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ABSTRACT 

Differential item functioning (DIF) occurs when examinees of equal ability from 

different groups have different probabilities of correctly responding to certain items.  DIF 

analysis aims to identify potentially biased items to ensure the fairness and equity of 

instruments, and has become a routine procedure in developing and improving 

assessments. This study proposed a DIF detection method using regularization 

techniques, which allows for simultaneous investigation of all items on a test for both 

uniform and nonuniform DIF. In order to evaluate the performance of the proposed DIF 

detection models and understand the factors that influence the performance, 

comprehensive simulation studies and empirical data analyses were conducted. Under 

various conditions including test length, sample size, sample size ratio, percentage of DIF 

items, DIF type, and DIF magnitude, the operating characteristics of three kinds of 

regularized logistic regression models: lasso, elastic net, and adaptive lasso, each 

characterized by their penalty functions, were examined and compared. Selection of 

optimal tuning parameter was investigated using two well-known information criteria 

AIC and BIC, and cross-validation. The results revealed that BIC outperformed other 

model selection criteria, which not only flagged high-impact DIF items precisely, but also 



prevented over-identification of DIF items with few false alarms. Among the 

regularization models, the adaptive lasso model achieved superior performance than the 

other two models in most conditions. The performance of the regularized DIF detection 

model using adaptive lasso was then compared to two commonly used DIF detection 

approaches including the logistic regression method and the likelihood ratio test. The 

proposed model was applied to analyzing empirical datasets to demonstrate the 

applicability of the method in real settings. 
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Chapter 1. Introduction 

CHAPTER 1.  INTRODUCTION 

1.1 Statement of the Problem 

Educational and psychological tests such as college admission tests, employment 

tests, licensure examinations, and mental health inventories are used to measure 

individuals’ latent traits such as intelligence, attitudes, and other abilities or skills, and to 

distinguish between their trait levels, so as to make personal, social and political 

decisions regarding placement, advancement, and licensure (Clauser & Mazor, 1998). 

Considering the widespread usage and deep social implications of various tests and 

assessments, measurement bias has become an important issue in educational and 

psychological measurement over the past decades (Millsap & Everson, 1993). It is 

expected that test results should be comparable across groups, leading to fair comparisons 

based on these results. However, if some test items maintain an advantage for one group 

over another, the validity of test-based inferences might be threatened (Kane, 2006). 

These items are suspected of functioning differentially across groups, while they are 

exhibiting what researchers refer to as differential item functioning or DIF (Holland & 

Thayer, 1988; Dorans & Holland, 1993).  

In the field of psychometrics, there is a distinction between impact and DIF, where 

the former refers to the difference between groups in test performance caused by a 

between-group difference on a valid skill (Ackerman, 1992), and the latter is a statistical 

property of an item indicating the item might be measuring different traits for individuals 

from separate groups. For example, the gender gap in the Programme for International 

Student Assessment test scores (González de San Román & de la Rica, 2016) is a good 

example of impact. DIF items are of great concern since they are putatively biased 
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against a particular group, indicating that participants from different demographic or 

socioeconomic groups have different probabilities of correctly responding to certain 

items and obtain different test scores, even after they have been matched on a measure of 

latent ability. That means, the group difference in performance on test items cannot be 

fully explained by the group difference in the latent construct targeted by the items 

(Crocker & Algina, 1986).  

The study of bias in items and tests, as well as early work on DIF at the 

Educational Testing Service began from the end of the 1960s and early 1970s (e.g., 

Cardall & Coffman, 1964; Angoff & Ford, 1973). Since then, “psychometricians 

hastened to provide definitions of bias in terms of objective criteria, to develop rigorous 

and precise methods for studying bias, and to consider empirical investigations of test 

bias” (Berk, 1982). Several approaches for seeking out item bias in psychological and 

educational assessments were developed during that time period, such as the analysis of 

variance (ANOVA), with the null hypothesis of no significant interaction effect between 

the studied items and group membership. However, the group-item interaction in 

ANOVA was considered as an incomplete criterion since non-significant results cannot 

successfully rule out the existence of item bias (Osterlind, 1983).  

Another early attempt to detect item bias was based on the Chi-square procedures 

(e.g., Scheuneman, 1979; Marascuilo & Slaughter, 1981; Mellenbergh, 1982), by 

examining the probabilities of individuals from different groups correctly responding to 

an item at every ability level. However, Holland and Thayer (1988) pointed out that the 

early-stage Chi-square tests for DIF detection always tended to reject the null hypothesis 

when the relevant sample size was large enough, and did not have a parametric measure 
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of DIF amount exhibited by the studied items. Further, they applied the Mantel-Haenszel 

(MH) Chi-square procedure (Mantel & Haenszel, 1959) for stratified samples to detecting 

DIF items. The MH method is possibly still the most widely used DIF detection 

technique nowadays. 

 In addition to the MH test, another popular non-parametric DIF detection 

approach is SIBTEST (Shealy & Stout, 1993), which focuses on psychometric 

dimensionality in the test rather than identification of aberrant functioning among a set of 

items. The MH test and SIBTEST are considered non-parametric because they are not 

based on any probability models. On the other hand, logistic regression (Swaminathan & 

Rogers, 1990) is widely used in detecting DIF items as a parametric method using 

likelihood functions, allowing for investigating both uniform DIF and nonuniform DIF 

effects. 

 A commonality among the MH, SIBTEST, and logistic regression DIF detection 

methods is that they do not rely on item response theory (IRT). IRT is a modern test 

theory grounded on a mathematical model representing the relationship between the 

latent traits, the properties of items on a test, and individuals’ responses to test items. It 

primarily focuses on the item-level information, compared to classical test theory that 

focuses on the test-level information. Several DIF detection approaches were developed 

under the framework of IRT, such as Lord’s 𝜒𝜒2 test statistic (Lord, 1980), the likelihood 

ratio test (Thissen, Steinburg, & Wainer, 1998), and Raju’s area measures (Raju, 1988; 

1990). 

 However, the aforementioned DIF detection approaches, including both IRT and 

non-IRT based techniques, are all conducted at the item level, focusing on analyzing each 
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item individually, which causes several non-trivial problems. First, placing individuals 

from different groups on a common metric is a necessary step in these DIF detection 

procedures since only individuals with a same ability level from the reference and focal 

groups should be compared. If individuals with different abilities are matched by mistake, 

the DIF detection results may be unreliable. Usually, individuals are matched according 

to some observed criteria, such as their test scores. However, test score is considered as 

an appropriate measure for individuals’ latent ability levels only when the common 

metric consisting of anchor items is invariant across groups. Here, anchor items refers to 

the items whose parameters are constrained to be identical between groups. Previous 

studies (e.g., Wang & Yeh, 2003; Wang, 2004; Stark, Chernyshenko, & Drasgow, 2006; 

Wang, Shih, & Sun, 2012) suggested that, if a set of anchor items was contaminated, test 

score might not be a fair measure for latent traits, thus the type I error rates were often 

inflated. In addition, failure to identify invariant anchor items also led to type II errors in 

testing invariance (Johnson, Meade, & DuVernet, 2009). Obviously, in item-level DIF 

detection, the assumption that the anchor items (e.g., all items except the studied item) 

are supposed to be invariant across groups is not guaranteed, therefore it is highly 

possible to obtain inaccurate DIF detection results. 

A number of scale purification procedures were developed to remove DIF items 

from the anchor set in order to improve the stability of anchor items and reduce the 

negative impact of non-invariant anchor items in DIF detection. Although there are 

different variations of scale purification procedures, generally it proceeds by testing each 

item for DIF using all other items as anchors. The items flagged as DIF items are 

removed from the anchor, and the studied items are re-evaluated using the remaining 
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anchor items. The procedure iterates until a same set of anchor items is identified as 

invariant in consecutive iterations. Previous studies showed that such purification 

procedures were able to improve DIF detection accuracy (Lautenschlager, Flaherty, & 

Park, 1994), but the process was tedious to some degree and was not able to handle 

highly contaminated scales. 

Additionally, a significance test is conducted for each item in a typical item-level 

DIF study, indicating that for the whole test there exist multiple testing issues. Multiple 

testing increased the possibility of making a type I error at least once (Shaffer, 1995), 

resulting in incorrectly identifying non-DIF items as DIF items. Therefore, the validity of 

a test might be threatened if DIF items are falsely identified (Kim & Oshima, 2013). 

Several adjustment procedures such as the Bonferroni correction (Bonferroni, 1936) and 

the Holm method (Holm, 1979; Holland & Copenhaver, 1987) were used to control the 

type I error rate, and the Benjamini-Hochberg procedure (Benjamini & Hochberg, 1995) 

was used to control the expected false discovery rates. Specifically, the Bonferroni 

correction compensates for the type I error increase by testing each statistical hypothesis 

at a reduced significance level that equals to the desired overall alpha level divided by the 

total number of hypotheses. The Holm method is a more powerful sequential version of 

the Bonferroni correction with slightly different threshold levels. The Benjamini-

Hochberg procedure controls the false discovery rate by defining a sequential p-value 

procedure. However, previous research indicated that these adjustment approaches only 

worked for certain DIF detection procedures. When the DIF magnitude became larger, 

the power of detecting DIF items correctly was reduced substantially after applying the 

adjustments in most conditions (Kim & Oshima, 2013). 
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Simultaneous investigation of all items on a test for DIF seems to be an intuitive 

solution to address the limitations caused by the item-level DIF detection approaches, 

which can be realized, for example, by using regularization methods for estimation. 

Regularization refers to the procedure of introducing additional information such as a 

penalty for complexity to prevent overfitting and solve ill-posed problems (Hastie, 

Tibshirani, & Friedman, 2009). However, existing applications of regularization methods 

in DIF detection were largely based on the Rasch model, so they were only able to detect 

uniform DIF effects (e.g., Magis, Tuerlinckx, & De Boeck 2015; Schauberger, 2015; 

Tutz & Schauberger, 2015). In practice, the assumptions of the Rasch model are often 

unrealistic for test items, since it is rare to have all items with an identical discrimination 

across the ability continuum. The multi-parameter IRT models such as the two-parameter 

logistic (2PL) or three-parameter logistic (3PL) models are alternatives to the Rasch 

model when the assumption of equal discrimination is untenable. In many applications of 

IRT in the testing industry such as scaling, equating, standard setting, and DIF detection, 

the 2PL and 3PL models are the most popular psychometric models (San Martín, 

González, & Tuerlinckx, 2015). In this case, it is desirable to develop a more general DIF 

detection model that allows for simultaneous detection of both uniform and nonuniform 

DIF effects under the framework of multi-parameter IRT models using appropriate 

regularization methods.  

In addition, current DIF studies using regularization techniques employed lasso 

(Tibshirani, 1996), an ℓ1 penalty, to perform feature selection and determine DIF effects. 

Lasso encourages shrinking more coefficients to zero, which may encounter problems 

when there exist correlated variables. This is because lasso assigns a non-zero value to 
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one of the variables arbitrarily, and reduces the remaining model coefficients to zero, 

which provides incomplete information on these correlated variables. Therefore, other 

penalty functions such as the elastic net (Zou & Hastie, 2005) and the adaptive lasso 

(Zou, 2006) can be considered in DIF studies. 

Moreover, which measure—the observed test score or the estimated IRT ability—

is a better proxy of person’s latent ability remains questionable. Using test score makes 

DIF analysis more efficient since the ability estimation process can be skipped, but the 

results may be misleading since test score is not always a representative measure of latent 

ability from the IRT perspective. On the other hand, when using ability estimates in the 

DIF detection model, the accuracy of the analysis results is then relied on the parameter 

recovery, which might be problematic when the sample size is small and the test length is 

long (e.g., Drasgow, 1989; Stone, 1992; Sahin & Anil, 2017).  

         

1.2 Purposes and Research Questions 

 The purpose of this study is to propose a DIF detection model using regularization 

techniques, which allows for simultaneous investigation of all items on a test for both 

uniform and nonuniform DIF detection. Comprehensive simulation studies were 

conducted under various manipulated conditions in order to evaluate the performance of 

the proposed DIF detection model and investigate the factors that influence the 

performance. Moreover, the performance of the proposed DIF detection model was 

compared to two commonly used DIF detection approaches including the logistic 

regression method and the likelihood ratio test. In addition, the proposed model was used 

to analyze two empirical datasets in order to demonstrate the applicability of the method 
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in real settings by comparing the results with the existing DIF detection approaches. 

Specifically, the following research questions were addressed in this study: 

1. Which penalty function yields the best operating characteristics in DIF detection? 

In order to answer this question, two preliminary questions were studied 

beforehand. 

a. Which model selection technique selects the optimal tuning parameter in 

terms of DIF detection performance? 

b. Which of the ability measures, the observed test score or the IRT ability 

estimate, has a better performance in detecting DIF items? 

2. How does each of the manipulated factors impact the number of items flagged 

correctly and incorrectly as DIF items using the proposed DIF detection model? 

The manipulated factors and the levels of each factor were: 

• Two test lengths: 20 items, 40 items; 

• Three sample sizes: 1000, 2000, 4000 examinees; 

• Two sample size ratios: 1:1, 4:1 (reference/focal group sizes—500/500, 

800/200; 1000/1000, 1600/400; 2000/2000, 3200/800); 

• Two percentages of DIF items: 10%, 20%; 

• Three DIF types: uniform DIF only, nonuniform DIF with drift on the 

discrimination parameters only, nonuniform DIF with drift on the 

difficulty and discrimination parameters; 

• Different DIF magnitudes: 0.4, 0.8 for drift on the difficulty parameters, 

and 0.5, 1.0 for drift on the discrimination parameters. 
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3. What are the differences between the proposed method and other existing 

techniques in terms of their DIF detection performance?  

 

1.3 Significance of the Study 

  DIF analysis is a critical part of developing and evaluating assessments, which 

has become a routine procedure in practice since it can be used to assess measurement 

bias and therefore test claims about validity (Martinková et al., 2017). A large number of 

parametric and nonparametric procedures have been developed to detect DIF effects, with 

or without the use of IRT. The proposed DIF detection model differs from most 

commonly used item-level DIF detection approaches as all items on a test can be 

examined simultaneously using a single coherent model, which avoids the strict 

assumption that all other items as anchors except the studied item should be free from 

DIF in the scale, and overcomes the problem caused by multiple testing.  

 Further, the proposed method allows for detecting not only uniform DIF items but 

also nonuniform DIF items. Although uniform DIF occurs more often than nonuniform 

DIF in tests and assessments, DIF does not always occur equally over the ability 

continuum, and the amount of DIF may vary appreciably across the latent ability 

continuum in real data (Narayanan & Swaminathan, 1996). Therefore, this study is more 

practical to the current measurement industry since none of the existing regularization 

methods addresses nonuniform DIF detection.  

 In addition, this study investigates the use of different extensions of lasso in order 

to examine whether these extensions remedy the limitations of the traditional lasso 

methodology and improve the operating characteristics in DIF detection.  
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Lastly, since the proposed DIF detection model is a logistic regression model, it 

has great flexibility in comparing multiple groups, examining categorical or continuous 

DIF items, and detecting multiple covariates by changing existing variables or adding 

additional variables in the model. 

 

1.4 Dissertation Organization 

 Chapter 1 emphasizes the importance of DIF analysis in test development and test 

validation, followed by a brief overview of the history and development of DIF detection 

methods, as well as the limitations of existing approaches. Then the research purpose, 

questions of interest, and significance of the study are described in sequence. This 

chapter ends with an outline of the dissertation organization.   

 Before stepping into DIF, Chapter 2 begins with an introduction to IRT, including 

the fundamental assumptions, popular IRT models and widely used parameter estimation 

techniques. Next, a detailed review of both theoretical definitions and statistical 

procedures associated with DIF is provided. At last, in order to propose a new DIF 

detection model using regularization methods, various concepts including the definition 

and purpose of regularization, different types of penalty functions, common model 

selection techniques, and current applications are illustrated.  

 Chapter 3 explicates the proposed regularized logistic regression DIF detection 

model, as well as the estimation and evaluation procedures associated with the model. 

Two preliminary analyses were conducted to help determine the model setting and 

choose the optimal model selection criterion. In addition, the research design for the 
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comprehensive simulation studies and the background information of two empirical 

datasets are provided in this chapter.  

 Chapter 4 presents the results of two simulation studies and two empirical data 

analyses, answering three proposed research questions. Finally, Chapter 5 discusses the 

results, interprets the implications of the findings, and points out potential directions for 

future studies.  

 



12 
Chapter 2. Literature Review 

CHAPTER 2. LITERATURE REVIEW 

2.1 Item Response Theory 

Item response theory (IRT), also known as latent trait theory, is a modern 

psychological and educational test theory, which establishes a mathematical model of 

person and item parameters to represent the relationship between individuals’ responses 

to test items and their levels of latent ability. IRT has more or less replaced the role 

classical test theory (CTT) played in developing and analyzing tests and assessments, due 

to its potential to address the disadvantages of CTT. CTT produces findings that are both 

sample-dependent and scale-dependent, leading to serious logical drawback if the 

measurement performance of an instrument is affected by the sample it is supposed to be 

measuring and vice versa (Petrillo, Cano, McLeod, & Coon, 2015).  

2.1.1 Item Response Theory Models 

IRT is commonly used to evaluate how well the entire instrument and individual 

items perform in measuring person’s abilities, skills, attitudes, or other latent traits. 

Within the IRT framework, many models have been developed for analyzing and scoring 

different types of instruments (Hambleton & Jones, 1993). For example, the item 

response can be dichotomous (e.g., multiple-choice item), polytomous (e.g., Likert-type 

item) or continuous (e.g., slider scale item); the scoring category can be ordered or 

unordered; the latent trait can be measured within a unidimensional or multidimensional 

framework; and the relationship between the latent ability and item responses can be 

modeled using different statistical functions (e.g., the logit model or the normal ogive 

model).  
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Typically, IRT models can be classified into unidimensional and 

multidimensional models, and this study only focuses on the unidimensional case. Three 

basic assumptions are required for unidimensional IRT models. First, the 

unidimensionality assumption assumes that there is one single continuous latent ability 

variable that accounts for the response behavior on test items. Second, the local 

independence assumption states that an individual’s response to an item is only due to 

this individual’s location on the continuous latent variable and is not related to how they 

respond to other items. Third, the item response can be modeled by using a mathematical 

item response function (IRF), which gives the probability that an individual with a given 

ability level can answer an item correctly.  

The 3PL IRT model is the most general model for dichotomous items (Birnbaum, 

1968) 1. Assume that person 𝑝𝑝 (𝑝𝑝 =  1, … ,𝑃𝑃) responds to item 𝑖𝑖 (𝑖𝑖 =  1, … , 𝐼𝐼) on a test, 

the corresponding response is expressed as 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 if person p answers item i correctly, 

otherwise 𝑦𝑦𝑖𝑖𝑖𝑖 = 0, the 3PL model can be written as: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖� = 𝜋𝜋𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��
 (2.1) 

where 𝜃𝜃𝑖𝑖 represents the ability level of person p, the parameters 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, and 𝑐𝑐𝑖𝑖 represent 

item discrimination, difficulty, and pseudo-guessing parameter correspondingly, and 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖� represents the probability 𝜋𝜋𝑖𝑖𝑖𝑖 that person p with ability level of 

𝜃𝜃𝑖𝑖 responds to item i correctly with 𝑦𝑦𝑖𝑖𝑖𝑖~Bernoulli(𝜋𝜋𝑖𝑖𝑖𝑖). 

                                                           
1 Although the four-parameter logistic IRT model (Barton & Lord, 1981) was developed as an extension of 
3PL model by adding an upper-asymptote parameter, it is rarely used in practice.  
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Alternatively, the normal ogive model is sometimes used as an alternative to the 

logistic model, which is actually the first IRT model for measuring latent traits (Mosier, 

1940; 1941). A mathematical expression of the three-parameter normal ogive model is: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)�
1

√2𝜋𝜋

𝑎𝑎𝑖𝑖�𝜃𝜃𝑝𝑝−𝑏𝑏𝑖𝑖�

−∞
𝑒𝑒−

𝑧𝑧2
2 𝑑𝑑𝑑𝑑 (2. 2) 

where 𝑑𝑑 is a standardized score involving an examinee’s latent trait score, and two item 

parameters 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖., The normal ogive model is not very popular compare to the 

logistic model in practice due to its inconvenience and complexity of computation. The 

item parameters in the normal ogive model and the logistic model can be connected by 

using a scaling factor 𝐷𝐷 whose value is set to either 1.0 or 1.7: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖� = 𝜋𝜋𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
𝑒𝑒𝑥𝑥𝑝𝑝�𝐷𝐷𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝐷𝐷𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��
(2. 3)  

With 𝐷𝐷 = 1.7, two models yield almost equivalent values of item parameters, and under 

this situation the model parameters are placed on what is referred to as the “normal 

metric” (Han, 2013). In this study, since preserving consistent interpretations between 

two models are not important, the value of D was set to 1.0 and the model parameters 

were placed on the so-called “logistic metric”.  

The 2PL model (Birnbaum, 1957) and the one-parameter logistic (1PL) model are 

special cases of the 3PL model. In terms of the 2PL model, there is no pseudo-guessing 

parameter so that all 𝑐𝑐𝑖𝑖 (𝑖𝑖 =  1, … , 𝐼𝐼)  are restricted to zero, therefore the model in 

Equation 2.1 becomes: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� =
𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��
(2. 4) 

Additionally, the 1PL model can be obtained by restricting 𝑎𝑎𝑖𝑖 = 1 (𝑖𝑖 =  1, … , 𝐼𝐼): 
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𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖, 𝑏𝑏𝑖𝑖� =
𝑒𝑒𝑥𝑥𝑝𝑝�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖�

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖�
(2. 5) 

Although conceptually different, the 1PL model and the Rasch dichotomous model 

(Rasch, 1960) are the same from a purely mathematical standpoint.  

2.1.2 Parameter Estimation 

There are several techniques for estimating the item and ability parameters in IRT 

models, such as joint maximum likelihood estimation (JMLE), marginal maximum 

likelihood estimation (MMLE) and Bayesian approaches. Conditional maximum 

likelihood estimation (CLME) is also an alternative for maximum likelihood estimation 

(MLE), especially for models with a simple sufficient statistic, such as the Rasch model 

(Andersen, 1970). However, the 2PL and 3PL models do not have sufficient statistics, so 

CMLE will not be discussed in this section.  

All these MLE methods rely on the independence assumption that individuals are 

independent of each other, and the item responses of a given individual are independent. 

Therefore, use the 2PL model as an example, the likelihood function for person p with a 

response pattern 𝑦𝑦𝑖𝑖 can be defined as the joint product of probability functions: 

𝐿𝐿�𝑦𝑦𝑖𝑖�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� = �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�
𝐼𝐼

𝑖𝑖=1

(2. 6) 

Equation 2.6 can be used to estimate the ability parameters when the item parameters are 

known. Additionally, the likelihood function for item i is defined as: 

𝐿𝐿�𝑦𝑦𝑖𝑖�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� = �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�
𝑃𝑃

𝑖𝑖=1

(2. 7) 
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And Equation 2.7 can be used to estimate the item parameters when person’s abilities are 

known. Similarly, the likelihood function for the data matrix is defined as: 

𝐿𝐿�𝑦𝑦�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� = ��𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖�
𝐼𝐼

𝑖𝑖=1

𝑃𝑃

𝑖𝑖=1

(2. 8) 

JMLE (Lord, 1968) treats both item and ability parameter as unknown but fixed. It 

proceeds by estimating 𝐿𝐿�𝑦𝑦�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� with respect to ability parameter 𝜃𝜃𝑖𝑖 and item 

parameters 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 simultaneously. JMLE can be divided into the MLE of item parameters 

and the MLE of ability parameters. These two steps are iterated so that the item and 

ability parameters are estimated back and forth until a convergence criterion is met. One 

major problem with JMLE is that parameter estimates do not exist for extreme scores of 

individuals or items (e.g., an individual answers all items correctly or incorrectly, or all 

individuals answer an item correctly or incorrectly). Also, previous research found that 

JMLE estimates were statistically inconsistent and biased particularly for short tests or 

small samples (Andersen, 1973).  

Unlike JMLE, MMLE estimates item parameters without having to estimate 

ability parameters, which is accomplished by integrating over the ability distribution to 

eliminate these parameters (Bock & Lieberman, 1970). The theoretical marginal 

likelihood is defined as:  

𝐿𝐿�𝑦𝑦�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� = �� �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�𝑓𝑓�𝜃𝜃𝑖𝑖�
𝐼𝐼

𝑖𝑖=1

+∞

−∞
𝑑𝑑𝜃𝜃𝑖𝑖

𝑃𝑃

𝑖𝑖=1

(2. 9) 

Item parameter estimates are obtained by maximizing the marginal likelihood function in 

Equation 2.9. MMLE is more complicated to implement but the parameter estimates are 

consistent under the hypothesis of normality of the latent trait. The computational burden 
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can be reduced by using the expectation–maximization (EM) algorithm (Dempster, Laird, 

& Rubin, 1977), which is efficient in finding the maximum likelihood estimates of 

parameters in the presence of unobserved random variables. The EM iteration alternates 

between performing an expectation step, which creates a function for the expectation of 

the likelihood function based on the initial values or current estimates of model 

parameters, and performing a maximization step, which updates old parameter estimates 

and obtains new estimates by maximizing the expected likelihood function in the 

expectation step. 

 Ability parameters can be estimated subsequently, using Bayesian procedures 

(Bock & Mislevy, 1982), which basically entails combining the likelihood function with 

a prior distribution to estimate the posterior distribution of ability: 

𝑓𝑓�𝜃𝜃𝑖𝑖�𝑦𝑦,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� ∝ 𝐿𝐿�𝑦𝑦�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖�𝑓𝑓�𝜃𝜃𝑖𝑖� (2.10) 

In Equation 2.10, 𝑓𝑓(𝜃𝜃𝑖𝑖) is the prior distribution representing some prior belief about the 

ability distribution, and 𝑓𝑓(𝜃𝜃𝑖𝑖|𝑦𝑦,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖) is the posterior distribution of ability for person p. 

The maximum a posteriori (MAP) and expectation a posteriori (EAP) approaches are 

often employed to estimate ability parameters. Specifically, the Bayesian MAP estimator 

is the mode of the posterior distribution, and the EAP estimator equals the mean of the 

posterior distribution.  

 

2.2 Differential Item Functioning 

2.2.1 Definition 

An item is biased when individuals from one group are less likely to correctly 

answer it compared to individuals from another group, which is because some 



18 
Chapter 2. Literature Review 

characteristics of test items or testing situations are not relevant to the test purpose 

(Zumbo, 1999). Such items exhibit differential item functioning (DIF), a necessary but 

not sufficient condition for item bias (Clauser & Mazor, 1998), indicating that the 

probabilities of correctly responding to certain items are unexpectedly different for 

people from group to group, even after they have been matched on the ability of interest 

(Holland & Wainer, 1993). In other words, item bias implies DIF; but if an item shows 

DIF, it is not sufficient to report this item is biased. Items with DIF may reflect 

measurement bias and lead to discrimination against particular groups. Typically, follow-

up analyses such as content analysis, empirical evaluation or other judgmental 

approaches are required to determine the presence of item bias (Zumbo, 1999). 

Therefore, since the DIF investigation and detection procedures completely rely on 

statistical techniques and the analysis results can help flag potentially biased items, DIF is 

a very important indicator for researchers, educators, and policymakers to examine 

whether test items display the same statistical properties for individuals from different 

groups within the population. 

2.2.2 Types of DIF 

Conceptually, an item displaying DIF or not can be assessed by comparing the 

item characteristic curves (ICCs) of different groups on this item. ICC is a graphical 

representation of IRF, showing the relationship between the latent ability level and the 

probability of correct response. As shown in Figure 2.1, if the reference and focal group 

ICCs are very close to each other, the item is more likely to be a non-DIF item. 

Otherwise, an item is considered to display DIF if there is significant difference between 

the ICCs across groups.  
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DIF can be classified into uniform DIF and nonuniform DIF. In Figure 2.2, the 

ICCs do not cross with each other. This type of DIF is defined as uniform DIF, indicating 

the studied item consistently gives one group an advantage across all ability levels. In 

Figure 2.3, the ICCs do cross each other. In this case, the item shows nonuniform DIF, 

indicating that an item gives an advantage to a reference group at one end of the ability 

continuum while favors the focal group at the other end (Walker, 2011). In IRT, an item 

showing uniform DIF only varies in the difficulty parameter, while an item displaying 

nonuniform DIF varies in the discrimination parameter, and possibly varies in the 

difficulty parameter (Mellenbergh, 1982).  

 

 

Figure 2.1 The Reference and Focal Group ICCs for a Non-DIF Item 
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Figure 2.2 The Reference and Focal Group ICCs for a Uniform DIF Item 

 

 

Figure 2.3 The Reference and Focal Group ICCs for a Nonuniform DIF Item 
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Previous research found that the presence of DIF items had negative impacts on 

measurement consequences such as inaccurate IRT ability estimates (e.g., Wells, 

Subkoviak, & Serlin, 2002) and inflated type I error rates in DIF detection (e.g., Li, 

Brooks, & Johanson, 2012). Therefore, how much difference between item parameters is 

non-negligible becomes a question of interest. Wells et al. (2002) suggested that a 

difference of 0.4 in difficulty parameters and a difference of 0.5 in discrimination 

parameters had a minimal impact on ability estimates, demonstrating the robustness of 

IRT when the invariance property is violated.  

2.2.3 Popular DIF Detection Methods  

Many methods were developed to detect DIF over the years. Fundamentally, most 

of the studies focus on comparing two pre-determined groups—the reference group and 

the focal group. The Mantel-Haenszel method (Holland & Thayer, 1988), logistic 

regression (Swaminathan & Rogers, 1990), and SIBTEST (Shealy & Stout, 1993) are 

popular non-IRT DIF detection methods. IRT-based approaches are also widely used by 

comparing either the item parameters or the item response functions between groups, 

such as Lord’s χ2 test (Lord, 1980), the likelihood ratio test (Thissen et al., 1998), and 

Raju’s area measures (Raju, 1988; 1990). 

2.2.3.1 The Mantel-Haenszel Method 

The Mantel-Haenszel (MH) method is based on analyzing a contingency table, 

which displays the multivariate frequency distribution of variables of interest. This 

procedure compares the probabilities of a correct response between the focal and 

reference group members with the same ability level, and is popular for assessing 

uniform DIF in dichotomously scored items. The MH statistic determines if the item 
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responses are independent of group membership after conditioning on the observed 

scores.  

Let 𝑡𝑡 represent the tth (𝑡𝑡 = 1, … ,𝑇𝑇) score level, a two-by-two contingency table of 

a studied item can be constructed as follows: 

Table 2.1 A Contingency Table for a Studied Item at the tth Score Level 

 Group Membership Total Reference Focal 
Score on the 
Studied Item 

1 (correct) 𝑁𝑁𝑅𝑅1𝑡𝑡 𝑁𝑁𝐹𝐹1𝑡𝑡 𝑁𝑁1𝑡𝑡 
0 (incorrect) 𝑁𝑁𝑅𝑅0𝑡𝑡 𝑁𝑁𝐹𝐹0𝑡𝑡 𝑁𝑁0𝑡𝑡 

Total 𝑁𝑁𝑅𝑅𝑡𝑡 𝑁𝑁𝐹𝐹𝑡𝑡 𝑁𝑁𝑡𝑡 
 

According to Table 2.1, at the tth score level, 𝑁𝑁𝑅𝑅1𝑡𝑡,𝑁𝑁𝑅𝑅0𝑡𝑡,𝑁𝑁𝐹𝐹1𝑡𝑡,𝑁𝑁𝐹𝐹0𝑡𝑡  are the observed 

counts of individuals in each cell, 𝑁𝑁𝑅𝑅𝑡𝑡 = 𝑁𝑁𝑅𝑅1𝑡𝑡 + 𝑁𝑁𝑅𝑅0𝑡𝑡 and 𝑁𝑁𝐹𝐹𝑡𝑡 = 𝑁𝑁𝐹𝐹1𝑡𝑡 + 𝑁𝑁𝐹𝐹0𝑡𝑡 are the 

number of reference and focal group members, 𝑁𝑁1𝑡𝑡 = 𝑁𝑁𝑅𝑅1𝑡𝑡 + 𝑁𝑁𝐹𝐹1𝑡𝑡 and 𝑁𝑁0𝑡𝑡 = 𝑁𝑁𝑅𝑅0𝑡𝑡 +

𝑁𝑁𝐹𝐹0𝑡𝑡 are the number of correct and incorrect responses, and 𝑁𝑁𝑡𝑡 = 𝑁𝑁𝑅𝑅𝑡𝑡 + 𝑁𝑁𝐹𝐹𝑡𝑡 = 𝑁𝑁1𝑡𝑡 + 𝑁𝑁0𝑡𝑡 

represents the total number of individuals.  

In sum, there are T contingency tables for each studied item. The common odds 

ratio for the T contingency tables is defined in Equation 2.11: 

𝑙𝑙𝑑𝑑𝑑𝑑𝑠𝑠 𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝑙𝑙 =
∑ 𝑁𝑁𝑅𝑅1𝑡𝑡𝑁𝑁𝐹𝐹0𝑡𝑡 𝑁𝑁𝑡𝑡⁄𝑇𝑇
𝑡𝑡=1

∑ 𝑁𝑁𝑅𝑅0𝑡𝑡𝑁𝑁𝐹𝐹1𝑡𝑡 𝑁𝑁𝑡𝑡⁄𝑇𝑇
𝑡𝑡=1

=
∑ 𝑁𝑁𝑅𝑅1𝑡𝑡𝑁𝑁𝐹𝐹0𝑡𝑡𝑇𝑇
𝑡𝑡=1

∑ 𝑁𝑁𝑅𝑅0𝑡𝑡𝑁𝑁𝐹𝐹1𝑡𝑡𝑇𝑇
𝑡𝑡=1

(2.11) 

When the odds ratio equals 1, the probabilities of correct responses are equal in both 

groups, indicating there is no association between observed scores and group 

membership. When the odds ratio is greater than 1, reference group members are more 

likely to answer the studied item correctly. Otherwise, when the odds ratio is less than 1, 

the focal group members are more likely to answer the studied item correctly. Therefore, 
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the null hypothesis is the odds ratio equal to 1, while the alternative hypothesis is the 

odds ratio unequal to 1.  

The MH statistic with a continuity correction can be calculated as: 

𝜒𝜒𝑀𝑀𝑀𝑀2 =
{|∑ [𝑁𝑁𝑅𝑅1𝑡𝑡 − 𝐸𝐸(𝑁𝑁𝑅𝑅1𝑡𝑡)]𝑇𝑇

𝑡𝑡=1 | − 0.5}2

∑ 𝑣𝑣𝑎𝑎𝑟𝑟(𝑁𝑁𝑅𝑅1𝑡𝑡)𝑇𝑇
𝑡𝑡=1

(2.12) 

where 𝐸𝐸(𝑁𝑁𝑅𝑅1𝑡𝑡) = 𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁1𝑅𝑅
𝑁𝑁𝑅𝑅

 and 𝑣𝑣𝑎𝑎𝑟𝑟(𝑁𝑁𝑅𝑅1𝑡𝑡) = 𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁𝐹𝐹𝑅𝑅𝑁𝑁1𝑅𝑅𝑁𝑁0𝑅𝑅
𝑁𝑁𝑅𝑅2(𝑁𝑁𝑅𝑅−1) . The MH statistic approximately 

follows a Chi-square distribution with one degree of freedom (Mantel & Haenszel, 1959). 

2.2.3.2 Logistic Regression  

Swaminathan and Rogers (1990) first applied logistic regression to DIF detection, 

which is a model-based approach. The logistic regression DIF approach has a statistical 

significance test and a measure of DIF effect size, which can be conceptualized as a link 

between the contingency table methods and the IRT methods (Clauser & Mazor, 1998). 

Logistic regression is more general and flexible than the model that underlies the MH 

procedure, and is more powerful in detecting nonuniform DIF. When using the logistic 

regression model to detect DIF items, the item response is treated as an outcome variable, 

while the latent ability, group membership, as well as an interaction between group 

membership and latent ability are treated as predictors. Equation 2.13 defines the logistic 

regression DIF model. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝑃𝑃�𝑦𝑦𝑖𝑖𝑝𝑝 = 1�� = 𝜏𝜏0 + 𝜏𝜏1𝑠𝑠𝑖𝑖 + 𝜏𝜏2𝐺𝐺𝑖𝑖 + 𝜏𝜏3𝑠𝑠𝑖𝑖𝐺𝐺𝑖𝑖 (2.13) 

where 𝑠𝑠𝑖𝑖 is the test score of person p, 𝐺𝐺𝑖𝑖 represents group membership which equals 1 if 

person p belongs to the reference group and 0 otherwise, and 𝑠𝑠𝑖𝑖𝐺𝐺𝑖𝑖 is the product of these 

two independent variables representing the interaction between ability and group 

membership. Additionally, 𝜏𝜏0, 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3 represent the intercept, the effect for ability, the 
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effect for group, and the interaction of ability and group for the studied item. 𝜏𝜏0 and 𝜏𝜏1 

can be further considered as the counterparts of item difficulty and item discrimination 

parameters in the IRT framework when 𝐺𝐺𝑖𝑖 = 0 (Li, 2014). The MH procedure can be 

thought of as being based on the logistic regression model if the ability variable is 

discrete, and no interaction is included in the model (Swaminathan & Rogers, 1990).  

The logistic regression coefficients 𝜏𝜏2 and 𝜏𝜏3 are referred to as the DIF 

parameters, and the detection of DIF items is realized by testing the significance of these 

two DIF parameters. If the studied item is DIF-free, both 𝜏𝜏2 and 𝜏𝜏3 are equal to 0; if the 

studied item shows uniform DIF, 𝜏𝜏2 ≠ 0 but 𝜏𝜏3 = 0; if the studied item shows 

nonuniform DIF, 𝜏𝜏3 ≠ 0 and 𝜏𝜏2 can be either zero or non-zero. The difference between 

the minus twice the log-likelihood of the parsimonious model including only 𝜏𝜏0 and 𝜏𝜏1 

and the augmented model including 𝜏𝜏0, 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3 is associated with a Chi-square 

distribution with two degrees of freedom. If the null hypothesis of no DIF is rejected, the 

studied item is flagged as a DIF item and should be reviewed by experts afterwards 

(Jodoin & Gierl, 2001). 

2.2.3.3 SIBTEST 

The full name of SIBTEST is simultaneous item bias test, which is a 

nonparametric procedure that not only estimates the amount of DIF in test items, but also 

tests whether that amount is different from zero statistically (Bolt, 2000). SIBTEST was 

developed under the multidimensional IRT framework, which examines DIF at the test 

level and provides a statistical test to investigate if DIF is present on a test (Narayanan & 

Swaminathan, 1994). A regression-based correction technique is used in SIBTEST to 

help match individuals from different groups at the same latent ability level rather than 



25 
Chapter 2. Literature Review 

the same observed score level, and this method showed improved performance in 

controlling the type I errors (Shealy & Stout, 1993; Roussos & Stout, 1996).  

The statistical hypotheses under SIBTEST are 𝐻𝐻0:𝐵𝐵 = 0 vs.𝐻𝐻1:𝐵𝐵 ≠ 0, where 𝐵𝐵 

is a parameter specifying the DIF magnitude as follows: 

𝐵𝐵 = �[𝑃𝑃(𝜃𝜃,𝑅𝑅) − 𝑃𝑃(𝜃𝜃,𝐹𝐹)]𝑓𝑓𝐹𝐹(𝜃𝜃)𝑑𝑑𝜃𝜃 
𝜃𝜃

(2.14) 

In Equation 2.14, 𝜃𝜃 represents the ability level, 𝑃𝑃(𝜃𝜃,𝑅𝑅) and 𝑃𝑃(𝜃𝜃,𝐹𝐹) are the probabilities 

of correct responses on an item in the reference and focal groups respectively, and 𝑓𝑓𝐹𝐹(𝜃𝜃) 

is the density function for 𝜃𝜃 in the focal group. Thus, 𝐵𝐵 is a weighted expected score 

difference between the reference and focal group members of a same ability level on the 

studied item. 𝐵𝐵 can be approximated using the observed test score 𝑠𝑠 (𝑠𝑠 = 0, … , 𝑆𝑆) on a 

subset of anchor items: 

𝐵𝐵� = �𝑝𝑝𝑠𝑠(𝑌𝑌�𝑅𝑅𝑠𝑠 − 𝑌𝑌�𝐹𝐹𝑠𝑠)
𝑆𝑆

𝑠𝑠=0

(2.15) 

where 𝑝𝑝𝑠𝑠 represents the proportion of individuals from the pooled reference and focal 

groups getting score s on the anchor items, and 𝑌𝑌�𝑅𝑅𝑠𝑠 and 𝑌𝑌�𝐹𝐹𝑠𝑠 are the mean scores for all 

reference group and focal group members obtaining score s on the anchor items 

respectively.  

 However, when 𝑓𝑓𝐹𝐹(𝜃𝜃) ≠ 𝑓𝑓𝑅𝑅(𝜃𝜃) meaning that two latent distributions are different, 

𝐵𝐵�  might be easily inflated and biased. A modified SIBTEST was proposed by Shealy and 

Stout (1993) employing a regression-based correction technique to obtain a corrected 

version of 𝑌𝑌�𝑅𝑅𝑠𝑠 and 𝑌𝑌�𝐹𝐹𝑠𝑠, 𝑌𝑌�𝑅𝑅𝑠𝑠∗  and 𝑌𝑌�𝐹𝐹𝑠𝑠∗ , which are the adjusted mean scores for reference and 

focal group members matched on the estimated true score correspondingly. Therefore, 
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𝐵𝐵�∗ = �𝑝𝑝𝑠𝑠(𝑌𝑌�𝑅𝑅𝑠𝑠∗ − 𝑌𝑌�𝐹𝐹𝑠𝑠∗ )
𝑆𝑆

𝑠𝑠=0

(2.16) 

The SIBTEST statistic is then constructed based on the new estimate 𝐵𝐵�∗: 

𝑆𝑆𝐼𝐼𝐵𝐵 =
𝐵𝐵�∗

𝜎𝜎��𝐵𝐵��
(2.17) 

where 𝜎𝜎��𝐵𝐵�� = �∑ 𝑝𝑝𝑠𝑠2 �
𝜎𝜎�2(𝑌𝑌|𝑠𝑠,𝑅𝑅)

𝑁𝑁𝑅𝑅𝑅𝑅
+ 𝜎𝜎�2(𝑌𝑌|𝑠𝑠,𝐹𝐹)

𝑁𝑁𝐹𝐹𝑅𝑅
�𝑆𝑆

𝑠𝑠=0 �
1
2, 𝑁𝑁𝑅𝑅𝑅𝑅 and 𝑁𝑁𝐹𝐹𝑅𝑅 represent the number of 

individuals in the reference and focal groups with score k on the anchor items 

correspondingly. Since the test statistic SIB has an asymptotic distribution of 𝑁𝑁(0,1) 

under the null hypothesis of no DIF, the null hypothesis is rejected if SIB exceeds the 

100(1–𝛼𝛼)
2

 percentile point of the standard normal distribution using a nondirectional 

hypothesis test (Shealy & Stout, 1993). 

2.2.3.4 Lord’s 𝜒𝜒2 test 

Lord’s (1980) 𝜒𝜒2 test was proposed under the IRT framework, testing the 

difference in item parameters between groups. Generally, using the Lord’s method to 

detect DIF items has three steps: first, estimate item parameters for the combined 

reference and focal groups, and standardize on the difficulty estimates; second, fix the 

pseudo-guessing parameters at the values obtained from the concurrent estimation, re-

estimate the item discrimination and difficulty parameters for each group separately, and 

standardize again on the difficulty estimates; last, compare the discrimination and 

difficulty parameters obtained from the separate estimation using the 𝜒𝜒2 statistic 

demonstrated in Equation 2.18. 

𝜒𝜒2 = 𝒗𝒗𝒊𝒊
′𝜮𝜮𝒊𝒊−𝟏𝟏𝒗𝒗𝒊𝒊 (2.18) 
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where 

𝒗𝒗𝒊𝒊 = 𝒗𝒗𝒊𝒊𝒊𝒊 − 𝒗𝒗𝒊𝒊𝒊𝒊∗ = �𝑎𝑎�𝑖𝑖𝑅𝑅 ,𝑏𝑏�𝑖𝑖𝑅𝑅 , �̂�𝑐𝑖𝑖𝑅𝑅�
′
− �𝑎𝑎�𝑖𝑖𝐹𝐹∗ , 𝑏𝑏�𝑖𝑖𝐹𝐹∗ , �̂�𝑐𝑖𝑖𝐹𝐹∗ �

′
= �𝑎𝑎�𝑖𝑖𝑅𝑅 − 𝑎𝑎�𝑖𝑖𝐹𝐹∗ , 𝑏𝑏�𝑖𝑖𝑅𝑅 − 𝑏𝑏�𝑖𝑖𝐹𝐹∗ , �̂�𝑐𝑖𝑖𝑅𝑅 − �̂�𝑐𝑖𝑖𝐹𝐹∗ �

′
 

𝚺𝚺𝒊𝒊 = 𝚺𝚺𝒊𝒊𝒊𝒊 + 𝚺𝚺𝒊𝒊𝒊𝒊∗  

𝑎𝑎�𝑖𝑖𝑅𝑅 , 𝑏𝑏�𝑖𝑖𝑅𝑅 , �̂�𝑐𝑖𝑖𝑅𝑅 represent the discrimination, difficulty, and pseudo-guessing parameters for 

item i correspondingly in the reference group, 𝑎𝑎�𝑖𝑖𝐹𝐹∗ = 𝑎𝑎�𝑖𝑖𝐹𝐹
𝐴𝐴

, 𝑏𝑏�𝑖𝑖𝐹𝐹∗ = 𝐴𝐴 × 𝑏𝑏�𝑖𝑖𝐹𝐹 + 𝐵𝐵, �̂�𝑐𝑖𝑖𝐹𝐹∗ = �̂�𝑐𝑖𝑖𝐹𝐹 

represent the transformed item parameters in the focal group where A and B are the 

equating coefficients placing the focal group item parameters on the metric of the 

reference group (Kim, Cohen, & Kim, 1994), 𝚺𝚺𝒊𝒊𝒊𝒊 is the variance-covariance matrices of 

𝒗𝒗𝒊𝒊𝒊𝒊, and 𝚺𝚺𝒋𝒋𝒊𝒊∗  is the transformed variance-covariance matrices of 𝒗𝒗𝒊𝒊𝒊𝒊∗ .  

Under the hypothesis that there is no difference between item parameters, the 

observed value of 𝜒𝜒2 follows a Chi-square distribution. For the 2PL model, 𝜒𝜒2 has two 

degrees of freedom, while for the 3PL model, 𝜒𝜒2 has three degrees of freedom. If the 

difference between item parametesr is significantly different from zero, the item is 

flagged as a DIF item. 

2.2.3.5 The Likelihood Ratio Test 

The likelihood ratio test compares the ratio of two nested models, with the 

hypothesis that the parameter estimates are invariant between groups. It computes the 

difference between the minus twice the log-likelihood of the constrained model and the 

free model, where the constrained model usually has fewer parameters than the free 

model. The test statistic of the likelihood ratio test can be calculated as: 

𝐺𝐺2 = −2 𝑙𝑙𝑛𝑛 �
𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃)

𝐿𝐿𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) � = −2 𝑙𝑙𝑛𝑛 𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑡𝑡𝑐𝑐𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐(𝜃𝜃) + 2 𝑙𝑙𝑛𝑛 𝐿𝐿𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (2.19) 
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Specifically, the parameters estimates for all test items are set equal for both reference 

and focal groups in the constrained model. However, in the free model, parameter 

estimates for all item except the studied items are constrained to be equal in the reference 

and focal groups (Thissen et al., 1998), that is, only item parameters of the studied items 

are separately estimated. Therefore, the metric used in the likelihood ratio test is based on 

all items except the studied items (Cohen, Kim, & Wollack, 1996). 𝐺𝐺2 approximately 

follows a Chi-square distribution with degrees of freedom equal to the difference between 

the number of free parameters in two models.  

2.2.3.6 Raju’s Area Measures 

Raju (1988; 1990) proposed two area measures—the exact signed area and the 

unsigned area between two IRFs for IRT models. For the 3PL model, let 𝑃𝑃𝑅𝑅 and 𝑃𝑃𝐹𝐹 

represent the IRFs for item i in the reference and focal groups respectively: 

𝑃𝑃𝑅𝑅 = 𝑐𝑐𝑖𝑖𝑅𝑅 + (1 − 𝑐𝑐𝑖𝑖𝑅𝑅)
𝑒𝑒𝑥𝑥𝑝𝑝[𝐷𝐷𝑎𝑎𝑖𝑖𝑅𝑅(𝜃𝜃 − 𝑏𝑏𝑖𝑖𝑅𝑅)]

1 + 𝑒𝑒𝑥𝑥𝑝𝑝[𝐷𝐷𝑎𝑎𝑖𝑖𝑅𝑅(𝜃𝜃 − 𝑏𝑏𝑖𝑖𝑅𝑅)]
(2. 20) 

𝑃𝑃𝐹𝐹 = 𝑐𝑐𝑖𝑖𝐹𝐹 + (1 − 𝑐𝑐𝑖𝑖𝐹𝐹)
𝑒𝑒𝑥𝑥𝑝𝑝[𝐷𝐷𝑎𝑎𝑖𝑖𝐹𝐹(𝜃𝜃 − 𝑏𝑏𝑖𝑖𝐹𝐹)]

1 + 𝑒𝑒𝑥𝑥𝑝𝑝[𝐷𝐷𝑎𝑎𝑖𝑖𝐹𝐹(𝜃𝜃 − 𝑏𝑏𝑖𝑖𝐹𝐹)]
(2.21) 

The signed and unsigned areas between 𝑃𝑃𝑅𝑅 and 𝑃𝑃𝐹𝐹 are defined as follows: 

𝑆𝑆𝐴𝐴 = � (𝑃𝑃𝑅𝑅 − 𝑃𝑃𝐹𝐹)
+∞

−∞
𝑑𝑑𝜃𝜃 (2. 22) 

𝑈𝑈𝐴𝐴 = � |𝑃𝑃𝑅𝑅 − 𝑃𝑃𝐹𝐹|
+∞

−∞
𝑑𝑑𝜃𝜃 (2. 23) 

However, since the area between two IRFs is infinite when the lower asymptotes are 

unequal for the 3PL model, Raju’s method works only when 𝑐𝑐𝑖𝑖𝑅𝑅 = 𝑐𝑐𝑖𝑖𝐹𝐹. For the 2PL 
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model, the signed and unsigned area measures for item i are calculated in a different way 

(Raju, 1988): 

𝑆𝑆𝐴𝐴 = 𝑏𝑏𝑖𝑖𝐹𝐹 − 𝑏𝑏𝑖𝑖𝑅𝑅 (2. 24) 

𝑈𝑈𝐴𝐴 = �
|𝑏𝑏𝑖𝑖𝐹𝐹 − 𝑏𝑏𝑖𝑖𝑅𝑅|,   𝑖𝑖𝑓𝑓 𝑎𝑎𝑖𝑖𝐹𝐹 = 𝑎𝑎𝑖𝑖𝑅𝑅

|𝐻𝐻𝑖𝑖|, 𝑖𝑖𝑓𝑓 𝑎𝑎𝑖𝑖𝐹𝐹 ≠ 𝑎𝑎𝑖𝑖𝑅𝑅
(2. 25) 

where 

𝐻𝐻𝑖𝑖 =
2(𝑎𝑎𝑖𝑖𝐹𝐹 − 𝑎𝑎𝑖𝑖𝑅𝑅)
𝐷𝐷𝑎𝑎𝑖𝑖𝐹𝐹𝑎𝑎𝑖𝑖𝑅𝑅

ln �1 + exp �
𝐷𝐷𝑎𝑎𝑖𝑖𝐹𝐹𝑎𝑎𝑖𝑖𝑅𝑅(𝑏𝑏𝑖𝑖𝐹𝐹 − 𝑏𝑏𝑖𝑖𝑅𝑅)

𝑎𝑎𝑖𝑖𝐹𝐹 − 𝑎𝑎𝑖𝑖𝑅𝑅
�� − (𝑏𝑏𝑖𝑖𝐹𝐹 − 𝑏𝑏𝑖𝑖𝑅𝑅) 

In order to test whether the signed or unsigned area measure is significantly 

different from zero, 𝑍𝑍𝑖𝑖(𝑆𝑆𝐴𝐴) and 𝑍𝑍𝑖𝑖(𝑈𝑈𝐴𝐴) are defined as: 

𝑍𝑍𝑖𝑖(𝑆𝑆𝐴𝐴) =
𝑏𝑏𝑖𝑖𝐹𝐹 − 𝑏𝑏𝑖𝑖𝑅𝑅

[𝑣𝑣𝑎𝑎𝑟𝑟(𝑏𝑏𝑖𝑖𝐹𝐹) + 𝑣𝑣𝑎𝑎𝑟𝑟(𝑏𝑏𝑖𝑖𝑅𝑅)]
1
2

(2. 26) 

𝑍𝑍𝑖𝑖(𝑈𝑈𝐴𝐴) =
𝐻𝐻𝑖𝑖

[𝑣𝑣𝑎𝑎𝑟𝑟(𝐻𝐻𝑖𝑖)]
1
2

(2. 27) 

and these two test statistics both follow a standard normal distribution.  

2.2.4 Anchor Selection and Scale Purification Procedures 

A variety of methods was developed to select anchor items and build a common 

metric for DIF assessment. In addition to selecting the anchor items based on expert 

review, other common anchor selection methods include equal-mean-difficulty (EMD), 

all others as anchors (AOAA), and constant-item (CI). These methods do not involve any 

iterative or purification procedure, so they are easy and quick strategies for empirically 

selecting anchors.  

Under the EMD approach, the mean item difficulties are constrained to be equal 

across groups. The EMD method is true under the assumption that either the test does not 
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contain any DIF items, or there exist several DIF items but the DIF amounts are same—

some items favor one group, and other items favor another group (Wang, 2004; Wang et 

al., 2012). Some popular psychometric programs such as BILOG-MG (Zimowski, 

Muraki, Mislevy, & Bock, 2003), ConQuest (Wu, Adams, Wilson, & Haldane, 2007), 

and PARSCALE (Muraki & Bock, 1997) employ the EMD method in DIF detection. 

However, this method works in very limited conditions, since previous research showed 

that if a test contains multiple DIF items, the EMD method functioned appropriately only 

when the difference in the mean item difficulties between the reference and focal groups 

approaches zero (Wang, 2004). 

In terms of AOAA, all other items except the item currently tested for DIF are 

treated as anchors. Like the EMD approach, there is a prerequisite for this method—all 

items should be DIF-free or the studied item is the only DIF item in the test (Wang et al., 

2012). It means that containing more than one DIF item is a great threat to AOAA. 

Moreover, each item tested for DIF has a different anchor, indicating that each item is 

tested with a slightly different common metric, which might be problematic in practice. 

The CI approach selects a subset of items to establish a pre-determined common 

metric so that other items can be assessed for DIF. Previous studies found that the longer 

the anchor, the lower the type I error and the higher the power of detecting DIF items 

(e.g., Wang & Yeh, 2003; Wang, 2004). In practice, four anchor items are usually enough 

(Thissen et al., 1988). CI method yielded good control over type I error and achieved 

reasonable power when there were more than 30% of DIF items (Wang & Yeh, 2003).  

Anchor selection approaches involving iterative procedures were also frequently 

used by researchers (e.g., Woods, 2009; Kopf, Zeileis, & Strobl, 2013). The iterative 
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scale purification procedure aims to remove DIF items from the common metric, and the 

major steps include: (1) calibrate item parameters separately for each group, link and 

place the reference and focal groups on a common metric; (2) assess each item for DIF 

using all items as anchors; (3) relink group metrics using only those items identified 

invariant in the previous step; (4) reassess each item for DIF; (5) repeat steps 3 and 4 

until same items are identified invariant in consecutive iterations (Wang et al., 2012). 

Previous studies showed that the scale purification procedures made a huge improvement 

in DIF detection over EMD, AOAA, as well as CI methods (Lautenschlager et al., 1994). 

 

2.3 Regularization Methods 

2.3.1 Introduction 

Assume that there exists a basic model  

𝑌𝑌 = 𝑓𝑓(𝑋𝑋) + 𝜀𝜀 (2. 28) 

where the response vector Y is given as a function f of the predictor vector X, with 

normally distributed errors 𝜀𝜀 having a mean of zero and variance of 𝜎𝜎𝜀𝜀2. An estimate 𝑓𝑓 of 

the underlying relationship f can be obtained using different modeling techniques such as 

linear regression or logistic regression, and the predictions made by 𝑓𝑓 at particular values 

of X should approximate the true values given by Y as well as possible. In this case, the 

expected squared prediction error at X can be defined as 𝐸𝐸 ��𝑌𝑌 − 𝑓𝑓(𝑋𝑋)�
2
�, which can be 

further decomposed into bias and variance components as shown in Equation 2.29.  

𝐸𝐸 ��𝑌𝑌 − 𝑓𝑓(𝑋𝑋)�
2
� = �𝐸𝐸�𝑓𝑓(𝑋𝑋)� − 𝑓𝑓(𝑋𝑋)�

2
+ 𝐸𝐸 ��𝑓𝑓(𝑋𝑋) − 𝐸𝐸�𝑓𝑓(𝑋𝑋)��

2
� + 𝜎𝜎𝜀𝜀2

= Bias2 + Variance + Irreducible Error (2. 29)
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Equation 2.29 is usually called the bias-variance composition. Bias and variance are two 

sources of error that prevent a model from effective generalization—bias is an error 

introduced by approximating a real-life problem, and variance refers to the amount of 

error by which the predicted values may change if the model is estimated using a 

different dataset (James, Witten, Hastie, & Tibshirani, 2013). The third term is the noise 

term that cannot be reduced by any model. There is a tradeoff between bias and variance 

that comes with model complexity. Generally, complex models have high variance and 

low bias, while simple models have high bias and low variance. In this study, both 

analytic methods and simulation studies were used to find a good balance between bias 

and variance so that the final model minimizes the prediction errors and yields the 

optimal operating characteristics in terms of hit rates and false alarm rates.  

The bias-variance decomposition forms the conceptual foundation of 

regularization. Regularization is a technique that helps solve overfitting problem by 

explicitly controlling for model complexity. For example, in linear regression, the 

ordinary least squares (OLS) solution gives the best linear unbiased estimator, but it often 

has poor prediction and generalization since it relies too much on the training data. 

Regularization has the benefit of reducing variance and improving predictive accuracy 

compared to OLS, by introducing bias into the regression model. It identifies the 

preferred level of model complexity by adding a penalty term to the objective function to 

be minimized. The most common penalties are the ℓ1 and ℓ2 penalties, where the ℓ1 

penalty equals the absolute value of the magnitude of coefficients, and the ℓ2 penalty 

equals the square of the magnitude of coefficients. 
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2.3.2 Different Types of Penalties 

Assume that there is a dataset consisting of N observations and J variables; n is 

used to index the observations from 1 to N (𝑛𝑛 = 1, … ,𝑁𝑁), and j is used to index the 

predictor variables from 1 to J (𝑗𝑗 = 1, … , 𝐽𝐽). Let 𝑥𝑥𝑐𝑐𝑛𝑛 represent the value of the jth 

variable for the nth observation and 𝑦𝑦𝑐𝑐 represent the outcome variable for the nth 

observation, therefore {(𝒙𝒙𝟏𝟏,𝑦𝑦1), (𝒙𝒙𝟐𝟐,𝑦𝑦2), … , (𝒙𝒙𝑵𝑵,𝑦𝑦𝑁𝑁)} represent the observed data where 

𝒙𝒙𝒏𝒏 = (𝑥𝑥𝑐𝑐1, 𝑥𝑥𝑐𝑐2, … , 𝑥𝑥𝑐𝑐𝑛𝑛) is a vector of length J. A linear regression model can be 

expressed as: 

𝑦𝑦𝑐𝑐 = 𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

+ 𝜀𝜀 (2. 30) 

where 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 are known as model coefficients. The OLS procedure obtains 

estimates �̂�𝛽0, �̂�𝛽1, … , �̂�𝛽𝑛𝑛 for model coefficients, such that the loss function—the sum of 

squared errors defined in Equation 2.31 is minimized: 

𝑆𝑆𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆 = �(𝑦𝑦𝑐𝑐 − 𝑦𝑦�𝑐𝑐)2
𝑁𝑁

𝑐𝑐=1

(2.31) 

where 𝑦𝑦�𝑐𝑐 = �̂�𝛽0 + ∑ �̂�𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛
𝑛𝑛
𝑛𝑛=1  is the prediction for 𝑦𝑦𝑐𝑐 based on the observed values of 

𝑥𝑥𝑐𝑐1, 𝑥𝑥𝑐𝑐2, … , 𝑥𝑥𝑐𝑐𝑛𝑛. 

The lasso regression (Tibshirani, 1996) adds an ℓ1 penalty term to the loss 

function in Equation 2.31: 

𝑆𝑆𝑆𝑆𝐸𝐸𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 = �(𝑦𝑦𝑐𝑐 − 𝑦𝑦�𝑐𝑐)2
𝑁𝑁

𝑐𝑐=1

+ 𝜆𝜆��𝛽𝛽𝑛𝑛�
𝑛𝑛

𝑛𝑛=1

= 𝑆𝑆𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆 + 𝜆𝜆��𝛽𝛽𝑛𝑛�
𝑛𝑛

𝑛𝑛=1

(2. 32) 
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where 𝜆𝜆 ≥ 0 is a tuning parameter, controlling the strength of the ℓ1 penalty term. When 

𝜆𝜆 = 0, the OLS estimates are obtained since Equation 2.31 and Equation 2.32 are 

identical. A large value of 𝜆𝜆 shrinks many model’s coefficient estimates towards zero and 

returns a very sparse solution, meaning that �̂�𝛽𝑛𝑛 = 0 for most 𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽). It is because 

imposing a lasso penalty corresponds to assuming a Laplace prior on model coefficients, 

which expects many zero-valued coefficients, and a small subset to be larger and nonzero 

(Friedman, Hastie, & Tibshirani, 2010). 

The ridge regression (Hoerl & Kennard, 1970) uses an ℓ2 penalty. Therefore, 

𝑆𝑆𝑆𝑆𝐸𝐸𝑐𝑐𝑖𝑖𝑐𝑐𝑝𝑝𝑐𝑐 = �(𝑦𝑦𝑐𝑐 − 𝑦𝑦�𝑐𝑐)2
𝑁𝑁

𝑐𝑐=1

+ 𝜆𝜆�𝛽𝛽𝑛𝑛2
𝑛𝑛

𝑛𝑛=1

= 𝑆𝑆𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆 + 𝜆𝜆�𝛽𝛽𝑛𝑛2
𝑛𝑛

𝑛𝑛=1

(2. 33) 

Using an ℓ2 penalty also shrinks the estimated coefficients but never sets them to zero 

exactly. Again when 𝜆𝜆 = 0, the OLS estimates are obtained. The ridge penalty is ideal 

when there are many correlated predictors because ridge regression tends to shrink 

coefficients of correlated predictors towards each other, leading to small but nonzero 

values. It is different from lasso regression which tends to pick one of correlated 

variables and ignore the rest. Lasso regression performs shrinkage and variable selection 

simultaneously and produces simpler and more interpretable models by setting a subset of 

model coefficients equal to zero, which is a major advantage over ridge regression. 

Further, the elastic net (Zou & Hastie, 2005) combines the ℓ1 and ℓ2 penalties: 

𝑆𝑆𝑆𝑆𝐸𝐸𝑐𝑐𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑡𝑡 = �(𝑦𝑦𝑐𝑐 − 𝑦𝑦�𝑐𝑐)2
𝑁𝑁

𝑐𝑐=1

+ 𝜆𝜆 �𝛼𝛼��𝛽𝛽𝑛𝑛�
𝑛𝑛

𝑛𝑛=1

+ (1 − 𝛼𝛼)�𝛽𝛽𝑛𝑛2
𝑛𝑛

𝑛𝑛=1

�

= 𝑆𝑆𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆 + 𝜆𝜆 �𝛼𝛼��𝛽𝛽𝑛𝑛�
𝑛𝑛

𝑛𝑛=1

+ (1 − 𝛼𝛼)�𝛽𝛽𝑛𝑛2
𝑛𝑛

𝑛𝑛=1

� (2. 34)
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In Equation 2.34, 𝜆𝜆 is a tuning parameter serving the same purpose that some of the 

coefficients should be set to zero exactly, and 𝛼𝛼 is another tuning parameter that 

combines the ℓ1 and ℓ2 penalty terms together. When 𝛼𝛼 equals 0 or 1, the ridge or lasso 

regression are obtained correspondingly. The elastic net regression not only results in 

sparse solutions and performs variable selection like the lasso regression, but also takes 

the advantage of the ridge regression which performs well with highly correlated 

variables. However, the elastic net is computationally expensive since a grid search is 

required to determine the appropriate values of 𝛼𝛼 and 𝜆𝜆. 

 Under the linear regression setting, least squares estimation is a special case of 

maximum likelihood. Maximum likelihood estimation (MLE) is a more general and 

flexible approach, which can be used to fit many linear and nonlinear models (James et 

al., 2013). As with the case of the penalized sum of squared errors in Equations 2.32-

2.34, a penalty term can be added to the maximum likelihood function. Therefore, rather 

than maximizing the log-likelihood function, a penalized version of log-likelihood is 

maximized. For example, when estimating a logistic regression model: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡[𝑃𝑃(𝑦𝑦𝑐𝑐 = 1)] = 𝑙𝑙𝑛𝑛 �
𝑃𝑃(𝑦𝑦𝑐𝑐 = 1)

1 − 𝑃𝑃(𝑦𝑦𝑐𝑐 = 1)� = 𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

(2. 35) 

where 𝑦𝑦𝑐𝑐(𝑖𝑖 = 1, … ,𝑁𝑁) is a binary variable with two categories 0 and 1, 𝑥𝑥𝑐𝑐𝑛𝑛  (𝑛𝑛 =

1, … ,𝑁𝑁; 𝑗𝑗 = 1, … , 𝐽𝐽) represents the value of the jth variable for the nth observation, and 

𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 are the 𝐽𝐽 + 1 parameters to be estimated. The likelihood function is: 

𝐿𝐿(𝛽𝛽0,𝜷𝜷) = �𝜋𝜋(𝒙𝒙𝒏𝒏;𝛽𝛽0,𝜷𝜷)𝑦𝑦𝑛𝑛[1 − 𝜋𝜋(𝒙𝒙𝒏𝒏;𝛽𝛽0,𝜷𝜷)]1−𝑦𝑦𝑛𝑛
𝑁𝑁

𝑐𝑐=1

(2. 36) 
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where 𝜋𝜋 = 𝑃𝑃(𝑦𝑦𝑐𝑐 = 1) indicates the probability of 𝑦𝑦𝑐𝑐 = 1, 𝒙𝒙𝒏𝒏 = �𝑥𝑥𝑐𝑐1, 𝑥𝑥𝑐𝑐2, … , 𝑥𝑥𝑐𝑐𝑛𝑛� 

represents the observations of J predictors corresponding to 𝑦𝑦𝑐𝑐, and 𝜷𝜷 = �𝛽𝛽1, … ,𝛽𝛽𝑛𝑛�. The 

log-likelihood function is then defined as the natural log of Equation 2.36: 

𝑙𝑙(𝛽𝛽0,𝜷𝜷) = 𝑙𝑙𝑛𝑛[𝐿𝐿(𝛽𝛽0,𝜷𝜷)] = �(𝑦𝑦𝑐𝑐 𝑙𝑙𝑛𝑛 𝜋𝜋(𝒙𝒙𝒏𝒏;𝛽𝛽0,𝜷𝜷) + (1 − 𝑦𝑦𝑐𝑐) 𝑙𝑙𝑛𝑛[1 − 𝜋𝜋(𝒙𝒙𝒏𝒏;𝛽𝛽0,𝜷𝜷)])
𝑁𝑁

𝑐𝑐=1

= ��𝑦𝑦𝑐𝑐 �𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

� − 𝑙𝑙𝑛𝑛 �1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

���
𝑁𝑁

𝑐𝑐=1

 (2. 37)

 

The loss function for logistic regression is defined as the negative log-likelihood: 

−𝑙𝑙(𝛽𝛽0,𝜷𝜷) = −��𝑦𝑦𝑐𝑐 �𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

� − 𝑙𝑙𝑛𝑛 �1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝛽𝛽0 + �𝛽𝛽𝑛𝑛𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

���
𝑁𝑁

𝑐𝑐=1

(2. 38) 

Therefore, the estimates of model parameters in a logistic regression model can be 

obtained by minimizing the penalized loss function in Equation 2.39 or maximizing the 

penalized likelihood in Equation 2.40: 

−𝑙𝑙(𝛽𝛽0,𝜷𝜷) + 𝜆𝜆 ∙ 𝜂𝜂(𝜷𝜷) (2. 39) 

𝑙𝑙(𝛽𝛽0,𝜷𝜷) − 𝜆𝜆 ∙ 𝜂𝜂(𝜷𝜷) (2. 40) 

where 𝜂𝜂(𝜷𝜷) = 𝛼𝛼∑ �𝛽𝛽𝑛𝑛�
𝑛𝑛
𝑛𝑛=1 + (1 − 𝛼𝛼)∑ 𝛽𝛽𝑛𝑛2

𝑛𝑛
𝑛𝑛=1  refers to the lasso (𝛼𝛼 = 1), the ridge (𝛼𝛼 =

0) or the elastic net penalty (0 < 𝛼𝛼 < 1), and 𝛼𝛼 and 𝜆𝜆 are two tuning parameters. 

 When applying the regularization methods to DIF detection, typically a set of 

variables containing item and person characteristics as well as parameters indicating DIF 

effects are included in the model. The identification of DIF items can be realized by 

examining whether the DIF parameter estimates equal to zero or not. Since the ridge 

penalty is not able to shrink the estimated coefficients to exactly zero, it does not have the 

ability to differentiate DIF items and non-DIF items. Therefore, the ridge penalty was not 
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considered in this study. In terms of other penalties, Knight and Fu (2000) have shown 

that for fixed J and 𝜷𝜷, the lasso solution is asymptotically consistent and asymptotically 

normal as 𝑁𝑁 → ∞. Moreover, as a generalization of the traditional lasso, the elastic net 

enjoys similar asymptotic properties as the lasso penalty (De Mol, De Vito, & Rosasco, 

2009), but outperforms lasso when J is much bigger than N (Zou & Hastie, 2005).  

From the perspective of model selection consistency, according to previous 

studies, in a standard lasso (e.g., Meinshausen & Bühlmann, 2006; Zou, 2006) or elastic 

net procedure (e.g., Yuan & Lin, 2007; Jia & Yu, 2010), there are cases where a given 

value of tuning parameter leading to optimal estimation accuracy ends up with 

inconsistent selection of variables. The adaptive lasso (Zou, 2006) was developed to 

address the limitations by introducing weights to the penalty on each coefficient in the 

traditional lasso procedure, which can be solved using the same algorithm for solving the 

lasso: 

𝜂𝜂(𝜷𝜷)𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑐𝑐 𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 = �𝜔𝜔𝑛𝑛�𝛽𝛽𝑛𝑛�
𝑛𝑛

𝑛𝑛=1

, 𝜔𝜔𝑛𝑛 =
1

��̂�𝛽𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖�
𝛾𝛾  (2.41) 

In Equation 2.41, �̂�𝛽𝑛𝑛𝑖𝑖𝑐𝑐𝑖𝑖 is an initial estimate of the coefficients 𝛽𝛽𝑛𝑛, usually obtained from 

ridge regression, and 𝛾𝛾 > 0 defines the weighted vector 𝜔𝜔𝑛𝑛 for �𝛽𝛽𝑛𝑛�. The adaptive lasso 

procedure yields consistent estimates because large model coefficients are penalized less 

than small coefficients. Besides, the adaptive lasso retains the same advantages of the 

lasso penalty which shrinks some of the coefficients to exactly zero, thus performs a 

selection of attributes with regularization.  
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2.3.3 Model Selection Techniques 

An important issue remains unsolved is “which tuning parameter value is 

optimal”, since given different tuning parameter values, a set of candidate models will be 

obtained. Often the goal of model selection is to choose a model for future prediction, 

and it is natural to measure the predictive accuracy by estimating the prediction error 

(Barbieri & Berger, 2004).  

Particularly in this study, the tuning parameter also determines the number of 

items identified as DIF or non-DIF items. Further, it determines if all DIF items are 

correctly detected and if there are non-DIF items that are falsely identified as DIF items. 

Obviously, when the tuning parameter is too small, it is difficult to obtain zero estimates 

for model parameters. In this case, not only DIF items will show DIF effects, but also 

many non-DIF items will show DIF effects due to nonzero estimates of the corresponding 

DIF parameters. To conclude, a too small tuning parameter value will increase the 

possibility of misidentifying non-DIF items as DIF items. On the other hand, a too large 

tuning parameter value sets too many DIF parameters to zero, thus too few items will be 

flagged as DIF items.  

The selected tuning parameter value needs to balance both model fit as indicated 

by minimizing the prediction error and model complexity as indicated by the number of 

zero and nonzero DIF parameter estimates. Therefore, a method is required to determine 

which tuning parameter value yields a good model fit as well as an optimal differentiation 

between DIF items and non-DIF items.  
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2.3.3.1 Cross-Validation 

 Cross-validation (CV) is a popular technique for evaluating a model’s 

performance in order to tackle overfitting problems and assess how the model can 

generalize to a new dataset. CV involves randomly dividing a data sample into two 

complementary subsets, performing the proposed analysis on one subset which is usually 

called the training data, and validating the analysis on the other subset which is usually 

called the testing data. However, the validation results may be very different depending 

on how the dataset is divided.  

In order to reduce variability, CV is performed multiple times using different 

divisions, and the validation results are averaged to give an estimate of the model’s 

predictive performance. For example, the K-fold CV divides the data sample into K 

subsets 𝐶𝐶𝑅𝑅(𝑘𝑘 = 1, … ,𝐾𝐾) of approximately equal size, fits the model on K-1 subsets by 

removing one of the subsets, and computes the prediction error of the fitted model using 

the observations in the left-out subset. This procedure is repeated K times, and each 

subset is used once as the left-out testing set, resulting in K estimates of prediction error. 

The average of K estimates is calculated as a final measure of model performance. 

Typical choices of K are 5 and 10.  

Let 𝑁𝑁𝑅𝑅(𝑘𝑘 = 1, … ,𝐾𝐾) represent the number of observations in the subset 𝐶𝐶𝑅𝑅. For a 

linear regression model, the mean squared error is used to estimate the prediction error, 

and the K-fold CV estimate of prediction error can be calculated as follows: 

𝐶𝐶𝐶𝐶𝑙𝑙𝑖𝑖𝑐𝑐𝑐𝑐𝑎𝑎𝑐𝑐 = �
𝑁𝑁𝑅𝑅
𝑁𝑁

𝐾𝐾

𝑅𝑅=1

�
�𝑦𝑦𝑐𝑐 − ( 𝛽𝛽�0

(−𝑘𝑘) + ∑ 𝛽𝛽�𝑗𝑗
(−𝑘𝑘)𝑥𝑥𝑐𝑐𝑛𝑛)𝑛𝑛

𝑛𝑛=1 �
2

𝑁𝑁𝑅𝑅𝑐𝑐∈𝐶𝐶𝑘𝑘

(2. 42) 
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For a logistic regression model, the deviance defined as minus twice the log-likelihood on 

the left-out data can be calculated to estimate the prediction error (Friedman et al., 2010). 

Based on Equation 2.37, the K-fold CV estimate of prediction error can be computed as 

follows: 

𝐶𝐶𝐶𝐶𝑙𝑙𝑐𝑐𝑝𝑝𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐 = −2�
𝑁𝑁𝑅𝑅
𝑁𝑁

𝐾𝐾

𝑅𝑅=1

� �𝑦𝑦𝑐𝑐 �𝛽𝛽�0
(−𝑘𝑘) + �𝛽𝛽�𝑗𝑗

(−𝑘𝑘)𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

� − 𝑙𝑙𝑛𝑛 �1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝛽𝛽�0
(−𝑘𝑘) + �𝛽𝛽�𝑗𝑗

(−𝑘𝑘)𝑥𝑥𝑐𝑐𝑛𝑛

𝑛𝑛

𝑛𝑛=1

���
𝑐𝑐∈𝐶𝐶𝑘𝑘

(2. 43) 

In Equations 2.42 and 2.43, �̂�𝛽0
(−𝑅𝑅), �̂�𝛽1

(−𝑅𝑅), … , �̂�𝛽𝑛𝑛
(−𝑅𝑅) are the estimates based on the specified 

training data only (e.g., K-1 subsets except 𝐶𝐶𝑅𝑅). The best model is the one with the 

minimum CV estimate, indicating that the best choice of tuning parameter is the one that 

minimizes the prediction error.  

2.3.3.2 Information Criteria 

Although CV is useful to compute the out-of-sample prediction error directly, the 

process is usually tedious since repeated model fits are required, and it is less practical 

when the data is sparse. Information criterion is much simpler in terms of computation 

and is used as an alternative model selection technique in practice. An information 

criterion estimates the out-of-sample prediction error by adjusting the error based on the 

training data in order to account for the bias due to overfitting (James et al., 2013). 

Therefore, all observed data are used to train the model, and different techniques are 

applied to adjust the training error.  

This study considered two commonly used information criteria including the 

Akaike information criterion (AIC; Akaike, 1974), and the Bayesian information criterion 

(BIC; Schwarz, 1978). The AIC is defined as: 

𝐴𝐴𝐼𝐼𝐶𝐶 =  −2𝑙𝑙𝑚𝑚 + 2𝑚𝑚 (2. 44) 
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where m represents the model size which equals the number of free parameters in the 

model, 𝑙𝑙𝑚𝑚 is the log-likelihood of the model evaluated at the maximum likelihood 

estimates. Particularly, the term −2𝑙𝑙𝑚𝑚 is a measure of lack of model fit, and the term 2𝑚𝑚 

can be interpreted as a penalty for increasing the size of the model so as to enforce 

parsimony in the number of parameters. Therefore, the optimal model selected by AIC is 

the one with the minimum AIC value. Akaike’s approach achieves an important objective 

called the asymptotic efficiency (Shibata, 1976). Asymptotic efficiency essentially 

minimizes the prediction error and maximizes the predictive accuracy, meaning that AIC 

is able to find the best approximating model (Aho, Derryberry, & Peterson, 2014). 

Additionally, Stone (1977) proved that the asymptotic equivalence of choosing model by 

CV and AIC when MLE was used within each model, indicating that CV and AIC have 

similar performance in model selection. 

BIC selects a model that minimizes 

𝐵𝐵𝐼𝐼𝐶𝐶 =  −2𝑙𝑙𝑚𝑚 + 𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 (2. 45) 

where N corresponds to sample size. Although closely related to AIC, BIC was derived in 

a fully Bayesian framework, aiming to select a model that maximizes the posterior model 

probability. The BIC procedure has a well-known property of consistency, meaning that 

the probability of selecting the true model converges to 1 when the sample size increases 

(Yang, 2005). Moreover, previous research indicated that when n became larger, BIC 

tended to favor models of lower dimension than those chosen by AIC (Koehler & 

Murphree, 1988).  

 AIC, BIC, and K-fold CV usually select different tuning parameter values, so that 

different models are obtained yielding different DIF detection results. Several operating 
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characteristics such as hit rates and false alarm rates are calculated based on these 

models, and the model yielding the best operating characteristics (e.g., high hit rates and 

well-controlled false alarm rates) is finally selected. 

2.3.4 Applications in DIF Detection 

Magis et al. (2015) proposed a lasso DIF method based on logistic regression, 

allowing for simultaneous detection of uniform DIF for all test items using a single 

model: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑠𝑠𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝐺𝐺𝑖𝑖 (2. 46) 

In Equation 2.46, 𝑦𝑦𝑖𝑖𝑖𝑖 is the response of person 𝑝𝑝 (𝑝𝑝 = 1, … ,𝑃𝑃) to item i (𝑖𝑖 = 1, … , 𝐼𝐼), 

𝛽𝛽0𝑖𝑖 (𝑖𝑖 = 1, … , 𝐼𝐼) represents item difficulty, 𝛽𝛽1 represents the effect for test score s𝑖𝑖 and is 

constrained to be identical across items, 𝛽𝛽2𝑖𝑖 (𝑖𝑖 = 1, … , 𝐼𝐼)  are the DIF parameters 

representing uniform DIF effect under the setting of the Rasch models, and 𝐺𝐺𝑖𝑖 is the 

group membership indicator where 𝐺𝐺𝑖𝑖 = 1 when person p is in the reference group and 

𝐺𝐺𝑖𝑖 = 0 otherwise. The vector 𝜷𝜷 = (𝛽𝛽01, … ,𝛽𝛽0𝐼𝐼,𝛽𝛽1,𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼) collects all model 

parameters, and the corresponding parameter estimates 𝜷𝜷�(𝜆𝜆) can be obtained by 

maximizing the penalized log-likelihood with an ℓ1 penalty on parameters 𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼: 

𝜷𝜷�(𝜆𝜆) = 𝑎𝑎𝑟𝑟𝑙𝑙𝑚𝑚𝑎𝑎𝑥𝑥 �𝒍𝒍(𝜷𝜷) − 𝜆𝜆�|𝛽𝛽2𝑖𝑖|
𝐼𝐼

𝑖𝑖=1

� (2. 47) 

A higher value of 𝜆𝜆 shrinks more DIF parameters towards zero. In their study, 𝜆𝜆 was 

selected by comparing several methods including K-fold CV (𝐾𝐾 = 3, 5,10), AIC, BIC, 

and another weighted information criterion which is a combination of AIC and BIC. The 

main advantage of this method is its flexibility as the assumption of an invariant anchor is 
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no longer required, and the multiple testing issue is also addressed. However, the authors 

used test scores as a proxy for ability, which might be less accurate compared to using the 

estimated person ability from IRT modeling. It is because from the IRT point of view, the 

individuals with a same test score may have different levels of ability if those items vary 

in their discriminations and difficulties.  

Tutz and Schauberger (2015) proposed a similar penalization approach by using 

the examinees’ estimated latent proficiency level 𝜃𝜃�𝑖𝑖 instead of the test score 𝑠𝑠𝑖𝑖 in 

Equation 2.46. The DIF model then becomes: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝜃𝜃�𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝐺𝐺𝑖𝑖 (2. 48) 

Again, penalized MLE was used for parameter estimation, and BIC was used to evaluate 

model performance. 

 To conclude, the purpose of DIF analysis is to determine whether an item displays 

DIF or not. As discussed in Section 2.2.3, in a traditional item-level DIF analysis, an item 

is usually assessed through a hypothesis test. Hypothesis testing problems can be 

examined from the model selection perspective—the acceptance or rejection of the null 

hypothesis (e.g., no DIF) is considered in terms of the selection of a more appropriate 

model when one is nested inside the other (Cubedoo & Oller, 2002). In regularization 

methods, DIF parameters for all items are included in a single model; whether an item 

displays DIF or not is indicated by whether the corresponding DIF parameter estimate is 

zero or not. The regression coefficients for DIF parameters are determined by the selected 

tuning parameter values, which are chosen such that the model has the best prediction for 

a future dataset. 
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2.4 Summary 

This chapter started with an introduction to IRT, including common IRT models 

and parameter estimation techniques, which are important components of the research 

design in this study. IRT examines the relationship between the probability of correct 

response and the level of latent ability both mathematically and graphically using IRT 

models and ICCs respectively, which is a useful tool for assessing DIF. 

 Section 2.2 described how to identify different types of DIF according to 

different patterns of ICCs and item parameter estimates between groups. Additionally, 

various DIF detection techniques were discussed in this Section. The MH method, 

logistic regression, and SIBTEST are popular non-IRT approaches, while Lord’s χ2 test, 

the likelihood ratio, and Raju’s area measures are commonly used IRT-based DIF 

methods. These methods are all conducted at the item level, focusing on analyzing each 

item individually. As mentioned in Chapter 1, there are several limitations of the item-

level approaches, such as the strict assumption of an invariant anchor, and the issue 

caused by multiple testing. Although these limitations can be partially addressed by 

applying certain anchor selection and scale purification procedures, simultaneous 

investigation of all item on a test for DIF seems to be a better solution to address these 

limitations. Simultaneous DIF detection can be realized using either the regularization 

methods for estimation or the generalized linear mixed models (e.g., Kamata, 2001; 

Swanson, Clauser, Case, Nungester, & Featherman, 2002; Van den Noorgate & De 

Boeck, 2005; Binici, 2007; Acar, 2012), and this study focused on the regularization 

methods only. To conclude, Figure 2.4 summarized all aforementioned DIF detection 

methods. 
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Figure 2.4 Summary of DIF Detection Methods 

 

Additionally, Section 2.3 reviewed the basic concepts of regularization methods 

including different penalty functions, model selection techniques, as well as current 

applications of regularization methods in DIF detection.  

Next, in Chapter 3, a new DIF detection model using regularization techniques 

will be proposed. Further, comprehensive simulation studies will be designed to evaluate 

the performance of the proposed model. Empirical datasets will also be used to assess the 

model’s applicability in real settings.  
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CHAPTER 3. RESEARCH DESIGN 

3.1 A General Framework for DIF Detection 

3.1.1 DIF Detection Model 

 A DIF detection model for simultaneous detection of both uniform and 

nonuniform DIF effects is defined as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑖𝑖� = 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝜃𝜃𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝐺𝐺𝑖𝑖 + 𝛽𝛽3𝑖𝑖𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖 (3.1) 

𝑦𝑦𝑖𝑖𝑖𝑖 is the binary response of person 𝑝𝑝 (𝑝𝑝 = 1, … ,𝑃𝑃) on item i (𝑖𝑖 = 1, … , 𝐼𝐼); 

𝜋𝜋𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1� is the probability of 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 and 𝑦𝑦𝑖𝑖𝑖𝑖 ~ Bernoulli(𝜋𝜋𝑖𝑖𝑖𝑖); 

𝛽𝛽0𝑖𝑖 (𝑖𝑖 = 1, … , 𝐼𝐼) is the intercept for item i, which can be referred to as the counterpart of 

item difficulty in the IRT framework;  

𝜃𝜃𝑖𝑖 is the latent ability for person p (𝑝𝑝 = 1, … ,𝑃𝑃);  

𝛽𝛽1𝑖𝑖 represents the effect for ability which can also be considered as the counterpart of 

item discrimination in the IRT framework;  

𝛽𝛽2𝑖𝑖 is the DIF parameter representing uniform DIF effect for item i;  

𝐺𝐺𝑖𝑖 is the group membership indicator where 𝐺𝐺𝑖𝑖 = 1 when person p is in the reference 

group and 𝐺𝐺𝑖𝑖 = 0 otherwise assuming there exist two mutually exclusive groups;  

𝛽𝛽3𝑖𝑖 is the DIF parameter representing nonuniform DIF effect for item i; and 𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖 is the 

product of two variables 𝜃𝜃𝑖𝑖 and 𝐺𝐺𝑖𝑖.  

Item i shows uniform DIF when �̂�𝛽2𝑖𝑖 ≠ 0 and �̂�𝛽3𝑖𝑖 = 0, and item i shows nonuniform DIF 

when �̂�𝛽3𝑖𝑖 ≠ 0 regardless of the value of 𝛽𝛽2𝑖𝑖. 
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 Equation 3.1 can be re-expressed as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑖𝑖� = 𝜷𝜷𝟎𝟎𝑰𝑰𝒊𝒊 + 𝜷𝜷𝟏𝟏𝑰𝑰𝒊𝒊 ∙ 𝜃𝜃𝑖𝑖 + 𝜷𝜷𝟐𝟐𝑰𝑰𝒊𝒊 ∙ 𝐺𝐺𝑖𝑖 + 𝜷𝜷𝟑𝟑𝑰𝑰𝒊𝒊 ∙ 𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖 =  𝜷𝜷𝒙𝒙𝒑𝒑 (3. 2) 

𝜷𝜷𝟎𝟎 = (𝛽𝛽01, … ,𝛽𝛽0𝐼𝐼),𝜷𝜷𝟏𝟏 = (𝛽𝛽11, … ,𝛽𝛽1𝐼𝐼),𝜷𝜷𝟐𝟐 = (𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼),𝜷𝜷𝟑𝟑 = (𝛽𝛽31, … ,𝛽𝛽3𝐼𝐼), and 𝑰𝑰𝒊𝒊 =

(0,0, … ,1, … ,0,0) with 1 at position 𝑖𝑖 and 0 otherwise;  

𝜷𝜷 = (𝜷𝜷𝟎𝟎,𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑) = (𝛽𝛽01, … ,𝛽𝛽0𝐼𝐼 ,𝛽𝛽11, … ,𝛽𝛽1𝐼𝐼,𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼 ,𝛽𝛽31, … ,𝛽𝛽3𝐼𝐼) represents the 

vector of parameters that need to be estimated;  

𝒙𝒙𝒑𝒑 = (1, … ,1;𝜃𝜃𝑖𝑖, … ,𝜃𝜃𝑖𝑖;𝐺𝐺𝑖𝑖, … ,𝐺𝐺𝑖𝑖;𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖, … ,𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖)𝑻𝑻 is a 4𝐼𝐼 × 1 vector including four 

unique elements 1,𝜃𝜃𝑖𝑖,𝐺𝐺𝑖𝑖,𝜃𝜃𝑖𝑖𝐺𝐺𝑖𝑖, where each element is repeated I times successively in 

the vector 𝒙𝒙𝒑𝒑. 

 One question remained unsolved in this model is the choice of 𝜃𝜃𝑖𝑖. As stated in 

Section 2.3.4, both the observed total score and the IRT ability estimate were used as a 

proxy for 𝜃𝜃𝑖𝑖 in previous research (e.g., Magis et al., 2015; Tutz & Schauberger, 2015). 

However, no study has compared their performance in DIF detection yet. Therefore, a 

preliminary study is recommended to determine which of the two ability measures has a 

better performance in DIF detection by comparing their operating characteristics. The 

results will be presented in Section 3.1.4.2.  

3.1.2 Parameter Estimation 

 The parameter estimates 𝜷𝜷� can be found by maximizing Equation 2.40 so that 

𝜷𝜷� = 𝑎𝑎𝑟𝑟𝑙𝑙𝑚𝑚𝑎𝑎𝑥𝑥{𝑙𝑙(𝜷𝜷) − 𝜆𝜆 ∙ 𝜂𝜂(𝜷𝜷)} (3. 3) 

In Equation 3.3, 𝑙𝑙(𝜷𝜷) is the log-likelihood of the model, which can be expressed as: 
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𝑙𝑙(𝜷𝜷) = 𝑙𝑙𝑛𝑛 ���𝜋𝜋�𝒙𝒙𝒑𝒑;𝜷𝜷�
𝑦𝑦𝑖𝑖𝑝𝑝�1 − 𝜋𝜋�𝒙𝒙𝒑𝒑;𝜷𝜷��

1−𝑦𝑦𝑖𝑖𝑝𝑝
𝐼𝐼

𝑖𝑖=1

𝑃𝑃

𝑖𝑖=1

�

= ��𝑦𝑦𝑖𝑖𝑖𝑖 𝑙𝑙𝑛𝑛 𝜋𝜋�𝒙𝒙𝒑𝒑;𝜷𝜷� + �1 − 𝑦𝑦𝑖𝑖𝑖𝑖� 𝑙𝑙𝑛𝑛�1 − 𝜋𝜋�𝒙𝒙𝒑𝒑;𝜷𝜷��
𝐼𝐼

𝑖𝑖=1

𝑃𝑃

𝑖𝑖=1

= ���𝑦𝑦𝑖𝑖𝑖𝑖�𝜷𝜷𝒙𝒙𝒑𝒑� − 𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝜷𝜷𝒙𝒙𝒑𝒑���
𝐼𝐼

𝑖𝑖=1

𝑃𝑃

𝑖𝑖=1

(3. 4)

 

𝜂𝜂(𝜷𝜷) is a penalty function that penalizes specific structures in the parameter vector 𝜷𝜷, 

and 𝜆𝜆 (𝜆𝜆 ≥ 0) is the tuning parameter. The traditional maximum likelihood estimates are 

obtained when 𝜆𝜆 = 0; a large value of 𝜆𝜆 shrinks many model coefficients towards zero, 

and the nonzero estimates indicate potential DIF effects. 

 Three types of penalty functions were considered in this study. First, based on 

Equation 3.1, the lasso penalty can be defined as: 

𝜂𝜂(𝜷𝜷)𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 = ��|𝛽𝛽ℎ𝑖𝑖|
𝐼𝐼

𝑖𝑖=1

3

ℎ=2

(3. 5) 

In Equation 3.5, only DIF parameters (𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑) = (𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼 ,𝛽𝛽31, … ,𝛽𝛽3𝐼𝐼) are penalized, 

while other model parameters (𝜷𝜷𝟎𝟎,𝜷𝜷𝟏𝟏) = (𝛽𝛽01, … ,𝛽𝛽0𝐼𝐼 ,𝛽𝛽11, … ,𝛽𝛽1𝐼𝐼) are unaffected in 

parameter estimation.  

 The second type of penalty function is the elastic net:  

𝜂𝜂(𝜷𝜷)𝑐𝑐𝑙𝑙𝑎𝑎𝑠𝑠𝑡𝑡𝑖𝑖𝑐𝑐 𝑐𝑐𝑐𝑐𝑡𝑡 = 𝛼𝛼��|𝛽𝛽ℎ𝑖𝑖|
𝐼𝐼

𝑖𝑖=1

3

ℎ=2

+ (1 − 𝛼𝛼)��𝛽𝛽ℎ𝑖𝑖
2

𝐼𝐼

𝑖𝑖=1

3

ℎ=2

(3. 6) 

where 𝛼𝛼 (0 ≤ 𝛼𝛼 ≤ 1) is another tuning parameter in addition to 𝜆𝜆, and only DIF 

parameters (𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑) are penalized. As discussed in Section 2.3.2, the lasso and ridge 

penalties are special cases of the elastic net by constraining 𝛼𝛼 to 1 and 0 respectively. 

However, the ridge penalty is not applicable in DIF detection, so 𝛼𝛼 = 0 was not 
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considered. Also, 𝛼𝛼 = 1 was not considered either in order to avoid duplicate analysis 

results. Therefore, when performing a grid search over the tuning parameter 𝛼𝛼, the 

parameter range was set to 0 < 𝛼𝛼 < 1. And in this study, 𝛼𝛼 was selected from 

{0.1, 0.3, 0.5, 0.7, 0.9}.  

 Lastly, the adaptive lasso penalty was also studied:  

𝜂𝜂(𝜷𝜷)𝑎𝑎𝑐𝑐𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑐𝑐 𝑙𝑙𝑎𝑎𝑠𝑠𝑠𝑠𝑐𝑐 = ��𝜔𝜔ℎ𝑖𝑖|𝛽𝛽ℎ𝑖𝑖|
𝐼𝐼

𝑖𝑖=1

3

ℎ=2

,𝜔𝜔ℎ𝑖𝑖 =
1

��̂�𝛽ℎ𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖�
𝛾𝛾  (3. 7) 

where �̂�𝛽ℎi𝑖𝑖𝑐𝑐𝑖𝑖 is an initial estimate for 𝛽𝛽ℎi obtained from ridge regression estimates, and 𝛾𝛾 >

0 defines the weighted vector 𝜔𝜔ℎ𝑖𝑖 for |𝛽𝛽ℎ𝑖𝑖|. In this study, 𝛾𝛾 was selected from {0.5,1, 2} 

according to Zou’s (2006) research. Again, only DIF parameters (𝜷𝜷𝟐𝟐,𝜷𝜷𝟑𝟑) were 

penalized.  

 In sum, there is one tuning parameter using the lasso penalty, and two tuning 

parameters using the elastic net or the adaptive lasso. Model selection techniques are 

applied to find the optimal tuning parameter 𝜆𝜆∗ for the lasso method, or the optimal 

tuning parameter pairs {𝛼𝛼∗, 𝜆𝜆∗} for the elastic net and {γ∗, 𝜆𝜆∗} for the adaptive lasso. 

3.1.3 Model Selection 

 Section 2.3.3 briefly introduced several model selection techniques including 

AIC, BIC, and K-fold CV which can be used to determine the tuning parameter 

estimate(s) and the corresponding DIF detection model. Specifically, 

𝐴𝐴𝐼𝐼𝐶𝐶 =  −2𝑙𝑙�𝜷𝜷�� + 2 ∙ 𝑑𝑑𝑓𝑓� (3. 8) 

𝐵𝐵𝐼𝐼𝐶𝐶 =  −2𝑙𝑙�𝜷𝜷�� + 𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃 ∙ 𝐼𝐼) ∙ 𝑑𝑑𝑓𝑓� (3. 9) 
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where 𝑙𝑙�𝜷𝜷�� represents the log-likelihood of the parameter vector 𝜷𝜷� which can be 

calculated according to Equation 3.4, P is the total number of participants, I is the total 

number of items, and 𝑑𝑑𝑓𝑓�  is the total degrees of freedom equal to the number of nonzero 

coefficients in the model. Given a set of candidate models, the preferred model is the one 

with the minimum AIC or BIC estimate. 

In terms of K-fold CV, the data sample is divided into 𝐾𝐾 folds 𝐶𝐶𝑅𝑅(𝑘𝑘 = 1, … ,𝐾𝐾) of 

approximately equal size. Assume that each fold includes 𝑁𝑁𝑅𝑅(𝑘𝑘 = 1, … ,𝐾𝐾) participants, 

therefore ∑ 𝑁𝑁𝑅𝑅𝐾𝐾
𝑅𝑅=1 = 𝑃𝑃. The split of data is made across participants and groups, so that 

each fold includes participants from both reference and focal groups. According to 

Equation 2.43, the preferred model is the one with the minimum CV estimate, which can 

be computed as: 

𝐶𝐶𝐶𝐶 = −2 ∙ �
𝑁𝑁𝑅𝑅
𝑃𝑃

𝐾𝐾

𝑅𝑅=1

� ��𝑦𝑦𝑖𝑖𝑖𝑖�𝜷𝜷�𝒙𝒙𝒑𝒑� − 𝑙𝑙𝑛𝑛�1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝜷𝜷�𝒙𝒙𝒑𝒑���
𝐼𝐼

𝑖𝑖=1𝑖𝑖∈𝐶𝐶𝑘𝑘

(3.10) 

 As discussed in Section 2.3.3, different model selection methods may yield 

different DIF detection results since they usually select different tuning parameter values. 

However, it is preferable to use one model selection technique consistently throughout 

the simulation study so that the analysis results can be compared properly. Therefore, a 

preliminary analysis will be conducted beforehand in order to compare several model 

selection methods in terms of their DIF detection performance. The four model selection 

methods considered in this study include AIC, BIC, 5-fold CV, and 10-fold CV. The 

results will be presented in Section 3.1.4.1.  
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3.1.4 Preliminary Analyses 

3.1.4.1 Comparison of Model Selection Techniques 

The purpose of the first preliminary analysis is to determine which model 

selection technique selects the optimal tuning parameter in terms of DIF detection 

performance. A DIF detection model derived from Equation 3.1 assessing uniform DIF 

only was used in this preliminary study, which not only simplifies the analysis procedure 

but also achieves aforementioned research purpose. The model can be written as: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑡𝑡�𝜋𝜋𝑖𝑖𝑖𝑖� = 𝛽𝛽0𝑖𝑖 + 𝛽𝛽1𝑖𝑖𝜃𝜃𝑖𝑖 + 𝛽𝛽2𝑖𝑖𝐺𝐺𝑖𝑖 (3.11) 

The IRT ability was used as a proxy for 𝜃𝜃𝑖𝑖, estimated using EAP under the 2PL model 

(see Equation 2.4). The 2PL model can be re-expressed as follows: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖� =
𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖��

=
𝑒𝑒𝑥𝑥𝑝𝑝�−�𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�−�𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖��
= 𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖, 𝑎𝑎𝑖𝑖,𝑑𝑑𝑖𝑖� (3.12)

 

where 𝑑𝑑𝑖𝑖 is a intercept parameter. Specifically in this study, 𝑎𝑎𝑖𝑖 (𝑖𝑖 = 1, … , 20) were 

generated following a log-normal distribution with a mean of 0 and a standard deviation 

of 0.5; 𝑑𝑑𝑖𝑖 (𝑖𝑖 = 1, … ,20) were generated from a standard normal distribution of 𝑁𝑁(0,1).2 

These generating distributions were chosen because previous research has shown that 

they are able to give a reasonable approximation to observed empirical distributions of 

item parameter estimates (e.g., Du Toit, 2003; Houts & Cai, 2016). Table 3.1 summarizes 

the generated item discrimination and intercept parameters for 40 items.  

                                                           
2 The mirt R package (Chalmers, 2012) was used for all IRT analyses in this study. The default model in 
the mirt R package uses −(𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖) instead of 𝑎𝑎𝑖𝑖�𝜃𝜃𝑖𝑖 − 𝑏𝑏𝑖𝑖� in the IRT model. In order to make the 
estimation procedures more consistent, the intercept parameters 𝑑𝑑𝑖𝑖 rather than the difficulty parameters 𝑏𝑏𝑖𝑖 
were generated in all simulation studies. The difficulty parameters 𝑏𝑏𝑖𝑖 was then computed by 𝑏𝑏𝑖𝑖 = −𝑑𝑑𝑖𝑖/𝑎𝑎𝑖𝑖. 
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Table 3.1 Generated Item Parameters 

No. 𝒂𝒂𝒊𝒊 𝒅𝒅𝒊𝒊 No. 𝒂𝒂𝒊𝒊 𝒅𝒅𝒊𝒊 
Item 01 0.809  -0.918   Item 21  0.505  -1.228  
Item 02 1.037  -1.466  Item 22 0.975  0.185  
Item 03 0.802  -0.938  Item 23 1.276  -1.311  
Item 04 0.490  -0.917  Item 24 0.923  -0.415  
Item 05 0.655  -1.103  Item 25 1.109  -1.148  
Item 06 0.256  -1.392  Item 26 1.107  -0.698  
Item 07 1.006  -1.050  Item 27 1.642  0.094  
Item 08 0.521  -0.909  Item 28 1.339  -0.483  
Item 09 1.192  -1.214  Item 29 0.881  0.716  
Item 10 0.983  -2.131 Item 30 0.952 0.037 
Item 11 1.531  -0.826  Item 31 0.874  0.263  
Item 12 1.011  0.423  Item 32 0.821  0.234  
Item 13 0.920  -0.973  Item 33 1.130  -0.637  
Item 14 0.634  0.981  Item 34 1.719  -0.218  
Item 15 1.423  -0.515  Item 35 1.133  0.082  
Item 16 0.811  -0.376  Item 36 1.168  -1.051  
Item 17 0.755  -0.412  Item 37 0.785  0.733  
Item 18 2.140  -0.763  Item 38 1.042  -1.345  
Item 19 1.061  0.397  Item 39 0.595  -0.060  
Item 20 0.992 -1.748  Item 40 1.444 -1.147 

 

Two test lengths were examined including 20 items and 40 items. For a 20-item 

test, item parameters of Items 01-20 in Table 3.1 were used to simulate item responses, 

while for a 40-item test, item parameters of all 40 items were used. Additionally, three 

sample sizes of 1000, 2000, and 4000 were considered, and the reference and focal 

groups were assumed to have the same number of examinees. The latent ability 

distribution was set to 𝑁𝑁(0,1) for both groups. Moreover, DIF magnitudes on item 

difficulty parameters (b-DIF magnitude) of 0.4 and 0.8 were studied, corresponding to 

the differences in item difficulties between two groups. The difficulty parameters were 

increased by 0.4 or 0.8 to generate item responses for the focal group, indicating that the 

DIF items are more difficult for the focal group. Here, only unidirectional drift was 

considered since it represents a worst scenario in which the parameter drift has a 
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maximum effect during parameter estimation (Wells et al., 2002). Additionally, two b-

DIF magnitudes were selected because the value of 0.4 represents the negligible DIF 

magnitude (e.g., Clauser, Mazor, & Hambleton, 1993; Donoghue, Holland, & Thayer, 

1993; Penfield, 2001) while the value of 0.8 is useful to quantify the effect of DIF 

magnitude on power and type I error rate (Magis & De Boeck, 2012). The percentage of 

DIF items was set to 10% and 20%, and the first 10% or 20% of test items were selected 

as DIF items. In sum, there were in total 2 × 3 × 2 × 2 = 24 conditions. For each 

condition, 100 replications were generated. 

The lasso penalty was used in this preliminary analysis. According to Equation 

3.11, the parameter estimates 𝜷𝜷� can be obtained as follows: 

𝜷𝜷� = 𝑎𝑎𝑟𝑟𝑙𝑙𝑚𝑚𝑎𝑎𝑥𝑥 �𝑙𝑙(𝜷𝜷) − 𝜆𝜆�|𝛽𝛽2𝑖𝑖|
𝐼𝐼

𝑖𝑖=1

�  (3.13) 

where 𝜷𝜷 = (𝜷𝜷𝟎𝟎,𝜷𝜷𝟏𝟏,𝜷𝜷𝟐𝟐) = (𝛽𝛽01, … ,𝛽𝛽0𝐼𝐼 ,𝛽𝛽11, … ,𝛽𝛽1𝐼𝐼 ,𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼) represent the vector of 

parameters and only DIF parameters 𝜷𝜷𝟐𝟐 = (𝛽𝛽21, … ,𝛽𝛽2𝐼𝐼) need to be penalized, 𝑙𝑙(𝜷𝜷) is the 

log-likelihood of the model, and 𝜆𝜆 is the tuning parameter. An item displaying DIF or not 

is indicated by the corresponding DIF parameter estimate: �̂�𝛽2𝑖𝑖 = 0 indicates item i is a 

non-DIF item while �̂�𝛽2𝑖𝑖 ≠ 0 indicates item i is a DIF item. 

Four model selection techniques including AIC, BIC, 5-fold CV and 10-fold CV 

were compared under each condition. The hit rates and false alarm rates were recorded as 

two outcome measures, which can be calculated according to Table 3.2.  

Table 3.2 Definition of Hit Rates and False Alarm Rates 

 The item is actually a: 
DIF item non-DIF item 

The item is 
detected as: 

DIF item 𝑁𝑁1 𝑁𝑁2 
non-DIF item 𝑁𝑁3 𝑁𝑁4 
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Assume there are in total 𝑁𝑁1 + 𝑁𝑁2 + 𝑁𝑁3 + 𝑁𝑁4 items, the hit rate equals 𝑁𝑁1/(𝑁𝑁1 + 𝑁𝑁3), 

and the false alarm rate equals 𝑁𝑁2/(𝑁𝑁2 + 𝑁𝑁4). Specifically, the hit rate indicates the 

proportion of DIF items that are correctly flagged as DIF items, and the false alarm rate 

indicates the proportion of non-DIF items that are incorrectly flagged as DIF items.  

The full simulation study was implemented in R (R Development Core Team, 

2013). The IRT ability was estimated using the mirt R package (Chalmers, 2012), and the 

penalized estimation was conducted using the glmnet R package (Friedman et al., 2010). 

Figure 3.1 shows the relationship between 𝜆𝜆 and AIC (left y-axis)/BIC (right y-axis) 

under one selected condition (20 items; 2000 examinees in each group; b-DIF magnitude 

equals 0.8; and 20% DIF items on a test). The filled black dots in Figure 3.1 indicate the 

optimal 𝜆𝜆 values selected by AIC and BIC where 𝜆𝜆𝐴𝐴𝐼𝐼𝐶𝐶∗ = 0.00037, and 𝜆𝜆𝐵𝐵𝐼𝐼𝐶𝐶∗ = 0.00104.  

 

Figure 3.1 An Example of AIC and BIC Values for a Series of 𝜆𝜆s (the filled black dots 
indicate the optimal 𝜆𝜆 values under AIC and BIC) 

79750

79800

79850

79900

79950

80000

80050

79500

79550

79600

79650

79700

79750

79800

79850

0 0.001 0.002 0.003 0.004 0.005 0.006

BI
C

AI
C

𝜆𝜆

AIC BIC



55 
Chapter 3. Research Design 

Figure 3.2 shows the relationship between 𝜆𝜆 and the average deviance across all 

validation folds under the same condition using 5-fold CV and 10-fold CV, and the filled 

black dots indicate the optimal 𝜆𝜆 values selected by two methods where 𝜆𝜆𝐶𝐶𝐶𝐶5∗ = 𝜆𝜆𝐶𝐶𝐶𝐶10∗ =

0.00049. 

 

Figure 3.2 An Example of Average Deviance Values for a Series of 𝜆𝜆s using 5-fold and 
10-fold CV (the filled black dots indicate the optimal 𝜆𝜆 values under CV5 and CV10) 

 

 In addition, Figure 3.3 demonstrates the regularization paths of DIF parameter 

estimates for a series of 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) values. The red and yellow solid lines represent the DIF 

parameter estimates of four DIF items and sixteen non-DIF items correspondingly. We 

can see that as 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) increases, some DIF parameters quickly shrink to zero indicating a 

small DIF effect; while other DIF parameters require large values of 𝜆𝜆 to reach 0 
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indicating a large DIF effect. As expected, all non-DIF items approach to 0 earlier than 

the DIF items as 𝜆𝜆 increases.  

The black dotted vertical lines in Figure 3.3 demonstrate the DIF detection results. 

Since CV5 and CV10 selected the same 𝜆𝜆 in this particular example, only three vertical 

lines were plotted for four model selection methods. For those items whose path lines 

intersect with the vertical line, they are flagged as DIF items. For example, twelve items 

are flagged as DIF items using AIC including four true DIF items and eight false 

diagnosed DIF items. CV5 and CV10 yield exactly the same detection results as AIC 

does. Four items are flagged as DIF items using BIC which are all true DIF items. It 

means in this example, all model selection criteria can successfully identify the true DIF 

items, but AIC and CVs have too many false alarms due to smaller 𝜆𝜆s. BIC is more 

conservative leading to a better differentiation between DIF items and non-DIF items 

compared other criteria.  

Moreover, Figure 3.3 also shows that when 𝜆𝜆 ranges from the 0.00095 to 0.00263, 

that is, 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) ranges from -6.965 to -5.941, all true DIF items can be correctly identified 

without any false alarms, indicating that the penalized regularization methods provide a 

robust solution for DIF detection. 



57 
Chapter 3. Research Design 

 

Figure 3.3 Regularization Paths of DIF Parameter Estimates for a Series of 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) Values 
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 Figure 3.4 summarizes the hit rates using four model selection criteria. Generally, 

the hit rates decrease when at least one of the four scenarios happens: 1) the sample size 

becomes smaller, 2) the test becomes longer, 3) the percentage of DIF items on a test 

becomes larger, and 4) the b-DIF magnitude becomes smaller.  

Also, Figure 3.4 shows that AIC selects DIF models with the greatest hit rates, 

and most hit rates are greater than 0.9. The 5-fold CV and 10-fold CV have almost the 

same hit rates which are greater than 0.8 and are slightly smaller than the hit rates of AIC 

under most conditions. Models selected by BIC demonstrate the lowest hit rates among 

four criteria: when b-DIF magnitude equals 0.8, most hit rates are greater than 0.9 and 

only one of them is around 0.8; however, when b-DIF magnitude equals 0.4, the average 

hit rate is greater than 0.7, and the differences in average hit rates between AIC and BIC, 

CV5 and BIC, CV10 and BIC are 0.22, 0.14 and 0.16 correspondingly.  

Therefore, changing DIF magnitude has the greatest impact on hit rates compared 

to changing other manipulated factors such as test length, group size, or percentage of 

DIF items on a test: when b-DIF magnitude equals 0.8, the hit rates are close to 1.0 under 

most conditions no matter which model selection criterion is used, but when b-DIF 

magnitude equals 0.4, the hit rates are much lower. However, previous research examined 

that when b-DIF magnitude was around 0.4, the DIF items had a minimal impact on 

equating and ability estimation (Wells et al., 2002). This indicates that small b-DIF 

magnitudes (e.g., equal to or smaller than 0.4) are undetectable and they are of less 

concern in practice. In other words, items having negligible DIF is the primary reason for 

low hit rates in this study. Thus, in terms of the ability of correctly detecting true DIF 

items, all of the four model selection criteria are acceptable. 
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Figure 3.4 Hit Rates for Four Model Selection Criteria 
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Figure 3.5 summarizes the false alarm rates using four model selection criteria. 

We can see that group sample size and test length have little impact on the false alarm 

rates. However, if there are more DIF items on a test or the b-DIF magnitude becomes 

larger, the false alarm rates slightly increase regardless of model selection methods. 

Particularly, BIC yields well-controlled false alarm rates which are smaller than 0.05 

under most conditions. The other three model selection criteria have similar false alarm 

rates but most values are greater than 0.3.  

These findings are consistent with the example showed in Figure 3.3, indicating 

that BIC is more conservative than AIC and CV in finding the optimal tuning parameters, 

resulting in a satisfying balance between hit rates and false alarm rates. BIC is able to not 

only flag high-impact DIF items, but also prevent over-identification of DIF items with 

few false alarms. Therefore, BIC will be used as the model selection criterion for all 

future analyses.  
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Figure 3.5 False Alarm Rates for Four Model Selection Criteria 
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3.1.4.2 Comparison of Using Test Score and Ability Estimate as a Proxy for Ability  

 The purpose of the second preliminary analysis is to compare which of the ability 

measures, the observed test score or the IRT ability estimate, has a better performance in 

DIF detection. Simulated datasets were generated to perform DIF analyses based on 

Equation 3.12. Item parameters displayed in Table 3.1 were used to generate simulated 

datasets. Same manipulated conditions (24 conditions with 2 test length, 3 group sizes, 2 

percentages of DIF items, and 2 DIF magnitudes) were studied in this preliminary 

analysis, and the latent ability distribution was set to 𝑁𝑁(0,1) for both groups. For each 

condition, 100 replications were generated. 

The DIF detection model in Equation 3.11 was used in this analysis, where 𝜃𝜃𝑖𝑖 can 

either be the observed total score for person p or be estimated using EAP under the 2PL 

model. Estimated model parameters 𝜷𝜷� were obtained according to Equation 3.13. The 

tuning parameter 𝜆𝜆 was selected using BIC based on the findings in Section 3.1.4.1. The 

hit rates and false alarm rates were recorded as outcome measures. This simulation study 

was implemented in R (R Development Core Team, 2013).  

Figure 3.6 demonstrates the hit rates using two different ability measures. Under 

all manipulated scenarios, using the IRT ability estimate yields higher hit rates than using 

the total score, and the largest difference is about 0.3. Specifically, as group size 

increases, the hit rates of both ability measures increase, while as test length or 

percentage of DIF items increases, the hit rates of two measures decrease under most 

situations. Similar to the previous results, two DIF detection models with different ability 

measures are not sensitive to small b-DIF magnitude but perform well in predicting items 

with non-negligible DIF. 
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Figure 3.6 Hit Rates of using Two Different Ability Measures 
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The false alarm rates are displayed in Figure 3.7. Specifically, according to the 

left-bottom and right-top subplot, using the IRT ability estimate yields larger false alarm 

rates than using the observed score under several conditions. On the contrary, according 

to the right-bottom subplot, using the total score yields higher false alarm rates. Under all 

other conditions, the false alarm rates of both measures are similar to each other. The 

highest false alarm rate of using the IRT ability estimate is controlled under 0.1, while the 

highest false alarm rate of using the total score is close to 0.2. Generally, both ability 

measures yield acceptable false alarm rates under most conditions. 

In conclusion, using the IRT ability estimate as a proxy for person’s latent ability 

outperforms using the total score in terms of their DIF detection performance by taking 

both hit rates and false alarm rates into consideration. Therefore, the IRT ability estimate 

will be employed as the ability measure in the DIF detection model for all future 

analyses. 
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Figure 3.7 False Alarm Rates of using Two Different Ability Measures 

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 500; DIF magnitude = 0.4

Total Score Ability Estimate

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 500; DIF magnitude = 0.8

Total Score Ability Estimate

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 1000; DIF magnitude = 0.4

Total Score Ability Estimate

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 1000; DIF magnitude = 0.8

Total Score Ability Estimate

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 2000; DIF magnitude = 0.4

Total Score Ability Estimate

0.000

0.100

0.200

0.300

0.400

0.500

20 items;
10% DIF

40 items;
10% DIF

20 items;
20% DIF

40 items;
20% DIF

Fa
lse

 A
la

rm
 R

at
e

Group size = 2000; DIF magnitude = 0.8

Total Score Ability Estimate



66 
Chapter 3. Research Design 

3.2 Simulation Studies 

3.2.1 Simulation Study One 

 The first simulation study aims to answer the first research question—which 

penalty function yields the best operating characteristics in DIF detection, and the second 

research question—how does each of the manipulated factors impact the number of items 

flagged correctly and incorrectly as DIF items using the proposed DIF detection model. 

Simulated datasets consisting of P persons and I items were generated from the 

2PL model showed in Equation 3.12. Similar to previous preliminary analyses, the item 

parameters in Table 3.1 were used to generate data where 𝑎𝑎𝑖𝑖~𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑟𝑟𝑚𝑚𝑎𝑎𝑙𝑙(0, 0.52) and 

𝑑𝑑𝑖𝑖~𝑁𝑁(0,1), and the latent ability distribution was set to 𝑁𝑁(0,1) for both groups. 

The manipulated factors and the levels of each factor used in this simulation study 

included: 

• Test length: 20 items, 40 items 

• Sample size: 1000, 2000, 4000 examinees 

• Sample size ratio: 1:1, 4:1 (reference/focal group size—500/500, 800/200; 

1000/1000, 1600/400; 2000/2000, 3200/800) 

• Percentage of DIF items: 10%, 20% 

• DIF type: uniform DIF only (b-DIF), nonuniform DIF with drift on discrimination 

parameter only (a-DIF), nonuniform DIF with drift on both difficulty and 

discrimination parameter (a-DIF and b-DIF) 

• DIF magnitude: 0.4, 0.8 for drift on 𝑏𝑏𝑖𝑖 (b-DIF magnitude); 0.5, 1.0 for drift on 𝑎𝑎𝑖𝑖 

(a-DIF magnitude) 
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There were in total 2 (test lengths) × 3 (sample sizes) × 2 (sample size ratios) ×

2 (percentages of DIF items) ×  3 (DIF types) ×  2 (DIF magnitudes) = 144 

conditions, among which 48 were uniform DIF conditions, and 96 were non-uniform DIF 

conditions. 

 The general DIF model (see Equation 3.1) was used to detect both uniform and 

nonuniform DIF items. According to Section 3.1.4.2, 𝜃𝜃𝑖𝑖 was estimated using EAP under 

the 2PL model. Model parameter estimates 𝜷𝜷� were obtained using penalized MLE based 

on Equation 3.3, and three forms of penalty functions were studied including the 

traditional lasso (see Equation 3.5), the elastic net (see Equation 3.6), and the adaptive 

lasso (see Equation 3.7). The tuning parameters were selected using BIC according to 

Section 3.1.4.1. 

 For each condition, 100 replications were generated. The hit rates indicating the 

proportion of DIF items that are correctly flagged as DIF items, and the false alarm rates 

indicating the proportion of non-DIF items that are incorrectly flagged as DIF items were 

recorded as the outcome measures. Specifically, under uniform DIF conditions, �̂�𝛽2𝑖𝑖 = 0 

indicates item i is a non-DIF items while �̂�𝛽2𝑖𝑖 ≠ 0 indicates item i is a DIF item, while 

under nonuniform DIF conditions, �̂�𝛽3𝑖𝑖 = 0 indicates item i is a non-DIF items while 

�̂�𝛽3𝑖𝑖 ≠ 0 indicates item i is a DIF item. 

 However, in reality, a person’s ability 𝜃𝜃𝑖𝑖 may be over- or under-estimated when 

the fitted model is not exactly correct. For example, when a test includes multiple-choice 

items, there is a chance that examinees will answer items correctly by guessing. But in 

practice and in some measurement models, it is often assumed that the effects of guessing 

are negligible, and the item and ability parameter might be inaccurately estimated in this 
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case. Additional analyses were conducted to represent such a scenario—the item 

responses were generated from the 3PL model incorporating guessing effects as follows: 

𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�𝜃𝜃𝑖𝑖,𝑎𝑎𝑖𝑖,𝑑𝑑𝑖𝑖 , 𝑐𝑐𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)
𝑒𝑒𝑥𝑥𝑝𝑝�−�𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖��

1 + 𝑒𝑒𝑥𝑥𝑝𝑝�−�𝑎𝑎𝑖𝑖𝜃𝜃𝑖𝑖 + 𝑑𝑑𝑖𝑖��
(3.14) 

where 𝑐𝑐𝑖𝑖 was set to 0.2 for all items, and the person’s ability estimates (𝜃𝜃�𝑖𝑖) were obtained 

using a different IRT model—the 2PL model. Meanwhile, all other settings remained 

unchanged. Under this design, an additional source of misfit—the biased ability 

estimates—was introduced to the proposed DIF model in Equation 3.1. And the purpose 

is to investigate how the ability parameter estimates impact the DIF detection results. 

The full simulation study was implemented in R (R Development Core Team, 

2013). The ability estimation was conducted using the mirt R package (Chalmers, 2012), 

and the penalized estimation was conducted using the glmnet R package (Friedman et al., 

2010).  

3.2.2 Simulation Study Two 

The second simulation study aims to address the third research question—what 

are the differences between the proposed method and other existing techniques—the 

logistic regression method and the likelihood ratio test, in terms of their DIF detection 

performance.  

Logistic regression was selected from three aforementioned non-IRT approaches 

because it is the starting point for the regularized DIF detection model, and it is of great 

interest to see the differences in DIF detection using two types of logistic regression 

models. Among the IRT-based DIF methods, the application of Raju’s method is most 

restrictive since the integrals (see Equations 2.22 and 2.23) used to generate the area 
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measures are not able to yield finite results if the guessing parameter in the 3PL model is 

unequal across groups. In addition, although previous research indicated that the test 

statistics 𝜒𝜒2 and 𝐺𝐺2 computed from Lord’s 𝜒𝜒2 test and the likelihood ratio test were 

asymptotically the same (Kim & Cohen, 1995), the accuracy of Lord’s 𝜒𝜒2 test was 

heavily dependent on the accuracy in estimating the variance and covariance matrix for 

the item parameter estimates (Thissen & Wainer, 1982). Considering these aspects, the 

likelihood ratio test was used as another comparison method in this simulation study. 

Specifically, the logistic regression DIF detection was realized using the difR R package 

(Magis, Beland, & Raiche, 2013), and the likelihood ratio test was implemented using the 

mirt R package (Chalmers, 2012).  

The DIF detection methods were compared by means of receiver operating 

characteristic (ROC) curves under the following conditions: 

• Condition 1: 40 items, 20% DIF items, group sizes of 1000 in both groups, 

uniform DIF with b-DIF magnitude equal to 0.8 

• Condition 2: 40 items, 20% DIF items, group sizes of 1600 and 400 in the 

reference and focal groups, uniform DIF with b-DIF magnitude equal to 0.8 

• Condition 3: 40 items, 20% DIF items, group sizes of 1000 in both groups, 

nonuniform DIF with a-DIF magnitude equal to 1.0 

• Condition 4: 40 items, 20% DIF items, group sizes of 1600 and 400 in the 

reference and focal groups, nonuniform DIF with a-DIF magnitude equal to 1.0 

• Condition 5: 40 items, 20% DIF items, group sizes of 1000 in both groups, 

nonuniform DIF with a-DIF magnitude equal to 1.0 and b-DIF magnitude equal 

to 0.8 
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• Condition 6: 40 items, 20% DIF items, group sizes of 1600 and 400 in the 

reference and focal groups, nonuniform DIF with a-DIF magnitude equal to 1.0 

and b-DIF magnitude equal to 0.8 

The reason for using ROC curves is that the DIF detection performance of the 

logistic regression and the likelihood ratio test depends on the selection of significance 

level (e.g., Cohen et al., 1996; Narayanan & Swaminathan, 1996), while the performance 

of regularization methods relies on the selection of tuning parameters. This makes the 

comparison in terms of hit rates and false alarm rates more complicated because 

comparing hit rates without controlling for false alarm rates is meaningless.  

Therefore, the ROC curves were suggested in previous research, illustrating the 

ability of a DIF detection method in classifying DIF items and non-DIF items (Magis et 

al., 2015). The ROC curves can be created by plotting the false alarm rates on the x-axis 

against the hit rates on the y-axis. Therefore, the hit rates and false alarm rates were 

calculated by increasing the tuning parameter values for the regularization methods and 

by decreasing the significance levels for the logistic regression approach and the 

likelihood ratio test. For each of the selected condition, 100 replications were generated, 

and the average ROC curve was finally computed for each DIF detection method under 

each of the conditions. The full simulation study was implemented in R (R Development 

Core Team, 2013). 

 

3.3 Empirical Data Analyses 

 The empirical data were from the Trends in International Mathematics and 

Science Study (TIMSS), which is an international comparative study of student 
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achievement, measuring fourth- and eighth-grade students’ knowledge and skills on 

mathematics and science. The most recent TIMSS data collection was conducted in 2015, 

and about 60 countries consisting of more than 580,000 students participated in TIMSS 

2015 (Mullis, Martin, Foy, & Hooper, 2016).  

This study used the newest TIMSS 2015 data of eighth-grade students in the 

United States, and the items were tested for DIF between boys and girls. Considering 

sample size and test length, for mathematics data, those students assigned the fifth 

booklet were finally selected, while for science data, those students assigned the second 

booklet were selected (the booklet number was randomly selected). In addition, the 

analyses only considered the items that were dichotomously scored, and those students 

with missing or incomplete responses were excluded from the analyses. Accordingly, the 

analyses of 18 mathematics items were carried out on 1197 students with a distribution of 

595 boys and 602 girls, and the analyses of 20 science items were conducted on 1290 

students consisting of 687 boys and 603 girls. 

Typically, DIF studies are conducted to find out DIF items in a test, and the 

results are used to investigate the potential sources of DIF. In this study, the main 

purpose of empirical data analyses is to compare the DIF detection results of the 

proposed DIF model with other commonly used DIF methods in order to see if there are 

any similarities or differences between them. Specifically, three DIF methods used in the 

second simulation study were used again to analyze the empirical datasets. 
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CHAPTER 4. RESULTS 

4.1 Simulation Study 1 

The first simulation study evaluates the DIF detection performance of different 

regularized logistic regression methods with three types of penalty functions including 

the lasso penalty, the elastic net penalty, and the adaptive lasso penalty by comparing the 

operating characteristics under 144 conditions, which addresses the first research 

question—which penalty function yields the best operating characteristics in DIF 

detection. Moreover, since the 144 conditions were created by combining six 

manipulated factors including test length, sample size, sample size ratio, percentage of 

DIF items, DIF type, and DIF magnitude in different ways, the second research 

question—how does each of the manipulated factors impact the number of items flagged 

correctly and incorrectly as DIF items—is answered by comparing the hit rates and false 

alarm rates at different levels of each manipulated factor.  

The results are presented separately according to uniform and nonuniform DIF 

conditions in the following sections. Each section starts with the results for data 

generated from the 2PL model, with hit rate results preceding false alarm rate results, 

followed by discussions on 3PL-generated datasets.  

4.1.1 Uniform DIF Conditions 

For uniform DIF conditions, there only exist differences in the difficulty 

parameters between the reference and focal groups. Figures 4.1 and 4.2 demonstrate the 

hit rates using three types of penalty functions in parameter estimation with b-DIF 

magnitude equal to 0.4 and 0.8 respectively.   
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 The adaptive lasso has slightly lower hit rates compared to the lasso and the 

elastic net only when b-DIF magnitude is 0.8 and group sizes are 1000/1000, 2000/2000 

and 3200/800 (see the left-center, left-bottom and right-bottom subplots in Figure 4.2). 

However, in these conditions, the differences in hit rates between any two methods are 

smaller than 0.02, which are negligible. In all other conditions, we can see that the 

adaptive lasso significantly outperforms other penalty functions. Therefore, in uniform 

DIF detection, generally the adaptive lasso has the best performance in correctly 

identifying true DIF items, regardless of group size, test length, percentage of DIF items, 

and b-DIF magnitude. In addition, the elastic net has the worst performance, although the 

average difference in hit rates between the lasso and the elastic net is only 0.029. It 

indicates that adding the ℓ2 penalty term to the loss function does not improve the 

model’s ability to detect uniform DIF items.   

In terms of the impact of each manipulated factor on hit rates, both figures 

indicate that the hit rates of all three procedures increase when the sample size increases 

from small (1000 examinees) to large (4000 examinees), independent of sample size 

ratio, test length, percentage of DIF items and b-DIF magnitude. The hit rates are 

consistently higher if the reference and focal group sizes are equal when controlling for 

other manipulated factors. Moreover, generally the hit rates decrease when the test length 

increases and/or the percentage of DIF items increases under the conditions of matching 

group size and b-DIF magnitude. That is, the hit rates are higher for 20-item conditions 

compared to 40-item conditions, and are higher for 10% DIF conditions compared to 

20% DIF conditions, with the exception of b-DIF magnitude equal to 0.8, group size 

equal to 1600/400, and number of test items equal to 20 (see the right-center subplot in 
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Figure 4.2). Lastly, the average hit rates of large uniform DIF conditions (see Figure 4.2) 

are two to three times the average hit rates of small uniform DIF conditions (see Figure 

4.1) for all three methods.  

Specifically, the adaptive lasso works well in identifying items with large uniform 

DIF effects, and the average hit rate of the 24 conditions in Figure 4.2 is 0.813. 

Furthermore, when the reference and focal group have the same group size, the average 

hit rate is 0.894; however, for unbalanced group sizes (the reference and focal group ratio 

equals 4:1), the average hit rate is 0.733, indicating that one needs more examinees in the 

setting to obtain a larger hit rate. On the other hand, weak uniform DIF identification is 

much harder and the average hit rate of the 24 conditions in Figure 4.1 is only 0.371, 

indicating that the items with small magnitudes of uniform DIF are hard to be detected 

using the adaptive lasso methodology, especially when the sample size is small.  

Figures 4.3 and 4.4 demonstrate the false alarm rates under exactly the same 

conditions corresponding to Figures 4.1 and 4.2. The false alarm rates are well-controlled 

for all methods under all conditions, and the average false alarm rates for the lasso, the 

elastic net, and the adaptive lasso are 0.010, 0.007 and 0.006 respectively. Therefore, the 

adaptive lasso not only has the best performance in identifying true DIF items, but also 

minimizes the possibility of incorrectly flagging non-DIF items as DIF items.  
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Figure 4.1 Hit Rates for Three Penalty Functions under Uniform DIF Conditions with b-DIF 
Magnitude Equal to 0.4 
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Figure 4.2 Hit Rates for Three Penalty Functions under Uniform DIF Conditions with b-DIF 
Magnitude Equal to 0.8 
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Figure 4.3 False Alarm Rates for Three Penalty Functions under Uniform DIF Conditions with 
b-DIF Magnitude Equal to 0.4 
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Figure 4.4 False Alarm Rates for Three Penalty Functions under Uniform DIF Conditions with 
b-DIF Magnitude Equal to 0.8

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te
Group Size: 500/500

lasso elastic net adaptive lasso

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te

Group Size: 800/200

lasso elastic net adaptive lasso

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te

Group Size: 1000/1000

lasso elastic net adaptive lasso

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te

Group Size: 1600/400

lasso elastic net adaptive lasso

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te

Group Size: 2000/2000

lasso elastic net adaptive lasso

0.000

0.050

0.100

0.150

0.200

0.250

20 items;
10%DIF

20 items;
20%DIF

40 items;
10%DIF

40 items;
20%DIF

Fa
lse

 A
la

rm
Ra

te

Group Size: 3200/800

lasso elastic net adaptive lasso



79 
Chapter 4. Results 

However, as mentioned in Section 3.2.1, in reality person’s abilities are not 

always incorrectly estimated. Therefore, additional simulation analyses were conducted 

by generating item responses from the 3PL model instead of the 2PL model, and the hit 

rates and false alarm rates (y-axes) for 2PL- and 3PL-generated datasets under 48 

uniform DIF conditions (x-axes) are displayed in Figure 4.5.  

We can see that the accuracy of latent ability estimates has a great impact on DIF 

detection performance. When 𝜃𝜃𝑖𝑖 (see Equation 3.1) are estimated using an incompatible 

IRT model, many DIF items are unable to be detected, resulting in serious declines in hit 

rates. Specifically, the average differences in hit rates between the 2PL and 3PL cases for 

the lasso, the elastic net, and the adaptive lasso are 0.238, 0.227, and 0.295 respectively, 

indicating that the regularized logistic regression DIF model is not robust to biased ability 

estimates.  

The false alarm rates decrease as well since it is more difficult for all items 

including both true DIF items and non-DIF items, to be detected as DIF items. The 

average false alarm rates for three methods are declined by 0.006, 0.005 and 0.003 

correspondingly when using 3PL-generated datasets. 
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Figure 4.5 Comparison of Hit Rates and False Alarm Rates for 2PL- and 3PL-generated 
Datasets under 48 Uniform DIF Conditions
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4.1.2 Nonuniform DIF Conditions 

As stated in Section 2.2.2, an item displaying nonuniform DIF varies in the 

discrimination parameter, and possibly varies in the difficulty parameter (Mellenbergh, 

1982). Therefore, the nonuniform DIF conditions are further divided to nonuniform DIF 

conditions with drift on the discrimination parameters (a-DIF) only, and nonuniform DIF 

conditions with drift on both discrimination and difficulty parameters (a-DIF and b-DIF).  

4.1.2.1 Nonuniform DIF Conditions with Drift on the Discrimination Parameters Only 

Figures 4.6 and 4.7 show the hit rates using three penalties in the regularized 

logistic regression DIF model with two levels of a-DIF magnitude equal to 0.5 and 1.0 

respectively. The adaptive lasso has a much better performance in detecting nonuniform 

DIF items across all conditions compared to the lasso and elastic net approaches. Similar 

to uniform DIF conditions, the lasso slightly outperforms the elastic net, and the average 

difference in hit rates between them is 0.025.  

Under all conditions, the hit rates increase when the total sample size increases. 

Moreover, the hit rates are always higher when the reference and focal group size ratio 

equal to 1 compared to unbalanced group sizes controlling for other factors. In terms of 

the impact of test length on hit rate, when there exist 20% DIF items, the hit rates 

decrease when the number of test items increases from 20 items to 40 items; however, 

when only 10% of test items are DIF items, the pattern is not consistent. Moreover, 

according to the figures, it seems that there is no relationship between the percentage of 

DIF items and hit rates since the trends are inconsistent under different conditions. 

Similar to the findings in Section 4.1.1, the adaptive lasso has a better 

performance in identifying items with larger nonuniform DIF effects. The average hit rate 
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is 0.795 according to Figure 4.7 (a-DIF magnitude equal to 1.0) and is 0.421 according to 

Figure 4.6 (a-DIF magnitude equal to 0.5). Specifically, when the reference and focal 

group size ratio is 1:1, the average hit rates for correctly detecting DIF items with large 

and small nonuniform DIF are 0.915 and 0.543; when the group size ratio is 4:1, the 

average hit rates are 0.675 and 0.300 respectively.  

Generally, the hit rates and the false alarm rates increase or decrease at the same 

time when changing the simulation scenarios. As shown in Figures 4.8 and 4.9, the false 

alarm rates are well-controlled under most conditions, and the average false alarm rates 

for the lasso, the elastic net, and the adaptive lasso methods are 0.042, 0.036 and 0.020 

respectively. Although the average false alarm rates seem to be acceptable for all three 

methods, in certain conditions the false alarm rates are greater than 0.1 (see the left-

bottom subplot in Figure 4.8 and the right-bottom subplot in Figure 4.9) and even around 

0.2 (see the left-center and left-bottom subplots in Figure 4.9) if the lasso or elastic net 

penalty is used. However, the false alarm rates are always below 0.05 when using the 

adaptive lasso penalty and the largest value is 0.049 (see the right-bottom subplot in 

Figure 4.9). Again, the adaptive lasso has the best performance in identifying true DIF 

items and minimizes the possibility of misidentifying non-DIF items compared to the 

other two penalties.  
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Figure 4.6 Hit Rates for Three Penalty Functions under Nonuniform DIF Conditions with a-DIF 
Magnitude Equal to 0.5 
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Figure 4.7 Hit Rates for Three Penalty Functions under Nonuniform DIF Conditions with a-DIF 
Magnitude Equal to 1.0 
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Figure 4.8 False Alarm Rates for Three Penalty Functions under Nonuniform DIF Conditions 
with a-DIF Magnitude Equal to 0.5 
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Figure 4.9 False Alarm Rates for Three Penalty Functions under Nonuniform DIF Conditions 
with a-DIF Magnitude Equal to 1.0
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 Figure 4.10 shows the hit rates and false alarm rates for the 2PL- and 3PL-

generated datasets under the same nonuniform DIF conditions with a-DIF only. When the 

ability parameters are estimated using an incompatible IRT model, the average 

differences in hit rates for the lasso, the elastic net, and the adaptive lasso are decreased 

by 0.273, 0.253, and 0.413 respectively. Correspondingly, the average false alarm rates 

are decreased by 0.030, 0.026, and 0.009 for these methods. The results indicate that 

when inaccurate person’s ability estimates are used in the regularized DIF detection 

model, no matter which penalty function is used in estimation, the model is not able to 

correctly identify nonuniform DIF items under most conditions.  



88 
Chapter 4. Results 

   

   

   

Figure 4.10 Comparison of Hit Rates and False Alarm Rates for 2PL- and 3PL-generated 
Datasets under 48 Nonuniform DIF Conditions with a-DIF only
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4.1.2.2 Nonuniform DIF Conditions with Drift on the Discrimination and Difficulty 

Parameters  

Figures 4.11 and 4.13 show the hit rates and false alarm rates using three 

methodologies with a-DIF magnitude equal to 0.5 and b-DIF magnitude equal to 0.4, 

while Figures 4.12 and 4.14 show the hit rates and false alarm rates with a-DIF 

magnitude equal to 1.0 and b-DIF magnitude equal to 0.8. Again, the performance of the 

adaptive lasso method in detecting nonuniform DIF items is much better than the lasso 

and the elastic net across all conditions. The lasso slightly outperforms the elastic net and 

the difference in the average hit rates between these two methods is smaller than 0.02. 

For most conditions, the hit rates are higher for larger sample sizes, balanced 

groups, and larger DIF magnitudes. Specifically, the average hit rates are 0.711, 0.413, 

and 0.168 when there are 4000, 2000, and 1000 examinees correspondingly; the average 

hit rates are 0.578 and 0.284 for balanced and unbalanced groups; moreover, the average 

hit rate is 0.467 for large DIF magnitudes according to Figure 4.12 and is 0.395 for small 

DIF magnitudes according to Figure 4.11. However, it is difficult to tell the relationship 

between test length and hit rate, and the average hit rates for 20-item and 40-item tests 

are 0.432 and 0.429 respectively. Also, the impact of percentage of DIF items on hit rates 

is unclear for nonuniform DIF conditions with both a-DIF and b-DIF.   

 According to Figures 4.13 and 4.14, the average false alarm rates using the lasso, 

the elastic net and the adaptive lasso in regularized DIF detection models are 0.043, 0.036 

and 0.024 correspondingly, which are similar to the results in Section 4.1.2.1. We can see 

that the adaptive lasso has well-controlled false alarm rates across most conditions and 

the worst false alarm rate is 0.104 (see the left-bottom subplot in Figure 4.14).  
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Figure 4.11 Hit Rates for Three Penalty Functions under Nonuniform DIF Conditions with a- 
DIF Magnitude Equal to 0.5 and b-DIF Magnitude Equal to 0.4 
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Figure 4.12 Hit Rates for Three Penalty Functions under Nonuniform DIF Conditions with a- 
DIF Magnitude Equal to 1.0 and b-DIF Magnitude Equal to 0.8  
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Figure 4.13 False Alarm Rates for Three Penalty Functions under Nonuniform DIF Conditions 
with a-DIF Magnitude Equal to 0.5 and b-DIF Magnitude Equal to 0.4 
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Figure 4.14 False Alarm Rates for Three Penalty Functions under Nonuniform DIF Conditions 
with a-DIF Magnitude Equal to 1.0 and b-DIF Magnitude Equal to 0.8
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 The results demonstrated in Figure 4.15 are similar to Figure 4.10, indicating that 

the regularized logistic regression model is not robust to biased ability estimates so that it 

is not able to correctly identify the nonuniform DIF items. Specifically, the average 

differences in hit rates for the lasso, the elastic net, and the adaptive lasso between 2PL 

and 3PL scenarios are 0.148, 0.139, and 0.373, while the average differences in false 

alarm rates are 0.023, 0.019, and 0.016 correspondingly. In addition, we can see that the 

adaptive lasso penalty is most sensitive to biased ability estimates compared to the other 

two penalty functions. 
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Figure 4.15 Comparison of Hit Rates and False Alarm Rates using 2PL- and 3PL-generated 
Datasets under 48 Nonuniform DIF Conditions with both a-DIF and b-DIF 
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4.2 Simulation Study 2 

The second simulation study compares three different DIF detection methods—the 

regularization method using the adaptive lasso penalty (we called it the adaptive lasso in 

this section), the logistic regression method, and the likelihood ratio test, aiming to 

answer the third research question—what are the differences between the proposed 

method and other existing techniques in terms of their DIF detection performance. As 

mentioned in Section 3.2.2, the average ROC curves are used to compare these methods. 

The results are presented according to uniform and nonuniform DIF conditions in the 

following sections. 

4.2.1 Uniform DIF Conditions 

Figure 4.16 summarizes the average ROC curves for three DIF detection methods 

under two different uniform DIF conditions. We can see that controlling for the false 

alarm rate, the larger the hit rate, the more powerful the method is in identifying true DIF 

items correctly. In other words, the larger the area under the ROC curve, the better the 

methodology is in discriminating between DIF and non-DIF items (Magis et al., 2015). 

Therefore, the adaptive lasso is the most powerful method in detecting uniform DIF items 

since its ROC curve is always above the other two curves, while the logistic regression 

method is the least powerful method. Particularly, when the false alarm rate is set to 0.05, 

the corresponding hit rates of the adaptive lasso are about 0.9 and 0.8 for balanced and 

unbalanced groups respectively.  
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Figure 4.16 Average ROC Curves for Adaptive Lasso, Logistic Regression, and 
Likelihood Ratio dealing with Tests of 40 Items, 20% Uniform DIF Items with b-DIF 
Magnitude Equal to 0.8, and Sample Size of 2000 (top: group sizes of 1000; bottom: 

group sizes of 1600 and 400) 
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the top subplot shows that the hit rates of all three methods are greater than 0.9, and the 

bottom subplot shows that the hit rates of these methods are close to each other and are 

between 0.85 and 0.9. Therefore, all three DIF methods have similar performance in 

detecting nonuniform DIF items, particularly when there only exists a-DIF.  

 

Figure 4.17 Average ROC Curves for Adaptive Lasso, Logistic Regression, and 
Likelihood Ratio dealing with Tests of 40 Items, 20% Nonuniform DIF Items with a-DIF 

Magnitude Equal to 1.0, and Sample Size of 2000 (top: group sizes of 1000; bottom: 
group sizes of 1600 and 400) 
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However, Figure 4.18 shows different findings where logistic regression and 

likelihood ratio methods have similar performance and are much better than the adaptive 

lasso in detecting nonuniform DIF items with both a-DIF and b-DIF. Especially for the 

adaptive lasso, if the reference and focal group sizes are different, the hit rate is only less 

than 0.5 when the false alarm rate is set to 0.05. But for equal group sizes, the hit rate of 

0.75 is acceptable.  

 

 

Figure 4.18 Average ROC Curves for Adaptive Lasso, Logistic Regression, and 
Likelihood Ratio dealing with Tests of 40 items, 20% Nonuniform DIF Items with a-DIF 

Magnitude Equal to 1.0 and b-DIF Magnitude Equal to 0.8, and Sample Size of 2000 
(top: group sizes of 1000; bottom: group sizes of 1600 and 400) 
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4.3 Empirical Data Analyses 

Three DIF detection methods—the regularization method using the adaptive lasso 

penalty, the logistic regression method, and the likelihood ratio test, were not only 

studied in the simulation study but also applied to real datasets, the TIMSS 2015 data.  

As stated in Section 3.1.1, based on Equation 3.1, Item i shows uniform DIF when 

�̂�𝛽2𝑖𝑖 ≠ 0 and �̂�𝛽3𝑖𝑖 = 0, and item i shows nonuniform DIF when �̂�𝛽3𝑖𝑖 ≠ 0 regardless of the 

value of 𝛽𝛽2𝑖𝑖. In terms of the logistic regression and likelihood ratio test, two significance 

levels of 0.01 and 0.05 were selected. The analysis results on mathematics and science 

data are given in Section 4.3.1 and Section 4.3.2 correspondingly.  

4.3.1 Empirical Dataset 1 

Table 4.1 summarizes the DIF analysis results of 18 mathematics items for 

selected students from the United States. Item 02 and Item 03 are detected as DIF items 

displaying uniform DIF using adaptive lasso, and the corresponding parameter estimates 

according to Equation 3.1 are �̂�𝛽22 = 0.217 and �̂�𝛽23 = 0.132. When the significance level 

is set to 0.01, the same items are flagged using both the logistic regression (Item 02: 𝑝𝑝 =

0.009; Item 03: 𝑝𝑝 = 0.004) and likelihood ratio test (Item 02: 𝑝𝑝 = 0.010; Item 03: 𝑝𝑝 =

0.004).  

However, when 0.05 is chosen as the significance level, more items are found to 

be problematic using the logistic regression model, and they are Item 08 (𝑝𝑝 = 0.045), 

Item 10 (𝑝𝑝 = 0.029), and Item 16 (𝑝𝑝 = 0.024). Additionally, Item 03 displays 

nonuniform DIF and the corresponding p-value is 0.042. For the other two approaches, 

the DIF detection results remain the same, that is, only Items 02 and 03 are identified as 

uniform DIF items.  
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Table 4.1 DIF Detection Results of TIMSS 2015 Mathematics Data 

Item Adaptive 
Lasso 

Logistic Regression Likelihood Ratio 
𝛼𝛼 = 0.01 𝛼𝛼 = 0.05 𝛼𝛼 = 0.01 𝛼𝛼 = 0.05 

01 No DIF No DIF No DIF No DIF No DIF 
02 Uniform DIF Uniform DIF Uniform DIF Uniform DIF Uniform DIF 
03 Uniform DIF Uniform DIF Nonuniform DIF Uniform DIF Uniform DIF 
04 No DIF No DIF No DIF No DIF No DIF 
05 No DIF No DIF No DIF No DIF No DIF 
06 No DIF No DIF No DIF No DIF No DIF 
07 No DIF No DIF No DIF No DIF No DIF 
08 No DIF No DIF Uniform DIF No DIF No DIF 
09 No DIF No DIF No DIF No DIF No DIF 
10 No DIF No DIF Uniform DIF No DIF No DIF 
11 No DIF No DIF No DIF No DIF No DIF 
12 No DIF No DIF No DIF No DIF No DIF 
13 No DIF No DIF No DIF No DIF No DIF 
14 No DIF No DIF No DIF No DIF No DIF 
15 No DIF No DIF No DIF No DIF No DIF 
16 No DIF No DIF Uniform DIF No DIF No DIF 
17 No DIF No DIF No DIF No DIF No DIF 
18 No DIF No DIF No DIF No DIF No DIF 

 

4.3.2 Empirical Dataset 2 

Table 4.2 demonstrates the DIF analysis results of 20 science items for selected 

students from the United States. We can see that when the statistical significance level is 

set to 0.01, only Item 03 is flagged as a uniform DIF item by the logistic regression (𝑝𝑝 =

0.008) and likelihood ratio test (𝑝𝑝 = 0.005). Item 03 is also flagged as a uniform DIF 

items using the adaptive lasso method, where the parameter estimate is �̂�𝛽23 = 0.005. 

Additionally, Item 15 is detected as a nonuniform DIF item using the adaptive lasso with 

�̂�𝛽3,15 = 0.037. When the significance level is set to 0.05, the results are different between 

the logistic regression and the likelihood ratio test. For the logistic regression method, in 

addition to Item 03, Item 17 and Item 20 are flagged as uniform DIF items with p-values 
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equal to 0.029 and 0.021 correspondingly, while Item 07 (𝑝𝑝 = 0.044), Item 15 (𝑝𝑝 =

0.014) and Item 19 (𝑝𝑝 = 0.043) are flagged as nonuniform DIF items. In terms of the 

likelihood ratio test, Item 03 still displays uniform DIF, and Item 20 also shows uniform 

DIF with 𝑝𝑝 = 0.020. Apart from these two items, Item 16 and Item 17 display 

nonuniform DIF with p-values equal to 0.009 and 0.039 respectively.  

Table 4.2 DIF Detection Results of TIMSS 2015 Science Data 

Item Adaptive Lasso Logistic Regression Likelihood Ratio 
𝛼𝛼 = 0.01 𝛼𝛼 = 0.05 𝛼𝛼 = 0.01 𝛼𝛼 = 0.05 

01 No DIF No DIF No DIF No DIF No DIF 
02 No DIF No DIF No DIF No DIF No DIF 
03 Uniform DIF Uniform DIF Uniform DIF Uniform DIF Uniform DIF 
04 No DIF No DIF No DIF No DIF No DIF 
05 No DIF No DIF No DIF No DIF No DIF 
06 No DIF No DIF No DIF No DIF No DIF 
07 No DIF No DIF Nonuniform DIF No DIF No DIF 
08 No DIF No DIF No DIF No DIF No DIF 
09 No DIF No DIF No DIF No DIF No DIF 
10 No DIF No DIF No DIF No DIF No DIF 
11 No DIF No DIF No DIF No DIF No DIF 
12 No DIF No DIF No DIF No DIF No DIF 
13 No DIF No DIF No DIF No DIF No DIF 
14 No DIF No DIF No DIF No DIF No DIF 
15 Nonuniform DIF No DIF Nonuniform DIF No DIF No DIF 
16 No DIF No DIF No DIF No DIF Nonuniform DIF 
17 No DIF No DIF Uniform DIF No DIF Nonuniform DIF 
18 No DIF No DIF No DIF No DIF No DIF 
19 No DIF No DIF Nonuniform DIF No DIF No DIF 
20 No DIF No DIF Uniform DIF No DIF Uniform DIF 
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CHAPTER 5. CONCLUSIONS 

5.1 Summary of Findings 

In this study, a new DIF detection model based on the regularized logistic 

regression model was proposed. Unlike many traditional DIF detection approaches, the 

proposed DIF model allows all test items to be examined for DIF simultaneously, and the 

DIF analysis is no longer conducted at the item level. As a result, the strict assumption 

for DIF analysis that all items except the studied item are supposed to be invariant across 

groups can be avoided, and multiple testing—a major threat to test validity—is no longer 

a problem. 

In order to evaluate the performance of the proposed DIF detection model, 

comprehensive simulation studies and empirical data analyses were conducted. The first 

simulation study examined the operating characteristics including hit rates and false 

alarm rates using three kinds of penalty functions in the regularized logistic regression 

model under various manipulated conditions. Moreover, the second simulation study 

compared the performance of the regularized DIF detection model to two commonly used 

DIF detection methods including the logistic regression method and the likelihood ratio 

test, and these three methods were also applied to analyzing real datasets.  

5.1.1 Research Question One 

In order to address the first research question, two preliminary analyses were 

conducted beforehand to (1) choose a model selection technique that can select the best 

DIF detection model in terms of their operating characteristics and (2) choose an 

appropriate ability measure as a proxy for 𝜃𝜃𝑖𝑖. Specifically, although under some 
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simulated conditions AIC and CV are able to identify more true DIF items than BIC, at 

the same time much more non-DIF items are flagged as DIF items incorrectly. Also, most 

of the DIF items flagged by AIC and CV only have a minimal impact on parameter 

estimation and are actually less of concern in practice. Therefore, by taking both hit rates 

and false alarm rates into consideration, BIC outperforms AIC and CV since it is able to 

not only flag high-impact DIF items, but also prevent over-identification of DIF items 

with few false alarms. BIC is considered as a more conservative criterion compared to 

AIC and CV in selecting the optimal DIF model. It is because typically AIC and CV tend 

to find a model that gives the best prediction without assuming any of the models are 

correct. All candidate models are approximations for truth according to AIC or CV, and 

the truth tends to be high dimensional since a more complex model gives a better fit to 

the data. On the other hand, BIC tends to find a model that is more likely to be true by 

assuming one of the candidate models being true. Therefore, AIC and CV always have a 

chance of selecting a too complex model where only a subset of the selected variables are 

in the true model, and BIC has a larger chance of choosing a simple model compared to 

AIC and CV. In DIF detection, selecting the variables that present DIF is much more 

important than precisely predicting the responses, which explains why BIC outperforms 

AIC and CV in terms of the operating characteristics.  

In the second preliminary study, the DIF detection performance of two types of 

ability measures mentioned in previous research including the observed total score and 

the IRT ability estimate were compared. The results indicate that using the IRT ability 

estimate always has a better DIF detection performance compared to using the observed 

score. Generally, the inconsistency between the observed total score and the ability 
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parameter estimates is the result of letting the item discrimination parameters vary among 

items. Since the definition and classification of DIF were specified in the IRT framework, 

it is reasonable that using the IRT ability estimate in the proposed model yields better 

DIF detection results. However, additional analyses also indicate that this conclusion is 

tenable only when the IRT ability estimates are accurate, which will be discussed in this 

section later.  

The first simulation study was conducted based on the findings of two preliminary 

analyses, where the IRT ability estimate was used as a proxy for 𝜃𝜃𝑖𝑖 in the proposed DIF 

detection model and BIC was used as the model selection criterion. The answer to the 

first research question is that the adaptive lasso penalty has the best performance with the 

highest hit rates as well as the lowest and well-controlled false alarm rates among all 

three penalty functions under most conditions in both uniform and nonuniform DIF 

detection, while the elastic net penalty obtains the worst DIF detection performance. This 

indicates that using the adaptive extension of lasso that introduces weights to the penalty 

on each coefficient in the lasso procedure can improve the operating characteristics 

significantly, but adding the ℓ2 penalty term does not improve the model’s performance 

in detecting either type of DIF. In other words, although the quadratic part of the elastic 

net penalty encourages grouping effect that allows for grouped selection of correlated 

variables, it does not improve the model’s ability in detecting more true DIF items. 

Moreover, we may encounter problems when using the traditional lasso such as small 

nonzero parameters cannot be consistently detected and large non-zero parameters are too 

small resulting in large bias. Using the adaptive lasso where the ℓ1 norms in the penalty 

are weighted by data-dependent weights allows a relatively higher penalty for small 
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coefficients and a relatively lower penalty for large coefficient (Huang, Ma, & Zhang, 

2008), which helps reduce the estimation bias and improve variable selection accuracy 

compared to the traditional lasso. Therefore, the adaptive lasso generally yields larger hit 

rates compared to other approaches. In terms of the false alarm rates of the adaptive lasso 

approach, they are well-controlled at 0.05 under most conditions. It is expected because 

not only BIC tends to select a simpler model, but also the adaptive lasso tends to reduce 

the number of unimportant parameters (e.g., the parameters with small coefficients), 

making it less probable to incorrectly flag non-DIF items as DIF items. 

However, the results also show that the performance of the proposed DIF 

detection model is dependent on the latent ability estimates—the proposed DIF detection 

model becomes less powerful when the ability parameters are inaccurately estimated. It is 

because if the ability estimates are incorrect, there will be additional inaccuracies caused 

by observation errors in the DIF detection model. According to Equation 3.1, we can see 

that half of the variables in the model are related to person’s abilities. Therefore, using an 

appropriate ability measure is a crucial prerequisite for a powerful DIF detection model.  

5.1.2 Research Question Two 

The first simulation also addresses the second research question. Six manipulated 

factors including DIF type, DIF magnitude, percentage of DIF items, test length, sample 

size, and sample size ratio were considered in the study. Since we have already known 

that the adaptive lasso has a better performance than the other two penalties, and also the 

false alarm rates are too small to compare under many scenarios, the following discussion 

focuses on how the hit rates are impacted by each manipulated factor using the adaptive 

lasso approach. 
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The proposed DIF detection model is more powerful in identifying uniform DIF 

items than nonuniform DIF items. As expected, the DIF model has a better performance 

in detecting items with large DIF magnitudes (e.g., b-DIF magnitude equal to 0.8, and a-

DIF magnitude equal to 1.0). It is consistent with the findings in previous studies, since 

larger DIF magnitudes are useful to quantify the effect of DIF magnitude on power and 

type I error rate, while smaller DIF magnitudes usually represent negligible DIF since 

they have minimal impact on estimating model parameters (Wells et al., 2002; Magis & 

De Boeck, 2012). Moreover, we can see that the patterns of hit rates become very 

different under nonuniform DIF conditions (see Section 4.1.2) compared to uniform DIF 

conditions (see Section 4.1.1). One potential explanation is that when the nonuniform 

DIF effects are not strong enough, the proposed DIF model tends to flag those 

nonuniform DIF items as uniform DIF items. Although not presented, the simulation 

results show that for some nonuniform DIF items, 𝛽𝛽2𝑖𝑖 is nonzero even if 𝛽𝛽3𝑖𝑖 equals zero.  

Additionally, the hit rates increase as the sample size increases while controlling 

for other manipulated factors, since typically more precise model parameter estimates 

require larger sample size. On the other hand, when the sample size increases, each group 

contains more participants so that the estimates of persons’ abilities are likely to be more 

accurate, thus the proposed DIF model will be more powerful correspondingly.  

Besides, the proposed DIF model is less powerful in detecting true DIF items 

when the reference and focal group sizes are unbalanced. This is because when the 

reference and focal group size ratio is extremely unbalanced (e.g., group size ratio of 

4:1), it becomes much more difficult to precisely estimate the focal group participants’ 

abilities, which affects the model’s ability to detect DIF items. As discussed, the 
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proposed model has a better DIF detection performance with more accurate ability 

estimates, and this explains why balanced groups are more appreciated.  

 Furthermore, in uniform DIF detection, the hit rates increase when the total 

number of items decreases, or when there are fewer DIF items on a test. Specifically, 

according to Equation 3.2, there are in total 4𝐼𝐼 parameters that need to be estimated, 

where 𝐼𝐼 represents the total number of test items. When the number of items increases 

from 20 to 40, the number of estimated parameters increases dramatically from 80 to 160. 

Adding too many variables to the model may lead to overfitting issues, which easily 

yields misleading coefficient estimates, thus affects the variable selection results. 

However, under nonuniform DIF conditions, the patterns become different and it is hard 

to tell the relationship between test length and hit rates, as well as the relationship 

between percentages of DIF items and hit rates.  

5.1.3 Research Question Three 

 The third research question is addressed by the second simulation study. 

According to the ROC curves in Figures 4.16-4.18, the regularized DIF detection model 

using the adaptive lasso penalty outperforms the traditional logistic regression and 

likelihood ratio test in uniform DIF detection. And under nonuniform DIF conditions, 

two traditional approaches demonstrate similar or slightly better DIF detection 

performance.  

These three methods were also applied to two real datasets from TIMSS 2015. 

Specifically, when the statistical significance level set to 0.01 for the logistic regression 

and likelihood ratio methods, the DIF detection results of these methods are similar to 



109 
Chapter 5. Conclusions 

each other. However, when the significance level is 0.05, the results are different, 

especially when evaluating the science items.  

Generally, the empirical analyses results are consistent with the simulation 

study—the adaptive lasso approach is powerful in detecting uniform DIF items, but for 

those items with small DIF effects, the adaptive lasso tends to treat them as non-DIF 

items. Since the proposed DIF model is a very new approach, currently it is 

recommended to use other traditional DIF detection methods at the same time when 

analyzing empirical datasets and make a final decision by comparing the results of these 

approaches, until more simulation studies have been done.  

 

5.2 Limitations and Future Research 

Since the proposed regularized logistic regression DIF model is the first attempt 

to detect both uniform and nonuniform DIF using regularization techniques, it still has 

some features that can be further improved.  

First, this study only considered the three most commonly used model selection 

techniques including AIC, BIC, and CV. Although BIC outperforms AIC and CV by 

considering both hit rates and false alarm rates, it has a conservative bias tending towards 

false negative errors, that is, fail to detect true DIF items. Therefore, other model 

selection criterion, for example, the weighted average information criterion (Wu, Chen, 

& Yan, 2013; Magis et al., 2015) which is an intermediate criterion between AIC and 

BIC, can be studied in future research.  

Second, as shown in Section 3.1.4.2, when the IRT ability estimates are precise, 

using these estimates yields much better operating characteristics compared to using the 
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total scores. However, in certain scenarios, the estimates of ability parameters might be 

biased (e.g., using the 2PL model in parameter estimation when there exist guessing 

behaviors in a test). Although the simulations indicate that the DIF detection performance 

of the proposed model relied on the accuracy of ability measures, additional studies are 

recommended to examine to what extent the DIF model is able to tolerate biased ability 

estimates, and to investigate if other variables can be used as a proxy for person’s latent 

ability in addition to the IRT ability estimate and the observed total score.  

Third, this study first applied the elastic net and the adaptive lasso penalty to DIF 

detection. The simulation results show that the adaptive lasso penalty has a great 

performance in detecting DIF items especially uniform DIF items. However, other 

penalty functions can be studied, for example, the group lasso penalty (Meier, Van De 

Geer, & Bühlmann, 2008) which is another extension of the lasso, handling variable 

selection on groups of variables in generalized linear models.  

Moreover, the design for the simulation study and the empirical data analyses can 

be further improved. Specifically, for the simulation study, additional manipulated factors 

(e.g., unmatched ability distributions for the reference and focal groups) or more levels of 

each factor (e.g., small, medium and large DIF magnitudes) can be studied. It is also 

worth investigating other reasonable ranges for sample size ratio as well as percentage of 

DIF items on a test. For the empirical data analyses, instead of the achievement data, 

other types of test data such as personality data can be studied.  

Finally, more variables can be added to the current DIF model in order to better 

quantify the nonuniform DIF effects. The DIF model can also be modified and extended 

to detect DIF among multiple groups, as well as assess DIF effects in polytomous items.  
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