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Abstract 
 

Plasmons are quantized quasiparticles of the electron density waves. When coupled with 

photons, plasmons become another type of quasiparticles called plasmon polaritons. At the 

surface of a metal, surface plasmons can be formed. They have confined propagation on 

the surface, analogous to water waves in a pool. Plasmonic metamaterials manipulate the 

surface plasmon resonances, achieving a variety of unseen optical properties in nature. For 

the sake of fast emerging of nano fabrication and characterization techniques in recent 

years, plasmonic metamaterials have been applied in a wide range of fields, such as 

broadband absorption in solar cells, negative index materials for cloaking, subwavelength 

imaging, and wave modulations. One unique property of plasmonic metamaterial is 

offering remarkable flexibility in controlling effective dielectric properties of matter, 

depending on the composite design. In this thesis, several concepts of EM response 

manipulation using plasmonic metamaterials are proposed and studied. These studies 

include: (1) a scheme assuring topologically protected photonic edge states in the visible 

range utilizing epsilon-near-zero (ENZ) gyroelectric metamaterials; (2) engineering low 

frequency dielectric function with extremely subwavelength magnetic resonators; and (3) 

tailoring the electron-phonon interactions (including controlling superconductivity) by 

introducing plasmonic resonators into the phonon systems. These works may enable a 

broad range of applications in both photonic and phonon systems. 
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Chapter 1. Introduction 

1.1 Introduction to plasmonics and metamaterials 

Plasmons are quantized quasiparticles of the electron density waves. These occur in 

plasmas in general, and in metals or doped semiconductors, in particular [1-3]. When 

coupled with photons, plasmons become another type of quasiparticles called plasmon 

polaritons. At the surface of a metal, or an interface between a metal and a dielectric, 

plasmons become surface plasmons, analogous to water waves in a pool. Thanks to the fast 

emerging fields of nano fabrication and characterization techniques in recent years, the 

field of plasmonics has been rapidly expanding.  

Metamaterials are materials artificially engineered to have properties not found in nature 

[4-6]. Typically, these are extended periodic arrangements of various dielectric 

elements/structures, usually with these elements much smaller than the wavelength of the 

radiation employed, to assure the effective medium behavior. Properties of metamaterials 

derive from the structure of these elements and arrays, rather than from the properties of 

the materials employed. Even though the concept of metamaterials was introduced by 

Victor Veselago in 1968 [7], it was Sir John Pendry, who in 1999 was the first to propose 

a practical way to make metamaterials with an effective negative refractive index [8]. 

Typically, metamaterials should have large dielectric constant contrast between their 

elements, to ensure their proper functioning. Plasmonic metamaterials employ metal as a 

structure material, in combination with a dielectric. It is via the manipulation of surface 

plasmon resonances, that plasmonic metamaterials can achieve a variety of unseen optical 

properties in nature.  
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In this thesis, several concepts of EM response manipulation using plasmonic 

metamaterials are proposed and studied. These concepts include: a scheme which assures 

topologically protected photonic edge states in the visible range, engineering low 

frequency dielectric function, and tailoring the electron-phonon interactions (including 

controlling superconductivity). Due to inherent complexity, the quantitative understanding 

of the EM response of metamaterial plasmonic structures requires numerical methods. In 

the following section (1.2), we will introduce basics of numerical simulations methods used 

in this thesis. Based on the EM response obtained from simulations, an effective medium 

theory can be defined to represent a structure. This leads to an effective dielectric function 

of the plasmonic metamaterial. Section 1.3 presents an efficient scheme of retrieval of this 

effective dielectric function. 

 

1.2 Basics of the FDTD, FIT and FEM simulation methods 

In this section, we present basics of the three simulation methods used in this thesis. The 

first is finite difference time domain (FDTD) scheme, a specialized numerical method for 

solving electromagnetic field problems. FDTD schemes for partial differential equations 

(PDE) solving, originate from early applications in the computational fluid dynamics in the 

1920s [9]. In 1966 Yee proposed the staggered scheme, commonly used in most of the 

FDTD codes today [10]. In 1980s, Taflove coined the FDTD acronym [11]. Today, FDTD 

scheme is one of the most popular, with numerous codes commercially available. For a 

comprehensive review, see Ref. [12]. 

The FDTD method discretizes the Maxwell’s curl PDEs in both space and time, following 

a staggered grid scheme proposed by Yee [10]. This scheme works as follows: in the space 
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domain, the electric and magnetic field components are displaced by half a unit cell, with 

directions orthogonal to each other, as shown in Figure 1-1; In the time domain, with the 

initial (at t = 0) field values given, the magnetic field components at time t = iΔt (i = 1,2,3...) 

are obtained from the electric and magnetic field components at an earlier time t = (i-1)Δt. 

The electric field components at time t = (i+1)Δt are calculated based on the electric and 

magnetic field components at t = iΔt. The staggered calculation procedure is repeated until 

a steady-state solution is obtained. Yee’s scheme gives a natural structural representation 

of the Maxwell’s curl equations, and is well convergent.  

 

Table 1-1. FDTD discretization of the space and time domains. 

Maxwell’s curl equations: FDTD discretization: 

ߘ ൈ ࡱ ൌ െ
࡮߲
ݐ߲

 
߲݂
ݐ߲

ൎ
݂ሺݐ ൅ 2ሻ/ݐ∆ െ ݂ሺݐ െ 2ሻ/ݐ∆

ݐ∆
 

ߘ ൈ ࡴ ൌ ௙ࡶ ൅
ࡰ߲
ݐ߲

 
߲݂
௜ݔ߲

ൎ
݂ሺݔ௜ ൅ ௜ݔ∆ 2⁄ ሻ െ ݂ሺݔ௜ െ ௜ݔ∆ 2⁄ ሻ

௜ݔ∆
, ሺݔ௜ ൌ ,ݔ ,ݕ  ሻݖ
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Figure 1-1. Yee’s staggered grid for FDTD method. (Taken from: https://en.wikipedia. 

org/wiki/Finite-difference_time-domain_method. Image source: By F Dominec – Own 

work, CC BY-SA 4.0) 
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A variation of the FDTD method is called the finite difference frequency domain (FDFD) 

method. FDFD keeps Yee’s staggered grid scheme for spatial discretization, but solves the 

Fourier transformed Maxwell’s equations in the frequency domain. Christ and Hartnagel 

presented an early version of the FDFD method in 1987 [13]. Since the FDFD method is 

in between the FDTD and finite element method, it is a less popular method nowadays. 

The finite integration technique (FIT) scheme was proposed in 1977 by Thomas Weiland 

[14-15]. The discretization scheme of FIT is the same staggered grid in both space and time 

as the Yee’s method, except that it uses integral form of the Maxwell’s Equations, instead 

of the differential one. The advantage of the FIT method is its high flexibility in geometric 

modeling, and an ease in handling system boundaries. CST Microwave Studio [16] is a 

commercial simulation package based on FIT method. In most of the simulations done in 

this thesis, CST Microwave Studio is used. 

The finite element method (FEM) approaches the PDE problem from an engineering point 

of view [17-19]. A complex system is intuitively divided (discretized) into a finite number 

of smaller space sub-domains that are called “elements”. Each element is a simpler 

boundary value problem that obey the same PDE as the whole system. The boundary 

condition for each element is defined in such a way as to reflect the geometric relation 

between elements, and to satisfy the global boundary condition of the whole system. The 

solution of the whole system is obtained by assembling the solutions of all elements. The 

solution of an FEM is obtained by variational method (such as the Ritz-Galerkin method), 

or, in other words, following the least action principle. FEM originated from efforts of 

mechanical engineers to solve complex elastic continuum problems in aerospace 

engineering. Some pioneers include Hrennikoff and Courant, who in the early 1940s 
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introduced the “finite element” concept [17], and Argyris, Clough, Zienkiewicz in 1960s 

and 1970s [18-19], who developed the modern-day form of the method. The simulations 

in Chapter 2 are done using COMSOL Multiphysics [20], a commercial FEM package. 
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Figure 1-2. A two-port system defining the S-matrix. 
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1.3 Retrieval of the effective dielectric function from the S-parameters 

Many popular codes provide solutions in terms of the S-parameters of the multi-port 

scattering theory. For a two-port system, the S-matrix is defined as follows 

൬
ܾଵ
ܾଶ
൰ ൌ ൬ ଵܵଵ ଵܵଶ

ܵଶଵ ܵଶଶ
൰	ቀ

ܽଵ
ܽଶ
ቁ        (1-1) 

with ai and bi the incident and reflected complex wave amplitudes (“power waves”), 

respectively. Figure 1-2 shows schematic of a two-port system. In terms of the S-

parameters, the reflection and transmission coefficients are S11 and S21, respectively.  

The core concept of the effective medium theory is that, if we replace a region with 

inhomogeneous internal structures by a properly chosen continuous homogeneous material 

filling the same region, we can achieve the exact same scattering properties (S-parameters). 

The macroscopic Maxwell’s equations are, in fact, the result of an effective medium theory. 

The electromagnetic parameters (i.e., permittivity and permeability functions) that define 

the constitutive relations of a material are indeed the effective medium parameters that 

fully describe the electromagnetic properties of that material. In this sense, the 

electromagnetic parameters retrieval method used in this work is merely an extension of 

the macroscopic Maxwell’s equations in the lower frequency region. Since both 

electromagnetic parameters (complex permittivity and permeability) and S-parameters 

(complex transmission and reflection coefficients) give a full description of a system, they 

are equivalent. Thus, there exists a rigorous way to obtain one set of parameters, given the 

other. The electromagnetic parameters retrieval method used in this thesis has been 

developed in several seminal works by Smith, et al. [21-23].  
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Assuming the effective material of thickness d can be described uniformly by the refractive 

index n and the impedance z, the analytic expressions relating n and z of this medium to its 

S parameters are as follows: 

݊ ൌ
ଵ

௞ௗ
cosିଵ ቂ

ଵ

ଶௌమభ
൫1 െ ଵܵଵ

ଶ ൅ ܵଶଵ
ଶ൯ቃ       (1-2) 

ݖ ൌ ටሺଵାௌభభሻమିௌమభ
మ

ሺଵିௌభభሻమିௌమభ
మ         (1-3) 

with ݊ ൌ ߤߝ√ ݖ , ൌ ට
ఓ

ఌ
.  and μ are the effective permittivity and permeability of the 

medium. All these parameters are frequency dependent complex numbers. One example is 

illustrated in Figure 1-3, the retrieval results of electric dipole and magnetic dipole. A 

single unit cell of an electric resonator (a metal block) is shown in Figure 1-3a while a 

magnetic resonator (a metal ring) is in Figure1-3b.  The retrieved permittivity for electric 

dipole (in Figure 1-3c) and permeability for magnetic dipole (in Figure 1-3d) confirm the 

expected Lorentz resonance of them respectively. 
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Figure 1-3. Retrieval of the effective dielectric function of an electric dipole and a 

magnetic dipole. (a) Schematic of a unit cell of an electric dipole with propagation 

direction into the plane (z direction). The structure is obtained by periodic extension of the 

unit in the x-y plane. (b) Schematic of a unit cell of a magnetic dipole with propagation 

direction in the x direction. The structure is obtained by periodic extension of the unit in 

the y-z plane. (c) The retrieved permittivity for the structure in (a) using the retrieval 

method described in Section 1.3. (d) The retrieved permeability for the structure in (b) 

using the same retrieval method as in (c). 
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1.4 Summary and layout of this thesis 

In this chapter, we have introduced the basic concepts of plasmonic metamaterials, as well 

as several numerical methods (FDTD, FIT, and FEM) used in this thesis to study them. We 

have also introduced the electromagnetic parameters retrieval method from S-parameters 

by effective medium theory. 

The layout of the remaining parts of this thesis is as follows. In Chapter 2, we show how 

plasmonic metamaterials can be integrated with gyroelectric materials to help achieve 

topologically protected photonic edge states in the visible range. In Chapter 3, we show 

how plasmonic metamaterials can be designed to engineer dielectric functions in the very 

low frequency regime. In Chapter 4, we study the possibility of controlling electron-

phonon interactions with plasmonic metamaterials. In Appendices A, B, and C, we attach 

3 of my first-author papers relating to Chapters 2, 3, and 4, respectively. In Appendix D, 

we give a brief introduction of the ongoing project of controlling superconductivity with 

plasmonic metamaterials. In Appendix E, we discuss other EM response designs using 

plasmonic metamaterials, with a special focus on the realization of all optical states via 

electrical tuning of a two-element metasurface. 
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Chapter 2. Topologically protected photonic edge states in the 

visible in plasmo-gyroelectric metamaterials 

2.1 Background of photonic topological insulators 

The results from this chapter have been published in Ref. [1]. Asymmetric propagation of 

light has been a field of great interest in recent years. Many works break the geometrical 

symmetry to alter coupling pathways between different photonic modes to generate 

asymmetric propagation of light traveling in opposite directions [2-4]. These works, 

however, cannot make optical isolators in the real sense, due to time-reversal symmetry 

remaining unbroken [5]. Non-reciprocal photonics, on the other hand, with time-reversal 

symmetry broken by external fields or internal interactions, promise the possibility of 

scattering-free and reflection-free one-way light propagation [6-11]. Among many non-

reciprocal photonic systems, photonic topological insulators [10-13] have been proposed, 

and intensively studied in the past decade as the photonic counterpart of electronic 

topological insulators. 

 

2.1.1 Photonic counter part of integer quantum Hall effect 

The discovery of topological states in electronic systems started from the Integer Quantum 

Hall Effect (IQHE), where a 2D electron gas under low temperature and strong magnetic 

field yields quantized Hall conductance (integer multiples of e2/h) [14]. These integers are 

shown to be the Chern numbers (closely related to Berry’s phase) associated with the 

topology of the electronic Hilbert space states. IQHE is thus successfully explained by 

Chern insulators (2D band insulators with nonvanishing Chern numbers) [15-16]. One key 

feature of the IQHE is the existence of topologically protected edge states that conduct in 
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one direction only, and are immune to back scattering. In 1988, Haldane pointed out that 

Landau-level quantization by the global magnetic field is not an essential requirement for 

IQHE, and that IQHE can be realized just with non-interacting Bloch electrons in a 

graphene (honeycomb) lattice with broken time-reversal symmetry [14]. This was an 

important step towards generalizing the electronic topological states to the photonic 

systems. 

The first attempt to associate photonic crystals (PhCs) to electronic topological states was 

by Onoda et al in 2004, where they studied the Berry curvature in photonic crystals with 

broken spatial-inversion symmetry, and identified the “Hall effect of light” in that system 

[17]. Later, in 2008, Raghu and Haldane proposed the “analogs of quantum-Hall-effect 

edge states in photonic crystals”, by breaking the time-reversal symmetry of PhCs in a 

Faraday-effect (gyroelectric) media [15]. They pointed out that, although IQHE itself does 

not have photonic analog, as it follows from the Pauli principle of filling all one-particle 

states below the Fermi level, the existence of topologically protected edge states only 

relates to non-vanishing Chern number in a 2D Brillouin Zone, and can be generalized to 

Maxwell normal-mode eigenproblem in PhCs. They chose time averaged energy density 

of the electromagnetic radiation field as the Hamiltonian of the eigenproblem, and derived 

detailed ways to calculate Chern numbers in such a system, by integrating Berry connection 

over the path enclosing the 2D Brillouin Zone (or surface integral of Berry curvature over 

the entire Brillouin Zone surface). They pointed out that, only when time-reversal 

symmetry is broken, Chern numbers take non-zero values, that lead to topologically 

protected (one-way, scattering-free) edge states. 
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While Raghu and Haldane’s proposal only focused on TE modes in PhC with a triangular 

lattice, as they were trying to reproduce the Dirac cone band structure for electrons in 

graphene, Wang et al pointed out in the same year (2008), that the existence of Dirac cone 

in the band structure is not a prerequisite for topologically protected edge states [18]. They 

showed that a degeneracy point lifted by time-reversal symmetry breaking can lead to non-

zero Chern numbers, which ensures topologically protected edge states. By working with 

TM modes in a gyromagnetic PhC with square lattice, they also obtained reflection-free 

one-way edge modes. 

 

2.1.2 Photonic chiral materials mimicking quantum spin Hall effect 

Haldane’s graphene model of Chern insulators for IQHE intrinsically require broken of 

time-reversal symmetry (for non-vanishing Chern numbers). But it does not consider spin 

degree of freedom of electrons. Kane and Mele pointed out in 2005 that, if spin-orbital 

coupling is considered in Haldane’s model, the resulting theory is simply two copies of the 

Haldane model with opposite signs of Hall conductance for up and down spins [19]. This 

does not violate time-reversal symmetry, since under electric field, electrons with up and 

down spins generate Hall currents that flow in opposite directions, resulting in zero Hall 

conductivity. However, spin Hall conductivity is now non-zero, and quantized. This is the 

Quantum Spin Hall Effect (QSHE). The QSH edge states have the important spin-

momentum locking property that up spins propagate in one direction, while the down spins 

propagate in the other. This is drastically different from ordinary conductors, where both 

spins propagate in both directions. Ordinary conductors are fragile and susceptible to 

Anderson localizations, while QSH edge states cannot be scattered unless by time-reversal 
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symmetry breaking defects. QSHE thus describes time-reversal invariant two-dimensional 

insulators to host edge states with reflectionless propagation, without external magnetic 

field needed. 

In 2015, Ma et al pointed out that, by fine tuning a triangular lattice of metal rods, TE and 

TM modes of the system can form doubly degenerate Dirac cones, which mimic the doubly 

degenerate Dirac cones in the Kane-Mele QSHE model [10]. They then open the gap by 

breaking inversion symmetry of the system, resembling the introduction of spin-orbital 

coupling to the Kane-Mele QSHE model. In such a PhC system, TE+TM and TE-TM 

modes resembles spin up and spin down state of an electron, respectively. They also 

demonstrated reflectionless propagation of TE+TM / TE-TM states at boundary. 

In 2016, He et al showed a rigorous example of photonic topological insulator [11]. By 

using piezoelectric (PE) and piezomagnetic (PM) composites, they constructed a PhC with 

fermionic-like pseudo time-reversal symmetry. Instead of using TE+/-TM states, they used 

left/right circular polarization states (that have 90-degree phase difference between TE and 

TM modes) as the photonic counterparts of the spin up and down states of electrons. The 

broken time-reversal symmetry by the non-zero PE and PM terms serves as the spin-orbital 

coupling term in the Kane-Mele model. This is the first paper that obtained a fermionic-

like time-reversal symmetry in a photonic system. 

 

2.2 Plasmo-gyroelectric metamaterials can stabilize topologically protected photonic 

band gap 

Time reversal invariance (TRI) can be broken with gyromagnetic materials, but only at 

relatively low (microwave) frequencies. Gyroelectric materials, on the other hand, in the 
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presence of a magnetic field break TRI even at visible frequencies, albeit very weakly so 

(the ratio of the off-diagonal to diagonal (OTD) components of the dielectric permittivity 

tensor is only of the order of 10-3) [20]. This results in very small gaps, making observation 

of the edge modes difficult. Nevertherless, a non-reciprocal lasing in topological cavities 

was recently demonstrated in a system which used the gyroelectric material yttrium iron 

garnet coupled to a multiple quantum well lasing cavity [21]. In this thesis, we propose a 

method to dramatically increase OTD tensor components in the gyroelectric systems: 

strong reduction of the diagonal components of the permittivity tensor, with a plasmo-

gyroelectric metamaterial (PGM). 

We first demonstrate, that it is the ratio of the OTD components of the permittivity tensor, 

not their absolute values, that controls the physics of TRI breaking in a PTI.  For a 

nonmagnetic (μ = 1), source-free, nonconducting anisotropic medium with harmonic time 

dependence, Maxwell’s equations reduce to  

2

2
ˆ( )E E

c

   
         (2-1) 

where E is the electric field, c speed of light, ω the mode frequency, and relative 

permittivity given by the tensor 
 ˆ îj 

 (i,j  = x,y,z). Clearly, by assuming that all tensor 

components are uniformly scaled, i.e. ˆ ˆ   , where α is a scaling constant, one can 

transform Equation 2-1 into an identical one, but with ̂  replaced with ̂  , and   

replaced with   . Thus, the only consequence of such uniform scaling is the mode 

frequency change (renormalization). Then, only the ratios of the tensor components 

represent non-trivial physical effects, such as TRI breaking. Thus, increasing the off-

diagonal components of the effective permittivity tensor, so that they are of the order of 
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the diagonal components, is equivalent to reducing the strength of the diagonal components 

relative to the off-diagonal components.  

We propose here to achieve the desired suppression of the diagonal tensor components by 

employing a PGM structure made of a superlattice of alternating metallic and gyroelectric 

layers, with the response tuned to the near-zero diagonal tensor components condition. This 

composite structure will be used as a dielectric background of a 2D photonic crystal 

(2DPC) made of dielectric cylinders, as shown in Figure 2-1a. In the absence of magnetic 

field, this 2DPC will be designed to have photonic bands with degenerate points which, 

after application of a TRI-breaking external magnetic field, will open robust, topologically 

nontrivial gaps.  
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Figure 2-1. Photonic topological insulator (PTI). (a) the basic structure consists of a 

2DPC made of dielectric rods, immersed in a metamaterial superlattice made of alternating 

metallic and gyroelectric films. Schematics of the unit cells of the square (b), and 

hexagonal (c) 2DPC. Taken from Ref. [1]. 
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It has been shown [22] that the effective permittivity tensor components ij  of the 

superlattice can be obtained from the tensor components of the constituent layers (i,j = x, 

y): 

m g
ij m ij g ijf f   

,         (2-2) 

1( / / )m g
zz m zz g zzf f    

,        (2-3) 

0xz zx yz zy      
.        (2-4) 

Here, m and g refer to the metal and gyroelectric layers and the f’s denote the thickness fill 

factors of the respective layers, which trivially obey the condition fm + fg = 1. For given 

m
ij  and 

g
ij , one can choose fm and α to achieve a desired OTD ratio in the effective 

permittivity tensor. As an example, we use the following permittivity tensor for aluminum 

[23] (at operating frequency of ~2 eV), 

50 0 0

ˆ 0 50 0

0 0 50

m
 
   
           (2-5) 

and the following tensor, for a gyroelectric layer made of CuFe2O4, operating at frequency 

of ~ 2 eV and magnetic field given in [24], 

4 0.01 0

ˆ 0.01 4 0

0 0 4

g

i

i
 
   
           (2-6) 

We next parameterize Equations 2-2, 2-3, and 2-4 for materials (2-5) and (2-6) to engineer 

an OTD ratio of 5. By choosing fm = 0.0741 (which leads to fg = 0.926), the effective 

permittivity tensor of the composite superlattice in the presence of external magnetic field 

becomes: 
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0.001852 0.00926 0 0.1 0

ˆ 0.00926 0.001852 0 0.1 0

0 0 4.347 0 0 234.71

i i

i i


  

   
         
       .   (2-7) 

Here, the magnetic field strength is characterized by γ = 0.5, and the frequency 

renormalization scaling factor is α = 0.01852. While the original gyroelectric OTD ratio in 

the presence of magnetic field was 0.01/4 = 0.0025, for this PGM superlattice, it becomes 

5 (note that in the absence of the magnetic field, γ = 0). Note that the results in this work 

are independent of zz . 

 

2.3 Topologically nontrivial photonic band gaps of plasmo-gyroelectric 

metamaterials 

The next step is to use this effective medium with the permittivity tensor given by Equation 

2-7 as a background dielectric for a 2DPC of dielectric cylinders, as shown in Figure 2-1a. 

We investigate two 2DPCs, based on a square (Figure 2-1b) and a hexagonal (Figure 2-1c) 

lattice of cylinders. We assume that the permittivity of the cylinders is 4d  . For the 

square lattice, the designed structure parameters (Figure 2-1b) are a = 1 μm and R = 0.45a. 

In the absence of external magnetic field, the band structure of the transverse electric (TE) 

modes for this 2DPC, calculated using COMSOL simulation software [25], is plotted in 

Figure 2-2a. Flat-band degeneracy occurs at the M point, and this can turn into a 

topologically non-trivial gap (as demonstrated by Wang et al [18]) when TRI is broken. 

This is achieved by turning on an external magnetic field, which activates the off-diagonal 

terms in the effective permittivity tensor (Equation 2-7). The resulting band structure 
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shown in Figure 2-2b demonstrates that a robust, absolute gap opens around the degeneracy 

point.  

The topologically nontrivial bands are labeled in Figure 2-2b with the corresponding Chern 

numbers, calculated as follows. Due to the precense of electric anisotropy, we adopt the 

magnetic-field formulation of the Maxwell’s equations [26] 

 
2

1
2

ˆ( )
c

   r H H
        (2-8) 

With the following definition of the inner product ۶ۦଵ|۶ଶۧ ൌ ଴۶ଵߤݎଶ݀׬
∗ ∙ ۶ଶ, the Chern 

number for the n-th band can be calculated from [18-19] 

21 1

2 2

nn nn
y nnx

n
x yBZ BZ

A A
C d k d

k k 
  

       
  k A ,     (2-9) 

where Berry connection ۯ௡௡ሺܓሻ is defined as [18-19]: 

 
2

k n n n k nnn

n ni
 



  


H H H H
A k

H H .      (2-10) 

A contour integral around the first Brillouin zone, or around an arbitrary contour 

surrounding the frequency degenerate points (some are indicated by red arrows in Figure 

2-2a and Figure 2-3a) will give the corresponding Chern number. More calculation details 

are given in Section 2.5. 
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Figure 2-2. PTI based on a square 2DPC immersed in a PGM. Photonic band structure 

in the absence (a) and presence (b) of an external magnetic field. Corresponding Chern 

numbers are labeled on topolotically non-trivial bands. Left inset in (a): fragment of the 

reciprocal lattice. Right insets in (a) and (b): dielectric permittivity tensor. (c) Edge mode 

dispersion (red line), and the bulk bands (black squares). Note, that the edge mode “peels 

off” the bulk states. (d) Electric field amplitude of the excited edge mode. The mode is 

excited with a point dipole (star), oscillating at the frequency of 0.65 2πc/a. The mode 

propagates only along the edge, and only in one (positive x) direction. Backscattering is 

suppressed, even when encountering a large line obstacle made of a PEC boundary. The 

boundary on the left side is a perfectly matched layer; all other boundaries are PECs. Taken 

from Ref. [1]. 
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Figure 2-3. PTI based on a hexagonal 2DPC immersed in a PGM. Photonic band 

structure in the absence (a) and presence (b) of an external magnetic field, with 

corresponding dielectric permittivity tensors. Corresponding Chern numbers are labeled on 

topolotically non-trivial bands. Left inset in (a): fragment of the reciprocal lattice. Right 

inset in (a) and (b): dielectric permittivity tensor. (c) Edge mode dispersion (red line), and 

the bulk bands (black squares). Note that the edge mode “peels off” the bulk states. (d) 

Electric field amplitude of an edge mode excited with a point dipole (star), oscillating at 

the frequency of 0.85 2πc/a. The mode propagates only along the edge, and only in one 

(positive x) direction. Backscattering is suppressed, even when encountering a large line 

obstacle made of a PEC boundary. The boundary on the left side is a perfectly matched 

layer; all other boundaries are PECs. Taken from Ref. [1].  
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2.4 Topologically protected photonic edge states in plasmo-gyroelectric 

metamaterials  

To show that this gap is topologically nontrivial, we truncate the 2DPC to create 

boundaries. The inset to the right of Figure 2-2c shows a top view of this truncated system 

unit cell: there are two boundaries of the structure, at top and bottom. The unit cell is 

periodically extended in the x- (horizontal) direction. Asymmetric, perfect electric 

conductor (PEC) configurations between the top and bottom boundaries are adopted to 

avoid duplication of the edge modes. As expected from the topological nature of the gap, 

an edge mode appears, which spans the gap. This mode has a positive slope (one direction 

of propagation). To show that the edge mode is protected against backscattering, we placed 

a point dipole source at the edge (marked as a star in Figure 2-2d), and excited it at the 

renormalized frequency ω/(2πc/a) = 0.65 (i.e. within the topological bandgap). In this case, 

we have added a boundary on the right edge of the window shown in Figure 2-2d. It is 

quite obvious that the mode propagates only along the edge, and only in one (positive) 

direction, and when encountering a large line obstacle made of a PEC boundary, no 

scattering or reflection of this mode occurs.  Instead, the edge mode circumvents the 

obstacle to continue its net propagation in the positive x-direction.  

An analogous effect occurs for a hexagonal 2DPC lattice, as suggested in Ref [14]. In this 

case, we chose a = 1 μm and R = 0.35a. The band structure for the TE modes without 

magnetic field is plotted in Figure 2-3a. A Dirac-like degeneracy occurs at the K point 

where, as for the square lattice under an external magnetic field (ε = 0.2), a topologically 

non-trivial gap opens, Figure 2-3b. Chern numbers for the bands above and below the 

topologically non-trivial band gap are calculated to be +1 and -1, respectively, using the 
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above described method, in agreement with Ref [15]. This gap has a similar size to that in 

Figure 2-2b, even though a 2.5 times weaker magnetic field was applied. Figure 2-3c and 

d are analogs of Figure 2-2c and d, respectively. They demonstrate that this hexagonal 

2DPC also supports an edge state, protected against backscattering.  

Note that in both examples, at relatively small off-diagonal terms, due to the extensively 

reduced diagonal term value, a large gap size (~10%) is achieved. This large gap size is 

robust against disorders, and prevents the topologically protected edge modes from 

radiative losses [18]. Although all calculations in the current work are done in non-

dispersive scenarios, all conclusions can be readily extended to dispersive materials[13-

15]. 

 

2.5 Conclusion and additional information 

In conclusion, we have demonstrated that two dimensional photonic crystals of dielectric 

microrods, immersed in a plasmo-gyroelectric metamaterial superlattice, can function as 

photonic topological insulators, supporting propagating edge states for which back 

scattering is suppressed. The PGM superlattice, which in the presence of an external 

magnetic field breaks time-reversal invariance, is designed to have a large ratio of off-

diagonal to diagonal components of the dielectric permittivity tensor. This large ratio is 

obtained not by the conventional strategy of maximizing the off-diagonal components, but 

rather by suppressing the diagonal ones via the plasmonic (negative) response of the 

metallic films. Due to this large ratio, the band gaps are robust, even at optical frequencies. 

This work can pave the way for realization of topologically-protected edge states across a 

wide frequency range, including optical frequencies. 
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2.5.1 Simulation of edge mode dispersion and propagation 

Simulation configurations for edge mode dispersion diagram are plotted on the right insets 

of Figure 2-2c and 2-3c, respectively, for square and hcp periodicity scenarios. The top and 

bottom boundaries are both PEC; the left and right boundaries are periodic. Note that the 

arrangement of the lattice near the top and the bottom boundaries are deliberately chosen 

to be different to create asymmetric boundary modes to avoid the generation of duplicated 

boundary modes. Eigen-frequency solver is used in COMSOL to solve for mode near the 

selected frequency range. The frequency range is chosen to be near the nontrivial band gap 

of the corresponding PTI. Note that multiple (at least 5) unit cells should be chosen along 

the y direction for the existence of bulk modes. The more unit cells are chosen, the denser 

the bulk modes in Figure 2-2c and 2-3c will occur. But the number of unit cells repeated 

along y direction (as long as it is large enough) will not affect how the edge mode dispersion 

looks like. 

To obtain the corresponding edge mode propagation simulation as shown in Figure 2-2d 

and 2-3d, a 2D array of the square (or hcp) unit cells are generated. This array is terminated 

in boundaries on top, bottom, and right sides with PEC conditions, and in boundary on left 

side with PML (perfectly matched layer) condition. The reason to leave the left-hand-side 

boundary open is to give a sink for the dipole point source, so as to avoid generation of 

local intensity singularities. The boundary termination details on the top, bottom and right 

sides can be different, as it will not affect the one-sided propagating edge mode. Obstacles 

are created on the bottom side on both Figure 2-2d and 2-3d. The details of the obstacles 

are again irrelevant, as it will not affect the one-way propagating edge mode. The dipole 

source is located at a place near the bottom boundary. Note that only when external field 
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is turned on (non-zero off-diagonal terms) EM waves propagates in a one-way scattering-

free manner, as shown in Figure 2-2d and 2-3d. When external magnetic field is turned off 

(zero off-diagonal terms), the same dipole source generates EM waves propagates in both 

directions, as shown in Figure 2-4. 

 

2.5.2 Calculation of the Chern numbers 

We follow the method in Ref. [18] to calculate the Berry connection:	ۯ௡௡ሺܓሻ. We have 

exchanged all the following: ̂ߝ ⇔ ۳ ,ߤ̂ ⇔ െ۶, and swapped TE and TM modes in order 

to use the built-in Electromagnetic Waves, Frequency Domain (ewfd) COMSOL module. 

Then when calculating the contour integral of ۯ௡௡ሺܓሻ, we used the difference between 

field profiles simulated at k and k+dk to obtain: ۳ܓ׏௡.We chose a circular path around M 

point for the calculation of Chern number for the 2nd band in Figure 2-2b. The -2 Chern 

number of the 3rd band in Figure 2-2b is composed of two contributions: one from M point, 

one from Γ point. The +1 Chern number of the 4th band comes from contribution at Γ point. 

Calculations for the hcp scenario are similar. 
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Figure 2-4. Electric field amplitude of the excited edge mode when external magnetic 

field is off (zero off-diagonal terms). The mode is excited with a point dipole (star), 

oscillating at the frequency of 0.65 2πc/a. The mode propagates along the edge, in both 

directions. The top and bottom boundary conditions are PEC, the left and right boundaries 

are both PML. Taken from Ref. [1]. 
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Chapter 3. Engineering low frequency dielectric function with 

metamaterial plasmonic structures 

3.1 Introduction to high-k materials in TFT devices  

The results from this chapter have been published in Ref. [1]. Making the thin film 

transistors (TFT) has been a widely established technology for the next generation of flat 

panel displays [2-6]. TFT is a field effect transistor (FET) [2], made of a stack of thin films, 

which include semiconductors, insulators and metallic contacts. Silicon dioxide (SiO2) has 

been commonly used as a gate oxide material. With decreasing device sizes, the thickness 

of the dielectric gate had to decrease to efficiently control the channel current via the 

capacitive coupling between the gate and the channel.  Such thickness reduction, however, 

led to deleterious leakage currents, and so the increase of the dielectric constant (commonly 

called k in the engineering community, not ) remained as an alternative; with large k the 

gate-channel capacitance increases, without increasing leakage. Hafnium oxide (HfO), 

with k = 25, has been proposed, and applied as the first-generation high-k material [7-9]. 

The other promising materials in that class have been identified:  La2O3, with k = 30 [10-

11], zirconium oxide, with k = 25 [12-13], aluminum oxide, with k = 9 [14-16], titanium 

dioxide, with k = 80 [17-19], and La2Hf2O7, with k = 30 [20-21].  

 

3.2 Theory of effective permittivity with capacitive and inductive elements 

The local dielectric function of a composite (of volume V0), made of metallic units (of 

volume Vm), embedded in a dielectric matrix with dielectric constant ε∞, is given in the long 

wavelength limit (LWL) by [22-23]: 
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Clearly, to maximize this composite dielectric function, a structure is needed with 

sufficiently small ωm, which can be achieved by metamaterial/plasmonic engineering. An 

important physical effect hidden in the universal Equation 3-1 is that each resonant 

(Lorentzian) term is a result of a capacitive-inductive coupled response. For example, 

below ωm, the response is first dominated by a capacitive character for frequencies much 

below the resonance (ω << ωm), but with increasing frequencies, the role of the inductive 

character increases, and dominates at the resonance. This can be illustrated by the following 

simple circuit analysis.  

For a metallic resonator, the effective capacitance and inductance is denoted as: C and L 

respectively. Figure 3-1 shows schematic side views of two metamaterial capacitive units. 

Both units are defined by two horizontal electrodes (black solid bars) of width w' and length 

F in the z-direction. The blue color represents the dielectric filling. The unit shown in 

Figure 3-1a has a solid metallic insert (black square), and that in Figure 3-1b has an 

inductive metallic insert (spiral). Both inserts have the same outside dimensions h, w, and 

l (in x, y and z directions, respectively). We also assume that w' ≈ w. Let C' be the 

capacitance of the unit in Figure 3-1a and assume that its inductance is negligible. The 
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reactance of the unit in Figure 3-1b is given approximately by 
eff

1 1
X i i L i

C C


 
   


, 

where Ceff is the effective capacitance of the unit in Figure 3-1b, and C' = C/2 is the 

capacitance of the two (connected in a series), simple flat capacitors, defined by the gaps 

of size d above and below the inserts, in either unit. L is the inductance of the spiral metallic 

insert in the unit in Figure 3-1b. The unit in Figure 3-1b has the resonance frequency 

1r LC  , and therefore we get finally that the effective dielectric function εeff of the 

effective medium made of the unit shown in Figure 3-1b, and periodically extended in y 

and z directions, is proportional to Ceff and therefore is given by 
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where ߝଵ
ᇱ  is the dielectric constant of the effective medium, made of the unit shown in 

Figure 3-1a, extended uniformly throughout y-z space. The εeff can be much larger than ߝଵ
ᇱ , 

and this effect is entirely due to the inductive contribution from the spiral metallic insert. 

It is also obvious that in the static limit (߱ → ୤୤ୣߝ ,(0 ൌ ଵߝ
ᇱ , and so the metamaterial 

dielectric function enhancement is possible only for nonzero frequencies. Conclusions of 

this simple circuit analysis hold in more rigorous treatments. 
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Figure 3-1. Schematics of the simple metamaterial. (a) Capacitor unit with solid metallic 

insert. (b) Unit with spiral metallic insert. Both units and inserts have the same outside 

dimensions, respectively. In the z-direction, both units have length F, and inserts length l. 

Taken from Ref. [1]. 
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3.3 Simulation results for structures with added inductive components 

To demonstrate the above conclusion, we performed finite integration technique (FIT) 

simulations, using CST MW Studio software [24-25]. This numerically solves Maxwell’s 

equations for a given distribution of local material parameters (ε(ω) and μ(ω)) inside a 

given unit, at chosen grid points. Planar emission and absorption ports were defined at two 

opposing sides of a given unit, along the y-axis. The emitted source wave is linearly 

polarized, with the electric field directed along the x-axis, as required by, e.g., a TFT / high 

electron mobility transistor (HEMT) geometry. The FIT simulation provides the complex 

reflection and transmission coefficients r and t of an effective medium obtained by 

periodically extending (in the y- and z- directions) the chosen elementary units. 

Subsequently, we followed the method of reference [26-28] to extract εeff and μeff from r 

and t. This extraction method works best when the capacitor electrode separation a and unit 

cell width w' are much smaller than the wavelength of the radiation employed. This 

condition is satisfied for all structures used in this work. 

Figure 3-2 is the result for a spiral structure as shown in Figure 3-1b. Dimensions were 

chosen to be a = 4 μm and d = 0.2 μm, and spirals were filled with Si (ε = 12), conforming 

again to the TFT/HEMT scenario. The number of turns in this example is set to be 4 with 

the metal thickness equals 50 nm. Figure 3-2c shows the em responses of the structure: 

reflectance (R) and transmittance (T) vs ω in the frequency range from 0 to 3.5 THz. The 

H field profiles (Figure 3-2b) at the resonance frequency prove that the magnetic oscillator 

is created by the spiral structures. The extracted effective dielectric function εeff vs ω for 

the effective medium structure is plotted in Figure 3-2d. The effective dielectric function 
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has a Lorentz form at 0.5 THz, corresponding to a wavelength of 600 um. The 

subwavelength ratio (wavelength/size) is as large as 150. 

The above results are compared with the structures with the same unit cell, but smaller 

inductances. The red solid lines in Figure 3-3 show the extracted effective dielectric 

function εeff vs ω for an effective medium structure based on the above unit. The black line 

represents the case for a block with the same size as in Figure 3-1a. The blue line represents 

the result for a solid metallic insertion with identical metal volume to that of the spiral 

insert used to simulate the red solid lines, so that d = 1.5 μm. Multiple resonances are 

clearly visible, as predicted by Equation 3-1.  

The curves in Figure 3-3c represent the enhancement of εeff vs frequency. At the first 

resonance, εeff strongly exceeds 1ߝ
′  (by a factor of 2 for metallic insertion with the largest 

size and 20 for metallic insertion with the same metal filling), and for ߱ → 0 the thick solid 

line and the red dashed lines converge (ߝeff ൌ 1ߝ
′ ), in full agreement with Equation 3-3. 
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Figure 3-2. Spectra and corresponding effective dielectric function εeff for unit with 

spiral metallic insert. (a) 3D perspective view of spiral structure. (b) H field profiles from 

the front view and side view. (c) Reflectance (black solid curve) and transmittance (red 

solid curve) of the strucutre in THz. (d) Effective dielectric function εeff vs. frequency ω, 

for this effective media. Taken from Ref. [1]. 
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Figure 3-3. Comparing of metamaterial units and corresponding effective dielectric 

function εeff. (a) Capacitor unit with spiral metallic insert. (b) Unit with solid metallic insert. 

Both units and inserts have the same outside dimensions, respectively. In the z-direction, 

both units have length F, and inserts length l. (c) Effective dielectric function εeff vs. 

frequency ω, for various simple effective media. Red solid line represents the real part of 

εeff of the medium made of units shown in (a). The Re(εeff) of the medium made of units 

shown in (b) are represented by the black solid line. The blue solid line represents Re(εeff) 

for a medium made of units similar to (b), but with insert having the same volume as the 

volume of the spiral insert in (a). The enhancements of εeff compared between the spiral 

structure and the block structure are ploted in (d). Taken from Ref. [1]. 
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To benefit from the enhanced ୣߝ୤୤, one needs to engineer the resonance frequency ωr of the 

spiral inserts to be in the desired frequency range. Since we are guided here by the 

TFT/HEMT applications, we must lower this frequency to ωr/2π < 0.1 THz (i.e. 100 GHz). 

A simple way to accomplish this frequency reduction, while still retaining the device 

dimension requirements, is to add more turns to the spiral insert. This is obviously subject 

to material and technological limitations. Another, more practical way is to “stretch” the 

spiral width w in the unit of Figure 3-1b, as shown in Figure 3-4a. Figure 3-4b is the 

reflection and transmission spectra of the square spiral. Figure 3-4c shows εeff vs ω 

extracted from the data in Figure 3-4b. Figure 3-5 studies the evolution of Re(εeff) vs ω as 

a function of w (from 20 μm to 60 μm) for such a structure. The corresponding color 

contour plot of the same dependence is shown in Figure 3-5c, and it demonstrates a linear 

dependence of resonance frequqency ω on 1/w, in a large section of the plot (black dashed 

line). This linear dependence is expected from simple circuit model analysis: since both L 

and C' of the unit cell scale linearly with w, the resonance frequency ߱௥ ൌ 1 ⁄ܥܮ√  must 

scale linearly with 1/w. Note that there is no limit on the ωr reduction, and it can be made 

very small by simply increasing w. Guided by geometrical restrictions on typical 

TFT/HEMT devices, we have assumed wmax = 60 μm. Figure 3-5d to Figure 3-5f show the 

effect of changing l, the insert depth along the z-axis. Figure 3-5e shows the evolution of 

Re(εeff) as a function of l, with the corresponding color contour plot shown in Figure 3-5f. 

Clearly, while reducing l below lmax = 2 μm (full unit coverage in the z-direction) strongly 

affects the resonance strengths, the ωr dependence is slow. 
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Figure 3-4. Extremely low resonance frequency (~GHz) that coincides with device 

working frequency. (a) dimension parameters of the squeched structure. (b) Reflectance 

(black solid curve) and transmittance (red solid curve) of the strucutre in THz. (c) Effective 

dielectric function εeff vs. frequency ω, for this effective media. Taken from Ref. [1]. 
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Figure 3-5. Effect of spiral insert. (a) Sketch of unit cell emphasizing the parameter w. 

(b) Evolution of Re(εeff) vs. ω as a function of w (tuned from 20 to 60 μm). (c) Color contour 

plot of Re(εeff) vs. ω and 1/w. Dashed line is a guide to the eye. (d) Sketch of unit cell 

emphasizing the parameter l. (e) Evolution of Re(εeff) vs. ω as a function of l (tuned from 

0.2 to 2 μm). (f) Color contour plot of Re(εeff) vs. ω and l. Taken from Ref. [1]. 
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3.4 Optimized structure with mainly inductive components 

An “optimized” structure, based on the above analysis, which takes into account some of 

the technological and material constraints, as well as dimensional restrictions of the 

TFT/HEMT structures, is sketched in Figure 3-6a. A unit of this structure has dimensions 

a = 0.5 μm, w' = 62 μm, F = 2 μm, h = 0.45 μm, w = 60 μm, and l = 1.9 μm. Figure 3-6b 

shows the spectrum of the extracted εeff for this structure, which has Re(εeff) > 180 in the 

frequency range 0 to 40 GHz, with a practical maximum (with sufficiently small Im(εeff)) 

as high as 390, at 40 GHz. The enhancement of εeff above 190 is due to the inductive action 

of the spiral insert. Further enhancement of εeff could be achieved, as discussed above by 

further increasing w (if allowed). 

Since the enhancement in our structures is inductive, and as shown above quantitatively 

understandable with the simple circuit analysis, this suggest that further enhancement can 

be achieved by replacing the flat spiral insert in Figure 3-1b, with an elongated, multi-turn 

micro-solenoid as shown in Figure 3-6c. The inductance and capacitance of such a solenoid 

insert can be easily estimated (all parameters defined in Figure 3-1): the inductance is ܮ ≃

 ଶ݊ܰ/4, with N the number of turns, and n = N/l the turn density. Similarly, the݄ߨ଴ߤߤ

capacitance of the unit cell can be roughly estimated as ܥ ≃ ܨᇱݓ଴ߝߝ 2݀̅⁄ , where ݀̅ ൐ ݀  is 

the average (adjustable) electrode-insert distances, as defined in Figure 3-1. The resulting 

resonance frequency is given again by ߱௥ ൌ 1 ⁄ܥܮ√ ~1 ܰ⁄ . For example, with a = 0.5 μm, 

w' = 0.5 μm, h = 0.45 μm, w = 0.45 μm, l = 0.05N μm (N ranges from 12 to 40), F = l, d = 

25 nm, a coil wire diameter of 20 nm, with d  = 65 nm, ε = 12 and μ = 1, we obtain the red 

line in Figure 3-6d, which is in excellent agreement with the FIT simulations (shown as 

black square dots) for the physical situation. This excellent agreement allows us to predict 
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ωr for much longer solenoid inserts. The inset in Figure 3-6d shows, that one can access 

the low GHz resonance frequency range with several thousands of solenoid turns, 

corresponding to F   100 μm. Realizations of such micro-solenoids with similar 

dimensions, and with metal or metal-dielectric wires, have been recently demonstrated 

using a focused ion beam deposition [29-31]. The composite spiral medium, with dielectric 

core shell nanohelix structures, provides one more degree of freedom to tune-up the 

dielectric function [31]. Then, based on Equation 3-1 and the corresponding theory [23], 

one could expect strong enhancement of εeff for this composite medium. 
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Figure 3-6. Spiral structures for extremely low frequency, high-k applications. (a) 

Schematic of a unit cell of a stretched rectangular spiral structure. The structure is obtained 

by periodic extension of the unit in the y-z plane. (b) Corresponding dielectric function; 

black line for real, red line for imaginary parts of εeff. (c) Schematic of a unit cell of a micro-

solenoid structure, and (d) the corresponding plot of ωr vs. 1/N. The squares are the FIT 

simulations, and the solid line is the result of the simple circuit analysis, with one adjustable 

parameter. The inset in (d) is a zoom-in of the low frequency regime, with both axes sharing 

the same units as the main figure. Taken from Ref. [1]. 
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3.5 Discussion 

The extreme reduction of the resonance frequency expected with the spiral structures opens 

up a new direction in εeff enhancement. At such low frequencies, ferromagnetic/ferrite 

materials exist which could be used to further, significantly increase the medium 

inductance, and therefore εeff. A new generation of high-μ materials [32,33]. could allow 

our scheme to yield effective high-k media with low-loss εeff of many hundreds, in the low-

frequency MHz range. Finally, we have confirmed that the choice of background dielectric 

material, as expected, does not affect the dielectric function enhancement due to the 

inductive inserts.  

 

3.6 Summary 

We have demonstrated engineering of a low frequency dielectric function with inductive 

metamaterial-plasmonic structures. To maximize the inductance, we focused on spiral 

microstructures in a strip, and solenoid configurations as inserts into units of the composite 

media. By employing FIT simulations, we have demonstrated that microstructures of our 

design can be used to make dielectric media with very large, low-loss, and low-frequency 

dielectric functions. The largest proposed unit insert is ~ 0.5 μm in height, and < 100 μm 

in length, and thus small enough for some high-k applications, such as TFT. Further 

improvements are possible with application of high-ε and high-μ materials; these could 

reduce the need for very long metallic inserts, and thus expand the parameter space for 

high-k applications. 
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Chapter 4. Engineering electron-phonon interaction with 

metamaterial plasmonic structures: reducing the electron-

phonon scattering in semiconductors 

 

The results from this chapter have been published in Ref. [1]. Typically, plasmonic and 

metamaterial systems are designed for controlling photons, in the entire frequency range 

(from microwaves to visible), and this was the aim of research presented in the previous 

chapters. However, in general, one can consider engineering interaction of these structures 

with other quasi-particles, such as phonons. The reason is simply the fact, that these effects 

are also governed by a dynamic response of charges, with the effective dielectric functions 

controlling the strengths. This is the subject covered in this chapter, which will focus on 

the completed project: design of a plasmonic-metamaterial scheme to reduce electron-

phonon scattering in semiconductors. A related topic investigating the possibility of 

controlling the electron-phonon interaction (Cooper pairing) in BCS superconductors is a 

subject of an ongoing, theory-experiment research effort, and therefore the preliminary 

results are presented in this thesis as an Appendix D.  

 

4.1 Reducing the electron-phonon scattering in high mobility transistors 

4.1.1 Introduction 

A High-electron-mobility transistor (HEMT) is a field-effect transistor based on 

heterojunctions formed between semiconductors (or insulators) with different band gaps 

[2]. It has been widely used in microwave devices thanks to the advantages of high gain, 



50	
	

high speed at high frequency [2-3]. At the junction of doped and undoped semiconductors, 

a quasi-triangle potential well forms as a result of the charge induced conduction, and/or 

valence band bending. In case of the n-type doping, the electrons transfer from the doped 

layer, and become trapped inside this quasi-triangular well on the undoped side, forming a 

pseudo two-dimensional electron gas (2DEG). This effect is known as remote, or 

modulation doping. The electron depleted, doped region works as an insulator between the 

biased gate and the conduction channel. Accumulation of charges can be controlled by the 

gate voltage. Free carriers can move much faster in the 2DEG than in a doped sample of 

the same material, since the scattering of the free carriers by the remote ionized impurities 

is strongly reduced. Also, the high carrier density in the 2DEG reduces the contact 

resistance. However, the electron-phonon scattering is unaffected by this modulation 

doping, and this overheating causing scattering presents significant challenge to the 

continued technological advancement in the microelectronics. The conventional way to 

deal with this challenge is to focus on the ways of dissipating the excess heat to the 

environment, such as cooling the substrate [4], using high thermal conductivity substrates 

(SiC or diamond) [5], and adding a heat-spreading layer close to the hot spot. However, 

this strategy is becoming less effective for large integrated circuits.  

In this work, we follow an alternative approach: instead of improving the heat dissipation 

into the environment, we suggest a way to reduce its generation in the first place. The 

electron-phonon scattering affects heat generation in all semiconductors [6-7]. Since the 

electron-phonon scattering is mediated by a dynamic Coulomb interaction, changing the 

dielectric environment should in principle, and indeed does [8-9] affect it. We follow, and 

enhance this idea here, by showing that large reductions in the electron-phonon scattering 



51	
	

(in polar semiconductors) can be achieved by two-dimensional (2D) plasmonic arrays, 

embedded in an insulating layer adjacent to the 2D conducting channel of the HEMT 

configuration. These reductions arise from the strong, dynamic screening produced by 

these metallic resonators. By judicious design of the plasmonic layers, we find remarkably 

large enhancements of the simulated carrier mobilities and corresponding reductions in 

joule heating in the GaAs, GaN and MoS2 structures.  

 

4.1.2 Electron-phonon interaction in semiconductors 

The interaction between electrons and phonons is ubiquitous in condensed matter physics 

[6]. For example, it governs the onset of conventional superconductivity, and it limits 

carrier and heat transport in metals and semiconductors. Since the electron-phonon 

interaction (EPI) is fixed by material-specific properties such as electron band structure, 

phonon dispersions, and dielectric properties, tailoring the strength of the EPI is 

challenging. One way to accomplish this is through screening. However, for the moderate 

carrier densities typically occurring in doped semiconductors, the EPI remains strong and 

is a dominant scattering mechanism limiting the mobility in technologically important 

semiconductors such as GaAs, GaN and MoS2. Strong screening of the EPI such as what 

occurs in metals is not possible in semiconductors since such high carrier densities are not 

achievable and would in any case destroy the functioning of electronic devices. 

 

4.1.3 Motivation for this work 

Recent work has pointed out the strategy of enhancing mobility in 2D conducting layers 

by changing the dielectric environment [8-9]. This was accomplished through insertion of 
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adjacent materials with high dielectric constants. However, enhancement is achieved only 

when carrier interactions with ionized impurities is the dominant scattering mechanism. 

For clean samples where transport is controlled by electron-phonon scattering, it was 

shown that insertion of high dielectrics actually reduces mobility [9]. For next-generation 

devices, where high-quality samples can be fabricated with low concentrations of charged 

defects, alternative schemes will be needed to improve device performance. 

Here we propose a different approach based on the use of plasmonic metamaterial 

structures to significantly weaken the EPI in polar semiconductors. The idea is to achieve 

enhanced carrier screening by using a two-dimensional array of metallic plasmonic 

structures embedded in an insulating layer arranged near a region of current flow in a 

neighboring semiconductor material. The 2D plasmonic structures act as resonators whose 

resonant frequencies and oscillator strengths can be tuned by the geometry and 

arrangement of the structures. In conventional systems, the EPI is screened only by the 

background dielectric constant, since the free carrier screening is negligible as 

semiconductor carrier densities are very small (compared to metals). Introduction of the 

2D plasmonic resonance provides the desired tunable screening in a nearby electron gas. 

While it also introduces additional scattering channels for carriers, the electron-plasmon 

scattering does not degrade an electric current thus leaving the mobility unaffected.  

 

4.2 Effective dielectric function 

4.2.1 Effective dielectric function contribution from the plasmonic structure 

The 2D plasmonic resonators are metallic structures embedded in a dielectric substrate as 

shown in Figure 4-1(a). The left diagram shows schematics of an envisioned integrated 
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circuit and high mobility field effect transistor, with plasmonic metallic structures (pink) 

embedded in a dielectric substrate (yellow). A subsequent magnification (Figure 4-1(b)) 

shows the 2D homogeneity of the interaction region: electrons moving in the planar 

channel directly above the plasmonic structure experience essentially a constant dielectric 

environment, apart from the narrow gaps between the metal units. These gap regions can 

be minimized to increase the plasmonic shielding and improve the overall uniformity of 

the structure. The in-plane plasmonic structure uniformity allows for an effective medium 

dielectric treatment of the electron-phonon scattering process.   
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Figure 4-1. Envisioned structure and its dielectric response. (a) Schematic of an 

integrated circuit (top left) and field effect transistor (top right), with plasmonic metallic 

structure fragments (pink) shown embedded in the substrate dielectric (yellow), (b) The 

electron-phonon interaction region, as described in text. Green region represents the 2D 

electron gas separated from a unit in the plasmonic structure (p.u.) by a distance, h. 

Simulated electric field vs distance away from the p.u. is indicated by the red curve to the 

right; (c) The extracted real and imaginary parts of the dielectric function for a gold 

plasmonic structure with 1 μm square-bar unit cell (labeled p.u.) using a GaN dielectric as 

the background material, modeled in FIT simulations. Taken from Ref. [1]. 
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The basic physics can be described approximately as follows. The propagating phonon 

waves in a polar medium scatter electron in the channel. The scattering process is subject 

to screening effects as described by a dielectric response [10]. To calculate the dielectric 

function produced by the plasmonic structure, one could simply consider charges induced 

by a propagating phonon wave on the surface of the plasmonic structure. Using a Fresnel 

optics analysis, we show below that the field of the reflected wave from these induced 

interface charges at the 2DEG, which can be considered a polarization field produced by 

the plasmonic structure, has the approximate form [10]  

    (4-1) 

where  is the field of the incoming phonon wave impinging on the metal surface, 

and q
z
ref   2n / c2 Q2  iQ , where n is the refractive index of the plasmonic structure, 

and Q is the in-plane component of . The distance, h '  h d / 2  is that from the 

plasmonic structure to the center of the 2DEG of thickness, d, as shown in Figure 4-1. With 

the polarization field given by Equation 4-1, the effective dielectric function at the 2D 

electron gas shows an exponential form [11]: 


eff

(Q,)   (Q)eQh  1

2


m
(Q,)eQh  2 eQh      (4-2) 

where 
m

(Q,) is the dielectric function of the plasmonic structure and  is that of the 

semiconductor/insulator dielectric medium. The quantity α(Q) is chosen so that Equation 

4-2 satisfies the required limit of a simple average of polarization contributions from 

neighboring regions: eff
(0,)  1

2


m
(0,)  . Equation 4-2 is quite general, and can 
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be derived by a variety of methods. The evanescent nature of the reflected field as given in 

Equation 4-1 is confirmed by the following FIT simulation. 

 

4.2.2 FIT simulations of the plasmonic field screening  

In the scattering calculations we employed Equation 4-1 to obtain the effective dielectric 

function in the 2DEG from the plasmonic structure. The exponential behavior is expected 

from Fresnel optics, which considers any system as a collection of uniform regions, with 

fields properly matching at each interface. In this spirit, the electric field in the uniform 

region outside the metal-semiconductor interface has the following spatial dependency 

. Since typical values of the wave vectors assure that Q2  2n / c

, the evanescent behavior, as included in Equation 4-1, emerges, since then 

q
z
  2n / c2 Q2 iQ . We employ FIT simulations to confirm this evanescent field 

decay by commercial FIT software package made by CST (computer simulation 

technology) [12]. We simulated a response of the flat metal-dielectric interface to an 

oscillating dipole placed in the semiconductor (frequency = 10 THz, dipole of length l = 

50 nm, and diameter d = 11 nm) a distance h = 10 nm away from the interface (Figure 4-

2). The metal (gold) was modeled by the Drude response with conductivity σ = 4×107 S/m 

[13], and the permittivity of the semiconductor (GaN) was set to 9.5 [14]. A plot of the 

absolute amplitudes of the electric fields plotted vs distance is shown below. In fact, the 

degree of the decay is exactly as expected. The dipole produces a wave with a wavelength 

roughly 2 = 100 nm, and thus the e-fold reduction of the evanescent field occurs at 1/Q = 

/π = 16 nm, which indeed is roughly the case sketched in Figure 4-1b (red curve on the 
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semiconductor side). This confirms the form of Equation 4-1 in the main text. The 

exponential decay is general and holds for the larger Qave values given above. 
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Figure 4-2. The absolute amplitudes of the electric fields vs distance between the 

2DEG and plasmonic metallic structure. The black line is for the total dipole field in the 

absence of the metallic structure. The green line is for the total field in the presence of the 

structure, and the red line is for the extracted evanescent field of the charges induced on 

the metallic interface. Taken from Ref. [1]. 
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4.2.3 Extracting an effective dielectric response of plasmonic structures 

The extraction is achieved by comparing the Fresnel wave analysis with the simulated 

results. In principle, 
m

(0,) can be analytically continued into the corresponding non-

local form 
m

(Q,) . This analytical continuation can be accomplished [15] by 

renormalization of 
0
 as follows 


m

(q,) 
b



p
2


0
2 A(q)(  i )

       (4-3) 

where A(q) 1 aqbq2, where q is the isotropic wave vector amplitude. It was shown in 

Ref. 14, that for most plasmonic metals A(q) remains of order one, even for q approaching 

the Brillouin zone. Thus, to zeroth order we can write  


eff

(Q,)  
m

(0,) 
b



p
2


0
2 (  i )       (4-4) 

where 
0
 is the plasmonic structure resonance,  p is the corresponding strength of that 

resonance,  is a broadening parameter, and 
b
 is the background dielectric constant from 

the bound electrons in the metal. These parameters can be extracted by comparing the 

response (e.g. transmittance) obtained from a plane wave analysis (e.g. Fresnel), and the 

FIT simulations of the metallic structure in the retarded limit [16-17]. Typical form of the 

extracted, long wavelength complex dielectric function is shown in Figure 4-1(c). This 

dielectric function was calculated for a square-ring metallic structure made of gold, shown 

in an inset in Figure 4-1c. It was obtained employing the CST software [12]. The 

motivation for choosing this specific structure and dimensions was: large metal coverage, 
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low enough resonant frequency, and strong resonance. The extracted effective dielectric 

function is subsequently used in the transport calculations, described in detail in Ref. [11].  

 

4.3 Carrier mobility calculations 

4.3.1 General formalism 

The carrier transport, occurring in a thin conducting semiconducting channel as shown in 

Figure 4-1, has been described in detail in Ref. [10], attached to this thesis as Appendix A. 

Here we summarize the most important results from this collaborative work, focusing on 

the effects due to plasmonic structures. The carrier mobility is calculated by solving the 

Boltzmann transport equation. The relevant scattering due to EPI is given in the random 

phase approximation (RPA) by [10] 

      (4-5) 

where k is the electron energy with wave vector k, is the phonon energy in mode  

and the  signs refer to phonon emission and absorption, respectively.  is the 

matrix element describing the EPI, ( , )el Q   is the dielectric function contribution from 

the 2D electron gas in the semiconducting channel, given by 

( , )el Qv P Q    ,          (4-6) 

where 22 /Qv e Q , and ( , )P Q   is the polarization. The Boltzmann Equation is solved 

for the non-equilibrium distribution function, from which an electron lifetime, ( )k  , is 

extracted. The mobility is subsequently given by 

20

0
( ) ( )

3

fe
g d

n
     


              (4-7) 

M
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where  is the carrier velocity, ( )g   is the density of states, and n is the electron 

density. 

 

4.3.2 Plasmonic mobility enhancement in GaAs and MoS2 

The calculated room temperature mobility, meta , for a 1 nm thick 2D GaAs layer near the 

plasmonic structures is shown in Figure 4-3 as a function of the distance from the center 

of the conducting layer to the metal (h'=h+d/2) for an electron concentration of 1011 cm-2 

and for different values of the plasmonic enhancement factor  
p
2 /

0
2  (see Appendix 

A). This mobility is scaled by that for the 2D electron gas without the plasmonic structure, 

0 , at the same electron density. As h' decreases, remarkably large mobility enhancements 

are achieved with increasing . These large enhancements reflect the increasingly strong 

screening from the plasmonic structure as it approaches the GaAs layer. Increasing the 

carrier density from 1011 cm-2 to 1012 cm-2 reduces the relative enhancement, but this 

reflects mainly the increase in the mobility of the 2D layer without the plasmonic structure 

resulting from the free carrier screening: The absolute mobilities for small h and large  

are relatively insensitive to the electron density. Also, there is little change in the mobility 

for the GaAs layer when the temperature is increased above 300K. Similar qualitative 

behavior is seen for a GaN structure (Figure 4-4) and for an MoS2 monolayer (Figure 4-5), 

with mobility enhancements of over an order of magnitude found for small h and large .  
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Figure 4-3. Mobility enhancement in GaAs structure. Mobility of a 1 nm thick GaAs 

layer, meta , with electron density of 1011 cm-2 at 300K near a 2D plasmonic structure as a 

function the distance from the center of the layer h'=h+d/2. 0  is the mobility calculated 

for the same GaAs layer but without the plasmonic structure. Results are shown for four 

different plasmonic enhancement factors:  = 5 (black curve),  =10 (green curve),  =15 

(blue curve) and  = 30 (red curve), as defined in the text.  Dotted blue curve is for the 

simple model described in the text with  = 15 (see Ref.[9]). Taken from Ref. [1]. 
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Figure 4-4. Mobility enhancement in GaN structure.  Scaled room temperature mobility 

of a 1 nm thick GaN 2DEG layer with electron density of 1011 cm-2 as a function of the 

distance from a 2D plasmonic structure, as in Figure 4-2. Black, green, blue and red curves 

are for =5, 10, 15 and 30, respectively. Taken from Ref. [1]. 
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Figure 4-5. Mobility enhancement in MoS2 structure. Scaled room temperature mobility 

of a monolayer of MoS2 with electron density of 1011 cm-2 as a function of the distance 

away from a 2D plasmonic structure, as in Figure 4-2 and 3. Black, green, blue and red 

curves are for =5, 10, 15 and 30. Taken from Ref. [1]. 
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4.4 Summary 

In conclusion, very strong mobility enhancement (by a factor of 30 to 100), and the 

corresponding reduction in Joule heating, is obtained at 1nm distance between 2DEG and 

plasmonic structure for all cases. It is important to note, that such a small (1nm) spacing is 

currently achievable with industrial processes. Also, in all cases this enhancement decays 

rapidly as the plasmonic structure is moved away from the 2DEG, with negligible effect 

beyond 10 nm. In all cases, the plasmonic resonance frequency is chosen to be well above 

the relevant phonon frequencies.  
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Chapter 5. Summary 

	
In conclusion, we have presented studies on electromagnetic responses of plasmonic 

structures, including the following aspects: (1) enhanced topologically protected edge 

states of electromagnetic waves in the visible range in ENZ gyroelectric metamaterials; (2) 

high k composite materials in low frequency with plasmonic structures; and (3) engineering 

electron-phonon interactions with metamaterial plasmonic structures. These works show 

the broad range of applications of plasmonic metamaterials in both photonic and phonon 

systems. These concepts can potentially be applied to modify the Tc of BCS 

superconductors such as Al, Pd, or MgB2 via tailoring the electron-phonon interactions. 

Plasmonic structures can also create channels to utilize the hot electron energy in 

semiconductor solar cells. The multi-exciton generation effect, which is vanishingly small 

effect in bulk materials, can be significantly enhanced through plasmonic structures to 

make solar cells with efficiencies exceeding the Shockley-Queisser limit. 
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Appendix A. Topologically protected photonic edge states in the visible in plasmo-

gyroelectric metamaterials 
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Appendix B. Engineering low-frequency dielectric function with metamaterial 

plasmonic structures 
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ABSTRACT 

The interaction between electrons and phonons governs the intrinsic current flow and 

resulting heat generation in semiconductors. Increasing power densities in ever-shrinking 

microelectronics present significant challenges to continued technological advancement. 

We show that large reductions in the strength of the interaction between electrons and 

phonons in polar semiconductors can be achieved by exploiting strong "off-resonance" 

screening from two-dimensional (2D) plasmonic arrays embedded in a nearby insulating 

layer. By judicious design of the plasmonic layers, remarkably large enhancements of the 

carrier mobilities and corresponding reductions in joule heating and operating voltage are 

possible.  Examples for GaAs, GaN and MoS2 based structures are given. Experimental 

verification of these predicted behaviors could lead to significant improvements in the 

performance of microelectronic devices. 

Keywords: electron-phonon interaction, mobility, semiconductors, plasmonics, 

metamaterials, transport 
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1. Introduction 

The interaction between electrons and phonons is ubiquitous in condensed matter physics 

[1, 2]. For example, it governs the onset of conventional superconductivity, and it limits 

carrier and heat transport in metals and semiconductors. Since the electron-phonon 

interaction (EPI) is fixed by material-specific properties such as electron band structure, 

phonon dispersions, and dielectric properties, tailoring the strength of the EPI is 

challenging. One way to accomplish this is through screening. However, for the moderate 

carrier densities typically occurring in doped semiconductors, the EPI remains strong and 

is a dominant scattering mechanism limiting the mobility in technologically important 

semiconductors such as GaAs, GaN MoS2. Strong screening of the EPI such as what 

occurs in metals is not possible in semiconductors since such high carrier densities are 

not achievable and would in any case destroy the functioning of electronic devices. At the 

same time, as device sizes shrink and device failure from increased thermal loads become 

an increasingly challenging problem to overcome, the ability to increase carrier mobilities 

and reduce Joule heating is highly desirable. 

Recent work has pointed out the strategy of enhancing mobility in 2D conducting layers 

by changing the dielectric environment [3, 4]. This was accomplished through insertion 

of adjacent materials with high dielectric constants. However, enhancement is achieved 

only when carrier interactions with ionized impurities are the dominant scattering 

mechanism. For clean samples where transport is controlled by electron-phonon 

scattering, it was shown that insertion of high dielectrics actually reduces mobility [4]. 

For next-generation devices, where high-quality samples can be fabricated with low 
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concentrations of charged defects, alternative schemes will be needed to improve device 

performance. 

Here we propose a different approach based on the use of metal plasmonic structures to 

significantly weaken the EPI in polar semiconductors. Below, we present transport and 

electromagnetic response calculations demonstrating that large increases in mobility and 

reductions in Joule heating are possible in such structures, with specific examples given 

for GaAs, GaN, and MoS2-based transistor devices.  

The idea is to achieve enhanced carrier screening from a two-dimensional array of 

metallic plasmonic structures embedded in an insulating layer arranged near a region of 

current flow in a neighboring semiconductor material. The 2D plasmonic structures act as 

resonators whose resonant frequencies and oscillator strengths can be tuned by the 

geometry and arrangement of the structures. Engineering the plasmonic resonance 

frequencies to lie well above those of the phonons minimizes their thermal excitation as 

well as their coupling to polar phonons and plasmons from the electron gas in the 

semiconductor layer. Then, tailoring the resonances themselves to be strong gives a large 

non-resonant tail in the effective dielectric function of the plasmonic structure that 

provides significantly enhanced dynamic screening of the electron-phonon interaction 

compared to that from the background dielectric constant of the semiconductor. 

2. Results 

2.1 Effective dielectric function.  

The top left and right diagrams in Figure 1a show schematics of an envisioned integrated 

circuit and high mobility field-effect transistor, with plasmonic metallic structures (pink) 

embedded in a dielectric substrate (yellow). A subsequent magnification (Figure 1b) 
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shows the 2D homogeneity of the interaction region: electrons moving in the planar 

channel directly above the plasmonic structure experience essentially a constant dielectric 

environment, apart from the narrow gaps between the metal units. These gap regions can 

be minimized to increase the plasmonic shielding and improve the overall uniformity of 

the structure. The in-plane uniformity of the plasmonic structure allows for an effective 

medium dielectric treatment of the electron-phonon scattering process. The basic physics 

can be described approximately as follows. The propagating phonon waves in a polar 

medium scatter electrons in the channel. The scattering process is subject to screening 

effects as described by a dielectric response [5]. To calculate the dielectric function 

produced by the plasmonic structure, one could simply consider charges induced on the 

surface of the plasmonic structure by a propagating phonon wave. Using a Fresnel optics 

analysis, the field of the reflected wave from these induced interface charges, which can 

be considered a polarization field produced by the plasmonic structure, has the 

approximate form at the location of the 2DEG: 

   (1) 

where  is the field of the incoming phonon wave impinging on the metal 

surface, and 2 2 2/ref
zq n c Q iQ   , where n is the refractive index of the plasmonic 

structure, and Q is the in-plane component of . The distance, ' / 2h h d   is that 

from the plasmonic structure to the center of the 2DEG of thickness, d, as shown in 

Figure 1. With the polarization field given by Eq. 1, the effective dielectric function at the 

2D electron gas shows an exponential form (See Methods): 


eff

(Q,)   (Q)eQh  1

2


m
(Q,)eQh  2 eQh       (2) 
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Where ( , )m Q   is the dielectric function of the plasmonic structure and   that of the 

semiconductor/insulator dielectric medium. The quantity α(Q) is chosen so that Eq. 2 

satisfies the required h 0 limit of a simple average of polarization contributions from 

neighboring regions:  1
(0, ) (0, )

2eff m       and it recovers the h limit i.e. 

 . Equation 2 is quite general, and can be derived by a variety of methods. Our Finite 

Difference Time Domain (FDTD) simulations, described in the Methods section confirm 

the evanescent nature of the reflected field as given in Equation 1. 

For the cases considered in the present work, we approximate the 2D plasmonic structure 

dielectric function by its long wavelength limit: ( , ) (0, )m mQ    . The justification for 

this approximation is given in the Methods section and Ref. [6]. Then, (0, )m   in turn 

can be extracted from a plane wave analysis and FDTD simulations of the metallic 

structure in the retarded limit [7-9]. 

Figure 2 shows an example of the real and imaginary parts of the dielectric function for a 

square-ring metallic structure made of gold (Fig. 1c) obtained from FDTD simulations 

using the CST software [7-9]. A GaN dielectric background is taken. There are several 

features of this 2D plasmonic dielectric function, (0, )m  , worth noting: (i) Unlike the 

longitudinal plasmons in a continuous metal, the confined plasmons of the 2D metallic 

structures have a sharp resonance; (ii) The frequency and strength of this resonance can 

be tuned by adjusting the shapes and sizes of these structures; (iii) Structure designs for 

which the plasmonic resonance is strong and with frequency well above the phonon 

frequency range to minimize plasmon-phonon mode coupling but still close enough to 
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give a large off-resonance tail in the frequency range of the phonon modes can weaken 

significantly the EPI, as will be discussed below. 

2.2 Electron Transport and Carrier Screening. 

We consider carrier transport to occur in a thin conducting channel in a semiconductor 

near the interface with an insulating layer in which the plasmonic structure is embedded, 

as shown in Figure 1. The total dielectric function can be approximated by 


tot

(Q,) 
el

(Q,)
ph

(Q,)
eff

(Q,)       (3) 

The first term on the right-hand side of Eq. 3 is the dielectric function of the electron gas 

in the semiconductor: ( , )el Qv P Q    , where 22 /Qv e Q  and ( , )P Q   is the 

polarization of the 2D electron gas. We take this screening to be described by a 2D 

Thomas-Fermi model:  ( ) 1 /el TFQ Q Q   , where TFQ  is the 2D Thomas-Fermi 

screening wave vector. The second term is for the optic phonons [5]: 

   2 2 2 2/ph LO TO TO        . For simplicity, we have assumed dispersionless 

longitudinal optic (LO) and transverse optic (TO) phonons having frequencies LO  and 

TO , respectively. The third term gives the plasmonic structure contribution from Eq. 2. It 

can be combined with the first term into an effective electronic dielectric function: 


el
eff (Q,) 

el
(Q,)

eff
(Q,) . 

The plasmonic structure provides dynamic screening of the EPI in the range of 

frequencies of the phonon field i.e. 0  
LO

. Even though this frequency range is far 

below the resonant frequency of the plasmonic structure, the electrons on the surface of 

the metallic plasmonic structure are still highly polarizable, as seen by the significant 
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enhancement of the real part of the dielectric function, 
m

(0,), for  
LO

 in Fig. 2 

compared to the background dielectric constant of the semiconductor, , which 

normally screens the EPI. The example for GaN in Fig. 2 shows that 
m

(0,) is over ten 

times that of   5.35 for bulk GaN. 

The electron-phonon scattering probability can be written in the Random Phase 

approximation (RPA) as [5]: 

     (4) 

where  is the matrix element describing the EPI, which is screened by the 

electronic part of the dielectric function, 
el
eff (Q,) ; k is the electron energy in the 

semiconductor layer with 2D wave vector k,  is the phonon energy in mode  and the 

 signs refer to phonon emission and absorption, respectively (See SI Appendix, 

Supplementary Note 2). The electron-phonon scattering rates are sums of Selph (k,k')

 
across the phonon frequency range. The increase of the 

m
(0,) throughout this range 

reduces electron scattering and gives a corresponding enhancement to mobilities.  

Since the dielectric function of the plasmonic metallic structure hardly changes in the 

frequency range of the phonons, to good approximation, we can take it to be a constant in 

this frequency range. For convenience, we take this constant to be the zero-frequency 

value, labeling this value as  . Then the effective electronic dielectric function can be 

written: 

M
elph

(k,k ')
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
el
eff (Q, , h )  

Q
TF

Q
 1

2
2 eQ h  eQ h 









     (5) 

where /    defines a screening enhancement factor. If the 2D plasmonic structure 

is far from the electron gas ( h ), the Thomas-Fermi dielectric function is recovered. 

If the plasmonic structure is sufficiently close to the conducting channel that 1Qh  , 

then ( , ) [(1 ) / 2 / ]eff
el TFQ Q Q      . 

This is the central result of the present work. It shows that the screening of the polar 

interaction between carriers and phonons is controlled by the oscillator strength and 

resonance frequency of the plasmonic structures and the distance of these structures from 

the conducting channel. Engineering  to be large and Qh' to be small can significantly 

enhance carrier mobilities and reduce joule heating.  

2.3 Mobility enhancement. 

The carrier mobility for 2D electron transport from an applied DC electric field parallel to 

the layer is calculated by solving the Boltzmann transport equation [10-13]. In the model 

calculations, carriers in the polar semiconductor are scattered by phonons through 

deformation potential, piezoelectric and Frölich interactions. [1, 2, 10, 11]. Expressions 

for the scattering rates have been given in previous publications [14, 15] and they along 

with the Boltzmann equation solution and mobility expression are included in the SI 

Appendix, Supplementary Note 2. Using this model, we find room temperature bulk 

mobilities for low carrier concentration (~1013cm-3) of 8580 cm2V-1s-1 1870 cm2V-1s-1 for 

GaAs and GaN, respectively, and 2D mobility of 450 cm2V-1s-1, for an MoS2 layer, which 

are in good agreement with previously calculated values [15-17]. Parameters used are 

given in the SI Appendix, Supplementary Note 3. The measured room temperature GaAs 
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mobilities [16, 18-20] are close to the one calculated here, while for GaN, the calculated 

values are about 25% smaller than measured [21] possibly due to impurities and sample 

defects whose effect is not included in the calculations. Measured mobilities for MoS2 

monolayers are lower than calculated, again possibly because of the strong scattering 

from interface defects [15, 22]. 

The calculated room temperature mobilities, for a 1 nm thick quasi-2D GaAs layer near 

the metallic structures are shown in Figure 3 as a function of the distance from the center 

of the conducting layer to the metal, h', for an electron concentration of 1011 cm-2 and for 

different values of screening enhancement factor, . This mobility is scaled by that for 

the 2D electron gas without the metallic structure, at the same concentration. Scattering 

by ionized impurities and sample defects is not included. As h' decreases, remarkably 

large mobility enhancements are achieved with increasing . Specifically, mobility 

enhancements of 5, 14, 28 and 96 are achieved at h' =1 nm for =5, 10, 15 and 30, 

respectively. These large enhancements reflect the increasingly strong screening from the 

plasmonic structure as it approaches the GaAs layer. Increasing the carrier density from 

1011 cm-2 to 1012 cm-2 reduces the relative enhancement, but this reflects mainly the 

increase in the mobility of the 2D layer without the plasmonic structure resulting from the 

free carrier (Thomas-Fermi) screening: The absolute mobilities for small h and large  

are relatively insensitive to the electron density. Also, there is little change in the mobility 

for the GaAs layer when the temperature is increased above 300K. Similar qualitative 

behavior is seen for a GaN structure (Figure 4) and for an MoS2 monolayer (Figure 5), 

with mobility enhancements of over an order of magnitude found for small h and large . 
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The screening of the EPI decays rapidly as the plasmonic structure is moved away from 

the 2DEG, with no mobility enhancement beyond 10 nm. Furthermore, the mobility 

enhancement in GaAs is larger than that in GaN. These features can be understood as 

follows. The deformation potential and piezoelectric interactions between carriers and 

acoustic phonons are a nearly elastic process [1, 2]. Then, the in-plane phonon wave 

vector magnitude, 2 (1 cos )Q k    where  is the angle between incident and final 

electron wave vectors of magnitude , with   being the electron energy. 

Taking Bk T   as a rough scaling of the average carrier energy, the angle-averaged 

phonon wave vector 24 * /ave BQ m k T  , which gives Qave = 0.3 nm-1 (0.5 nm-1) for 

GaAs (GaN). When a plasmonic structure with large  is near the 2DEG, then the 

effective electronic dielectric function, from Eq. 5, becomes exp( ) / 2eff
el aveQ h    . It is 

straightforward to show that the mobility including the plasmonic structure will then be 

scaled by the square of this factor: 2 exp( 2 ) / 4aveQ h  . Thus, the decay length of the 

mobility enhancement from its maximum value of  2 / 4 is ~1/Qave, which is increased 

for small effective mass (e.g. GaAs) and for low temperature. We note that the Qave 

calculated for the inelastic scattering for the Frölich interaction has similar values as 

those calculated above for acoustic phonon scattering. Using this scaling, the room 

temperature mobility enhancement for GaAs with electron density of 1011 cm-2 and =15 

is plotted as the dotted blue curve in Fig. 3, and it shows good agreement with that for the 

full calculation (solid blue curve) for small distances. 

3. Discussion 

3.1 Reduction of Joule heating and device operating voltage. 
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The power generated from Joule heating is I2R. Resistance, R, is inversely proportional to 

the mobility. For a constant current, I, through an electronic device, the large predicted 

mobility enhancements shown for GaAs, GaN and MoS2 translate directly into 

corresponding reductions in Joule heating. Furthermore, since I is proportional to 

mobility, the mobility enhancement assures that a given I can be achieved for a 

significantly reduced driving voltage.  

3.2 Structure design considerations. 

To maximize mobility enhancement, structures should be designed with a strong 

plasmonic resonance to give large off-resonance dielectric response in the phonon 

frequency range. At the same time, keeping the plasmonic resonance frequency well 

above the phonon frequency range minimizes plasmon-phonon mode coupling. These 

considerations and large metal coverage motivated the choice of the specific structure and 

dimensions shown in Fig. 1c for the case of GaN. The effective background dielectric 

constant in the energy range of the GaN phonons (< 92 meV) ranges from 65 to 75. The 

corresponding 2D screening enhancement factors   are between 12 and 14 for 

background dielectric constant of GaN,   =5.35, consistent with the middle curves in 

Figures 3, 4 and 5. We note that since a strong plasmonic resonance is essential to 

achieve large low frequency dielectric response, the required structures necessarily will 

have large quality factors. Furthermore, placement of the metallic structures near the 

semiconductor and strong confinement of the electron gas are also desirable to optimize 

the screening of the EPI. 

To estimate the effect of the coupling of the plasmonic mode at frequency 0  and the LO 

phonon mode for the GaN example, we have calculated the shifted frequencies of due to 
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coupling using analytical expressions [23, 24]. These are:  0


 and 

 LO
 We find  3 meV (i.e. the plasmonic resonance is shifted up by 

around 1%) while  12 meV (i.e. the LO phonon resonance shifts down by ~13%). 

Incorporating the lower frequency of the coupled LO phonon mode into the transport 

calculations gives only a slight increase in the calculated mobility (~5%) when the 

plasmonic structure is close to the electron gas of the semiconductor, confirming the 

weak coupling. It has been noted previously that scattering between carriers and 

plasmons should note degrade an electric current [24, 25] since quasi-momentum is 

conserved in the scattering processes. Therefore, the mobility should not be affected by 

this scattering. In real devices carriers also scatter from impurities and defects such as 

occur at interfaces. Minimizing the presence of such defects would optimize the predicted 

mobility enhancement and corresponding reduction in Joule heating.  

The physical size required for the metallic units of the plasmonic structure is dictated by 

the phonon frequency range. The plasmonic resonance shown in Fig. 2 in the range of 

hundreds of meV was achieved here using the units in the micron size range. Increasing 

(decreasing) the sizes of these units will lower (raise) the resonance frequency. Typical 

channel lengths in electronic devices are a few microns [26] a few times larger than the 

1m size of the 2D plasmonic unit shown in Figure 1c. With shrinking device sizes, the 

conducting channels could become smaller than 1m. Placing the 2D plasmonic structure 

on the opposite side from the gate, source and drain allows reduction of the channel 

length while still maintaining the strong screening effect and corresponding mobility 

enhancement. However, fabrication limitations may ultimately require different 
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placement. An alternative arrangement with metallic units embedded in the spacer layer 

is shown in Fig. S2 of the SI Appendix, Supplementary Note 4. 

3.3 Conclusion 

From transport and electromagnetic response calculations for GaAs, GaN and MoS2 

systems, we have demonstrated that screening of the electron-phonon interaction in polar 

semiconductor layers by 2D metallic plasmonic structures can lead to exceptionally large 

enhancements in carrier mobility and corresponding reduction in Joule heating. Further 

optimization of the design of the metallic structures beyond that presented here as well as 

volumetric enhancements such as might be obtained in 1D device geometries could yield 

even larger mobility increases, with corresponding improvements in device performance.  

4. Methods 

4.1 Exponential	screening	of	the	plasmonic	field	and	FDTD	simulations.	

In	the	scattering	calculations	we	employed	Eq.	(1)	to	obtain	the	effective	dielectric	

function	in	the	2DEG	from	the	plasmonic	structure.	The	exponential	behavior	in	Eq.	

1	is	expected	from	Fresnel	optics,	which	considers	any	system	as	a	collection	of	

uniform	regions,	with	fields	properly	matching	at	each	interface.	In	this	spirit,	the	

electric	field	in	the	uniform	region	outside	the	metal‐semiconductor	interface	has	

the	following	spatial	dependency	 .	Since	typical	values	of	the	

wave	vectors	assure	that	Q2  2n / c ,	the	evanescent	behavior,	as	included	in	Eq.	

(1)	of	the	main	text	emerges,	since	then	qz
  2n / c2 Q2 iQ .	

We have employed FDTD (finite difference time domain) simulations to confirm this 

evanescent field decay. The method solves the partial differential Maxwell's equations to 
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obtain the electromagnetic response to pre-defined boundary conditions. Using the 

central-difference approximation, the Maxwell’s equations are discretized in both space 

and time [27, 28]. We have employed the commercial FDTD software package made by 

CST (computer simulation technology) [9]. We simulated a response of the flat metal–

dielectric interface to an oscillating dipole placed in the semiconductor (frequency = 10 

THz, dipole of length l = 50 nm, and diameter d = 11 nm) a distance h = 10 nm away 

from the interface (see Figure S1 in the SI Apppendix, Supplementary Note 1). The metal 

(gold) was modeled by the Drude response with conductivity σ = 4×107 S/m [29], and the 

permittivity of the semiconductor (GaN) was set to 9.5 [30]. A plot of the absolute 

amplitudes of the electric fields plotted vs distance is shown in the Supplementary 

section. In fact, the degree of the decay is exactly as expected. The dipole produces a 

wave with a wavelength roughly 2l = 100 nm, and thus the e-fold reduction of the 

evanescent field occurs at 1/Q = l/π = 16 nm, which indeed is roughly the case shown in 

the (red curve of the semiconductor side). This confirms the form of Eq. (1). The 

exponential decay is general and holds for the larger Qave values given above. 

4.2 Justification	for	using	long	wavelength	dielectric	response	for	plasmonic	

structures.	

For	the	cases	considered	in	the	present	work,	it	is	helpful	to	approximate	the	2D	

plasmonic	structure	dielectric	function	 ( , ) (0, )m mQ    .	Then,	
m

(0,) 	in	turn	

can	be	extracted	from	a	plane	wave	analysis	and	FDTD	simulations	of	the	metallic	

structure	in	the	retarded	limit	[7‐9]	and	fit	to	a	Lorentzian	form	


m

(0,) 
b



p
2


0
2 (  i )

	 	 	 	 	 	 	 (6)	
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where	
0
	is	the	plasmonic	structure	resonance,	

p
is	the	corresponding	strength	of	

that	resonance,		is	a	broadening	parameter,	and	
b
is	the	background	dielectric	

constant	from	the	bound	electrons	metals,	all	obtained	from	the	fit.	In principle, 


m

(0,) can be analytically continued into the corresponding non-local form 
m

(Q,). 

This analytical continuation can be accomplished [6] by renormalization of 
0
 as follows 


m

(q,) 
b



p
2


0
2 A(q)(  i )

       (7) 

where A(q) 1 aqbq2, where q is the isotropic wave vector amplitude. It was shown in 

Ref. 7, that for most plasmonic metals A(q) remains of order one, even for q approaching 

the Brillouin zone. Thus, to zeroth order one can ignore the Q-dependency of 
m

(Q,). 
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Fig. 1. (a) Schematic of a possible integrated circuit (top left) and field effect transistor (top 

right), with plasmonic metallic structure fragments (pink) shown embedded in the substrate 

dielectric (yellow), (b) The electron-phonon interaction region, as described in text. Green region 

represents the 2D electron gas separated from a unit in the plasmonic structure by a distance, h. 

Simulated electric field .vs. distance away from the plasmonic unit is indicated by the red curve to 

the right; (c) A gold plasmonic structure unit with 1 micron square bar unit cell. 
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Fig. 2. The extracted real and imaginary parts of the dielectric function, (0, )m  , for a gold 

plasmonic structure with the 1m square-bar unit cell shown in Fig. 1c using a GaN dielectric as 

the background material, modeled in FDTD simulations.  Large dielectric enhancement in the 

frequency range of the GaN phonons (below vertical dashed line) occurs compared to the 

background dielectric constant of GaN (  5.35, horizontal dashed line). 
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Fig. 3. Room temperature mobility of a 1 nm thick GaAs layer near a 2D metallic plasmonic 

structure as a function the distance from the center of the layer (h'=h+d/2).   A 2D electron 

density of 1011 cm-2 is taken.  This mobility is scaled by the mobility calculated for the same 

GaAs layer but without the metallic structure. Results are shown for four different screening 

enhancement factors, =5 (black curve), =10 (green curve), =15 (blue curve) and =30 (red 

curve), as defined in the text.  Dotted blue curve is for the approximation described in the text 

with =15. 
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Fig. 4. Scaled room temperature mobility of a 1 nm thick GaN 2DEG layer with electron density 

of 1011 cm-2 as a function of the distance from a 2D periodic metallic structure, as in Figure 3. 

Black, green, blue and red curves are for =5, 10, 15 and 30, respectively. 
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Fig. 5. Scaled room temperature mobility of a monolayer of MoS2 with electron density 

of 1011 cm-2 as a function of the distance away from the 2D plasmonic structure of Fig. 1c 

in the main text, as in Figures 2 and 3. Black, green, blue and red curves are for screening 

enhancement factor (defined in main text), =5, 10, 15 and 30. 
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Appendix D. Controlling BCS superconductivity with plasmonic metamaterials 

D.1 Dielectric formulation of the BCS theory 

In 1973, Kirzhnits et al proposed reformulation of the BCS theory of superconductivity in 

terms of the effective dielectric response [1]. They demonstrated, that the phonon mediated 

electron-electron interaction in a BCS superconductor, which controls the Cooper pairing, 

can be expressed in the form of an effective Coulomb potential: 

ܸሺݍറ, ߱ሻ ൌ
ସగ௘మ

௤మఌ౛౜౜ሺ௤ሬറ,ఠሻ
ൌ

௏೎
ఌ౛౜౜ሺ௤ሬറ,ఠሻ

,       (D-1) 

where ௖ܸ ≡ ଶ݁ߨ4 ⁄ଶݍ  is the Fourier-transformed Coulomb potential in vacuum and 

,റݍ୤୤ሺୣߝ ߱ሻ is the dielectric response function of the superconductor treated as an effective 

medium. When the superconducting coherence length is at least an order of magnitude 

larger than the unit cell of the metamaterial, such a macroscopic electrodynamics 

description is considered valid. As will be demonstrated later, this requirement gives an 

upper bound of the unit cell size when designing plasmonic metamaterials for this purpose. 

The critical temperature of a superconductor in the weak coupling limit is given by 

Kirzhnits et al as: 

௖ܶ ൌ ଵି݁	ߠ ఒ౛౜౜⁄ 	,         (D-2) 

where ߠ is the characteristic temperature for a bosonic mode mediating electron pairing (a 

constant), and ୣߣ୤୤ is the dimensionless coupling constant directed proportional to ܸሺݍറ, ߱ሻ 

and density of states ߥ: 
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	.       (D-3) 

We can see from Equations D-1 to D-3 that when ୣߝ୤୤ is reduced, the effective Coulomb 

potential is increased, thus the coupling constant ୣߣ୤୤ is increased, eventually leading to the 

increase in the critical temperature ௖ܶ. 
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In recent years, Smolyaninova et al [2-3] have explored the idea of increasing ௖ܶ  by 

structured superconducting materials to achieve epsilon-near-zero (ENZ) in certain 

frequency ranges (i.e., setting: ୣߝ୤୤ ൌ 0). They have demonstrated an increment of ௖ܶ for 

Al from 1.2 K to 3.9 K using an Al/Al2O3 core-shell structure to achieve ENZ. They have 

tried several superconducting systems over the years, but the above mentioned Al/Al2O3 

core-shell system gives the largest ௖ܶ increment so far. 

 

D.2 Designing structures matching phonon spectra of BCS superconductors  

Using properly designed plasmonic metamaterials, we can engineer on-demand ୣߝ୤୤. On 

the other hand, since the electron-plasmon scattering rate is higher than the plasmon-

phonon and plasmon-photon scattering rates, this effect could be used to control phonon 

scattering in various electron systems, including solar cells or superconductors [4]. The 

goal of this work thus includes the following two aspects: first, for selected 

superconductors we would like to design plasmonic metamaterials with optical responses 

matching the corresponding electron-photon spectra, so as to maximize the steering effect 

of the phonon scattering; second, in the vicinity of the plasmonic resonances, ensure 

epsilon-near-zero can be achieved to maximize the effective Coulomb potential (and thus 

the coupling constant). In the following section, we present several different designs with 

photon absorption spectra matching the electron-phonon scattering spectra of 

corresponding BCS superconductors. We will also give some expectations of experimental 

observations in the end of the next section. Throughout this chaper, CST MW Studio is 

used for simulating for all plasmonic metamaterial designs. 
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D.2.1 MIM absorber structures for strong field enhancement 

Metal-insulator-metal (MIM) is a well studied structure for achieving localized plasmonic 

resonances. Liu et al was the first to use such a structure to obtain metamaterial perfect 

absorbers [5]. Their MIM unit cell contains a cross shaped metal top layer, a continous 

metal bottom layer, and a dielectric (Al2O3) middle layer to separate the two metal layers. 

For chosen cross dimensions with correspondingly fine tuned dielectric layer thickness, 

near unity absorption is demonstrated at resonance frequency for perpendicularly incident 

light. At resonance, the plasmonic mode is localized in between the top and bottom metal 

layers, with electric field strongly enhanced around the top metal layer. 

An MIM archetecture is used for all the various designs in this section. The reason for 

chosing MIM as the general archetecture is the following: (1) At resonance, a localized 

surface plasmon is excited tightly around the top metal layer. This can potentially enhance 

the electron-plasmon coupling efficiency, thus enlarge the electron-plasmon scattering 

rate. (2) Since localized SPP modes are responsible for single peaks of near-unity 

absorption, complicated absorption spectrum can be designed by composition of structures 

with various linear dimensions. 

As a first attempt, we have chosen lead (Pb) as the superconductor. The electron-phonon 

scattering spectrum (the Eliashberg spectrum) of Pb is given in Figure D-2(b) [6]. Since 

there are two distinct peaks in this target spectrum, we will need to use a structure with 

composite unit cells to achieve this. We first design an MIM structure with a single 

resonance peak matching the lower resonance peak of the Eliashberg spectrum (centering 

at ~ 4 meV). Such a design is shown in Figure D-1 (a)-(c), with all dimensions given in the 

figure description, and the absorption spectrum given in Figure D-1(d). In the next step we 
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constructure a composite unit cell including two MIM unit cells with different top resonator 

sizes, as shown in Figure D-2(a). A simple addition of the two unit cells generates an 

absorption spectrum with two near-unity peaks (Figure D-2(c), black line) matching 

exactly the two peaks of the Eliashberg spectrum of Pb. To achieve connectivity of the 

whole top layer for the ease of measurement, connecting wires are added to the composite 

unit cell. The addition of wires does not shift the resonance position of the absorption 

spectrum, but slightly lowers the absorption peak at higher frequency (Figure D-2(c), red 

line).  
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Figure D-1. Design of an MIM plasmonic metamaterial structure with a well defined 

local resonance. (a) Top view of the structure, with (unit: μm) a = 60, b = 50, l = 15, w = 

5, thickness of both metal (Pb) layers = 1, and thickness of dielectric (SiO2) layer = 6. (b) 

Perspective view of the structure. (c) |E| field profile of the unitcell at resonance frequency. 

(d) Absorption spectrum of the designed MIM structure. 
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Figure D-2. MIM plasmonic metamaterial design matching the electron-phonon 

spectrum of Pb. (a) The unit cell consisting two copies of resonators with different sizes 

to achieve two resonances, with (right) and without (left) connecting wires. (b) Electron-

phonon scattering spectrum of Pb [10]. (c) Absorption spectra generated by the unit cells 

shown in (a). 
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D.2.2 Babinet MIM structure designs 

As can be seen from the previous section, although the isolated top element scheme can 

achieve spectrum match by composite unit cells, it suffers from the connnectivity problem 

which requires additional connecting wires to be added. The additional connecting wires 

can alter the original absorption spectrum, making the design less predictable. An 

alternative approach is to start the design with the Babinet structure of the top metal 

element. The name “Babinet structure“ originates from Babinet’s principle. In 1837, 

French physicist Jacques Babinet formulated the following principle [7]: the diffraction 

pattern from an opaque body is identical to that from a hole of the same size and shape 

except for the overall forward beam intensity. This principle originates from the duality 

between the electric and magnetic fields. In our case, exchanging the metal and dielectric 

parts in the top layer gives the Babinet of the original structure. Note that the Babinet 

structure of the isolated resonator in the top layer is automatically a connected network, 

which naturally solves the connectivity problem. 

With this in mind, we start tuning a structure using the Babinet scheme. Figure D-3 shows 

such a Babinet structure with its absorption spectrum matching the Eliashberg spectrum of 

Pb. Each unit cell consists of the Babinet pattern of two opposing split ring resonators in 

the top metal layer. Note that for this structure, the absorption peak at higher frequency is 

a higher order mode, and thus has a smaller coupling efficiency (leading to a smaller 

absorption peak height). 

As discussed in earlier section, superconducting coherent length places an upper limit on 

the linear sizes of the plasmonic metamaterial unit cells. Although the previous two design 

proposals can generate good matching spectra, they both might suffer from over sized unit 
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cells. In the following, we discuss the possibility of meeting the coherent length limit. Most 

superconductors have their Eliashberg spectra peaked in a frequency range of 1 to 100 

meV, with their superconducting coherent length in the range of between 100 to 1000 nm. 

We also know that for an MIM structure at resonance, the electric fields are mainly focused 

in the vicinity of the top metal pattern. This may indicate that as long as the top metal 

pattern has one linear dimension smaller than the coherent length, the effective medium 

approximation can still be treated as valid. Although we cannot design an MIM structure 

to resonate in the meV frequency range with unit cell size on the order of 100 nm, we can 

at least design an MIM structure with the top metal pattern composed solely of ultra-thin 

connected metal wires with their thickness below the superconducting coherent length 

limit. Figure D-4 shows such a thin-wire Babinet MIM design. The top metal layer is 

composed of connected metal wires with square cross-sections of 50 x 50 nm2, well below 

the 100 nm superconducting coherent length limit. The intermediate dielectric layer is 

chosen to be SU8 epoxy. We can see that for a unit cell size tuned from 20 to 38 μm, the 

resonant absorption peak of this MIM structure sweeps from 60 to 80 meV. This range is 

in good agreement with the Eliashberg spectrum of MgB2 superconductor [8-9]. Figure D-

4 thus gives a good proposal for potentially enhancing the Tc of MgB2 superconductor. 
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Figure D-3. Babinet MIM structure for matching Eliashberg spectrum of Pb. (a-c) 

Top view (a), perspective view (b) and side view (c) of the Babinet MIM structure. 

Dimensions (unit: μm): a = 125, b = 90, w = 10, c = 25, metal thickness = 1, dielectric 

thickness = 5. The structure is the Babinet of a double split ring resonator. (d) Absorption 

spectrum of the Babinet MIM structure. 

  



112	
	

 

 
Figure D-4. Babinet structure of thin connected frame. (a) Top view of the designed 

structure. Dimensions (unit: μm): w = 0.05, top metal (PEC) thickness = 0.05, dielectric 

(SU8) thickness = 1, bottom metal thickness = 0.5. (b) Absorption spectra at tuned unit cell 

size a.  
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D.2.3 Experimental expectations 

Experimental setup for measuring the above proposed Babinet MIM structures include the 

following: (1) Fabrication of an array of the Babinet MIM plasmonic metamaterials using 

nano-fabrication techniques including e-beam lithography and metal/dielectric 

evaporations. A larger than 10k by 10k array is desirable to minimize the edge effect. (2) 

Measure the absorption spectrum in the meV range using instrument such as FTIR with the 

correct light source. If the measured spectrum matches the designed spectrum, we can go 

to the next step. Otherwise, design should be adjusted and fabrications should be re-done. 

(3) Connecting the top layer (the Babinet layer) of the two metal layers with electrodes in 

a 4-probe scheme to measure the resistance of it. (4) Putting the whole device and 

measurement setup into a dilution fridge to measure the resistance of the top Babinet layer 

as the temperature drops continuously below the Tc of the top metal layer. If the Babinet 

MIM design worked successfully, we should see an increased Tc compared to the bulk Tc 

of the superconducting metal. 
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Appendix E. Other EM response designs using plasmonic metamaterials 

E.1 Realization of all optical states via electrical tuning of a two-element 

metasurface 

A 3-state tunable metasurface is demonstrated at X band (8 to 14 GHz), via electrical 

modulation of the capacitance of two varactor diodes within each unit cell. At a selected 

frequency (8.8 GHz), the optical state of the metasurface changes from absorptive to 

reflective then to transmissive under different applied voltages. The realization of this 3-

state tuning is explained by resonance frequency shifting and impedance matching of the 

metasurface, based on extracted S-parameters from measured reflectance and transmittance. 

An effective L-C circuit model of the metasurface is developed to verify the capacitive 

tuning nature of the device. Full wave finite difference time domain simulations show good 

agreement with the experimental results. This tunable metasurface shows all wave-matter 

interactions in one device at X-band. Our results expand the flexibility of tunable 

metasurfaces and suggest a new way to achieve high-speed spatial light modulation. 

Generally, when photons encounter a surface, the following processes thoroughly describe 

their interactions: the photon is absorbed (A) inside, is reflected (R) from, transmits (T) 

through, and is scattered from the surface, as well as the forming of surface waves along 

the surface. For homogeneous surfaces with sub-wavelength composite unit cells that do 

not support surface waves and have ignorable scattering, A, R, T give a complete 

description of their interactions with photons, as is the case for most surfaces of natural 

materials. Dynamical control of the response (A, R, T) of a surface to electromagnetic (EM) 

radiations has been a pursuit of scientists for long, with spatial light modulator (SLM) being 

a prominent example. SLMs are addressable devices with states of light-matter interactions 
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(A, R, T) controlled pixel by pixel. Conventional SLMs have been shown the abilities to 

modulate the amplitude or phase for one state [1-2]. What is yet to come is a device that 

can modulates among all the three fundamental states of light-matter interactions, i.e., high 

A, R and T, at the same frequency. This device can be treated as a generalized SLM and 

has numerous potential advantages in spectroscopic and imaging applications [3], 

including compressive sensing [4]. Here, based on metamaterials (MMs), we demonstrate 

a 3-state tunable metasurface working at around 9 GHz. 

MMs are artificial materials that can show on-demand EM properties by appropriate 

designs of composite structures. Since the first realization in the microwave range in year 

2000 [5], MMs have been applied to a wide range of fields, including MM perfect lenses 

[6], MM invisible cloaks [7], and MM perfect absorbers [8]. Recently, gradient-index 

metasurfaces have been shown to have the ability to arbitrarily manipulate EM wavefronts 

[9], promising an ultra-compact way to tweak EM waves. MMs are resonant structures that 

exhibit strong frequency selectivity. Thus, the desired EM functionalities are limited to 

certain frequencies for specific MM structures, generating a strong demand of MM tuning 

to expand the function frequency range for practical applications, but it also mean the large 

modulation depth can be achieved by MM modulators. By introducing active materials 

such as diodes [10], liquid crystals [11], semiconductors [12] and phase changing dielectric 

materials [13], recent researches have demonstrated the tuning of the MM resonance 

frequencies. Mechanical tuning of the MM property is also achieved by combining MM 

with MEMS structures [14]. Among these strategies, using diodes as the tuning knob for 

MMs can achieve the highest modulation speed via electrical tuning, and is more stable in 

fabrication thanks to the maturity in commercially available diodes. Using diodes as the 
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tuning component for MM is an ideal strategy for RF and microwave frequency below 

GHz due to the limited response time of diodes. Utilizing the ON and OFF states of diodes, 

switchable reflector–absorber is realized with diodes mounted inside one unit or between 

neighboring units [10]. By controlling the capacitance of varactor diodes via reverse bias, 

tunable MM absorber with high absorption peak tuning from 4.45 to 5.64 GHz is also 

reported [15]. These tunable metasurfaces are limited to modulate between high R and high 

A states mainly due to the necessity of a metal ground plane for diode mounting and voltage 

applying. So an ideal modulator will have expanded functional frequency to GHz such as 

K band (8 -12 GHz) and all states modulation. 

In this work, we demonstrate the achievement of a 3-state tunable metasurface working at 

around 9 GHz. The tuning design is based on the resonance properties of multiple split-

ring resonators (SRR). Inserted varactor diodes work as the controller of the capacitances 

in one unit cell.  

 

E.2 Designed structures achieving 3-states modulation 

E.2.1 Modulation of responses of metasurfaces with varactor diodes 

The response of the metasurface to the external EM wave can be described by its effective 

impedance z(ω) = (/μ)1/2. Without any modulation scheme, the resonance property is 

purely determined by the geometric parameters, which is the usual case of a metasurface, 

with an effective capacitance C0, inductance L0 and resistance R0, leading to resonance 

frequency
00

0
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1

CL
f


 . With an existing metasurface, if the total capacitance C or total 

inductance L can be modified by external controlled capacitors or inductors, the resonance 
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frequency will shift inversely as the increment of them. Varactor diode is a kind of PN 

junction with varying capacitance. The capacitance of a varactor diode can be controlled 

by the voltage over it up to GHz frequency range. Taking the model Skyworks SMV2019-

079LF as an example: its capacitance can be tuned from 2 to 0.2 pF with reverse voltage 

increasing from 0 to 20 V. The effective circuit parameters are listed in the datasheet of 

Skywork Solution Inc. The frequency dependent capacitance of varactor diodes can be 

written by formula: C(V) = α0/ (β + V) n, with α0 , β, n constants.  

Each unit cell of our tunable metasurface consists of two SRR elements along the EM wave 

propagation direction, with one varactor diode mounted in each SRR element. Tuning of 

the capacitance of the varactor diodes not only changes the effective capacitance in each 

individual element, but also tunes the interaction between the two elements, and thus 

further increases the tunability of the device. Applying external voltage will change the 

capacitance of the diodes and thus the impedance of each unit cell. The resonance 

frequency will be shifted as a result. By suitably designing the structure to achieve a large 

enough tuning range, we can get the overlap of high A, R and T at the same frequency (8.8 

GHz). We thus call this 3-state tunable metasurface the ART metasurface. 

 

E.2.2 Structure of metasurfaces with varactor diodes and simulation results 

Schematic cartoons in Figure E-1a & 1b reveal the design details of our ART metasurface. 

It is a 2-layer printed circuit board (PCB) structure with FR4 on bottom and structured Cu 

on top. All relevant parameters are defined in Figure E-1a & b. The thickness of the FR4 

and Cu are hdi = 1.55 mm and hCu = 17 μm. The unit cell is composed of a double ring 

resonator (as a single element) and a mirror of it (thus two elements). Varactor diodes are 
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mounted in the gaps of the double ring resonator. The 2 thick wires on the outer sides of 

the unit cell work as part of the resonator and the connecting wires for applying voltages 

to the diodes. The incident electric field is polarized along the thick wire with magnetic 

field perpendicular to the ring plane, as indicated by the white arrow in Figure E-1b. After 

the varactor diodes were mounted, great changes take place for the reflection and 

transmission spectra as shown in Figure E-2. The varactor diodes we used are Skyworks 

SMV2019-079LF, whose capacitance can be tuned from 2 to 0.2 pF with reverse voltage 

increasing from 0 to 20 V. As mentioned before, the frequency dependent capacitance of 

varactor diodes can be written by formula: C(V) = α0/(β + V)n. For SMV2019-079LF, the 

parameters we got from analyzing the experimental data in ref 13 are: α0 = 6.25, β = 2.53, 

n = 1.07. After comparing with the experimental data we will show in the following 

sections, we find that the modified parameters best fit our measured data: α0 = 6.25, β = 

10.53, n = 1.07. It’s normal that the capacitance we get varies from the data sheet and the 

existing tuning works, since the frequency we are targeting is much higher than those cases. 

The effective capacitance of the varactor diode will decrease as the working frequency 

increases, so as the range of capacitance modulation of the diode itself. It can be predicted 

that if the working frequency of the varactor diodes is increased to beyond the K band, the 

modulation will be weaker. The results we get correspond to an 8 V (from the difference 

of fitted β) left shift of the results at ~2.5 GHz. In the following simulations, the varactor 

diode is treated as a lumped element with tunable capacitance. To achieve the 3-state 

tunable metasurface, we optimized structure parameters we get are as the following: a = 

17.8 mm, b = 10 mm, c = 14 mm, w1 = 0.25 mm, w2 = 0.75 mm, w3 = 2.5 mm, g1 = 0.25 

mm, g2 = 0.38 mm, L1 = 2.5 mm and L2 = 3.5 mm. The full wave electromagnetic 
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simulations are done by CST. The conductivity of Cu is taken as 5.8 x 107 S/m. The 

permittivity of FR4 is set as 4.2 with a loss tangent of 0.025. Diodes are set as lumped 

elements with voltage dependent capacitance as discussed above. The reverse voltage 

varies in our simulation from 0 V to 21 V. The simulated transmission coefficient (S21) 

shows shift of resonance peak from 7.4 GHz to 9.2 GHz with reverse bias increasing from 

0 V to 21 V. The reflectance and absorbance spectra are shifting in an according way. 

Spectra of |S21| under various biases are shown in Figure E-2b. 

Our goal is to have a unique frequency (x axis) under which all A, R, T are high at different 

reverse biases (y axis). From the simulation results we can see that at ~8.8 GHz, they do 

overlap under different biases, with high reflectance occurring at 0 V, high absorbance at 

~ 6 V and high transmittance at 21 V. The corresponding spectra are plotted in Figure E-

3e. Figure E-3f is the moving of absorbance, reflectance and transmittance as voltage 

increases at 8.8 GHz.	
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Figure E-1. Design and fabrication of a tunable metasurface. (a) Top view of one unit 

cell of the tunable structure, with yellow corresponding to metal (Cu) and blue to dielectric 

(FR4). Locations of two mounted varactor diodes (Skyworks SMV 2019-079) are indicated 

by black diode symbols. (b) Perspective view of a 4x3 array of the tunable metasurface, 

with polarization of incident light defined by black arrows. All relevant parameters are 

defined in (a) & (b). (c) Optical image of a fabricated 10x8 array of the tunable metasurface. 
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Figure E-2. Simulations and measurements of a 3-state “ART” tunable metasurface. 

(a) simulated |S21| when tuning reverse bias from 0 to 21 V (V1 = V2 = VR). (b) measured 

|S21| when tuning reverse bias from 0 to 21 V (V1 = V2 = VR). (c) simulated |S11| when tuning 

reverse bias from 0 to 21 V (V1 = V2 = VR). (d) measured |S11| when tuning reverse bias 

from 0 to 21 V (V1 = V2 = VR). 
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Figure E-3. Demonstration of achievement of all “ART” states at tuned voltage. (a) 

Measured |S21| when tuning reverse bias from 0 to 21 V (V1 = V2 = VR). (b) Measured 

absorbance at 8 V; reflectance at 0 V; transmittance at 21 V. The spectra show at 8.8 GHz, 

their peaks coincide. (c) Absorbance, reflectance and transmittance v.s. voltage with fixed 

frequency (8.8 GHz). (d) Simulated |S21| when tuning reverse bias from 0 to 21 V (V1 = V2 

= VR). (e) simulated absorbance at 6 V; reflectance at 0 V; transmittance at 21 V. The 

spectra show at 8.8 GHz, their peaks coincide. (f) Absorbance, reflectance and 

transmittance v.s. voltage with fixed frequency (8.8 GHz). 
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E.2.3 Experimental results 

Guided by the above simulation results, we fabricated and measured the samples to 

demonstrate the 3-state tunable metasurface. Fabrication is done on a commercial FR4 

board with 35 μm thick Cu layer on single side. The structure on the surface is written by 

milling machine (LPKF ProtoMat S63). Diodes are mounted inside the gap by hand. We 

made 10x8 unit cells and the samples are fixed by holders on the two ends to keep the 

distance between unit cells in y direction fixed. The ends of outer wires are soldered with 

copper wire for connecting to electrodes of voltage sources. Figure E-1c displays a photo 

of the fabricated sample. In the measurement, the ART metasurface sample is placed 

vertically and surrounded by the microwave absorbers. Two horn antennas connected to a 

vector network analyzer (Agilent N5247A PNA-X) are used as the source and receiver. 

Transmission coefficient was measured by facing 2 horns towards each other with 4-feet 

separation according to the focal distance of the horns. The reference spectrum was taken 

from the transmission of a hole on the microwave absorber with the same size as the sample 

at normal incidence. For reflection coefficient (S11), the incident angle is 15 degrees and 

we used a metal plate as the normalization reference. The absorbance, reflectance and 

transmittance were calculated from the measured S parameters. 

The measured results are shown in Figure E-3 a-c. When reversed bias increases, the 

spectrum of |S21|blue shifts, following the same trend of the simulated result. As the reverse 

voltage reaches 21 V, the transmission peak moves from 7 GHz to 9 GHz as illustrated in 

Figure E-3a. The tuning range can be as large as 2 GHz. Compared to the simulations, the 

calculated absorption spectrum is slightly broadened. We contour plot the A, R, T map 
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versus reverse bias and frequency for both measurement and simulations in Figure E-4, 

with a 1 V step for voltages from 0 V to 21 V.  

We can observe that they have identical key features: the peaks are blue shifting under 

higher reverse bias for both simulation and experiment. We achieved simultaneously high 

absorbance (71% at 8 V), high reflectance (60% at 0 V) and high transmittance (62% at 21 

V) at 8.8 GHz as shown in Figure E-3b. Measurement shows broadening and damping of 

spectrum compared to simulation. This is more obvious for the absorbance spectrum which 

is calculated by A = 1 – R – T. This deviation can be caused by not having enough 

uniformity in sample fabrication, especially the resistance and inductance induced by hand-

soldering of diodes; the air layer distance between 2 neighboring metasurfaces is not 

exactly 14 mm as designed and thus the periodicity is not uniform; and it should also 

mention that the varactor diodes have a tolerance of about 10%, this will also lead to the 

broadening of spectrum [15].  
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Figure E-4. Contour plot of the measured and simulated spectra of 3-state “ART” 

tunable metasurface. (a)-(c) Measured results for 3-state metasurface working at 8.8 GHz. 

At 0 V, 8 V and 21 V, we achieved high reflection, absorption and transmission. (d-f) 

Simulated results for 3-state metasurface working at 8.8 GHz. At 0 V, 6 V and 21 V, we 

achieved high reflection, absorption and transmission. Color maps plot reverse bias VR 

from 0 to 21 V with dVR = 1 V. Color scale is the same for (a) – (f), with color bar 

representing 0 (blue) to 0.7 (red). 
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E.3 Discussion 

E.3.1 Extraction for effective impedance of the metasurface 

To deepen our understanding of this tuning process, we extracted the effective permittivity 

and permeability from the S parameters by the retrieval method from Ref. [16-18]. Since 

the thickness of our ART metasurface (d) is not deep subwavelength, we have to take the 

effect of spatial dispersion into consideration. The extracted results are shown in Figure E-

5 and Figure E-6. According to Ref [18], phase advance  d2  is used to 

characterize the influence of spatial dispersion. θ is the phase advance of the EM wave as 

it passes through the ART metasurface. It is a complex number dependent on thickness and 

frequency. θ works as a correction term in the extraction [18]. When θ is , the extracted 

parameters will give unphysical results such as negative imaginary part and anti-resonance 

as shown in Figure E-5a and b. The corrected results, after taking into account the spatial 

dispersion effect, as shown in Figure E-5c and d, differ significantly from the directly 

extracted results (Figure E-5a and b) in the regions where θ ≈ .  

In Figure E-6a & b we show the corrected permittivity and permeability for various applied 

voltages. As we increase the voltage, both the fundamental and higher (second) order 

modes of the permittivity resonance peaks move to higher frequencies. Our ART 

metasurface is designed to work at the second order mode around 9 GHz. The permittivity 

values of our ART metasurface shows a Lorentz shape around the resonance frequency, 

which is the intrinsic line shape of gapped wires [19]. Moving of the resonance peak does 

not change the shape of the Lorentz resonance. The same line shape and trend of shifting 

apply for the permeability. Corresponding impedances are shown in Figure E-6c and d. 

Since the wave matter interaction can be treated as impedance dependant, the strongly 



128	
	

voltage dependent of the impedances in the frequency range 8 ~ 9 GHz directly cause the 

differences of the spectra as varying voltages. When the voltage goes to 20 V, the 

impedance of the metasurfaces almost matches that of the air at 8.8 GHz, with z’ = 0.8, z’’ 

= 0. At the same time, the extracted permittivity and permeability show low magnetic and 

electric losses, assuring the realization of high transmission. For the absorption case, with 

6 V applied voltage, the main difference lies in that the imaginary part of μ has a local 

maximum, and thus leads to strong absorption at this frequency.  
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Figure E-5. Effective permittivity and permeability extractions with spatial 

dispersion taken into account. (a) & (b) Directly extracted permittivity (a) and 

permeability (b) under 0 V bias. θ is the phase advance caused by the finite size of the unit 

cell. (c) & (d) Extracted permittivity (c) and permeability (d) after taken into account the 

effect of spatial dispersion. 
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Figure E-6. Extracted permittivity, permeability and impedance when tuning applied 

voltage. (a),(b) Real part of permittivity (a) and permeability (b). Tuning of voltages is 

depicted as changing of colors. Inserts are imaginary parts for permittivity and 

permeability. (c),(d) Real part (c) and imaginary part (d) of effective impedance. 
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E.3.2 Extraction for intrinsic LC properties of the metasurface 

It is pointed out that the resonance of MMs can be understood as a LC resonator with 

effective capacitance and inductance [19]. Take split ring resonator (SRR) for example, the 

capacitance is mainly determined by the gap and the inductance comes from the metal wire. 

It’s easy to understand that the shifting of resonance frequency is caused by changing of 

the added capacitance. However, determining the intrinsic capacitance and inductance of 

one structure is not trivial. For our design, we can use the LC model to approximate the 

intrinsic resonance and the tuning process. After mounting the diodes, the capacitance of 

the system comes mainly from 2 parts: the intrinsic gap capacitance and the added 

capacitance from the diodes. The inductance of the system comes from the intrinsic 

inductance and the added inductance from the diodes. For varactor diodes, we treat the 

inductance to be constant and the capacitance to be voltage dependent. So we can write the 

approximate expression for resonance frequency with the voltage dependent added 

capacitance as the only variable.  The simplified expression is 

)()(2

1

00 addadd CCLL
f





, with L0 and C0 being the intrinsic values and Ladd and 

Cadd the effective values from diodes. We fitted the simulated magnetic resonance peak by 

the formula above and the fitted parameters are: C0 = 0.373 pF and L0+Ladd = 0.44 nH. 

From the fitting result, we estimate the intrinsic structure to have magnetic resonance at a 

frequency close to 12.5 GHz. The simulation result without diodes mounting illustrated in 

supplemental information turns out to have magnetic resonance at 13.2 GHz. The 

simulation verifies our understanding of the tuning process, and furthermore, it can work 

as a general scheme for determining intrinsic LC of any other complicated structures. The 
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error also comes from the fact that the capacitances of the varactor diodes in our case are 

not accurately predicted. For lower frequency resonators, more accurate result can be 

expected. 

 

E.3.3 Two-state switch 

Besides the 3 states tunable metasurface, the structure can also work as a 2-state switch. It 

can be designed to change between reflection and absorption as normal tunable MM. It can 

also be designed to be a transmission and absorption switch after optimizing the geometry. 

Without considering all the 3 states together, the 2 states devices can give better 

performance in tuning amplitude. As in Figure E-7, a designed “AT” switch with around 

90% absorption and transmission at 8.5 GHz is shown. The phase modulation can also be 

achieved by this kind of scheme as the effective index is controlled by the voltage. 
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Figure E-7. Simulations of 2 two-states “ART” tunable metasurface. (a) AT switch 

with high absorbance with V1 = 4.8 V and V2 = 6 V. (b), (c) , μ and z of the metasurface 

at the high absorbance state. (d) AT switch with high transmittance with V1 = 19 V and V2 

= 19 V. (e), (f) , μ and z of the metasurface at the high transmittance state. 
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E.4 Conclusion 

In conclusion, we have designed and experimentally characterized a tunable metasurface 

tuned by varactor diodes. By changing the capacitance of the varactor diodes, we can 

change the impedance at one unique frequency and thus modify the absorption, reflection 

and transmission spectra of the metasurface. We achieved a 3-state (high absorbance, 

reflectance and transmittance) tunable metasurface which shows all wave-matter 

interactions in one device at X-band (8 to 14 GHz). The results expand the flexibility of 

tunable MMs and suggest a new way to achieve spatial light modulation in microwave. 
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