem [34] they are hyperbolizable. Therefore, since all boundaries of the Mi are

incompressible and of genus two M is a manifold in M.

Moreover, the JSJ submanifold of M1 is given by the solid torus with 3-wings T1 and the JSJ

submanifold of the component of Mj \Mj−1 that is not an I-bundle is also given by the solid torus

Tj . Let T∞ be the submanifold of M obtained by taking all the {Tj}j≥1 and adding to it cylinders

going to infinity in all the tame ends. Then T∞ is an example of an infinitely winged solid torus since

it is an open 3-manifold that compactifies to a solid torus V and is homeomorphic to V \ L where

L ⊆ ∂V is a collection of pairwise disjoint isotopic simple closed curves forming a closed subset of

∂V . Namely L =
{
L 1

n

}
n∈N
∪ L0 is in bijection with the ends of M where L0 is the non-tame end

and the
{
L 1

n

}
n∈N

correspond to the tame ends. Moreover, it is topologised so that L 1
n
→ L0 as

n→∞.

The maximal bordification M of M has for boundary components an open annulus A and countably

many genus two surfaces {Σi}i∈N. The annulus comes from the compactification of a product

P : A× [0,∞) ↪→ T∞ going out the non-tame end that is contained in the interior of T∞. The genus
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γ1

γ2

M2

M1

N

γ2 γ3

N N

NN

N

N N

Figure 4.7: The tori Tj ’s are in grey and the extra cylinders in the tame ends
are dotted.

two surfaces Σi come from compactifying all the tame ends Pi. In the maximal bordification M we

have that the characteristic submanifold N is given by N .= T∞ ∪i∈N Ai ∪A′ where the Ai ⊆ Σi are

the annuli that T∞ limits to and A′ ⊆ A is a core annulus for A.

It is easy to modify the above example to obtain a 3-manifold containing an IWET by adding to

any tame end Pi, along the boundary Si, a compact hyperbolizable 3-manifold Y with incompressible

boundary ∂Y ∼= T ∪Σ2 and such that a simple closed loop β in the boundary torus T is isotopic, in

Y , to the separating curve of the genus two boundary Σ2 glued to the separating loop of Pi.

Thus, we define:

Definition 4.1.47. Given a 3-manifold M ∈ M let (M,∂M) be the maximal bordification, which

could be M itself, then we define the characteristic submanifold (N,R) ↪→ (M,∂M) to be a

codimension-zero submanifold satisfying the following properties:

(i) every Σ ∈ π0(N) is homeomorphic to either:

• an essential I-bundle over a compact surface;

• an essential solid torus V ∼= S1 × D2 with V ∩ ∂M a collection of finitely many parallel

annuli or a non-compact submanifold V ′ that compactifies to a solid torus such that

V ′ ∩ ∂M are infinitely many annuli;
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• an essential thickened torus T ∼= T2 × [0, 1] such that T ∩ ∂M is an essential torus and

a, possibly empty, collection of parallel annuli in ∂T or a non-compact manifold T ′ that

compactifies to a thickened torus such that T ′ ∩ ∂M is an essential torus and infinitely

many annuli;

(ii) ∂N ∩ ∂M = R;

(iii) all essential maps of an annulus (S1 × I, S1 × ∂I) or a torus T2 into (M,∂M) are homotopic

as maps of pairs into (N,R);

(iv) N is minimal i.e. there are no two components of N such that one is homotopic into the other.

Lemma 4.1.48. Let M = ∪i∈NMi ∈ M and {Ti}i∈N be a collection of essential solid tori Ti ⊆Mi

such that for j > i Tj ∩Mi is compact, contains Ti and Ti+1 \ Ti are essential solid tori. Moreover,

assume that the inclusion maps ιi : Ti ↪→ Ti+1 induce isomorphisms on π1. Then the direct limit

T
.= lim−→i

Ti is a properly embedded submanifold of M such that T ∼= S1 × D2 \ L for L a closed

subset of ∂(S1 × D2) consisting of parallel simple closed curves.

Proof. Since all inclusions induce isomorphism on the fundamental groups and π1(T ) = lim−→i
π1(Ti)

we have that π1(T ) ∼= Z. A non-compact manifold N , possibly with boundary, is a missing boundary

manifold if N ∼= N \ L where N is a manifold compactification of N and L is a closed subset of

∂N . By Tucker’s Theorem [59] the manifold T is a missing boundary manifold if the complement of

every compact submanifold has finitely generated fundamental group. Since T = ∪∞i=1Ti it suffices

to check the above condition for the Ti.

Let Q ∈ π0(T \ Ti), then since Tj \ Ti are solid tori Q is either a solid torus or another direct

limit of nested solid tori in which the inclusions induce isomorphism in π1. In either case π1(Q) ∼= Z.

Therefore T compactifies to T̂ and T is homeomorphic to T̂ \L where L ⊆ ∂T̂ is a closed set. Since

T̂ is compact, irreducible and π1(T̂ ) ∼= Z we have that T̂
ψ∼= V

.= S1 × D2, see [26, Theorem 5.2].

Claim: Up to a homeomorphism of V the set L is a union of of parallel curves.

Proof of Claim: Given the homeomorphism ψ : T → V \ L for V = S1 × D2 we see that every

Ti ⊆ T is mapped to a solid torus Vi ⊆ V \L such that ∂Vi = Si ∪Ai1 ∪ . . .∪Aini
where Si ⊆ ∂V \L

and the Aij ’s are compact properly embedded annuli in V . Moreover, since the Aij ’s are π1-injective

embedded annuli in ∂Vi they are isotopic annuli in ∂Vi and are the images of the annuli of Ti contained
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in ∂Mi to which new solid tori get glued in Mi+1 \Mi to obtain Ti+1. Moreover, since V \ Vi is a

collection of solid tori we have that each Aijk
is ∂-parallel in V . We define Ai

.= Âi1∪ · · ·∪ Âimi
⊆ ∂V

for Âijk
the annulus in ∂V \ Vi co-bounded by ∂Aijk

. Every component γ of L is given as a countable

intersection of a sequence of the annuli Âij . Moreover, we fix a fiber structure on V such that it is

fibered by circles. Then, for each Vi we want to construct a homeomorphism ϕi of V such that:

• ϕi|Vi−1 = ϕi−1;

• ϕi(Ai) are fibered annuli contained in ϕi−1(Ai−1).

Assume we defined such a ϕj for all j ≤ i. To define ϕi+1 we only need to change ϕi in the

solid tori co-bounded by ϕi(Ai) and ϕi(∪ni
j=1A

i
j) which lie in the complement of ϕi(Vi). Each such

solid torus Wk has boundary given by ϕi(Âik ∪ Aijk
) and in ϕi(Âijk

) contains some of the annuli{
ϕi(Âi+1

k )
}

1≤k≤mi+1
. Then by an isotopy ψti,k supported in ϕi(Âik) that is the identity on ∂ϕi(Âik)

we can make the ϕi(Âi+1
k ) fibered in ϕi(Âij). By extending the isotopy ψti,k to the solid torus and

taking the time one map we obtain the required homeomorphism ϕi+1
.= ψ1

i,k.

Finally, the map ϕ
.= lim−→ϕi is a homeomorphism from V \ L to V \ L such that now L =

∩iϕi(∪jÂij) where the ϕi(Âij) are now compatibly fibered annuli. Thus every component of L is

also fibered and if we assume that the ϕi are strictly contracting on the annuli we get that the

components of L do not contain any annuli and are indeed parallel loops. �

By taking the homeomorphism ϕ ◦ ψ : T → V \ L we obtain the required conclusion. �

Similarly we obtain:

Corollary 4.1.49. Let M = ∪i∈NMi ∈ M and {Ti}i∈N be a collection of essential tori such that

for j > i Tj ∩Mi is compact, contains Ti and Ti+1 \ Ti are essential solid tori or thickened essential

tori. Moreover, assume that the inclusion maps ιi : Ti ↪→ Ti+1 induce isomorphisms on π1. Then

the direct limit T .= lim−→i
Ti is a properly embedded submanifold of M such that T ∼= T2 × (0, 1] \ L

for L a closed subset of T2 × {1} consisting of parallel simple closed curves.

The two above Lemma deal with two of the types of components we expect to have. For I-bundles

we have:

Lemma 4.1.50. Let M ∈ Bord(M) be the maximal bordification of M ∈ M and let ι : (F ×

I, F × ∂I) ↪→ (M,∂M) be an essential I-bundle over a connected surface F . Then, the surface F is

compact.



76 CHAPTER 4. HYPERBOLIZATION RESULTS FOR MB

Proof. Let P denote the proper embedding ι|F×(0,1) and let {Mi}i∈N be the exhaustion of M ∈M.

Since P is a proper π1-injective embedding by Lemma 4.1.11 we have that:

Step 1: Up to a proper isotopy of P we can make all components of ∪i∈N∂Mi ∩P be π1-injective

subsurfaces of P and no component is a disk.

We now claim that:

Step 2: Up to a proper isotopy of P, supported in Im(P), no component S of S .= ∪i∈N∂Mi∩Im(P)

is a ∂-parallel annulus.

Let Ai be the collection of annuli of Si
.= ∂Mi ∩ Im(P) that are ∂-parallel in Im(P). Since P is

a proper embedding we have that for all i ∈ N |π0(Ai)| <∞. By an iterative argument it suffices to

show the following:

Claim If for 1 ≤ n < i An = ∅ then via an isotopy ϕti of P supported in M \Mi−1 ∩ Im(P) we

can make Ai = ∅.

Proof of Claim: For all i ∈ N we have 0 < ai < bi <∞ such that Ai ⊆ P(Fi× [ai, bi]) for Fi ⊆ F

a compact essential subsurface of F .

Denote by A1, . . . , An the ∂-parallel annuli in Ai. By applying Corollary 4.1.13 to P(Fi× [ai, bi])

we have a local isotopy ϕti of P that removes all these intersections. The isotopy ϕti is supported

in a collection of solid tori Vi ⊆ Fi × [ai, bi] such that ∂Vi ∩ ∂Fi × [ai, bi] ⊆ ∂F × [ai, bi] and ϕti is

the identity outside a neighbourhood of ∂Vi \ ∂F × R thus it can be extended to the whole of P.

Moreover, if we consider for n < i a component of intersection of ∂Mn ∩ P(Vi) then it is either a

boundary parallel annulus or a disk. However, we assumed that for n < i An = ∅ and by Step 1

no component of ∪k∈N∂Mk∩ Im(P) is a disk thus, the solid tori Vi that we push along are contained

in Im(P)∩M \Mi−1. Therefore, we get a collection of solid tori Vi ⊆ Im(P)∩M \Mi−1 such that

pushing through them gives us an isotopy ϕti of P that makes Ai = ∅. �

Since for all i ∈ N supp(ϕti) = Nε(Vi) is contained in M \Mi−1 the limit ϕt of the ϕti gives us a

proper isotopy of P such that for all i ∈ N Ai = ∅.

By Step 2 every component S of S the surface ι−1(S) is an essential surface in F × R. In

particular, since P is properly embedded we have a component Σ of some ∂Mi such that S .= Σ ∩

Im(P) 6= ∅. If S = Σ we get a contradiction since then we have an incompressible closed surface
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ι−1(S) in the I-bundle F × I. Therefore, we must have that S is an essential proper subsurface of

Σ with ∂S ⊆ P(∂F × R).

However, since the surface S is compact and properly embedded in P we can find 0 < t1 < t2 < 1

such that ι−1(S) ⊆ F ′×(t1, t2) for F ′ ⊆ F a compact surface such that not all boundary components

of F ′ are boundary components of F . Since ι−1(S) is an essential properly embedded subsurface of

F ′× [t1, t2] by [60, 3.1,3.2] we have that ι−1(S) is isotopic to an essential sub-surface S′ of F ′×{t1}.

However, ∂ι−1(S) ⊆ ∂F × I which are a subset of ∂F ′ × I and so we get a contradiction since then

∂S′ ( ∂F ′ are zero in H1(F ′). �

4.1.2.2 Existence of characteristic submanifolds

In this section we prove that if M ∈ M then the maximal bordification M admits a characteristic

submanifold. Before proving this existence statement we need to show that given M ∈ M and

a normal family of characteristic submanifolds for the gaps we can find a family of characteristic

submanifolds Ni of the Mi that are compatible with each others:

Proposition 4.1.51. Given M = ∪i∈NMi ∈M and a normal family of characteristic submanifolds

{Ni−1,i}i∈N for Xi
.= Mi \Mi−1, then we have characteristic submanifolds Ci ⊆Mi such that for all

i ∈ N we have that for j ≥ i: Cj ∩Mi ⊆ Ci and Cn ⊆ Cn−1 ∪Nn−1,n.

In the next series of Lemmas we will construct a family Ni’s of characteristic submanifolds for

the Mi’s such that Ni ∩Mj ⊆ Nj whenever i > j.

Lemma 4.1.52. Let M1 ⊆ int(M2) be hyperbolizable 3-manifolds with incompressible boundary

and let N1, N2 be their characteristic submanifolds. Given distinct components P,Q ∈ π0(N2) if

every component P ∩M1 is an essential submanifold of M1 and P ∩M1 has a component isotopic

into Q ∩M1 then one of P or Q is an I-bundle over a surface F with χ(F ) < 0 and the other is

either a solid torus or a thickened essential torus.

Proof. Let S ∈ π0(P ∩Mi) be a component isotopic into S′ ∈ π0(Q ∩M1). If S ∼= F × I, with

χ(F ) < 0, then S and S′ are isotopic into an I-bundle component of N1, thus P (or Q) is a sub-

bundle of Q (or P ) and we reach a contradiction since then they are not distinct components of

N2.

If S ∼= S1 ×D2 is a solid torus we have that either S′ is an I-bundle F ′ × I, with χ(F ′) < 0, and

S is homotopic into ∂F ′ × I or S′ is either a solid torus or an essential thickened torus. In the first

case we have that P is either a solid torus component or a thickened essential torus component of

N2 while Q is an I-bundle over a surface of negative Euler characteristic and we are done.
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In the second case we have that S′ is homeomorphic to a solid torus. Since S′ is homotopic into

S we can find an embedded annulus A in M1 \ S ∪ S′ connecting ∂S to ∂S′ and denote by A′ a

regular neighbourhood A intersecting P,Q only in neighbourhoods of A∩ ∂P ∪ ∂Q. Since both P,Q

are solid tori we get that P ∪A′ ∪Q is homeomorphic to a solid torus V . Thus we get an essential

map: f : V →M2 whose image is P ∪A′ ∪Q. By properties of characteristic submanifolds we have

that V is homotopic into a component T of N2 \ P ∪ Q. However, this contradicts the minimality

properties of N2 since then N2 \ P ∪Q would also be characteristic.

Finally if S ∼= T2 × I is isotopic into S′ we have that S′ is also homeomorphic to T2 × I and

since they contain the same Z2 subgroup of π1(M2) they are the same component of N2. �

We now prove the iterative step of constructing a compatible family of characteristic submanifold.

Lemma 4.1.53. Let M1 ⊆ int(M2) be hyperbolizable 3-manifolds with incompressible boundary

and let (N1, R1), (N2, R2) and (N12, R12) be characteristic submanifold of M1,M2 and M2 \M1

respectively. Moreover, assume that N1, N12 form a normal family, then we can isotope N2 in M2

such that N2 ⊆ N1
∐
N12.

Proof. If, up to isotopy, N2∩M1 = ∅ then we can isotope N2 so that N2 ⊆ N12 and there is nothing

else to do. So can we assume that the intersection, up to isotopy, is not empty thus, some component

of N2 ∩M1 is essential in M1.

Step 1: Up to an isotopy of N2 we have that every component of N2 intersects M1 and M2 \M1

in essential I-bundles, essential solid tori or thickened essential tori.

By an isotopy of N2 and a general position argument we can minimise |π0(∂M1 ∩N2)| and have

that ∂M1 ∩N2 are π1-injective surfaces, see Lemma 4.1.11.

Let P ∈ π0(N2 ∩ M1) be a component of intersection coming from an I-bundle component

P ′ ∼= F × I, with χ(F ) < 0, of N2. Since the components S of P ′ ∩ ∂M1 are essential and with

boundary in the side boundary of the I-bundle P ′ by [60, 3.1,3.2] they are isotopic to subsurfaces of

the lids of the I-bundle region. Therefore, we have that P ∼= F × I is an I-bundle and is essential

since it is π1-injective.

If P ′ ∼= S1 ×D2 is a solid torus component of N2 then A .= P ′ ∩ ∂M1 is a collection of ∂-parallel

annuli in P ′. The annuli A decompose P ′ into a collection of solid tori each of which is contained

in either M1 or M2 \M1. If a solid torus component T of P ′ ∩M1 is inessential, i.e. it either is

∂-parallel or it has, at least, two wings w1, w2 in M1 that are parallel, then by an isotopy of N2 that
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either pushes P ′ outside of M1 or pushes w2 along w1 outside of M1 we can decrease |π0(∂M1 ∩N2)|

contradicting the assumption that it was minimal.

Similarly if P ∼= T2 × I we have that ∂M1 decomposes P into one essential thickened essential

torus in M1 and essential solid tori contained in M1 and M2 \M1.

Moreover, by properties of a normal family we can assume that up to another isotopy supported

in a neighbourhood U1 of ∂M1 we have that N2 ∩ ∂M1 ⊆ R1 ∩N12.

Step 2: Up to an isotopy of N2 we have that N2 ∩M1 ⊆ N1.

Since N2 ∩M1 is a collection of essential Seifert-fibered 3-manifolds and I-bundles such that

N2 ∩ ∂M1 ⊆ R1 by JSJ theory we can isotope them rel R1 into N1.

Let P ∼= F × I be an I-bundle component of N2 with χ(F ) < 0. By Step 1 we can assume that

P t ∂M1 and KP
.= |π0(P ∩ ∂M1)| is minimal. Moreover, we can assume that every component of

P ∩ ∂M1 is in R1 = ∂N1 ∩ ∂M1. Then P ∩M1 = P1
∐
P2
∐
. . .
∐
Pn are essential I-bundles in

M1. Thus, we can isotope the
∐n
i=1 Pi rel ∂Pi ∩R1 into N1. We repeat this for all I-bundles of N2

and by Lemma 4.1.52 we do not need to worry of them being parallel in M1. We denote by N ′2 the

resulting submanifold. The submanifold N ′2 is isotopic to N2 hence characteristic for M2.

Let P ∈ π0(N2) be a solid torus component. By Step 1 and the fact that N1, N12 form a normal

family we have that each component of P ∩ ∂M1 is in R1. Then, P is decomposed by ∂M1 into

solid tori and annuli that are contained in M1 and M2 \M1. Moreover, each such component is

essential, thus every component of P ∩M1 is either an essential solid torus with k ≥ 3 wings in N1

or a thickened cylinder. Each solid torus component is then isotopic into a solid torus component of

N1 and each annular component is isotopic into a solid torus or an I-bundle. Say that an annular

component A of P ∩M1 is isotopic into the side boundary of an I-bundle component Q
ψ∼= F × I of

N2 ∩M1. Then, up to a further isotopy of Q we can assume that both A and Q are contained in

N1.

The same process applies when P ∈ π0(N2) is a thickened essential torus, the only difference

is that if the boundary torus T is in M1 we also have an essential thickened torus component in

N2 ∩M1.

Step 3: Up to an isotopy supported in M2 \M1 of N2 we have that N2 ∩M2 \M1 ⊆ N12.

By Step 1 every component of N2∩M2 \M1 is an essential I-bundle, a solid torus or a thickened
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essential torus. Then, by JSJ theory we can isotope N2 ∩M2 \M1 into N12. Moreover, since the

components of N2 ∩∂M1 isotopic into N12 ∩∂M1 are already contained in N12 ∩∂M1, by properties

of a normal family, we can assume that the isotopy is the identity on ∂M1.

The composition of the isotopies yields the required characteristic submanifold N2 ⊆ N1 ∪

N12. �

Thus, we have:

Proposition 4.1.54. Given M = ∪i∈NMi ∈M and a normal family of characteristic submanifolds

{Ni−1,i}i∈N for Xi
.= Mi \Mi−1, then we have characteristic submanifolds Ci ⊆Mi such that for all

i ∈ N we have that for j ≥ i: Cj ∩Mi ⊆ Ci and Cn ⊆ Cn−1 ∪Nn−1,n.

Proof. We start by defining C1 = N1 which obviously satisfies all the properties. Now suppose that

we constructed the required collection up to level n − 1. Let Ĉn be any characteristic submanifold

for Mn and apply Lemma 4.1.53 to Cn−1, Ĉn and Nn−1,n to obtain a new characteristic submanifold

Cn of Mn such that Cn ⊆ Cn−1 ∪Nn−1,n. Then, for all j < n :

Cn ∩Mj ⊆ (Cn−1 ∪Nn−1,n) ∩Mj = Cn−1 ∩Mj ⊆ Cj

By iterating this step the result follows. �

We construct the characteristic submanifold (N,R) of (M,∂M) by picking specific components

of the various (Ni, Ri). Precisely, we want to pick the components that remain essential throughout

the exhaustion, we call these components admissible. These will be components P of Ni with enough

components of P ∩ Ri that generate a product in M \ int(P ). That is, if S ∼= Σg,n is a component

of P ∩ Ri then we have a product P : Σg,n × [0,∞) ↪→ M \ int(P ) such that P(Σg,n × {0}) = S ⊆

∂M \ int(P ).

Definition 4.1.55. Let M = ∪i∈NMi ∈ M and let (Ni, Ri) be characteristic submanifolds of the

(Mi, ∂Mi)’s. We say that an essential submanifold (P,Q) of (Ni, Ri) homeomorphic to a sub-bundle,

solid torus or a thickened torus is admissible if one of the following holds:

(i) Q has two components A1, A2 that generate in M \ int(P ) a product A;

(ii) P is homeomorphic to an essential solid torus and Q has one component A that generates a

product in M \ int(P ) and another component B such that B is the boundary of solid torus

V ⊆M \ int(P ) whose wings wrap n > 1 times around the soul of V ;
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(iii) P is a solid torus whose wings wrap n > 1 times around the soul of P and a component of Q

generates in M \ int(P ) a product P;

(iv) P is homeomorphic to an essential thickened torus.

Lemma 4.1.56. Let M = ∪i∈NMi ∈ M and let (Ni, Ri) be characteristic submanifolds of the

(Mi, ∂Mi)’s. Then, for each i there exists an admissible submanifold (Pi, Qi) of (Ni, Ri) such that

any admissible submanifold of (Ni, Ri) is isotopic into Pi.

Proof. Since Ni has finitely many component and any admissible submanifold of Mi is isotopic into

Ni it suffices to prove the Lemma for a component of Ni. By Lemma 4.1.26 for every window

W
ψ∼= F × I over a hyperbolic surface F we get a maximal submanifold Q ⊆ W such that, up

to isotopy, Q contains all sub-bundles of W going to infinity. The manifold Q, up to isotopy, is

homeomorphic via ψ to F1 × [0, 1
3 ]
∐
F2 × [ 2

3 , 1] where F1, F2 are essential subsurfaces of F , which

we can assume to be in general position. Then, Σ .= F1 ∩ F2 is an essential sub-surface of F such

that we have a proper embedding ι : Σ×R ↪→M in which ι(Σ× [0, 1]) ⊆ Ni, thus it is an admissible

submanifold and we denote it by Q. We then add to Q a maximal collection of pairwise disjoint

admissible solid tori contained Ni and all thickened tori components of Ni. Note that an essential

torus V ∈ π0(Q) can be isotopic into a side bundle of a window w ∈ π0(Q) over a hyperbolic surface.

We now show that any admissible submanifolds is isotopic into Q.

Let P
ψ∼= S × I ⊆ F × I, |χ(S)| < 0, be any admissible submanifold of W then by Lemma 4.1.26,

up to isotopy, we have that S × {1} ⊆ F2 × {1} and S × {0} ⊆ F1 × {0}, thus S is isotopic into

F1 ∩ F2 and hence P is isotopic into Q.

If P is an admissible solid torus or thickened torus then by JSJ theory is isotopic in a component

of Ni that is either a component of Q or P ∼= S1 × D2 is isotopic into an I-bundle component of

Ni. Since all other cases are contained in Q by construction we only need to show it for the latter

case. Thus, we can assume that we have P isotopic to a vertical thickened annulus P ′ in a window

w ∼= F × I of Ni. We need to show that P is isotopic into Q. If P ′ ∩ Q = ∅ and is not isotopic

into an essential torus component of Q we contradict the maximality of Q. Therefore, we have that

P ′ ∩Q 6= ∅. Thus, in the window w
ϕ∼= F × I of Ni we have that P ′

ϕ∼= A× I for A an annulus and

we have a component W
ϕ

S × I of Q in which up to isotopy A ∩ S 6= ∅ and are in minimal position

with respect to each other so that S ∪ A is a subsurface of F . We now need to deal with various

cases.

Say that W is admissible and of type (i) so that ϕ(S × ∂I) generate a product P : (S × ∂I) ×

[0,∞) ↪→ M \ int(W ). If P is also of type (i) we get that it also generates a product Q : (A ×
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∂I) × [0,∞) ↪→ M \ int(P ). Thus, by adjoining Q to P we can enlarge P to a new product

P ′ : (S′ × ∂I) × [0,∞) ↪→ M \ int(W ′) for S′ the essential sub-surface of F filled by S ∪ A and

W ′
.= ϕ(S′ × I) contradicting the maximality of Q.

Now assume that P is of type (ii) so that we have only one component A1 of ϕ(A×∂I) generating

a product while A2 has a root in M \ int(P ) which is contained in some solid torus V . Since V

is compact let k > i be such that V ⊆ Mk and let L ⊆ ∂Mi be the component containing A2.

Let M ′k
.= Mk \Nr(L), then M ′k is irreducible, with incompressible boundary and atoroidal thus it

has a characteristic submanifold N . Moreover, we have that V ⊆ N and we also have an I-bundle

induced J ∼= S × I by P such that they intersect essentially in a component of ∂M ′k. Then, we

have a component of N containing both an I-bundle and a root of its boundary which is impossible.

Similarly this takes care of the case in which W is of type (ii) and P of type (i). Thus, we are only

left with the case in which both W and P are of type (ii).

Let k > i be such that Mk contains both roots of the elements of W ∩ ∂Mi and P ∩ ∂Mi and

consider as before M ′k and its characteristic submanifold N . Moreover, let S1, S2 be the surfaces

induced by the regular neighbourhood of the component L of ∂Mi. Then, we either have two simple

closed loops α, β both having a root in M ′k such that ι(α, β) > 0 which cannot happen or we have a

component of N containing an I-bundle and a root of its boundary which also cannot happen.

Therefore, we get that every admissible submanifold of Ni is indeed isotopic into Q completing

the proof. �

The following two Lemmas says that essential annuli in M are eventually essential in some Mi.

Lemma 4.1.57. Let M ∈ M and C : (A, ∂A) ↪→ (M,∂M) for M ∈ Bord(M) the maximal

bordification. If C is essential in M there exists a minimal n and a proper isotopy of C such that

all compact annuli of Im(C) ∩Mn and Im(C) ∩M \ int(Mn) are essential.

Proof. With an abuse of notation we will use C to denote Im(C). Up to a proper isotopy of C that

is the identity on ∂M we can assume that C t ∂Mi for all i ∈ N. Now consider the minimal i such

that Mi ∩ C 6= ∅ and look at the components of C ∩Mi. If we have a component H of C ∩Mn

that is essential in Mi up to another proper isotopy of C we can push outside Mi all inessential

components. Then, by looking at C ∩M \ int(Mi) by a proper isotopy we can push inside Mi all

inessential components. Note that by pushing components of C ∩M \ int(Mi) into Mi we might

change H to a component H ′ which is however isotopic to it hence still essential. Since all these

isotopies decrease the number of components of C ∩ ∂Mi eventually we terminate and all annular

components of C ∩Mi and C ∩M \ int(Mi) are essential. Therefore, by picking n = i we are done.
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If not it means that all components of C ∩Mi are inessential and via an isotopy Hi of C we can

push C outside of Mi so that for all k ≤ i we have that C ∩Mk = ∅. This process either stops

at some k ≥ i and by picking n = k we are done by the above case or we obtain a collection of

isotopies
{
Hk
t

}
k≥i that push C outside every compact subset of M and are the identity on ∂M . We

will denote by Ĉ the properly embedded annulus C(S1 × (0, 1)) ⊆M = int(M) and without loss of

generality we assume that M1 is disjoint from Ĉ.

Claim: The annulus Ĉ is separating in M .

Proof of Claim: If M \ Ĉ is connected there exists a loop α ⊆M such that α∩ Ĉ 6= ∅. Moreover,

for any isotopy Ht of Ĉ we still have that for all t : Ht(Ĉ) ∩ α 6= ∅. By compactness of α there

exists i such that α ⊆Mi. Then since Ĉ can be isotoped outside every Mi we reach a contradiction

and so Ĉ is separating in M . �

Let E, M̂ be the components of M \ Ĉ and assume that M1 ⊆ M̂ . For all i ∈ N there is a

proper isotopy Hi
t of Ĉ, namely the one that pushes Ĉ ∩Mi outside Mi, such that Hi

1(Ĉ)∩Mi = ∅.

Moreover, we have that E iso' Ei for Ei the component of M \ Im(Hi
1) not containing M1 and for all

i ∈ N we have:

(i) Ei ∩Mi = ∅;

(ii) Ei+1 ⊆ Ei;

(iii) Ei+1 \ int(Ei) is compact and homeomorphic to a finite collection of solid tori.

Claim: The inclusion ι : Ĉ ↪→ E induces a homotopy equivalence.

Proof of Claim: Since Ĉ and E are aspherical by Whitehead Theorem [24] it suffices to show that

the map ι induces an isomorphism in π1. Since π1(Ĉ) injects in M we only need to show that ι∗ is a

surjection. If ι∗ is not surjective let α ⊆ E be a non-trivial loop that is not in the image ι∗(π1(Ĉ))

and let i be minimal such that α ⊆Mi. Then, we have a homotopy ϕt from α into Ei ' E and since

Hi
1(Ĉ) is separating we have that α is homotopic in Ei into ∂Ei

iso' Ĉ and so the inclusion map is a

homotopy equivalence. �

Claim: The submanifold E is tame, hence E ∼= V \ L where V is a solid torus and L is a simple

closed curve in ∂V .
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Proof of Claim: If we show that E is tame the fact that E ∼= V \ L follows by the fact that

π1(E) ∼= Z and ∂E = Ĉ ∼= S1 × (0, 1). To show that E is tame we will use the fact that E iso' Ei,

Ei+1 ⊆ Ei and Tucker’s Theorem [59]. To show that E is tame we need to show that for any

compact submanifold K ⊆ E the fundamental group π1(E \K) is finitely generated. Let i be such

that Ei ∩K = ∅ and so that E \K = Ei ∪K ′ where by (iii) K ′ is a compact submanifold of E.

Then by Van-Kampen’s Theorem [24] we have:

π1(Ei) ∗ π1(K ′)� π1(E \K)

and so π1(E \K) is finitely generated. �

Since E ∼= Ĉ×[0,∞) by Theorem 4.1.36 we have a maximal bordification in which Ĉ compactifies

to C ′ and is ∂-parallel. Moreover, by uniqueness of the maximal bordification we have that M ′
ψ∼= M

and ψ induces an isotopy from C to C ′. Contradicting the fact that C was essential in M . �

By Lemma 4.1.26 we define:

Definition 4.1.58. Given M = ∪i∈NMi ∈ M we define the boundary at infinity of Mi to be the

submanifold ∂∞Mi ⊆ Mi to be the maximal, up to isotopy, submanifold of ∂Mi such that we have

a simple product P : ∂∞Mi × [0,∞) ↪→ M \ int(Mi) with the property that every other product

(F × [0,∞), F × {0}) ↪→ (M \ int(Mi), ∂Mi) is isotopic into P(∂∞Mi × [0,∞)). We also define the

bounded boundary to be ∂bMi
.= ∂Mi \ ∂∞Mi.

Example 4.1.59. For the manifold M of Example 4.1.46 for the elements of the exhaustion Mi we

have that ∂∞Mi is given by the collection of genus two surfaces corresponding to tame ends and an

annulus in the genus two surface facing the non-tame end. The sub-surface ∂bMi is given by two

punctured tori contained in the genus two surface bounding the non-tame end.

We now extend the previous Lemma to non-embedded annuli.

Proposition 4.1.60. Let M ∈ M and C : (A, ∂A) → (M,∂M) for M ∈ Bord(M) the maximal

bordification. If C is essential in M there exists a minimal i and a proper homotopy of C such that all

compact components of Im(C)∩Mi and Im(C)∩M \ int(Mi) are essential and any Z2 ⊆ π1(Im(C))

is induced by an annulus in Im(C) ∩Mi.

Proof. By compactness of the annulus we have a proper homotopy of C in M so that we can assume

that C : (A, ∂A)→ (M,∂M) is an immersion that is in general position with ∪k∈N∂Mk.
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Case 1: Assume that π1(Im(C)) does not contain any Z2, so that, up to homotopy, the singular

locus of C does not contain any essential double curve.

Up to homotopy we can find i ∈ N such that Im(C) \ Ki ⊆ ∂∞Mi × [0,∞] for Ki a compact

subset of Im(C) and Im(C)∩∂∞Mi× [0,∞] = γ1× [0,∞]
∐
γ2× [0,∞] for γ1, γ2 two, not necessarily

simple, closed curves in ∂∞Mi.

If the γi are simple then by the fact that essential annuli in Mj and Mj \Mj−1 with an embedded

boundary component are homotopic to embedded essential annuli we obtain a compactly supported

homotopy that makes C an embedding. Thus, we are done by Lemma 4.1.57. With an abuse of

notation we will use C for Im(C) and we will now deal with the case in which the γi are not simple.

Let Fi
.= Fill(γi) be the essential sub-surface of ∂∞Mi filled by γi, for i = 1, 2. If Fi is not an

annulus we have that C ∩Mi is essential. Moreover, every compact component of C ∩M \ int(Mi) is

also essential, it is induced by a map of an I-bundle over the surface Fi, and so we are done. Thus,

we can assume that Fi is homeomorphic to an annulus.

If Fi are annuli, we have that γi ' αni
i with αi simple. Then, by the previous argument we

have an embedded annulus C ′ : (A, ∂A) ↪→ (M,∂M) such that C is properly homotopic into C ′. By

Lemma 4.1.57 there is a proper isotopy of C ′ and i such that all compact components of C ′∩Mi and

C ′ ∩M \Mi are essential. Thus, since up to a proper homotopy of C it is contained in a thickening

of C ′ the result follows.

Case 2: Assume that π1(Im(C)) contains a Z2 subgroup G.

Since, π1(M) = ∪i∈Nπ1(M) there exists a minimal i such that π1(Mi) contains G. By hyperbol-

icity of the Mi we have that G is conjugated into a subgroup of π1(T ) for T a torus in ∂Mi. Since,

the torus T is compactified in M we have a torus T∞ such that T∞, T cobound an I-bundle Q in

M . Moreover, up to an isotopy of Q each Mj intersects Q into a level surface.

If, up to homotopy, C ⊆ Q then there is some Mj such that up to homotopy Mj ∩ C and the

compact components of M \Mj ∩ C are essential.

If C cannot be homotoped into Q we have a minimal j ≥ i such that C ∩Mj 6= ∅ and we claim

it contains an essential component. If all components of C ∩Mj are inessential we can homotope C

such that C ∩Mj = ∅ and since C cannot be homotoped into Q we have that C ⊆ M \Mj ∪Q.

But π1(Im(C)) contains G and G is conjugated into π1(T ) with T a torus in ∂Mi. By tracing the

homotopy from G into π1(T ), we have a component S of ∂Mi \ T that contains a Z2 subgroup

that is homotopic in Mi into π1(T ). Thus, we get that Mi
∼= T2 × [−i, i] and so M ∼= M × R in
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which Mj
∼= T2 × [−j, j] and the result follows. Thus, we can assume that C ∩Mi has essential

components. Then, as in Lemma 4.1.57, up to a homotopy we can assume that Mi ∩ C and all

compact components of M \Mi ∩ C are essential. �

In the proof of existence of characteristic submanifolds for manifolds in M we will need the fol-

lowing fact about characteristic submanifold for compact 3-manifolds with incompressible boundary.

Corollary 4.1.61. If ψn : (F × I, ∂I) ↪→ (M,∂M), n = 1, 2, are essential I-bundles and M is

compact, irreducible with incompressible boundary. If χ(F ) < 0 and ψ1(F × {0}) = ψ2(F × {0})

then up to isotopy we have that ψ1 = ψ2. If F is an annulus and we have a collection {ψn}n∈N then

the result is true up to sub-sequence.

We will use the following Lemma to show that the submanifold that we build in Proposition

4.1.63 contains, up to homotopy, all essential cylinders.

Lemma 4.1.62. Let C : (A, ∂A)→ (M,∂M) be an essential cylinder such that every compact sub-

annulus of Im(C) ∩M \Mi and Im(C) ∩Mi is essential and if Z2 ⊆ π1(Im(C)) then it is induced

by a sub-annulus contained in Mi. Then, every A ⊆ Im(C) ∩Mi is homotopic into an admissible

submanifold P of the characteristic submanifold Ni of Mi.

Proof. We 0 < a < b < 1 such that A = C(S1 × [a, b]) is an essential annulus in Mi, hence by JSJ

theory is homotopic into a component Q of Ni. Moreover, we let Ci be the collection of essential

annuli induced by C contained in Mi.

Case I Assume that Q
ϕ∼= F × I for F a hyperbolic surface.

Then, up to homotopy, we have that A
ϕ∼= γ × I for γ ⊆ F a π1-injective closed curve. Thus,

up to an ulterior homotopy we have that all compact components Cc of Im(C) ∩M \Mi are also

of the form γ × I and so are the other components of Ci. Thus, in M \ ϕ(Nε(ϕ(γ × I)) we get two

I-bundles P1, P2 such that Ci ∪ Cc ⊆ P1 ∪ P2 ∪ ϕ(Nε(γ × I)). After this homotopy we have that

Im(C)\ int(Mi) has two unbounded components C1, C2 that have for boundary on ∂Mi loops α1, α2

homeomorphic to γ. Then, by applying Corollary 4.1.61 to Mn \Mi and a diagonal argument we

obtain an embedded product Ĉ1, Ĉ2 ⊆M \Mi such that Ĉi ∼= γ × [0,∞) and so we get that Nε(A)

is admissible.

Case II Assume that Q
ϕ∼= S1 ×D2 a solid torus of type Tnk of Ni where n is the number of wings

and k is the number of times that they wrap around the soul.
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If k > 1 we have that Tnk is admissible if a component B of Q ∩ ∂Mi is isotopic in M \ int(Q)

to infinity. Let AQ be the collection of annuli of Ci homotopic into Q. Since C is a proper map

we have finitely many such components and thus we can assume that there is t > 0 such that

C(S1 × [t, 1))∩Mi has no components homotopic into Q and C(S1 × {t}) ⊆ Q∩ ∂Mi. Thus we can

assume that up to homotopy it is disjoint from Q. The loop C(S1 × {t}) is homotopic to αm for α

the core curve of a component B of V ∩ ∂Mi. Then, by Corollary 4.1.61 and a diagonal argument

we get that Nε(α) ⊆ ∂Q ⊆ ∂Mi generates a product in M \ int(V ) and so Q is admissible.

Similarly if k = 1 for each A ⊆ AV we have that A ∩ ∂Q is, up to homotopy, homeomorphic

to αm1 , α
m
2 for α1, α2 core curves of components of ∂V ∩ ∂Mi. Since AV ⊆ Im(C) is compact we

have two components A1, A2 ∈ π0(AV ) such that Im(C) \ A1 ∪ A2 has two unbounded component

C1, C2 such that ∂C1, ∂C2 are αm1 , αk2 for αi core curves of components w1, w2 of ∂V ∩ ∂Mi. If

the components w1, w2 are distinct by using Corollary 4.1.61 and a diagonal argument we get that

Nε(α1 ∪ α2) ⊆ ∂Q ⊆ ∂Mi generates a product in M \ int(V ) and so Q is admissible.

If w1 = w2 it means that either the annulus C \ C1 ∪ C2 contains a Z2 subgroup and so it is

contained in Mi and thus Q was not a solid torus or a compact component of C∩M \Mi is contained

in a Tnk torus. Thus, by using Corollary 4.1.61 and a diagonal argument we get that w1 ⊆ ∂Q ⊆ ∂Mi

generates a product in M \ int(V ) and so Q is admissible.

Case III Assume that Q ∼= T2 × I.

By definition these components are admissible and there is nothing to do. �

We can now prove the existence of the characteristic submanifold for bordifications of manifolds

in M.

Theorem 4.1.63 (Existence of JSJ). Given M ∈ M there exists a maximal bordification M with

a characteristic submanifold (N,R).

Proof. Let {Ni}i∈N be a collection of characteristic submanifold of the Mi coming from Corollary

4.1.54 applied to a normal family {Ni−1,i}i∈N of characteristic submanifolds for the Xi
.= Mi \Mi−1.

Thus, we can assume that the (Ni, Ri) ⊆ (Mi, ∂Mi) satisfy for all i > j: Ni ∩Mj ⊆ Nj and for all i

Ni ⊆ Ni−1 ∪Ni−1,i.

We will construct N as a bordification of a nested union of codimension-zero submanifolds

N̂i. The submanifolds N̂i will be obtained by taking admissible submanifolds of the characteristic

submanifold Ni ⊆Mi and the N̂i will satisfy the following properties:

(i) ∀j ≥ k : N̂j ∩Mk ⊆ Nk is compact;
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(ii) if P ⊆ Nj is an admissible submanifold then, up to isotopy, P ⊆ N̂j ;

(iii) ∀k ≤ j : N̂j ∩Mk = N̂k.

Let N̂1 be the maximal submanifold of N1 containing all admissible submanifolds, see Lemma

4.1.56. Then, N̂1 clearly satisfies (i)-(iii). We then proceed iteratively. Assume we have constructed

N̂i and start by defining N̂i+1
.= N̂i.

Let P
ψ∼= F × I be an I-bundle component, with χ(F ) < 0, of N̂i, then ψ(F × ∂I) ⊆ ∂Mi. Since

P is admissible we have that the surface ψ(F × ∂I) generates a product:

P : (F × ∂I)× [0,∞) ↪→M \ int(ψ(F × I))

such that P(F × {0, 1}) = ψ(F × ∂I). Since P(F × {0, 1}) are already essential sub-surfaces of

∂Mi by Theorem 4.1.19 we have a proper isotopy of P rel P(F × {0, 1}) such that P is in standard

form. Thus, in Xi+1 there are finitely many essential I-bundles P1, . . . , Pn in Ni,i+1 that connect a

component of ψ(F × ∂I) to either ∂Mi+1 or to another I-bundle P ′ in Ni. Since P is admissible we

have that P ′ is also admissible and so it is contained in a component Q of N̂i. Moreover, Q is also

homeomorphic to F × I. If not, we would have that P is an essential submanifold of a submanifold

of M homeomorphic to F ′ × R where up to isotopy P
ϕ∼= F × [0, 1] ⊆ F ′ × [0, 1] is a sub-bundle.

Thus, we would have that P is contained in a larger admissible submanifold of N̂i contradicting the

construction.

By adding all such P`’s to N̂i+1 and repeating it for all such I-bundles we have that N̂i+1 satisfies

(i) and (iii) by construction.

Let P
ψ∼= S1 × D2 a solid torus component of N̂i. As before, we add to N̂i+1 all solid tori

components of Ni,i+1 and thickened annuli contained in I-bundles of Ni,i+1 that match up with

component of P ∩ ∂Mi. Properties (i) and (iii) are still satisfied by construction. Similarly we do

the case where P
ψ∼= T2 × I. We now claim that the only admissible submanifolds of Ni+1 that we

are missing in N̂i+1 are contained in Ni,i+1

Claim: If Q ⊆ Ni+1 is admissible and, up to isotopy, Q∩Mi 6= ∅ then we have that Q is isotopic

into N̂i+1.

Proof of Claim: Let Q be such a component then by Corollary 4.1.54 we have that, up to isotopy,

Q ⊆ Ni∪Ni,i+1 and Q∩Ni is an essential submanifold. Since Q is admissible in Ni+1 and Qi
.= Q∩Ni



4.1. TOPOLOGICAL CONSTRUCTIONS 89

is an essential submanifold we have that Qi is also admissible in Ni. Therefore, Qi is, up to isotopy,

contained in N̂i. Hence, by the above construction we get that Q ⊆ N̂i+1. �

Finally, we add to N̂i+1 all admissible solid tori, thickened essential tori and I-subbundles con-

tained in Ni,i+1.

By construction we have that N̂i+1 ∩Mi = N̂i and N̂i is compact thus (i) and (iii) are satisfied.

Moreover, for all i ∈ N all components of N̂i are I-bundles over hyperbolic surfaces, solid tori or

thickened essential tori. Let P ⊆ Ni+1 be admissible then, up to isotopy, we have that P ⊆ N̂i+1

and so N̂i+1 satisfies (i)-(iii).

Since by construction N̂i does not change as we go through the construction we obtain a collection{
N̂i

}
i∈N

of nested codimension-zero submanifold satisfying (i)-(iii).

Let, N̂ .= ∪∞i=1N̂i ⊆M . Since every component of N has a natural 3-manifold structure and for

all k ∈ N:

N̂ ∩Mk = ∪∞i=1N̂i ∩Mk
(ii)= N̂k

is compact we get that N is a properly embedded codimension-zero submanifold. Moreover, N̂

contains, up to isotopy, all admissible submanifolds since they appear in some N̂j .

Let P ∈ π0(N̂) then, by construction, P is either:

• homeomorphic to F × R for F a compact surface;

• a nested union of solid tori Ti ⊆ Ni such that Ti+1 \ Ti are essential solid tori;

• a nested union of manifolds Qi ⊆ Ni each homeomorphic to T2× [0, 1] and such that Qi+1 \Qi

are essential solid tori.

If P is the limit of solid tori Ti then by Lemma 4.1.48 we have that P ∼= V \L for V a solid torus

and L a closed collection of parallel loops in ∂V . Similarly, if P is the limit of thickened essential

tori: T2× [0, 1] we get by Corollary 4.1.49 that P is homeomorphic to T2× [0, 1]\L for L ⊆ T2×{0}

a collection of parallel loops.

We will now add boundary to N̂ . Let P
ψ∼= F × R be an I-bundle component of N̂ since P is

properly embedded by adding int(F ) × {±∞} to M we can compactify P to P in M̂ ∈ Bord(M)

so that P
ψ̄∼= F × I is an essential I-bundle in M̂ . By repeating this for all components of N̂

homeomorphic to F ×R we obtain a new manifold, which we still denote by N̂ , properly embedded

in M̂ such that all I-bundles components are essential and compact.

Let P ∼= V \ L or P ∼= T2 × [0, 1) \ L and consider the subset of loops Liso ⊆ L that are not
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accumulated by any family of loops γi → γ. Since each γ ∈ Liso is isolated it means that if we take

a closed end neighbourhood U of γ it is homeomorphic to a properly embedded annular product

A × [0,∞) which we can compactify in M̂ by adding an open annulus to ∂M̂ . Moreover, for all

components homeomorphic to T2×[0, 1)\L, L ⊆ T2×{0}, we add the corresponding boundary torus

T2 × {1} to M̂ . We still denote by N̂ the resulting bordified manifold contained in M̂ ∈ Bord(M).

Finally, for each γ in the set L′ .= L\Liso of an IWSL or an IWET by tracing through the gluing

of the solid tori we obtain an embedded product Pγ : A× [0,∞) ↪→ M̂ . We also compactify Pγ by

adding an open annulus Aγ to ∂M̂ so that Pγ is partially compactified i.e. :

Pγ : (A× [0,∞) ∪A′ ×∞, A′ ×∞) ↪→ (M̂ ∪Aγ , Aγ)

where A′ ( A is an annulus sharing only one boundary component with A. Moreover, we have that

Pγ is properly isotopic into a collar neighbourhood of Aγ .

Then, we extend the bordification M̂ ∈ Bord(M) to obtain a maximal bordification M , see

Theorem 4.1.36. Finally from N we remove any essential torus T that is properly homotopic into

the side boundary of an I-bundle component.

To show that N is a characteristic submanifold we need to show that any essential annulus

A : (A, ∂A) → (M,∂M) and essential torus T : T2 → M is homotopic into N . We first show that

annuli can be homotoped into N .

By Proposition 4.1.60 for any essential annulus A .= A(A) in M we have a proper homotopy of

A and i ∈ N such that all compact sub-annuli of Ai
.= Mi ∩ A and A ∩M \Mi are essential in Mi,

M \Mi respectively. Thus, by Lemma 4.1.62 we have that Ai it is homotopic not just into Ni but

into N̂i. Thus, we can assume that Ai ⊆ N̂i.

Since all compact components Ac of A ∩M \Mi are essential there is a proper homotopy of Ac

rel ∂Mi such that for all k > i Ac ∩ Xk ⊆ Nk,k−1. Moreover, since all components Q of Nk,k−1

containing sub-annuli of Ac math up with admissible components of Ni we get that Q ⊆ N̂k. Thus,

we have a proper homotopy such that Ai ∪Ac ⊆ N .

We will now do an iterative argument to construct homotopies rel ∂Mj−1, j > i, supported in

M \ int(Mj−1) such that A ∩Xj ⊆ N̂j ∩Xj .

Claim: If for n < j we have that A ∩ Xn ⊆ N̂n ∩ Xn and all annuli of A ∩ Xj with boundary

on ∂Mj−1 are essential. Then, there is a proper homotopy rel ∂Mj−1 supported in M \ int(Mj−1)

such that A ∩M \Mj−1 are essential and contained in N̂j ∩Xj and all annuli of A ∩M \Mj with
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boundary on ∂Mj are essential.

Proof of Claim: All annuli of A∩Xj that are ∂-parallel are induced by the unbounded components

A1, A2 and have boundary on ∂Mj . Thus, by a proper homotopy ϕ1 supported in M \ int(Mj−1) we

can remove the ∂-parallel annuli and guarantee that all compact components of (A1 ∪A2)∩M \Mj

with boundary on Mj are essential so that all annuli of A ∩M \Mj with boundary on ∂Mj are

essential.

Since every annulus of A ∩ Xj is essential we have a homotopy ϕ2, supported in Xj , that by

properties of normal family is the identity on ∂Mj−1 such that A∩Xj ⊆ Nj,j−1. If a sub-annulus C

of A ∩Xj satisfies ∂C ⊆ ∂Mj then by Lemma 4.1.62 we have that A is contained in a n admissible

component and so A ⊆ N̂j . If ∂A has a component contained in ∂Mj−1 by properties of normal

families and the fact that for all n < j A ∩ Xn ⊆ N̂n ∩ Xn we get that A matches up with an

admissible component and is so admissible. �

The composition ϕ
.= lim−→j≥i ϕj gives a proper homotopy of A such that A ⊆ N̂ .

Finally, let T : T2 →M be an essential torus, then by a homotopy we can assume that Im(T )∩

∂M = ∅ and by compactness of Im(T ) we have Mi such that Im(T ) ⊆ Mi. Since the Mi are

atoroidal we have that Im(T ) is homotopic into a torus component of ∂∞Mi which is isotopic into

a torus component T∞ of ∂M . Hence, we have a homotopy from Im(T ) into the component of N

corresponding to T∞.

Claim: The manifold N is minimal, that is no component is homotopic into another.

Assume that P,Q ∈ π0(N) are such that P is properly homotopic into Q. By fundamental group

reasons we get that P ∼= F × I and Q ∼= S1 × D2 and that Q is properly homotopic into a side

boundary of P and we removed all these redundancies. �

4.1.2.3 Uniqueness of characteristic submanifolds

We will now show that any characteristic submanifold of M can be put in a normal form so that

they are contained in a pre-scribed family of a normal characteristic submanifolds for the gaps of

the exhaustion {Mi}i∈N. We will use this fact to show that any characteristic submanifold for M is

properly isotopic to the one constructed in Proposition 4.1.63.

Definition 4.1.64. Let M = ∪k∈NMk ∈ M and ι : (N,R) ↪→ (M,∂M) be a characteristic sub-

manifold for the maximal bordification M . Let N ′ .= ι(N \R) then N is in pre-normal form if every
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component of N ′ \ ∪k∈N∂Mk is an I-bundle, a solid torus or a thickened torus that π1-injects in N ′

and every component of N ′ ∩ ∪k∈N∂Mk is a π1-injective surface and no component is a ∂-parallel

annulus or a disk.

Given a normal family of characteristic submanifolds {Nk}k∈N we say that N is in normal form

with respect to the Nk’s if for all k ∈ N we have that each component of N ′ ∩Mk \Mk−1 ⊆ Nk is

an essential submanifold of Nk.

Example 4.1.65. Note that by construction the characteristic submanifold constructed in Propo-

sition 4.1.63 is in normal form.

Remark 4.1.66. The difference between pre-normal form and normal form is that if N is in pre-

normal form but not in normal form then there exists a k ∈ N and a component Q of N ′ ∩Mk such

that Q is homeomorphic to either a solid torus or a thickened torus and it has at least two parallel

wings. Equivalently it means that an annular component of ∂Q \ ∂Mk is ∂-parallel.

Moreover, if two wings of a solid torus Q ⊆ Mk or Q ⊆ M \Mk are parallel by an isotopy

supported in Xk ∪Xk+1 we can slide one over the other and push it in M \Mk or Mk respectively.

We now prove a Lemma needed to show that characteristic submanifolds can be put in pre-normal

form.

Lemma 4.1.67. Let ι : (N,R) ↪→ (M,∂M) be a characteristic submanifold and let N ′ .= N \ R.

Let S .= Im(ι)∩∪k∈N∂Mk and assume that every component of S is π1-injective and no component

of S is a disk. Then, there is a proper isotopy ψt of ι supported in ι(N ′) such that no component S

of S is a boundary parallel annulus in ι(N ′).

Proof. Let Ak be the collection of annuli of Sk
.= S ∩ ∂Mk that are ∂-parallel in ι(N ′). Since ι is a

proper embedding we have that for all k ∈ N |π0(Ak)| < ∞. Moreover, since N is a characteristic

submanifold every ∂-parallel annulus A ⊆ Ak is contained in a component of N ′ homeomorphic to

either an R-bundle, a missing boundary solid torus V or thickened essential torus T . By an iterative

argument it suffices to show the following:

Claim: If for 1 ≤ n < k An = ∅ then via an isotopy ϕtk of ι supported in M \Mk−1 ∩ Im(ι) we

can make Ak = ∅.

Proof of Claim: Denote by A1, . . . , An the ∂-parallel annuli in Ak and assume that A1, . . . , An1

are contained in R-bundle components of N ′ and An1+1, . . . , An are contained in missing boundary

solid tori or thickened tori.
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Since the annuli contained in R-bundles are finitely many we have a disconnected compact

horizontal surface Fk in N ′ such that A1, . . . , An1 are contained in ι(Fk × [ak, bk]). By applying

Corollary 4.1.13 to each component of Fk × [ak, bk] we have a local isotopy ϕtk of ι that removes all

these intersections. The isotopy ϕtk is supported in a collection of solid tori V ′k ⊆ Fk × [ak, bk] thus

it can be extended to the whole of ι. Moreover, if we consider for n < k a component of intersection

of ∂Mn ∩ P(Vk) then it is either a boundary parallel annulus or a disk. However, we assumed that

for n < k An = ∅ and by hypothesis no component of ∪k∈N∂Mk ∩ Im(N ′) is a disk thus, the solid

tori ι(V ′k) that we push along are contained in ι(N ′) ∩M \Mk−1.

Similarly, consider the annuli An1+1, . . . , An then by Lemma 4.1.12 we have a collection of solid

tori V ′′k ⊆ N ′ such that by pushing along ι(V ′′k ) we obtain an isotopy ϕtk of ι so that Ak = ∅

and as before the solid tori ι(V ′′k ) are contained in ι(N ′) ∩ M \Mk−1 thus ϕtk is supported in

M \Mk−1∩Im(ι). Moreover, note that V ′k∩V ′′k = ∅ since they are contained in disjoint components

of N .

Therefore, we get a collection of solid tori Vk
.= V ′k

∐
V ′′k contained in Im(ι) ∩M \Mk−1 such

that pushing through them gives us an isotopy ϕtk of P that makes Ak = ∅. �

Since for all k ∈ N supp(ϕtk) = Vk is contained in M \Mk−1 the limit ϕt of the ϕtk gives us a

proper isotopy of P such that for all k ∈ N Ak = ∅. �

By the Lemma we have:

Proposition 4.1.68. Given a characteristic submanifold N of the maximal bordification M of

M ∈M there is a proper isotopy such that N is in pre-normal form.

Proof. Since N ∩ int(M) is a π1-injective submanifold of M ∼= int(M) by Lemma 4.1.11 we have a

proper isotopy of N such that for all k ∈ N ∂Mk∩N are π1-injective surfaces in N and no component

of S .= Im(ι) ∩ ∪k∈N∂Mk is a disk.

Then, by Lemma 4.1.67 we have a proper isotopy of N ′ such that no component of S is a ∂-

parallel annulus. Therefore, for all components S of S the surface ι−1(S) is an essential surface in N ′.

By the proof of Lemma 4.1.15 we get that up to a proper isotopy of N ′ supported in the R-bundle

components every essential surface ι−1(S) in an R-bundle component is horizontal. Thus, R-bundles

components of N ′ are decomposed by ∪k∈N∂Mk into I-bundles contained in Xk
.= Mk \Mk−1.

Let S ′ ⊆ S be the collection of components S of S such that ι−1(S) is not contained in an

R-bundle. Each component S of S ′ is either an essential annulus or an essential torus. Since all

essential tori are contained in products T2 × [0,∞) by the proof of Lemma 4.1.15 we have a proper
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isotopy supported inside a, possibly infinite, collection of products over essential tori such that the

pre-images under ι are essential tori of S ′ which co-bound I-bundles.

Let Ak ⊆ S′ be the collection of essential annuli of S ′ ∩Xk. Then ι−1(Ak) are essential annuli

contained in a component Q of N ′ that is homeomorphic to either a missing boundary solid torus V

or a missing boundary thickened essential torus T . In either case they co-bound either a solid torus

or a thickened torus and the Lemma follows. �

We now show that characteristic submanifolds in pre-normal form can be isotoped to be in

normal-form. To prove the iterative step we need:

Lemma 4.1.69. Let M = ∪k∈NMk ∈M and ι : (N,R) ↪→ (M,∂M) be a characteristic submanifold

in pre-normal form for the maximal bordification M and let N ′ .= ι(N \R). Let An be the collection

of annuli of ∂N ′ \ ∂Mn that are ∂-parallel in either Mn or M \ int(Mn). If for all 1 ≤ n < k we have

that An = ∅ then there is a proper isotopy Ψt
k of ι supported in M \Mk−1 such that Ak = ∅.

Proof. We have that |Am| is bounded by bm
.= |π0(∂Mm ∩ ∂N ′)| which is finite by properness of the

embedding.

Claim: Let A be an annulus in An, for n ∈ N such that:

A ∩ ∪nm=1∂Mm = ∂A ⊆ ∂Mn

and A is inessential. Then, there exists a solid torus V ⊆ M \Mn−1 containing ι(A) such that all

components of ι(N) ∩ V are inessential solid tori in either Mn or M \Mn.

Proof of Claim: The annulus ι(A) is ∂-parallel so it co-bounds with an annulus C ⊆ ∂Mn a solid

torus V ⊆ M \Mn−1. Consider a component Q of ι(N) \ A ∩ V , then Q ∩ ∂Mn 6= ∅ and since

Q ∩ ∂Mn ⊆ C it is a collection of annuli B. Since ι(N) ∩ ∂Mn has no ∂-parallel annuli we have

that all the annuli B are essential in ι(N) hence since Q ⊆ V it must be a solid torus contained

in a component of N ′ homeomorphic to either a solid torus or a thickened essential torus, both

potentially missing boudary. Moreover, since Q ⊆ V and ∂V ∩ ∂Mn is an annulus we have that Q

is inessential in either Mn or M \Mn. �

Let A be an element of Ak and assume that A ⊆Mk and that A∩∂Mk−1 6= ∅. Denote by Q the

component of N ∩Mk containing A. Since A is ∂-parallel we have that any essential sub-annulus

A′ ⊆ A with boundaries on ∂Mk−1, such that A′ ⊆ Mk−1 is also ∂-parallel. Since A ∩ ∂Mk−1 6= ∅
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and A t ∂Mk−1 the annulus A is decomposed by ∂Mk−1 into annuli Ak−1
1 , . . . , Ak−1

h such that

Ak−1
j ∩∂Mk−1 ⊆ Ak−1

j ∩∂Mk−1 and for 1 < j < h Ak−1
j has both boundary components on ∂Mk−1.

Moreover, since h ≥ 3 and A is ∂-parallel in Mk we get that Ak−1 6= ∅ reaching a contradiction.

Thus, we can assume that any annulus A satisfies:

A ∩ ∪km=1∂Mm = ∂A ⊆ ∂Mk

and is inessential. By the Claim we have a solid torus V such that V ∩ ι(N) are inessential

solid tori Q1, . . . , Qmk
. By a proper isotopy of ι(N) supported in V ⊆ M \Mk−1 we can push all

inessential tori Q1, . . . , Qmk
contained in V in either Mk or M \Mk and in either case we reduce bk

by at least 2mk > 0. Thus, we can assume that V ∩ ι(N) = A and A is ∂-parallel. Let Q be the

solid torus or thickened torus of ι(N)∩Mk or ι(N)∩M \Mk containing A. Then by Remark 4.1.66

we have a proper isotopy supported in M \Mk−1 that reduces bk by at least one and removes A

from Ak. Finally, since Ak has finitely many elements the composition of these isotopies gives us a

proper isotopy Ψt
k of ι such that Am = ∅ for m ≤ k. Moreover, since all the isotopies are supported

in M \Mk−1 we get that Ψt
k is also supported outside Mk−1 . �

Proposition 4.1.70. Let ι : (N,R) ↪→ (M,∂M) be a characteristic submanifold for the maximal

bordification M of M = ∪i∈NMi ∈M. Given a normal family of characteristic submanifolds {Ni}i∈N
for Xi

.= Mi \Mi−1, there is a proper isotopy of ι such that N is in normal form.

Proof. By Lemma 4.1.68 we can assume that N is in pre-normal form and let N ′ .= ι(N \R).

Step 1: Up to a proper isotopy we have that for all i ∈ N ι(N ′) ∩Xi is a collection of essential,

pairwise disjoint I-bundles, solid tori and thickened tori.

Since ι(N ′)∩Xi is in pre-normal form we have that ι(N ′)∩X1 is a collection of I-bundles, solid

tori and thickened tori.

Let A1 be the collection of annuli of ι(∂N ′) ∩X1 and ι(∂N ′) ∩M \M1 that are ∂-parallel. By

properness of the embedding we have that A1 has finitely many components. Then, by Lemma

4.1.69 we get a proper isotopy Ψt
1 such that all annuli of ι(∂N ′) ∩M1 and ι(∂N ′) ∩M \M1 are

essential. Therefore, by Remark 4.1.66 we have that all components of ι(N ′) ∩X1 are essential.

We now proceed iteratively. Assume that we made for 1 ≤ n < k all annuli Q ∈ An essential.

Then, by applying Lemma 4.1.69 to Ak we obtain a proper isotopy Ψt
k supported in M \Mk−1 that
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makes all annuli Q ⊆ ι(∂N ′) ∩Mk ∪ ι(∂N ′) ∩M \Mk. In particular we get that for all 1 ≤ n ≤ k

all components of ι(N ′) ∩Xn are essential.

Since the isotopies Ψt
k are supported in M \Mk−1 the limit composition is a proper isotopy

Ψt .= lim−→k∈N Ψt
k of ι such that for all k ∈ N every component of N ′ ∩ Xk is either an essential

I-bundle, essential solid torus or an essential thickened torus.

Step 2: Up to a proper isotopy we have that N is in normal form.

By Step 1 we have that for all i ∈ N the components of N ′ ∩ Xi are a collection of essential,

pairwise disjoint I-bundles, solid tori and thickened tori. Consider X1 = M1 then by JSJ theory we

can isotope N ′ ∩X1 so that N ′ ∩X1 ⊆ N1. Moreover, since N ′ ∩ ∂M1 is, up to isotopy, contained

in both R1 and R2
5 by definition of normal family we can assume that N ′ ∩ ∂M1 is contained in

R1,2
.= R1 ∩R2. This isotopy is supported in a neighbourhood of X1, hence it can be extended to a

proper isotopy Ψt
1 of N ′. We will now work iteratively by doing isotopies relative Rk,k+1

.= Rk∩Rk+1.

Assume that we isotoped N ′ such that for all 1 ≤ n ≤ k we have that N ′ ∩Xn ⊆ Nn and such

that N ′ ∩ ∂Mn is contained Rn,n+1. Since the components of N ′ ∩ Xk+1 are essential, pairwise

disjoint I-bundles, solid tori and thickened tori of Xk+1 with some boundary components contained

in Rk,k+1 we can isotope them rel Rk,k+1 inside Nk+1 so that their boundaries are contained in

Rk,k+1
∐
Rk+1,k+2. This can be extended to an isotopy Ψt

k+1 of P whose support is contained in

M \Mk, hence the composition of these isotopies gives a proper isotopy of N ′ such that ∀i ∈ N :

N ′ ∩Xi ⊆ Ni, thus completing the proof. �

We now show that characteristic submanifolds are unique up to isotopy.

Proposition 4.1.71. If N and N ′ are two characteristic submanifolds for M ∈ Bord(M), M ∈M,

then they are properly isotopic.

Proof. It suffices to show that any characteristic submanifolds N ′ is properly isotopic to the one

constructed in Theorem 4.1.63, which is in normal form. Say we have another submanifold (N ′, R′) ⊆

(M,∂M) satisfying the same properties of N but not properly isotopic to it. By applying Proposition

4.1.70 to N ′ we get that up to proper isotopy we can assume that for all i N ′ ∩Xi ⊆ Ni−1,i.

By definition each component of N ′ ∩Xi is admissible hence it is isotopic into a component of

N ∩Xi. Then, by an iterative argument and properties of a normal family we can isotope N ′ ∩Xi

5We remind the reader that Ri
.= ∂Ni ∩ ∂Xi.
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into N ∩Xi rel ∂Mi−1 to get a proper isotopy of N ′ into N . Moreover, N ′ ⊆ N has to be equal to

N , up to another proper isotopy, since otherwise N ′ does not satisfy the engulfing property. �

With this we conclude the proof of Theorem:

Theorem 4.1.72. Given M ∈ M there exists a maximal bordification M with a characteristic

submanifold (N,R). Moreover, any two characteristic submanifolds are properly isotopic.

4.1.3 Acylindricity Conditions

Given the existence of characteristic submanifolds we can now study acylindricity properties of

manifolds inMB . In particular we want to construct a system of simple closed curves P in ∂M , for

M ∈MB , such that M is acylindrical with respect to P .

Definition 4.1.73. We say that an irreducible 3-manifold (M,∂M) with incompressible boundary

is acylindrical rel P ⊆ ∂M if M has no essential cylinders C with boundary in ∂M \ P .

The example of Section 3.3.3 shows that not all manifolds in MB admit such a system, but the

existence of a doubly peripheral annulus is the only obstruction.

Definition 4.1.74. A manifold M ∈MB has property (?) if the characteristic submanifold (N,R)

of M does not contain any essential annulus A : (A, ∂A) → (M,∂M) such that A(∂A) are both

peripheral in ∂M . We call such an annulus doubly peripheral.

C1

C2

Figure 4.8: The annulus C1 is an example of a doubly peripheral cylinder while
C2 is not since ∂C2 has only one peripheral component in ∂M . The interior
of M is shaded.

We will show that manifolds M ∈MB having property (?) have a system of simple closed curves

P that make M acylindrical relative to P . Once we add all the torus and annular components of
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∂M to P we get that (M,P ) becomes what is known as a pared manifold (see [56] and definition

7).

In order to find a collection of curves P in ∂M such that M is acylindrical relative to P it

suffices to show that the curves in P ‘pierce’ all the cylinders of the characteristic submanifold

(N,R) ⊆ (M,∂M). Before we go on with the construction, we make the following remarks:

(i) since we assumed that M satisfies property (?) every essential cylinder C ⊆ M must have at

least a non-peripheral boundary component;

(ii) in order to construct P it suffices to find simple closed curves {γi}i∈I ⊆ ∂M such that for any

closed curve α ⊆ R there is i ∈ I such that i(γi, α) > 0;

(iii) given a solid torus component V of the characteristic submanifold N we cannot have more

than one wing being peripheral in ∂M otherwise we can find a doubly peripheral cylinder, see

figure 4.9, and we violate condition (?). Moreover, if V has n-wings it suffices to kill all wings

but one. Therefore we can always assume that every curve coming from a solid torus to be

non-peripheral in ∂M .

Figure 4.9: The doubly peripheral cylinder is shaded.

The construction of the system of curves P will be highly non-canonical since it involves, among

other choices, the choice of filling simple closed curves on essential subsurfaces of ∂M .

Proposition 4.1.75. Let (M,∂M) ∈ Bord(M) be maximal bordification for M ∈ MB . If M

satisfies property (?) then we can find a collection P ⊆ ∂M of pairwise disjoint simple closed curves

such that M is acylindrical relative P .

Proof. By Theorem 4.1.72 let (N,R) ⊆ (M,∂M) be a characteristic submanifold. Consider all

components of N that are homeomorphic to F × I for F a hyperbolic surface, i.e. χ(F ) < 0, and
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denote this collection by N1. Denote by N2 the collection of solid and thickened tori in N so that

N = N1
∐
N2. We define R1

.= R ∩ N1 and we let R2 be the intersection of N2 with the non-tori

components of R so that all components of R2 are annuli in ∂M .

For every component F × I
ϕ∼= Q ⊆ N1 that is not a pair of pants we have two filling essential

simple closed curves α0, α1 ↪→ F , see [20, 3.5]. We can embed αi in ϕ(F × {i}) ⊆ ∂M , i = 0, 1

and we denote the collection of these simple closed curves in ∂M by P1. Let S be collection of

non-annular components of ∂M containing components of R1 ∪ R2. Thus, no S ∈ π0(S) is a torus

or an annulus. Since ∂M has at most countably many boundary components we can label S by the

natural numbers so that S = {Sn}n∈N. Consider Sn ⊆ S and let Σn .= Sn \Nε(P1).

Consider the collection of simple closed curves Γn ⊆ Σn induced by the boundaries of the

subsurfaces R1 ∩ Sn and the core curves of the annuli in R2 ∩ Sn. From Γn throw away all simple

closed curves that are peripheral in Σn and remove redundancies, i.e. if β, γ ⊆ Γn are isotopic we

only keep one of them.

Claim: Any component S of Σn containing a component of Γn has χ(S) < 0 and is not a pair of

pants.

Proof of Claim: Since no two components of P1 are isotopic and no component of P1 is peripheral

in Snwe have that any component S of Σn has χ(S) < 0. Say we have a pair of pants Q ∈ π0(Σn)

then ∂Q are either peripheral in ∂M or isotopic to elements of P1. Since any component γ of Γn is a

simple closed curve we have that γ is peripheral in Q hence it is either peripheral in ∂M or isotopic

to an element of P1 and neither case can happen. �

The curves Γn ⊆ Σn are pairwise disjoint, not isotopic and not peripheral. Since M ∈ MB all

components of ∂M are of finite type, thus so are the Σn’s. By the previous claim every component

of Σn containing elements of Γn is not a pair of pants and we denote this components by Xn
k ,

1 ≤ k ≤ jn.

Since for all k the curve complex C(Xn
k ) has infinite diameter [45, 2.25] we can pick an essential

simple closed curve γnk ⊆ Xn
k such that for all simple closed curves γ ∈ π0(Γn ∩Xn

k ) we have that

the geometric intersection number i(γ, γk) > 0. We then add, for all n, k ∈ N, the curves γnk to P1

and denote this new collection by P .

By construction we have that every essential cylinder (C, ∂C)→ (M,∂M) intersects some com-

ponent of P . Therefore, we have that M is acylindrical with respect to P . �
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Definition 4.1.76. We say that a manifold (M,P ), with M ∈ Bord(M) the maximal bordification

for M ∈MB , is an infinite-type acylindrical pared 3-manifold if:

(i) the components of P are tori, annuli (closed, open, half open) and all annular and tori com-

ponents of ∂M are in P ;

(ii) cusp neighbourhoods of ∂M are contained in P ;

(iii) the manifold M is acylindrical rel P .

Example 4.1.77. Consider the manifold M of Example 4.1.46 and let M be its maximal bordifi-

cation. Then, ∂M = A
∐
q∞n=1Sn where the Sn are genus two surfaces, A is an open annulus and

the characteristic submanifold N is given by an infinitely winged solid T∞ such that T∞ ∩ ∂M are

neighbourhoods of the core curve β of the annulus A and the separating loops αn ⊆ Sn that split

the genus two surface into two punctured tori.

Let Γ be a collection of simple closed curves γn ⊆ Sn such that ι(γn, αn) = 2 and Nε(γn, αn)

is an essential 4-punctured sphere in Sn. Then, by defining P .= {Nε(γn)}n∈N q A we obtain that

(M,P ) is an infinite type acylindrical pared 3-manifold. In particular, every Mi is acylindrical rel

Pi where Pi are the components of P isotopic in ∂Mi.

4.1.3.1 Eventual acylindricity of the Mi

In Definition 4.1.58 we gave a decomposition of ∂Mi into two essential sub-surfaces ∂∞Mi and ∂bMi

such that ∂∞Mi is the essential subsurface isotopic to infinity in M \ int(Mi). We will now show that

∂bMi has ”bounded homotopy class”. That is, ∂bMi has no essential loops6 homotopic arbitrarily

far into M .

Definition 4.1.78. Let (M,P ) be an infinite pared acylindrical 3-manifold for M = ∪i∈NMi ∈M.

Define, Pi ⊆ ∂Mi to be the collection of annuli Â ⊆ ∂Mi such that in M we have I-bundles

ψ : A× I ↪→M such that ψ(A× 0) ∈ π0(Â), ψ(A× {1}) is a compact annular component of P and

for some ε > 0 ψ(A× [0, ε)) ⊆M \Mi. Let Qni
be the characteristic submanifold of Mni

rel Pi and

define Macyl rel P
ni

to be Mni
\Qni

.

The definition is so that if we consider the cover Ki of (M,P ) corresponding to π1(Mi) we have

that in the compactification Ki
∼= Mi of Ki the lifts of P are isotopic to the Pi’s in Ki \Mi.

6Recall that by an essential loop we mean a π1-injective loop in a surface S not homotopic into
∂S.
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Proposition 4.1.79. Given an exhaustion {Mi}i∈N of M by hyperbolizable 3-manifolds with in-

compressible boundary for all i there exists ni such that for n ≥ ni no essential loop of ∂bMi is

homotopic into ∂Mn in M \ int(Mi). Moreover, if (M,P ) is an infinite-type pared acylindrical

3-manifold there exists ni such that Mi ⊆Macyl rel P
ni

.

Proof. For k ∈ N we define Xk
.= Mk+1 \Mk.

Step 1: For all i there exists ni such that no essential curve in ∂bMi is homotopic in M \ int(Mi)

into ∂Mm for m ≥ ni.

Assume that we have a collection {γk}k∈N of homotopically distinct essential curves in ∂bMi such

that for each n > i we can find ki ∈ N such that for k ≥ ki the curve γk is homotopic into ∂Mn.

We want to show that a tail of {γk}k∈N always fills a fixed essential subsurface F of S. That is, for

all k ∈ N we have that Fill(∪n≥kγn) = F . Let nk be such that γk is homotopic into ∂Mnk
via a

homotopy Hk. Without loss of generality we can assume that Im(Hk) is contained in Mnk
\Mi.

Moreover, up to reordering, we can assume that for i < j we have ni ≤ nj and ni →∞. Let F0

be the essential compact subsurface of ∂bMi filled by the {γk}k∈N. Since the {γk}k∈N fill F0 and are

homotopic in Mn1 \Mi into ∂Mn1 we have that F0 is homotopic into ∂Mn1 in Mn1 \Mi. Thus, by

JSJ theory we have an essential I-bundle F0 × I → Mn1 \Mi and let F ′0 be the induced surface in

∂Mn1 .

Let k1 ∈ N be such that γk is homotopic to ∂Mn1+1 for k ≥ k1. Denote by
{
γ

(2)
k

}
k≥k1

the

curves in ∂Mn1 homotopic to the γk via the I-bundle. Then the curves
{
γ

(2)
k

}
k≥k1

fill an essential

subsurface F ′1 ⊆ F ′0 in ∂Mn1 which is isotopic in M \Mi to an essential subsurface F1 ⊆ F0 in ∂Mi.

Thus we have |χ(F1)| ≤ |χ(F0)|. By iterating this process we obtain a nested sequence of connected

essential subsurfaces {Fj}j∈N of ∂bMi such that ∀j ∈ N: 0 ≤ |χ(Fj+1)| ≤ |χ(Fj)| and Fj is isotopic

in M \Mi into Mmj
for mj → ∞. Since every-time the surface shrinks the absolute value of the

Euler characteristic goes down the sequence {Fj}j∈N must stabilise to an essential subsurface F .

Moreover, since no γk is peripheral F is not a peripheral annulus in ∂bMi. Therefore, the tail of the

{γk}k∈N always fills a fixed subsurface F of ∂bMi.

By making the homotopies Hk immersions and transverse to ∂Mn’s we can homotope them to

be essential in each Mn+1 \Mn for i ≤ n ≤ nk − 1. Then, by picking a collection of the γk’s that

fill F we get that F is homotopic in M \ int(Mi) into ∂Mi+n for all n ∈ N.
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Then by JSJ theory we have a collection of essential I-bundles:

ϕn : F × [0, an] ↪→Mi+n \ int(Mi)

an ∈ N and an ≥ n, such that ϕn(F ×{0}) = Fill(γ) ⊆ ∂bMi and ϕn(F ×{an}) ⊆Mi+n. Moreover,

up to an isotopy of the ϕn’s we can assume that for all n ∈ N:

ϕ−1
n (Im(ϕn) ∩ ∪i+nm=i∂Mm) = ∪0≤a≤an

F × {a}

and such that for all 0 ≤ a ≤ an ϕn(F×[a, a+1]) is an essential I-bundle in some Xk, i+1 ≤ k ≤ i+n,

see the proof of Theorem 4.1.19.

By applying Lemma 4.1.61 to
{
ϕn|F×[0,1]

}
n∈N, i.e. to the restriction of the ϕn so that ϕn(F ×

[0, 1]) ⊆ Xi+1, we obtain, up to isotopy, a sub-sequence such that for all n ∈ N : ϕn(F × [0, 1]) =

P1 ⊆ Xi+1. We then repeat the argument to
{
ϕn|F×[1,2]

}
in Xi+2 to obtain a subsequence such

that ϕn(F × [1, 2]) = P2. Moreover, we have that P1 ∪P2 is naturally homeomorphic to an I-bundle

over F . Then, one works in either Xi+1 or Xi+2 depending on wether the lid ϕn(F × {2}) of P2 is

contained in ∂Mi+2 or ∂Mi+1. Note that the new I-bundle P3 obtained in Xi+1 is disjoint from P1

since otherwise the ϕn were not isotopic to embeddings.

By iterating this argument we obtain a collection of pairwise disjoint I-bundles Pn such that Pn

and Pn+1 have a matching lid. Then P .= ∪n∈NPn ⊆M\int(Mi) gives a product P : F×[0,∞) ↪→M ,

contradicting the fact that F ⊆ ∂bMi was not peripheral.

We only need to prove the last claim. By Step 1 we get that the only cylinders from ∂Mi to

∂Mn with n ≥ ni have boundaries that are peripheral in ∂bMi.

If Mi is not in Macyl rel P
n , n ≥ ni by Lemma 4.1.53 it means that we can find an annulus of the

following type:

• an embedded essential cylinder C ⊆Mn such that Cni
.= C∩Mi is essential inMi with boundary

homotopic to ∂bMi;

• an immersed annulus C formed by an embedded annulus C1 ⊆Mn\int(Mi) with one boundary

γ homotopic to ∂bMi and the non-trivial homotopy contained in a solid torus Cin(r)obtained

by collapsing γ ' rn to the root r.
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Step 2: If (M,P ) is an infinite-type pared acylindrical 3-manifold there exists ni such that Mi ⊆

Macyl rel P
ni

.

Assume that the statement is not true and assume that no peripheral element of ∂bMi has a root

in Mi. Then, by Lemma 4.1.53 we have essential cylinders:

Cn : (S1 × I, S1 × ∂I) ↪→ (Mn, ∂Mn \ Pn), n ≥ ni

such that Im(Cn) ∩Mi is a collection of pairwise disjoint essential cylinders whose boundaries

are peripheral in ∂bMi. By doing isotopies, supported in Mi, of the {Cn}n∈N and picking a sub-

sequence
{
C

(1)
n

}
n∈N

we can assume that the
{
C

(1)
n

}
n∈N

satisfy Im(C(1)
n ) ∩Mi = Im(C(1)

m ) ∩Mi for

all n,m ≥ ni.

By repeating this argument in Mk, k ≥ i, and picking a diagonal subsequence {Cn}n∈N we obtain

a bi-infinite cylinder Ĉ = lim−→n
Cn with Ĉ : S1 × R ↪→ M such that for all k ∈ N Ĉk

.= Ĉ ∩Mk are

cylinders and Ĉi contains an essential cylinder. Let M̂ be a bordification where Ĉ compactifies and

denote by α1, α2 the boundaries of Ĉ. Since Ĉi is essential we have that Ĉ is also essential in the

bordification M̂ . By uniqueness of the maximal bordification we can assume that M = M̂ . Since

(M,P ) is an infinite-type pared acylindrical 3-manifold and M̂ ∼= M we have at least one component

γ of P such that ι(γ, ∂Ĉ) > 0, say that ι(γ, α1) > 0. Moreover, since γ is not peripheral in ∂M so

is α1 and let S ∈ π0(∂M) be the component containing them.

Pick k > ni such that we have γ′ iso' γ contained in Pk ⊆ ∂Mk
7 and such that the unbounded

component Ĉ1 of Ĉ ∩M \Mk compactifying to α1 is contained in a product in standard form:

Q : (F × [0,∞), F × {0}) ↪→ (M \Mk, ∂∞Mk)

where F is a surface isotopic into S ⊆ ∂M in M \Mk containing γ′. Moreover, up to a proper

isotopy of Ĉ, we can assume that Ĉ1 = Q(α1 × [0,∞)).

Since lim−→Cn = Ĉ we can pick a cylinder Cn such that Im(Ĉ) ∩Mk ⊆ Im(Cn) ∩Mk and let C1
n

be the component of Im(Cn) ∩M \Mk containing Q(α1 × {0}). Because Im(Q) ⊆ M \Mk and Q

is in standard form we have a minimal t = tn > 0 such that Q(F × {t}) ⊆ ∂Mn, n ≥ k, hence:

Q : (F × [0, t], F × {0, t}) ↪→ (Mn \Mk, ∂(Mn \Mk))

7See Definition .
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is an essential I-bundle.

Since α1 is not peripheral in F and C1
n ∩ ∂Mk = Q(α1 × {0}) we have that the annulus C1

n, is

up to isotopy, vertical in Q(F × [0, t]). The simple closed curve Q(γ′×{t}) is isotopic through Q to

γ ⊆ P and we have some ε > 0 such that Q(γ′ × [t, t+ ε)) is contained in M \ int(Mn). Hence, we

have that Q(γ′ × {t}) ⊆ Pn. Therefore, ∂Cn is not in ∂Mn \ Pn reaching a contradiction.

Say that peripheral elements of ∂bMi have roots in Mi and that we do not have any collection

of embedded cylinders so that we have:

Cn : (S1 × I, S1 × ∂I)→ (Mn, ∂Mn \ Pn), n ≥ ni

whose images in Mi contain a root of ∂bMi. By Lemma 4.1.53, up to a homotopy, we have that all

Cn contain a sub-cylinder Cin(r) ⊆ Mi which is the non-trivial homotopy obtained by collapsing a

wing of a solid torus to a power of the core and re-expanding it and are embedded otherwise. Since

∂bMi has finitely many peripheral elements and they have unique roots up to a subsequence we can

assume that all Cin(r) are the same and then the previous argument applies to the embedded part

of the Cn’s. �

By combining Proposition 4.1.79 and Theorem 4.1.19 we obtain the following corollary:

Corollary 4.1.80. Let M = ∪∞i=1Mi ∈ MB then for all i Mi is contained in an open 3-manifold

M̂i
∼= Mi∪∂∞Mi× [0,∞) such that ∂M̂i is isotopic to ∂bMi and ∂∞Mi× [0,∞) is in standard form.

Moreover, for all n > i we have that ∂Mn ∩M \ int(M̂i) are properly embedded surfaces and there

is j = j(i) ∈ N such that for all n ≥ j no essential loop of ∂M̂i is homotopic into ∂Mn.

Proof. By Lemma 4.1.79 we have a maximal essential subsurface S ∼= ∂∞Mi ⊆ ∂Mi that generates

a properly embedded product

P : (S × [0,∞), S × {0}) ↪→ (M,∂bMi)

in M \ int(Mi) and we have j = j(i) ∈ N such that for all n ≥ j no essential loop of ∂bMi
iso' ∂M̂i

is homotopic into ∂Mn. By Theorem 4.1.19 we can assume P to be in standard form. Thus,

M̂i
.= Mi ∪∂∞Mi

P ∼= Mi ∪ ∂∞Mi × [0,∞) is the required submanifold. �
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4.1.3.2 Homotopy equivalences of 3-manifolds

We now proceed with two topological Lemmata that we need in the final proof. The first is a

generalisation of Lemma 2.2 in [53] and the latter is a relative version of Johansson homeomorphism

Theorem [32].

Lemma 4.1.81. Let M be a complete, open hyperbolic 3-manifold and K a compact, atoroidal,

aspherical, 3-manifold with incompressible boundary such that ι : K →M is a homotopy equivalence

and ι|∂K : ∂K ↪→ M is an embedding. Then ι is homotopic relative to ∂K to an embedding

ι′ : K →M .

Proof. Since M is homotopy equivalent to K we have that π1(M) is finitely generated. By the

Tameness Theorem [1, 9] it follows that M ∼= int(M) for some compact manifold M . Therefore, we

have ι : K →M with the same properties as in the statement.

We need to show that ι(∂K) is peripheral in M since then by Waldhausen’s Theorem [60] follows

that ι is homotopic to an embedding. Since ι is a homotopy equivalence the map on homology ι∗

induces an isomorphism: ι∗ : H∗(K)→ H∗(M). Let ∂K =
∐n
i=1 Si then we can write: H3(K, ∂K) ∼=

Z〈[K, ∂K]〉 with ∂[K, ∂K] =
∑n
i=1[Si] and H2(∂K) ∼= Z〈[Si]〉. By the long exact sequence of the

pair (K, ∂K):

0→ H3(K, ∂K)→ H2(∂K)→ H2(K)

we obtain the following injection:

Z〈[Si]〉
/∑n

i=1[Si] ↪→ H2(K)
ι∗∼= H2(M) ∼= H2(M)

This means that no linear combination of the [Si] except
∑n
i=1[Si] is null-homologous in M . More-

over, the {Si}ni=1 are separating in K since they are not dual to any 1-cycle in H1(K). Since ι

preserves homological conditions the same holds for the {ι(Si)}ni=1. Therefore, all the ι(Si)ni=1 are

separating in M and no linear combination except
∑n
i=1[ι(Si)] is null-homologous in M . Hence, if

we start splitting along the {[ι(Si)]}ni=1 we get a connected submanifold N ⊆M whose boundary is∑n
i=1[ι(Si)]. If we show that M \N is a product manifold over ∂N ∼= ∂K we are done.

Consider a homotopy inverse f : M → K then f |N : N → K is a π1-injective map and up to

homotopy it sends ∂N → ∂K homeomorphically. The map f |N is also degree one since f |N = f ◦ ιN

and f has degree one. Thus f |N : N → K is a π1-injective degree one map. We now claim that f |N is

a surjection on π1 and so a homotopy equivalence. If f∗ is not surjective let H .= f∗(π1(N)) 6 π1(K)

and consider the cover π : KH � K corresponding to H. Since by construction the map f |N lifts
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to f̃ |N we have: f |N = π ◦ f̃ |N , but f |N has degree one hence deg(π) = ±1. Therefore, KH
∼= K

which implies that (f |N )∗ is a surjection on π1, hence an isomorphism.

By Whitehead’s Theorem we get that f |N is a homotopy equivalence which implies that ι :

N ↪→ M is also a homotopy equivalence and so N is a Scott core. Moreover, since ι(∂K) = ∂N is

incompressible by Corollary [60, 5.5] we have that each component of M \N is a product over ι(Si).

Hence the homotopy equivalence ι : K →M is homotopic rel boundary to a homotopy equivalence

ι′ : K → N ⊆ M that is a homeomorphism on ∂K → ∂N . Thus by Waldhausen’s Theorem [60]

we get that it is homotopic rel boundary to a homeomorphism from K to N . Hence, we get an

embedding ι′ : K ↪→M with ι′|∂K = ι|∂K . �

The following is an application of the classification theorem of Johansson [14, 2.11.1] for homotopy

equivalences between 3-manifolds.

Lemma 4.1.82. Let ϕ : M → N be a homotopy equivalence between compact, irreducible, ori-

entable 3-manifolds and let X ⊆ M be a codimension-zero submanifold. If S is a collection of

essential subsurfaces of ∂M such that X is contained in the acylindrical part of M relative to S

and ϕ|S : S → ∂N is an embedding, then we can homotope ϕ to ψ so that ψ|X : X → N is an

embedding and the homotopy is constant on S.

Proof. Complete S and ϕ(S) to useful boundary patterns for ∂M, ∂N , which we denote by S and

ϕ(S) respectively. Let V,Z be the characteristic submanifolds corresponding to S and ϕ(S) then we

have that X ⊆ M \ V . By the Johansson Classification theorem [32] we have that ϕ is admissibly

homotopic to a homeomorphism ψ : (M \ V , S) → (N \ Z,ϕ(S)). An admissible homotopy is a

homotopy by pair maps hence since ϕ|S is already a homeomorphism we can choose it to be constant

on S. Since we assumed that X ⊆M \ V we get that X is embedded by ψ and ψ|S = ϕ|S . �

4.2 Proof of the Main Theorem

In this section we prove our main Theorem:

Theorem 1. Let M ∈MB . Then, M is homeomorphic to a complete hyperbolic 3-manifold if and

only if the associated maximal bordified manifold M does not admit any doubly peripheral annulus.

In the next subsection we show that not having doubly peripheral annuli is a necessary condition.

Specifically, we prove that if M ∈ MB does not have a doubly peripheral cylinders then it is

homotopy equivalent to a hyperbolic 3-manifolds N . Finally we show that particula homotopy

equivalences between M and N are homotopic to homeomorphisms.
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4.2.1 Necessary condition in the main Theorem

Using the same techniques of [16] we prove the necessary condition on the annulus in Theorem 1.

We start with a remark on characteristic submanifolds of manifolds in MB .

Remark 4.2.1. By Theorem 4.1.72 for a manifold M ∈MB we have a characteristic submanifold

N for the maximal bordification M . Then, any doubly peripheral cylinder C is homotopic into one

of the following components of N :

(i) a solid torus with at least one peripheral wing in ∂M that wraps around the soul n > 2 times;

(ii) a solid torus with at least two peripheral wings in ∂M each of which wraps around the soul

once;

(iii) a thickened essential torus with at least one wing that is peripheral in ∂M ;

(iv) an I-bundle P ∼= F × I such that at least one component of ∂F × I is doubly peripheral.

For (i),(ii) and (iii) the cases with infinitely many wings are also allowed. However, for all cases

except (i) if C is a doubly peripheral annulus then there exists a properly embedded annulus C ′ that

is also doubly peripheral and such that C is homotopic into C ′, i.e. C is a power of C ′.

We first show that if M is hyperbolizable, i.e. M ∼= H3/Γ, the elements of π1(M) that are

peripheral in ∂M are represented by parabolic elements in the Kleinian group Γ.

Lemma 4.2.2. For M ∈MB let M ∈ Bor(M) be the maximal bordification. If M ∼= H3/Γ admits

a complete hyperbolic metric and γ ∈ π1(M) is homotopic to γ ⊆ ∂M such that γ is peripheral in

∂M then γ is represented by a parabolic element in Γ.

Proof. Let {Mi}i∈N be the exhaustion of M and let G be the bound on the Euler characteristic

of the boundary components of the Mi. Without loss of generality it suffices to consider the case

where γ is a simple closed curve. If γ is peripheral in ∂M the components of ∪i∈N∂Mi that have a

simple closed curve γn isotopic to γ in M \ int(Mi) form a properly embedded sequence of hyperbolic

incompressible surfaces {Σn}n∈N with Σn ∈ π0(∂Min). Moreover, up to picking a subsequence we

can assume that in < in+1.

If γ is not represented by a parabolic element it has a geodesic representative γ̂ in M which

is contained in some Mi. Let τn be a 1-vertex triangulation of Σn realising γn. Since the Σn are

incompressible closed surfaces we can realise them, in their homotopy class, via simplicial hyperbolic
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surfaces (Sn, fn) in which γn is mapped to γ̂ (see [6, 11]). Since the Σn are hyperbolic surfaces and

γn is simple each Sn contains at least one pair of pants with one boundary component γn.

By Gauss-Bonnet for all n we have:

A(Sn) ≤ 2π |χ(Sn)| ≤ 2πG

Since the Sn have uniformly bounded area, we have that any maximally embedded one-sided collar

neighbourhood of γn in Sn has radius uniformly bounded by K
.= K(`M (γ̂), G). Therefore, for

any ε > 0 an essential pair of pants Pn ⊆ Sn with γn in its boundary is contained into a K + ε

neighbourhood of γn ⊆ Sn. Since the maps fn are 1-Lipschitz for all n the fn(Pn) are contained in

a K + ε neighbourhood of γ̂ = fn(γn) in M .

Since for any pair of pants Pn ⊆ Sn with γn ⊆ ∂Pn the fn(Pn)’s are at a uniformly bounded

distance from γ̂ we can assume that all such pair of pants are contained in M̂k for some k, where M̂k

is as in Corollary 4.1.80 and we also let j .= j(k) be as in the Corollary. Moreover, we can assume

that there is a cusp component Q of ∂M̂k that compactifies to a simple closed loop α ⊆ ∂M isotopic

to γ in ∂M . We now want to show that we can find n ∈ N such that Σn has a pair of pants Pn with

boundary γn contained outside M̂k.

Claim: There is a component of ∪n≥j∂Mn \ int(M̂k) that has γn ⊆ Q as a boundary component

and is not an annulus.

Proof of Claim: Since ∂∞Mk × [0,∞) is in standard form we have that all components S of

∪i∈NMi intersect ∂∞Mk × [0,∞) in level surfaces or are disjoint from it. If the claim is not true we

have j ∈ N such that every component of ∪i≥jMi \ int(M̂k) having γn as a boundary component is

an annulus. Each such component A has boundary on Λ .= ∂(∂∞Mk)× [0,∞).

Since Λ has finitely many components we can assume that we have a collection of annuli {A`}`∈N
with ∂A` = α × {t`} ∪ β × {t`} ⊆ Λ. Then, the {A`}`∈N have to be in at most two homotopy

classes. If not we have two essential tori that have homotopic boundaries and this cannot happen in

hyperbolic 3-manifolds, see Remark 4.1.6. Thus, we get that eventually we can enlarge the product

∂∞Mi × [0,∞) so that Q is not peripheral anymore. This gives a new bordification M ′ such that

M (M ′ contradicting the maximality of M and the fact that γ̄ was peripheral. �

Thus, we have a surface Fn ⊆ π0(∂Mn) with n ≥ j such that Fn ∩ M̂C
k contains a pair of

pants Pn with a boundary component homotopic in M to γ̂. Therefore, the corresponding simplicial
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hyperbolic surface fn : Sn → M has a pair of pants Pn with γn ⊆ Pn such that fn(Pn) ⊆ M̂k.

However, this means that Pn is homotopic into ∂M̂k
iso' ∂bMk and since π1(Pn) cannot inject into Z

we reach a contradiction with Corollary 4.1.80. �

We will now show that manifolds in MB with a doubly peripheral annulus are not hyperbolic.

First we need the following topological Lemma saying that if α, β ⊆ ∂M are peripheral simple closed

curves and isotopic in M then we can separate their homotopy class by a compact subset.

Lemma 4.2.3. Let M ∈ Bord(M), M ∈ MB be the maximal bordification and A : (A, ∂A) ↪→

(M,∂M) be an essential doubly peripheral annulus. Then, there exists Mi such that in M \ int(Mi)

the peripheral loops A(∂A) .= γ0
∐
γ1 have no essential homotopy and are isotopic in M \ int(Mi)

to peripheral loops in ∂∞Mi.

Proof. Since A is embedded it is isotopic in a component P of the characteristic submanifold N of

M . Thus, by Remark 4.2.1 we have three possibilities for P :

(i) a solid torus with at least two peripheral wings in ∂M ;

(ii) an I-bundle P ∼= F × I such that at least one component of ∂F × I is doubly peripheral;

(iii) an essential torus with at least one wing that is peripheral in ∂M .

Case (iii). Let P be the component of the characteristic submanifold N corresponding to the

essential torus T ⊆ ∂M that A .= A(A) is homotopic into. Then, by Lemma 4.1.57 there exists a

minimal i such that the essential torus T is isotopic in M \ int(Mi) into an essential torus T of ∂∞Mi

and such that the compact components of A ∩Mi and A ∩M \ int(Mi) are essential and γ0, γ1 are

isotopic in M \ int(Mi) into peripheral loops γi0, γi1 of ∂∞Mi. For now assume that γ0 is not isotopic

to γ1 in ∂M .

For j ≥ i let X∞j
.= M \ int(Mj) and assume we have an essential homotopy Cj : (A, ∂A) ↪→

(X∞j , ∂X∞j ) from γ0 to γ1. Then, Cj ∪∂ A forms a torus T̂ which is essential since otherwise A∩Mi

was inessential. Moreover, up to a homotopy of T̂ pushing it off ∂M we can assume that T̂ and T

are contained in Mk for some k > i. Thus, since T̂ and T have homotopic simple closed curves by

hyperbolicity of Mk we must have that T̂ is homotopic into T in Mk. Hence, we have that A∩X∞i
does not contain any compact annuli since they would be homotopic into Mi contradicting Lemma

4.1.57.

Let C ′j ⊆ X∞i be the subannulus of T̂ obtained by taking Cj and going to γi0, γi1 ⊆ ∂Mi along A.

Since T̂ is homotopic into Mi we get that C ′ is inesential in X∞i , thus ∂C ′ = γi0
∐
γi1 are parallel in
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∂Mi and co-bound an annulus A′ ⊆ ∂Mi. Moreover, we have that Cj is parallel to A′ in X∞i . Thus

we proved:

Claim: If Cj : (A, ∂A) ↪→ (X∞j , ∂X∞j ) is an essential annulus connecting γ0, γ1 then it is isotopic

to the annulus A′ ⊆ ∂Mi connecting γi0, γi1. Moreover, for j 6= ` we also have that Cj
iso' C`.

If we cannot separate the homotopy class of γ0, γ1 we have a collection of annuli Cj : (A, ∂A) ↪→

(X∞j , ∂X∞j ) such that for all k ≥ i there exists j such that Cj ∩Mk = ∅. Then, we get that in

∂M there are cusps neighbourhoods P1, P2 of the components S1, S2 of ∂M co-bounding with A a

submanifold of the form A× [0,∞) contradicting the properties of a maximal bordification.

Now assume that γ0, γ1 are isotopic in ∂M so that they co-bound an annulus C ⊆ ∂M and

assume that we have an essential annulus C ′ : (A, ∂A) ↪→ (X∞i , ∂X∞i ) with boundary ∂C. Since C ′

is essential we have that T̂ .= C ∪∂ C ′(A) is an essential torus which is then homotopic to the torus

T ⊆ P in M . Moreover, since T, T̂ are embedded, incompressible and homotopic we can assume

by [60, 5.1] that they are isotopic in M so they co-bound an I-bundle J . Since T̂ ⊆ X∞i up to an

isotopy of J we can assume that J ∩ ∂Mi are level surfaces hence all components of J ∩ ∂Mi are

essential tori.

Them, either T̂ is contained in the I-bundle Q ∼= T2 × I generated by the boundary torus T of

∂Mi or it is contained in some other component of X∞i . If it is contained in Q we get a contradiction

since then γ0, γ1 are contained in a torus component of ∂M . Thus, since T̂ ⊆ X∞i \Q and J∩∂Mi\Q

are essential tori we get that Mi
∼= T2 × I. In turn, this gives us that M ∼= T2 ×R and M ∼= T2 × I

which does not contain any doubly peripheral annulus.

We will now deal with annuli of type (i) and (ii) and we can assume that we have no doubly

peripheral annulus of type (iii).

Case (i) and (ii). Let A be as before an essential annulus connecting γ0 to γ1 in M . By Lemma

4.1.57 we have an isotopy of A and a minimal Mi such that compact components of A ∩Mi and

A ∩X∞i are essential annuli.

Assume we have an essential annulus C connecting γ0 to γ1 in X∞i . The annuli C and A cannot

be parallel since otherwise A ∩ Mi would have no essential components. Therefore, by taking a

push-off C ′ of C and connecting it to A along γ1 we obtain an essential annulus A′ that has both

boundaries isotopic to γ0 in ∂M . Therefore, we contradict the fact that we had no type (iii) annuli
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and so Mi disconnects the homotopy class of γ0 and γ1 in M . �

Theorem 4.2.4. If M ∈ MB is hyperbolic, M ∼= H3/Γ, then M cannot have an essential doubly

peripheral annulus.

Proof. Since M ∈ MB we have G ∈ N such that for all i ∈ N all components Σ of ∂Mn have

|χ(Σ)| ≤ G. Let A : (A, ∂A) → (M,∂M) be an essential annulus such that A(∂A) .= γ1 ∪ γ2 are

peripheral in ∂M . Let γ ∈ π1(M) be the element that generates π1(A) ↪→ π1(M). By Lemma 4.2.2

γ has to be represented by a parabolic element and by Remark 4.2.1 we only have to consider the

following four cases:

(i) a solid torus with at least one peripheral wing in ∂M that wraps around the soul n > 2 times;

(ii) a solid torus with at least two peripheral wings in ∂M each of which wraps around the soul

once;

(iii) an I-bundle P ∼= F × I such that at least one component of ∂F × I is doubly peripheral;

(iv) an essential torus with at least one wing that is peripheral in ∂M .

Except for (i) we can assume that A is an embedding.

Step 1 M cannot have a doubly peripheral cylinder A : (A, ∂A)→ (M,∂M) with A(∂A) .= γ1∪γ2

of type (i).

In this case we have a doubly peripheral cylinder C .= A(A) whose boundaries are isotopic in ∂M .

Let S ⊆ ∂M be the component containing ∂C. By construction of the characteristic submanifold

and of the maximal bordification we have Mi such that ∂∞Mi contains a component isotopic to S

in M \ int(Mi) and an essential solid torus V ⊆Mi ∪ ∂∞Mi× [0,∞) with a wing w whose boundary

∂C is isotopic to a collar neighbourhood of γi and such that w wraps around the soul γ of V n > 1

times. Also note that in this case γ is primitive in π1(Mi).

Since the cover M̃ of M corresponding to π1(Mi) is homeomorphic to int(Mi), see Lemma 3.3.3,

we have that in the pared hyperbolic 3-manifold (N,P ), N ∼= Mi, such that int(N) = M̃ there are

disjoint embedded annuli A,B ∈ π0(P ) such that γ is homotopic to the soul b of B and the soul a

of A is isotopic to γi.
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Thus, the n-th power of the soul b of B is homotopic to the soul a of A. Therefore, we have a

component of the characteristic submanifold of N that realises this homotopy. However, since N is

hyperbolizable this cannot happen because no component Q of the characteristic submanifold has

elements in the boundary such that one is a root of the other in Q.

Since we dealt with the non-embedded case from now on we can assume that the doubly peripheral

cylinder is embedded. The idea is to use a collection of simplicial hyperbolic surfaces Sn’s, as in

Lemma 4.2.2, all intersecting the doubly peripheral annulus in simple loops γn isotopic to a peripheral

loop γ in the boundary ∂M . By Lemma 4.2.3 the simplicial hyperbolic surfaces Sn’s will be forced to

go through some Mi. By using the hyperbolicity of M this will force loops αn transverse to the γn to

have uniformly bound length and this will allow us to construct a product P whose compactification

makes γ not peripheral.

Step 2 A hyperbolic M cannot have a doubly peripheral cylinder (A, ∂A) → (M,∂M) with

∂A
.= γ1 ∪ γ2 of type (ii)-(iv).

Let Mi be as in Lemma 4.2.3 so that ∂∞Mi contains peripheral loops γi1, γi2 isotopic to γ1, γ2

respectively in M \ int(Mi). Moreover, if γ1
iso' γ2 in ∂M we can assume, by picking a larger i, that

the essential torus T induced by the doubly peripheral annulus C is contained in Mi. Let Q be the

cusp neighbourhood, in M , of the parabolic element corresponding to the homotopy class of γ.

In the case that we have an essential torus T the cusp Q is contained in a component of M \Mi

homeomorphic to T2 × [0,∞). Otherwise, it corresponds to a neighbourhood of γ1, γ2 in ∂M in

which case we will assume it is γ2.

Let M̂i be the manifold from Lemma 4.1.80 and let {Σn}n>i∈N be the sequence of surfaces in

∂Mn∩M̂C
i coming from Claim 1 of Lemma 4.2.2 and let Fn ⊆ ∂Mn the component containing Σn.

Let τn be ideal triangulations of the Σ̂n
.= Σn \ γn1 where the cusps corresponding to γn1 have

exactly one vertex each and homotope them so to obtain proper maps of the punctured surfaces.

Then by [6, 11] we can realise the embeddings Σ̂n ↪→ M by simplicial hyperbolic surfaces (Sn, fn)

in which γn1 is sent to the cusp Q. Therefore, since Mi separates in M the homotopy class of γ1 and

γ2 we have that all the Sn’s must intersect ∂Mi. Moreover, we still have that
∣∣∣χ(Σ̂n)

∣∣∣ ≤ G.

Let µ .= min {µ3, injM (∂Mi)} then for all n the µ-thick part of Sn has a component intersecting

∂Mi. Moreover, each such component contains the image fn(P̂n) of a pair of pants P̂n ⊆ Pn that

has γn1 in its boundary. Then, by the Bounded diameter Lemma [54] we have that P̂n has diameter

bounded by D1
.= D1(G,µ) and let D2 be maximal diameter of a component of ∂Mi.
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Consider the loops {αn}n∈N that are contained in the surfaces Fn with i(αn, γn1 ) = 2 and such

that Nr(αn ∪ γn1 ) ⊆ Fn, r > 0, is an essential four punctured sphere. Then, the {αn}’s have

representatives in M whose length is bounded by:

`M (αn) ≤ D .= D1 +D2

this is because we can push αn to be obtained as two arcs α ⊆ ∂bMi and βn ⊆ Sn that meet

along ∂bMi.

Therefore, by discreetness of Γ we have that they are in finitely many homotopy classes. Thus,

we have a subsequence {αnk
}k∈N such that for all k, h ∈ N αnh

' αnk
in M \ int(Mi). Thus, by

taking a sub-sequence of embedded annuli connecting αn1 to αnk
we obtain an embedded product

with base a neighbourhood of αn1 in Σn1 . This means that in the compactification M we have that

γ1 was not peripheral since it is a separating curve of a four punctured sphere embedded in ∂M . �

In order to prove the characterisation Theorem 1 we only need to show that if M ∈ Bord(M),

for M ∈MB , does not have any double peripheral cylinder C then M admits a complete hyperbolic

metric.

4.3 Hyperbolization results

4.3.1 Relatively Acylindrical are Hyperbolic

Now that we have completed the necessary topological construction we can show that manifolds

M ∈ MB with (M,P ) an infinite-type pared acylindrical 3-manifold admit a complete hyperbolic

metric. We first show that such manifolds are homotopic equivalent to a complete hyperbolic

manifold N with π1(P ) represented by parabolic elements. We achieve this by using the relative

compactness of algebraic sequences developed by Thurston. Afterwards, with techniques similar to

[53], we show that the homotopy equivalence is homotopy to a homeomorphism ψ : M ∼= N .

4.3.1.1 Relatively acylindrical are homotopy equivalent to hyperbolic

To prove the homotopy equivalence we need a couple of technical result about sequences of non-

elementary representations.

Lemma 4.3.1. Let ρn : G→ PSL2(C) be non-elementary discrete and faithful representations such

that ρn → ρ and let {gn}n∈N ⊆ PSL2(C). Then, if we have a converging sub-sequence gnk
ρnk

g−1
nk
→
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ρ′ we have that up to an ulterior sub-sequence: gn′
k
→ g and ρ′ = gρg−1. The converse also holds.

Proof. If the {gn}n∈N have a converging subsequence we are done. So assume that gnρngn has a

converging subsequence, which we denote by gnρngn → ρ′. Since the gnρngn are non-elementary their

algebraic limit ρ′ is non-elementary as well (see [33]). Therefore, we can find α, β ∈ G loxodromic

elements that generate a discrete free subgroup 〈ρ′(α), ρ′(β)〉. By algebraic convergence we have

gnρn(α)g−1
n → ρ′(α), gnρn(β)g−1

n → ρ′(β) with ρn(α)→ ρ(α) and ρn(β)→ ρ(β).

Since traces are preserved under conjugation and we assumed that ρ′(α), ρ′(β) were loxodromic

so are ρ(α), ρ(β). Denote by x±∞, y±∞ the attracting/repelling fixed points of ρ(α), ρ(β) respectively

and similarly define a±, b± for ρ′(α), ρ′(β). Moreover, we have that eventually gnρn(α)g−1
n are

all loxodromic and similarly for gnρn(β)g−1
n . Therefore, the attracting (repelling) fixed points of

gnρn(α)g−1
n converge to the attracting (repelling) fixed point of ρ′(α). The fixed points of gnρn(α)g−1

n

are gn(x±n ) for x±n the fixed point of ρn(α), hence we have that x±n → x±∞ and gn(x±n ) → a±. By

triangle inequality:

dH3(gnx±∞, a±) ≤ dH3(gnx±∞, gnx±n ) + dH3(gnx±n , a±)

= dH3(x±∞, x±n ) + dH3(gnx±n , a±)

Thus it follows that gn(x±∞) → a± and this also holds for the y±∞ and b±. Since 〈ρ(α), ρ(β)〉 is

discrete at least three of the x±∞ and y±∞ are distinct. Then, by Theorem [4, 3.6.5] we have that the

{gn}n∈N form a normal family. �

Proposition 4.3.2. Let ρi : G = ∪∞j=1Gj → PSL2(C) be non-elementary discrete and faithful

representations and let ρji be the restriction of ρi to Gj . Then, given gji ∈ PSL2(C) such that

∀i, j : gji ρ
j
i (g

j
i )−1 : Gj → PSL2(C) converge up to subsequence we have that ∀j : g1

i ρ
j
i (g1

i )−1

converge up to subsequence.

Proof. We first show that ∀j :
{
g1
i (gji )−1

}
i≥j

converge up to subsequence. For all j consider:

g1
i ρ

1
i (g1

i )−1 =
(
g1
i (gji )−1

)
gji ρ

1
i (g

j
i )−1

(
gji (g1

i )−1
)

i ≥ j

By assumption we have the the left-hand side has a converging subsequence which we call in. Since

the
{
gji ρ

j
i (g

j
i )−1

}
i≥j

have a converging subsequence so do their restrictions on G1:
{
gji ρ

1
i (g

j
i )−1

}
i≥j

.

Therefore, we can extract another subsequence {i′n}n∈N such that both g1
i′n
ρ1
i′n

(g1
i′n

)−1 and gji′nρ
1
i′n

(gji′n)−1

are converging. Then we are in the setting of Lemma 4.3.1 thus, we have that g1
i′n

(gji′n)−1 are con-
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verging, up to an ulterior subsequence, as well and we call the limit gj1. Since we are only concerned

about subsequences we assume that g1
i (gji )−1 is the converging subsequence for which also gji ρ

j
i (g

j
i )−1

is converging. Then we have:

∀j : g1
i ρ
j
i (g1

i )−1 = g1
i (gji )−1

(
gji ρ

j
i (g

j
i )−1

)
gji (g1

i )−1

but everything on the right hand side is converging, hence the left hand side does. Since the j was

arbitrary this concludes the proof. �

We recall the following Theorem by Thurston [58, 0.1] for hyperbolizable compact pared 3-

manifolds:

Theorem. Let (M,P ) be a pared compact hyperbolizable 3-manifold. Then the set of representa-

tions induced by AH(M,P ) on the fundamental group of any component of Macyl rel P AH(M,P )

is compact up to conjugation.

Where he shows that given a sequence of discrete and faithful representations {ρn}n∈N of an

acylindrical 3-manifold we can find elements {gn}n∈N of PSL2(C) so that the sequence
{
gnρng

−1
n

}
n∈N

has a converging subsequence.

Then for (M,P ) we have:

Theorem 4.3.3. Let (M,P ) be an infinite-type pared acylindrical hyperbolic 3-manifold for M the

bordification of a manifold in MB . Then M is homotopic to a complete hyperbolic 3-manifold N

such that P is represented by parabolic elements.

Proof. Let {Mi}i∈N be the exhaustion of M , then by Proposition 4.1.79 for each i we can find ni such

that Mi ⊆Macyl rel P
ni

. Since each Mi is hyperbolizable we have a discrete and faithful representation

ρi ∈ AH(Mi, P ).

Let Xi
.= Macyl rel P

ni
, then by Theorem [58, 0.1] applied to the sequence

{
ρk|π1(Xi)

}
k≥ni

we can

find
{
gjk

}
⊆ PSL2(C) such that for all j the restriction of

{
gjkρk

(
gjk

)−1
}

to π1(Mj) 6 π1(Xj)

have a converging subsequence. By Proposition 4.3.2 we can assume that the gjk do not depend on

j so that we have representations
{
gkρkg

−1
k

}
k∈N that subconverge on each π1(Mj). By picking a

diagonal subsequence we can define:

∀γ ∈ π1(M), γ ∈ π1(Mi) : ρ∞(γ) .= lim
n≥ni

gnρn(γ)g−1
n
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Since π1(M) = ∪i∈Nπ1(Mi) we get a representation ρ∞ : π1(M) → PSL2(C) which is discrete and

faithful by [33].

Thus if we define N .= H3/
ρ∞(π1(M)) we have π .= π1(N) ∼= π1(M) and since they are both

K(π, 1) there is a homotopy equivalence between them. By construction all elements of P are

parabolic in ρ∞. �

We define:

Definition 4.3.4. Let (M,P ) with M ∈ Bord(M) an infinite type pared acylindrical 3-manifold

and N ∼= H3/Γ be a hyperbolic 3-manifold. Then, a homotopy equivalence ϕ : M → N is said to

preserve parabolics if ∀γ ∈ π1(M) homotopic in a component of P we have that ϕ∗(γ) is represented

by a parabolic element in Γ.

Lemma 4.3.5. Let (M,P ) be a pared infinite type acylindrical 3-manifold for M ∈ MB and let

ϕ : M → N be a homotopy equivalence preserving P . Then, for all n ∈ N we have that the cover

Nn → N corresponding to ϕ∗(π1(Mn)) the lift: ϕ : Mn → Nn is homotopic to an embedding and

Nn ∼= int(Mn).

Proof. By Proposition 4.1.79 for all n we have kn such that Mn ⊆ Macyl rel P
kn

and let Pkn
be the

annuli in ∂Mkn induced by P . Consider the cover Nkn → N corresponding to π1(Mkn) and let N ′kn

be its manifold compactification, which exists by Tameness [1, 9], and let Q ⊆ ∂N ′kn
the parabolic

locus. Since ϕ preserves parabolics we can homotope ϕ̃|Pkn
: Pkn

→ Q to be a homeomorphism onto

its image. Then, by Lemma 4.1.82 the homotopy equivalence:

ϕ̃ : Mkn → N ′kn

is homotopic to a map ψ that is an embedding on Mn. Then, ψ|Mn
' ϕ|Mn

lifts to the cover Nn →

Nkn
→ N and its image forms a Scott core for Nn. Since the homotopy equivalence ψ̃|Mn

: Mn → Nn

is an embedding and ψ̃(∂Mn) is incompressible by Lemma 2.2.4 we get that Nn ∼= int(Mn). �

4.3.1.2 Relatively hyperbolic are homeomorphic to hyperbolic

A key step in the proof of Theorem 1 is that the homotopy equivalence ϕ : M → N mapping

the elements corresponding to P ⊆ ∂M to parabolics in N is homotopic to a proper homotopy

equivalence and it embeds the boundary components of a subsequence of a minimal exhaustion8

{Mn}n∈N.
8See Definition 4.1.41.



4.3. HYPERBOLIZATION RESULTS 117

Our first objective is to show the following Theorem:

Theorem 4.3.6. Given the maximal bordification M ∈ Bord(M) of M ∈ MB and a minimal

exhaustion {Mi}i∈N , if M satisfies condition (?) let P ↪→ ∂M be such that (M,P ) is an infinite-type

pared acylindrical manifold. Then, for any hyperbolic N and ϕ : M → N a homotopy equivalence

preserving P we have a proper homotopy equivalence ϕ̂ : M → N preserving P such that ϕ̂ is a proper

embedding on tame ends of M and on S .= ∪i∈N∂Mai
\ P for {ai}i∈N an increasing subsequence.

Before doing a full proof we deal with a couple of preliminary Lemmata. The first Lemma says

that if M is a maximal bordification induced by a maximal product Pmax : S × [0,∞) ↪→ M in

standard form then we cannot have products P : A× [0,∞) ↪→M , also in standard form, such that

for k sufficiently large the components of Im(P)∩∪k∈N∂Mk are not peripheral in ∂Mk \ Im(Pmax).

Lemma 4.3.7. Let Pmax be a maximal product in M ∈ M and let P : A × [0,∞) ↪→ M be a

product. If they are both in standard form then there exists some i ∈ N such that for k > i the

component of intersections of ∂Mk ∩ Im(P) are peripheral in ∂Mk \ Im(Pmax).

Proof. By maximality of Pmax we have a proper isotopy of P and a connected sub-productQ of Pmax

such that P is contained in an r-neighbourhood Q′ of Q. Moreover, without loss of generality we can

also assume that this new P is in standard form. Let i be the minimal i such that Im(P)∩∂Mi 6= ∅.

Then, for k ≥ i all components of ∂Mk ∩ Im(P) are isotopic in Q′ into Q ∩ S and so they are

peripheral in ∂Mk \ Im(Pmax) reaching a contradiction. �

The next Lemma says that tame ends of M relative to P embed, up to homotopy, into N for

any homotopy equivalence ϕ : M → N preserving P .

Lemma 4.3.8. Let (M,P ) with M ∈ Bord(M) an infinite-type pared acylindrical 3-manifold,

N be a hyperbolic 3-manifold, ϕ : M → N be a homotopy equivalence preserving P and let

Pmax : S × [0,∞) ↪→ M be a maximal product in M inducing ∂M . Given ε < µ3
9For µ3 the

3-dimensional Margulis constant. we have a homotopy equivalence ψ : M → N , homotopic to ϕ,

that is a proper embedding on Im(Pmax) and with the property that ψ ◦ Pmax(∂S × [0,∞)) ⊆ ∂Qε

for Qε the ε-boundary of the parabolic locus of N .

Proof. Let P ′ ⊆ Im(Pmax) be a regular neighbourhood of P ⊆ ∂M in Im(Pmax) and let N0 .= N \

int(Qε). We will now show that ϕ can be homotoped to be an embedding on P ′.

9
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Step 1: We can homotope ϕ to be a homeomorphism on P ′ mapping ∂P ′ onto ∂Qε.

Each component of P ′ is homeomorphic to either T2 × [0,∞) or A × [0,∞). Since (M,P ) is

relatively acylindrical no two components of P ′ are mapped by ϕ to the same component of Qε.

If a component of P ′ is homeomorphic to T2 × [0,∞) the fact that ϕ can be homotoped to be an

embedding follows directly by the hyperbolicity of N . So from now on we only consider components

Pi of P ′ homeomorphic to A × [0,∞). Since ϕ preserves parabolics, the image of the fundamental

group of any component Pi of P ′ is contained in a parabolic subgroup 〈γ〉 in π1(N) for γ a primitive

element. Moreover, since (M,P ) is an infinite-type pared acylindrical 3-manifold any generator

of π1(Pi) is primitive in π1(M) and hence so is its image in π1(N) thus ϕ∗ : π1(P ) → 〈γ〉 is an

isomorphism.

Therefore, we see that the core of Pi is homotopic through ϕ to a simple closed curve γ in ∂Qε.

We claim that γ is contained in an annular component of ∂Qε. If γ is in a torus component then we

would have that π1(P ) is contained in a Z2 factor in π1(M) which again is not possible by the fact

that (M,P ) is an infinite-type pared acylindrical 3-manifold. Since γ is in an annular component the

claim follows and we can assume that, up to a homotopy, ϕ is a homeomorphism on P ′. Moreover,

we can assume that ϕ(∂P ′) ⊆ ∂Qε.

Let S ⊆ M be a push-in of a component of ∂M \ P . Since S is incompressible and ϕ is a

homotopy equivalence we have that up to a homotopy of ϕ that is constant on P ′ we have that

ϕ|S : (S, ∂S)→ (N0, ∂Qε) and let U .= Nr(ϕ(S)) ⊆ N0 be a regular neighbourhood of ϕ(S). By the

existence results for PL-least area surfaces in [29] and [34, 1.26] for a triangulation τS of N0 there

are PL-least area representatives S′ of ϕ(S) such that S′ ⊆ U . Consider the cover πj : Nj → sN0

corresponding to ϕ∗(π1(Mj)) such that the set U lifts homeomorphically to Ũ in the cover and

denote by S̃′ the lift of S′. By Lemma 4.3.5, up to homotopy we have that the homotopy equivalence

ϕ̃ : Mj → Nj is an embedding, thus we see that all the S̃′ are homotopic to embedded surfaces.

Hence, by the results of [29] we have that the S′’s are embedded as well. Since the covering projection

πj is a homeomorphism on Ũ with image U we get that S′ = πj(S̃′) is embedded as well.

Therefore, up to a homotopy of ϕ we can assume that ϕ embeds in N0 a collection of surfaces

S .= {Sn}n∈N that are pushed-in of components of ∂M \ P. Since [S] ∈ H2(M,∂P ′) is a separating

π1-injective surface so is [ϕ(S)] ∈ H2(N, ∂Qε).

Let {En}n∈N be the collection of tame ends of M \P ′ facing the surfaces Sn and let Σn
.= ϕ(Sn).
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Step 2: Up to a homotopy of ϕ we have that for all n ϕ : En → N is an embedding, ϕ(En) are

pairwise disjoint and ϕ(∂P ′) ⊆ ∂Qε.

We first show that each En embeds. Let X1, X2 be the connected components of N0|Σn and

assume that π1(Σn) ↪→ π1(Xh) is not a surjection for h = 1, 2. Thus, neither one of X1, X2 is

homeomorphic to Σn × [0,∞). Then, we can find some compact submanifold Kn ⊆ N containing

Σn such that Kn is not homeomorphic to a product and it contains topology on both sides of Σn.

Let m > n such that π1(Kn) ⊆ ϕ∗(π1(Mm)) and consider the cover Nm → N corresponding to

ϕ∗(π1(Mm)). By Lemma 4.3.5 we have that ϕ̃ : Mm → Nm is homotopic to a homeomorphism

Φ : int(Mm)→ Nm. In Mm the incompressible surfaces Sn,Φ−1(Σn) are homotopic and since they

are incompressible they are isotopic by [60]. Thus, at least one of X1, X2 is homeomorphic to a

product and so we can homotope ϕ rel P ′ so that ϕ : En → N is an embedding and we denote by

En its image. Therefore, up to a homotopy of ϕ we get that all ends En embed in N .

We now need to show that up to an ulterior homotopy we have that the ϕ(En)’s are pairwise

disjoint. Up to relabelling the En we can assume that for all n there exists kn such that the ends

E1, . . . , En are ends of M̂kn
\ P ′ for M̂kn

∼= Mkn
∪ ∂∞Mkn

× [0,∞). Consider the covers Nkn
of N

corresponding to ϕ∗(π1(Mkn
)) and denote the homeomorphic lifts of En in Nkn

by Ẽn. By Lemma

4.3.5 ϕ : int(Mkn)→ Nkn is homotopic to a homeomorphism. Hence, all ends E1, . . . , En are mapped

to distinct ends in Nkn
and so the Ẽn correspond to distinct ends of N0

kn
. Therefore, up to pushing

the ϕ(En) inside the Ẽn we can assume that ϕ : Mkn
→ Nkn

is an embedding on E1∪ . . .∪En. Since

the projection is a homeomorphism on Ẽn and maps ϕ(∂P ′) into ∂Qε by iterating this construction

we conclude the proof. �

Before showing that if we have a homotopy equivalence ϕ : M → N respecting parabolics we

can homotope it so that it is a proper homotopy equivalence we need to understand how loops in

components S of ∪k∈N∂Mk are homotopic into P .

Definition 4.3.9. Let Pm : S ↪→M , M ∈MB , a maximal product in standard form with respect to

a normal family {(Nk, Rk)}k∈N and such that Pm(S×{0}) ⊆ ∪k∈N∂Mk and let Ps
.= Pm(∂S×[0,∞)).

We say that an essential torus V ⊆ Nk \ int(Im(Pm)) is a parabolic solid torus (PST) if:

(i) no annulus of ∂V \Rk is parallel to Ps;

(ii) ∂V ∩Rk has a component that is isotopic into Nε(Ps) ∩ ∂Xk in ∂Xk;

(iii) V is maximal with respect to (ii), i.e. if V,Q ⊆ N ∈ π0(Nk) are both PST then V = Q.
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Remark 4.3.10. If M has property (?), i.e. the maximal bordification does not have any doubly

peripheral cylinder, then if V is a PST we have that by (ii) the component of V ∩ Rk isotopic into

Nε(Ps) ∩ ∂Xk is unique.

Definition 4.3.11. Let {Nk}k∈N be a normal family of JSJ for M = ∪k∈NMk ∈ MB and let

V ⊆ Nk be a parabolic solid torus. We define a maximal parabolic solid torus (MPST) V̂ as the

direct limit lim−→Vi where:

(i) V1 = V ;

(ii) Vi \ Vi−1 are essential solid tori contained in Nj , j ∈ N, whose wings wrap once around the

soul;

(iii) Vi is obtained from Vi−1 by adding all essential solid tori Q ⊆ Nj , j ∈ N, that have a wing

matching up with one of Vi−1 and such that ∂Q \Rj has no annuli parallel to Ps in Xj .

Remark 4.3.12. Let V̂ be a maximal parabolic solid torus, since for all k we have that by (ii)

V ∩ Xk are essential tori by Lemma 4.1.48 we get that V̂ ∼= S1 × D2 \ L for L ⊆ ∂(S1 × D2) a

collection of parallel simple closed curves.

We now show that if we do not have doubly peripheral cylinders then maximal parabolic solid

tori are compact.

Lemma 4.3.13. Let M ∈ MB satisfying property (?) and let V be a parabolic solid torus. Then

V̂ is compact.

Proof. If V̂ is not compact by Lemma 4.1.48 we have that V̂ ∼= S1 ×D2 \ L for L 6= ∂(S1 ×D2) and

L 6= ∅. Thus, we obtain a product in standard form P : A× [0,∞) ↪→M whose image is contained

in V̂ . By construction, in particular property (iii), we have that no annular component of ∂V̂ ∩Xk

is parallel in Xk into Ps, thus no component of Im(P) ∩Xk is isotopic in Xk into Pm. Therefore,

by Lemma 4.3.7 we reach a contradiction with the fact that Pm was maximal. �

We now show that if M ∈ MB has no double peripheral annuli maximal parabolic solid tori

corresponding to distinct parabolic solid tori are disjoint.

Lemma 4.3.14. Let V 6= Q be parabolic solid tori contained in Xk, Xj respectively and assume

that M has no doubly peripheral annuli. Then, V̂ ∩ Q̂ = ∅.
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Proof. If V̂ ∩ Q̂ 6= ∅ then by construction we get that V̂ = Q̂. Let A1 ⊆ ∂V ∩Rk and A2 ⊆ ∂Q∩Rj

be the annuli isotopic into Nε(Ps) ∩Xk and Nε(Ps) ∩Xj respectively. Since V 6= Q by (iii) of the

definition of PST we get that if j = k then A1 and A2 are non-isotopic annuli in Rk.

Since V̂ = Q̂ by (ii) of the definition we have an annulus C ⊆ V̂ connecting A1 to A2. By

extending the annulus C to an annulus Ĉ by going to infinity along the components of Ps that

A1, A2 are homotopic to we get a properly embedded annulus Ĉ ⊆ M which compactifies to an

annulus C in M .

Claim: The annulus C is essential.

Proof of Claim: If A1, A2 are isotopic into distinct components of Ps then C is essential in M

and we are done. Thus, we can assume that ∂C are isotopic in ∂M . Then, if C is ∂-parallel we have

k ∈ N such that C ∩ Xk is isotopic into Ps contradicting the construction of V̂ and Q̂ or the fact

that A1 was not isotopic to A2 in Xk and so that V and Q were distinct parabolic solid tori (we

contradict property (iii)). �

Thus, since C is essential and has both boundaries peripheral in ∂M we get that M has a doubly

peripheral annulus reaching a contradiction. �

Our final preparatory Lemma is:

Lemma 4.3.15. Let Pm ⊆ M ∈ MB be the image of a maximal product in standard form and

let V be a maximal collection of MPST. Then, for S ∈ π0(∪k∈N∂Mk \ (Pm ∪ V)) we have that any

essential non-peripheral simple loop γ ⊆ S is not homotopic into Ps, for Ps the side boundary of

Pm.

Proof. Since γ ⊆ S ∈ π0(∪k∈N∂Mk \ (Pm ∪ V)) is non-peripheral it is not isotopic into any torus of

V. Let H be the cylinder connecting γ to Ps, up to a homotopy of H rel ∂H we can assume that

for all k ∈ N H ∩Xk is essential. By an iterative argument and the Annulus Theorem we have that

for all k H ∩ Xk is homotopic to an embedded annulus. Then a thickening P of H is a PST and

since γ ∩ V = ∅ by Lemma 4.3.14 we have that P̂ ∩ V = ∅ contradicting the maximality of V. �

We can now show that given a homotopy equivalence ϕ between the interior of an infinite-type

acylindrical pared 3-manifold and a hyperbolic 3-manifold respecting parabolics we have that ϕ is

homotopic to a proper homotopy equivalence.

Theorem 4.3.16. Let (M,P ) with M ∈ Bord(M) and M ∈ MB an infinite-type pared acylin-

drical 3-manifold. Then, there exists a complete hyperbolic 3-manifold N and a proper homotopy
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equivalence ϕ : M → N respecting P such that ϕ is an embedding on S .= ∪i∈N∂Mai for {ai}i∈N
an increasing subsequence. Moreover, we can also assume ϕ to be a proper embedding on any tame

end of M .

Proof. By Theorem 4.3.3 we have a homotopy equivalence ϕ : M → N respecting P . Let Pmax be

a maximal product inducing M , P ′ ⊆ Im(Pmax) be a neighbourhood of P and for ε < µ3 let Qε be

the ε-thin part of N . By Lemma 4.3.8 we have:

Step 1: Up to a homotopy of ϕ we can assume that ϕ|Im(Pmax) is an embedding and that it

maps ∂P ′ into ∂Qε.

Let S .= ∪k∈N∂Mk \ Im(Pmax). Then, for any component S of S we have that ϕ|S : S → N maps

∂S homeomorphically into ∂Qε and without loss of generality we can assume each component of

ϕ(∂S) to be a horocycle in ∂Qε.

Let V̂ ⊆M be a maximal collection of MPST and define:

P̂ .= Nr(Im(Pmax)) ∪ V̂

then P̂ ∼= Im(Pmax) and for all k ∈ N: ∂Mk \ P̂ is a collection of essential subsurfaces of ∂Mk,

thus since M ∈MB they have a uniform bound on their complexity:

∀k,∀S ∈ π0(∂Mk \ P̂) : |χ(S)| ≤ G

and we define Ŝ .= ∪k∈N∂Mk \ P̂.

Since (M,P ) is an infinite-type acylindrical 3-manifold we have that no component S of Ŝ is an

annulus.

Step 2: There exists a proper homotopy equivalence ψ : M → N with ψ ' ϕ.

The aim will be to show that up to homotopy we have that ϕ is proper when restricted on

∪k∈N∂Mk. We first show that we can make ϕ|Ŝ proper and then by doing homotopies of the annuli

of S \ Ŝ we will get ϕ is proper when restricted on S and then by doing homotopies in the tame

ends of N we will obtain the required result.

Claim: Up to homotopy ψ|Ŝ is proper map.

For any essential subsurface S ⊆ ∂Mk in π0(Ŝ) we can pick a triangulation τ such that each

component of ∂S is realised as a single edge in τ and all vertices are contained in ∂S. Each component
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of ϕ(∂S) is homotopic into a unique component of ∂Qε. Let S′ be an open regular neighbourhood

of S in ∂Mk, then we can homotope ϕ|S′ so that ϕ maps the cusps of S′ into cusps region contained

in ϕ(Pm) ∩ Qε, i.e. into cusps of N . Since ϕ|S′ is type preserving proper map we can realise the

proper homotopy class of ϕ(S′) by a simplicial hyperbolic surface sending cusps to cusps, see [6, 11].

Moreover, we can do this for all S in Ŝ via a homotopy of ϕ. With an abuse of notation we still denote

by ϕ the resulting map. We now claim that ϕ is a proper map when restricted to Ŝ = {Σk}k∈N
whose image is contained in the simplicial hyperbolic surfaces {Sk}k∈N we constructed.

If ϕ is not proper we can find a sequence {pk ∈ Σk}k∈N ⊆ Ŝ of points and surfaces such that for

i 6= k we have Σi 6= Σk and ϕ(pk) has a limit point p ∈ N . Each Σk is contained in a simplicial

hyperbolic surface Sk of the same topological type. Since the Sk have uniformly bounded complexity

by Gauss-Bonnet we get that their area is uniformly bounded by some A .= A(G).

Case 1: There is a sub-sequence of the Σk such that Σk is not a pair of pants.

Since Area(Sk) ≤ A and Sk is not a pair of pants we can find a constant D such that for all k ∈ N

there is a non-peripheral essential simple closed loop γk ⊆ Sk based at pk such that `N (ϕ(γk)) ≤ D.

Since we assumed that the points ϕ(pk) → p in N0 we have that the {ϕ(γk)}k∈N have to be in

finitely many distinct homotopy classes. Since ϕ is a homotopy equivalence the same must happen

to the {γk}k∈N.

Then by picking a subsequence of the Σk’s we can assume that they all have a homotopic curve

γ. This curve was essential and non-peripheral in each Σk and so is not homotopic in ∂Σk, thus

we get a product P that either is not contained in Pmax and is not peripheral ∂Mm \ Im(Pmax)

for m ≥ n, for n the smallest m such that a component of {Σk}k∈N is in ∂Mm, thus contradicting

Lemma 4.3.7 or γ is isotopic in Ps the side boundary of Pm contradicting Lemma 4.3.15.

Case 2: All but finitely many Σk are pair of pants.

Let ϕk
.= ϕ|Sk

be the simplicial hyperbolic surface corresponding to the thrice punctured sphere

Σ, so that we have simplicial hyperbolic surfaces:

ψk : (Σ, pk)→ N

such that ψk(pk)→ p ∈ N . Since injN (p) > 0 and the ϕk are 1-Lipschitz maps we have that since

lim inf injΣ(pk) > 0 the {pk}k∈N are contained in a compact core K ⊆ Σ, homeomorphic to a pair
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of pants. This, means that we can find a compact set K ′ ⊆ N containing p and with the property

that for all k ∈ N ψk(K) ⊆ K ′. Pick i such that π1(K ′) ⊆ π1(ϕ∗(π1(Mi))), then all the Σk lift to

the cover Mi and we get that they are eventually parallel by the Kneser-Haken finiteness theroem,

giving us a product over a pair of pants which cannot be properly isotopic into Pm.

Thus ϕ is a proper map when restricted on Ŝ and Im(Pm)∩∪k∈N∂Mk and every component A of

∪k∈N∂Mk \ (Ŝ ∪ Im(Pm)) is an annulus that is mapped into a cusp region of N . Then, by mapping

the annuli further and further in the cusp end we obtain that ϕ is a proper map when restricted on

∪k∈N∂Mk.

Since the restriction of ψ to S ′ .= ∪k∈NMk is a proper map for every compact set K ⊆ N the

preimage ϕ|−1
S′ (K) = ϕ−1(K)∩∪k∈NMk is compact and so is contained in ∪i≤k∂Mi for some k ∈ N.

Thus we have that ϕ−1(K) ⊆Mk and so ϕ−1(K) is a compact since it is closed.

Step 3: Up to picking a sub-sequence of the {Mi}i∈N and a proper homotopy of ψ we can assume

that all surfaces S .= ∪k∈NMk are properly embedded in N .

Since ψ is a proper map when restricted to ∪i∈N∂Mi we have that for all i we can find neighbour-

hoods Ui ⊆ N of ψ(∂Mi) with compact closure such that the open sets {Ui}i∈N ⊆ N are properly

embedded. This means that up to picking a subsequence, which we still denote by i ∈ N, we can

assume that the {Ui}i∈N ⊆ N are pairwise disjoint.

Then we have a π1-injective map: ψ : ∂Mi → Ui. By the existence results for PL-least area

surfaces in [29] and [34, 1.26] for a triangulation τi of N there are PL-least area representatives S′

of the ψ(S), S ∈ π0(∂Mi), such that S′ ⊆ Ui. Now consider the cover Nj of N corresponding to

π1(Mj) such that the set Ui lifts homeomorphically to Ũi in the cover and denote by S̃′ the lift of

S′. By Lemma 4.3.5, up to homotopy we have that ψ̃ : Mj → Nj is an embedding, thus we see that

all the S̃′ are homotopic to pairwise disjoint embedded surfaces Σ. Moreover, since by properties

of a minimal exhaustion we have that [Σ] 6= 0 in H2(M) by the results of [29, Thm 6] the S′’s are

embedded as well. By properties of a minimal exhaustion we have that no two S̃′ are covering of

an embedded surface thus by [29, Thm 7] the PL-least area surfaces are disjoint. Since the covering

projection is a homeomorphism on πj : Ũi → Ui we get that S′ = πi(S̃′) are embedded as well. By

repeating this for all i ∈ N we obtain a proper homotopy of ψ such that for {Mi}i∈N the restriction

of ψ to ∂Mi is an embedding. Moreover, since the Ui’s were pairwise disjoint we see that ∪i∈N∂Mi

actually embeds in N .

The last claim in the statement, that ψ is a proper embedding on tame ends of M follows by the
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same argument of Lemma 4.3.8. �

We now want to promote ϕ to a homeomorphism from M to N . This will complete the proof of

the main theorem:

Theorem 4.3.17. Let M ∈MB , then M is homeomorphic to a complete hyperbolic 3-manifold if

and only if the maximal bordification M does not admit any doubly peripheral cylinder.

We now prove the final part of Theorem 1 which is that if the maximal bordification M of M

does not admit any doubly peripheral cylinders then M is hyperbolizable.

Theorem 4.3.18. Let M ∈ MB and ϕ : M → N be a homotopy equivalence with N a com-

plete hyperbolic manifold. If M does not have any doubly peripheral annulus, then we have a

homeomorphism ψ : M → N .

Proof. By Lemma 4.1.80 let {Mi}i∈N be a minimal exhaustion of M . By Theorem 4.3.16 we have a

proper homotopy equivalence preserving P :

ϕ : M → N

that is an embedding on ∪k∈N∂Mik and tame ends of M . The submanifold P ⊆ ∂M is a collection of

annuli and tori that make (M,P ) an infinite-type pared acylindrical 3-manifold. Thus, without loss

of generality we can assume that the exhaustion of M is the one given by {∂Mik}k∈N. Therefore,

we have a proper homotopy equivalence ϕ : M → N respecting P that is an embedding on the

boundary components of a minimal exhaustion {Mi}i∈N and any tame end of M .

Since ϕ is a homotopy equivalence we get that ∀i : ϕ(∂Mi) bounds a 3-dimensional compact

submanifold Ki of N . We now want to show that the Ki are nested. Since ϕ(∂Mi) ∩ ϕ(∂Mj) = ∅

we only need to show that ϕ(∂Mi+1) 6⊆ Ki.

Claim: For all i : ϕ(∂Mi+1) 6⊆ Ki and up to a proper homotopy Mi embeds in N with image Ki.

Proof of Claim: Assume we have some i such that the above does not happen so that there is

S ∈ π0(∂Mi+1) such that ϕ(S) ⊆ Ki. Pick L > i so that Ki lifts homeomorphically ι̃(Ki) ↪→ NL

for NL the cover corresponding to ϕ∗(π1(ML)). Then in the cover we see ι̃(Ki) and ϕ̃(S) inside

it. By Lemma 4.3.5 we have that the map ϕ̃ : ML → NL, for NL the manifold compactification

[1, 9] of NL, is homotopic to a homeomorphism ψ. Particularly, we have ψ(Mi) ⊆ NL and, up

to isotopy, we can assume ψ(∂Mi) = ι̃(∂Ki). Since NL is not a closed 3-manifold we must have
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ι̃(Ki) = ψ(Mi). Moreover, since ι̃(Ki) projects down homeomorphically we get that up to a proper

homotopy ϕ embeds Mi in N .

In particular from the homeomorphism ψ : ML → NL we see that ϕ̃(S) is homotopic outside

ι̃(Ki) = ψ(Mi) and therefore it must be homotopic into ι̃(∂Ki) = ψ(∂Mi). Since we had a minimal

exhaustion this can only happen if S co-bounds with S′ ⊆ ∂Mi an I-bundle contained in a tame end

of M . Therefore, since ϕ was a proper embedding on tame ends of M we reach a contradiction. �

Thus we can assume that we have an exhaustion {Ki}i∈N of N with ϕ(∂Mi) = ∂Ki and we define

Kj,i
.= Kj \Ki. Moreover, by the claim we also have that π1(Kj,i)

ϕ∗∼= π1(Uj,i) for Uj,i
.= Mj \Mi

and U1,0 = M1.

By the claim we can also assume that up to a proper homotopy of ϕ the restriction ϕ|M1 is an

embedding with image K1.

To conclude the proof we need to show that the map ϕ is properly homotopic to an embedding.

We will now show with an inductive argument that up to proper homotopy ϕ is an embedding.

Our base case is that M1 embeds. By an iterative argument we need to show that we can embed

Ui+1,i relative to the previous embedding, hence rel ∂Mi.

Consider the following diagram:

H3/
ρ∞(π1(Ui+1,i))

π

��

Ui+1,i

ϕ̃
77

ϕ

((

Ki+1,i

ι

vv

ι̃
gg

N

By Lemma 4.1.81 we have that ϕ̃ is homotopic to an embedding ψ rel boundary and we have that

ψ(∂Mi) = ψ(∂Ki). Then we can isotope ψ so that ψ(∂Mi+1) = ι̃(∂Ki+1). Hence we have that

ψ(Ui+1,i) = ι̃(Ki+1,i), they are compact submanifolds with the same boundary in an open manifold.

Therefore we get that π ◦ψ is properly homotopic to ϕ, the homotopy is constant outside a compact

set, and embeds Ui+1,i rel the previous embedding. We can then glue all this proper homotopies

together to get a proper embedding ψ : M ↪→ N . Since the embedding is proper and N is connected

we get that ψ is a homeomorphism from M to N completing the proof. �

By combining Theorem 4.2.4 and Theorem 4.3.18 we complete the proof of Theorem 4.3.17.

Remark 4.3.19. Using our main result we can show that manifolds in M have CAT(0) metric

in which π1(M) acts by semisimple isometries. Then by [3, p.86] for γ ∈ π1(M) we have that the
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centraliser C(γ) is isomorphic to Z. Since all roots of γ are in C(γ) we would get that Z has a

divisible element which is impossible.

The construct the CAT(0) structure let A be the collection of doubly peripheral annuli in M .

Let X .=
∐
i∈NXi be the manifold obtained by splitting M along the annuli A. Each manifold

Xi has a collection Ai of annuli in ∂Xi corresponding to annuli in A. By Theorem 1 we can

construct a complete hyperbolic metric on Xi. Moreover, we can rig the hyperbolic metric so that

all Ai correspond to rank one cusps10. Then by flattening all the cusps we obtain complete CAT(0)

metrics in every Xi. Then by gluing back by euclidean isometries along the Ai one can obtain a

singular CAT(0) metric on M in which every element is represented by an hyperbolic isometry, since

they all have an axis.

10This is achieved by choosing the curves Pi that make Xi acylindrical in ∂Xi \Ai and then adding
Ai to the collection Pi.
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Chapter 5

Appendix

5.1 The manifold N and X

A knot is an embedding K : S1 ↪→ M . Given a knot we denote the complement of a regular

neighbourhood Nr(K) of Im(K) in M by MK
.= M \Nr(K). We recall the following theorem by

Myers [40, 6.1]:

Theorem. Let M be a compact, orientable, 3-manifold whose boundary contains no 2-spheres.

Then M has a knot K : S1 ↪→ M such that MK is irreducible, with incompressible boundary and

without any non-boundary parallel annuli or tori.

We call such a knot a simple knot.

Consider the hyperbolizable 3-manifold M .= Σ1,1× I. By Myer’s Theorem we can pick a simple

knot K in M such that MK is acylindrical, atoroidal, irreducible and with incompressible boundary.

We now want to fill in the torus boundary while keeping the resulting manifold acylindrical and

hyperbolizable.

Consider the manifold M ′ obtained by gluing two copies of MK along the genus two boundaries.

The manifold M ′ has two torus boundaries corresponding to the copies of the knot K and since each

MK is acylindrical and atoroidal we have that M ′ is atoroidal as well. Thus, by the Hyperbolization

Theorem we have that M ′ is hyperbolizable. By Hyperbolic Dehn Filling Theory [5, 54] we can find

a high enough Dehn Filling of type p
q so that the manifold M ′ filled by p

q surgery on the tori is

hyperbolic. We denote by M ′
(
p
q ,

p
q

)
the resulting manifold.

The manifold M ′
(
p
q ,

p
q

)
is homeomorphic to the double of MK along the genus two boundary

with p
q filling in the tori boundaries. The double being atoroidal implies that MK

(
p
q

)
is acylindrical.
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Therefore, by doing p
q Dehn Filling onM(K) we obtain an acylindrical and hyperbolizable 3-manifold

N that has for boundary an incompressible genus two surface.

By gluing two copies of N along a separating annulus A in their boundary we get a manifold X

such that ∂X are two genus two surfaces. We also denote by A the essential annulus in X obtained

by the gluing. We now claim that X is hyperbolizable, since π1(X) is infinite by the Hyperbolization

Theorem [34] it suffices to show that X is atoroidal. Let T ⊆ X be an essential torus. Then, up

to isotopy, T |A .= T \A is a collection of embedded cylinders in N that are π1-injective. Therefore,

since N is acylindrical we have that all the components of T |A are boundary parallel. Moreover,

since their boundaries are contained in A all components of T |A are isotopic into A. Therefore, the

torus T is not essential since ι(π1(T )) ∼= Z.

Hence, X is an hyperbolizable 3-manifold with a unique essential cylinder A and two genus two

incompressible boundaries.

5.2 Example with Divisible Element

Recall:

Definition 5.2.1. An element γ ∈ G is said to be divisible if for all n ∈ N there is a ∈ G such that

γ = an.

Let N be the acylindrical hyperbolizable 3-manifold with genus two incompressible boundary

constructed in Appendix 5.1. Consider an infinite one sided thick cylinder C ∼= (S1× [0, 1])× [0,∞)

and let γ be the generator of π1(C).

Let {Tn}∞n=2 be a collection of solid tori such that Tn has one wing winding around the soul n

times. Glue the boundary of the wing of Tn to C along a small neighbourhood of S1×{1}×
{
n− 3

2
}

.

The resulting 3-manifold Ĉ has a divisible element given by γ and is not atoroidal since if we consider

the portion containing Tn, Tn+1 it contains an incompressible non-boundary parallel torus.

By construction we still have that: ∂Ĉ ∼= S1× (−∞,∞) and we can think of the boundary of the

solid torus as being a neighbourhood of S1 × {1} ×
{
n− 3

2
}

so that the S1 × {1} × [n, n+ 1] pieces

now contain part of the boundary of the solid tori.

On each N we mark a closed neighbourhood A of the simple closed curve in ∂N splitting the

genus two surface into two punctured tori Σ±. We then glue countably many copies {Nn}n∈N of N

such that the marked annulus An in ∂Nn is glued to S1×{1}× [n, n+ 1] and then glue Σ+
n to Σ−n+1

via the identity. On S1 × {0} × [0,∞) we glue countably many copies {Nk}k∈N of N by gluing Ak



in ∂Nk to S1 × {1} × [k, k + 1] and Σ+
k to Σ−k+1 via the identity.

Finally we glue another N to the remaining genus 2 boundary component. The result is a 3-

manifold X that has an exhaustion Xi, i ∈ N, given by taking the manifolds {Nk}k≤i , {Nn}n≤i,

S1 × I × [0, n] and the bottom copy of N . A schematic of the manifold is given in Figure 5.1.

The gaps Xn \Xn−1 are hyperbolizable since they are homeomorphic to two copies of N glued

along the solid torus Tn+1 (the proof of the manifold being atoroidal is similar to the proof of the

atoroidality of X). The element of the exhaustion are not hyperbolizable, for example if we look at

X2 we see that it has a Torus subgroup 〈α, β|α2 = β3〉.
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Figure 5.1: The manifold X with the first two elements of the exhaustion.
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