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Abstract

Esteban and Sákovics (2003) showed in their three-person game that
an alliance never appears in a possibly multi-stage contest game for an
indivisible prize when allies’ efforts are perfectly substitutable. In this
paper, we introduce allies’ effort complementarity by using a CES effort
aggregator function. We consider an open-membership alliance forma-
tion game followed by two contests: the one played by alliances, and the
one within the winning alliance. We show that if allies’ efforts are too
substitutable or too complementary, no meaningful alliance appears in
equilibrium. However, if allies’ efforts are moderately complementary
to each other, then competition between two alliances is a subgame
perfect equilibrium, which Pareto-dominates the equilibrium in a no-
alliance single-stage contest. We also show that if forming more than
two alliances is supported in equilibrium, then it Pareto-dominates two-
alliance equilibrium. Nevertheless, the parameter space for such an al-
location to be supported as an equilibrium shrinks when the number of
alliances increases.

1 Introduction

In their influential paper, Esteban and Sákovics (2003) consider a three-person
strategic alliance formation in a Tullock contest model in which players com-
pete for an indivisible prize, and demonstrate that an alliance involves strategic
disadvantages (see also Konrad 2009). There are two main disadvantageous
forces against forming an alliance: First, if an alliance is formed, there will be a
further contest that dissipates the members’ rents even if the alliance wins the

∗We thank Joan Esteban, Kai Konrad, and József Sákovics for their helpful comments
and encouragement.
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first race. Because of this rent-dissipation effect, the members of the alliance
have lower valuations for winning in the first race, reducing their efforts and
the winning probability. Second, even without the rent-dissipation problem,
e.g., if the winning prize is shared equally, there are still free-riding incen-
tives for the alliance members to reduce efforts, and consequently, the winning
probability. As a result, they conclude that it is hard to materialize strategic
alliances in a Tullock contest model.1 Although Wärneryd (1998) shows that
forming alliances and competing in a multi-stage competition reduce wasteful
competition and increase total welfare, this resource saving effect is difficult
to realize due to the disadvantageous effect on alliances when members’ indi-
vidual efforts are perfectly substitutable. Konrad (2009) points out that these
disincentive effects are not specific to Tullock contest models—these effects
also appear in first price all-pay auctions.

In this paper, we provide a simple solution for this alliance paradox by us-
ing complementarity in efforts in a general but symmetric n-person game.2 To
analyze complementarity, we introduce a simple, tractable CES effort aggrega-
tor function to translate alliance members’ individual efforts into the alliance’s
joint effort. We assume that each individual member’s marginal effort cost is
constant in order to limit the benefits of forming an alliance to effort com-
plementarity only.3 With complementarity in efforts, a larger alliance can
achieve a larger amount of joint effort among other benefits. Although there
are aforementioned disincentives, it makes sense to form an alliance as long
as the benefits from complementarity exceed the costs. The complementarity
parameter in the CES aggregator provides a simple measure of the strength
of incentive to form alliances as its value increases from 0 to 1.4

1Konrad (2004) considers an asymmetric all-pay auction game with exogenously deter-
mined hierarchical tournament structure, and shows that the highest valuation player may
have no chance to become the final winner depending on the hierarchical structure.

2There are at least a few ways to resolve this alliance paradox (Konrad and Leininger
2007 and Konrad and Kovenock 2008: see the literature review).

3In general, forming an alliance can reach higher total efforts with less individual cost
when cost functions are convex. For example, Esteban and Sákovics (2003) assume quadratic
individual effort functions but still got their alliance paradox.

4Complementarity in efforts within a group in Esteban and Ray (2011) is more subtle.
They analyze the conflict between two ethnic groups by assuming that players have het-
erogeneous financial and human opportunity costs, and they can contribute financially to
a conflict or they can directly participate as activists. This generates some sort of com-
plementarity: more activism requires more of the two inputs, time and money. They find
that within-group inequality leads to more activism. This is because alliance members are
specializing: poor with available cheap activist time and rich with money. They can con-
tribute at a lower marginal utility cost. Their result can be interpreted that an increase in
complementarity within groups intensifies group competition.
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We are not the first to present the idea of using CES aggregator function
to show that there are incentives to form an alliance. Following Cornes (1993)
and Cornes and Hartley (2007) in the literature of private provision of public
goods, Kolmer and Rommeswinkel (2013) and Choi, Chowdhury, and Kim
(2016) have already demonstrated the presence of such incentives in alliance
formation (see next section). This paper goes one step further. Since players’
payoffs are related to the whole alliance structure, it is important to know how
other players react to the alliance structure and whether or not the alliance
structure could be stable. Therefore, we need to see players’ and alliances’
strategic interactions, and what happens in equilibrium: in particular, we ask
whether or not there exists an equilibrium alliance structure.

We set up a simple alliance (coalition) formation game with multiple stages.
In stage 1, players form alliances. In stage 2, alliances compete with each
other, and in stage 3, the winning alliance members compete with each other
for the indivisible prize. The solution concept is the standard subgame perfect
Nash equilibrium. Two things should be noted. First, we model the alliance
formation stage as an “open membership” game (Yi 1997 and Bogomolnaia
and Jackson 2002) in which players can freely choose their alliance without
being excluded.5 Second, given the way we set up the multi-stage game, a
singleton-only alliance structure and a grand alliance structure are practically
identical, since the former does not have the third stage competition, and the
latter does not have the second stage competition. The outcome of these two
alliance structures coincides with the one of a grand standard Tullock contest.
Thus, our focus will be finding subgame perfect equilibria with non-trivial
alliance structures.

We first analyze the third stage game, which is just a Tullock contest within
the winning alliance from stage 2. The rate of rent dissipation increases with
the size of alliance increases (Proposition 1). Substituting this as the win-
ning payoff of stage 2, we analyze equilibrium payoffs and strategies in stage
2 (Theorem 1). Using these building blocks we analyze for which values of
CES parameter σ when nontrivial alliance structures emerge in equilibrium.
We show that when the complementarity parameter in CES function is small,
there are spin-off incentives for alliance members, while when complementarity
parameter is large, players want to join a bigger alliance, and end up with a
trivial grand alliance. Therefore, in those ranges, there in no nontrivial equi-
librium structure. In order to show the existence of a nontrivial equilibrium

5In a companion paper, Konishi and Pan (2019), we consider a sequential alliance forma-
tion game à la Bloch (1996), and compare the resulting alliance structures (see Conclusion
section).
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alliance structure, we provide sufficient conditions for the existence of equi-
librium with two alliances, and its uniqueness (Theorem 2). The condition
is namely that σ is in the middle range. The intuition is that, if σ is small,
the disadvantages of forming an alliance surpass the benefits, so that play-
ers would rather stay on as a singleton. But, if σ is large, a larger alliance
becomes too attractive, ending up with a trivial grand coalition. However,
in the middle range, players cannot benefit from being a singleton, but the
rent dissipates more in a larger alliance. These two forces make a structure
with two similar-sized alliances stable. Moreover, we show that such a two-
alliance equilibrium allocation always Pareto-dominates the Tullock contest
allocation (Theorem 3). That is, nontrivial alliances are not only an equilib-
rium phenomenon but also provide benefits to their members. Equilibria with
more than two alliances are also analyzed. Although it is harder to satisfy
equilibrium conditions as the number of alliances increases, it is shown that
allocations with more alliances achieve higher payoffs.

The rest of the paper is organized as follows. In the next subsection, we
review the relevant literature. Section 2 introduces the model, and Sections 3
and 4 investigate subgames in stages 3 and 2, respectively. Section 5 presents
results on equilibrium alliance structures. Section 6 concludes, commenting
on other alliance formation games.

1.1 Literature Review

There have been attempts to resolve the alliance paradox in Esteban and
Sákovics (2003). Konrad and Leininger (2011) consider a dynamic all-pay
auction game with possible side payments and endogenous timing of effort in
which a group of players (alliance members) fight against a threat from an ex-
ternal enemy player. They show that there is a subgame perfect equilibrium,
in which the alliance members exert efficient efforts against the enemy, fol-
lowed by peaceful side payments from a leader of the alliance to the members
in the equilibrium path. In this setup, the free-riding problem and redis-
tributive conflicts are avoided by potential wasteful internal fighting. Konrad
and Kovenock (2009) introduce budget constraints for efforts (resources) for
each contest in a three-person all-pay auction game, and show that there can
be an alliance that is beneficial for two players with tighter budgets. Kon-
rad (2012) considers an all-pay-auction game in which each player’s budget
constraint is private information, considering forming an alliance as a tool of
information sharing. Assuming a common winningness-to-pay, Konrad (2012)
finds that merging alliances is weakly Pareto-improving, and the grand al-
liance emerges as equilibrium. An asymmetric three-player alliance formation
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game by Skaperdas (1998) may appear to be the closest to our model in the
sense that he considers complementarity in members’ efforts. He shows that
alliance formation is beneficial if and only if the effort aggregator function ex-
hibits increasing returns to scale in the members’ efforts, but he assumes that
effort levels of players are exogenously fixed.6 In a general symmetric n-player
game, Garfinkel (2004) adopts a farsighted solution concept (in the spirit of
farsighted stability in Chwe 1994), i.e., a player spins off from an alliance struc-
ture only when the eventual outcome after such a move is more preferable than
the original alliance structure. With her solution concept, she shows that with
a large number of players, there are stable alliance structures with similar al-
liance sizes. In contrast, in our paper, we use the standard subgame perfect
Nash equilibrium as the solution concept of our alliance formation game, and
derive a stable alliance structure with similar sizes.

There are papers that use a CES aggregator function to capture effort
complementarity. In the public good context, Cornes (1993) and Cornes and
Hartley (2007) introduce complementarity in the famous voluntary public good
contribution game in Bergstrom, Blume, and Varian (1986). Cornes and Hart-
ley (2007) examine this problem extensively. In contest games, Kolmer and
Rommeswinkel (2013) consider a group contest played by exogenously formed
groups using a CES effort-aggregator function when group-members have het-
erogeneous abilities. Assuming that the winning prize is enjoyed by all mem-
bers of a winning team as a public good, they analyze how complementarity
of efforts affect members’ efforts. They find that complementarity parameter
has no effect on equilibrium efforts if groups are homogeneous. If groups are
heterogeneous, then the divergence of efforts among group-members decreases
as complementarity of efforts goes up, contradicting with common intuitions
that complementarity of efforts solves free-riding problem. In contrast, Choi,
Chowdhury, and Kim (2016) consider an indivisible private good award à la
Esteban and Sákovics (2003) in an exogenous two-group model with two mem-
bers each, who are heterogeneous in within-group powers. They find that the
weaker player may get higher payoff under effort complementarity. Crutzen
and Sahuguet (forthcoming) and Crutzen et al. (2019) compare political party
competition with multiple party candidates under different voting systems us-
ing CES aggregator functions.

There is literature on contests among exogenously formed groups, concern-

6Tan and Wang (2010) also analyze an asymmetric model with exogenously fixed efforts.
In their framework, they show that equilibrium alliance structure has only two-alliance with
balanced power in a three- or four-player game. Herbst et al. (2015) experimentally study
a three-player alliance formation game when the winning alliance members share the prize
equally.
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ing how group size and group sharing rules affect incentives to exert efforts
(the prize is divisible). In his pioneering work, Olson (1965) argues that due
to a free-riding problem sharing private benefits from the prize with the mem-
bers of a group, larger groups are less effective in collective effort making than
smaller groups. This is the so-called “group-size paradox.” Assuming individ-
ual efforts are contractable, Nitzan (1991) considers a two-part reward system
that combines an egalitarian and a relative-effort-sharing system, and ana-
lyzes how the combination affects members’ incentives for players in large and
small groups. Lee (1995) and Ueda (2002) endogeneize group sharing rules
in this class. Esteban and Ray (2001) allow for allocating the prize among
the members into public and private benefits (a mixed prize), and show that
the group-size paradox disappears even if private benefits are allocated in
an egalitarian manner,7 as long as each member’s marginal cost of effort is
increasing in a sufficient speed (sufficient condition for this is their cost func-
tions are quadratic). Nitzan and Ueda (2011) show that if private benefits can
be allocated by an endogenously chosen relative-effort-sharing rule, then the
group–size paradox disappears entirely in their class of effort functions, and
larger groups tend to have more egalitarian rules.

Based on the line of research above, Baik and Lee (1997, 2001) endogenize
the alliance formation in Nitzan’s (1991) game with endogenous group shar-
ing rules, and analyze two- and multiple-alliance cases, respectively. They use
open-membership games to describe alliance formation. Bloch et al. (2006)
generalize the model substantially to analyze the stability of the grand al-
liance in different alliance formation games, including a sequential coalition
formation game in Bloch (1996), Okada (1996), and Ray and Vohra (2001).
Sánchez-Páges (2007a) explore different types of stability concepts including
sequential coalition formation games in alliance formation in contests where
efforts are perfect substitutes. Sánchez-Páges (2007b) considers various sta-
bility concepts in a model where players allocate endowment into productive
and exploitive activities. These papers assume the award is divisible, and al-
liance members can write a binding contract of sharing rule in the case of the
alliance’s winning. In our paper, we do not allow for any side payment, and
players cannot credibly commit to any intra-alliance distribution rule as in Es-
teban and Sákovics (2003). We only focus on the benefits of forming a larger
group through complementarity of effort and analyze endogenous formation of
alliances in Tullock contests.

7Kolmer and Rommeswinkel (2013) is also a follow-up analysis of this line of research.
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2 The Model

There are N players who seek to get an indivisible prize (say, to be the head
of an organization). There is no side-payment allowed. The set of players is
also denoted by N = {1, ..., N}, and they can form alliances exclusively for
the purpose of being elected. Each player i ∈ N can make an effort to enhance
the popularity of her alliance and that of herself. We assume that each player
has an identical linear cost function C(ei) = ei for all ei ≥ 0.

We introduce potential benefits for players who belong to an alliance—
complementarity in aggregating efforts by all alliance members. That is, if
player i belongs to alliance j with Nj as the set of members, and these members
make efforts (ehj)h∈Nj , then the aggregated effort of alliance j, Ej, is described
by a CES aggregator function

Ej =

∑
h∈Nj

e1−σhj

 1
1−σ

, (1)

where σ ∈ (0, 1] is a parameter that describes the degree of complementar-
ity: if σ = 0 it is a linear aggregator function as in Esteban and Sákovics
(2003), and if σ = 1 it is a Cobb-Douglas function. Thus, as σ goes up, the
complementarity of members’ efforts increases.

Candidate i in alliance j decides how much effort eij to contribute to her
alliance j. The winning probabilities of an alliance is a Tullock-style contest.
That is, an alliance j’s ”winning probability” given its members’ efforts is

pj =
Ej∑
k∈J Ek

. (2)

An indivisible prize is valued as V > 0, which is common to all players. Since
the prize is indivisible, one player in the winning alliance in the second stage
must be selected as the final winner in the third-stage contest.

In the third-stage competition, we assume that a Tullock contest takes
place within the winning alliance Nj. Denoting the second-stage effort as êi,
the winning probability of player i ∈ Nj is

pi =
êi∑

h∈Nj êh
(3)

Formally, a partition of the set of players N , π = {N1, ..., NJ} is an alliance
structure, where each alliance j consists of a set of players Nj, where ∪j∈JNj =
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N and Nj′ ∩Nj = ∅ for any j, j′ ∈ J with j 6= j′. Since we assume that players
are ex-ante homogenous, we also call {n1, ..., nJ} an alliance structure with
nj = |Nj| for all j = 1, ..., J . We consider a dynamic contest game with
endogenous alliances: it starts with players’ forming alliances, the alliances
compete for an indivisible prize in the first contest, and then the players in
the winning alliance compete with each other to determine the final winner in
the second contest. Our dynamic contest game with endogenous alliances has
three stages:

Stage 1. All players i ∈ N choose one of locations zi ∈ Z simultaneously, where
the number of locations is at least as many as the number of players
|Z| ≥ N . Players choosing the same integer form an alliance: N(z) ≡
{i ∈ N : zi = z} for all z ∈ Z, and a collection of nonempty alliances is
an alliance structure π = {Nj}Jj=1.

8

Stage 2. All players i ∈ N choose effort ei ∈ R+ simultaneously, knowing the
aggregated effort of her alliance is (1). The inter-alliance contest is a
Tullock contest with winning probabilities equal to (2).

Stage 3. All members of the winning alliance Nj choose effort êi ∈ R+ simultane-
ously. The ultimate winner is selected in a simple Tullock contest with
winning probabilities equal to (3)

We use standard subgame perfect Nash equilibrium as the solution of this
dynamic game. We consider equilibria in pure strategies only. We will analyze
this game by backward induction.

3 Stage 3: Final Contest within the Winning

Alliance

In the third stage, all members in the winning alliance Nj in the first stage
engage in a Tullock contest by exerting effort êi ≥ 0. Thus, player i’s winning
probability is

pi =
êi∑

h∈Nj êh
.

8This is called an open-membership game, in which (i) players can freely move from
alliance to alliance, and (ii) players are free to spin off unilaterally. See Yi (1997) and
Bogomolnaia and Jackson (2002).
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For any player i in the winning group j, the expect payoff in stage 3 is

Ṽi =
êi

êi +
∑

h6=i êh
V − êi

The first-order condition implies that

1− pi
êi +

∑
h6=i êh

− 1 = 0⇒ 1

êi
pi(1− pi)V − 1 = 0

Since players are homogeneous, pi(1 − pi) =
nj−1
n2
j

is the same for all i in the

winning group j. Then, we have the following proposition.

Proposition 1. Suppose that the winning coalition of the first stage has size
nj. Then, the second-stage equilibrium strategy and payoff are

êj =
nj − 1

n2
j

V and Ṽ j =
V

nj

(
1− nj − 1

nj

)
=
V

n2
j

4 Stage 2: Contest between Alliances

Consider an inter-alliance contest problem. We assume that all players are ex
ante identical, and all players in each alliance exert the same amount of effort
in equilibrium. Therefore, the related information for an alliance Nj is the
number of members in it, nj. We simplify our analysis using this property.
From Proposition 1, we know that for a given size of alliance nj the payoff
of intra-alliance contest is determined by Ṽj = V

n2
j

Thus, the second stage

maximization problem of a player ij in alliance j is to maximize the payoff

Vij =

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

+
∑

j′ 6=j Ej′

Ṽj − eij

=

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

(
e1−σij +

∑
h6=i e

1−σ
hj

) 1
1−σ

+
∑

j′ 6=j Ej′

V

n2
j

− eij

The first-order condition with respect to eij (if an interior solution) is(∑
j′ Ej′ − Ej

)
(∑

j′ Ej′
)2 e−σij E

σ
j

V

n2
j

− 1 = 0
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Since members of alliance j are symmetric, they exert the same amount of
effort due to a CES aggregator. Let ej = eij for all ij ∈ Nj. Then, the

aggregated effort can be written as Ej =
(
nje

1−σ
j

) 1
1−σ = n

1
1−σ
j ej. Substituting

this back into the above condition, we have(∑
j′ 6=j n

1
1−σ
j′ ej′

)
(∑

j′ n
1

1−σ
j′ ej′

)2 n
σ

1−σ
j

V

n2
j

− 1 = 0,

or (∑
j′ 6=j n

1
1−σ
j′ ej′

)
(∑

j′ n
1

1−σ
j′ ej′

)2 V − n
2−3σ
1−σ
j = 0,

for all j = 1, ..., J . This is a set of conditions that characterize the first stage
equilibrium if all coalitions exert positive efforts. Using the share function
approach by Cornes and Hartley (2005), we convert our first-stage team com-
petition model by J alliances to an artificial J-person Tullock contest model.
We can prove the existence and uniqueness of equilibrium in the second stage
under any π. Note that in the equilibrium, there may be alliances that do not
exert effort. Using this property, we will also identify a sufficient condition for
the nonexistence of single-player alliances in equilibrium.

4.1 Artificial Tullock Contest Game and Share Function

To apply a method called the “share function” approach that is systematically
analyzed in Cornes and Hartley (2005), we rewrite the second-stage compe-
tition as a Tolluck contest with heterogeneous marginal costs.9 Formally, let

wj = n
2−3σ
1−σ
j (marginal cost) and xj = n

1
1−σ
j ej (effort) for each j = 1, ..., J . An

artificial Tullock contest game (J, V, (wj)
J
j=1) corresponding to our second-stage

game is a J person game in which each player j exerts effort xj with constant
marginal cost wj > 0. Her winning probability is specified by πj =

xj∑J
j′=1 xj′

,

and her payoff is

uj =
xj∑J
j′=1 xj′

V − wjxj.

9Esteban and Ray (2001) and Ueda (2002) used the same method in their papers.
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The payoff function is strictly concave in xj, and the first-order condition is(∑
j′ 6=j xj′

)
(∑

j′ xj′
)2 V − wj = 0,

for j = 1, ..., J . This set of equations are the (interior) first-order conditions
for the artificial game which is identical to the set of first-order conditions for
the original game. Thus, in order to analyze the properties of the equilibrium
in the original game, it suffices to analyze the properties of the corresponding
artificial game. To do that, we follow the share function approach in Cornes
and Hartley (2005).

Let X−j =
∑

j′ 6=j xj′ . Then, xj > 0 is a unique best response to X−j if and
only if

x2j + 2X−jxj +X2
−j −

V X−j
wj

= 0

Noting that some players may have too high marginal cost for an interior
solution, player j’s best response to X−j is

βj(X−j) = max

{
−X−j +

√
V X−j
wj

, 0

}

We define player j’s replacement function following Cornes and Hartley (2005):
a replacement function rj(X) is a function of total effort X =

∑
j′ xj′ such

that rj(X) is the best response to X − rj(X): i.e., rj(X) = βj(X − rj(X)).
Thus we obtain

rj(X) = max

{
X − wj

X2

V
, 0

}
Let group j’s share function be sj(X) = 1

X
rj(X):

sj(X) = max

{
1− wj

X

V
, 0

}
.

Clearly, X = X∗ is a unique equilibrium at
∑

j′ sj′(X
∗) = 1. Let s(X) =∑

j′ sj′(X). This is a decreasing function. Order players by w1 ≤ w2 ≤ .... ≤
wJ . The share function s(X) is a piecewise linear function with kinks at
X̂nj = V

wj
for each j = 1, ..., J . Moreover, at the equilibrium X∗, sj(X

∗) is

also the winning probability of player j. Figure 1 depicts share functions for
j = 1, ..., J and s(X). As is easily seen from Figure 1, if X̂nj = V

wj
< X∗,
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then sj(X
∗) = 0 must hold. The following lemma summarizes the result of

this artificial Tullock game.

Figure 1: sj(X) and s(X) when J = 4. For the alliance with large

wj = n
2−3σ
1−σ
j , the equilibrium effort is 0, i.e., it is inactive.

Lemma 1. [Cornes and Hartley, 2005] An artificial Tullock game has a unique
equilibrium X = X∗ at

∑
j sj(X

∗) = 1. Moreover, there exist j∗ such that, for

each j = 1, ..., j∗, xj = X∗−wj (X
∗)2

V
, and for each j = j∗+ 1, ..., J , X̂nj ≤ X∗

(or
∑

j′ sj′(X̂
nj) ≥ 1) and xj = 0 hold.

4.2 Equilibrium in Stage 2

Lemma 1 shows the existence and uniqueness of the equilibrium for the arti-
ficial contest and, therefore, for the original game’s stage 2 contest. Given an
alliance structure, the following theorem further derives players’ equilibrium
efforts and utilities in stage 2.

Theorem 1. There exists a unique equilibrium in the second-stage game for
any partition of players π = {n1, ..., nj} characterized by the share function
s(X∗) = 1. There is j∗ ∈ {1, ..., J} such that p∗j = sj(X

∗) > 0 (active alliance)
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for all j ≤ j∗ ( X̂j > X∗), while p∗j = sj(X
∗) = 0 (inactive alliance) for all

j > j∗ ( X̂j ≤ X∗). Then, the members of alliance j = 1, ..., J obtain payoff

uj =


1
n2
j

[
1− (j∗ − 1)

n
2−3σ
1−σ
j∑j∗

j′=1
n

2−3σ
1−σ
j′

][
1− (j∗ − 1)

n
1−2σ
1−σ
j∑j∗

j′=1
n

2−3σ
1−σ
j′

]
if j ≤ j∗

0 if j > j∗

by exerting effort

ej =


1

n
1

1−σ
j

[
1− (j∗ − 1)

n
2−3σ
1−σ
j∑j∗

j′=1
n

2−3σ
1−σ
j′

]
(j∗−1)V∑j∗
j′=1

n
2−3σ
1−σ
j′

if j ≤ j∗

0 if j > j∗

Moreover, the equilibrium total efforts are

X∗ =
(j∗ − 1)V∑j∗

j′ n
2−3σ
1−σ
j′

,

and

(j∗ − 1)n
2−3σ
1−σ
j <

j∗∑
j′

n
2−3σ
1−σ
j′

holds for all j = 1, ..., j∗.

5 Stage 1: Alliance Formation

Before proceeding to the equilibrium analysis of the first-stage game of this
dynamic contest game, we need to clarify the implications of no alliance (al-
liances are all singletons) and the grand alliance. If each player forms a sin-
gleton alliance, π0 = {1, ..., 1}, and from Theorem 1, the resulting payoff of
π0 is u0 = V

N2 . If players form the grand alliance, then the game will directly
proceed to Stage 3 which is just a regular Tullock contest. Thus, having the
grand alliance and having no alliance are practically the same. We denote
a single grand alliance structure and its resulting payoff by πN = {N} and
uN = V

N2 , respectively. To answer the alliance paradox, our analysis is focused
on the incentives for players forming stable alliance structures other than π0

and πN due to the complementarity we introduced.
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5.1 Examples of Alliance Formation

In this section, we consider a case of four players and V = 1. If they do
not form an alliance, everybody gets u0 = 1

16
. Since there are only four

identical players, we only need to consider the following coalition structures:
(i) π0 = {1, 1, 1, 1}, (ii) π1 = {2, 1, 1}, (iii) π2 = {2, 2}, (iv) π3 = {3, 1},
and (v) πN = {4}. Let us denote the payoff of a player in size n alliance in
partition π by u(n, π). Since the key parameter in a CES aggregator function
is σ ∈ [0, 1), and the complementarity of team efforts increases as σ increases,
we consider three values of σ in order: σ = 1

2
(weak complementarity), 3

4

(moderate complementarity), and 4
5

(strong complementarity). We check how
alliance structure is affected by the complementarity of team efforts.

5.1.1 Weak Complementarity σ = 1
2

In this case, we have 2−3σ
1−σ = 1 and 1−2σ

1−σ = 0. Using Theorem 1, we know the
following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
0 1

4
3
32

1
48

9
16

1
16

Note that under π1 and π3, smaller alliances perform better than larger ones.
We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: This is a Nash equilibrium.

2. π1 = {2, 1, 1}: There is a unilateral spin-off from the size 2 alliance,
resulting in π0.

3. π2 = {2, 2}: There is a unilateral spin-off from one of the size 2 alliances,
resulting in π1.

4. π3 = {3, 1}: There is a unilateral spin-off from the size 3 alliance, result-
ing in π1.

5. πN = {4}: There is a unilateral spin-off from the grand alliance, resulting
in π3.

Thus, when σ = 1
2
, the complementarity of team efforts is too weak to form

a nontrivial alliance.
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5.1.2 Medium Complementarity σ = 3
4

In this case, we have 2−3σ
1−σ = −1 and 1−2σ

1−σ = −2. Using Theorem 1, we know
the following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
3
25

1
50

3
32

11
144

1
16

1
16

Note that under π1 and π3, larger alliances perform better than smaller ones.
We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in
π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2.

3. π2 = {2, 2}: This is a Nash equilibrium.

4. π3 = {3, 1}: One of the size 3 alliance members moves to merge with a
singleton, resulting in π2.

5. πN = {4}: This is a Nash equilibrium.

This case allows for two Nash equilibria: a trivial grand alliance equilib-
rium, and an equally sized two-alliance equilibrium. One important observa-
tion is that π2 Pareto-dominates πN .

5.1.3 Strong Complementarity σ = 4
5

In this case, we have 2−3σ
1−σ = 1 and 1−2σ

1−σ = 0. Using Theorem 1, we know the
following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
14
81

1
162

3
32

29
300

1
100

1
16

We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in
π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2.

15



3. π2 = {2, 2}: One of the size 2 alliance members moves to the other
alliance, resulting in π3.

4. π3 = {3, 1}: A singleton merges into the size 3 alliance, resulting in πN .

5. πN = {4}: This is a Nash equilibrium.

Thus, when σ = 4
5
, the trivial grand alliance is the unique Nash equilibrium.

5.1.4 Observations

The above examples show that when σ is small, there is no gravity to sus-
tain an alliance since the complementarity of efforts is not sufficient enough
to compensate Olson’s inefficiency of alliances.10 In this case, players prefer
standing alone and competing with other single players and/or alliances. In
contrast, if σ is large, a larger alliance is always relatively more attractive
than a smaller alliance, resulting in the grand alliance. When σ is in the
middle range, nontrivial alliances can appear and Pareto-dominate trivial al-
location. For nontrivial equilibria, the complementarity is strong enough to
make a singleton player not profitable. At the same time, it is not strong
enough that players prefer a smaller group to avoid severe competition in the
final stage. These two forces jointly ensure stability. We will show that this is
not a coincidence.

5.2 No Spin-off Condition

Before we move on to the alliance formation stage (Stage 1), we provide prelim-
inary analysis. From now on, we consider only those structures where J = j∗,
since no one is attracted by an inactive alliance in equilibrium.11 Then, first
note that if σ < 2

3
, then nh < nk implies wh < wk. Since sj(X

∗) = 1 − wj X
∗

V

is the winning probability, the larger alliance has a lower winning probabil-
ity, and needs to share the prize with many members, even if it wins. Thus,
although team production is more efficient due to complementarity, we may
conjecture that a non-singleton alliance cannot survive if σ is small. The
following proposition confirms the intuition for σ small enough.

10Skaperdas (1998) shows that forming an alliance is beneficial if and only if the effort
aggregator function exhibits increasing returns to scale. However, in his model, players’
efforts are exogenously fixed. As a result, our model requires strong complementarity to
offset the free-rider problem.

11Note that a player’s payoff is positive as long as the alliance she belongs to has a positive
probability of winning, which generates a positive payoff for the members. If an alliance is
inactive, it means a zero payoff for the members.
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Proposition 2. Suppose that σ ≤ 1
2
. Then, from any alliance structure π

with a non-singleton alliance, there is a player with an incentive to spin-off to
form a singleton alliance.

Recall that as long as σ < 2
3
, then nh < nk still implies wh < wk. Thus,

it is natural to assume that even if σ > 1
2
, the same result from Proposition 2

could hold. However, even if it may be beneficial to have a smaller alliance,
it does not means that a player has an incentive to spin off as a singleton,
especially when there are many alliances or some alliances with a relatively
large membership. We demonstrate this in the following example, showing
that a spin-off may not be profitable when σ is close to 2

3
and the number of

alliances is large.

Example 1. Suppose σ = 2
3
, π being a structure with J n-member alliances,

and π′ being the structure that one player spins off to form a singleton alliance
from π. We can greatly simplify u(1, π′) and u(n, π) in this case:

u(1, π′) =
1

1

[
1− J 1

J − 1 + 1 + 1

] [
1− J 1

J − 1 + 1 + 1

]
=

1

(J + 1)2

u(n, π) =
1

n2

[
1− (J − 1)

1

J

] [
1− (J − 1)

1
n

J

]
=

1

n2

1

(J)2

(
J − J − 1

n

)
Note that u(1, π′) > u(n, π) holds for all n ≥ 2 and all J ≤ 4; i.e., there exist
spin-off incentives, and π cannot be a subgame perfect equilibrium outcome.
However, when J = 5 and n = 2, u(1, π′) = 1

36
and u(2, π) = 1

4
1
25

(5 − 4
2
) =

3
100

> 1
36

, no player has incentives to spin off and form a singleton alliance.
Moreover, since the size of an alliance has no effect when σ = 2

3
, the payoff

of deviating from a two-player alliance and forming a three-player alliance is
1
9

1
52

(
5− 4

3

)
< 3

100
. Therefore, {2, 2, 2, 2, 2} is in fact a stable structure. Since

payoffs are continuous in σ, this example can be extended to those σs that are
close to but smaller than 2

3
. �

Now, we consider the case of σ > 2
3
. In this case, nh < nk implies wk <

wh, and a larger coalition is more efficient (the marginal cost is lower in the
artificial game). In this case, if existing alliances are large enough, then a
singleton alliance’s marginal cost is too high to exert any effort, resulting in
zero winning probability and zero utility. The following Lemma identifies a
sufficient condition by using Lemma 1.
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Lemma 2. [No Spin-off Condition] Suppose that J = 2 and that an
alliance structure is {nj, nk}. If the following is satisfied:

V ≤ X∗(nj − 1, nk) =
(nj − 1)

3σ−2
1−σ n

3σ−2
1−σ
k

(nj − 1)
3σ−2
1−σ + n

3σ−2
1−σ
k

V,

there is no unilateral spin-off incentive for a member of alliance j, where
X∗(nj − 1, nk) is the equilibrium total effort when the alliances of sizes nj − 1
and nk are the only active ones. For any σ > 2

3
, there is an integer n̄ such

that V ≤ X∗(nj − 1, nk) is satisfied for any min{nj − 1, nk} ≥ n̄.
When J ≥ 3, let an alliance structure be π = {n1, ...., nJ}. When σ >

2
3
, there is no unilateral spin-off incentive for a member of alliance j if the

following sufficient condition holds:

V

(
1 + n

3σ−2
1−σ
j − (nj − 1)

3σ−2
1−σ

)
≤ X∗ =

(j∗ − 1)V∑j∗

j′=1 n
2−3σ
1−σ
j′

When J = 2, the No Spin-off Condition is not satisfied for any nj as long
as σ = 2

3
, and it is not satisfied unless n1 and n2 are very large for σ > 2

3
but

close to 2
3
. As σ goes up, it is more easily satisfied for smaller population sizes

(say, if σ = 5
7
, then No Spin-off Condition is satisfied for all n1 > n2 ≥ 4), and

at σ = 3
4
, it is satisfied for all nj ≥ 2.12

5.3 Two Competing Alliances

We start with the case where the number of (active) alliances is two. We argue
that when the value of the complementarity parameter is moderate, there is
a unique two-alliance equilibrium in which the maximal difference in sizes is
one.

12Since it is a sufficient condition, there exist some cases where the No Spin-off Condition
in Lemma 2 is violated, but players still do not have incentives to be singleton. For example,
when σ = 5

7 , all n1 = n2 = n < 4 violates this condition. However, players still do not have
incentives to spin-off from any symmetric alliance size n. Say, for n = 3, we have

u({3, 3}) = 0.0273 and u({1, 2, 3}) = 0.0014.

Therefore, players do not spin off. Please see Figures 3 and 4 and the Appendix to see how
tight the No Spin-Off Condition is.
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Theorem 2. When J = 2, 2
3
≤ σ ≤ 3

4
and the No Spin-off Condition

are satisfied, there exists a unique two-alliance equilibrium with its alliance
structure π∗ that satisfies |n1 − n2| ≤ 1.

To show this, we need the following two lemmas.

Lemma 3. When J = 2, 2
3
≤ σ ≤ 3

4
, players in the smaller alliance do not

have an incentive to move to a larger alliance. When alliance sizes are equal,
players do not move to create a larger alliance.

However, players in a larger alliance have incentives to move. Formally:

Lemma 4. Suppose J = 2 and 2
3
≤ σ ≤ 3

4
, players in a larger alliance have

an incentive to move to the smaller one.

Proof of Theorem 2. From Lemmas 3 and 4, for any coalition structure
with |n1−n2| > 1, a player in a larger alliance moves to the smaller one. This
cannot be an equilibrium alliance structure. As a result, the only alliance
structure that is immune to moving incentives is the one with |n1 − n2| ≤ 1.
Since the No Spin-off condition is assumed to be satisfied, there is no profitable
unilateral deviation from π∗. �

This theorem confirms the intuition in the examples in Section 5.1. The
two-alliance equilibrium exists and is unique when complementarity is moder-
ate. Although it is more difficult to extend Theorem 2 to σ ≥ 3

4
, we can still

make a partial generalization without uniqueness due to the monotonicity of
P0(t)
P1(t)

.

Proposition 3. If the two-alliance structure {n, n} or {n, n+1} is immune to
forming a larger alliance for some σ̄ > 3

4
, then it is immune for all σ ∈ [2

3
, σ̄].

To apply this result: e.g., when σ = 7/9 and n ≥ 3 numerical calculations
show that both {n, n} and {n, n+ 1} are immune to forming a larger alliance
and satisfy the No Spin-off Condition in Lemma 2.13 Proposition 3 implies that
they are stable for all smaller σ ≥ 2

3
given that the Non-Spin-off Condition is

satisfied.
However, the stability of two-alliance structure has an upper bound.14 No-

tice that a higher σ means the complementarity in a coalition is relatively

13In fact, in this case, even when n = 2, both {2, 2} and {2, 3} are stable.
14According to our numerical analysis, the two-alliance structure is stable when σ < 19

24 .
But, it is not stable when, say, σ = 19.1

24 for π = {2, 2}. In fact, when σ ≤ 0.79 our numerical
results show that the two-alliance structure with a maximal population difference 1 is an
equilibrium for all n. See Figure 2 and Figure 5.

19



strong, which gives players more benefits in a larger group. This effect will
eventually dominate. The following example illustrates this point.

Example 2. Suppose that 2−3σ
1−σ = t = −2 or σ = 4

5
> 3

4
. In this case, we

cannot support equal division for every alliance size n when J∗ = 2. That is,

u0 − u1 =
n+ 1

2 (n2 + 2n+ 2) (n+ 2)
+

n+ 2

4 (n2 + 2n+ 2)2
− 2n+ 1

4 (n+ 1)3

=
1

4

n2

(n+ 1)3 (n+ 2) (n2 + 2n+ 2)2
(
n2 + 3n+ 3

)
> 0.

Therefore, as σ increases, the preference for a larger coalition is strengthened,
so that players prefers to form a larger alliance.

This example shows that somewhere between σ = 3
4

and 4
5
, the preference

for a larger coalition starts to dominate, and the grand alliance will be the
only stable alliance structure. The following Figure 2 depicts the parameter
space in which {n, n} is stable.

Figure 2: The parameter space for 2 n-sized alliances to be an equilibrium
structure. The red line stands for the maximal σ for preferring a smaller
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alliance. The black-dashed line is the No Spin-Off Condition in Lemma 2.
The blue line is the exact No Spin-Off Condition from our numerical analysis.

The following theorem shows an important welfare implication of having
a chance to form alliances. The emergence of alliances in subgame perfect
equilibrium is not only an equilibrium phenomenon (like prisoners’ dilemma
games), but also a Pareto-improvement for players’ welfare, because it has
dynamic contests instead of a single round contest.

Theorem 3. Every two-alliance equilibrium {n1, n2} with |n1−n2| ≤ 1 Pareto-
dominates a no-alliance contest outcome.

5.4 Multi-Alliance Case

Is a symmetric alliance structure stable when J > 2? First of all, forming mul-
tiple alliances may be welfare-improving. In fact, if the alliances are symmetric,
players’ welfare improves as the number of alliances increases. Formally,

Proposition 4. Let symmetric alliance structure πJ be a symmetric alliance
structure that has N

J
≥ 2 players in each alliance. If πJ ′ and πJ ′′ with J ′′ > J ′

are both equilibrium alliance structures, then πJ ′′ Pareto dominates πJ ′.

However, the remaining question is whether a multi-alliance structure is
stable or not. The benefit from a larger alliance is that the new alliance has a
higher winning probability in the first stage. However, this effect is offset by
a stronger intra group competition in the second stage. But, the first effect
seems to be stronger when the number of alliances is large and each alliance
only has relatively few members. Thus, we expect that when the number of
alliances is more than two, it requires a larger membership in each alliance to
be a symmetric equilibrium allocation. This intuition leads us to the following
example.

Example 3. Consider the case when J = 3, n = 7 or 8, and σ = 3
4

u(7, {7, 7, 7}) = 0.0061548 < u(8, {8, 6, 7}) = 0.0061581

u(8, {8, 8, 8}) = 0.0047743 > u(9, {9, 7, 8}) = 0.0047736

The above example shows that even when the complementarity between
players is moderate, a symmetric three-alliance structure is not immune to a
unilateral move if n = 7. But, a larger membership (n = 8) again guarantees
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the stability. In fact, our numerical results show that when σ = 3
4
, a sym-

metric four-alliance structure is not immune to a unilateral move for all size
n. Moreover, suppose we consider a lower σ = 5

7
, a symmetric four-alliance

structure is stable as long as n ≥ 5. In the following figure, we demonstrate
the parameter space for stable symmetric three-alliance structures. Compared
with Figure 2, we can see that both borderlines for no spin-off and forming a
larger alliance are shifted to the left, and the parameter space for the stable
symmetric three-alliance structure shrinks.15

Figure 3: The parameter space for three size-n alliances to be an equilibrium
structure. Note that the viable parameter space shrinks relative to the one in

Figure 2.

In summary, the symmetric alliance structure gives players stronger in-
centives to join a larger group when there are more alliances. Therefore, a
symmetric structure is stable only in a smaller range of σ, which implies less
complementarity. As a result, although more alliances potentially improve
welfare,16 it becomes more difficult for players to form a stable multi-alliance

15Our numerical analysis shows that this ia a general phenomenon. In the Appendix, the
parameter space for a structure of four equal-sized alliances is an equilibrium allocation. It
shrinks further compared to the one in Figure 4.

16See also Wärneryd (1998).
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structure.

6 Concluding Remarks

In this paper, we used a CES effort aggregator function to show that if the
effort complementarity within an alliance is strong, players can have incentives
to form an alliance. Moreover, we show that there exist stable alliances in an
open-membership two-stage alliance formation game when the complementar-
ity of efforts is strong but not too strong. The reason why a nontrivial alliance
cannot be formed in these cases is that a large alliance becomes too attractive,
and all players end up forming a grand alliance, which simply defers the the
noncooperative contest by one period.

There are alternative alliance formation games in the literature (see Hart
and Kurz 1983). Using a noncooperative game approach, Bloch (1996), Okada
(1996), and Ray and Vohra (1999) consider an interesting sequential coalition
formation game. In a companion paper, Konishi and Pan (2019), we study
equilibrium alliance structure adopting their game: In this game, the alliance
formation stage has multiple steps, and a player proposes an alliance at each
step, and if all called upon members agree to form a group, then an alliance is
formed, and multiple alliances are formed sequentially. That is, these alliances
can exclude outsiders in this alternative setup. Allowing for side payments,
Bloch et al. (2006) consider a sequential alliance formation game in contests,
which allows alliances to limit their memberships (exclusion), and show that
the grand alliance would be formed by sharing the prize peacefully. However,
in our game without side payments (an indivisible prize), the grand alliance
would not be formed, since this is identical to not forming an alliance. We show
that there is always a subgame perfect equilibrium and that there can be at
most two alliances in equilibrium, one large and one small without any fringe
players (all players belong to one of the two alliances) if the complementarity
parameter σ is large enough. In this case, the large alliance is formed first, and
the leftover players form the second smaller alliance, and the former alliance
achieves higher payoffs than the latter.17

17Note that this cannot be an equilibrium in the open-membership game used in the
present paper, since players in the latter alliance want to move to the former since the
memberships of alliances are not exclusive. In open-membership games, the sizes of alliances
need to be more or less the same.
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Appendix A (Proofs)

Proof of Theorem 1. The artificial game we constructed has the same
first-order conditions as the original first-stage game. This implies that j∗ is
uniquely defined, as in the statement of Lemma 1, only j = 1, ..., j∗ exert

efforts in equilibrium. Since p∗j = 1 −
∑
j′ 6=j xj′∑j∗
j′=1

xj′
, the first-order conditions can

be written as (
1− p∗j

)(∑j∗

j′=1 xj′
)V − n 2−3σ

1−σ
j = 0

or

1− p∗j =

∑j∗

j′=1 xj′

V
n

2−3σ
1−σ
j .

Summing up the above from j = 1 to j∗, we have

j∗ − 1 =

∑j∗

j′=1 xj′

V

j∗∑
j′=1

n
2−3σ
1−σ
j′

Eliminating
∑j∗
j′=1

xj′

V
from the first-order condition, we obtain:

p∗j = 1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

Since pj

(∑
j′ xj′

)
= xj, we have

xj =

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 (j∗ − 1)V∑j∗

j′=1 n
2−3σ
1−σ
j′

Notice that xj = n
1

1−σ
j ej, which means the equilibrium ej in the original prob-

lem is

ej =
1

n
1

1−σ
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 (j∗ − 1)V∑j∗

j′=1 n
2−3σ
1−σ
j′
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Therefore, the equilibrium payoff of the original problem is

uj = p∗jVj − ej

=

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 V

n2
j

−

 1

n
1

1−σ
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 (j∗ − 1)V∑j∗

j′=1 n
2−3σ
1−σ
j′


=

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

 1

n2
j

− 1

n
1

1−σ
j

(j∗ − 1)∑j∗

j′=1 n
2−3σ
1−σ
j′

V
=

1

n2
j

1− (j∗ − 1)
n

2−3σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

1− (j∗ − 1)
n

1−2σ
1−σ
j∑j∗

j′=1 n
2−3σ
1−σ
j′

V
We completed the proof.�

Proof of Proposition 2. From Theorem 1, we know that the payoff of a
player who is one of nj is

u(nj, π) =
1

n2
j

1− (J − 1)
n

2−3σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
n

1−2σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′


Let π′nj stand for the structure after one player in alliance j spins off to form
a singleton alliance. This player has a payoff equal to

u(1, π′nj) =
1

1

1− J 1∑J
j′=1,j′ 6=j n

2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1


×

1− J 1∑J
j′=1,j′ 6=j n

2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1


Since 1−2σ

1−σ ≥ 0, n
2−3σ
1−σ
j ≥ (nj − 1)

2−3σ
1−σ ≥ 1

2−3σ
1−σ = 1 and n

1−2σ
1−σ
j ≥ 1

1−2σ
1−σ = 1 hold

for all nj ≥ 2. Since n
2−3σ
1−σ
j is convex function for σ ∈ [0, 1

2
] (2−3σ

1−σ ∈ [1, 2]), we
have

J∑
j′=1,j′ 6=j

n
2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1 ≤

J∑
j′=1

n
2−3σ
1−σ
j′

This implies ∑J
j′=1,j′ 6=j n

2−3σ
1−σ
j′ + (nj − 1)

2−3σ
1−σ + 1

J
<

∑J
j′=1 n

2−3σ
1−σ
j′

J − 1
.
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Thus, we have

u(1, π′nj) >
1

1

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′


We want to show the RHS that the above inequality is not exceeded by uj for
any σ ∈ [0, 1

2
] Note that 2−3σ

1−σ ≥ 1 and 1−2σ
1−σ ≥ 0 for any σ ∈ [0, 1

2
]. Thus, we

have

u(nj, π) =
1

n2
j

1− (J − 1)
n

2−3σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
n

1−2σ
1−σ
j∑J

j′=1 n
2−3σ
1−σ
j′


<

1

n2
j

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′

1− (J − 1)
1∑J

j′=1 n
2−3σ
1−σ
j′


Therefore, we conclude that for any σ ∈ [0, 1

2
], a player has an incentive to

spin off from any alliance with nj ≥ 2.�

Proof of Lemma 2. For the first part, the proof follows by Figure 4.

Figure 4: No Spin-Off Condition in Lemma 2.
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First, recall that X̂nj = V
wj

= n
3σ−2
1−σ
j V . Without loss of generality, we will

consider spin-off incentives from alliance 1. Suppose n1 − 1 ≥ n2. Then, we

have X̂n1−1 ≥ X̂n2 . Alliance 1’s share function satisfies s1(X̂
n2) = X̂n1−1−X̂n2

X̂n1−1 <

1. Since AB : BC = 1 : X̂n2

X̂n1−1 , we have OX∗ : X∗X̂n2 = 1 : X̂n2

X̂n1−1 as well.

Since OX̂n2 = X̂n2 , we have

X∗ =
1

1 + X̂n2

X̂n1−1

X̂n2 =
X̂n1−1X̂n2

X̂n1−1 + X̂n2

=
(n1 − 1)

3σ−2
1−σ V n

3σ−2
1−σ
2 V

(n1 − 1)
3σ−2
1−σ V + n

3σ−2
1−σ
2 V

=
(n1 − 1)

3σ−2
1−σ n

3σ−2
1−σ
2

(n1 − 1)
3σ−2
1−σ + n

3σ−2
1−σ
2

V.

From Figure 4, if X̂1 = 1
3σ−2
1−σ V = V ≤ X∗, then the effort is zero in the inter-

alliance contest, and the alliance’s winning probability and payoff are both
zero. As we have shown in Theorem 1, the equilibrium payoff for belonging
to an alliance with a positive probability of winning is positive. Thus, under
this condition, there is no unilateral spin-off.

We now move on to the latter part. If alliance j is divided into two alliances
with sizes nj − 1 and 1 when the latter spins off, then the share functions’ in-

tercepts on the X-axis are X̂nj−1 = (nj − 1)
3σ−2
1−σ V and X̂1 = V , respectively.

Note that if the equilibrium total effort is X∗ under π, the new equilibrium

total effort after the spin-off, X∗∗, satisfiesX∗∗ ≥ X∗−
(
X̂nj − X̂nj−1

)
. There-

fore, if X̂1 = V ≤ X∗ −
(
X̂nj − X̂nj−1

)
= X∗ −

(
n

3σ−2
1−σ
j V − (nj − 1)

3σ−2
1−σ V

)
,

then X̂1 ≤ X∗∗ and the singleton alliances do not exert effort and the winning
probability is zero. �

Proof of Lemma 3. Consider two alliance structures: π0 = {n+d+1, n+1}
and π1 = {n + d + 2, n} with d ≥ 0. Let u0 and u1 stand for the utilities
in the (n + 1)-sized alliance at π0 and the (n + d + 2)-sized alliance at π1,
respectively. We will show that u0 > u1 when 2

3
≤ σ ≤ 3

4
for all d. First, we

introduce a notation t = 2−3σ
1−σ to simplify formulae. Note that when 2

3
≤ σ ≤ 3

4
,
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−1 ≤ t ≤ 0 holds. Then,

u0 =
1

(n+ 1)2

[
1− (n+ 1)t

(n+ d+ 1)t + (n+ 1)t

] [
1− (n+ 1)t−1

(n+ d+ 1)t + (n+ 1)t

]

=
1

(n+ 1)3

[
(n+ d+ 1)t

(n+ d+ 1)t + (n+ 1)t

] [
(n+ 1)− (n+ 1)t

(n+ d+ 1)t + (n+ 1)t

]
=

1

(n+ 1)3

[
(n+ d+ 1)t

(n+ d+ 1)t + (n+ 1)t

] [
n+

(n+ d+ 1)t

(n+ d+ 1)t + (n+ 1)t

]
>

1

(n+ 1)3

[
(n+ d+ 1)t

(n+ d+ 1)t + (n+ 1)t

] [
n+

(n+ d+ 1)t

2(n+ 1)t

]
=

1

(n+ 1)3
P0(t)

[
(n+ d) +

(n+ d+ 1)t

2(n+ 1)t

]
(4)

and similarly

u1 =
1

(n+ d+ 2)2

[
1− (n+ d+ 2)t

(n+ d+ 2)t + nb

][
1− (n+ d+ 2)t−1

(n+ d+ 2)t + nt

]

=
1

(n+ d+ 2)3

[
nt

(n+ d+ 2)t + nt

] [
(n + d+ 2)− (n+ d+ 2)t

(n+ d+ 2)t + nt

]
<

1

(n+ d+ 2)3

[
nt

(n+ d+ 2)t + nt

]
(n+ d+ 2)

=
1

(n+ d+ 2)2
P1(t) (5)

Note that

P0(t)

P1(t)
=

(n+d+1)t

(n+d+1)t+(n+1)t

nt

(n+d+2)t+nt

is monotonically decreasing in |t| in 0 > t > −1. Also,
[
(n+ d) + (n+d+1)t

2(n+1)t

]
is monotonically decreasing in |t| since t < 0 and d > 0. Thus, when

t = −1, if 1
(n+1)3

P0(−1)
[
(n+ d) + (n+d+1)−1

2(n+1)−1

]
≥ 1

(n+d+2)2
P1(−1) holds, then

1
(n+1)3

P0(t)[(n + d) + (n+d+1)t

2(n+1)t
] ≥ 1

(n+d+2)2
P1(t) for all 0 > t > −1. Thus,

u0(t) > u1(t) for all 0 > t > −1. Since P1(−1) = n+d+2
2n+d+2

and P0(−1) = n+1
2n+d+2

,
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we have

u0(−1)

u1(−1)
≥

1
(n+1)3

P0(t)
1

(n+d+2)2
P1(t)

[
2n(n+ d+ 1) + (n+ 1)

2(n+ d+ 1)

]
=

(n+ d+ 2)2

(n+ 1)3

[
n+ 1

n+ d+ 2

] [
2n(n+ d+ 1) + (n+ 1)

2(n+ d+ 1)

]
=
n+ (d+ 2)

(n+ 1)2

[
2n2 + (2d+ 3)n+ 1

2n+ 2(d+ 1)

]
=

2n3 + (4d+ 7)n2 + (2d2 + 7d+ 7)n+ d+ 2

2n3 + (2d+ 6)n2 + (4d+ 6)n+ (2d+ 2)

It is clear that u1(−1)
u0(−1) ≥ 1 for all d ≥ 0 and n ≥ 1. Therefore, there are no

incentives for players to unilaterally move from a smaller alliance to the larger
one. �

Proof of Lemma 4. All we need to show is that when a player i is in an
alliance with size n + d̃ + 1 while the other coalition has size equal to n + 1,
he has incentives to move, unless d̃ = 1. From Lemma 1 we know that for any
player i in the alliance with size n+ d+ 1, u1 = u(n+ 1, {n+ d+ 1, n+ 1}) >
u(n+d+ 2, {n+d+ 2, n}) which immediately implies that a player in a larger
alliance has an incentive to move to a smaller one. �

Proof of Theorem 3. There are two cases: Case 1 with two equally sized
alliances {n, n}, and Case 2 with two alliances whose sizes differ by one {n, n+
1}. We start with Case 1. The payoff from {n, n} is V

n2
1
2

(
1− 1

2n

)
= 2n−1

4n
V ,

and the one from {2n} is V
(2n)2

= V
4n2 . Thus, the two-alliance equilibrium

dominates no alliance case.
Case 2: Consider allocation π = {n+1, n}. First, the payoff from belonging
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to size n alliance is

u(n; π) =
V

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
1− n

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]

=
V

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n
− n

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]

=
V

n2

[
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
1− n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]

=
V

n2

[
(n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
(n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]
Since u(n; π) is decreasing in σ for σ ≥ 2

3
, and since ther is no two-alliance

equilibrium for σ > 4
5

(see Example 2), it suffices to show that u(n; π) exceeds
V

(2n+1)2
when σ = 4

5
. Substituting σ = 4

5
into u(n; π), we obtain

u(n; π) =
V

n2

[
1

(n+1)2

1
n2 + 1

(n+1)2

][
n− 1

n
+

1

n

(
1

(n+1)2

1
n2 + 1

(n+1)2

)]

=
V

n2

n2

2n2 + 2n+ 1

[
n− 1

n
+

1

n

(
n2

2n2 + 2n+ 1

)]
=

V

2n2 + 2n+ 1
× (2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)

= V
(2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)2
.

Subtracting V
(2n+1)2

from the above, we obtain,

V
(2n3 + n2 − n− 1)

n (2n2 + 2n+ 1)2
− V

(2n+ 1)2
= V

4n5 + 4n4 − 6n3 − 11n2 − 6n− 1

n (4n3 + 6n2 + 4n+ 1)2
.

Let f(n;π)(n) ≡ 4n5 + 4n4 − 6n3 − 11n2 − 6n − 1. Since f(n;π)(2) > 0 and
f ′(n;π)(n) > 0 for n ≥ 2, we conclude u(n; π) > V

(2n+1)2
.

Second, we check u(n+ 1; π). We have

u(n+ 1; π) =
V

(n+ 1)2

[
1− (n+ 1)

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
1− (n+ 1)

1−2σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

]
V

(n+ 1)2

[
n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

][
n− 1

n
+

1

n

(
n

2−3σ
1−σ

n
2−3σ
1−σ + (n+ 1)

2−3σ
1−σ

)]

33



Since u(n + 1; π) is increasing in σ for σ ≥ 2
3
, we check whether or not u(n +

1;π) > V
(2n+1)2

for the smallest relevant sigma, σ = 2
3
.

Substituting σ = 2
3

into u(n+ 1; π), we obtain:

u(n+ 1; π) =
V

(n+ 1)2
1

2

[
n− 1

n
+

1

2n

]
=

V

2 (n+ 1)2

[
2n− 1

2n

]
Subtracting V

(2n+1)2
from the above, we obtain

V

2 (n+ 1)2

[
2n− 1

2n

]
− V

(2n+ 1)2

= V × (2n− 1) (2n+ 1)2 − 4 (n+ 1)2 n

4 (n+ 1)2 n (2n+ 1)2

Denoting the numerator by f(n+1;π)(n), we have

f(n) =
(
4n2 − 1

)
(2n+ 1)−

(
4n3 + 8n2 + 4n

)
= 8n3 + 4n2 − 2n− 1− 4n3 − 8n2 − 4n

= 4n3 − 4n2 − 6n− 1

Since f(n+1;π)(2) = 3 > 0 and f ′(n+1;π)(n) > for n ≥ 2, we conclude that

u(n+ 1; π) > V
(2n+1)2

for all n ≥ 2. We completed the proof.�

Proof of Proposition 4. This can be shown by the utility in symmetric
alliance structure

u(πJ) =
V(
N
J

)2 1

J

(
1− J − 1

N

)
=

V

N3
J (N − J + 1)

∂u(πJ)

∂J
=

V

N3
(N − 2J + 1)

Therefore, ∂u(πJ )
∂J

> 0 holds for all J ≤ N+1
2

. Also, notice that a group of N
players can only sustain N

2
alliance. Therefore, a symmetric structure with

more alliances Pareto-dominates one with less. �
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Appendix B

The Exact No Spin-off Condition in a Two-Alliance Equilibrium

The No Spin-off Condition in the main text is a sufficient condition where no
member of an alliance spins off by forming a singleton alliance. For the sake of
easier calculations, the condition assures that if a player spins off, then she will
not exert effort, and her winning probability is exactly zero. Clearly, this is
sufficient to assure that no spin-off occurs, but it is not a necessary condition.
Even if a player still exerts effort after spinning off, as long as her winning
probability is very small, she will not deviate. In this Appendix, we consider
the exact version of No Spin-off Condition, and check how it differs from our
main text No Spin-off Condition by using numerical methods in a two-alliance
equilibrium structure with |n1 − n2| ≤ 1. First, we need to identify the exact
conditions for different cases:

Case 1: Consider π = {n, n} and π′ = {1, n, n− 1},

u(n, π, t) =
V

n2

1

2

[
1− 1

2n

]
and

u(1, π′, t) = V

[
1− 2

1 + nt + (n− 1)t

]2
.

The exact No Spin-Off consider is defined by u(n,π,t)
u(1,π′,t)

> 1. This is the
condition shown in the Figure 2. The No Spin-Off Condition in Lemma
2 performs relatively well when n is large and σ is not too close to σ = 2

3
.

Case 2: Consider π = {n, n + 1} and π′ = {1, n − 1, n + 1}. This is the case of
an asymmetric equilibrium. Then,

u(n, π, t) =
V

n2

[
(n+ 1)t

nt + (n+ 1)t

] [
1− nt−1

nt + (n+ 1)t

]
=
V

n3

[
(n+ 1)t

nt + (n+ 1)t

] [
n− 1 + 1− nt

nt + (n+ 1)t

]
=
V

n3

[
(n+ 1)t

nt + (n+ 1)t

] [
n− 1 +

(n+ 1)t

nt + (n+ 1)t

]

u(1, π′, t) = V

[
1− 2

(n− 1)t + 1 + (n+ 1)t

]2
If u(n,π,t)

u(1,π′,t)
≥ 1, players in n−sized alliance has no incentives to spin off.
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Next, let π′′ = {1, n, n}

u(n+ 1, π, t) =
V

(n+ 1)3

[
nt

nt + (n+ 1)t

] [
n+

nt

nt + (n+ 1)t

]

u(1, π′′, t) = V

[
1− 2

2nt + 1

]2
If If u(n+1,π,t)

u(1,π′′,t)
≥ 1, players in (n+ 1)−sized alliance has no incentives to

spin off.

Stability for Asymmetric Case and J = 4

We now consider the stability for {n, n+ 1}. The parameter space is depicted
in Figure 5. The green line stands for the indifference between {n, n+ 1} and
{1, n, n}. This incentive is weaker in the sense that players in the size n alliance
has a spin-off incentive in a wider parameter space. Comparing to the one in
Figure 2, the difference is that, e.g., {2, 2} is stable when 0.793 > σ > 0.686,
but {2, 3} is stable when 0.787 > σ > 0.6825. The reason for this difference is
that the no spin-off incentive is very sensitive to asymmetry when n is small
(see Case 1 and 2 above). Since {2, 2} is very different from {2, 3}. The latter
has 50% more population, after all. Except for this difference, the parameter
space for stability is similar to Figure 2.
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Figure 5: The parameter space for {n, n+ 1} being an equilibrium structure.

Next, we present the parameter space for stability when J = 4. It is clear
that the parameter space shrinks even more compared with Figure 3.

Figure 6: The parameter space for 4 n-sized alliances to be an equilibrium
structure.

Cooperative Alliances

In this section, we briefly analyze the situation where alliance members choose
their effort levels cooperatively. In alliance j, the first-stage maximization
problem of alliance j is to maximize the total payoff

∑
ij∈Nj

Vij =
∑
ij∈Nj

(∑
ij∈Nj e

1−σ
ij

) 1
1−σ

(∑
ij∈Nj e

1−σ
ij

) 1
1−σ

+
∑

j′ 6=j Ej′

Ṽj −
∑
ij∈Nj

eij

= nj

(
nje

1−σ
j

) 1
1−σ(

nje
1−σ
j

) 1
1−σ +

∑
j′ 6=j Ej′

V

n2
j

− njej

= nj

 n
1

1−σ
j ej

n
1

1−σ
j ej +

∑
j′ 6=j Ej′

V

n2
j

− ej


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The first-order condition with respect to ej (if it is an interior solution) is(∑
j′ Ej′ − Ej

)
(∑

j′ Ej′
)2 n

1
1−σ
j

V

n2
j

− 1 = 0

or (∑
j′ 6=j n

1
1−σ
j′ ej′

)
(∑

j′ n
1

1−σ
j′ ej′

)2 V − n
1−2σ
1−σ
j = 0,

for all j = 1, ..., J . Letting wcj = n
1−2σ
1−σ
j and xj = n

1
1−σ
j ej (effort) for each

j = 1, ..., J , an artificial Tullock contest game corresponding to this cooperative
alliance game is a J-person game in which each player j exerts effort xj with

constant marginal cost wcj = n
1−2σ
1−σ
j > 0. By solving this, we can show that

there exists a unique equilibrium in the first-stage game for any partition of
players π = {n1, ..., nj} characterized by the share function s(X∗) = 1. There
is j∗ ∈ {1, ..., J} such that sj(X

∗) > 0 for all j ≤ j∗, while sj(X
∗) = 0 for all

j > j∗ (X̂j ≤ X∗). Candidates in alliance j ≤ j∗ obtain payoff

uj =


1
n2
j

[
1− (j∗ − 1)

n
1−2σ
1−σ
j∑j∗

j′=1
n

1−2σ
1−σ
j′

]2
if j ≤ j∗

0 if j > j∗

As in the main text example, we consider a four-person gameN = {1, 2, 3, 4},
and three values of σ in order: σ = 1

2
(weak complementarity), 3

4
(moderate

complementarity), and 4
5

(strong complementarity). We check how alliance
structure is affected by the complementarity of team effort.

Weak Complementarity σ = 1
2

In this case, we have 1−2σ
1−σ = 0. Thus, we know the following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
1
36

1
9

1
16

1
36

1
4

1
16

Note that under π1 and π3, smaller alliances perform better than larger ones.
We analyze which partition can be a Nash equilibrium of stage 1:
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1. π0 = {1, 1, 1, 1}: This is a Nash equilibrium.

2. π1 = {2, 1, 1}: There is a unilateral spin-off from the size 2 alliance,
resulting in π0.

3. π2 = {2, 2}: This is a Nash equilibrium.

4. π3 = {3, 1}: There is a unilateral move from the size 3 alliance to a
singleton, resulting in π1, or there is a unilateral move from the size 3
coalition to join in a singleton, resulting in π2.

5. πN = {4}: There is a unilateral spin-off from the grand alliance, resulting
in π3.

Thus, when σ = 1
2
, π2 becomes a Nash equilibrium alliance structure in

addition to π0 in the noncooperative case.

Medium Complementarity σ = 3
4

In this case, we have 1−2σ
1−σ = −2. Thus, we know the following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
49
324

1
81

1
16

9
100

1
100

1
16

Note that under π1 and π3, larger alliances perform better than smaller ones.
We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in
π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2,
or one singleton merges into a size 2 alliance, resulting in π3.

3. π2 = {2, 2}: One of the size 2 alliance members moves to the other size
2 alliance, resulting in π3.

4. π3 = {3, 1}: A singleton player moves to a size 3 alliance, resulting in
πN .

5. πN = {4}: This is a Nash equilibrium.

Unlike in the noncooperative case, nontrivial Nash equilibrium disappears.
The benefits of belonging to a larger coalition already overwhelm other factors.
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Strong Complementarity σ = 4
5

In this case, we have 1−2σ
1−σ = −3. Using Theorem 1, we know the following:

u(1, π0) u(2, π1) u(1, π1) u(2, π2) u(3, π3) u(1, π3) u(4, πN)
payoff 1

16
15
68

1
17

1
16

3
28

1
28

1
16

We analyze which partition can be a Nash equilibrium of stage 1:

1. π0 = {1, 1, 1, 1}: Two singletons merge to form an alliance, resulting in
π1.

2. π1 = {2, 1, 1}: Two singletons merge to form an alliance, resulting in π2,
or one singleton moves to a size 2 alliance, resulting in π3.

3. π2 = {2, 2}: One of the size 2 alliance members moves to the other
alliance, resulting in π3.

4. π3 = {3, 1}: A singleton merges into size 3 alliance, resulting in πN .

5. πN = {4}: This is a Nash equilibrium.

Thus, when σ = 4
5
, the trivial grand alliance is the unique Nash equilibrium.

Observations

Unlike in a noncooperative case, a nontrivial alliance structure appears only
when σ = 1

2
. When σ = 3

4
or 4

5
, then agglomeration forces are too strong and a

smaller alliance tries to join a larger alliance, ending up with a grand alliance,
which is a trivial alliance structure.
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