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Abstract: Accurate discrimination between safety and danger is necessary for 

survival, but is aberrant in individuals with post-traumatic stress disorder (PTSD). 

Despite its clinical relevance, very little is known about the cognitive and neural 

processes that underlie safety learning. Understanding how cues become safety 

signals is critical to understanding the impairments in fear modulation observed in 

individuals with PTSD. PTSD is more prevalent in women than men, and while 

research on sex differences in safety learning is limited, there is substantial 

evidence that males and females acquire and utilize safety signals differently.  

The aim of this dissertation is to describe behavioral sex differences in learning 

and recall of fear discrimination and explore the neural circuitry that allows this 

discrimination to occur.
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CHAPTER 1 

Methods and brain mechanisms for learning and using safety signals 
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Foilb AR, Christianson JP (2018) Brain Mechanisms for Learning and Using 
Safety Signals. In: Neurobiology of Abnormal Emotion and Motivated Behaviors 
(Sangha S, Foti D, eds), pp 204–222.  
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1.1 Overview 

	
Discriminating between safety and danger is elementary to the well being of 

species across the animal kingdom. Distinguishing predator from prey, poison 

from sustenance, and friend from foe are vital to survival. For humans, there are 

mundane discriminations made on a day-to-day basis—such as which traffic light 

means go and which means stop, or knowing under what circumstances being 

approached by a stranger could be dangerous compared to everyday interactions 

that we trust as safe. Most people make these safe versus dangerous 

discriminations with ease, and in many cases signals for safety outweigh signs of 

danger. Although proper safety judgments are important for our survival, the field 

of neuroscience does not have a very firm grasp on the neurobiological 

machinery that permits this function. This is in contrast to the detail known about 

the neural mechanisms of danger learning, which is reviewed later in this 

introduction. The disparity in knowledge between danger and safety is not for a 

lack of interest or novelty; Ivan Pavlov introduced the elementary consequence of 

safety learning—“conditioned inhibition” – nearly 100 years ago. Instead, the 

disparity exists because understanding danger systems is a prerequisite to 

understanding safety. Here I introduce learned safety signals and a 

neuroanatomical systems framework that organizes the known neural 

mechanisms and correlates of safety signals into a hypothetical model that is the 

basis of my dissertation work. 
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Before elaborating on the safety learning literature, it is useful to understand 

the significance of safety signals and their relevance to psychiatric conditions, 

namely post-traumatic stress disorder (PTSD).  PTSD has a lifetime prevalence 

of 7.8% and represents a significant public health concern (Kessler et al., 1995; 

Kilpatrick et al., 2013). PTSD is often thought of as a disorder of over-fear 

conditioning, which can lead to hyper-vigilance and exaggerated physiological 

responses that are part of the clinical diagnosis for PTSD (Rauch et al., 2006). A 

hallmark feature of PTSD is the expression of fear or anxiety in environments 

where it is not appropriate or under conditions that would not typically elicit 

anxiety in a healthy individual (Rauch et al., 2000). This symptom has been 

conceptualized as a generalization of fear learned during trauma that becomes 

resistant to extinction (Rauch et al., 2006). The observations of generalized fear 

and fear extinction in individuals with PTSD have significant empirical support 

and trauma-induced changes in fear systems are hypothesized be central to the 

pathophysiology of PTSD. However, this hypothesis does not account for effects 

of trauma on an individual’s capacity to use safety signals to regulate emotions. 

Indeed, difficulty utilizing learned safety signals has been observed in a number 

of clinical PTSD studies (for review, see Jovanovic et al., 2012). For example, in 

a visual task where a danger cue indicates to the participant that an aversive air 

puff is about to occur while a distinct safety cue indicates the absence of the air 

puff, healthy participants readily distinguish among the cues. This manifests as 

differential fear expression to the safe versus danger cues and inhibition of fear 
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when the fear and danger cues are presented together (Jovanovic et al., 2005). 

When individuals with PTSD are given the same training and testing, although 

they can report that the danger and safe cues are different, they are unable to 

reduce their fear when the safety signal is presented (Jovanovic et al., 2009, 

2010). Thus, exposure to trauma and the development of PTSD compromises an 

individual’s safety signal system, underscoring the importance and potential 

therapeutic impact of understanding how safety signals are learned and recalled 

in the brain.  

 Here the term safety signal refers to any cue that can, when presented in 

compound or in juxtaposition to fear evoking stimuli, reduce the behavioral or 

physiological expression of fear. Although there are innate safety cues that vary 

by species, for example a child’s mother, this collection of work focuses on safety 

cues that are learned. Since the experiments of Pavlov on inhibitory learning, 

numerous experimental conditioning procedures have been set forth that result in 

safety signals. The following sections will summarize the behavioral paradigms 

that have been used to investigate the neural basis of safety signals, discuss the 

advantages of each with regard to understanding neural mechanisms, and review 

the information gained about the neural basis of safety signals. This work creates 

an incomplete picture of the neural circuitry involved in learning and using safety 

signals.  

Associative learning processes permit an organism to remember 

environmental cues that predict danger or safety. One learns that a cue is 
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dangerous because it either occurred contemporaneous to or preceded an event 

that caused the subject harm. Subsequent presentations of the cue will elicit 

responses in the subject that prepare for impending danger.  To study danger 

learning in a laboratory setting, Pavlovian fear conditioning procedures are used. 

In this procedure, a neutral stimulus (the conditioned stimulus, or CS) is paired 

with a mild electric shock (the unconditioned stimulus, or US). When the CS is 

later presented alone, it elicits fear, often observed as behavioral freezing in 

laboratory rats. Unlike danger learning, which is evident after a single CS-US 

pairing, safety learning occurs more gradually. Cues presented without 

consequence (i.e. no aversive US) under conditions when there is a non-zero 

probability that an aversive stimulus is imminent may become safety signals. 

Safety learning may constitute two processes; the first entails the discriminative 

learning that allows the subject to distinguish between the danger and safe cues. 

This fear discrimination is prerequisite to a special category of safety signals, 

which may be called conditioned fear inhibitors. 

Based in part on the experimental and theoretical work of Pavlov (1927) 

and Konorski (1948), Rescorla (1969) outlined empirical requirements for 

establishing a conditioned inhibitor. Conditioned fear inhibitors must meet two 

requirements in addition to having a contrasting value to the conditioned 

excitatory cue—they must inhibit fear evoked during simultaneous presentation of 

a danger cue and show resistance to relearning as a danger cue. Presenting the 

excitatory cue and inhibitor in compound, a so-called “summation test”, is the 
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most direct method to test conditioned inhibition. In this sense, conditioned 

inhibition of fear occurs when a safety cue (often termed CS-, or B) indicating the 

absence of danger can reduce fear in the presence of a danger cue (often 

termed CS+, or A). In fact, the safety cue, B, must possess such a strong 

association contrasting the danger cue, A, that there is diminished fear learning 

when B is paired with the aversive US compared to a neutral and novel cue 

(Hammond, 1968). That is, once a cue is a conditioned inhibitor, pairing the 

inhibitor with an unconditioned excitor, such as shock, results in impaired 

excitation learning, or freezing, compared to a neutral cue. People (Jovanovic et 

al., 2005), monkeys (Winslow et al., 2008) and rats (Myers and Davis, 2004) are 

all able to discriminate between danger and safety in laboratory settings. The 

following section details the procedures used to train a subject to discriminate 

between safety and danger, and the behavioral tests used to assess conditioned 

fear inhibition by safety cues. 

 

1.2 Models of Safety Learning 

	
A number of methods are used to produce fear discrimination in research 

settings (See Table 1.1). The primary condition necessary for a stimulus to 

become a safety signal is that it occurs together with an excitatory fear stimulus, 

but is then followed by the absence of shock when shock is otherwise expected. 

In such circumstances, the value of a safety signal is apparent and allows for fear 

reduction because it predicts that the risk of harm is minimal in a situation when 
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an aversive event might occur. Safety signals can be established using a variety 

of approaches. In the conditioned inhibition procedure, named after the 

phenomenon itself, cue A is paired with a US on a given number of trials, while 

on other trials A is presented in compound with a second cue, B and the US is 

not presented. The presentation of cues A and B together forms a compound 

conditional stimulus. With training to this paradigm, subjects learn to fear A but 

not B, as B signals when A will not be followed by the US. The use of this 

procedure in the field has diminished greatly due to concerns that the novelty of 

two cues being presented in compound causes external inhibition, rather than 

conditioned inhibition (Myers and Davis, 2004).  
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Table 1.1 Laboratory procedures for safety learning. Schematics outline cue presentations, 
where red squares are danger cues (A), green squares are safety cues (B), blue squares are 
cues A and B presented in compound, and grey squares are transfer cues (X). Presentations of 
the aversive US are signified by lightning bolts (often electric shock or air puff in laboratory 
settings). Citations indicate relevant publications that utilize a particular method.  

 

Feature-negative discrimination is a method similar to the conditioned 

inhibition procedure. Here, cue A is paired with a US on some trials, and on other 

trials B is a negative feature stimulus that precedes cue A. The serial 

presentation of B and A indicates the absence of shock, while A without the 

	
Method	

	
Description	

	
Citations	

Conditioned	
Inhibition	

A+/AB-	where	A	and	B	are	
presented	in	compound	

		
Josselyn	et	al.,	2005;	Sangha	et	

al.,	2013	

Feature	
Negative	

Discrimination	

A+/BA-	where	B	precedes	A	
on	non-reinforced	trials	

		

	
Falls	&	Davis,	1995;	Falls	et	al.,	

1997;	Heldt	et	al,	2002;		
Waddell	et	al.,	2003;	Heldt	and	
Falls,	2006;	Campeau	et	al.,	

1997		

Differential	
Inhibition	

A+/B-	 		

	
Schiller	et	al.,	2008;	Genud-

Gabai	et	al.,	2013;	Sangha	et	al.,	
2013;	Likhtik	et	al.,	2014;	
Stujenske	et	al.,	2014	

	

Differential	
Inhibition	with	
Transfer	Cue	

AX+/BX-	where	X	is	
presented	in	compound	or	
in	serial	with	A	and	B.	X	is	a	
transfer	cue	which	carries	
the	expectation	of	danger	
on	non-reinforced	trials		

		

	
Myers	&	Davis,	2004;	Jovanovic	

et	al.,	2005,	2009,	2010;	
Winslow	et	al.,	2008;	Toufexis	
et	al.,	2007;	Gutman	et	al.,	
2011;	Foilb	and	Christianson,	

2016;	Chen	et	al.,	2016;	Foilb	et	
al.,	2016;	Sarlitto	et	al.,	2018	

	

Explicitly	
Unpaired	

B	is	temporally	distant	from	
reinforcement	

		
Rogan	et	al.,	2005;	Pollak	et	al.,	

2008;	Amano	et	al.,	2010;	
Ostroff	et	al.,	2010		

Backwards	
Conditioning	

B	signals	the	end	of	the	
aversive	reinforcement	

		
Christianson	et	al.,	2008;		
Christianson	et	al.,	2011	

Danger	(A)	

Safety	(B)	
Danger/Safety	Compound	(AB)	

Transfer	Cue	(X)	
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negative feature stimulus continues to indicate shock. Notably, the feature 

stimulus on its own is not inhibitory, failing to meet Rescorla’s definition of a 

conditioned inhibitor (1969). In these instances, the inhibitory strength of the 

feature stimulus is not through an inhibitory association with the US, but rather 

inhibits the excitatory value of the danger CS (Holland, 1984). In this case, the 

feature stimulus is “setting the occasion” for the CS to not indicate danger, rather 

than inhibiting the conditioned fear. While summation can still occur in occasion 

setting, it is know that occasion setting forms through separate neural 

mechanisms (for review, see Swartzentruber, 1995).  

To test that a conditioned inhibitor is not an occasion setter, a transfer test 

can be performed. In this test, the negative feature stimulus is paired with a novel 

excitatory CS and inhibition of responding is measured. Occasion setters do not 

have inhibitory properties when presented with new excitatory cues, while 

conditioned inhibitors maintain their inhibitory properties (Holland, 1989). In some 

cases, the feature-negative procedure does lead conditioned inhibition, such that 

inhibitory properties of the negative-feature can transfer to a novel excitatory 

stimulus (Falls and Davis, 1997). Studies that successfully produce conditioned 

inhibitors often choose to show the inhibitory strength of the B cue through 

transfer tests or through a reduction in freezing when presented alone.  

A popular method for producing cue discrimination and conditioned 

inhibition is differential inhibition. In this procedure, a discrete cue A is paired with 

an aversive US, while a discrete cue B is presented during the same conditioning 
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session but is never paired with the US. After repeated presentations of A+ and 

B-, the subject displays fear to A but not B, successfully discriminating between 

the two stimuli. Using this method, B often becomes a conditioned inhibitor. 

However in a summation test, where A and B are presented in compound, it is 

difficult to know if reduced fear is due to conditioned inhibition or due to external 

inhibition caused by the novelty of two simultaneous cues.  

Conditional discrimination, often termed AX+/BX-, is a variation of 

differential inhibition paradigm that addresses the external inhibition problem. 

Originally used by Wagner et al. (1968) to study the associative strength acquired 

by X, it was later described my (Myers and Davis, 2004), as an ideal method to 

produce conditioned inhibition. To test external inhibition in this method, Myers 

and Davis varied the order and timing of cue presentations and found that 

simultaneous presentations of two cues in compound resulted in minimal external 

inhibition. Therefore, cue B becomes inhibitory through the same process as in 

the conditioned inhibition paradigm. Since cue X is compounded with the 

excitatory CS, and never presented on its own without the US, extinction of fear 

to cue X will not occur. X will therefore remain excitatory, and when B is paired 

with X, B becomes inhibitory as a result of being paired with excitatory cue X in 

the absence of the US. This method is successful in producing conditioned 

inhibition of fear while eliminating concerns of external inhibition that exist with 

the presentation of compound stimuli in a summation test. This procedure has 
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also been used to effectively produce fear discrimination and conditioned 

inhibition in healthy human participants (Jovanovic et al., 2005).  

The work presented in this dissertation uses a serial variation of the 

AX+/BX- paradigm proposed by Myers and Davis (2004). In this procedure, the 

transfer cue X immediately precedes either the danger cue A or safety cue B 

during conditioning. This procedure allows for the same inhibitory learning to B 

from being paired with X as in the conditional discrimination procedure and 

creates significant safe/danger discrimination, as well as conditioned inhibition of 

fear, with no evidence of external inhibition. Our lab has displayed the efficacy of 

this procedure, through both a summation test and delayed learning as a danger 

cue (Foilb et al. 2016). 

Additional methods for producing conditioned inhibition of fear are used in 

laboratory research. In an explicitly unpaired paradigm, a cue B is presented in 

the context where the aversive US is presented, but the B cue is temporally distal 

to the occurrence of the US. In this paradigm, the context and temporal cues 

serves as fear transfer stimuli since each predict a non-zero probability of US 

presentation. Because B and the US are never temporally paired, B has the 

potential to acquire inhibition. This method can also be used to compare to 

animals that undergo fear conditioning, where the tone and shock are paired. 

This method is similar to differential inhibition since the inhibitory value of the B 

cue may actually be in contrast to the excitatory association with context (Miller et 

al., 1991). Similarly, in backwards conditioning a CS is presented immediately 
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after the aversive US. In this procedure, the CS comes to signal the onset of a 

US-free period, giving it inhibitory associative strength.  

Once learned, assessing the discriminative stimulus or fear inhibitor is 

achieved in one of several types of recall tests. A fear discrimination test simply 

entails presenting the subject with the danger and safe cues at separate times 

and observing fear evoked to each; safety signals will evoke significantly less 

fear than danger cues. In rats, fear is often assessed as freezing, a defensive 

behavior observed as complete immobility (Fanselow and Bolles, 1979; 

Fanselow, 1980, 1984), conditioned suppression of feeding (Estes, 1941; 

Hammond and Maser, 1970) or fear potentiated startle (Brown et al., 1951). In 

the work presented in this dissertation, freezing is used as behavioral measure of 

fear.  

Two tests may be used to test for Rescorla’s definition of a conditioned 

fear inhibitor. To test that a cue has gained inhibitory properties, Pavlov (1927) 

introduced the summation test. In summation tests, the putative conditioned fear 

inhibitor and a conditioned danger CS are presented in compound. If the cue is 

indeed a conditioned inhibitor, there will be significantly reduced fear to the AB 

compound cue compared to cue A alone. Hammond (1968) introduced the 

“retardation-of-acquisition test” in which the putative conditioned inhibitor is 

paired with an aversive US, essentially reversing the stimulus outcome 

expectancy present during initial conditioning. If a cue has become a conditioned 
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fear inhibitor, new danger learning will occur more slowly, presumably due to the 

preexisting inhibitory relationship between the safety cue and the US.  

To summarize, there are several methods for cue presentation that will 

generate safe versus danger discriminations and safety cues capable of active 

fear inhibition. The following sections review the experiments conducted in 

rodents and primates to identify neural correlates of safety signals. In most 

cases, these studies have attempted to distinguish brain systems involved in the 

acquisition of safety signals (i.e. what brain regions are necessary for safety 

learning?) from brain systems involved in the recall and use of safety signals (i.e. 

what brain regions are needed for safety signals to inhibit fear?).  

 

1.3 Mechanisms  

1.3.1 Fear Circuitry 

Because inhibition of a fear response, such as freezing, is central to the 

operational definition of a safety signal, understanding the brain mechanisms of 

danger learning and the expression of fear are prerequisite to understanding 

safety. Danger learning and fear expression have been extensively studied using 

Pavlovian fear conditioning procedures (McNally and Westbrook, 2006). Based 

on the work of Pavlov (1927), an innately neutral CS is paired with an aversive 

US. As a result of this pairing, a species-specific fear response is elicited by 

presentation of the CS. It is important to note that the majority of the methods for 
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achieving conditioned inhibition in Table 1.1 include CS-US pairings, so fear 

conditioning is inherent in almost all safety learning experiments.  

Danger learning occurs primarily within the amygdala where 

neuroplasticity binds the CS and US in association as a result of their temporal 

contiguity. A subsystem of the amygdala termed the basolateral amygdala (BLA), 

consisting of the lateral, basolateral and basomedial nuclei, receives sensory 

inputs, including nociceptive information, from diverse brain areas, including the 

thalamus, neocortex, olfactory cortex, and hippocampus (Turner and Zimmer, 

1984; LeDoux et al., 1990; Stefanacci et al., 1992; Mascagni et al., 1993; 

Romanski and LeDoux, 1993; LeDoux, 1996; McDonald, 1998; Kim and Jung, 

2006). This makes the BLA a likely site of convergence for information about the 

CS and US (LeDoux, 2000). Indeed, when the CS and US are coincident, 

synaptic plasticity occurs in the BLA such that subsequent presentations of the 

CS alone evoke stronger BLA activation than would an unconditioned CS (Quirk 

et al., 1995; Rogan et al., 1997). Accordingly, manipulations that prevent BLA 

excitability or plasticity interfere with the learning and later expression of 

conditioned fear (Maren et al., 1996; Cousens and Otto, 1998; Lalumiere, 2014). 

Excitation within the BLA begins a cascade of circuit activation via projections to 

the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST), which 

in turn project to the hypothalamus and brainstem areas which are the proximate 

mediators of specific fear responses (LeDoux et al., 1988; Swanson and 

Petrovich, 1998; Maren, 2001) including freezing, autonomic arousal, hormone 
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release, analgesia, and startle (LeDoux et al., 1988; Van de Kar et al., 1991; 

Davis, 1992; Kapp, 1992). More specifically, the projection from BLA to CeA 

mediates fear responses to cues of short duration; whereas prolonged fear 

responses are mediated by BLA to BNST projections (Davis et al., 2010).  

A fundamental assumption taken when considering the mechanisms of 

safety signals is that they inhibit fear responses by modulation of this fear 

circuitry. Simply put, a safety signal might operate by blunting activity or flow of 

excitation through the fear circuit at the sensory (i.e. thalamic), 

associative/learning (i.e, BLA) or output phases (i.e, CeA, BNST or brainstem 

nuclei).  

 

1.3.2   Safety Signals in Basolateral Amygdala 

As noted, the BLA is the site of neuroplasticity for fear learning, and it is 

necessary for the learning and expression of conditioned fear. It is then 

reasonable to predict that safety signals might also utilize the BLA for both 

learning and recall, where a safety signal would be expected to reduce BLA 

activity compared to danger signals. Many studies have in fact found evidence 

that safety signals impact responding in the BLA. The various approaches that 

have been used to study the role of BLA in safety learning further substantiate 

the role of BLA in this process.  

Using monkeys and a differential inhibition procedure, Genud-Gabai et al. 

(2013) paired a tone or visual cue with an aversive air puff near the eye, while a 
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different tone and unique visual cue served as B cues, indicating the absence of 

the US. Eye blink was used as a behavioral measure of fear and monkeys 

significantly discriminated between the A and B cues. Learning to associate B 

cues with the aversive US was also delayed. Microelectrodes placed above the 

amygdala for neuronal single unit recording during acquisition of this fear 

discrimination found amygdala neurons firing in the presence of both A and B 

cues. In trials where more neurons fired to A than B, there was increased 

generalization of fear. This study indicates that amygdala encoding of 

discriminative CSs is important to fear discrimination and safety learning. 

Sangha et al. (2013) found similar results when looking at safety encoding 

in the amygdala of rats. A combination of conditioned inhibition procedure and 

differential inhibition methods were used during sessions of in vivo single unit 

recording, where A trials were paired with shock and the AB compound without 

shock, as well as some trials where B was presented alone in the absence of 

shock. Retardation of fear acquisition to B was also displayed to verify its value 

as a conditioned inhibitor. Over a third of neurons sampled altered firing 

selectively to either fear or safety stimuli. About a quarter of these neurons 

selectively altered firing during safe signals—the AB compound or B alone—

particularly during later conditioning sessions. Several neurons also showed 

significant inhibition to safe signals.  

Ostroff et al. (2010) looked at the effect of safety learning on amygdala 

neurons by comparing spine morphology of lateral amygdala neurons in animals 
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that underwent fear conditioning to animals that received an explicitly unpaired 

procedure to produce conditioned inhibition, which passed both summation and 

retardation tests. They found increased synapse size with fear conditioning and 

decreased synapse size with safety learning. Further investigation of these 

neurons found that while amygdala synapses strengthen after fear conditioning, 

they weaken when conditioned inhibition is established (Ostroff et al., 2012). 

These bidirectional changes based on fear associations indicates that both fear 

and safety learning alter synaptic morphology in the amygdala.  

The above investigations of amygdala function in safety used correlational 

methods. This is perhaps the only reasonable approach to investigating the 

amygdala because any manipulation that would impair amygdala function, and 

therefore allow a mechanistic interpretation, would necessarily impair either 

danger learning or recall and preclude an observation of fear inhibition by a 

safety signal. Nevertheless, Kazama et al. (2012) performed neonatal amygdala 

lesions in rhesus monkeys that were then trained as adults on the differential 

inhibition paradigm adapted for monkeys, with fear potentiated startle as a 

measure of fear (Winslow et al., 2008). Neonatal amygdala lesions delayed the 

acquisition of learned fear, but did not impair discrimination between safety and 

danger, or summation. These results indicate that conditioned inhibition in the 

fear potentiated startle paradigm may develop independent of amygdala 

activation. The current literature paints an incomplete picture of amygdala 

function in safety learning but it is clear that neuronal firing within the BLA 
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differentiates between safety and danger. Whether or not these units, or plasticity 

within the BLA, are required for safety learning or later fear inhibition has not yet 

been tested with a direct, mechanistic approach. 

 

1.3.3   Safety Signals and Fear Expression Circuits 

The principle outputs of the BLA that initiate and maintain fear responses 

are the CeA and the BNST. The CeA receives sensory and visceral information 

from the BLA, and projects to the hypothalamus and brainstem areas responsible 

for the fear response (LeDoux et al., 1988; Swanson and Petrovich, 1998; Maren, 

2001). Falls and Davis (1995) made lesions to the CeA after extensive training 

using the feature-negative discrimination procedure. Since lesions of the CeA 

block the expression of fear-potentiated startle to A, additional A and shock 

training was conducted until fear returned. Without receiving additional training 

with the B cue, animals with CeA lesions were able to inhibit fear-potentiated 

startle to the AB compound, indicating that CeA is not critical for the expression 

of conditioned of fear (Falls and Davis, 1995).   

Campeau et al. (1997) used immediate early gene protein product Fos to 

quantify neuronal activation following feature negative conditioning. Fear was 

measured via potentiated startle, where startle was reduced during presentation 

of AB and B compared to A. Presentation of the AB and B cues led to Fos 

expression in the dorsal caudate nucleus of the striatum and BNST. Providing a 

backwards CS also leads to differential activation of the BNST, without effect on 
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the CeA (Christianson et al., 2010). The role of BNST in this mechanism may 

indicate why others have found no effect of CeA lesions in the expression of 

safety learning (Falls and Davis, 1995; Kazama et al., 2012). BNST efferents are 

very similar to those of the CeA and so this region is involved in the sustained 

expression of fear (for review, see Walker and Davis, 2008). BNST may provide 

a unique or redundant mechanism for fear expression in these paradigms that is 

specifically regulated by learned safety signals. A better understanding of how 

safety signals affect the different nuclei and neuronal subgroups within the BNST 

should be a rich area for future research. 

 

1.3.4   Safety Signals and Sensory Systems 

As safety signals must be encoded into the central nervous system 

through sensory systems, it is easy to assume that interfering with the subject’s 

sensory capacity hear, see, smell or touch the safety signal would impede safety 

learning and recall. Falls and colleagues employed a feature-negative paradigm 

with a combination of visual and auditory cues as the CSs to test the role of 

sensory systems. Somewhat surprisingly, neither lesions to the auditory thalamus 

(Heldt and Falls, 1998) or perirhinal cortex (Falls et al., 1997) affected AB 

summation tests. However, Waddell, Heldt & Falls (2003) later found that lesions 

of the superior colliculus, a brainstem center for visual processing, prevented 

inhibition in a summation test. Interestingly, the inhibitory stimulus in this 

experiment was auditory cue. A complementary study found that lesions to the 
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inferior colliculus prevented the expression of summation to an auditory cue 

suggesting damage to fibers of passage could account for the interference 

caused by superior colliculus lesions (Heldt and Falls, 2003). While interruption of 

sensory relay is a parsimonious account of these studies, it is not yet possible to 

rule out a role for elementary sensory structures in safety signal learning or 

recall.  

Although the results of the studies of Falls and colleagues suggest the 

thalamus may not be a necessary component for safety signal recall, a set of 

experiments by Rogan and colleagues (2005) suggests that thalamic inputs to 

the BLA are differentially altered by either danger or safety cues. Mice were 

trained in an explicitly unpaired paradigm or a conventional CS-US fear 

conditioning paradigm. Cue evoked potentials in the BLA were recorded in 

awake, behaving mice before and after unpaired or paired conditioning. Paired 

conditioning appeared to potentiate auditory evoked responses, suggesting a 

strengthening of the representation of tone in the thalamic-BLA tract, which had 

been reported earlier (Rogan et al., 1997). Conversely, when the tone indicated 

safety, the response in the BLA from auditory inputs was diminished, suggesting 

depotentiation at auditory-BLA synapses. While the experimenter’s interpret their 

finding as a change in the thalamic input to the BLA, it is not yet known at this 

time whether the change in auditory evoked potential reflects reductions in 

specific thalamic or cortical sensory inputs to the BLA. This result indicates that 

safety signals may reduce the ability of a sensory cue to excite the BLA.  
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When a cue is temporally correlated with a sense of pain, then that cue 

becomes a danger signal, whereas if it is not paired with pain, or is paired with a 

sense of relief, it may become a safety signal. Therefore, computing whether a 

signal is safe or dangerous requires the detection of coincident sensory states 

across multiple stimulus modalities including the somatic, or interoceptive 

sensory system. Our lab hypothesized that insular cortex may play a role in 

conditioned inhibition because of its known access to somatosensory information, 

role in convergent response to multisensory stimuli (Rodgers et al., 2008) and 

bidirectional amygdala connectivity (Shi and Cassell, 1998a, b). In the first 

experiments, Christianson et al. (2008, 2011) reported that providing a 

backwards CS during a series of unpredictable shocks served as a safety signal 

and prevented the development of learned helplessness behaviors that typically 

occur when the safety signal is not present. Lesions and temporary 

pharmacological inactivation of a region of posterior insular cortex, identified for 

its capacity to integrate stimuli from multiple modalities (Benison et al., 2007; 

Rodgers et al., 2008), completely eliminated the stress protective effects of the 

safety signal (Christianson et al., 2008, 2011).  

Recently, we reported a series of experiments using the serial differential 

inhibition procedure to determine if the insular cortex contributed to learning 

about safety signals or later summation (Foilb et al., 2016). In these studies 

(elaborated on in Chapter 2), blockade of NMDA receptors in the posterior insula 

prevented acquisition of inhibition of fear by the safety signal on later AB 
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summation tests. Interestingly, when rats were trained drug free, inhibition of 

insular cortex before a summation test reduced fear expression yet did not 

influence fear discrimination or conditioned inhibition of fear. Thus, the insular 

cortex seems to be important for learning about safety signals, but not for their 

recall. In control experiments, we found that the contribution of insula to safety 

learning could not be reduced to a simple function in fear discrimination. These 

results suggest that the insular cortex may contribute to safety learning not by 

encoding the safety signal, but by maintaining a stable representation of the 

danger signal. Together, studies on insular cortex clearly implicate its role in 

safety signal learning.  

 

1.3.5    Fear Modulatory Circuits: Prefrontal Cortex, Hippocampus, & Striatum 

In addition to sensory inputs, the amygdala is interconnected with 

structures that are known to influence the learning and expression of fear 

including the prefrontal cortex, dorsal and ventral hippocampus, and regions of 

striatum. These structures are critical for executive function, episodic memory, 

and reward seeking behaviors, respectively (for reviews see Phelps, 2004; 

Kesner and Churchwell, 2011; Hart et al., 2014). The ventral medial prefrontal 

cortex (vmPFC) plays a critical role in the extinction of fear (for review, see Milad 

et al., 2014), which has often thought to be closely related to the inhibition of fear 

by a safety signal. Further, bilateral lesions of mPFC in dogs disrupted 

conditioned inhibition of appetitive conditioning (Konorski, 1967). To investigate 
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the role of the vmPFC in conditioned inhibition of fear, Gewirtz, Falls and Davis 

(1997) used a feature-negative discrimination procedure to train and test animals 

before performing lesions to the vmPFC and then training and testing again. 

Quite surprisingly, vmPFC lesions appeared to have no effect, as inhibition of 

fear was evident in both lesioned and sham-lesioned rats on summation trials. 

Although learning and fear inhibition may have been achieved after vmPFC 

lesion by redundant or compensatory neural circuits, more recent investigations 

of vmPFC function are consistent with these initial results. Temporary inactivation 

of the vmPFC had no effect with a backwards conditioned CS (Christianson et 

al., 2008). Conversely, Vieira et al. (2015) used mutant mice to delete an 

essential subunit of N-methyl-D-aspartate (NMDA) receptors, known to be 

necessary for synaptic plasticity (Morris, 2013), in excitatory neurons in the 

mPFC and observed impaired discrimination between auditory A and B cues, 

with increased fear to the CS- in knockout mice compared to controls. These 

results indicate that plasticity in mPFC may be necessary for acquisition of fear 

discrimination. 	

Sangha et al. (2014) dissected the contributions of prefrontal cortex 

subregions—prelimibic (PL) and infralimbic (IL)—using a combination of the 

differential and conditioned inhibition procedures. Inactivation of PL led to a 

reduction of freezing to the danger cue A, but did not alter freezing to B or AB 

cues compared to vehicle animals. This result fit with the existing knowledge that 

PL mediates the heightened fear response in the presence of a danger cue 
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(Sotres-Bayon and Quirk, 2010). Inactivation of IL before recall testing resulted in 

reduced freezing to A, which abolished discrimination between the A and AB 

cues. These results are especially interesting in light of compelling support for a 

role of the IL in fear reduction after extinction (Sierra-Mercado et al., 2011). The 

results of these mechanistic experiments demonstrate that the vmPFC is not 

necessary for learning about safety per se, but vmPFC may play a role in 

distinguishing between what is dangerous and what is not.  

Likhtik et al. (2014) examined the relationship of vmPFC and BLA 

synchrony during a differential inhibition task in mice. Recordings of local field 

potentials in the vmPFC and BLA revealed differential responses to learned 

danger and safety cues, with larger amplitude responses occurring in vmPFC, 

primarily the PL, to the danger cue. This apparent differentiation was evident in 

the strength of synchrony between vmPFC and BLA as it correlated to the 

difference in behavioral freezing to either the danger or safe cue, such that mice 

with very good behavioral discrimination exhibited the strongest connectivity 

between PFC and BLA. Consistent with Sangha’s results, the role of the vmPFC 

appears to be in determining what is dangerous rather than what is safe.   

Our lab also looked at the role of ventrolateral orbitofrontal cortex (vlOFC) 

in fear discrimination using a serial differential inhibition procedure, which is 

further described in Chapter 2 (Sarlitto et al., 2018). vlOFC has been implicated 

in value-based decision making (Sul et al., 2010), as well as in response 

selection (for review, see Young and Shapiro, 2011) and switching between 
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cognitive tasks (Wilson et al., 2014). Based on these functions we hypothesized 

that vlOFC would be recruited during fear discrimination recall to facilitate 

changes in behavioral freezing to safety and danger cues. Temporary inactivation 

of the vlOFC before a discrimination recall test impaired discrimination, resulting 

in greater fear to the safety cue B than vehicles. Inactivation of vlOFC during the 

serial differential inhibition conditioning procedure did not impact discrimination 

during acquisition or later recall. While future work is required, there is evidence 

that the vmPFC and vlOFC, contribute to different aspects of recall of both 

danger and safety signals, perhaps a consequence of a more general function in 

response selection. 

Hippocampal regions have also been implicated in fear discrimination 

behavior. Pre-training lesions to the hippocampus did not impact discrimination 

performance in a feature-negative task, but post-training lesions impaired safety 

recall, such that there was no reduction of fear when B was presented in 

compound with A (Heldt et al., 2002). Heldt and colleagues did note that despite 

the deficits of post-training lesions, animals could successfully be retrained to 

make this discrimination. Our lab followed up on these results with a focus on 

ventral hippocampus, work that is further described in Chapter 2. Temporary 

inhibition of the ventral hippocampus prior to conditioning, prevented danger 

learning as subsequent presentations of A and B cues evoked little fear. Rats 

were later retrained and the ventral hippocampus was inactivated prior to a 

discrimination recall test, but no effect of ventral hippocampus inactivation was 
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apparent (Chen et al., 2016). Although contradictory to the results of Heldt et al. 

(2002), these results support the existing literature implicating a role for ventral 

hippocampus in fear acquisition (see Anagnostaras et al., 2001 for review), as 

well as to the discrimination of fear contexts (Orsini et al., 2011). While the 

results of this study indicate that ventral hippocampus may be part of the fear 

circuit, it doesn’t appear to directly encode excitatory and inhibitory associations 

of discrete CSs.  

Like Heldt et al. (2002), Pollak and colleagues (2008) found evidence for a 

role of hippocampus in safety learning. Comparing animals that underwent an 

explicitly unpaired procedure to those that experienced fear conditioning, they 

found that animals in the safety learning condition had increased hippocampal 

newborn cell survival, with no changes in neurogenesis, compared to fear 

conditioned animals. Ablation of hippocampal neurogenesis by X-irradiation 

delayed safety learning and prevented correlated “antidepressant” behavioral 

effects. With this study it is worth considering whether the explicitly unpaired 

paradigm recruited the hippocampus because safety is learned as a 

consequence of the temporally distance between the aversive US and the safety 

cue which could be mediated by the hippocampus, whereas differential 

conditioning or feature negative procedures, that appear to be hippocampal-

independent, the temporal distance between cues that predict danger (transfer 

cues) and safety cues is small, often overlapping.  

 Josselyn and colleagues (2005) hypothesized that the nucleus accumbens 
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(NAcc) may be necessary for the fear modulating effects of a safety signal. The 

NAcc plays a role in modulating the motivational responding in appetitive 

conditioning (for review, see Castro et al., 2015) and is situated to perform a 

similar task in fear and safety learning, as it receives information from many of 

the neural structures involved in conditioned fear (McDonald, 1991). With this 

information, they tested the role of the NAcc in the conditioned inhibition 

procedure, pairing A with shock in phase one, and an A and B compound with no 

shock in phase 2. Using three independent manipulations of NAcc activity: lesion, 

AMPA receptor blockade, or amphetamine injection, no role for NAcc was found 

to alter the fear potentiated startle response, or conditioned inhibition of startle 

during AB summation trials.  

Also focused on striatum, Rogan et al. (2005) recorded tone-evoked 

synaptic responses in the caudate putamen of mice in an explicitly unpaired 

paradigm. In contrast to auditory evoked responses to the safety signal in the 

amygdala, which decrease after conditioning, in the caudate putamen, tone-

responses were enhanced with safety conditioning and weakened with fear 

conditioning. This was interpreted as plasticity associated with approach and 

reward, but the necessity of caudate putamen, or any other striatal region outside 

of the NAcc requires further mechanistic inquiry.  
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1.3.6 Neurotransmitter Systems 

Serotonin plays a role in conditioned inhibition of appetitive learning (Lister et 

al., 1996) and conditioned analgesia (Watkins et al., 1998). In each case, 

destruction of serotonergic neurons impaired the effect of a conditioned inhibitor. 

Regarding fear discrimination, Berg et al. (2014) reported impairment in 

differential learning to a partially reinforced safety signal after lesions to the 

serotonergic dorsal raphe nucleus (DRN). This work suggests a role of the DRN, 

and likely serotonin, in using prediction errors to update associations between CS 

and US in discrimination learning. This learning mechanism could be important 

for safety learning in general. There is substantial literature implicating serotonin 

(5-HT) in the modulation of fear, with the general consensus that 5-HT release, 

and action at 5-HT2C receptors in the amygdala enhances the expression of fear 

(Martin et al., 2002; Campbell and Merchant, 2003; Greenwood et al., 2008; 

Christianson et al., 2010; Baratta et al., 2016). We hypothesized that safety 

learning could be enhanced by reducing the fear enhancing effects of 5-HT2C with 

specific receptor antagonists. Using the serial differential inhibition procedure, we 

blocked receptor subtype 5-HT2C prior to conditioning, which resulted in improved 

fear discrimination, with more pronounced conditioned inhibition in summation 

tests (Foilb and Christianson, 2016). Given the vast number of neurotransmitter 

systems implemented in the modulation of fear and anxiety, future investigations 

of drugs that could reduce fear, may make for useful therapeutics to augment 

safety learning. 
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Dopamine is primarily thought of for its role in reward circuitry and forming 

cue-reward associations, which may be closely related to safety learning 

(Berridge and Robinson, 1998). It is logical that the presentation of a safety cue 

is a rewarding event when there is a non-zero probability of danger. Dopamine is 

also known to play a role in fear learning (for review, see Lee et al., 2016). In the 

amygdala, dopamine receptor activation is necessary for fear memory, dopamine 

in the BLA increases fear expression and D1 receptors of the BLA are required 

for inhibition of fear in extinction paradigms (Hikind and Maroun, 2008; de 

Oliveira et al., 2011; Lee et al., 2016). Receptors for dopamine, D1 and D2, have 

also been found important for modulating activity in uncertainty paradigms (Larkin 

et al., 2016). In safety learning, systemic administration of D1 agonist or 

antagonist impairs fear inhibition to a safety cue, with similar results observed 

when the D1 agonist and antagonist were administered intra-BLA (Ng et al., 

2018). These results implicate dopamine as another potential target for treatment 

in disorders of appropriate fear modulation to a safety cue. 

 Sex differences have also been found in safety learning, indicating a 

potential role for sex-related hormones in facilitating fear discrimination. Using 

AX+/BX- discrimination conditioning, Toufexis et al. (2007) looked at the role of 

estrogen on fear and discrimination learning in both male and female 

gonadectomized rats. While the addition of estrogen did not alter discrimination in 

males, in females, estrogen prevented inhibition of fear to the AB compound. 

Implantation slow release capsules for estrogen receptor agonists disrupted fear 
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discrimination learning in both males and females, in a manner such that different 

types of estrogen receptors may alter a different aspect of discrimination 

learning. Animals given the agonist for estrogen receptor α displayed increased 

fear to all cues compared to animals given estrogen receptor β agonist. This also 

fits with existing data on estrogen receptors, where estrogen receptor α has been 

implicated in increased fear and anxiety and estrogen receptor β has been 

shown to be anxiolytic (Morgan and Pfaff, 2001; Walf et al., 2004; Walf and Frye, 

2005). Further investigation of the role of sex-related hormones in safety learning 

may help explain why more women than men are diagnosed with PTSD, and how 

to address the inability to properly inhibit fear responses that is seen in females 

with PTSD (Jovanovic and Norrholm, 2011; McLean et al., 2011; Lebron-Milad 

and Milad, 2012).  

 

1.4   Studies of Safety Signals in Humans 

As noted in the review of safety learning methods, the conditional 

discrimination protocol allows for comparative studies of discrimination and safety 

learning between rodents and humans. Jovanovic and colleagues (2005) used 

this paradigm with healthy human participants where compounds of colored lights 

are presented either with an aversive air blast to larynx (AX+) or without an air 

blast (BX-). Tests for conditioned inhibition consisted of presentations of AX, BX, 

and AB in summation test, as well as presentations of A in compound with a 

novel stimulus. In healthy human participants, as in rodents, presentations of AB 
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led to significantly less potentiated startle than presentations of AX or A and a 

novel stimulus in compound. This indicates that inhibition of fear to the compound 

cue was due to its inhibitory association rather than external inhibition. This study 

provided clear evidence that healthy humans can modulate fear responding in 

the presence of safety signals using the same methods that are used to study 

animal models of fear modulation, which can facilitate translation of information 

between investigations from different species.  

Jovanovic and colleagues went on to use this paradigm in civilian and 

combat PTSD patients (Jovanovic et al., 2009, 2010). In these studies, fear 

potentiation responses showed that the healthy controls and low-symptom PTSD 

participants successfully discriminated between safe and danger trials, but high-

symptom PTSD subjects did not. The high-symptom PTSD group showed signs 

of discrimination, but the difference in startle response between AX and BX trials 

was minimal overall and not statistically significant. Similarly, controls and low-

symptom PTSD subject displayed significantly less fear to AB than AX, while the 

high-symptom PTSD subjects showed similar levels of fear to AB and AX. In 

addition to recording fear-potentiated startle, participants were also asked to 

report their expectation that air blast, the danger CS, would occur on any 

particular trial. In the last block of conditioning, all groups showed successful 

discrimination based on their reported expectancy that the air blast would occur, 

indicating that high-symptom PTSD patients were able to learn about safety 

signals, but are unable to inhibit their physiological fear response. Further work 
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has shown that the safety signal deficiencies seen in individuals with PTSD may 

appear as early as 30 days after trauma and as late as 10 years after trauma 

exposure, indicating that it is a persistent biomarker of psychopathology 

(Jovanovic et al., 2013).  

Although fear extinction has received considerable attention in fMRI 

studies, safety signals are less common in human neuroimaging. Schiller et al. 

(2008) studied the neural correlates of fear reversal with fMRI, and in the 

process, learned a little bit about the regions activated in the presence of safety 

and danger signals. The procedure used images of two different angry faces as 

cues, where face A was paired with a mild wrist shock on one third of trials in 

order to delay acquisition, and face B was never paired with shock. During both 

early and late acquisition of safe and danger associations, the B cue elicited 

stronger vmPFC responses than A. Unsurprisingly, amygdala activation was 

greater during presentations of the A cue than during presentations of B. 

Similarly, striatal responses were higher to the A cue compared to B during 

acquisition, as was activation in the caudate putamen, thalamus, midbrain, dorsal 

anterior cingulate cortex, superior frontal gyrus and insular cortex. Since the goal 

of this research was not focused on safe/danger discrimination, but rather when 

the meaning of stimuli change from safe to unsafe, they did not test for recall of 

the safe and danger stimuli to look at different brain regions implicated in the 

recall of fear discrimination.  

Insular cortex is a region implicated in the pathophysiology of PTSD (Chen 
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et al., 2006) and, of the brain regions identified in studies of safety signals, it is 

the only one where there are consistent findings from both rodent and human 

studies. The fMRI results from (Schiller et al., 2008) showed significantly greater 

responding to A than B in the insular cortex during discrimination acquisition 

which is consistent with the effects of insula inactivation on fear expression in our 

hands (Foilb et al., 2016). Individuals with PTSD also show altered activity in 

insular cortex (Strigo et al., 2010) and, although preliminary, work from Gutman 

et al. (2010) correlated insular cortex volume with fear inhibition by safety signals. 

With female participants who met criteria for PTSD, they used the differential 

inhibition protocol combined with structural MRI to find that individuals with a 

higher startle response to the safety signal (that is, poor inhibitors) had smaller 

insula volumes than those that attenuated their fear response in the presence of 

the safety signal. Future studies must evaluate insular cortex activity using fMRI 

and connectivity methods to better elucidate the circuits that are required to learn 

about safety and recall of these cues to inhibit fear responses. 

 

1.5   Sex Differences in Safety Learning 

Much of the research on fear discrimination has focused on males, yet 

females are more likely to be diagnosed with PTSD than males (Kessler et al., 

1995; Kilpatrick et al., 2013). The limited research on fear discrimination in 

females indicates that they may differ from males in how they learn about safety 

and generalize between cues indicating safety and danger. Research in humans 
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has found that fear discrimination is more sensitive to trauma history in females 

compared with males. Studying trauma-exposed, 8 to 13 year-old children, 

Gamwell and colleagues (2015) used a differential inhibition paradigm with an air 

blast US and fear-potentiated startle as a measure of fear, as well as asking 

children to respond whether or not the cue indicated an air blast. Despite higher 

rates trauma-exposure in boys, girls showed less discrimination between 

presentations of A and B. Interestingly, girls also habituated to A+ trials earlier 

than boys, showing little startle or skin conductance response by the end of 

conditioning. Lonsdorf et al. (2015) compared adult men and women in a context-

dependent fear discrimination task and explored the role of menstrual cycle and 

hormonal contraceptives. For both the danger and safety cues, women reported 

higher levels of fear and US expectancy than men, while men had higher skin 

conductance responses to the danger cue compared to women. Overall, women 

displayed less discrimination between danger and safety cues compared to men, 

although this sex difference was mostly influenced by women on hormonal birth 

control, further indicating that sex hormones may play a critical role in sex 

differences in discrimination (Toufexis et al., 2007; Lonsdorf et al., 2015). 

However, menstrual cycle phase of free-cycling women did not impact fear 

discrimination. For skin conductance responses, free-cycling women showed 

similar discrimination to men, while women on hormonal birth control displayed 

significantly less fear discrimination. These results are particularly interesting in 

relation to how sex differences are often studied in rodents, with artificial levels of 
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sex-related hormones, namely estrogen, rather than the naturally fluctuating 

levels of these hormones through the estrous cycle. 

Translational research regarding sex differences in rodent fear 

discrimination is in its infancy, but has yielded mixed results. Day et al. (2016) 

tested cued discrimination in rats and found greater discrimination in females 

compared with males. However, after repeated testing, females displayed 

generalization of fear, while males did not. Females also failed to display 

resistance to re-learning the safety signal as a danger cue, which is one of the 

two classic tests for conditioned inhibition, as defined by Rescorla (1969). In 

mice, females showed greater context fear generalization than males. Using Fos 

as a marker of neural activation, generalization in females corresponded with 

decreased activation in hippocampus and increased activation in amygdala 

compare to males (Keiser et al., 2017). While differing results in mice and rats is 

surprising, this may be due to differences in paradigms rather than differences in 

species, since Day et al. used cued discrimination and Keiser et al. focused on 

context discrimination. There is additional evidence that females overgeneralize 

between contexts, which may explain the results found by Keiser et al. (Lynch et 

al., 2013; Anderson and Petrovich, 2017; Keiser et al., 2017).  

Describing the behavioral sex differences in fear discrimination and 

conditioned inhibition of fear is a main focus of this disseratation, and the results 

of these experiments are presented in Chapter 3. Biological sex is a significant 

factor in the expression of fear-based psychoses and a better understanding 
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basic behavioral sex differences in fear discrimination is needed to more fully 

realize the impact of sex for an individual’s health (Shansky, 2015; Shansky and 

Woolley, 2016). Further investigation into sex differences in safety learning may 

explain why more women than men are diagnosed with PTSD, and address the 

inability of individuals with PTSD to properly inhibit fear responses - particularly if 

the mechanisms in females differ from those in males (Jovanovic and Norrholm, 

2011; McLean et al., 2011; Lebron-Milad et al., 2012). This dissertation aims to 

thoroughly examine sex differences in safety learning and the underlying neural 

mechanisms; steps critical to progress in the treatment of PTSD and other 

anxiety disorders with impairments in fear modulation.  

 

1.6   Aims of Dissertation 

 The overarching goal of this dissertation is to uncover the neural 

mechanisms that underlie the learning and recall of safety signals, as well as to 

address the important issue of sex differences in discrimination learning and 

recall, behaviorally. Existing data on potential sex differences in fear 

discrimination are inconclusive and neural correlates of behavioral sex 

differences are limited (Lonsdorf et al., 2015; Day et al., 2016; Keiser et al., 

2017). Observing, first, how males and females learn, recall and utilize safety 

signals will provide insight on potentially unknown sex differences in behavioral 

learning and memory. Further exploring the brain regions that underlie 

discrimination learning in males and females will allow for a better understanding 
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of the neural circuits necessary for safety learning, as well as regions that may 

inhibit appropriate fear modulation. 

 Chapter 2 will review my previous work on neural mechanisms that 

underlie safety learning, using the same procedural methods that will be used 

throughout the remainder of my work presented here. In Chapter 2, we 

investigate the roles of ventral hippocampus and vlOFC in the acquisition and 

recall of safe/danger discriminations (Chen et al., 2016; Sarlitto et al., 2018). We 

found inhibition of ventral hippocampus reduced overall fear expression, but did 

not directly impact fear discrimination, while vlOFC inhibition specifically altered 

fear to the safety cue. Chapter 2 also includes research focused on the role of 

insular cortex and a paradigm for conditioned inhibition of fear. As previously 

described, insula is a region involved in sensory integration and densely 

connected to amygdala (Shi and Cassell, 1998a, b; Rodgers et al., 2008). We 

hypothesized that this structure may play a role in the integration of cues 

necessary for modulation of fear in the presence of safety cues. We found 

posterior insular cortex is specifically necessary for acquisition of conditioned 

inhibition of fear, but not for the acquisition of fear discrimination or the recall of 

either fear discrimination or conditioned inhibition as measured by a summation 

test. 

 While my previous work elaborated on the limited known neural correlates 

of safety learning, only male rats were used in these studies. Due to the 

prevalence of PTSD in women, the existing data indicating that males and 
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females may differ in fear discrimination abilities and the effect of estrogen on 

fear discrimination, I set out to explore potential sex differences in the learning 

and utilization of safety cues (Kessler et al., 1995; Toufexis et al., 2007; Kilpatrick 

et al., 2013; Day et al., 2016). Chapter 3 uses a large sample size to assess 

potential sex differences in learning to discriminate between danger and safety 

cues. Looking at conditioning by trial blocks to allow for precise analysis of how 

the sexes, on average, display differential responding to the A and B cues on 

over the course of the conditioning session, as well as average fear to the safe 

and danger cues during conditioning. A subset of animals received fear 

discrimination recall testing. Here I compare the average expression of fear to the 

safe and danger cues, as well as look at changes across presentations of the 

cues throughout the duration of the test. Another cohort of animals received 

repeated conditioning and summation tests, as described in Chapter 2. 

Surprisingly, we found that females reduced freezing to safe cue presentations 

earlier than males, and maintained lower levels of freezing to the safety cue 

throughout conditioning. Females also displayed reduced fear to the safety cue at 

the start of the discrimination recall test the subsequent morning. Conversely, in 

summation tests of conditioned inhibition, males and females did not differ in 

patterns of freezing to compound cue and there was no significant difference 

between sexes.  

Since the sex difference appeared initially and most drastically during 

acquisition of fear discrimination, I was particularly interested what brain regions 
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may underlie safety learning and contribute to this behavioral sex difference. 

Chapter 4 assesses the neural structures that underlie acquisition of fear 

discrimination, using an immunohistochemistry (IHC) for immediate early gene 

product Fos as a neural marker of activation. Sex differences in neural activation 

of fear discrimination learning could indicate potential pathways for intervention in 

individuals with impairments in utilization of safety cues. This study used three 

groups of animals so that structures involved in fear discrimination could be 

distinguished from those involved in the sensory processes of cue discrimination 

and those that mediate fear learning when a safety signal is not present. Based 

on existing information about the neural structures involved in fear learning and 

fear discrimination described here, I composed a hypothetical neural circuitry 

(Figure 1; Foilb and Christianson, 2018) that may underlie discrimination learning 

and pinpoints the brain regions of interest that are the focus of Fos investigation. 

It is important to look at regions known to be involved in fear learning and 

expression, such as BLA, BNST and CeA, particularly since there is also 

evidence that these regions may play critical roles in safety. Regions known to be 

involved in the modulation of fear, including PL and IL, vlOFC and insular cortex, 

are also key structures of investigation. These brain regions are of particular 

interest because their known involvement in fear and safety circuitry. 
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Together, the work presented here begins to uncover the neural 

mechanisms that allow for modulation of fear in the presence of safety cues. By 

adding new nodes to a potential safety circuit, eliminating others, and narrowing 

in on the precise role of certain brain regions, this work adds to the growing 

literature on the neural basis of fear modulation. This research also adds to the 

growing field of sex as a biological factor, as sex differences in learning and 

memory and the mechanisms that underlie these behavioral differences are just 

beginning to be discovered. Importantly, the work here also creates new 

questions that will lead to precise, hypothesis-driven experiments for future work.  

IC 

BLA 

CeA 

Striatum 

OFC 

BNST 

vmPFC 

VH 

Figure 1.1 A hypothetical circuit for the processing of safety information. Red 
regions and arrows indicate a site of danger processing and the projection of danger 
information. Green regions and arrow indicate regions and transferring of safety 
information. Purple colored regions and arrows indicate regions that display altered 
patterns of responding due to the reception of safety information. Blue regions indicate 
regions that project to the regions, which ultimately lead to behavioral outputs.  
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CHAPTER 2 

Mechanistic Studies on the Acquisition and Recall of Fear Discrimination 
 

 

 

 

The work in this chapter is published in the following manuscripts: 

 
Sarlitto MC, Foilb AR, Christianson JP (2018) Inactivation of the Ventrolateral 
Orbitofrontal Cortex Impairs Flexible Use of Safety Signals. Neuroscience, 
379:350–358. 
 
Chen VM, Foilb AR, Christianson JP (2016) Inactivation of ventral hippocampus 
interfered with cued-fear acquisition but did not influence later recall or 
discrimination. Behav Brain Res, 296:249–253. 
 
Foilb AR, Flyer-Adams JG, Maier SF, Christianson JP (2016) Posterior insular 
cortex is necessary for conditioned inhibition of fear. Neurobiol Learn Mem, 134 
Pt B:317-27.* 
 

*Portions of this work were submitted in partial fulfillment of the requirements for the Masters of 
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2.1 Introduction 

An animal’s prosperity and survival require flexible adaptation to a 

constantly changing environment. Past experience shapes decision making in 

part through the accumulation of learned associations between stimuli and their 

associated outcomes, which can be used to make predictions and decisions 

about future behaviors. Yet the mechanisms by which explicit environmental cues 

come to predict safety are largely unknown (Christianson et al., 2012; Kong et al., 

2014). Learned safety signals are potent modulators of behavior and have the 

ability to inhibit fear responses, such as behavioral freezing, and promote 

exploration or foraging when presented in compound with learned danger cues 

(Konorski, 1967; Myers and Davis, 2004; Rogan et al., 2005; Pollak et al., 2008; 

Christianson et al., 2011; Sangha et al., 2014; Chen et al., 2016). The 

neuroanatomical loci that mediate learning and recall of safety cues are largely 

unknown, but the vast wealth of knowledge about fear learning and discriminative 

learning can be used to inform investigations on the neurological correlates of 

safety/danger discrimination. In the research presented here, we explore the 

roles of orbitofrontal cortex, ventral hippocampus, and insular cortex in the 

acquisition and recall of safety signals. 

 

2.1.1 Orbitofrontal Cortex 

Areas in the frontal cortex are implicated in associative learning and, of 

these, the orbitofrontal cortex (OFC) seems to be important in mediating 
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cognitive flexibility (Dalley et al., 2004; Murray and Izquierdo, 2007; Rudebeck 

and Murray, 2014). There is a vast and rapidly growing body of literature in which 

the OFC appears to contribute to a wide array of cognitive functions, including 

novel stimulus-outcome contingencies, inhibitory control of appetitive learning, 

reward valuation, reversal learning and extinction (for reviews, see Stalnaker et 

al., 2015; Izquierdo, 2017). The ‘cognitive map’ hypothesis accounts for much of 

the empirical data regarding OFC function (Wilson et al., 2014). A cognitive map 

is the mental representation of the external environment (Gallistel, 1989). This 

theory proposes that the OFC maintains a cognitive map characterized by the 

current task state. For example, using a Pavlovian conditioning paradigm, a rat 

might be trained with repeated cue presentations to associate a conditioned 

stimulus (CS, like a flashing light) with the occurrence of an unconditioned 

stimulus reward (US, food pellet). As the rat begins to behaviorally distinguish 

between CS/no-CS trials, a reflection of differential reward expectancy, the 

cognitive map theory suggests that the two conditions become encoded as 

separate ‘task states’. Tracking task states, particularly those occurring in the 

same context but with opposing outcomes, is considered by this theory to be a 

key function of OFC activity (Wilson et al., 2014). Thus, loss of OFC function 

does not always impair state-relevant processing but does invoke noticeable 

impairments to performance of tasks requiring differentiation between 

perceptually similar states.  
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The cognitive map model captures a significant amount of data relating to 

the function of OFC but a limitation of the theory stems from the nearly exclusive 

reliance on behavioral tasks in which the outcome expectancies related to the 

value of desirable stimuli, such as food. Regarding aversively motivated 

behaviors, such as conditioned fear in which several contributions of the OFC are 

reported (e.g., Rodriguez-Romaguera et al., 2015; Zimmerman et al., 2018) but 

there are conflicting results (Shiba, Santangelo, & Roberts, 2016). A test of OFC 

function in a learning context in which the conditioned stimuli become associated 

with different expectations of aversive outcomes would provide a systematic test 

of the current theory’s generality and provide insight to the neural circuitry 

underlying cognitive flexibility in the face of environmental stimuli that predict 

danger. Discrimination between danger and safety cues leads to differential 

freezing upon presentations of conditioned danger (shock paired A+) and 

conditioned safety (unpaired B-) cues. In the fear discrimination learning 

scenario, the A and B cues could be argued to reflect distinguishable task states 

that can be called upon to guide behavioral responses, and therefore involve the 

OFC. 

The OFC receives polymodal sensory input and projects extensively to the 

limbic system and midbrain motor regions capable of governing behavioral output 

(Paxinos and Watson, 2007). It is this intersection of polymodal sensory input 

and visceromotor outputs that makes the OFC relevant to reward processing but 

also positions it well to map the outcome expectancies of undesirable aversive 
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stimuli. The rat OFC is subdivided into the medial (MO), ventral (VO), 

ventrolateral (VLO) and lateral (LO) and anterior agranular insular cortex (Price, 

2007). Anatomical, mechanistic and recording experiments targeting these 

regions provide evidence for some regional functional specificity with regard to 

decision-making, with medial regions relating more to affective regulation with 

lateral regions more to sensory integration (Rempel-Clower, 2007; Izquierdo, 

2017). 

 

2.1.2 Hippocampus 

Fear is also an important component of safety learning and fear responses 

are typically specific to contexts or stimuli that were previously paired with 

aversive stimulation (Maren et al., 2013). A growing number of studies implicate 

the ventral hippocampus (VH) in the acquisition of conditioned fear and the VH 

contributes to the modulation of fear in extinction and discrimination processes 

(Richmond et al., 1999; Bast et al., 2001; Zhang et al., 2001; Esclassan et al., 

2009; Czerniawski et al., 2012; Wang et al., 2012; Cox et al., 2013; Zhang et al., 

2014). The extinction of fear conditioned to a discrete cue depends upon the 

context in which extinction occurred because when the fear cue is presented in a 

novel setting, the fear response returns (Bouton and King, 1983). The return of 

fear in a novel context depends upon excitatory input from the VH to the 

amygdala and prefrontal cortex (Orsini et al., 2011). Thus, the VH contributes to 

both the initial acquisition of fear and the conditional expression of fear when 
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context is a discriminate feature (Hobin et al., 2006). Regarding discrete cues, 

hippocampal lesions interfere with the recall of a feature negative discrimination 

(Heldt et al., 2002), but the VH was not isolated in this study. Based on the role of 

VH in fear and the modulation of fear, it is possible that this region also plays a 

critical role in the reduction of fear to a safety cue.  

 

2.1.3 Insular Cortex 

When a safety cue is well-learned, it can become a conditioned fear 

inhibitor. In conditioned inhibition, fear is blunted by safety cues (Konorski, 1948; 

Rescorla, 1969; Christianson et al., 2012). A number of important investigations 

of conditioned inhibition in the context of appetitive learning identified the 

ventromedial prefrontal cortex (Rhodes and Killcross, 2007; MacLeod and Bucci, 

2010; Meyer and Bucci, 2014), retrosplenial cortex (Robinson et al., 2011), 

central nucleus of the amygdala (Holland, 2012), the perirhinal and postrhinal 

cortex (Campolattaro and Freeman, 2006; Gastelum et al., 2012) and the 

serotonin system (Lister et al., 1996; Watkins et al., 1998). However, there are 

discrepancies between the appetitive and fear literatures with many more null 

results reported with regard to mechanisms for conditioned fear inhibition.  

Insular cortex (IC) has a number of features that position it to contribute to 

identifying environmental safety cues. These include access to auditory, visual, 

and somatosensory information (Sudakov et al., 1971; Robinson and Burton, 

1980a, b, c; Mufson and Mesulam, 1982; Shi and Cassell, 1998a, b; Remple et 
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al., 2003; Benison et al., 2007; Gogolla et al., 2014; Gogolla, 2017), a 

somatotopically organized body representation (Benison et al., 2007), 

multisensory integration (Rodgers et al., 2008), afferent intracortical and 

thalamocortical connectivity and efferent amygdala projections (Shi and Cassell, 

1998a, b; McDonald et al., 1999). As described in Chapter 1, numerous reports 

identify electrophysiological signatures and molecular correlates of safety signals 

the amygdala (Campeau et al., 1997; Rogan et al., 2005; Pollak et al., 2008; 

Sangha et al., 2013; Likhtik et al., 2014). Because IC connectivity to the 

amygdala varies across its length (Shi and Cassell, 1998a, b; McDonald et al., 

1999) and others have reported roles for anterior divisions of rodent insula in fear 

(Bermudez-Rattoni, 2014; Casanova et al., 2016), we targeted three points along 

the rostro-caudal axis. Extant data suggesting a role for posterior IC (pIC) in 

processing safety signals were obtained using a backwards conditioned safety 

signal in the context of an unpredictable traumatic stressor. In the midst of the 

traumatic stressor, safety signals prevented the development of numerous 

stressor sequellae; these “safety signal effects” were blocked by both lesion and 

pharmacological inactivation of the pIC (Christianson et al., 2008, 2011). We 

aimed to uncover whether the pIC contributes specifically to the learning or recall 

of safety signals in a fear discrimination paradigm.  
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2.1.4 Chapter Aims 

In the studies presented here, we examined three brain regions—

ventrolateral OFC (vlOFC), ventral hippocampus (VH), and insular cortex (IC)—in 

the learning and recall of safety cues in a conditioned fear discrimination 

paradigm. We tested if the behavioral expression of fear is under the flexible 

control of the danger or safe signals. This behavioral flexibility should entail the 

formation and use of a cognitive map and so provides a paradigm suitable to 

assess the generality of this role of the OFC in both learning and flexible control 

of behavior by aversive cues. We targeted the LO/VO regions with 

pharmacological inactivation in fear discrimination acquisition or later recall. 

Based on the role of VH in fear modulation, we hypothesized that the VH may 

play a general role in conditioned fear discrimination by using a fear 

discrimination paradigm where fear expression is controlled by the conditioned 

cue instead of a context. pIC was the focus of IC investigation due its previously 

discovered role in mitigation of stress by safety signals, and its known anatomical 

connectivity (Christianson et al., 2008, 2011; Shi and Cassell, 1998a, b). From 

this, we hypothesized that pIC was a likely site of integration for danger and 

safety information.  

 To examine the role of these brain regions in acquisition and recall of fear 

discrimination, as well as conditioned inhibition of fear, we used AX+/BX- fear 

discrimination conditioning, where animals were exposed to two CSs: a safe CS 

that was never paired with footshock (B) and a danger CS that was always paired 
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with shock (A). Brain regions were temporarily inactivated before either 

conditioning or recall testing and freezing was recorded as a behavioral measure 

of fear. We found that each of these regions plays a specific role in fear 

discrimination. vlOFC is specifically involved in recall of safe cues, VH appears to 

be involved in fear but not safety learning, and pIC, but not aIC or mIC, is 

specifically involved in the acquisition of a conditioned inhibitor, not in recall or 

acquisition of fear discrimination. The roles of vlOFC and pIC likely fit into a 

larger safety learning circuitry, which is the overarching aim of the work of this 

dissertation.  

 

2.2 Materials And Methods 

2.2.1 Animals  

For experiments on the role of vlOFC, adult male Sprague-Dawley rats 

were obtained from Taconic (Hudson, NY), while experiments on VH and IC used 

adult male Sprague-Dawley rats obtained from Charles River Labs (Wilmington, 

MA). All rats weighed 250-300 g upon arrival, kept on a 12-hour light/dark cycle 

with lights. Rats single housed after surgery and a piece of autoclaved manzanita 

wood was provided for enrichment (Rosenzweig and Bennett, 1996) in 

accordance with recommendations by the Boston College Institutional Animal 

Care and Use Committee (IACUC). All animals were given 7-10 days to 

acclimate to vivarium before any procedures and a minimum of 7 days to recover 
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after any surgical procedures. All experimental protocols were reviewed and 

approved by the Boston College Institutional Animal Care and Use Committee. 

 

 

2.2.2 Apparatus 

All behavioral conditioning occurred in the same conditioning chamber. 

Conditioned stimuli were delivered via a white LED array and a speaker mounted 

at the top of the chamber. The chamber was illuminated with 2 infrared LEDs 

arrays and overhead cameras with infrared passing filters were used to recorded 

behavior. Freezing was detected using ANY-Maze software. 

 

2.2.3 AX+/BX- Fear Discrimination Conditioning  

Adapted from (Myers and Davis, 2004) and used previously (Chen et al., 

2016; Foilb and Christianson, 2016), conditioning sessions involved 15 

presentations each of shock-paired (A+) or unpaired (B-) cues, for a total of 45 

minutes per session. Each trial was signaled by a common element (X), a 5 s, 1 

kHz tone (75 dB) immediately followed by a 15 s discrete auditory (white noise 

pips, duration = 10 ms, rate = 3 Hz, 75 dB) or visual (flashing LED light, 264.0 

Lux, 20 ms on/off) CS. The aversive unconditioned stimulus (US) was a 500 ms 

footshock (1.2 mA) that co-terminated with the A cue, such that each animal 

received 15 shocks per conditioning session. These parameters were adopted 



	 51 

based on the results of a pilot experiment in which the conditioned inhibition of 

freezing was assessed after conditioning with either serial or compound transfer 

stimuli (as in the AX+/BX- protocol of Myers & Davis, 2004); the serial 

conditioning protocol resulted in robust and reproducible conditioned inhibition of 

freezing, while the compound cues did not (Foilb and Christianson, 2016). As in 

Myers and Davis (2004), the variation used here retains common element X in 

conditioning, which serves as a transfer stimulus on B trials. Trials were 

presented in a quasi-random order, so that no cue occurred more than twice in 

succession. There was a fixed 70 s inter-trial-interval. Assignment of the light or 

pip as A or B cues was counterbalanced in each experiment, and equally 

represented in each treatment condition.  

 

2.2.4 Discrimination Recall Tests 

Recall tests were performed in the same apparatus as conditioning. In 

studies on vlOFC, recall testing consisted of a 2 min exposure to the context 

followed by 10 A and 10 B cues (30 s duration) presented in quasi-random order 

with a 30s inter-cue-interval. In the IC experiments focused on fear discrimination 

and VH experiments, discrimination was assessed by presenting the A and B 

cues (60 s duration) 6 times each in a quasi-random order. These tests also 

began with 2 min of baseline context exposure. For the majority of figures and 

analysis, the presentations of each cue were averaged across the test session. 
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2.2.5 Summation Tests 

The efficacy of the B cue as a safety signal to inhibit behavioral freezing 

was assessed in summation tests. Tests began with 2 minutes of baseline 

context exposure, followed by a minute of the A cue, a minute of A and B cues 

presented in compound (AB) and a minute of the B cue. The cues were repeated 

for the following serial sequence: Baseline, A, AB, B, A, AB, B. For figures and 

analysis, the two presentations of each cue were averaged.  

 

2.2.6 Cannula Placement and Microinjections 

Surgical procedures were conducted in accordance with Boston College 

IACUC. Stainless steel guide cannula were implanted bilaterally to target vlOFC 

(+3.2mm anterior/posterior, AP from bregma, ±2.2mm medial/lateral, ML from the 

midline, -3.4mm dorsal/ventral, DV from dura), VH (AP -5.8mm, ML ±5.2mm, DV 

-7.0mm, all measured from bregma), anterior IC (AP +2.7mm, ML ±3.9mm, DV -

5.2mm from bregma), medial IC (AP +0.5mm, ML ±4.9mm, DV -6.2mm from 

bregma), or posterior IC (AP -1.8mm, ML ±6.5mm, DV -6.2mm from bregma). 

While IC can be subdivided into granular, dysgranular and agranular regions 

along its dorsal-ventral axis, cannula were targeted for the central agranular 

region and the injection volume (0.5µL) was selected to permit diffusion 

throughout the three regions. Cannula tips found within any of the three 

subdivisions were included, thus conclusions from these were not intended to be 

specific to any of the IC subregions.  
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A minimum of 7 days of recovery were allotted before behavioral testing, 

during which time rats were periodically handled and stylets were checked to 

ensure the cannula remained unobstructed. Microinjections were made by gently 

restraining the rat in a cloth towel and replacing the stylet with a microinjector 

protruding 1 mm beyond the cannula tip. At the end of each experiment, rats 

were overdosed with tribromoelthanol, brains were removed and flash-frozen in 

2-methylbutane on dry ice, and stored at -80ºC until they were sliced at 40 μm on 

a freezing cryostat (-20ºC). Slices were stained with cresyl violet, coverslipped, 

and allowed to dry overnight before cannula placement was determined by 

comparison with the Rat Brain Atlas in Stereotaxic Coordinates (Paxinos and 

Watson, 2007). Data from rats for which cannulas were not found or were located 

outside of the targeted areas were excluded in statistical analysis.  

 

2.2.7 Pharmacological Inactivation of Brain Regions 

The GABAA agonist muscimol was used to temporarily inactivate brain 

regions in most of the experiments. Muscimol was dissolved in sterile saline at 

100 ng/μL (for vlOFC and IC, Moscarello and LeDoux, 2013) or 500 ng/μL (for 

VH, Hobin et al., 2006). In IC experiments, NMDArs were blocked with receptor 

antagonist D-(-)-2-Amino-5-phosphonopentanoic acid (AP5). AP5 was dissolved 

in sterile saline at 6 μg/μL (as in Bast et al., 2005; Amat et al., 2014; Christianson 

et al., 2014). In each case, the drug was administered bilaterally at 0.5 μL per 

side at a rate of 1 μL/min, with an additional minute allowed for diffusion. Vehicle 
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treated animals received saline injections at the same volume and rate as the 

drug infusions. AP5 injections were completed 15 minutes before conditioning 

(Bast et al., 2005) and muscimol injections were completed an hour before 

testing (Amat et al., 2005, 2014). 

 

2.2.8 Data Analysis 

Freezing was analyzed as percent time freezing during the relative cue 

condition. In discrimination tests, a discrimination index was calculated as 

freezing to B divided by freezing to A times 100, so that a value of 100 reflected 

no discrimination between A and B, and values less than 100 indicated reduced 

fear to B compared to A. In summation tests, a summation index was calculated 

as freezing to AB divided by freezing to A times 100. Thus values greater than 

100 would reflect excitatory summation whereas values less than 100 would 

reflect conditioned inhibition. Group differences in behavioral freezing data were 

then evaluated by analyses of variance (ANOVA) with drug treatment treated as 

a between-subjects factor, and cue, day or test treated as within-subjects factors, 

except where noted. Main effects and interactions were deemed significant with p 

< 0.05 and between-subjects post hoc comparisons were made with Tukey’s 

HSD correction or Sidak’s correction. All analyses were made using GraphPad 

Prism. Detailed statistics will not be presented here, but are available in the 

published manuscripts listed at the beginning of this chapter.  
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2.3 Summary Of Experiments And Results 

2.3.1 Ventrolateral Orbitofrontal Cortex 

 

 

 
Figure 2.1 OFC cannula placements. Microinjection 
cannula tip locations included in Experiment 1.1 (blue 
circles) and Experiment 1.2 (red circles). 
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2.3.1.1.Experiment 1.1: Effect of pre-conditioning vlOFC inactivation on fear 

discrimination 

To determine if the OFC contributes to the initial learning of the fear 

discrimination, 16 rats implanted with bilateral OFC cannula were given either 

muscimol or saline injections 1h prior to fear discrimination conditioning with the 

light and pip CSs. Behavioral freezing was quantified during the conditioning 

session and in a drug-free recall test 24 h later (cannula placements are depicted 

in Figure 2.1).  

There was no significant main effect of drug on freezing during 

conditioning (Figure 2.2A, B), or during recall testing (Figure 2.2C, D). In the 

conditioning phase there was a significant main effect of trial and in the 

discrimination recall test there was a significant main effect of cue and a 

significant trial by cue interaction. Post hoc comparisons revealed significantly 

less freezing to B compared to A at each trial. To summarize discrimination 

behavior, and facilitate the display of individual subjects, a discrimination index 

was computed as a ratio of total freezing to B divided by freezing to A multiplied 

by 100. There was no difference in discrimination index between drug conditions 

during conditioning (Figure 2.2E) or recall (Figure 2.2F).  
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Figure 2.2 OFC in acquisition of fear discrimination. Rats were assigned to either intra-OFC 
muscimol or vehicle injections. (A) Mean (+SEM) freezing to the cues during conditioning and 
(B) Mean (±SEM) freezing to the cues in blocks of 3 conditioning trials. Pretreatment with 
muscimol did not alter freezing compared to vehicle controls. (C) Mean (+SEM) freezing to the 
cues in a recall test given 24h after discrimination conditioning and (D) Mean (±SEM) freezing to 
the cues in blocks of 2 trials during recall. There was no effect of pre-conditioning muscimol on 
later discrimination in the recall test. ***p < 0.001 freezing to B was significantly less than A in 
test average and across all trial blocks. (E) Mean (individual replicates) discrimination index 
(freezing to B divided by A times 100) during conditioning and (F) during recall testing. Muscimol 
and vehicle treated rats behaved equivocally in the discrimination task at both time points. 
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2.3.1.2 Experiment 1.2: Effect of post-conditioning vlOFC inactivation on fear 

discrimination during recall 

To determine if the OFC is involved in the behavioral responses to danger 

and safety, 16 rats implanted with bilateral OFC cannula were given 3 

consecutive days of fear discrimination conditioning, with a recall test each 

following morning. Three conditioning sessions were used to ensure that all rats 

exhibited differential freezing to the A and B during recall tests. There was 

differential freezing to A and B cues in the first and second discrimination recall 

tests (drug-free), with main effects of trial and cue and significantly different 

freezing between A and B on all trial blocks (Figure 2.3A). 

Twenty-four hours after the third conditioning session, one half of the rats 

received bilateral muscimol infusions 1h before a recall test and the other half 

received a saline injection. Behavioral freezing was quantified during the recall 

test and the rats were returned to their vivarium. To allow a within-subjects 

comparison, 24h later all rats received a second round of microinjections but drug 

treatment was switched such that rats that received muscimol in the first test, 

received saline in the second test and vice versa. Muscimol prior to recall testing 

appeared to interfere with fear discrimination especially in the later trials of each 

test (Figure 2.3B). Data from Test 3 and Test 4 were analyzed separately. In Test 

3 there were significant main effects of drug, trial, and a significant cue by drug 

interaction. In Test 4 there were significant main effects of drug, cue, and a 

significant cue by trial interaction. In Tests 3 and 4, there was significantly less 
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freezing to B in the vehicle group compared to muscimol on Trials 4 and 5. 

Discrimination was evident in both drug groups with freezing to A differing from 

freezing to B on all trials in the vehicle condition in both Tests 3 and 4 and in the 

muscimol condition in Test 3 trials 1, 2, 3, and 4 and Test 4 trials 1, 2, 3, and 5.  

The pattern of behavior in Tests 3 and 4 was consistent except for a slight 

reduction in overall freezing in Test 4 as seen in Figure 2.3B, therefore we pooled 

data from Tests 3 and 4, averaged freezing across trials, and freezing was 

analyzed (Figure 2.3C). There was a significant main effect of cue, drug and cue 

by drug interaction. The apparent discrimination impairment after muscimol could 

reflect a generalized effect of muscimol on freezing per se. To isolate the 

discrimination component, discrimination indices were computed for the pooled 

data in Figure 2.3D. The discrimination index was significantly greater in 

muscimol treated animals compared to vehicles, indicating weaker inhibition of 

freezing to B. In visual inspection of freezing during Tests 3 and 4 (Figure 2.3B) it 

appeared that in the muscimol treated group, freezing to B was initially similar to 

the vehicle group, but drifted toward A cue level fear over repeated trials. To 

quantify this trend, we computed discrimination indices for the first and last trial 

blocks (Figure 2.3E). The discrimination index was greatest in the muscimol trial 

5 conditioning, which was greater than vehicle at both trial 1 and trial 5, but not 

from muscimol trial 1. However, the interaction of trial and drug did not reach 

significance in this comparison. The trend that OFC muscimol effects occurred 

primarily in the later test trials requires additional investigation. 
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Figure 2.3 OFC in recall of fear discrimination. (A) Mean (±SEM) freezing to A and B in blocks 
of 2 discrimination recall trials in tests 1 and 2 prior to drug administration. Robust discrimination 
was evident with significantly reduced freezing to B at every trial, ps < 0.004. (B) Mean (±SEM) 
freezing to A and B in blocks of 2 trials 60 min after injection of muscimol or vehicle. Discrimination 
was evident in both tests, but greater discrimination was evident in the vehicle groups in the later 
trials. *ps < 0.019 B vehicle vs. B muscimol. (C) Mean (+SEM) freezing to the A and B pooled 
across test days 3 and 4, and trials. Differential freezing was significant in both vehicle and 
muscimol conditions but there was greater freezing expressed to B in muscimol treated animals. 
***p < 0.001. (D) Mean (individual replicates) fear discrimination index where suppression of 
freezing to B was significantly better in the vehicle group ***p < 0.001. (E) Mean fear 
discrimination index (±SEM) pooled across tests 3 and 4 for the first and last trial blocks. 
Discrimination is equal between vehicle and muscimol groups at the outset of the recall test in trial 
block 1, but discrimination becomes much worse in the muscimol condition by the end whereas it 
remains stable in the vehicle control group. *p < 0.05 Muscimol Trial 5 vs. Vehicle Trial 1 and 
Vehicle Trial 5, #puncorrected = 0.02 Muscimol trial 5 vs. Muscimol Trial 1. 
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2.3.2 Ventral Hippocampus 

2.3.2.1 Experiment 2.1: Effect of pre-conditioning VH inactivation on fear 

discrimination 

To explore the role of VH in acquisition of fear discrimination, rats were 

implanted with bilateral cannula (VH cannula placements are depicted in Figure 

2.4) and randomly assigned to muscimol or vehicle conditions on day 1. Rats 

were injected, returned to the homecage, and 1 h later received AX+/BX- 

conditioning. Fear discrimination recall was assessed on Days 2 and 3 in 

identical tests.  

During conditioning, rats spent the majority of time freezing, but there were 

no significant main effect of cue, drug, or cue by drug interaction (Figure 2.5A). 

Discrimination indices did not differ between vehicle and muscimol conditions 

(Figure 2.5B) In the recall test on day 2, rats with prior muscimol exhibited 

reduced freezing to all cues (A, B and context) compared to vehicle condition 

(Figure 2.5C). There were main effects of drug, cue and a significant drug by cue 

interaction. Freezing in the vehicle condition was significantly higher to all cues 

compared to the muscimol condition. In the vehicle condition, discrimination was 

evident as significantly increased freezing to A compared to either B or context 

alone, and freezing to B was significantly less than to context. The recall test was 

repeated on day 3 (Figure 2.5D) with main effects of drug, cue, and a drug by cue 

interaction. As on day 2, there was significantly greater freezing to all cues in the 

vehicle condition relative to pre-training muscimol and discrimination was evident 
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in the vehicle condition as significantly greater freezing during A than during 

either B or the context. 

  Figure 2.4 VH cannula placements. Microinjection cannula tip 
locations of rats included in Experiment 2.1 and Experiment 2.2.  

-5.30 mm

-5.60 mm

-5.80 mm

-6.04 mm

-6.30 mm
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Figure 2.5 VH in acquisition of fear discrimination. (A) Mean (+SEM) freezing during A 
and B trials during conditioning. There was consistent freezing in all conditions with no effect 
of muscimol. (B) Mean (individual replicates) discrimination index indicated no differences 
between muscimol and vehicle treated animals during conditioning. (C) Mean (+SEM) 
freezing during recall on day 2. Rats with intra-VH vehicle injections prior to conditioning 
were able to discriminate between A and B and baseline context (ps < 0.05) and there was 
significantly less freezing to B than the baseline context (p < 0.05). In contrast, VH muscimol 
injections reduced freezing to all cues (*ps < 0.01). (D) Mean (+SEM) freezing during recall 
on day 3. Rats in the vehicle condition were able to discriminate between A and B cues (ps 
< 0.05) and rats with prior muscimol displayed reduced freezing to all cues (*ps < 0.01). 
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2.3.2.2 Experiment 2.2: Effect of post-conditioning VH inactivation on fear 

discrimination during recall 

To test the role of VH in fear discrimination recall, all rats from Experiment 

2.1 received additional conditioning and testing until both the vehicle and 

muscimol treated rats exhibited equal fear and discrimination. This required two 

additional drug-free AX+/BX- conditioning sessions, which began in the afternoon 

on Day 3 and again on Day 4. Recall tests were given on the morning of Day 4 

and Day 5 at which point all rats exhibited equal freezing and discrimination, 

regardless of past drug treatment (Figure 2.6A). In this recall test, there was a 

significant main effect of cue, but no significant main effect of drug, or drug by 

cue interaction. Significantly greater freezing was displayed to A compared to B 

or context in each group, despite prior muscimol or vehicle treatment. Thus, prior 

to the final recall tests, the vehicle and muscimol treated rats exhibited equal fear 

recall and discrimination. 

 Rats were then assigned to new muscimol and vehicle groups each 

consisting of 4 rats from the previous muscimol group and 4 rats from the 

previous vehicle group. On day 8 rats received either muscimol or vehicle, 

according to their new groups and 1 h later given a final recall test. There was a 

significant main effect of cue, but no effects of drug or drug by cue interaction 

(Figure 2.6B). Discrimination was evident with significantly greater freezing to A 

compared to B, and to A compared to baseline context in both the muscimol and 
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vehicle conditions. Similarly, comparisons of the discrimination index during recall 

testing after muscimol or vehicle injections intra-VH did not significantly differ. 

This result indicates that VH is not necessary for the recall of fear discrimination.  

 

Figure 2.6 VH in recall of fear discrimination. (A) Mean (+SEM) freezing during recall on 
day 5 after reassignment to new muscimol and vehicle conditions. In both conditions, rats 
discriminated between A and B and baseline context (ps < 0.05). (B) Mean (+SEM) freezing 
during recall on day 8. Rats with vehicle injections or muscimol injections into the VH prior to 
the recall test were able to discriminate between A and B and baseline context (ps < 0.05).  
(C) Discrimination index (individual replicates) did not differ between muscimol- and vehicle-
treated prior to recall testing. 
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2.3.3 Insular Cortex 

2.3.3.1 Experiment 3.1: Insular cortex in acquisition of fear discrimination 

To examine the involvement of IC in acquisition fear discrimination, rats 

received cannula implants within the pIC. AP5 was used to block N-methyl-D-

aspartate receptors (NMDAr), which are critical to synaptic plasticity and 

numerous mnemonic functions (Morris, 2013). Cannula placements of all intra-IC 

injections are displayed in Figure 2.7. Injections of AP5 or saline to pIC were 

made 15 min before AX+/BX- conditioning. The following morning, animals were 

tested for fear discrimination.  

There was no effect of AP5 on freezing during conditioning, with no main 

effect of drug or drug by cue interaction, but a significant main effect of cue 

(Figure 2.8A). Post hoc tests revealed the main effect of cue as differential 

freezing between baseline context and B, but no difference between A and B. In 

the discrimination test on the following day, rats in both AP5 and saline groups 

appeared to have acquired equal fear to A with discrimination evident as reduced 

freezing to B (Figure 2.8B). Accordingly, there was a main effect of cue, but no 

main effect of drug or interaction of drug and cue. Post hoc comparisons showed 

effective fear discrimination with significantly greater freezing to A compared to 

both B and baseline context. Therefore, pIC NMDAr do not appear to be critical 

to the acquisition of a basic fear discrimination 
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. 

Figure 2.7 IC cannula placements. Sites of microinjections for all cannula experiments. 
White dots indicate posterior IC placements from Experiments 3.1 and 3.2. For Experiment 
3.3, purple dots indicate anterior IC injections, grey dots indicate medial IC injections, and 
black dots are posterior IC injection sites. Blue dots indicate posterior IC injections in 
Experiment 3.4. Images were reconstructed from the atlas of Paxinos & Watson (1998). 
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Figure 2.8 Posterior IC in acquisition of fear discrimination. (A) Mean (+SEM) percent 
freezing during conditioning after intra-IC AP5 injections. There was no effect of AP5, but 
significantly different freezing to baseline context and B cue presentation. (B) Mean (+SEM) 
percent freezing during recall test 1 after intra-IC AP5 injections before conditioning. There 
was no effect of drug, but a significant effect of cue, with increased freezing to A compared to 
both B and baseline context in both treatment conditions. Overhead brackets and asterisks 
indicate significant differences: ** p < 0.01, *** p < 0.001. 
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2.3.3.2 Experiment 2: Insular cortex in recall of fear discrimination 

We next sought to determine if pIC neuronal activity was required for fear 

discrimination recall. Using the same set of animals, all rats received a second, 

drug-free conditioning session. Prior to a second fear discrimination recall test, 

muscimol or saline microinjections were made to pIC and fear discrimination was 

tested 1 hour later. To increase the experimental power, rats were given a third 

fear discrimination test and received the opposite muscimol or vehicle treatment 

2 days later, for a within subjects comparison. On day 3, one half of the subjects 

received muscimol prior to the test while the other received vehicle; on day 5 the 

treatments were reversed. Rats were left alone for 1 day between tests to ensure 

washout of muscimol.  

No effects of prior AP5 treatment were apparent in analyses so the data 

were pooled. Pretest muscimol did not appear to influence freezing to any cue or 

discrimination (Figure 2.9A). A significant main effect of cue, but no effect of 

drug, and no interaction of drug and cue were found. Freezing to each cue was 

significantly different from all other cues: baseline context vs. A, A vs. B, and 

baseline vs. B. Similarly, the discrimination index did not differ between muscimol 

and vehicle conditions (Figure 2.9B). These results indicate that pIC is not 

necessary for acquisition or recall of fear discrimination.  
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Figure 2.9 Posterior IC in recall of fear discrimination (A) Mean (+SEM) percent freezing 
in discrimination recall test 1 h after intra-IC muscimol injections. There was no effect of 
drug, but a main effect of cue where freezing to each cue was significantly different from all 
other cues. (B) Discrimination index, calculated as freezing to B divided by freezing to A 
multipled by 100, was not different in muscimol vs. vehicle treated animals. Overhead 
brackets and asterisks indicate significant differences as follows: * p < 0.05, ** p < 0.01, *** 
p < 0.001. 
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2.3.3.3 Experiment 3.3: Role of insular cortex in the acquisition of conditioned 

inhibition of fear.  

To test the necessity of IC for the acquisition of conditioned inhibition, 

cannulas were implanted in three regions of IC—anterior (aIC), medial (mIC), and 

posterior (pIC; Figure 2.7). Rats received conditioning for 5 days, with summation 

tests in the conditioning chamber each subsequent morning. In pilot experiments, 

rats that received injections of vehicle on the first day of conditioning never 

expressed conditioned inhibition, possibly due to tissue damage caused by 

repeated microinjections on 5 consecutive days. Since conditioned inhibition is 

not evident before day 3 (as shown in Foilb and Christianson, 2016), drug 

manipulations began prior to conditioning session 3. On days 3, 4, and 5, rats 

received intra-IC (aIC, mIC, or pIC) injections of AP5 or vehicle 15 minutes before 

conditioning (timeline displayed in Figure 2.10A). Only pIC NMDAr blockade 

interfered with acquisition of conditioned inhibition. During conditioning on day 5, 

animals with IC AP5 injections froze significantly more than vehicle or medial IC 

AP5 animals. This is consistent with the failure to inhibit fear in the presence of B 

in summation tests in this group and does not reflect a general effect of AP5 on 

fear expression. Performance in the summation tests for each drug and region 

group are shown in Figure 2.10B.  

There were significant main effects of test and region. Post hoc analyses 

showed summation in vehicle animals was significantly reduced in tests 3, 4 and 

5 compared to test 1, in tests 4 and 5 compared to test 2, and in test 5 compared 
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to test 3. This gradual decrease in summation index (indicating improved 

conditioned inhibition) was comparable to the animals without cannula or 

injections. Similarly, in animals with medial and anterior IC injections of AP5, 

summation scores were significantly lower in tests 4 and 5 compared to test 1, 

and further improved in test 5, which was significantly reduced compared to tests 

2 and 3. Conversely, AP5 injections to the pIC resulted in significantly greater 

summation scores compared to aIC and mIC AP5 injections and vehicle 

injections on tests 4 and 5. Thus, only pIC NMDAr appear to be critical to the 

acquisition of conditioned inhibition as measured by summation.  
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Figure 2.10 IC in the acquisition of conditioned inhibition of fear. (A) Timeline of 
conditioning, C, summation tests, T, and intra-IC AP5 injections (syringe icon) before 
conditioning. (B) Mean (±SEM) summation index in tests given the morning after pre-
conditioning with vehicle or AP5 injections to anterior (aIC), medial (mIC) or posterior IC 
(pIC) on days 3, 4, and 5. Summation index was calculated as freezing to AB divided by 
freezing to A times 100. Greater conditioned inhibition was evident as lower summation 
scores in all groups compared to the pIC in tests 4 and 5. All groups except the pIC 
showed significant improvement in summation over the course of conditioning with 
significantly lower summation indices in tests 4 and 5 compared to their respective tests 1, 
2 and 3 (ps < 0.05). 
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2.3.3.4 Experiment 3.4: Role of insular cortex in the recall of conditioned 

inhibition of fear.  

Because the B cue appears to gain strength as an inhibitor after each 

conditioning session, it is possible that recall and reconsolidation processes 

occur within the pIC during the conditioning sessions. Thus, the preceding results 

could be attributed to a role of pIC in either the recall of B or the subsequent 

consolidation of new learning to B during conditioning. To investigate this 

possibility that pIC contributes to the recall of either A or B cues and to test 

whether pIC contributes to the expression of summation, a separate set of rats 

were implanted with cannula in the pIC (Figure 2.7) and received conditioning on 

consecutive days until conditioned inhibition was evident in summation tests 

given each subsequent morning. Importantly, animals were handled 1 h prior to 

each summation test to habituate to the microinjection procedure (timeline 

displayed in Figure 2.11A). Handling prior to summation tests delayed the 

acquisition of conditioned inhibition; therefore rats were only included in the 

inactivation phase of the experiment if they reached a summation index of 80 or 

less (as in Likhtik et al., 2014). Before the final summation test, pIC neuronal 

activity was pharmacologically inhibited by intra-IC injections of the GABAA 

receptor agonist muscimol or vehicle saline 1 h prior to a final summation test.  

Pharmacological inactivation of pIC before recall surprisingly reduced 

freezing to all cues (Figure 2.11B). There were significant main effects of drug 

and cue, and because there was no significant drug by cue interaction, post hoc 
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analyses included both groups.  Although freezing was reduced, all rats 

appeared to discriminate between the different cues in the summation test. 

Conditioned inhibition remained intact with significantly reduced freezing to 

baseline context, AB and B compared to A. The main effect of drug was evident 

as a significant reduction in fear in the muscimol condition compared to vehicles, 

where muscimol-treated animals froze significantly less to presentations of A and 

AB. The results of IC studies, together, implicate pIC specifically in the 

acquisition of conditioned inhibition of fear, rather than recall or prerequisite fear 

discrimination.  
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Figure 2.11 pIC in recall of conditioned inhibition of fear. (A) Timeline of conditioning, 
summation tests, and muscimol injections to the posterior IC before a summation test. 
Animals received repeated conditioning and recall testing until they reached a summation 
index less than 80. (B) Mean (+SEM) freezing to baseline context, A, AB and B 1h after 
muscimol injections. There were main effects of both drug and cue where animals froze 
significantly more to A than to the AB or B and there was significantly reduced freezing to 
presentations of A and AB in the muscimol-treated animals compared to vehicles. 
Overhead brackets and asterisks indicate significant differences, ** p < 0.01, *** p < 0.001.  
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2.4 Discussion 

The goal of these projects was to advance understanding of the neural 

circuitry that mediates discrimination between safe and dangerous cues and fear 

inhibition by learned safety signals. To do this, we used AX+/BX- fear 

discrimination conditioning and region specific inhibition or blockade of NMDAr to 

test the necessities of vlOFC, VH, and IC in acquisition and recall of fear 

discrimination. This collection of studies provides mechanistic evidence for the 

involvement of vlOFC in recall of safe cues, necessity of pIC in acquisition of 

conditioned inhibition of fear, and role of VH in the acquisition of fear, but not in 

discrimination or safety learning. Here I review some of the implications of these 

findings; more detailed discussions can be found in the original publications.  

 

2.4.1 Orbitofrontal Cortex 

Pharmacological inactivation of the VO/LO region of the OFC prior to 

conditioning did not appear to influence any aspect of the fear discrimination 

conditioning, or the later flexible response to the cues. In contrast, when vlOFC 

was inactivated prior to a recall test, discrimination was impaired. The impairment 

was more prominent in the later test trials in which freezing responses to the B 

cue increased, suggesting that OFC is not involved in the initial recall of the 

discrimination. These results are generally consistent with the literature 

implicating the OFC and its outputs in tasks requiring cognitive flexibility.  
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Importantly, the demonstration of a role for OFC in flexible responses in an 

aversively motivated learning paradigm suggests that the “cognitive map” theory 

of OFC function generalizes to many types of learning. Although the OFC 

contributes to attention and salience assignment (Kahnt and Tobler, 2013; 

Ogawa et al., 2013) which would suggest a role for the OFC in the initial danger 

learning and discrimination, there are a number of reports where OFC lesions or 

inactivation did not consistently interfere with simple Pavlovian conditioning 

(Gallagher et al., 1999; McDannald et al., 2005; Ostlund and Balleine, 2007; 

Gremel and Costa, 2013). 

In Experiment 1.2, pharmacological inhibition of the OFC both increased 

fear expression and interfered with behavioral flexibility in recall testing (Figure 

2.3). Recent work also found that OFC lesions resulted in increased fear 

generalization in a danger uncertainty task (Ray et al., 2018), providing further 

evidence that the may OFC play a general role in the inhibition of freezing or that 

it tracks the changing expectations of danger. Interference with either function 

would manifest as a deficit in fear discrimination. Interestingly, OFC inhibition did 

not influence overall fear levels or fear discrimination in the first few safety trials. 

OFC inhibition appeared to bias the behavioral response towards danger later in 

the test, at which point the animals had toggled between relatively high and low 

freezing levels several times. This is consistent with procedurally different, but 

conceptually related, reports in which OFC inhibition with muscimol (Clark et al., 

2008) or chemogenetic inhibition (Zimmermann et al., 2018) did not acutely alter 
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aversively motivated behavior (punishment and conditioned fear, respectively), 

but did increase the influence of the aversive CS on behavior in later tests (i.e. 

fear extinction recall). In appetitive studies, OFC has also been found specifically 

necessary for stable, well-learned stimulus-outcome contingencies (Riceberg and 

Shapiro, 2012; Izquierdo, 2017; Riceberg and Shapiro, 2017). The results of the 

experiments on vlOFC in fear discrimination reinforce a prevailing view of OFC 

function in the flexible use of learned associations to modulate behavioral 

responses. 

 

2.4.2 Hippocampus 

Our experiments on VH added to the growing number of studies that 

investigated the VH in fear learning and recall. Pre-training infusion of muscimol 

into the VH impaired the acquisition of fear learning to all stimuli present during 

conditioning. In contrast, vehicle treated rats were able to discriminate between 

the cues with reduced freezing to B compared to A. The same pattern occurred in 

a second recall test at 48h post-training which suggests that lingering effects of 

muscimol did not influence recall. Pre-testing inhibition of the VH did not alter 

freezing to A and B compared to vehicle animals.  

Considering fear conditioned to discrete cues, our results in VH 

corroborate a large number of studies implicating VH in fear acquisition 

(Richmond et al., 1999; Bast et al., 2001; Zhang et al., 2001; Esclassan et al., 

2009; Czerniawski et al., 2012; Wang et al., 2012; Cox et al., 2013; Zhang et al., 
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2014). Concerning recall, however, VH inhibition sometimes has no effect and 

other times causes a significant reduction in fear (Maren and Holt, 2004; Sierra-

Mercado et al., 2011). While our results do not preclude the possibility that a 

circuit including the VH would contribute in some way to conditioned 

discrimination acquisition, it does call into question the necessity of the VH in 

learned discrimination. This interpretation is consonant with a recent report that 

CS evoked hippocampus potentials did not distinguish between auditory danger 

and safety stimuli (Likhtik et al., 2014). The current results indicate a more 

general role of VH in a fear circuit but VH itself may not encode excitatory and 

inhibitory associations to discrete CSs. Additional research is warranted to 

determine what role, if any, the VH contributes to distinguishing between 

reinforced and unreinforced fear stimuli during conditioning.  

 

2.4.3 Insular Cortex 

Prior work had identified the pIC as a region capable of integrating the 

sensory information required to distinguish between safety and danger and 

modulate the output of fear circuits. We showed that blockade of the pIC NMDAr 

completely prevented conditioned inhibition learning, which to our knowledge is 

the first evidence indicating any brain region as necessary for acquiring a 

conditioned fear inhibitor. We conducted a number of experiments, which allow 

us to conclude that the pIC plays a specific role in learning a conditioned 

inhibitor, but not in the learning or recall of fear discrimination. These findings 
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have important implications for understanding the neural regulation of fear and 

introduce a number of new questions about the functions of IC in cognition. 

Importantly, other reports fail to find a necessary role of the IC in fear expression 

(Rosen et al., 1992; Shi and Davis, 1999; although see Casanova et al., 2016 for 

exception).  

The reciprocal connectivity between pIC and the BLA (Shi and Cassell, 

1998a, b) positions this structure as a critical intersection for incoming sensory 

cues to be compared with learned associations. With additional conditioning, an 

association between the safety signal and the nonoccurrence of shock gains 

strength because of negative prediction errors generated on no shock trials. That 

pIC inactivation by muscimol reduced the fear response to the A (Figure 2.11B) 

suggests that IC may play a role in danger expectation which could be relayed to 

the amygdala to provide a basis for a prediction error on no shock trials. Although 

the effect of muscimol on fear recall contrasts with studies that found no critical 

role of IC in simple fear conditioning, our result is consistent with other findings 

that over time, a fear stimulus undergoes systems consolidation such that the 

conditioned response becomes dependent on the IC (Izquierdo et al., 1997). The 

systems consolidation view also accounts for the discrepancy that inactivation of 

the IC during recall of conditioned inhibition produced a reduction in fear to the A 

cue after several days of conditioning, but had no effect on the acquisition or 

recall of fear discrimination on days 1 or 2 of testing (Figure 2.9).  
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2.4.4 Relevance to PTSD 

The findings of these studies align well with the known neural 

abnormalities observed in individuals with PTSD. The role of vlOFC in safety 

signal recall suggest that a consequence of reduced OFC volume and 

hypoactivity, which are well documented in PTSD (Liberzon and Martis, 2006; 

Hakamata et al., 2007), is an impairment in switching out of a fearful state even 

when well-established safety cues are available. In the case of the experiments 

here, OFC inactivation resulted in a prevailing danger response, despite safety 

information, and this may explain why impairments in OFC function are 

commonly observed in PTSD.  

Individuals with PTSD also display irregular IC activation, which may 

interfere with appropriate modulation of fear (Etkin and Wager, 2007; Zhang et 

al., 2016). Although safety learning has received only limited attention in human 

neuroimaging studies, Schiller et al. (2008) found increased IC activity during 

presentation of a danger cue compared to a safe cue. IC activity is also positively 

correlated with expectations of danger (Phelps et al., 2001) and pain (Ploghaus 

et al., 1999). While IC does not appear necessary for basic fear discrimination, 

development of treatments that normalize insular cortex activity may allow 

individuals with PTSD to better utilize environmental safety cues and modulate 

fear responding.  

 



	 83 

2.4.5 Conclusions 

Altogether, these mechanistic studies answered important questions about 

possible nodes in the safety learning circuit. We provide evidence that VH is 

likely not part of the safety learning mechanism, although it does seem to play a 

role in acquisition of fear. Conversely, vlOFC appears specifically necessary for 

the flexible behaviors observed in response to presentations of alternating 

learned safety and danger cues. More studies on vlOFC will be necessary to 

narrow in on its role in recall of safety cues. A thorough investigation of IC has 

allowed us to conclude that pIC, but not aIC or mIC, is necessary for the 

acquisition of a conditioned inhibitor, as measured by a summation test. Results 

show that pIC is not necessary for the acquisition or recall of prerequisite fear 

discrimination. This data may indicate that IC becomes part of the safety circuit 

when safety signals are well learned, or that the mechanisms that underlie 

conditioned inhibition of fear are distinct from the circuitry that allows for 

discrimination between safe and danger cues. The results from these studies 

greatly informed the hypothesized circuitry underlying fear discrimination 

presented in Chapter 1, which is further explored in Chapter 4. 
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CHAPTER 3 

Sex Differences In Fear Discrimination Do Not Manifest As Differences In 
Conditioned Inhibition 

 
 

The work in this chapter is published in the following manuscript: 

 

Foilb AR, Bals J, Sarlitto MC, Christianson JP (2018) Sex differences in fear 
discrimination do not manifest as differences in conditioned inhibition. Learn 
Mem, 25(1): 49-53. 
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3.1 Introduction 

 
Discrimination between safety and danger is necessary for survival. 

Incorrect evaluation of a stimulus as safe when it is dangerous could result in 

harm, while determining a stimulus as dangerous when it is safe results in 

unnecessary fear and anxiety. Further, when a safety cue is well learned, it can 

reduce fear in the presence of a danger cue, a learning phenomenon known as 

conditioned inhibition of fear (Kazama et al. 2013). Overgeneralization of fear-

related cues and aberrant conditioned inhibition of fear are seen in individuals 

with post-traumatic stress disorder (PTSD; Jovanovic et al. 2012; Costanzo et al. 

2016; Jenewein et al. 2016). Females are more likely to be diagnosed with PTSD 

than males (Kilpatrick et al. 2013; Kessler et al. 1995). Safety learning and 

discrimination are sensitive to hormonal birth control (Lornsdorf et al. 2015) and 

trauma history in females compared to males (Gamwell et al. 2015). Translational 

research regarding sex differences in rodent fear discrimination is in its infancy, 

but has indicated greater discrimination in females compared to males, with later 

generalization of fear (Day et al. 2016). Biological sex is a significant factor in the 

expression of fear based psychoses (Shansky 2015) and a better understanding 

basic behavioral differences in fear discrimination is needed to more fully realize 

the impact of sex for an individual’s health (Shansky and Woolley 2016). 
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3.2 Methods 

 
Male and female adult Sprague-Dawley rats were obtained from Taconic 

Biosciences (Hudson, NY) weighing 200-250g upon arrival. Rats were same-sex 

pair housed in plastic tub cages with free access to food and water, and 

maintained on a 12h light/dark cycle. Males and females were housed in the 

same colony room, and were run through behavioral procedures simultaneously. 

All animals were given 7 days to acclimate to colony housing before behavioral 

procedures. All experimental procedures were reviewed and approved by the 

Boston College Institutional Animal Care and Use Committee. 

Both conditioning and recall testing occurred in the same, dark context: a 

10 x 11 x 6in (L x W x H) chamber made of black plastic with wire mesh lids with 

a stainless steel grid floor. The chamber was housed within a 15 x 12 x 27in (L x 

W x H) light and sound-attenuating chamber with a fan for ventilation and 

background noise (~55dB). We have previously shown the fear discrimination 

and conditioned inhibition develop equally when tested in the conditioning context 

or a distinct context. To focus on cue discrimination here, the same context was 

used for all treatments. Infrared illuminators allowed for video observation 

through an overhead camera. Scrambled foot shock was delivered via shocker 

Model H13-15, Coulbourn Instruments. The stimuli were distinct cues of different 

modalities: a flashing white LED light cue was 264.0 Lux, 20ms on/off and the 

white noise pip was 10ms duration, 3 Hz interval, 75 dB. Assignment of stimuli as 
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danger (A) or safe (B) was counterbalanced, and no effect of cue was observed, 

as reported previously (Chen et al. 2016; Foilb and Christianson 2016; Foilb et al. 

2016). Freezing behavior was detected with ANY-Maze computer software 

(version 4.99, Stoelting, Wood Dale, IL). 

Intact male and normally cycling female adult rats were used as follows: n 

= 24/sex for both fear discrimination acquisition and later fear discrimination 

recall, n = 12/sex for fear discrimination acquisition and conditioned inhibition, 

and an additional n = 24/sex that were given fear discrimination acquisition only, 

for a total N = 120. AX+/BX- discrimination conditioning adapted from Myers and 

Davis (2004) was used (as in Chapter 2, Chen et al. 2016; Foilb and Christianson 

2016; Foilb et al. 2016; Sarlitto et al., 2018). Conditioning trials began with a 5s, 1 

kHz (75dB) tone, followed by either A or B for 15s. A trials co-terminated with a 

500ms, 1.2mA scrambled foot shock and B trials signaled the absence of shock. 

Conditioning consisted of 15 presentations of each cue in quasi-random order, so 

that neither cue occurred more than twice in series with a 90s inter-trial-interval. 

Behavioral research has noted sex differences in fear expression, where 

many female rats exhibit an active response—termed darting—when presented 

with fear stimuli, as opposed to the passive freezing response typically observed 

in males (Gruene et al. 2015a). A trained observer screened videos for evidence 

of darting, but in our experimental conditions darting occurred too infrequently to 

analyze. Therefore, freezing was used as a behavioral measurement of fear 

(Fanselow 1980) as previously (Chapter 2, Christianson et al. 2011; Chen et al. 
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2016,; Foilb and Christianson 2016; Foilb et al. 2016). Freezing data were 

analyzed by analysis of variance (ANOVA) with sex as a between subjects factor 

and cue type and trial as within subjects factors with Sidak post hoc contrasts.  

 

3.2.1 Experiment 1: Fear Discrimination  

Experiment 1 investigated sex differences in fear discrimination acquisition 

(n = 60/sex) and recall (n = 24/sex). Fear discrimination recall was tested the day 

after the initial conditioning session. The test began with 2 min of baseline 

context exposure, followed by 30s presentations of A and B cues without 

presentation of shock. Each cue was presented 10 times in pseudo-random order 

with a 30s inter-trial-interval. To further compare the discrimination abilities of 

males and females, a discrimination index was calculated as time freezing to A 

divided by time freezing to B multiplied by 100, so that a discrimination index of 

100 indicated equal freezing to A and B cues and lower discrimination scores 

indicated greater discrimination between cues.  

 

3.2.2 Experiment 2: Conditioned Inhibition of Fear 

Experiment 2 investigated sex differences in the acquisition and recall of 

conditioned inhibition (n = 12/sex). Rats received 5 conditioning sessions as 

previously (Chapter 2; Foilb et al. 2016). Summation tests were similar to the 

recall test used in Experiment 3.1 with AB trials added in which A and B were 

presented in compound. The tests began with 2 min of baseline context, followed 
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by 30s of each cue—A, B and AB —three times each in randomized order with a 

30s inter-trial-interval. To further observe differences in conditioned inhibition, a 

summation index was calculated as time freezing to AB divided by time freezing 

to A multiplied by 100.  

 

3.3 Results 

3.3.1 Experiment 1: Fear Discrimination  

 
Females displayed discrimination earlier in conditioning than males 

(Figure 3.1A). A 3-way ANOVA of sex by cue by trial block (5 blocks of 3 cue 

trials) revealed a main effect of trial block, F (4, 472) = 40.579, p < 0.001, and 

interactions of trial by sex, F (4, 472) = 3.491, p = 0.008, and cue by trial, F (4, 

472) = 45.474, p < 0.001, but no significant interaction of trial block by cue by sex 

interaction, F (4, 473) = 1.048, p = 0.382. Post hoc comparisons showed that 

females significantly discriminated between the A and B in the first trial block (p = 

0.007), while males failed to show to this discrimination until the second trial 

block (p = 0.769 on trial block 1; p = 0.004 on trial block 2). Females also 

displayed significantly reduced freezing to A compared to males on trial blocks 3, 

4, and 5 (ps = 0.039, 0.018, 0.003, respectively) as well as less freezing to B 

compared to males on all trial blocks (p = 0.048 on the first trial block, ps < 0.001 

on trial blocks 2, 3, 4, and 5).  

Freezing to each cue during conditioning is summarized in Figure 3.1B. 

ANOVA revealed main effects of sex, F (1, 118) = 23.42, p < 0.0001, and cue, F 
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(1, 118) = 312.3, p < 0.0001, and a cue by sex interaction, F (1, 118) = 22.15, p < 

0.0001. Post hoc analyses showed that both sexes significantly discriminated 

between A and B, ps < 0.0001, but that females displayed significantly less 

freezing to B, p < 0.0001, compared to males. A discrimination index was 

calculated (freezing to B / freezing to A x 100) as a measure of animals’ ability to 

discriminate between the A and B (Figure 3.1C). Males and females showed 

significantly different discrimination indices, t (118) = 6.343, p < 0.0001, with 

females showing more discrimination compared to males.  

Acquisition of fear discrimination was established in 3 cohorts of animals. 

Cohort 1 are animals that received fear discrimination recall (n = 24; Figure 3.2), 

cohort 2 received conditioned inhibition recall testing (n = 12; Figure 3.3) and 

cohort 3 were animals run through the same conditioning procedures with all the 

same procedures, but do not have recall data included here (n = 24). The sex 

difference observed in fear discrimination acquisition was consistent across all 

cohorts of animals (Figure 3.1D). Analysis of discrimination indices from each 

cohort found a main effect of sex, as expected, F (1, 114) = 37.48, p < 0.0001. 

Importantly, there was no main effect of cohort, F (2, 114) = 2.325, p = 0.1024, 

and no sex by cohort interaction, F (2, 114) = 0.072, p  = 0.93. Post hoc analyses 

revealed that males and females had significantly different discrimination indices 

in cohort 1, p < 0.0001, cohort 2, p = 0.01, and cohort 3, p = 0.0008. Additional 

analyses by acquisition cohort are provided in the published manuscript (Foilb et 

al., 2018). 
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Figure 3.1. Sex differences in fear expression and discrimination during AX+/BX- 
conditioning. (A) Freezing averages (±SEM) to A and B across blocks of three trials in 
conditioning. Females significantly discriminated between A and B within the first trial block of 
each cue (p = 0.001), while males did not make this discrimination until the second trial blocks 
(p = 0.002). Females also displayed less freezing to B than males on all trial blocks (ps < 
0.05). *significant difference between A and B within sex, +significant difference between 
males and females to B, and #significant difference between sexes on A. (B) Mean (+SEM) 
freezing to A and B cues during conditioning. Both males and females significantly 
discriminated between A and B (ps < 0.0001), but females displayed significantly less average 
freezing to B (p < 0.0001) compared to the males. (C) Mean (and individual replicates) 
discrimination indices (time freezing to B / time freezing to A x 100) during conditioning.  
(D) Mean (±SEM, individual replicates) discrimination indices during conditioning of females 
and males in each of the 3 cohorts. Females displayed significantly lower discrimination 
indices compared to males, indicating more discrimination, in all 3 cohorts, ps < 0.05. * p < 
0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Sex differences were also evident in fear discrimination recall tests. An 

ANOVA of trials across the test (Figure 3.2A), revealed a main effect of trial, F (9, 

414) = 14.856, p < 0.001, and cue by trial interaction, F (9, 414) = 3.333, p = 

0.001, but no significant interactions of sex by trial, F (9, 414) = 0.421, p = 0.924, 

or cue by trial by sex, F (9, 414) = 1.668, p = 0.095. Females significantly 

discriminated between A and B on the first trial (p <0.001), and continued this 

level of discrimination throughout the test. Males also displayed immediate 

discrimination on trial 1 (p = 0.004) and matched the discrimination level of the 

females throughout the remainder of the test (p < 0.001). While females’ 

response to B was stable across trials, males reduced freezing on B 

presentations 7, 8 and 9 compared to trial 1 (ps = 0.004, 0.003, and < 0.001, 

respectively), as well as on trial 10 compared to trials 2 (p = 0.048) and 3 (p = 

0.037), and on A presentations 8, 9 and 10 compared to presentation 4 (ps = 

0.034, 0.03 and 0.007, respectively). Males and females significantly differed in 

their response to A on trials 1 (p = 0.019), 6 (p = 0.038), 7 (p = 0.019), 8 (p = 

0.049), and 9 (p = 0.020) and showed even more differential responding to B, 

with significantly different freezing on trials 1 to 6 and trial 8 (ps < 0.032).  

Figure 3.2B shows average freezing to each cue during recall. ANOVA 

revealed main of effects of cue, F (2, 92) = 93.01, p < 0.0001, sex, F (1, 46) = 

40.33, p < 0.0001, and cue by sex interaction, F (2, 92) = 12.74, p < 0.0001. Post 

hoc analyses showed that females continued to freeze significantly less than 

males to B (p = 0.0003), as well as to the baseline context at the start of the test 
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(p < 0.0001). Females froze significantly less to context than all other cues (ps < 

0.01) and froze significantly less to B than to A (p < 0.0001). Males also froze 

significantly less to B and baseline context compared to A (ps < 0.0001), but 

freezing to B and baseline context did not significantly differ (p = 0.641). This sex 

by cue interaction is summarized by significant difference in discrimination index 

(Figure 3.2C, t(46) = 3.63, p = 0.0007).  

To determine if the sex differences in cue response were not simply 

artifacts of differential baseline fear, we subtracted baseline freezing from 

average freezing to each cue (Figure 3.2D). Here we found main effects of cue, F 

(1, 46) = 248.6, p < 0.0001, sex, F (1, 46) = 14.05, p = 0.0005, and a cue by sex 

interaction, F (1, 46) = 8.692, p = 0.005. These differences indicate that the sex 

difference in discrimination is not only due to the sex difference in baseline fear, 

but that there is a general sex difference in discrimination between the CS and 

the conditioning context. 
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Figure 3.2. Sex differences in fear discrimination recall. (A) Mean freezing (±SEM) to A and B 
across each of the 10 cue presentations in testing. Both sexes significantly discriminated between A 
and B on all trials (significance not marked on graph). Females displayed significantly less freezing to 
B compared to males at the start of the test, while males reduced freezing to B throughout the test. 
+significant difference between sexes to B (ps < 0.05), and #significant difference between sexes to A 
(ps < 0.05).  (B) Average freezing (+SEM) to baseline context exposure, A and B during the recall test. 
Females displayed significantly less freezing to the baseline context and B compared to males. There 
was no sex difference in freezing to A. (C) Mean (individual replicates) discrimination indices in recall 
testing. Females have a significantly lower discrimination index compared to males. (D) Average 
freezing (+SEM) to A and B with baseline freezing subtracted. When comparing A to B freezing, males 
and females showed significant discrimination (A vs. B ps < 0.0001), while females showed greater 
freezing to the baseline subtracted A and baseline subtracted B compared to males (p < 0.0001 and p 
< 0.05, respectively).* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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3.3.2 Experiment 3.2: Conditioned Inhibition of Fear 

Conditioned inhibition of fear was assessed in summation tests. On test 1, 

analysis on average freezing to each cue (Figure 3.3B) in a 4 (cue) by 2 (sex) 

ANOVA revealed a significant effect of cue F (3, 66) = 30.06, p < 0.0001, with 

significantly reduced freezing to B compared to the A and AB (ps < 0.0001) and 

significantly increased freezing to A and AB compared to baseline context (ps < 

0.0001). Animals did not discriminate between A and AB in this test (p = 0.33). 

There was no main effect of sex, F (1, 22) = 0.1599, p = 0.6936, or cue by sex 

interaction, F (3, 66) = 0.8828, p = 0.4547. The lack of sex difference in A/B 

discrimination is likely the result of differences in cue presentation in the 

summation test compared to the recall test. Specifically, the first presentation of 

the B cue in the summation test is as a compound with A. In test 5 (Figure 3.3C), 

the same analysis revealed a significant main effect of cue, F (3, 66) = 35.72, p < 

0.0001, and a significant cue by sex interaction, F (3, 66) = 3.15, p = 0.0307, but 

no main effect of sex, F (1, 22) = 0.1521,p = 0.7003. Animals displayed greater 

fear to A compared to the baseline context, B and AB (ps < 0.0001). Animals also 

froze less to the B compared to the AB and baseline context (ps < 0.05).  

Comparing discrimination indices across all 5 summation tests (Figure 

3.3D) with a 5 (test day) by 2 (sex) ANOVA revealed a main effect of test day, F 

(4, 88) = 5.603, p = 0.0005, but no main effect of sex, F (1, 22) = 1.328, p = 

0.2615, and no test day by sex interaction, F (4, 88) = 0.9538, p = 0.4371. 

Discrimination between A and B was significantly improved on tests 3, 4, and 5 
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compared to test 1 (ps < 0.05). A summation index was calculated as freezing to 

AB / freezing to A x 100 as a measurement of conditioned inhibition (Figure 

3.3E). ANOVA revealed a main effect of test day, F (4, 88) = 14.9, p < 0.0001, 

but no main effect of sex, F (1, 22) = 1.949, p = 0.1767, and no test day by sex 

interaction, F (4, 88) = 1.751, p = 0.1460. Rats showed greater inhibition on tests 

4 and 5 compared to tests 1, 2, and 3 (ps < 0.01). 

The difference in baseline context freezing that was observed in 

Experiment 1 was present in this smaller sample as a trend, but did not reach 

significance. This may reflect an effect of different estrous status on the test day 

between experiments, or sampling error and the intrinsic variability in this 

dependent measure, which is assessed in Figure 3.4. A two-way ANOVA found a 

main effect of sex, F (1, 68) = 16.38, p < 0.001, and an experiment by sex 

interaction, F (1, 68) = 5.028, p = 0.0282, but no main effect of experiment, F (1, 

68) = 0.1098, p = 0.7414. Although freezing levels changed in males and females 

between Experiments 1 and 2, the mean values did not differ from each other (p 

= 0.141 and p = 0.3294, respectively; Figure 3.4A). Analysis of baseline freezing 

by sex in test 1 of Experiments 1 and 2 combined, revealed that males and 

females displayed significantly different baseline freezing across the two tests, t 

(70) = 4.975, p < 0.0001. Together these analyses show that despite differences 

in significance at baseline freezing in Experiments 1 and 2, the variability of 

freezing and overall pattern of reduced baseline freezing in females was 

consistent throughout both recall experiments. 
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Figure 3.3. Sex differences were not evident in conditioned inhibition of fear. (A) Timeline 
of experiment where recall testing (T) occurred the morning after each conditioning session (C). 
(B) Average freezing (+SEM) to baseline context exposure, A, AB and B during summation test 
1. Animals significantly discriminated between A and B (p < 0.0001), but did not discriminate 
between A and AB (p = 0.33). (C) Average freezing (+SEM) to baseline context exposure, A, AB 
and B during recall test 5 on day 6. Animals significantly discriminated between all cues, with 
reduced freezing to AB and B compared to A (ps < 0.0001). (D) Discrimination indices (±SEM) 
across each of the 5 tests. While there was no sex difference on any test day, discrimination 
improved on tests 3 (p < 0.05), 4 and 5 (ps < 0.01) compared to tests 1 and 2. (E) Summation 
indices (±SEM) across each of the 5 tests. There were no sex difference in summation, but 
improved inhibitory summation on tests 4 and 5 compared to tests 1, 2 and 3 (ps < 0.01). * p < 
0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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3.4 Discussion 

 
We observed a marked difference in fear discrimination between male and 

female rats. Differential freezing to the danger A cue and safe B cue was greater 

in females compared to males during the initial conditioning and in a recall test 

one day later. Furthermore, females exhibited greater initial discrimination 

between the context and the discrete cues. These results are consistent with 

recent findings (Day et al. 2016), and we were able to replicate our findings in 

Figure 3.4. Baseline freezing in Experiments 1 and 2. (A) Mean (individual replicates) 
baseline freezing in recall tests of Experiment 1 and the first test of Experiment 2. While 
baseline freezing levels changed between Experiments 1 and 2, the mean values for each sex 
did not significantly differ from each other. (B) Mean (individual replicates) baseline freezing by 
sex in test 1 of Experiments 1 and 2 combined. Males and females displayed significantly 
different baseline freezing across the two tests, t (70) = 4.975, p < 0.0001.  
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discrimination acquisition, as presented in Chapter 4. Although the sex 

differences we observe are in contrast to studies on fear discrimination in 

humans where females show less discrimination than males (Gamwell et al. 

2015; Lornsdorf et al. 2015). Females also displayed lower contextual freezing, 

consistent with several prior reports in rodents (Pryce et al. 1999; Daviu et al. 

2014; Pettersson et al. 2016; although see Keiser et al. 2017 for exception). 

Attempts to uncover the mechanisms underlying reduced contextual fear in 

females have mostly resulted in evidence to the contrary. Exploration in the 

hypothalamic-pituitary-adrenal (HPA) axis of stress response, found that females 

have a greater hormonal stress response during fear conditioning compared to 

males, despite the reduced fear expression and faster extinction rates seen in 

females (Daviu et al., 2014). Interestingly, when this difference in contextual 

freezing was subtracted from freezing to each cue in the experiments presented 

here, there was a larger difference in freezing to A, whereas the main difference 

in the uncorrected data was primarily in freezing to B. This indicates that the sex 

difference may be in discrimination per se, rather than freezing to a particular 

cue.  

The discrimination test requires that rats flexibly transition between fear 

and safe states, which may favor the inherently more active female rats (Gruene 

et al. 2015a, b). However, after several days of conditioning, females may accrue 

more fear to the safe cue (Day et al. 2016) which could manifest as a transition 

from more active behavior early in conditioning to more passive, i.e. male-like, 
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with additional conditioning and stress (Foilb and Christianson 2016) and account 

for the lack sex difference in conditioned inhibition summation tests. However, 

this outcome contrasts some of the results of Day and colleagues (2016) in which 

after repeated discrimination conditioning the safety cue failed to pass a 

retardation test of conditioned inhibition. Whether these different empirical results 

are a consequence of procedural differences or of different neural mechanism 

underlying summation and retardation phenomena remains unknown. 

The sex difference in discrimination indicates that there may be sex 

differences in the neural circuitry underlying discrimination learning. Interactions 

between the amygdala and prefrontal cortex are critical for danger/safety 

discrimination (Likhtik et al. 2014) and sexual dimorphisms observed in humans 

include sex differences in amygdala anatomy (Ruigrok et al. 2014), amygdala 

response to negative or stressful emotions (Stevens and Hamann 2012; Kogler 

et al. 2015), and amygdala functional connectivity (Lopez-Larson et al. 2011; 

Engman et al. 2016). Sex differences have been found in the rodent medial 

prefrontal cortex (Baran et al. 2010; Fenton et al. 2014; Fenton et al. 2016), a 

brain region critical to fear expression, extinction and discrimination (Sotres-

Bayon and Quirk 2010; Milad et al. 2014; Sangha et al. 2014). Similarly, 

basolateral amygdala projecting neurons of the infralimbic region of the medial 

prefrontal cortex appear to differently mediate fear expression in males and 

females (Gruene et al. 2015b).  
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In contrast to a circuit-based substrate for sex differences in fear 

discrimination prior work regarding gonadal hormones and fear discrimination 

would predict that females in the current test would perform more poorly than 

males. The addition of estrogen did not alter discrimination in gonadectomized 

males, but prevented conditioned inhibition of fear in ovariectomized females 

(Toufexis et al., 2007). It has also been reported that estradiol replacement to 

ovariectomized rats leads to increased generalization of contextual fear (Lynch et 

al., 2013). Estrogen receptor agonists also lead to disruption of fear in both males 

and females, with increased overall fear when the estrogen receptor α, a receptor 

implicated in fear and anxiety, was agonized, but not when the β receptor, known 

to be anxiolytic, was agonized (Toufexis et al., 2007; Morgan & Pfaff, 2001; Walf, 

Rhodes, & Frye, 2004; Walf & Frye, 2005). Yet preliminary estrous testing of the 

females here showed no trend between cycle phase and ability to acquire or 

recall the safety signal, so cycle data collection was stopped in order to maintain 

equal treatment of sexes. Human literature also contrasts the existing female 

rodent data, and a report in women found estrogen levels were positively 

correlated with fear inhibition (Glover et al. 2013). This may simply suggest that 

hormone replacement studies do not completely inform the role of gonadal 

hormones on fear in regularly cycling, intact females.  

That sex differences in safety learning do not persist in conditioned 

inhibition of fear indicates that conditioned inhibition of fear occurs in a neural 

circuit that is distinguishable from the fear discrimination circuitry. Indeed, the 
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discrimination task employed here requires that rats rapidly transition between 

fear and safe states which suggests inputs that alter the output of the amygdala 

could be recruited in sex-specific ways. Sex differences in neuronal activation are 

likely to be most robust during the early phase of safety learning and future 

studies seeking to understand how the biological variable of sex shapes the 

function the fear circuitry to better inform and individualize treatments for fear 

based psychiatric diseases.  
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CHAPTER 4 

 

Neural Correlates of Safety Learning 
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4.1 Introduction 

Inappropriate expression of fear or anxiety, or fear or anxiety under 

conditions that would not normally elicit fear in a healthy individual, is a 

distinguishing characteristic of post-traumatic stress disorder (PTSD; Rauch et 

al., 2000). One case in which fear may be expressed inappropriately is in the 

presence of information indicating safety rather than danger. Accurate 

discrimination between safety and danger allows an individual to respond flexibly 

when threat is most likely to occur. In a laboratory setting with rodents, danger is 

established by presenting a neutral stimulus (the conditioned stimulus, or CS) 

paired with a mild electric shock (the unconditioned stimulus, or US). When the 

CS is later presented, it elicits fear, often observed as behavioral freezing in 

laboratory rats (Fanselow, 1980). Safety signals acquire value through 

associative learning when there is a non-zero probability of an aversive stimulus. 

Safety learning occurs more gradually than danger learning, requiring multiple 

presentations of both danger cues (A) followed by an aversive US and safety 

cues (B) indicating the absence of shock. 

Fear discrimination has been studied in laboratories across species, 

where humans, monkeys and rodents are all able to accurately discriminate 

between safety and danger (Jovanovic et al., 2005; Winslow et al., 2008; Myers 

and Davis, 2004). Yet difficulty utilizing learned safety signals has been observed 

in a number of clinical PTSD studies (Jovanovic et al., 2012; Costanzo et al., 

2016; Jenewein et al., 2016). Despite the increased prevalence of PTSD in 
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females compared to males, much of the research on fear discrimination has 

focused on males (Kessler et al., 1995; Kilpatrick et al., 2013). In humans, fear 

discrimination is more sensitive to trauma history in females compared with 

males (Gamwell et al., 2015). Fear discrimination in females is also altered by 

hormonal birth control, indicating that sex hormones may play a role in sex 

differences in discrimination (Lonsdorf et al., 2015). Translational research 

regarding sex differences in rodent fear discrimination is relatively limited, but a 

burgeoning area of exploration. Reports, including work from our own lab, 

indicate greater discrimination in females compared with males, with female 

rodents able to modulate fear to a safety signal more rapidly than males (Day et 

al., 2016; Foilb et al., 2018).  

Compared to related areas of research, such as fear conditioning and 

extinction learning, there is limited work on the neural circuitry of cued fear 

discrimination. A better understanding of the neural mechanisms that underlie 

safety learning will provide critical information relevant to disorders of abnormal 

fear modulation. Based on existing information about the neural structures 

involved in fear learning and fear discrimination, there is a clear set of brain 

regions likely to be involved in safety learning; these structures are the focus of 

this work. Prefrontal regions known to be involved in the modulation of fear, 

including the prelimbic and infralimbic regions of the prefrontal cortex (PL and IL, 

respectively; Sotres-Bayon and Quirk, 2010; Sierra-Mercado et al., 2011) and the 

orbitofrontal cortex (OFC; Sarlitto et al., 2018), are likely components of fear 
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discrimination circuitry. IC is known to be a region of emotion learning and 

salience detection (for review, see Gogolla, 2017); processes closely related to 

the acquisition of safety signals. IC has also been found necessary for the stress 

mitigating effects of safety signals (Christianson et al., 2008, 2011). It is 

important to look at regions known to be involved in fear learning and expression, 

such as the basolateral amygdala (BLA; Quirk et al., 1995; Rogan et al., 1997; 

LeDoux, 2000; LeDoux, 2014), the bed nucleus of the stria terminalis (BNST; 

Campeau et al., 1997; Walker and Davis, 2008; Davis et al., 2010), and the 

central amygdala (CeA; LeDoux et al., 1988; Swanson and Petrovich, 1998; 

Maren, 2001). These regions related to fear learning and expression are of 

particular interest since there is also evidence for the involvement of these 

regions, BLA and BNST in particular, specifically in safety learning (Genud-Gabai 

et al., 2013; Sangha et al., 2013; Ostroff et al., 2010, 2012; Campeau et al., 

1997; Christianson et al., 2011). The evidence that each of these regions is 

involved in safety learning and the interconnection of these regions in ways that 

are likely meaningful to the process underlying this behavior, are elaborated on in 

the following section. Together, these brain regions may be key nodes in a brain 

wide safety learning circuit, which is the basis of this work (Figure 4.1).  
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4.1.1 Fear Modulation: Prefrontal Cortex 

The ventral medial prefrontal cortex (vmPFC) plays a critical role in the 

modulation of fear, with compelling support for fear promoting and fear inhibiting 

roles of the PL (Sotres-Bayon and Quirk, 2010) and IL (Sierra-Mercado et al., 

2011), respectively. The involvement of vmPFC in fear is mediated through 

projections from PL and IL to specific amygdala subregions, as well as inputs 

from amygdala, thalamus and hippocampus (Sotres-Bayon and Quirk, 2010). 

Structural differences in the vmPFC are also reported in PTSD populations, 

indicating that this could be a structure critical for appropriate modulation of fear 

IC 

BLA 

CeA 

Striatum 

OFC 

BNST 

vmPFC 

VH 

Figure 4.1 A hypothetical circuit for the processing of safety information. This circuit is 
the basis of the work presented here. Red regions and arrows indicate a site of danger 
processing and the projection of danger information. Green regions and arrow indicate regions 
and transferring of safety information. Purple colored regions and arrows indicate regions that 
display altered patterns of responding due to the reception of safety information. Blue regions 
indicate regions that project to the regions, which ultimately lead to behavioral outputs.  
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(Corbo et al., 2005; Etkin and Wager, 2007; Hughes and Shin, 2011). Sangha 

and colleagues (2014) looked individually at PL and IL in a fear discrimination 

paradigm. Inactivation of PL led to a reduction of freezing to the danger cue A, 

but did not alter freezing to B or AB cues compared to vehicle animals. 

Consistently, Likhtik and colleagues (Likhtik et al., 2014) observed a strong 

correlation between PL and BLA synchrony and behavioral discrimination during 

a differential inhibition task in mice. Inactivation of the IL before recall testing 

resulted in reduced freezing to A, disrupting discrimination between the A and AB 

cues (Sangha et al., 2014). Human evidence also indicates a role of vmPFC in 

fear discrimination; with increased vmPFC activation to safety cues compared to 

danger cues (Schiller et al., 2008). 

Our lab looked at the role of ventrolateral OFC (vlOFC) in fear 

discrimination since the region has been implicated in value-based decision-

making (Sul et al., 2010), as well as in switching between cognitive tasks (Wilson 

et al., 2014). OFC is also well connected for involvement in fear modulation—

receiving sensory and amygdala inputs and sending projections to IC, amygdala, 

and striatum (Ongür and Price, 2000; Price, 2007). Based on these functions and 

connectivity, we hypothesized that vlOFC would be recruited during the changes 

in behavioral freezing that occur in fear discrimination. Temporary inactivation of 

the vlOFC with muscimol before a discrimination recall test impaired 

discrimination resulting in greater fear to the safety cue B. Inactivation of vlOFC 

during acquisition of fear discrimination did not alter discrimination behavior 
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during conditioning or at later recall (Sarlitto, Foilb and Christianson, 2018). 

Despite null results of vlOFC inhibition during acquisition, it is important to note 

that mechanistic experiments on vlOFC were only performed in males. Since 

females display greater discrimination than males during conditioning, vlOFC 

may be a region of differential activation that contributes to faster discrimination 

learning in females, as it seems to be involved in the switching between 

appropriate cue responses. Others have also found that lesions of lateral OFC 

results in generalization of fear in a discrimination learning paradigm (Ray et al., 

2018). Together, the existing data indicate that the vmPFC and OFC contribute to 

different aspects of recall of both danger and safety signals. 

 

4.1.2 Danger/Safety Integration: Insular Cortex 

 Research from our lab found that posterior IC (pIC) was specifically 

involved in the acquisition of condition fear inhibition, as measured by a 

summation test (Foilb et al., 2016). IC may play a role in fear discrimination, as it 

has access to somatosensory information and is known to be involved in 

convergent responses to multisensory information (Rodgers et al., 2008). In 

terms of connectivity, pIC receives projections from vmPFC, and is bidirectionally 

connected to BLA and CeA, as well as to anterior (aIC) and medial (mIC) regions 

of IC, which also contain dense connectivity to amygdala (Shi and Cassell, 

1998a, b). While aIC and mIC were found unecessary for acquisition of 
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conditioned inhibition of fear in our previous work, these regions have not been 

explored in fear discrimination.  

 

4.1.3 Fear Learning and Expression: The Extended Amygdala 

The BLA is a critical structure for fear. It is the site of neuroplasticity for 

fear learning, and is necessary for expression of conditioned fear (Quirk et al., 

1995; Rogan et al., 1997; LeDoux, 2000). Many manipulations that prevent BLA 

excitability or plasticity—including inhibitory drugs, lesions, and optogenetic 

silencing—all interfere with the learning and later expression of conditioned fear 

(Maren et al., 1996; Cousens and Otto, 1998; Lalumiere, 2014). Therefore, safety 

signals might also utilize the BLA for both learning and recall. Many studies have 

in fact found evidence that safety signals impact neuronal responding in the BLA, 

in single unit recordings (Genud-Gabai et al., 2013; Sangha et al., 2013), as well 

as spine morphology and synapse size and strength (Ostroff et al., 2010, 2012).  

The principle outputs of the BLA that initiate and maintain fear responses are the 

CeA and the BNST. The CeA receives sensory and visceral information from the 

BLA and projects to the hypothalamus and brainstem areas responsible for the 

fear response (LeDoux et al., 1988; Swanson and Petrovich, 1998; Maren, 2001). 

Redundancy in the output circuitry allows for expression of fear in the absence of 

CeA functioning via BLA projections to BNST (Campeau et al., 1997; Walker and 

Davis, 2008; Davis et al., 2010). Quantification of neural activation after feature 

negative learning, where a safe cue precedes the danger cue on non-reinforced 



	 111 

trials, found that safety trials led to activation in the BNST (Campeau et al., 

1997). Conversely, in a backwards conditioning paradigm, where the safety cue 

signals the end of shock, leads to reduced activation of the BNST, without effect 

on the CeA (Christianson et al., 2011). These differences are most likely due to 

the different procedures used, as feature negative and backwards conditioning 

may engage different neural circuitries. BNST efferents are very similar to those 

of the CeA and are involved in the sustained expression of fear. BNST also 

receives dense projections from CeA and IL (Hurley et al., 1991; Dong et al., 

2001; Walker and Davis, 2008). Safety signals, therefore, likely alter the 

expression of fear through a circuit involving the BNST. Nonetheless, looking at 

CeA and BNST will lead to a better understanding of how safety signals are 

processed.  

 

4.1.4 Sex Differences 

The existing work on the neural mechanisms underlying acquisition and 

retrieval of safety cues has been done entirely in males. With the behavioral 

evidence that males and females likely differ in fear discrimination paradigms, it 

is imperative that mechanistic differences underlying this behavior are explored 

across both sexes. Biological sex is a significant factor in fear-based psychoses 

(Shansky, 2015; Shansky and Woolley, 2016). Understanding the neurological 

differences that underlie sex differences in fear discrimination will allow for a 

more comprehensive view of how biological sex impacts an individual’s health. 
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Many brain regions of interest are known to be sexually dimorphic. Stress and 

sex-related hormones impact PFC in sex-specific ways (Farrell et al., 2015, 

2016). Sex differences in both vmPFC and amygdala have been shown to play a 

role in fear learning and extinction (Zeidan et al., 2011; Gruene et al., 2015). 

BNST is highly sexually dimorphic with larger volume in males in both rodents 

and humans, which has been hypothesized to be related to consistently observed 

sex differences in contextual fear (for review, see Goode and Maren, 2017). 

These structures are also potential mediators of the behavioral sex difference 

observed in fear discrimination.   

Further investigation into sex differences in safety learning may explain 

why more women than men are diagnosed with PTSD, and address the inability 

of individuals with PTSD to properly inhibit fear responses – particularly if the 

mechanisms in females differ from those in males (Jovanovic and Norrholm, 

2011; McLean et al., 2011; Lebron-Milad et al., 2012). This work aims to more 

thoroughly examine sex differences in neural mechanisms underlying safety 

learning; steps critical to progress in the treatment of PTSD and other anxiety 

disorders with impairments in fear modulation.  

 

4.1.5 Goal of this Work 

Here we explore the brain regions involved in acquisition of fear 

discrimination in males and females using Fos as a marker of neural activation. 

Quantifying Fos, the protein product of immediate early gene c-fos, which is 
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induced in response to a large range of stimuli, is widely used as a proximate 

measure of a neuron’s recent activity (Dragunow and Faull, 1989; McReynolds et 

al., 2018). Since the neural basis of fear discrimination is largely unknown, we 

compare fear discrimination neural activation patterns to animals that are not 

given a safety cue (Fear Only group) and to animals that are presented the 

conditioning stimuli but are never shocked (Control group). This approach allows 

for observation of brain regions that may be activated specifically due to fear 

discrimination compared to fear learning without safety information or the sensory 

experience of cue exposure with no fear-related learning. This approach makes 

this study particularly impactful since it takes into consideration potential sex 

differences in neural activity underlying the acquisition of fear discrimination, as 

well as activity in brain regions that distinguish fear discrimination learning from 

fear learning or no learning.  

We analyzed Fos in several ways to 1) test if fear discrimination 

conditioning differentially activates regions compared to fear conditioning and 

controls, 2) test for potential sex differences in Fos levels, 3) to correlate regional 

Fos with discrimination ability, and 4) to begin to characterize how fear 

discrimination alters the functional connectivity within the neural regions of 

interest. 
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4.2 Materials And Methods 

4.2.1 Animals 

Rats were obtained from Taconic Biosciences (Hudson, NY). Males and 

females were weight-matched, arriving at 200-250g, and housed in same-sex 

pairs in plastic tube cages with free access to food and water. Male and female 

pairs were housed in the same colony room, where they were kept on a 12 hour 

light/dark cycle. All animals had 7 days to acclimate to colony housing before any 

experimental procedures took place. Each of 3 experimental groups included 8 

male and 8 female rats. All experimental procedures were reviewed and 

approved by the Boston College Institutional Animal Care and Use Committee. 

 

4.2.2 Apparatus  

 
All behavioral conditions were performed in the same context: a 15 x 12 x 

27in (L x W x H) light and sound-attenuating chamber with a fan for ventilation 

and background noise (~55dB) housed a 10 x 11 x 6in (L x W x H) chamber 

made of black plastic with wire mesh lids with a stainless steel grid floor. A 1.2 

mA, 0.5s scrambled foot shock was delivered via shocker Model H13-15, 

Coulbourn Instruments. Digital video cameras (Model VX-5000, Microsoft, 

Redmond, VA) were used to record behavior, with infrared blocking filters 

removed. Infrared LEDs illuminated the chambers, allowing for video observation 

of freezing as a behavioral measure of fear, and detected with ANY-Maze 
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computer software (version 4.99, Stoelting, Wood Dale, IL). Stimuli were 

delivered through a flashing white LED light, 264.0 Lux, 20ms on/off, and a white 

noise pip was 10ms duration, 3 Hz interval, 75 dB. Assignment of stimuli as 

danger (A) or safe (B) was counterbalanced, and no effect of cue was observed, 

as reported previously (Foilb et al., 2018; Chen, Foilb and Christianson, 2016; 

Foilb and Christianson 2016; Foilb et al. 2016; Sarlitto, Foilb and Christianson, 

2018).  

 

4.2.3 Behavioral Conditions 

Conditioning for the Discrimination group was adapted from (Myers and 

Davis, 2004) and used previously (Chen et al., 2016; Foilb and Christianson, 

2016; Foilb et al., 2016, 2018; Sarlitto et al., 2018), AX+/BX- fear discrimination 

conditioning consisted of 15 presentations each of shock-paired (A+) or unpaired 

(B-) cues, for a total of 45 minutes in the session. Each trial was signaled by a 

common element (X), a 5 s, 1 kHz tone (75 dB) immediately followed by a 15 s 

discrete auditory (white noise pips) or visible (flashing LED light) CS. Trials were 

presented in a quasi-random order, so that no cue occurred more than twice in 

succession. There was a fixed 70 s inter-trial-interval. Assignment of the light or 

pip as A or B cues was counterbalanced in each experiment, and equally 

represented in each sex. The Fear Only condition consisted of 15 presentations 

of the light or PIP (counterbalanced), which co-terminated with shock on the 

same AX+ trials as the AX+/BX- animals. BX- trials were omitted resulting in an 
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extended inter-trial-interval so that the conditioning sessions were equal length to 

the AX+/BX- session. The Control condition received the same auditory and 

visual stimuli as in AX+/BX- fear discrimination conditioning, but no shocks were 

presented.  

 

4.2.4 Estrous Phase Testing 

 Immediately prior to perfusion and tissue collection, all females were 

tested for estrous phase via vaginal smear with sterile saline. Estrous phase was 

verified on unstained slides at 10X magnification. Phase verification and 

procedure were performed as in Cora et al. (2015). 

 

4.2.5 Tissue Collection and Fos Immunohistochemistry Procedures 

After conditioning, rats were moved to a quiet room, where they remained 

undisturbed for 1 hour. One hour after conditioning, all animals were perfused 

with 0.01M heparinized phosphate buffered saline (PBS) followed by 4% 

paraformaldehyde. Brains were dissected and post-fixed in 4% 

paraformaldehyde at 4°C for 24h before being transferred to 30% sucrose. Brains 

were then sliced into 40μm sections at -20°C and stored in cryoprotectant-filled 

well plates at 4°C. Immediate early gene product Fos was identified via 

immunohistochemistry (IHC) as a neural marker of activation. 

Fos was visualized as previously, (Rogers-Carter et al., 2018). Free 

floating sections were blocked with 2% normal donkey serum in PBS-T (0.01% 
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Triton-X100) and incubated overnight in rabbit anti-c-fos antibody at 1:5000 

(Millipore, ABE457). The following morning, sections were washed and incubated 

in biotinylated donkey anti-rabbit secondary antibody at 1:200 (Jackson 

ImmunoResearch). Secondary was visualized using the avidin-biotin complex 

method (ABC Elite Kit, Vector Labs) with chromogen (Vector SG Peroxidase 

Substrate Kit, Vector Laboratories). At the completion of the reaction, slices were 

floated onto glass slides, dehydrated, cleared, coverslipped with Permount, and 

left to dry for 48 hours. Sections were imaged at 10x using a Zeiss Axioimager Z2 

light microscope with an AxioCam HRc digital camera. Fos positive cells were 

quantified within a standardized size area for each region based on atlas images 

(Paxinos and Watson, 2007). The cell counter plug-in on ImageJ software was 

used to automate Fos quantification, and parameters were verified by manual cell 

counts. For each brain region of interest, 2 sections per animal were analyzed.  
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4.2.6 Brain Regions of Analysis 

Brain region Location from Bregma (mm) 
 

Area analyzed (μm2) 

PL 3.72 to 2.76  570 

IL 3.72 to 2.76  460 

vlOFC 4.20 to 3.00 570 

aIC 4.20 to 3.00 570 

mIC 0.48 to -0.24  570 

pIC -1.80 and -2.80 570 

BLA 2.04 to -3.36  570 

CeA 2.04 to -3.36  190 

BNST 0.48 to -0.24 230 

Table 4.1 Regions of Fos Analysis  

 

4.2.7 Data Analysis 

Freezing was analyzed as percent time freezing during the relative cue 

and as percentage during the entire 45-minute session. A discrimination index 

was calculated as freezing to B divided by freezing to A times 100, so that a 

value of 100 reflected no discrimination between A and B, and values less than 

100 indicated reduced fear to B compared to A, as previously (Foilb et al., 2018). 

Discrimination index was used in correlation analysis with Fos data to explore 

how well neural activation predicts discrimination.  
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Group differences in behavioral freezing and Fos were evaluated by 

analyses of variance (ANOVA) with sex and condition as a between-subjects 

factors and cue as a within-subjects factor. Main effects and interactions were 

deemed significant with p < 0.05 and between-subjects post hoc comparisons 

were made with Sidak’s correction. Correlations between Fos and discrimination 

index were analyzed with Pearson’s r, as were correlations between Fos in 

various brain regions. Discrimination index and Fos counts in each brain region 

were checked for outliers with Grubb’s test with alpha set to 0.05. All analyses 

were made using GraphPad Prism 8.  

Due to the lack of sex differences in our analyses of average Fos per 

region, region-to-region correlations were only performed looking at all animals 

per condition, both sexes combined. Notably, we did not correct for multiple 

comparisons in looking at correlations between regions. Since these analyses 

were largely exploratory, we chose not to correct for multiple comparisons, to 

allow for the maximum number of caparisons with the potential for more 

discovery. However making corrections would alter our conclusions and 

interpretations throughout the chapter, which is important to note as the 

implications of these findings are discussed. Using Bonferroni correction, a 

conservative approach, only p-values less than 0.0014 would be considered 

significant findings in the correlation matrices of regions of interest. This would 

make only the correlation between PL and IL in the fear condition significant (p = 

0.0004). Using a false discovery rate (FDR) correction of 5%, a less conservative 
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approach, would uphold only the most significant findings of each correlation 

matrix (Burger, 2018). Using this correction, only the correlations between PL/IL 

and mIC/BLA would remain significant in the Discrimination condition. In the Fear 

Only condition, correlations between PL/IL, mIC/vlOFC, and PL/vlOFC remain 

significant. And finally, in the Control condition, PL/IL and IL/vlOFC correlations 

remain significant, while the correlation between PL/vlOFC falls just outside of 

the accepted significant values. We did not correct for multiple comparisons to 

maximize hypotheses for future directions and combat a somewhat 

underpowered study for these levels of analysis (elaborated on further in the 

discussion). Nonetheless, interpretations made using this statistical approach 

should be made with caution.  

 

4.3 Results 

4.3.1 Behavioral Results  

4.3.1.1 AX+/BX- Fear Discrimination Conditioning  

 One male rat from the Discrimination Condition, with significantly greater 

fear to the B cue compared to the A cue, was identified as an outlier and 

excluded from all analyses. Sex differences were apparent in AX+/BX- fear 

discrimination conditioning, as previously (Foilb et al., 2018). Looking at average 

freezing to each cue during AX+/BX- fear discrimination conditioning (Figure 

4.2A), a two-way ANOVA revealed main effects of both cue, F (1, 13) = 52.64, p 

< 0.0001, and sex, F (1, 13) = 12.42, p = 0.0037, but no cue by sex interaction, F 
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(1, 13) = 0.74, p = 0.40. Post hoc analyses showed that males (n = 7) and 

females (n = 8) displayed significantly different freezing to both cues A, p = 0.02, 

and B, p  = 0.003. Both males and females significantly discriminated between A 

and B cues, p = 0.0015 and p < 0.0001, respectively. To better compare 

discrimination behavior, a discrimination index was calculated as freezing to B 

divided by freezing to A multiplied by 100, where a discrimination index of 100 

indicates equal freezing to A and B, and lower discrimination indices represent a 

greater reduction in fear to safe cue B. Females displayed significantly lower 

discrimination index, representative of greater discrimination, compared to males, 

t (13) = 2.58, p = 0.023 (Figure 4.2B). This trend was evident early in 

conditioning. A 3-way within subjects ANOVA of sex by cue by trial block (5 

blocks of 3 cue trials) identified main effects of cue, F (1,13) = 52.64, p < 0.0001, 

trial block, F (4, 52) = 5.4, p = 0.001, sex, F (1,13) = 12.42, p = 0.0037, and a 

significant trial by sex interaction, F (4, 52) = 2.69, p = 0.04 (Figure 4.2C). Post 

hoc comparisons revealed that females significantly discriminated between A and 

B cues on trial blocks 2 and 3, ps < 0.02, while males did not significantly 

discriminated between A and B on any trial blocks. Males and females displayed 

significantly different freezing to B on trial block 2, p = 0.016. To investigate a role 

of estrous phase, we performed a one-way ANOVA, which revealed no main 

effect of cycle phase on discrimination, F (3, 4) = 1.85, p  = 0.28. Importantly, 

since cycle phase was not the main focus of this work, this analysis is 

underpowered, with only 1 to 3 animals in each of the 4 cycle phases. 
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 Figure 4.2 Sex differences in fear discrimination behavior. (A) Mean (and individual 
replicates) freezing to A and B cues during AX+/BX- fear discrimination conditioning. Both males 
and females significantly discriminated between A and B (significance not marked, ps < 0.0015). 
Females froze significantly less than males to both A (p = 0.02) and B (p = 0.003). (B) Mean 
(and individual replicates) discrimination indices (time freezing to B / time freezing to A x 100) 
during conditioning. Females had a significantly reduced discrimination index compared to 
males (p = 0.023). (C) Freezing averages (±SEM) to A and B across blocks of three trials in 
conditioning. Females significantly discriminated between A and B in trial blocks 2 and 3 (ps < 
0.02), while males did not significantly discriminate on any trial blocks. Females also displayed 
less freezing to B than males on trial block 2 (p = 0.016). *significant difference between A and B 
within sex, +significant difference between males and females to B. 
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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4.3.1.2 AX+ Fear Conditioning   

In the Fear Only condition, a two-tailed t-test comparing males (n = 8) and 

females (n = 8) average freezing to the danger cue A found trending, but not 

significant differences between males and females, t (14) = 2.07, p = 0.06, which 

is similar to the effect found on cue A in the Discrimination condition (Figure 

4.3A). Despite the variation of fear in females, this did not appear to depend on 

estrous phase. No females in the fear condition were in estrus. Comparing fear to 

A in females in proestrous, diestrus, and metestrus cycle phases in a one-way 

ANOVA, there was no main effect of estrous phase, F (2, 5) = 0.31, p = 0.75. 

Freezing to A cue presentations during conditioning across trial blocks, as in the 

Discrimination condition, a 2-way ANOVA of sex by trial block found a main effect 

of trial block, F (4, 56) = 5.47, p = 0.0009, but no significant main effect of sex, F 

(1, 14) = 4.47, p = 0.053, and no sex by trial block interaction, F (4, 56) = 0.81, p 

= 0.53 (Figure 4.3B).  Post hoc analyses showed significantly different freezing 

during trial blocks 1 (p = 0.0004), 4 (p = 0.024), and 5 (p = 0.025) compared to 

trial block 2, where freezing levels peaked.  
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Figure 4.3 Fear conditioning behavior. (A) Mean (with individual replicates) fear to danger 
cue A for animals that underwent AX+ Fear Conditioning. Males and females did not 
significantly differ in freezing to A (p = 0.06). (B) Mean (±SEM) to A across blocks of three 
trials in conditioning. Freezing was significantly different in trial blocks 1, 4 and 5 compared to 
trial 2 (ps <0.025). * p < 0.05, *** p < 0.001 
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4.3.1.3 All Behavioral Conditions 

 Analysis of freezing time during the 45 minute conditioning session for all 

behavioral conditions, a 2-way ANOVA found main effects of condition, F (2, 41) 

= 131.1, p < 0.0001, and sex, F (1, 41) = 8.36, p = 0.006, but no condition by sex 

interaction, F (2, 41) = 1.42, p = 0.25 (Figure 4.4). As expected, post hoc 

analyses revealed significantly increased freezing in Fear Only and 

Discrimination conditions compared to Control animals (ps < 0.0001). This result 

indicates that our Control animals did not express freezing to the cues or 

conditioning context. Males and females significantly differed in overall time 

freezing in the Discrimination condition, p = 0.015, but not in Fear Only or Control 

conditions, ps > 0.05. This further supports the importance of exploring sex 

differences in discrimination learning.  
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Figure 4.4 Freezing behavior in all conditions. Mean (and individual replicates) 
percent time freezing during the entire 45 minute conditioning session for all behavior 
conditions. Control animals froze significantly less than both Fear Only and 
Discrimination animals (ps < 0.0001). In the Discrimination condition, females 
displayed less total freezing time compared to males (p = 0.015).  
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4.3.2 Fos Results 

 

Brain 
Region 

Condition Sex Interaction 

PL F (2, 40) = 8.66*** F (1, 40) = 1.14 F (2, 40) = 0.23 

IL F (2, 40) = 4.85* F (1, 40) = 0.08 F (2, 40) = 0.41 

vlOFC F (2, 39) = 0.97 F (1, 39) = 1.24 F (2, 39) = 0.23 

aIC F (2, 41) = 1.68 F (1, 41) = 0.16 F (2, 41) = 1.34 

mIC F (2, 40) = 3.54* F (1, 40) = 0.0009 F (2, 40) = 0.73 

pIC F (2, 41) = 1.70 F (1, 41) = 0.65 F (2, 41) = 1.68 

BLA F (2, 41) = 9.02*** F (1, 41) = 1.46 F (2, 41) = 0.79 

CeA F (2, 41) = 19.64**** F (1, 41) = 0.017 F (2, 41) = 2.36 

BNST F (2, 39) = 13.56**** F (1, 39) = 6.59* F (2, 39) = 0.53 

Table 4.2 Brain Region Fos by Condition and Sex. Results of a 2 (sex) by 3 (condition) 
ANOVA of average Fos counts for each brain region. Regions in bold represent significant main 
effects. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 
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Brain 
Region 

All Animals Female Males 

PL r = -0.47, p = 0.077# r = -0.21, p = 0.617 
 

r = -0.65, p = 0.116 
 

IL r = -0.37, p = 0.174 r = -0.40, p = 0.329 r = -0.40, p = 0.374 

vlOFC r = 0.069, p = 0.808 r = 0.15, p = 0.727 r = 0.16, p = 0.739 

aIC r = 0.27, p = 0.340 r = -0.13, p = 0.758 r = 0.019, p = 0.968 

mIC r = -0.14, p = 0.631 r = -0.39, p = 0.342 r = 0.36, p = 0.433 

pIC r = -0.29, p = 0.290 r = -0.25, p = 0.552 r = 0.19, p = 0.689 

BLA r = -0.06, p = 0.837 r = 0.24, p = 0.567 r = 0.30, p = 0.512 

CeA r = -0.59, p = 0.019* r = -0.63, p = 0.091# r = -0.50, p = 0.256 

BNST r = 0.13, p = 0.659 r = -0.65, p = 0.084# r = 0.11, p = 0.843 

Table 4.3 Brain Region Fos and Discrimination Correlations. Pearson’s r correlation (and 
corresponding p-value) between brain region and discrimination index across all animals in the 
Discrimination condition, and by sex. Regions in bold represent significant correlations. # p < 0.1 
(trending), * p < 0.05 (significant). 

 

4.3.2.1 Prefrontal Cortex 

4.3.2.1.1 PL 

One female in the Control condition was not analyzed for PL Fos due to 

damaged brain slices. Therefore, analysis of PL Fos included: Control Females 

(n = 7), Control Males (n = 8), Fear Only Females (n = 8), Fear Only Males (n = 

8), Discrimination Females (n = 8), Discrimination Males (n = 7). Analysis of PL 

Fos revealed a main effect of condition, but no main effect of sex or sex by 

condition interaction (see Table 4.2). Post hoc comparisons found that PL Fos 

was significantly increased in Fear Only (p = 0.023) and Discrimination (p = 
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0.0002) conditions compared to Control animals, while Fos in Fear Only and 

Discrimination conditions did not significantly differ, but was trending toward 

significance (p = 0.07), with increased Fos in the Discrimination condition 

compared to Controls (Figure 4.5B). Examining the Discrimination condition more 

closely, we aimed to uncover if Fos in any brain region of interest directly 

correlated with animals’ ability to discrimination between A and B cues, as 

measured by the discrimination index. Pearson r correlation was calculated 

between discrimination index and PL Fos (Table 4.3). Across all Discrimination 

animals, PL Fos and discrimination index trended toward a significant correlation 

(p = 0.077), where there were higher levels of Fos in PL in animals with lower 

discrimination indices – demonstrating greater discrimination (Figure 4.5C). 

Representative PL Fos from each condition is displayed in Figure 4.6. 

 

4.3.2.1.2 IL 

As in PL, brain sections from one female from the Control condition was 

unable to be analyzed for IL Fos. Analysis of average IL Fos revealed a main 

effect of condition, but no main effect of sex or sex by condition interaction (Table 

4.2), with reduced Fos in Control animals compared to both Fear Only (p = 0.04) 

and Discrimination (p = 0.004) conditions (Figure 4.5E). There was no significant 

difference between Fear Only and Discrimination conditions (p = 0.32). Pearson r 

correlation did not find a significant correlation between IL Fos and discrimination 
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index (Figure 4.5F; Table 4.3). Representative images of IL Fos are displayed in 

Figure 4.7. 

 

4.3.2.1.3 OFC 

 vlOFC Fos counts for one male in the Control condition was identified as 

an outlier by Grubbs’ test, alpha set to 0.05, and was therefore excluded from 

analyses. The resulting groups were as follows: Control Females (n = 8), Control 

Males (n = 7), Fear Only Females (n = 8), Fear Only Males (n = 8), 

Discrimination Females (n = 8), Discrimination Males (n = 7). Unlike the 

subregions of vmPFC, no significant main effects were found in average vlOFC 

Fos (Table 4.2; Figure 4.5H). There was also no significant correlation between 

vlOFC Fos and discrimination index (Table 4.3; Figure 4.5I). 
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Figure 4.5 Fos in Prefrontal Cortex. (A) Atlas image at +3.20 mm from Bregma with 
representative PL area of analysis in red. (B) Mean (with individual replicates) Fos positive 
cells in the PL. (C) Correlation between PL Fos and discrimination index, # indicates trending 
effect, p = 0.077. (D) Atlas image at +3.20 mm from Bregma with representative IL area of 
analysis in red. (E) Mean (with individual replicates) Fos positive cells in the IL. (F) Correlation 
between IL Fos and discrimination index. (G) Atlas image at +3.20 mm from Bregma with 
representative vlOFC area of analysis in green. (H) Mean (with individual replicates) Fos 
positive cells in the vlOFC. (I) Correlation between vlOFC Fos and discrimination index. 
#p < 0.10, *p < 0.05, **p < 0.01, p < 0.001 
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Figure 4.6 Representative PL Fos. (A) Control Females, (B) Control Males, (C) Fear Only Females, 
(D) Fear Only Males, (E) Discrimination Females, (F) Discrimination Males. 
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Figure 4.7 Representative IL Fos. (A) Control Females, (B) Control Males, (C) Fear Only Females, 
(D) Fear Only Males, (E) Discrimination Females, (F) Discrimination Males. 
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4.3.2.2 Insular Cortex  

4.3.2.2.1 aIC 

 Analysis of average Fos in aIC revealed no main effects of condition or 

sex, and no sex by condition interaction (Table 4.2, Figure 4.8B). There was also 

no significant correlation between aIC Fos and discrimination index (Table 4.3, 

Figure 4.8C). 

 

4.3.2.2.2 mIC 

 Fos measurements from mIC were not obtained for one female in the 

Control condition due to damaged brain slices. Therefore, analysis of mIC Fos 

included: Control Females (n = 7), Control Males (n = 8), Fear Only Females (n = 

8), Fear Only Males (n = 8), Discrimination Females (n = 8), Discrimination Males 

(n = 7). A main effect of condition, but no main effect of sex or sex by condition 

interaction, was found in average Fos measures in mIC (Table 4.2). Post hoc 

analysis revealed significantly different mIC Fos in Control and Discrimination 

groups (p = 0.011), but not Fear Only compared to Discrimination animals (p = 

0.2) or Controls (p = 0.16; Figure 4.8E). There was no significant correlation 

between mIC Fos and discrimination Index (Table 4.3; Figure 4.8F). 

 

4.3.2.2.3 pIC 

 As in aIC, no main effects of condition or sex, or a sex by condition 

interaction were found in analysis of average pIC Fos (Table 4.2; Figure 4.8H). 
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There were also no significant correlations between pIC Fos and discrimination 

index (Table 4.3; Figure 4.8I). 

 

 

 

 

 

Figure 4.8 Fos in Insular Cortex. (A) Atlas image at +3.20 mm from Bregma with 
representative aIC area of analysis in purple. (B) Mean (with individual replicates) Fos 
positive cells in aIC. (C) Correlation between aIC Fos and discrimination index. (D) Atlas 
image at +0.20 mm from Bregma with representative mIC area of analysis in purple. (E) 
Mean (with individual replicates) Fos positive cells in mIC. (F) Correlation between mIC 
Fos and discrimination index. (G) Atlas image at -2.56 mm from Bregma with 
representative pIC area of analysis in purple. (H) Mean (with individual replicates) Fos 
positive cells in the pIC. (I) Correlation between pIC Fos and discrimination index.  
* p < 0.05 
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4.3.2.3 Extended Amygdala 

4.3.2.3.1 BLA 

 Analysis of BLA Fos revealed a main effect of condition, but no main effect 

of sex and no sex by condition interaction (Table 4.2). Post hoc analyses showed 

significantly increased Fos positive cells in BLA in Fear Only (p = 0.001) and 

Discrimination (p  = 0.0004) conditions compared to Control animals (Figure 

4.9B). Pearson r correlation analysis of BLA Fos and discrimination index found 

no significant correlations (Table 4.3; Figure 4.9C). Representative images of 

BLA Fos are displayed in Figure 4.10. 

 

4.3.2.3.2 CeA 

 Analysis of CeA was biased towards lateral CeA (CEl) and capsular CeA 

(CEc), although medial CeA (CEm) was not specifically excluded from analysis. 

As in BLA, CeA Fos analysis revealed a main effect of condition, with 

significantly increased Fos in shocked conditions – Fear Only and Discrimination 

(ps < 0.0001) – compared to Control animals (Figure 4.9E), but no significant 

difference in Fos between Fear Only and Discrimination conditions (p = 0.43). No 

main of effect of sex or interaction of sex and condition was found in CeA Fos 

(Table 4.2). A significant correlation between CeA Fos and discrimination index 

was apparent, Pearson r = -0.59, p = 0.02, such that higher CeA Fos indicates a 

lower discrimination index, or greater discrimination between A and B cues 

(Figure 4.9F). CeA representative Fos are displayed in Figure 4.11. 
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4.3.2.3.3 BNST 

 Damaged tissue slices for BNST prevented Fos collection from one 

Control female and one Discrimination Male. Fos analysis of BNST included: 

Control Females (n = 7), Control Males (n = 8), Fear Only Females (n = 8), Fear 

Only Males (n = 8), Discrimination Females (n = 8), Discrimination Males (n = 6). 

Anterior medial BNST Fos was the only brain region of our selected regions of 

interest where we found a significant main effect of sex. There was also a 

significant main effect of condition in BNST Fos, but no sex by condition 

interaction (Table 4.2). Post hoc analyses revealed significantly less Fos positive 

cells in females of the Discrimination condition compared to males in the 

Discrimination condition (p = 0.04), but no sex differences were found in Fear 

Only (p = 0.14) or Control (p = 0.45) conditions. Between conditions, there was 

significantly increased BNST Fos in the Fear Only condition compared to 

Controls (p = 0.027) and in Discrimination compared to both the Control (p < 

0.0001) and Fear Only (p  = 0.004) conditions (Figure 4.9H). Discrimination index 

did not correlate with BNST Fos (Table 4.3). However the correlation between 

BNST Fos and discrimination in female discrimination animals trended towards 

significance (p = 0.08), such that more BNST Fos indicated a lower 

discrimination index, or greater discrimination between cues (Figure 4.9I). 

Representative BNST Fos sections are displayed in Figure 4.12. 
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Figure 4.9 Fos in the Extended Amygdala. (A) Atlas image at -2.56 mm from Bregma 
with representative BLA area of analysis in purple. (B) Mean (with individual replicates) 
Fos positive cells in BLA. (C) Correlation between BLA Fos and discrimination index. (D) 
Atlas image at -2.56 mm from Bregma with representative CeA area of analysis in blue. 
(E) Mean (with individual replicates) Fos positive cells in CeA. (F) Correlation between 
CeA Fos and discrimination index. (G) Atlas image at +0.20 mm from Bregma with 
representative anterior medial BNST area of analysis in blue. (H) Mean (with individual 
replicates) Fos positive cells in the BNST. (I) Correlation between BNST Fos and 
discrimination index. #p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 
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Figure 4.10 Representative BLA Fos. (A) Control Females, (B) Control Males, (C) Fear Only 
Females, (D) Fear Only Males, (E) Discrimination Females, (F) Discrimination Males. 
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Figure 4.11 Representative CeA Fos. (A) Control Females, (B) Control Males, (C) Fear Only 
Females, (D) Fear Only Males, (E) Discrimination Females, (F) Discrimination Males. 
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Figure 4.12 Representative BNST Fos. (A) Control Females, (B) Control Males, (C) 
Fear Only Females, (D) Fear Only Males, (E) Discrimination Females, (F) Discrimination 
Males. 
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4.3.2.4 Region Connectivity  

Correlations between brain regions were used as a measure of functional 

connectivity. Due to a lack of sex differences in all regions aside from BNST, 

functional connectivity was analyzed as a combination of all males and females 

in each condition. Correlation matrices for the Control condition (Table 4.4), Fear 

Only condition (Table 4.5) and Discrimination condition (Table 4.6) are 

represented in Figure 4.13. In all conditions, Fos in PL and IL significantly 

correlated (ps < 0.02). In the Control condition, vlOFC also significantly correlated 

with both PL and IL (ps < 0.02). The correlation between vlOFC and PL was also 

significant in the Fear Only condition (p = 0.019). IL and mIC significantly 

correlated in the Discrimination condition (p = 0.04). Fos in BLA was a 

particularly interesting because it correlated with different subregions of IC in 

each condition: with aIC in Controls (p = 0.016), with pIC in Fear Only (p = 0.032) 

and with mIC in Discrimination (p = 0.019).  

Mean correlation coefficients were calculated for each condition from the 

correlation matrices to compare functional connectivity of the brain regions 

analyzed (Wheeler et al., 2013). A one-way ANOVA comparing the mean 

correlation coefficients in Control, Fear Only and Discrimination conditions found 

no significant differences in functional connectivity across the three conditions, F 

(2, 105) = 1.115, p = 0.33.  
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Figure 4.13 Fos correlations between regions. Visualization of correlation matrices 
displayed in Tables 4.3 (A) Control, 4.4 (B) Fear Only, and 4.5 (C) Discrimination. Green 
squares indicate a positive r value, while purple values signify a negative relationship.  
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 PL IL vlOFC aIC mIC pIC BLA CeA 

PL         

IL 0.69**        

vlOFC 0.60* 0.62*       

aIC 0.27 0.01 0.42      

mIC 0.48 0.27 0.08 0.01     

pIC -0.14 -0.36 0.05 0.21 -0.22    

BLA 0.08 -0.07 0.11 0.59* 0.17 -0.08   

CeA 0.19 0.16 0.10 -0.06 0.32 -0.25 0.19  

BNST 0.01 -0.18 -0.42 -0.48 0.20 -0.19 -0.21 -0.19 

Table 4.4 Region Correlations in the Control Condition. Correlations (r values) of Fos across 
brain regions for animals in the control conditions. *p < 0.05, **p < 0.01 
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 PL IL vlOFC aIC mIC pIC BLA CeA 

PL         

IL 0.78***        

vlOFC 0.58* 0.41       

aIC 0.33 -0.04 0.14      

mIC 0.46 0.21 0.62* 0.22     

pIC 0.32 0.38 0.21 -0.32 0.42    

BLA 0.30 0.48 -0.06 -0.15 -0.02 0.54*   

CeA 0.05 -0.06 0.30 -0.02 -0.30 -0.21 -0.22  

BNST 0.004 0.27 0.25 -0.18 0.42 0.29 0.20 -0.21 

Table 4.5 Region Correlations in the Fear Only Condition. Correlations (r values) of Fos 
across brain regions for animals in the control conditions. *p < 0.05, **p < 0.01, ***p < 0.001 
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 PL IL vlOFC aIC mIC pIC BLA CeA 

PL         

IL 0.60*        

vlOFC 0.44 0.11       

aIC 0.10 0.20 -0.25      

mIC 0.30 0.53* 0.20 0.03     

pIC -0.05 -0.41 0.25 -0.41 0.08    

BLA 0.16 0.23 0.04 -0.05 0.59* 0.10   

CeA 0.24 0.39 0.15 -0.26 0.26 0.26 0.43  

BNST 0.09 0.40 -0.002 0.52 0.51 -0.21 0.29 0.13 

Table 4.6 Region Correlations in the Discrimination Condition. Correlations (r values) of Fos 
across brain regions for animals in the control conditions. *p < 0.05 
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4.4 Discussion 

 The first goal of this work was to identify brain regions differentially 

activated by safety learning compared to fear learning and controls, and to 

explore sex differences in activation in these regions. While sex differences were 

only found in the BNST, main effects of behavioral condition were found in the 

number of Fos positive cells in many brain regions of interest. In mIC, there was 

significantly more Fos in the Discrimination condition than in Control animals and 

in BNST each of the three behavioral conditions had significantly different 

numbers of Fos positive cells compared to the other conditions. As expected, 

many brain regions showed increased neuronal activation to shock conditions 

(Discrimination and Fear Only) compared to the Control condition, including PL, 

IL, BLA, and CeA. While the overlap in activation seen in Fear Only and 

Discrimination may be due to the large overlap in the paradigms, and the 

presence of fear learning in Discrimination, it is possible that these regions are 

being activated differently in Discrimination animals compared to Fear Only. For 

example, different populations of neurons could be activated in the presence of a 

safety cue. The lack of temporal specificity with Fos also prevents us from 

determining if any neurons were specifically activated in response to the safety 

cue. To further determine the relationship between Fos and discrimination, we 

explored correlations between region activation and discrimination index, and 

surprisingly found that only Fos in the CeA predicts discrimination abilities. Finally 

we tested if the functional connectivity of these regions differed based on 
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experimental treatment. While there was not a significant difference in overall 

functional connectivity of the brain regions we analyzed, there were clear 

differences between behavioral conditions, which is informative in understanding 

the mechanisms that allow the appropriate modulation fear to safety cues.  

 Here I will review the main findings of this research and discuss 

implications of these results on the future of safety learning research. In doing so, 

I outline promising avenues for future investigations on the neural mechanisms 

that allow for the discrimination between safety and danger. Throughout this 

discussion I reference limitations of using Fos as a neural marker of activation. 

Since Fos doesn’t identify 1) cell types: different numbers of excitatory and 

inhibitory neurons may be activated in different behavioral conditions, 2) neural 

projections: there is ample evidence that activation of specific outputs support 

specific conditions (Baratta et al., 2009; Do-Monte et al., 2015), 3) or temporal 

specificity: levels of fear clearly vary throughout conditioning in discrimination 

learning and Fos is unable to identify which neurons are responding to 

presentations of the danger cue vs. the safety cue. Nonetheless, the findings of 

this work provide significant data to draw conclusions on the neural nodes 

underlying safety learning and begin to indicate the neural pathways that allow 

for the modulation of fear by a safety signal. 
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4.4.1 Prefrontal Cortex 

Increased Fos was seen in PL and IL regions of the vmPFC in Fear Only 

and Discrimination conditions compared to Controls. This finding was 

unsurprising due to the role of these structures in fear (Sotres-Bayon and Quirk, 

2010; Sierra-Mercado et al., 2011). We predicted that vmPFC likely plays a role 

in the processing of danger information in a discrimination paradigm due to prior 

discrimination research that found reduction of fear to a danger cue after 

inhibition of either PL or IL and increased excitability of vmPFC in response to 

presentation of danger cue (Likhtik et al., 2014; Sangha et al., 2014). While 

Likhtik et al. (2014), found increased synchrony in vmPFC and BLA firing with 

discrimination learning, we did not find evidence for connectivity between vmPFC 

and BLA Fos. This is likely due the temporal specificity of their finding, which 

cannot be observed with Fos. The correlation between PL and discrimination 

index was trending toward significance, and increased sample size may have 

also revealed that PL Fos is able to predict discrimination abilities. In the human 

literature, fMRI results show stronger responses of the vmPFC during acquisition 

of the safety cue compared to the danger cue, which does not seem to align with 

the rodent work on vmPFC (Schiller et al., 2008).  

There was a significant correlation between PL and IL Fos in all 

conditions, which is likely a result of their dense interconnectivity (Hoover and 

Vertes, 2007). Similarly, PL and IL both correlated with vlOFC in the control 

condition and IL correlates with mIC in the Fear Only condition. These 
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correlations all fit with the known structural connectivity of vlOFC and IC with 

medial prefrontal cortex (Hurley et al., 1991; Shi and Cassell, 1998a, b; Hoover 

and Vertes, 2007).  

Our findings support a role of vmPFC in danger processing of fear 

discrimination. In humans, there is evidence that the impairments in safety signal 

processing in individuals with PTSD could involve problems with top-down 

emotional control by the vmPFC (Rauch et al., 2006). Findings of structural 

differences in the vmPFC are also reported in PTSD populations (Corbo et al., 

2005; Etkin and Wager, 2007; Hughes and Shin, 2011). Previous findings and 

the work presented here indicate that vmPFC is likely engaged with danger 

learning and could play a role in over-active fear responding, rather than a deficit 

in utilization of safety information. 

 

On the side of safety processing, our lab and others previously found 

evidence that vlOFC is necessary for a reduction of fear in the presence of safety 

signals (Ray et al., 2018; Sarlitto et al., 2018). However there was no effect in 

vlOFC Fos across conditions or sex, and Fos in vlOFC did not correlate with 

discrimination index or any other brain regions in the discrimination condition. 

The lack of findings in OFC are surprising due to its connectivity to other critical 

fear and discrimination structures. OFC and amygdala share extensive 

connective similarities, such as extensive limbic connectivity and projections to 

midbrain regions responsible for behavioral output (Swanson and Petrovich, 
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1998; LeDoux, 2000; Price, 2007). OFC also projects to IC and striatum (Shi and 

Cassell, 1998a, b; Price, 2007). Nonetheless, these results do fit with out prior 

work where inactivation of vlOFC before acquisition in males did not significantly 

impact safety learning or later recall (Sarlitto et al., 2018).  

 

4.4.2 Insular Cortex  

 IC is a region known to involved in salience detection, emotional learning 

and responding to multisensory stimuli (Rodgers et al., 2008). Here we found a 

main effect of cue in mIC, with increased Fos in the Discrimination condition 

compared to Controls. Fos in mIC also significantly correlated with both BLA and 

IL in the Discrimination condition. Multiple regression analysis was performed to 

see if the combination of BLA, IL, and BLA Fos could predict discrimination index, 

but no combination of structures reached significance. In the Fear Only condition 

there was a significant correlation of pIC and BLA Fos, while BLA and aIC Fos 

significantly correlated in the Control condition. Together, there seems to be an 

interesting relationship between BLA and subregions of IC along the 

rostral/caudal axis. IC subregions are highly interconnected and they may 

interact to mediate BLA activity depending on the level of fear (Shi and Cassell, 

1998b). We previously found a necessity of pIC, but not aIC or mIC, in the 

acquisition of a conditioned inhibition of fear, as measured by a summation test 

(Foilb et al., 2016). mIC, but not pIC, activation is significant in the Discrimination 

condition, as is functional connectivity with BLA and IL. This provides evidence 
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that fear discrimination and conditioned inhibition may arise through distinct 

mechanisms.  

There is substantial evidence in human research and within the PTSD 

population for IC involvement in fear discrimination. fMRI data finds significantly 

greater responding in IC during presentations of A compared to presentations of 

B in discrimination acquisition (Schiller et al., 2008). IC is also a site of functional 

and structural abnormalities in anxiety and PTSD (Paulus and Stein, 2006; 

Hughes and Shin, 2011), including the noted correlation of reduced insula volume 

with reduced safety learning (Gutman et al., 2010). This evidence, along with the 

correlation results with BLA throughout IC, suggest that IC may work in concert 

with the amygdala during fear and safety learning. 

 

4.4.3 Extended Amygdala 

 Fos in BLA was increased in shocked conditions (Fear Only and 

Discrimination) compared to Controls, but did not vary by sex or correlate with 

discrimination. Although there is evidence that some lateral amygdala neurons 

respond specifically to safe cues, many of these neurons reduce firing to the safe 

cue (Sangha et al., 2013) and safety learning leads to weakened responses in 

the BLA from auditory inputs (Rogan et al., 2005). Inhibition of specific neuronal 

populations within the BLA would not be evident in Fos analyses, and is one 

possible reason why discrimination-specific effects were not found in the BLA. 

The BLA is highly connected to other regions that appear to be involved in safety 
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learning, including the vmPFC, OFC, IC and striatum (Kelley et al., 1982; Shi and 

Cassell, 1998a, b; Ongür and Price, 2000; Cho et al., 2013). Despite similar 

levels of BLA Fos in Fear Only and Discrimination conditions, it is possible that 

these connected regions are modulating safety learning via inhibition of specific 

BLA neurons, which can not be assessed with the existing Fos data. 

 

Due to its role in fear, increased CeA Fos in Fear Only and Discrimination 

conditions compared to control animals was an anticipated result (LeDoux et al., 

1988; Swanson and Petrovich, 1998; Maren, 2001). CeA was the only brain 

structure explored where Fos significantly correlated with discrimination behavior. 

CeA Fos and discrimination index correlated such that animals with greater 

discrimination between A and B cues had increased CeA Fos. CeA also did not 

correlate with any other brain structures in the Discrimination condition, despite 

being the only significant predictor of discrimination. This lack of CeA functional 

connectivity in the Discrimination condition with any other brain regions explored 

in this study suggests that there is a component missing from the current data—

cell type or temporal specificity may be needed or CeA may receive inputs from a 

structure not included in the current analysis. 

The role of CeA in discrimination learning could also be related to the 

region’s function in reward-related behaviors (Kim et al., 2017), since safety 

signals may have reward-like connotations. Lesions of the CeA, but not the BLA, 

impair appetitive associative learning (Gallagher et al., 1990; Parkinson et al., 
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2008). An appetitive Pavlovian conditioning experiment by Parkinson and 

colleagues (2008) found that lesions of CeA reduced reward seeking after a cue 

that signaled reward (a CS+), but did not impact low responding to a distinct cue 

that indicated the absence of reward (a CS-). As a result of low responding to the 

CS+, discrimination between cues was disrupted. Further, the role of CeA in 

reward-related behaviors appears to be mediated by inhibitory projections from 

the CeA to the vmPFC (Seo et al., 2016). While we did not find evidence for 

functional connectivity between CeA and vmPFC in the work presented here, this 

connection may only be present in CeA GABAergic neurons, which were not 

identified in this study.  

While discrimination learning was vastly different in males and females, 

CeA correlated with discrimination behavior in males and females similarly. That 

no sex difference was found in any correlation with discrimination was surprising 

and could potentially indicate that different populations of neurons may be 

activated in males and females rather than different numbers of neurons. CeA is 

known to contain receptors for estrogen, progesterone, and androgen, which may 

be capable of modulating emotional behavior (Toufexis, 2007). Identifying the 

activation of neurons with these sex-related hormone receptors may be 

informative in determining if CeA activation is impacting discrimination in sex-

specific ways.  

The CeA is also comprised of two distinct nuclei – the centromedial (CEm) 

and centrolateral amygdala (CEl) – that are interconnected but receive different 
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inputs and consist of different cell types that uniquely alter circuit functioning. Fos 

analysis here included primarily CEl, although did not carefully exclude CEm. In 

CEl, neurons expressing protein kinase C-delta inhibit output neurons of the 

CEm, while neurons expressing neuropeptide somatostatin in the CEl inhibit the 

paraventricular nucleus of the thalamus and periaqueductal gray, which are both 

regions responsible for fear expression (for review, see Keifer et al., 2015). With 

Fos analysis focused on CEl and a significant correlation between Fos and 

discrimination index, such that increased CeA Fos corresponds with a lower 

discrimination index indicative of greater discrimination, there may be increased 

activation within inhibitory neurons in the CEl, which allow for a reduction of fear 

expression in response to presentation of the safety cue.  

Using an explicitly unpaired CS and footshock US, Amano et al. (2010) 

found that BLA evoked inhibition of CEm was present in both unpaired 

conditioned animals and animals that underwent fear extinction, but each was 

through a distinct population of inhibitory neurons. BLA evoked responses in CEl 

were more responsive in the unpaired condition compared to fear conditioned, 

fear extinguished, or naïve animals. This work provides evidence that neuronal 

activation and inhibition may occur within the CeA through distinct cell types, 

which cannot be parsed apart with Fos, and provide an intriguing pathway for 

future investigation. While the analysis here focused on CEl, CEm was not 

explicitly separated or excluded from CeA Fos analysis. The findings in CeA 

would be better substantiated with specific analysis of these distinct CeA nuclei. 
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Exploration of neural activation found that anterior medial BNST was the 

only region with significantly different activation in animals trained in a fear 

discrimination paradigm compared to animals that underwent fear only 

conditioning without a safe cue.  The activation of BNST in safety learning fits 

with prior Fos evidence that medial and ventral BNST regions all show increased 

activation in safety trained animals compared to naïve animals (Campeau et al., 

1997). BNST is also anatomically connected to various regions that seem to be 

involved in safety learning. Anterior medial BNST, the subregion explored for Fos 

activation, receives projections from IL and is densely connected to amygdala 

structures, particularly the CeA (Dong et al., 2001; Wood et al., 2018). Anterior 

medial BNST also projects to nucleus accumbens, a necessary node for future 

investigation (Dong and Swanson, 2006).  

BNST was the only region to show a sex difference in the number of Fos 

positive cells, which fits with ample evidence that sex-specific modulation of 

anxiety may depend on different mechanisms within the BNST (for review, see 

(Toufexis, 2007). This finding also points to neuromodulators that are known to 

mediate anxiety in the BNST in sex-specific ways. Stress hormone, corticotrophin 

releasing factor (CRF) activates different circuits in males and females, with 

particular differences in BNST functional connectivity, and also in relation to 

estrogen levels (Salvatore et al., 2018).  Further, systemically antagonizing 

serotonin (5-HT) receptor subtype 2C improves discrimination learning (Foilb and 
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Christianson, 2016), and 5-HT binding the same receptor subtype activates CRF 

neurons in the BNST, resulting in increased fear and anxiety (Marcinkiewcz et al., 

2016). This may be a mechanism that allows for sex specific modulation of fear 

in discrimination.  

With significantly different Fos levels in all conditions and in males and 

females of the discrimination condition, it was surprising to find that BNST Fos 

did not correlate with discrimination behavior. There was a trend in females 

where more BNST Fos corresponded with greater discrimination between safe 

and danger cues, and this may have reached significance with a larger sample 

size. BNST also lacked functional connectivity to any of the others regions 

explored. This is possibly due to the subregion of BNST that was selected as the 

focus for our initial investigation, or due to the lack of cell type specificity of Fos. 

Future work will thoroughly investigate additional BNST subregions in the brain 

tissue of these animals. Anterior lateral BNST, for example, receives projections 

from the anterior medial BNST, amygdala, vmPFC and IC, making it a likely site 

of safety integration (Dong et al., 2001; Dong and Swanson, 2006). 

 

4.4.4 Functional Connectivity 

The goal of exploring functional connectivity was to determine the 

connections of the nodes that make up the neural mechanisms underlying safety 

learning. While this work provided minimal evidence for the complete circuit that 

allows safety learning to occur, it does provide encouraging areas for future 
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investigation. The most interesting finding was that very few functional 

connections were maintained across each behavioral condition, suggesting task 

specific network activation. PL and IL correlated in all conditions, likely due to 

their dense anatomical connectivity. All other region correlations in the 

Discrimination condition – mIC with IL and BLA – were specific to only the 

Discrimination condition, indicating that these pathways are involved in 

discrimination learning, but not fear learning. Adding more nodes to the circuitry 

laid out here should improve inferences that can be made about the functional 

connectivity involved in safety learning.  

 

4.4.5 Conclusion 

With this work, we aimed to test a hypothetical circuitry underlying fear 

discrimination by exploring Fos activation in regions likely involved in the 

inhibition of fear by a safety signal and gained substantial information about each 

of the nodes we investigated. In almost all regions of interest, we found increased 

Fos in male and female rats that received fear discrimination conditioning 

compared to control animals. In all but one case (BNST), fear conditioned and 

discrimination conditioned animals had similar levels of Fos, indicating that more 

detailed research is necessary to parse apart these two behaviorally similar 

learning processes. Importantly, none of our findings eliminate the possibility that 

any brain region explored is part of the circuitry underlying safety learning.  
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As outlined earlier, there are limitations to using Fos as a neural maker, 

which means that future investigations are necessary to draw more precise 

conclusions. Fos doesn’t identify 1) cell types: different numbers of excitatory and 

inhibitory neurons could activated in each condition, 2) neural projections: 

pathways may be condition-dependent, despite similar Fos activation, 3) 

temporal specificity: it is unknown which, if any, neurons are responding 

specifically to presentations the safety cue. For these reasons, regions that 

displayed similar Fos activation in Fear Only and Discrimination conditions, and 

even regions that are similarly activated in all conditions, may be involved in the 

mechanisms that underlie discrimination in a way that cannot be observed with 

only Fos. Another consideration is whether the current approach was 

appropriately powered to detect relatively small differences that may exist 

between sexes or between Discrimination and Fear Only conditioning. Although 

when combining males and females, the discrimination sample size is 14-16 

animals, which is substantial compared to similar extant literature. 

Fos activation is able to indicate regions that may be particularly critical to, 

or nuanced in, safety learning. CeA and BNST appear to be particularly 

interesting sites of future investigation, as CeA was the only region where a 

correlation with discrimination index was observed and Fos in BNST was the only 

sex difference uncovered, as well as the only region where discrimination 

conditioning produced significantly different Fos compared to fear conditioning. 

Future investigations of cell types, subregions and additional neural structures 
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with known connectivity will better explain how these regions are influencing the 

modulation of fear. Importantly, follow up research can take a mechanistic 

approach to excite or inhibit regions and pathways that appear to be specific for 

discrimination learning to determine if the functional connectivity accurately 

represents the underlying circuitry.  
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CHAPTER 5 

Discussion and Future Directions 
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5.1 Overview 

 The goals of this dissertation were to uncover the neural circuitry that 

allows for appropriate discrimination between cues indicating safety and danger, 

and to determine if male and females learn and use safety cues differently. First, 

we took a mechanistic approach to test the necessity of ventrolateral orbitofrontal 

cortex (vlOFC), ventral hippocampus (VH) and insular cortex (IC) in the 

acquisition and recall of fear discrimination, as well as the role of IC in the more 

complex process of conditioned fear inhibition (Chapter 2). Since all of the 

mechanistic studies were performed in males, exploring potential sex differences 

in fear discrimination was a critical next step. In Chapter 3, we used a large 

sample size to compare males and females in safety learning and recall, as well 

as recall of conditioned inhibition of fear. After finding that females exhibit greater 

fear inhibition to the safety cue than males during acquisition, we aimed to 

uncover the neural mechanisms that may underlie the behavioral sex difference. 

Drawing upon the existing literature on safety learning (reviewed in Chapter 1), I 

developed a hypothetical neural circuit for safety learning, which I then tested 

empirically by examining neural activation in male and females that underwent 

discrimination conditioning compared to animals that underwent fear conditioning 

or no conditioning. In this concluding chapter, I will review our findings on sex 

differences in safety learning and the neural nodes involved in safety processing, 

as well as outline the novel questions for future exploration.   
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5.2 Sex Differences in Safety Learning 

 In Chapter 3 we found profound sex differences in fear discrimination 

learning and recall. Using a large sample size of 60 animals of each sex, we 

conditioned animals with an AX+/BX- fear discrimination conditioning paradigm, 

as we had done previously with only males (Chen et al., 2016; Foilb and 

Christianson, 2016; Foilb et al., 2016; Sarlitto et al., 2018). As in much of our 

prior work, animals of both sexes significantly discriminated between danger (A) 

and safety (B) cues during conditioning, but females displayed significantly 

reduced fear to cue B, as well as significantly greater discrimination as measured 

by a discrimination index. We were also able to replicate this sex difference in 

acquisition of fear discrimination in the work presented in Chapter 4. In recall 

testing, this pattern persisted, with females displaying significantly greater 

discrimination and significantly less fear to the safety cue compared to males. 

Interestingly, by the end of the recall test, females and males were responding 

similarly to A and B cues. Additionally, using repeated conditioning and recall 

testing to establish the B cue as a conditioned fear inhibitor eliminated the 

behavioral sex differences observed in the single session of fear discrimination 

conditioning.  

 Similar patterns of sex differences in discrimination learning have been 

reported in other labs. Day and colleagues (2016) found that females initially had 

greater discrimination between A and B cues, but generalized between cues with 

repeated conditioning, while males continued to discriminate. Day and colleagues 
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also found that females did not display delayed learning of the B cue as a danger 

cue, one of the two critical tests of a conditioned fear inhibitor, as defined by 

Rescorla (1969). We measured conditioned inhibition with a summation test and 

saw that females were able to reduce fear to the AB compound compared to 

presentation of the A cue alone. While we did not observe generalization in 

females, we did find that males continued to improve discrimination across 

conditioning and testing, whereas females learned to discriminate earlier in 

conditioning and maintained relatively consistent discrimination throughout 

sessions. Similar to Day et al., Greiner et al. (preprint, 2018) found that females 

did not reduce freezing behavior to AB compound cues compared to the A cue 

alone, while males did display conditioned inhibition, with reduced freezing to AB. 

Interestingly, they found that females significantly altered darting behavior, an 

active fear response that has been observed in female rats (Gruene et al., 2015), 

to the compound cue compared to the danger cue alone. Although we looked for 

darting in the females described in both Chapters 3 and 4, darting occurred too 

infrequently to be considered in our analyses.  

Sex differences in fear discrimination abilities have also been found in 

humans. In children, trauma history has a larger negative impact on fear 

discrimination in females than in males (Gamwell et al., 2015). Healthy adult 

women display less discrimination between safety and danger compared to men, 

although this difference appears to be primarily due to discrimination deficits in 

women on hormonal birth control (Lonsdorf et al., 2015). This finding also 
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indicates a potential impact of estrogen on fear discrimination, which is evident in 

rodent research as well (Toufexis et al., 2007; Lonsdorf et al., 2015). Despite the 

different findings across species and paradigms, that females and males use 

safety cues differently is a common theme. Interestingly, both men and women 

with PTSD display abnormal fear discrimination, which may stem from an effect 

of stress exposure on the neural circuitry involved in safety signal processing 

(Jovanovic et al., 2009, 2012, 2013) and it is possible that the underlying neural 

circuitry, and therefore the effects of stressors, are sex-specific. For these 

reasons, to best understand PTSD and to identify better treatments for fear 

regulation in PTSD, more information is needed concerning the neural basis of 

safety.  

 

5.3 The Neural Correlates of Safety Learning 

In Chapter 2, we used mechanistic experiments to test the necessity of 

three brain structures hypothesized to play a role in safety learning or recall – 

vlOFC, VH, and IC. Inhibition of VH before conditioning reduced fear to all cues in 

later recall, while inhibition of VH before discrimination recall had no effect. From 

this we concluded that VH plays a role in fear learning, as previously found 

(Richmond et al., 1999; Bast et al., 2001; Zhang et al., 2001; Esclassan et al., 

2009; Czerniawski et al., 2012; Wang et al., 2012; Cox et al., 2013; Zhang et al., 

2014), but does not seem specifically necessary for fear discrimination (Chen et 

al., 2016).  
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Despite these findings, others have presented evidence for a role of 

hippocampus in fear discrimination. Opposing our findings, Heldt et al. (2002), 

found that hippocampal lesions, ranging from dorsal to ventral, prevent recall, but 

not acquisition of safety learning. In a mouse model, prevention of hippocampal 

neurogenesis prevents safety learning, providing potential evidence for the role of 

hippocampus in this task (Pollak et al., 2008). The hippocampus is also 

implicated in PTSD, particularly in the presence of danger or threat (Fragkaki et 

al., 2016), which could be related to the results others have found during 

discrimination. Nonetheless, it seems most likely that the role of the hippocampus 

in fear discrimination can be reduced to the structure’s role in fear processing, 

rather than safety learning. For that reason, hippocampus was not explored for 

neural activation in Chapter 4.  

 Inhibition of vlOFC before fear discrimination recall resulted in increased 

fear specifically to the safe cue, while vlOFC inhibition before acquisition had no 

effect on safety learning or later recall (Sarlitto et al., 2018). Since that work was 

performed in only males, vlOFC was a region of interest for potential sex 

differences in activation in Chapter 4. The anatomy of vlOFC – with reciprocal 

connectivity to the amygdala, similar projections to midbrain regions as 

amygdala, and projections to striatum and insula – situate vlOFC to be a 

modulator of fear responding (Swanson and Petrovich, 1998; LeDoux, 2000; 

Price, 2007; Shi and Cassell, 1998a, b). Investigations of vlOFC Fos in Chapter 4 

found no effect of discrimination conditioning compared to fear conditioning or 
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controls, and no sex differences were found in any condition. In the discrimination 

condition, vlOFC did not show functional connectivity with any other regions 

explored. This result, along with the results of the mechanistic work, indicates 

that vlOFC may play a role in discrimination recall, but not acquisition.  

 Posterior IC (pIC), but not anterior (aIC) or medial (mIC), was necessary 

for acquisition of conditioned fear inhibition, as measured by a summation test 

(Foilb et al., 2016). While NMDA blockade of pIC did not impact fear 

discrimination, it is possible that pIC is engaged, but not critical, in these early 

phases of safety learning. We hadn’t previously tested the roles of aIC or mIC in 

fear discrimination and the interconnectivity between IC subregions, as well as 

their connectivity to sensory thalamus, striatum, ventral medial prefrontal cortex 

(vmPFC), vlOFC, and amygdala, well positions these regions to be involved in 

fear modulation to a safety signal (McGeorge and Faull, 1989; Shi and Cassell, 

1998a, b). IC also has known roles in salience detection and multisensory 

integration (Rodgers et al., 2008; Gogolla, 2017). These functions in combination 

with connections to basolateral amygdala (BLA) and central amygdala (CeA) 

make IC a likely site of convergence for information about danger and safety.  

 In our Fos exploration of aIC, mIC, and pIC in Chapter 4, we found that 

only mIC had significantly different Fos levels based on experimental condition, 

with increased mIC Fos in animals that underwent discrimination conditioning 

compared to controls. Fos in IC did not significantly correlate with discrimination 

index, but interestingly, Fos in the BLA displayed functional connectivity with 
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different subregions of IC in each behavioral condition. In the discrimination 

condition, BLA and mIC Fos positively correlated signifying an excitatory 

relationship, and perhaps relevant to the increased mIC Fos in animals that 

underwent discrimination conditioning. Due to the bidirectional connectivity 

between BLA and IC and the lack of directional information provided by Fos, the 

direction of this excitatory functional connection is currently unknown (Shi and 

Cassell, 1998a, b). In control animals, BLA and aIC Fos correlated, while pIC and 

BLA Fos correlated in fear conditioned animals. This provides evidence that IC 

may integrate information about fear and safety in differently along its rostral-

caudal axis. This is likely due to the distinct anatomical connectivity in aIC and 

pIC, with mIC comprising of a mixture of the anterior and posterior subregions in 

its connectivity (Gogolla, 2017). For example, aIC only weakly projects to 

amygdala, while mIC and pIC send dense projections to BLA, as well as to CeA 

(Shi and Cassell, 1998a). Interestingly, in the discrimination condition, mIC Fos 

significantly correlated with both IL Fos and BLA Fos, however a multiple 

regression of these three structures with discrimination index was insignificant. 

This intriguing structure and its functional connections are key sites of future 

research, where additional Fos observations, temporal specificity and tract 

specificity, such as pathway specific opto- or chemogenetic manipulations, would 

provide important insights to the roles of these structures in safety learning. 

Human studies also reveal IC as an interesting region in fear 

discrimination. An fMRI study found increased activation of IC during danger 
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cues compared to safe cues in a discrimination paradigm (Schiller et al., 2008). 

In other paradigms, expectations of danger and pain correlate with activation of 

IC (Ploghaus et al., 1999; Phelps et al., 2001). Individuals with PTSD also show 

different resting state functional connectivity in IC compared to healthy controls 

(Zhang et al., 2016). Future work to further the understanding of the role of IC in 

fear and the modulation of fear will lead to a better understanding of deficits in 

fear modulation observed in individuals with PTSD, as stress and trauma may 

disrupt IC functional connectivity, resulting in the promotion of fear expression. 

 The exploration of neural activation in Chapter 4 went beyond the brain 

structures described in Chapter 2. Prelimbic (PL) and infralimbic (IL) subregions 

of the vmPFC were important regions to explore due in part to their roles in the 

promotion and extinction of fear, respectively (Sotres-Bayon and Quirk, 2010; 

Sierra-Mercado et al., 2011). We found significantly increased Fos in both PL and 

IL in animals that had underwent discrimination conditioning and fear conditioning 

compared to control animals. The activation of PL and IL in discrimination fits 

with the existing literature implicating PL and IL in fear discrimination, particularly 

in response to the danger cue (Sangha et al., 2014). We also found a trending 

correlation between Fos in PL and discrimination index, where more PL Fos 

corresponded with greater discrimination. This somewhat contradicts mechanistic 

studies where inhibition of either PL or IL in a fear discrimination paradigm 

reduces fear to danger (Sangha et al., 2014). This indicates that Fos observed in 

PL could represent inhibitory neurons, although it also possible that some PL 
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activation is specifically in response to accurate discrimination, which fits with 

work showing increased synchrony between firing in the vmPFC with firing in the 

BLA with learned discrimination (Likhtik et al., 2014; Stujenske et al., 2014). 

While we did not observe functional connectivity between BLA and vmPFC, this 

could be due to the limited number of observations or the lack of temporal 

specificity provided by Fos.  

In the BLA, we found increased Fos in animals that underwent 

conditioning for discrimination and fear alone compared to control animals. 

However, BLA Fos did not predict discrimination abilities, despite substantial 

evidence for the role of BLA in discrimination and safety learning. Amygdala 

neurons fire during both safety and danger signals and some neurons in the 

lateral amygdala fire exclusively to cues indicating safety (Genud-Gabai et al., 

2013). Yet, it is worth noting that many neurons also inhibit firing to safety 

signals, which may not be well captured in Fos measurements and could explain 

the lack of discrimination-specific activation that we observed (Sangha et al., 

2013). Safety learning also leads to weakened responses in the BLA from 

auditory inputs (Rogan et al., 2005), perhaps as a function of decreased 

amygdala synapse size (Ostroff et al., 2010). As described in reviewing other 

nodes of this safety learning circuit, BLA is also highly connected to other regions 

that appear to be involved in safety learning, including the insula, striatum and 

vlOFC (Kelley et al., 1982; Shi and Cassell, 1998a, b; Ongür and Price, 2000; 

Cho et al., 2013). Advancing the work of Chapter 4 by looking the projections of 
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activated BLA neurons to CeA and BNST, as well as to mIC, may better describe 

the role of BLA in fear discrimination. 

 CeA and BNST are the major output regions of BLA, and in turn project to 

the hypothalamus and brainstem regions, which mediate the expression of fear, 

including freezing, autonomic arousal, hormone release, analgesia, and startle 

(LeDoux et al., 1988; Van de Kar et al., 1991; Davis, 1992; Kapp BS, 1992). We 

were surprised to find that Fos in CeA was the only brain region explored that 

significantly correlated with discrimination index, particularly since increased CeA 

Fos signified greater discrimination.  

BNST has been previously implicated in safety learning with increased 

activation to a conditioned fear inhibitor than to a fear CS (Campeau et al., 1997) 

and decreased activation to presentation of a safety signal produced through 

backwards conditioning (Christianson et al., 2011). In Chapter 4, we found 

increased activation of the anterior medial subdivision of the BNST after 

discrimination conditioning compared to both fear conditioned and control 

animals. BNST was also the only brain region explored in Chapter 4 where we 

found a sex difference, with less activation in females compared to males. 

Finding this sex difference in BNST is unsurprising since BNST is well 

established as a sexually dimorphic region, with larger volumes in males in both 

rodents and humans (for review, see Goode and Maren, 2017). Evidence for sex 

differences in stress and anxiety have also been reported in the BNST (Toufexis, 

2007; Salvatore et al., 2018).  
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BNST Fos did not correlate to discrimination index, although there was a 

trend in females where more BNST Fos corresponded with greater 

discrimination, which is the same direction as was found with CeA Fos. Anterior 

medial BNST and CeA are bidirectionally connected, which is one of many 

pathways that BNST may impact fear discrimination through (Dong et al., 2001; 

Wood et al., 2018). BNST receives projections from IL and the nucleus 

accumbens (NAcc; Dong and Swanson, 2006; Wood et al., 2018). Other 

subregions of BNST are also important areas for future investigation, such as the 

anterior lateral, which receives projections from anterior medial BNST, amygdala, 

vmPFC and IC, positioning this subregion to be a site of safety integration (Dong 

et al., 2001; Dong and Swanson, 2006). 

One region that was part of the hypothetical safety learning circuitry 

outlined in Chapter 1 that was not further explored in Chapter 4 is striatum. The 

anatomical connectivity of the striatum also places the structure to receive 

information about proximal danger or safety. Striatum receives projections from 

the vlOFC and IC (Price, 2007; McGeorge & Faull, 1989) and it is also 

reciprocally connected with the BLA (Cho et al., 2013; Kelley et al., 1982). In 

human fMRI research striatum displays increased activation during presentations 

of danger cues compared to safety cues (Schiller et al., 2008). In mice, safety 

learning led to a strengthening of responses in the caudate putamen (Rogan et 

al., 2005) and accidental lesion of the striatum in non-human primates is related 

to an inability to discriminate between danger and safety (Kazama et al., 2012). 
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However, there is evidence that NAcc is not necessary for safety learning 

(Josselyn et al., 2005), thus, future analyses will seek to better characterize the 

striatal subregions that contribute to safety learning. 

It is important to note that there are a number of caveats to interpreting 

Fos data. For one, null findings in Fos cannot simply be interpreted as a lack of 

neuronal activation. Activation of brain regions have been observed without 

changes in Fos protein, and in fact, Fos counts can be inconsistent with 

measurements of c-fos mRNA (for review see, McReynolds et al., 2018). As 

previously described, Fos also lacks specificity in many ways. Fos is temporally 

imprecise and cannot be used to assess instantaneous changes in neurons 

during behavior. Fos is also expressed across various cell types, such that Fos 

may represent inhibitory or excitatory neurons. Pathway information is also not 

provided by the Fos studies presented in this dissertation; the projections and 

inputs of the activated neurons in regions of interest remain unknown. With these 

limitations in mind, the findings from these studies do allow to us to support, as 

well as question, the hypothetical circuitry for safety learning presented in 

Chapters 1 and 4.  

 

5.4 Clinical Implications  

 It is well established that individuals with PTSD display deficits in 

appropriate fear modulation to cues indicating safety, while healthy individuals 

reliably display appropriate safe/danger discrimination in the same paradigm 
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(Jovanovic et al., 2005, 2009, 2010; Jovanovic and Norrholm, 2011; Jovanovic et 

al., 2012, 2013). A useful start for better understanding the abnormalities in fear 

discrimination in individuals with PTSD would be a brain imaging study to look at 

neural activation during fear discrimination in healthy individuals and PTSD 

populations. Currently, all evidence for neural bases of abnormal discrimination in 

individuals with PTSD stems from indirect comparisons of discrimination 

correlates in healthy individuals and regions known to be differently activated in 

individuals with PTSD.  

Many of the results in neural activation reported in Chapter 4 do 

correspond with prior work in individuals with PTSD. When compared to healthy 

controls, individuals with PTSD display structural differences in vmPFC and 

differences in resting state functional connectivity in IC (Corbo et al., 2005; Etkin 

and Wagner, 2007; Hughes and Shin 2011; Zhang et al., 2016). IC volume has 

also been found to correlate with discrimination in individuals with PTSD; such 

that poor fear inhibitors had smaller IC volume (Gutman et al., 2010). The neural 

activation and functional connectivity of PL, IL and IC subregions in 

discrimination learning found in our Fos investigation indicate that abnormalities 

in these structures could play a role in the deficits in safety learning seen in 

individuals with PTSD. Significant work still needs to be done in order to translate 

what we know about the neural mechanisms of safety in animals to the human 

population. 
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5.5 Neuromodulators 

We have begun to discover ways that safety learning can be improved 

through pharmacological manipulations. Further investigation of pharmacological 

interventions that recuperate safety learning deficits would significantly improve 

the lives of individuals with PTSD who are suffering from debilitating fear. There 

is evidence that neurotransmitters including dopamine and serotonin impact fear 

discrimination, making them potential targets of future treatments. Lesions to the 

serotonergic dorsal raphe nucleus (DRN) impair differential learning to a partially 

reinforced safety signal and work from our lab found that systemically 

antagonizing serotonin receptor subtype 2C before AX+/BX- discrimination 

conditioning improved fear discrimination (Berg et al., 2014; Foilb and 

Christianson, 2016). Receptors for dopamine have been found important for 

appropriate modulation of responding in uncertainty paradigms (Larkin et al., 

2016) and systemically impacting dopamine D1 receptors impairs fear 

suppression to a safety cue, with similar results observed when acting on D1 

receptors in the BLA (Ng et al., 2018). Further, sex differences have been 

observed in the serotonergic and dopamine systems, making these 

neurotransmitters a potential source of the behavioral sex difference reported in 

Chapter 3 (Mitsushima et al., 2006; Goel and Bale, 2010). 

Hormones related to stress, such as corticotrophin releasing factor (CRF) 

and corticosterone (CORT) are also prospective modulators of fear discrimination 

and the observed sex differences in safety learning. Sex differences have been 
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reported in stress reactivity after fear conditioning, such that females display 

greater activation of the HPA axis, resulting in higher levels of CRF and CORT, 

despite displaying lower levels of fear compared to males (Oyola and Handa, 

2017; Daviu et al., 2014). Sex differences in functional connectivity were 

observed after CRF administration, particularly in functional connectivity to 

BNST, which is relevant to our Fos findings in Chapter 4. Interactions of CRF and 

estrogen levels were also observed in females (Salvatore et al., 2018). Varying 

levels of these hormones during safety learning in males and females could 

potentially contribute to the sex differences found in Chapter 3. Further, evidence 

for hormone modulation in fear discrimination learning provides potential 

methods for treating those with safety learning impairments.  

 

5.5 Conclusions 

 
Understanding the neural circuit for safety learning will inform 

development of more effective treatments for anxiety and PTSD that would be 

profoundly beneficial to those individuals that suffer from debilitating fear. The 

work of this dissertation has provided further support for some nodes and 

pathways of the circuitry that I hypothesized underlies safety learning (presented 

again here for reference, Figure 5.1). While the limitations of Fos do not allow us 

to eliminate any regions from this circuit, it does provide important objectives of 

future investigation.	
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While we did not find significantly increased functional connectivity of our 

regions of interest in fear discrimination conditioned animals compared to fear 

conditioned or control animals, we did find evidence that select nodes and 

pathways of interest are likely involved in safety learning. We found functional 

connectivity between PL and IL subregions of vmPFC and increased PL and IL 

Fos in discrimination and fear conditioned animals compared to controls. IL Fos 

also positively correlated with Fos in mIC, indicating that the originally proposed 

vmPFC to IC pathway may be an excitatory IL projection to mIC. In mIC, there 

was also increased Fos in discrimination animals compared to controls, providing 

Figure 5.1 A hypothetical circuit for the processing of safety information. As described 
in Chapters 1 and 4. 
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further evidence that this region may play a role in safety learning. BLA Fos also 

correlated with mIC, as proposed in the original hypothetical circuit, although the 

direction of this excitatory relationship is still unknown.  

Despite evidence for functional connectivity of IL and BLA with mIC, 

findings in the CeA and BNST are perhaps the most fascinating and the best 

structures for future investigation. CeA was the only brain region analyzed where 

Fos significantly correlated with discrimination index, however no other region 

significantly correlated with CeA. This indicates that activation in CeA is 

somehow modulating fear expression during discrimination learning, but the 

pathways that allow CeA to do this are undetermined. Tract specific studies 

looking at direct CeA inputs from BLA, IC, IL, or thalamus would be informative in 

understanding how CeA might mediate discrimination learning (Keifer et al., 

2015).  

Also responsible for fear expression, Fos analysis revealed BNST as the 

only explored region where there was a sex difference in the discrimination 

condition, as well as the only structure where Fos counts were significantly 

different in the discrimination condition compared to fear conditioned animals. 

Unlike in CeA, BNST Fos did not correlate with discrimination index, although the 

relationship was trending in females. It is possible that more observations would 

make this correlation significant. There were interesting sex differences in 

functional connectivity that were not discussed in Chapter 4. Males in the 

discrimination condition had a significant correlation between BNST Fos and BLA 



	 179 

Fos, which is predicted in the hypothesized circuitry, since BLA is known to 

project to BNST, which in turn projects to structures responsible for the 

expression of fear (Walker and Davis, 2008). This correlation is surprisingly not 

significant in females, or in discrimination animals overall. In females that 

underwent discrimination conditioning, BNST Fos significantly correlated with PL 

Fos. Remarkably, the region of BNST analyzed, anterior medial BNST, shares 

only sparse anatomical connectivity with PL, however, anterior medial BNST is 

interconnected with anterior lateral BNST which has anatomical connectivity to 

medial prefrontal cortex (Dong et al., 2001; Dong and Swanson, 2006). For this 

reason, additional subregions of BNST, including anterior lateral, are ongoing 

regions for Fos analysis in the present study. 

Most regions we explored for Fos in Chapter 2 exhibited equal Fos in Fear 

Only and Discrimination conditions. To establish how, or if, these regions are 

specifically involved in discrimination will require mechanistic, cell type specific or 

tract specific follow up studies. While no main effects or significant correlations 

were found in the discrimination condition for vlOFC, aIC and pIC, mechanistic 

studies would be useful in definitively ruling out their role in safety learning in 

both males and females. To best progress the field towards an understanding of 

the neural mechanisms of safety learning, additional exploration of Fos in 

striatum, as well as BNST subregions, and follow-up studies on CeA, BNST, and 

mIC connectivity with BLA and IL seem to be the most promising routes of 

discovery.  
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The work presented here, and studies from other labs over the past 10 

years, has increased the understanding of safety learning and the neural 

mechanisms that underlie it. The work of this dissertation allows the field to 

continue editing the framework for the neural circuit of safety processing. Across 

species and techniques, particular regions consistently certify their role in this 

operation. With the entirety of the safety learning literature and findings in mind, 

we can continue to develop new questions with the new tools and techniques that 

are advancing the field of neuroscience.	
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