Stereoselective Radical Transformations with In Situ-Generated Aryl and Alkyl Diazomethanes via Co(II)-Based Metalloradical Catalysis

by

Yong Wang

A dissertation

submitted to the Faculty of

the Department of Chemistry

in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Boston College Morrissey College of Arts and Sciences Graduate School

December 2018

© Copyright 2018, Yong Wang

Stereoselective Radical Transformations with In Situ-Generated Aryl and Alkyl Diazomethanes via Co(II)-Based Metalloradical Catalysis

Yong Wang

Advisor: Professor X. Peter Zhang

Among recent advances in devising different strategies for stereoselective homolytic reactions, metalloradical catalysis (MRC) has emerged as a conceptually new approach for controlling stereoselectivity of radical reactions. As stable metalloradicals, cobalt(II) complexes of D_2 -symmetric chiral amidoporphyrins [Co(D_2 -Por)] have proven to be effective catalysts for homolytically activating a series of diazo compounds to generate α -Co(III)-alkyl radicals for various C-centered radical transformations with wellconfined reactivity and selectivity. Nevertheless, the applications of donor-, donor/donorand alkyl diazo compounds have been largely underdeveloped. This dissertation mainly focuses on how the chemistry of these types of diazo compounds was initiated by using commonly available aldehyde-derived sulfonylhydrazones as diazo surrogates. In the context of Co(II)-MRC, in situ-generated diazo compounds can be effectively activated for various asymmetric radical transformations, including intermolecular radical cyclopropanation of alkenes and intramolecular radical alkylation of C–H bonds.

First, as a proof of concept, we have demonstrated the feasibility of using aryl aldehyde-derived sulfonylhydrazones as new radical precursors for diastereo- and enantioselective radical cyclopropanation of alkenes, and proven that the diazo in situgeneration protocol is well compatible with the catalytic radical process. Second, we have expanded the application of Co(II)-based MRC to a new territory by employing aliphatic diazo compounds for asymmetric cyclopropanation. The system is highlighted by the excellent enantioselectivity together with remarkable *cis*-selectivity. Finally, with the utilization of linear aliphatic aldehyde sulfonylhydrazones as diazo precursors, we have presented a new radical cyclization mode, involving hydrogen atom abstraction and radical substitution, for enantioselective synthesis of common five-membered rings via radical C–H alkylation. The system would offer a new retrosynthetic paradigm for construction of ring structures, where C–C bond can be disconnected as common C=O and C–H units of linear aldehydes.

TABLE OF CONTENTS

Table of Contents	iv
List of Schemes	viii
List of Tables	xii
List of Figures	xiii
Table of Abbreviations	xvi
Chapter 1. Stereoselective Radical Cyclopropanation Reactions of Alken	es via
Cobalt(II)-Based Metalloradical Catalysis	
1.1. Introduction	1
1.2. Synthesis of Cobalt(II) Complexes of D_2 -Symmetric Chiral Porphyrins	4
1.3. Cobalt(II) Porphyrin-Catalyzed Asymmetric Radical Cyclopropanation	with
Acceptor/H-Substituted Diazo	8
1.3.1. Asymmetric Radical Cyclopropanation with Alkyl Diazoacetates	8
1.3.2. Asymmetric Radical Cyclopropanation with Succinimidyl Diazoace	tate 14
1.3.3. Asymmetric Radical Cyclopropanation with Diazosulfones	15
1.4. Cobalt(II) Porphyrin-Catalyzed Asymmetric Radical Cyclopropanation	with
Acceptor/Acceptor Diazo	16
1.4.1. Asymmetric Radical Cyclopropanation with α -Nitrodiazoacetates	17
1.4.2. Asymmetric Radical Cyclopropanation with α -Cyanodiazoacetates	20
1.4.3. Asymmetric Radical Cyclopropanation with α -Ketodiazoacetates	22
1.4.4. Asymmetric Radical Cyclopropanation with α -Formyldiazoacetates	24
1.5. Cobalt(II) Porphyrin-Catalyzed Asymmetric Radical Cyclopropanatio	n with
Donor/H Diazo	25
1.6. Cobalt(II) Porphyrin-Catalyzed Asymmetric Intramolecular Radical	
Cyclopropanation with Acceptor/Acceptor Diazo	28

1.7. Summary and Outlook	31
1.8. References	32
Chapter 2. Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Ge	enerated
Donor-Substituted Diazo Reagents via Cobalt(II)-Based Metall	oradical
Catalysis	
2.1. Introduction	37
2.2. Results and Discussion	41
2.2.1. Condition Optimization for Asymmetric Cyclopropanation of Styr	cene with
Tosylhydrazones 1a	41
2.2.2. Asymmetric Radical Cyclopropanation of Different Alkenes	46
2.2.3. Asymmetric Cyclopropanation of Styrene with Various Benz	aldehyde
Sulfonylhydrazone Derivatives	48
2.2.4. Mechanistic Insights by Using (E)- and (Z)- β -Deuterostyrenes as	s Radical
Probe for Cyclopropanation	51
2.3. Conclusions	55
2.4. Experimental Section	56
2.4.1. General Considerations	56
2.4.2. Typical Procedure for the Preparation of Tosylhydrazones	57
2.4.3. Typical Procedure for the Preparation of 2,4,6-Triisopropyl Pheny	lsulfonyl
Hydrazones	62
2.4.4. General Procedure for [Co(Por)]-Catalyzed Cyclopropanation	66
2.5. References	83
Chapter 3. Enantioselective Radical Cis-Cyclopropanation of Alkenes with	In Situ-
Generated Aliphatic Diazo Compounds	
3.1. Introduction	89
3.2. Results and Discussion	92
3.2.1. Condition Optimization for Asymmetric Radical Cis-Cyclopropa	nation of
Styrene with Aliphatic Diazo Precursors	92
3.2.2. Asymmetric Radical Cyclopropanation of Different Alkenes with	Aliphatic
Diazo Precursor 1a	96

3.2.3. Deprotection of Phthalimide Unit in Resulting Optically Active Alkyl-							
Substituted Cyclopropane 3aa 100							
3.2.4. Mechanistic Investigation on Asymmetric Radical Cyclopropanation of In							
Situ-Generated Aliphatic Diazo Compounds 100							
3.3. Conclusions103							
3.4. Experimental section104							
3.4.1. General Considerations 104							
3.4.2. General Procedure for Preparation of 2,4,6-Triisopropyl Sulfonyl							
Hydrazones 105							
3.4.3. General Procedure for [Co(P3)]-Catalyzed Asymmetric Radical							
Cyclopropanation with In Situ-Generated Aliphatic Diazo Compound 108							
3.4.4. Deprotection of Phthalimide Unit in Cyclopropane 3aa 129							
3.4.5. Procedure for HRMS Experiment131							
3.4.6. Procedure for EPR Experiment131							
3.5. References132							
Chapter 4. Enantioselective Radical Cyclization for Construction of 5-Membered							
Ring Structures by Metalloradical C–H Alkylation							
4.1. Introduction 136							
4.2. Results and Discussion 142							
4.2.1. Condition Optimization for Enantioselective Radical Cyclization of							
Aliphatic Diazo Precursor 142							
4.2.2. Enantioselective Radical Alkylation of Various C–H Bonds 145							
4.2.3. Mechanistic Evidences for the Proposed Stepwise Radical Pathway 152							
4.3. Conclusions 156							
4.4. Experimental Section 157							
4.4.1. General Considerations 157							
4.4.2. Synthesis of Catalyst [Co(P6)] 158							
4.4.3. General Procedure for Preparation of Derivative s1 160							
4.4.4. General Procedure for Preparation of tert-Butyl (3-Oxopropyl)carbamate							
4.4.4. General Procedure for Preparation of <i>tert</i> -Butyl (3-Oxopropyl)carbamateDerivative s2174							

4.4.6. General Procedure for [Co(P6)]-Catalyzed Enantioselective	Radical
Cyclization	207
4.4.7. Procedure for HRMS Experiment	226
4.4.8. Procedure for EPR Experiment	226
4.5. References	227
Chapter 5. Spectral Data	
5.1. Spectral Data for Chapter 2	S2
5.2. Spectral Data for Chapter 3	S166
5.3. Spectral Data for Chapter 4	S293

LIST OF SCHEMES

Scheme 1.1	Molecular Orbital Diagram, the Bonding Interactions of Metalloradical Catalysts and Their Related Metalloalkyl Radicals	2								
Scheme 1.2	Asymmetric Radical Olefin Cyclopropanation with Different Diazo Compounds via Co(II)-Based Metalloradical Catalysis (MRC)	4								
Scheme 1.3	General Synthetic Route for Synthesis of 5,15-Bis(2',6'- dibromophenyl)porphyrins Synthons									
Scheme 1.4	General Synthetic Route for Cobalt(II) Complexes of D_2 -Symmetric Chiral Porphyrins [Co(D_2 -Por*)]	6								
Scheme 1.5	Selected Examples of Cobalt(II) Complexes of D_2 -Symmetric Chiral Porphyrins [Co(D_2 -Por*)]	7								
Scheme 1.6	[Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrene with Diazoacetates	8								
Scheme 1.7	Postulated Mechanism for [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrene with Diazoacetates	9								
Scheme 1.8	Asymmetric Radical Cyclopropanation of Different Styrene Derivatives with Diazoacetates Catalyzed by [Co(P1)]	10								
Scheme 1.9	[Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Electron-Deficient Olefins with <i>tert</i> -Butyl Diazoacetate	11								
Scheme 1.10	Experimental Evidences for α -Cobalt(III)-Alkyl Radicals: Homo- and Hetero-Dimerizations	14								
Scheme 1.11	Co(II)-Catalyzed Asymmetric Radical Cyclopropanation with Succinimidyl Diazoacetates and its Synthetic Applications	15								
Scheme 1.12	[Co(P2)]-Catalyzed Diastereo- and Enantioselective Cyclopropanation of Different Alkenes with Diazosulfones	17								
Scheme 1.13	Enantioselective Z-Cyclopropanation of Styrene with Ethyl α -Nitro Diazoacetate: [Co(TPP)] Versus [Co(P1)]	19								
Scheme 1.14	[Co(P1)]-Catalyzed Asymmetric Z-Cyclopropanation Reactions of Different Alkenes with Alkyl α -NitroDiazoacetates	20								

Scheme 1.15	$[Co(P1)]$ -Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with α -Cyanodiazoacetate	21
Scheme 1.16	[Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with α -Ketodiazoacetates	23
Scheme 1.17	[Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with α -Formyldiazoacetates	24
Scheme 1.18	[Co(P3)]-Catalyzed Radical Cyclopropanation of Alkenes with In Situ-Generated Aryl Diazomethanes	26
Scheme 1.19	[Co(TPP)]-Catalyzed Radical Cyclopropanation of Alkenes with In Situ-Generated Heteroaryl Diazomethane	27
Scheme 1.20	[Co(P4)]-Catalyzed Asymmetric Intramolecular Radical Cyclopropanation with α -Cyanodiazoacetate: [Co(P1)] Vs [Co(P4)]	
		28
Scheme 1.21	Iterative Approach for the Development of New Generation of Cobalt(II)-Based D_2 -Symmetric Chiral Porphyrin [Co(P4)]	29
Scheme 1.22	[Co(P4)]-Catalyzed Asymmetric Intramolecular Radical Cyclopropanation with Various Acceptor/Acceptor Diazo Compounds	30
Scheme 2.1	Proposed Catalytic Pathway for Asymmetric Radical Cyclopropanation with In Situ-Generated Donor-Substituted Diazo Reagents	50
Scheme 2.2	Asymmetric Radical Cyclopropanation with In Situ-Generated Donor-Substituted Diazo with Dirhodium Carboxylates and Chiral Sulfides as Catalysts	38
Scheme 2.3	Asymmetric Cyclopropanation of Styrene with Various <i>o</i> -Halogenated Benzaldehyde Sulfonyl Hydrazones Catalyzed by [Co(P3)]	40
Scheme 2.4	The Rationale of both Isotopomers A and B Formation in the Major <i>trans</i> -Cyclopropanes 3ga from Cyclopropanation of (E) - β -Deuterostyrene	51
Scheme 2.5	Cyclopropanation of (E)- and (Z)- β -Deuterostyrenes to Probe	52
-	Radical Reaction Mechanism	53

Scheme 3.1	heme 3.1 Proposed Pathway for Radical Cyclopropanation of Alkenes with Aliphatic Diazo Compounds via Co-MRC						
Scheme 3.2	eme 3.2 Asymmetric Cyclopropanation of Styrene with Sulfonylhydrazones by [Co(P3)]						
Scheme 3.3	Enantioselective <i>Cis</i> -Cyclopropanation of Styrene Derivatives with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]						
Scheme 3.4	Enantioselective <i>Cis</i> -Cyclopropanation of Dienes and Enynes with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]	97 98					
Scheme 3.5	Enantioselective <i>Cis</i> -Cyclopropanation of Heteroaromatic Olefins with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]						
Scheme 3.6	Cyclopropanation of (<i>E</i>)- and (<i>Z</i>)- β -Deuterostyrenes to Probe Radical Reaction Mechanism	99 101					
Scheme 3.7	The Rationale of both Isotopomers A and B Formation in the Major <i>Cis</i> -Cyclopropanes 3aa from Cyclopropanation of (E) - β -Deuterostyrene $((E)$ - β -D- 2a)	101					
Scheme 3.8	Isotropic X-band EPR Spectrum of Phenyl <i>N-tert</i> -Butylnitrone (PBN)-Trapped Co(III)-Supported Alkyl Radical Intermediate	102					
Scheme 4.1	Different Radical Cyclization Pathways for the Formation of Ring Structures via C–C Bond Formation	137					
Scheme 4.2	Asymmetric C–H Alkylation with Acceptor/Acceptor-Type Diazo Compounds via Co(II)-Based MRC	138					
Scheme 4.3	Proposed Radical Cyclization Mechanism via Metalloradical C-H Alkylation	139					
Scheme 4.4	Selected Biologically Active Compounds Containing α -Substituted Pyrrolidine Moiety	141					
Scheme 4.5	Enantioselective Radical Cyclization for Synthesis of α -Heteroarylpyrrolidines via [Co(P6)]-Catalyzed C–H Alkylation	148					
Scheme 4.6	Enantioselective Construction of Different Five-Membered Cyclic Compounds via [Co(P6)]-Catalyzed C–H Alkylation	151					

Scheme 4.7	The Rationale for the Formation of Di-TEMPO Trapped Intermediate 3t	153
Scheme 4.8	The Rationale for the <i>ee</i> Erosion via [Co(P1)]-Catalyzed Radical C– H Alkylation with Optically Active Tertiary C–H Substrate 4a	154
Scheme 4.9	Isotropic X-band EPR Spectrum of Phenyl <i>N-tert</i> -Butylnitrone (PBN)-Trapped Co(III)-Supported Alkyl Radical Intermediate	155

LIST OF TABLES

Table 2.1	Asymmetric Cyclopropanation of Styrene with Tosylhydrazones by Metalloradical Catalysts $[Co(D_2-Por^*)]$	42
Table 2.2	Asymmetric Cyclopropanation of Styrene Directly with Phenyldiazomethane	43
Table 2.3	Solvent Effect on Asymmetric Cyclopropanation of Styrene with Tosylhydrazones $1b$ by [Co(P3)	45
Table 2.4	Asymmetric Cyclopropanation of Different Olefins with Tosylhydrazone	47
Table 2.5	Asymmetric Cyclopropanation of Styrene with Various Sulfonyl Hydrazones Catalyzed by [Co(P3)]	49
Table 3.1	Asymmetric Cyclopropanation of Styrene with Sulfonylhydrazone 1a by Metalloradical Catalysts [Co(Por)]	93
Table 3.2	Solvent Effect on Asymmetric Cyclopropanation of Styrene with Sulfonylhydrazone $1a$ by $[Co(P3)]$	95
Table 4.1	Ligand Effect on Co(II)-Catalyzed Enantioselective Radical Cyclization of Aliphatic Diazo Precursor	143
Table 4.2	Solvent and Base Effects on Co(II)-Catalyzed Enantioselective Radical Cyclization of Aliphatic Diazo Precursor 1a	145
Table 4.3	Enantioselective Radical Cyclization for Synthesis of α -Substituted Pyrrolidines via [Co(P6)]-Catalyzed C–H Alkylation	147

LIST OF FIGURES

Figure 2.1	Spartan	Modeling	of	the	Proposed	α -Co(III)-Alkyl	Radical	
	Intermed	liate I						44
Figure 2.2	The Sigr Ionizatio	nal of Neutra on Mass Spec	al α-0 ctron	Co(III netry	I)-Benzyl Ra (ESI-MS)	adicals I from Ele	ctrospray	54
								01

DEDICATED TO:

I dedicate this dissertation to my dearest wife, Xin Wen, who has accompanied me with full support and went through all the difficulties and challenges together with me during the past years. I am truly thankful for having you in my life. Thank you for making me feel that I am the luckiest man in the world every single day! Also, thank you for giving birth to our most beautiful and lovely daughter, Siyue Wang, who is also the greatest inspiration that I am fighting for our life and whom I can't force myself to stop loving. Dad is so proud of you growing and learning so fast in the past 5 years.

This work is also dedicated to my parents, Qilai Wang and Zhigen Zheng (who have always loved me unconditionally and whose good examples have taught me to work hard for the things that I aspire to achieve; I am born lucky to have you as my parents), my mother-in-law, Aiwen Guo (who has given me her unconditional love as her own son), my father-in-law in heaven, Xiuchun Wen (who treated me exactly like his boy and passed off their daughter to me with full trust), my sister, Weiwei Wang (who loves me so much and always supports me without a hesitation). Thank you all for taking care of Siyue with your unconditional love along her growing.

Finally, I would love to dedicate this dissertation to my Master's advisor, Professor Guofu Zhang, who is a true educator and made me really passionate about scientific research since the very beginning of my Master study. I cannot thank you enough for all the efforts you devoted to me as well as to my wife, making our Ph.D. career at USA possible.

ACKNOWLEDGEMENTS

I would like to express my genuine gratitude to my advisor Professor Peter Zhang for his continuous guidance and support over past years. Thank you very much for encouraging me to achieve my potential as a researcher and setting an example of dedication to science that is admirable. I am grateful for what you inputted during my Ph.D. and career development.

I owe a deep sense of gratitude to my committee members: Professor James Morken and Professor Marc Snapper, for always being very supportive, and for serving as my dissertation committee and reading my thesis. I am very grateful for their guidance and suggestions during the annual research meetings and other occasions. I would also like to thank my committee members back at University of South Florida: Professor James Leahy, Professor Jon Antilla, and Professor JianFeng Cai for their great support and for serving as my committee at the early stage of my Ph.D. career.

I thank profusely all the instrumental directors, including Marek (MS), Bo (X-ray), TJ (NMR) and Jing (EPR) for their expertise and kind help during my study period. I am also very thankful to all the faculty members as well as supporting staff in the Department.

I cannot thank enough to all my lab mates who I have worked with over these years, because they have the most direct influence over my research work, especially Dr. Xin Cui and Dr. Limei Jin (who continuously offer help and supportive advise whenever I needed), Sean, Katie, Xavier and Lucas (who taught me American culture as well as English). I would also love to thank Xiaoxu, Duosheng and Xavier for proofreading my thesis.

I am super grateful to have had the opportunity to be the mentor of the brilliant young mind, including RJ, Nicca, Xiaoxu, Katie, Patrick, Sebastian, Ross and Zein. It is truly a great pleasure to interact with your guys and mutually learn from each other.

Last but not least, thank all my friends at Boston College and University of South Florida for being so helpful and making my journey to become a scientist more joyful.

TABLE OF ABBREVIATIONS

Por: porphyrin DDQ: 2,3-dichloro-5,6-dicyano-1,4-benzo quinone Xanthphos: 4,5-Bis(diphenylphosphino)-9, 9-dimethylxanthene THF: tetrahydrofuran DMAP: 4-dimethylaminopyridine MeO: methoxy Me: methyl ^{*t*}Bu: tert-butyl Et: ethyl Ar: aryl Ph: phenyl TPP: tetraphenyl porphyrin TEMPO: 2,2,6,6-Tetramethyl-1-piperidinyloxy Su: succinimidyl Gly: glycine Ala: alanine PhMe: toluene EtOAc: ethyl acetate Ts: 4-methylphenyl sulfonyl NDA: α-nitrodiazoacetate ENDA: ethyl α -nitrodiazoacetate CDA: α-cyanodiazoacetate ^{*t*}BCDA: *tert*-butyl α-cyanodiazoacetate KDA: α -ketodiazoacetate FDA: α -formyldiazoacetate Tris: 2,4,6-triisopropyl phenylsulfonyl PhH: benzene

Å: angstrom MRC: metalloradical catalysis ee: enantiomeric excess er: enantiomeric ratio de: diastereomeric excess dr: diastereomeric ratio equiv.: equivalent(s) eq: equation RT: room temperature HPLC: high performance liquid chromatography HRMS: high resolution mass spectrometry y: yield IR: infrared spectroscopy TOF: time of flight L: ligand LG: leaving group ESI: electrospray ionization EPR: electron paramagnetic resonance M: molar or metal NMR: nuclear magnetic resonance DART: direct analysis in real time RA: radical addition HAA: hydrogen atom abstraction RS: radical substitution FG: functional group KIE: kinetic isotope effect M.S.: molecular sieves

PhCl: chlorobenzene DCM: dichloromethane Ar: aryl PPh₃: triphenyl phosphine PPY: 4-pyrrolidinopyridine PhthN: phthalimide MeOH: methanol EtOH: ethanol SiO₂: silica gel TBME: *tert*-butyl methyl ether TFA: trifluoroacetic acid Ac: acetate Bn: benzyl het: hetero PBN: *N-tert*-butylnitrone THF: tetrahydrofuran ^{*i*}Pr: *iso*-propyl DMF: dimethylformamide Et₂O: diethyl ether DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene Boc: *tert*-butoxycarbonyl Boc₂O: di-*tert*-butyldicarbonate DMSO: dimethyl sulfoxide Et₃N: triethyl amine aq: aqueous

CHAPTER 1

STEREOSELECTIVE RADICAL CYCLOPROPANATION REACTIONS OF ALKENES VIA COBALT(II)-BASED METALLORADICAL CATALYSIS

1.1 INTRODUCTION

Carbon-centered radicals, specifically alkyl radicals, have been extensively explored as versatile intermediates for chemical synthesis because of their potent reactivity and diverse pathways.¹ Among their important synthetic applications, alkyl radicals are well demonstrated to undergo radical additions, atom abstraction reactions, and varied fragmentation reactions, for construction of diversified organic molecules. Despite the rich reaction profiles of alkyl radicals, their reactivity and selectivity in the context of free radical reactions are, in general, difficult to control largely due to their free nature.

To harness the vast potential of homolytic radical reactions for stereoselective organic synthesis,² metalloradical catalysis (MRC) has recently been introduced as a conceptually new approach for addressing some enduring challenges in the field.^{3,4} With cobalt(II) complexes of D_2 -symmetric amidoporphyrins [Co(Por)], known to adopt a low-spin ground state with $(d_{xy})^2(d_{xz,yz})^4(d_z^2)^1$ electron configuration, as well-defined metalloradical catalysts, they are highly capable of activating various diazo compounds to generate [Co(Por)]-supported carbon-centered radicals (α -Co(III)-alkyl radicals) and release nitrogen gas as the only byproduct (Scheme 1.1).⁵ The bonding interaction is thus dominated by the formation of a covalent Co–C bond between Co- dz^2 orbital and the carbon's sp^2 orbital. Additional bond interaction between Co-dxz/yz and carbon's p

orbitals, a common feature in classic metallocarbene complexes, is only fractional in part due to the fully-filled dxz/yz and singly-filled p orbitals. These metal-supported alkyl radicals have been shown to subsequently undergo a variety of typical radical reactions, especially radical addition reactions to alkenes for asymmetric cyclopropanation reactions with effective control of reactivity and stereoselectivity.

Scheme 1.2|| Molecular Orbital Diagram, the Bonding Interactions of Metalloradical Catalysts and Their Related Metalloalkyl Radicals

Optically active cyclopropanes are widely used as versatile synthetic building blocks in organic chemistry. They are also commonly found as basic structural elements in a wide range of naturally occurring compounds and pharmaceuticals. As a robust strategy, transition metal-catalyzed asymmetric cyclopropanation of olefins with diazo compounds has emerged as one of the most extensively studied reactions to construct optically active three-membered carbocycles.⁶ The catalytic pathways are generally recognized through an electrophilic addition of the Fischer-type metallocarbene intermediates to olefin

compounds, termed as an electrophilic [1+2] addition. In the past years, various diazo compounds have been continuously applied for stereoselective cyclopropanation of alkenes through the development of a variety of metal complexes as the catalysts. For example, Rh₂(II)- and Cu(I)-based complexes have been shown to be effective for a wide range of asymmetric cyclopropanation reactions, producing chiral cyclopropane derivatives with high level of optical purity.⁶ While many systems have been elegantly developed, there are still several remaining major challenges associated with metallocarbene cyclopropanation. On one hand, existing catalytic systems generally work well with styrene derivatives as well as some electron-rich olefins. Nevertheless, asymmetric cyclopropanation of electron-deficient olefins have been troublesome presumably due to the electrophilic nature of the formed metal-carbene intermediates in the catalytic cycles. On the other hand, the applications of utilizing acceptor/acceptorsubstituted diazo compounds and donor-substituted diazo compounds for asymmetric olefin cyclopropanation are rarely reported. For instance, with diazo compounds containing two adjacent electron-withdrawing groups, they have inherently low reactivity with Lewis acidic metal catalysts for the formation of corresponding metallocarbene intermediates. Even if generated under forcing conditions, their subsequent reactions towards olefins are often difficult to control in terms of enantioselectivity due to the high electrophilicity of the acceptor/acceptor-substituted metallocarbenes.⁶⁻⁷ It is noteworthy to mention that the dimerization of diazo compounds is a common side reaction in cyclopropanation systems, which usually require the use of excess olefins and slow addition of the diazo compounds to minimize this side reaction although they are not ideally practical.⁸

Fundamentally different from the previous electrophilic catalytic systems, asymmetric radical cyclopropanation reactions via Co(II)-based metalloradical catalysis have been shown to be highly capable of constructing a wide array of enantioenriched cyclopropane derivatives. The successful development of these radical cyclopropanation systems provides a complementary synthetic strategy to solve the aforementioned major challenges that associate with the previous 2e systems in the area of olefin cyclopropanation. In this review, we will provide an overview the recent progress in [Co(Por)]-catalyzed stereoselective radical cyclopropanation reactions with various diazo compounds as radical precursors, including acceptor/H-, acceptor/acceptor-, donor/H-substituted diazo compounds as shown in Scheme 1.2.

Scheme 1.2|| Asymmetric Radical Olefin Cyclopropanation with Different Diazo Compounds via Co(II)-Based Metalloradical Catalysis (MRC)

1.2 SYNTHESIS OF COBALT(II) COMPLEXES OF *D*₂-SYMMETRIC CHIRAL PORPHYRINS

As stable 15e metalloradicals, Co(II) complexes of porphyrins embrace excellent thermal stability and metal coordination stability due to the macrocyclic chelation effect

via the well-defined tetra-coordination. Based on the planar porphyrin backbone, the physical and chemical properties of the corresponding [Co(Por)] catalysts, in principle, can be systematically decorated through the installation of different substituents onto the aromatic ring structure of porphyrin ligands. Despite these unique features, one major issue that might impede the potential applicability of Co(II)-porphyrins for asymmetric catalysis is searching for facile and robust synthetic methods to access a range of chiral porphyrins with varied electronic, steric, and chiral environments. In this regard, our group have developed a general and durable synthetic protocol for the rapid construction of D_2 symmetric chiral porphyrins via palladium-catalyzed quadruple cross-coupling reactions by using 5.15-bis(2',6'-dibromophenyl)porphyrins as synthons.⁹ As depicted in Scheme 1.3, the tetrabromoporphyrin synthon could be constructed from 2,2'-((2,6dibromophenyl)methylene)bis(1H-pyrrole) and commercially available aldehydes via MacDonald [2+2] porphyrin synthesis by using Lindsey's condition.¹⁰ The resulting core structures feature two meso-R groups at the 10- and 20-positions to modulate the electronic and steric properties.

Scheme 1.3|| General Synthetic Route for Synthesis of 5,15-Bis(2',6'dibromophenyl)porphyrins Synthons

Upon the formation of tetrabromoporphyrin synthons, the combination of $Pd(OAc)_2$ and XantPhos could effectively catalyze the quadruple amidation reactions of the tetrabromoporphyrin synthons with optically pure amides to afford a series of chiral porphyrin ligands in up to 90% yield (Scheme 1.4).¹¹ With the subsequent cobalt metalation step, D_2 -symmetric Co(II) complexes of chiral porphyrins could usually be synthesized as stable purple solids in high yields.

Scheme 1.4|| General Synthetic Route for Cobalt(II) Complexes of *D*₂-Symmetric Chiral Porphyrins [Co(*D*₂-Por^{*})]

The representative structures of the Co(II)-based amidoporphyrin catalysts are displayed in Scheme 1.5. These D_2 -symmetric catalysts commonly embrace the following features: First, to minimize the steric repulsion, four substituted phenyl groups usually adopt a conformation that is almost perpendicular to the porphyrin plane. This unique geometry also enables the chiral amido groups as well as the nonchiral substituents on 10-and 20-position of the porphyrin to frame a cavity-like environment for asymmetric catalytic reactions. Second, with the partial double bond character of the four amido C–N bonds, the chiral units would have a good sense of rigidity for asymmetric induction, while

maintain a certain degree of flexibility to accommodate different substrates during catalytic reactions. Finally, the nonchiral substituents are also essential for the catalyst environment, because they would allow the facile modulation of cavity size, as well as the orientation of four chiral units.

Scheme 1.5|| Selected Examples of Cobalt(II) Complexes of D₂-Symmetric Chiral Porphyrins [Co(D₂-Por*)]

1.3 COBALT(II) PORPHYRIN-CATALYZED ASYMMETRIC RADICAL CYCLOPROPANATION WITH ACCEPTOR/H-SUBSTITUTED DIAZO

1.3.1 Asymmetric Radical Cyclopropanation with Alkyl Diazoacetates

As the benchmark reaction, alkyl diazoacetates were first employed successfully as radical precursors for asymmetric cyclopropanation of styrene by using the first generation catalyst: cobalt(II) complex of a D_2 -symmetric chiral porphyrin 3,5-Di/Bu-ChenPhyrin, [Co(**P1**)] (Scheme 1.6).¹¹ The desired cyclopropanes were obtained in up to 88% yield with >99:1 *dr* and 98% *ee*. It is noteworthy to mention that the [Co(**P1**)]-based metalloradical cyclopropanation system could be effectively operated in an one-time fashion with alkenes as limiting reagents. In addition, the dimerization of diazo compounds, a common side reaction in metal-carbene transfer processes, is significantly minimized, obviating the

Scheme 1.6|| [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrene with Diazoacetate

H Ph +	N₂=	CO ₂ R	[Co(P1 DMAP; t)] (1 mol %) oluene; tem	p. Ph'''	CO ₂ R	
	entry	R	temp.	yield	trans/cis	ee	
	1	Et	RT	86%	97:3	78%	
	2	^t Bu	RT	88%	>99:1	95%	H' TL OIL H
	3	^t Bu	-20 °C	84%	>99:1	98%	[Co(P1)]

slow addition of diazo compounds. No significant formation of dimerization side products also suggests that Co-supported alkyl radical species distinctively favor addition to olefins rather than dimerization with another molecule of diazo compound. These complementary attributes are found to be quite general and suitable for all the radical cyclopropanation systems we developed later on.

Scheme 1.7|| Postulated Mechanism for [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Styrene with Diazoacetates

* For clarity, some chiral or achiral units of the ligands are omitted.

The plausible reaction mechanism of this radical cyclopropanation system was proposed in Scheme 1.7. In addition to the rigidity and the cavity-like conformation of the catalyst, we rationalized that the key to achieve the well-controlled reactivity and selectivity of this radical process might be also due to the hydrogen bonding interaction between the chiral amide N–H unit on the ligand and the carbonyl unit of the carbene moiety, which plays an important role to further rigidify the radical intermediates **A** (α -

Co(III)-alkyl radicals) for enantioselective radical olefin addition to generate intermediates **B** (γ -Co(III)-alkyl radicals), and also presumably accelerate the reaction rate by lowering their energy in the transition state (Scheme 1.7). During the investigation, we found that the use of DMAP as the additive could significantly enhance the overall diastereo- and enantioselectivity of the radical cyclopropanation process albeit with slightly decreased yield.^{11,12}

Further investigation showed that styrene and its derivatives bearing varied electronic and steric properties can be cyclopropanated with *tert*-butyl diazoacetate in high yields with excellent control of *trans*-selectivity and enantioselectivity (Scheme 1.8).^{11,13} Notably, this asymmetric radical system remains its high *trans*-selectivity when other diazoacetates, such as less sterically hindered ethyl diazoacetate were used.

Scheme 1.8|| Asymmetric Radical Cyclopropanation of Different Styrene Derivatives with Diazoacetates Catalyzed by [Co(P1)]

After the initial results, we have further expanded the potential of this radical cyclopropanation system to tackle some of the long-standing challenges in metal-mediated carbene cyclopropanation (Scheme 1.9). As discussed, Fischer-type carbene species generally favor reactions with electron-rich olefins. The metal-carbene radical intermediates may be less sensitive to the electronic property of the alkenes used, enabling a broader spectrum of olefin scope, especially the electron-deficient ones. Such a hypothesis has led us to the discovery of stereoselective radical cyclopropanation of electron-deficient olefins by Co(II)-based MRC. By using [Co(P1)] as the catalyst, we reported the first transition metal-catalyzed asymmetric cyclopropanation of electron-deficient olefins, including unsaturated esters, amides, ketones, and nitriles (Scheme 1.9).¹⁴

Scheme 1.9|| [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Electron-Deficient Olefins with *tert*-Butyl Diazoacetate

With the absence of dimerization of diazo compounds, the catalytic reactions were performed under mild conditions in a one-pot protocol using olefins as the limiting reagents, forming the desired electrophilic cyclopropane derivatives in high yields. In most cases, both excellent diastereo- and enantioselectivities were achieved.

The exceptional reactivity of Co(II)-based MRC towards electron-deficient olefins implies some nucleophilic character of the formed α -Co(III)-alkyl radical (vide supra, Scheme 1.7), which further differentiate [Co(Por)]-based radical cyclopropanation systems typical electrophilic (Fischer-type) transition-metal from carbene-mediated cyclopropanation systems. In collaboration with Prof. de Bruin, we carried out a comprehensive study on the mechanism of [Co(Por)]-catalyzed cyclopropanation of olefins with diazoacetates.^{5a} EPR and HRMS experiments in combination with DFT calculations supported an unprecedented stepwise radical reaction mechanism of the Co(II)-catalyzed cyclopropanation (vide supra, Scheme 1.7). DFT calculations suggested the Co(II)-based metalloradical is able to decompose diazo compounds to generate an unusual α -Co(III)-alkyl radical (A) as the key intermediate of the catalytic cycle. The net process may be considered as a radical transfer in which the radical character is transferred from the cobalt-center to the α -carbon atom of the diazo moiety. The α -Co(III)-alkyl radical (A), which was detected experimentally using EPR and HRMS techniques, is capable of undergoing common radical reactions such as radical addition and substitution.⁵ Consequently, radical addition of the radical intermediate A to the C=C bond of olefin substrates results in further radical transfer to form the γ -Co(III)-alkyl radical (**B**), which subsequently undergoes ring-closure reaction via intramolecular radical substitution by breaking the relatively weak Co–C bond and regenerates the metalloradical catalyst. Both

the *a*-Co(III)-alkyl radical and γ -Co(III)-alkyl radical are essentially carbon-based radicals, however, they are not "free" any more as their reactivity and selectivity are well regulated by the electronic, steric, and chiral environments of the covalently-attached [Co(Por)] moiety. Further computational study suggests that the carbon radical center in the intermediate **A** bears certain nucleophilicity, which makes its exceptional reactivity toward electron-deficient olefin understandable.^{5b} Moreover, it is suggested that the charge of the alkyl radical could be deliberately tuned through the introduction of different *a*-carbon substituents of the original diazo compounds. Accordingly, the substituents of diazo compounds may be used as tools for tuning the electronic properties of the metal-supported alkyl radicals in order to match varied substrates in different carbone transformations.

Encouragingly, experimental observations also allowed us to shed more light on the possible existence of the cobalt(III)-alkyl radicals.¹⁵ The stoichiometric reaction of [Co(TPP)] with ethyl styryldiazoacetate was found to produce a symmetric dinuclear cobalt(III) porphyrin complex in 90% yield (Scheme 1.10, left side). The dimeric complex was believed to form from radical dimerization of γ -Co(III)-allylic radical resonated from the initially generated α -cobalt(III)-allylic radical. In addition to the radical C–C coupling-based homo-dimerization, the γ -Co(III)-allylic radical intermediate was also effectively trapped by the radical scavenger TEMPO, resulting in the hetero-dimerization product via a radical C–O coupling reaction in 74% yield (Scheme 1.10, right side). Consistent with the computational studies, these experimental results further confirmed the existence of the cobalt(III)-alkyl radicals that were proposed as key intermediates in the radical-type mechanism of [Co(Por)]-catalyzed cyclopropanation (vide supra, Scheme 1.7).

Scheme 1.10|| Experimental Evidence for α-Cobalt(III)-Alkyl Radicals: Homo- and

Hetero-Dimerizations

1.3.2 Asymmetric Radical Cyclopropanation with Succinimidyl Diazoacetates

In addition to alkyl diazoacetates, succinimidyl diazoacetates were also successfully applied to Co(II)-catalyzed asymmetric radical cyclopropanation of alkenes as shown in Scheme 1.11. For example, cyclopropane succinimidyl ester could be prepared in 86% yield with >99% *de* and 92% *ee* through [Co(P1)]-catalyzed asymmetric cyclopropanation of styrene with succinimidyl diazoacetate (N₂CHCO₂Su).¹⁶

To demonstrate the synthetic utility, the resulting cyclopropyl chiral synthons permitted the enantioselective synthesis of cyclopropyl carboxamides upon reacting with

various amines (Scheme 1.11). The hydroxylsuccinimide ester functionality in the enantioenriched chiral synthon was ready to react with a broad range of different amines such as the unprotected tripeptide (S)-H₂N-Gly-Ala-COOH and D-glucosamine under mild conditions to deliver the corresponding cyclopropyl tripeptide and cyclopropyl carboxamido sugar, respectively.

Scheme 1.11|| Co(II)-Catalyzed Asymmetric Radical Cyclopropanation with Succinimidyl Diazoacetates and its Synthetic Applications

1.3.3 Asymmetric Radical Cyclopropanation with Diazosulfones

So far, most catalytic cyclopropanation systems typically employ diazocarbonyl compounds as carbene sources, the utilization of other acceptor/H-substituted diazo compounds in the context of metal-catalyzed asymmetric cyclopropanation has been less

developed. To showcase the effectiveness of [Co(Por)]-based catalytic systems, we have employed diazosulfones as diazo source, for the first time, for asymmetric radical cyclopropanation, leading to the streamlined synthesis of corresponding cyclopropyl sulfones in high yields with excellent stereocontrol (Scheme 1.12).¹⁷ During the course of study, we designed and synthesized a new D_2 -symmetric chiral porphyrin 2,6-DiMeO-ZhuPhyrin (**P2**) as supporting ligand, which features higher rigidity and polarity of the chiral environment due to intramolecular hydrogen bonding interactions and the use of the cyclic structure of (*S*)-2-tetrahydofurnancarboxamide as demonstrated by single crystal structures. The Co(II) complex of this chiral ligand [Co(**P2**)] was shown to effectively catalyze asymmetric olefin cyclopropanation with diazosulfones. The catalytic system can be generally applied to various aromatic olefins as well as electron-deficient olefins, leading to the high-yielding formation of the corresponding cyclopropyl sulfones with up to 99% *de* and 97% *ee*.

The model of hydrogen bonding interactions (Scheme 1.12, in the middle) also well explains the high reactivity and selectivity for this Co(II)-based MRC system. In addition to the ligand–diazo interaction, the hydrogen bonding in [Co(P2)] itself tends to prevent the chiral units from free rotation through a rigid bicyclic-like conformation. In this way, the chiral units of the catalyst is not only further rigidified, but also forced closer to the metal center to better transfer the chiral information.¹⁷⁻¹⁸

Scheme 1.12|| [Co(P2)]-Catalyzed Diastereo- and Enantioselective Cyclopropanation

of Different Alkenes with Diazosulfones

1.4 COBALT(II) PORPHYRIN-CATALYZED ASYMMETRIC RADICAL CYCLOPROPANATION WITH ACCEPTOR/ACCEPTOR DIAZO

Diazo compounds bearing two electron-withdrawing groups, namely acceptor/acceptor-substituted diazo compounds, typically suffer low reactivity and poor

enantioselectivity in transition metal-catalyzed carbene transfer cyclopropanation reactions, presumably due to the electrophilic nature of formed Fischer-type metallocarbene intermediates.^{6,7} In contrast to the 2e catalytic systems, Co(II)-based 1e cyclopropanation mode has emerged as a possible solution to this challenge partially because radical pathways are in general less influenced by electronic properties.

1.4.1 Asymmetric Radical Cyclopropanation with Alkyl α-Nitrodiazoacetates

Initial efforts were focused on the evaluation of α -nitrodiazoacetate (NDAs) as potential radical precursors for the cyclopropanation of styrene by different [Co(Por)] catalysts (Scheme 1.13).¹⁹ By using ethyl α -nitrodiazoacetate (ENDA) as radical precursor. it was found that Co(TPP) displayed very low reactivity and diastereoselectivity. Considering the two electron-withdrawing α -substituents of ENDA are usually suitable hydrogen bonding acceptors, it is anticipated that the D_2 -symmetric chiral amidoporphyrins might possibly facilitate the catalytic reactivity and selectivity by enabling double hydrogen bonding interactions between two of the chiral amide N-H moieties on the ligand and both electron-withdrawing groups of the carbene moiety. Indeed, with [Co(P1)] as the metalloradical catalyst, the experimental results confirmed our hypothesis by affording a dramatically accelerated cyclopropanation process.¹⁹ In addition to the evidently promoted reactivity towards these less reactive diazo compounds, the potential double hydrogen bonding interactions also rigidify the α -cobalt(III)-alkyl radical intermediate towards its subsequent radical addition to the olefin substrates, which lead to a high level of stereocontrol.

Scheme 1.13|| Enantioselective Z-Cyclopropanation of Styrene with Ethyl α-Nitro Diazoacetate: [Co(TPP)] Versus [Co(P1)]

The unique reactivity of [Co(P1)]-based catalytic radical system toward this challenging diazo compounds is general and suitable for a wide spectrum of alkenes, like electron-sufficient, electron-neutral, and electron-deficient ones, forming the corresponding optically active cyclopropyl nitroester compounds in up to 98% yield (Scheme 1.14). In addition to high diastereo- and enantioselectivity, the catalytic process exhibits the atypical *Z*-selectivity. The system also represents the first highly effective and selective catalytic system for asymmetric cyclopropanation with acceptor/acceptor-substituted diazo compounds as the radical source.²⁰
Scheme 1.14|| [Co(P1)]-Catalyzed Asymmetric Z-Cyclopropanation Reactions of Different Alkenes with Alkyl α-NitroDiazoacetates

1.4.2 Asymmetric Radical Cyclopropanation with α-Cyanodiazoacetates

By adopting the aforementioned double H-bonding hypothesis, another type of acceptor/acceptor-substituted diazo compounds, α -cyanodiazoacetates (CDAs), were also attempted, where cyano group is normally considered as a stronger hydrogen bond acceptor than a nitro group. The results showed that [Co(P1)] is also an effective catalyst for olefin cyclopropanation with *tert*-butyl α -cyanodiazoacetate (*t*-BCDA) with even higher

stereoselectivity (Scheme 1.15).²¹ Substrate evaluation revealed that the Co(II)-based catalytic system is suitable for both aromatic and aliphatic olefins with varied electronic properties, affording densely functionalized cyclopropane products with high optical purity.

Scheme 1.15|| [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes

with α-Cyanodiazoacetate

The resulting enantiomerically enriched 1,1-cyclopropanenitrile esters (Scheme 1.15), together with previous 1,1-cyclopropanenitro esters (Scheme 1.14), serve as versatile building blocks for a number of densely functionalized chiral cyclopropane

molecules. For instance, the facile reduction of the cyano, nitro, and ester groups would directly lead to the production of enantioenriched cyclopropyl amino acid derivatives and amino alcohols, which are of great interest for synthetic and biological applications.

1.4.3 Asymmetric Radical Cyclopropanation with α-Ketodiazoacetates

The dicarbonyl diazo compounds such as α -ketodiazoacetates (KDAs) represent one class of important acceptor/acceptor-substituted diazo compounds (Scheme 1.16).²² The development of asymmetric cyclopropanation reactions with KDAs would be highly attractive since the resulting chiral 1,1-cyclopropyl ketoesters serve as versatile synthons, which can not only be converted into chiral cyclopropane derivatives with different geminal functionalities, but also facilely be transformed into other valuable chiral molecules through various ring-opening and ring-expanding reactions in the presence of two electron-withdrawing groups at the geminal position.

Nevertheless, the high enantiocontrol of such a process is mechanistically challenging. As illustrated in Scheme 1.16, the postulated α -Co(III)-alkyl radical intermediate has to enable effective differentiation between two similar carbonyl groups from a common KDA in order to allow the selective radical olefin addition, which is rationalized as the enantiodetermining step. Moreover, the *3-exo-tet* cyclization of γ -Co(III)-alkyl radical intermediate is similarly challenging for obtaining high diastereoselectivity due to the same issue caused by the two analogous carbonyl-based substituents.

By evaluating different metalloradical catalysts and optimizing reaction conditions, we found that [Co(P1)] is a suitable catalyst to effectively activate KDAs and remarkably

Scheme 1.16|| [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes

with α-Ketodiazoacetates

differentiate the two different acceptor-substituents for the high degree of enantioinduction.²² Metalloradical catalyst [Co(P1)] has again been demonstrated to be the catalyst of choice for highly asymmetric olefin cyclopropanation with α -ketodiazoacetates (KDA) (Scheme 1.16).²² With simple α -acetodiazoacetate, radical cyclopropanation

reactions of different kinds of olefins appeared to be highly yielding and selective, leading to effective synthesis of 1,1-cyclopropaneketoesters as E diastereoisomers with up to 99% *ee*.

1.4.4 Asymmetric Radical Cyclopropanation with Alkyl α-Formyldiazoacetates

To further challenge the capability of Co(II)-based MRC, we have explored the feasibility of accessing α -formyldiazoacetates (FDA) as radical precursors for asymmetric cyclopropanation reactions.²³ From the results shown in Scheme 1.17, upon diazo activation by [Co(**P1**)], the cobalt-supported alkyl radical smoothly underwent a highly

Scheme 1.17|| [Co(P1)]-Catalyzed Asymmetric Radical Cyclopropanation of Alkenes with *α*-Formyldiazoacetates.

asymmetric olefin cyclopropanation, without affecting the otherwise reactive aldehyde functionality. This asymmetric radical process is generally applicable for a broad scope of alkenes, offering a direct method for the high-yielding synthesis of 1,1-cyclopropaneformylesters with excellent control of diastereo- and enantioselectivity. The great tolerance of functional groups that are otherwise reactive toward ionic reactions is believed to have close relevance to the radical pathway of Co(II)-based metalloradical catalysis. Notably, the resulting products were readily transformed into other chiral 1,1-bifunctionalized cyclopropanes and chiral dihydrofurans.

1.5 COBALT(II) PORPHYRIN-CATALYZED ASYMMETRIC RADICAL CYCLOPROPANATION WITH DONOR/H DIAZO

While tremendous progress has been made with the use of various diazo compounds, including aforementioned acceptor/H, acceptor/donor, acceptor/acceptor diazo compounds,⁶ metal-catalyzed asymmetric carbene transfer cyclopropanation with donor-substituted diazo compounds has been rarely reported.²⁴ Along with their instability and short half-life of the diazo compounds, the underlying challenge might be also ascribed to the diminished electrophilicity of the corresponding donor-substituted metallocarbene intermediates, which would decrease the reactivity toward olefins for productive cyclopropanation. To this end, we developed a fundamentally new approach based on the concept of metalloradical catalysis (MRC) to address this long-standing challenge in the field via stereoselective radical chemistry (Scheme 1.18).²⁵

With cobalt(II) complex of D_2 -symmetric chiral porphyrin 3,5-Di'Bu-Xu(2'-Naph)Phyrin, [Co(**P3**)], as the identified optimal catalyst, it can effectively catalyze asymmetric cyclopropanation of alkenes with donor-substituted diazo compounds, generated in situ from *N*-arylsulfonyl hydrazones in the presence of base.²⁵ The Co(II)-catalyzed radical cyclopropanation can be operated under mild conditions and is applicable to a broad spectrum of alkenes, affording the 1,2-bisaryl and related cyclopropane compounds in high yields with effective control of both diastereoselectivity and enantioselectivity. Among other additional attributes, the Co(II)-based cyclopropanation is

Scheme 1.18|| [Co(P3)]-Catalyzed Radical Cyclopropanation of Alkenes with In Situ-Generated Aryl Diazomethanes

highlighted by its high degree of functional group tolerance, a feature that is closely related to its underlying radical mechanism. This system also signifies the compatibility of the Co(II)-based metalloradical system with the use of both bases and polar solvents.

Notably, by simply modulating the sulfonyl source from 4-methyl phenylsulfonyl (Ts) to 2,4,6-triisopropylphenylsulfonyl (Tris) as shown in Scheme 1.18, it allows the facile generation of donor-substituted diazo compounds from sulfonylhydrazones even at 0 °C for highly enantioselective radical cyclopropanation reactions.

Recently, Chattopadhyay and coworkers also demonstrated the possibility of using in situ-generated heteroaryl-substituted diazomethanes as radical precursors for olefin cyclopropanation reactions (Scheme 1.19).²⁶ In the presence of Co(TPP), the desired compounds could be obtained in good yields.

Scheme 1.19|| [Co(TPP)]-Catalyzed Radical Cyclopropanation of Alkenes with In Situ-Generated Heteroaryl Diazomethanes

1.6 COBALT(II) PORPHYRIN-CATALYZED ASYMMETRIC INTRAMOLECULAR RADICAL CYCLOPROPANATION WITH ACCEPTOR/ACCEPTOR DIAZO

In addition to the intermolecular version, asymmetric intramolecular cyclopropanation reactions via MRC has also been shown to be highly durable processes. At the beginning, these intramolecular cyclopropanation reactions catalyzed by [Co(P1)] was not optimal as shown in Scheme 1.20. The desired 3-oxabicyclo[3.1.0]hexan-2-one derivative was obtained in 99% yield and 99% *de*, yet with moderate 55% *ee*.²⁷

Scheme 1.20|| [Co(P4)]-Catalyzed Asymmetric Intramolecular Radical Cyclopropanation with α-Cyanodiazoacetate: [Co(P1)] Vs [Co(P4)]

During the course of catalyst development, the design of new Co(II) complex of 3,5-Di'Bu-QingPhyrin ([Co(P4)]) via an iterative approach led to a perfect solution, and the enantioselectivity of the catalytic reaction was significantly improved to 96% *ee*. The

key for the catalyst innovation is to prepare the cyclopropanecarboxamide with two contiguous stereogenic centers (P4), which was synthesized iteratively via [Co(P1)]-catalyzed asymmetric intermolecular cyclopropanation of α -methylstyrene with diazoacetates (vide infra, Scheme 1.8).¹¹ This iterative approach has a great impact on the development of a new generation of $[Co(D_2-Por^*)]$ catalysts, which allows the chiral catalysts bearing two consecutive stereogenic centers on each chiral arm with more diverse asymmetric environments.

Scheme 1.21|| Iterative Approach for the Development of New Generation of Cobalt(II)-Based *D*₂-Symmetric Chiral Porphyrin [Co(P4)]

Systematically experimental studies disclosed that [Co(P4)] is capable of providing excellent asymmetric induction for intramolecular cyclopropanation of various allylic α cyanodiazoacetates (Scheme 1.22, left side).²⁷ The formation of corresponding 3oxabicyclo[3.1.0]hexan-2-one derivatives from the radical cyclopropanation were exclusively diastereoselective and highly enantioselective. The remarkable

diastereocontrol suggests that the final ring-closure step (intramolecular radical substitution) in the stepwise radical addition-substitution pathway for this intramolecular radical cyclopropanation is a low-barrier or barrierless process, which is the same as shown in the intermolecular cyclopropanation (vide supra, Scheme 1.7).^{5a}

Scheme 1.22|| [Co(P4)]-Catalyzed Asymmetric Intramolecular Radical Cyclopropanation with Various Acceptor/Acceptor Diazo Compounds

The [Co(P4)]-catalyzed asymmetric intramolecular radical cyclopropanation was then successfully extended to a wide spectrum of other acceptor/acceptor-substituted diazo compounds, such as α -nitrodiazoacetates, α -ketodiazoacetates, and α -esterdiazoacetates (Scheme 1.22, right side).²⁷ Moreover, non-acceptor α -substituents, including hydrogen,

and electron-donating methyl group, were also shown to be suitable to afford the corresponding 3-oxabicyclo[3.1.0]hexan-2-one derivatives in high yields with excellent diastereoselectivities and enantioselectivities. The effectiveness of [Co(P4)] is believed to largely result from the multiple stereogenic centers of the new porphyrin ligands, which offer sufficient asymmetric induction, together with either double hydrogen-bonding interactions or mono hydrogen-bonding interaction in cases of acceptor/acceptor-substituted and monoacceptor-substituted diazo compounds, respectively.

1.7 SUMMARY AND OUTLOOK

Guided by the concept of metalloradical catalysis (MRC), the development of cobalt(II) complexes of D_2 -symmetric chiral amidoporphyrin [Co(Por)] as stable metalloradical catalysts enables a fundamentally new approach for controlling stereoselectivity in asymmetric radical cyclopropanation reactions of alkenes. The Co(II)-based metalloradical catalysts have been shown to effectively activate a broad spectrum of diazo compounds, including acceptor/H, acceptor/acceptor and donor/H ones, to generate various α -Co(III)-alkyl radicals in a controlled and catalytic manner. The formed metal-supported alkyl radicals have further been demonstrated to be capable of undergoing radical additions to alkenes for asymmetric cyclopropanation reactions with effective control of reactivity and stereoselectivity by the modular porphyrin ligands. Attributed to the radical reaction profile, the radical olefin cyclopropanation reactions via Co(II)-based MRC are usually least affected by the electronic properties of substrates and reagents.

also important features that are likely related to the proposed radical mechanism. The establishment of Co(II)-catalyzed radical cyclopropanation reactions provides a solution for several major challenges in the corresponding 2e⁻ ionic cyclopropanation systems, including the successful employment of electron-deficient olefins, acceptor/acceptor-substituted and donor/H-substituted diazo compounds. The demonstrated general substrate scope and functional group tolerance encourage further applications of the Co(II)-based radical processes for new cyclopropane products with diverse substituents, especially active functionalities without the need of protection and deprotection.

Beyond radical addition reactions to double bond systems, α -Co(III)-alkyl radicals have also been demonstrated to undergo other radical reactions in a controlled manner, such as addition to alkynes²⁸ and C–H abstraction reactions.²⁹ The catalytic cycles based on these radical reactions allow for development of varied new asymmetric transformations. As one of the most attractive features of radical processes, radical cascades initiated by α -Co(III)-alkyl radical species would provide more opportunities for the construction of complicated organic molecules in a rapid fashion and with possible stereocontrol.³⁰

1.8 REFRENCES

(1) (a) Chatgilialoglu, C.; Studer, A. Encyclopedia of radicals in chemistry, biology, and materials; John Wiley & Sons: Chichester, West Sussex ; Hoboken, N.J., 2012; (b) Curran,
D. P.; Porter, N. A.; Giese, B. Stereochemistry of radical reactions: concepts, guidelines, and synthetic applications; John Wiley & Sons, 2008; (c) Zard, S. Z. Radical reactions in

organic synthesis; Oxford University Press: Oxford, 2003; (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. *J. Org. Chem.* **2016**, *81*, 6898; (e) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. *J. Am. Chem. Soc.* **2016**, *138*, 12692.

(2) (a) Sibi, M. P.; Manyem, S.; Zimmerman, J. *Chem. Rev.* 2003, *103*, 3263; (b)
Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. *Angew. Chem., Int. Ed.* 2015, *54*, 3872; (c) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. *Science* 2016, *354*, 1391; (d) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. *Science* 2016, *351*, 681; (e) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. *Nature* 2014, *515*, 100; (f)
Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. *J. Am. Chem. Soc.* 2016, *138*, 9357.

(3) Reviews and highlights on Co(II)-MRC, see: (a) Miyabe, H.; Kawashima, A.;
Yoshioka, E.; Kohtani, S. *Chem. Eur. J.* 2017, 23, 6225; (b) Studer, A.; Curran, D. P. *Angew. Chem., Int. Ed.* 2016, 55, 58; (c) Pellissier, H.; Clavier, H. *Chem. Rev.* 2014, 114, 2775; (d) Lu, H. J.; Zhang, X. P. *Chem. Soc. Rev.* 2011, 40, 1899.

(4) Select examples on Ti(III)-MRC, see: (a) Gansauer, A.; Hildebrandt, S.; Vogelsang,
E.; Flowers Ii, R. A. *Dalton Trans.* 2016, 45, 448; (b) Gansäuer, A.; Fleckhaus, A.; Lafont,
M. A.; Okkel, A.; Kotsis, K.; Anoop, A.; Neese, F. J. Am. Chem. Soc. 2009, 131, 16989.

(5) For experimental and theoretical studies on the radical mechanism involving α-Co(III)-alkyl radical (also known as Co(III)-carbene radical) intermediates for olefin cyclopropanation, see: (a) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2010, 132, 10891; (b) Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L. Organometallics 2011, 30, 2739; (c) Dzik, W. I.; Zhang, X.P.; de Bruin, B. Inorg. Chem. 2011, 50, 9896.

(6) (a) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. *Synthesis* 2014, *46*, 979; (b) Intrieri, D.;
Caselli, A.; Gallo, E. *Eur. J. Inorg. Chem.* 2011, 5071; (c) Lebel, H.; Marcoux, J.-F.;
Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, *103*, 977; (d) Davies, H. M. L.;
Antoulinakis, E. G. In *Organic Reactions*; John Wiley & Sons, Inc.: 2001; Vol. 57, p 1; (e)
Doyle, M. P.; Forbes, D. C. *Chem. Rev.* 1998, *98*, 911; (f) Intrieri, D.; Carminati, D. M.;
Gallo, E. *Dalton Trans.* 2016, *45*, 15746.

(7) (a) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010, 110, 704; (b)

Lebel, H.; Marcoux, J. F.; Molinaro, C.; Charette, A. B. Chem. Rev. 2003, 103, 977.

(8) (a) Caballero, A.; Prieto, A.; Diaz-Requejo, M. M.; Perez, P. J. *Eur. J. Inorg. Chem.*2009, 1137; (b) Doyle, M. P. *Chem. Rev.* 1986, 86, 919.

(9) (a) Chen, Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 4432; (b) Gao, G. Y.; Colvin, A. J.; Chen, Y.; Zhang, X. P. Org. Lett. 2003, 5, 3261; (c) Gao, G. Y. Y.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 6215; (d) Gao, G. Y.; Chen, Y.; Zhang, X. P. Org. Lett. 2004, 6, 1837; (e) Gao, G. Y.; Colvin, A. J.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2004, 69, 8886; (f) Chen, Y.; Gao, G. Y.; Zhang, X. P. Tetrahedron Lett. 2005, 46, 4965; (g) Gao, G. Y.; Ruppel, J. V.; Allen, D. B.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 9060; (h) Gao, G. Y.; Ruppel, J. V.; Fields, K. B.; Xu, X.; Chen, Y.; Zhang, X. P. J. Org. Chem. 2008, 73, 4855.

(10) Lindsey, J. S. In The porphyrin handbook; Kadish, K. M., Smith, K. M., Guilard,

R., Eds.; Academic Press: San Diego, CA, 2000; Vol. 1, pp 45-118.

(11) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718.

(12) Chen, Y.; Zhang, X. P. Synthesis 2006, 1697.

(13) Chen, Y.; Zhang, X. P. J. Org. Chem. 2007, 72, 5931.

(14) Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074.

(15) Lu, H. J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 8518.

(16) Ruppel, J. V.; Gauthier, T. J.; Snyder, N. L.; Perman, J. A.; Zhang, X. P. Org. Lett.2009, 11, 2273.

(17) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042.

(18) Zhu, S. F.; Cui, X.; Zhang, X. P. Eur. J. Inorg. Chem. 2012, 430.

(19) Zhu, S. F.; Perman, J. A.; Zhang, X. P. Angew. Chem., Int. Ed. 2008, 47, 8460.

(20) Doyle, M. P. Angew. Chem., Int. Ed. 2009, 48, 850.

(21) Zhu, S. F.; Xu, X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796.

(22) Xu, X.; Zhu, S. F.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 11857.

(23) Xu, X.; Wang, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2017, 8, 4347.

(24) (a) Goudreau, S. R.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 15633; (b)

Berkessel, A.; Kaiser, P.; Lex, J. Chem. Eur. J. 2003, 9, 4746; (c) Aggarwal, V. K.; Alonso,

E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433;

(d) Aggarwal, V. K.; Smith, H. W.; Jones, R. V. H.; Fieldhouse, R. Chem. Commun. 1997,

1785; (e) Verdecchia, M.; Tubaro, C.; Biffis, A. Tetrahedron Lett. 2011, 52, 1136; (f) Dai,

X.; Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085; (g) Maas, G.; Seitz, J. Tetrahedron

Lett. 2001, 42, 6137; (h) Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M. J. Am. Chem. Soc.

2001, *123*, 4843; (i) Hamaker, C. G.; Djukic, J.-P.; Smith, D. A.; Woo, L. K. *Organometallics* **2001**, *20*, 5189.

(25) Wang, Y.; Wen, X.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2017, 139, 1049.

(26) Roy, S.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 2238.

(27) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292.

(28) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc.
2011, 133, 3304.

(29) (a) Cui, X.; Xu, X.; Jin, L. M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219;

(b) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. J. Am. Chem. Soc. 2018, 140, 4792; (c)

Wen, X.; Wang, Y.; Zhang, X. P. Chem. Sci. 2018, 9, 508.

(30) (a) Cui, X.; Xu, X.; Wojtas, L.; Kim, M. M.; Zhang, X. P. J. Am. Chem. Soc. 2012,

134, 19981; (b) Paul, N. D.; Mandal, S.; Otte, M.; Cui, X.; Zhang, X. P.; de Bruin, B. J.Am. Chem. Soc. 2014, 136, 1090.

CHAPTER 2

ASYMMETRIC RADICAL CYCLOPROPANATION OF ALKENES WITH IN SITU-GENERATED DONOR-SUBSTITUTED DIAZO REAGENTS VIA COBALT(II)-BASED METALLORADICAL CATALYSIS

2.1 INTRODUCTION

There has been lasting interest in devising strategies to control stereoselectivities, especially enantioselectivities, of radical reactions for applications in organic synthesis.¹ Among recent advances,^{1,2} metalloradical catalysis (MRC), which aims at the development of metalloradical-based systems for both catalytic initiation and selective control of radical processes, has led to the discovery of new catalytic pathways for stereoselective radical reactions.^{3,4} As stable metalloradicals with well-defined open-shell d⁷ electronic structures, cobalt(II) complexes of D_2 -symmetric chiral porphyrins [Co(D_2 -Por*)] have emerged as a new class of effective catalysts for asymmetric radical transformations through catalytic generation of metal-stabilized organic radicals, such as the fundamentally new α metalloalkyl radicals and α -metalloaminyl radicals, as the key intermediates.⁵ To date, Co(II)-based metalloradical catalysis (Co(II)-MRC) has exhibited capability of activating both acceptor- and acceptor/acceptor-substituted diazo reagents to generate corresponding α -Co(III)-alkyl radicals (also known as Co(III)-carbene radicals) as key intermediates for various C-centered radical processes, including radical cyclopropanation of alkenes.^{6,7} Studies suggest that potential hydrogen-bonding interactions between carbonyl groups of these types of diazo reagents and the amide units of the porphyrin ligands in the resulting

 α -Co(III)-alkyl radicals play an important role in enhancing reactivity and controlling stereoselectivity.

It was unclear if Co(II)-MRC could also be applicable to other types of diazo reagents that lack a carbonyl group, such as donor-substituted diazo reagents. Specifically, we wondered whether $[Co(D_2-Por^*)]$ metalloradical catalysts were able to activate aryldiazomethanes to generate the corresponding α -Co(III)-benzyl radical intermediate I (Scheme 2.1).

Scheme 2.1|| Proposed Catalytic Pathway for Asymmetric Radical Cyclopropanation with In Situ-Generated Donor-Substituted Diazo Reagents

In the absence of carbonyl functionalities, what element of interaction could be explored for the effective control of enantioselectivity in the subsequent radical addition of the α -Co(III)-benzyl radical I to the olefin substrate? Furthermore, would the final step, *3-exo-tet* radical cyclization of the resulting γ -Co(III)-alkyl radicals II, be diastereoselective? Additional questions arose from the intrinsic instability of donor-substituted

diazomethanes, which are typically generated in situ from stable sulfonyl hydrazone precursors.⁸ Would Co(II)-MRC system be compatible with the basic conditions required for the in-situ generation protocol? If these questions could be answered positively, it would further expand the application of Co(II)-based radical cyclopropanation for the catalytic synthesis of enantioenriched 1,2-bisaryl and related cyclopropane compounds **3**. Asymmetric olefin cyclopropanation with diazo reagents represents one of the most general methods for the construction of optically active three-membered carbocycles.⁹ While tremendous progress has been made with the use of several types of diazo reagents, asymmetric cyclopropanation with donor-substituted diazo reagents has been much less developed.¹⁰ The underlying challenge may be ascribed to the diminished electrophilicity of the corresponding donor-substituted metallocarbene intermediates associated with most catalytic systems, which would decrease the reactivity toward olefins for cyclopropanation.

As a novel alternative involving the further transfer of the initially formed electrophilic Rh₂-carbenes into nucleophilic chiral sulfur ylides (Scheme 2.2), Aggarwal and coworkers developed an indirect approach for asymmetric cyclopropanation with sulfonyl hydrazones as diazo precursors using the combination of dirhodium carboxylates and chiral sulfides as the catalyst that works specifically for electron-deficient olefins.^{8c,10c} Nevertheless, it would be desirable to develop new catalytic systems that are capable of direct asymmetric cyclopropanation of diverse alkenes with donor-substituted diazo reagents.¹¹

Scheme 2.2|| Asymmetric Radical Cyclopropanation with In Situ-Generated Donor-

Substituted Diazo with Dirhodium Carboxylates and Chiral Sulfides as Catalysts

In view of the radical pathway of MRC (Scheme 2.1), we hypothesized that the radical cyclopropanation approach could potentially address the aforementioned issues with donor-substituted diazo reagents because a neutral radical process is generally less sensitive to electronic effects. In this project, we have developed the first asymmetric catalytic system that is highly effective for direct cyclopropanation of alkenes with α -aryl diazomethanes. Under mild conditions, the Co(II)-based metalloradical system is suitable for various alkenes, allowing for the efficient construction of the corresponding cyclopropane rings with excellent control of both diastereoselectivity and enantioselectivity. The Co(II)-catalyzed cyclopropanation is further highlighted by its

functional group tolerance, a feature that is in accordance with the underlying radical mechanism.

2.2 RESULTS AND DISCUSSION

2.2.1 Condition Optimization for Asymmetric Cyclopropanation of Styrene with Tosylhydrazone 1a

Our study began with the investigation of catalytic cyclopropanation of styrene (2a) with benzaldehyde tosylhydrazone (1a), which is known to generate α -phenyldiazomethane under basic conditions (Table 2.1). To our delight, even simple metalloradical catalyst [Co(TPP)] (TPP = 5,10,15,20-tetraphenylporphyrin) could catalyze the reaction in the presence of Cs₂CO₃ in methanol, forming the desired 1,2-diphenyl cyclopropane **3aa** in 46% yield (entry 1). This result signifies the compatibility of Co(II)-based metalloradical system with both bases and polar solvents that are required for in-situ generation of donor-substituted diazomethanes from the corresponding hydrazone precursors.

We then evaluated the possibility of stereoselective control of the catalytic reaction through the use of Co(II) complexes of D_2 -symmetric chiral amidoporphyrins [Co(D_2 -Por*)]. When the first-generation catalyst [Co(P1)] (P1 = 3,5-Di'Bu-ChenPhyrin) was used,⁶ⁱ cyclopropane **3aa** could form in higher yield with significant level of both enantioselectivity and diastereoselectivity (entry 2). To further improve the stereoselectivity of the catalytic reaction, we then turned our attention to the second-

41

Table 2.1|| Asymmetric Cyclopropanation of Styrene with Tosylhydrazones by Metalloradical Catalysts $[Co(D_2-Por^*)]^a$

	NHTs N					^		
_	Н 🔿		(<i>D</i> ₂ -Por*)] (2 mol %)				
R#	+	Cs ₂ C	Cs ₂ CO ₃ ; MeOH; 40 ^o C; 24 h					
1x		2a				Зха		
entry	R	catalyst	product	yield (%) ^b	dr ^c	ee (%) ^d		
1	H (1a)	[Co(TPP)]	3aa	46	88:12	-		
2	H (1 a)	[Co(P1)]	3aa	64	89:11	-42		
3	H (1 a)	[Co(P2)]	3aa	65	78:22	<5		
4	H (1 a)	[Co(P3)]	3aa	67	95:5	26		
5	2-MeO (1b)	[Co(P3)]	3ba	78	95:5	99		
6	2-Et (1c)	[Co(P3)]	3ca	87	85:15	33		
7	4-MeO (1d)	[Co(P3)]	3da	23	93:7	23		
8	3-MeO (1e)	[Co(P3)]	3ea	69	95:5	23		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	[Co(P1)]	[0	[Co(P2)]			[Co(P3)]		

^{*a*} Reactions were carried out with 1x (0.1 mmol) and 2a (1.5 equiv.) in the presence of Cs₂CO₃ (2 equiv.) by [Co(D_2 -Por*)] (2 mol %) in methanol (0.6 mL) at 40 °C for 24 h. ^{*b*} Isolated yields. ^{*c*} The diastereomeric ratio (*dr*) was determined by ¹H NMR. ^{*d*} Enantiomeric excess of the major *trans* diastereomer was determined by chiral HPLC.

generation Co(II)-based metalloradical catalysts.^{6b} While the phenyl-substituted [Co(P2)] (P2 = 3,5-Di'Bu-QingPhyrin) was found to be less selective, the naphthyl-substituted [Co(P3)] (P3 = 3,5-Di'Bu-Xu(2'-Naph)Phyrin)) could effectively catalyze the formation of cyclopropane **3aa** with excellent diastereoselectivity but lower enantioselectivity (entry

4). It should be noted that comparable reactivity was observed with the use of preformed α -phenyldiazomethane (Table 2.2).

Table 2.2|| Asymmetric Cyclopropanation of Styrene Directly with Phenyldiazomethane ^a

N	2			/	\backslash	
	H N	[Co(D ₂ -P	or*)] (2 mol %)		·'''	
	+	solvent;	solvent; 40 °C; 24 h			
1a'	•	2a		3	aa	
entry	Catalyst	solvent	yield (%) ^b	dr ^d	ee (%) ^e	
1	[Co(P1)]	MeOH	36	89:11	-46	
2	[Co(P2)]	MeOH	35	82:18	<5	
3	[Co(P3)]	MeOH	72 (63) ^c	95:5	18	
4	[Co(P3)]	n-hexane	42	95:5	45	
5	[Co(P3)]	DCM	<10	-	-	
6	[Co(P3)]	$PhCH_3$	<10	-	-	
	H- N-Co-N H-	H H R				
[Co(P1)]		[Co([P2)]	[Co(P3)]		

^{*a*} Carried out with **1a''** (0.1 mmol) and **2a** (1.5 equiv.) in solvent (0.6 mL). ^{*b*} NMR yields. ^{*c*} In the parenthesis, isolated yield. ^{*d*} Determined by ¹H NMR. ^{*e*} Determined by chiral HPLC for the major *trans* diastereomer.

The ineffective asymmetric induction is likely attributed to the low-barrier rotation of the α -benzyl radical unit around the Co(III)–C σ bond in intermediate I (vide supra, Scheme 2.1) that diminishes its approaching preference to the prochiral styrene substrate between the *re* and *si* faces. To restrict the rotation within the chiral pocket of the porphyrin ligand, we decided to use benzaldehyde tosylhydrazone derivative that contains an *ortho*methoxy group (**1b**) as the radical precursor for the catalytic process (vide supra, Table 2.1, entry 5). Considering methoxy groups are known to serve as good hydrogen bond acceptors,¹² we postulated that the potential formation of N–H···O hydrogen bond between the amido group of the chiral ligand and the methoxy group of tosylhydrazone **1b** (Figure 2.1) might rigidify the resulting α -Co(III)-alkyl radical intermediate I, leading to an improved stereoselective outcome. We were excited that the corresponding cyclopropane **3ba** was indeed obtained in good yield (78%) with high diastereoselectivity (95:5 dr) as well as excellent enantioselectivity (99% ee) (Table 2.1, entry 5).

Figure 2.1|| Spartan Modeling of Proposed a-Co(III)-Alkyl Radical Intermediate I

Accordingly, asymmetric induction of the cyclopropanation process was significantly reduced when the methoxy group in **1b** was replaced by a sterically comparable ethyl group despite the high reactivity (entry 6, Table 2.1). Moreover, low enantioselectivity was observed when the methoxy group in the tosylhydrazone **1b** was moved from *ortho-* to either *meta-* or *para-* positions of the phenyl ring although with similarly high diastereoselectivity (entries 7 and 8, Table 2.1). These results are in agreement with the hypothesized hydrogen-bonding interaction.

Further investigation of solvent effect on the developed radical cyclopropanation revealed that both polar and non-polar solvents were suitable albeit with varied yields and selectivities, and the solvent of choice was still methanol (Table 2.3).

 Table 2.3|| Solvent Effect on Asymmetric Cyclopropanation of Styrene 2a with

 Tosylhydrazones 1b by [Co(P3)]^a

^{*a*} Carried out with **1b** (0.1 mmol) and **2a** (1.5 equiv.) in the presence of Cs₂CO₃ (2 equiv.) in solvent (0.6 mL). ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by chiral HPLC for the major *trans* diastereomer.

2.2.2 Asymmetric Radical Cyclopropanation of Different Alkenes

Under the optimized conditions, the scope of [Co(P3)]/1b-based catalytic system was then evaluated by employing different alkenes with varied steric and electronic properties as substrates for asymmetric radical cyclopropanation (Table 2.4). Like styrene, its derivatives bearing substituents with different electronic properties, including electrondonating MeO and electron-withdrawing CF₃ groups, could be radically cyclopropanated with **1b**, generating the corresponding 1,2-bisaryl cyclopropanes in high yields with excellent control of both diastereoselectivity and enantioselectivity (entries 1–3). Halogenated styrenes such as those with a Br atom at various positions were also shown to be suitable substrates for the catalytic process, providing the desired cyclopropanes in similarly high yields and stereoselectivities (entries 4–6). The relative and absolute configurations of cyclopropane **3bd** (entry 4) were established as *trans* and (1*S*,2*S*), respectively, by anomalous-dispersion effects in X-ray diffraction of its single crystal.

As demonstrated for 2-bromostyrene (2f) together with 2,4,6-trimethylstyrene (2g), sterically hindered styrene derivatives could also undergo productive cyclopropanation reactions with 1b by [Co(P3)] (entries 6 and 7). Furthermore, this metalloradical system was also applicable for 1,1-disubstituted olefins as demonstrated with the reactions of α substituted styrene derivatives 2h, 2i and 2j, affording the desired cyclopropanes with enantioselective control of the newly-formed quaternary stereogenic centers (entries 8–10). Distinctly, the Co(II)-based radical process could tolerate functional groups as exemplified by the highly enantioselective cyclopropanation of 3-aminostyrene (entry 11). In addition to the expanded aromatic olefins such as 2-vinylnaphthalene (entry 12), conjugated dienes, including both aromatic diene 2m and aliphatic diene 2n, could also be employed as

Table 2.4|| Asymmetric Cyclopropanation of Different Olefins with Tosylhydrazone1b Catalyzed by [Co(P3)]^a

^{*a*} Reactions were carried out with **1b** (0.1 mmol) and **2x** (1.5 equiv.) in the presence of Cs_2CO_3 (2 equiv.) by [Co(P3)] (2 mol %) in methanol (0.6 mL) at 40 °C for 24 h; Isolated yields; The diastereomeric ratio (dr) was determined by ¹H NMR; Enantiomeric excess of the major *trans* diastereomer was determined by chiral HPLC. ^{*b*} The reaction was performed on 1.0 mmol scale. ^{*c*} (1*S*,2*S*) Absolute configuration was determined in X-ray diffraction measurements on crystal. ^{*d*} 5 mol % [Co(P3)] was used. ^{*e*} 5.0 equiv. **2q**.

substrates for the Co(II)-based cyclopropanation but with relatively lower stereoselectivities (entries 13 and 14). It was notable that both electron-rich and -deficient non-aromatic olefins, such as vinyl ether **20**, acrylamide **2p** and vinyl ketone **2q** could be enantioselectively cyclopropanated as well (entries 15-17) with moderate control of stereoselectivities. The observed substrate scope and reactivity profile of [Co(**P3**)]-catalyzed cyclopropanation is in agreement with the underlying radical mechanism via Co(II)-based metalloradical catalysis (vide supra, Scheme 2.1). It was also noteworthy to mention that the one-pot protocol of the Co(II)-catalyzed radical cyclopropanation could be scaled up ten-fold as demonstrated with the high-yielding synthesis of cyclopropane **3ba** on 1.0 mmol scale without affecting the excellent stereoselectivity (entry 1).

2.2.3 Asymmetric Cyclopropanation of Styrene with Various Benzaldehyde Sulfonylhydrazone Derivatives

Guided by the postulated importance of hydrogen-bonding interaction in the key α -Co(III)-benzyl radical intermediates I, we then sought to identify other benzaldehyde sulfonylhydrazone derivatives as effective radical precursors for asymmetric Like cyclopropanation (Table 2.5). arylhydrazone **1b** (entry 1). 2.5dimethoxybenzaldehyde-derived tosylhydrazone (1f) could be also effectively activated by the metalloradical catalyst [Co(P3)] for radical cyclopropanation of styrene, affording the corresponding cyclopropane 3fa in 91% yield with 90% de and 94% ee (entry 2). Considering that fluorine atoms in organic fluorides have been demonstrated as a potential hydrogen bond acceptor in application for asymmetric catalysis,¹³ we explored the use of fluorine-containing arylhydrazones as diazo precursors for asymmetric radical styrene

Table 2.5|| Asymmetric Cyclopropanation of Styrene with Various SulfonylHydrazones Catalyzed by [Co(P3)]^a

	NH ∥	R +		×	[Co(P3)]	(2 mol %)	\wedge	Δ.,
Ar 1	Ix H	·	2a	Cs	₂ CO ₃ ; MeC	H; temp.	; 24 h	Ar 3xa	[‴] ′Ph
entr	у	Ar		R^{b}	product	temp. (^o C)	yield (%) ^c	dr ^d	ee (%) ^e
1			ξ ΌMe	Ts (1b)	3ba	40	78	95:5	99
2	MeO~		کر OMe	Ts (1f)	3fa	40	91	95:5	94
3		F		Ts (1g)	3ga	RT	90	94:6	86
4			Ś	Ts (1g)	3ga	0	<10	-	-
5			F	Tris (1g')	3g'a	0	83	>99:1	93
6		3	ź	Ts (1h)	3ha	RT	58	96:4	71
7		F	F	Tris (1h')	3h'a	0	75	>99:1	76
8			35	Ts (1i)	3ia	RT	85	96:4	88
9	F	F	F	Tris (1i')	3i'a	0	85	>99:1	93
10	F		32	Ts (1j)	3ja	RT	82	95:5	68
11	F	F	F	Tris (1j')	3j'a	0	81	>99:1	89

^{*a*} Reactions were carried out with **1x** (0.1 mmol) and **2a** (1.5 equiv.) in the presence of Cs_2CO_3 (2 equiv.) by [Co(P3)] (2 mol %) in methanol (0.6 mL) for 24 h. ^{*b*} Ts = 4-toluenesulfonyl; Tris = (2,4,6-triisopropyl)phenyl sulfonyl. ^{*c*} Isolated yields. ^{*d*} The diastereomeric ratio (dr) was determined by ¹H NMR. ^{*e*} Enantiomeric excess of the major *trans* diastereomer was determined by chiral HPLC.

cyclopropanation. Remarkably, fluoroarene-based tosylhydrazones such as 1g-1j were found to be even more active than 1b as radical precursors for Co(II)-based

cyclopropanation, enabling the operation of the catalytic process even at room temperature (entries 3, 6, 8 and 10). The desired fluorine-containing bisaryl cyclopropane products 3ga-**3** were obtained in up to 90% yield with 88–92% de and 68–88% ee. Attempts to further improve enantioselectivity of the cyclopropanation of styrene with 2.6difluorobenzaldehyde-derived tosylhydrazone 1g at lower temperature were unsuccessful due to ineffective generation of 2,6-difluorophenyl diazomethane at 0 °C (entry 4). Since the decomposition of the sterically bulky (2,4,6-triisopropylphenyl)sulfonyl hydrazone salt was shown to be considerably faster than tosylhydrazone salt,¹⁴ the low temperature asymmetric cyclopropanation was reexamined with the use of 2,6-difluorobenzaldehydederived (2,4,6-triisopropylphenyl)sulfonyl hydrazone 1g'. As expected, the catalytic cyclopropanation reaction could proceed effectively at 0 °C, affording the desired cyclopropane 3ga in 83% yield with considerably enhanced stereoselectivities (entry 5). Likewise, the radical cyclopropanation reactions with related (2, 4, 6triisopropylphenyl)sulfonyl hydrazones 1h'-1j' could also be productively conducted at 0 °C, affording the cyclopropane derivatives **3ha-3ja** with significantly improved diastereoselectivity and enantioselectivity (entries 7, 9 and 11). Considering unique bioactivities of organofluorine compounds,¹⁵ these enantioenriched fluorine-containing bisaryl cyclopropanes should find useful synthetic applications for chiral organic fluorides.

Under the same conditions, *o*-chlorobenzaldehyde-derived sulfonylhydrazone also gave a similar result compared to the result from *o*-fluorobenzaldehyde-derived sulfonylhydrazone (Scheme 2.3). Nevertheless, *o*-bromo- and *o*-iodobenzaldehyde-derived sulfonylhydrazones proved to be less effective radical precursors for the catalytic process.

Scheme 2.3|| Asymmetric Cyclopropanation of Styrene with Various *o*-Halogenated Benzaldehyde Sulfonyl Hydrazones 1x Catalyzed by [Co(P3)]^{*a*}

^{*a*} Carried out with **1x** (0.1 mmol) and **2a** (1.5 equiv.) in the presence of Cs_2CO_3 (2 equiv.) in methanol (0.6 mL); Tris = (2,4,6-triisopropyl)phenyl sulfonyl. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by chiral HPLC for the major *trans* diastereomer. ^{*e*} 1,2-bis(2-iodophenyl)ethene and 2-iodobenzaldehyde were formed as major side products.

2.2.4 Mechanistic Insights by Using (*E*)- and (*Z*)- β -Deuterostyrenes as Radical Probe for Cyclopropanation

To probe the underlying stepwise radical mechanism of the Co(II)-catalyzed cyclopropanation process, both *(E)-* and *(Z)-\beta*-deuterostyrenes were employed as substrates for evaluation of product distribution. While a concerted mechanism is usually stereospecific, a stepwise radical mechanism (Scheme 2.1) would result in the formation of four possible diastereomers from either *(E)-* or *(Z)-\beta*-deuterostyrene: two *trans*-isotopomers **A** & **B** and two *cis*-isotopomers **C** & **D** due to the rotation of β -C–C bond in the γ -Co(III)-alkyl radical intermediate **H** before facile ring closure (Scheme 2.4).

Scheme 2.4|| The Rationale of both Isotopomers A and B Formation in the Major *trans*-Cyclopropanes 3ga from Cyclopropanation of (E)- β -Deuterostyrene

Using [Co(P3)] as the catalyst, cyclopropanation of *(E)-β*-deuterostyrene with tosylhydrazone 1g led to the formation of *trans*-3ga as the dominant product with a 93:7 ratio of isotopomers A and B (Scheme 2.4). Under the same conditions, the reaction of *(Z)-* β -deuterostyrene resulted in the identical 93:7 ratio of isotopomeric distribution but in favoring B over A. The observation of *trans*-isotopomer B from *(E)-β*-deuterostyrene as well as *trans*-isotopomer A from *(Z)-β*-deuterostyrene is evidently a result of the rotation of β -C–C bond in intermediate II. When sterically less-hindered [Co(P4)] (P4 = 3,5-Di'Bu-IbuPhyrin) was used as the catalyst,¹⁶ a significantly different isotopomeric ratio of *trans*isotopomers A & B (from 93:7 to 80:20) was observed, suggesting easier rotation of the β -C–C bond in a less-crowded ligand environment (Schemes 2.4). Together, these

observations convincingly support the proposed stepwise radical mechanism of the Co(II)catalyzed cyclopropanation with *N*-arylsulfonyl hydrazones.

Scheme 2.4|| Cyclopropanation of *(E)*- and *(Z)-\beta*-Deuterostyrenes to Probe Radical Reaction Mechanism.

Furthermore, experiments were carried out for direct detection of the α -Co(III)benzyl radical species **I** (Scheme 2.1) by high-resolution mass spectrometry (HRMS).¹⁷ The exposure of [Co(**P4**)] to 10 equiv. of **1g** with base in methanol resulted in a mixture that was filtered and analyzed by HRMS in the absence of any additives such as formic acid that commonly acts as electron carriers for ESI ionization. As shown in Figure 2.2, the obtained spectrum clearly revealed a signal corresponding to [Co(**P4**)(2,6-F₂C₆H₃CH)]⁺ (m/z = 1361.6515), which resulted from the neutral α -Co(III)-benzyl radical **I** by the loss of one electron. The success in direct detection of the [Co(**P4**)(2,6-F₂C₆H₃CH)]⁺ by HRMS indicates possible stabilization of the α -Co(III)-benzyl radical by hydrogen-bonding interaction.

Qualitative Compound Report

Figure 2.2|| The Signal of Neutral α-Co(III)-Benzyl Radicals I from Electrospray Ionization Mass Spectrometry (ESI-MS)

2.3 CONCLUSIONS

In summary, Co(II)-based metalloradical catalysis (MRC) has, for the first time, been successfully applied to donor-substituted diazo reagents, generated from Narylsulfonyl hydrazones in the presence of base, for cyclopropanation of alkenes. Chiral metalloradical complex [Co(P3)] has been shown to be an effective catalyst for asymmetric radical cyclopropanation with α -aryldiazomethane precursors. The Co(II)-based cyclopropanation system is applicable to a broad combination of N-arylsulfonyl hydrazones and alkenes, affording the corresponding cyclopropane derivatives in high yields with excellent control of both diastereoselectivity and enantioselectivity. In view of the underdevelopment of donor-substituted diazo reagents in asymmetric cyclopropanation, the successful development of this new catalytic radical process will encourage further research efforts in applying sulfonyl hydrazones as stable precursors for various asymmetric catalytic processes.
2.4 EXPERIMENTAL SECTION

2.4.1 General Considerations

All cyclopropanation reactions were carried out under a nitrogen atmosphere in an oven-dried glassware following standard Schlenk techniques. Anhydrous methanol and other reagents were directly used as purchased. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with ICN silica gel (60 Å, 230-400 mesh, 32-63 µm).

Proton and carbon nuclear magnetic resonance spectra (¹H NMR and ¹³C NMR) were recorded on Varian Inova 400 MHz, Bruke 500 MHz and Varian 600 MHz instruments with chemical shifts reported relative to residual solvent. ¹⁹F NMR spectra were recorded on a Varian Inova 400 spectrometer (376 MHz), using CFCl₃ ($\delta = 0$) as internal standard. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart Miracle accessory. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL[®] IV digital polarimeter. HPLC measurements were carried out on a Shimadzu HPLC system with Chiralcel OD-H, OJ-H, AD-H and IC columns. HRMS data was obtained on an Agilent 6200 LC/MS ESI/TOF mass spectrometer with electrospray ionization and Agilent 7890 GC-7200 EI/QTOF MS. The X-ray diffraction data were collected using Bruker-AXS SMART-APEXII CCD diffractometer (CuK α , $\lambda = 1.54178$ Å). Spartan modelling was performed using Spartan14V118 software.

2.4.2 Typical Procedure for the Preparation of Tosylhydrazones¹⁸

To a stirred solution of pure sulfonyl hydrizide (5.0 mmol) in methanol (12.0 mL), aldehyde (5.0 mmol) was added dropwise (or portionwise if solid) at room temperature. After approximately 3 h, the reaction mixture was cooled to 0 °C and the product was removed by filtration, washed with a small quantity of cold methanol. The crude solid was further purified by recrystallization in hot methanol.

H NNHTs benzaldehyde tosylhydrazone 1a,¹⁸ 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (b, 1H), 7.89 (d, J = 8.4 Hz, 2H), 7.78 (s, 1H), 7.63 – 7.50 (m, 2H), 7.40 – 7.33 (m, 3H), 7.30 (d, J = 8.4 Hz, 2H), 2.40 (s, 3H). ¹³C
NMR (100 MHz, CDCl₃) δ 147.86, 144.25, 135.24, 133.15, 130.39, 129.68, 128.60, 127.92, 127.34, 21.57.

benzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1a',¹⁹ 96% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.76 (s, 1H), 7.56 – 7.54 (m, 2H), 7.35 – 7.31 (m, 3H), 7.18 (s, 2H), 4.28 (hept, J = 6.8 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.32 (d, J = 6.8 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 156.14, 154.03, 148.96, 135.98, 133.89, 132.89, 131.23, 129.93, 126.54, 36.84, 32.73, 27.52, 26.17.

Phenyl Diazomethane 1a'', Synthesized from benzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone 1a' according to the known literature.² red liquid, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (t, *J* = 7.5 Hz, 2H), 7.03 (t, *J* = 7.5 Hz, 1H), 6.90 (d, *J* = 7.5 Hz, 2H), 4.92 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 132.41, 131.72, 126.52, 123.96 (As known in literature, diazo carbon is missing). IR (neat, cm⁻¹): 2962.03, 2062.25 (C=N₂), 1596.89, 1412.18, 1262.56, 1101.59, 1031.40, 819.76, 736.79, 690.89.

H NNHTS **2-methoxybenzaldehyde tosylhydrazone 1b**, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 7.87 (d, J = 8.3 Hz, 2H), 7.83 (dd, J = 7.6, 1.7 Hz, 1H), 7.70 (s, 1H), 7.36 – 7.32 (m, 1H), 7.30 (d, J = 8.3 Hz, 2H), 6.94 (t, J = 7.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 2.40 (s, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 157.83, 144.10, 143.83, 135.39, 131.72, 129.61, 127.95, 126.57, 121.61, 120.79, 110.90, 55.48, 21.57. IR (neat, cm⁻¹): 3186.49, 1596.14, 1487.96, 1434.28, 1329.63, 1160.67, 1046.43, 811.98, 666.65. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₇N₂O₃S⁺: 305.0954, found 305.0942.

2-ethylbenzaldehyde tosylhydrazone 1c, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.69 (dd, J = 7.8 Hz, 1.3 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 7.5 Hz, 1H), 7.22
7.11 (m, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.41 (s, 3H), 1.13 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.78, 144.24, 143.31, 135.29, 130.48, 130.34, 129.66, 129.27,

127.98, 127.38, 126.13, 26.00, 21.58, 15.85. IR (neat, cm⁻¹): 3143.63, 1597.23, 1442.73, 1324.67, 1161.54, 1042.62, 945.01, 811.89, 700.38. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₁₉N₂O₂S⁺: 303.1162, found 303.1169.

H NNHTS **4-methoxybenzaldehyde tosylhydrazone 1d**, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.73 (s, 1H), 7.51 (d, J = 8.8 Hz, 2H), 7.30 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.81 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 161.47, 148.25, 144.15, 135.31, 129.63, 128.98, 127.93, 125.88, 114.08, 55.34, 21.57. IR (neat, cm⁻¹): 3220.26, 1608.73, 1424.64, 1299.55, 1158.69, 951.07, 826.22, 702.14. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₇N₂O₃S⁺: 305.0954, found 305.0977.

3-methoxybenzaldehyde tosylhydrazone 1e, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.1 Hz, 2H), 7.74 (s, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.26 (t, J = 8.1 Hz, 2H), 7.15 (s, 1H), 7.11 (d, J = 7.5 Hz, 1H), 6.92 (d, J = 8.3 Hz, 1H), 3.82 (s, 3H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.74, 147.73, 144.30, 135.21, 134.49, 129.68, 129.62, 127.92, 120.48, 116.72, 111.48, 55.33, 21.58. IR (neat, cm⁻¹): 3154.89, 1596.61, 1493.57, 1167.37, 1033.35, 893.12, 793.05, 688.55. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₅H₁₇N₂O₃S⁺: 305.0954, found 305.0961.

2,5-methoxybenzaldehyde tosylhydrazone 1f, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* OMe = 3.2 Hz, 1H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.88 (dd, *J* = 9.0, 3.2 Hz, 1H), 6.77 (d, *J* = 9.0 Hz, 1H), 3.77 (s, 3H), 3.74 (s, 3H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 153.60, 152.47, 144.12, 143.65, 135.37, 129.60, 127.94, 122.15, 118.15, 112.45, 110.28, 56.12, 55.82, 21.57. IR (neat, cm⁻¹): 3169.09, 1577.57, 1494.71, 1452.99, 1329.08, 1159.86, 1050.23, 908.61, 799.06, 716.49. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₁₉N₂O₄S⁺: 335.1060, found 335.1083.

H NNHTS **2,6-difluorobenzaldehyde tosylhydrazone 1g**, 92% yield.¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.90 (d, J = 8.1 Hz, 2H), 7.89 (s, 1H), 7.33 (d, J = 8.1 Hz, 2H), 7.29 (ddd, J = 8.5, 6.2, 2.3 Hz, 1H), 6.90 (t, J = 8.5Hz, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.99 (dd, J = 257.6, 6.2 Hz), 144.34 (s), 137.59 (s), 135.02 (s), 131.31 (t, J = 10.5 Hz), 129.65 (s), 128.10 (s), 111.86 (d, J = 24.4 Hz), 111.03 (t, J = 13.6 Hz), 21.61 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -112.60 (m, 2F). IR (neat, cm⁻¹): 3141.82, 1624.52, 1465.42, 1324.20, 1159.43, 1059.69, 1002.66, 949.96, 806.85, 712.76. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₃F₂N₂O₂S⁺:

311.0660, found 311.0676.

2-fluorobenzaldehyde tosylhydrazone 1h, 87% yield. ¹H NMR (400 H NNHTs MHz, CDCl₃) δ 8.13 (s, 1H), 8.01 (s, 1H), 7.88 (d, J = 8.5 Hz, 2H), 7.87 - 7.81 (m, 1H), 7.37 - 7.33 (m, 1H), 7.32 (d, J = 8.5 Hz, 2H), 7.16 - 7.09 (m, 1H), 7.02 (ddd, J = 10.4, 8.4, 1.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃)

δ 161.18 (d, J = 252.5 Hz), 144.36 (s), 140.57 (d, J = 5.1 Hz), 135.19 (s), 131.92 (d, J = 8.5 Hz), 129.71 (s), 127.94 (s), 126.87 (d, J = 2.5 Hz), 124.37 (d, J = 3.5 Hz), 121.01 (d, J = 9.9 Hz), 115.69 (d, J = 20.9 Hz), 21.59 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -121.40 (m, 1F). IR (neat, cm⁻¹): 3189.09, 1595.87, 1487.95, 1457.44, 1329.97, 1166.68, 1059.66, 957.74, 757.20. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₄FN₂O₂S⁺: 293.0755, found 293.0749.

H NNHTS **2,4,6-trifluorobenzaldehyde tosylhydrazone 1i**, 89% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1H), 7.89 (d, *J* = 8.1 Hz, 2H), 7.82 (s, 1H), 7.33 (d, *J* = 8.1 Hz, 2H), 6.68 (t, *J* = 8.5 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.21 (dm, *J* = 254.3 Hz), 161.49 (dm, *J* = 259.3 Hz), 144.46 (s), 136.65 (s), 134.95 (s), 129.62 (s), 128.10 (s), 107.84(m), 100.99 (td, *J* = 26.0, 2.7 Hz), 21.63 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -104.23 (p, *J* = 8.4 Hz, 1F), -108.55 (t, *J* = 8.2 Hz, 2F). IR (neat, cm⁻¹): 3158.70, 1618.23, 1459.17, 1151.30, 931.13, 826.01, 720.28. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₂F₃N₂O₂S⁺: 329.0572, found 329.0570.

H NNHTS pentafluorobenzaldehyde tosylhydrazone 1j, 82% yield. ¹H NMR (400 H Hz, CDCl₃) δ 8.56 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.80 (s, 1H), 7.34 (d, J = 8.4 Hz, 2H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.05 (dm, J = 253.4 Hz), 144.78 (s), 141.73 (dm, J = 258.4 Hz), 137.70 (dm, J = 254.3 Hz), 134.58 (s), 129.73 (s), 128.04 (s), 108.77 (td, J = 12.0, 3.8 Hz), 21.62 (d, J = 335.3 Hz). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -141.45 (d, J = 14.8 Hz, 2F), -151.57 (t, J = 20.8Hz, 1F), -161.97 – -162.09 (m, 2F). IR (neat, cm⁻¹): 3176.38, 1652.07, 1595.97, 1493.99,

1324.16, 1160.50, 970.95, 906.78, 792.94. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₄H₁₀F₅N₂O₂S⁺: 365.0383, found 365.0380.

Typical Procedure for the Preparation of 2,4,6-Triisopropyl Phenylsulfonyl 2.4.3 Hydrazones¹⁸

To a stirred solution of pure 2,4,6-triisopropylbenzenesulfonyl hydrazide (5.0 mmol) in THF (12.0 mL) at 0 °C, aldehyde (5.0 mmol) was added dropwise (or portionwise if solid). After approximately 3 h, the solvent was removed directly under reduced pressure, and the crude solid was further purified by recrystallization in hot methanol.

2,6-difluorobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1g', 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.92 (s, 1H), 7.30 - 7.20 (m, 1H), 7.19 (s, 2H), 6.86 (t, J = 8.5Hz, 2H), 4.24 (hept, J = 6.7 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.30 (d, J = 6.7 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 160.93 (dd, J = 257.9, 6.1 Hz), 153.50 (s), 151.54 (s), 136.09 (s), 131.06 (d, J = 7.6 Hz), 130.92(s), 123.83 (s), 111.78 (d, J = 24.4 Hz), 111.14 (t, J = 13.4 Hz), 34.17 (s), 30.08 (s), 24.81 (s), 23.50 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) -111.75 (dd, J = 8.2, 6.3 Hz, 2F). IR (neat, cm⁻¹): 3158.70, 1618.23, 1459.17, 1151.30, 931.13, 826.01, 789.01, 720.28. HRMS (ESI) $([M+H]^+)$ Calcd. For C₂₂H₂₉F₂N₂O₂S⁺: 423.1918, found 423.1939.

2-fluorobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1h', 81% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 8.01 (s, 1H), 7.80 (td, J = 7.6, 1.5 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.19 (s, 2H), 7.09 (t, J = 7.6 Hz, 1H), 7.06 – 6.98 (m, 1H), 4.27 (hept, J = 6.8 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.31 (d, J = 6.8 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.15 (d, J = 252.0 Hz), 153.57 (s), 151.39 (s), 139.17 (d, J = 5.0 Hz), 131.73 (d, J = 8.4 Hz), 131.16 (s), 126.76 (s), 124.27 (s), 123.91 (s), 121.18 (d, J = 9.8 Hz), 115.68 (d, J = 21.0 Hz), 34.18 (s), 30.08 (s), 24.86 (s), 23.51 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -121.68 (m, 1F). IR (neat, cm⁻¹): 3179.06, 1601.47, 1441.29, 1167.20, 949.74, 839.60, 755.30. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₃₀FN₂O₂S⁺: 405.2012, found 405.1995.

2,4,6-trifluorobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl
hydrazone 1i', 75% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s,
1H), 7.82 (s, 1H), 7.19 (s, 2H), 6.66 (t, J = 8.5 Hz, 2H), 4.20 (hept,
J = 6.8 Hz, 2H), 2.89 (hept, J = 6.9 Hz, 1H), 1.29 (d, J = 6.7 Hz,
12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ

163.03 (dm, J = 254.1 Hz), 161.29 (dm, J = 259.0 Hz), 153.58 (s), 151.55 (s), 135.21 (s), 131.00 (s), 123.86 (s), 108.01(m), 100.87 (td, J = 26.1, 2.4 Hz), 34.19 (s), 30.08 (s), 24.81 (s), 23.51 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -104.70 (p, J = 8.0 Hz, 1F), -108.30 (t, J = 8.4 Hz, 2F). IR (neat, cm⁻¹): 3185.54, 1615.83, 1435.14, 1166.49, 1027.07, 930.77, 837.06, 652.16. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₈F₃N₂O₂S⁺: 441.1824, found 441.1814.

pentafluorobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1j', 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H), 7.80 (s, 1H), 7.20 (s, 2H), 4.19 (hept, J = 6.7 Hz, 2H), 2.92 (hept, F = f = J = 6.9 Hz, 1H), 1.29 (d, J = 6.7 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 153.90 (s), 151.61 (s), 144.97 (dm, J = 258.1 Hz), 141.59 (dm, J = 246.1, 13.3 Hz), 137.71 (dm, J = 249.4 Hz), 132.89 (s), 130.64 (s), 123.95 (s), 108.70(m), 34.21 (s), 30.11 (s), 24.78 (s), 23.49 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -141.37 (m, 2F), -152.04 (m, 1F), -162.33 (m, 2F). IR (neat, cm⁻¹): 3197.45, 1601.27, 1494.88, 1163.62, 968.82, 901.81, 794.34, 680.74. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₂₆F₅N₂O₂S⁺: 477.1635, found 477.1634.

2-Chlorobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1k', 57% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.16 (s, 1H), 7.91 (s, 1H), 7.85 (dd, J = 7.9, 1.5 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.28 – 7.26 (m, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.18 (s, 2H), 4.25 (hept, J = 6.9 Hz, 2H), 2.90 (hept, J = 6.4 Hz, 1H), 1.30 (d, J = 6.8 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 156.24, 154.07, 145.13, 136.64, 133.86, 133.67, 133.55, 132.36, 130.01, 129.48, 126.57, 36.85, 32.77, 27.53, 26.17. IR (neat, cm⁻¹):3192.25, 1599.04, 1426.73, 1192.76, 945.51, 933.50, 845.51, 658.20. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₃₀ClN₂O₂S⁺: 421.1711, found 421.1717.

2-bromobenzaldehvde 2,4,6-triisopropylbenzenesulfonyl hvdrazone 11', 58% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, HN' 1H), 8.15 (s, 1H), 7.83 (dd, J = 7.9, 1.7 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.26 - 7.16 (m, 4H), 4.28 (hept, J = 6.7 Hz, 2H), 2.92 - 2.88 (m, 1H), 1.31 (d, J = 6.8 Hz, 12H), 1.25 (d, J = 6.9 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 156.24, 154.05, 147.47, 135.62, 134.97, 133.95, 133.85, 130.42, 130.08, 126.57, 36.85, 32.76, 27.53, 26.17. IR (neat, cm⁻¹):3183.84, 1598.65, 1427.03, 1192.47, 1060.66, 932.10, 845.40, 653.77. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₂H₃₀BrN₂O₂S⁺: 465.1206, found 465.1211.

2-iodobenzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1m', 88% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.98 (s, 1H), 7.79 (ddd, *J* = 7.9, 3.2, 1.3 Hz, 2H), 7.28 (t, *J* = 7.7 Hz, 1H), 7.18 (s, 2H), 7.03 (td, J = 7.7, 1.7 Hz, 1H), 4.25 (hept, J =6.7 Hz, 2H), 2.90 (hept, J = 6.9 Hz, 1H), 1.30 (d, J = 6.8 Hz, 12H), 1.25 (d, J = 6.9 Hz,

6H). ¹³C NMR (150 MHz, CDCl₃) δ 156.23, 154.03, 151.87, 142.23, 137.65, 134.15, 133.85, 130.89, 130.41, 126.57, 101.70, 36.84, 32.76, 27.54, 26.18. IR (neat, cm⁻ ¹):3215.97, 1597.80, 1131.96, 1191.82, 1058.66, 940.40, 844.68, 754.49, 672.63. HRMS (ESI) $([M+H]^+)$ Calcd. For C₂₂H₃₀IN₂O₂S⁺: 513.1067, found 513.1073.

2.4.4 General Procedure for [Co(Por)]-Catalyzed Cyclopropanation

An oven-dried Schlenk tube was charged with 1.0 equivalent of sulfonyl hydrazone (0.1 mmol), [Co(Por)] (2 mol %) and 2.0 equivalent of Cs₂CO₃ (0.2 mmol). The Schlenk tube was then evacuated and back filled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, and olefin (0.15 mmol, 1.5 eq) and methanol (0.6 mL) were added. The Schlenk tube was then purged with nitrogen for 30 s and the rubber septum was replaced with a Teflon screw cap. The mixture was then stirred at 40 °C. After 24 h, the reaction mixture was concentrated and purified by flash chromatography. The fractions containing product were collected and concentrated by rotary evaporation to afford the compound as a mixture of *trans/cis* diastereomers. (In most cases, the cyclopropanated product was visualized on TLC using the cerium ammonium molybdate (CAM) stain)

1,2-diphenylcyclopropane (3aa)²⁰. Yield: 64%. $R_f = 0.50$ (ethyl acetate / hexanes = 1:50), isolated as a mixture of *trans/cis* diastereomers trans/cis: 89/11. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.25 (m, 5H), 7.24 – 7.13 (m, 5H), 2.18 (d, J = 7.2 Hz, 2H), 1.46 (dd, J = 7.2, 6.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.50, 128.36, 125.75, 125.72, 28.00, 18.18. HPLC analysis: *ee* (*trans*)-isomer = -42%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 10.12 min, *t_{minor}* = 8.37 min.

1-methoxy-2-(2-phenylcyclopropyl)benzene (3ba). Yield: 78%. R_f = 0.43 (ethyl acetate / hexanes = 1:20), isolated as a mixture of trans/cis diastereomers trans/cis: 95/5. $[\alpha]^{20}$ D = +198.0 (c = 0.5,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.29 (m, 2H), 7.29 – 7.18 (m, 4H), 7.03 (d, J = 7.5 Hz, 1H), 6.97 (t, J = 7.5 Hz, 1H), 6.91 (d, J = 8.1 Hz, 1H), 3.88 (s, 3H), 2.59 – 2.46 (m, 1H), 2.27 – 2.12 (m, 1H), 1.51 – 1.38 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.13, 142.97, 130.81, 128.25, 126.60, 126.10, 125.55, 125.05, 120.47, 110.26, 55.48, 26.52, 21.62, 17.03. IR (neat, cm⁻¹): 3061.93, 2965.26, 1602.47, 1489.30, 910.57, 835.92, 750.46. HPLC analysis: *ee* (*trans*)-isomer = 99%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 14.52 min, *t_{minor}* =13.78 min. HRMS (EI) ([M]+) Calcd. for C₁₆H₁₆O⁺: 224.1195, Found 224.1196.

1-ethyl-2-(2-phenylcyclopropyl)benzene (3ca). Yield: 87%. $R_f = 0.50$ (ethyl acetate / hexanes = 1:50), isolated as a mixture of *trans/cis* diastereomers *trans/cis*: 85/15. ¹H NMR (500 MHz, CDCl₃) δ 7.31 (t, J = 7.6 Hz, 2H), 7.23 – 7.16 (m, 5H), 7.12 – 7.08 (m, 1H), 7.03 – 6.99 (m, 1H), 2.74 (q, J = 7.6 Hz, 2H), 2.27 – 2.25 (m, 1H), 2.09 – 2.06 (m, 1H), 1.51 – 1.48 (m, 1H), 1.43 – 1.36 (m, 1H), 1.19 (t, J = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 143.57, 142.81, 139.45, 128.38, 127.96, 127.38, 126.19, 125.84, 125.62, 125.34, 26.31, 25.98, 25.42, 16.60, 14.80. IR (neat, cm⁻¹): 3061.86, 2964.52, 1602.23, 1489.47, 929.09, 750.23, 695.26. HPLC analysis: *ee* (*trans*)-isomer = 33%. ODH (99.9% hexanes : 0.1% isopropanol, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 12.43 min, *t_{minor}* = 17.09 min. HRMS (EI) Calcd. for C17H18⁺: 222.1403, Found 222.1402.

CDCl₃) δ 7.32 – 7.26 (m, 2H), 7.19 (d, J = 6.8 Hz, 1H), 7.14 (d, J = 7.9 Hz, 2H), 7.09 (d, J = 7.9 Hz, 2H), 6.85 (d, J = 7.7 Hz, 2H), 3.80 (s, 3H), 2.16 – 2.07 (m, 2H), 1.41 – 1.38 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 157.84, 142.72, 134.51, 128.35, 126.90, 125.69, 125.61, 113.85, 55.33, 27.49, 27.31, 17.79. HPLC analysis: *ee* (*trans*)-isomer = 23%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 24.46$ min, $t_{minor} = 29.20$ min.

1-methoxy-3-(2-phenylcyclopropyl)benzene (3ea). Yield: MeO 69%. R_f = 0.43 (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 95/5. ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.17 (m, 6H), 6.86 – 6.73 (m, 3H), 3.84 (s, 3H), 2.22 – 2.18 (m, 2H), 1.50 – 1.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.71, 144.25, 142.42, 129.34, 128.37, 127.68, 125.74, 118.13, 111.64, 110.99, 55.17, 28.08, 28.03, 18.20. IR (neat, cm⁻¹): 3026.87, 2833.70, 1601.77, 1582.13, 1042.45, 993.87, 717.74, 692.66. HPLC analysis: *ee* (*trans*)-isomer = 23%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 28.00 min, *t_{minor}* = 32.64 min. HRMS (EI) (M⁺) Calcd. for C₁₆H₁₆O⁺: 224.1196, Found 224.1191.

1-methoxy-2-(2-(4-methoxyphenyl)cyclopropyl)benzene (**3bb**). Yield: 88%. $R_f = 0.29$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 95/5. $[\alpha]^{20}_{D} = +254.7$ (c = 0.5, CHCl₃). ¹H

NMR (500 MHz, CDCl₃) δ 7.26 – 7.14 (m, 3H), 6.97 (dd, J = 7.6, 1.7 Hz, 1H), 6.94 – 6.89 (m, 1H), 6.89 – 6.82 (m, 3H), 3.84 (s, 3H), 3.80 (s, 3H), 2.40 (dt, J = 8.5, 5.4 Hz, 1H), 2.09 (dt, J = 8.7, 5.4 Hz, 1H), 1.37 – 1.30 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.13, 157.71, 134.99, 131.00, 127.29, 126.50, 125.02, 120.46, 113.72, 110.24, 55.50, 55.30, 25.80, 21.07, 16.49. IR (neat, cm⁻¹): 2995.01, 1598.05, 1494.37, 1242.45, 1029.50, 903.31, 804.44, 697.03. HPLC analysis: *ee* (*trans*)-isomer = 94%. ODH (99.5% hexanes:0.5% isopropanol, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 12.52 min, *t_{minor}* = 19.06 min. HRMS (EI) (M⁺) Calcd. for C₁₇H₁₈O₂⁺: 254.1301, Found 254.1303.

1-methoxy-2-(2-(4-(trifluoromethyl)phenyl)

cyclopropyl)benzene (3bc). Yield: 81%. $R_f = 0.46$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers

trans/cis: 96/4. $[\alpha]^{20}_{D}$ = +203.8 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, J = 8.4 Hz, 2H), 7.31 – 7.26 (m, 2H), 7.23 – 7.17 (m, 1H), 6.99 (dd, J = 7.6, 1.7 Hz, 1H), 6.96 – 6.91 (m, 1H), 6.88 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H), 2.50 (ddd, J = 9.0, 6.2, 5.0 Hz, 1H), 2.15 (dt, J = 8.8, 5.3 Hz, 1H), 1.52 – 1.48 (m, 1H), 1.43 (dt, J = 9.0, 5.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 158.17, 147.33, 130.02, 127.74 (q, J = 32.2 Hz), 126.99, 126.18, 125.25 – 125.09 (m), 124.41 (q, J = 271.7 Hz), 120.49, 110.26, 55.45, 26.33, 22.55, 17.15. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.72 (s, 3F). IR (neat, cm⁻¹): 3002.00, 1614.91, 1496.23, 1323.24, 1117.08, 929.99, 818.51, 751.26. HPLC analysis: *ee* (*trans*)-isomer = 95%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 19.12 min, *t_{minor}* = 16.06 min. HRMS (EI) (M⁺) Calcd. for C₁₇H₁₅F₃O⁺: 292.1070, Found 292.1075.

1-(2-(4-bromophenyl)cyclopropyl)-2-methoxybenzene (3bd). Yield:85%. $R_f = 0.42$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 94/6. $[\alpha]^{20}_{D}$ = +135.2 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.21 – 7.16 (m, 1H), 7.07 (d, *J* = 8.4 Hz, 2H), 6.96 (dd, *J* = 7.5, 1.7 Hz, 1H), 6.92 (td, *J* = 7.5, 0.8 Hz, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 3.83 (s, 3H), 2.43 – 2.40 (m, 1H), 2.07 – 2.05 (m, 1H), 1.46 – 1.39 (m, 1H), 1.36 – 1.32 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 158.14, 142.09, 131.24, 130.32, 127.87, 126.82, 125.12, 120.47, 119.09, 110.25, 55.47, 25.99, 21.92, 16.73. IR (neat, cm⁻¹): 3000.63, 1599.82, 1488.71, 1244.12, 1028.76, 899.24, 814.98, 747.52. HPLC analysis: *ee* (*trans*)-isomer = 94%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 30.20 min, *t_{minor}* = 24.69 min. HRMS (EI) (M⁺) Calcd. for C₁₆H₁₅BrO⁺: 302.0301, Found 302.0308.

The X-ray diffraction data were measured on a Bruker D8 Venture PHOTON 100 CMOS diffractometer equipped with a Cu K_{α} INCOATEC Imus micro-focus source (λ =

1.54178 Å). Indexing was performed using *APEX2* (Difference Vectors method). Data integration and reduction were performed using SaintPlus 6.01. Absorption correction was performed by multi-scan method implemented in SADABS. Space groups were determined using XPREP implemented in APEX2. The structure was solved using SHELXS-97 (direct methods) and refined using SHELXL-2013 (full-matrix least-squares on F^2) contained in APEX2, WinGX v1.70.01 and OLEX2. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in geometrically calculated positions and included in the refinement process using riding model with isotropic thermal parameters with Uiso(H) = 1.2Ueq(-CH,-CH₂), Uiso(H) = 1.5Ueq(-CH₃). Crystal data and refinement conditions are shown in the following Table.

Crystal data and structure refinement for compound 3bd	
Identification code	3bd
Empirical formula	C ₁₆ H ₁₅ BrO
Formula weight	303.19
Temperature/K	100.0
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	5.2682(2)
b/Å	13.5894(4)
c/Å	18.7378(5)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	1341.47(7)
Z	4
$\rho_{calc}g/cm^3$	1.501
μ/mm^{-1}	4.041
F(000)	616.0
Crystal size/mm ³	$0.09 \times 0.06 \times 0.03$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/ ^c	8.036 to 137.574
Index ranges	$-6 \le h \le 6, -16 \le k \le 16, -22 \le l \le 22$
Reflections collected	17008

Independent reflections	2481 [$R_{int} = 0.0490$, $R_{sigma} = 0.0262$]
Data/restraints/parameters	2481/0/164
Goodness-of-fit on F ²	1.106
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0228, wR_2 = 0.0597$
Final R indexes [all data]	$R_1 = 0.0229, wR_2 = 0.0598$
Largest diff. peak/hole / e Å ⁻³	0.73/-0.34
Flack parameter	-0.022(7)

1-(2-(3-bromophenyl)cyclopropyl)-2-methoxybenzene (3be). Yield: 85%. $R_f = 0.46$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 94/6. $[\alpha]^{20}_{D}$ = +400.2 (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.33–7.32 (m, 1H), 7.31–7.26 (m, 1H), 7.20–7.09 (m, 3H), 6.97–6.82 (m, 3H), 3.82 (s, 3H), 2.42–2.40 (m, 1H), 2.08–2.04 (m, 1H), 1.43–1.32 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.16, 145.51, 130.19, 129.75, 129.21, 128.62, 126.88, 125.21, 124.90, 122.43, 120.46, 110.23, 55.46, 26.03, 22.05, 16.76. IR (neat, cm⁻¹): 3001.29, 1595.81, 1461.71, 1244.64, 926.25, 776.21, 687.69. HPLC analysis: *ee* (*trans*)isomer = 94%. OJH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 40.36 min, *t_{minor}* = 34.22 min. HRMS (EI) (M⁺) Calcd. for C₁₆H₁₅BrO⁺: 302.0301, Found 302.0306.

(m, 2H), 1.45 - 1.39 (m, 1H), 1.38 - 1.32 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 158.22, 141.77, 132.36, 130.33, 127.28, 127.16, 127.00, 126.76, 125.94, 125.39, 120.48, 110.21, 55.51, 26.22, 20.79, 16.53. IR (neat, cm⁻¹): 3001.06, 1600.19, 1475.28, 1244.35, 1023.19, 905.39, 800.98, 659.99. HPLC analysis: *ee* (*trans*)-isomer = 96%. OJH (99.5% hexanes: 0.5% isopropanol, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 14.42$ min, $t_{minor} = 12.80$ min. HRMS (EI) (M⁺) Calcd. for C₁₆H₁₅BrO⁺: 302.0301, Found 302.0307.

2-(2-(2-methoxyphenyl)cyclopropyl)-1,3,5-trimethylbenzene (**3bg**). Yield: 61%. R_f = 0.65 (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*:90/10. $[\alpha]^{20}_{D}$ = +152.4 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.21 – 7.16 (m, 1H), 6.95 (d, *J* = 4.3 Hz, 2H), 6.91 (d, *J* = 8.2 Hz, 1H), 6.85 (s, 2H), 3.87 (s, 3H), 2.45 (dt, *J* = 9.1, 5.6 Hz, 1H), 2.37 (s, 6H), 2.28 (s, 3H), 2.10 – 2.06 (m, 1H), 1.36 – 1.33 (m, 1H), 1.28 – 1.24 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 157.79, 138.74, 135.62, 135.50, 131.66, 128.63, 126.13, 123.89, 120.62, 110.36, 55.51, 23.11, 20.81, 20.56, 19.55, 19.07. IR (neat, cm⁻¹): 2998.48, 1600.07, 1496.07, 1243.08, 1028.70, 921.04, 849.68, 747.06. HPLC analysis: *ee* (*trans*)-isomer = 96%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 8.87 min, *t_{minor}* = 10.71 min. HRMS (EI) (M⁺) Calcd. for C₁₉H₂₂O⁺: 266.1665, Found 266.1671.

1-(2-(4-chlorophenyl)-2-methylcyclopropyl)-2-

methoxybenzene (3bh) Yield: 90%. $R_f = 0.65$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*:

83/17. $[\alpha]^{20}_{D}$ = +121.3 (*c* = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.24 (d, J = 8.1 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 6.96 – 6.87 (m, 2H), 3.91 (s, 3H), 2.31 (dd, *J* = 8.1, 7.1 Hz, 1H), 1.31 (dd, *J* = 8.7, 5.0 Hz, 1H), 1.17 – 1.13 (m, 1H), 0.99 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.53, 147.03, 130.33, 129.39, 129.34, 128.26, 127.70, 127.37, 120.15, 109.75, 55.26, 28.63, 26.36, 21.25, 17.38. IR (neat, cm⁻¹): 3064.36, 2998.26, 1599.36, 1492.02, 1240.29, 1027.87, 829.62, 732.31. HPLC analysis: *ee* (*trans*)-isomer = 93%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 10.09 min, *t_{minor}* = 11.99 min. HRMS (EI) (M⁺) Calcd. for C₁₇H₁₇ClO⁺: 272.0962, Found 272.0968.

1-methoxy-2-(2-methyl-2-(o-tolyl)cyclopropyl)benzene (3bi).

Yield: 42%. R_f = 0.60 (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*:83/17. $[\alpha]^{20}_{D}$ = +88.5 (c = 0.5,

CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.3 Hz, 1H), 7.30 – 7.11 (m, 5H), 6.99 – 6.93 (m, 2H), 3.97 (s, 3H), 2.55 – 2.52 (m, 1H), 2.49 (s, 3H), 1.25 (dd, J = 6.2, 4.8 Hz, 1H), 1.18 (dd, J = 8.7, 4.8 Hz, 1H), 0.98 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.48, 146.30, 137.48, 130.07, 129.91, 129.27, 128.13, 127.12, 126.16, 125.86, 120.06, 109.77, 55.15, 26.69, 25.07, 20.26, 19.13, 18.13. IR (neat, cm⁻¹): 2996.17, 1600.36, 1493.39, 1240.27, 1028.20, 927.08, 748.58, 696.80. HPLC analysis: *ee* (*trans*)-isomer = 92%. ODH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 13.30 min, *t_{minor}* =17.60 min. HRMS (EI) (M⁺) Calcd. for C₁₈H₂₀O⁺: 252.1509, Found 252.1501.

1-(2-bromo-2-phenylcyclopropyl)-2-methoxybenzene (3bj). Yield: 71%. $R_f = 0.49$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*:75/25. $[\alpha]^{20} = +11.9$ (c = 0.5,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.74 (dd, J = 8.2, 1.3 Hz, 2H), 7.37 (dd, J = 10.6, 4.5 Hz, 2H), 7.35 – 7.24 (m, 2H), 7.18 – 7.14 (m, 1H), 6.98 (d, J = 7.7 Hz, 2H), 4.00 (s, 3H), 2.54 (t, J = 8.8 Hz, 1H), 1.83 (dd, J = 8.7, 1.2 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.19, 144.75, 129.62, 129.28, 128.99, 128.47, 128.33, 127.94, 120.11, 110.04, 55.47, 41.23, 26.65, 20.26. IR (neat, cm⁻¹): 3001.36, 1600.62, 1494.35, 1245.70, 1027.47, 893.04, 748.56, 695.89. HPLC analysis: *ee* (*trans*)-isomer = 95%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 13.62 min, *t_{minor}* = 17.70 min. HRMS (EI) (M⁺) Calcd. for C₁₆H₁₅BrO⁺: 302.0301, Found 302.0306.

3-(2-(2-methoxyphenyl)cyclopropyl)aniline (**3bk**). Yield: 69%. R_f = 0.40 (ethyl acetate / hexanes = 1:3), isolated as a mixture of diastereomers *trans/cis*: 92/8. $[\alpha]^{20}_{D}$ = +267.9 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.26 – 7.14 (m, 1H), 7.09 (dd, *J* = 12.0, 4.7 Hz, 1H), 6.99 – 6.90 (m, 2H), 6.87 (d, *J* = 8.2 Hz, 1H), 6.64 (d, *J* = 7.7 Hz, 1H), 6.53 (d, *J* = 6.4 Hz, 2H), 3.84 (s, 3H), 3.45 (br, 2H), 2.49 – 2.46 (m, 1H), 2.09 – 2.06 (m, 1H), 1.36 (td, *J* = 7.5, 1.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.12, 146.17, 144.33, 130.93, 129.20, 126.56, 124.98, 120.50, 116.74, 112.91, 112.72, 110.31, 55.54, 26.61, 21.42, 17.14. IR (neat, cm⁻¹): 3370.24, 3005.29, 1602.52, 1494.08, 1243,93, 1028.03, 865.37, 693.25. HPLC analysis: *ee* (*trans*)-isomer = 97%. ADH (97% hexanes : 3% isopropanol, 0.8 mL/min) (*trans*)-

isomer: $t_{major} = 33.44$ min, $t_{minor} = 41.82$ min. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₆H₁₈NO⁺: 240.1383, Found 240.1375.

2-(2-(2-methoxyphenyl)cyclopropyl)naphthalene (3bl). Yield: 68%. R_f = 0.34 (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 93/7. $[\alpha]^{20}$ = +112.1 (*c* = 0.5,

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.80 (dd, J = 11.6, 8.4 Hz, 3H), 7.65 (s, 1H), 7.43 (dt, J = 14.8, 6.9 Hz, 2H), 7.35 (d, J = 8.4 Hz, 1H), 7.20 (dd, J = 8.0, 7.5 Hz, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.88 (d, J = 8.2 Hz, 1H), 3.84 (s, 3H), 2.60 – 2.56 (m, 1H), 2.32 – 2.28 (m, 1H), 1.55 – 1.47 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.19, 140.52, 133.54, 131.97, 130.74, 127.80, 127.57, 127.33, 126.68, 125.94, 125.16, 125.10, 124.93, 124.01, 120.50, 110.29, 55.49, 26.80, 21.93, 16.87. IR (neat, cm⁻¹): 3050.85, 2934.61, 1630.05, 1598.67, 1494.91, 1025.18, 911.19, 742.18. HPLC analysis: *ee* (*trans*)-isomer = 99%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 31.76$ min, $t_{minor} = 30.74$ min. HRMS (EI) (M⁺) Calcd. for C₂₀H₁₈O⁺: 274.1353, Found 274.1350.

1-methoxy-2-(2-((trans)-styryl)cyclopropyl)benzene (3bm).

Yield: 77%. $R_f = 0.46$ (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 81/19. $[\alpha]^{20}_{D} = +193.1$

 $(c = 0.5, \text{CHCl}_3)$. ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 7.3 Hz, 2H), 7.29 (t, J = 7.6 Hz, 2H), 7.21 – 7.12 (m, 2H), 6.95 – 6.81 (m, 3H), 6.50 (d, J = 15.8 Hz, 1H), 5.98 (dd, J = 15.8, 8.7 Hz, 1H), 3.85 (s, 3H), 2.39 – 2.35 (m, 1H), 1.81 – 1.80 (m, 1H), 1.31 – 1.27 (m,

1H), 1.20 - 1.15 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 158.03, 137.69, 133.49, 130.38, 128.46, 127.89, 126.62, 126.52, 125.66, 124.76, 120.52, 110.33, 55.58, 26.03, 19.65, 16.05. IR (neat, cm⁻¹): 3023.96, 2931.60, 1645.79, 1494.54, 1242.80, 1027.44, 956.56, 692.08. HPLC analysis: *ee* (*trans*)-isomer = 81%. ODH (98% hexanes : 2% isopropanol, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 8.21$ min, $t_{minor} = 8.83$ min. HRMS (EI) (M⁺) Calcd. for C₁₈H₁₈O⁺: 250.1352, Found 250.1336.

CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.18 (m, 1H), 7.06 (d, J = 7.4 Hz, 1H), 6.90 (td, J = 7.5, 0.8 Hz, 1H), 6.86 (d, J = 8.1 Hz, 1H), 4.93 (s, 1H), 4.78 (s, 1H), 3.84 (s, 3H), 2.12 (dd, J = 8.4, 6.7 Hz, 1H), 1.88 (s, 3H), 1.18 (dd, J = 8.6, 4.8 Hz, 1H), 0.89 (dd, J = 6.3, 4.9 Hz, 1H), 0.82 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 159.48, 151.01, 129.15, 126.96, 119.93, 111.79, 109.70, 109.04, 55.13, 28.09, 25.39, 20.31, 18.04, 16.23. IR (neat, cm⁻¹): 3073.35, 2953.85, 1644.08, 1494.53, 1240.35, 1023.19, 890.13, 748.15. HPLC analysis: *ee* (*trans*)-isomer = 89%. ODH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 8.38 min, *t_{minor}* = 9.42 min. HRMS (EI) (M⁺) Calcd. for C₁₄H₁₈O⁺: 202.1352, Found 202.1347.

1-methoxy-2-(2-propoxycyclopropyl)benzene (3bo). Yield: 49%. R_f = 0.48 (ethyl acetate / hexanes = 1:10), isolated as a mixture of diastereomers *trans/cis*: 83/17. $[\alpha]^{20}$ D = +89.7 (c = 0.5, CHCl₃). ¹H

NMR (500 MHz, CDCl₃) δ 7.15 (t, J = 7.8, 1.7 Hz, 1H), 6.85 (dd, J = 7.8, 1.8 Hz, 2H), 6.77 (dd, J = 7.4, 1.5 Hz, 1H), 3.86 (s, 3H), 3.63 – 3.57 (m, 1H), 3.57 – 3.50 (m, 1H), 3.30 – 3.27 (m, 1H), 2.34 – 2.30 (m, 1H), 1.64 – 1.60 (m, 2H), 1.24 – 1.19 (m, 1H), 1.03 (dd, J= 12.7, 6.5 Hz, 1H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 158.06, 129.39, 126.58, 125.53, 120.30, 110.07, 72.42, 61.12, 55.35, 22.80, 18.20, 14.26, 10.64. IR (neat, cm⁻¹): 2960.57, 1600.77, 1496.03, 1242.96, 1027.65, 938.07, 794.54, 747.61. HPLC analysis: *ee* (*trans*)-isomer = 91%. ODH (99% hexanes : 1% isopropanol, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 24.16$ min, $t_{minor} = 12.72$ min. HRMS (EI) (M⁺) Calcd. for C₁₃H₁₈O₂⁺: 206.1301, Found 206.1298.

2-(2-methoxyphenyl)cyclopropane-1-carboxamide (3bp). Yield: 41%. $R_f = 0.40$ (ethyl acetate / hexanes = 3:1), isolated as a mixture of diastereomers *trans/cis*: 71/29. $[\alpha]^{20} = +33.2$ (c = 0.5, CHCl₃).

¹H NMR (500 MHz, CDCl₃) δ 7.20 – 7.17 (m, 1H), 6.92 – 6.84 (m, 3H), 5.63 (s, 1H), 5.51 (s, 1H), 3.84 (s, 3H), 2.72 – 2.68 (m, 1H), 1.60 – 1.55 (m, 1H), 1.32 – 1.27 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 174.91, 158.33, 128.66, 127.41, 125.96, 120.34, 110.32, 55.43, 24.30, 20.69, 14.53. IR (neat, cm⁻¹): 3399.91, 3199.69, 3007.49, 1638.45, 1434.96, 1243.99, 1020.30, 951.64, 799.30, 743.55. HPLC analysis: *ee* (*trans*)-isomer = 77%. OJH (90% hexanes : 10% isopropanol, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 18.18 min, *t_{minor}* = 25.97 min. HRMS (ESI) ([M+Na]⁺) Calcd. For C₁₁H₁₃NNaO₂⁺: 214.0838, found 214.0842.

 $\begin{array}{l} \textbf{2-(2-methoxyphenyl)cyclopropyl)ethan-1-one (3bq). Yield: 42\%. R_f} \\ = 0.35 (ethyl acetate / hexanes = 1:6). [\alpha]^{20} {}_{\mathrm{D}} = +50.8 (c = 0.5, \mathrm{CHCl}_3). \\ {}^{\mathrm{1}}\mathrm{H} \ \mathrm{NMR} \ (600 \ \mathrm{MHz}, \mathrm{CDCl}_3) \ \delta \ 7.21 - 7.19 \ (\mathrm{m}, 1\mathrm{H}), \ 6.94 - 6.84 \ (\mathrm{m}, 3\mathrm{H}), \\ 3.84 \ (\mathrm{s}, 3\mathrm{H}), \ 2.68 \ (\mathrm{ddd}, J = 9.1, \ 6.9, \ 4.2 \ \mathrm{Hz}, 1\mathrm{H}), \ 2.30 \ (\mathrm{s}, 3\mathrm{H}), \ 2.12 - 2.09 \ (\mathrm{m}, 1\mathrm{H})), \ 1.64 \end{array}$

(ddd, J = 9.2, 5.1, 4.3 Hz, 1H), 1.40 - 1.36 (m, 1H).¹³C NMR (150 MHz, CDCl₃) δ 210.09, 160.98, 131.18, 130.23, 128.62, 122.99, 112.91, 58.03, 34.12, 33.17, 26.89, 19.59. IR (neat, cm⁻¹): 2919.91, 1695.98, 1463.35, 1354.29, 1246.84, 1048.27, 965.23, 753.26. HPLC analysis: *ee* (*trans*)-isomer = 82%. IC (99.5% hexanes : 0.5% isopropanol, 1.0 mL/min) (*trans*)-isomer: $t_{major} = 34.73$ min, $t_{minor} = 51.20$ min. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₂H₁₅O₂⁺: 191.1067, found 191.1072.

1,4-dimethoxy-2-(2-phenylcyclopropyl)benzene (3fa). Yield: 91%.
R_f = 0.29 (ethyl acetate / hexanes = 1:20), isolated as a mixture of diastereomers *trans/cis*: 95/5. [α]²⁰ D = +366.8 (c = 0.5, CHCl₃). ¹H
NMR (500 MHz, CDCl₃) δ 7.32 - 7.29 (m, 2H), 7.23 - 7.16 (m, 3H), 6.80 (d, J = 8.8 Hz, 1H), 6.70 (dd, J = 8.8, 3.0 Hz, 1H), 6.56 (d, J = 3.0 Hz, 1H), 3.80 (s, 3H), 3.79 (s, 3H), 2.51 - 2.47 (m, 1H), 2.19 - 2.12 (m, 1H), 1.43 - 1.38 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 153.80, 152.48, 142.76, 132.36, 128.26, 126.07, 125.62, 111.79, 111.51, 110.18, 56.32, 55.70, 26.84, 21.67, 17.34. IR (neat, cm⁻¹): 3024.22, 2998.62, 1603.03, 1496.39, 1157.29, 1048.03, 931.01, 797.21, 696.10. HPLC analysis: *ee* (*trans*)-isomer = 94%. ODH (99%)

hexanes : 1% isopropanol, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 9.43 \text{ min}, t_{minor} = 11.10 \text{ min}.$ HRMS (EI) (M⁺) Calcd. for C₁₇H₁₈O₂⁺: 254.1301, Found 254.1303.

1,3-difluoro-2-(2-phenylcyclopropyl)benzene (3g'a). Yield: 83%. R_f = 0.54 (ethyl acetate / hexanes = 1:50). $[\alpha]^{20}_{D} = +131.4$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.18 (m, 5H), 7.11 (td, J = 7.9, 3.9 Hz, 1H), 6.84 (t, J = 7.9 Hz, 2H), 2.51 (dt, J = 8.8, 5.5 Hz, 1H), 2.12 (dt, J = 9.2, 5.6 Hz, 1H), 1.67 (dt, J = 8.7, 5.6 Hz, 1H), 1.49 – 1.40 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.12 (dd, J = 247.5, 8.3 Hz), 142.12 (s), 128.38 (s), 127.03 (t, J = 10.5 Hz), 126.17 (s), 125.94 (s), 117.69 (t, J = 16.6 Hz), 111.27 (dd, J = 19.2, 7.4 Hz), 24.07 (s), 17.17 (s), 15.58 (s). ¹⁹F NMR (376 MHz , CFCl₃, CDCl₃) δ -115.47 (t, J = 6.9 Hz, 2F). IR (neat, cm⁻¹): 3029.23, 2926.13, 1604.44, 1482.60, 1267.08, 965.77, 714.05, 695.62. HPLC analysis: *ee (trans)*isomer = 93%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* = 7.74 min, *t_{minor}* = 9.61 min. HRMS (EI) (M⁺) Calcd. for C₁₅H₁₂F₂⁺: 230.0902, Found 230.0894.

1-fluoro-2-(2-phenylcyclopropyl)benzene (3h'a). Yield: 75%. $R_f = 0.49$ (ethyl acetate / hexanes = 1:50). $[\alpha]^{20}_{D} = +131.4$ (c = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.19 (m, 2H), 7.24 – 7.18 (m, 3H), 7.18 – 7.13 (m, 1H), 7.12 – 6.99 (m, 3H), 2.41 – 2.36 (m, 1H), 2.24 – 2.20 (m, 1H), 1.50 – 1.43 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 161.68 (d, J = 245.4 Hz), 142.10 (s), 129.39 (d, J = 14.7 Hz), 128.47 (s), 127.60 (s), 127.08 (t, J = 16.8 Hz), 126.08 (dd, J = 21.5, 9.5 Hz), 123.97 (d, J = 3.1 Hz), 115.10 (d, J = 22.0 Hz), 26.53 (s), 20.73 (d, J = 4.5 Hz), 16.83 (s). ¹⁹F

NMR (376 MHz, CFCl₃, CDCl₃) δ -119.99 – -120.20 (m, 1F). IR (neat, cm⁻¹): 3029.40, 2926.12, 1603.76, 1454.12, 1238.82, 907.78, 819.87, 749.91, 695.13. HPLC analysis: *ee* (*trans*)-isomer = 76%. ODH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: t_{major} = 16.36 min, t_{minor} = 18.53 min. HRMS (EI) (M⁺) Calcd. for C₁₅H₁₃F⁺: 211.0996, Found 211.0991.

1,3,5-trifluoro-2-(2-phenylcyclopropyl)benzene (**3i'a**). Yield: **85%**. $R_f = 0.60$ (ethyl acetate / hexanes = 1:50). $[\alpha]^{20}_{D} = +173.2$ (*c* **a** 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.20 (m, 5H), 6.65 – 6.61 (m, 2H), **2.41** (dt, *J* = 8.8, 5.5 Hz, 1H), 2.01 (dt, *J* = 9.2, 5.6 Hz, 1H), 1.57 (dt, *J* = 8.8, 5.6 Hz, 1H), **1.44** (dt, *J* = 9.1, 5.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 162.15 (d, *J* = 246.5 Hz), **160.73** (d, *J* = 247.9 Hz), 141.85 (s), 128.41 (s), 126.18 (s), 126.03 (s), 113.85 (m), 99.84 (m), 23.90 (s), 16.41 (s), 15.29 (s). ¹⁹F NMR (376 MHz, CFCl₃, CDCl₃) δ -111.91 (m, 3F). **IR** (neat, cm⁻¹): 3029.60, 2925.93, 1634.92, 1496.27, 1116.25, 999.09, 768.84, 695.10. HPLC analysis: *ee* (*trans*)-isomer = 93%. ADH (100% hexanes, 0.8 mL/min) (*trans*)isomer: *t_{major}* = 7.27 min, *t_{minor}* = 9.66 min. HRMS (EI) (M⁺) Calcd. for C₁₅H₁₁F₃⁺: 248.0808, Found 248.0802.

(m, 2H), 7.26 – 7.19 (m, 3H), 2.51 – 2.46 (m, 1H), 2.07 – 2.05 (m, 1H), 1.65 – 1.60 (m, 1H), 1.56 – 1.51 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 147.89 – 144.13 (m), 140.85,

139.17 – 135.26 (m), 128.53, 126.41, 126.22, 115.72 – 114.99 (m), 24.18, 16.41, 15.23. ¹⁹F NMR (376 MHz , CFCl₃, CDCl₃) δ -144.31 (dd, J = 21.9, 7.6 Hz, 2F), -158.40 (t, J = 21.0 Hz, 1F), -163.67 – -163.80 (m, 2F). IR (neat, cm⁻¹): 3030.43, 1605.60, 1492.93, 1463.70, 949.51, 843.57, 696.05. HPLC analysis: *ee* (*trans*)-isomer = 89%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: *t_{major}* =9.08 min, *t_{minor}* =17.80 min. HRMS (EI) (M⁺) Calcd. for C₁₅H₉F₅⁺: 284.0619, Found 284.0619.

1-chloro-2-(2-phenylcyclopropyl)benzene (3k'a). Yield: 77%. $R_f = 0.52$ (ethyl acetate / hexanes = 1:50). $[\alpha]^{20} {}_D = +111.6$ (c = 0.5, CHCl₃).

¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 7.9 Hz, 1H), 7.32 (t, J = 7.6

Hz, 2H), 7.24 – 7.21 (m, 4H), 7.16 – 7.13 (m, 1H), 7.09 (d, J = 7.7 Hz, 1H), 2.52 – 2.49 (m, 1H), 2.16 – 2.13 (m, 1H), 1.47 – 1.44 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 144.81, 142.39, 138.03, 131.89, 131.02, 129.70, 129.39, 129.16, 128.76, 128.54, 29.38, 27.78, 19.46. IR (neat, cm⁻¹): 2956.97, 1604.00, 1498.45, 1479.85, 1259.88, 1072.94, 800.72, 696.31. HPLC analysis: *ee* (*trans*)-isomer = 75%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 8.95$ min, $t_{minor} = 8.33$ min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₁₄Cl⁺: 229.0779, Found 229.0784.

1-bromo-2-(2-phenylcyclopropyl)benzene (3I'a). Yield: 50%. $R_f = 0.57$ (ethyl acetate / hexanes = 1:50). $[\alpha]^{20}_{D} = +82.1$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.28 – 7.20 (m, 4H), 7.10 – 7.06 (m, 2H), 2.50 – 2.46 (m, 1H), 2.15 – 2.12 (m, 1H), 1.46 – 1.44

(m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 144.81, 144.01, 135.18, 131.00, 130.07, 130.01, 129.55, 128.73, 128.52, 30.56, 29.53, 19.76. IR (neat, cm⁻¹):3026.08, 1063.59, 1497.80, 1268.18, 1100.36, 1022.23, 930.21, 775.09, 715.70. HPLC analysis: *ee* (*trans*)-isomer = 57%. ADH (100% hexanes, 0.8 mL/min) (*trans*)-isomer: $t_{major} = 9.90$ min, $t_{minor} = 8.96$ min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₁₄Br⁺: 273.0273, Found 273.0279.

2.5 **REFERENCES**

(1) For reviews on stereoselectivity of free radical transformations, see: (a) Yang, Y.-H.; Sibi, M. P. In *Encyclopedia of Radicals in Chemistry, Biology and Materials*; Chatgilialoglu, C., Studer, A., Eds.; Wiley: Weinheim, 2012, p 655; (b) Curran, D. P.; Porter, N. A.; Giese, B. *Stereochemistry of radical reactions: concepts, guidelines, and synthetic applications*; John Wiley & Sons, 2008; (c) Zimmerman, J.; Sibi, M. P. *Top. Curr. Chem.* **2006**, *263*, 107; (d) Bar, G.; Parsons, A. F. *Chem. Soc. Rev.* **2003**, *32*, 251; (e) Zard, S. Z. *Radical reactions in organic synthesis*; Oxford University Press: Oxford, 2003; (f) Porter, N. A.; Giese, B.; Curran, D. P. *Acc. Chem. Res.* **1991**, *24*, 296; (g) Giese, B. *Angew. Chem., Int. Ed.* **1989**, *28*, 969.

(2) For select examples of stereoselective radical processes via photoredox catalysis, see: (a) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. *Science* 2016, *351*, 681; (b) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. *Angew. Chem., Int. Ed.* 2015, *54*, 3872; (c) Huo, H. H.; Shen, X. D.; Wang, C. Y.; Zhang,

L. L.; Rose, P.; Chen, L. A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014,

515, 100; (d) Du, J. N.; Skubi, K. L.; Schultz, D. M.; Yoon, T. P. Science 2014, 344, 392.

(3) For reviews and highlights on Co(II)-MRC: (a) Studer, A.; Curran, D. P. Angew. Chem., Int. Ed. 2016, 55, 58; (b) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775; (c) Degennaro, L.; Trinchera, P.; Luisi, R. Chem. Rev. 2014, 114, 7881; (d) Olivos Suarez, A. I.; Lyaskovskyy, V.; Reek, J. N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem., Int. Ed. 2013, 52, 12510; (e) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899; (f) Doyle, M. P. Angew. Chem., Int. Ed. 2009, 48, 850.

(4) For a recent review on Ti(III)-based MRC, see: (a) Gansäuer, A.; Hildebrandt, S.;
Vogelsang, E.; Flowers Ii, R. A. *Dalton Trans.* 2016, 45, 448. For the first demonstration of Ti(III)-based metalloradical non-catalytic process, see: (b) RajanBabu, T. V.; Nugent, W. A. *J. Am. Chem. Soc.* 1994, 116, 986. For select examples of catalytic processes via Ti(III)-based MRC, see: (c) Gansäuer, A.; Hildebrandt, S.; Michelmann, A.; Dahmen, T.; von Laufenberg, D.; Kube, C.; Fianu, G. D.; Flowers, R. A. *Angew. Chem., Int. Ed.* 2015, 54, 7003; (d) Gansäuer, A.; Fleckhaus, A.; Lafont, M. A.; Okkel, A.; Kotsis, K.; Anoop, A.; Neese, F. *J. Am. Chem. Soc.* 2009, 131, 16989; (e) Gansäuer, A.; Fan, C.-A.; Keller, F.; Keil, J. *J. Am. Chem. Soc.* 2007, 129, 3484; (f) Gansäuer, A.; Rinker, B.; Pierobon, M.; Grimme, S.; Gerenkamp, M.; Mück-Lichtenfeld, C. *Angew. Chem., Int. Ed.* 2003, 42, 3687.

(5) For detailed experimental and theoretical studies on the radical mechanism involving α-Co(III)-alkyl radical (also known as Co(III)-carbene radical) intermediates for olefin cyclopropanation and C–H alkylation, see: (a) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. *J. Am. Chem. Soc.* 2010, *132*, 10891; (b) Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L. *Organometallics* 2011, *30*, 2739; (c) Lu, H.

J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 8518; (d) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219.
For studies on the similar radical mechanism involving α-Co(III)-aminyl radical (also known as Co(III)-nitrene radical) intermediates for olefin aziridination and C–H amination, see: (e) Suarez, A. I. O.; Jiang, H. L.; Zhang, X. P.; de Bruin, B. Dalton Trans. 2011, 40, 5697; (f) Hopmann, K. H.; Ghosh, A. ACS Catal. 2011, 1, 597; (g) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H. J.; Jiang, H. L.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. 2011, 133, 12264; (h) Goswami, M.; Lyaskovskyy, V.; Domingos, S. R.; Buma, W. J.; Woutersen, S.; Troeppner, O.; Ivanović-Burmazović, I.; Lu, H.; Cui, X.; Zhang, X. P.; Reijerse, E. J.; DeBeer, S.; van Schooneveld, M. M.; Pfaff, F. F.; Ray, K.; de Bruin, B. J. Am. Chem. Soc. 2015, 137, 5468.

(6) (a) Xu, X.; Zhu, S. F.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 11857; (b) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292; (c) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 3304; (d) Zhu, S. F.; Xu, X.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796; (e) Ruppel, J. V.; Gauthier, T. J.; Snyder, N. L.; Perman, J. A.; Zhang, X. P. Org. Lett. 2009, 11, 2273; (f) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2010, 132, 12796; (e) Ruppel, J. V.; Gauthier, T. J.; Snyder, N. L.; Perman, J. A.; Zhang, X. P. Org. Lett. 2009, 11, 2273; (f) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042; (g) Zhu, S. F.; Perman, J. A.; Zhang, X. P. J. Am. Chem. Int. Ed. 2008, 47, 8460; (h) Chen, Y.; Ruppel, J. V.; Zhang, X. P. J. Am. Chem. Soc. 2007, 129, 12074; (i) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718; (j) Huang, L. Y.; Chen, Y.; Gao, G. Y.; Zhang, X. P. J. Org. Chem. 2003, 68, 8179; (k) Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che,

C.-M. Angew. Chem., Int. Ed. 2016, 55, 1810; (1) Fantauzzi, S.; Gallo, E.; Rose, E.; Raoul,

N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S. Organometallics 2008, 27, 6143.

(7) For other catalytic processes involving α -Co(III)-alkyl radicals as intermediates, see:

(a) Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; Bruin, B. d. J. Am. Chem. Soc. 2016,

138, 8968; (b) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. *Angew. Chem., Int. Ed.* **2015**, *54*, 1231.

(8) (a) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236; (b) Barluenga, J.;
Valdés, C. Angew. Chem., Int. Ed. 2011, 50, 7486; (c) Fulton, J. R.; Aggarwal, V. K.; de
Vicente, J. Eur. J. Org. Chem. 2005, 1479.

(9) (a) Intrieri, D.; Carminati, D. M.; Gallo, E. *Dalton Trans.* 2016, 45, 15746; (b)
Bartoli, G.; Bencivenni, G.; Dalpozzo, R. *Synthesis* 2014, 46, 979; (c) Zhu, S. F.; Cui, X.;
Zhang, X. P. *Eur. J. Inorg. Chem.* 2012, 430; (d) Intrieri, D.; Caselli, A.; Gallo, E. *Eur. J. Inorg. Chem.* 2011, 5071; (e) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, 103, 977; (f) Davies, H. M. L.; Antoulinakis, E. G. *Org. React.* 2001, 57, 1; (g) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* 1998, 98, 911.

(10) For asymmetric cyclopropanation reactions with donor-type diazo reagents, see:
(a) Goudreau, S. R.; Charette, A. B. J. Am. Chem. Soc. 2009, 131, 15633; (b) Berkessel,
A.; Kaiser, P.; Lex, J. Chem. Eur. J. 2003, 9, 4746; (c) Aggarwal, V. K.; Alonso, E.; Fang,
G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Angew. Chem., Int. Ed. 2001, 40, 1433; (d)
Aggarwal, V. K.; Smith, H. W.; Jones, R. V. H.; Fieldhouse, R. Chem. Commun. 1997,
1785. For non-asymmetric cyclopropanation reactions with donor-type diazo reagents, see:
(e) Verdecchia, M.; Tubaro, C.; Biffis, A. Tetrahedron Lett. 2011, 52, 1136; (f) Dai, X.;
Warren, T. H. J. Am. Chem. Soc. 2004, 126, 10085; (g) Maas, G.; Seitz, J. Tetrahedron Lett.

2001, *42*, 6137; (h) Li, Y.; Huang, J.-S.; Zhou, Z.-Y.; Che, C.-M. *J. Am. Chem. Soc.* **2001**, *123*, 4843; (i) Hamaker, C. G.; Djukic, J.-P.; Smith, D. A.; Woo, L. K. *Organometallics* **2001**, *20*, 5189.

(11) For non-asymmetric cyclopropanation using tosylhydrazones as donor-type diazo precursors, see: (a) Cyr, P.; Cote-Raiche, A.; Bronner, S. M. Org. Lett. 2016, 18, 6448; (b) Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2016, 55, 1810; (c) Barluenga, J.; Quiñones, N.; Tomás-Gamasa, M.; Cabal, M.-P. Eur. J. Org. Chem. 2012, 2312; (d) Zhang, J.-L.; Hong Chan, P. W.; Che, C.-M. Tetrahedron Lett. 2003, 44, 8733; (e) Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Shepherd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. J. Org. Chem. 2003, 68, 9433; (f) Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. Org. Lett. 2001, 3, 2785. For intramolecular C–H alkylation using hydrazones as donor-type diazo precursors, see: (g) Soldi, C.; Lamb, K. N.; Squitieri, R. A.; Gonzalez-Lopez, M.; Di Maso, M. J.; Shaw, J. T. J. Am. Chem. Soc. 2014, 136, 15142; (h) Reddy, A. R.; Zhou, C. Y.; Guo, Z.; Wei, J.; Che, C. M. Angew. Chem., Int. Ed. 2014, 53, 14175.

(12) (a) Palusiak, M.; Grabowski, S. J. J. Mol. Struct. 2002, 642, 97; (b) Grabowski, S.
J. J. Phys. Org. Chem. 2004, 17, 18.

(13) (a) Champagne, P. A.; Desroches, J.; Paquin, J. F. Synthesis 2015, 47, 306; (b) Jin,
L. M.; Xu, X.; Lu, H. J.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 5309.

(14) (a) Chamberlin, A. R.; Bond, F. T. J. Org. Chem. 1978, 43, 154; (b) Cusack, N. J.;
Reese, C. B.; Risius, A. C.; Roozepeikar, B. Tetrahedron 1976, 32, 2157.

(15) (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.;
Fustero, S.; Soloshonok, V. A.; Liu, H. *Chem. Rev.* 2013, *114*, 2432; (b) Purser, S.; Moore,
P. R.; Swallow, S.; Gouverneur, V. *Chem. Soc. Rev.* 2008, *37*, 320; (c) Müller, K.; Faeh, C.;
Diederich, F. *Science* 2007, *317*, 1881.

(16) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X. P. *Org. Lett.* **2008**, *10*, 1995.

(17) Schäfer, M.; Drayß, M.; Springer, A.; Zacharias, P.; Meerholz, K. Eur. J. Org.Chem. 2007, 5162.

(18) Aggarwal, V. K.; Alonso, E.; Bae, I.; Hynd, G.; Lydon, K. M.; Palmer, M. J.;

Patel, M.; Porcelloni, M.; Richardson, J.; Stenson, R. A.; Studley, J. R.; Vasse, J.-L.;

Winn, C. L. J. Am. Chem. Soc. 2003, 125, 10926.

(19) Zhu, S.; Xing, C.; Pang, W.; Zhu, S. Tetrahedron Lett. 2006, 47, 5897.

(20) Berkessel, A.; Kaiser, P.; Lex, J. Chem. Eur. J. 2003, 9, 4746.

(21) Yasuda, M.; Kojima, R.; Tsutsui, H.; Utsunomiya, D.; Ishii, K.; Jinnouchi, K.; Shiragami, T.; Yamashita, T. *J. Org. Chem.* **2003**, *68*, 7618.

CHAPTER 3

ENANTIOSELECTIVE RADICAL *CIS*-CYCLOPROPANATION OF ALKENES WITH IN SITU-GENERATED ALIPHATIC DIAZO COMPOUNDS

3.1 INTRODUCTION

The past decade has witnessed the renaissance of radical chemistry in organic synthesis. To address existing challenges associated with radical reactions,¹ the newlyemerged metalloradical catalysis (MRC) offers a conceptually new approach for the catalytic generation of metal-supported organic radicals and for commanding both reactivity and selectivity of their subsequent homolytic reactions.^{2,3} As stable open-shell metalloradical complexes, Co(II) complexes of D_2 -symmetric chiral amidoporphyrins [Co(D_2 -Por*)] exhibit the unusual capability of activating various diazo compounds to generate α -Co(III)-alkyl radicals for catalytic radical transformations,^{4,5} including olefin cyclopropanation and C–H alkylation, with effective control of diastereoselectivity and enantioselectivity. Their exceptional level of stereocontrol in these radical processes is in part attributed to the modular chiral porphyrin ligands that have pocket-like environment with tunable electronic, steric, as well as chiral properties.

Nevertheless, asymmetric radical alkene cyclopropanation with aliphatic diazo compounds,^{5a} which would provide a streamlined synthetic route for optically active alkyl-substituted cyclopropane analogs, has remained as an unsolved challenge. As depicted in Scheme 3.1, it is envisaged that the ineffective metalloradical activation of diazo would otherwise lead to thermal decomposition of these less stabilized aliphatic diazo compounds

Chapter 3. Enantioselective cis-Cyclopropanation with In Situ-Generated Alkyldiazomethanes

upon their accumulation. Also, we questioned that the presence of β -hydrogens in α -Co(III)-alkyl radicals **A** might potentially undergo undesired β -H-atom shift to form β -Co(III)-alkyl radicals **A'**, which would result in the formation of side olefinic product via radical β -scission. Moreover, with the postulated generation of intermediate **B**, it is unclear whether it will selectively lead to the desired cyclopropanation and minimize the occurrence of other possible radical side reactions. Mechanistically, it is critical to seek a suitable catalytic system to effectively induce the enantioselectivity in the subsequent radical addition of α -Co(III)-alkyl radical **A** to olefin substrate. Finally, by taking advantage of the stepwise radical mechanism, it would be highly compelling if a *cis*-selective radical substitution could be achieved during the final *3-exo-tet* radical cyclization of the resulting γ -Co(III)-alkyl radicals **B**. If the above concerns could be

Scheme 3.1|| Proposed Pathway for Radical Cyclopropanation of Alkenes with Aliphatic Diazo Compounds via Co-MRC

Chapter 3. Enantioselective cis-Cyclopropanation with In Situ-Generated Alkyldiazomethanes

resolved, it would provide an enantioselective catalytic system for the access of optically active alkyl-substituted cyclopropanes. Moreover, the development of a *cis*-selective cyclopropanation protocol would also be of importance in expanding the current repertoire, which is still rather limited.⁶

In addition to serving as versatile synthetic building blocks for stereoselective organic synthesis, chiral cyclopropanes exist as common structural elements in a wide range of naturally occurring compounds and man-made pharmaceuticals.⁷ Among various synthetic methods,^{8,9} transition metal-catalyzed asymmetric olefin cyclopropanation with diazo compounds stands for one of the most general methods for stereoselective construction of the smallest three-membered carbocycles in optically active form.^{9,10} While tremendous progress has been made, the general methods for approaching enantioenriched alkyl-substituted cyclopropanes are rather lacking. In particular, the development of asymmetric cyclopropanation with aliphatic diazo compounds, which would give rise to a highly attractive pathway for the enantioselective formation of alkyl-substituted threemembered rings, is largely undocumented.^{11,12} Aside from the instability of aliphatic diazo compounds, the sluggish advancement might be largely due to the decreased electrophilicity of formed Fischer carbene intermediates towards olefins. While in the context of asymmetric catalysis, the absence of chelating groups at the neighboring site of diazo substrates might also pose inherent challenges for the effective stereoinduction. In view of the radical pathway of MRC (Scheme 3.1), we envisioned that the asymmetric radical cyclopropanation approach might potentially address the aforementioned issues because a neutral radical process is generally less sensitive to electronic effects of the substrates. Moreover, with the modular design of cavity-like porphyrin catalysts, an
enantioselective process might also be highly feasible. As a new synthetic application of MRC, we herein wish to report the development of the first asymmetric catalytic system that is highly effective for *cis*-selective cyclopropanation of alkenes with in situ-generated aliphatic diazo compounds. The Co(II)-based metalloradical system, which can be operated at room temperature, is suitable for various alkenes, allowing for the efficient construction of *cis*-selective cyclopropane rings with excellent control of enantioselectivity. The Co(II)-catalyzed cyclopropanation is further highlighted by its functional group tolerance and heteroarene compatibility.

3.2 **RESULTS AND DISCUSSION**

3.2.1 Condition Optimization for Asymmetric Radical *Cis*-Cyclopropanation of Styrene with Aliphatic Diazo Precursors

Our efforts towards developing enantioselective radical *cis*-selective cyclopropanation began with the use of a phthalimide-tethered propanal sulfonylhydrazone **1a** as radical precursors, since the resulting cyclopropanes feature an amino functionality that would be highly attractive. Gratifyingly, it was found that even the simple Co(II) complex of tetraphenylporphyrin [Co(TPP)] could be used as an effective metalloradical catalyst, delivering the masked aminoethyl cyclopropane **3aa** in 94% yield at room temperature (Table 3.1, entry 1). The high yield implies that the in situ-generation of the corresponding alkyl diazomethane from **1a** was facile at ambient conditions and properly matched with the rate of its activation by the catalyst toward productive radical

cyclopropanation of styrene (2a). However, the reaction predominantly favors the formation of thermodynamically more stable *trans*-cyclopropane as the major isomer with a *cis/trans* ratio of 19/81. Interestingly, when Co(II) complex of D_{2h} -symmetric achiral amidoporphyrin [Co(P1)] (P1 = 3,5-Di'Bu-IbuPhyrin) was used, the catalytic reaction led

Table 3.1|| Asymmetric Cyclopropanation of Styrene with Sulfonylhydrazone 1a by Metalloradical Catalysts [Co(Por)]^a

^{*a*} Carried out with **1a** (0.1 mmol) and **2a** (2.0 equiv.) in the presence of Cs₂CO₃ (1.5 equiv.) in toluene (1.0 mL); Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide;

DMAP: 4-dimethylaminopyridine; PPY: 4-pyrrolidinopyridine. ^b Isolated yields. ^c Determined by ¹H NMR. ^d Determined by chiral HPLC for the major diastereomer.

to the formation of **3aa** in 89% yield and, remarkably, with almost equal cis- and transisomeric distribution (entry 2). Aimed to devise a enantioselective *cis*-cyclopropanation system by using different chiral amidoporphyrin catalysts, we examined the first generation catalyst [Co(P2)] (P2 = 3,5-Di'Bu-ChenPhyrin) (entry 3). Gratifyingly, a slight improvement of diastereoselectivity favoring *cis*-cyclopropane was observed together with a significant level of enantioselectivity. Further ligand evaluation revealed that with sterically more encumbered [Co(P3)] (P3 = 3,5-Di^tBu-QingPhyrin) as the catalyst, the enantioinduction of the major isomer was substantially enhanced from 47% to 94%, albeit with a similar level of reactivity and diastereoselectivity (entry 4). The stereochemical model of intermediate A upon radical activation of diazo was constructed via Spartan software and shown in Table 3.1. To further improve both diastereoselectivity and enantioselectivity, we hypothesized that the involvement of potential coordinating additives¹³ might have buttressing ligand effect to positively influence the outcome of stereoselectivity. Indeed, among different additives evaluated (entries 5-7), a substoichiometric amount of 4-dimethylaminopyridine (DMAP) led to the high-yielding formation of cyclopropane **3aa** with 83/17 *cis/trans* ratio and 99% *ee* (entry 6).

Further investigation on solvent effect (Table 3.2) revealed that aromatic solvents are relative better reaction medium than polar solvents for this radical cyclopropanation system, providing the desired compound **3aa** in high yields with varied *cis*-selectivity and enantioselectivity. Overall, the choice of solvent is still toluene.

 Table 3.2|| Solvent Effect on Asymmetric Cyclopropanation of Styrene with

 Sulfonylhydrazone 1a by [Co(P3)]^a

	N ⁻ NHTris N ↓ +		[Co(P3)] (2 mol %) DMAP (30 mol %)			////Dh
PhthN	H 1a	2a	Cs ₂ CO ₃	; solvent; RT 24 h	Philin	3aa
entry	solvent	yield (%) ^b	cis/trans ^c	ee (%) ^d		
1	PhMe	92	83:17	99	H. (R)	(R)
2	$PhCF_3$	87	76:24	99	(<i>R</i>) 0=	
3	PhH	98	77:23	99	N-H	H-N
4	TBME	76	80:20	99	N-H	H-N
5	EtOAc	18	73:27	98		
6	dioxane	63	72:28	98	H	
7	MeOH	25	56:46	92	[Co(P3)]

^{*a*} Carried out with **1a** (0.1 mmol) and **2a** (2.0 equiv.) in the presence of Cs₂CO₃ (1.5 equiv.) in solvent (1.0 mL); Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide; DMAP: 4-dimethylaminopyridine. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR. ^{*d*} Determined by chiral HPLC for the major *cis* diastereomer.

Preliminary results showcased that the system is also applicable to other aliphatic diazo precursors under the optimized reaction conditions, yet with remarkable *trans*-selectivity. For example, when sulfonylhydrazone **1b**, with an elongated carbon chain by one more methylene from **1a**, was used, a *trans*-cyclopropanation reaction was observed and the desired cyclopropane **3ba** was delivered in 62% yield with 88/12 *trans/cis* and 95% *ee.* Moreover, by switching phthalimide-tethered propanal sulfonylhydrazone **1a** to its phenyl analogue **1c**, the all-carbon cyclopropane product **3ca** was also obtained predominately as *trans*-isomer in 89% yield with 94% *ee.* Finally, with the use of hydrazone **1d**, the cyclopropanation reaction was also shown to be *trans*-selective, by

affording cyclopropane **3da** in 81% yield with 86/14 *trans/cis* and 84% *ee*. The selective access of both diastereomers signifies the unique stepwise mechanism of Co(II)-based MRC and the detailed study of stereochemistry models is still ongoing.

Scheme 3.2|| Asymmetric Cyclopropanation of Styrene with Sulfonylhydrazones by [Co(P3)]^a

^{*a*} Carried out with **1x** (0.1 mmol) and **2a** (2.0 equiv.) in the presence of Cs_2CO_3 (1.5 equiv.) in toluene (1.0 mL); Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide; DMAP: 4-dimethylaminopyridine; Isolated yields; *dr* was determined by ¹H NMR; *ee* was determined by chiral HPLC for the major diastereomer.

3.2.2 Asymmetric Radical Cyclopropanation of Different Alkenes with Aliphatic Diazo Precursor 1a

Inspired by the atypical [Co(P3)]/1a-based enantioselective *cis*-cyclopropanation reaction, we further investigated its generality by employing different alkenes. Like styrene, its derivatives bearing varied electronic and steric properties (2a-2l) could be cyclopropanated with in situ-generated aliphatic diazomethane by [Co(P3)], affording the corresponding aminoethyl-substituted cyclopropanes **3aa-3al** as *cis*-predominant

stereoisomers in high yields with excellent enantioselectivities (Scheme 3.3). Among them, halogenated styrenes such as those substituted with a Cl- or Br-atom at various positions (2d-2f) were all shown to be suitable alkene sources for highly enantioselective radical process and the resulting compounds containing aryl halide moieties would allow for further transformations such as transition metal-catalyzed cross-coupling reactions. As a demonstration of functional group tolerance, styrene derivatives bearing *p*-CH₂Cl, *p*-NO₂,

Scheme 3.3|| Enantioselective *Cis*-Cyclopropanation of Styrene Derivatives with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]^{*a*}

^{*a*} Carried out with **1a** (0.1 mmol) and **2x** (2.0 equiv.) in the presence of Cs_2CO_3 (1.5 equiv.) in toluene (1.0 mL); isolated yields; *dr* was determined by ¹H NMR of crude material; *ee* of the major *cis* diastereomer was determined by chiral HPLC; Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide; DMAP: 4-dimethylaminopyridine. ^{*b*} Performed on 1.0 mmol scale. ^{*c*} 3 mol % [Co(**P3**)] was used. ^{*d*} Absolute configuration was determined by X-ray as (1*R*, 2*R*).

m-NO₂, *m*-Bpin, *m*-CHO groups could all be productively cyclopropanated to form *cis*selective cyclopropanes **3ah–3al** with excellent enantioselectivities. Other aromatic olefins were also competent in this system, as exemplified by 2-vinyl naphthalene with the highyielding formation of cyclopropane **3am** with 86/14 *cis/trans* and 99% *ee*. It was also noteworthy to mention that the one-pot protocol could be scaled up ten-fold, as demonstrated with the high-yielding synthesis of cyclopropane **3aa** on 1.0 mmol scale in 88% yield without affecting the excellent stereoselectivity.

In addition to the aromatic olefins, conjugated dienes (2n-2o) and enynes (2p-2q) could also be employed as suitable substrates for productive cyclopropanation reactions with relatively higher diastereoselectivities and excellent enantioselectivities (Scheme 3.4). The relative and absolute configurations of cyclopropanes **3ab** and **3aq** were both established as *cis* and (1R,2R), respectively.

Scheme 3.4|| Enantioselective *Cis*-Cyclopropanation of Dienes and Enynes with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]^{*a*}

^{*a*} Carried out with **1a** (0.1 mmol) and **2x** (2.0 equiv.) in the presence of Cs_2CO_3 (1.5 equiv.) in toluene (1.0 mL); isolated yields; *dr* was determined by ¹H NMR of crude material; *ee* of the major *cis* diastereomer was determined by chiral HPLC; Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide; DMAP: 4-dimethylaminopyridine. ^{*b*} Absolute configuration was determined by X-ray as (1*R*,2*R*).

Notably, this system was equally effective for enantioselective cyclopropanation of heteroaromatic olefins (Scheme 3.5), such as vinylpyridine analogs with different substitution patterns (2r-2t), 4-vinylquinoline (2u), 3-vinylindole (2v), 3-vinyl benzothiophene (2w), 2-vinylthiophene (2x), and 2-vinylbenzofuran (2y), providing heteroaryl-tethered cyclopropane derivatives 3ar-3ay in high yields with equally excellent enantioselectivities (all 99% *ee*). Given that heteroarenes and amine functionality are prevalent structural elements in natural and synthetic bioactive compounds, the access of this family of three-membered carbocycles in high enantiopurity might find valuable applications in pharmaceutical research and development.

Scheme 3.5|| Enantioselective *Cis*-Cyclopropanation of Heteroaromatic Olefins with In Situ-Generated Alkyl Diazo Compound 1a Catalyzed by [Co(P3)]^{*a*}

^{*a*} Carried out with **1a** (0.1 mmol) and **2x** (2.0 equiv.) in the presence of Cs_2CO_3 (1.5 equiv.) in toluene (1.0 mL); isolated yields; *dr* was determined by ¹H NMR of crude material; *ee*

of the major *cis* diastereomer was determined by chiral HPLC; Tris: 2,4,6-triisopropyl phenylsulfonyl group; PhthN: Phthalimide; DMAP: 4-dimethylaminopyridine.

3.2.3 Deprotection of Phthalimide Unit in Resulting Optically Active Alkyl-Substituted Cyclopropane 3aa

As an initial exploration of synthetic applications, the phthalimide unit of the resulting chiral aminoethyl cyclopropane **3aa** could be readily deprotected to form the corresponding compound **4aa** with a primary amine group in 99% yield while retaining the original high enantiopurity (Eq. 3.1).

3.2.4 Mechanistic Investigation on Asymmetric Radical Cyclopropanation of In Situ-Generated Aliphatic Diazo Compounds

To gain insight into the underlying mechanism of this Co(II)-catalyzed asymmetric cyclopropanation, a set of mechanistic experiments were conducted. First, both (*E*)- and (*Z*)- β -deuterostyrenes were employed as substrates to study the stereospecificity of the catalytic process by analysis of in the resulting cyclopropane products (Scheme 3.6).^{5c}

Scheme 3.6|| Cyclopropanation of (*E*)- and (*Z*)- β -Deuterostyrenes to Probe Radical Reaction Mechanism

Using achiral catalyst [Co(P1)], cyclopropanation of (E)- β -deuterostyrene with diazo precursor 1a indeed gave a 87:13 ratio of isotopomers I and II in the *cis*cyclopropane products (Scheme 3.6), which might result from the rotation of β -C–C bond in the γ -Co(III)-alkyl radical intermediate B before ring closure (Scheme 3.7). Under the same conditions, the reaction of (Z)- β -deuterostyrene resulted in almost identical 13:87 ratio of isotopomeric distribution but in favoring II over I.

Scheme 3.7|| The Rationale of both Isotopomers A and B Formation in the Major *Cis*-Cyclopropanes 3aa from Cyclopropanation of (E)- β -Deuterostyrene ((E)- β -D-2a)

Furthermore, the α -Co(III)-benzyl radical species **A** (vide supra, Scheme 3.1) from the reaction of **1a** by [Co(**P1**)] could be directly detected with the loss of 1*e* from HRMS (C₈₇H₉₇CoN₉O₆⁺, *m/z*: 1422.6879). In addition, the corresponding intermediate **A** was also trapped by spin trapping reagent phenyl *N-tert*-butylnitrone (PBN) to give the characteristic EPR signal. As shown in Scheme 3.8, the resulting EPR spectrum (in red), which is assigned to PBN-trapped Co(III)-supported alkyl radical intermediates, displays the characteristic triplet of doublet signal for alkyl radicals that are trapped by phenyl *N*-tertbutylnitrone (PBN). The spectrum has been simulated (in blue) with *g* = 2.0061, *A*_N = 14.89 G, *A*_H = 2.52 G, which is consistent with the resulting O-centered radical with the hyperfine splitting by the neighboring N and H atoms. The values are consistent with those for similar species reported in literature.¹⁴

Scheme 3.8|| Isotropic X-band EPR Spectrum of Phenyl *N-tert*-Butylnitrone (PBN)-Trapped Co(III)-Supported Alkyl Radical Intermediate

Collectively, these experimental observations convincingly support the proposed stepwise radical mechanism of the Co(II)-based cyclopropanation with aliphatic aldehyde-derived *N*-arylsulfonyl hydrazones.

3.3 CONCLUSIONS

In summary, aliphatic diazo compounds, generated in situ from aliphatic aldehydederived N-arylsulfonyl hydrazones, have for the first time been applied successfully for asymmetric olefin cyclopropanation via Co(II)-based metalloradical catalysis (MRC). Co(II) complex of D_2 -symmetric chiral amidoporphyrin 3,5-Di'Bu-QingPhyrin [Co(P3)] has been identified as an effective metalloradical catalyst for asymmetric *cis*-selective radical cyclopropanation with aliphatic diazo precursors. The Co(II)-based cyclopropanation is applicable to a broad range of alkenes at room temperature, affording the alkyl-substituted cyclopropane derivatives in high yields with *cis*-selectivity and excellent enantioselectivity. In view of the underdevelopment of aliphatic diazo compounds in asymmetric cyclopropanation, the successful development of this catalytic radical process will encourage further efforts in applying sulfonylhydrazones as aliphatic diazo surrogates for various asymmetric catalytic processes, including cyclopropanation and C–H alkylation reactions.

3.4 EXPERIMENTAL SECTION

3.4.1 General Considerations

¹H NMR spectra were recorded on a Varian INOVA 400 (400 MHz), 500 (500 MHz) or 600 (600 MHz) spectrometer. Chemical shifts are internally referenced to residual CHCl₃ signal (δ 7.26 ppm). Data are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, p = pentet, br = broad, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian INOVA 400 (100 MHz), 500 (125 MHz), or 600 (150 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with residual CHCl₃ as the internal standard (δ 77.0 ppm). High-resolution mass spectrometry was performed on a Micromass LCT ESI-MS and JEOL Accu TOF Dart at the Mass Spectrometry Facility, Boston College. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart Miracle accessory. The X-ray diffraction data were collected using Bruker Kappa APEX DUO diffractometer and a Rigaku HighFlux Homelab diffractometer. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL® IV digital polarimeter. HPLC measurements were carried out on a Shimadzu HPLC system with Chiralcel OJ-H, IA, IB, ID, IE, IF. X-band EPR spectra were recorded on a Bruker EMX-Plus spectrometer (Bruker BioSpin).

Unless otherwise noted, all cyclopropanation reactions were performed under an atmosphere of dry N₂, in oven-dried glassware with standard vacuum line techniques. Gas

tight syringes were used to transfer liquid reagents and solvents in catalytic reactions. Anhydrous solvents, as well as other commercial reagents were purchased from Sigma-Aldrich, Acros, Alfa Aesar, Strem, Oakwood Products Inc., TCI, or Matrix Scientific and used as received unless otherwise stated. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with ICN silica gel (60 Å, 230-400 mesh, 32-63 µm).

3.4.2 General Procedure for Preparation of 2,4,6-Triisopropyl Sulfonylhydrazones

To a stirred solution of 2,4,6-triisopropyl sulfonylhydrazide (2 mmol) in THF (8 mL) at room temperature, aldehyde (1 equiv.) was added dropwise (or portionwise if solid). The reaction was completed within 0.5 h. After that, the solvent was removed directly under reduced pressure, and the crude mixture was further purified by flash chromatography.

N'-(3-(1,3-dioxoisoindolin-2-yl)propylidene)-2,4,6-

triisopropyl benzenesulfonohydrazide 1a. Yield: 92%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of hydrazone *E/Z* isomers. δ 7.80 (dd, *J* = 5.4, 3.1 Hz, 1H), 7.70 – 7.69 (m, 3H), 7.20 (t, *J* = 5.2 Hz, 1H), 7.11 (s, 2H), 4.12 – 4.04 (m,

2H), 3.84 (t, *J* = 6.9 Hz, 2H), 2.91 – 2.83 (m, 1H), 2.58 – 2.54 (m, 2H), 1.23 and 1.19 (d, *J* = 6.9 Hz, 18H). ¹³C NMR (125 MHz, CDCl₃): major isomer. δ 168.12, 153.22, 151.38, 146.68, 133.98, 131.92, 130.96, 123.73, 123.31, 34.60, 34.08, 31.86, 29.87, 24.75, 23.49. IR (neat, cm⁻¹): 3134.5, 2957.0, 2359.1, 1776.2, 1699.0, 1397.7, 1313.9, 1152.8, 1041.0, 881.6, 720.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₆H₃₄N₃O₄S: 484.2265, Found 484.2252.

N'-(4-(1,3-dioxoisoindolin-2-yl)butylidene)-2,4,6-

triisopropyl benzenesulfonohydrazide **1b.** Yield: 89%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of hydrazone *E/Z* isomers. δ 7.83 – 7.80 (m, 2H), 7.72 – 7.68 (m, 2H), 7.22 – 7.19 (m, 2H), 7.15 (s, 2H), 4.18 – 4.14 (m, 2H), 3.59 (t, *J* = 7.1 Hz, 2H), 2.90 – 2.85 (m, 1H), 2.25 – 2.17 (m, 2H), 1.84 – 1.78 (m, 2H), 1.25 – 1.22 (m, 18H). ¹³C NMR (150 MHz, CDCl₃): major isomer. δ 168.22, 153.19, 151.21, 148.99, 133.96, 131.93, 131.13, 123.74, 123.19, 37.01, 34.09, 29.85, 29.68, 25.03, 24.76, 23.47. IR (neat, cm⁻¹): 3147.8, 2957.7, 2359.4, 1698.3, 1398.0, 1312.6, 1162.4, 898.3, 751.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₇H₃₆N₃O₄S: 498.2421, Found 498.2414.

2,4,6-triisopropyl-N'-(3-phenylpropylidene)

benzenesulfonohydrazide 1c. Yield: 75%. R_f = 0.30 (ethyl acetate/hexanes: 1/8). ¹H NMR (400 MHz, CDCl₃): a mixture of hydrazone *E/Z* isomers. δ 7.53 (br, 1H), 7.22 – 7.13 (m, 6H), 7.07 – 7.05 (m, 2H), 4.23 – 4.16 (m, 2H), 2.96 – 2.89 (m, 1H), 2.76 (t, *J* = 7.7 Hz, 2H), 2.54 – 2.49 (m, 2H), 1.28 – 1.25 (m, 18H). ¹³C NMR (100 MHz, CDCl₃): major

isomer. δ 153.29, 151.32, 149.81, 148.96, 140.48, 128.43, 128.28, 126.11, 123.81, 34.17, 33.83, 32.13, 29.93, 24.82, 23.55. IR (neat, cm⁻¹): 3189.2, 2954.9, 2359.5, 1600.6, 1453.6, 1275.3, 1154.5, 1036.8, 897.7, 749.57. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₄H₃₅N₂O₂S: 415.2414, Found 415.2414.

Ph_____N_NHTris

2,4,6-triisopropyl-N'-(4-phenylbutylidene)

benzenesulfonohydrazide 1d. Yield: 82%. $R_f = 0.25$ (ethyl acetate/hexanes: 1/10). ¹H NMR (500 MHz, CDCl₃): a mixture of hydrazone *E/Z* isomers. δ 7.52 (br, 1H), 7.29 – 7.20 (m, 2H), 7.17 (s, 2H), 7.16 – 7.04 (m, 3H), 4.22 – 4.15 (m, 2H), 2.93 – 2.84 (m, 1H), 2.52 – 2.49 (m, 2H), 2.22 – 2.18 (m, 2H), 1.79 – 1.73 (m, 2H), 1.27 – 1.22 (m, 18H). ¹³C NMR (125 MHz, CDCl₃): major isomer. δ 153.30, 151.25, 150.57, 149.05, 141.41, 128.41, 128.30, 125.88, 123.79, 34.85, 34.15, 31.57, 29.90, 27.57, 24.81, 23.50. IR (neat, cm⁻¹): 3223.0, 2955.8, 2359.4, 1599.4, 1461.7, 1259.8, 1166.6, 1035.4, 885.6, 763.9, 665.7. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₅H₃₇N₂O₂S: 429.2570, Found 429.2555.

3.4.3 General Procedure for [Co(P3)]-Catalyzed Asymmetric Radical Cyclopropanation with In Situ Generated Aliphatic Diazo Compounds

An oven-dried Schlenk tube was charged with 1.0 equivalent of sulfonyl hydrazone 1x (0.1 mmol), [Co(P3)] (2 mol %), 4-dimethylaminopyridine (30 mol %) and 1.5 equivalent of Cs₂CO₃ (0.15 mmol). The Schlenk tube was then evacuated and back filled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, and olefin 2y (0.2 mmol, 2.0 eq) and toluene (1.0 mL) were added. The Schlenk tube was then purged with nitrogen for 30 s and the rubber septum was replaced with a Teflon screw cap. The mixture was then stirred at room temperature. After 24 h, the reaction mixture was concentrated and purified by flash chromatography. The fractions containing product 3xy were collected and concentrated by rotary evaporation to afford the compound as a mixture of *trans/cis* diastereomers.

2-(2-(2-phenylcyclopropyl)ethyl)isoindoline-1,3-dione 3aa.

Following the general procedure with hydrazone **1a** and styrene **2a** as starting material. Yield: 92%. *Cis/trans*: 83/17. *ee*: 99%. Hexanes/ethyl acetate = 4/1, $R_f = 0.50$. $[\alpha]^{20}_{D} = 28.8 (c = 1.0, CHCl_3)$. ¹H NMR (500 MHz, CDCl_3) δ 7.78 – 7.78 (m, 2H), 7.68 – 7.67 (m, 2H), 7.17 – 7.14 (m, 2H), 7.11 – 7.08 (m, 3H), 3.71 – 3.62 (m, 2H), 2.12 (td, *J* = 8.7, 6.2 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.33 (td, *J* = 14.2, 7.1 Hz, 1H), 1.15 – 1.13 (m, 1H), 0.99 (td, *J* = 8.4, 5.2 Hz, 1H), 0.69 (q, *J* = 5.7 Hz, 1H). ¹³C NMR (125 MHz, CDCl_3) δ 168.25, 138.75, 133.66, 132.16, 128.69, 127.87, 125.67, 123.01, 37.75, 27.43, 20.65, 16.86, 9.49. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 19.15 min, *t_{minor}* = 17.57 min. IR (neat, cm⁻¹): 3061.3, 2999.4, 1771.02, 1710.5, 1466.8,

1396.7, 1363.3, 1187.0, 1029.3, 721.5. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₈NO₂: 292.1332, Found 292.1319.

Following the general procedure with hydrazone **1b** and styrene **2a** as starting material. Yield: 62%. *Cis/trans*: 12/88. *ee*: 95%. Hexanes/ethyl acetate = 6/1, $R_f = 0.40. [\alpha]^{20}_D = -$ 32.0 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.83 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.69 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.21 (t, *J* = 7.6 Hz, 2H), 7.14 – 7.09 (m, 1H), 7.03 (d, *J* = 7.2 Hz, 2H), 3.72 (t, *J* = 7.3 Hz, 2H), 1.84 (p, *J* = 7.6 Hz, 2H), 1.65 – 1.62 (m, 1H), 1.48 – 1.41 (m, 2H), 1.10 – 1.04 (m, 1H), 0.89 (dt, *J* = 8.5, 5.0 Hz, 1H), 0.76 (dt, *J* = 8.6, 5.2 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.42, 143.49, 133.84, 132.12, 128.19, 125.63, 125.23, 123.14, 37.84, 31.58, 28.38, 23.13, 22.94, 16.03. HPLC analysis: *ee* = 95%. IB (95% hexanes : 5% isopropanol, 0.8 mL/min) : *t_{major}* = 17.49 min, *t_{minor}* = 16.78 min. IR (neat, cm⁻¹): 2927.4, 1770.8, 1714.9, 1466.9, 1396.9, 1370.7, 1035.1, 755.2, 721.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₂₀INO₂: 306.1489, Found 306.1483.

Ph (2-phenethylcyclopropyl)benzene 3ca. Following the general procedure with hydrazone 1c and styrene 2a as starting material. Yield: 89%. *Cis/trans*: 15/85. *ee*: 94%. Hexanes/ethyl acetate = 20/1, $R_f = 0.75$. $[\alpha]^{20}_{D} = -69.4$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.28 – 7.18 (m, 8H), 7.03 – 7.00 (m, 2H), 2.81 – 2.71 (m, 2H), 1.72

(dd, J = 14.8, 7.5 Hz, 2H), 1.65 – 1.62 (m, 1H), 1.11 – 1.06 (m, 1H), 0.91 (dt, J = 8.5, 4.9 Hz, 1H), 0.79 (dt, J = 8.7, 5.3 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 143.72, 142.26, 128.44, 128.26, 128.17, 125.67, 125.60, 125.19, 36.40, 35.75, 23.39, 23.34, 16.14. HPLC analysis: ee = 94%. IA (100% hexanes, 0.6 mL/min) : $t_{major} = 11.21$ min, $t_{minor} = 10.38$ min. IR (neat, cm⁻¹): 3025.3, 2921.2, 1603.7, 1495.3, 1453.4, 1218.8, 1089.1, 1030.0, 747.9, 694.7. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₁₉: 223.1481, Found 223.1472.

^{ph} (3-(2-phenylcyclopropyl)propyl)benzene 3da. Following the general procedure with hydrazone 1d and styrene 2a as starting material. Yield: 81%. *Cis/trans*: 14/86. *ee*: 84%. Hexanes/ethyl acetate = 20/1, $R_f = 0.75$. [α]²⁰ _D = -29.4 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.22 (m, 4H), 7.20 (d, *J* = 7.2 Hz, 3H), 7.15 – 7.12 (m, 1H), 7.08 – 7.05 (m, 2H), 2.69 – 2.65 (m, 2H), 1.83 – 1.77 (m, 2H), 1.64 – 1.61 (m, 1H), 1.45 (dd, *J* = 14.9, 7.0 Hz, 2H), 1.07 – 1.01 (m, 1H), 0.90 (dt, *J* = 8.5, 4.9 Hz, 1H), 0.79 – 0.75 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.89, 142.60, 128.37, 128.25, 128.20, 125.63, 125.60, 125.17, 35.70, 33.99, 31.14, 23.59, 23.24, 16.09. HPLC analysis: *ee* = 84%. IE (100% hexanes, 1.2 mL/min) : *t_{major}* = 9.85 min, *t_{minor}* = 10.49 min. IR (neat, cm⁻¹): 3025.1, 2925.2, 2853.4, 1603.6, 1495.6, 1452.6, 1217.8, 1076.8, 1028.8, 874.7, 746.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₁: 237.1638, Found 237.1628.

2-(2-(4-methoxyphenyl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3ab. Following the general procedure with hydrazone 1a and 4methoxyl styrene 2b as starting material in the presence of 3 mol % [Co(P3)]. Yield: 89%. *Cis/trans*: 85/15. *ee*: 98%. Hexanes/ethyl acetate = 5/1, R_f = 0.45. [α]²⁰ _D = 3.2 (*c* = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.02 (d, *J* = 8.6 Hz, 2H), 6.70 (d, *J* = 8.6 Hz, 2H), 3.74 (s, 3H), 3.71 – 3.64 (m, 2H), 2.05 (td, *J* = 8.6, 6.1 Hz, 1H), 1.62 – 1.57 (m, 1H), 1.31 – 1.25 (m, 1H), 1.11 – 1.04 (m, 1H), 0.96 (td, *J* = 8.4, 5.1 Hz, 1H), 0.60 (q, *J* = 5.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.93, 160.35, 136.31, 134.85, 132.33, 129.28, 125.64, 116.03, 57.80, 40.49, 30.23, 22.47, 19.13, 12.22. HPLC analysis: *ee* = 98%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 25.57 min, *t_{minor}* = 22.40 min. IR (neat, cm⁻¹): 2996.9, 2933.8, 1770.4, 1708.9, 1513.7, 1393.0, 1247.4, 1034.4, 830.7, 720.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₂₀NO₃: 322.1438, Found 322.1434.

2-(2-(4-trifluoromethylphenyl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3ac. Following the general procedure with hydrazone 1a and 4trifluoromethyl styrene 2c as starting material. Yield: 96%. *Cis/trans*: 86/14. *ee*: 99%. Hexanes/ethyl acetate = 4/1, R_f = 0.50. [α]²⁰_D = 11.8 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.76 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 3.67 (t, *J* = 6.7 Hz, 2H), 2.16 – 2.12 (m, 1H), 1.61 – 1.55 (m, 1H), 1.44 – 1.39 (m, 1H), 1.27 – 1.21 (m, 1H), 1.08 (td, *J* = 8.4, 5.4 Hz, 1H), 0.74 (d, *J* = 5.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.20, 143.31, 133.78, 132.08, 128.71, 127.89 (q, *J* = 32.3 Hz), 125.54, 124.76 (q, *J* = 3.6 Hz), 123.05, 37.68, 27.14, 20.75, 17.87, 10.22. HPLC analysis: *ee* = 99%. ID (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 15.01 min, *t_{minor}* = 14.19 min. IR (neat, cm⁻¹): 3067.2, 2939.3, 1771.8, 1713.9, 1394.5, 1327.9, 1164.6, 1122.4, 1070.3, 721.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₇F₃NO₂: 360.1206, Found 360.1192.

2-(2-(4-chlorophenyl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3ad. Following the general procedure with hydrazone **1a** and 4-chlorostyrene **2d** as starting material. Yield: 95%. *Cis/trans*: 82/18. *ee*: 99%. Hexanes/ethyl acetate = 5/1, $R_f = 0.50$. [α]²⁰ $_D = 19.1$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, J = 5.5, 3.0 Hz, 2H), 7.68 (dd, J = 5.5, 3.0 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.2 Hz,

2H), 3.65 (d, J = 6.8 Hz, 2H), 2.06 (td, J = 8.6, 6.2 Hz, 1H), 1.60 – 1.53 (m, 1H), 1.39 – 1.32 (m, 1H), 1.19 – 1.11 (m, 1H), 1.01 (td, J = 8.4, 5.3 Hz, 1H), 0.65 – 0.62 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.22, 137.43, 133.73, 132.07, 129.83, 127.95, 126.78, 123.01, 37.69, 27.26, 20.19, 17.20, 9.92. HPLC analysis: ee = 99%. IE (95% hexanes : 5% isopropanol, 0.8 mL/min) : $t_{major} = 36.30$ min, $t_{minor} = 24.84$ min. IR (neat, cm⁻¹): 2999.4, 1935.9, 1770.1, 1707.2, 1493.5, 1391.6, 1089.4, 1012.8, 826.9, 720.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₇ClNO₂: 326.0942, Found 326.0937.

2-(2-(4-bromophenyl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3ae. Following the general procedure with hydrazone **1a** and 4-bromostyrene **2d** as starting material. Yield: 94%. *Cis/trans*: 85/15. *ee*: 99%. Hexanes/ethyl acetate = 5/1, R_f = 0.50. $[\alpha]^{20}_{D} = 4.0 \ (c = 1.0, \text{CHCl}_3)$. ¹H NMR (500 MHz, CDCl₃) δ 7.77 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.69 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.20 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.3 Hz, 2H), 3.66 (t, *J* = 6.7 Hz, 2H), 2.04 (td, *J* = 8.6, 6.2 Hz, 1H), 1.59 – 1.52 (m, 1H), 1.40 – 1.33 (m, 1H), 1.19 – 1.12 (m, 1H), 1.04 – 0.99 (m, 1H), 0.63 (q, *J* = 5.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.23, 137.99, 133.74, 132.07, 130.89, 130.21, 123.03, 119.43, 37.70, 27.24, 20.28, 17.27, 9.94. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 27.09 min, *t_{minor}* = 20.85 min. IR (neat, cm⁻¹): 3000.7, 2936.6, 1705.5, 1489.1, 1434.9, 1390.3, 1360.9, 1177.7, 1073.3, 1008.5, 822.3, 718.8. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₇BrNO2: 370.0437, Found 370.0428.

2-(2-(3-bromophenyl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3af. Following the general procedure with hydrazone **1a** and 3-bromostyrene **2f** as starting material. Yield: 95%. *Cis/trans*: 83/17. *ee*: 99%. Hexanes/ethyl acetate = 7/1, R_f = 0.40. $[\alpha]^{20}_{D}$ = 19.5 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.26 (s, 1H), 7.23 – 7.21 (m, 1H), 7.03 – 7.02 (m, 2H), 3.71 – 3.63 (m, 2H), 2.08 (td, *J* = 8.6, 6.1 Hz, 1H), 1.63 – 1.56 (m, 1H), 1.32 (td, *J* = 14.3, 7.0 Hz, 1H), 1.19 – 1.13 (m, 1H), 1.02 (td, *J* = 8.4, 5.3 Hz, 1H), 0.66 (q, *J* = 5.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.23, 141.47, 133.77, 132.07, 131.83, 129.40, 128.86, 127.27, 123.06, 122.16, 37.65, 27.46, 20.46, 17.13, 9.95. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 22.37 min, *t_{minor}* = 21.43 min. IR (neat, cm⁻¹): 3063.3, 3001.8, 2936.6, 1770.3, 1708.7, 1435.4, 1393.7, 1041.7, 755.1, 720.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₇BrNO₂: 370.0437, Found 370.0422.

2-(2-(2-(2-methylphenyl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3ag. Following the general procedure with hydrazone 1a and 2-methyl styrene 2g as starting material. Yield: 94%. *Cis/trans*: 65/35. *ee*: 99%. Hexanes/ethyl acetate = 6/1, $R_f = 0.45$. [α]²⁰ _D = 105.0 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.79 (dd, J = 5.4, 3.0 Hz, 2H), 7.68 (dd, J = 5.5, 3.0 Hz, 2H), 7.11 – 7.05 (m, 3H), 7.03 – 7.02 (m, 1H), 3.72 – 3.64 (m, 2H), 2.36 (s, 3H), 2.05 – 2.00 (m, 1H), 1.70 – 1.62 (m, 1H), 1.25 – 1.19 (m, 1H),

1.03 – 0.99 (m, 1H), 0.91 – 0.83 (m, 1H), 0.77 – 0.73 (m, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.91, 141.02, 139.66, 136.39, 134.79, 132.15, 130.58, 128.62, 128.12, 125.71, 40.51, 30.41, 22.25, 21.86, 18.30, 11.84. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : t_{major} = 18.06 min, t_{minor} = 16.79 min. IR (neat, cm⁻¹): 2990.4, 2858.0, 1704.9, 1432.4, 1396.1, 1361.9, 1178.9, 1030.5, 945.6, 864.3, 768.0, 717.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₂₀NO₂: 306.1489, Found 306.1485.

2-(2-(2-(2-methylchrolophenyl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3ah. Following the general procedure with hydrazone **1a** and 4methylchloro styrene **2h** as starting material. Yield: 90%. *Cis/trans*: 82/18. *ee*: 99%. Hexanes/ethyl acetate = 4/1, $R_f = 0.50$. [α]²⁰ $_D = 8.2$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.77 (dd, J = 5.4, 3.0 Hz, 2H), 7.68 (dd, J = 5.4, 3.0 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 7.07 (d, J = 8.1 Hz, 2H), 4.50 (s, 2H), 3.67 (td, J = 6.8, 2.7 Hz, 2H), 2.10 (dd, J =14.8, 8.6 Hz, 1H), 1.61 – 1.57 (m, 1H), 1.37 – 1.31 (m, 1H), 1.19 – 1.15 (m, 1H), 1.01 (td, J = 8.4, 5.3 Hz, 1H), 0.69 (q, J = 5.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.24, 139.35, 134.73, 133.70, 132.13, 128.91, 128.13, 123.04, 46.14, 37.75, 27.35, 20.47, 17.20, 9.82. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 27.11 min, *t_{minor}* = 22.97 min. IR (neat, cm⁻¹): 3002.7, 2926.4, 1770.5, 1712.5, 1435.7, 1397.2, 1363.0, 1266.0, 1186.9, 1045.3, 756.9, 721.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₀H₁₉CINO₂: 340.1099, Found 340.1105.

2-(2-(4-nitrophenyl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3ai. Following the general procedure with hydrazone **1a** and 4-nitrostyrene **2i** as starting material in the presence of 3 mol % [Co(P3)]. Yield: 85%. *Cis/trans*: 69/31. *ee*: 99%. Hexanes/ethyl acetate = 3/1, R_f = 0.35. $[\alpha]^{20}_{D}$ = 48.0 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.8 Hz, 2H), 7.74 – 7.67 (m, 4H), 7.17 (d, *J* = 8.7 Hz, 2H), 3.69 – 3.60 (m, 2H), 2.18 (td, *J* = 8.6, 6.3 Hz, 1H), 1.57 – 1.50 (m, 2H), 1.37 – 1.29 (m, 1H), 1.20 – 1.15 (m, 1H), 0.81 (q, *J* = 6.0 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.11, 147.53, 133.89, 131.97, 128.86, 125.74, 123.10, 122.99, 37.52, 26.93, 21.18, 19.01, 11.12. HPLC analysis: *ee* = 99%. ID (85% hexanes : 15% isopropanol, 0.8 mL/min) : *t_{major}* = 62.39 min, *t_{minor}* = 39.21 min. IR (neat, cm⁻¹): 3003.7, 2939.2, 1739.3, 1706.0, 1507.5, 1335.6, 1184.8, 1039.4, 853.2, 716.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₇N₂O₄: 337.1183, Found 337.1181.

2-(2-(2-(3-nitrophenyl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3aj. Following the general procedure with hydrazone **1a** and 3-nitrostyrene **2j** as starting material in the presence of 3 mol % [Co(**P3**)]. Yield: 52%. *Cis/trans*: 82/18. *ee*: 99%. Hexanes/ethyl acetate = 3/1, R_f = 0.45. [α]²⁰_D = 20.8 (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.95 – 7.93 (m, 2H), 7.75 (dd, J = 5.3, 3.1 Hz, 2H), 7.67 (dd, J = 5.3, 3.1 Hz, 2H), 7.41 (d, J = 7.7 Hz, 1H), 7.35 – 7.30 (m, 1H), 3.69 – 3.61 (m, 2H), 2.20 (td, J =

8.6, 6.2 Hz, 1H), 1.59 – 1.53 (m, 1H), 1.47 – 1.41 (m, 1H), 1.28 – 1.25 (m, 1H), 1.16 – 1.12 (m, 1H), 0.78 (q, J = 5.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.77, 150.60, 144.01, 137.08, 136.51, 134.60, 131.43, 126.20, 125.70, 123.52, 40.16, 29.84, 23.29, 20.44, 13.05. HPLC analysis: ee = 99%. ID (90% hexanes : 10% isopropanol, 0.8 mL/min) : $t_{major} = 48.12$ min, $t_{minor} = 40.84$ min. IR (neat, cm⁻¹): 3071.1, 2922.1, 1770.3, 1707.1, 1527.0, 1393.6, 1349.2, 1040.9, 806.4, 721.6. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₉H₁₇N₂O₄: 337.1183, Found 337.1181.

2-(2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-

2-yl) phenyl)cyclopropyl)ethyl)isoindoline-1,3-dione 3ak. Following the general procedure with hydrazone **1a** and 4,4,5,5-tetramethyl-2-(3-vinylphenyl)-1,3,2-dioxaborolane **2k** as starting material. Yield: 80%. *Cis/trans*: 86/14. *ee*: 97%. Hexanes/ethyl acetate = 5/1, $R_f = 0.40$. $[\alpha]^{20}_{D} = 10.2$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.78 (dd, J = 5.4, 3.1 Hz, 2H), 7.67 (dd, J = 5.4, 3.0 Hz, 2H), 7.60 (s, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 7.19 (t, J = 7.4 Hz, 1H), 3.72 – 3.64 (m, 2H), 2.16 – 2.11 (m, 1H), 1.69 – 1.63 (m, 1H), 1.34 (s, 12H), 1.19 – 1.09 (m, 2H), 0.98 (td, J = 8.2, 5.3 Hz, 1H), 0.74 (q, J = 5.5 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.27, 138.08, 135.35, 133.68, 132.28, 132.17, 131.69, 128.44, 127.32, 123.03, 83.67, 37.84, 27.83, 24.88, 20.49, 16.49, 9.60. HPLC analysis: *ee* = 97% (estimated). OJH (99.5% hexanes : 0.5% isopropanol, 1.0 mL/min) : *t_{major}* = 45.62 min, *t_{minor}* = 50.73 min. IR (neat, cm⁻¹):

2977.9, 2931.0, 2359.8, 1771.5, 1713.2, 1390.5, 1362.3, 1145.2, 965.3, 739.8, 720.9. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₅H₂₉BNO₄: 418.2184, Found 418.2175.

3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)

benzaldehyde 3al. Following the general procedure with hydrazone **1a** and 3-vinyl benzaldehyde **2l** as starting material. Yield: 93%. *Cis/trans*: 80/20. *ee*: 99%. Hexanes/ethyl acetate = 4/1, R_f = 0.55. [α]²⁰ _D = 29.8 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 9.86 (s, 1H), 7.74 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.66 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.60 – 7.58 (m, 2H), 7.37 – 7.30 (m, 2H), 3.69 – 3.60 (m, 2H), 2.17 (td, *J* = 8.6, 6.2 Hz, 1H), 1.59 – 1.52 (m, 1H), 1.43 – 1.36 (m, 1H), 1.26 – 1.19 (m, 1H), 1.08 (td, *J* = 8.4, 5.4 Hz, 1H), 0.76 (q, *J* = 5.8 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 192.31, 168.14, 140.22, 136.13, 134.59, 133.78, 132.02, 129.88, 128.59, 127.19, 123.03, 37.61, 27.26, 20.50, 17.36, 9.98. HPLC analysis: *ee* = 99%. IE (85% hexanes : 5% isopropanol, 0.8 mL/min) : *t_{major}* = 55.31 min, *t_{minor}* = 48.89 min. IR (neat, cm⁻¹): 3005.0, 2940.1, 1770.0, 1702.9, 1435.8, 1392.2, 1173.3, 1036.9, 751.4, 718.1. HRMS (ESI) ([M+H]⁺) Calcd. For C₂₀H₁₈NO₃: 320.1281, Found 320.12.70.

1,3-dione 3am. Following the general procedure with hydrazone 1a and 2-vinyl

naphthelene **2m** as starting material. Yield: 94%. *Cis/trans*: 86/14. *ee*: 99%. Hexanes/ethyl acetate = 4/1, $R_f = 0.50$. $[\alpha]^{20}_{D} = 31.2$ (c = 1.0, CHCl₃).¹H NMR (600 MHz, CDCl₃) δ 7.73 – 7.59 (m, 7H), 7.49 (s, 1H), 7.41 – 7.35 (m, 2H), 7.32 – 7.29 (m, 1H), 3.71 – 3.64 (m, 2H), 2.29 – 2.25 (m, 1H), 1.70 – 1.64 (m, 1H), 1.40 – 1.34 (m, 1H), 1.25 – 1.20 (m, 1H), 1.11 – 1.07 (m, 1H), 0.84 (q, J = 5.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.23, 136.63, 133.59, 133.22, 131.99, 131.90, 127.66, 127.46, 127.44, 127.39, 126.63, 125.76, 124.99, 122.87, 37.82, 27.48, 20.99, 17.26, 9.89. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 25.17 min, *t_{minor}* = 22.45 min. IR (neat, cm⁻¹): 3057.4, 3000.7, 2934.2, 1769.7, 1705.7, 1391.5, 1360.6, 1039.3, 819.0, 750.6, 718.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₂₀NO₂: 342.1489, Found 342.1498.

(E)-2-(2-(2-styrylcyclopropyl)ethyl)isoindoline-1,3-

dione 3an. Following the general procedure with hydrazone 1a and (*E*)-buta-1,3-dien-1ylbenzene 2n as starting material. Yield: 91%. *Cis/trans*: 91/9. *ee*: 99%. Hexanes/ethyl acetate = 6/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = -66.4$ (c = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 7.59 (dd, J = 5.3, 3.0 Hz, 2H), 7.49 (dd, J = 5.4, 3.0 Hz, 2H), 7.19 (t, J = 7.5 Hz, 2H), 7.13 – 7.07 (m, 3H), 6.13 (d, J = 15.7 Hz, 1H), 5.80 (dd, J = 15.7, 9.5 Hz, 1H), 3.84 – 3.77 (m, 2H), 1.94 (dq, J = 16.2, 5.4 Hz, 1H), 1.77 – 1.71 (m, 1H), 1.60 – 1.55 (m, 1H), 1.16 – 1.10 (m, 1H), 1.00 – 0.97 (m, 1H), 0.31 (dd, J = 10.9, 5.4 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.49, 137.23, 133.37, 132.04, 129.68, 129.53, 128.20, 126.46, 125.52, 122.84, 37.97, 28.22, 19.53, 17.52, 12.75. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol,

0.8 mL/min) : $t_{major} = 23.31$ min, $t_{minor} = 18.79$ min. IR (neat, cm⁻¹): 3023.3, 2937.6, 1770.9, 1703.6, 1435.5, 1392.6, 1174.1, 1068.5, 953.8, 748.2, 691.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₂₀NO₂: 318.1489, Found 318.1500.

(*E*)-2-(2-(2-(2-methoxystyryl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3ao. Following the general procedure with hydrazone 1a and (*E*)-1-(buta-1,3-dien-1-yl)-2-methoxybenzene 2o as starting material. Yield: 92%. *Cis/trans*: 89/11. *ee*: 99%. Hexanes/ethyl acetate = 5/1, R_f = 0.40. [α]²⁰ _D = -29.6 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.62 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.49 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.24 (d, *J* = 8.8 Hz, 1H), 7.10 (t, *J* = 8.5 Hz, 1H), 6.84 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 8.2 Hz, 1H), 6.50 (d, *J* = 15.9 Hz, 1H), 5.84 (dd, *J* = 15.9, 9.5 Hz, 1H), 3.82 – 3.75 (m, 2H), 3.75 (s, 3H), 1.93 – 1.88 (m, 1H), 1.75 (td, *J* = 15.1, 8.2 Hz, 1H), 1.65 – 1.58 (m, 1H), 1.15 – 1.08 (m, 1H), 0.97 (td, *J* = 8.3, 4.8 Hz, 1H), 0.31 (dd, *J* = 10.8, 5.4 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.51, 155.85, 133.69, 133.24, 132.08, 130.41, 127.35, 126.10, 124.14, 122.77, 120.43, 110.50, 55.21, 38.02, 28.30, 20.02, 17.52, 12.87. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 29.91 min, *t_{minor}* = 26.81 min. IR (neat, cm⁻¹): 2995.9, 2935.8, 1770.5, 1704.8, 1488.8, 1435.2, 1392.6, 1241.2, 1027.9, 970.8, 750.0. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₂₂NO₃: 348.1594, Found 348.1585.

2-(2-(2-(phenylethynyl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3ap. Following the general procedure with hydrazone 1a and but-3-en-1-yn-1ylbenzene 2p as starting material. Yield: 91%. *Cis/trans*: 94/6. *ee*: 99%. Hexanes/ethyl acetate = 8/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = -79.8$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.70 (dd, J = 5.5, 3.0 Hz, 2H), 7.60 (dd, J = 5.5, 3.0 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.24 – 7.21 (m, 3H), 3.91 – 3.88 (m, 2H), 1.98 (dq, J = 14.2, 5.8 Hz, 1H), 1.94 – 1.87 (m, 1H), 1.55 (td, J = 8.3, 5.4 Hz, 1H), 1.18 – 1.11 (m, 1H), 1.05 – 1.01 (m, 1H), 0.49 – 0.46 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.47, 133.53, 132.21, 131.52, 127.95, 127.28, 123.72, 123.00, 90.16, 78.75, 37.64, 29.22, 17.25, 14.40, 6.07. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : $t_{major} = 23.56$ min, $t_{minor} = 19.83$ min. IR (neat, cm⁻¹): 2921.6, 2849.3, 1771.2, 1712.0, 1467.1, 1398.5, 1365.2, 1188.0, 1065.5, 758.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₈NO₂: 316.1332, Found 316.1330.

2-(2-((3-fluorophenyl)ethynyl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3aq. Following the general procedure with hydrazone **1b** and 1-(but-3-en-1-yn-1-yl)-3-fluorobenzene **2q** as starting material. Yield: 84%. *Cis/trans*: 91/9. *ee*: 99%. Hexanes/ethyl acetate = 8/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = -48.8$ (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.71 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.62 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.20 – 7.15 (m, 1H), 7.04 (d, *J* = 7.7 Hz, 1H), 6.94 – 6.90 (m, 2H), 3.91 – 3.87 (m, 2H), 2.04 – 1.97 (m, 1H), 1.90 - 1.83 (m, 1H), 1.54 (td, J = 8.3, 5.4 Hz, 1H), 1.20 - 1.14 (m, 1H), 1.07 - 1.02 (m, 1H), 0.48 (dd, J = 10.9, 5.3 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.45, 162.19 (d, J = 245.6 Hz), 133.57, 132.21, 129.45 (d, J = 8.7 Hz), 127.39 (d, J = 2.8 Hz), 125.58 (d, J = 9.6 Hz), 123.01, 118.27 (d, J = 22.6 Hz), 114.61 (d, J = 21.2 Hz), 91.42, 77.65, 37.60, 29.24, 17.47, 14.44, 6.03. HPLC analysis: ee = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : $t_{major} = 20.92$ min, $t_{minor} = 17.59$ min. IR (neat, cm⁻¹): 2924.8, 2854.1, 1709.6, 1608.1, 1571.0, 1392.9, 1263.7, 1153.7, 1059.9, 862.5, 734.6. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₇FNO₂: 334.1238, Found 334.1240.

2-(2-(pyridin-2-yl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3ar. Following the general procedure with hydrazone **1a** and 2-vinyl pyridine **2r** as starting material. Yield: 92%. *Cis/trans*: 60/40. *ee*: 99%. Hexanes/ethyl acetate = 2/1, R_f =

0.35. $[\alpha]^{20}_{D}$ value was not stable for some unknown reason. ¹H NMR (600 MHz, CDCl₃) δ 8.37 – 8.36 (m, 1H), 7.73 (dd, J = 5.4, 3.1 Hz, 2H), 7.64 (dd, J = 5.5, 3.0 Hz, 2H), 7.29 (td, J = 7.7, 1.8 Hz, 1H), 7.03 (d, J = 7.8 Hz, 1H), 6.94 – 6.92 (m, 1H), 3.63 – 3.55 (m, 2H), 2.17 (td, J = 8.5, 5.9 Hz, 1H), 1.78 – 1.72 (m, 2H), 1.30 – 1.25 (m, 1H), 1.04 (td, J =8.4, 4.7 Hz, 1H), 0.82 (ddd, J = 8.5, 5.7, 4.5 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 168.12, 159.38, 148.65, 135.31, 133.56, 132.19, 123.49, 122.92, 120.30, 37.83, 25.92, 22.31, 19.31, 10.75. HPLC analysis: ee = 99%. IE (75% hexanes : 25% isopropanol, 1.0 mL/min) : $t_{major} = 34.33$ min, $t_{minor} = 17.60$ min. IR (neat, cm⁻¹): 3010.5, 2938.3, 1770.5, 1704.8, 1434.6, 1392.1, 1361.1, 1187.0, 1011.8, 900.5, 749.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₁₇N₂O₂: 293.1285, Found: 293.1290.

2-(3-(2-phenylcyclopropyl)propyl)isoindoline-1,3-dione 3as.

Following the general procedure with hydrazone **1a** and 3-vinyl pyridine **2s** as starting material. Yield: 73%. *Cis/trans*: 75/25. *ee*: 99%. Hexanes/ethyl acetate = 2/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = 25.8 \ (c = 1.0, CHCl_3)$. ¹H NMR (600 MHz, CDCl_3) δ 8.43 – 8.37 (m, 2H), 7.78 (dd, J = 5.4, 3.0 Hz, 2H), 7.68 (dd, J = 5.3, 3.1 Hz, 2H), 7.40 (d, J = 7.8 Hz, 1H), 7.15 – 7.12 (m, 1H), 3.70 – 3.61 (m, 2H), 2.09 (dd, J = 14.7, 8.5 Hz, 1H), 1.60 – 1.54 (m, 1H), 1.29 (td, J = 14.4, 7.2 Hz, 1H), 1.24 – 1.17 (m, 1H), 1.11 – 1.05 (m, 1H), 0.71 (q, J = 5.7 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 170.84, 153.26, 149.81, 138.39, 136.58, 136.48, 134.68, 125.74, 125.48, 40.17, 30.20, 20.78, 19.43, 12.18. HPLC analysis: *ee* = 99%. IE (75% hexanes : 25% isopropanol, 0.8 mL/min) : *t_{major}* = 42.84 min, *t_{minor}* = 44.89 min. IR

(neat, cm⁻¹): 3002.3, 2936.9, 2359.8, 1769.8, 1702.1, 1435.0, 1390.2, 1360.9, 1175.7, 1034.7, 751.0. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₁₇N₂O₂: 293.1285, Found: 293.1276.

2-(2-(2-(pyridin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3at. Following the general procedure with hydrazone 1a and 4-vinyl pyridine 2t as starting material. Yield: 93%. *Cis/trans*: 84/16. *ee*: 99%. Hexanes/ethyl acetate = 2/1, R_f = 0.35. [α]²⁰ _D = 29.0 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 8.32 (s, 2H), 7.76 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.68 (dd, *J* = 5.4, 3.0 Hz, 2H), 6.97 (d, *J* = 4.9 Hz, 2H), 3.70 – 3.60 (m, 2H), 2.06 (dt, *J* = 8.6, 6.4 Hz, 1H), 1.57 – 1.45 (m, 2H), 1.29 – 1.23 (m, 1H), 1.09 (td, *J* = 8.4, 5.4 Hz, 1H), 0.77 (q, *J* = 5.9 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.15, 148.96, 148.63, 133.82, 132.00, 123.73, 123.07, 37.48, 26.81, 20.29, 18.39, 10.25. HPLC analysis: *ee* = 99%. IE (75% hexanes : 25% isopropanol, 0.8 mL/min) : *t_{major}* = 40.14 min, *t_{minor}* = 33.22 min. IR (neat, cm⁻¹): 3004.6, 2937.3, 2359.7, 1769.5, 1703.0, 1598.5, 1391.6, 1186.3, 1039.1, 898.4, 751.1. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₁₇N₂O₂: 293.1285, Found: 293.1292.

2-(2-(quinolin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3au. Following the general procedure with hydrazone **1a** and 4-vinyl quinoline **2u** as starting material. Yield: 83%. *Cis/trans*: 82/18. *ee*: 99%. Hexanes/ethyl acetate = 1/1, R_f

= 0.45. $[\alpha]^{20}_{D}$ = 66.8 (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, CDCl₃) δ 8.80 (d, *J* = 4.4 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 8.3 Hz, 1H), 7.73 (dd, *J* = 5.4, 3.0 Hz, 2H), 7.68 – 7.64 (m, 3H), 7.56 – 7.53 (m, 1H), 7.12 (d, *J* = 4.3 Hz, 1H), 3.66 – 3.57 (m, 2H), 2.56 – 2.53 (m, 1H), 1.61 – 1.49 (m, 2H), 1.25 – 1.22 (m, 1H), 0.97 – 0.90 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 168.19, 150.07, 147.91, 145.45, 133.79, 131.94, 129.89, 129.12, 126.44, 124.18, 123.07, 120.43, 116.48, 37.63, 27.78, 17.87, 17.10, 9.48. HPLC analysis: *ee* = 99%. IE (75% hexanes : 25% isopropanol, 1.0 mL/min) : *t_{major}* = 39.47 min, *t_{minor}* = 36.90 min. IR (neat, cm⁻¹): 3057.4, 2926.7, 2358.7, 1770.3, 1707.8, 1591.0, 1396.9, 1362.7, 1264.9, 1032.4, 792.2, 737.3. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₁₉N₂O₂: 343.1441, Found: 343.1440.

tert-butyl 3-(2-(1,3-dioxoisoindolin-2-

yl)ethyl)cyclopropyl)-1H-indole-1-carboxylate 3av. Following the general procedure with hydrazone 1a and tert-butyl 3-vinyl-1*H*-indole-1-carboxylate 2v as starting material. Yield: 84%. *Cis/trans*: 83/17. *ee*: 99%. Hexanes/ethyl acetate = 4/1, $R_f = 0.25$. [α]²⁰ _D value was not stable for some unknow reason. ¹H NMR (500 MHz, CDCl₃) δ 8.04 (s, 1H), 7.73 (dd, J = 5.4, 3.1 Hz, 2H), 7.66 – 7.63 (m, 3H), 7.23 – 7.16 (m, 3H), 3.70 – 3.60 (m, 2H), 2.05 – 2.00 (m, 1H), 1.67 (s, 9H), 1.34 – 1.18 (m, 3H), 1.07 (td, J = 8.2, 4.9 Hz, 1H), 0.59 (dd, J = 10.7, 5.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.29, 149.70, 133.68, 132.01, 131.54, 124.32, 123.19, 122.95, 122.37, 121.02, 119.39, 119.31, 115.06, 83.35, 37.92, 28.22, 27.75, 15.57, 10.87, 9.66. HPLC analysis: *ee* = 99%. IF (90% hexanes : 10%

isopropanol, 0.8 mL/min) : $t_{major} = 34.41$ min, $t_{minor} = 20.41$ min. IR (neat, cm⁻¹): 2978.2, 2933.2, 1771.0, 1705.9, 1450.3, 1367.3, 1253.0, 1367.3, 1253.0, 1154.1, 1082.2, 1021.3, 856.4, 716.4. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₆H₂₇N₂O₄: 431.1965, Found 431.1978.

2-(2-(2-(benzo[b]thiophen-3-yl)cyclopropyl)ethyl)

isoindoline-1,3-dione 3aw. Following the general procedure with hydrazone **1a** and 3vinylbenzo[*b*]thiophene **2w** as starting material. Yield: 94%. *Cis/trans*: 78/22. *ee*: 99%. Hexanes/ethyl acetate = 4/1, R_f = 0.30. [α]²⁰ _D = 141.2 (*c* = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.9 Hz, 1H), 7.79 – 7.77 (m, 1H), 7.73 (dd, *J* = 5.3, 3.2 Hz, 2H), 7.63 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.35 – 7.27 (m, 2H), 6.96 (s, 1H), 3.68 – 3.57 (m, 2H), 2.20 (dd, *J* = 14.8, 8.0 Hz, 1H), 1.69 – 1.62 (m, 1H), 1.32 – 1.26 (m, 1H), 1.24 – 1.17 (m, 1H), 1.13 (td, *J* = 8.3, 4.9 Hz, 1H), 0.72 (q, *J* = 5.5 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 168.24, 140.35, 139.95, 137.70, 133.67, 132.00, 124.27, 123.88, 122.97, 122.65, 122.08, 122.00, 37.86, 27.58, 15.90, 14.44, 9.66. HPLC analysis: *ee* = 99%. ID (95% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 31.98 min, *t_{minor}* = 33.42 min. IR (neat, cm⁻¹): 3061.3, 2934.5, 1769.7, 1704.2, 1431.8, 1392.7, 1359.7, 1174.6, 1080.1, 1030.9, 896.7, 763.0, 717.6. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₈NO₂S: 348.1053, Found 348.1040.

2-(2-(thiophen-2-yl)cyclopropyl)ethyl)isoindoline-1,3-

dione 3ax. Following the general procedure with hydrazone 1a and 3-vinylthiophene 2x as starting material. Yield: 93%. *Cis/trans*: 82/18. *ee*: 99%. Hexanes/ethyl acetate = 4/1, R_f = 0.50. $[\alpha]^{20}_{D} = 61.1$ (*c* = 1.0, CHCl₃). ¹H NMR (600 MHz, cdcl₃) δ 7.79 (dd, *J* = 5.4, 3.1 Hz, 2H), 7.67 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.02 (dd, *J* = 5.2, 1.1 Hz, 1H), 6.82 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.68 – 6.67 (m, 1H), 3.78 – 3.63 (m, 2H), 2.21 – 2.17 (m, 1H), 1.74 – 1.67 (m, 1H), 1.44 – 1.38 (m, 1H), 1.15 – 1.10 (m, 2H), 0.66 – 0.61 (m, 1H). ¹³C NMR (150 MHz, cdcl₃) δ 168.27, 143.23, 133.72, 132.17, 126.61, 125.09, 123.13, 123.05, 37.62, 27.64, 17.41, 15.46, 12.46. HPLC analysis: *ee* = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : *t_{major}* = 22.80 min, *t_{minor}* = 20.50 min. IR (neat, cm⁻¹): 2998.7, 2920.0, 1772.1, 1702.4, 1397.3, 1364.5, 1341.3, 1177.8, 1086.4, 1041.2, 1024.8, 852.7, 717.6. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₁₆NO₂S: 298.0896, Found 298.0898.

2-(2-(2-(benzofuran-2-yl)cyclopropyl)ethyl)isoindoline-

1,3-dione 3ay. Following the general procedure with hydrazone **1a** and 2-vinylbenzofuran **2y** as starting material. Yield: 82%, *Cis/trans*: 84/16. *ee*: 99%. Hexanes/ethyl acetate = 4/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = 1.2$ (c = 1.0, CHCl₃).¹H NMR (500 MHz, cdcl₃) δ 7.68 – 7.65 (m, 2H), 7.63 – 7.60 (m, 2H), 7.30 – 7.28 (m, 1H), 7.21 (d, J = 8.1 Hz, 1H), 7.14 – 7.06 (m, 2H), 6.21 (s, 1H), 3.74 (t, J = 6.6 Hz, 2H), 2.11 (td, J = 8.5, 6.1 Hz, 1H), 1.85 – 1.79 (m, 1H),
1.74 – 1.68 (m, 1H), 1.34 – 1.28 (m, 1H), 1.17 (dt, J = 8.5, 4.3 Hz, 1H), 0.83 – 0.79 (m, 1H). ¹³C NMR (125 MHz, cdcl₃) δ 168.23, 157.55, 154.42, 133.58, 132.02, 128.62, 122.96, 122.85, 122.29, 119.88, 110.59, 103.04, 37.72, 27.64, 18.09, 14.29, 10.90. HPLC analysis: ee = 99%. IE (90% hexanes : 10% isopropanol, 0.8 mL/min) : $t_{major} = 27.76$ min, $t_{minor} = 23.07$ min. IR (neat, cm⁻¹): 2935.3, 2856.0, 1770.1, 1706.7, 1600.0, 1454.6, 1392.7, 1363.2, 1254.9, 1185.4, 1036.5, 954.5, 794.2, 751.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₁₈NO₃: 332.1281, Found 332.1282.

3.4.4 Deprotection of Phthalimide Unit in Cyclopropane 3aa

To a 10 mL round-bottom flask, optically active cyclopropane **3aa** (0.5 mmol) was dissolved in ethanol (2 mL), then 3.0 equivalent of hydrazine monohydrate (1.5 mmol) was added. The resulting mixture was heat at 80 °C for 4 hrs with the disappearance of starting material from TLC. During the reaction, white solid was precipitated. The reaction mixture was then filtrated and the residue was washed with ethanol (2 x 2 mL). The filtrate was then concentrated and purified by flash chromatography. The fractions containing product

4aa were collected and concentrated by rotary evaporation to afford the compound as a mixture of *trans/cis* diastereomers.

H₂N⁻ **2-(2-phenylcyclopropyl)ethan-1-amine 4aa.** Yield: 99%. *Cis/trans*: 83/17. *ee*: 99%. DCM/MeOH = 4/1, R_f = 0.20. [α]²⁰ _D = 22.2 (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.23 (m, 2H), 7.19 – 7.14 (m, 3H), 2.69 – 2.60 (m, 2H), 2.14 (dt, J = 14.5, 7.3 Hz, 1H), 1.56 – 1.52 (m, 3H), 1.33 – 1.28 (m, 1H), 1.07 – 0.98 (m, 2H), 0.70 (dd, J = 10.9, 5.6 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 139.29, 128.94, 127.88, 125.67, 42.03, 32.60, 20.54, 16.66, 9.35. IR (neat, cm⁻¹): 3061.3, 1924.3, 2359.4, 1496.4, 1312.0, 1027.3, 768.3, 726.2. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₆N: 162.1277, Found 162.1274.

4-methyl-*N*-(2-(2-phenylcyclopropyl)ethyl)benzenesulfonamide

4aa'. In 10 mL tube, Et₃N (1.5 equiv.) was added into the solution of **4aa** (0.1 mmol) in DCM (0.6 mL). followed by tosyl chloride (0.15 mmol, 1.5 equiv.). The reaction was monitored by TLC. Upon the completion, the solution was concentrated and purified by flash chromatography to deliver the desired compound **4aa'**. Yield: 92%. *Cis/trans*: 83/17. *ee*: 99%. Hexanes/ethyl acetate = 4/1, R_f = 0.30. $[\alpha]^{20}_{D} = 13.8$ (c = 1.0, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, J = 8.3 Hz, 2H), 7.29 – 7.22 (m, 5H), 7.09 (d, J = 7.3 Hz, 2H), 4.26 (t, J = 5.9 Hz, 1H), 2.88 (dd, J = 13.2, 6.8 Hz, 1H), 2.43 (s, 3H), 2.12 (td, J = 8.6, 6.3 Hz, 1H), 1.59 – 1.54 (m, 1H), 1.30 – 1.23 (m, 1H), 1.15 – 1.09 (m, 1H), 1.01 – 0.93 (m, 1H), 0.66 – 0.63 (m, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 143.20, 138.50, 136.96,

129.59, 128.78, 128.06, 127.04, 125.94, 43.00, 28.48, 21.50, 20.53, 16.18, 9.18. HPLC analysis: ee = 99%. OJH (90% hexanes : 10% isopropanol, 0.8 mL/min) : $t_{major} = 42.16$ min, $t_{minor} = 39.78$ min. IR (neat, cm⁻¹): 3271.6, 3004.6, 2918.2, 2359.7, 1597.3, 1320.5, 1160.4, 1090.5, 812.1, 764.6, 701.4. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₂NO₂S: 316.1366, Found 316.1368.

3.4.5 **Procedure for HRMS Experiment**

To an over-dried Schlenk tube, hydrazone **1a** (0.05 mmol) and Cs₂CO₃ (1.5 equiv.) were added. The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, CH₃CN (0.5 mL) was added via a gas-tight syringe. The mixture was then stirred at 40 °C for 0.5 h. The resulting light yellow solution was then passed through a short pad of Celite (to get rid of base and salt) under the flow of nitrogen and the filtrate was collected in a HPLC vial (vial A, degassed and backfilled with argon). During the time, [Co(P1)] (2 mol %) was charged into another HPLC vial (vial B, degassed and backfilled with argon) and dissolved in CH₃CN (0.5 mL). After mixing equal amount of solutions from vial A (0.1 mL) and vial B (0.1 mL), the

sample was further diluted with CH₃CN and immediately injected into HRMS instrument. The HRMS experiment was carried out in the absence of any additives such as formic acid, commonly act as electron carriers for ionization, allowing the detection of the molecular ion signals corresponding to Co(III)-alkyl radical (C87H97CoN9O6·) by the loss of one electron.

3.4.6 Procedure for EPR Experiment

To an oven-dried Schlenk tube A, sulfonylhydrazone **1a** (0.05 mmol), and Cs₂CO₃ (1.5 equiv.) were added. The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, benzene (0.5 mL) was added via a gas-tight syringe. The mixture was then stirred at 40 °C for 0.5 h. During the time, [Co(P1)] (2 mol %) was charged into another oven-dried Schlenk tube B. The Schlenk tube B was then evacuated and backfilled with nitrogen for 3 times. After 0.5 h, the resulting light yellow solution from tube A was passed through a short pad of Celite (to get rid of base and salt) under the flow of nitrogen and transferred to Schlenk tube B. The mixture was stirred for 1 min, followed by the addition of phenyl *N-tert*-butylnitrone (PBN, 0.05 mmol). The reaction mixture was stirred for 2 min and transferred into a degassed EPR tube (filled with argon) through a gas tight syringe. The sample was then carried out for EPR experiment at room temperature (EPR settings: T = 298 K; microwave frequency: 9.37762 GHz; power: 20 mW; modulation amplitude: 1.0 G).

3.5 REFERENCES

(1) (a) Sibi, M. P.; Manyem, S.; Zimmerman, J. Chem. Rev. 2003, 103, 3263; (b)
Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872; (c) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Science 2016, 354, 1391; (d) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681; (e) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357; (f) Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers, E. Nature 2014, 515, 100.

(2) For reviews and highlights on Co(II)-MRC, see: (a) Miyabe, H.; Kawashima, A.;
Yoshioka, E.; Kohtani, S. *Chem. Eur. J.* 2017, 23, 6225; (b) Studer, A.; Curran, D. P. *Angew. Chem., Int. Ed.* 2016, 55, 58; (c) Pellissier, H.; Clavier, H. *Chem. Rev.* 2014, *114*, 2775; (d)
Lu, H. J.; Zhang, X. P. *Chem. Soc. Rev.* 2011, 40, 1899; (e) Doyle, M. P. *Angew. Chem., Int. Ed.* 2009, 48, 850.

(3) For select examples on Ti(III)-MRC, see: (a) Zhang, Y.-Q.; Vogelsang, E.; Qu, Z.-W.;
Grimme, S.; Gansäuer, A. *Angew. Chem., Int. Ed.* 2017, *56*, 12654; (b) Hao, W.; Wu, X.;
Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. *J. Am. Chem. Soc.* 2017, *139*, 12141; (c)
Gansäuer, A.; Hildebrandt, S.; Vogelsang, E.; Flowers II, R. A. *Dalton Trans.* 2016, *45*, 448; (d) Gansäuer, A.; Fleckhaus, A.; Lafont, M. A.; Okkel, A.; Kotsis, K.; Anoop, A.;
Neese, F. *J. Am. Chem. Soc.* 2009, *131*, 16989.

(4) For detailed experimental and theoretical studies on the radical mechanism of Co(II)-MRC: (a) Lu, H. J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. *J. Am. Chem.*

Soc. 2011, 133, 8518; (b) Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.;
Woodcock, H. L. Organometallics 2011, 30, 2739; (c) Dzik, W. I.; Xu, X.; Zhang, X. P.;
Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2010, 132, 10891.

(5) For select examples on asymmetric Co(II)-MRC, see: (a) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. J. Am. Chem. Soc. 2018, 140, 4792; (b) Wen, X.; Wang, Y.; Zhang, X. P. Chem. Sci. 2018, 9, 5082; (c) Wang, Y.; Wen, X.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2017, 139, 1049; (d) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219 (e) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292; (f) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 3304; (g) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042; (h) Fantauzzi, S.; Gallo, E.; Rose, E.; Raoul, N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S. Organometallics 2008, 27, 6143; (i) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718; For select examples on nonasymmetric Co(II)-MRC, see:(j) Roy, S.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 2238; (k) te Grotenhuis, C.; van den Heuvel, N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem., Int. Ed. 2018, 57, 140; (1) Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che, C. M. Angew. Chem., Int. Ed. 2016, 55, 1810; (m) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem., Int. Ed. 2015, 54, 1231.

(6) For select examples on *cis*-selective cyclopropanation reactions, see: (a) Piou, T.;
Romanov-Michailidis, F.; Ashley, M. A.; Romanova-Michaelides, M.; Rovis, T. J. Am. *Chem. Soc.* 2018, *140*, 9587; (b) Brandenberg, O. F.; Prier, C. K.; Chen, K.; Knight, A. M.;
Wu, Z.; Arnold, F. H. ACS Catal. 2018, *8*, 2629; (c) Rosenberg, M. L.; Krivokapic, A.;

Tilset, M. Org. Lett. 2009, 11, 547; (d) Suematsu, H.; Kanchiku, S.; Uchida, T.; Katsuki, T.
J. Am. Chem. Soc. 2008, 130, 10327; (e) Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste,
F. D. J. Am. Chem. Soc. 2005, 127, 18002; (f) Hu, W.; Timmons, D. J.; Doyle, M. P. Org.
Lett. 2002, 4, 901; (g) Bachmann, S.; Furler, M.; Mezzetti, A. Organometallics 2001, 20,
2102.

(7) (a) Ebner, C.; Carreira, E. M. Chem. Rev. 2017, 117, 11651; (b) Chen, D. Y. K.;
Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev. 2012, 41, 4631.

(8) (a) Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1959, 81, 4256; (b) Simmons,
H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323.

(9) For select reviews on asymmetric Simmons-Smith cyclopropanation reactions, see:
(a) Bartoli, G.; Bencivenni, G.; Dalpozzo, R. *Synthesis* 2014, 46, 979; (b) Pellissier, H. *Tetrahedron* 2008, 64, 7041; (c) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. *Chem. Rev.* 2003, *103*, 977.

(10) For select reviews on metal-catalyzed asymmetric olefin cyclopropanation with diazo compounds, see: (a) Intrieri, D.; Carminati, D. M.; Gallo, E. *Dalton Trans.* 2016, 45, 15746; (b) Intrieri, D.; Caselli, A.; Gallo, E. *Eur. J. Inorg. Chem.* 2011, 5071; (c) Davies, H. M. L.; Antoulinakis, E. G. *Org. React.* 2001, 57, 1; (d) Doyle, M. P.; Forbes, D. C. *Chem. Rev.* 1998, 98, 911.

(11) For select examples on non-asymmetric olefin cyclopropanation with aliphatic diazo compounds, see: (a) Goulioukina, N. S.; Makukhin, N. N.; Beletskaya, I. P. *Tetrahedron* 2011, *67*, 9535; (b) Berthon-Gelloz, G.; Marchant, M.; Straub, B. F.; Marko, I. E. *Chem. Eur. J.* 2009, *15*, 2923; (c) Markó, I. E.; Kumamoto, T.; Giard, T. *Adv. Synth. Catal.* 2002, *344*, 1063; (d) Cativiela, C.; D. Díaz-de-Villegas, M.; I. Jiménez, A. *Tetrahedron* 1994, *50*,

9157; (e) Zhu, Y. F.; Yamazaki, T.; Tsang, J. W.; Lok, S.; Goodman, M. J. Org. Chem. 1992,

57, 1074; (f) Schneider, M.; Rau, A. Angew. Chem. 1979, 91, 239.

(12) For asymmetric olefin cyclopropanation with in situ-generated trifluoromethyl diazomethane, see: (a) Morandi, B.; Carreira, E. M. *Science* **2012**, *335*, 1471; (b) Morandi,

B.; Mariampillai, B.; Carreira, E. M. Angew. Chem., Int. Ed. 2011, 50, 1101.

(13) Chen, Y.; Zhang, X. P. Synthesis 2006, 1697.

(14) Das, B. G.; Chirila, A.; Tromp, M.; Reek, J. N. H.; Bruin, B. d. J. Am. Chem. Soc. **2016**, *138*, 8968.

CHAPTER 4

ENANTIOSELECTIVE RADICAL CYCLIZATION FOR CONSTRUCTION OF 5-MEMBERED RING STRUCTURES BY METALLORADICAL C–H ALKYLATION

4.1 INTRODUCTION

Carbon-centered radicals, specifically alkyl radicals, have been extensively explored as versatile intermediates for chemical synthesis because of their potent reactivity and diverse pathway.¹ Among important synthetic applications, alkyl radicals have been well demonstrated to undergo radical cyclization for construction of various ring structures via C–C bond formation.¹ While numerous radical cyclization reactions have been elegantly implemented with alkyl radicals,² they are predominantly based on the utilization of radical addition as the key cyclization step, followed by further radical transformations such as H-atom abstraction to deliver cyclic products (Scheme 4.1a). Consequently, traditional radical cyclization reactions necessarily involve the use of substrates containing unsaturated bonds, such as alkenes, imines, and carbonyls.

In addition to the well-established cyclization sequence of radical addition and Hatom abstraction (RA-HAA) for unsaturated substrates, it is conceivable that the combination of H-atom abstraction and radical substitution (HAA-RS) could give rise to an alternative C–C bond forming pathway for radical cyclization that could employ saturated C–H substrates (Scheme 4.1b). While intramolecular H-atom abstraction is normally facile, the subsequent key cyclization step of intramolecular radical substitution

at the carbon center has been recognized as an inherently challenging pathway due to the requirement of a highly organized linear transition state involving three multi-substituted sp³-carbon centers.^{1a,3} For this reason, this alternative radical cyclization, although seemingly tenable, is largely undocumented for typical alkyl radicals.

Scheme 4.1|| Different Radical Cyclization Pathways for the Formation of Ring Structures via C-C Bond Formation

One potential solution to address the problem would be the introduction of α metalloalkyl radicals R₂(L_nM)C•, where one of the substituents of common alkyl radicals is replaced by a metal complex unit (ML_n) (Scheme 4.1c). Since M–C bonds are typically more polar and weaker than C–C bonds, the radical substitution pathway would become both thermodynamically possible and kinetically feasible, especially with stable metalloradicals L_nM• as outgoing radicals.⁴ Furthermore, this metalloradical-based new mode of radical cyclization could be potentially rendered as a catalytic process while

offering the possibility of controlling enantioselectivity, allowing for stereoselective construction of cyclic compounds from linear C–H substrates.

To harness the vast potential of homolytic radical reactions for stereoselective organic synthesis,⁵ metalloradical catalysis (MRC) has recently been introduced as a conceptually new approach for addressing some enduring challenges in the field.^{6,7} MRC aims at the development of metalloradical complexes as open-shell catalysts for generation of metal-supported organic radicals as key intermediates and for control of their subsequent homolytic reactions.

Scheme 4.2|| Asymmetric C–H Alkylation with Acceptor/Acceptor-Type Diazo Compounds via Co(II)-Based MRC

As stable metalloradicals, Co(II) complexes of D_2 -symmetric chiral amidoporphyrins [Co(D_2 -Por*)] exhibit the unusual capability of activating diazo compounds to generate α -Co(III)-alkyl radicals.⁸ The α -metalloalkyl radicals can undergo radical addition and H-atom abstraction as well as subsequent radical substitution, leading to the invention of new catalytic systems for various stereoselective radical transformations.⁹ Among them, we recently illustrated the aforementioned radical cyclization strategy with stereoselective formation of sulfolanes from α -methoxycarbonyl- α -diazosulfones (Scheme 4.2).^{9b} To demonstrate the generality of this new mode of radical cyclization and broaden its synthetic utility, we were intrigued if Co(II)-based MRC could be applied for the asymmetric synthesis of more common ring structures, such as pyrrolidines, tetrahydrofurans, and other important 5-membered cyclic compounds, from linear aliphatic diazo compounds (Scheme 4.3), which are typically generated in situ from sulfonyl hydrazones of the corresponding carbonyl precursors due to their instability.

Scheme 4.3|| Proposed Radical Cyclization Mechanism via Metalloradical C-H Alkylation

Mechanistically, it was unclear if aliphatic diazo compounds could be activated by metalloradical $[Co(D_2-Por^*)]$ to form the corresponding α -Co(III)-alkyl radicals I (Scheme 4.3). If so, could the rate of metalloradical activation of aliphatic diazo compounds be effectively matched with their in situ-generation to avoid unwanted thermal decomposition? Furthermore, it was uncertain whether α -Co(III)-alkyl radicals I, which possess accessible β -H atoms, could proceed subsequent 1,5-H atom abstraction for generation of ε -Co(III)-alkyl radicals II competitively over the potential β -H-atom shift, which would lead to olefin side products. Additional questions arose from the flexible nature of the linear alkyl chain that could pose extra challenges in achieving the intramolecular radical substitution of *e*-Co(III)-alkyl radicals II for stereoselective construction of the 5-membered structures. Without conformational rigidity, would the intermediate II be capable of undergoing effective 5-exo-tet radical cyclization? What determinant factors could be explored for controlling the enantioselectivity of C-C bond forming process? We reasoned that the key to address these and related challenges is to develop suitable D_2 -symmetric chiral amidoporphyrin ligands that direct the Co(II)-based catalysis for productive cyclization. If realized, it would provide a general catalytic strategy for stereoselective radical synthesis of five-membered cyclic molecules from aliphatic aldehyde-derived tosylhydrazones.

This new mode of radical cyclization based on metalloradical C–H alkylation would offer a new retrosynthetic paradigm for construction of ring structures where C–C bond can be disconnected as common C=O and C–H units of linear aldehydes (Equation 4.1).

Chiral pyrrolidines containing α -substituent are recurring core structures in a wide range of natural products and bioactive compounds (Scheme 4.4). Accordingly, considerable efforts have been devoted to devise effective strategies for their asymmetric synthesis. While most of the existing catalytic systems involve C–H functionalization of preformed pyrrolidine ring structures,¹⁰ there has been no previous report on asymmetric construction of α -substituted chiral pyrrolidines via catalytic C–H alkylation with acyclic aliphatic diazo compounds.¹¹

Scheme 4.4|| Selected Biologically Active Compounds Containing α-Substituted Pyrrolidine Moiety

As a demonstration of the aforementioned mode of radical cyclization (HAA-RS) for construction of common 5-membered ring structures, we have demonstrated a new Co(II)-based catalytic system that is highly efficient for stereoselective synthesis of α -substituted pyrrolidines. Supported by a new D_2 -symmetric chiral amidoporphyrin, the Co(II) metalloradical catalyst is able to activate aliphatic diazo compounds for enantioselective intramolecular radical alkylation of a broad range of C(sp³)–H bonds, constructing α -substituted chiral pyrrolidines in high yields with excellent enantioselectivities. In addition to chemoselective alkylation of allylic and propargylic C–H bonds and regioselective 1,5-alkylation, the new catalytic radical cyclization is highlighted by its tolerance of various functionalities, including compatibility with a variety of heteroaryl groups.

4.2 **RESULTS AND DISCUSSIONS**

4.2.1 Condition Optimization for Enantioselective Radical Cyclization of Aliphatic Diazo Precursor

At the outset of our effort, we chose aliphatic aldehyde-derived tosylhydrazone **1a** as the model substrate for proof-of-concept experiments to test the proposed radical cyclization via Co(II)-MRC (Table 4.1). Using the Co(II) complex of achiral amidoporphyrin 3,5-Di^{*t*}Bu-IbuPhyrin [Co(**P1**)]¹² as the metalloradical catalyst, we were gratified to observe that the catalytic reaction could afford 2-phenylpyrrolidine (**2a**) in 81% yield (entry 1), demonstrating the feasibility of the HAA-RS pathway for productive radical

cyclization without complication from competitive olefin formation. The high yield of the radical cyclization also indicated that the aliphatic diazo compound generated in situ could be effectively incorporated into the catalytic cycle without accumulation to cause side reactions.

Table 4.1|| Ligand Effect on Co(II)-Catalyzed Enantioselective Radical Cyclization of Aliphatic Diazo Precursor^a

^{*a*} Reactions were carried out with **1a** (0.1 mmol) in the presence of Cs₂CO₃ (1.5 equiv.) by [Co(Por)] (3 mol %) in dioxane (0.6 mL) at 60 °C for 24 h; Yields refer to isolated yields

of purified products; Enantiomeric excess (*ee*) was determined by chiral HPLC analysis. Ts: 4-toluenesulfonyl; Boc: *tert*-butyloxycarbonyl.

When the first-generation chiral metalloradical catalyst [Co(P2)] (P2 = 3,5-Di'Bu-ChenPhyrin) was employed,^{9g} which has been shown to be effective for asymmetric radical cyclopropanation, it was found that the catalytic radical cyclization exhibited almost no asymmetric induction despite the high-yielding formation of desired **2a** (Table 4.1, entry 2). Considering the flexible nature of the linear alkyl chain, we were disappointed but not completely surprised by this negative result.

Without the hydrogen-bonding interaction at disposal to rigidify the Co(III)-alkyl radical intermediates, we decided to crowd the steric environment of the ligand pocket. Indeed, the employment of [Co(P3)] (P3 = 2,6-DiMeO-ChenPhyrin) bearing more sterically hindered achiral *meso*-aryl groups resulted in observation of significant asymmetric induction without affecting the reactivity (entry 3).

To further augment this positive buttressing effect, we then turned our attention to D_2 -symmetric chiral amidoporphyrin 3,5-Di'Bu-ZhuPhyrin (P4), which was previously shown to have a more rigid conformation and polar chiral environment because of the intramolecular O····H–N hydrogen-bonding interactions in the (*S*)-(-)-2-tetrahydrofurancarboxamide units,^{9e} As expected, [Co(P4)] could catalyze the radical cyclization reaction to form **2a** in similarly high yield with substantially improved enantioselectivity (entry 4). Subsequent use of [Co(P5)] (P5 = 2,6-DiMeO-ZhuPhyrin) as the catalyst resulted in further increase in both yield and enantioselectivity (entry 5).

Encouraged by the positive direction of ligand buttressing effect, we synthesized 2,4,6-TriMe-ZhuPhyrin ligand (**P6**), a new derivative of ZhuPhyrin series, where even more sterically demanding mesityl groups are attached at the two achiral *meso*-positions. We were exhilarated to find that [Co(P6)] could effectively catalyze the enantioselective radical C–H alkylation reaction, affording the desired cyclization product **2a** in 93% yield with 92% *ee* (entry 6). Also, the detailed study of solvent and base effects disclosed that dioxane and cesium carbonate are the optimal choice, respectively (Table 4.2).

 Table 4.2|| Solvent and Base Effects on Co(II)-Catalyzed Enantioselective Radical

 Cyclization of Aliphatic Diazo Precursor 1a^a

	HH		s [<mark>Co(P6</mark>))] (3 mol %)		
	Boc 1a		base; solvent; 60 °C; 24		h Boc	
entry	solvent	base	yield (%) ^b	ee (%) ^c	2a	
1	Dioxane	Cs_2CO_3	95 (93) ^d	92	H (S) H	
2	THF	Cs_2CO_3	71	92		
3	CH ₃ CN	Cs_2CO_3	65	92	N-H H-N	
4	DCM	Cs_2CO_3	<10	92		
5	PhMe	Cs_2CO_3	31	92	N-H H-N	
6	Dioxane	K ₂ CO ₃	38	91		
7	Dioxane	KO ^t Bu	27	89		
8	Dioxane	DBU	47	93	[<mark>Co(P6</mark>)] (P6 = 2.4.6-TriMe-ZhuPhyrin)	
9	Dioxane		n/d	n/a		

^a Carried out with 1a (0.1 mmol) in the presence of base (1.5 equiv.) by [Co(P6)] (3 mol
%) in solvent (0.6 mL) at 60 °C for 24 h. ^b NMR yields with (CHCl₂)₂ as internal standard.
^c ee was determined by chiral HPLC analysis. ^d Isolated yield in the parenthesis. n/d: not detected. n/a: not applicable.

4.2.2 Enantioselective Radical Alkylation of Various C–H Bonds

Under the optimized conditions, the substrate scope of [Co(P6)]-catalyzed radical cyclization was then evaluated by employing aliphatic aldehyde-derived tosylhydrazone substrates 1 containing different types of C-H bonds (Table 4.3). As demonstrated by substrates **1a–1j**, benzylic C–H bonds with varied electronic and steric properties could all be intramolecularly alkylated, affording corresponding 2-arylpyrrolidines 2a-2j in high yields with excellent enantioselectivities. The absolute configuration of the major enantiomer of **2f** was established by X-ray as (S). In addition to CN, NO₂, and halogen functionalities, it is noteworthy to mention that the metalloradical C-H alkylation system could tolerate vinyl groups without complication from the competitive cyclopropanation of the C=C bonds as exemplified with the reaction of substrate 1k, forming the desired pyrrolidine 2k in 81% yield with 93% ee. In a similar way, the Co(II)-based enantioselective radical system could undergo allylic C-H alkylation with high chemoselectivity, as demonstrated by the reaction of substrate 11 to form 2-vinylpyrrolidine (21) in good yield and excellent enantioselectivity. Likewise, propargylic C-H substrate 1m underwent the radical alkylation chemoselectively, giving also 2-(phenylethynyl)pyrrolidine (2m) in a good yield with promising enantioselectivity. Furthermore, this metalloradical system was shown applicable for substrates even with non-activated C-H bonds. For example, when tosylhydrazone 1n, which possesses accessible hydrogens at both benzylic and homobenzylic positions, was used as the substrate, [Co(P6)] could regioselectively alkylate the stronger homobenzylic over the

weaker benzylic C–H bonds, resulting in exclusive formation of five-membered pyrrolidine **2n** in 96% yield albeit with moderate enantioselectivity. This remarkable

 Table 4.3|| Enantioselective Radical Cyclization for Synthesis of α-Substituted

 Pyrrolidines via [Co(P6)]-Catalyzed C–H Alkylation^a

^{*a*} Carried out with **1** (0.1 mmol) in the presence of Cs_2CO_3 (1.5 equiv.) by [Co(P6)] (3 mol %) in dioxane (0.6 mL) at 60 °C for 24 h; isolated yields; *ee* was determined by chiral HPLC analysis. ^{*b*} Absolute configuration was determined by X-ray as (*S*).

regioselectivity indicated that the corresponding α -Co(III)-alkyl radicals I (Scheme 4.3) within the ligand pocket highly favors 1,5- over 1,6-H abstraction under the influence of the steric environment. In a similar fashion, the Co(II)-based catalytic system could undergo regioselective 1,5-alkylation of stronger secondary C–H bonds in the presence of weaker tertiary C–H bond as illustrated with the reaction of substrate **10**, forming 2-cyclohexylpyrrolidine (**20**) in good yield with high enantioselectivity. Notably, this radical cyclization strategy was even applicable for electron-deficient C–H substrates, as demonstrated by the productive formation of the benzyl ester of naturally occurring L-proline (**2p**) from diazo precursor **1p** in 56% yield with 82% *ee*. This result clearly manifested that the Co(II)-catalyzed alkylation is less sensitive to electronic property of C–H bonds, which is in good agreement with the underlying radical mechanism.

Scheme 4.5|| Enantioselective Radical Cyclization for Synthesis of α-Heteroarylpyrrolidines via [Co(P6)]-Catalyzed C–H Alkylation

^a Performed in 2.0 mmol scale with 2 mol % of [Co(P6)]

In addition to the tolerance for common functionalities, the Co(II)-based enantioselective radical cyclization was found to be compatible with substrates containing various heteroarenes, allowing for stereoselective construction of α -heteroarylpyrrolidines, which are prevalent structure motifs in natural products and synthetic compounds with wide biological activities (Scheme 4.5).¹⁰ For example, 3-pyridine-based diazo precursor **1q** could be effectively activated by [Co(**P6**)] under the same condition to construct the nicotine derivative **2q** in 73% yield with 92% *ee*. The major enantiomer of **2q** was confirmed to have the same (*S*) absolute configuration as naturally occurring nicotine.^{10c} By simply using 2- and 4-pyridine-tethered hydrazones **1r** and **1s**, the Co(II)-based radical cyclization permitted the streamlined synthesis of α - and γ -nicotine derivatives **2r** and **2s**, respectively, in high optical purity.

Likewise, this catalytic protocol could also be successfully applied for both quinoline- and indole-based C–H substrates **1t** and **1u** to form the corresponding optically active α -heteroarylpyrrolidines in high yields with excellent enantioselectivities. Furthermore, chiral pyrrolidine derivatives containing α -thiophene (**2v**) and α -benzothiophene (**2w**) groups were efficiently constructed in high optical purity from the corresponding hydrazone precursors **1v** and **1w**. Notably, the reaction could be scaled up 20-fold as demonstrated with the high-yielding synthesis of **2w** on 2.0 mmol scale without affecting the excellent enantioselectivity. It was evident that the Co(II)-based catalytic system could be well suited to substrates containing potentially coordinating heteroaryl groups without poisoning the catalytic activity or diminishing the high enantioselectivity, a common challenge that plagues many transition metal-catalyzed reactions.

The broad substrate scope and high functionality tolerance observed for the Co(II)catalyzed radical alkylation prompted us to evaluate its potential applicability to C–H substrates beyond organic molecules, such as organometallic compounds. Considering the resulting product has potential applications as a chiral ligand in asymmetric catalysis,¹³ we were specifically intrigued to find out whether this radical cyclization system would allow for construction of a chiral pyrrolidine ring structure directly onto ferrocene, the representative member of metallocene family of organometallic compounds. Accordingly, ferrocene-based C–H substrate **1x** was prepared and tested under the standard conditions. It was found that the C–H bond adjacent to one of the two cyclopentadienyl rings was selectively alkylated by catalyst [Co(**P6**)] for radical cyclization to form the chiral α ferrocenylpyrrolidine **2x** in 53% yield with 92% *ee* (Equation 4.2), indicating the cavitylike environment of the ligand could accommodate relatively large substrates.

While our initial effort was focused on stereoselective formation of chiral pyrrolidine structures, preliminary results showed this radical cyclization strategy could also be applied for construction of other common five-membered ring structures (Scheme 4.6). For example, [Co(P6)] could successfully catalyze intramolecular C–H alkylation of both ether- and thioether-linked diazo precursors 1y and 1z for enantioselective radical cyclization, forming α -phenyltetrahydrofuran (2y) and α -phenyltetrahydrothiophene (2z),

respectively, in good yields with high enantioselectivities. Furthermore, the Co(II)-based radical cyclization protocol even allowed for direct formation of cycloalkanes from diazo precursors with highly flexible all-methylene linkers, as exemplified by the high-yielding synthesis of phenylcyclopentane (**2aa**) from easily accessible 5-phenylpentanal tosylhydrazone (**1aa**). In fact, 5-membered cyclic compounds with varied substitution patterns could be accessed in a similar fashion from diazo precursors derived from aliphatic aldehydes with different linear linkers, as demonstrated in the catalytic reaction of substrate **1ab** by [Co(**P6**)], forming β -substituted pyrrolidine **2ab** in 50% yield with 67% *ee* under the same conditions.

Scheme 4.6|| Enantioselective Construction of Different Five-Membered Cyclic Compounds via [Co(P6)]-Catalyzed C–H Alkylation

^a Achiral catalyst [Co(P1)] (3 mol %) was used

4.2.3 Mechanistic Evidences for the Proposed Stepwise Radical Pathway

To shed light on the underlying stepwise radical mechanism of the Co(II)-catalyzed intramolecular C–H alkylation, several mechanistic experiments were performed. First, mono-deuterated tosylhydrazone **1a-D** was synthesized to measure the intramolecular kinetic isotope effect (KIE) of the C–H alkylation process (Equation 4.3). Under the standard conditions by the achiral catalyst [Co(P1)], both C–H (**2a-H**) and C–D (**2a-D**) alkylation products were formed in a combined yield of 65%. ¹H-NMR analysis of the product mixture revealed an intramolecular KIE ratio of $k_{\rm H}/k_{\rm D} = 9.2/1$. This high level of primary KIE was in well accordance with the proposed direct C–H bond breaking via H-atom abstraction by α -Co(III)-alkyl radical intermediate I (Scheme 4.3).

Second, the effect of radical scavenger TEMPO on the Co(II)-catalyzed C–H alkylation was examined with the use of substrate 1t (Scheme 4.7). In the presence of 2.0 equivalent of TEMPO, the catalytic reaction by [Co(P1)] resulted in no formation of the alkylation product 2t. Instead, the TEMPO-trapped compound 3t was isolated in 20% yield, which was characterized to contain two TEMPO units at the 1- and 5-positions via C–O bonds. The observation of 3t supports the existence of ε -Co(III)-alkyl radical intermediate II, which was apparently trapped by one molecule of TEMPO at the pendant ε -carbon

radical center via radical hetero-dimerization and then reacted with the second molecule of TEMPO at the α -carbon center via radical substitution to cleave the Co(III)–C bond.

Third, the enantiopure substrate 4a containing (*R*)-tertiary stereogenic carbon center was prepared to evaluate the stereochemistry outcome of the Co(II)-catalyzed radical C–H alkylation (Scheme 4.8). Under the standard conditions, it was shown that

even the tertiary C–H bond in (*R*)-4a could be productively alkylated by the achiral catalyst [Co(P1)] to form the corresponding α,α -disubstituted pyrrolidine 5a in 55% yield as a mixture of enantiomers (*S*)-5a and (*R*)-5a. Chiral HPLC analysis showed that the enantiopurity of the chiral product 5a was 81% *ee* with (*S*)-5a as the major enantiomer, which was established by X-ray crystallographic analysis. The results indicated that the resulting pro-(*R*) ε -Co(III)-alkyl radical intermediate II from 1,5-H atom abstraction of the enantiopure (*R*)-tertiary C–H bond by radical intermediate I underwent subsequent radical substitution stereospecifically at a much faster rate than its racemization.

Last, the Co(III)-supported alkyl radical intermediates from the cyclization reaction of substrate 1a by [Co(P1)] could be directly detected by HRMS and trapped by phenyl *N*-*tert*-butylnitrone (PBN) to give the characteristic EPR signal (Scheme 4.9).

Scheme 4.9|| Isotropic X-band EPR Spectrum of Phenyl *N-tert*-Butylnitrone (PBN)-Trapped Co(III)-Supported Alkyl Radical Intermediate

Together, these experimental results established the detailed mechanism for radical cyclization through Co(II)-based metalloradical C–H alkylation (vide supra, Scheme 4.3).

4.3 CONCLUSIONS

In summary, we have demonstrated the broad applicability of the newly emerged radical cyclization mode, which involves sequential radical H-atom abstraction and radical substitution (HAA-RS) via metalloradical catalysis (MRC), as a catalytic C–C bond forming strategy for stereoselective construction of common cyclic compounds from C–H substrates. This alternative strategy of radical cyclization, which is fundamentally different from the traditional radical cyclization of unsaturated substrates involving sequential radical addition and H-atom abstraction (RA-HAA), will provide a new retrosynthetic paradigm to synthesize five-membered chiral cyclic molecules from readily available linear aldehydes via enantioselective C–C bond formation through the union of C–H and C=O units.

4.4 EXPERIMENTAL SECTION

4.4.1 General Considerations

¹H NMR spectra were recorded on a Varian INOVA 400 (400 MHz), 500 (500 MHz) or 600 (600 MHz) spectrometer. Chemical shifts are internally referenced to residual CHCl₃ signal (δ 7.26 ppm). Data are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, p = pentet, br = broad, m = multiplet), and coupling constants (Hz). ¹³C NMR spectra were recorded on a Varian INOVA 400 (100 MHz), 500 (125 MHz), or 600 (150 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with residual CHCl₃ as the internal standard (δ 77.0 ppm). High-resolution mass spectrometry was performed on a Micromass LCT ESI-MS and JEOL Accu TOF Dart at the Mass Spectrometry Facility, Boston College. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart Miracle accessory. Optical rotations were measured on a Rudolph Research Analytical AUTOPOL[®] IV digital polarimeter. HPLC measurements were carried out on a Shimadzu HPLC system with Chiralcel AD-H, OD-H and OJ-H. The UV-Vis absorption spectra in the range 200 - 700 nm were measured with an Evolution 300 UV-VIS spectrophotometer using quartz cuvettes with 1.0 cm optical path length. X-band EPR spectra were recorded on a Bruker EMX-Plus spectrometer (Bruker BioSpin).

Unless otherwise noted, all C–H alkylation reactions were performed under an atmosphere of dry N₂, in oven-dried glassware with standard vacuum line techniques. Gas tight syringes were used to transfer liquid reagents and solvents in catalytic reactions.

Anhydrous solvents as well as other commercial reagents were purchased from Sigma-Aldrich, Acros, Alfa Aesar, Strem, Oakwood Products Inc., TCI, or Matrix Scientific and used as received unless otherwise stated. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with ICN silica gel (60 Å, 230-400 mesh, 32-63 µm)

4.4.2 Synthesis of Catalyst [Co(P6)]

[H₂(**P6**)] was synthesized according to our previous reported procedure^{9g} with 78% yield. The 5,15-bis(2,6-dibromophenyl)-10,20-bis(2,4,6-trimethyl-phenyl)-porphyrin A^{9g} (0.2 mmol), (*S*)-tetrahydrofuran-2-carboxamide **B** (3.2 mmol), 4 Å molecular sieves, Pd(OAc)₂ (0.08 mmol), Xantphos (0.16 mmol), and Cs₂CO₃ (3.2 mmol) were placed in an oven-dried, resealable Schlenk tube. The tube was capped with a Teflon screwcap, evacuated, and backfilled with nitrogen for three times. After that, the screwcap was replaced with a rubber septum, and dioxane (10 mL) was added via gas-tight syringe. The tube was purged with nitrogen for 2 minutes, and then the septum was replaced with the Teflon screwcap. The tube was sealed and stirred at 100 °C for 72 hrs. The resulting mixture was cooled to room temperature, diluted in ethyl acetate, filtrated through a silica pad and

concentrated *in vacuo*. The pure compound was obtained as a purple solid after purification by flash column chromatography (ethyl acetate/hexanes 1/1 to 2/1). ¹H NMR (600 MHz, CDC1₃): δ 8.71 (br, 8H), 8.58 (d, J = 8.5 Hz, 4H), 7.91 (s, 4H), 7.86 (t, J = 8.5 Hz, 2H), 7.29 (s, 4H), 3.70 (dd, J = 7.7, 5.0 Hz, 4H), 2.63 (s, 6H), 1.83 (s, 12H), 1.62 – 1.57 (m, 12H), 0.74 (m, br, 4H), 0.43 (m, br, 8H), -2.38 (s, 2H). ¹³C NMR (125 MHz, CDC1₃): δ 171.23, 138.85, 138.40, 137.00, 130.71, 128.05, 121.48, 119.64, 116.43, 109.99, 107.82, 77.77, 67.41, 29.54, 24.19, 21.69, 21.42. IR (neat, cm⁻¹): 3348.56, 2973.34, 1693.80, 1585.76, 1495.59, 1343.31, 1062.41, 965.80, 802.86. HRMS (ESI) ([M+H]⁺) Calcd. for C₇₀H₇₁N₈O₈: 1151.5389, found 1151.5378. UV–vis (CH₂Cl₂), λ_{max} nm (log ε): 419(5.52), 514(4.27), 546(3.70), 590(3.74), 645(3.48).

[Co(P6)] was synthesized according to our previous reported procedure^{9g} with 90% yield. Free base porphyrin [H₂(P6)] and anhydrous CoCl₂ (8 equiv.) were placed in an oven-dried, resealable Schlenk tube. The tube was capped with a Teflon screwcap, evacuated, and backfilled with nitrogen. The screwcap was then replaced with a rubber septum, 2,6-lutidine (4 equiv.) and anhydrous THF were added via gas-tight syringe. The tube was purged with nitrogen for 2 minutes, and then the septum was replaced with the

Teflon screwcap. The reaction was conducted at 80 °C for 12 hrs. The resulting mixture was cooled to room temperature, diluted with ethyl acetate, and transferred to a separatory funnel. The reaction mixture was washed with water for 2 times and concentrated *in vacuo*. The target compound [Co(**P6**)] was isolated as a purple solid after purification by flash column chromatography (ethyl acetate/hexanes 1/1 to 2/1). IR (neat, cm⁻¹): 3345.37, 2975.30, 1691.41, 1584.59, 1496.60, 1343.08, 1291.12, 1163.92, 1062.85, 995.07, 796.97. HRMS (ESI) (M*⁺) Calcd. for C₇₀H₆₈CoN₈O₈:1207.4492, found 1207.4480. UV–vis (CH₂Cl₂), λ_{max} nm (log ϵ): 412(5.40), 529(4.18).

4.4.3 General Procedure for Preparation of 3-Aminopropan-1-ol Derivative s1

To a solution of aldehyde (10 mmol) in anhydrous methanol (20.0 mL) was added 3-amino-1-propanol (10 mmol) dropwise at room temperature. The reaction was stirred for overnight. After that, the reaction mixture was cooled down to 0 °C in an ice bath. Sodium borohydride (15 mmol) was added portionwise. After the bubbling stopped, the solvent was then evaporated. The resulting residue was then partitioned between H₂O (30 mL) and EtOAc (30 mL). The aqueous layer was extracted with EtOAc (2 x 20 mL). The combined organic extracts were then dried and concentrated under vacuum. The desired product **s1**

was then purified by flash chromatography (unless otherwise noted, the column conditions are: ethyl acetate, then dichloromethane/methanol 10/1 to 5/1).

3-(benzylamino)propan-1-ol s1-a, known compound.¹⁴ Following the general procedure with benzaldehyde as starting material. Yield: 75%. ¹H NMR (500 MHz, CDCl₃) δ 7.34 – 7.24 (m, 5H), 3.82 – 3.80 (m, 4H), 3.13 (br, 2H), 2.90 (t, *J* = 5.6 Hz, 2H), 1.73 (p, *J* = 5.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 139.06, 128.45, 128.16, 127.18, 63.87, 53.76, 49.01, 30.66. IR (neat, cm⁻¹): 3292.27, 2928.78, 1453.11, 1068.01, 1026.71, 733.97, 697.39. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₆NO: 166.1226, found 166.1233.

3-((4-methylbenzyl)amino)propan-1-ol s1-b. Following the general procedure with 4-methyl benzaldehyde as starting material. Yield: 76%. ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 7.9 Hz, 2H), 3.76 (t, *J* = 5.3 Hz, 2H), 3.71 (s, 2H), 3.23 (br, 2H), 2.84 (t, *J* = 5.8 Hz, 2H), 2.31 (s, 3H), 1.71 – 1.66 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 136.62, 136.28, 129.03, 128.00, 63.67, 53.47, 48.80, 30.75, 20.96. IR (neat, cm⁻¹): 3260.20, 2920.68, 1515.68, 1455.33, 1182.33, 1067.94, 879.23, 803.45. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₈NO: 180.1383, found 180.1390.

3-((3-methoxybenzyl)amino)propan-1-ol s1-c. Following

the general procedure with 3-methoxy benzaldehyde as starting material. Yield: 70%. ¹H NMR (500 MHz, CDCl₃) δ 7.23 (t, J = 7.9 Hz, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.83 (s, 1H), 6.79 (d, J = 8.2 Hz, 1H), 3.79 –3.76 (m, br, 7H), 3.43 (br, 2H), 2.87 (t, J = 5.7 Hz, 2H), 1.72 (p, J = 5.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 159.71, 140.78, 129.44, 120.39, 113.56, 112.68, 63.84, 55.12, 53.72, 48.95, 30.70. IR (neat, cm⁻¹): 3294.57, 2934.71, 1589.83, 1585.04, 1454.58, 1262.23, 1154.06, 1040.91, 855.67, 778.62, 693.43. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₈NO₂: 196.1332, found 196.1338.

3-((2-methoxybenzyl)amino)propan-1-ol s1-d. Following the general procedure with 2-methoxy benzaldehyde as starting material. Yield: 73%. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.26 (m, 2H), 6.94 – 6.86 (m, 2H), 4.93 (br, 2H), 3.88 – 3.83 (m, 5H), 3.78 (t, *J* = 5.4 Hz, 2H), 2.90 (t, *J* = 5.4 Hz, 2H), 1.76 (p, *J* = 5.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 157.66, 130.02, 128.44, 127.57, 120.34, 110.21, 64.66, 55.18, 49.31, 49.25, 30.48. IR (neat, cm⁻¹): 3306.05, 2936.56, 1601.41, 1493.10, 1463.17, 1241.02, 1026.73, 855.05. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₈NO₂: 196.1332, found 196.1339.

3-((3,5-bis(trifluoromethyl)benzyl)amino)propan-1-ol s1-

e, Following the general procedure with 3,5-bis(trifluoromethyl) benzaldehyde as starting material. Yield: 63%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (s, 2H), 7.78 (s, 1H), 3.93 (s, 2H), 3.80 (t, J = 5.3 Hz, 2H), 2.88 (t, J = 5.8 Hz, 2H), 2.77 (br, 2H), 1.77 (p, J = 5.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 142.12, 131.75 (q, J = 33.1 Hz), 128.19, 123.29 (q, J = 272.4 Hz), 121.21, 63.35, 53.05, 48.78, 31.18. IR (neat, cm⁻¹): 3262.88, 2943.83, 1622.66, 1467.68, 1372.90, 1276.12, 1155.57, 1061.61, 903.41, 842.38, 730.76. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₄F₆NO: 302.0974, found 302.0985.

Br **3-((4-bromobenzyl)amino)propan-1-ol s1-f**. Following the general procedure with 4-bromobenzaldehyde as starting material. Yield: 77%. ¹H NMR (500 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.3 Hz, 2H), 3.81 (t, *J* = 5.4 Hz, 2H), 3.75 (s, 2H), 2.88 (t, *J* = 5.7 Hz, 2H), 2.76 (br, 2H), 1.73 (p, *J* = 5.6 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 138.32, 131.52, 129.82, 120.95, 63.92, 53.19, 49.04, 30.79. IR (neat, cm⁻¹): 3294.51, 3084.01, 2909.99, 1590.67, 1444.98, 1189.24, 1065.62, 1002.84, 846.05, 799.05. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₅BrNO: 244.0332, found 244.0341.

3-((2,4,6-trifluorobenzyl)amino)propan-1-ol s1-g.

Following the general procedure with 2,4,6-trifluorobenzaldehyde as starting material. Yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 6.64 (t, *J* = 7.8 Hz, 2H), 3.83 (s, 2H), 3.75 (t, *J* = 5.0 Hz, 2H), 2.95 (br, 2H), 2.79 (t, *J* = 5.7 Hz, 2H), 1.68 (p, *J* = 5.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 163.04 (d, *J* = 15.2 Hz), 160.57 (d, *J* = 15.0 Hz), 111.43 (t, *J* = 20.4 Hz), 100.07 (t, *J* = 27.3 Hz), 63.59, 48.27, 39.99, 30.80. IR (neat, cm⁻¹): 3301.00, 2937.96, 1625.85, 1439.90, 1169.08, 1114.84, 997.09, 839.38, 736.80. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₃F₃NO: 220.0944, found 220.0951.

NC **3-((4-nitrilebenzyl)amino)propan-1-ol s1-h**. Following the general procedure with 4-nitrilebenzaldehyde as starting material. Yield: 89%. ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.1 Hz, 2H), 3.82 (s, 2H), 3.75 (t, *J* = 5.5 Hz, 2H), 2.94 (br, 2H), 2.83 (t, *J* = 5.9 Hz, 2H), 1.70 (p, *J* = 5.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 144.69, 131.84, 128.27, 118.38, 110.48, 63.08, 53.02, 48.48, 30.65. IR (neat, cm⁻¹): 3244.62, 2808.20, 2228.96, 1607.81, 1460.45, 1357.12, 1064.78, 982.87, 835.02. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₁H₁₅N₂O: 191.1179, found 191.1186.

3-((4-nitrobenzyl)amino)propan-1-ol s1-i. Following the

general procedure with 4-nitrobenzaldehyde as starting material. Yield: 86%. ¹H NMR (500 MHz, CDCl₃) δ 8.15 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 3.88 (s, 2H), 3.77 (t, *J* = 5.4 Hz, 2H), 2.87 – 2.84 (m, 4H), 1.73 (p, *J* = 5.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 147.23, 147.08, 128.65, 123.67, 63.69, 53.21, 49.07, 31.07. IR (neat, cm⁻¹): 3262.72, 3110.15, 2941.77, 1607.40, 1517.26, 1343.05, 1095.26, 966.70, 851.28. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₅N₂O₃: 211.1077, found 211.1086.

3-((2-chloro-4-nitrobenzyl)amino)propan-1-ol s1-j.

Following the general procedure with 2-chloro-4-nitrobenzaldehyde as starting material. Yield: 66%. ¹H NMR (600 MHz, CDCl₃) δ 8.23 (d, *J* = 2.5 Hz, 1H), 8.00 (dd, *J* = 8.7, 2.7 Hz, 1H), 7.47 (d, *J* = 8.7 Hz, 1H), 3.90 (s, 2H), 3.73 (t, *J* = 5.6 Hz, 2H), 2.82 (t, br, *J* = 6.1 Hz, 4H), 1.72 (p, *J* = 5.8 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 146.45, 140.35, 139.23, 130.21, 124.33, 122.99, 62.68, 50.63, 48.17, 31.29. IR (neat, cm⁻¹): 3270.58, 2946.16, 1608.98, 1519.29, 1341.61, 1181.61, 1075.65, 830.25, 739.10. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₄ClN₂O₃: 245.0693, found 245.0703.

3-((3-vinylbenzyl)amino)propan-1-ol s1-k. Following the

general procedure with 3-vinylbenzaldehyde as starting material. Yield: 85%. ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 3H), 7.17 (d, *J* = 6.9 Hz, 1H), 6.68 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.73 (d, *J* = 17.6 Hz, 1H), 5.25 (d, *J* = 10.9 Hz, 1H), 3.79 – 3.77 (m, 4H), 3.21 (br, 2H), 2.88 (t, *J* = 5.6 Hz, 2H), 1.71 (p, *J* = 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 139.43, 137.80, 136.64, 128.72, 127.69, 126.08, 125.13, 114.10, 63.93, 53.78, 49.09, 30.75. IR (neat, cm⁻¹): 3293.63, 2930.19, 1629.77, 1441.56, 1066.59, 990.42, 906.35, 796.77, 713.63. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₈NO: 192.1383, found 192.1389.

Following the general procedure with α -methyl-*trans*-cinnamaldehyde as starting material. Yield: 73%. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, J = 7.6 Hz, 2H), 7.25 (d, J = 7.1 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 6.43 (s, 1H), 3.83 (t, J = 5.3 Hz, 2H), 3.57 (br, 2H), 3.34 (s, 2H), 2.91 (t, J = 5.8 Hz, 2H), 1.91 (s, 3H), 1.75 (p, J = 5.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 137.57, 135.69, 128.80, 128.06, 126.91, 126.35, 64.07, 58.16, 48.95, 30.58, 16.52. IR (neat, cm⁻¹): 3289.52, 2932.76, 1489.80, 1442.46, 1070.76, 916.93, 743.02. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₂₀NO: 206.1544, found 206.1545.

3-((3-phenylprop-2-yn-1-yl)amino)propan-1-ol s1-m.

Following the general procedure with 3-phenylpropiolaldehyde as starting material. Yield: 70%. ¹H NMR (600 MHz, CDCl₃) δ 7.42 – 7.40 (m, 2H), 7.30 – 7.28 (m, 3H), 3.81 (t, *J* = 5.3 Hz, 2H), 3.66 (s, 2H), 3.14 (br, 2H), 3.00 (t, *J* = 6.0 Hz, 2H), 1.75 (p, *J* = 5.7 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 131.62, 128.27, 128.15, 122.94, 86.65, 83.98, 63.54, 48.08, 38.68, 30.77. IR (neat, cm⁻¹): 3300.49, 2932.66, 1597.88, 1489.63, 1331.61, 1070.10, 758.97. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₆NO: 190.1238, found 190.1232.

 $([M+H]^+)$ Calcd. for C₁₁H₁₈NO: 180.1383, found 180.1388.

3-((cyclohexylmethyl)amino)propan-1-ol s1-o. Following the general procedure with cyclohexanecarbaldehyde as starting material. Yield: 59%. ¹H

NMR (600 MHz, CDCl₃) δ 3.80 (t, J = 5.2 Hz, 2H), 3.49 (br, 2H), 2.87 (t, J = 5.6 Hz, 2H), 2.44 (d, J = 6.6 Hz, 2H), 1.72 – 1.63 (m, 7H), 1.44 – 1.39 (m, 1H), 1.25 – 1.10 (m, 3H), 0.93 – 0.87 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 64.54, 56.53, 50.38, 37.72, 31.31, 30.30, 26.55, 25.97. IR (neat, cm⁻¹): 3255.27, 2920.26, 1447.79, 1264.73, 1068.06, 890.14, 733.69. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₂₂NO: 172.1696, found 172.1703.

Ph 0 Boc benzyl *N*-(*tert*-butoxycarbonyl)-*N*-(3-hydroxypropyl) glycinate s1-p. Prepared according to the literature¹⁵ from benzyl 2-bromoacetate (6.0 mmol) and 3-aminopropan-1-ol (7.2 mmol) in two steps. R_f = 0.32 (ethyl acetate/hexanes: 1/2). Yield: 71%. ¹H NMR (500 MHz, CDCl₃) a mixture of amide rotamers. δ 7.35 – 7.33 (m, br, 5H), 5.17 and 5.14 (s, 2H), 4.01 and 3.89 (s, 2H), 3.66 – 3.58 (m, 2H), 3.47 – 3.37 (m, 3H), 1.65 – 1.63 (m, 2H), 1.48 and 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃) major amide rotamer. δ 172.43, 159.13, 137.99, 131.28, 131.19, 131.16, 83.62, 69.54, 61.00, 52.57, 47.32, 33.28, 30.73. IR (neat, cm⁻¹): 3465.51, 2976.12, 1753.43, 1693.74, 1404.40, 1251.90, 1171.16, 756.23. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₆NO₅: 324.1811, found 324.1821.

N 3-((pyridin-3-ylmethyl)amino)propan-1-ol s1-q. Following the general procedure with nicotinaldehyde as starting material. Yield: 85%. ¹H NMR (500 MHz, CDCl₃) δ 8.50 (s, 1H), 8.48 (d, *J* = 4.7 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.32 – 7.16

(m, 1H), 3.78 (s, 2H), 3.76 (t, J = 5.5 Hz, 2H), 2.96 (br, 2H), 2.85 (t, J = 5.9 Hz, 2H), 1.72 (p, J = 5.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.54, 148.62, 135.77, 134.91, 123.46, 63.65, 51.24, 48.99, 31.03. IR (neat, cm⁻¹): 3262.41, 2933.04, 1577.84, 1425.22, 1288.33, 1060.69, 791.05, 710.90. HRMS (ESI) ([M+H]⁺) Calcd. for C₉H₁₅N₂O: 167.1179, found 167.1186.

3-((pyridin-2-ylmethyl)amino)propan-1-ol s1-r. Following the general procedure with picolinaldehyde as starting material. Yield: 82%. ¹H NMR (500 MHz, CDCl₃) δ 8.51 (d, *J* = 4.7 Hz, 1H), 7.61 (td, *J* = 7.7, 1.7 Hz, 1H), 7.24 (d, *J* = 7.8 Hz, 1H), 7.13 (dd, *J* = 7.1, 5.3 Hz, 1H), 3.87 (s, 2H), 3.77 (t, *J* = 5.4 Hz, 2H), 3.52 (br, 2H), 2.86 (t, *J* = 5.9 Hz, 2H), 1.71 (p, *J* = 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 158.91, 149.18, 136.51, 122.30, 122.03, 63.44, 54.77, 48.85, 30.94. IR (neat, cm⁻¹): 3375.78, 2952.78, 1595.26, 1437.42, 1219.35, 1153.47, 1066.09, 999.69, 767.24. HRMS (ESI) ([M+H]⁺) Calcd. for C₉H₁₅N₂O: 167.1179, found 167.1182.

3-((pyridin-4-ylmethyl)amino)propan-1-ol s1-s. Following the general procedure with isonicotinaldehyde as starting material. Yield: 65%. ¹H NMR (600 MHz, CDCl₃) δ 8.53 (d, *J* = 5.8 Hz, 2H), 7.22 (d, *J* = 5.6 Hz, 2H), 3.80 – 3.78 (m, 4H), 3.03 (br, 2H), 2.86 (t, *J* = 5.9 Hz, 2H), 1.74 (p, *J* = 5.7 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 149.80, 148.59, 122.89, 63.52, 52.68, 48.95, 31.11. IR (neat, cm⁻¹): 3270.90,

2928.93, 1602.93, 1415.46, 1220.16, 1063.87, 1001.81, 796.89. HRMS (ESI) ([M+H]⁺) Calcd. for C₉H₁₅N₂O: 167.1179, found 167.1186.

N 3-((quinolin-4-ylmethyl)amino)propan-1-ol s1-t. Following the general procedure with quinoline-4-carbaldehyde as starting material. Yield: 93%. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (d, *J* = 4.4 Hz, 1H), 8.05 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 4.3 Hz, 1H), 4.15 (s, 2H), 3.73 (t, *J* = 5.5 Hz, 2H), 3.09 (br, 2H), 2.88 (t, *J* = 6.0 Hz, 2H), 1.72 (p, *J* = 5.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 150.03, 147.93, 144.95, 129.91, 129.08, 126.67, 126.53, 122.89, 119.61, 62.87, 49.92, 49.00, 31.34. IR (neat, cm⁻¹): 3271.45, 2929.27, 1592.97, 1424.22, 1239.68, 1067.21, 842.69, 752.92. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₇N₂O: 217.1335, found 217.1346.

tert-butyl 3-(((3-hydroxypropyl)amino)methyl)-1*H*-indole-

1-carboxylate s1-u. Following the general procedure with *tert*-butyl 3-formyl-1*H*-indole-1-carboxylate as starting material. Yield: 95%. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 7.5 Hz, 1H), 7.57 (d, *J* = 7.7 Hz, 1H), 7.50 (s, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.4 Hz, 1H), 3.91 (s, 2H), 3.81 (t, *J* = 5.3 Hz, 2H), 3.00 – 2.93 (m, 4H), 1.76 – 1.66 (m, 11H).

¹³C NMR (100 MHz, CDCl₃) δ 149.66, 135.64, 129.74, 124.49, 123.61, 122.59, 118.92, 118.76, 115.29, 83.60, 64.06, 49.45, 44.51, 30.84, 28.17. IR (neat, cm⁻¹): 3301.59, 2977.45, 1727.67, 1475.02, 1450.57, 1368.04, 1253.96, 1154.95, 1076.59, 855.37, 744.24. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₅N₂O₃: 305.1860, found 305.1875.

N S H OH

S 3-((thiophen-3-ylmethyl)amino)propan-1-ol s1-v. Following the general procedure with thiophene-3-carbaldehyde as starting material. Yield: 72%. ¹H NMR (600 MHz, CDCl₃) δ 7.28 (dd, *J* = 4.9, 3.0 Hz, 1H), 7.11 (d, *J* = 2.2 Hz, 1H), 7.03 (d, *J* = 4.9 Hz, 1H), 3.81 – 3.79 (m, 4H), 3.14 (br, 2H), 2.88 (t, *J* = 5.8 Hz, 2H), 1.71 (p, *J* = 5.5 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 140.57, 127.44, 125.89, 121.73, 64.18, 49.25, 48.73, 30.76. IR (neat, cm⁻¹): 3276.04, 3101.66, 2932.17, 1440.79, 1235.84, 1064.68, 913.06, 855.68, 771.00. HRMS (ESI) ([M+H]⁺) Calcd. for C₈H₁₄NOS: 172.0791, found 172.0794.

3-((benzo[b]thiophen-3-ylmethyl)amino)propan-1-ol s1-w.

Following the general procedure with benzo[*b*]thiophene-3-carbaldehyde as starting material. Yield: 99%. ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 7.7 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.41 – 7.29 (m, 2H), 7.29 (s, 1H), 4.02 (s, 2H), 3.80 (t, *J* = 5.3 Hz, 2H), 3.14 (br, 2H), 2.95 (t, *J* = 5.8 Hz, 2H), 1.74 (p, *J* = 5.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 140.56, 138.09, 134.23, 124.36, 124.06, 123.26, 122.84, 121.46, 63.89, 49.41, 47.43,

30.84. IR (neat, cm⁻¹): 3292.69, 2925.84, 1495.15, 1426.29, 1255.62, 1067.71, 836.00, 752.78. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₆NOS: 222.0947, found 222.0958.

3-((ferrocenyl)amino)propan-1-ol s1-x. Following the general procedure with ferrocenecarboxaldehyde as starting material. Yield: 45%. ¹H NMR (500 MHz, CDCl₃) δ 4.15 – 4.09 (m, 9H), 3.79 (t, *J* = 5.2 Hz, 2H), 3.50 (s, 2H), 3.22 (br, 2H), 2.88 (t, *J* = 5.6 Hz, 2H), 1.69 (p, *J* = 5.4 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 86.16, 68.33, 68.19, 67.74, 64.22, 49.44, 48.67, 30.59. IR (neat, cm⁻¹): 3274.40, 2942.31, 2360.19, 1450.25, 1341.97, 1272.79, 1162.09, 1041.03, 913.33, 801.98. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₀FeNO: 274.0889, found 274.0891.

3-(benzyloxy)propan-1-ol s1-y, known compound.¹⁶ Prepared from benzyl bromide (10 mmol) and propane 1,3-diol (10 mmol) according to the literature.¹⁶ R_f = 0.35 (ethyl acetate/hexanes: 1/3).Yield: 71%. ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 4.53 (s, 2H), 3.78 (s, 2H), 3.78 – 3.65 (m, 2H), 2.33 (s, 1H), 1.87 (p, *J* = 5.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.04, 128.41, 127.67, 127.61, 73.24, 69.34, 61.85, 32.09.

H 2-(phenethylamino)ethan-1-ol s1-z. Following the general procedure with 2-phenylacetaldehyde and 2-aminoethan-1-ol as starting material. Yield: 45%. ¹H NMR (600 MHz, CDCl₃) δ 7.30 (t, *J* = 7.6 Hz, 2H), 7.22 – 7.20 (m, 3H), 3.63 (t, *J* = 5.2 Hz, 2H), 2.91 (t, *J* = 7.2 Hz, 2H), 2.81 (t, *J* = 7.1 Hz, 2H), 2.78 (t, *J* = 5.2 Hz, 2H), 2.51 (br, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 139.72, 128.66, 128.47, 126.20, 60.67, 50.87, 50.56, 36.28. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₀H₁₆NO: 166.1232, found 166.1231.

(*R*)-3-((1-phenylethyl)amino)propan-1-ol s1-aa, known compound.¹⁷ Prepared according to the literature¹⁷ from optically pure (*R*)-(+)-1-phenylethylamine. Yield: 78%. ¹H NMR (500 MHz, CDCl₃) δ 7.35 – 7.23 (m, 5H), 3.80 – 3.72 (m, 3H), 3.18 (br, 2H), 2.79 – 2.74 (m, 1H), 2.67 – 2.63 (m, 1H), 1.75 – 1.67 (m, 1H), 1.64 – 1.57 (m, 1H), 1.36 (d, *J* = 6.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 144.76, 128.54, 127.08, 126.44, 64.34, 58.61, 47.78, 31.18, 24.17.

4.4.4 General Procedure for Preparation of *tert*-Butyl (3-Oxopropyl)carbamate Derivative s2

Step 1: To a solution of **s1** (5 mmol) and triethylamine (1.5 equiv.) in DCM (30.0 mL), di-*tert*-butyl dicarbonate (1.1 equiv.) was added portionwise at 0 °C. The reaction was then stirred at room temperature and monitored by TLC. After the reaction was completed, the mixture was filtrated through a short pad of silica and eluted with ethyl acetate. The filtrate was then evaporated and concentrated under vacuum. The obtained raw compound was directly used without further purification.

Step 2 (Swern oxidation via the standard procedure¹⁸): To a solution of oxalyl chloride (1.5 equiv.) in DCM (30 mL) at -78 °C was added dimethyl sulfoxide (3.0 equiv.) dropwise via syringe. After stirring for 20 min at -78 °C, a solution of *N*-Boc protected **s1** (crude product from previous amine protecting step) in DCM (5.0 mL) was added dropwise via syringe pump at a rate of 10 mL/hr. The solution was then stirred for 30 min at -78 °C, followed by the dropwise addition of triethylamine (4.5 equiv.). After 10 min, the reaction mixture was warmed up to room temperature, poured into brine (30 mL) and stirred for another 10 min. The layers were then separated and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄,

filtered and concentrated under vacuum. The oxidized product s2 was further purified by flash chromatography.

tert-butyl benzyl(3-oxopropyl)carbamate s2-a. Following the general procedure with s1-a as starting material. Yield: 77%. $R_f = 0.38$ (ethyl acetate/hexanes: 1/5). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.73 (br, 1H), 7.34 – 7.22 (m, 5H), 4.44 (s, 2H), 3.52 – 3.47 (m, br, 2H), 2.65 – 2.59 (m, br, 2H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 201.01, 155.53, 138.19, 128.58, 127.77, 127.34, 80.27, 51.35, 43.05, 40.82, 28.38. IR (neat, cm⁻¹): 2976.59, 1722.96, 1686.92, 1454.19, 1413.06, 1365.85, 1244.53, 1162.92, 1126.53, 874.73, 734.29, 699.92. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₂NO₃: 264.1594, found 264.1598.

tert-butyl (4-methylbenzyl)(3-oxopropyl)carbamate s2-b.

Following the general procedure with **s1-b** as starting material. Yield: 83%. $R_f = 0.52$ (ethyl acetate/hexanes: 1/3). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.71 (br, 1H), 7.11 (m, 4H), 4.39 (s, 2H), 3.48 (m, br, 2H), 2.62 (m, br, 2H), 2.32 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 201.02, 155.51, 136.99, 135.00, 129.23, 127.23, 80.19, 50.97, 43.02, 40.63, 28.37, 21.04. IR (neat, cm⁻¹): 2975.20, 1722.62,

1687.11, 1463.61, 1407.44, 1365.32, 1243.63, 1162.95, 1126.59, 877.69, 772.39. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₃: 278.1751, found 278.1751.

tert-butyl (3-methoxybenzyl)(3-oxopropyl)carbamate s2-

c. Following the general procedure with **s1-c** as starting material. Yield: 71%. $R_f = 0.24$ (ethyl acetate/hexanes: 1/5). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.73 (br, 1H), 7.23 (t, J = 7.9 Hz, 1H), 6.82 – 6.80 (m, 3H), 4.42 (s, 2H), 3.79 (s, 3H), 3.52 – 3.47 (m, br, 2H), 2.66 – 2.59 (m, br, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 201.01, 159.85, 155.50, 139.86, 129.58, 119.50, 112.82, 112.70, 80.27, 55.16, 51.30, 43.04, 41.03, 28.38. IR (neat, cm⁻¹): 2974.55, 1721.94, 1686.89, 1463.46, 1410.88, 1365.52, 1245.63, 1161.91, 1048.31, 860.09, 773.10. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₄: 294.1700, found 294.1702.

tert-butyl (2-methoxybenzyl)(3-oxopropyl)carbamate s2-d.

Following the general procedure with **s1-d** as starting material. Yield: 81%. $R_f = 0.35$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.75 (br, 1H), 7.26 – 7.14 (m, 2H), 6.94 – 6.83 (m, 2H), 4.43 (s, 2H), 3.81 (s, 3H), 3.57 – 3.29 (m, 2H), 2.65 – 2.49 and 1.84 – 1.81 (m, 2H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃):

major isomer δ 201.29, 157.11, 155.81, 129.09, 128.37, 126.11, 120.42, 110.18, 80.00, 55.20, 45.98, 43.04, 41.17, 28.38. IR (neat, cm⁻¹): 2974.99, 1726.38, 1687.07, 1462.64, 1412.92, 1365.61, 1239.92, 1159.50, 1028.62, 877.77, 751.50. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₄: 294.1700, found 294.1703.

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-oxopropyl)

carbamate s2-e. Following the general procedure with **s1-e** as starting material. Yield: 80%. $R_f = 0.54$ (ethyl acetate/hexanes: 1/3). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.77 (br, 1H), 7.77 – 7.66 (m, 3H), 4.54 (s, 2H), 3.70 – 3.52 (m, br, 2H), 2.75 – 2.63 (m, br, 2H), 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 200.57, 155.38, 141.27, 133.88 (q, J = 33.2 Hz), 127.25, 123.18 (q, J = 272.6 Hz), 121.27, 81.11, 51.08, 43.29, 41.44, 28.17. IR (neat, cm⁻¹): 2979.02, 1692.92, 1469.97, 1368.25, 1276.14, 1165.47, 1126.56, 901.45, 705.93, 681.71. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₀F₆NO₃: 400.1342, found 400.1351.

tert-butyl (4-bromobenzyl)(3-oxopropyl)carbamate s2-f.

Following the general procedure with **s1-f** as starting material. Yield: 79%. $R_f = 0.36$ (ethyl acetate/hexanes: 1/5). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.73

(br, 1H), 7.43 (d, *J* = 8.3 Hz, 2H), 7.09 (d, br, 2H), 4.38 (s, 2H), 3.47 and 3.25 (br, 2H), 2.66 and 2.49 (br, 2H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 200.78, 155.42, 137.26, 131.68, 128.79, 121.16, 80.49, 50.92, 43.17, 40.91, 28.35. IR (neat, cm⁻¹): 2974.88, 1723.02, 1686.67, 1487.44, 1401.05, 1365.44, 1244.47, 1161.47, 1127.02, 1010.80, 877.52, 771.38. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁BrNO₃: 342.0699, found 342.0698.

tert-butyl (2,4,6-trifluorobenzyl)(3-oxopropyl)carbamate s2-

g. Following the general procedure with **s1-g** as starting material. Yield: 63%. $R_f = 0.35$ (ethyl acetate/hexanes: 1/5). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.74 (br, 1H), 6.65 (t, J = 8.2 Hz, 2H), 4.49 (s, 2H), 3.52 (br, 2H), 2.65 (br, 2H), 1.42 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.86, 175.22, 161.86 (d, J = 248.9 Hz), 154.85, 110.20, 100.27 (t, J = 27.4 Hz), 80.57, 42.90, 40.89, 39.22, 28.21. IR (neat, cm⁻¹): 2978.33, 1690.07, 1495.83, 1414.50, 1366.58, 1247.18, 1164.64, 1118.48, 1046.76, 998.68, 840.75, 737.30. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₁₉F₃NO₃: 318.1312, found 318.1311.

tert-butyl (4-nitrilebenzyl)(3-oxopropyl)carbamate s2-h.

Following the general procedure with **s1-h** as starting material. Yield: 82%. $R_f = 0.28$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.65 (br, 1H), 7.62 (d, J = 8.0 Hz, 2H), 7.32 (br, 2H), 4.49 (s, 2H), 3.52 and 3.47 (br, 2H), 2.70 (br, 2H), 1.48 and 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.70, 155.23, 144.13, 132.40, 127.51, 118.68, 111.13, 80.76, 51.39, 43.19, 41.34, 28.28. IR (neat, cm⁻¹): 2976.97, 2228.94, 1721.65, 1687.14, 1464.06, 1407.89, 1366.59, 1246.91, 1162.56, 911.52, 729.82. HRMS (ESI) ([M+Na]⁺) Calcd. for C₁₆H₂₀NaN₂O₃: 311.1366, found 311.1365.

tert-butyl (4-nitrobenzyl)(3-oxopropyl)carbamate s2-i.

Following the general procedure with **s1-i** as starting material. Yield: 75%. $R_f = 0.17$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.77 (br, 1H), 8.18 (d, J = 8.4 Hz, 2H), 7.37 (br, 2H), 4.54 (s, 2H), 3.54 and 3.49 (br, 2H), 2.75 and 2.69 (br, 2H), 1.49 and 1.39 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.66, 155.19, 147.24, 145.88, 127.50, 123.85, 80.88, 51.27, 43.24, 41.42, 28.30. IR (neat, cm⁻¹): 2976.04, 1687.82, 1519.17, 1407.08, 1343.25, 1245.80, 1161.45, 1129.70, 857.77, 736.67. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁N₂O₅: 309.1445, found 309.1442.

tert-butyl (2-chloro-4-nitrobenzyl)(3-oxopropyl)

carbamate s2-j. Following the general procedure with **s1-j** as starting material. Yield: 63%. $R_f = 0.28$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 9.80 (br, 1H), 8.08 – 8.07 (m, br, 2H), 7.53 (d, J = 8.3 Hz, 1H), 4.60 (s, 2H), 3.60 (br, 2H), 2.79 (br, 2H), 1.52 and 1.39 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 200.01, 155.06, 146.88, 139.53, 137.63, 130.52, 123.19, 122.72, 81.12, 48.74, 43.16, 41.64, 28.26. IR (neat, cm⁻¹): 2974.99, 2358.32, 1721.79, 1690.64, 1524.76, 1345.34, 1165.17, 1050.10, 925.45, 742.97. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₀CIN₂O₅: 343.1060, found 343.1061.

tert-butyl (3-vinylbenzyl)(3-oxopropyl)carbamate s2-k.

Following the general procedure with **s1-k** as starting material. Yield: 75%. $R_f = 0.33$ (ethyl acetate/hexanes: 1/5). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.72 (br, 1H), 7.29 – 7.10 (m, 4H), 6.68 (dd, J = 17.6, 10.9 Hz, 1H), 5.72 (d, J = 17.6 Hz, 1H), 5.23 (d, J = 10.9 Hz, 1H), 4.42 (s, 2H), 3.50 (br, 2H), 2.64 (br, 2H), 1.44 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 200.94, 155.51, 138.46, 137.87, 136.58, 128.76, 126.61, 125.58, 125.22, 114.13, 80.29, 51.24, 43.08, 40.84, 28.36. IR (neat, cm⁻¹): 2975.95, 1721.79, 1686.69, 1464.52, 1411.79, 1365.50, 1245.58, 1162.14, 1125.68, 990.63, 713.79. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₄NO₃: 290.1751, found 290.1754.

tert-butyl (*E*)-(2-methyl-3-phenylallyl)(3-oxopropyl)

carbamate s2-l. Following the general procedure with **s1-l** as starting material. Yield: 76%. $R_f = 0.43$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 9.80 (br, 1H), 7.33 (t, J = 7.6 Hz, 2H), 7.26 – 7.21 (m, 3H), 6.32 (s, 1H), 3.98 and 3.93 (br, 2H), 3.56 (br, 2H), 2.72 (br, 2H), 1.82 (s, 3H), 1.47 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 201.07, 155.52, 137.35, 134.47, 128.82, 128.15, 126.94, 126.50, 80.09, 55.66, 43.09, 40.49, 28.38, 15.57. IR (neat, cm⁻¹): 2974.97, 2361.33, 1721.79, 1687.60, 1415.91, 1365.91, 1248.45, 1163.36, 1021.08, 746.89. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₆NO₃: 304.1926, found 304.1913.

tert-butyl (3-oxopropyl)(3-phenylprop-2-yn-1-yl)carbamate

s2-m. Following the general procedure with **s1-m** as starting material.Yield: 57%. $R_f = 0.48$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 9.82 (br, 1H), 7.41 – 7.29 (m, 5H), 4.32 and 4.25 (br, 2H), 3.70 (t, J = 6.7 Hz, 2H), 2.82 – 2.80 (m, 2H), 1.48 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 200.73, 154.80, 131.63, 130.08, 128.34, 122.65, 84.82, 83.41, 80.71, 43.14, 40.89, 38.27, 28.35. IR (neat, cm⁻¹): 2976.09, 1721.79, 1689.02, 1409.36, 1366.66, 1248.77, 1160.17, 862.86, 758.50. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₂NO₃: 288.1611, found 288.1600.

tert-butyl (3-oxopropyl)(phenethyl)carbamate s2-n.

Following the general procedure with **s1-n** as starting material. Yield: 58%. $R_f = 0.48$ (ethyl acetate/hexanes: 1/3). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.73 (br, 1H), 7.29 – 7.16 (m, 5H), 3.40 (br, 4H), 2.80 (br, 2H), 2.63 and 2.57 (br, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 201.03, 155.33, 139.04, 128.85, 128.49, 126.32, 79.82, 49.94, 43.33, 41.49, 35.28, 28.35. IR (neat, cm⁻¹): 2975.04, 1721.62, 1685.77, 1454.24, 1413.22, 1365.29, 1248.67, 1161.74, 1123.58, 880.75, 736.43, 700.08. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₃: 278.1751, found 278.1753.

Following the general procedure with **s1-o** as starting material. Yield: 87%. $R_f = 0.55$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.78 (t, J = 1.4 Hz, 1H), 3.49 (br, 2H), 3.01 (br, 2H), 2.69 (br, 2H), 1.72 – 1.62 (m, 6H), 1.43 (s, 9H), 1.24 – 1.12 (m, 3H), 0.89 (br, 2H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 201.16, 155.75, 79.59, 53.97, 43.10, 41.52, 37.36, 30.81, 28.38, 26.44, 25.89. IR (neat, cm⁻¹): 2923.55, 1723.08, 1684.57, 1415.73, 1365.14, 1170.37, 1147.59, 961.17, 877.61, 771.73. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₈NO₃: 270.2064, found 270.2066.

benzyl N-(tert-butoxycarbonyl)-N-(3-oxopropyl)glycinate

s2-p. Prepared from PCC (1.5 equiv.) oxidation of corresponding alcohol (2 mmol) in DCM (10 mL) at room temperature according to the literature.¹⁹ R_f = 0.40 (ethyl acetate/hexanes: 1/3). Yield: 68%. ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.75 (br, 1H), 7.35 (m, br, 5H), 5.15 (s, 2H), 4.06 and 3.99 (s, 2H), 3.58 – 3.55 (m, 2H), 2.81 and 2.74 (t, J = 6.1 Hz, 2H), 1.47 and 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 201.22, 170.10, 155.06, 135.41, 128.58, 128.42, 128.24, 80.57, 66.79, 50.88, 43.41, 42.50, 28.09. IR (neat, cm⁻¹): 2926.99, 1750.26, 1700.34, 1457.77, 1367.63, 1173.24, 914.23, 736.59. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₄NO₅: 322.1659, found 322.1654.

Boc *tert*-butyl (3-oxopropyl)(pyridin-3-ylmethyl)carbamate s2-q. Following the general procedure with s1-q as starting material. Yield: 71%. R_f = 0.20 (ethyl acetate/hexanes: 2/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.75 (br, 1H), 8.52 – 8.50 (m, br, 2H), 7.57 (br, 1H), 7.26 (dd, J = 7.4, 5.1 Hz, 1H), 4.45 (s, 2H), 3.51 (br, 2H), 2.71 and 2.66 (br, 2H), 1.44 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.70, 155.38, 148.84, 135.48, 134.83, 133.83, 123.52, 80.70, 49.19, 43.21, 41.07, 28.33. IR (neat, cm⁻¹): 2975.77, 1720.62, 1686.85, 1478.44, 1409.44, 1365.81, 1249.38, 1162.07, 1129.97, 875.86, 713.32. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₃: 265.1547, found 265.1556.

tert-butyl (3-oxopropyl)(pyridin-2-ylmethyl)carbamate s2-r.

Following the general procedure with **s1-r** as starting material. Yield: 74%. $R_f = 0.20$ (ethyl acetate/hexanes: 2/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.75 (br, 1H), 8.50 (br, 1H), 7.64 (t, J = 7.7, 1H), 7.17 – 7.15 (m, 2H), 4.55 and 4.51 (s, 2H), 3.65 and 3.59 (br, 2H), 2.72 and 2.65 (br, 2H), 1.47 and 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 201.01, 158.37, 155.43, 149.18, 136.60, 122.13, 120.89, 80.28, 53.53, 43.05, 41.91, 28.28. IR (neat, cm⁻¹): 2975.74, 1687.60, 1591.29, 1475.96, 1408.49, 1365.67, 1246.26, 1163.19, 994.89, 878.62, 754.68. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₃: 265.1547, found 265.1550.

tert-butyl (3-oxopropyl)(pyridin-2-ylmethyl)carbamate s2-s.

Following the general procedure with **s1-s** as starting material. Yield: 35%. $R_f = 0.17$ (ethyl acetate/hexanes: 2/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.76 (br, 1H), 8.55 – 8.53 (br, 2H), 7.11 (br, 2H), 4.44 (s, 2H), 3.54 and 3.48 (br, 2H), 2.74 and 2.67 (br, 2H), 1.48 and 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.66, 155.26, 149.70, 147.77, 121.70, 80.74, 50.85, 43.21, 41.52, 28.24. IR (neat, cm⁻¹): 2976.19, 1688.57, 1601.34, 1464.30, 1409.61, 1366.01, 1249.42, 1162.43, 1065.77, 879.94, 734.18. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₃: 265.1547, found 265.1552.

tert-butyl (3-oxopropyl)(quinolin-4-ylmethyl)carbamate s2-t.

Following the general procedure with **s1-t** as starting material. Yield: 45%. $R_f = 0.30$ (ethyl acetate/hexanes: 2/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.76 (br, 1H), 8.87 (br, 1H), 8.14 (br, 1H), 8.01 (br, 1H), 7.72 (br, 1H), 7.57 (br, 1H), 7.20 (br, 1H), 4.96 (s, 2H), 3.60 and 3.50 (br, 2H), 2.76 and 2.63 (br, 2H), 1.51 and 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.21, 155.30, 150.18, 148.21, 143.20, 130.30, 129.39, 126.82, 126.35, 122.52, 118.08, 80.89, 48.51, 43.31, 41.42, 28.32. IR (neat, cm⁻¹): 2975.18, 1687.63, 1509.19, 1461.66, 1409.40, 1365.69, 1161.94, 1129.36, 840.48, 756.69. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₃N₂O₃: 315.1703, found 315.1713.

tert-butyl 3-(((*tert*-butoxycarbonyl)(3-oxopropyl)amino)

methyl)-1*H***-indole-1-carboxylate s2-u.** Following the general procedure with **s1-u** as starting material. Yield: 60%. $R_f = 0.41$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.72 (br, 1H), 8.13 (br, 1H), 7.64 (br, 1H), 7.52 (br, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.24 (t, J = 7.4 Hz, 1H), 4.59 (s, 2H), 3.52 and 3.46 (br, 2H), 2.64 and 2.58 (br, 2H), 1.68 (s, 9H), 1.52 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.70, 155.22, 149.54, 135.67, 129.39, 124.64, 122.70, 119.77, 119.06, 117.23, 115.23, 83.80, 80.35, 43.30, 41.64, 39.53, 28.43, 28.16. IR (neat, cm⁻¹): 2973.32, 1726.91, 1673.40, 1455.50, 1363.02, 1234.48, 1153.78, 1081.96, 874.61, 752.43. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₃₁N₂O₅: 403.2227, found 403.2234.

tert-butyl (3-oxopropyl)(thiophen-3-ylmethyl)carbamate s2-v.

Following the general procedure with **s1-v** as starting material. Yield: 88%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/4). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 9.73 (br, 1H), 7.28 (d, br, 1H), 7.10 (br, 1H), 7.00 (br, 1H), 4.41 (s, 2H), 3.51 (br, 2H), 2.65 and 2.58 (br, 2H), 1.47 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 201.01, 155.27, 139.20, 127.09, 126.28, 121.98, 80.27, 46.76, 43.10, 40.86, 28.39. IR (neat, cm⁻¹): 2976.16, 1721.34, 1683.78, 1463.63, 1365.71, 1248.80, 1162.47, 1123.44, 854.76, 735.58. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₂₀NO₃S: 270.1158, found 270.1162.

tert-butyl (benzo[b]thiophen-3-ylmethyl)(3-oxopropyl)

carbamate s2-w. Following the general procedure with **s1-w** as starting material. Yield: 89%. $R_f = 0.29$ (ethyl acetate/hexanes: 1/4). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 9.68 (br, 1H), 7.92 – 7.85 (m, br, 2H), 7.40 – 7.26 (m, 3H), 4.72 (s, 2H), 3.54 and 3.47 (br, 2H), 2.62 and 2.51 (br, 2H), 1.50 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 200.61, 155.24, 140.66, 137.92, 132.86, 124.91, 124.58, 124.26, 122.88, 122.29, 80.49, 44.46, 43.29, 39.67, 28.43. IR (neat, cm⁻¹): 2974.69, 1720.93, 1683.07, 1413.06, 1364.83, 1243.88, 1162.81, 862.20, 754.75. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₂NO₃S: 320.1315, found 320.1312.

tert-butyl (ferrocenyl)(3-oxopropyl)carbamate s2-x. Following the general procedure with s1-x as starting material. Yield: 89%. $R_f = 0.32$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 9.70 (br, 1H), 4.20 – 4.11 (m, br, 11H), 3.42 (br, 2H), 2.61 and 2.51 (br, 2H), 1.49 and 1.45 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 200.90, 155.04, 84.18, 79.97, 69.40, 69.05, 68.59, 46.22, 43.54, 40.01, 28.45. IR (neat, cm⁻¹): 3049.39, 2937.10, 1720.99, 1684.63, 1414.52, 1365.01, 1249.79, 1159.30, 1105.13, 864.27, 819.97. HRMS (ESI) ([M]⁺) Calcd. for C₁₉H₂₅FeNO₃: 371.1184, found 371.1180.

3-(benzyloxy)propanal s2-y, known compound.²⁰ Following the procedure of Swern oxidation with corresponding alcohol **s1-y** as starting material. Yield: 75%. $R_f = 0.42$ (ethyl acetate/hexanes: 1/10). ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.37 – 7.28 (m, 5H), 4.54 (s, 2H), 3.82 (t, J = 6.1 Hz, 2H), 2.70 (td, J = 6.1, 1.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 201.08, 137.82, 128.43, 127.76, 127.68, 73.25, 63.82, 43.86.

3-(benzylthio)propanal s2-z, known compound.²¹ Prepared via Michael addition of benzenemethanethiol (10 mmol) and 2-propenal (12 mmol) according

to the literature.²¹ Yield: 85%. $R_f = 0.20$ (ethyl acetate/hexanes: 1/10). ¹H NMR (600 MHz, CDCl₃) δ 9.71 (s, 1H), 7.34 – 7.24 (m, 5H), 3.74 (s, 2H), 2.71 – 2.69 (m, 2H), 2.67 – 2.64 (m, 2H).¹³C NMR (150 MHz, CDCl₃) δ 200.43, 137.93, 128.80, 128.58, 127.16, 43.33, 36.54, 23.65.

tert-butyl (2-oxoethyl)(phenethyl)carbamate s2-aa. Following the general procedure with s1-aa as starting material. Yield: 62%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/4). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 9.46 and 9.36 (br, 1H), 7.29 – 7.13 (m, 5H), 3.81 and 3.66 (s, 2H), 3.51 and 3.47 (t, J = 7.3 Hz, 2H), 2.82 and 2.80 (t, J = 7.3 Hz, 2H), 1.44 and 1.40 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 198.97, 155.68, 138.62, 128.79, 128.58, 126.49, 80.57, 57.68, 50.70, 35.26, 28.21. IR (neat, cm⁻¹): 2975.58, 1262.42, 1735.84, 1694.64, 1455.37, 1418.21, 1367.11, 1249.56, 1168.88, 890.59, 701.75. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₂NO₃: 264.1601, found 264.1600.

tert-butyl (*R*)-(3-oxopropyl)(1-phenylethyl)carbamate s2-ab. Following the general procedure with s1-ab as starting material. Yield: 61%. $R_f = 0.32$ (ethyl acetate/hexanes: 1/4). ¹H NMR (400 MHz, CDCl₃) δ 9.59 (br, 1H), 7.32 (m, br, 5H),

5.47 and 5.37 (br, 1H), 3.32 (br, 2H), 2.51 and 2.37 (br, 2H), 1.53 and 1.48 (br, 12H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 200.95, 155.46, 141.24, 128.18, 127.40, 126.85, 80.20, 53.41, 44.50, 36.72, 28.33, 17.02. IR (neat, cm⁻¹): 2975.06, 2360.16, 1722.75, 1687.41, 1409.88, 1366.82, 1168.47, 1024.73, 863.41, 701.54. HRMS (ESI) ([M+Na]⁺) Calcd. for C₁₆H₂₃NO₃Na: 300.1570, found 300.1574.

4.4.5 General Procedure for Preparation of Tosylhydrazone Derivative 1

To a stirred solution of pure tosylhydrazide (1 mmol) in THF (2.0 mL) at room temperature, aldehyde **s2** (1 equiv.) was added dropwise (or portionwise if solid). The reaction was completed within 0.5 h. After that, the solvent was removed directly under reduced pressure, and the crude mixture was further purified by flash chromatography.

tert-butyl benzyl(3-(2-tosylhydrazono)propyl)carbamate

1a. Following the general procedure with **s2-a** as starting material. Yield: 67%. $R_f = 0.36$ (ethyl acetate/hexanes: 1/2). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.84 and 7.70 (d, J = 8.0 Hz, 2H), 7.71 – 7.63 (br, 1H), 7.30 –

7.26 (m, 5H), 7.17 – 7.15 (m, 2H), 7.08 and 6.68 (br, 1H), 4.37 and 4.32 (s, 2H), 3.33 – 3.17 (m, 2H), 2. 41 – 2.25 (m, br, 5H), 1.49 – 1.40 (br, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 155.58, 149.67, 144.10, 137.69, 129.57, 128.53, 127.85, 127.27, 126.68, 125.91, 80.09, 50.31, 43.61, 31.34, 28.37, 21.57. IR (neat, cm⁻¹): 2977.07, 1686.89, 1415.35, 1365.70, 1162.58, 873.32, 733.31, 700.98. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₃₀N₃O₄S: 432.1952, found 432.1947.

tert-butyl (4-methylbenzyl)(3-(2-tosylhydrazono)propyl)

carbamate 1b. Following the general procedure with **s2-b** as starting material. Yield: 81%. $R_f = 0.41$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.95 – 7.77 (m, 3H), 7.30 – 7.26 (m, 2H), 7.13 – 6.67 (m, 5H), 4.32 and 4.27 (s, 2H), 3.42 – 3.04 (m, 2H), 2.54 – 2.16 (m, 8H), 1.49 – 1.40 (br, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.59, 149.77, 143.95, 136.94, 135.45, 135.04, 129.57, 129.21, 127.84, 127.25, 80.04, 50.45, 43.41, 31.29, 28.39, 21.58, 21.08. IR (neat, cm⁻¹): 3122.77, 2973.91, 1665.43, 1430.9, 1365.17, 1166.33, 879.82, 732.50. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₃₂N₃O₄S: 446.2108, found 446.2125.

tert-butyl (3-methoxybenzyl)(3-(2-tosylhydrazono)

propyl) carbamate 1c. Following the general procedure with **s2-c** as starting material. Yield: 61%. $R_f = 0.28$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture

of amide rotamers and hydrazone E/Z isomers. δ 7.94 – 7.77 (m, 3H), 7.30 – 6.99 (m, 4H), 6.81 – 6.69 (m, 3H), 4.33 and 4.29 (s, 2H), 3.79 (s, 3H), 3.32 – 3.17 (m, 2H), 2.42 – 2.27 (m, 5H), 1.49 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 159.81, 155.57, 149.69, 143.98, 139.82, 135.43, 129.58, 129.54, 127.83, 119.52, 113.15, 112.55, 80.11, 55.18, 50.72, 43.54, 31.30, 28.38, 21.57. IR (neat, cm⁻¹): 2968.78, 2854.76, 1688.47, 1413.13, 1253.95, 1162.12, 1047.56, 872.20. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₃₂N₃O₅S: 462.2057, found 462.2049.

tert-butyl (2-methoxybenzyl)(3-(2-tosylhydrazono)propyl)

carbamate 1d. Following the general procedure with **s2-d** as starting material. Yield: 65%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.96 – 7.77 (m, 3H), 7.36 – 7.11 (m, 5H), 6.99 – 6.69 (m, 2H), 4.39 and 4.35 (s, 2H), 3.81 (s, 3H), 3.40 – 3.07 (m, 2H), 2.45 – 2.25 (m, 5H), 1.48 – 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 157.15, 155.88, 149.93, 146.65, 143.88, 135.49, 129.56, 128.79, 127.83, 126.09, 120.38, 110.16, 79.86, 55.05, 45.38, 43.76, 31.41, 28.40, 21.57. IR (neat, cm⁻¹): 2977.19, 1660.24, 1464.33, 1358.72, 1162.73, 1026.93, 885.05, 755.96. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₃₂N₃O₅S: 462.2057, found 462.2048.

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-(2-

(4-bromobenzvl)(3-(2-tosvlhvdrazono)

tosylhydrazono)propyl)carbamate 1e. Following the general procedure with s2-e as starting material. Yield: 85%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/3). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.12 (br, 1H), 7.78 (d, J = 7.7 Hz, 3H), 7.63 (s, 2H), 7.31 – 7.20 (m, 3H), 4.45 and 4.42 (s, 2H), 3.41 – 3.30 (m, 2H), 2.48 – 2.40 (m, 5H), 1.44 and 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.18, 148.84, 144.24, 141.40, 135.27, 131.83 (q, J = 33.2 Hz), 129.63, 127.81, 127.15, 123.21 (q, J = 272.8 Hz), 121.21, 80.90, 50.48, 44.06, 31.44, 28.20, 21.51. IR (neat, cm⁻¹): 3194.52, 2978.63, 1694.05, 1668.00, 1367.42, 1276.06, 1161.98, 900.41, 680.93. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₄H₂₈F₆N₃O₄S: 568.1699, found 568.1710.

propyl) carbamate 1f. Following the general procedure with s2-f as starting material. Yield: 75%. $R_f = 0.37$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.09 (br, 1H), 7.86 – 7.76 (m, 2H), 7.43 (m, br, 2H), 7.31 – 7.26 (m, 2H), 7.14 – 7.04 (m, 3H), 4.30 (s, 2H), 3.33 and 3.24 (br, 2H), 2.43 – 2.31 (m, 5H), 1.44 (s, br, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.49, 149.34, 144.16, 137.31, 135.45, 131.62, 129.61, 128.83, 127.84, 121.03, 80.34, 50.34, 43.65, 31.47, 28.36, 21.60. IR (neat, cm⁻¹): 3130.31, 2975.16, 1666.19, 1427.70, 1339.69,

tert-butyl

1166.46, 813.79, 723.12. HRMS (ESI) ($[M+H]^+$) Calcd. for C₂₂H₂₉BrN₃O₄S: 510.1057, found 510.1033.

tert-butyl (2,4,6-trifluorobenzyl)(3-(2-tosylhydrazono)

propyl) carbamate 1g. Following the general procedure with **s2-g** as starting material. Yield: 67%. $R_f = 0.45$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.02 (br, 1H), 7.78 (d, J = 7.8 Hz, 2H), 7.28 (d, J = 7.9 Hz, 2H), 7.15 (br, 1H), 6.71 – 6.62 (m, 2H), 4.42 and 4.34 (s, 2H), 3.35 – 3.18 (m, 2H), 2.40 – 2.26 (m, 5H), 1.47 – 1.37 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 162.80, 160.71, 155.01, 149.43, 143.99, 135.30, 129.55, 127.84, 109.98, 100.22, 80.39, 43.37, 38.59, 31.39, 28.22, 21.55. IR (neat, cm⁻¹): 3106.87, 2966.96, 1692.92, 1442.19, 1365.94, 1163.80, 1116.32, 1046.30, 872.38, 663.57. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₂₇F₃N₃O₄S: 486.1669, found 486.1661.

tert-butyl (4-nitrilebenzyl)(3-(2-tosylhydrazono)

propyl) carbamate 1h. Following the general procedure with **s2-h** as starting material. Yield: 57%. $R_f = 0.21$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.20 (s, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.59 (m, 2H), 7.31 – 7.25 (m, 4H), 7.17 (s, 1H), 4.41 and 4.38 (s, 2H), 3.38 – 3.28 (br, 2H),

2.42 – 2.41 (m, 5H), 1.43 and 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.43, 149.01, 144.15, 135.41, 132.37, 129.63, 127.98, 127.80, 127.51, 118.76, 111.02, 80.63, 50.93, 44.11, 31.58, 28.28, 21.59. IR (neat, cm⁻¹): 3145.62, 2973.85, 2227.90, 1666.96, 1365.54, 1164.76, 1053.56, 812.85. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₂₉N₄O₄S: 457.1904, found 457.1920.

tert-butyl (4-nitrobenzyl)(3-(2-tosylhydrazono)

propyl) carbamate 1i. Following the general procedure with **s2-i** as starting material. Yield: 59%. $R_f = 0.26$ (ethyl acetate/hexanes: 1/2). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.15 (br, 2H), 7.90 (s, 1H), 7.83 – 7.75 (m, 2H), 7.39 – 7.07 (m, 5H), 4.44 and 4.42 (s, 2H), 3.40 and 3.29 (m, br, 2H), 2.40 – 2.39 (m, 5H), 1.42 and 1.34 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): major isomer δ 155.32, 148.92, 147.26, 145.96, 144.26, 135.37, 129.62, 128.02, 127.60, 123.78, 80.70, 50.80, 44.14, 31.64, 28.27, 21.56. IR (neat, cm⁻¹): 3198.38, 2976.31, 1667.31, 1342.94, 1160.54, 813.21, 664.41. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₂₉N₄O₆S: 477.1802, found 477.1812.

tert-butyl (2-chloro-4-nitrobenzyl)(3-(2-

(3-vinylbenzyl)(3-(2-tosylhydrazono)

tosylhydrazono)propyl)carbamate 1j. Following the general procedure with s2-j as starting material. Yield: 63%. $R_f = 0.36$ (ethyl acetate/hexanes: 1/2). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.06 – 7.96 (m, 3H), 7.77 (d, J = 7.9 Hz, 2H), 7.52 (m, br, 1H), 7.31 – 7.28 (m, 2H), 7.20 (m, br, 1H), 4.50 and 4.45 (s, 2H), 3.45 – 3.31 (m, 2H), 2.49 – 2.40 (m, 5H), 1.46 and 1.36 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 157.86, 151.52, 149.50, 146.92, 142.35, 140.74, 137.99, 133.16, 132.30, 130.46, 125.84, 125.61, 83.72, 51.35, 47.20, 34.07, 30.90, 24.24. IR (neat, cm⁻¹): 3193.25, 2975.19, 1690.76, 1670.95, 1523.00, 1343.10, 1160.55, 1049.95, 812.31. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₂H₂₇ClN₄NaO₆S: 533.1232, found 533.1228.

propyl) carbamate 1k. Following the general procedure with **s2-k** as starting material. Yield: 79%. $R_f = 0.42$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.11 (br, 1H), 7.80 (d, J = 7.8 Hz, 2H), 7.26 – 7.25 (m, 5H), 7.20 (m, br, 2H), 6.72 – 6.66 (m, 1H), 5.73 (dd, J = 17.6, 3.4 Hz, 1H),

5.25 (d, J = 10.8 Hz, 1H), 4.35 and 4.31 (s, 2H), 3.33 – 3.19 (m, 2H), 2.40 – 2.29 (m, 5H), 1.48 – 1.39 (br, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.61, 149.57, 143.97, 138.48, 137.83, 136.59, 135.43, 129.57, 128.74, 127.82, 126.64, 125.43, 125.13, 114.19,

tert-butyl

80.15, 50.66, 43.54, 31.32, 28.38, 21.57. IR (neat, cm⁻¹): 3192.54, 2976.69, 1688.26, 1414.31, 1365.24, 1160.59, 904.80, 663.86. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₄H₃₂N₃O₄S: 458.2108, found 458.2119.

tert-butyl ((*E*)-2-methyl-3-phenylallyl)(3-(2-

tosylhydrazono)propyl)carbamate 11. Following the general procedure with s2-l as starting material. Yield: 61%. $R_f = 0.30$ (ethyl acetate/hexanes: 1/2). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.20 (br, 1H), 7.78 (d, J = 7.8 Hz, 2H), 7.33 – 7.21 (m, 8H), 6.25 (s, 1H), 3.86 (s, 2H), 3.36 – 3.20 (m, 2H), 2.44 – 2.37 (m, 5H), 1.76 (s, 3H), 1.48 – 1.41 (br, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 155.63, 149.72, 146.57, 143.87, 137.39, 134.46, 129.55, 128.82, 128.15, 127.82, 126.65, 126.49, 79.94, 55.13, 43.20, 31.46, 28.36, 21.53, 15.56. IR (neat, cm⁻¹): 2975.79, 1687.33, 1660.61, 1415.37, 1364.83, 1160.16, 1051.97, 699.62. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₅H₃₃N₃NaO₄S: 494.2084, found 494.2083.

tert-butyl (3-phenylprop-2-yn-1-yl)(3-(2-

tosylhydrazono)propyl)carbamate 1m. Following the general procedure with s2-m as starting material. Yield: 88%. $R_f = 0.43$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.88 (br, 1H), 7.79 (d,

J = 8.0 Hz, 2H), 7.40 – 7.39 (m, 2H), 7.31 – 7.26 (m, 5H), 7.20 (t, *J* = 5.1 Hz, 1H), 4.20 and 4.14 (br, 2H), 3.51 – 3.39 (m, 2H), 2.56 – 2.49 (m, 2H), 2.39 (s, 3H), 1.49 and 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.84, 149.61, 144.07, 135.37, 131.64, 129.59, 128.36, 128.33, 127.86, 122.67, 84.82, 84.25, 80.50, 60.38, 43.43, 31.49, 28.35, 21.55. IR (neat, cm⁻¹): 3192.75, 2976.10, 1692.14, 1409.42, 1365.32, 1159.93, 1049.77, 756.86, 691.46. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₄H₂₉N₃NaO₄S: 478.1771, found 478.1774.

propyl)carbamate 1n. Following the general procedure with **s2-n** as starting material. Yield: 58%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.46 (br, 1H), 7.76 (d, J = 7.8 Hz, 2H), 7.28 – 7.12 (m, 8H), 3.33 – 3.11 (m, 4H), 2.72 – 2.71 (m, 2H), 2.39 – 2.25 (m, 5H), 1.43 – 1.36 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.43, 149.48, 143.84, 139.06, 135.54, 129.55, 128.82, 128.49, 127.82, 126.30, 79.73, 49.43, 44.14, 35.26, 31.75, 28.34, 21.55. IR (neat, cm⁻¹): 3194.97, 2974.90, 1660.43, 1415.49, 1364.79, 1159.91, 813.28, 748.04, 700.45. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₃H₃₂N₃O₄S: 446.2108, found 446.2101.

tert-butvl

phenethyl(3-(2-tosylhvdrazono)

197

tert-butyl (cyclohexylmethyl)(3-(2-tosylhydrazono)propyl)

N-(tert-butoxycarbonyl)-N-(3-(2-

carbamate 10. Following the general procedure with **s2-o** as starting material. Yield: 73%. $R_f = 0.32$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.12 (br, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.2 Hz, 2H), 7.17 (br, 1H), 3.29 – 3.11 (m, br, 2H), 2.96 – 2.90 (m, 2H), 2.41 – 2.38 (m, br, 5H), 1.69 – 1.59 (m, 5H), 1.46 – 1.38 (m, 10H), 1.22 – 1.12 (m, 3H), 0.88 – 0.84 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.84, 149.78, 146.13, 143.87, 129.55, 127.84, 79.47, 53.38, 44.18, 37.22, 31.38, 30.84, 28.37, 26.45, 25.90, 21.56. IR (neat, cm⁻¹): 3196.28, 2923.97, 1659.99, 1417.60, 1365.18, 1163.60, 1050.74, 812.99, 736.06. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₃₆N₃O₄S: 438.2421, found 438.2427.

tosylhydrazono)propyl)glycinate 1p. Following the general procedure with s2-p as starting material. Yield: 72%. $R_f = 0.5$ (ethyl acetate/hexanes: 1/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.94 (s, 1H), 7.85 – 7.75 (m, 2H), 7.38 – 7.25 (m, 7H), 7.14 – 7.13 and 6.80 - 6.76 (m, 1H), 5.21 and 5.12 (s, 2H), 3.94 and 3.80 (s, 2H), 3.44 – 3.30 (m, 2H), 2.46 – 2.37 (m, 5H), 1.41 and 1.25 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 169.92, 155.09, 149.57, 147.49, 144.03, 135.43, 129.61, 128.61, 128.46, 128.33, 127.84, 80.54, 66.81, 50.06, 45.80, 31.47, 28.08,

benzvl

21.54. IR (neat, cm⁻¹): 3194.32, 2976.82, 1746.99, 1694.34, 1455.86, 1365.77, 1249.43, 1159.51, 888.95, 750.98. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₄H₃₂N₃O₆S: 490.2052, found 490.2065.

tert-butvl

(pyridin-3-ylmethyl)(3-(2-tosylhydrazono) propyl) carbamate 1q. Following the general procedure with s2-q as starting material. Yield: 56%. $R_f = 0.40$ (ethyl acetate/hexanes: 3/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.83 (br, 1H), 8.49 – 8.41 (m, 2H), 7.76 $(d, J = 8.1 \text{ Hz}, 2\text{H}), 7.54 \text{ (m, br, 1H)}, 7.34 - 7.12 \text{ (m, 4H)}, 4.36 \text{ and } 4.32 \text{ (s, 2H)}, 3.36 - 2.36 \text{ Hz}, 3.36 \text$ 3.27 (m, 2H), 2.43 - 2.39 (m, 5H), 1.45 - 1.36 (br, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.33, 148.91, 148.57, 143.95, 135.57, 135.04, 133.96, 129.91, 129.58, 127.77, 123.61, 80.52, 48.65, 43.87, 31.54, 28.32, 21.56. IR (neat, cm⁻¹): 2976.36, 1687.57, 1410.54, 1159.16, 1054.28, 813.41, 706.76. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₂₉N₄O₄S: 433.1904, found 433.1917.

(pyridin-2-ylmethyl)(3-(2-tosylhydrazono) *tert*-butvl

propyl) carbamate 1r. Following the general procedure with s2-r as starting material. Yield: 61%. $R_f = 0.43$ (ethyl acetate/hexanes: 3/1). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.86 – 8.50 (m, br, 1H), 8.04 and 8.10 (s, 1H), 7.79 – 7.66 (m, 3H), 7.28 – 7.12 (m, 5H), 4.51 and 4.42 (s, 2H), 3.46 – 3.37 (m, 2H),
2.44 – 2.40 (m, 5H), 1.44 – 1.33 (br, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 160.99, 158.17, 152.21, 151.62, 146.23, 139.81, 138.77, 132.20, 130.50, 124.83, 123.67, 82.91, 56.81, 47.29, 34.31, 30.91, 24.22. IR (neat, cm⁻¹): 3128.02, 2973.70, 1656.61, 1464.10, 1408.22, 1319.68, 1163.60, 1059.44, 872.65. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₂₉N₄O₄S: 433.1904, found 433.1910.

tert-butyl (pyridin-4-ylmethyl)(3-(2-tosylhydrazono)

propyl) carbamate 1s. Following the general procedure with **s2-s** as starting material. Yield: 49%. $R_f = 0.23$ (ethyl acetate/hexanes: 4/1). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.51 – 8.50 (m, br, 3H), 7.76 (d, J = 8.0 Hz, 2H), 7.34 – 7.04 (m, 5H), 4.34 and 4.32 (s, 2H), 3.38 – 3.28 (m, br, 2H), 2.42 – 2.33 (m, 5H), 1.41 and 1.23 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.39, 149.75, 148.78, 147.95, 144.02, 135.62, 129.60, 127.79, 121.83, 80.62, 50.31, 44.24, 31.63, 28.27, 21.59. IR (neat, cm⁻¹): 2976.44, 1689.00, 1410.49, 1365.61, 1159.55, 885.60, 813.39, 752.47. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₁H₂₉N₄O₄S: 433.1904, found 433.1915.

tert-butyl (quinolin-4-ylmethyl)(3-(2-tosylhydrazono)

propyl) carbamate 1t. Following the general procedure with **s2-t** as starting material. Yield: 79%. $R_f = 0.30$ (ethyl acetate/hexanes: 3/1). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.85 (m, br, 1H), 8.44 (m, br, 1H), 8.14 (m, br, 1H), 8.98 – 7.74 (m, 4H), 7.59 (m, br, 1H), 7.31 – 7.11 (m, 4H), 4.87 (br, 2H), 3.45 – 3.32 (m, 2H), 2.49 – 2.31 (m, 5H), 1.48 and 1.27 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.33, 150.06, 149.06, 147.86, 144.09, 143.67, 135.28, 130.08, 129.58, 127.77, 126.91, 126.32, 122.61, 119.27, 118.00, 80.72, 48.05, 44.15, 31.60, 28.28, 21.54. IR (neat, cm⁻¹): 2974.45, 1689.81, 1476.24, 1353.48, 1162.34, 1057.39, 894.38, 762.94, 680.14. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₅H₃₀N₄NaO₄S: 505.1880, found 505.1875.

tert-butyl 3-(((*tert*-butoxycarbonyl)(3-(2-

tosylhydrazono)propyl)amino)methyl)-1*H*-indole-1-carboxylate 1u. Following the general procedure with s2-u as starting material. Yield: 88%. $R_f = 0.35$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.13 (s, 1H), 7.81 and 7.76 (d, J = 8.0 Hz, 2H), 7.59 – 7.48 (m, 2H), 7.35 – 7.22 (m, 5H), 7.05 – 6.66 (m, 1H), 4.50 and 4.47 (s, 2H), 3.33 – 3.13 (m, 2H), 2.43 – 2.21 (m, 5H), 1.68 (s, 9H), 1.47 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 151.67, 149.77, 144.00, 142.47, 135.72, 131.75, 129.55, 127.98, 124.86, 123.72, 122.54,

119.13, 117.11, 115.73, 115.18, 82.56, 80.31, 61.51, 47.05, 41.31, 28.37, 28.19, 21.57. IR (neat, cm⁻¹): 2976.21, 1731.20, 1686.43, 1451.78, 1364.56, 1253.66, 1156.11, 1082.02, 855.63, 766.62, 663.65. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₉H₃₈N₄NaO₆S: 593.2404, found 593.2430.

boc *tert*-butyl (thiophen-3-ylmethyl)(3-(2-tosylhydrazono) propyl) carbamate 1v. Following the general procedure with s2-v as starting material. Yield: 87%. $R_f = 0.34$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.01 – 7.96 (m, 1H), 7.78 (d, J = 8.2 Hz, 2H), 7.29 – 7.26 (m, 3H), 7.09 – 6.93 (m, 3H), 4.34 and 4.29 (s, 2H), 3.32 – 3.19 (m, 2H), 2.45 – 2.25 (m, 5H), 1.48 – 1.42 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.34, 149.67, 144.03, 139.15, 138.70, 135.45, 129.59, 127.85, 126.13, 122.46, 80.12, 46.29, 43.54, 31.41, 28.39, 21.59. IR (neat, cm⁻¹): 3107.86, 2977.68, 1659.83, 1366.08, 1250.89, 1162.09, 1053.71, 812.58, 734.14. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₀H₂₇N₃NaO₄S₂: 460.1335, found 460.1356.

tert-butyl (benzo[b]thiophen-3-ylmethyl)(3-(2-

tosylhydrazono)propyl)carbamate 1w. Following the general procedure with s2-w (5 mmol) as starting material. Yield: 80%. $R_f = 0.29$ (ethyl acetate/hexanes: 1/2). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.87 – 7.76

(m, 5H), 7.37 (m, 2H), 7.37 – 7.05 (m, 4H), 4.63 and 4.59 (s, 2H), 3.35 - 3.18 (m, 2H), 2.40 – 2.17 (m, 5H), 1.54-1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 155.34, 149.65, 146.18, 144.12, 140.66, 137.95, 135.23, 132.87, 129.60, 127.85, 124.60, 124.34, 122.84, 121.61, 80.25, 44.33, 42.97, 31.50, 28.41, 21.58. IR (neat, cm⁻¹): 3191.11, 2975.32, 1661.25, 1414.33, 1364.38, 1160.79, 876.54, 767.28, 664.08. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₄H₂₉N₃NaO₄S₂: 510.1492, found 510.1512.

tert-butyl (ferrocenyl)(3-(2-tosylhydrazono)propyl)

carbamate 1x. Following the general procedure with **s2-x** as starting material. Yield: 50%. $R_f = 0.17$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 7.81 – 7.68 (m, 3H), 7.30 (br, 2H), 6.67 – 6.65 (br, 1H), 4.33 – 3.86 (m, 11H), 3.22 –3.09 (m, br, 2H), 2.43 – 2.19 (br, 5H), 1.52 – 1.40 (br, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 157.77, 152.60, 146.59, 137.98, 132.21, 130.48, 82.46, 71.62 (br), 49.32, 46.11, 34.39, 31.11, 24.26. IR (neat, cm⁻¹): 3096.54, 2973.63, 1660.36, 1417.00, 1365.18, 1250.72, 1037.85, 812.76. HRMS (ESI) ([M]⁺) Calcd. for C₂₆H₃₃FeN₃O₄S: 539.1541, found 539.1539.

N'-(3-(benzyloxy)propylidene)-4-methylbenzene

sulfonohydrazide 1y. Following the general procedure with **s2-y** as starting material. Yield: 78%. $R_f = 0.24$ (ethyl acetate/hexanes: 1/3). ¹H NMR (400 MHz, CDCl₃): a mixture of hydrazone E/Z isomers. δ 8.97 (s, 1H), 7.80 (d, J = 8.3 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.34 – 7.19 (m, 8H), 4.45 (s, 2H), 3.61 – 3.55 (m, 2H), 2.54 – 2.46 (m, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 148.51, 143.67, 136.72, 135.54, 129.44, 128.63, 127.90, 127.80, 127.63, 73.59, 67.48, 28.86, 21.55. IR (neat, cm⁻¹): 3209.79, 2851.50, 1595.31, 1453.36, 1379.35, 1187.33, 1016.10, 892.07, 735.34, 666.22. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₁N₂O₃S: 333.1267, found 333.1259.

N'-(3-(benzylthio)propylidene)-4-methylbenzene

sulfonohydrazide 1z. Following the general procedure with **s2-z** as starting material. Yield: 72%. $R_f = 0.26$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of hydrazone E/Z isomers. δ 7.84 – 7.79 (m, 3H), 7.32 – 7.24 (m, 7H), 7.10 (t, J = 5.0 Hz, 1H), 3.66 and 3.63 (s, 2H), 2.52 (t, J = 7.2 Hz, 2H), 2.44 – 2.41 (m, 5H). ¹³C NMR (150 MHz, CDCl₃): δ 152.86, 146.82, 140.67, 137.84, 132.28, 131.46, 131.20, 130.58, 129.74, 38.84, 34.62, 30.36, 24.26. IR (neat, cm⁻¹): 3193.77, 2921.72, 1595.81, 1357.63, 1325.51, 1155.62, 1041.82, 1003.59, 924.56, 814.73. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₁N₂O₂S₂: 349.1039, found 349.1042.

4-methyl-N'-(5-phenylpentylidene)benzenesulfono

hydrazide 1aa. Following the general procedure with 5-phenylpentanal as starting material. Yield: 71%. $R_f = 0.40$ (ethyl acetate/hexanes: 1/3). ¹H NMR (600 MHz, CDCl₃): a mixture of hydrazone E/Z isomers. δ 8.01 and 7.92 (s, 1H), 7.83 and 7.80 (d, J = 8.3 Hz, 2H), 7.28 – 7.27 (m, 4H), 7.21 – 7.10 (m, 4H), 2.55 (t, J = 7.6 Hz, 2H), 2.42 and 2.39 (s, 3H), 2.21 (td, J = 7.3, 5.7 Hz, 1.5 H), 2.10 (td, J = 7.4, 5.5 Hz, 0.5H), 1.61 – 1.43 (m, 4H). ¹³C NMR (150 MHz, CDCl₃): δ 155.33, 146.72, 144.73, 137.91, 132.25, 131.00, 130.95, 130.54, 128.42, 38.16, 34.75, 33.21, 28.24, 24.24. IR (neat, cm⁻¹): 3205.50, 2939.40, 1437.91, 1354.08, 1317.49, 1160.42, 1039.46, 906.24, 815.23. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₃N₂O₂S: 331.1475, found 331.1481.

1ab. Following the general procedure with **s2-aa** as starting material. Yield: 84%. $R_f = 0.33$ (ethyl acetate/hexanes: 1/2). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. δ 8.01 and 7.96 (s, 1H), 7.81 and 7.71 (d, J = 8.3 Hz, 2H), 7.27 – 7.24 (m, 5H), 7.08 – 7.03 (m, 2H), 6.86 – 6.65 (br, 1H), 3.84 and 3.68 (d, J = 6.2 Hz, 2H), 3.41 – 3.22 (m, 2H), 2.76 – 2.67 (m, 2H), 2.41-2.33 (br, 3H), 1.39 and 1.38 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 158.08, 149.66, 146.83, 141.45,

137.91, 132.27, 131.60, 131.15, 130.49, 129.02, 83.00, 51.76, 50.97, 37.57, 30.95, 24.16. IR (neat, cm⁻¹): 2975.01, 1662.62, 1454.17, 1365.19, 1339.53, 1157.90, 1094.23, 893.29, 700.35. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₂H₂₉N₃NaO₄S: 454.1771, found 454.1773.

tert-butyl (*R*)-(1-phenylethyl)(3-(2-tosylhydrazono)

propyl) carbamate 4a. Following the general procedure with **s2-ab** as starting material. Yield: 83%. $R_f = 0.27$ (ethyl acetate/hexanes: 1/3). We are unable to get a consistent value for optical rotation, presumably due to the interconversion of amide rotamers in this linear molecule. ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers and hydrazone E/Z isomers. 7.93 (s, 1H), 7.83 – 7.75 (m, 2H), 7.27 – 7.26 (m, 7H), 6.56 and 6.54 (br, 1H), 5.31 (br, 1H), 3.05 – 2.90 (m, br, 2H), 2.41 (br, 3H), 2.21 – 1.96 (br, 2H), 1.52 (s, 3H), 1.46 – 1.42 (br, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 155.49, 150.00, 143.81, 141.62, 135.69, 129.41, 128.31, 127.88, 127.19, 126.97, 79.92, 53.82, 32.84, 28.42, 28.39, 21.40, 17.20. HPLC analysis: *ee* = 99%. ADH (90% hexanes: 10% isopropanol, 1.0 mL/min) : *t_{major}* = 21.01 min, *t_{minor}* = 26.81 min. IR (neat, cm⁻¹): 3200.18, 2976.53, 1682.86, 1451.44, 1365.15, 1159.39, 1043.39, 813.42, 699.72. HRMS (ESI) ([M+Na]⁺) Calcd. for C₂₃H₃₁N₃NaO₄S: 468.1927, found 468.1921.

4.4.6 General Procedure for [Co(P6)]-Catalyzed Enantioselective Radical Cyclization

An oven-dried Schlenk tube was charged with sulfonyl hydrazone 1 (0.1 mmol), [Co(P6)] (3 mol %) and 1.5 equivalent of Cs₂CO₃ (0.15 mmol). The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, dioxane (0.6 mL) was added via a gas-tight syringe. The tube was then purged with nitrogen for 30 s and the rubber septum was replaced with a Teflon screw cap. The mixture was then stirred at 60 °C. After 24 h, the reaction mixture was concentrated and purified by flash chromatography. The fractions containing product were collected and concentrated by rotary evaporation to afford the desired compound 2.

²² ^NBoc *tert*-butyl (*S*)-2-phenylpyrrolidine-1-carboxylate 2a, known compound.²² Following the general procedure with 1a as starting material. Yield: 93%. *ee*: 92%. Hexanes/ethyl acetate = 8/1, $R_f = 0.45$. $[\alpha]^{20}_{D} = -55.6$ (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.30 – 7.15 (m, 5H), 4.96 and 4.76 (m, br, 1H), 3.62 and 3.52 (m, br, 2H), 2.31 (m, br, 1H), 1.90 – 1.83 (m, 3H), 1.45 (s, 3H), 1.17 (s,

6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.56, 145.13, 128.08, 126.44, 125.48, 79.15, 61.33, 47.08, 36.01, 28.12, 23.18. HPLC analysis: *ee* = 92%. OJH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 8.73 min, *t_{minor}* = 7.26 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₂NO₂: 248.1645, found 248.1654.

Boc *tert*-butyl (S)-2-(3-methoxyphenyl)pyrrolidine-1-carboxylate 2c,

known compound.²² Following the general procedure with **1c** as starting material. Yield: 91%. *ee*: 93%. Hexanes/ethyl acetate = 6/1, $R_f = 0.40$. [α]²⁰ $_D = -69.6$ (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.20 (t, J = 7.9 Hz, 1H), 6.76 –

6.71 (m, 3H), 4.94 and 4.74 (m, br, 1H), 3.79 (s, 3H), 3.61 and 3.45 (m, br, 2H), 2.30 (m, br, 1H), 1.90 - 1.84 (m, 3H), 1.46 (s, 3H), 1.20 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 159.57, 154.57, 146.90, 129.11, 117.92, 111.66, 111.25, 79.18, 61.26, 55.17, 47.04, 35.91, 28.17, 23.18. HPLC analysis: *ee* = 93%. ADH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 16.75 min, *t_{minor}* = 14.06 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₃: 278.1752, found 278.1756.

Boc *tert*-butyl (*S*)-2-(2-methoxyphenyl)pyrrolidine-1-carboxylate 2d, known compound.²² Following the general procedure with 1d as starting material. Yield: 87%. *ee*: 91%. Hexanes/ethyl acetate = 6/1, R_f = 0.40. [α]²⁰ _D = -58.6 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.19 (t, *J* = 7.1 Hz, 1H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.84 (d, *J* = 7.8 Hz, 1H), 5.25 – 5.09 (m, br, 1H), 3.83 (s, 3H), 3.62 – 3.46 (m, br, 2H), 2.29 – 2.21 (m, br, 1H), 1.82 (m, br, 3H), 1.46 and 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 156.11, 154.57, 132.93, 127.32, 125.92, 120.12, 110.16, 78.84, 56.08, 55.34, 46.86, 33.88, 28.13, 23.09. HPLC analysis: *ee* = 91%. ADH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 9.57 min, *t_{minor}* = 11.71 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₄NO₃: 278.1752, found 278.1758.

^{CF₃} *tert*-butyl (*S*)-2-(3,5-bis(trifluoromethyl)phenyl)pyrrolidine-1carboxylate 2e, known compound.²³ Following the general procedure with 1e as starting material. Yield: 91%. *ee*: 95%. Hexanes/ethyl acetate = 8/1, $R_f = 0.43$. $[\alpha]^{20}_{D} = -173.2$ (*c* = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 7.74 – 7.62 (m, 3H), 4.83 (m, br, 1H), 3.69 – 3.57 (m, 2H), 2.43 (m, br, 1H), 1.93 – 1.85 (m, 3H), 1.45 (s, 3H), 1.16 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.16, 147.91, 131.60 (q, *J* = 33.2 Hz), 125.83, 123.32 (q, *J* = 272.5 Hz), 120.55, 79.98, 60.92, 47.27, 36.07, 27.98, 23.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.37 (s, 6F). HPLC analysis: *ee* = 95%. ADH (99.8% hexanes : 0.2% isopropanol, 0.8 mL/min): *t_{major}* = 10.31 min, *t_{minor}* = 8.99 min. HRMS (ESI) ([M+Na]⁺) Calcd. for C₁₇H₁₉F₆NO₂Na: 406.1212, found 406.1214.

Br *tert*-butyl (*S*)-2-(4-bromophenyl)pyrrolidine-1-carboxylate 2f, known compound.²² Following the general procedure with 1f as starting material. Yield: 92%. *ee*: 92%. Hexanes/ethyl acetate = 8/1, $R_f = 0.48$. $[\alpha]^{20}_{D} = -90.6$ (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.41 (d, *J* = 6.7 Hz, 2H), 7.04 (d, *J* = 7.8 Hz, 2H), 4.88 and 4.71 (m, br, 1H), 3.60 (m, br, 2H), 2.30 (m, br, 1H), 1.88 – 1.85 (m, 2H), 1.84 – 1.82 (m, 1H), 1.44 (s, 3H), 1.20 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.43, 144.23, 131.18, 127.22, 120.06, 79.43, 60.79, 47.05, 35.92, 28.17, 23.12. HPLC analysis: *ee* = 92%. ADH (99% hexanes : 1% isopropanol, 1.0 mL/min):

 $t_{major} = 10.23 \text{ min}, t_{minor} = 8.12 \text{ min}.$ HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁BrNO₂: 326.0750, found 326.0735. The absolute stereochemistry of the major enantiomer was assigned by X-ray crystallography.

F F boc *tert*-butyl (S)-2-(2,4,6-trifluorophenyl)pyrrolidine-1-carboxylate 2g.

Following the general procedure with **1g** as starting material. Yield: 70%. *ee*: 87%. Hexanes/ethyl acetate = 8/1, $R_f = 0.45$. $[\alpha]^{20}_{D} = -54.8$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 6.61 (t, J = 8.6 Hz, 2H), 5.02 – 4.99 (m, br, 1H), 3.72 – 3.46 (m, br, 2H), 2.35 – 2.32 (m, 1H), 2.01 – 1.83 (m, 3H), 1.41 (s, 3H), 1.21 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 161.26 (d, J = 248.2 Hz), 160.91 (d, J = 250.6 Hz), 153.82 (s), 116.45 (s), 100.06 (t, J = 27.5 Hz), 79.34, 51.24, 46.49, 33.44, 28.08, 24.62. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.93 – -111.25 (m, 1F), -112.76 – -113.03 (m, 2F). HPLC analysis: *ee* = 87%. ODH (99% hexanes : 1% isopropanol, 1.0 mL/min): $t_{major} = 6.22$ min, $t_{minor} = 5.71$ min. IR (neat, cm⁻¹): 2974.52, 1693.79, 1634.23, 1603.07,

1393.47, 1365.54, 1115.97, 999.07. HRMS (ESI) ($[M+H]^+$) Calcd. for C₁₅H₁₉F₃NO₂: 302.1362, found 302.1377.

VC box *tert*-butyl (*S*)-2-(4-cyanophenyl)pyrrolidine-1-carboxylate 2h, known compound.^{10c} Following the general procedure with 1h as starting material. Yield: 92%. *ee*: 93%. Hexanes/ethyl acetate = 3/1, R_f = 0.35. $[\alpha]^{20}_{D}$ = -122.6 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.57 (d, *J* = 8.1 Hz, 2H), 7.26 (d, *J* = 8.1 Hz, 2H), 4.92 and 4.76 (m, br, 1H), 3.61 (m, br, 2H), 2.33 (m, br, 1H), 1.86 (m, br, 2H), 1.76 (m, br, 1H), 1.42 and 1.15 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.18, 150.80, 132.12, 126.21, 118.90, 110.41, 79.70, 61.15, 47.16, 35.89, 28.10, 23.26. HPLC analysis: *ee* = 93%. ADH (95% hexanes : 5% isopropanol, 1.0 mL/min): *t_{major}* = 12.38 min, *t_{minor}* = 9.09 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₆H₂₁N₂O₂: 273.1604, found 273.1603.

tert-butyl (S)-2-(4-nitrophenyl)pyrrolidine-1-carboxylate 2i.

Following the general procedure with **1i** as starting material. Yield: 88%. *ee*: 92%. Hexanes/ethyl acetate = 3/1, $R_f = 0.35$. $[\alpha]^{20}_{D} = -101.6$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 8.17 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 8.6 Hz, 2H), 4.98 and 4.84 (m, br, 1H), 3.66 – 3.65 (m, br, 2H), 2.39 (m, br, 1H), 1.91 – 1.90 (m, 2H), 1.80 (m, br, 1H), 1.45 and 1.18 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer

δ 154.22, 152.91, 146.83, 126.27, 123.65, 79.87, 61.03, 47.23, 35.98, 28.17, 23.34. HPLC analysis: *ee* = 92%. ADH (95% hexanes : 5% isopropanol, 1.0 mL/min): *t_{major}* = 15.08 min, *t_{minor}* = 7.75 min. IR (neat, cm⁻¹): 2974.37, 1690.31, 1517.18, 1388.56, 1156.40, 1111.56, 853.30. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₁N₂O₄: 293.1496, found 293.1501.

 O_2N^{-1} *tert*-butyl (*S*)-2-(2-chloro-4-nitrophenyl)pyrrolidine-1-carboxylate 2**j**. Following the general procedure with 1**j** as starting material. Yield: 81%. *ee*: 94%. Hexanes/ethyl acetate = 5/1, $R_f = 0.41$. $[\alpha]^{20}_{D} = -191.6$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. $\delta 8.05 - 7.98$ (m, 2H), 7.50 (t, J = 6.7 Hz, 1H), 5.25 - 5.15 (m, 1H), 3.74 - 3.55 (m, 2H), 2.46 - 2.42 (m, 1H), 1.92 - 1.79 (m, 3H), 1.46 and 1.17 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.42, 146.79, 143.31, 138.61, 130.37, 122.56, 121.53, 79.86, 58.66, 47.23, 33.82, 28.39, 23.23. HPLC analysis: *ee* = 94%. ODH (99.5% hexanes : 0.5% isopropanol, 1.0 mL/min): *t_{major}* = 16.61 min, *t_{minor}* = 15.79 min. IR (neat, cm⁻¹): 2974.26, 1693.57, 1523.64, 1390.46, 1347.37, 1251.32, 1159.81, 909.68, 757.43. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₀ClN₂O4: 327.1106, found 327.1103. box *tert*-butyl (*S*)-2-(3-vinylphenyl)pyrrolidine-1-carboxylate 2k. Following the general procedure with 1k as starting material. Yield: 81%. *ee*: 93%. Hexanes/ethyl acetate = 8/1, R_f = 0.46. [α]²⁰ _D = -144.8 (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.25 – 7.19 (m, 3H), 7.06 – 7.05 (m, 1H), 6.69 (dd, J = 17.6, 10.7 Hz, 1H), 5.73 (d, J = 17.6 Hz, 1H), 5.22 (d, J = 10.7 Hz, 1H), 4.95 and 4.75 (m, br, 1H), 3.63 and 3.52 (m, br, 2H), 2.32 (m, br, 1H), 1.91 – 1.84 (m, 3H), 1.46 (s, 3H), 1.18 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.57, 145.39, 137.39, 136.86, 128.32, 125.06, 124.35, 123.42, 113.71, 79.23, 61.26, 47.10, 35.97, 28.14, 23.25. HPLC analysis: *ee* = 93%. ADH (99.2% hexanes : 0.8% isopropanol, 1.0 mL/min): *t_{major}* = 9.25 min, *t_{minor}* = 10.36 min. IR (neat, cm⁻¹): 2976.26, 1684.19, 1478.10, 1392.01, 1265.11, 1161.51, 990.47, 874.91. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₄NO₂: 274.1802, found 274.1808.

 $f(r) = \frac{1}{Boc} tert$ -butyl (*S,E*)-2-(1-phenylprop-1-en-2-yl)pyrrolidine-1-carboxylate 21. Following the general procedure with 11 as starting material. Yield: 63%. *ee*: 94%. Hexanes/ethyl acetate = 8/1, R_f = 0.43. $[\alpha]^{20}_{D}$ = -124.4 (*c* = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 7.24 – 7.12 (m, 5H), 6.19 (s, 1H), 4.18 (m, br, 1H), 3.50 and 3.39 (m, br, 2H), 2.03 (br, 1H), 1.85 – 1.70 (m, 6H), 1.34 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.72, 139.29, 138.03, 128.82, 128.05, 126.04, 123.53, 79.07, 64.38, 47.00, 31.82, 28.47, 23.21, 14.63. HPLC analysis: *ee* = 94%. ADH

(99% hexanes : 1% isopropanol, 0.8 mL/min): $t_{major} = 11.19 \text{ min}, t_{minor} = 9.94 \text{ min}$. IR (neat, cm⁻¹): 2972.67, 1679.83, 1394.69, 1362.69, 1246.31, 1157.14, 1115.51, 843.25, 752.51. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₆NO₂: 288.1964, found 288.1966.

Ph Boc *tert*-butyl (*S*)-2-(phenylethynyl)pyrrolidine-1-carboxylate 2m. Following the general procedure with 1m as starting material. Yield: 60%. *ee*: 59%. Hexanes/ethyl acetate = 10/1, R_f = 0.46. [α]²⁰ _D = -122.8 (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 7.39 – 7.26 (m, 5H), 4.77 and 4.63 (m, br, 1H), 3.52 (m, br, 1H), 3.36 (m, br, 1H), 2.11 (m, br, 3H), 1.92 (m, br, 1H), 1.49 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.14, 131.52, 128.19, 127.93, 123.25, 89.94, 81.49, 79.60, 48.75, 45.59, 33.81, 28.52, 23.78. HPLC analysis: *ee* = 59%. ADH (95% hexanes : 5% isopropanol, 1.0 mL/min): *t_{major}* = 5.42 min, *t_{minor}* = 5.01 min. IR (neat, cm⁻¹): 2976.02, 2359.60, 1698.46, 1489.78, 1395.29, 1255.91, 1168.33, 1089.97, 758.74. HRMS (ESI) ([M+Na]⁺) Calcd. for C₁₇H₂₁NNaO₂: 294.1465, found 294.1464.

boc *tert*-butyl (*S*)-2-benzylpyrrolidine-1-carboxylate 2n, known compound.²⁴ Following the general procedure with 1n as starting material. Yield: 96%. *ee*: 23%. Hexanes/ethyl acetate = 6/1, R_f = 0.49. [α]²⁰ _D = -3.2 (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.29 – 7.18 (m, 5H), 4.05 and 3.96 (m, br, 1H), 3.38 and 3.29 (m, br, 2H), 3.18 and 3.07 (m, br, 1H), 2.55 (m, br, 1H), 1.76 (m, br, 4H), 1.51 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.53, 139.21, 129.37,

128.38, 126.19, 79.26, 58.87, 46.29, 40.59, 29.65, 28.61, 22.65. HPLC analysis: *ee* = 23%. ODH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 6.16 min, *t_{minor}* = 6.61 min.

b $^{\text{N}}$ **b** $^{\text{N}}$ **b** $^{\text{N}}$ **b** $^{\text{O}}$ **tert-butyl** (*S*)-2-cyclohexylpyrrolidine-1-carboxylate 20, known compound. 10b Following the general procedure with 10 as starting material. Yield: 57%. *ee*: 88%. Hexanes/ethyl acetate = 10/1, R_f = 0.45. $[\alpha]^{20}_{\text{D}}$ = -61.6 (*c* = 0.5, CHCl₃). 1 H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 3.70 and 3.61 (m, br, 1H), 3.50 and 3.40 (m, br, 1H), 3.22 – 3.16 (m, 1H), 1.81 – 1.59 (m, 10H), 1.45 (s, 9H), 1.25 – 0.90 (m, 5H). 13 C NMR (125 MHz, CDCl₃): major isomer δ 155.04, 78.74, 61.80, 46.87, 40.77, 36.52, 30.12, 28.52, 27.93, 26.62, 24.32. HPLC analysis: *ee* = 88%. ADH (99.5% hexanes : 0.5% isopropanol, 1.0 mL/min): *t_{major}* = 5.91 min, *t_{minor}* = 6.35 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₅H₂₈NO₂: 254.2120, found 254.2128.

Bn O Boc 2-benzyl 1-(*tert*-butyl) (*S*)-pyrrolidine-1,2-dicarboxylate 2p, known compound.²⁵ Following the general procedure with 1p as starting material. Yield: 56%. *ee*: 82%. Hexanes/ethyl acetate = 5/1, R_f = 0.50. [α]²⁰_D = -53.2 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.37 – 7.30 (m, 5H), 5.26 – 5.07 (m, 2H), 4.39 (dd, *J* = 8.6, 3.2 Hz, 0.4H) and 4.26 (dd, *J* = 8.6, 4.0 Hz, 0.6H), 3.58 – 3.34 (m, 2H), 2.26 – 2.15 (m, 1H), 1.99 – 1.83 (m, 3H), 1.46 and 1.34 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 173.02, 153.78, 135.65, 128.56, 128.27, 127.97, 79.87, 66.59,

59.17, 46.31, 30.87, 28.22, 23.59. HPLC analysis: *ee* = 82%. ADH (97% hexanes : 3% isopropanol, 0.8 mL/min): *t_{major}* = 21.68 min, *t_{minor}* = 14.26 min.

Boc *tert*-butyl (*S*)-2-(pyridin-3-yl)pyrrolidine-1-carboxylate 2q, known compound.²⁶ Following the general procedure with 1q as starting material. Yield: 73%. *ee*: 92%. Hexanes/ethyl acetate = 2/1, R_f = 0.27. [α]²⁰_D= -48.2 (*c* = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃): a mixture of amide rotamers. δ 8.45 (br, 2H), 7.47 (d, *J* = 7.7 Hz, 1H), 7.26 – 7.22 (m, 1H), 4.95 and 4.76 (br, 1H), 3.61 (br, 2H), 2.35 (br, 1H), 1.90 – 1.82 (m, 3H), 1.44 (s, 3H), 1.18 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.23, 148.07, 147.94, 140.32, 133.08, 123.30, 79.60, 59.24, 47.19, 35.96, 28.22, 23.27. HPLC analysis: *ee* = 92%. ADH (95% hexanes : 5% isopropanol, 1.0 mL/min): *t_{major}* = 19.47 min, *t_{minor}* = 25.97 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₂: 249.1598, found 249.1610.

Boc *tert*-butyl (*S*)-2-(pyridin-2-yl)pyrrolidine-1-carboxylate 2r, known compound.²⁶ Following the general procedure with 1r as starting material. Yield: 51%. *ee*: 85%. Hexanes/ethyl acetate = 2/1, R_f = 0.27. [α]²⁰_D = -72.4 (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 8.53 (br, 1H), 7.62 (t, J = 7.1 Hz, 1H), 7.16 – 7.11 (m, 2H), 4.99 – 4.85 (m, br, 1H), 3.67 – 3.51 (m, 2H), 2.36 – 1.99 (m, br, 1H), 2.00 – 1.86 (m, 3H), 1.45 (s, 3H), 1.18 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 163.76, 154.49, 148.94, 136.22, 121.52, 119.62, 79.28, 62.83, 47.06, 34.27, 28.15, 23.21.

HPLC analysis: ee = 85%. ADH (90% hexanes : 10% isopropanol, 1.0 mL/min): $t_{major} = 11.77 \text{ min}, t_{minor} = 7.83 \text{ min}.$ HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₂: 249.1598, found 249.1612.

Boc *tert*-butyl (*S*)-2-(pyridin-4-yl)pyrrolidine-1-carboxylate 2s, known compound.²⁷ Following the general procedure with 1s as starting material. Yield: 63%. *ee*: 95%. Hexanes/ethyl acetate = 2/1, $R_f = 0.27$. $[\alpha]^{20}_{D} = -58.0$ (c = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 8.52 (br, 2H), 7.10 – 7.10 (m, 2H), 4.90 and 4.73 (m, br, 1H), 3.63 (m, br, 2H), 2.35 (m, br, 1H), 1.88 – 1.80 (m, 3H), 1.45 (s, 3H), 1.19 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.17, 153.16, 149.67, 120.71, 79.77, 60.48, 47.10, 35.50, 28.11, 23.20. HPLC analysis: *ee* = 95%. OJH (98% hexanes : 2% isopropanol, 1.0 mL/min): *t_{major}* = 15.14 min, *t_{minor}* = 13.85 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₄H₂₁N₂O₂: 249.1598, found 249.1605.

 $\int_{N} \int_{Boc} tert$ -butyl (*S*)-2-(quinolin-4-yl)pyrrolidine-1-carboxylate 2t. Following the general procedure with 1t as starting material. Yield: 91%. *ee*: 97%. Hexanes/ethyl acetate = 2/1, R_f = 0.26. $[\alpha]^{20}_{D}$ = -172.4 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 8.84 (d, *J* = 3.6 Hz, 1H), 8.15 – 8.11 (m, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.73 – 7.68 (m, 1H), 7.58 – 7.26 (m, 1H), 7.20 – 7.14 (m, 1H), 5.71 – 5.55 (m, br, 1H), 3.76 – 3.58 (m, 2H), 2.53 – 2.47 (m, br, 1H), 1.92 – 1.89 (m, 3H), 1.48 (s, 4H), 1.10

(s, 5H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.24, 150.07, 148.87, 148.29, 130.33, 129.02, 126.45, 125.65, 122.77, 116.66, 79.68, 57.69, 46.93, 34.23, 28.05, 23.16. HPLC analysis: ee = 97%. ODH (95% hexanes : 5% isopropanol, 1.0 mL/min): $t_{major} = 15.03$ min, $t_{minor} = 11.22$ min. IR (neat, cm⁻¹): 2980.93, 1687.59, 1593.98, 1392.98, 1264.44, 1158.78, 896.45. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₈H₂₃N₂O₃: 315.1703, found 315.1715.

carboxylate 2u. Following the general procedure with **1u** as starting material. Yield: 88%. *ee*: 95%. Hexanes/ethyl acetate = 3/1, R_f = 0.35. [α]²⁰_D = -244.1 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 8.15 (br, 1H), 7.50 (d, *J* = 7.8 Hz, 1H), 7.31 – 7.21 (m, 3H), 5.20 and 5.06 (m, br, 1H), 3.62 and 3.50 (m, br, 2H), 2.25 (m, br, 1H), 2.04 – 1.87 (m, 3H), 1.65 (s, 9H), 1.47 (s, 4H), 1.23 (s, 5H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.63, 149.75, 135.91, 128.51, 124.22, 123.62, 122.32, 121.96, 119.11, 115.35, 83.50, 79.31, 54.17, 46.38, 33.29, 28.52, 28.21, 23.30. HPLC analysis: *ee* = 95%. ADH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 12.64 min, *t_{minor}* = 9.34 min. IR (neat, cm⁻¹): 2975.37, 1730.74, 1691.92, 1451.53, 1365.68, 1153.88, 1068.04, 855.98. HRMS (ESI) ([M+H]⁺) Calcd. for C₂₂H₃₁N₂O₄: 387.2278, found 387.2287.

tert-butyl (S)-3-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-1*H*-indole-1-

 $\int_{8}^{N} \int_{8}^{N} tert$ -butyl (*S*)-2-(thiophen-3-yl)pyrrolidine-1-carboxylate 2v, known compound.²⁸ Following the general procedure with 1v as starting material. Yield: 71%. *ee*: 91%. Hexanes/ethyl acetate = 6/1, R_f = 0.42. $[\alpha]^{20}_{D}$ = -78.4 (*c* = 0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers. δ 7.27 – 7.23 (m, 1H), 6.97 and 6.93 (br, 2H), 5.05 and 4.89 (m, br, 1H), 3.54 and 3.49 (m, br, 2H), 2.22 (m, br, 1H), 2.18 – 1.87 (m, 3H), 1.46 (s, 3H), 1.27 (s, 6H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.57, 145.96, 125.84, 125.44, 119.56, 79.22, 57.20, 46.41, 34.72, 28.26, 23.22. HPLC analysis: *ee* = 91%. ADH (95% hexanes : 5% isopropanol, 0.8 mL/min): *t_{major}* = 6.50 min, *t_{minor}* = 6.07 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₂₀NO₂S: 254.1209, found 254.1228.

known compound.²⁹ Following the general procedure with **1w** as starting material. Yield: 86%. *ee*: 96%. (For reaction with 2.0 mmol scale: yield: 82%. *ee*: 96%). Hexanes/ethyl acetate = 6/1, $R_f = 0.38$. $[\alpha]^{20}_{D} = -144.8$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 7.85 (br, 1H), 7.72 (d, J = 6.7 Hz, 1H), 7.35 (br, 2H), 7.06 (br, 1H), 5.37 – 5.20 (m, br, 1H), 3.71 – 3.50 (m, br, 2H), 2.31 (br, 1H), 1.98 and 1.92 (m, br, 3H), 1.48 (s, 3.5H), 1.16 (s, 5.5H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.55, 140.98, 139.07, 137.07, 124.15, 123.84, 122.96, 121.55, 120.55, 79.28, 56.70, 46.52, 33.23, 28.16, 23.17. HPLC analysis: *ee* = 96%. ADH (99% hexanes : 1% isopropanol, 1.0

mL/min): $t_{major} = 14.66 \text{ min}, t_{minor} = 11.01 \text{ min}.$ HRMS (ESI) ([M+H]⁺) Calcd. for C₁₇H₂₂NO₂S: 304.1366, found 304.1371.

tert-butyl (*S*)-2-ferrocenylpyrrolidine-1-carboxylate 2x. Following the general procedure with 1x as starting material. Yield: 53%. *ee*: 92%. Hexanes/ethyl acetate = 5/1, $R_f = 0.43$. [α]²⁰ _D = -26.0 (*c* = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 4.88 and 4.72 (m, br, 1H), 4.52 and 4.36 (m, br, 1H), 4.15 and 4.10 (m, br, 8H), 3.50 and 3.31 (br, 2H), 2.24 – 2.14 (br, 2H), 2.04 – 1.91 (m, 2H), 1.45 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.61, 90.37, 79.41, 69.75, 68.55, 65.75, 55.72, 46.39, 32.72, 28.59, 24.71. HPLC analysis: *ee* = 92%. ODH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 9.85 min, *t_{minor}* = 13.10 min. IR (neat, cm⁻¹): 3092.07, 2972.86, 1690.94, 1390.64, 1248.38, 1165.54, 1106.86, 1000.94, 875.23, 819.20. HRMS (ESI) ([M]⁺) Calcd. For C₁₉H₂₅FeNO₂: 355.1235, found 355.1244.

(S)-2-phenyltetrahydrofuran 2y, known compound.³⁰ Following the general procedure with 1y as starting material. Yield: 54%. *ee*: 85%. Hexanes/ethyl acetate = 10/1; $R_f = 0.35$. $[\alpha]^{20}_{D} = -8.1$ (*c* = 0.5, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.23 (m, 5H), 4.87 (t, *J* = 7.2 Hz, 1H), 4.08 (dd, *J* = 14.8, 7.0 Hz, 1H), 3.92 (dd, *J* = 14.8, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.30 (td, *J* = 12.5, 7.0 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (ddd, *J* = 16.0, 12.2, 7.6 Hz, 1H), 2.03 – 1.95 (m, 2H), 1.79 (m, 2H), 1.79 (m, 2H), 1.79 (m, 2H), 1.79 (m, 2H), 1.70 (m,

1H). ¹³C NMR (100 MHz, CDCl₃): δ 143.41, 128.23, 127.06, 125.58, 80.63, 68.62, 34.57, 25.99. HPLC analysis: *ee* = 85%. ADH (100% hexanes, 0.8 mL/min): *t_{major}* = 19.89 min, *t_{minor}* = 24.78 min.

(*S*)-2-phenyltetrahydrothiophene 2z. Following the general procedure with 1z as starting material. Yield: 85%. *ee*: 91%. Hexanes/ethyl acetate = 10/1; $R_f = 0.70. [\alpha]^{20}$ $D = -9.6 (c = 0.5, CHCl_3)$. ¹H NMR (600 MHz, CDCl_3) δ 7.42 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.3 Hz, 1H), 4.54 – 4.51 (m, 1H), 3.18 – 3.14 (m, 1H), 3.04 – 3.00 (m, 1H), 2.41 – 2.38 (m, 1H), 2.28 – 2.26 (m, 1H), 2.04 – 1.92 (m, 2H). ¹³C NMR (150 MHz, CDCl_3): δ 142.96, 128.35, 127.60, 126.95, 52.73, 40.50, 33.48, 31.04. HPLC analysis: *ee* = 91%. ODH (100% hexanes, 1.0 mL/min): *t_{major}* = 14.43 min, *t_{minor}* = 13.55 min. IR (neat, cm⁻¹): 2943.69, 1598.42, 1490.46, 1260.22, 1098.22, 1018.64, 758.87, 698.96. HRMS (ESI) ([M+H]⁺) Calcd. For C₁₀H₁₃S: 165.0732, found 165.0741.

cyclopentylbenzene 2aa, known compound.³¹ Following the general procedure with **1aa** as starting material and [Co(**P1**)] (3 mol %) as the catalyst. Yield: 76%. Pentane; $R_f = 0.80$. ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 4H), 7.1 – 7.15 (m, 1H), 3.03 – 2.96 (m, 1H), 2.11 – 2.04 (m, 2H), 1.83 – 1.77 (m, 2H), 1.73 – 1.65 (m, 2H), 1.64 – 1.56 (m, 2H). ¹³C NMR (125 MHz, CDCl₃): δ 146.51, 128.19, 127.08, 125.63, 45.93, 34.59, 25.52.

tert-butyl (*S*)-3-phenylpyrrolidine-1-carboxylate 2ab. Following the general procedure with 1ab as starting material. Yield: 50%. *ee*: 67%. Hexanes/ethyl acetate = 10/1; $R_f = 0.50$. $[\alpha]^{20}_{D} = -5.3$ (c = 0.5, CHCl₃). ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 7.34 – 7.23 (m, 5H), 3.88 – 3.76 (m, 1H), 3.55 (t, J = 8.7 Hz, 1H), 3.44 – 3.27 (m, 3H), 2.26 – 2.25 (m, 1H), 2.02 – 1.97 (m, 1H), 1.47 (s, 9H). ¹³C NMR (150 MHz, CDCl₃): major isomer δ 154.50, 141.46, 128.56, 127.04, 126.75, 79.18, 52.60, 45.62, 44.27, 32.44, 28.54. HPLC analysis: *ee* = 67%. OJH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 9.48 min, *t_{minor}* = 8.42 min. IR (neat, cm⁻¹): 2973.27, 1697.99, 1454.43, 1406.93, 1365.73, 1169.52, 1124.12, 880.73, 700.43. HRMS (ESI) ([M+Na]⁺) Calcd. For C₁₅H₂₁NNaO₂: 270.1465, found 270.1466.

yl)oxy) methyl) (3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)carbamate 3t. Reaction procedure: An oven-dried Schlenk tube was charged with 1.0 equivalent of sulfonyl hydrazone 1t (0.1 mmol), [Co(P1)] (5 mol %) and 1.5 equivalent of Cs₂CO₃ (0.15 mmol). The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. Then TEMPO (2.0 equiv.) was added under nitrogen, followed by the injection of dioxane

(0.6 mL) via a gas-tight syringe. The Schlenk tube was then purged with nitrogen for 10 s and sealed with a Teflon screw cap. The mixture was then stirred at 60 °C. After 24 h, the reaction mixture was concentrated and purified by flash chromatography. The fractions containing 3t were collected and concentrated by rotary evaporation to afford the pure compound. Yield: 20%. Hexanes/ethyl acetate = 6/1, $R_f = 0.50$. ¹H NMR (600 MHz, CDCl₃): a mixture of amide rotamers. δ 8.96 and 8.94 (d, J = 4.3 Hz, 1H), 8.24 and 8.15 (d, J = 8.4 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.81 (br, 1H), 7.73 - 7.68 (m, 1H), 7.55 (t, J)= 7.6 Hz, 1H), 7.40 and 7.30 (s, 1H), 3.34 - 3.17 (m, 4H), 1.67 (s, 3H), 1.58 - 1.43 (m, 12H), 1.40 – 1.36 (m, 6H), 1.29 – 1.11 (m, 10H), 1.03 – 0.98 (m, 9H), 0.89 (br, 3H), 0.83 (br, 3H), 0.17 – 0.07 (m, br, 1H). ¹³C NMR (150 MHz, CDCl₃): δ 155.00, 154.02(minor), 150.15(minor), 149.89, 148.12(minor), 148.14, 145.87, 144.81(minor), 130.32(minor), 129.91, 129.18, 129.07(minor), 126.94, 126.62(minor), 125.97, 125.81(minor), 124.16, 123.29(minor), 119.10, 119.32(minor), 86.79, 86.44(minor), 80.61(minor), 80.04, 74.18, 74.11(minor), 60.95(minor), 60.88, 59.48, 59.39(minor), 40.53(minor), 40.45, 40.39(minor), 40.19, 39.82, 39.49, 33.30(minor), 33.00, 32.89(minor), 32.83(minor), 32.43, 28.69(minor), 28.31, 28.12, 27.17(minor), 20.48(minor), 20.46, 20.25(minor), 20.15(minor), 19.94, 17.14(minor), 17.07, 17.05. IR (neat, cm⁻¹): 2973.56, 2930.79, 1693.40, 1592.91, 1465.13, 1402.57, 1365.90, 1259.53, 1170.61, 1043.10, 910.39. HRMS (ESI) ($[M+H]^+$) Calcd. For C₃₆H₅₉N₄O₄: 611.4531, found 611.4530. The structure was further characterized and confirmed with H-H COSY, DEPT and HSQC.

224

Boc *tert*-butyl (*S*)-2-methyl-2-phenylpyrrolidine-1-carboxylate 5a. Following the general procedure with 4a as starting material and with [Co(P1)] (3 mol %) as the catalyst. Yield: 55%. *ee*: 81%. Hexanes/ethyl acetate = 10/1, $R_f = 0.40$. $[\alpha]^{20}_{D} = -43.6$ (c =0.5, CHCl₃). ¹H NMR (500 MHz, CDCl₃): a mixture of amide rotamers δ 7.29 – 7.17 (m, 5H), 3.71 – 3.59 (m, 2H), 2.08 – 2.00 (m, 2H), 1.87 – 1.79 (m, 2H), 1.74 (s, 3H), 1.44 and 1.11 (s, 9H). ¹³C NMR (125 MHz, CDCl₃): major isomer δ 154.28, 148.45, 127.84, 125.92, 125.01, 79.05, 64.87, 48.59, 45.80, 28.10, 25.43, 22.05. HPLC analysis: *ee* = 81%. ODH (99% hexanes : 1% isopropanol, 1.0 mL/min): *t_{major}* = 6.28 min, *t_{minor}* = 6.94 min. IR (neat, cm⁻¹): 2972.63, 1687.81, 1446.93, 1392.64, 1367.02, 1165.68, 1029.22, 761.48. HRMS (ESI) ([M+Na]⁺) Calcd. for C₁₆H₂₃NNaO₂: 284.1621, found 284.1620. The absolute stereochemistry of the major enantiomer was assigned by X-ray crystallography.

4.4.7 **Procedure for HRMS Experiment**

To an over-dried Schlenk tube, tosylhydrazone **1a** (0.05 mmol) and Cs₂CO₃ (1.5 equiv.) were added. The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, CH₃CN (0.5 mL) was added via a gas-tight syringe. The mixture was then stirred at 60 °C for 1 h. The resulting light yellow solution was then passed through a short pad of Celite (to get rid of base and salt) under the flow of nitrogen and the filtrate was collected in a HPLC vial (vial A, degassed and backfilled with argon). During the time, [Co(P1)] (3 mol %) was charged into another HPLC vial (vial B, degassed and backfilled with argon) and dissolved in

CH₃CN (0.5 mL). After mixing equal amount of solutions from vial A (0.1 mL) and vial B (0.1 mL), the sample was further diluted with CH₃CN and immediately injected into HRMS instrument. The HRMS experiment was carried out in the absence of any additives such as formic acid, commonly act as electron carriers for ionization, allowing the detection of the molecular ion signals corresponding to Co(III)-alkyl radical (C₉₁H₁₀₉CoN₉O₆·) by the loss of one electron.

4.4.8 Procedure for EPR Experiment

To an oven-dried Schlenk tube A, tosylhydrazone **1a** (0.05 mmol), and Cs₂CO₃ (1.5 equiv.) were added. The Schlenk tube was then evacuated and backfilled with nitrogen for 3 times. The Teflon screw cap was replaced with a rubber septum, benzene (0.5 mL) was added via a gas-tight syringe. The mixture was then stirred at 60 °C for 1 h. During the time, [Co(P1)] (3 mol %) was charged into another oven-dried Schlenk tube B. The Schlenk tube B was then evacuated and backfilled with nitrogen for 3 times. After 1 h, the resulting light yellow solution from tube A was passed through a short pad of Celite (to get rid of base and salt) under the flow of nitrogen and transferred to Schlenk tube B. The mixture was stirred for 1 min, followed by the addition of phenyl *N-tert*-butylnitrone (PBN, 0.05 mmol). The reaction mixture was stirred for 2 min and transferred into a degassed EPR tube (filled with argon) through a gas tight syringe. The sample was then carried out for EPR experiment at room temperature (EPR settings: T = 298 K; microwave frequency: 9.37762 GHz; power: 20 mW; modulation amplitude: 1.0 G)

4.5 **REFERENCES**

(1) (a) Chatgilialoglu, C.; Studer, A. Encyclopedia of Radicals in Chemistry, Biology and Materials; John Wiley & Sons: Chichester, U.K., 2012; (b) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications; Wiley-VCH: Weinheim, 2008; (c) Zard, S. Z. Radical Reactions in Organic Synthesis; Oxford University Press: Oxford, 2003; (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898; (e) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 12692.

(2) For select recent examples, see: (a) Kern, N.; Plesniak, M. P.; McDouall, J. J. W.;
Procter, D. J. *Nat. Chem.* 2017, *9*, 1198; (b) Adams, K.; Ball, A. K.; Birkett, J.; Brown, L.;
Chappell, B.; Gill, D. M.; Lo, P. K. T.; Patmore, N. J.; Rice, C. R.; Ryan, J.; Raubo, P.;
Sweeney, J. B. *Nat. Chem.* 2017, *9*, 396; (c) Brill, Z. G.; Grover, H. K.; Maimone, T. J. *Science* 2016, *352*, 1078; (d) Logan, M. M.; Toma, T.; Thomas-Tran, R.; Du Bois, J. *Science* 2016, *354*, 865; (e) Hashimoto, T.; Kawamata, Y.; Maruoka, K. *Nat. Chem.* 2014, *6*, 702.

(3) Walton, J. C. Acc. Chem. Res. 1998, 31, 99.

(4) Bougeard, P.; Bury, A.; Cooksey, C. J.; Johnson, M. D.; Hungerford, J. M.; Lampman, G. M. J. Am. Chem. Soc. **1982**, 104, 5230.

(5) For reviews and select examples, see: (a) Sibi, M. P.; Manyem, S.; Zimmerman, J. *Chem. Rev.* 2003, *103*, 3263; (b) Brimioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. *Angew. Chem., Int. Ed.* 2015, *54*, 3872; (c) Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. *Science* 2016, *354*, 1391; (d) Kainz, Q. M.; Matier, C. D.; Bartoszewicz,

A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681; (e) Lin, J.-S.; Dong,
X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357; (f)
Huo, H.; Shen, X.; Wang, C.; Zhang, L.; Rose, P.; Chen, L.-A.; Harms, K.; Marsch, M.;
Hilt, G.; Meggers, E. Nature 2014, 515, 100; (g) Nicewicz, D. A.; MacMillan, D. W. C.
Science 2008, 322, 77.

(6) For reviews and highlights on Co(II)-based MRC, see: (a) Miyabe, H.; Kawashima,
A.; Yoshioka, E.; Kohtani, S. *Chem. Eur. J.* 2017, *23*, 6225; (b) Studer, A.; Curran, D. P. *Angew. Chem., Int. Ed.* 2016, *55*, 58; (c) Pellissier, H.; Clavier, H. *Chem. Rev.* 2014, *114*, 2775; (d) Lu, H. J.; Zhang, X. P. *Chem. Soc. Rev.* 2011, *40*, 1899; (e) Doyle, M. P. *Angew. Chem., Int. Ed.* 2009, *48*, 850.

(7) For select examples on Ti(III)-based MRC, see: (a) Zhang, Y.-Q.; Vogelsang, E.; Qu,
Z.-W.; Grimme, S.; Gansäuer, A. Angew. Chem., Int. Ed. 2017, 56, 12654; (b) Hao, W.;
Wu, X.; Sun, J. Z.; Siu, J. C.; MacMillan, S. N.; Lin, S. J. Am. Chem. Soc. 2017, 139,
12141; (c) Gansäuer, A.; Hildebrandt, S.; Vogelsang, E.; Flowers II, R. A. Dalton Trans.
2016, 45, 448; (d) Gansäuer, A.; Fleckhaus, A.; Lafont, M. A.; Okkel, A.; Kotsis, K.;
Anoop, A.; Neese, F. J. Am. Chem. Soc. 2009, 131, 16989.

(8) For detailed experimental and theoretical studies on the radical mechanism involving α-Co(III)-alkyl radical (also known as Co(III)-carbene radical) intermediates for olefin cyclopropanation, see: (a) Lu, H. J.; Dzik, W. I.; Xu, X.; Wojtas, L.; de Bruin, B.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 8518; (b) Belof, J. L.; Cioce, C. R.; Xu, X.; Zhang, X. P.; Space, B.; Woodcock, H. L. Organometallics 2011, 30, 2739; (c) Dzik, W. I.; Xu, X.; Zhang, X. P.; Reek, J. N. H.; de Bruin, B. J. Am. Chem. Soc. 2010, 132, 10891.

(9) For select examples on asymmetric Co(II)-MRC, see: (a) Wang, Y.; Wen, X.; Cui, X.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2017, 139, 1049; (b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtas, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219 (c) Xu, X.; Lu, H. J.; Ruppel, J. V.; Cui, X.; de Mesa, S. L.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292; (d) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292; (d) Cui, X.; Xu, X.; Lu, H. J.; Zhu, S. F.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 3304; (e) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 3304; (e) Zhu, S. F.; Ruppel, J. V.; Lu, H. J.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2008, 130, 5042; (f) Fantauzzi, S.; Gallo, E.; Rose, E.; Raoul, N.; Caselli, A.; Issa, S.; Ragaini, F.; Cenini, S. Organometallics 2008, 27, 6143; (g) Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718; For select examples on nonasymmetric Co(II)-MRC, see: (h) Roy, S.; Das, S. K.; Chattopadhyay, B. Angew. Chem., Int. Ed. 2018, 57, 2238; (i) te Grotenhuis, C.; van den Heuvel, N.; van der Vlugt, J. I.; de Bruin, B. Angew. Chem., Int. Ed. 2018, 57, 140; (j) Reddy, A. R.; Hao, F.; Wu, K.; Zhou, C.-Y.; Che, C. M. Angew. Chem., Int. Ed. 2016, 55, 1810; (k) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang, Y.; Wan, X. Angew. Chem., Int. Ed. 2015, 54, 1231.

(10) For select examples on asymmetric synthesis of α-substituted pyrrolidine derivatives, see: (a) Jain, P.; Verma, P.; Xia, G.; Yu, J.-Q. *Nat. Chem.* 2017, *9*, 140; (b) Cordier, C. J.; Lundgren, R. J.; Fu, G. C. *J. Am. Chem. Soc.* 2013, *135*, 10946; (c) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C.-Y. *J. Am. Chem. Soc.* 2006, *128*, 3538; (d) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C. Science 2016, *352*, 1304.

(11) For select examples on C–H insertion with in situ-generated unstable diazo compounds, see: (a) Reddy, A. R.; Zhou, C. Y.; Guo, Z.; Wei, J.; Che, C. M. *Angew. Chem., Int. Ed.* **2014**, *53*, 14175; (b) Soldi, C.; Lamb, K. N.; Squitieri, R. A.; Gonzalez-Lopez, M.;

Di Maso, M. J.; Shaw, J. T. J. Am. Chem. Soc. 2014, 136, 15142; (c) Lindsay, V. N. G.;

Viart, H. M. F.; Sarpong, R. J. Am. Chem. Soc. 2015, 137, 8368; (d) Su, N.; Deng, T.;
Wink, D. J.; Driver, T. G. Org. Lett. 2017, 19, 3990.

(12) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X. P.*Org. Lett.* 2008, 10, 1995.

(13) Dai, L.-X.; Hou, X.-L. In *Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications*; Wiley-VCH: Weinheim, 2010.

(14) Davies, S. G.; Figuccia, A. L. A.; Fletcher Paul, A. M.; Roberts, M.; Thomson, J.E. J. Org. Chem. 2016, 81, 6481.

(15) Blanco, J. B.; Dodero, V. I.; Vázquez, M. E.; Mosquera, M.; Castedo, L.;

Mascareñas, J. L. Angew. Chem., Int. Ed. 2006, 45, 8210.

(16) Brun, E.; Bellosta, V.; Cossy, J. J. Org. Chem. 2016, 81, 8206.

(17) Sheikh, N. S.; Leonori, D.; Barker, G.; Firth, J. D.; Campos, K. R.; Meijer, A. J. H.

M.; O'Brien, P.; Coldham, I. J. Am. Chem. Soc. 2012, 134, 5300.

(18) Evans, D. A.; Fitch, D. M. J. Org. Chem. 1997, 62, 454.

(19) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 16, 2647.

(20) Anchoori, R. K.; Harikumar, K. B.; Batchu, V. R.; Aggarwal, B. B.; Khan, S. R. *Bioorg. Med. Chem.* **2010**, *18*, 229.

(21) Reddy, D. S.; Srinivas, P.; Balasubrahmanyam, D.; Iqbal, J. *Tetrahedron Lett.*2007, 48, 4533.

(22) Chen, F.; Ding, Z.; Qin, J.; Wang, T.; He, Y.; Fan, Q.-H. Org. Lett. 2011, 13, 4348.

(23) Denmark, S. E.; Chang, W.-T. T.; Houk, K. N.; Liu, P. J. Org. Chem. 2015, 80,

313.

(24) Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. *Nature* **2016**, *536*, 322.

(25) Loughlin, W. A.; Schweiker, S. S.; Jenkins, I. D.; Henderson, L. C. *Tetrahedron* **2013**, *69*, 1576.

(26) Barker, G.; McGrath, J. L.; Klapars, A.; Stead, D.; Zhou, G.; Campos, K. R.;O'Brien, P. J. Org. Chem. 2011, 76, 5936.

(27) Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.

(28) Wu, S.; Lee, S.; Beak, P. J. Am. Chem. Soc. 1996, 118, 715.

(29) Oderinde, M. S.; Varela-Alvarez, A.; Aquila, B.; Robbins, D. W.; Johannes, J. W.

J. Org. Chem. 2015, 80, 7642.

(30) Butova, E. D.; Barabash, A. V.; Petrova, A. A.; Kleiner, C. M.; Schreiner, P. R.;Fokin, A. A. J. Org. Chem. 2010, 75, 6229.

(31) Ghorai, S. K.; Jin, M.; Hatakeyama, T.; Nakamura, M. Org. Lett. 2012, 14, 1066.

Chapter 5

Spectral Data

Spectral Data

for

Chapter 2

Asymmetric Radical Cyclopropanation of Alkenes with In Situ-Generated Donor-Substituted Diazo Reagents via Co(II)-Based Metalloradical Catalysis benzaldehyde tosylhydrazone 1a

benzaldehyde tosylhydrazone 1a

benzaldehyde 2,4,6-triisopropylbenzenesulfonyl hydrazone 1a'

 156.138 156.138 154.032 154.032 154.032 154.032 154.032 135.978 135.978 135.978 135.978 126.538 		~36.836 ~32.730 27.523 26.171	
	ſĸĸġŶĬĸĸġŎĬſŧŊŢŶŦĸĸŒĸŎſĬĊĬĿġĿĔġĿſĸĸĸijŦĿĔĬĸŎŢĬŎĬŢ		مۇناتىرىدىيۇنىرى تەرىپىغۇردا
170 160 150 140 130 120 110	100 90 80 70	60 50 40 30 20	10 0 00

fl (ppm)

S6

Phenyl Diazomethane 1a"

4.919

HOHD	0.00 10	N N 4	- 80	0 0	4 -	80
ONNIO	10 m m	m = =	00	- 0	0 0	80
NNNN	NOO	000	00	66	6 8	80
NNNN	NNN	RRR	NO	ശ്ശ്	ഗ്ഗ്	ശ്
hardward and a	and the second s	- L L J		_	1	-1

Phenyl Diazomethane 1a"

<132.405
<131.723
-126.525
-123.962</pre>

			· · ·					· ·		· · ·					
150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
							f1	(ppm)							

2-methoxybenzaldehyde tosylhydrazone 1b

2-methoxybenzaldehyde tosylhydrazone 1b

2-ethylbenzaldehyde tosylhydrazone 1c

2-ethylbenzaldehyde tosylhydrazone 1c

4-methoxybenzaldehyde tosylhydrazone 1d

4-methoxybenzaldehyde tosylhydrazone 1d

3-methoxybenzaldehyde tosylhydrazone 1e

3-methoxybenzaldehyde tosylhydrazone **1e**

2,5-dimethoxybenzaldehyde tosylhydrazone 1f

2,6-difluorobenzaldehyde tosylhydrazone 1g

2,6-difluorobenzaldehyde tosylhydrazone 1g

2,6-difluorobenzaldehyde tosylhydrazone 1g

																-			-		 _	_	
0	-10	-20	-30)	-40	-50	-	50	-70	-80	f1	-90 (ppm)	-100	-110	-120	-130	-140		-150	-160	-170	-180

2-fluorobenzaldehyde tosylhydrazone 1h

2-fluorobenzaldehyde tosylhydrazone 1h

2-fluorobenzaldehyde tosylhydrazone 1h

68855885
www.44444
222222222
77777777

2,4,6-trifluorobenzaldehyde tosylhydrazone 1i

2,4,6-trifluorobenzaldehyde tosylhydrazone 1i

2,4,6-trifluorobenzaldehyde tosylhydrazone 1i

pentafluorobenzaldehyde tosylhydrazone 1j

pentafluorobenzaldehyde tosylhydrazone 1j

pentafluorobenzaldehyde tosylhydrazone 1j

2,6-difluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1g'**

2,6-difluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1g'**

-111.734 -111.750 -111.755 -111.772

2-fluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1h'**

2-fluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1h'**

f1 (ppm)

2-fluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone 1h'

2,4,6-trifluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1i'**

2,4,6-trifluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1i**'

2,4,6-trifluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1i**'

pentafluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1j'**

pentafluorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1**j'

2-Chlorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1k'**

2-Chlorobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1k'**

2-Bromobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1**

2-Iodobenzaldehyde 2,4,6triisopropylbenzenesulfonyl hydrazone **1m'**

fl (ppm)


```
YW-II-34a ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-34a ADH 0%0.8 mL
```


3: 277 nm, 4 nm Results

Pk # Name	Retention Time	Area Percent
1	9.020	49.289
2	10.044	50.711
Totals		
		100.000

```
YW-II-53b ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-II-53b ADH 0%0.8 mL
```



```
2: 277 nm, 4 nm
```

Results

Pk ‡ Name	Retention Time	Area Percent
1	8.376	28.985
2	10.120	71.015
Totals		100.000

1-methoxy-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene (**3ba**)


```
YW-I-138 ADH 0%0.8 mL
C:\E2Start\Projects\Default\Method\LSP-OD-H-1.0%-0.8ML.met
E:\HPLC-YW-I\YW-I-138 ADH 0%0.8 mL
```


5: 227 nm, 4 nm

Results

Pk ‡ Name	Retention Time	Area Percent
1	14.420	51.866
2	16.060	48.134
Totals		100.000
		100.000

```
YW-I-231a ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\LSP-OD-H-1.0%-0.8ML.met
E:\HPLC-YW-I\YW-I-231a ADH 0%0.8 mL
```


Results

Pk ‡ Name	Retention Time	Area Percent
1	13.780	0.000
2	14.520	100.000

Totals	
	100.000


```
YW-II-43A ODH 0.1%0.8 mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-43A ODH 0.1%0.8 mL
```



```
3: 231 nm, 4 nm
```

```
Results
```

Name	Retention Time	Area Percent	Pk ‡
	12.416	28.326	1
	13.208	20.980	2
	15.692	20.774	3
	17.276	29.920	4
Totals			

```
YW-II-43B ODH 0.1%0.8 mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-43B ODH 0.1%0.8 mL
```


3: 226 nm, 4 nm Results

Name	Retention Time	Area Percent	Pk ‡
	12.432	66.334	1
	17.088	33.666	2

Totals	
	100.000

1-methoxy-4-((1S,2S)-2-phenylcyclopropyl)benzene 3da

1-methoxy-4-((1*S*,2*S*)-2-phenylcyclopropyl)benzene 3da


```
YW-II-45A NEW ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywang0.8.met
C:\EZStart\Projects\Default\Data\YW-II-45A NEW ADH 0% 0.8mL
```



```
4: 245 nm, 4 nm
```

Results

Pk ‡ Name	Retention Time	Area Percent
1	23.972	49.890
2	28.652	50.110
Totals		100,000
		100.000

```
YW-II-45B NEW ADH 0% 0.8mL
C:\E2Start\Projects\Default\Method\ywang0.8.met
C:\E2Start\Projects\Default\Data\YW-II-45B NEW ADH 0% 0.8mL
```



```
4: 245 nm, 4 nm
Results
```

Pk ‡ Name	Retention Time	Area Percent
1	24.456	60.769
2	29.196	39.231
Totals		
		100.000

1-methoxy-3-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3ea**

1-methoxy-3-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3ea**


```
YW-II-85A-1 ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-II-85A-1 ADH 0%0.8 mL
```


2: 245 nm, 4 nm Results

Pk # Name	Retention Time	Area Percent
1	29.152	51.074
2	33.808	48.926
Totals		100 000

1-methoxy-3-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3ea**

```
YW-II-85B ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-II-85B ADH 0%0.8 mL
```


2: 245 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	28.000	61.236
2	32.636	38.764
Totals		
		100.000


```
YW-I-247 ODH 0.5%0.8 mL
C:\E2Start\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\E2Start\Projects\Default\Data\YW-I-247 ODH 0.5%0.8 mL
```


Pk ‡ Name	Retention Time	Area Percent
1	13.536	49.601
2	20.076	50.399

Totals	
	100.000

```
YW-I-255-1 ODH 0.5%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
E:\HPLC-YW-I\YW-I-255-1 ODH 0.5%0.8 mL
```


Retention Time	Area Percent
12.516	96.966
19.064	3.034
	100.000
	Retention Time 12.516 19.064


```
YW-I-238-ADH-new 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywang0.8.met
C:\EZStart\Projects\Default\Data\YW-I-238-ADH-new 0% 0.8mL
```


Pk ‡ Name	Retention Time	Area Percent
1	15.572	50.222
2	21.628	49.778
Totals		
		100.000
1-methoxy-2-((1*S*,2*S*)-2-(4-(trifluoromethyl)phenyl)cyclopropyl)benzene **3bc**

```
YW-I-242-ADH-new 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywang0.8.met
C:\EZStart\Projects\Default\Data\YW-I-242-ADH-new 0% 0.8mL
```


Pk ‡ Name	Retention Time	Area Percent
1	16.060	3.682
2	19.116	96.318

Totals	
	100.000


```
YW-I-232A-2 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-I-232A-2 ADH 0% 0.8mL
```


Ph # Name	Retention Time	Area Percent
1	22.796	51.494
2	29.848	48.506
Totals		
		100.000

```
YW-I-234 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-I-234 ADH 0% 0.8mL
```



```
2: 274 nm, 4 nm
Results
```

Pk ‡ Name	Retention Time	Area Percent
1	24.692	3.252
2	30.196	96.748
Totals		
		100.000

ž


```
YW-II-93A OJH 0%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-93A OJH 0%0.8 mL
```



```
3: 279 nm, 4 nm
```

	-	
 1000		

Pk ‡ Name	Retention Time	Area Percent
1	33.260	50.125
2	40.692	49.875
Totals		
		100.000

```
YW-II-93B OJH 000.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.20-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-93B OJH 000.8 mL
```


3: 279 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	34.224	2.780
2	40.364	97.220
Totals		100.000

1-bromo-2-((15,25)-2-(2-methoxyphenyl)cyclopropyl)benzene 3bf

1-bromo-2-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)benzene **3bf**

1-bromo-2-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)benzene **3bf**

```
YW-I-249 OJH 0.5%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-I-249 OJH 0.5%0.8 mL
```


2: 249 nm, 4 nm Results

Pk # Name	Retention Time	Area Percent
1	11.820	50.836
2	13.200	49.164
Totals		
		100.000

1-bromo-2-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)benzene **3bf**

```
YW-I-257 OJH 0.5%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-I-257 OJH 0.5%0.8 mL
```



```
2: 256 nm, 4 nm
Results
```

Pk # Name	Retention Time	Area Percent
1	12.800	1.970
2	14.416	98.030
Totals		
		100.000


```
YW-I-237 NEW ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywang0.8.met
C:\EZStart\Projects\Default\Data\YW-I-237 NEW ADH 0% 0.8mL
```



```
4: 279 nm, 4 nm
Results
```

Pk ‡ Name	Retention Time	Area Percent
1	9.084	50.373
2	10.412	49.627

Totals	
	100.000

```
YW-III-15 NEW ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\ywang0.8.met
```

C:\EZStart\Projects\Default\Data\YW-III-15 NEW ADH 0% 0.8mL

4: 279 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	8.868	98.188
2	10.708	1.812

ž

Totals	
	100.000

YW-I-246 ADH 0%0.8 mL

C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met

E:\HPLC-YW-I\YW-I-246 ADH 0%0.8 mL


```
2: 242 nm, 4 nm
Results
```

Pk # Name	Retention Time	Area Percent
1	10.616	49.702
2	11.888	50.298
Totals		100.000

```
YW-I-254 ADH 0@0.8 mL
```

C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met

E:\HPLC-YW-I\YW-I-254 ADH 0%0.8 mL

2: 242 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	10.088	96.395
2	11.988	3.605
m . 1		
IOTALS		100.000
		the second second second second

1-methoxy-2-((1*S*,2*S*)-2-methyl-2-(o-tolyl)cyclopropyl)benzene **3bi**

1-methoxy-2-((1*S*,2*S*)-2-methyl-2-(o-tolyl)cyclopropyl)benzene **3bi**

1-methoxy-2-((15,25)-2-methyl-2-(o-tolyl)cyclopropyl)benzene 3bi

```
YW-II-20a-1 ODH 0%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-20a-1 ODH 0%0.8 mL
```


Pk # Name	Retention Time	Area Percent
1	14.064	49.754
2	17.800	50.246
Totals		
		100.000

1-methoxy-2-((15,25)-2-methyl-2-(o-tolyl)cyclopropyl)benzene 3bi

```
YW-II-20b-1 ODH 0%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-20b-1 ODH 0%0.8 mL
```


2: 283 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	13.304	96.137
2	17.604	3.863
Totals		
		100.000


```
YW-I-260-2 ADH o@0.8 mL
C:\E2Start\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
E:\HPLC-YW-I\YW-I-260-2 ADH o@0.8 mL
```


2: 223 nm, 4 nm Results

Pk ± Name	Retention Time	Area Percent
1	13 800	50 086
2	16.772	49.914
Totals		
		100.000

```
YW-I-266 ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
E:\HPLC-YW-I\YW-I-266 ADH 0%0.8 mL
```



```
2: 223 nm, 4 nm
Results
```

Ph ‡ Name	Retention Time	Area Percent
1	13.624	97.540
2	17.696	2.460
Totals		
		100.000

3-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)aniline **3bk**

3-((15,25)-2-(2-methoxyphenyl)cyclopropyl)aniline 3bk

	-158,118	146.172 144.332	-130,928 -129,198 -124,984 -124,984 -120,501 -116,739 -110,307		 _26,609 21,423 17,141
OCH3	NH	12			
				10 	 *****

f1 (ppm)

3-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)aniline **3bk**

```
YW-I-235 ADH 3%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
E:\HPLC-YW-I\YW-I-235 ADH 3%0.8 mL
```


4: 290 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	33.940	50.982
2	41.844	49.018

Totals	
	100.000

3-((1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropyl)aniline **3bk**

```
YW-I-239 ADH 300.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
E:\HPLC-YW-I\YW-I-239 ADH 300.8 mL
```


Pk ‡ Name	Retention Time	Area Percent
1	33.440	98.554
2	41.820	1.446

Tota	15		
			100.000

2-((15,25)-2-(2-methoxyphenyl)cyclopropyl)naphthalene 3bl

2-((15,25)-2-(2-methoxyphenyl)cyclopropyl)naphthalene 3bl

2-((15,25)-2-(2-methoxyphenyl)cyclopropyl)naphthalene 3bl

```
YW-II-22A-2 ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\lk-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-22A-2 ADH 0%0.8 mL
```



```
4: 268 nm, 4 nm
```

Results

Name	Retention Time	Area Percent	Pk ‡
	17.268	29.263	1
	19.268	31.887	2
	31.132	18.001	3
	32.716	20.849	4

Totals	
	100.000
2-((15,25)-2-(2-methoxyphenyl)cyclopropyl)naphthalene 3bl

```
YW-II-22B-1 ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-22B-1 ADH 0%0.8 mL
```



```
4: 267 nm, 4 nm
Results
```

Name	Retention Time	Area Percent	Pk ‡
	30.740	0.661	1
	31.760	99.339	2

Totals		
	100.000	


```
YW-II-56a-1 ODH 200.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-56a-1 ODH 200.8 mL
```



```
1: 240 nm, 4 nm
Results
```

.216 50.248
.812 49.752
100.000
8

```
YW-II-56b2-1 ODH 200.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.20-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-56b2-1 ODH 200.8 mL
```



```
1: 240 nm, 4 nm
Results
```

Pk ‡ Name	Retention Time	Area Percent
1	8.208	90.592
2	8.836	9.408
Totals		100.000

YW-I-298 ODH 0%0.8 mL C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met E:\HPLC-YW-I\YW-I-298 ODH 0%0.8 mL

3: 273 nm, 4 nm Results

Pk # Name	Retention Time	Area Percent
1	7.584	50.082
2	8.328	49.918
Totals		
		100.000

```
YW-II-3 ODH 000.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-3 ODH 000.8 mL
```


3: 273 nm, 4 nm

Results

Pk # N:	ame Retention Time	Area Percent
1	8.380	94.310
2	9.416	5.690
Totals		
		100.000


```
YW-II-243A ODH-3 1% 0.8mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-II-243A ODH-3 1% 0.8mL
```



```
2: 236 nm, 4 nm
```

Res	ult	

Pk ‡ Name	Retention Time	Area Percent
1	12.604	49.281
2	24.068	50.719
Totals		
		100.000

```
YW-I-287 ODH-4 1% 0.8mL
C:\EZStart\Projects\Default\Method\ywangl.met
C:\EZStart\Projects\Default\Data\YW-I-287 ODH-4 1% 0.8mL
```


Pk ‡ Name	Retention Time	Area Percent
1	12.720	4.529
2	24.160	95.471
Totals		
		100.000

(1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropane-1-carboxamide **3bp**

(15,25)-2-(2-methoxyphenyl)cyclopropane-1-carboxamide **3bp**

(1*S*,2*S*)-2-(2-methoxyphenyl)cyclopropane-1-carboxamide **3bp**

```
YW-II-38 OJH-1 10%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-38 OJH-1 10%0.8 mL
```


1: 240 nm, 4 nm

Results

Pk ‡ Name	Retention Time	Area Percent
1	18.284	48.082
2	25.636	51.918
Totals		
		100.000

(15,25)-2-(2-methoxyphenyl)cyclopropane-1-carboxamide 3bp

```
YW-II-49 OJH 10%0.8 mL
C:\EZStart\Projects\Default\Method\JLM-ADH-0.2@-0.7mL.met
C:\EZStart\Projects\Default\Data\YW-II-49 OJH 10%0.8 mL
```


1: 240 nm, 4 nm Results

Pk ‡ Name	Retention Time	Area Percent
1	18.180	88.381
2	25.972	11.619
Totals		100.000

Peak Table

PDA Ch1	235nm		
Peak#	Ret. Time	Area	Area%
1	34.839	4766800	49.659
2	50.491	4832228	50.341
Total		9599028	100.000

- 1 -12			100
	20 B.		

PDA Ch1 235nn	
---------------	--

Peak#	Ret. Time	Area	Area%
1	34.731	26683140	91.077
2	51.207	2614272	8.923
Total		29297412	100.000

1,4-dimethoxy-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3fa**

1,4-dimethoxy-2-((15,25)-2-phenylcyclopropyl)benzene 3fa

1,4-dimethoxy-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3fa**

```
YW-I-213-2 ODH-2 100.8 mL
C:\EZStart\Projects\Default\Method\LSP-OD-H-1.00-0.8ML.met
E:\HPLC-YW-I\YW-I-213-2 ODH-2 100.8 mL
```



```
5: 226 nm, 4 nm
```

-							
ĸ	e	-	u	1	t	5	

Pk # Name	Retention Time	Area Percent
1	9.472	19.053
2	9.816	31.618
3	11.048	29.968
4	12.052	19.361
Totals		
		100.000

1,4-dimethoxy-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene **3fa** estimated ee

```
YW-I-219-2 ODH 1%0.8 mL
C:\EZStart\Projects\Default\Method\LSP-OD-H-1.0%-0.8ML.met
E:\HPLC-YW-I\YW-I-219-2 ODH 1%0.8 mL
```


Pk ‡ Name	Retention Time	Area Percent
1	9.432	96.823
2	11.100	3.177

Totals	
	100.000


```
YW-II-270racemic ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-270racemic ADH 0% 0.8mL
```



```
4: 220 nm, 4 nm
```

Results

Name	Retention Time	Area Percent	Pk ‡
	6.584	23.817	1
	7.856	37.861	2
	9.404	38.322	3

IOTAIS	
100.0	00

```
YW-II-270-1--ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-270-1--ADH 0% 0.8mL
```



```
4: 220 nm, 4 nm
Results
```

Name	Retention Time	Area Percent	Ph ‡
	7.740	96.589	1
	9.608	3.412	2
Totals		100.000	

1-fluoro-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene (**3h'a**)


```
YW-II-10a ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-10a ODH 0% 0.8mL
```


Name	Retention Time	Area Percent	Pk ‡
	16.532	49.769	1
	18.284	50.231	2

Totals		
	100.000	

```
YW-II-277 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-277 ODH 0% 0.8mL
```



```
4: 241 nm, 4 nm
```

Results

Name	Retention Time	Area Percent	Pk ‡
	16.356	87.992	1
	18.528	12.008	2

Totals		
	100.000	

7.337 7.333 7.333 7.333 7.330 7.2216 7.221	2,437 2,424 2,415 2,410 2,410 2,388	2024 2994 1.580 1.580 1.558 1.558 1.558 1.558 1.558 1.468 1.454 1.445 1.445 1.445 1.445 1.440 1.431 1.431
		2 Julie


```
YW-II-265 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\lk-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-265 ADH 0% 0.8mL
```



```
4: 240 nm, 4 nm
Results
```

Name	Retention Time	Area Percent	Pk ‡
	6.180	15.137	1
	7.368	41.937	2
	9.424	42.926	3
Totals		100.000	

S151

```
YW-II-278 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-278 ADH 0% 0.8mL
```


4: 240 nm, 4 nm Results

Name	Retention Time	Area Percent	Pk ‡
	7.268	96.644	1
	9.656	3.356	2

Totals	
	100.000

44.2686 44.2891	44.3272	44.3469	58.3460	58.4018	58.4575	63.6698	63.6904	63.7286	63.7464	63.7845	63.8033
ŤŤ	Ż	Ĵ	7	7	Ī	ĩ	Ī	Ī	Ī	Ī	Ī


```
YW-I-71a-1 ADH 0%0.8 mL
C:\EZStart\Projects\Default\Method\lk-5%0.8.met
F:\HPLC\YongWang\HPLC-YW-I\YW-I-71a-1 ADH 0%0.8 mL
```



```
4: 240 nm, 4 nm
```

Results

Name	Retention Time	Area Percent	Pk ‡
	8.812	51.394	1
	16.500	48.606	2

Totals		
	100.000	
		_

```
YW-II-280 ADH 0% 0.8mL
C:\EZStart\Projects\Default\Method\1k-5%0.8.met
C:\EZStart\Projects\Default\Data\YW-II-280 ADH 0% 0.8mL
```



```
4: 241 nm, 4 nm
Results
```

Name	Retention Time	Area Percent	Pk ‡
	9.076	94.589	1
	17.800	5.411	2

Totals	
10	0.000

389	894 017	388	161 762 541
4.518	월 코 코	ര് റ്റ്	ත් ක් ක්
- A - A - A	288	99	995
11	15	~~~	

- 29.383 - 27.781 - 19.458

Peak Table

PDA Ch1	232nm		
Peak#	Ret. Time	Area	Area%
1	7.184	3129173	37.276
2	8.299	2659077	31.676
3	9.157	2606300	31.048
Total		8394550	100.000

Peak Table

PDA Ch1 270nm

Peak#	Ret. Time	Area	Area%
1	8.331	386332	12.448
2	8.950	2717218	87.552
Total		3103550	100.000

1-Bromo-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene (**3**l'a)

1-Bromo-2-((1*S*,2*S*)-2-phenylcyclopropyl)benzene (**3l'a**)

0.4	9859289
5 5	120025
44	10000000
44	00000000
Ū	
44	

30.56429.52919.758

Peak Table

PDA Ch1 232nm

Peak#	Ret. Time	Area	Area%
1	7.625	2886907	45.245
2	8.633	1757918	27.551
3	9.996	1735749	27.204
Total		6380573	100.000

500-0-200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390

Peak Table

PDA Ch1	254nm		
Peak#	Ret. Time	Area	Area%
1	8.962	1293865	21.593
2	9.899	4698098	78.407
Total		5991963	100.000

Spectral Data

for

Chapter 3

Enantioselective Radical *Cis*-Cyclopropanation of Alkenes with In Situ-Generated Aliphatic Diazo Compound

N'-(3-(1,3-dioxoisoindolin-2-yl)propylidene)-2,4,6-triisopropylbenzenesulfonohydrazide

N'-(3-(1,3-dioxoisoindolin-2-yl)propylidene)-2,4,6-triisopropylbenzenesulfonohydrazide

N'-(4-(1,3-dioxoisoindolin-2-yl)butylidene)-2,4,6-triisopropylbenzenesulfonohydrazide

N'-(4-(1,3-dioxoisoindolin-2-yl)butylidene)-2,4,6-triisopropylbenzenesulfonohydrazide

2,4,6-triisopropyl-N'-(3-phenylpropylidene)benzenesulfonohydrazide

	153.205 151.318 169.814 148.964	-140.483	128.430 128.277 128.112 123.806								121.26	23.62 23.12 23.52	73.533		
				N-NH		_									
									•••••						
180 170 1	.60 150	140	130 1	20 110	100	90 f1 (ppm)	80	70	60	50	40	30	20	10	0 S172

2,4,6-triisopropyl-N'-(4-phenylbutylidene)benzenesulfonohydrazide

Peak Table

PDA Ch1	238nm		
Peak#	Ret. Time	Area	Area%
1	17.700	9186978	24.068
2	19.436	9252327	24.239
- 3	24.878	9888392	25.905
4	27.109	9843491	25.788
Total		38171187	100.000

Peak Table

ļ	PDA Ch1	238nm		
	Peak#	Ret. Time	Area	Area%
	1	17.571	183516	0.409
	2	19.151	44674969	99.591
	Total		44858485	100.000

7833 7834 7835 7785 7785 7785 7785 7785 7785 7785	27.2 27.2
N	
° /	Ph
0	
1.77 1.35 1.90	200 1197 1108 1199 1108
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4 f1 (ppm)	.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

9.0

Peak Table

PDA Chl	240nm		
Peak#	Ret. Time	Area	Area%
1	15.099	6416012	21,989
2	16.430	11383375	39.014
3	17.176	11378344	38,997
Total		29177732	100.000

Peak Table

PDA Ch1	240nm		
Peak≢	Ret. Time	Area	Area%
1	16.778	194781	2.366
2	17.488	8036372	97.634
Total		8231153	100.000

(2-phenethylcyclopropyl)benzene

80000000000000000000000000000000000000	198 199 199 199 199 199 199 199 199 199	77 77 77 70 70 70 70 70 70 70 70 70 70 7
CELEVER CELEVER	NNNNNNNNNN	<u> </u>

(2-phenethylcyclopropyl)benzene

(2-phenethylcyclopropyl)benzene

Peak Table

PDA Chi	230nm		
Peak#	Ret. Time	Area	Area%
1	8,863	2858436	19.566
2	10.578	5976276	40.908
5	11.680	5774528	39.527
Total		14609240	100.000

THE R LEWIS CONTRACTOR

(2-phenethylcyclopropyl)benzene

Peak Table

PDA Chi	22/mm		
Peak#	Ret. Time	Area	Area%
1	10.367	723713	3.314
2	11.213	21113881	96.686
Total		21837593	100.000

(3-(2-phenylcyclopropyl)propyl)benzene

4 8 8 8 8 8 8 8 8 9 9 9 9 9 8 9 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 9 9 9 8 9 8 9	88 16 18 16 18 18 18 18 18 18 18 18 18 18 18 18 18
	<u> </u>

(3-(2-phenylcyclopropyl)propyl)benzene

Peak Table

PDA Chi	201 nm		
Peak#	Ret. Time	Area	Area%
	8.440	3681723	8.685
2	8,711	3674083	8.667
**	9.695	17890264	42.205
4	10.162	17143353	40.443
Total		42389423	100.000

(3-(2-phenylcyclopropyl)propyl)benzene

Peak Table

PDA Chi	201 mm		
Peak#	Ret. Time	Area	Area%
1	9.846	51429985	92.069
2	10.486	4430289	7.931
Total		55860274	100.000

THE REPORT OF A REPORT

10 Mar 10	- CA - A - A - A	
	- ACHER	

Peak#	Ret. Time	Area	Area%
1	22.343	1550995	33.528
2	25.713	1573812	34.021
3	41.836	737786	15.949
4	45.231	763434	16,503
Total		4626026	100.000

MDA CHI	204nm		
Peak#	Ret. Time	Area	Area%
	22,400	49022	1.134
2	25.574	4275156	98.866
Total		4324178	100.000

Peak Table

PDA Chl	224nm		
Peak#	Ret. Time	Area	Area%
1	14.302	14879233	22.794
2	15.219	14970210	22.934
3	18.250	17792355	27.257
4	26.109	17634549	27.015
Tota		65276348	100.000

Peak Table

PDA Chl	238nm		
Peak#	Ret. Time	Агеа	Area%
1	14.189	130849	0.392
2	15.010	33230130	99.608
Total		33360979	100.000

Peak Table

	The second se
	- AGE ATO THE
No. 644	- C - C - C - C - C - C - C - C - C - C

Peak#	Ret. Time	Агеа	Area%
1	24.695	21382282	20,155
2	34.111	31163721	29.375
3	36,281	22042877	20.778
4	40.957	31500444	29.692
Total		106089324	100.000

		_	
	_		

PDA Chi	25/mm		
Peak#	Ret. Time	Area	Area%
1	24.836	135644	0.402
2	36.295	33572453	99.598
Total		33708098	100.000

en la centra de las sur-

7.772 7.776 7.776 7.768 7.768 7.689 7.193 7.210 6.941 6.924	-3.673 -3.660 -3.646	2.063 2.063 2.050 2.033 2.033 2.033 2.033	-1.574 1.560 1.546 1.3755 1.3755 1.3755 1.3755 1.3755 1.3755 1.3755 1.3755 1.3755 1.
	\sim		

	Const Mark	
	- EL M	

PDA Chl	245mm		
Peak#	Ket. Time	Area	Area%
1	19.699	4422102	20.588
2	26.441	6151748	28.640
3	27.557	4515610	21.023
4	31.247	6389924	29,749
Total		21479383	100.000

Peak Table

MUA CIII	2.2-41111		
Peak#	Ret. Time	Area	Area%
L	20.854	1106	0.060
2	27.085	1683736	99,934
Total		1684841	100.000

TATA A COLD OF Asses

					L131.828	L127,267	L122.157	-		-					— 27.463	— 20.462 — 17.131		
	O N	_Д		B	r													
190 180	170	160	150	140	130	120	110	100 f1 (j	90 opm)	80	70	60	50	40	30	20	10	0 5208

Peak Table

PDA Chl	246nm		
Peak#	Ret. Time	Area	Area%
1	21.311	986291	20.661
2	22.414	1134841	23,773
3	25,108	1301916	27.273
4	26.029	1350561	28,292
Total		4773609	100.000

Peak Table

PDA Chl	231nm		
Peak#	Ret. Time	Area	Area%
1	21.431	241278	0.404
2	22.367	59422353	99.596
Total		59663632	100.000

2-(2-(2-(2-methylphenyl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Chi	232mm		
Peak#	Ret. Time	Area	Area%
	16.756	24908240	26.162
2	18.046	25232764	26.503
3	19.252	21687794	22.780
4	22.109	23378035	24.555
Total		95206834	100.000

P	eal	kП	Dai	ы	ρ.

PDA Chi	225mm		
Peak#	Ret. Time	Area	Area%
	16.780	125407	0.496
2	18.059	24734702	99,504
Total		24858109	100.000

7.781 7.775 7.775 7.758 7.758 7.658 7.658 7.658 7.658 7.658 7.658 7.161 7.068 7.068 7.068	-4.502	3.681 3.677 3.677 3.656 3.656	2.123 2.108 2.098	-1.594 -1.582 -1.582 -1.183 -1.172 -1.019 0.690 0.690 0.681 0.671
	1		\sim	$P \vee P \vee e$

Peak Table

MDA CIII.	244nm.		
Peak#	Ret. Tune	Area	Area%
	22.970	10144357	21.850
2	27.175	10105883	21.767
3	36.182	13267294	28.577
4	43.402	12909273	27.806
Total		46426807	100.000

7073 A. 278 A. 244 A.

Peak Table

PDA Chl	244nm		
Peak#	Ret. Time	Area	Area%
	22.968	45601	0.498
2	27.114	9109030	99,502
Total		9154631	100.000

				133.886 131.967 128.862	125.743 123.104 122.994								~26.930	19.010		
			(N A		NO2									
190 1	80 170	160	150	140 13	0 120	110	100 9 f1 (ppm)	90 80	70	60	50	40	30	20	10	0

Peak Table

1	PDA CHI	288mm		
	Peak#	Ret. Time	Area	Area%
	1	39,470	1127820	28.892
	2	65.044	1102109	28.234
	3	75.563	1673606	42.874
	Total		3903535	100.000

TRACK ALL STATE ALL CREATE

PDA Chl	274nm		
Peak#	Ret. Time	Area	Area%
	39.211	49133	0.530
2	62.388	9220670	99.470
Total		9269802	100.000

Peak Table

PDA CIII	223mm		
Peak#	Ret. Time	Area	Area%
1	40.564	2559560	50.231
2	48.866	2536022	49.769
Total		5095581	100.000

THE R. LEWIS CO., NAMES OF

Peak Table

PDA Chl	228nm		
Peak≢	Ret. Time	Area	Area%
1	40.844	109708	0.714
2	48.119	15250345	99,286
Total		15360053	100.000

2-(2-(2-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)cyclopropyl)ethyl)isoindoline-1,3-dione

|--|

PDA Chl	234nm		
Peak#	Ret. Time	Area	Area%
1	46.348	14664632	25.906
2	50.923	17945792	31.703
3	65.175	11920137	21.058
4	88.053	12076201	21.333
Total		56606762	100.000

	10 M H

J	PDA Chl	234mm		
	Peak#	Ret. Time	Area	Area%
	1	45.621	4427681	98.654
ſ	2	50.728	60411	1.346
	Total		4488091	100.000

3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)benzaldehyde

3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)benzaldehyde

3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)benzaldehyde

	 6 M M M	 100 C

MDA CHI	230mm		
Peak#	Ret. Time	Area	Area%
1	48,264	18559542	19,988
2	54,815	18714306	20.154
3	63,564	55580583	59,858
Total		92854431	100.000

THE A STREET STREET

3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)benzaldehyde

Peak Table

PDA Chl	220nm		
Peak#	Ret. Time	Area	Area%
1	48.865	137437	0.643
2	55,313	21231195	99.357
Total		21368632	100.000

	136.632 133.589 131.993 127.662 127.459 127.662 127.459 127.459 127.459	-37.819	-27.475	-20.994 -17.256	-9.894
1			1		- I

Peak Table

PDA Chi	255mm		
Peak#	Ret. Time	Area	Area%
1	22,393	17267306	21,801
2	25.171	17421317	21.996
	35.045	21681988	27.375
4	36.461	22833170	28,828
Total		79203780	100.000

NAMES OF A DESCRIPTION OF A

PDA Chl	232nm		
Peak#	Ret. Time	Area	Area%
1	22.447	226806	0.325
2	25.165	69577553	99.675
Total		69804358	100 000

(E)-2-(2-(2-styrylcyclopropyl)ethyl)isoindoline-1,3-dione

(E)-2-(2-(2-styrylcyclopropyl)ethyl)isoindoline-1,3-dione

(E)-2-(2-(2-styrylcyclopropyl)ethyl)isoindoline-1,3-dione

	Constant Sectors	
		- -
	- El M	

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
1	19.014	7721576	32.681
2	23,576	7687028	32.535
3	32.541	4106985	17.382
4	39.248	4111549	17.402
Total		23627137	100.000

(E)-2-(2-(2-styrylcyclopropyl)ethyl)isoindoline-1,3-dione

		1000
	 200 B	

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
	18.794	81556	0.568
2	23.311	14279534	99.432
Total		14361090	100.000

(E)-2-(2-(2-(2-methoxystyryl)cyclopropyl)ethyl)isoindoline-1,3-dione

(E)-2-(2-(2-(2-methoxystyryl)cyclopropyl)ethyl)isoindoline-1,3-dione

(E)-2-(2-(2-(2-methoxystyryl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Chi	254mm		
Peak#	Ret. Tune	Area	Area%
1	26.688	12371416	35.065
2	30.238	12296334	34,852
3	36.192	5144588	14.582
4	47.119	5468907	15.501
Total		35281246	100.000

(E)-2-(2-(2-(2-methoxystyryl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Chl 254nm					
Peak#	Ret. Time	Area	Area%		
I	20.800	15/908	0.598		
2	29,908	22947637	99.402		
Total		23085605	100.000		

2-(2-(2-(phenylethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(2-(phenylethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(2-(phenylethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

|--|

Peak#	Ret. Time	Area	Area%
1	17.586	21096706	40.441
2	20.926	21572858	41.353
3	30.133	4949887	9.489
4	32.266	4547672	8.718
Total		52167123	100.000

2-(2-(2-(phenylethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Chl	254mm		
Peak#	Ret. Time	Area	Area%
_	19.831	45855	0.558
2	23.558	8106384	99.462
Total		8150237	100.000

2-(2-((3-fluorophenyl)ethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-((3-fluorophenyl)ethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-((3-fluorophenyl)ethynyl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Chi	254mm		
Peak#	Ret. Time	Area	Area%
1	17.427	29294732	39.222
2	20.612	29567248	39.587
3	29.517	7918621	10.602
4	32.236	7908200	10.588
Total		74688800	100.000

a an arrest of second a

UV Spectrum Retention time = 20.923

and the second of second at

mAU

Peak Table

PDA CIII	204000		
Peak#	Ret. Time	Area	Area%
1	17.592	35729	0.552
2	20.923	6071686	99,448
Total		6105415	100.000

2-(2-(pyridin-2-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(2-(pyridin-2-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

PDA Chl	268mm		
Peak#	Ret. Tune	Area	Area%
	17.488	1825832	28.950
2	34.471	1814147	28.765
3	40.587	1339092	21.233
4	51.662	1327678	21.052
Total		6306749	100.000

2-(2-(pyridin-2-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

PDA Ch1 254nm

Peak#	Ret. Time	Area	Area%
L	17.002	15855	0.008
2	34.331	2058541	99.332
Total		2072375	100.000

2-(2-(2-(pyridin-3-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(2-(pyridin-3-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

 	<pre>138.395 136.575 136.575 136.476 134.682 </pre>		40.170	 	
) 0	N				

S260 100 9 f1 (ppm)

2-(2-(pyridin-3-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PDA Ch1	<u>312mm</u>		
Peak#	Ret. Time	Area	Area%
1	42.537	593913	26.354
2	44.885	598934	26.577
3	67.528	525980	23.339
4	70.622	534794	23.730
Total		2253621	100.000

2-(2-(2-(pyridin-3-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

PLIA COLLAND		

Peak#	Ret. Time	Area	Area%
1	42,843	23426656	100.000
Total		23426656	100.000

	2-(2-(2-(pyridin-4-yl)cyclopro	pyl)ethyl)isoindoi	line-1,3-dior	ie	
-8.320	7.759 7.759 7.689 7.683 7.683 7.683 7.683 7.678 6.965	3.679 3.679 3.651 3.651 3.651 3.656 3.656 3.650 3.596	2.081 2.068 2.064 2.052 2.047 2.035	1.553 1.525 1.525 1.504 1.490 1.476 1.277 1.277 1.277	1.100 1.094 1.083 0.779
1				W r	
		Ŋ			
٨			1		

2-(2-(2-(pyridin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(pyridin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak Table

Peak#	Ret. Time	Area	Area%
1	33.221	19653692	29.397
2	39,976	19500943	29.168
3	46.980	27702475	41.435
Total		66857110	100.000

DDA Ch1 222mm

2-(2-(2-(pyridin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

Peak#	Ret. Time	Area	Area%
1	40.134	15534192	100.000
Total		15534192	100.000

DDA (31 232mm

2-(2-(quinolin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

2-(2-(quinolin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

	100 March 1	
	1.201	

PDA Chl	308nm		
Peak#	Ret. Time	Area	Area%
	36,901	2590406	21.182
2	39.324	2684587	21.952
3	41.837	3435340	28.091
- 4	47.724	3518840	28.774
Total		12229174	100.000

2-(2-(quinolin-4-yl)cyclopropyl)ethyl)isoindoline-1,3-dione

Deal	c T	ы	

PDA Chi	228mm		
Peak#	Ret. Time	Area	Area%
	39,468	21580313	100.000
Total		21580313	100.000

tert-butyl 3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)-1H-indole-1-carboxylate

tert-butyl 3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)-1H-indole-1-carboxylate

tert-butyl 3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)-1H-indole-1-carboxylate

	1000	
	- 1 11	

PDA Chi	20.5nm		
Peak#	Ket. Time	Area	Area%
1	20.061	6646209	34,356
2	21.882	291.6879	15.078
3	26.075	2975619	15.382
4	34.720	6806349	35,184
Total		19345056	100.000

tert-butyl 3-(2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)cyclopropyl)-1H-indole-1-carboxylate

PDA Chl 263nm

Peak#	Ret. Time	Area	Area%
1	20.416	20621	0.561
2	34.410	5697803	99.639
Total		5718424	100.000

2-(2-(2-(benzo[b]thiophen-3-yl)cyclopropyl)ethyl)isoindoline-1,3-dione 1.1197 1.1197 1.1183 1.1183 1.1136 1.1136 1.1119 1. 7,324 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 7,315 6,959 6,959 6,959 6,959 6,959 6,959 3,651 3,551 3,552 3,551 3,5523 3,552 3,552 3,552 3,552 3,552 3,552 3,552 3,552 3,552 3,552 1.273 1.267 1.259 1.259 1.677 1.663 1.650 1.650 1.636 1.236 1.235 1.289 1.284 -1.225 0.59 1.98 1.98 2.03-4 0.95-1 0.98-1 1.00-1 0.93-Ś ġ 太 4.5 f1 (ppm) 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

168.237	140.350 133.672 133.672 133.672 124.272 122.969 122.969	37.856	27.581	15.899 14.440 9.657
				121

Peak Table

PDACILI	2/onm		
Peak#	Ret. Time	Area	Area%
1	31.905	3644911	37.490
2	33.083	3832142	39.415
3	37,477	2245408	23.095
Total		9722462	100.000

PDA GIT 20400							
Peak#	Ret. Time	Area	Area%				
1	31,977	644275	99,509				
2	33,419	3178	0.491				
Total		647453	100.000				

TITLE COLLECTION

	$- \frac{143.231}{133.719}$ $- \frac{132.175}{126.610}$ $- \frac{123.132}{123.046}$			
	s			
190 180 170 160 1	50 140 130 120 110	100 90 80 70 60	50 40	30 20 10 0

Peak Table

PDA Chi	24 /mm		
Peak#	Ret. Time	Area	Area%
	20.458	20765129	27.654
2	22.850	20671376	27.529
3	31.574	16750895	22.308
4	34.027	16902906	22.510
Total		75090305	100.000

Peak Table

PDA Chl 247nm					
Peak#	Ret. Time	Area	Area%		
1	20.499	29508	0.572		
2	22.804	7906762	99.628		
Total		7936271	100.000		

	133.584 132.019 122.964 122.8625 122.862 119.877		-37.722		~ 14.289 ~ 14.289 ~ 10.905
)				
190 180 170 160 150 1	40 130 120 1	110 100 90 80 70) 60 50 40	30 2	0 10 0

Peak Table

1	PDA Chl	254mm		
	Peak#	Ret. Time	Area	Area%
	1	21.809	16440122	27.793
	2	26.260	17213113	29.099
	3	36.262	12707775	21.483
	4	38.334	12791647	21.625
	Total		59152657	100.000

Р	eak.	Tai	hle.

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
1	23.072	22588	0.174
2	27,759	12943894	99.826
Total		12966482	100.000

2-(2-phenylcyclopropyl)ethan-1-amine

7.274 7.260 7.243 7.226	7.189	2151 2151 2151 2151
	<u>ما</u> ح	

623 652 617 661 673 652 652 652 652 652 652 652 652 652 652	41 8 1 8 1 8 1 8	555 552 552 552 552 552 555 555 555 555
666666666	202	111111111111111111111111111111111111111

2-(2-phenylcyclopropyl)ethan-1-amine

4-methyl-N-(2-(2-phenylcyclopropyl)ethyl)benzenesulfonamide

4-methyl-N-(2-(2-phenylcyclopropyl)ethyl)benzenesulfonamide

Peak Table

PDA Chl	227nm
Peak#	Ret. Time

Peak#	Ret. Time	Area	Area%
1	39,753	4230278	21.990
2	42.751	4740021	24.640
3	56.384	5207747	27.071
4	65.036	5059064	26.298
Total		19237111	100.000

Peak Table

PDA (h.	22/mm		
Peak		Ret. Time	Area	Area%
		59.77S	55977	0.159
	2	42.158	33829531	99.841
T	otal		33883508	100.000

en al contra de seconde
Spectral Data

for

Chapter 4

Enantioselective Radical Cyclization for Construction of 5-Membered Ring Structures by Metalloradical C–H Alkylation

Free Base of 2,4,6-trimethyl-Zhuphyrin [H₂(P6)]

Free Base of 2,4,6-trimethyl-Zhuphyrin [H₂(P6)]

a l	888 ES 688	818	69 E	8 2 8 8
E	88888 293	885	2 2	8 2 3 3
Ī	377 77 777	7 77	ĩĩ	155

3-(benzylamino)propan-1-ol s1-a

3-(benzylamino)propan-1-ol s1-a

763	010	
ന്	ര്	
ĥ	1	
	-53.763	53.763 49.010

3-((4-methylbenzyl)amino)propan-1-ol s1-b

3-((3-methoxybenzyl)amino)propan-1-ol s1-c

9 0	98	\odot	Ø.	\mathbf{m}	Ph.	\mathbf{m}	23	DS:	0
83	81	Π.	8	8	ж.	8	8	22	22
PC PC	195	12	33	<u>.</u>	6	6	ιd.	λØ.	ιd.
- Landa	А.	الكر	$\tau_{\rm s}$	Z_{a}	Ja	J	J.	1	Т.

3-((3-methoxybenzyl)amino)propan-1-ol s1-c

159.706	140.781	129.445	120.389	113.561 112.682	63.844	55.122 53.724 48.953	30.699
1	I I			52	Í	12 1	Í

 J. J. M. 30 120	L	1 1 70 60	1 50 40 3	30 20 10 0 S301

3-((2-methoxybenzyl)amino)propan-1-ol s1-d

3-((3,5-bis(trifluoromethyl)benzyl)amino)propan-1-ol s1-e

3-((3,5-bis(trifluoromethyl)benzyl)amino)propan-1-ol s1-e

3-((4-bromobenzyl)amino)propan-1-ol s1-f

3-((4-bromobenzyl)amino)propan-1-ol s1-f

-138.322	131.524129.817	120.946 896.051		-63.921	 167.06
		вг М ОН			
			1		
I		1			
			l		

ı						• 1			·		·						
170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
	f1 (ppn)																

3-((2,4,6-trifluorobenzyl)amino)propan-1-ol s1-g

8	F2 53 53	12 22 22	58 8 7 8	556685
T .	re a construction de la construc	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2000	

3-((2,4,6-trifluorobenzyl)amino)propan-1-ol s1-g

3-((4-nitrilebenzyl)amino)propan-1-ol s1-h

3-((4-nitrilebenzyl)amino)propan-1-ol s1-h

3-((4-nitrobenzyl)amino)propan-1-ol s1-i

3-((4-nitrobenzyl)amino)propan-1-ol s1-i

3-((2-chloro-4-nitrobenzyl)amino)propan-1-ol s1-j

R R R R R R R R R R R R R R R R R R R	18, 22, 22	818 818 818	822286
2 2 2 2 C C C C C	T. T. T. T.	200	

3-((2-chloro-4-nitrobenzyl)amino)propan-1-ol s1-j

-146.447 -140.347 -130.206	-130.212 -120.212 -120.332			67° 676			
	∕он						
170 160 150 140	130 120	110 100	90 80 1 fl (ppm)	0 60	E0 40	30 2	0 10 0

3-((3-vinylbenzyl)amino)propan-1-ol s1-k

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12	222	5	****	8,12,28,38
C C C C C C C C C C C C C C C C C C C	5	5		144	

3-((3-vinylbenzyl)amino)propan-1-ol s1-k

8888 1286 1286 1286 1286 1286 1286 1286	14.104	3.926	3.783 9.090	0.746
	-	ŕ		õ

(E)-3-((2-methyl-3-phenylallyl)amino)propan-1-ol s1-l

22222222222	19	82 2 8 5 7 F	5,5,6,9	8 E 8 8 E E
KKKKKKK	۴	22227	200	

(E)-3-((2-methyl-3-phenylallyl)amino)propan-1-ol s1-l

288 282 282 282 282 282 282 282 282 282	5	8	8	226	8
	3	8	\$	8	-16

3-((3-phenylprop-2-yn-1-yl)amino)propan-1-ol s1-m

3-(phenethylamino)propan-1-ol s1-n

7.314 7.284 7.284 7.284 7.284 7.284 7.284 7.285 7.288 7.288 22.78 27.75 27.75

2.912 2.895 2.871 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.881 2.883 28

868

3-(phenethylamino)propan-1-ol s1-n

3-((cyclohexylmethyl)amino)propan-1-ol s1-o

3-((cyclohexylmethyl)amino)propan-1-ol s1-o

benzyl N-(tert-butoxycarbonyl)-N-(3-hydroxypropyl)glycinate s1-p

benzyl N-(tert-butoxycarbonyl)-N-(3-hydroxypropyl)glycinate s1-p

3-((pyridin-3-ylmethyl)amino)propan-1-ol s1-q

3-((pyridin-3-ylmethyl)amino)propan-1-ol s1-q

160	150	140	130	120	110	100	90	80 f1 (ppm)	70	60	50	40	30	20	10	0
							un color de deporto					an a su a				-
(∕_Ń H	~	∕он												
	~149.542	~ 135.771	134,906							63.646	51.240					

3-((pyridin-2-ylmethyl)amino)propan-1-ol s1-r

3-((pyridin-2-ylmethyl)amino)propan-1-ol s1-r

3-((pyridin-4-ylmethyl)amino)propan-1-ol s1-s

3-((pyridin-4-ylmethyl)amino)propan-1-ol s1-s

198

									_								
							naging survey and assessed										uni carage formation
170	160 1	150	140	130	120	110	100	90 f1 (p	80 (pm)	70	60	50	40	30	20	10	0

3-((quinolin-4-ylmethyl)amino)propan-1-ol s1-t

3-((quinolin-4-ylmethyl)amino)propan-1-ol s1-t

- 190.033 - 147.931 - 147.945	128.00 100 100 100 100 100 100 100 100 100			1 <u>18</u> .0	48, 924 48, 926	-31.342	
	`ОН						
170 160 150 140	130 120 11	0 100 90	80 70	 60	50 4	0 30 2	0 10 0

tert-butyl 3-(((3-hydroxypropyl)amino)methyl)-1H-indole-1-carboxylate s1-u

tert-butyl 3-(((3-hydroxypropyl)amino)methyl)-1H-indole-1-carboxylate s1-u

3-((thiophen-3-ylmethyl)amino)propan-1-ol s1-v

3-((thiophen-3-ylmethyl)amino)propan-1-ol s1-v

19	6 S 8	2	82	8
140		35	*	8

3-((benzo[b]thiophen-3-ylmethyl)amino)propan-1-ol s1-w

22222222222222222222222222222222222222	000 50 50 50 50 50 50 50 50 50 50 50 50	82828
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	4 TO DO DO DO DO DO DO	

3-((benzo[b]thiophen-3-ylmethyl)amino)propan-1-ol s1-w

3-((ferrocenyl)amino)propan-1-ol s1-x

220

3-((ferrocenyl)amino)propan-1-ol s1-x

217,282	86	26
886 3	₹7	8

8.16

95

3-(benzyloxy)propan-1-ol s1-y

73712 73672 73572	73531	7.3370	73099	7.2959	72736
len din sele	- back	the state of the s	ملين المراجع ا	المسادي	المصالحين أحسر

3-(benzyloxy)propan-1-ol s1-y

2-(phenethylamino)ethan-1-ol s1-z

2-(phenethylamino)ethan-1-ol s1-z

(R)-3-((1-phenylethyl)amino)propan-1-ol s1-aa

tert-butyl benzyl(3-oxopropyl)carbamate s2-a

9.728

7225	4,442	3.518	2.58	1.447
	Ĩ	V		57

S350

tert-butyl benzyl(3-oxopropyl)carbamate s2-a

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled.

tert-butyl (4-methylbenzyl)(3-oxopropyl)carbamate s2-b

Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (4-methylbenzyl)(3-oxopropyl)carbamate s2-b

S353

tert-butyl (3-methoxybenzyl)(3-oxopropyl)carbamate s2-c

Note: The spectrum contains a mixture of amide rotamers.

0.5

tert-butyl (3-methoxybenzyl)(3-oxopropyl)carbamate s2-c

tert-butyl (2-methoxybenzyl)(3-oxopropyl)carbamate s2-d

742	8 5 7 7 7 9 9 9 9 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	****	8ę
0	<u> </u>	1111 1002000000000000000000000000000000	17

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled. S357

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-oxopropyl)carbamate s2-e<t

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-oxopropyl)carbamate s2-e

11.0 10.5 10.0 3. 5 4.0 8.5 9.5 9.0 8.0 7.5 7.0 6.0 5.5 fl (ppm) 5.0 2.56.5 4.5 3.0 Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (4-bromobenzyl)(3-oxopropyl)carbamate s2-f

tert-butyl (2,4,6-trifluorobenzyl)(3-oxopropyl)carbamate s2-g

R	8 G 12	8	12	199	ē.
	Ŷ	4	m	6	ī

₩Ž.6

tert-butyl (2,4,6-trifluorobenzyl)(3-oxopropyl)carbamate s2-g

tert-butyl (4-nitrilebenzyl)(3-oxopropyl)carbamate s2-h

R.	317	髲	88 8	212 23	E 8
٥	121	Ť	377	372	77

tert-butyl (4-nitrilebenzyl)(3-oxopropyl)carbamate s2-h

tert-butyl (4-nitrobenzyl)(3-oxopropyl)carbamate s2-i

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled.

tert-butyl (2-chloro-4-nitrobenzyl)(3-oxopropyl)carbamate s2-j

88	5 5 5 5 5 5 5 5	8	S.	82	51 25 28
00 00	IS IS IS		<u>(1)</u>	CN .	
\sim	47				- N (

Note: The spectrum contains a mixture of amide rotamers.

92.76

tert-butyl (2-chloro-4-nitrobenzyl)(3-oxopropyl)carbamate s2-j

tert-butyl (3-vinylbenzyl)(3-oxopropyl)carbamate s2-k

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled.

0

10

tert-butyl (E)-(2-methyl-3-phenylallyl)(3-oxopropyl)carbamate s2-l

tert-butyl (E)-(2-methyl-3-phenylallyl)(3-oxopropyl)carbamate s2-l

tert-butyl (3-oxopropyl)(3-phenylprop-2-yn-1-yl)carbamate s2-m

tert-butyl (3-oxopropyl)(phenethyl)carbamate s2-n

tert-butyl (cyclohexylmethyl)(3-oxopropyl)carbamate s2-o

tert-butyl (cyclohexylmethyl)(3-oxopropyl)carbamate s2-o

benzyl N-(tert-butoxycarbonyl)-N-(3-oxopropyl)glycinate s2-p

8	76	22 S	8	6 6	\$	8
<u> </u>	1 <u>2</u> 22		8 8	ន៍ ន័	र्ष् प्र	Ŕ

-201.220

S381

tert-butyl (3-oxopropyl)(pyridin-3-ylmethyl)carbamate s2-q

tert-butyl (3-oxopropyl)(pyridin-3-ylmethyl)carbamate s2-q

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled.

tert-butyl (3-oxopropyl)(pyridin-2-ylmethyl)carbamate s2-r

1255 282 282 200	512	¥8	61. 58	8 8
8 CHURCHURCH	V	37	37	77

Note: The spectrum contains a mixture of amide rotamers.

18.20 50.70 50

tert-butyl (3-oxopropyl)(pyridin-4-ylmethyl)carbamate s2-s

5, 5, 6,	116	49	53 65	12 NG	-
00 00 00	N N	-	(C) (C)	O O	
\sim	1.1		- V	· · · ·	

22.6

Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (3-oxopropyl)(pyridin-4-ylmethyl)carbamate s2-s

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major rotamer was labelled.

tert-butyl (3-oxopropyl)(quinolin-4-ylmethyl)carbamate s2-t

8	88	201 612 62 92 102 51 612 62 92 102	56	8	8 8	374
o	ő	SSI 5 5 1	T	~ 7	37	77

tert-butyl (3-oxopropyl)(quinolin-4-ylmethyl)carbamate s2-t

2 2 2 2 2	X X X X X X X	8	815	ă
<u> </u>	ន្តនុន្តនួន	ä	\$ \$ \$ \$	2
2373	1444	T	134	

tert-butyl 3-(((tert-butoxycarbonyl)(3-oxopropyl)amino)methyl)-1H-indole-1-carboxylate s2-u

tert-butyl 3-(((*tert*-butoxycarbonyl)(3-oxopropyl)amino)methyl)-1H-indole-1-carboxylate s2-u

tert-butyl (3-oxopropyl)(thiophen-3-ylmethyl)carbamate s2-v 222 -3.511 4.415 ₹ T 88 8

S392

Note: The spectrum contains a mixture of amide rotamers.

9.726

S395

tert-butyl (ferrocenyl)(3-oxopropyl)carbamate s2-x

Note: The spectrum contains a mixture of amide rotamers.

89.6

17 188

3-(benzyloxy)propanal s2-y

3-(benzylthio)propanal s2-z

9.710

tert-butyl (2-oxoethyl)(phenethyl)carbamate s2-aa

*****	£%&&%%%	6 9 9
	addddd	マ

¥9 77

tert-butyl (R)-(3-oxopropyl)(1-phenylethyl)carbamate s2-ab

S405

tert-butyl benzyl(3-(2-tosylhydrazono)propyl)carbamate 1a

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 8	88 S	କ୍ଟ ମ	89 R
CHERCHERCHERCHERCHERCHERCHERCHERCHERCHER	1 7	372	99	マント

tert-butyl (3-methoxybenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1c

tert-butyl (2-methoxybenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1d RRA 3.3814

7.109 6.994 6.914 6.914 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.874 6.974 7.009

MA MA

Ř.Ř

tert-butyl (2-methoxybenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1d

	157.150	-149.931 146.647 143.894	125.450 129.556 129.556 120.565 120.556	-110.156	23 K	55.053	6.378 6.760	-31.407 -28.400 -21.572
--	---------	--------------------------------	---	----------	------	--------	----------------	-------------------------------

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled. S413

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-(2-tosylhydrazono)propyl)carbamate 1e Image: Image:

tert-butyl (3,5-bis(trifluoromethyl)benzyl)(3-(2-tosylhydrazono)propyl)carbamate 1e

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl (4-bromobenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1f

888¥

2,434

585 777 777

8.098 8.098 8.098 8.098 8.076 8.076 8.076 8.078 8.078 8.078 9.078

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.

tert-butyl (4-nitrilebenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1h

12 X 28 21 23 28 28 28 28 28 28 28 28 28 28 28 28 28	392	R R	418	8 S
S C C C C C C C C C C C C C C C C C C C	V	~ 7	~~	77

tert-butyl (4-nitrobenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1i

12212 888 889 800 879 888 889 889 889 889 889 889 889 889	43 (3	র্ র	କ୍ଷ	ବ୍ଞ
0 FFFFFFFFFFFFFFF		(C) (C)	N N	
	\sim	11	\sim	11

tert-butyl (2-chloro-4-nitrobenzyl)(3-(2-tosylhydrazono) propyl)carbamate 1j

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl (3-vinylbenzyl)(3-(2-tosylhydrazono)propyl) carbamate 1k

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl ((E)-2-methyl-3-phenylallyl)(3-(2-tosylhydrazono) propyl)carbamate 11

<u>183</u>

200-

H-650

H 80 2.18

8.55

0.5

1.0

번원

R

tert-butyl (3-phenylprop-2-yn-1-yl)(3-(2-tosylhydrazono) propyl)carbamate 1m 3888

Ř

\$8

Ĭ.

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.

tert-butyl (3-phenylprop-2-yn-1-yl)(3-(2-tosylhydrazono) propyl)carbamate 1m

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl phenethyl(3-(2-tosylhydrazono)propyl)carbamate 1n

tert-butyl (cyclohexylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 10

222 233 2842 122 233 2842 122 233 2842	22 11 22 29 18 20 10 20 20 20 20 20 20 10 11 20 20 20 20 20 20 20 20 20 20 20 20 20
CITATION CON	

tert-butyl (cyclohexylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 10

Č,	<u> 2</u> 4 6	88	3	蒸	5	8822336
2	훈동문	<u>8</u> 8	ĝ	8	\$	6 588823
	111	N7			Ĩ	STR-1

benzyl N-(tert-butoxycarbonyl)-N-(3-(2-tosylhydrazono) propyl)glycinate 1p

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.
benzyl N-(tert-butoxycarbonyl)-N-(3-(2-tosylhydrazono) propyl)glycinate 1p

16	<u> </u>	833798 837978 80799 80798 80799 8079 807	8	811	19 E	¥8 ₹
8	럾중군조	<u> </u>	8	8	8 9	ਛੋਲੇ ਸ਼ੋ
	1 11 1	<u> </u>				

tert-butyl (pyridin-3-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1q

tert-butyl (pyridin-2-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1r

888 8	111111111111111111111111111111111111111	514	3.8	분성호	¥ 8
? ? ?	SCHERCHERCHERCHERCHERCHERCHERCHERCHERCHER	17	77	202	77

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.

tert-butyl (pyridin-2-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1r

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl (pyridin-4-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1s

8	56666666666666666666666666666666666666	318	32	2868	FF 15 22
00 1	REFERENCE REFERENCE	V	37	2000	マンファ

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.

tert-butyl (pyridin-4-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1s

Ř	£ \$ 6 8	ē	82	S.	5	8	ž	888
12	S S C 1	2	23 25	5	ã		1	32 3
				- 14	ă l			68 8
	111		- N /					

tert-butyl (quinolin-4-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1t

	X.	독려 옥전국위치를 뜻했는지
0 00 0 F F F F F F F F F F F F F F F F	1	20 addada 1111

tert-butyl (quinolin-4-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1t

Note: The spectrum contains amide rotamers and E/Z isomers of hydrazone C=N bond. The major isomer was labelled.

tert-butyl 3-(((tert-butoxycarbonyl)(3-(2-tosylhydrazono) propyl)amino)methyl)-1H-indole-1-

05 000000000000000000000000000000000000	🛯 🗤 👘 carboxylate 1u					
	S 49 (20 (20 (20 (20 (20 (20 (20 (20 (20 (20		2	표정	<u>8</u> 8	8
	19 23	-	2		ಹಹ	-
	57 79	Ŷ	1	77	<u> 1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2
חווור ררר ריזו זו	r 11		I.	1.1	T I	I

tert-butyl (thiophen-3-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1v

20 20 20 20 20 20 20 20 20 20 20 20 20 2	8 8	12 2 2	22288999	₹÷
Ø C C C C C C C C C C C C C C C C C C C	72	ጜፕፖ	addada	77

tert-butyl (thiophen-3-ylmethyl)(3-(2-tosylhydrazono)propyl) carbamate 1v

tert-butyl (benzo[b]thiophen-3-ylmethyl)(3-(2-tosylhydrazono) propyl)carbamate 1w

tert-butyl (benzo[b]thiophen-3-ylmethyl)(3-(2-tosylhydrazono) propyl)carbamate 1w

tert-butyl (ferrocenyl)(3-(2-tosylhydrazono)propyl) carbamate 1x

22 22 23 23 23 23 23 23 23 23 23 23 23 2	R 19 5 8 8	នុន្	20 <u>50</u> 51 51	8 8 R
22772272999999	22222	~~~	4444	マイプ
	<u> </u>	11		$\sim 10^{\circ}$

N'-(3-(benzyloxy)propylidene)-4-methylbenzenesulfonohydrazide 1y

-8.9693	7,8082 7,7875 7,5855 7,5855 7,5855 7,5855 7,5855 7,5855 7,5855 7,5856 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,59566 6,5	4,4533	3.5100 3.5941 3.5794 3.5794 3.5566 3.5522	25371 2527 25079 24774 24774 24625 23810 23810	
		\sim			

N'-(3-(benzyloxy)propylidene)-4-methylbenzenesulfonohydrazide 1y

511	669	222 236 230 230 230 230 230 230 230 230 230 230	8	8	8	47
÷	ŧ,	888888	3.5	7.4	8.8	1.5
1	1	17 17 17 17 17	Ĩ.	Ŷ	ĩ	7

N'-(3-(benzylthio)propylidene)-4-methylbenzene sulfonohydrazide 1z

8	841 841 741 741 741 741	
23	8 8 8 8 8 8 8 8 8 8	
ī		

~38.843 -34.620	~ 30.358	-24.261
		1

170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	
Note:	The spe	ectrum	contains	s E/Z is	omers	of hydra	azone C	¦=N boi	nd. The	major i	somer v	vas label	lled.				S45	7

4-methyl-N'-(5-phenylpentylidene)benzenesulfonohydrazide 1aa

Note: The spectrum contains a mixture of E/Z isomers of hydrazone C=N bond.

4-methyl-N'-(5-phenylpentylidene)benzenesulfonohydrazide 1aa

161	754	214	238	242
Ŕ	Ŕ	R	প্ল	z.
2	4	1	١	5

4-methyl-N'-(5-phenylpentylidene)benzenesulfonohydrazide 1ab

Note: The spectrum contains a mixture of amide rotamers and E/Z isomers of hydrazone C=N bond.

tert-butyl phenethyl(2-(2-tosylhydrazono)ethyl)carbamate 4a

tert-butyl phenethyl(2-(2-tosylhydrazono)ethyl)carbamate 4a

Peak Table

PDA Ch1 261nm							
Peak#	Ret. Time	Area	Area%				
1	21.200	2875208	51.234				
2	26.577	2736751	48.766				
Total		5611959	100.000				

tert-butyl phenethyl(2-(2-tosylhydrazono)ethyl)carbamate 4a

Peak Table

	PDA ChI 201nm							
I	Peak#	Ret. Time	Area	Area%				
I	1	21.014	6802850	99.578				
ſ	2	26.806	28815	0.422				
ſ	Total		6831665	100.000				

many at which is shown

Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (S)-2-phenylpyrrolidine-1-carboxylate 2a

tert-butyl (S)-2-phenylpyrrolidine-1-carboxylate 2a

Peak Table

PDA Chl	217nm		
Peak#	Ret. Time	Area	Area%
1	7.363	6745283	50.340
2	9.015	6654094	49,660
Total		13399377	100.000

tert-butyl (S)-2-phenylpyrrolidine-1-carboxylate 2a

- 176	n mile	- 1	
. 199			

PDA Chl	218nm		
Peak#	Ret. Time	Area	Area%
1	7.258	624630	4.031
2	8.728	14872926	95,969
Total		15497556	100.000

Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (S)-2-(4-methylphenyl)pyrrolidine-1-carboxylate 2b

tert-butyl (S)-2-(4-methylphenyl)pyrrolidine-1-carboxylate 2b

Peak Table

PDA CIII	21/100		
Peak#	Ret. Time	Area	Area%
1	19,437	17885081	49.332
2	20.797	18369380	50.668
Total		36254461	100.000

DDA (211-217-m)

Peak Table

	PDA Chl	217nm		
	Peak#	Ret. Time	Area	Area%
ſ	1	18.397	1168290	3.566
ſ	2	19.545	31596299	96.434
ſ	Total		32764589	100.000

7.220 7.204 7.188 6.762 6.750 6.750	4.935	4.741	3.786	3.613	2,303	1.898	1.848 1.837 1.838	1.201	
V V	ĺ	Ĩ	Ĩ	T	Ĩ	5			

Peak Table

_ Peak#	Ret. Time	Агеа	Area%
	13.970	15276980	49 674
	16777	15477404	50 326
Tot	1	30754385	100 000

Peak Table

PDA Chi	220nm		
Peak#	Ret. Time	Area	Area%
1	14.060	1421822	3.738
2	16.751	36617980	96.262
Total		38039802	100.000

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

PDACIII	270000		
Peak#	Ret. Time	Area	Area%
1	9.763	8228725	50.659
2	11.771	8014681	49.341
Total		16243406	100.000

DD 8 (21.1 0.76

Peak Table

PDA CILI	2/3mm		
Peak#	Ret. Time	Area	Area%
1	9,571	7884496	95.676
2	11.706	356343	4.324
Total		8240839	100.000

THE R. LEWIS CO., LANSING, MICH.

170

-63.367

Peak Table

PDA CBL	22/mm		
Peak#	Ret. Time	Area	Area%
1	8.755	7393606	49.914
2	10.355	7419192	50.086
Total		14812798	100.000

TRACTOR AND ADDRESS OF ADDRESS

Peak Table

PDA Chi	22/nm		
Peak#	Ret. Time	Area	Area%
1	8.987	278093	2.352
2	10.305	11545314	97.648
Total		11823407	100.000

Peak Table

PDA Chi	229nm		1 Char Interio
Peak#	Ret. Time	Area	Area%
1	8.072	22595043	49.762
2	10.190	22810923	50.238
Total		45405966	100.000

Peak Table

P	DA Chi	229nm		
	Peak#	Ret. Time	Area	Area%
	1	8.116	1659147	4.007
	2	10.231	39748284	95,993
	Total		41407430	100.000

THE R. LEWIS CO. LANSING

S492

0

.017	.033	.040	.056	071	.094	.851	.869	.887
Ξ.	=	=	=	=	=	2	1	吕
÷.	÷	÷	÷	÷	÷	÷	÷	÷
μ.	- L-	-	4	L	4	j.	1	-

The other set of carbons belongs to amide rotamer

PDA Chi	254mm		
Peak#	Ret. Time	Area	Area%
1	5.784	851042	50.365
2	6.325	838702	49.635
Total		1689744	100.000

and the second second

 		_	
100 B			

PDA Chi	22.5nm		
Peak#	Ret. Time	Area	Area%
1	5.707	207393	6.522
2	6.221	2972746	93.478
Total		3180139	100.000

WHEN IS AND DURING STREET,

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

PDA Ch1	248nm		
Peak#	Ret. Time	Area	Area%
1	9.026	16676449	49.534
2	12.244	16989933	50,466
Total		33666382	100.000

Peak Table

PDA Chi	228nm		
Peak#	Ret. Time	Area	Area%
1	9.085	3805213	3.452
2	12.380	106441374	96.548
Total		110246588	100.000

many at some of second

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

PDA Ch1	291nm		
Peak#	Ret. Time	Area	Area%
1	7.598	31615217	49.618
2	15.345	32102576	50.382
Total		63717793	100.000

Peak Table

PDA Chl	290mm		
Peak#	Ret. Time	Area	Area%
1	7.753	1272172	4.224
2	15.078	28843392	95.776
Total		30115564	100.000

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
1	15.522	12157594	48.008
2	16.677	13166744	51.992
Tota		25324338	100.000

PDACH	<u>204nm</u>		
Peak#	Ret. Time	Area	Area%
1	15.793	370042	3.278
2	16.611	10917000	96.722
Total		11287042	100.000

many at some strong of

tert-butyl (*S*)-2-(3-vinylphenyl)pyrrolidine-1-carboxylate 2k

8182	22 22 36 88 63 8 82	S X S R	22 23	8	868568	14
	ဖဖဖဖဖဖ	2273	57	C4	1111	T

Note: The spectrum contains a mixture of amide rotamers.

tert-butyl (*S*)-2-(3-vinylphenyl)pyrrolidine-1-carboxylate 2k

Peak Table

PDA Ch1	240nm		
Peak#	Ret. Time	Area	Area%
1	9.276	15232694	49,401
2	10.261	15602009	50.599
Total		30834703	100.000

tert-butyl (*S*)-2-(3-vinylphenyl)pyrrolidine-1-carboxylate 2k

Peak Table

PD	A Chi	240nm		
P	eak≢	Ret. Time	Area	Area%
	1	9.252	43687490	96.398
	2	10.358	1632597	3.602
	Total		45320087	100.000

THE A STATE AND A REAL

- 154.718	139.287 138.027	- 128.817 - 128.046 - 126.042 - 123.533			79.068	 64.380	-46.998	- 31.818 - 28.469 - 23.213	- 14.626	
The other	r set of carbo	Boc								
belongs 1	to amicie rota	mer								
								hull	L	
60 150	140	130 120	110 100	90	80 70	60	50 40	30	20 10	

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled.

PDA Chi	262mm		
Peak#	Ret. Time	Area	Area%
1	9.933	9286580	49.505
2	10.998	9472139	50.495
Total		18758720	100.000

Peak Table

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
1	9.940	550651	3.076
2	11.189	17352179	96.924
Total		17902831	100.000

Note: The spectrum contains a mixture of amide rotamers.

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled .

	10 C I		100

PDA Ch1	252nm		
Peak≢	Ret. Time	Area	Area%
1	5.020	5369381	48.095
2	5.431	5794662	51.905
Total		11164043	100.000

Peak Table

PDA Chl	252nm		
Peak#	Ret. Time	Area	Area%
1	5.012	4394186	20.526
2	5.423	17013445	79.474
Total		21407631	100.000

ଟ୍ରହ୍ମ	<u>sss</u>	ž,	88888
17	2772	Ci i	7777

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled .

Peak Table

PDA Chl	227nm		
Peak#	Ret. Time	Area	Area%
	6.200	1364023	47.554
2	6.683	1504344	52.446
Total		2868368	100.000

Peak Table

PDA Chi	218nm		
Peak#	Ret. Time	Area	Area%
1	6.159	22513129	61.646
2	6.607	14007089	38.354
Total		36520218	100.000

tert-butyl (S)-2-cyclohexylpyrrolidine-1-carboxylate 20

tert-butyl (S)-2-cyclohexylpyrrolidine-1-carboxylate 20

Peak Table

PDA Ch1	217mm		
Peak#	Ret. Time	Area	Area%
1	5.959	1079166	49.544
2	6.261	1099033	50.456
Total		2178198	100.000

tert-butyl (S)-2-cyclohexylpyrrolidine-1-carboxylate 20

Peak Table

PDA Chl	216nm		
Peak#	Ret. Time	Area	Area%
1	5.911	2534681	94.126
2	6.345	158166	5.874
Total		2692847	100.000

Note: The spectrum contains a mixture of amide rotamers.


```
C:\EZStart\Projects\Default\Data\YW-0480-ADH-3%-0.8mL-iPrOH-1
C:\Documents and Settings\zhang\Desktop\DSW\0404.met
```


N HHOHN	5 N	2	- 4- N- NN N N N
- a a a a a a a a a a a a a a a a a a a	4.0		100000000
4 44000	6 h	9	M 0 0 0 00 m M H
00 NNNNN	ਚ ਚ	m	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Î Î	T T	

The other set of carbons belongs to amide rotamer

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled .

Peak Table

PDA Chl	254mm		
Peak#	Ret. Time	Area	Area%
1	19.923	6434525	50.006
2	26.125	6432964	49,994
Total		12867489	100.000

Peak Table

PDA COL	240mm		
Peak#	Ret. Time	Area	Area%
1	19.465	6725777	96.117
2	25.966	271690	3.883
Total		6997467	100.000

terra de latera de las dest

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

PDA Chl	260nm		
Peak#	Ret. Time	Area	Area%
1	7.815	7015012	49.882
2	11.701	7048075	50.118
Total		14063086	100.000

 It is the set of the	

J	PDA Ch1	248nm		
	Peak#	Ret. Time	Area	Area%
	1	7.827	1183408	7.695
	2	11.767	14195583	92,305
ĺ	Total		15378991	100.000

Peak Table

PDA Chi	<u>282nm</u>		
Peak#	Ret. Time	Area	Area%
1	13.126	94072	49.600
2	15.163	95589	50,400
Total		189661	100.000

Peak Table

PDA Chl	254nm		
Peak#	Ret. Time	Area	Area%
	13.845	179792	2.254
2	15.139	7796365	97.746
Total		7976157	100.000

Note: The spectrum contains a mixture of amide rotamers.
tert-butyl (S)-2-(quinolin-4-yl)pyrrolidine-1-carboxylate 2t

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled .

tert-butyl (S)-2-(quinolin-4-yl)pyrrolidine-1-carboxylate 2t

Peak Table

PDA ChI	273nm		
Peak#	Ret. Time	Area	Area%
1	11.019	8445144	50.362
2	15.437	8323572	49.638
Total		16768716	100.000

tert-butyl (S)-2-(quinolin-4-yl)pyrrolidine-1-carboxylate 2t

Peak Table

PDA Chl	273nm		
Peak#	Ret. Time	Area	Area%
1	11.218	378521	1.413
2	15.031	26417113	98.587
Total		26795634	100.000

.

tert-butyl (S)-3-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-1H-indole-1-carboxylate 2u

Note: The spectrum contains a mixture of amide rotamers and the chemical shift of the major isomer was labelled .

tert-butyl (S)-3-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-1H-indole-1-carboxylate 2u

Peak Table

PDA Chi	<u>201nm</u>		
Peak#	Ret. Time	Area	Area%
1	9,493	13103308	49.837
2	12.872	13189163	50.163
Total		26292472	100.000

tert-butyl (S)-3-(1-(tert-butoxycarbonyl)pyrrolidin-2-yl)-1H-indole-1-carboxylate 2u

Peak Table

PDA Chi	201nm		
Peak#	Ret. Time	Area	Area%
1	9.340	412776	2.471
2	12.639	16292498	97.529
Total		16705273	100.000

and a second of second

Note: The spectrum contains a mixture of amide rotamers.

Peak Table

j	PDA Chl	240mm		
	Peak#	Ret. Time	Area	Area%
	1	6.162	11440723	49,505
	2	6.598	11669290	50.495
	Total		23110013	100.000

Peak Table

PDA Chi	240nm		
Peak#	Ret. Time	Area	Area%
	6.072	788163	4.402
2	6.495	17117570	95.598
Total		17905733	100.000

The second second second second

7.849 7.727 7.716 7.352 7.352 7.256	5.371 5.291 5.295 5.195	3.707 3.655 3.605 3.504	2.308	1.978	1.483	1.104
54 542		5122		- SZ -	Ŷ	L

m		40000				
LO	0 1 1	00044			4	N 00 4 00
-0	000	10000	6	6	N	A 9 9 N
	o o N	400	2	e,	- vi	~~~~
LÔ.	400	00000	0	9	9	m ⊷ ∞ m
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- CD		~ ~ ~ ~ ~
					1	111
	117					





Peak Table

PDA Chl	<u>254mm</u>		
Peak#	Ret. Time	Area	Area%
1	10.867	6709263	50.330
2	14.442	6621274	49.670
Total		13330538	100.000



#### Peak Table

PDA ChI	245mm		
Peak#	Ret. Time	Area	Area%
1	11.015	209356	1.927
2	14.662	10653571	98.073
Total		10862927	100.000

____









#### Peak Table

PDA UIL	<u>221mm</u>		
Peak#	Ret. Time	Area	Area%
1	9,795	13424308	49,729
2	12.914	13570388	50.271
Total		26994695	100.000

THE REPORT OF A DESCRIPTION OF A DESCRIP



	11 May 1		
	 <b>- 1</b> 1	20 A	

PDA Chi	254nm		
Peak≢	Ret. Time	Area	Area%
1	9.847	5956130	95.725
2	13.103	265997	4.275
Total		6222127	100.000







3.406	8.232 7.060 5.578	629	570
14	222	a a a a a a a a a a a a a a a a a a a	52 34







#### Peak Table

PDA Chl	211nm		
Peak#	Ret. Time	Area	Area%
	20.912	27749386	49.717
2	24.389	28065521	50.283
Total		55814907	100.000



Peak Table

PDA Chl	211nm		
Peak#	Ret. Time	Area	Area%
1	19.892	97025230	92.413
2	24.783	7966048	7.587
Total		104991278	100.000















#### Peak Table

MUA UNI	<u>221mm</u>		
Peak#	Ret. Time	Area	Area%
1	13.119	10121942	49.525
2	14.484	10316236	50.475
Total		20438178	100.000

THE REPORT OF A DESCRIPTION OF A DESCRIP



Peak Table

PDA Chl	221nm		
Peak#	Ret. Time	Area	Area%
	13.552	1826329	4.544
2	14.425	38369817	95.456
Total		40196145	100.000

## cyclopentylbenzene 2aa



## cyclopentylbenzene 2aa









#### tert-butyl (S)-3-phenylpyrrolidine-1-carboxylate 2ab



Peak Table

PDA Chl	205nm		
Peak#	Ret. Time	Area	Area%
	8.394	19289115	48.266
2	9,498	20674898	51.734
Total		39964013	100.000

.

## tert-butyl (S)-3-phenylpyrrolidine-1-carboxylate 2ab



#### Peak Table

PDA Chl	209nm		
Peak#	Ret. Time	Area	Area%
1	8.422	5999661	16.798
2	9.483	29716364	83.202
Total		35716024	100.000



Note: The spectrum contains a mixture of amide rotamers.

## tert-butyl (S)-2-methyl-2-phenylpyrrolidine-1-carboxylate 5a



### tert-butyl (S)-2-methyl-2-phenylpyrrolidine-1-carboxylate 5a



Peak Table

PDA Ch1	254nm		
Peak#	Ret. Time	Area	Area%
1	6.312	294717	49.692
2	6.922	298369	50,308
Total		593085	100.000
#### tert-butyl (S)-2-methyl-2-phenylpyrrolidine-1-carboxylate 5a



Peak Table

]	PDA Ch1	222nm		
	Peak#	Ret. Time	Area	Area%
	1	6.277	10586236	90.549
	2	6.942	1104905	9.451
	Total		11691141	100.000





*tert*-butyl (quinolin-4-yl((2,2,6,6-tetramethylpiperidin-1-yl)oxy)methyl)(3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)propyl)carbamate 3t



Note: The hydrogens in pink are correlated with the ones in red, indicating either  $H_a$  or  $H_b$  has a chemical shift around 0.16 ppm while the other (in red) is around 1.24 ppm. ^{\$584}



Note: From HSQC, it is confirmed that the protons with chemical shift around 3.17 - 3.35 ppm are attached to two different carbons, as highlighted in green and pink balls. Moreover, the proton with chemical shift around 7.40 ppm is highly deshielded by two heteroatom and sp² carbon, and it is confirmed from HSQC that the proton is from the benzylic methine group.

#### **DEPT Experiment of Quaternary Carbons**







