
Persistent link: http://hdl.handle.net/2345/bc-ir:108243

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2018

Copyright is held by the author. This work is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

Nonlocal Effects in Plasmonic
Nanostructures’ Optical Response and
Electron Scattering

Author: Jiantao Kong

http://hdl.handle.net/2345/bc-ir:108243
http://escholarship.bc.edu


Nonlocal Effects in Plasmonic 
Nanostructures’ Optical Response and 

Electron Scattering 
 

Jiantao Kong 
 
 
 
 
 
 
 

 
 

 
 
 

A dissertation 
 

submitted to the Faculty of  
 

the Department of Physics 
 

in partial fulfillment 
 

of the requirements for the degree of 
 

Doctor of Philosophy in Physics 
 

 
 

 
 
 
 
 

 
Boston College 

Morrissey College of Arts and Sciences 
Graduate School 

 
 

October 2018 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright 2018 Jiantao Kong 



 

 
NONLOCAL EFFECTS IN PLASMONIC NANOSTRUCTURES’ OPTICAL 

RESPONSE AND ELECTRON SCATTERING 
 

Jiantao Kong 
 

Advisor: Prof. Krzysztof Kempa 
 
 
 

Abstract: 

Nonlocal effects, the wavenumber dependence in a medium's response to external 
disturbance, is treated in this thesis. Numerical computation methods to include nonlocal 
effects in plasmonic nanostructures’ electromagnetic response are discussed, and 
applications of plasmonics to a few other fields are elaborated. First, a computation scheme 
is proposed to extend conventional finite-difference time-domain (FDTD) methods to 
nonlocal domain. An effective film whose response is derived from Feibelman's d-function 
formalism is to replace the highly non-uniform metal surfaces in simulations. It 
successfully produces numerical results of plasmonic resonance shift and field 
enhancement which agrees with the experimental data to first order. This scheme is still 
classical, thus very fast compared to the other first principle quantum methods such as 
density functional theory. Then electron's scattering rate in an effective medium with 
plasmonic nanostructures embedded-in, in random phase approximation, is developed, 
with the wavenumber dependence in the medium’s response accounted. Utilizing this 
calculation scheme of electron’s scattering rate, further specific applications are following. 
We show by simulation of the plasmonic nanostructures and calculation of the electron 
scattering rates that hot-electron plasmon-protection (HELPP) effects can protect the extra 
energy of hot electrons from being dissipated as heat. This can be a prototype of the 3rd 
generation solar cells. In another application, we investigate the electron polar-optical-
phonon (POP) scattering in heavily-doped semiconductors when plasmonic nanostructures 
are embedded-in. We show that electron-POP scattering can be significantly suppressed 
compared to that of bulk semiconductors. In the third application, we propose the 
plasmonic multiple exciton generation (PMEG) scheme, with simulations and calculations, 
showing that the efficiency of multiple exciton generation in conventional semiconductors 
could be enhanced significantly with proper designed plasmonic nanostructures embedded-
in or attached-adjacent. 
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CHAPTER 1 Introduction and Overview 

 

1.1 The nonlocal problem 

Description of propagation of disturbance in a medium, such as electromagnetic wave, 

must include the spatial and temporal variables, r and t. Often, Fourier transform is 

performed, and the variables become q the wavenumber, and ω the frequency. Response 

of the medium to an external impulse can be parametrized by the so-called response 

function which depends on the two variables q and ω. Q-dependence herein is termed 

nonlocality. It basically says that, response of the medium at a particular point not only 

depends on the material properties at that very point, but also depends on properties of 

other points within the medium. 

In fact, in describing a medium’s electromagnetic response, the macroscopic 

Maxwell equations are solved, accompanied by the constitutive relations involving the 

electric permittivity (dielectric function) ε(q,ω) (and the magnetic permeability µ(q,ω)). In 

many scenarios the ω-dependence is sufficient for the description and the q-dependence is 

unimportant and neglected, which is called local approximation. For example, metal’s 

optical response near its plasma frequency ωP can be very well described by the Drude 

model ε = 1 − ωP
2/ω2, which is ω–dependent only, i.e. local. In many other scenarios, the 

q-dependence is important or even dominant, for example the dielectric function of an 

electron gas at the low frequency limit, the Thomas-Fermi model ε = 1 + qTF
2/q2, where 

qTF is the Thomas-Fermi screening wavenumber. The only-q dependence shows clearly the 

dominance of nonlocal effects, in which case the ω–dependence doesn’t matter at all. A 

phenomenological hybrid of the above two is the hydrodynamic approximation ε = 1 − 
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ωP
2/(ω2−βq2). It reduces correctly to the Drude model in the long wavelength limit (q→0), 

and to the Thomas-Fermi model at the static limit (ω→0). 

In general, the constitutive relation in a linear medium’s electromagnetic response 

is expressed as 

      0, ' , ', ',d     D r r r r E r   (1.1) 

where   is the dielectric tensor. There is also a similar relation between magnetic 

quantities. If the medium is homogeneous and isotropic, the relation is simplified to  

      0, ' ' , ',d -     D r r r r E r  (1.2)  

After Fourier transforming the space variables Eq. (1.2) reads 

      0, , ,q q q    D E   (1.3) 

Q-dependence in the dielectric function above originates from the r` dependence in Eq. 

(1.1), and thus have the name nonlocality. 

Eq. (1.3) basically is the photon’s perspective, when it is incident on a medium. 

There’s an equivalent electron’s perspective, too, if we are to discuss one electron’s 

behavior inside a medium. The zeroth order interaction when an external electron is 

injected into a many-particle system is the bare Coulomb interaction vq. Taking into 

account screening by other particles, the effective interaction would in general become 

 
 ,

q
eff

v
v

q 
  (1.4) 

where ε(q,ω) includes information about all characteristic modes that many-particle system 

can sustain. ω-dependence here relates to the energy conservation in a scattering event, 

while the q-dependence parametrizes the conservation of momenta. 
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This thesis aims at adequate description of the problem of q-dependence 

(nonlocality), in Eqs. (1.3) and (1.4), for effective media made of plasmonic nanostructures. 

Chapter 2 proposes a numerical scheme to extend the conventional finite-difference time- 

domain (FDTD) method, to effectively account for the nonlocality. Chapter 3 gives general 

derivations of the electron’s scattering rate in a many-particle system, stressing the 

importance of the q-dependence in a few specific situations. Chapter 4 extends and applies 

the results of Chapter 3, proposing the so-called hot electron plasmonic protection (HELPP) 

scheme as a 3rd generation solar cell concept, involving simulations and calculations, as 

well as special treatment of the nonlocal effects in the response. Chapter 5 extends and 

applies the results of Chapter 3 to calculation of the electron - polar optical phonons (POP) 

scattering rates in heavily doped semiconductors, modified by embedding into them 

properly designed metallic nanostructures. The role of the response’s nonlocality is again 

emphasized. Chapter 6 applies the Chapter 3 results, investigating the so-called plasmonic 

multiple exciton generation (PMEG) scheme, as a novel 3rd generation solar cell concept. 
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1.2 Review of classical models 

This section reviews models of dielectric function (electric permittivity) which will be 

frequently visited and used throughout this thesis. There are numerous standard models 

based on classical electrodynamic theory or on many-particle quantum theory. The very 

first is the Drude model for simple metals [1, 2]  

  
 

2

1 p

i


 
  

 


 (1.5)  

where  

 2
0 0p n e m   (1.6)  

is the plasma frequency determined by the free electron density n0, m is the free electron 

mass, and γ is the damping parameter. Taking into account polarization of the inner ion 

core [3, 4], equation (1.5) modifies to  

    
 

2
p

core i


   
  

 


 (1.7)  

Drude model is local, i.e., it is the q = 0 (long wavelength) limit. The other extreme, the 

static (ω = 0) limit is Thomas-Fermi approximation [2],  

  
2

2, 0 1 TFqq
q

      (1.8)  

where qTF is the Thomas-Fermi screening wavenumber. Next model is the hydrodynamic 

approximation (HDA), which treats the electron gas as a classical fluid that obeys the 

Bernoulli equation [5, 6, 7]  

    
ne pn n n

t m m


 
       



v v v v E v B  (1.9)  

leading to 
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    
 

2

2, p
coreq

i q


   
   

 
 

 (1.10)  

where β comes from the electron pressure term in Eq. (1.9), and can be parametrized, or 

given quantum mechanically as 

 23
5 Fv   (1.11)  

Many-particle quantum theory, within the so-called random-phase-approximation (RPA), 

leads to the Lindhard function [8, 9, 10] 

  
2

32

4, 1 D
b

eq
q


 


    (1.12)  

where  

  
1

2
3 2 2

1

11 1 ln
2 2 1

sF
D s

s s

kmk s k
Q k 

  
      

  
  (1.13)  

and  

 
 , ,

2 2s
F F

isQ qk Q
Q k E

 
      (1.14)  

Lindhard function can also be extended as temperature dependent [9] 

  
1

3 2 2 0
1

ln
2 2

T sF
D T

s s

k kmk s k dk
Q k k





  
     

  
   (1.15) 

where 

  
 

2

2

2 , exp
1

k T

T k T

Tk ek
Te

 








 
    

  
 (1.16)  

It can be shown [11] that Lindhard function reduces to the Drude formula Eq. (1.5) in the 

long wavelength limit (small q but finite ω), and to the Thomas-Fermi result Eq. (1.8) at 

the static limit (vanishing ω but finite q). It provides also a q-dependent extension, which 
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for large ω and small q is consistent with the HDA formula Eq. (1.10), and in particular it 

yields Eq. (1.11). Improvements to the RPA Lindhard formula include those by Hubbard, 

Mermin, Sjolander, etc. [see chapter 5 of Ref. 11], but are less convenient to use than Eq. 

(1.12).  
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CHAPTER 2 

Effective Film Approach for Nonlocal Electromagnetic Response of 

Plasmonic Nanostructures 

 

Outline: For plasmonic systems too small for classical, local simulations to be valid, but 

too large for ab initio calculations to be computationally feasible, we developed in this 

chapter a practical approach — a nonlocal-to-local mapping that enables the use of a 

modified local system to obtain the response due to nonlocal effects to lowest order, at the 

cost of higher structural complexity. In this approach, the nonlocal surface region of a 

metallic structure is mapped onto a local dielectric film, mathematically preserving the 

nonlocality of the entire system. The most significant feature of this approach is its full 

compatibility with conventional, highly efficient FDTD simulation codes. Our optimized 

choice of mapping is based on the Feibelman’s d-function formalism, and it produces an 

effective dielectric function of the local film that obeys all required sum rules, as well as 

the Kramers-Kronig causality relations. We demonstrate the power of this approach 

combined with an FDTD scheme, in a series of comparisons with experiments and ab initio 

DFT calculations from literature, for structures with dimensions from the sub-nano to 

micro range.  This project was concluded as a publication: J. Kong, A. Shvonski and K. 

Kempa, “Nonlocal response with local optics”, Phys. Rev. B 97, 165423 (2018). 
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2.1. Nonlocal problem in FDTD simulations, and 

the recent effective film approaches 

Conventional, numerical methods of studying plasmonic and nanophotonic systems, such 

as the finite-difference time-domain (FDTD) method [1], are based on solving macroscopic 

Maxwell’s equations on a grid of points in the real space, 

 
0

f

f

t

t




    



    



BD E

DB H J
 (2.1)  

At each grid point two material parameters are defined: the electric permittivity  and the 

magnetic permeability . In the most efficient and popular FDTD codes (MEEP, CST and 

COMSOL) [2], these are functions of the propagating wave frequency () only, and the 

important dependency on the wave vector q of the propagating wave (see Chapter 1 

discussions) is typically neglected. This is equivalent to the assumption of locality: the 

response of the medium at a point r in space is assumed to depend only on the material 

response at the same point r. However, nonlocal effects might become important, in 

particular in the highly non-uniform regions of samples. Ways to treat them have been 

proposed, beginning with the pioneering work of Pekar [3], as well as in the follow up 

works in the 60-ties [4] and the 80-ties [5], and more recently [6-11].  

There is no easy way to include nonlocality in the FDTD numerical codes. However, 

for simple interfaces this can be accomplished with the HDA [12]. Similarly, one can 

employ the quantum mechanical d-function formalism of Feibelman [13], which also 

provides a simple, analytical expression for the reflection coefficient, valid for small q, 
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   

   

2

2

1

1
m v v m

p
m v v m

p p i Q p d p d
r

p p i Q p d p d

 

 





    
 
    
 

 (2.2)  

In addition to  and , there are two surface dielectric response functions (d-functions), 

which also depend only on  [14]. Moreover, by a proper choice of the reference frame 

(with zero at the jellium edge), d‖ = 0, and 

  
 

 

,0,

,0,

dz z z
d

dz z

 


 










 (2.3)  

Similar to  and , these functions can be calculated in an ab initio manner for a given 

metal [15-17], and then used in simulating the response of metal-containing structures via 

a Fresnel-like strategy. However, while the d-function formalism was very useful in 

understanding the basic physics of surface plasmons on simple metallic surfaces and simple 

large-scale metallic structures, treatment of more complex systems or ultra-small nano-

structures cannot benefit directly from this approach. As pointed out above, implementing 

this approach into highly efficient FDTD codes is difficult. In principle, nonlocality can be 

fully included in more fundamental treatments of the material response, such as Density 

Functional Theory (DFT) [18]. However, due to limitations on computer power, this ab 

initio approach can handle only ultra-small structures, of hundreds of atoms at most (i.e. a 

few nm in diameter). Therefore, there is a need for a theory capable of handling nonlocal 

effects in nanostructures with intermediate sizes, at least for small q. 

In an attempt to respond to this need, a recent work [19] proposed an idea of 

mapping the nonlocal surface region of a metal into a fictitious local dielectric effective 

film. The nonlocality of the surface region was modeled using the hydrodynamic 

approximation. This mapping was shown to be valid only for very small q and  [20]. In 
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an earlier work, we employed a similar mapping, but using instead the d-function 

formalism [21]. Both works produced mapping relations that were not unique and, 

therefore, additional constraints are needed. In Refs. [19-21] no effort was made to make 

the local dielectric functions of the fictitious films physical; these were just mapping 

functions. However, physicality (at least causality) of the dielectric functions is implied by 

the FDTD schemes, which supposed to benefit from the nonlocal to local mapping. In this 

chapter, we show how to develop a mapping process, which is fully causal (i.e. physical), 

as well as satisfies various sum rules. We show that our mapping works quantitatively in a 

much larger region of phase-space (q – ), than the earlier mappings [19, 21]. We 

demonstrate, that with our mapping, conventional FDTD simulations acquire nonlocal 

capability, sufficient for a quantitative description of various nanoscopic systems. 
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Fig. 2.1 (a) Diffusive character of electron density profile n(x) at a metal surface. (b) 
Gradient of the red color represents the diffusive profile of electrons confined by the 
jellium (the uniform positive charge, extending below the jellium boundary). (c) Local 
model of the metal surface, with a hypothetical film (orange color) of thickness D replacing 
the non-uniform electron density profile in the transition region. This figure is from: J. 
Kong, A. Shvonski and K. Kempa, “Nonlocal response with local optics”, Phys. Rev. B 97, 
165423 (2018). 
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2.2 Nonlocal to local mappings 

Consider an interface between metal and vacuum where huge electron density gradients 

exist. While, in the classical description, metal electrons are sharply confined to the bulk, 

quantum mechanics predicts the electron density near the metal surface to have a smooth 

profile, n(x), as shown schematically in Figs. 2.1(a) and (b).  The transition region thickness 

is of order D. Such a smooth electron density profile can be calculated self-consistently in 

the jellium model [22]. The electromagnetic response for a metallic surface with such a 

profile has been calculated [15-17], and allowed determination of the d-functions for many 

metals. The d-function formalism provides closed formulas for long-wavelength, nonlocal 

extensions of local Fresnel formulas; thus, it is a perfect platform to develop a nonlocal-to-

local mapping. 

In our earlier work [21] we based the mapping on the Feibelman formula [13] for 

the reflection coefficient of a p-polarized light [Eq. (2.2)]. By comparing this expression 

to the corresponding small-D expansion of the local, Fresnel reflection coefficient for the 

model shown in Fig. 2.1(c), we obtained the effective dielectric function of the fictitious 

film [21] 

 ( )( )
[ ( ) 1] ( )s

D
d

 
 

  



 (2.4)  

where     is the Drude dielectric function of the metal and  d   is the d-function. 

Even though s obtained from Eq. (2.4) follows from a correct, formal mapping procedure, 

it is unphysical. This is due to an ad-hoc choice, ( )s D   , employed in the derivation 

of Eq. (2.4). Clearly, s diverges for large , since ( ) 1   , and ( ) ( ) 0d z z dz 



   
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(the induced charge density  vanishes for sufficiently large frequency). Moreover s 

violates causality. To see this, we examine the corresponding susceptibility, 

 ( ) 1 [1 4 ( )]( )
4 4 ( ) ( )

s
s

D
d

   
 

   

 
   (2.5) 

Causality requires that proper response functions (e.g. susceptibility), when analytically 

continued into the upper complex half-plane of variable z = Re() + i Im(), are analytic 

and vanish for z  and Im() > 0 [23]. Since the Drude susceptibility, ( )  , and d() 

are causal, they satisfy these conditions, and so from Eq. (2.5) we have, for z   and 

Im() > 0, 

 [1 4 ( )]( )
4 ( ) ( )s

D zz
z d z






   (2.6) 

This is a clear violation of the causality condition. 

To eliminate this problem, we have investigated several alternative effective 

response functions within Feibelman’s formalism, requiring that, in addition to the required 

nonlocal-to-local mapping, they lead to causal s. We identified only one, physical s, based 

on Liebsch’s formula for the generalized reflection coefficient [24], 

  
 

     

1
,

1 2
g q

q d
 


    




 
 (2.7) 

The local Fresnel reflection coefficient for the model structure shown in Fig. 2.1(c) is [25, 

26] 

  
 

 

' , 1
,

' , 1
q

g q
q

 


 





 (2.8) 

where 
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    
       

       

2

2' ,
qD

s s
s qD

s s

e
q

e
       

   
       





    


    

 (2.9) 

It can be shown (see Appendix at the chapter end) that for Dq << 1, and with 

 ( )( ) ( ) 1s
d

D


   
 

  
 

 (2.10) 

Eq. (2.8) reduces to Eq. (2.7). Another derivation of this result is also provided in the 

Appendix of this chapter.  
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2.3 Test of causality and sum rules 

The effective dielectric function of the fictitious film, given by Eq. (2.10), is causal. The 

corresponding expression for the susceptibility is  

 
( ) 1 1 ( )( ) [1 4 ( )] 1 1
4 4

s
s

d
D

  
   

 

   
      

  
 (2.11)  

Clearly, ( )s   vanishes for z ®¥and Im() > 0. In addition, since ( )   and d() are 

causal, ( )s   also is analytic in the upper complex half-plane of variable z. Thus, all the 

conditions for the causality of ( )s   are satisfied and Eq. (2.10) represents a causal (i.e. 

physical) dielectric function.  

To further illustrate that causality is satisfied, we checked that the Kramers-Kronig 

(KK) relations are satisfied numerically [23]. These follow the causality condition and have 

the following form, 

     2 2
0

2Re ( ) 1 Im ( )s sP d
    

  




  
   (2.12) 

     2 2
0

2Im ( ) Re ( )s sP d
    

  



  
   (2.13)  

where the integrals are evaluated along the real frequency axis, and P indicates the principle 

value integral. To check Eq. (2.12), we used Eq. (2.10) first to calculate  Im ( )s  . Then, 

we numerically evaluated the integral on the right-hand side for a given , and thus 

obtained the numerical values of  Re ( )s  . Here, we used the following explicit 

expression for the Drude dielectric function: 2( ) 1 / ( )p i        , with p the plasma 
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Fig. 2.2 Effective dielectric function s of the fictitious film shown in Fig. 2.1(c), plotted 
versus /p. Inset shows the analytical expression for s, also listed as Eq. (2.10) in text. 
Solid lines represent the analytical evaluation of this equation: Re[s] (blue) and Im[s] 
(red).  Symbols represent the corresponding numerical results based on Kramers-Kronig 
relations: Re[s] (blue crosses) and Im[s] (red circles). See text for details. This figure is 
from: J. Kong, A. Shvonski and K. Kempa, “Nonlocal response with local optics”, Phys. 
Rev. B 97, 165423 (2018). 
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frequency for potassium, the phonon-impurity scattering rate  = 0.05p, and d() taken 

from Ref. [15] for potassium, and then fitted to a Lorentzian form: 

 
2

2
1

( )
( )

s

s s s

Ad
i


   


 

  (2.14)  

where A1 =0.367, A2 =0.078, 1 = 0.829, 2 = 0.774, 1 = 0.063, and 2 = 0.097. The 

numerically obtained values of  Re ( )s 
 
can be compared with the exact values of 

 Re ( )s  , obtained directly from Eq. (2.10). Fig. 2.2 shows that, as expected, the two 

values are essentially identical. The same procedure was used to check the second KK 

relation (Eq. 2.13), confirming validity of this condition as well. This confirms that the 

dielectric function given by Eq. (2.10) is causal. Eq. (2.10) is the main result of this project.   

In addition to satisfying KK relations, the dielectric function given by Eq. (2.10) 

has the characteristic Drude-like form with a reduced, effective plasma frequency p , as 

expected for a metal film modeling the diffusive region, where the electron density is 

reduced. Also, we have checked numerically that the dielectric function satisfies the 

following sum rules [27]: 

 2

0

Im[ ( )]
2s pd 

    


  (2.15) 

  1 2

0

Im[ ( )]
2s pd 

    


    (2.16) 

 1

0

Im[ ( )]
2s

d 
 





    (2.17)  

While the last sum rule (Eq. 2.17) is exactly and unconditionally satisfied, the first 

two (Eqs. 2.15 and 2.16) yield identical, reduced effective plasma frequency equal to 
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0.7448p p  . This frequency is larger than the zero-crossing of  Re ( )s   in Fig. 2.2, 

which occurs at 0.5 p  . In interpreting this discrepancy one should keep in mind that, 

while the sum rules are strictly valid only for a homogeneous electron gas, this is not the 

case in the surface region described by the fictitious film. 
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Fig. 2.3 (a) Plasmonic response spectrum (absorption cross-section in arbitrary units) of a 
sodium sphere of radius 1.4 nm. Classical Mie resonance is shown as the black solid line. 
Open squares are ab initio DFT results adapted from Ref. [28]. Red/Green/Blue solid lines 
are from our effective film scheme with film thickness equal to 0.3 nm, 0.4 nm, 0.5 nm, 
respectively. (b) Normalized frequencies of plasmon resonances (peak positions) for 
sodium spheres versus the inverse sphere radius. Effective film approach results: 
red/black/blue diamonds with the corresponding film thickness 0.1 nm, 0.3 nm, 0.9 nm, 
respectively. Hollow circles, triangles and squares are experimental data adapted from Ref. 
[29]. Solid, dotted and dash-dotted lines are theoretical models discussed in Ref. [29]. This 
figure is from: J. Kong, A. Shvonski and K. Kempa, “Nonlocal response with local optics”, 
Phys. Rev. B 97, 165423 (2018). 
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2.4 Application 1: producing accurate resonance shifts in ultra-small nanoparticles 

 

To demonstrate the strength and robustness of the mapping based on Eq. (2.10), in this 

section and the next we apply it to a few prototypical plasmonic systems, and compare with 

data available in the literature. First, we study the plasmonic resonance of sodium 

spheres/particles, which is known to be redshifted from its classical prediction, the Mie 

resonance given by 3Mie p   [24].  In addition, this redshift increases with decreasing 

particle size. The Mie resonance is shown in Fig. 2.3(a) as the black solid line. The ab initio 

DFT calculation for the same system [28], yields black squares in Fig. 2.3(a) — a red-

shifted resonance. Implementing our effective film approach, i.e. coating the sphere with 

the film of a metal-like material having dielectric function given by Eq. (2.10), and 

performing the conventional FDTD simulation, yields color lines in Fig. 2.3(a), in a good 

agreement with the DFT result for a range of the film thickness. This insensitivity of our 

simulation outcome to the film thickness choice is an important feature, since the film 

thickness is an adjustable parameter, constrained loosely only by the size of the diffusive 

region at the metal surface.   

In Fig. 2.3(b), we plot the normalized plasmon resonance frequencies for sodium 

spheres versus the inverse sphere radius. We compare here our effective film scheme (for 

3 different film thicknesses), with experimental results and other theoretical studies 

reported in Ref. [29]. The results for the chosen film thickness of 0.3 nm agree best with 

those from experiments and advanced theories. This is consistent with the average 

thickness of the diffusive region D, as obtained from microscopic models [22], and shows 

that it can be used as an appropriate choice of the fictitious film thickness. The negative 
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slope of the curve in Fig. 2.3(b) is identical to the characteristic negative slope of surface 

plasmons on a planar sodium surface. This is a universal property for all alkali metals [30]; 

a one-to-one correlation between the slopes is facilitated by the simple surface plasmon 

“whispering gallery” relation 2 R  [31], which reduces to 1/q R . 
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Fig. 2.4 Electric field enhancement half-way between two sodium spheres vs the inter-
sphere gap. Each sphere has diameter D = 2.8 nm, and thickness of the surface region 
(shown gray in the insets) d = 0.35 nm. The frequency of the driving field is 2.75eV  . 
Red diamonds represent our simulations, based on the effective (fictitious) film scheme. 
Black circles represent the ab initio DFT calculations [28], available only in the quantum 
regime. Blue circles show results of the hydrodynamic approximation [8], valid only in the 
classical regime. The insets show sketches of the spheres at an overlap (left) and well-
spaced (right) cases, with diffusive regions marked gray. This figure is from: J. Kong, A. 
Shvonski and K. Kempa, “Nonlocal response with local optics”, Phys. Rev. B 97, 165423 
(2018). 
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2.5 Application 2: producing qualitatively correct field enhancement in 

ultra-small nanoparticles 

 

As another test of our scheme, we applied it to a previously studied case of the electric field 

enhancement in-between two, closely spaced sodium spheres, tuned out of the plasmonic 

(Mie) resonance. Each sphere has diameter D = 2.8 nm, and thickness of the surface region 

(shown gray in the insets) d = 0.35 nm. The frequency of the driving field is 2.75eV  . 

Fig. 2.4 shows the electric field enhancement half-way between the two sodium spheres vs 

the inter-sphere gap size. Our scheme results are shown as red diamonds. The blue circles 

represent calculations based on the hydrodynamic approximation (HDA) taken from Ref. 

[8]. These are valid only for gap sizes much greater than the width of surface regions. The 

black circles represent ab initio DFT calculations taken from Ref. [28], which due to 

numerical difficulties are possible only for ultra-small spheres and gaps. Thus, only our 

results span the small to large gap sizes. 

Our results show a sharp decrease in the field enhancement for gap sizes less than 

2d. This step-like decrease is physical, and the result of the presence of a surface region (of 

thickness ~ d) of reduced electron density, present at metallic surfaces. As long as the two 

spheres are farther than 2d apart, the mid-point (where field is calculated) lies in vacuum, 

and thus the electric field is only remotely (weakly) screened by the polarized spheres. 

However, once the surface regions begin to overlap for gap sizes < 2d, the mid-point probes 

this overlap region of (on average) high electron density, and thus a very strong shielding 

takes place. In our simulations, as discussed above, the surface region is represented by a 

constant, reduced electron density, step-like region (marked gray in the insets). 
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Consequently, the step-like discontinuity of the electric field enhancement at gap size of 

2d, is a result of this step-like model of the electron density. In more realistic calculations, 

in which the gradual surface electron density can be accommodated, a more gradual (but 

still quite sharp) transition of the field enhancement is expected. The most important 

conclusion here is, that our simulations, valid everywhere, agree (to within an order of 

magnitude) with the available calculation results from literature (DFT and HDA), in their 

respective regions of validity. 
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2.6 Conclusion 

In conclusion, we proposed an effective film approach for plasmonic and nanophotonic 

studies, which accounts for nonlocal effects caused by the non-uniform region at metal 

surfaces. The approach requires adding a fictitious, but physical, thin film with a specified 

dielectric response. In our scheme this dielectric function is related to the d-function. 

Adapted into classical FDTD calculation schemes, this approach produces a moderate q 

extension of all nonlocal response characteristics, while avoiding the burdensome 

computations that are usually required by DFT for intermediate-size nano-structures. 

Specifically, we demonstrated that this method produces a quantitatively correct resonance 

shift and qualitatively correct field enhancement for small sodium spheres. While these 

examples have primarily focused on plasmonic systems with highly symmetric (e.g. 

spherical) geometries, we stress that this effective film approach may be applied to 

structures of any shape—the method simply requires coating all metal surfaces with a 

properly calculated thin film, and then performing the usual, local FDTD simulation. Thus, 

this effective film approach extends local FDTD calculations to a moderate q nonlocal 

regime. 
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Appendices 

 

(1) Derivation detail of equation (2.10): 

In d-parameter formalism, surface response function accurate at small q (but non-

retarded regime) of a semi-infinite Drude metal can be written as [24] 

  
 

       

1
,

1 2
g q

q d d
 


     




    

  (A2.1) 

On the other hand, in classical local optics, the surface response function of a semi-infinite 

Drude metal with an additional surface layer of thickness D and dielectric function  S  , 

sketched as in Fig. 2.1(c), is [24, 25, 26] 
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 (A2.2)  

At optical wavelengths and a thickness of D about 1nm or less (typical length scale of the 

inhomogeneous, diffusive surface region), the following is true 

 1qT   

Thus we can safely expand, 
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 (A2.3) 

So 
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 (A2.4)  

Matching this local optics form (A2.4) with the nonlocal optics form (A2.1), we see, if 
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the two results would be identical, for any (small) q value. That is to say, substituting 

1
surface bulk bulkd d

D
   

         (A2.5) 

into local optics scheme would produce the same result as nonlocal optics. 

 

(2) A different derivation of equation (2.10): 

From another different way, the much more general results for a layered system 

[32], can actually reduce almost exactly to equation (2.10) if their more delicate 

considerations are dropped. 
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 (A2.6) 

Expressed in consistent symbols as in this chapter and neglect the hydrodynamic 

consideration, 
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Simplified to a quadratic equation, 
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It has two roots (with only one approximation in the solving procedure 

1 1, 1ie     , which is true for Drude metal) 

  1 1S S
d and
D

        (A2.8)  

The first root in (A2.8) is actually equation (A2.5) above (noticing that the sign convention 

for d-function is opposite here), while the second is trivially vacuum. Again, response of 

the hypothesized film is in general metallic, with d-function corrections to some extent. 

 

(3) Second order q extension for surface plasmon dispersion relation (quadratic extension 

to Liebsch self-energy ansatz) (this theory produces both the monopole and multipole 

branches as the same time): 

This part discusses a phenomenological nonlocal theory for the surface plasmon 

dispersion relation, based on Liebsch’s self-energy ansatz, to second order in q-dependence. 

The results were included in our publication [21]. 

Based on Ref. [33], Drude model is extended with Liebsch’s self-energy ansatz, 
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 (A2.9)  

Plugging into the surface response function 
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 (A2.10)  

it gives the dispersion condition 

  2 2 , 0s q      (A2.11)  

which produces the initial negative slope at q~0. 
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Besides the first order term introduced by Liebsch [33], we add a second order term 

to the self-energy (B, the pressure coefficient, is a constant to be found later) 

     2 2 2 2, p pq qd B q          (A2.12)  

Now the dispersion condition becomes 

   2 2 2 2 2 2 0s p pqd B q            (A2.13)  

Write both   and d-function as full complex (damping    is a tiny positive number) 
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Then the dispersion condition would be 

 

  

     

     

 

2 2 2 2 2 2

2 22 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

0

0

0 2 2

0 2 2

s p p

s R I p p

s R I p p

s R I p p

qd B q

i q d id i B q

i q d id i B q

i q d id i B q

     

      

        

        

     

         
 

           
 

            

 (A2.14)  

Solving from real part = 0, with 2  terms dropped 

 
 

   

2 2 2 2 2 2

2 2 2 2 2 2

0 2

0 2

s R p I p

p R p I s

qd qd B q

B q q d d

     

     

      

       
 

  

Re-organize, to a more compact form 

 
 2 2 210 1 2

2

, 0.05

R I

p p

B q q d d

setting as 

 

             

   

 (A2.15)  

For a specified   , we can look up  Rd   and  Id   in the data, Fig. 2.5(a) extracted 

from [15], which were calculated from LDA, and then solve for q (generally there will be 

two q's for each  ). Raw results are shown as in Fig. 2.5(b) (negative q region should be 
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removed; imaginary q for smaller   lower than ~0.65 already removed). Zooming-in to 

the small window where experimental data located are shown as in Fig. 2.5(c). 

Fitting the lower curve (surface plasmon monopole branch) to experimental data 

and LDA calculation [33, Fig. 1] or [34] narrows the parameter B~4.2. 

 2 2 2 2 2 234.2 4
5p p FB q q V q         

While the lower curve (monopole branch) is fitted, the upper curve (multipole branch) is 

produced automatically, which mathematically is due to the pole structure of the Feibelman 

d-function. A final comparison plot is the graph shown in Fig. 2.6. 
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(a) 

 

(b) 

 

(c) 

 

Fig. 2.5 (a) Real and imaginary parts of d-function of potassium extracted from Ref. [15]; 
(b) Raw results after solving the surface plasmon dispersion condition (A2.15); (c) Zoom-
in of (b) to the parameter window where experiment and computation data are located.  
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Fig. 2.6 Fitting the quadratic extension of surface plasmon dispersion Eq. (A2.15) to ab-
initio calculation [33] and experiment data [34] of the lower monopole branch. The upper 
multipole branch is produced automatically.  
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Fig. 2.7 A family of curves of εfilm as thickness varies, for potassium. Thick lines are Drude 
model. Thin lines are εfilm for a series of film thicknesses ranging from 3 Angstroms to 9 
Angstroms. It can be seen that Drude is the infinite-thickness limit of εfilm, which is true 
according to Eq. (2.10). 
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Fig. 2.8 Additional simulation results of resonance shift of simple metal structures. (a) 
Resonance shift of sodium spheres. ‘BCC’ and ‘ICO’ data are from [7]. Red, green and 
blue curves are our simulations of film thickness 3, 4 and 5 Angstroms. Dashed line is 
classical result calculated with Drude model. (b) Resonance shift of sodium cylinders. 
‘Jellium’ data is from [28]. Red, green and blue curves are our simulations of film thickness 
7, 8 and 9 Angstroms. Dashed line is classical result calculated with Drude model. 
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CHAPTER 3 

Electron Self-Energy and Scattering Rate in a Many-Particle System 

 

Outline: This chapter contains theoretical derivations on electron lifetime in a many-

particle system with the random phase approximation (RPA), and calculations of electron’s 

mean-free-path in bulk aluminum as an example, which was included in the publication: 

Phys. Rev. B 95, 045149 (2017), Shvonski, Kong and Kempa, “Nonlocal extensions of the 

electromagnetic response of plasmonic and metamaterial structures”. Next three chapters 

extend these general results further to applications in different specific many-particle 

systems, including conventional bulk materials and plasmonic nanostructured materials 

where proper nonlocal response ε(ω,q) are formulated. 
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3.1. Quasi particle Green’s function and its lifetime 

In the study of many-particle quantum systems [1-6], the concept of quasi particle was 

formulated, 

 ' ' ' 'real particle coat or cloud of other particles quasi particle    

Quasi particle has its new energy instead of the original free (bare) particle energy, and the 

difference is termed as the ‘self-energy’, 

 quasi bare selfE E E     

The Green’s function (also called propagator) is 

    
 2 1

2 1 2 1, exp ' expquasi
particle

t t
G t t iZ iE t t




 

        
 

k k
k

k  (3.1)  

where k is the quantum number specifying the state, 'kE  is the quasi particle energy, k  

is its lifetime in the exponential decay, and Zk is an occupation factor ≤ 1 for fermions. For 

a free particle in a non-interacting system, the Green’s function would just be equation 

(3.1), but without the exponential decay factor. After Fourier transform from time domain 

to frequency domain equation (3.1) reads 

   1,
'quasi

particle

ZG
E i


 






 

k

k k

k  (3.2)  

On the other hand, Dyson’s equation expresses the propagator with the self-energy part 

Σ(k,ω) explicitly, [see Ref. 7 chapter 10 for a clear discussion] 

 
 
1( , )

, 0
G

E i


  


  k

k
k

 (3.3)  

The above two should have the same pole position, 

 1' Re[ ] Im[ ]pole E i E i        k k k  (3.4)  
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and thus the scattering rate is  

  1 Im     k k  (3.5)  

This and the above equations are expressed with the convention ћ=1. All following are in 

standard SI units. 
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3.2 Formulation in the random phase approximation 

In general, the electron scatters with other electrons and ions in a many-particle system via 

the dressed combined interaction [4, 7, 8], which diagrammatically is 

      (3.6) 

After translation, it reads 

  
( , ) ( , ) ( , )eff el phV q V q V q        (3.7) 

where ( , )elV q   and ( , )phV q   are the dressed Coulomb and phonon interactions 

respectively. 

In the random phase approximation, and the point-ion, long wavelength 

approximation for ions, the screened Coulomb interaction is 

  
( , )

( , )
q

el

V
V q

q


 
      (3.8) 

and the phonon dressed Frohlich interaction is 

  
2

2 2

/ ( , )
( , )

/ ( , )
q q

ph
q

g q
V q

q i
 


   




 
    (3.9) 

where the bare Coulomb interaction

  

Vq and 

  

gq are functions of q (length of q) alone, is 

the longitudinal optical phonon frequency (plasma frequency of the ionic “plasma”), and 

  is a positive infinitesimal. This well-known formula contains also the BCS interaction, 

with the Frohlich term becoming negative (attraction) for { ( , )q q    and real 

positive ( , )q  }, leading to superconductivity for sufficiently large  to overcome the 

Coulomb interaction (repulsion). 
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The out-scattering (i.e., scattering away) rate of an electron from the state 

  

k  to all 

possible other states k -q in the electron gas, due to phonon or electron (or plasmon) 

excitations with wave vectors q, is given by the imaginary part of the electron self-energy 

(in full SI units) 

    (3.10) 

which in turn is given by 

   (3.11) 

In the Matsubara notation this diagram translates into  

   
3

03
1( , ) , ,

(2 )n eff m n m
m

d qi V i G i i   
 

   k q k q
 

 (3.12) 

The free-electron propagator is 

0
1( , )n m

n m

G i i
i i E

 
  

  
  k q

k q    (3.13) 

and the Matsubara frequencies are 2 /m m   , (2 1) /n n    , with m and n 

integers ( n , fermion, measured from chemical potential; m , boson, the energy 

transferred [9]). Using the Lehmann representation for Veff [see for example Ref. 10] 

Im[ ( ', )]1( , ) '
'

eff
eff m

m

V q
V i q d

i


 
  

 
     (3.14) 

we get [see appendix (1) at the chapter end for detail steps] 
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3

3

3

3

1 1 1 1( , ) 'Im[ ( ', )]
(2 ) '
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(2 ) '
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m m n m

B F
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n

d qi k d V q
i i i E

n n Ed q d V q
i E

  
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 
 

    







  
   

    
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 

 

k q

k q

k q   (3.15)

 

where the Bose-Einstein distribution function is 

 1( )
exp( ) 1Bn 





 (3.16) 

and the Fermi-Dirac distribution function is 

 1( )
exp( ) 1Fn 





 (3.17)  

Analytically continuing back, we get 

3

3

( ') ( )1( , ) ' Im[ ( ', )]
(2 ) '

B F
eff

n n Ed qk d V q
E

 
  
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



   
  

   
k q

k q   
(3.18) 

Integral using the Lehmann representation again, but backwards, 

3

3( , ) ( , ) ( ) ( )
(2 ) eff B F
d qk V E q n E n E     


  
           k q k q k q  

3

3Im ( , ) Im[ ( , )] ( ) ( )
(2 ) eff B F
d qk V E q n E n E     


  
           k q k q k q (3.19) 

3

3Im ( , ) Im[ ( , )] ( ) ( )
(2 ) eff B F
d qE V E E q n E E n E 


  
         k k q k k q k k qk (3.20) 

For the in-scattering processes of state Ek from all other possible states Ek+q, self-energy 

could be expressed symmetrically as (could of course be derived from first principles) 

3

3Im ( , ) Im[ ( , )] ( ) ( )
(2 )in eff B F
d qE V E E q n E E n E 


         k k k+q k k+q kk (3.21) 
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Thus, the total scattering rate (net count), in principle, is 

 k
2 Im[ ( , )] Im[ ( , )]eff

out k in kk E k E         (3.22) 

This is the final result of derivations of this part, and with the effective interaction given 

by equations (3.7)-(3.9), gives a complete account of the electron scattering in RPA, at 

arbitrary temperature ( 1/ kT  ). [Sign convention: Imaginary part of self-energy, always 

negative; An excitation imposed on the medium means negative , i.e. E E   k q k ; 

An excitation emitted by the medium means positive ; same convention as Mahan, see 

page 480 in Ref. 4] 

From this chapter and on, equation (3.20) is applied multiple times, together with 

nonlocal models for the response of bulk or plasmonic nanostructured materials ε(ω,q), to 

calculate electrons’ lifetime and thus scattering rates: (1) mean-free-path in bulk aluminum. 

(2) hot electron plasmon-protected solar cell. (3) tailoring electron-phonon scattering with 

plasmonic nanostructures. (4) plasmonic multiple exciton generation. 
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3.3 A quick application to calculate electron mean free path in metals 

In this part, as a quick application of the general results obtained above, we calculate the 

electron mean-free-path in metals (e.g., aluminum), and compare with data in the literature. 

In metals, since the free electron density is very high (~1023cm-3), Fermi energy EF 

is much greater than the thermal fluctuation kBT at room temperature, and thus there is no 

significant difference between zero-temperature RPA ε (Lindhard function) or temperature 

dependent RPA ε (see Chapter 1 for the formulation). In order to calculate the temperature 

dependent RPA ε, accurate numerical values for chemical potential µ of an electron gas of 

varied density are included (see Appendix at the end of this chapter). Calculation scheme 

is following Ref. [11, page76 and Appendix A therein]. 

For aluminum (data from [12]), free electron density n=18.1×1022cm-3 at 300K, 

EF=11.7eV, TF=13.6×104K, converted ωP=15.8eV, ratio over EF equals 1.35. Fig. 3.1(a) 

are color maps from Lindhard function (see Chapter 1), left shows Im[1/ε], right shows 

Im[ε], where damping parameter is set as 1% of Fermi energy. Both the single particle 

continuum (SPC) and the bulk plasma mode can be clearly seen, and slope of the SPC 

boundary is vF. The second is the hydrodynamic model, 

  
2

2 2, 1 Pq
q


 

 
 


  

where β=3v2
F/5 is used. Color maps are shown in Fig. 3.1(b); left shows Im[1/ε], right 

shows Im[ε], damping parameter 1% of Fermi energy. Only the bulk plasma mode is visible 

2 2
P q    , and the asymptotic slope is as expected 3 5 Fv , but it extends in the 

phase space without limit since there’s no SPC to dissipate it (Landau damping). Map of 
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Im[ε] just shows the pole position, which is 3 5 Fv q   . The third is the Drude model, 

damping parameter is set as 1% of Fermi energy as well. Fig. 3.1(c) left shows Im[1/ε] 

where a nondispersive plasma mode is visible ω=ωP, right shows Im[ε] which is most 

intensive as ω approaches zero. 

Fig. 3.2 is the result of this section, by plugging in Drude model, hydrodynamic 

model and Lindhard function as ε(ω,q) in Eq. (3.20). Horizontal axis is electron’s energy 

measured from EF, vertical axis is its mean-free-path in angstrom, converted from 

scattering rate by 

 
eff

vmfp


  (3.23)  

Yellow triangles are data from Ref. [13]. We see that nonlocality matters a lot, especially 

at the low energy region. Due to the lack of q-dependence in ε, Drude model deviates far 

from the others. The reason why hydrodynamic model and Lindhard function give similar 

results is, their color maps of Im[1/ε] are quantitatively similar at those points where the 

most probable transitions occur. 

Temperature dependence in the RPA ε is checked. In Fig. 3.3 left, T = 300 K is 

applied, it is literally indistinguishable from the zero-temperature color map shown in Fig. 

3.1; right T = 20000 K, SPC boundary blurred, but no significant difference overall. 
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(a) Lindhard 

 

(b) Hydrodynamic 

 

(c) Drude 

 

Fig. 3.1 Log-scale color maps of Im[1/ε] and Im[ε] of aluminum, of (a) Lindhard function; 
(b) Hydrodynamic model; (c) Drude model.  



49 
 

 

 

Fig. 3.2 Numerical results for electron’s mean free path in aluminum, calculated with 
different models of the dielectric function. Yellow triangles are experimental data from Ref. 
[13]. 
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Fig. 3.3 Log-scale color maps of Im[1/ε] of temperature dependent Random Phase 
Approximation ε of aluminum. Left, T = 300 K; Right, T = 20000 K. 
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3.4 A compact formula for T=0 limit in a Lorentz oscillator medium 

In the situation of absolute zero temperature, or in metals that EF is much higher than the 

thermal fluctuation kBT at room temperature, a compact analytical result can be obtained, 

if the models for ε are as simplified, for example, as a Lorentz oscillator (see Ref. [14] for 

discussions on Lorentzian]. 

In the T approaches zero limit, we can use the following identity (there are 

alternative forms too, see appendix at the end of this chapter) 

( ) ( ) ( )B Fn x n x x         (3.24) 

valid for 0x  , and where ( )x  is the Heaviside step function. Then one obtains from 

equation (3.20) [same sign convention as in Ref. [4] Mahan (5.8.8)] 

3

3
2 Im[1/ ( , )] ( ) ( )

(2 )
eff
k q k k

d q V E E q E E E  


  
           k q k q k q       (3.25) 

For an electron gas (or an equivalent electronic/plasmonic system), a typical local 

dielectric function (generalized Drude) could be written as a Lorentzian [see appendix at 

the end of this chapter for derivations of (3.27)] 
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r i


  
   

 
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    (3.26) 
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 
   

  

 
     

   (3.27) 

where 2 2
1 r p b     , corresponding to the longitudinal plasma mode in such medium. 

Substituting it into equation (3.25), yields [15] 
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    (3.28) 

where 2( ) ln( 1)f x x x
x

    , 2 2
0 r p bE     , 

2 2
* 0

02 2 4b

p

Ea
me





  . This compact 

analytic result is used in the following chapters, whenever there is a well-defined plasma 

mode (e.g., localized surface plasmon mode) present. 

If setting r to zero and b to 1, ( )  in (3.26) reduces to simple Drude model, and 

the result (3.28) reduces to Ref. [4, Mahan] (5.8.10) for the free electron gas. If nonlocality 

is further into account, for example the hydrodynamic extension, 
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q
i q
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    
 
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or Lindhard function of  , the integral has to be done numerically as we did in the previous 

section. 
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3.5 Other scattering mechanisms 

For ionized defect, the effective potential would be that of a point charge Q, screened by 

the other electrons. Analytical expression would be similar as in the electron-electron 

scattering part. To summarize, all kinds of scattering center could be interpreted as an 

external perturbation to the electron gas, i.e. an effective interaction, so could be calculated 

by this formalism. See [11, chapter 6] and [4] for a comprehensive review of all possible 

scattering mechanisms. 
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Appendices: 

 

(1) Matsubara frequencies summation, from Refs. [4] and [9] 
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(2) Im[ 1/ε ] for simple Drude model, referring to Ref. [4] p480 and p466 
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[Sokhotsky’s formula, Dirac-delta-function] 

 lim
𝜀→0+
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(3) generalized Drude model 
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Retarded extension, using result in (2) 
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(4) composition Dirac delta function, referring to [16] 
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(5) distribution factor identities 
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Fig. 3.4 Chemical potential of free electron gas of varied densities. Calculation scheme is 
following Ref. [11]. 
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CHAPTER 4 

Hot Electron Plasmon-Protected Solar Cells and 

Nonlocal Treatment in the Calculation 

 

Outline: This chapter extends the general results of electron scattering rate in a medium 

obtained in chapter 3, combines with FDTD simulations and nonlocal modeling of the 

response, and applies them in a project proposing a concept for third generation solar cells, 

the hot electron plasmon-protected (HELPP) solar cell. In this cell, a thin-film, plasmonic 

metamaterial structure acts as both an efficient photon absorber in the visible frequency 

range and a plasmonic resonator in the IR range, the latter of which absorbs and protects 

against phonon emission the free energy of the hot electrons in an adjacent semiconductor 

junction. It is shown that in this structure, electron–plasmon scattering is much more 

efficient than electron–phonon scattering in cooling-off hot electrons, and the plasmon-

stored energy is recoverable as an additional cell voltage. This project was concluded as a 

publication: J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. 

Naughton, and K. Kempa*, “A hot electron plasmon-protected solar cell”, Optics Express 

23, A1087 (2015). 
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4.1 Introduction to “hot” electron, the Shockley-Queisser limit 

and the HELPP idea 

Charge carriers in semiconductors having excess energy (i.e. above the conduction band 

minimum for electrons and below the valence band maximum for holes) are referred to as 

“hot”. For example, electrons photo-excited from a valence band deep into a conduction 

band are considered hot electrons, as shown in Fig. 4.1.  

Effects of hot electrons have been studied and utilized for more than half a century 

in a variety of electronic devices, from Gunn diodes to integrated circuits [1-11]. In 

conventional solar cells, hot electrons rapidly and irreversibly lose their excess energy 

(defined as the difference between the energies of their occupied states and that of the 

bottom of the conduction band, with a similar relationship for holes and the valence band) 

to phonons (heat) [2], which leads to the Shockley-Queisser limit for single junction cell 

efficiency [12]. The amount of the energy lost to heat in a conventional cell often exceeds 

that harvested in the form of electricity. For example, commercially available, high 

efficiency crystalline silicon solar cells convert 20-25% of absorbed sunlight into 

electricity, but more than 30% into heat via hot electrons. Many concepts have been 

proposed to harvest or convert this hot electron energy into usable form, but none have 

been experimentally verified or demonstrated to date [13]. 

Recently, a scheme was proposed to reduce the number of irreversibly dissipative 

electron-phonon scattering events in a solar cell, by providing an energy-dissipation 

channel into plasmons in an adjacent or embedded plasmonic structure [14]. In this scheme, 

the hot electron free energy remains reversibly “protected” in a collective electronic degree 
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of freedom. This hot electron plasmon protection (HELPP) mechanism, which relies on 

electron-plasmon scattering occurring on a time scale sufficiently smaller than phonon 

emission by either plasmons or hot electrons, was theoretically supported by a simple 

model calculation [14] [see chapter 3 section 4 for the analytic formula]. The effect is 

somewhat similar to the Förster resonance energy transfer (FRET) known in molecular 

physics, describing non-radiative (dipole-dipole) energy transfer between an excited 

electronic state of a donor molecule and single electron excitation of a nearby acceptor 

molecule [15]. It is distinct from schemes in which subgap photons are absorbed by a 

plasmonic metal followed by energy transfer to a semiconductor [16-18], as well as from 

up-conversion mechanisms [19]. HELPP can also be viewed as an inverse of plasmon 

resonance energy transfer (PRET) [20], where localized plasmon oscillations in metallic 

nanoparticles non-radiatively excite electrons in adjacent (a few nanometers away) 

molecules.  

Here in this chapter, it is confirmed by detailed simulations that the HELPP 

mechanism can be achieved in an ultrathin metamaterial structure, which acts 

simultaneously as a plasmonic resonator in the infrared (IR) and a broad-band visible 

absorber. Electrically disconnecting the two could lead to a tandem hot electron 

photovoltaic device in which the absorber acts as a conventional solar cell, and the 

plasmonic resonator (which stores the hot electron energy) could be made a part of a 

Schottky cell, yielding an additional voltage originating from the hot electron energy.  
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Fig. 4.1 Left panel: in conventional single-gap solar cells, “hot” electrons are generated 
when photons of energy greater than the gap are absorbed; Right panel shows the solar 
radiation spectrum. 
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4.2 Theoretical models for the scattering rate in the effective medium 

According to the general derivations in Chapter 3, the scattering rate of an electron in a 

medium from a state Ek to all possible other states due to single particle and collective 

(plasmon) excitations, was given by Eq. (3.20) [21-23]. Veff(q,) in Eq. (3.20) is the dressed 

combined interaction. It can be written as a simple (but exact) sum of the Coulomb and 

phonon (Fröhlich) terms (3.7-3.9) [23]. It is in the random phase approximation for 

electrons (1st term), and the point-ion, long wavelength approximation for ions (2nd term).  

The simple, additive form of Eq. (3.7) allows one to write the total scattering rate 

as phelplel  k , where plel is given by Eq. (3.20) with 𝑉𝑒𝑓𝑓(𝑞, 𝜔) given by only the 

first (Coulomb) term in Eq. (3.7), and phel  given by only the second (Fröhlich) term. 

Here, the subscripts el, ph, and pl refer to electron, phonon and plasmon, respectively. 

Since phel  for systems of interest here has been studied in detail elsewhere [24, 25], we 

focus on calculating only .plel  

  Clearly, this calculation requires knowledge of the effective dielectric function of 

a given structure. In Ref. [14], a simple model structure was considered in which a 

semiconductor film was assumed to be coupled so strongly to a metallic, plasmonic 

resonator that the system could be described as an “effective medium” with an effective 

relative dielectric function of the general form [see chapters 3 and 5 for discussions on 

response function of typical ε]: 
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( )
( ) ( )
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rm el phm i q
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where it was assumed for simplicity that M = 1 (only one, dominant localized plasmon 

resonance), and the self-energy (q) and the electron-phonon scattering rate in the metal 

vanish ((q)=0 and ).0  phel Here, each plasmon resonance, indexed by mode m, is 

characterized by a modal plasma frequency pm and a localized plasmon modal resonance 

frequency rm within the Drude-Lorentz model and b is the core or bound electron 

dielectric constant. When Eqs. (3.7-3.9) are inserted into Eq. (3.20), calculations [14] 

showed that plasmon emission by a hot electron in a semiconductor could occur at the rate 

of 114 s10 
  plel , which is faster than the typical phonon emission rate in the 

semiconductor, 113s10 
  phel . In such a case, the hot electron “cools down” to the bottom 

of the conduction band by emitting plasmons in the collector/plasmon resonator, rather 

than by emitting phonons in the semiconductor medium. However, this is a necessary but 

not sufficient condition for the HELPP effect to occur. In addition, one must arrange for 

the plasmons in the metal to decay into phonons sufficiently slowly. This indeed is 

expected to be the case, since typical plasmon-phonon scattering rates in metals are 

  phpl .s10 113 
  phel  

 
It is clear that HELPP depends on strong interactions between the semiconductor, 

where the electron transitions occur, and the plasmonic resonator. This depends on, among 

other things, their relative proximity. PRET studies [20] have shown that one needs 

distances of the order of 10 nm to achieve strong coupling. Therefore, the semiconductor 

film, e.g. the active region of a solar cell, must be very thin, on a similar 10 nm scale. Solar 

cells of such thickness are indeed feasible; highly-efficient light trapping in active media 

of the order of 10 nm thickness has been demonstrated with plasmonic metamaterial 
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schemes [26-28]. Here, we propose a solar cell based on such a scheme, modified to assure 

also a contribution from HELPP. 

 

  



67 
 

 

 

Fig. 4.2 (a) Schematic of a unit cell (300 nm × 300 nm) of a square array of plasmonic 
resonators in a HELPP solar cell structure. The thickness of each layer is: macroscopically-
thick Ag bottom electrode, 10 nm a-Si absorber, and 40 nm Ag top plasmonic resonator 
(200 nm × 200 nm). (b) Simulated absorbance spectrum of the structure, showing two 
plasmon resonances in the infrared. For the purposes of this paper, this scale for the 
resonance peaks near 0.3 and 0.8 eV refers to energies above (below) a semiconductor 
absorber’s conduction (valence) band edge. (c) Electric field distribution (scaled to the 
incident field magnitude) in a cross-section of the unit cell (through the unit center, parallel 
to the unit side), at the frequencies of the main plasmon resonance peaks at 0.3 and 0.8 eV. 
Field enhancements up to E/Eo~30 (i.e. intensity gain ~302 ~1,000) are realized within the 
photovoltaic absorber. This figure is from: J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. 
Merlo, M. J. Burns, M. J. Naughton, and K. Kempa*, “A hot electron plasmon-protected 
solar cell”, Optics Express 23, A1087 (2015). 
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4.3. Simulation, and calculation of the scattering rates 

We consider first a version of the solar cell which enables highly efficient light absorption 

and HELPP action, but not yet having optimized electronic recovery of the hot electron 

energy. A schematic of this basic HELPP structure is shown in Fig. 4.2(a), which is a unit 

cell of a periodic square array with lattice constant 300 nm. It consists of a metallic (Ag) 

back electrode, an active semiconductor layer (ultrathin a-Si p-i-n junction) of total 

thickness 10 nm, and a top, square metallic (Ag) plasmonic resonator with thickness 40 nm 

and side width 200 nm. 

The absorption spectrum of the structure, calculated by using the FDTD method 

[29-32] and intrinsic a-Si as the absorber, is shown in Fig. 4.2(b). It has a broad band in 

the visible frequency range that assures high photon absorption. This is the signature of the 

structure’s metamaterial action, similar to that reported in Refs. [26-28]. The spectrum has 

also two sharp absorbance peaks in the infrared, near 0.3 eV and 0.8 eV; these are the 

plasmon resonances that enable the HELPP effect. The corresponding electric field 

distribution, calculated at the frequencies of those main plasmonic peaks, is shown in Fig. 

4.2(c). Strong concentration of the field (intensity enhancement over incident value 

(E/Eo)2~302~103) within the semiconductor film is clearly visible. These plasmon 

resonances are designed to be excited by hot electrons, and the excitation rate can be 

calculated from Eq. (3.20). However, photons from the IR tail of the solar spectrum could 

also directly excite these resonances, further improving the efficiency of a tandem 

configuration discussed below. We have also simulated the effect of positioning a point 

dipole directly in the absorber layer, and found that, as expected, this also excites the 

plasmon resonances in the IR, with comparable efficiency.    
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To calculate the various scattering rates in this structure, we need to obtain its 

aforementioned effective dielectric function. To achieve this, we first model the system as 

a three-layer problem: a semi-infinite Ag substrate, an effective coating of total thickness 

d, and vacuum. Such a model has been shown [33] to be a good approximation for the 

optical response of thin discontinuous films, provided that the effective dielectric function 

of the film is extended into the nonlocal domain, as discussed and applied below. The 

effective coating, which consists of the absorber and Ag nanostructures of Fig. 4.2(a), is 

described in the IR via a single effective dielectric function () of the form of Eq. (4.1) 

with two Lorentzian terms (M = 2), associated with the two HELPP-enabling plasmon 

resonances of Fig. 4.2(b). The parameters of this Lorentzian expansion are chosen so that 

the reflectance R of the model three-layer system [34] closely fits that obtained from the 

simulation in Fig. 4.2(b). 

 
2

2 (1 ) (1 )exp( 4 / )
(1 ) (1 )exp( 4 / )

i ndR r
i nd

   

   

  
 

  
 (4.2)  

Note that the simulated reflectance R =   A can be immediately obtained from the 

absorbance A in Fig. 4.2(b). The resulting fit is shown in Fig. 4.3(a), comparing well with 

calculations from the model.  

Before using it to calculate the scattering rate, the local effective dielectric function 

() obtained from the fit must be extended into the nonlocal domain, i.e. it must be made 

dependent on the wavevector q (see Chapter 1 for general discussions). This is because 

while the optical response is limited to only very small momenta, much less than the Fermi 

momentum (q << kF), the plasmon scattering of hot electrons involves both small and large 

momentum transfers (q of order kF). The most efficient way to accomplish this analytical 
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extension is to use the d-function formalism of Feibelman [35, 36] (see also Chapter 2 

discussions). This combines the simplicity of the Fresnel analysis with a rigorous quantum 

mechanical treatment by introducing surface response functions d(), which have been 

systematically calculated for various metals [37, 38]. Liebsch [39] has shown that the self-

energy in Eq. (4.1) can be expressed in terms of the Feibelman d-function as: 

 2 2( ) ( ) ( )s s sq q D q D       (4.3) 

 / 1 Re( )s p b     (4.4)  

where s is the surface plasmon frequency, and Eq. (4.3) is inserted into Eq. (4.1) to yield 

the non-locally extended dielectric function, which subsequently is inserted into Eqs. (3.7) 

and (3.20) to yield el-pl, shown in Fig. 4.3(b). Due to the simplicity of the Lorentzian 

formula, part of Eq. (3.20) can be done analytically (see chapter 3 section 4 and chapter 5 

section 1). One result shown (in red, marked “min”) could be considered a worst-case 

scenario, using the largest possible value of the only adjustable parameter, b = 10, which 

assumes that b equals the maximum bulk value in silver [40]. We also show a more 

realistic scenario range (in blue, marked “max”) which uses a bulk vacuum-weighted 

background dielectric constant of b = 3.  
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Fig. 4.3 (a) Reflectance of the structure shown in Fig. 4.2: simulations (dashed line) and 
model three-layer system calculations (solid line). (b) Calculated minimum (red) and 
maximum (blue) ranges of scattering rates for hot electrons with plasmons (corresponding 
to the upper and lower limits, respectively, for the background permittivity), and the 
reported range of scattering rates [24,25] for hot electrons with phonons (black). Arrows 
indicate connections between plasmonic absorbance resonances and enhancements in hot 
electron-plasmon scattering. This figure is from: J. Kong, A. H. Rose, C. Yang, X. Wu, J. 
M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa*, “A hot electron plasmon-
protected solar cell”, Optics Express 23, A1087 (2015). 
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Finally, these ranges can be compared to a range for the electron-phonon scattering 

rate, obtained from Refs. [24-25]. Figure 4.3(b) demonstrates that in the typical range of 

hot electron energies (say, 0.7  2 eV, corresponding to the energy range of solar radiation 

minus a typical PV absorber band gap) one has at least 1/   phelplel (though it could reach 

~102, Fig. 4.3(b)), broadly confirming the earlier, simple model result. Throughout, we 

refer to the hot electron energy Ehot as that in excess of the conduction band minimum. The 

most important feature for the HELPP effect is the hot-electron relaxation (i.e. complete 

cooling-off) time, ;c this is the time required to cool a hot electron from its initial, high 

photo-excited energy state down to the bottom of the conduction band. This time depends 

on the quantum energy exchanged at each scattering event. While the typical phonon 

energy is in the 50 meV range, the plasmon energy is a few hundred meV, and so about 

factor of ten larger. Therefore, it takes about 10 times fewer plasmon scattering events than 

phonon events to completely cool off a hot electron. Taking this effect into account, we 

estimate that for an average hot-electron energy of about 1 eV, which coincides with 

1/   phelplel , the corresponding cooling time ratio is 1/  
c

phel
c

plel . Thus, electron-

plasmon scattering dominates carrier relaxation. 
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4.4 Application to photovoltaics 

With a PV junction representing the semiconductor film, the structure of Fig. 4.2(a), after 

coating with a transparent conductor, is a functioning solar cell, with the periodic, 

plasmonic structure also acting as one charge collector of the cell. The HELPP action will 

lead to an increased voltage of the cell relative to that without HELPP. To see this, consider 

a hot electron generated in the conduction band of the semiconductor, as in Fig. 4.4(a). In 

the absence of HELPP, this electron would first lose its entire free energy to phonon 

scattering on a femtosecond time scale, and then, as it drifts towards the collector, would 

continue to thermalize with the lattice, as well as with other electrons. With HELPP, the 

process is similar, except the initial “cooling” of the electron occurs via plasmon emission, 

with the plasmons resonating in the plasmonic collector, Fig. 4.4(b). Any electron arriving 

at the metallic plasmonic collector rejoins the free-energy stored initially in the form of a 

plasmon. These plasmons rapidly undergo Landau damping (LD), i.e., they turn into single 

particle excitations (electron-hole pairs), such that the plasmon energy turns into the 

electron-hole pair energy, Fig. 4.4(b). This damping is rapid, comparable to that of 

plasmon-electron scattering [33, 41], such that the hot electron energy remains in the 

electronic degree of freedom, i.e. is protected from phonon emission. Initially photo-

excited electrons arriving at the collector recombine with the hole of this electron-hole pair, 

Fig. 4.4(c), and an excited hot-electron in the collector is the final product of the process, 

Fig. 4.4(d). The end result is thus identical to that of a hot-electron never losing its free 

energy on its way to the collector.  

HELPP, therefore, is a mechanism that effectively extends the lifetime (or the mean 

free path) of a hot electron. In recent work, it was demonstrated that in ultrathin p-i-n a-Si 
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junctions, hot electrons contributed to small voltage increase to the overall open circuit 

voltage [42]. We anticipate a similar but significantly stronger effect to be observable in 

the proposed HELPP structure.  

The efficiency of this effect can potentially be improved by modifying the structure 

so that the plasmonic resonators are electrically separated from the semiconductor. This 

can be achieved by placing a very thin dielectric spacer between the semiconductor and the 

array of metallic resonators (red layer in the schematic in Fig. 4.5). This should eliminate 

any deleterious, direct electron-electron scattering between the electrons in the 

semiconductor and the plasmonic reservoir, making the HELPP effect much stronger. The 

hot-electron energy stored in the plasmonic reservoirs can potentially be detected via small 

radiation resulting from the plasmon resonators, or can be directly extracted from the 

generated LD electron-hole pairs. These can be spatially separated in a metal-insulator-

metal (MIM) structure [43, 44], or at Schottky barriers formed at the interface of the 

plasmonic nanostructures and the semiconductor [41]. In either case, an electron of the LD 

electron-hole pair is excited above the asymmetric potential barrier, leaving behind a hole 

in the nanostructure, and producing a contact voltage due to separation of the carriers. As 

such, one could prepare a type of tandem, high efficiency hot electron cell, as depicted in 

Fig. 4.5. The first cell of this tandem is our basic HELPP cell shown in Fig. 4.2, but with 

an insulating spacer between the PV junction and the Ag plasmonic resonators (thick red 

layer), as well as ITO. This cell would produce the conventional photovoltage, as indicated 

in the band diagram in Fig. 4.6. The second cell consists of the plasmonic reservoir array 

coated with a thin semiconductor (e.g. n-type Si or a-Si) to form a Schottky barrier with 

the metal of the reservoir and ITO. This cell produces a voltage that is directly proportional 
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to the hot electron energy. Connected in series, this tandem combination would lead to a 

hot electron solar cell with efficiency exceeding the Shockley-Queisser limit. Current 

matching can be achieved simply by controlling the surface area of each cell in the tandem. 
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Fig. 4.4 Schematic of HELPP action. (a) A semiconductor absorbs a photon of energy 
greater than the band gap EC-EV, exciting an electron high into the conduction band. (b) 
Prior to losing the above-gap excess energy to phonons/heat, this hot electron resonantly 
exchanges that excess energy with a plasmon mode in a proximate plasmonic metamaterial 
structure having effective Fermi energy EF. This plasmon Landau damps into an electron-
hole pair in the metal (e.g. Ag). (c) The originally photo-excited electron recombines with 
the plasmon-excited hole at EF, leaving behind a high energy electron to be harvested as 
current, and at higher voltage than that conventionally determined by the semiconductor 
band gap. These 3 steps can equivalently be described by the process in (d). This figure is 
from: J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. Naughton, and 
K. Kempa*, “A hot electron plasmon-protected solar cell”, Optics Express 23, A1087 
(2015). 
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Fig. 4.5 Schematic of a tandem hot electron cell, with a thin plasmonic resonator-embedded 
Schottky junction generating voltage H (for hot) separated from an ultrathin solar cell (a-
Si shown) generating voltage U. This figure is from: J. Kong, A. H. Rose, C. Yang, X. Wu, 
J. M. Merlo, M. J. Burns, M. J. Naughton, and K. Kempa*, “A hot electron plasmon-
protected solar cell”, Optics Express 23, A1087 (2015). 
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Fig. 4.6 Band diagram of tandem cell of Fig. 4.5. IP is inverse photoemission process for 
hot electron energy release from plasmonic resonator. LD refers to Landau damping. This 
figure is from: J. Kong, A. H. Rose, C. Yang, X. Wu, J. M. Merlo, M. J. Burns, M. J. 
Naughton, and K. Kempa*, “A hot electron plasmon-protected solar cell”, Optics Express 
23, A1087 (2015). 
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4.5 Conclusion 

It is demonstrated via simulation and calculation a solar cell based on hot electron plasmon 

protection (HELPP). A thin-film metamaterial structure acts as both an efficient photon 

absorber in the visible range and a plasmonic resonator in the IR, the latter of which absorbs 

the free energy of the hot electrons in an adjacent semiconductor junction. With a 

combination of FDTD simulations, nonlocal effective medium modeling, and quantum-

mechanical calculations, we show that hot electron–plasmon scattering is much more 

efficient in cooling-off these electrons than conventional phonon emission, and that the 

plasmon-stored energy is recoverable as an additional cell voltage. The proposed structure 

could become a prototype of a high efficiency solar cell. 
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CHAPTER 5 

Electron Polar-Optical-Phonon Scattering Rates in Heavily-Doped Semiconductors 

with Plasmonic Nanostructures Embedded-in 

 

Outline: This chapter extends the general results of electron lifetime in many-particle 

systems obtained in Chapter 3, and develops calculation scheme for the electron-phonon 

(specifically polar optical phonon POP) scattering rates in a newly proposed plasmonic 

metamaterial - traditional bulk semiconductor with metallic nanostructures embedded-in. 

Materials discussed in this chapter contributed to the paper submitted to Materials Today 

Physics: Wu#, Kong#, Broido and Kempa*, “Tailoring the electron-phonon interaction 

with metallic plasmonic structures”. 
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5.1 Scattering rate with bare polar optical phonons (POP) 

The physical picture of the general results obtained in Chapter 3 is, free electron gas subject 

to external or internal perturbation Veff. Adapted into this chapter, carriers in the conduction 

band of a semiconductor form a free electron gas, and this gas is then subject to the 

perturbation due to the polar optical phonons (POP), with Veff = Vq / εPOP. 

In intrinsic (and very low doping) polar semiconductors, since the electron gas is 

dilute, the dielectric function is dominated by polarization due to phonons, and is given by 

[1, 2] (In this chapter, ωL is short for ωLO, the longitudinal optical phonon frequency, and 

ωT is short for ωTO, the transverse optical phonon frequency)  

2 2
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     (5.1) 

In order to calculate electron’s lifetime in such medium, we can just plug this in the general 

result (3.20) of Chapter 3. Equation (5.1) could be written as a Lorentz oscillator [3] similar 

as in the electron case 
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With the damping rate extension, 
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could then be simplified as the delta function form as well (see chapter appendix) 

 
 
 

 
2 2

2
1 1Im ( ) ( ) ( )

2
L T

L L
L

  
      

 





         
 

  



85 
 

 
 

 
2 2

1 ( ) ( ) ( )
2

L T
L L

L

 
      

 


      (5.3)  

Inserting (5.3) into equation (3.20) yields a golden-rule-like expression (here, terms with 

k-q means a transition from k to k-q by emitting a phonon mode q; terms with k+q means 

a transition from k to k+q by absorbing a phonon mode q) 
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      (5.4)  

Integrate on final states f, instead of on q, 
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and define F   such that (“F” stands for final. Sign convention is, final state – initial state, 

2 2 2 2

2 2
f k
m m

  ) 

 
2 2 2 2

2 2 L
F k
m m

     

Then the integral could be carried out as (see end chapter appendix for detail steps) 
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Result is (out-scattering, unscreened)  
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(5.7)  
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5.2 Electron-POP scattering rate with Thomas-Fermi screening 

The above equation (5.7) is the basic raw result for conduction band electron gas subject 

to perturbation by polar optical phonons. Next-step correction is to take into account the 

screening of the other carriers, which will become important when the polar semiconductor 

is gradually doped making the carrier density higher and higher. A common practice in the 

literature is the Thomas-Fermi approximation [4], screening the vertex of Frohlich 

interaction (the matrix element). In fact, Frohlich interaction - the phonon mediated 

electron-electron interaction, is second order, thus there are two vertices (see introduction 

part in Chapter 3), making the screening follows 1/ε2, instead of 1/ε. (Mahan [5] chapter 6 

has a clear discussion too) In this case, the bare Coulomb interaction would become [see 

appendix at this section end for a brief “justification” for this approximation] 
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Define (same form as in Refs. [6, 7]) 
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And the result further is 
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This is identical as the out-scattering result in Refs. [6, 7] from different approaches. 

In-scattering rate (3.21) could be carried out similarly. Define 
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Result (in-scattering, unscreened) is similar to that of out-scattering, 
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 (5.12) 

With Thomas-Fermi screening (5.8), result is 
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  (5.13) 

POPI  is the same form as out-scattering part defined in Eq. (5.9). 

From the point of view of classical transport theory, in the calculation scheme 

presented in Chapter 3, there is no electric field or temperature gradient applied, so it is all 

about EQUILIBRIUM state. When field is turned on and the system gets stable eventually, 
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it is then called STEADY state, or STATIONARY state (the whole idea of Boltzmann 

equation is to solve for this steady state). In equilibrium state, the out-scattering and in-

scattering cancel out, it is the so called "principle of detailed balance" (see Ref. [8] Eq. 

(7.3.8) on page 265, and Ref. [7] page 136). In steady state when there's field applied, left 

hand side of Ref. [8, Ziman] (7.3.5) is non-zero, so right hand side has to be non-zero too. 

In other words, the field is accelerating the electrons (changing the distribution), and 

scattering(collision) is changing the distribution at the same time. These two processes 

cancel each other as Boltzmann equation requires, producing the steady state distribution

 kf r , rather than the equilibrium state distribution  0
kf r . 

In the calculation scheme presented in Chapter 3, equilibrium of the electron gas is 

one of the initial assumptions. The core formula for in-scattering, equation (3.21), was set 

up by symmetric consideration. In fact, the implied physics is, "principle of detailed 

balance". It might be a good topic to extend the Chapter 3 electron self-energy (lifetime) 

calculation scheme, to non-equilibrium situations [9]. 

 

 

Section Appendix: a justification of the Thomas-Fermi approximation used 

Refer to [5, page565], the screened phonon interaction in heavily-doped polar 

semiconductor is 

 2 1
ph

sc ph
ph

V
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V P 
 


                                   (5.14) 
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where   is the contribution due to electron gas, P is the electronic polarization part, and 

the bare phonon interaction is [5, page562] 
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 (5.15)  

Ignoring electronic polarization part P in this phononic calculation, i.e. setting P = 0, 

 

  22

2

2

1

1 1 1

1 1

ph ph
sc ph

ph

q
ph

q
ph

V V
V

V P

v

v

 

  

 





 


 
  

 
 

 
  

 
 

 (5.16) 

With the above two approximations, we justify the screened phonon interaction used in 

equation (5.8), in getting the same electron-POP out-scattering rate as Ref. [6] and Ref. [7, 

(6.65) (7.30)]. We can also make use of the full version of equation (5.14) where electronic 

polarization part P is fully considered, which will be discussed in the next few sections, 

numerically. 
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5.3 Electron scattering in metamaterials (case 1) 

----plasmonic resonance near LO phonons 

            

Embedding nano/micro-sized metallic structures in dielectric materials (e.g. polar 

semiconductors) makes an effective medium. Both the added structure resonance and the 

original POP resonance as independent contributions in the total dielectric response could 

be written as (see Refs. [10, 11] for discussions on the superposition or additivity) Lorentz 

oscillators, each stands for an independent energy dissipation channel, 
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    (5.17) 

Schematically it looks like Fig. 5.1 (numbers are arbitrary; see appendix for detail). 

Response function of such an ε can be written as 
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 (5.18) 

where 2
1P  and 2

2P  are roots of 

       2 2 2 2 2 2 2 2 2 2
1 2 1 2 2 1 0R R S R S R              

Simple linear form of (5.18) makes the further calculation straight forward. Plugging first 

term in general results (3.20) yields out-scattering by channel-one (unscreened), 
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  (5.19) 

Similarly, out-scattering by channel-two (unscreened), 
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  (5.20) 

With Thomas-Fermi screening, equation (5.8), similar integral-factor (as in the bare POP 

case) shows in the results. For channel-one, 
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  (5.21) 

POPI  is the same definition as in equation (5.9). 1F   (final states) are defined as 
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Similarly, for channel-two, 
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 (5.22)  

Also, applying to equation (3.21) will produce the corresponding in-scattering rates. 

Expressions would be similar as (5.21) and (5.22). 

Back to the purpose of the project of this chapter, i.e., suppressing electron-phonon 

scattering in thermoelectric materials, observing above, we designate (R1, P1) as the POP 

resonance of the semiconductor (e.g., Mg2Si), and (R2, P2) as the plasmonic resonance we 

are adding to the bulk Mg2Si. It can then be seen, if setting R2 at P1, (5.21) will vanish, i.e., 

electron-POP scattering will be totally suppressed. In other words, scattering by channel-

one will be totally replaced by that of the added channel-two. This mixture/interference 

mechanism was also briefly mentioned in Ref. [5, Mahan] on page 563. It could be a 

general engineering trick, with possible applications in many other fields. 
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Fig. 5.1 Schematic of real and imaginary parts of a 2-Lorentzian dielectric function. R 
stands for resonance. P stands for plasmon. (numbers are arbitrary; see chapter Appendix 
for detail of the response function of such ε). 
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5.4. Electron scattering in metamaterials (case 2) 

----plasmonic resonance at much higher energy than LO phonons 

 

Continuing discussion in the above section, if the added plamonic resonance is at much 

higher energy than the LO phonons, the effect of the plasmonic resonance on electron-

phonon interaction in low energy range would just be an approximately constant 

screening/shielding. 

Simulations and extractions show (by Xueyuan Wu of Kempa Group), when 

ignoring the phonons (i.e., embedding the metallic structures in constant background), the 

plasmonic resonance could be written as (R stands for “resonance”, S stands for 

“strength”.) 
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 (5.23)  

Bringing back the polar optical phonons, 
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At lower energy where the phonons located ( R ), 
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 (5.25)  

producing an effectively greater epsilon-infinity. Response function of such a medium is 

(see chapter appendix for detail) 



96 
 

 
 

 
 

     
2 2

0 020
0

1 1lim Im
, 2'

LO TO

q

  
      

  







 
        

  

 (5.26)  

where 
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


   (5.27)  

is the plasmon-screened phonon frequency (similar results like Ref. [12]), shifted from 

LO . Physically, after bringing in the metallic structures, we have two kinds of elementary 

excitations in the many-particle system [11]. If taking into account the screening(dressing) 

of one to the other, we can treat these two elementary excitations independently. A brief 

math manipulation, 
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







 (5.28)  

Comparing (5.28) with the original POP equation (5.1), we find it only needs a simple 

parameter replacement in the previous bare electron-POP scattering equations (5.7-11) 

(one-term Lorentzian model) 

 0' LO TO TO          (5.29)  
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to get all the results. Note that transverse-optical phonon frequency does not change, which 

is discussed in Refs. [7, 10]. Also, when the plasmonic resonance frequency R is really 

approaching infinity,  

 2 2, ,LO TOR S while S R a     

the above result (5.29) is actually consistent with the two-term Lorentzian model results. 

Equation (5.21) in the two-term Lorentzian scheme is 
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     
       
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  
  
 

  (5.30) 

corresponding part of equation (5.10) in the one-term scheme when applying (5.29) is 
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   
 

 (5.31)  

the equivalence of (5.30) and (5.31) means this quantitative analysis is (at least) self-

consistent. 
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5.5 Comprehensive discussions taking electronic and phononic perturbation on 

equal footing and methods to distinguish them 

  

From electrons' point of view, the effective interaction between them in a medium can be 

written as [5, 12-19] 

  
 

2

2

4,
,

q
eff

total total

veV q
q q




  
   (5.32)  

where total packs up all the mechanisms:  direct electron-electron  Coulomb interaction,  

phonon mediated electron-electron interaction (Frohlich), etc. The physical picture is, free 

electron gas plus perturbations of different level of sophistication. In a heavily doped polar 

semiconductor mainly comprised of electrons and polar optical phonons, total dielectric 

function can be written as [2, 5, 10, 12] (superposition approximation of independent 

polarization components) 

    
2 2

2 2, , LO TO
total q

TO

q v P q  
    

 
 


  


 (5.33)  

where is due to interband transitions at much higher energy than ~meV; second term is 

due to electron gas in conduction band; third term due to phonons. Plugging this form into 

general result (3.20), TOTAL scattering rate would be obtained, but effects from different 

mechanisms are not distinguishable. In order to separate them, manipulate the diagram of 

the total effective interaction [5, 11, 20] 

  
 

 , ,
,

q q
eff sc ph

total el

v v
V q V q

q
 

  



    (5.34)  

where el is the Coulomb part due to the electron gas only, defined as 
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    , 1 ,el qq v P q     (5.35) 

and sc phV 
 is the "screened phonon part". It is formally named so, but not a mathematically 

well-defined quantity, which may give rise to "negative damping rate" [13]. In RPA, it 

contains a phonon self-energy that arises from the polarization of the electron gas, 

 
 

 

 

2 2 0

2 2 02 21 1
ph q q

sc ph
el elel ph el q el

V M M DV D
V P M D P   

   
 

 (5.36)  

in which the unscreened phonon interaction is 

  02
ph qV M D  (5.37)  

matrix element is ("bare Frohlich") 

 2

0

1 1
2
LO

q qM v 

 

 
  

 
 (5.38)  

and the unscreened phonon Green function is 

  0
2 2

2 LO

LO

D 

 



 (5.39)  

In the previous sections confirmed analytic results on electron-POP scattering, we 

actually used a straightforward "unscreened approximation" [5, Mahan, section 6.3], by 

dropping the electron-polarization correction to the phonon Green function D in equation 

(5.36) (see also Section 5.1 appendix), i.e. 

  
2

0
2 22 2

2 2

1...q q
sc ph

LOel el

LO TO

M v
V D

  


 





  




 (5.40)  

el was replaced by Thomas-Fermi form (static limit of RPA, it is numerically critical that 

there’s no ω dependence in el ). And at poles LO , it is equivalent to 
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     
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 (5.41)  

Physically this approximation means, electron cloud only screens matrix elements (the 

diagram vertex, i.e., the interaction itself), but doesn't alter the LO phonon frequency. The 

result was equation (5.10). 

As a recent new approach to distinguish the effects from different mechanisms, Ref. 

[21] proposed the "phonon dissipation weight factor" 

 
 
 

Im
Im

phonon

total

factor



  (5.42)  

to "pick out" the phonon contribution from the total scattering rate 

 
 
 

Im 1Im
Im

phonon

total total

phonon contribution


 

 
  

 
 (5.43)  

where εtotal is as in Eq. (5.33). It actually gives quantitatively similar results as Thomas-

Fermi screening approach, as shown numerically later. Remarks on Fahy method [21] 

(equation numbers are as in their paper): (a) It seems the factor (Eq. 31 in [21]) is not only 

defined for the initial step for the iteration, but also applied to all later steps. In other words, 

the effective scattering rate (Eq. 33 in [21]) replaces the total scattering rate W0 in (Eq. 24 

in [21]) when the coupled Eqs. (22-24 in [21]) are solved. Otherwise, their method would 

produce the same huge scattering by electronic modes as seen in my plot of the total 

scattering rate, especially in the low density cases. (b) If the factor (Eq. 31 in [21]) is not 

to be applied to all steps in the iteration but only at the initial guess, why bother defining it 

and elaborating the physical meaning? The iteration method, if robust, should be 

insensitive to the initial guess any way. (c) My calculation corresponds to Ref. [21]’s 
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relaxation time approximation (RTA). Their calculations beyond RTA are supposed to be 

more accurate. 
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Fig. 5.2 Numerical results for GaAs system, low density case: electron density n = 2.3×1016 

cm-3, effective mass = 0.0665, temperature T = 300K, chemical potential µ = -2.92 kBT, 
εinf = 10.92, ωTO = 33.3 meV, ωLO = 36.4 meV, EF = 4.4 meV, ωP0 = 22 meV, ωP = 6.6 meV. 
In this case, plasma frequency is much lower than phonons’, electron gas is very dilute, so 
screening is weak. There’s not much difference among the “bare”, “Thomas-Fermi 
screening” and “Fahy method”. 
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Fig. 5.3 Numerical results for GaAs system, medium density case: electron density n = 
5×1017 cm-3, EF = 34.5 meV, ωP0 = 102 meV, ωP = 31 meV. In this case, plasma frequency 
is in the vicinity of phonons’, Fahy method successfully overcomes the numerical difficulty 
caused by RPA electronic screening, and gives similar results as Thomas-Fermi screening. 
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Fig. 5.4 Numerical results for GaAs system, high density case: electron density n = 1019 

cm-3, EF = 254.5 meV, ωP0 = 455 meV, ωP = 138 meV. In this case, plasma frequency is 
much higher than phonons’, Fahy method still gives similar results as Thomas-Fermi 
screening. Since ωP = 138 meV is much high, there’s no collective electronic mode that 
electron can be scattered by, and the effect of the electron gas would be just an 
approximately constant screening. When evaluating RPA around phonon frequency, it is 
basically the static limit, like Thomas-Fermi (see Chapter 1 discussions). 
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5.6 Effects of adding metallic nanostructures in the "unscreened approximation" 

---- a simple scheme for modified Thomas-Fermi screening 

 

Based on discussions in Section 5.3, this section talks about the effect of plasmonic 

nanostructures by adding it to the total epsilon from the beginning, and treat it on equal 

footing with the conventional Thomas-Fermi screening. We bring in an additional 

plasmonic resonance R to the system by adding metallic nanostructures, such that 

 LO R  interband transition 

From optical simulations, (embedding the metallic nanostructures in a medium where 

there's only screening from interband  but nothing else) 

 
2

2 2( ) S
R

  


 


 (5.44)  

then, by the same superposition logic [10, 11], the total dielectric function would be 
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 
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 (5.45)  

Square bracket shows the new electronic contribution. In static limit, the first term in 

bracket reduces to Thomas-Fermi, and the second term reduces to a constant 

  2 20mn S R   [Section 5.3]. Use the same "unscreened approximation" (5.40) for 

the phonon Green's function, equation (5.8) with metallic nanostructures taken into account 

would become 

 
 

2 222 2
2 21 0

q
sc ph

LO
TF mn
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v
V
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
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 (5.46)  
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Corresponding equation (5.10) would be the same, except for a new form of 

 

   

2 21

21
2 2 2 2

1 2, ,
1 2 1 0

new
POP TF

mn TF

F k xF kI k F q dx
F k x F k q k  

 




  

 


 
        

  (5.47) 

Thus, for the Thomas-Fermi screening method, it only needs a substitution to have the 

effects of plasmonic nanostructures taken into account 

 
2

21 mnTF
el

q
q





    (5.48)  

For the Fahy method [21], it needs a substitution 

 total total mn     (5.49)  

Fig. 5.5 shows the numerical results for GaAs of different carrier densities.   
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(1) Low density, n = 2.3×1016 cm-3 

  

(2) Medium density, n = 5×1017 cm-3 

  

(3) High density, n = 1×1019 cm-3 

  

Fig. 5.5 Numerical results for GaAs of different carrier densities after plasmonic 
nanostructures are embedded, with an example of 5mn  . 
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Appendices 

(1) Derivation detail of equation (5.6): 
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(2) Two-term Lorentzian details: 
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thus, 
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Further approximations can be made. 

 

 

(3) Attempt to resolve the “N0 / N0+1 inconsistency” in an earlier calculation, following 

Prof. Broido’s derivations [6], equation numbers are that of his notes2. 
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 0 0( )(1 ( ')) ( ') ( ')(1 ( )) ( ' )f f S f f S     k,k k ,k  (4b) 

Equation (4a) is what implied by equilibrium distribution. Substituting it in Boltzmann 

equation will produce of course same value for out-scattering and in-scattering, as my 

calculation scheme does. Delicacy of the Boltzmann equation was to solve self-consistently 

for the steady distribution f (not equilibrium distribution f0), by using (4b). Remark: terms 

involving Bose-Einstein distribution factors N0/N0+1, root back from the phonon creation 

and annihilation operations. [7, Nag page103] 
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Fig. 5.6 Temperature dependent RPA epsilon of homogeneous electron gas: Refer to [22], 
these are plots of the GaAs low density case, electron density n = 2.3×1016 cm-3, effective 
mass = 0.0665, temperature T = 300 K, chemical potential µ = -2.92 kBT, εinf = 10.92, ωTO 

= 33.3 meV, ωLO = 36.4 meV, EF = 4.4 meV, ωP0 = 22 meV, ωP = 6.6 meV. We can see that 
the strong mode in Lindhard colormap locates at 1.5EF. 
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(4) Discussions on high temperature limit: 

In high temperature approximation Bk T E   
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Substituting in Eq. (3.20) yields 
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  is the low frequency limit value. It shows a scaling 

with temperature, as other results in the literature. 

Further if one adds on the electronic component, e.g., an plasmonic excitation, making the 

(local) response of the medium as 
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Substituting in Eq. (3.20), yields the total electron scattering by both electron(plasmon) 

and phonon excitations, in high temperature approximation 
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where R P T L are sketched as below. (Numbers are not to scale; Values of P and L could 

be expressed.) 
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Fig. 5.7 Schematic of real and imaginary parts of the total dielectric function, when adding 
a plasmonic resonance (R, P) whose energy is below that of the phonon resonance (T, L) 
to the polar semiconductors (numbers are arbitrary). 
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(5) A brief check of the nonlocal effects from HDA point of view: 

This notes addresses the nonlocal effects in the response of the added plasmonic resonance 

(metallic nanostructure) from the hydrodynamic approximation. A usual way of extension 

[Chapter 1 and Chapter 4] is 

 
 

2
2

2 2 2

3( ) ,
5mn F

S v
R q

  
 

 
 

   

where vF is Fermi velocity which in our system corresponds to the carrier density. Plots in 

Fig. 5.8 show comparison of the βq2 term with a plasmonic resonance R at 200meV. Fig. 

5.8 left shows q range up to the Brillouin zone boundary (lattice constant assumed 5 

Angstrom). Fig. 5.8 right zooms in to the q range of the electron gas in the system. Note 

that, kF for n1 = 2.3×1016 cm-3 is about 9×107/m = 0.014 π/a, kF for n2 = 5×1017 cm-3 is about 

2.5×108/m = 0.04 π/a. Most of the carriers are distributed not too far away from kF, making 

typical momentum transfer in a scattering event within 2kF. We see from the right plot that 

the βq2 term is smaller than 10% of the R2 term, thus safe to neglect. 

  



115 
 

   

Fig. 5.8 Comparison of the βq2 term with a plasmonic resonance R at 200meV. Left shows 
q range up to the Brillouin zone boundary (lattice constant assumed 5 Angstrom). Right 
zooms in to the q range of the electron gas in the system. 
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(6) Other forms of approximation more accurate than the "unscreened approximation", 

comments on Ref. [9]: In the initial general derivation, full version RPA electronic part 

was used, but in later numerical carry-out, static-RPA, i.e. Thomas-Fermi-like form was 

used. That's why there's no huge scattering by the plasmon-like mode as can be seen in my 

results by full RPA electronic part, especially in the cases of low carrier densities. A 

numerical fact is, as long as the electronic part has no ω-dependence, we are fine, even 

using the full version Frohlich term including the phonon self-energy correction. As also 

discussed/confirmed by Das Sarma [13, 15], poles of 1/ε2 are much more complicated than 

poles of 1/ε. 
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CHAPTER 6 

Plasmon-Enhanced Multiple Exciton Generation 

 

Outline: This chapter extends the general results of electron lifetime in a many-particle 

system obtained in Chapter 3, combines with the idea of HELPP discussed in Chapter 4, 

and applies them in a project proposing a new approach for multiple exciton generation 

(MEG) for solar cells. It is shown that bi-exciton formation can be highly efficient in a 

solar cell with the semiconductor absorber filled with an array of metallic nanoparticles 

having plasmonic resonance tuned to the semiconductor gap energy. This process can be 

viewed as plasmon-enhanced multiple exciton generation (PMEG), with the resulting cell 

efficiency exceeding the Shockley–Queisser limit. It is demonstrated that efficiency of the 

PMEG process increases with decreasing of the semiconductor gap size, by considering in 

detail three systems with gradually decreasing gap size: GaAs, Si and Ge. This project was 

concluded as a preprint on arXiv, and is being submitted to journals: Jiantao Kong, 

Xueyuan Wu, Xin Wang, Michael J. Naughton, and Krzysztof Kempa, “Plasmonic 

multiple exciton generation”, arXiv (2018), arxiv.org/abs/1806.10259 
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6.1 Introduction 

Electrons or holes in semiconductors, excited into their respective conduction and valence 

bands away from the thermal equilibrium distributions, are referred to as “hot” (see also 

discussions in Chapter 4). Effects of hot electrons have been studied and utilized for more 

than half a century in a variety of electronic devices, from Gunn diodes to integrated 

circuits [1-10]. In conventional solar cells, hot electrons rapidly and irreversibly lose their 

excess or “hot” energy to phonons (heat), which leads to the Shockley-Queisser limit for 

single junction cell efficiency [11]. The amount of the energy lost to heat in a conventional 

solar cell actually exceeds that harvested in the form of usable electricity. For example, 

commercially available, high efficiency crystalline silicon solar cells convert 20-25% of 

absorbed sunlight into electricity, but more than 30% into heat via hot electrons. Many 

concepts have been proposed to harvest or convert this hot electron energy into usable form, 

but none have been experimentally verified or demonstrated to date [11]. One of the 

seminal concepts proposed for so called 3rd-generation solar photovoltaics (PV) involves 

harvesting the excess energy of these hot electrons before it is dissipated as heat [12], with 

theoretical efficiency limits of over 60%. This is posited to be achievable by first somehow 

eliminating the phonon scattering in the active region, and then extracting the hot electrons 

through narrow band energy filters at absorber-electrode contacts, assuring isentropic 

cooling. However, this is far from a trivial proposition, and no successful solar cell based 

on this idea has been developed. While early investigations found some evidence for hot 

electron injection into an electrolyte [13], and the hot electron contribution to the 

photovoltage was recently demonstrated [14], there remains limited experimental evidence 

of improved photovoltaic performance via hot electrons, despite many decades of research.  
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In another important scheme to recover the hot electron energy, it was envisioned 

that a single photon in a solar cell could generate two or more electron-hole pairs 

(physically-separated excitons), instead of the canonical single pair. This is the multi-

exciton generation (MEG) concept [15, 16, 17], known to be vanishingly small in bulk 

materials in the frequency range of interest to photovoltaics. It has been demonstrated in 

laser spectroscopic [16, 17] and photocurrent [18] studies that, in semiconductor 

nanoparticles (NPs), it can become significant.  

Recently, a plasmonic, 3rd generation PV scheme is proposed, by providing an 

efficient energy-dissipation channel into plasmons in an adjacent or embedded plasmonic 

structure [19] (see also Chapter 4). In this scheme, the hot electron free energy remains 

reversibly “protected” in a collective electronic degree of freedom. This hot electron 

plasmon protection (HELPP) mechanism, which relies on electron-plasmon scattering 

occurring on a time scale sufficiently smaller than phonon emission by either plasmons or 

hot electrons, was theoretically supported by a simple model calculation [19] (see also 

Chapter 3 Section 4). Here in this chapter, we describe a way to combine the HELPP 

concept with MEG, a process which can be viewed as plasmon-enhanced multiple exciton 

generation (PMEG). 
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6.2 Scattering rate calculation scheme revisited 

 

The MEG theory often breaks the process into two steps: first, an incoming photon excites 

a single exciton, with hot carriers participating; second, this exciton, before emitting 

phonons, decays into multiple excitons via Coulomb scattering [20]. Instead of employing 

Fermi’s golden rule to estimate the decay rate of excitons (hot electrons and holes) to bi-

excitons, we calculate the hot electron scattering rate exactly, including secondary excitons 

as a part of the single particle excitation continuum. According to discussions in Chapter 

3, the scattering rate of an electron in a semiconductor matrix from a state Ek to all other 

possible states due to single particle and collective (plasmon) excitations, in RPA [21] is 

given by Eq. (3.20). This calculation requires knowledge of the effective dielectric function 

of a given structure. In a simple, single Lorentzian approximation, the dielectric function 

can be written as Eq. (3.26) [22] (see Chapter 3 Appendix for response function of such 

dielectric form). In Section 3.4 we show that the single Lorentzian form leads to a simple 

analytic formula for the scattering rate (3.28) [23]. Eq. (3.28) can be used as guidance for 

more rigorous calculations/simulations, and it shows, as expected, that the scattering 

vanishes for electron energies lower than the localized-plasmon energy , and also 

that it increases rapidly with increasing plasmonic oscillator strength . 

  

p
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Fig. 6.1 Relative (per unit volume of the absorber) absorption spectra of GaAs absorber 
filled with cubic array of Ag NPs (period a, diameter D = a/3). Strong plasmonic 
absorbance is seen around 400 THz. Inset shows basic PMEG scheme: incident high energy 
photon (dark blue) interacts with NP to establishes a surface plasmon, whose strong E-field 
(gradient blue) excites a bi-exciton, which separates into two electron-hole pairs, which 
drift/diffuse via an inferred p-n junction. Top axis shows relevant energy and wavelength 
scales. This figure is from: J. Kong, X. Wu, X. Wang, M. J. Naughton, and K. Kempa, 
“Plasmonic multiple exciton generation”, arXiv (2018), arxiv.org/abs/1806.10259. 
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6.3 Simulation and calculation results 

 

Consider now a PV absorber filled with an array of simple spherical metal NPs (i.e. 

nanospheres), as depicted in the inset to Fig. 6.1. We chose the NPs to be in a cubic lattice 

of period a and the nanosphere diameter D = a/3, so that the projected area fraction remains 

unchanged as we vary a. The relative absorption (per unit volume of the absorber), as 

simulated in FDTD [24, 25] for crystalline GaAs semiconductor and Ag NPs, is shown in 

Fig. 6.1, for six values of a.  

 Fig. 6.1 shows that the frequency of the plasmonic absorption increases with 

decreasing a, and saturates ~400 THz. This behavior reflects the well-known dispersion 

relation of a surface plasmon induced on the surface of the metallic sphere; changing the 

sphere diameter changes an effective surface plasmon quasi-momentum according to the 

“whispering gallery” mode condition [26, 22]  (see discussions on this q-

dependence in Chapter 2). The plasmonic absorption peak strengths rapidly increases once 

the peak frequency enters the intersubband transition region above the gap energy of 1.4 

eV (~340 THz). In this region, massive generation of interband transitions (i.e. excitons) 

by decaying hot electrons is also expected, as will be demonstrated below. The absorption 

spectrum for each value of a is dominated by a single plasmonic resonance, and so one 

could use Eq. (3.26) as a simple model of the dielectric function, and then use Eq. (3.28) 

to estimate of the scattering rate. For an accurate analysis, we extract the effective dielectric 

function of the medium by the method described in detail in [26], and then use the exact 

result from Eq. (3.20) to obtain the scattering rate. The extracted single Lorentzian 

2 /q D
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dielectric functions for D = 67 nm and 6.7 nm are shown in Fig. 6.2. The inset shows the 

corresponding scattering rates vs. hot electron energy. For the smaller spheres, 

intersubband transitions are possible (producing secondary excitons), and the scattering 

rates of hot electrons with energies 2.5 eV and more above the conduction band edge 

exceed 2×1013 s-1 (i.e. faster than 50 ps). This rate is larger than the phonon cooling rate in 

GaAs of ~ 0.5×1013 s-1 (i.e. 200 ps) [27]. This is the rate at which the hot electrons cool to 

the bottom of the conduction band, which requires many electron-phonon scattering events; 

the energy of a single phonon is only ~ 36 meV, such that more than 50 scattering events 

are needed to completely cool a hot electron with energy 2 eV. The shaded area in the inset 

in Fig. 6.2 shows an estimated cooling rate. For larger spheres (D = 67 nm), with 

resonances below the energy gap, no secondary excitons are generated, only plasmons at a 

smaller rate. 
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Fig. 6.2 Extracted effective dielectric function of the GaAs absorber filled with a cubic 
array of Ag nanospheres (each with diameter D = a/3) for two nanosphere sizes D = 6.7 
nm (black), and D = 67 nm (red). The inset shows the corresponding electron- electron 
scattering rates. The shaded area represents the rates of electron-phonon scattering 
processes. This figure is from: J. Kong, X. Wu, X. Wang, M. J. Naughton, and K. Kempa, 
“Plasmonic multiple exciton generation”, arXiv (2018), arxiv.org/abs/1806.10259. 
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Fig. 6.3 Calculated electron-electron scattering rates for a crystalline Si absorber filled with 
a cubic array of Ag nanospheres (of diameter D = a/3), with a=200 nm (black curve) and 
a =230 nm (red curve). The inset shows the corresponding extracted effective dielectric 
functions, used to obtain the scattering rates. This figure is from: J. Kong, X. Wu, X. Wang, 
M. J. Naughton, and K. Kempa, “Plasmonic multiple exciton generation”, arXiv (2018), 
arxiv.org/abs/1806.10259. 
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6.4 Dependence on the gap size 

 

As the efficiency of PMEG diminishes with increasing gap size, only hot electrons with 

energy greater than the gap can generate secondary excitons. In fact, GaAs is not an optimal 

material for PMEG solar cells. The maximum value of the hot electron energy generated 

by 1AM1.5 solar radiation (as measured from the top of the valence band) is about 3.4 eV 

[28], and so we estimate that in GaAs, the hot electrons reach only about 3.4 eV – 1.4 eV 

= 2 eV into the conduction band. However, Fig. 6.2 shows that significant (exceeding the 

phonon scattering rate) plasmon generation occurs for hot electrons with energy > 2 eV, 

such that only a small fraction of photo-generated hot electrons can generate secondary 

excitons. Nevertheless, GaAs is a good material to demonstrate the PMEG effect by using 

laser illumination.  

 Next, we investigated crystalline Si. Employing the same procedure as for GaAs, 

we obtained the result shown in Fig. 6.3. The scattering rates are shown in the main part of 

the figure, for two NP diameters, D = 67 and 76 nm. In this case, we have the solar 

radiation-induced hot electron bandwidth equal to 3.4 eV – 1.1 eV = 2.3 eV. For the larger 

diameter sphere, we obtain a significant scattering rate (~1.5×1013 sec-1) already for 1.3 eV, 

which exceeds that of the electron-phonon cooling rate (< 1013 sec-1). Thus, in this case, a 

reasonably large portion of the hot electron distribution, ~43%, is available for PMEG 

recovery. Thus, crystalline Si is a viable material for both PMEG demonstration and a 

PMEG solar cell. 

Semiconductors with even smaller gaps, such as Ge (0.68 eV) or InAs (0.32 eV), 

should further improve the efficiency of PMEG. As an example, we consider Ge in Fig. 
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6.4, for NPs with D = 33.3 nm. The scattering rate has a maximum near 1.5 eV, representing 

the PMEG.  Since in this case the range of hot electrons induced by a 1-sun illumination is 

3.4 eV – 0.7 eV = 2.7 eV (as measured from the bottom of the conduction band), a large 

fraction of hot electrons (more than 50%), with energies ranging from 1.3 eV to 2.7 eV, 

can produce the secondary electrons. The electron-phonon scattering rate in Ge is ~1014 

sec-1 [29], and the corresponding cooling rate (in view of the single phonon emission 

energy of ~20 meV [30]) is ~1012 sec-1, much lower than the electron-electron scattering 

rate. Thus, we can conclude that Ge could be used as a practical platform for PMEG cells. 
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Fig. 6.4 Calculated electron- electron scattering rates for a Ge absorber filled with a cubic 
array of Ag nanospheres (each with diameter D = a/3 = 33.3 nm). The inset shows the 
corresponding extracted effective dielectric function, used to obtain the scattering rates. 
This figure is from: J. Kong, X. Wu, X. Wang, M. J. Naughton, and K. Kempa, “Plasmonic 
multiple exciton generation”, arXiv (2018), arxiv.org/abs/1806.10259. 
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6.5 Fabrications 

 

Finally, we comment on possible methods of developing arrays of NPs inside and active 

absorber volume. Wet chemistry-processed semiconductors are perhaps the easiest, as 

embedding can be achieved by simply mixing the NPs with the semiconductor. Embedding 

NPs into amorphous semiconductors processed by PECVD (a-Si and a-Ge) can be also 

obtained relatively easy by the layer-by-layer processing [31], or co-sputtering of a metal 

and semiconductor, followed by thermal processing [32]. Embedding plasmonic NPs into 

crystalline semiconductors is much more challenging. Most promising are crystalline NPs 

of silicides, which are plasmonic (metallic) with plasma energies in the 3 eV range [33], 

and so similar to Ag or Au. Most importantly, silicides are nearly lattice matched to Si, so 

they can be epitaxially grown on Si [34], and vice versa [35]. Many of the silicide NPs are 

also compatible with Ge, opening an avenue to PMEG solar cells. Another emerging 

technology is NP implantation, which allows deposition of NP growth seeds into 

semiconductors by ion implantation, and subsequent NP growth from those seeds during 

annealing, which restores crystalline structure [36]. 
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6.6 Conclusion 

 

In conclusion, it is shown that photoexcitation of two-pair bi-excitons can be protected 

against phonon emission, and therefore be a statistically likely event, if the semiconductor 

is filled with metallic NPs having plasmonic resonance tuned to the semiconductor gap 

energy. The bi-exciton formation process then results from a rapid sequence of two events: 

(i) initial exciton generation by the incoming photon, and (ii) the second exciton generation 

by the plasmon-stimulated hot electron’s decay.  This process can be viewed as plasmon-

enhanced multiple exciton generation, PMEG. The universality of this effect provides a 

new paradigm in the development of ultrahigh efficiency solar cells, beyond the Shockley–

Queisser limit. It is also demonstrated that PMEG solar cells benefit from smaller gap 

semiconductors, by consideration in detail three systems: large gap GaAs, intermediate gap 

c-Si and low gap Ge. While the first can be used only to demonstrate the PMEG process, 

the latter two could provide a possible platform for PMEG solar cells. 
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