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Upsilon Invariant, Fibered Knots and Right-veering Open

Books

Dongtai He

Thesis advisor: Julia Elisenda Grigsby

Ozsváth, Stipsicz and Szabó define a one-parameter family {ΥK(t)}t∈[0,2] of Hee-

gaard Floer knot invariants for knots K ⊂ S3. We generalize ΥK(t) to knots in any

rational homology sphere. We study the Υ−invariant of a fibered knot. We prove

that the Υ−invariant can never reach its minimum slope if the monodromy of the

fibration is not right-veering.
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Chapter 1

Introduction

In [OSS17], Ozsváth, Stipsicz and Szabó define a one-parameter family {ΥK(t)}t∈[0,2]

of Heegaard Floer knot invariants. ΥK(t) is a knot concordance invariant. It bounds

the 4-ball genus:

|ΥK(t)| ≤ g4(K)t.

Furthermore, they apply ΥK(t) to the smooth concordance group C. As an example,

they show that the torus knot T3,4 is linearly independent to any alternating knot

in C. In [OSS15], the authors prove that ΥK(1) gives a lower bound for the smooth

4-dimensional crosscap number of K.

In this thesis, we generalize the Υ−invariant to knots in rational homology spheres.

For each Spinc−structure s, we define the invariant ΥK,s(t). Then we focus on the

special case when K is a fibered knot.

In a similar setting, Grigsby, Licata and Wehrli [GLW16] define a family of annular

Rasmussen invariants {dt(L, o)}t∈[0,2] from the Khovanov-Lee complex of an oriented

link in a thickened annulus. In particular, the authors study the case when (L, o) is a

1
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braid closure β̂ equipped with its braid-like orientation. They find a rather interesting

connection between dt(β̂) and the positivity of braids:

Theorem 1.0.1. [GLW16] Let β̂ be a braid closure with its natural orientation. If β

is quasipositive, then d′t(β̂) = b for all t ∈ [0, 1), where b is the braid index of β.

Theorem 1.0.2. [GLW16] If d′t(β̂) = b for some t ∈ [0, 1), then β is right-veering.

Inspired by the above theorems, the slope of the Υ−invariant for fibered knots

is of particular interest. Let Y be a rational homology sphere and let K ⊂ Y be a

fibered knot. The fibered surface Σ and the monodromy φ : Σ → Σ define an open

book decomposition (Σ, φ) on Y . By Giroux correspondence [Gir02], there is a one-

to-one correspondence between open book decomposition up to positive stabilization

and isotopy classes of contact structures ξ on Y . ξ induces a Spinc structure s = s(ξ)

on Y .

Since the work of Honda, Katez and Matić [HKM07], the notion of right-veering

(definition 3.1.1) of the monodromy φ plays a vital role in contact geometry due to

the following theorem [HKM07]:

Theorem 1.0.3. If ξ is tight, then every open book (Σ, φ) compatible with ξ is right-

veering.

Ozsváth and Szabó define the contact invariant in Heegaard Floer homology in

[OS05]. The invariant is a class c(ξ) ∈ ĤF (−Y, s(ξ)) assigned to a contact structure

ξ on Y . If c(ξ) 6= 0, then ξ is tight. It follows from theorem 1.0.3 that any open book

compatible with ξ is right-veering. c(ξ) does not detect right-veeringness completely,

however; Honda, Katez and Matić prove that any contact structure admits a right-

veering open book via positive stabilization [HKM07]. Moreover, Lisca [Lis11] shows



Chapter 1: Introduction 3

that it is possible to have an overtwisted contact structure compatible with a right-

veering open book which can not be destabilized. The following theorem attempts to

further extract information from the knot Floer complex of the binding K by studying

ΥK,s(ξ)(t).

Theorem 1.0.4. If Υ′K,s(t) = −g for some t ∈ [0, 1), where g is the genus of the

fibered surface Σ, then φ : Σ → Σ is right-veering. The converse does not hold in

general.

This theorem is similar to theorem 1.0.2. However, the analogue of theorem 1.0.1

does not hold, as the Υ−invariant doesn’t necessarily have a single slope on t ∈ [0, 1)

when φ is a product of positive Dehn twist. Indeed, let K be the torus knot T (3, 7),

then ΥK(t) = −6t for t ∈ [0, 2
3
] and −4 for t ∈ [2

3
, 1).

Remark. A result of Hedden [Hed05] tells us that given a fibered knot K ⊂ S3, the

following are equivalent:

1. K is strongly quasi-positive;

2. τ(K) = g(K);

3. the fibration is compatible with the unique tight contact structure on S3.

1 and 2 combined with the fact that ΥK(t) = −τ(K)t [OSS17] at t = 0 show that

ΥK(t) = −gt at t = 0, so the monodromy is right-veering, which also follows from

3. Unfortunately, we are unable to find any example such that Υ′K(t) 6= −g(K) at 0

and Υ′K(t) = −g(K) for some t ∈ (0, 1). Such an example will provide a fibered knot

with right-veering monodromy but supports overtwisted contact structure.
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1.1 Structure of this thesis

The remainder of this thesis is organized as follows. In chapter 2 we first briefly

review the construction of the Knot Floer complex. We focus on definitions and

constructions that are necessary for our purpose. Then we define the generalized

Υ−invariant and establish some basic properties of Υ. In chapter 3 we review the

definition of right-veeringness and study the case for fibered knots. Then we prove

theorem 1.0.4 and provide some examples.



Chapter 2

Generalized Υ− Invariant

2.1 Knot Floer complex

In this section we briefly review the construction of the Heegaard Floer complex

of knots following [OS04] and [Ras03]. Let Y be a rational homology sphere, and

let K ⊂ Y a null-homologous knot. We can associate to the pair (Y,K) a 2-pointed

Heegaard diagram (Σ, α, β, w, z) consisting of the following data:

• A Heegaard surface of genus g, splitting Y into two handlebodies U0 and U1;

• linearly independent curves α = {α1, ..., αg}, β = {β1, ..., βg} on Σ;

• Based points w, z ∈ Σ− α1 − ...− αg − β1 − ...− βg.

Connect w and z by a curve a in Σ−α1− ...−αg and another curve in Σ−β1− ...−βg.

The knot K is obtained by pushing a and b into U0 and U1 respectively. One can

always construct such a 2-pointed diagram from a suitable Morse function on the

knot complement.

5
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Let Σ×g be the Cartesian product of g copies of Σ. The symmetric product

Symg(Σ) is obtained from Σ×g quotient by the symmetric group Sg, which acts on

Σ×g by permutation. In other words Symg(Σ) consists of unordered g-tuples of points

in Σ. Inside Symg(Σ) there are two half-dimensional tori:

Tα = α1 × ...× αg/Sg, Tβ = β1 × ...× βg/Sg

.

A complex structure on Σ induces one on Symg(Σ), where Tα and Tβ are totally

real. Let x,y ∈ Tα ∩ Tβ be two intersection points, and let π2(x,y) be the set of

relative homotopy classes of disks

u : D2 → Symg(Σ),

with u(−1) = x, u(1) = y, and the lower half of ∂D2 mapping to Tα and the upper

half to Tβ. For each φ ∈ π2(x,y), let M(φ) be the moduli space of J-holomorphic

representatives of φ, where J is an almost complex structure on Symg(Σ). M(φ)

admits an R−action, and we denote the quotient space by M̂(φ). The dimension of

M̂(φ) is called the Maslov index µ(φ).

Let C(K) be the free abelian group generated by intersection points x ∈ Tα ∩Tβ.

C(K) has two gradings: the Maslov (homological) grading and Alexander grad-

ing. Let nw(φ) = #φ−1({w} × Symg−1(Σ)) and nz(φ) = #φ−1({z} × Symg−1(Σ)).

nw(φ), nz(φ) are well-defined since {w}× Symg−1(Σ) and {z}× Symg−1(Σ) are both

disjoint from Tα and Tβ. The Alexander grading A(x) is characterized by:

• the function A(x)− A(y) = nz(φ)− nw(φ);
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• the Euler characteristic4K(T ) =
∑

a

∑
m(−1)mrank(Ha,m(K))Tm = 4K(T−1),

where a is the Alexander grading and m is the Maslov grading.

Now we can define the knot Floer complex CFK∞(Y,K):

• over F2[U,U
−1],

• whose generators are elements of the form [x, i, j], where j − i is the Alexander

grading of x,

• whose differential is given by

∂∞[x, i, j] =
∑

y∈Tα∩Tβ

∑
{φ∈π2(x,y|µ(φ)=1}

#(M̂(φ))[y, i− nw(φ), j − nz(φ)]

where #(M̂(φ)) is counted modulo 2,

• with U-action U([x, i, j]) = [x, i− 1, j − 1],

• splitting as a direct sum:

CFK∞(Y,K) =
⊕

s∈spinc(Y )

CFK∞(Y,K, s)

where s runs over Spinc structures on Y .

The homology of CFK∞(Y,K, s) is HF∞(Y, s) ∼= F[U,U−1] as a relatively graded

F[U,U−1]−module. An absolute grading can be defined where the base element

1 ∈ F[U,U−1] has Maslov (homological) grading d(Y, s), which is the Heegaard Floer

correction term [OS03]. The U−action changes the Maslov grading by −2. There is

a Z ⊕ Z filtration on CFK∞(Y,K, s) = C given by the map [x, i, j] 7→ [i, j], where

(i, j) corresponds to the algebraic and Alexander filtration respectively. i = 0 is the

minimum algebraic filtration level such that the image of the inclusion induced map
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on homology H(C{i ≤ k}) ↪→ H(C) contains the base element of degree d(Y, s).

Remark. It follows from [OS04] and [Ras03] that CFK∞(Y,K) is independent of the

choices of the 2-pointed Heegaard diagram and generic almost complex structure J in

the sense that different choices yield chain homotopy equivalent. From a different per-

spective, if one equips Symg(Σ) with a symplectic form, then the above construction

defines the Lagrangian Floer homology of the pair (Tα,Tβ), whose differential counts

J-holomorphic disks in Symg(Σ). Gromov started the theory of J-holomorphic curve

[Gro85]. The construction of Floer homology was first provided by Floer [Flo88].

2.2 The Definition and Properties of the Υ−invariant

In this section we generalize the definition of the Υ−invariant for K a null-

homologous knot in a rational homology sphere based on Livingston’s approach in

[Liv17]. We also develop necessary machinery for later discussion related to open

book decomposition and contact structure.

2.2.1 t-filtration and Υ

Fix t ∈ [0, 2] and a generator [x, i, j], we start with a real-valued function

ft([x, i, j]) = (1− t

2
)i+

t

2
j

on CFK∞(Y,K, s) = C. Furthermore, let θ = [x1, i1, j1] + ...+ [xn, in, jn] be a chain

in C, we also define a function

Ft(θ) = max{ft([xk, ik, jk)]}.
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Proposition 2.2.1. Ft defines a filtration F t on C, where the fitered subcomplexes

are given by F ts = f−1t (−∞, s]. Furthermore, F t is discrete, i.e., for any s1 ≥ s2,

F ts1/F
t
s2

is finite-dimensional.

Proof. Under the boundary map ∂∞(θ) = Σ∂∞[xk, ik, jk], where ∂∞ reduce both ik

and jk. Both 1− t
2

and t
2

are positive as well so that Ft(θ) ≥ Ft(∂
∞(θ)).

For discreteness we see that there are k1 and k2 such that C(i ≤ k1) ⊂ F ts2 ⊂

F ts1 ⊂ C(i ≤ k2). Since the algebraic filtration is discrete, so is F t �

Definition 2.2.2. νt(Y,K, s) = min {Ft(θ)|θ is a cycle in C and [θ] is non-trivial

with Maslov grading d(Y, s)}.

We can see that νt(Y,K, s) is in fact the minimum F t−filtered level such that the

inclusion induced map H(Ft) ↪→ H(C) on homology contains the base element with

degree d(Y, s).

Definition 2.2.3. ΥY,K,s(t) = −2νt(Y,K, s).

When Y is understood from the context, then we drop it from the notation. We

say a generator [x, i, j] realizes ΥK,s(t) if [x, i, j] is a summand of a cycle θ satisfying

the condition in definition 2.2.2 and νt(K, s) = ft([x, i, j]).

2.2.2 Υ as a function of t

An initial observation is that ΥK,s(0) = 0. Indeed, f0([x, i, j]) = i is the algebraic

filtration.

Theorem 2.2.4. Given t ∈ [0, 2],

(a) ΥK,s(t) is a continuous piece-wise linear function.
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(b) If ΥK,s(t) is differentiable at t, and a generator [x, i, j] realizes ΥK,s(t), then

Υ′K,s(t) = i− j = −A(x).

(c) ΥK,s(t) is not differentiable at t only if at least two generators [x, i, j], [x′, i′, j′]

realize ΥK,s(t).

Proof. The proof is essentially the same as [Liv17]. Since F t is discrete, for all but

finitely many t there is exactly one generator [x, i, j] realizing ΥK(t). For nearby t, say

t1, ΥK(t1) is realized by the same generator [x, i, j] so that νt1(K, s) = (1− t1
2

)i+ t1
2
j.

Written differently,

ΥK,s(t) = −2νt(K, s) = (i− j)t− 2i.

Thus Υ′K,s(t) = i− j. Furthermore, ΥK,s(t) is not differentiable only if two generators

[x, i, j], [x′, i′, j′] realize ΥK,s(t) and i− j 6= i′ − j′. �

Corollary 2.2.5. Υ′K,s(t) is between −g(k) and g(k).

Proof. The Alexander grading is always between −g(K) and g(K).

Theorem 2.2.6. The Υ−invariant satisfies the following properties:

(a) ΥY#Y ′,K#K′,s#s′(t) = ΥY,K,s(t) + ΥY ′,K′,s′(t).

(b) ΥY,K,s(t) = −Υ−Y,K,s(t)

(c) ΥK,s(t) = ΥK,s(2− t).

Proof. For part (a), the complex CFK∞(Y#Y ′, K#K ′, s#s′) is bifiltered chain ho-

motopy equivalent to CFK∞(Y,K, s)⊗CFK∞(Y ′, K ′, s′). If (C,F) and (C ′,F ′) are

two filtered complexes, there is a natural filtration F ⊗ F ′ on C ⊗ C ′:

(C ⊗ C ′)s = Image(⊕s=s1+s2Cs1 ⊗ C ′s2 → C ⊗ C ′).
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It follows from theorem 6.1 in [Liv17] that νt is additive for each t. Hence ΥY#Y ′,K#K′,s#s′(t) =

ΥY,K,s(t) + ΥY ′,K′,s′(t).

For part (b), the complex CFK∞(Y,K, s) with filtration F t has a dual complex

CFK∞(Y,K, s)∗ with decreasing filtration F t∗. νt(K) can be defined as the maximal

filtration level of a class in the dual complex which contains a non-trivial element of co-

homology in grading d(Y, s). Since (CFK∞(−Y,K, s),F) ∼= (CFK∞(Y,K, s)∗,−F∗).

ΥY,K,s(t) = −Υ−Y,K,s(t) is proved.

Part (c) follows immediately from switching the role of base points w and z. �



Chapter 3

The Υ−invariant of Fibered Knots

In this chapter we prove Theorem 1.0.4.

Theorem 3.0.1. If Υ′K,s(t) = −g for some t ∈ [0, 1), where g is the genus of the

fibered surface Σ, then φ : Σ → Σ is right-veering. The converse does not hold in

general.

We start this chapter by reviewing the definition of right-veering surface diffeo-

morphism [HKM07].

3.1 Right-veering diffeomorphism

Let Σ be a compact oriented surface with boundary ∂Σ, and let α, β : [0, 1]→ Σ

be properly embedded oriented arcs with α(0) = β(0) = x ∈ ∂Σ. Isotope α and β so

that they intersect transversely with the fewest possible number of intersections. We

say that β is to the right of α if (β̇(0), α̇(0)) define the orientation of Σ at x.

Definition 3.1.1. Let φ : Σ→ Σ be a diffeomorphism which restricts to the identity

map on the boundary ∂Σ. Let α be a properly embedded oriented arc starting at a

12
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based point x ∈ ∂Σ. Then we say φ is right-veering if for arbitrary based point x and

arc α, φ(α) is always to the right of α.

3.2 Knot Floer homology of fibered knots

Let K be the binding of an open book (Σ, φ) of Y compatible with a contact

structure ξ. A basis for Σ is a collection {a1, ..., a2g} of disjoint, properly embedded

arcs in Σ whose complement is a disk. Let bi be an isotopic copy of ai obtained by

shifting the end points of ai in the direction of K so that bi intersects ai at a single

point xi. Following [HKM09], we form a pointed Heegaard diagram

(S, β = (β1, ..., β2g), α = (α1, ..., α2g), w)

for −Y by doubling the open book:

• S = Σ ∪ −Σ is the union of two copies of Σ glued along the binding K,

• αi = ai ∪ ai,

• βi = bi ∪ φ(bi),

• the based point w lies outside of the strip from the isotopies from ai to bi

as shown in the following figure,

Now we turn the Heegaard diagram into a doubly-pointed Heegaard diagram for

K ⊂ −Y . We perform finger moves on the β curves in the direction of the orientation

of K, and place the second based point z inside the region of the isotopies.

The following lemma by Baldwin and Vela-Vick [BVV18] characterize the Alexan-

der grading of generators.



Chapter 3: The Υ−invariant of Fibered Knots 14

Figure 3.1: the arcs a1, a2 are red and b1, b2 are blue. The intersection points x1, x2
are shown in black dots.

Figure 3.2: A doubly-pointed Heegaard diagram of K ⊂ −Y . The bigon from y to x
is shown in grey.

Lemma 3.2.1. The Alexander grading of a generator x is the number of components

in −Σ ⊂ S minus g.

Proposition 3.2.2. If A(x) = −g, then every component x lies in Σ, which is an

intersection provided by the finger moves.

If φ is not right-veering, then from [HKM09] there exists a non-separating arc a1

such that φ(a1) is to the left of a1. a1 can be completed to a basis {a1, ...a2g}.

Corollary 3.2.3. Given a generator x with A(x) = −g, if φ is not right-veering,

then there is a bigon containing the based point z that connects some other generator

y to x. Moreover, A(y) = 1− g.

Proof. See Figure 3.2. Notice that on −Σ, φ(b1) is to the right of b1. �
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3.3 Proof of Theorem 1.0.4

We will prove the following: if φ : Σ → Σ is not right-veering and Υ′K,s(t) = −g

then t ≥ 1. In fact, we will show that if Υ′m(K),s(t) = g then t ≥ 1, where m(K) is the

mirror ofK. Then the theorem follows from theorem 2.2.6 that ΥK,s(t) = −Υm(K),s(t).

Now we consider the complex CFK∞(−Y,K, s) associated to the Heegard diagram

compatible with the open book (Σ, φ).

Suppose Υ′m(K),s(t0) = g for some t0. It follows from Theorem 2.2.4 that Umc

realizes νt0(−Y,K, s), where c is a chain with A(c) = −g. We recall the definition:

Definition 3.3.1. νt(−Y,K, s) = min {Ft(θ)|θ is a cycle in C and [θ] has Maslov

grading d(−Y, s)}.

If θ =
∑

[xk, ik, jk], then Ft(θ) = max{ft([xk, ik, jk)]}.

There exists some cycle η ∈ CFK∞(−Y,K, s) satisfying:

• [η] ∈ HFK∞(−Y,K, s) has absolute grading d(−Y, s).

• η = Umc + η′

• νt0(−Y,K, s) = Ft0(η
′) = ft0(U

mc) = m− gt0
2
≥ Ft0(η

′).

Suppose Ft0(η
′) = (1− t0

2
)i+ t0

2
j for some (i, j). Hence,

m− gt0
2
≥ i− i− j

2
t0.

Since i− j ≤ g, the inequality holds for any 0 ≤ t1 < t0. Thus,

Ft1(η) = ft1(U
mc) = m− gt1

2
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for any 0 ≤ t1 < t0. In other words, any summand of η other than Umc can only

realize the Υ−invariant when t > t0.

If φ : Σ→ Σ is not right-veering, then from proposition 3.2.3 there is a generator

y such that

• ∂∞(Umy) = Umc + θ, and

• A(y) = 1− g.

Figure 3.3: This figure shows that we have other generators realizing the Υ−invariant
for some 1 ≤ t ≤ t0 if there is a bigon from y to c

.

Then

∂∞(∂∞Umy) = ∂∞Umc + ∂∞θ = 0.

Since η is a cycle,

∂∞η = ∂∞Umc + ∂∞η′ = 0
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as well. Therefore, θ+η′ is also a cycle in CFK∞(−Y,K, s), denoted by δ. Moreover,

δ has Maslov grading d(−Y, s) and

Ft0(δ) = max(Ft0(θ), Ft0(η
′)) ≥ Ft0(η) = ft0(U

mc)

because Ft0(η) = νt(−Y,K, s) = min {Ft(θ)|θ is a cycle in C and [θ] has Maslov

grading d(−Y, s)}. Thus, Ft0(θ) ≥ ft0(U
mc) ≥ Ft0(η

′). Suppose Ft0(θ) = (1− t0
2

)i′ +

t0
2
j′ for some (i′, j′). Hence,

m− gt0
2
≤ i′ − i′ − j′

2
t0.

Again i′ − j′ ≤ g. There is a bigon containing z from y to c, so y and c are at the

same algebraic filtered level. Since ∂∞(Umy) = Umc + θ and ∂∞ reduce algebraic

filtered level, we conclude that m ≥ i′. Therefore, there exists t2 < t0,

m− gt2
2

= i′ − i′ − j′

2
t2.

Rewrite it as

t2 =
2(m− i′)
g − (i′ − j′)

.

Moreover, for some t′ ∈ (t2−ε, t2), νt′(−Y,K, s) = Ft′(θ) is realized by some generator

[x, i′, j′]. Since ∂∞(Umy) = Umc + θ and A(y) = 1− g,

A(x) = j′ − i′ ≥ 2− g

and

m− i′ ≥ j′ − i′ − (1− g).

Therefore,

t2 ≥
2(j′ − i′ − (1− g))

g − (i′ − j′)
= 2− 2

g − (i′ − j′)
≥ 1.

and t0 ≥ t2 ≥ 1 as desired. �
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3.4 Examples

Example 3.4.1. For fibered knots K ⊂ S3 with less than 10 crossings, Υ′K(t) = −g

for some t ∈ [0, 1) if and only if K supports the unique tight contact structure on S3.

Proof. For any knot in S3, Ozsváth and Szabó [OSS17] prove that ΥK(t) = −τ(K)t

for small t. Moreover, if the fibered knot supports the unique tight contact structure

on S3, then τ(K) = g(K).

On the other hand, a fibered knot K supports a tight contact structure in S3 if

and only if it is strongly quasi-positive. We look up the monodromies of fibered knots

under 10 crossings that are not strongly quasi-positive from [Kno]. By brute force we

find that none of them are is right-veering. Therefore, by theorem 1.0.4, Υ′K(t) > −g.

�

Example 3.4.2. The converse of theorem 1.0.4 does not hold even for fibered knots

in S3.

Proof. Let us consider the knot K = 820, which is a slice and fibered knot. The

(p, 1)−cable Kp,1 is also slice and fibered. Indeed, 820 is the pretzel P (3,−3, 2). One

can construct a slice disks by adding two 1-handles and three 2-handles in B4. The

slice disk of the (p, 1)−cable can be obtained by stacking p copies of the disks con-

structed above and connecting them with half-twisted bands. Therefore, ΥKp,1(t) = 0.

On the other hand, Kazez and Roberts [KR12] show that the fractional Dehn twist

coefficient of a fibered knot obtained by cabling is 1
p
> 0. Hence the monodromy of

K is right-veering.
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momorphisms from knot floer homology. Advances in Mathematics, 315:366
– 426, 2017.

[Ras03] Jacob Rasmussen. Floer homology and knot complements. ArXiv Mathe-
matics e-prints, page math/0306378, June 2003.


	Introduction
	Structure of this thesis

	Generalized - Invariant
	Knot Floer complex
	The Definition and Properties of the -invariant
	t-filtration and 
	 as a function of t


	The -invariant of Fibered Knots
	Right-veering diffeomorphism
	Knot Floer homology of fibered knots
	Proof of Theorem ??
	Examples

	Bibliography

