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An observational study was conducted from 2013 to 2016 to investigate suspended-

sediment transport processes in the stratified Connecticut River estuary. Time-series 

measurements of velocity and suspended-sediment concentration from the upper estuary 

were analyzed to determine the relative importance of different processes driving 

sediment flux under highly-variable river discharge. Results indicate that under high 

discharge the salt intrusion is forced towards the mouth causing large seaward sediment 

fluxes throughout the water column. Seaward fluxes are dominated by mean advection, 

with some contribution due to tidal pumping. Under low discharge the salt intrusion 

extends to the upper estuary, advancing as a bottom salinity front during each flood tide. 

Stratification and strong velocity shear during the ebb tide cause the upper and lower 

water column to become dynamically decoupled. Sediment flux near the bed is landward 

throughout the tidal cycle despite the net seaward depth-integrated flux, and is almost 

fully attributed to the mean estuarine circulation. River discharge is the primary factor 

affecting the magnitude and direction of sediment flux because of its high variability and 

direct connection to the salt-wedge dynamics. A generalized three-phase conceptual 

model describes suspended-sediment transport in shallow, stratified estuaries with low 

trapping efficiencies. First, fine sediment bypasses the estuary during high river flows 

and exports to the coastal ocean where a portion of this sediment is temporarily deposited 

outside the mouth. Second, during low discharge offshore mud deposits are reworked by 
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wave- and tidally-driven currents and some sediment is advected back into the estuary 

with the advancing salt intrusion that transports sediment landward. Third, spatial salinity 

gradients facilitate sediment transport from the main channel to channel margins, marshes 

and off-river coves where it is retained and deposited long-term, as demonstrated in prior 

studies. This re-introduction and trapping of recycled sediment under low-discharge 

conditions can have important implications for pollutant transport, shoaling of navigation 

channels and harbors, and salt marsh accretion in the face of rising sea levels. 
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INTRODUCTION 
 
 Understanding the dynamics of fine-sediment transport in estuaries continues to 

be a challenging and important goal in coastal and estuarine research and management, 

with implications for harbor maintenance and dredging (Simmons and Herrmann 1972), 

contaminant dispersal and accumulation (Menon et al. 1998; Liu et al. 2011; Geyer and 

Ralston 2018) and long-term geomorphic evolution of estuarine systems (Patton and 

Horne 1992; Geyer et al. 2001; Ganju and Schoellhamer 2009). Meade (1969) explained 

that coastal plain estuaries tend to infill with sediment over time because the estuarine 

circulation imports sediment from the sea with landward bottom flow. This conclusion 

was based on the traditional idea of estuarine circulation, where landward flow within the 

salt intrusion converges with seaward flow near the bed around the upstream limit of salt 

intrusion (Schubel 1968; Festa and Hansen 1978; Geyer 2010; Burchard et al. 2018). 

More recent studies have demonstrated that estuarine sediment flux and particle 

trapping can be augmented or even dominated by other processes including enhanced 

settling due to flocculation, frontal trapping, tidal asymmetry and the reduction of vertical 

turbulent mixing by density stratification. For instance, Milligan et al. (2001) showed that 

flocculation processes are primarily responsible for rapid deposition and formation of a 

mobile pool of mud in a dredged channel in South Carolina. A mobile pool has also been 

documented in the Penobscot River estuary, where large seasonal variations in river 

discharge cause along-estuary shifts in the locations of salinity fronts and associated 

sediment remobilization and trapping (Geyer and Ralston 2018). Tidal asymmetry, or 

flood-ebb differences in current velocity or suspended-sediment concentration (SSC), is 

generated by semidiurnal variations in mixing and stratification and has been shown to 
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play a key role in landward sediment transport and trapping in the Columbia River 

estuary (Jay and Musiak 1994). Scully and Friedrichs (2003) provide an example from 

the York River estuary where tidal asymmetries in turbulent mixing caused sediment flux 

to be directed landward even with no residual landward current. Geyer (1993) 

demonstrated through numerical modeling that stratification may increase the trapping 

rate of fine sediment in the estuarine turbidity maximum (ETM) by as much as 20 times. 

Prior research has established that river discharge exerts a primary influence on 

the strength of estuarine circulation and the upstream limit of salt intrusion into estuaries, 

both of which affect sediment flux (Meade 1969; Castaing and Allen 1981; Geyer et al. 

2001; Lerczak et al. 2009). An increase in river discharge causes a decrease in the salt 

intrusion length and a corresponding increase in the longitudinal salinity gradient, 

resulting in stronger estuarine circulation and more landward bottom flow. Further 

increases in discharge (i.e. during a freshet) cause a seaward displacement of the limit of 

salt intrusion and region of landward bottom flow (Meade 1969; Geyer 2010). Sediment 

fluxes are also affected by fortnightly variations in tidal amplitude causing changes in 

bed stresses and mixing (Geyer 2010). Tidal amplitude variations can dominate the 

sediment flux signal in some estuaries such as the Mossoró (Valle-Levinson and Schettini 

2016), whereas the combination of spring-neap cycles and discharge variability can result 

in more complicated sediment transport patterns in other estuaries such as the Hudson 

(Geyer et al. 2001; Ralston et al. 2012). However, a general feature in stratified estuaries 

is the occurrence of landward bottom flow in regions where salinity and stratification are 

present. 
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Because river discharge and tidal currents can vary markedly between different 

estuaries and within the same estuary over timescales from days to years, recent research 

in estuarine dynamics has classified estuaries based on nondimensional parameterizations 

of these two primary forcing variables in an attempt to draw parallels between estuaries 

and to predict the estuarine response to changes in forcing (Fig. 1, modified from Geyer 

and MacCready 2014). The river discharge is parameterized by the freshwater Froude 

number Frf = UR/(βgsoceanH)1/2, where UR is the river outflow velocity (discharge/cross-

sectional area), β ≅ 7.7x10-4, g is gravity, socean is ocean salinity and H is water depth. 

The tidal currents are parameterized by the mixing number M = [(CDUT
2)/(ωN0H2)]1/2, 

where CD is a drag coefficient (typical values around 3x10-3), UT is the depth-averaged 

tidal current velocity, ω is the tidal frequency and N0 = (βgsocean/H)1/2 is the buoyancy 

frequency for the maximum vertical salinity difference in an estuary (Geyer and 

MacCready 2014). Deep, slow-flushing estuaries and fjords fall in the lower left of the 

parameter space with smallest Frf and M, partially-mixed estuaries fall in the middle of 

the diagram, salt-wedge estuaries are at the top, and time-dependent salt-wedge systems 

are at the top right with largest Frf and M (Fig. 1). Many early studies of estuarine 

dynamics and sediment transport have focused on partially- and well-mixed estuaries 

(e.g. Festa and Hansen 1978; Grabemann and Krause 1989; Geyer et al. 2001), whereas 

understanding of time-dependent salt-wedge systems has been relatively limited (Geyer 

and Farmer 1989; Ralston et al. 2010). 

The Connecticut River estuary in the northeastern USA is a short, shallow, 

energetic estuary that falls into the time-dependent salt-wedge class due to its highly-

variable river discharge and strong tidal mixing. Coarse sediment (medium sand) 
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dominates the estuary bed in the main channel, and isolated muddy sediment deposits 

(fine to medium silt) exist along low-energy margins and in tidal off-river coves and 

embayments (Woodruff et al. 2013; Valentine 2015). The Connecticut estuary has been 

described as an inefficient sediment trap that exports 80-90% of suspended sediment and 

bedload supplied by the river, primarily during high flows (Scatena 1982; Lemieux 1983; 

Toney 1987; Horne and Patton 1989; Patton and Horne 1992). In the main channel, 

prevalent seaward-oriented bedforms and a lack of significant bathymetric change over 

the past century suggest net seaward transport of bedload and no net aggradation, while 

marginal embayments simultaneously experience rapid deposition of mud (Horne and 

Patton 1989; Valentine 2015). Long-term accumulation rates of >4 cm/yr have been 

measured in an embayment (Hamburg Cove) 13 km upstream of the mouth, and dredging 

records indicate modern accumulation rates of up to 14 cm/yr in an embayment (North 

Cove) 2.5 km from the mouth (Yellen et al. 2017). Geochemical signatures of Beryllium-

7 and Carbon-13 identify the fine sediment trapped in these coves as predominantly 

marine-derived, suggesting that landward transport within the salt intrusion is the 

delivery mechanism (Woodruff et al. 2013; Yellen et al. 2017). The import and 

accumulation of sediment within these coves has been documented, but the larger-scale 

mechanisms of sediment transport in the river-estuary system have yet to be 

quantitatively assessed under different discharge conditions and linked to observations in 

the coves. 

The present study aims to quantify the magnitude and direction of sediment flux 

in a time-dependent salt-wedge estuary under a wide range of discharge conditions and 

identify the role of the salt-wedge dynamics in transporting sediment landward. To meet 
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these goals, time-series observations of salinity, velocity and suspended-sediment 

concentration were collected from the estuary thalweg during high- and low-discharge 

periods. With these high-resolution measurements, seasonal patterns of flux can be 

estimated, providing new insight into the conditions necessary for delivering fine 

sediments to areas of long-term accumulation in the estuary. Further, the results lead to 

interpretations of sediment transport pathways through the estuary and coastal ocean, and 

over event to decadal timescales. 

 
 

1.0 STUDY SITE 
 
 The Connecticut River is the longest river on the US east coast, flowing 650 km 

southward from the Canadian border to Long Island Sound and draining an area of 

29,100 km2 (Fig. 2a). Much of the upper watershed is composed of granitic metamorphic 

bedrock overlain by erodible glacial tills, whereas the lower river channel is constrained 

by a crystalline bedrock valley resulting in minimal floodplains and a sandy bed (Horne 

and Patton 1989). The estuarine morphology is narrow (0.4-1.2 km width) and 

channelized, and is marked by numerous marginal coves connected to the main stem by 

tie channels, many of which are artificially deepened by dredging to maintain vessel 

access (e.g. Hamburg and North Coves; Fig. 2b). Extensive shoals and salt marshes 

fringe the thalweg close to the river mouth. The western side of the mouth is modified by 

a jetty and breakwater to protect the dredged navigation channel, whereas on the eastern 

side the estuary transitions onto a broad shoal that extends 3 to 5 km into Long Island 

Sound and approximately 10 km alongshore (Patton and Horne 1992). 
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This study focuses on the region of the lower river that experiences salt intrusion, 

extending from the river mouth near Old Saybrook, CT to ~15 km upstream (Fig. 2b). 

Freshwater discharge, as measured 100 km upstream of the mouth and just above the 

head of tides at Thompsonville, CT (Fig. 2a), ranges from tens to thousands of m3/s with 

a long-term mean of 488 m3/s (88-year record). However, this mean value is exceeded 

less than one-third of the time and the median discharge is only 331 m3/s (United States 

Geological Survey 2015). Low-flow periods are typically observed in late summer, and 

high flows usually occur during the spring freshet in April and May and isolated storm 

events that can occur throughout the year (Horne and Patton 1989; Yellen et al. 2014). 

Salt water penetrates more than 15 km upstream during lowest discharge and is expelled 

from the estuary during highest flows. The tidal range at the mouth is microtidal at 1.1 ± 

0.3 m, and the tidal excursion is comparable to the salt intrusion length, ranging from 6-

10 km depending on river flow and tidal conditions. Depth-averaged tidal velocity (UT) 

during low discharge ranges from 0.3-0.6 m/s with the spring-neap cycle, resulting in 

values of M from 1.1 to 2.1. The river outflow velocity (UR) ranges from ~0.05 m/s 

during seasonal low flows to ~1.0 m/s during a typical spring freshet, leading to values of 

Frf from 0.04 to 0.7 (Fig. 1). Thus, the Connecticut River estuary exhibits characteristics 

of a time-dependent salt-wedge under most conditions, and is partially-mixed during 

lowest discharges (Garvine 1975; Geyer and MacCready 2014). The dominant forcing is 

the river discharge due to its high temporal variability and strong influence on the salt-

wedge dynamics. In this study, high discharge is considered discharge above the long-

term mean and low discharge is below the mean. 
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Numerous bedrock constrictions in the already-narrow estuarine morphology 

cause fronts to form in the water column during the ebb tidal phase (Geyer and Ralston 

2015; Ralston et al. 2017). These features are characterized by strong, localized along-

channel salinity gradients and enhanced stratification, which promote sediment flux 

convergence and ETM formation. Studies on the complicated dynamics of frontogenesis 

have shown the importance of fronts to rapid deposition and trapping of fine sediment in 

the Hudson River estuary (Traykovski et al. 2004; Ralston et al. 2012). In the 

Connecticut estuary, five frontal zones have been identified and named from FZ1 near the 

mouth to FZ5 located ~14 km upstream (Ralston et al. 2017). This naming convention is 

continued in the present study (Fig. 2b). 

 
 

2.0 METHODS 
 

2.1 Data collection 
 
 Field data for this study were collected during three observation periods in Fall 

2013, Spring 2014 and Fall 2015. These times were chosen to capture a wide range of 

discharge conditions. During each four- to five-week observation period, instrumented 

frames were deployed on the channel bed at multiple locations in the estuary thalweg. 

Deployment locations were chosen within previously-identified frontal zones where 

SSCs and trapping rates are enhanced (Fig. 2b; Geyer et al. 2010; Ralston et al. 2017). 

This study focuses on data collected by acoustic and optical instruments mounted on a 

2.5-m-tall quadpod deployed during each field experiment in either FZ3 or FZ4 (Fig. 2b; 

Fig. 2c). The quadpods provided full-water column profiles of current velocity and 

acoustic backscatter, and point measurements of salinity and optical backscatter at four 
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different heights (Table 1). All time-series data were averaged to 20-minute intervals and 

then 35-hour low-pass filtered to produce tidally-averaged (residual) data. 

Supporting datasets come from long-term salinity measurements, shipboard 

sampling, bed-sediment coring throughout the estuary and outside the mouth, and river 

discharge and turbidity from stream gauges. Together with the quadpod-mounted CTDs, 

an array of moored CTDs deployed throughout the estuary provides information on 

spatial and temporal changes in the along-channel position of the salt intrusion. 

Shipboard anchor stations were carried out for a few days during each observation period, 

including repeated casts with an instrumented profiling tripod (modified after Sternberg 

et al. 1991) to provide high-resolution measurements through a single tidal cycle. Cross-

channel shipboard transects with repeated OBS casts and Niskin bottle samples provide 

information on the lateral variability of SSC, and serve as another means to ground-truth 

nearby acoustic-derived SSC measurements. 

Extensive bottom-sediment sampling occurred in the estuary from 2012 to 2015 

using a KC-Denmark HAPS corer (Valentine 2015). Core locations were repeatedly 

sampled during successive field campaigns under different discharge conditions, focusing 

on the frontal zones. Additional sediment sampling took place in June 2017 in Long 

Island Sound within 7 km of the river mouth and in water depths up to 50 m. Upon 

recovery, all sediment cores were extruded and two subsamples taken from 0-0.5 cm and 

0.5-2 cm depth. In the laboratory, subsamples were processed for grain size by drying, 

weighing and sieving at 63 µm to determine the mass percent of fine sediments in each 

sample. The coarse (sand) fractions were sieved at 0.5-ϕ intervals and the fine (mud) 
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fractions were sized using a Micromeritics SediGraph 5120 automated particle size 

analyzer to produce grain-size distributions (Folk and Ward 1957). 

A United States Geological Survey (USGS) gauging station at Thompsonville, CT 

(#01184000; 100 km from mouth) recorded freshwater discharge from 86% of the 

watershed as instantaneous (15-minute interval) data and daily-mean values representing 

the long-term (88-year) mean discharge for each day of the year. This gauge also 

measured continuous, depth-integrated turbidity starting in 2015. Discrete, depth-

averaged SSC measurements at Thompsonville have been used to construct a rating curve 

between discharge and SSC (Woodruff et al. 2013). Another USGS gauge at Middle 

Haddam, CT (#01193050; 40 km from mouth) provided continuous near-surface turbidity 

measurements representative of the tidal river (the region upstream of salinity intrusion 

but subject to tidal oscillations). Turbidity at Middle Haddam has also been correlated to 

SSC based on discrete water samples (Yellen et al. 2014). 

 
2.2 Instrument calibration 

 
 Optical and acoustic instruments were calibrated for SSC using laboratory and 

field methods. In the laboratory, each OBS was submerged for 30 s in a homogeneous 

suspension of Connecticut River sediment in a large black bucket to minimize scattering 

off the bucket sides. Sensors sampled between 1 and 12 Hz, with gain settings that 

matched those during field deployments. Four concentrations ranging from 0-200 mg/l 

were used for the calibration. The mean OBS response (NTU) for each concentration was 

plotted against gravimetrically-determined SSC from filtered water samples, and a linear 

calibration equation was constructed for each sensor of the form SSC = a*NTU + b, 

where a and b are the regression coefficients. SSCs from each instrument were calculated 
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using separate sensor-specific calibrations, all of which had r2 > 0.95 and p < 0.001 

(Table 2). 

The theory of acoustic scattering in an aqueous solution of suspended particles 

has been developed and documented previously (e.g. Thorne et al. 1993; Thorne and 

Hardcastle 1997), and will be abridged in this thesis. The general principle is that an 

acoustic transceiver (i.e. a device that both sends and receives a signal) emits a 

directional pulse of sound, on the order of 10 µs in duration and typically between 0.5-5 

MHz in frequency, which propagates through the water column. Sediment or other 

particles suspended in the water backscatter a proportion of the signal, which is gated into 

range bins and recorded as a voltage. The intensity of the backscattered signal is related 

to the concentration, size and shape of suspended particles, and can thus provide 

information on SSC if particle size and shape are assumed constant in space and time. 

 The conversion from raw voltage to SSC requires knowledge of certain 

instrument parameters as well as characteristics of the field sediments where the ABS 

was deployed. The basic equation relating suspended-sediment concentration, C, to mean 

backscattered voltage, Vm, is as follows: 

𝐶 = !!!!
!!!!

!
𝑒!!"      (1) 

where 

Ψ =   
!!!.!" !

!!
! !.! !

!!

!.!

!.!" !
!!
! !.! !

!!

!.!      (2) 

with 

𝑟! =   
!!!

!

!
       (3) 

and 
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𝛼 =   𝛼! +   𝛼!      (4) 

 

In the above equations (1) through (4), r is the range from the transducer (m). Ψ is 

the nearfield factor (unitless) that accounts for the departure from spherical acoustic 

spreading within the transducer nearfield (Downing et al. 1995; Medwin and Clay 1998), 

and is calculated from the range, transducer radius and frequency. rn is the transducer 

nearfield (m), At is the transducer radius (m), and λ is the wavelength of sound (m) and is 

equal to the speed of sound in water divided by the transducer frequency. ks and kt are the 

sediment backscatter property and system constant, which can be determined through 

laboratory calibration (discussed below). αw is the sound attenuation due to water 

absorption (Nepers/m), which is determined empirically based on water temperature, 

salinity, pH and depth (Medwin and Clay 1998). αs is the sound attenuation due to 

suspended-sediment scattering (Nepers/m), which is dependent on SSC. If SSC is 

relatively low, such as in the Connecticut River estuary (typical SSC maxima <500 mg/l), 

αs is assumed negligible and the inversion follows the above equations with α = αw. 

Acoustic backscatter sensors were calibrated in a cylindrical recirculating tank 

(0.3 m diameter, 1.8 m height) in the laboratory following established procedures 

(Thorne and Hanes 2002; Betteridge et al. 2008; Wehof 2015). A five-minute burst of 

backscatter data was taken from each ABS in a homogeneous suspension of sediment 

collected from ~1 m above the bed in the Connecticut River estuary. Ten concentrations 

were sampled ranging from 0-170 mg/l. Resulting data were corrected for range, 

nearfield acoustic spreading and water attenuation (Thorne and Hurther 2014), and the 

corrected mean-square backscattered signal (𝑉!!) for each transducer was compared with 
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gravimetrically-determined SSC (C). A single calibration constant, K (equal to kskt), was 

derived from each linear best-fit of 𝑉!! vs. C and incorporated into the conversion of 

backscatter to SSC (Thorne and Hanes 2002; Thorne and Hurther 2014; Wehof 2015). 

An in situ verification of the ABS calibration technique was performed during an 

anchor station during the Fall 2015 field campaign. Acoustic backscatter measurements 

were compared to SSC determined from filtered water samples obtained throughout a 

tidal cycle and a linear regression was constructed. Lower-frequency acoustic signals are 

less sensitive to fine particles, so the 1 MHz underestimated SSC by two orders of 

magnitude but with moderate correlation (r2 = 0.53). The 5 MHz transducer, more 

sensitive to fine particles, yielded concentrations much closer to unity with r2 of 0.61 and 

root-mean-square error (RMSE) of 34 mg/l (Fig. 3a). The relatively large uncertainty is 

likely due to flood-ebb differences in the grain-size distribution of suspended particles as 

a result of flocculation processes (Lavallee 2017), which affects the acoustic calibration 

by violating the assumption of spatially and temporally invariant size distribution 

(Thorne and Hurther 2014). 

For the Fall 2013 and Fall 2015 time series, the upward-looking 1 MHz signal 

was correlated to the downward-looking 5 MHz signal within the overlapping region of 

the two transducers (~0.5 to 0.9 m above bed) and corrected based on the linear best-fit 

equation for the regression (Fig. 3c, 3d). The uncertainties in these regressions were 5 

mg/l and 34 mg/l for Fall 2013 and 2015, respectively. The larger uncertainty during Fall 

2015 is attributed to different suspended-particle characteristics during high and low 

discharge conditions (Lavallee 2017). Full-water column SSC profiles were generated by 

merging the downward-looking 5 MHz and the corrected upward-looking 1 MHz. 
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Independent SSC measurements from quadpod-mounted OBSs and shipboard OBS casts 

generally match the ABS-derived SSCs within a factor of two, with some variability 

caused by the differential response of acoustic and optical sensors to suspended particles 

(Lynch et al. 1997). 

Instrument malfunction during Spring 2014 rendered the ABS data unusable, and 

acoustic Doppler current profiler (ADCP) backscatter was used as a proxy for SSC. The 

ADCP calibration was performed in a similar manner to the ABS (Gartner 2004) and was 

based on previous ADCP calibrations in the nearby Hudson and Penobscot estuaries 

(Geyer et al. 2001; Geyer and Ralston 2018). An exponent of -1.2 was used for the range-

dependent acoustic decay because that yielded concentrations closest to the ABS during 

brief periods when ABS data were uncorrupted. The lowest bin of ADCP data was 1.8 m 

above the bed (mab), necessitating extrapolation of the SSC profiles down to the bed for 

flux calculations. Extrapolation was attempted using the standard Rouse profile (Rouse 

1937), but that resulted in SSCs near the bed being orders of magnitude too high (10s of 

g/l) compared to other sources of SSC information. Instead, a logarithmic curve was fit to 

10 data points in each SSC profile from 4 to 1.8 mab, where SSC usually increases with 

depth, and each best-fit equation was evaluated from 1.8 mab to the bed. Resulting SSCs 

agreed well with SSCs from concurrent near-bottom Niskin bottle water samples (RMSE 

= 17 mg/l), with some of the uncertainty due to slight differences in time and space of the 

samples (Fig. 3b). 

 
2.3 Sediment flux calculations 

 
 Time series of current velocity and SSC were used to compute suspended-

sediment fluxes at the thalweg quadpod locations. Current velocities were rotated to the 
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direction of maximum variance for along-channel velocity. Velocity and SSC data were 

bin-averaged to 25-cm vertical increments through the entire water column, and each 

profile was then normalized to relative height above the bed (z/h) after accounting for the 

changing water surface (tides) and bed elevation (erosion and aggradation) during the 

deployment. The highest (z/h = 0.975) and lowest (z/h = 0.025) bins were corrupted due 

to acoustic interference with the water surface and bed, respectively, and were therefore 

recalculated using extrapolation techniques based on the uncorrupted data in order to 

obtain best-estimates of depth-integrated sediment fluxes. Velocities in the highest bin 

were assumed the same as the second-highest bin, and lowest-bin velocities were 

calculated by taking the mean of the second-lowest bin and zero, assuming the velocity 

approaches zero at the bed. For the Fall 2013 and Fall 2015 timeseries, lowest-bin SSCs 

were calculated using a standard Rouse profile fit to the data below the pycnocline. 

Unlike the ADCP extrapolation described above for the Spring 2014 dataset, the Rouse 

model yielded reasonable SSC values in the lowest bin at times when SSC was increasing 

towards the bed. Lowest-bin SSCs were the same as the second-lowest bin when the SSC 

profile did not fit the Rouse model (i.e. when SSC was not significantly increasing 

towards the bed). Highest-bin SSCs were assumed the same as those in the second-

highest bin. 

For each location, instantaneous sediment flux (Qz, g/m2/s) at each height above 

the bed, z=z/h, was calculated from the product of along-channel velocity (uz) and SSC 

(cz) using: 

𝑄! = 𝑢!𝑐!       (5) 
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Instantaneous values of Qz were vertically integrated through the water column and 

averaged over the tidal cycle to approximate the total residual along-channel flux per unit 

width of the estuary, QT (g/m/s). Tidally-averaged (hereafter referred to as residual) 

values were calculated by applying a 35-hour low-pass filter to the time series of 

instantaneous, depth-integrated flux. 

To quantify the dominant mechanisms affecting sediment flux, QT was 

decomposed into advective (QA) and tidal pumping (QP) components, similar to methods 

used in past studies (Geyer et al. 2001; Scully and Friedrichs 2007). The advective term 

represents the flux due to residual-current velocity and residual SSC and is given by 

𝑄! =   𝑢!𝑐!       (6) 

where the overbars denote tidally-averaged values. The sediment flux resulting from 

Stokes drift is contained within QA. The tidal pumping term represents the flux due to 

correlations between tidal deviations of velocity and SSC and is given by 

𝑄! =   𝑢′!𝑐′!       (7) 

where the primes indicate temporal deviations from the tidally-averaged values. QP 

accounts for sediment fluxes caused by both tidal velocity asymmetry and tidal mixing 

asymmetry. 

Uncertainties in calculated sediment fluxes are almost solely due to uncertainties 

in acoustic-derived SSCs, as acoustic velocities are accurate to within 0.25%. Fractional 

SSC uncertainties are estimated using the mean SSC values and RMSEs for regressions 

shown in Figure 3. 
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3.0 RESULTS 

 
High-resolution time series of current velocity and SSC allow calculation of 

suspended-sediment fluxes at the quadpod locations during each field deployment. Fluxes 

can then be decomposed to identify the dominant processes using equations (6) and (7). 

Results are presented separately for each field deployment in order of gauging station 

data (discharge and SSC), water properties in the estuary (salinity, velocity and SSC) and 

sediment fluxes (total, decomposed and cumulative). Fluxes are calculated for two zones 

in order to isolate the effects of landward near-bed transport: integrated over the entire 

water column, and integrated over only the lower 30% of the water column (hereafter 

referred to as the “lower layer”; z/h = 0.3, upper limit of 2.5 to 3 mab). This cutoff depth 

was chosen because the average depth of zero velocity during maximum ebb tides was at 

z/h=0.3 during low-discharge conditions. Positive values of velocity and sediment flux 

denote up-estuary (landward) transport and negative values are down-estuary (seaward). 

A summary of results from each field deployment is provided in Table 3. 

 
3.1 Low discharge – Fall 2013 

 
 The 35-day Fall 2013 deployment was characterized by low discharge, 

consistently below the daily-mean values and well below the long-term mean (Fig. 4a). A 

minor discharge event occurred on November 3, 2013 (maximum 640 m3/s) and caused a 

small but noticeable seaward increase of residual velocity and sediment transport in the 

estuary. SSC data from Thompsonville indicated very low SSCs of 5-10 mg/l in the river 

at the head of tides. Prior to the Fall 2013 sampling, the 2013 spring freshet was typical 

of the Connecticut (peak flow = 1700 m3/s) and it was followed by several high-
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discharge events during the early summer of around 2000 m3/s. These events were 

associated with SSC in the tidal river that exceeded 100 mg/l on multiple occasions (Fig. 

4b). 

In the estuary at FZ4 (9 km from mouth), mean velocity profiles during ebbs were 

strongly vertically-sheared, and near-bottom currents remained landward-directed for 

nearly the entire tidal cycle with magnitudes of 0.1-0.2 m/s (Fig. 5a). SSC around 

maximum ebb current exhibited higher concentrations throughout the water column than 

during maximum flood, but the latter increased slightly close to the bottom (Fig. 5b). 

Salinity stratification (difference between bottom and surface salinity) was tidally-

varying and residual bottom salinity was greater than zero throughout the Fall 2013 

deployment, indicating the persistent presence of the salt intrusion at FZ4 (Fig. 6b). 

During neap tides from October 25-30 bottom salinity remained greater than zero at all 

phases of the tide. Maximum depth-averaged tidal current velocities ranged from 0.20-

0.59 m/s during flood tides and 0.23-0.79 m/s during ebbs, with stronger currents 

observed during periods of spring tides and elevated river discharge (Fig. 6c). Suspended-

sediment concentration varied tidally and was greater during spring tides (10-30 mg/l) 

than during neaps (7-15 mg/l; Fig. 6d). The mean depth-averaged SSC for the entire 

deployment was only 8 mg/l, similar to SSC measurements at Thompsonville during this 

period. 

Small sediment fluxes on the order of 10 g/m/s were observed during Fall 2013 as 

a result of low SSC in the upper estuary (Fig. 7a). Fluxes in the lower layer were smaller 

in magnitude compared with depth-integrated values and were more often landward-

directed; average fluxes over the time series were -4.8 g/m/s (depth-integrated) and 2.9 
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g/m/s (lower layer). Integrating over the deployment period, the cumulative depth-

integrated flux over 35 days was -14.6 tonnes per meter of the estuary cross-section 

(T/m) and the cumulative lower layer flux was 8.7 T/m (Fig. 7c). Decomposition of the 

total flux reveals that the advective component accounted for 100% of the total depth-

integrated flux and 92% of the lower layer flux, pointing to the mean estuarine circulation 

as the primary mode of sediment transport at FZ4 during Fall 2013. Depth-integrated 

advective flux was consistently directed seaward due to the net river outflow in the upper 

water column, whereas in the lower layer this flux was almost always landward as a 

result of net landward residual near-bed currents (Fig. 7b). Tidal pumping flux was 

sometimes larger in magnitude than the advective component, yet was relatively 

unimportant over the length of the timeseries due to landward and seaward pumping 

fluxes nearly cancelling out. 

 
3.2 High discharge – Spring 2014 

 
 Sampling during the 36-day Spring 2014 deployment captured a moderate spring 

freshet with a maximum river discharge of 2619 m3/s occurring at the beginning of the 

deployment on April 17, 2014 (Fig. 4a; Fig. 8a). The 2014 freshet peak fell into the 62nd 

percentile of historic spring freshets for the Connecticut and was twice the daily-mean 

discharge for that date. Suspended-sediment concentration reached a maximum of 126 

mg/l at Middle Haddam during the freshet (Fig. 4b). Discharge exceeded the long-term 

mean for nearly the entire deployment and included two subsequent events with peak 

discharges of 1574 m3/s and 1325 m3/s on May 2 and May 19, though SSC in the tidal 

river remained below 30 mg/l after the initial sediment pulse during highest flow. 
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 High discharge during Spring 2014 had a strong impact on water properties and 

flow in the estuary. At FZ3 (6 km from mouth) the water column was completely fresh 

during the first six days of the deployment and again from May 1-5, 2014, despite FZ3 

being 3 km closer to the mouth than FZ4 (Fig. 8b). The salt intrusion penetrated landward 

to FZ3 when discharge dropped below ~1200 m3/s, as evidenced by the reappearance of 

residual bottom salinity and tidally-varying stratification (Fig. 8b). Mean profiles during 

ebbs indicate strong seaward velocities of >1 m/s in the upper water column and >0.5 m/s 

at 0.4 m above the bed, whereas during flood tides the near-surface flow averaged 0.10 

m/s seaward and flow was slightly landward near the bed (Fig. 5c). During highest 

discharge, depth-averaged currents exhibited tidal oscillations in magnitude but flowed in 

the seaward direction throughout the tidal cycle; only under more moderate discharge 

conditions were depth-averaged velocities directed landward during flood tides (Fig. 8c). 

The depth-averaged residual current was seaward for the entire deployment and ranged in 

magnitude from 0.22-1.02 m/s. Depth-averaged SSC was an order of magnitude greater 

relative to low-discharge periods in response to the large input of watershed-derived 

sediment associated with the spring freshet. Mean concentration profiles show higher 

SSCs during ebb tides (25-250 mg/l) compared to flood tides (8-65 mg/l; Fig. 5d). Tidal 

SSC maxima ranged between 150-250 mg/l during highest discharge and 25-100 mg/l 

during more moderate flows (Fig. 8d). 

 Large seaward sediment fluxes were observed during Spring 2014 as a result of 

strong seaward velocities and high SSC. Depth-integrated residual flux was seaward for 

nearly the entire deployment and peaked at -1.14 kg/m/s, the largest flux observed during 

this study (Fig. 9a). Largest fluxes occurred when salinity was absent from FZ3 during 
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the first and second discharge events. The spring-neap cycle exerted a secondary 

influence on sediment flux, with larger seaward fluxes during spring tides on April 27-30 

and smaller fluxes during neaps on May 7-10 when river discharge was similar. This 

pattern may have been augmented by greater availability of erodible sediment in the 

estuary during spring tides that occurred just after the first discharge event and large 

sediment delivery to the estuary. Interestingly, the residual flux integrated over the lower 

layer remained seaward for nearly all of the Spring 2014 observation period, indicating 

the dominance of the river outflow even near the bed at FZ3. This is also indicated by the 

seaward advective flux in the lower layer throughout the time series (Fig. 9b). Tidal 

pumping fluxes throughout the water column were usually seaward as well, except for a 

brief period from May 11-15, 2014 when discharge was minimum and small landward 

pumping fluxes were observed. The cumulative depth-integrated flux over 36 days was -

654 T/m, 45 times greater than that observed over a similar time span during Fall 2013 

(Fig. 9c). Although the advective term dominated the flux during Spring 2014, tidal 

pumping played a significant role in the seaward flux at all depths, accounting for 19% of 

the total. The cumulative flux over the lower layer accounted for over 50% of the depth-

integrated flux, as expected based on the mean SSC and velocity profiles. 

 
3.3 Isolated discharge event – Fall 2015 

 
 The 28-day Fall 2015 deployment period was dominated by late-season low flows 

usually below the daily means, with a moderate discharge event (maximum 1096 m3/s) 

from October 1-5, 2015 (Fig. 10a). This isolated event is of particular interest because it 

occurred suddenly and ended a 70-day period of below-mean discharge. Discharge 
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increased from 75 m3/s to above 1000 m3/s in just 1.5 days during the event, while SSC 

in the tidal river increased from 2 mg/l to nearly 60 mg/l (Fig. 4). 

In the upper estuary at FZ4, very low discharge combined with spring tides at the 

beginning of the deployment resulted in tidally-varying stratification and persistent 

bottom salinity of 20 psu (Fig. 10b). Depth-averaged currents oscillated tidally with peak 

magnitudes near 0.5 m/s and the residual velocity was near zero (Fig. 10c). Tidal 

resuspension of sediment resulted in SSC maxima of 50-150 mg/l and the residual SSC 

was 25 mg/l during this period. When discharge suddenly increased on October 1, 2015, 

the limit of salt intrusion shifted seaward to lie in the vicinity of FZ4, as indicated by 

stratification only occurring briefly during higher-high tides (e.g. October 2 and 3; Fig. 

10b). Depth-averaged currents were almost always seaward during the event with 

magnitudes up to 1 m/s; residual depth-averaged velocity reached a maximum of 0.45 

m/s seaward (Fig. 10c). Tidal SSC maxima at FZ4 increased by nearly a factor of two due 

to enhanced sediment delivery into the estuary (Fig. 10d). During below-mean discharge 

before and after the event, the mean flow structure was similar to that observed during 

Fall 2013 including strong velocity shear during ebb tides and weaker, more vertically-

uniform velocities during flood tides (Fig. 5e). Mean vertical distributions of SSC during 

flood tides had low SSCs through most of the water column and a pronounced ten-fold 

increase in SSC near the bed (Fig. 5f). The mean ebb-tide SSC profile exhibited greater 

concentrations through most of the water column including a broad mid-water maximum 

coincident with the height of maximum velocity shear, and no SSC increase near the bed. 

Sediment fluxes during Fall 2015 can be divided into two regimes based on 

discharge. Under low-flow conditions, depth-integrated flux varied tidally and the 
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residual hovered close to zero (Fig. 11a). In the lower layer, residual flux was very small 

(5-15 g/m/s) but constantly landward-directed and dominated by advective flux. 

Conversely, during the discharge event depth-integrated residual flux became strongly 

seaward reaching a maximum of -0.42 kg/m/s, greater than one-third of the largest flux 

observed during freshet conditions in Spring 2014 (Fig. 11a). Residual flux in the lower 

layer during the event followed similar patterns as the full water column but at 

approximately half the magnitude. Tidal pumping was an important seaward transport 

mechanism during the discharge event, at times exceeding the advective flux (Fig. 11b). 

Net landward tidal pumping flux occurred early in the deployment during spring tides 

and very low discharge, whereas the pumping flux was net seaward for most of the time 

after the discharge event. The total depth-integrated flux accumulated over 28 days was -

81 T/m and the advective flux accounted for 64% of this value. In the lower layer the 

total cumulative flux was -16.2 T/m, but showed a consistent increasing (landward) trend 

of about 0.7 T/m/day during periods of low discharge (Fig. 11c). This slow landward flux 

near the bed was solely due to advective flux, and tidal pumping flux was near zero in the 

lower layer. 

 
4.0 ANALYSIS AND DISCUSSION 

 
4.1 Total sediment fluxes 

 
 One of the goals of this study is to estimate total along-channel fluxes of sediment 

moving through the Connecticut River estuary by extrapolating the per-unit-width fluxes 

measured at the mid-channel deployment locations. Using cross-sectional areas of 2620 

m2 at FZ3 and 2520 m2 at FZ4 and assuming lateral homogeneity, total cumulative fluxes 

were calculated for each deployment and compared with cumulative fluxes over the same 
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times at upstream gauging stations (Table 4). However, circulation and SSC can vary 

markedly across an estuary cross section (Ralston et al. 2012; Valle-Levinson and 

Schettini 2016), and a more realistic lateral extrapolation of sediment flux was sought 

that requires information on the cross-channel variability. 

Results from a three-dimensional hydrodynamic and sediment transport model 

developed for the Connecticut River estuary (Ralston et al. 2017) are used to explore the 

influence of lateral variability and guide flux extrapolations. The 3-D unstructured grid 

model uses the Finite Volume Coastal Ocean Model (FVCOM; Chen et al. 2003) with a 

sediment-transport component from the Community Sediment Transport Modeling 

System (CSTMS; Warner et al. 2008). FVCOM has been used previously to simulate 

circulation and transport in the stratified Skagit River estuary (Ralston et al. 2013), and 

has been extensively evaluated against observations in the Connecticut River estuary 

(Ralston et al. 2017; Yellen et al. 2017). 

The model was run for conditions of all three deployment periods. Modeled 

sediment fluxes from the thalweg integrated uniformly across the estuary are 

considerably larger in magnitude than modeled laterally-integrated fluxes (Fig. 12). In 

effect this means that uniform extrapolation of the quadpod data could overestimate total 

integrated fluxes, assuming the model accurately captures the cross-channel variability. 

The differences between uniformly-extrapolated and modeled fluxes are smaller (1.5-2x) 

during high-discharge conditions when seaward transport is likely more uniform across 

the estuary, whereas these differences are larger (2-4x) during low-discharge conditions 

when the salt intrusion is present and landward sediment flux is likely confined to the 

deeper channel. Lateral segregation of sediment flux has been documented in other 
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estuaries under low-discharge conditions, with net landward transport in the channel and 

net seaward transport on the shoals (Scully and Friedrichs 2007; Ralston et al. 2012). The 

existence of a similar lateral structure in the Connecticut estuary would result in an 

overestimation of landward flux from uniform extrapolation of thalweg fluxes and a 

larger relative uncertainty than during high-discharge conditions, possibly impacting the 

interpretations. However, landward fluxes are orders of magnitude smaller than seaward 

fluxes and have a smaller impact on the cumulative signal despite this larger uncertainty. 

Therefore, a bulk estimate of 2x is used for the difference between uniformly-

extrapolated and modeled fluxes for all discharge conditions, to be applied to the 

calculation of laterally-integrated total fluxes. The total fluxes presented below carry an 

estimated uncertainty on the order of 50% associated with lateral variability which 

augments the uncertainties in acoustic-derived SSCs from the thalweg measurements, so 

the implications should be interpreted with care. However, observations from the 

quadpods clearly show landward near-bed flux in the channel during low discharge and 

seaward flux during high discharge despite the uncertainty in the lateral structure. 

Revised estimates of total integrated fluxes are obtained by multiplying by a 

correction factor of 0.5 to account for the larger fluxes in the thalweg compared to the 

shoals (Table 4). Total fluxes during the three deployments span three orders of 

magnitude, with the largest flux during the spring freshet in 2014, intermediate flux 

during Fall 2015 with an isolated discharge event, and smallest flux during low discharge 

in Fall 2013 (Fig. 13; Table 4). In general, SSCs and fluxes at Thompsonville are 

significantly larger than those farther downstream at Middle Haddam (e.g. during Fall 

2013 and Spring 2014; Table 4). This counterintuitive result may be a consequence of 
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imperfect rating curves (Woodruff et al. 2013), but could also result from sediment 

deposition in the tidal river between the two gauges. Estuary fluxes are similar to those in 

the tidal river at Middle Haddam during Fall 2013 and Fall 2015, showing a slight 

increase downstream. The 18% discrepancy during Spring 2014 (140,640 T at Middle 

Haddam and 115,330 T at FZ3) is attributed to the different method used to obtain SSC 

in the estuary (from ADCP instead of ABS), which caused a small offset to accumulate 

over time. For this reason, the flux at FZ3 during Spring 2014 is considered a minimum 

estimate. 

 Two key points can be drawn from these findings. First, sediment is transported 

landward in the lower layer during low discharge even if the total depth-integrated flux is 

seaward. For instance, during the Fall 2013 deployment about 1,500 tonnes of sediment 

moved seaward past Middle Haddam and 2,200 tonnes was transported seaward past FZ4 

(Fig. 13; Table 4). However, approximately 1,300 tonnes was transported landward in the 

lower layer due to the influence of the salt intrusion, supplying the upper estuary with 

sediment available for potential deposition in marshes and off-river coves. This pattern 

implies a near-bed convergence of sediment flux landward of FZ4, and demonstrates how 

energetic estuaries can rapidly accumulate fine sediments while simultaneously exporting 

most of the sediment delivered from upstream. 

Second, it appears that prolonged landward transport near the bed leads to the 

formation of easily-erodible mud deposits upstream of the quadpod locations that are 

subsequently redistributed downstream during increasing discharge. This process is 

evidenced by differences between the fluxes at Middle Haddam and FZ4 under different 

discharge conditions during Fall 2015 (Fig. 13, red box). During low discharge, sediment 
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is carried seaward past Middle Haddam while landward flux occurs near the bed at FZ4, 

implying convergence and deposition in the upper estuary and lower tidal river. This 

occurs because the salt intrusion extends landward of FZ4 when discharge is below the 

mean, a condition that was met for 70 consecutive days prior to the October 1, 2015 

discharge event. During this five-day event, a 46% increase in the seaward flux was 

observed between Middle Haddam (8,370 T) and FZ4 (12,250 T), indicating that this 

intervening reach of the river can serve as an additional source of sediment to the estuary 

when temporary deposits are remobilized during increasing discharge (Fig. 13). These 

observations support recent work that has emphasized the importance of bed storage in 

the tidal reach above the limit of salt intrusion in supplying sediment to estuaries (Cook 

et al. 2007; Sommerfield and Wong 2011). Still, sediment-transport processes in tidal 

freshwater reaches of rivers represent a significant knowledge gap in the literature, 

despite the crucial role of the tidal river in modulating sediment delivery to estuaries and 

the ocean (Ralston and Geyer 2017). 

 
4.2 Cycle of fine sediment transport 

 
The robust time-series observations from this study emphasize the importance of 

discharge and salt-wedge dynamics in modulating sediment flux in a shallow, stratified 

estuary. Data from all three field campaigns combine to reveal a strong interrelationship 

between discharge, salt intrusion length and sediment flux (Fig. 14). Below-mean 

discharge conditions occur approximately 70% of the time, allowing the salt intrusion to 

penetrate landward of FZ3 and resulting in small landward sediment fluxes near the bed 

in the upper estuary. Conversely, less frequent high-discharge conditions restrict the salt 

intrusion to the lower estuary and cause large seaward sediment fluxes (Fig. 14). 
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Extrapolating these transport patterns to longer timescales and combining with evidence 

presented in other studies (Woodruff et al. 2013; Yellen et al. 2017) supports the 

development of a three-phase conceptual model describing the cycle of fine sediment 

transport in the Connecticut River estuary that may apply to other dynamically-similar 

systems: (1) export, (2) import, and (3) deposition and accumulation. This conceptual 

model does not include processes occurring in the tidal river, except as implied by 

differences in sediment flux between gauging stations and the estuary. 

(1) Export occurs during high flows when sediment is routed through the estuary 

to Long Island Sound. Much of this sediment is eroded from the upland watershed, but a 

significant proportion (46% during the Fall 2015 discharge event) is likely remobilized 

from temporary bed storage in the tidal river and upper estuary. The enhanced discharge 

restricts the salt intrusion to within a few kilometers of the mouth and large seaward 

sediment fluxes occur at all depths, sometimes exceeding 1 kg/m/s (Fig. 9; Fig. 14). 

Fluxes are dominated by non-tidal advection due to the mean river outflow but with some 

contribution from tidal pumping due to faster currents and greater SSC during ebb tides 

(Fig. 9). Fine sediment tends to bypass off-river depocenters during high flows 

(Woodruff et al. 2013; Yellen et al. 2017) and export to the coastal ocean in a buoyant 

surface plume, where some sediment accumulates near shore on the shallow shoals and 

the rest is dispersed into the far field by strong tidal currents in Long Island Sound 

(Garvine 1974). This is consistent with the existence of mud deposits near shore to the 

west and east of the river mouth, as confirmed by a series of bed-sediment samples 

collected in June 2017 (Fig. 15a). 
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(2) Import occurs during low-discharge conditions when sediment is redistributed 

landward with the advancing salt intrusion. Resuspension of mud deposits by wind- and 

tidally-driven currents in shallow areas of Long Island Sound makes sediment available 

for transport into the estuary (Signell et al. 2000; Poppe et al. 2002). During each tidal 

cycle, import is likely enhanced because flooding currents initiate over the shallow, 

muddy shoals while the channel flow still ebbs (Scatena 1982; Lemieux 1983). When salt 

water intrudes during each flood tide, sediment is carried landward with a strong front as 

indicated by concurrent sharp increases in salinity and SSC, which results in a pulse of 

landward flux near the bed (Fig. 16; Ralston et al. 2017). The effects of the salt-wedge 

front passage are also illustrated in mean flood-tide SSC profiles during low discharge, 

which show SSC increasing near the bed especially during Fall 2015 (Fig. 5b, 5f). 

As the tide ebbs, fresh river water is advected over the salt intrusion and 

stratification usually exceeds 20 psu over only ~8 m depth. Strong vertical gradients of 

density and velocity result in typical gradient Richardson numbers Rig = 0.25 and mixing 

efficiencies Rif = 0.23 within the pycnocline during the mid-ebb (Holleman et al. 2016). 

Near-surface and near-bed flows are effectively decoupled, which limits vertical 

turbulent length scales and maintains landward flow and sediment flux near the bed 

(Scully and Friedrichs 2003). However, the highest SSCs during the ebb occur at mid-

depths near the height of maximum velocity shear (Fig. 5f), a likely result of sediment 

resuspended at the landward limit of the salt-wedge front that advects seaward along the 

pycnocline. As the tide progresses to late ebb, the salt-wedge structure is advected 

downstream causing a decrease in stratification and corresponding decreases in Rig and 

Rif during the transition from internal shear layer mixing to bottom boundary layer 
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mixing (Holleman et al. 2016; Ralston et al. 2017). Once stratification disappears, 

turbulence can reach the bed and resuspend sediment resulting in a smaller secondary 

peak in near-bed SSC (Fig. 16c). 

The depth-integrated flux is slightly seaward during low discharge (although 2 to 

3 orders of magnitude smaller than during high discharge) due to mixing of sediment 

higher in the water column during the ebb, but the near-bed currents usually remain 

landward even during maximum depth-averaged ebb current and this drives a landward 

advective flux within the lower layer. Thus, fine sediment is pumped back and forth with 

each tide but the tidally-averaged motion is landward near the bed, so sediment slowly 

makes its way up the estuary (Wellershaus 1981; Geyer 1993).  

This re-import of marine-sourced sediment is also evidenced by trends in bed 

composition revealed by extensive sediment sampling throughout the study area (Fig. 

15). In addition to deposits along the channel margins and outside the mouth, fine 

sediments occur as a “mud drape” (1-mm-thick ephemeral mud layer on top of sand) that 

is only observed in the main channel of the upper estuary during low-discharge periods 

when the salt intrusion is present (Valentine 2015). Mean grain-size distributions of the 

fine fractions (<63 µm) were obtained by averaging many individual distributions for six 

different types of sediment samples: Hamburg Cove sediment traps (Yellen et al. 2017), 

mud drape samples (Valentine 2015), near-bed suspended disaggregated inorganic grain 

size (DIGS; Lavallee 2017), estuary margins, estuary mouth and Long Island Sound (Fig. 

15b). All distributions are unimodal, with modes of 4.5 ϕ (44 µm) for the bed samples 

(margins, mouth, LIS) and 5.5 ϕ (22 µm) for the recently-suspended samples (Hamburg 

Cove, mud drape, DIGS). The distribution of the fine sediment deposited at and beyond 
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the estuary mouth is nearly the same as that being transported and deposited throughout 

the study area, providing further evidence that fine sediment exported to Long Island 

Sound is subsequently re-imported into the estuary. 

 (3) Deposition and accumulation occur simultaneously with the import phase 

during low-discharge conditions, and involve the transport of suspended sediment from 

the main estuary channel into depositional environments such as channel margins, off-

river coves and marshes. Sediment tends to bypass such environments during high river 

flows when salinity is absent, and accumulates during low flows when salinity intrudes 

and creates density gradients between the main channel and off-river environments 

(Woodruff et al. 2013; Yellen et al. 2017). Previous work in Hamburg Cove has shown 

that saline water and suspended sediment can flow as a dense gravity current through the 

dredged cove entrance and into deeper areas of the cove during flood tides, but only when 

the pycnocline in the main channel rises above the depth of the cove entrance (i.e. when 

the salt-intrusion front reaches the entrance). Fine sediment transported into the cove 

tends to become trapped there because stratification causes stagnation of bottom water 

and limits resuspension during the ensuing ebb tide (Yellen et al. 2017). The mean size 

distribution of Hamburg Cove fine sediments is slightly finer than distributions from bed 

deposits throughout the estuary and Long Island Sound, indicating that the finer mud 

particles are preferentially delivered to the cove (Fig. 15b). 

Time-series observations from FZ4 under low-discharge conditions show that the 

highest SSCs occur near the bed during each flood tide and are coincident with the 

passage of the salt front, driving an up-estuary flux (Fig. 16). Thus, favorable conditions 

for sediment transport into marginal environments occur during each flood tide because 



 31 

seaward-sourced sediment is delivered to the upper estuary synchronous with enhanced 

salinity gradients. The salt intrusion reaches the Hamburg Cove entrance when discharge 

is below ~300 m3/s, which occurs during half of the year on average (Fig. 14b). At more 

seaward embayments such as North Cove (Fig. 2b), salt is present at all but the highest 

discharges and consequently sediment accumulation rates there are much greater than in 

coves farther up-estuary (Yellen et al. 2017). 

It stands to reason that marginal embayments and salt marshes that lie within the 

typical salt intrusion length can serve as sediment traps in estuaries that may otherwise 

have low trapping efficiencies in the main channel. This is especially true for harbors 

with dredged channels, such as North Cove and Hamburg Cove, that more easily 

exchange water and sediment with the main channel due to the increased water depth. 

The sediment-trapping mechanism is absent from the estuary when most sediment is 

being delivered from the watershed during high flows, but is present during low flows 

when the salt intrusion is established. Although landward fluxes during low discharge are 

small in magnitude, they occur over a majority of the time and are important for 

supplying fine sediment to the estuary to maintain marshes and equilibrium morphology 

in the face of rising global sea levels. Marshes can degrade or disappear if the rate of sea 

level rise outpaces marsh accretion rates, which depend on SSC and sediment delivery 

(Temmerman et al. 2004). Furthermore, increases in mean sea level can increase the salt 

intrusion length into estuaries, likely causing changes in the positions of ETM and 

associated zones of enhanced sediment trapping (Hong and Shen 2012; Yellen et al. 

2017). Thus, understanding estuarine sediment flux and deposition combined with salt-
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wedge dynamics under a range of forcing conditions is a vital step in predicting future 

changes to estuarine morphology (Ganju and Schoellhamer 2009). 
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5.0 SUMMARY AND CONCLUSIONS 

 
This research provides a basis for understanding the transport mechanisms and 

fate of fine sediment in energetic estuaries with low trapping efficiencies, such as the 

Connecticut River estuary. As is the case for many field studies of sediment transport, the 

quantitative fluxes presented here are subject to large uncertainties stemming from 

challenges of instrument calibration (Fig. 3) and data extrapolation (Table 4) and should 

be taken as broad estimates, but the conclusions are backed by several different lines of 

evidence and are considered robust. River discharge exerts a leading-order influence on 

the magnitude and net direction of sediment transport, causing large seaward fluxes at all 

depths during high discharge and small bi-directional fluxes with seaward flux in the 

upper water column and landward flux near the bed during low discharge (Fig. 13; Fig. 

14). The advective flux dominates under most conditions indicating persistent estuarine 

circulation, with a notable component of seaward tidal pumping flux during high 

discharge due to stronger currents and greater SSC during ebb tides (Fig. 9; Fig. 11). 

The combined evidence from this study and others (Woodruff et al. 2013; Yellen 

et al. 2017) suggests a conceptual model for fine sediment transport in this system that 

may be applicable to other shallow, tidal, stratified estuaries with variable discharge 

forcing. Over seasonal to inter-annual timescales, sediment is flushed out of the estuary 

during high discharge and some is deposited offshore near the mouth (1), providing a 

source of sediment to the estuary during low discharge when the tidal salt intrusion re-

establishes. Sediment is then transported slowly up-estuary towards the limit of salt 

intrusion (2) where it can be transmitted into marginal environments and permanently 

deposited (3). Fine sediment can accumulate rapidly in energetic estuaries with primarily 
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sandy beds, but requires this multi-step transport pathway. However, transport processes 

within the tidal freshwater reach are inferred from differences between total integrated 

fluxes which carry large uncertainties, and should be interpreted with care. Tidal river 

dynamics can significantly affect sediment fluxes in the estuary (e.g. Ralston and Geyer 

2017), and represent a knowledge gap in the complete cycle of estuarine sediment 

transport. Future studies should include more detailed attention to this issue. 
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6.0 TABLES 
 
Table 1. Summary of relevant quadpod-mounted instruments and data collected during 
each field deployment. 
 

Instrument Manufacturer Data provided Sampling 
interval 

Data range (meters 
above bed/below 

surface) 

Acoustic Doppler 
current profiler 

(ADCP) 
Teledyne RD 

Profiles of 
current velocity 

and acoustic 
backscatter 

30 s Upward: 
1.5 mab - surface 

Aquadopp Nortek 
Profiles of near-

bed current 
velocity 

60 s Downward: 
1.3 mab - bed 

AQUAScat 1000 
Acoustic 

backscatter 
sensor (ABS) 

Aquatec LTD 
Profiles of 
acoustic 

backscatter 

2 s, 
5- to 20-

min bursts 

Upward (1 MHz): 
0.3 mab - surface 

Downward 
(1, 2.5, 5 MHz): 
1.0 mab – bed 

Conductivity, 
temperature and 

depth sensor 
(CTD) with 

attached optical 
backscatter 

sensor (OBS) 

RBR, 
Seapoint 

Point 
measurements of 

salinity and 
optical 

backscatter 

30 s 

Bottom: 0.5 mab 
Middle: 1.2 mab 
Upper: 2.2 mab 

Surface: 0.6 mbs 
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Table 2. Optical backscatter sensor (OBS) calibrations used in this study to convert raw 
backscatter (NTU) into SSC (mg/l) using the equation SSC = a*NTU + b. All OBSs 
record in NTU except for #18507 which records in volts. OBSs were calibrated in the 
laboratory with Connecticut River sediment. 
 

OBS serial # a b r2 RMSE 
(mg/l) 

14639 2.15 -3.28 0.998 3.20 

14640 2.61 -1.79 0.999 1.12 

17140 1.96 -4.84 0.998 3.62 

17211 1.00 -12.83 0.946 17.30 

17212 1.81 6.65 0.999 1.40 

18503 2.31 -1.19 0.999 0.88 

65524 2.13 -6.94 1.000 0.42 

65525 2.48 -2.49 0.999 0.74 

65526 2.07 -2.91 0.999 0.80 

65640 1.68 -0.97 0.999 0.86 

65722 1.83 -1.44 0.999 1.03 

65723 1.79 -0.80 0.999 1.31 

18658 1.70 -0.44 0.999 0.89 

18507 48.03 2.56 0.999 1.77 
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Table 3. Summary of conditions and results for each field deployment. Positive values of 
current velocity and sediment flux denote landward transport. 
 

 Fall 2013 Spring 2014 Fall 2015 

Deployment length 
(days) 35 36.5 28.5 

Quadpod location 
(coordinates) 

FZ4 
(41°20.364'N, 
72°21.689'W) 

FZ3 
(41°18.966'N, 
72°20.749'W) 

FZ4 
(41°20.369'N, 
72°21.681'W) 

Min discharge (m3/s) 89 462 75 

Mean discharge 
(m3/s) 243 1109 295 

Max discharge (m3/s) 640 2619 1096 

Mean tidal range (m) 1.1 1.0 1.1 

Max depth-averaged 
flood velocity (m/s) 0.59 0.46 0.61 

Max depth-averaged 
ebb velocity (m/s) -0.79 -1.3 -0.96 

Mean depth-
averaged SSC (mg/l) 8 41 21 

Max depth-averaged 
SSC (mg/l) 117 244 264 

Mean depth-
integrated total flux 

(kg/m/s) 
-0.0048 -0.21 -0.034 

Max depth-
integrated total flux 

(kg/m/s) 
-0.031 -1.1 -0.42 

Cumulative depth-
integrated total flux 

(tonne/m) 
-14.6 -654 -80.9 

Cumulative lower 
layer total flux 

(tonne/m) 
8.7 -345 -16.2 
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Table 4. Cross-section integrated cumulative sediment fluxes and mean SSCs during 
each deployment period. Thompsonville and Middle Haddam fluxes were calculated 
using established rating curves (Woodruff et al. 2013; Yellen et al. 2014), and were taken 
27 and 9 hours earlier than the estuary data, respectively, to account for the signal lag 
between each gauge and the estuary. Estuary fluxes were first calculated from uniform 
extrapolation of depth-integrated fluxes from the quadpod locations, and were then 
multiplied by 0.5 based on model results of cross-channel variability (Fig. 12). These 
fluxes were separated into full water column, lower 30% and upper 70% values. Fall 
2013 and Fall 2015 data are from FZ4, and Spring 2014 data are from FZ3. Positive 
fluxes are in the landward direction. Fluxes from model-guided extrapolation correspond 
to the values displayed in Figure 13. Estimated uncertainties are included for fluxes at the 
quadpod locations for each field deployment, and an additional component of uncertainty 
arises from the lateral extrapolation on the order of 50%. 
 

Deployment (length) Fall 2013 (35 d) Spring 2014 (36.5 d) Fall 2015 (28.5 d) 

Cumulative flux at 
Thompsonville 

(tonnes) 
-4,660 -207,300 -9,410 

Cumulative flux at 
Middle Haddam 

(tonnes) 
-1,510 -140,640 -9,540 

Cumulative flux at 
estuary, uniform 

extrapolation 
(tonnes) 

Upper 70%:    -7,040 -108,860 -19,980 
Lower 30%:     2,620 -121,800 -5,020 
Full:                 -4,420 -230,660 -25,000 

Cumulative flux at 
estuary, model-

guided extrapolation 
(tonnes) 

Upper 70%:    -3,520 -54,430 -9,990 
Lower 30%:     1,310 -60,900 -2,510 
Full:                 -2,210 -115,330 -12,500 

Estimated 
uncertainty in 

thalweg fluxes (%) 
66 118 66 

Mean SSC at 
Thompsonville 

(mg/l) 
6 40 8 

Mean SSC at Middle 
Haddam (mg/l) 2 24 6 

Mean SSC at estuary 
(mg/l) 8 41 21 
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7.0 FIGURES 
 

 
 
Figure 1. Estuarine parameter space, based on the freshwater Froude number and mixing 
number. Rectangles indicate the approximate parameter ranges for each estuary due to 
variations in tidal range, river discharge and bathymetry. The Connecticut River estuary 
(this study) is indicated by the black box and falls into the time-dependent salt-wedge 
class under most conditions; mean conditions for the Connecticut are indicated by the 
black star. SIPS stands for strain-induced periodic stratification. Modified from Figure 6 
in Geyer and MacCready (2014). 

Connecticut 
River 
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Figure 2. a) Location map of the Connecticut River watershed in the northeastern USA 
with locations of river gauging stations and the estuary shown (TV, Thompsonville; MH, 
Middle Haddam). b) Connecticut River estuary study site with frontal zones (FZ) and 
relevant off-river embayments shown. Black diamonds are locations of quadpod 
deployments in FZ3 (Spring 2014) and FZ4 (Fall 2013 and Fall 2015). Bathymetry data 
courtesy of Ackerman et al. (2017). c) Bathymetric cross-sections of the estuary at FZ3 
and FZ4 showing locations of the quadpods. 
 
 
 
 
 

a) b) 

FZ3 FZ4 
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Figure 3. Calibrations for acoustic suspended-sediment data. a) Comparison of SSC 
derived from calibrated 5 MHz ABS backscatter to gravimetric SSC from colocated 
pumped water samples from 15 cm above the bed during a tidal cycle in Fall 2015. b) 
Comparison of SSC derived from calibrated and extrapolated ADCP backscatter to 
gravimetric SSC from colocated Niskin bottle water samples from ~0.5 m above the bed 
during a tidal cycle in Spring 2014. c) and d) Comparison of downward-looking 5 MHz 
ABS to upward-looking 1 MHz ABS at the same heights above the bed in the 
overlapping region of the two transducers (~0.5-0.9 m above bed) during Fall 2013 (c) 
and Fall 2015 (d); linear best-fit equations were used to calibrate the upward-looking 1 
MHz data. The scatter in all regressions is attributed to different acoustic response to 
variable suspended-particle characteristics during different phases of the tide and river 
discharge conditions. Some of the scatter in (b) owes to slight differences in space and 
time of samples. 
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Figure 4. Connecticut River discharge (a) and SSC (b) from 2013 to 2015 including the 
three field deployments. SSC at Middle Haddam was calculated from an established 
rating curve (Yellen et al. 2014). 
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Figure 5. Mean profiles of velocity and SSC during Fall 2013 (a-b), Spring 2014 (c-d), 
and Fall 2015 (e-f). Solid bold lines represent mean profiles during times of maximum 
depth-averaged ebb current, dotted bold lines represent mean profiles during times of 
maximum depth-averaged flood current, and thin gray lines represent all profiles during 
maximum ebb and flood current from which the mean profiles were calculated (profiles 
during only below-mean discharge for Fall 2013 and Fall 2015, and all profiles for Spring 
2014). Blue line segments represent extrapolated data. Positive velocities are up-estuary 
(landward). SSCs during Fall 2013 and Fall 2015 were obtained from calibrated ABS 
backscatter, and SSCs during Spring 2014 were obtained from calibrated ADCP 
backscatter. Note the different SSC scales. 
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Figure 6. Time-series data collected during the Fall 2013 deployment in FZ4. a) 
Instantaneous and 88-year daily-mean river discharge at Thompsonville, CT. b) Salinity 
stratification (difference between bottom and surface salinity) and low-pass filtered 
(residual) bottom salinity. c) Depth-averaged and residual velocity, with positive values 
denoting up-estuary (landward) velocities. d) Depth-averaged and residual SSC. Gray 
shaded regions denote times of spring tides. 
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Figure 7. Time series of suspended-sediment fluxes during the Fall 2013 deployment in 
FZ4. a) Low-pass filtered (residual) total sediment flux integrated over the entire water 
column and over the lower layer (bottom 30% of the water column). b) Sediment flux 
decomposed into advective flux and tidal pumping flux, and integrated over the full water 
column and lower layer. c) Sediment fluxes from panels a-b accumulated over the 
deployment. Positive fluxes are up-estuary (landward). Gray shaded regions denote times 
of spring tides. 
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Figure 8. Time-series data collected during the Spring 2014 deployment in FZ3. a) 
Instantaneous and 88-year daily-mean river discharge at Thompsonville, CT. b) Salinity 
stratification (difference between bottom and surface salinity) and low-pass filtered 
(residual) bottom salinity. c) Depth-averaged and residual velocity, with positive values 
denoting up-estuary (landward) velocities. d) Depth-averaged and residual SSC. Gray 
shaded regions denote times of spring tides. 
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Figure 9. Time series of suspended-sediment fluxes during the Spring 2014 deployment 
in FZ3. a) Low-pass filtered (residual) total sediment flux integrated over the entire water 
column and over the lower layer (bottom 30% of the water column). b) Sediment flux 
decomposed into advective flux and tidal pumping flux, and integrated over the full water 
column and lower layer. c) Sediment fluxes from panels a-b accumulated over the 
deployment. Positive fluxes are up-estuary (landward). Gray shaded regions denote times 
of spring tides. 
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Figure 10. Time-series data collected during the Fall 2015 deployment in FZ4. a) 
Instantaneous and 88-year daily-mean river discharge at Thompsonville, CT. b) Salinity 
stratification (difference between bottom and surface salinity) and low-pass filtered 
(residual) bottom salinity. c) Depth-averaged and residual velocity, with positive values 
denoting up-estuary (landward) velocities. d) Depth-averaged and residual SSC. Gray 
shaded regions denote times of spring tides. 
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Figure 11. Time series of suspended-sediment fluxes during the Fall 2015 deployment in 
FZ4. a) Low-pass filtered (residual) total sediment flux integrated over the entire water 
column and over the lower layer (bottom 30% of the water column). b) Sediment flux 
decomposed into advective flux and tidal pumping flux, and integrated over the full water 
column and lower layer. c) Sediment fluxes from panels a-b accumulated over the 
deployment. Positive fluxes are up-estuary (landward). Gray shaded regions denote times 
of spring tides. 
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Figure 12. Model results of cross-channel integrated total sediment fluxes during the Fall 
2013 (a), Spring 2014 (b) and Fall 2015 (c) deployment periods. Modeled fluxes are 
obtained from uniform extrapolation of the modeled flux in the thalweg, and from actual 
modeled fluxes integrated across the estuary. Uniform extrapolation overestimates the 
total flux by approximately a factor of two. Note the different y-axis scales for each 
panel. 
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Figure 13. Conceptual diagram illustrating total cross-section integrated sediment fluxes 
during all three field seasons, with Fall 2015 separated into three distinct periods based 
on changes in river discharge (red box). Black arrows represent fluxes past Middle 
Haddam in the tidal river (40 km from mouth), green arrows represent fluxes in the upper 
70% of the water column in the estuary, and brown arrows represent fluxes in the lower 
30% of the water column in the estuary (lower layer). Estuary fluxes during Fall 2013 
and Fall 2015 are from FZ4 (9 km from mouth) and fluxes during Spring 2014 are from 
FZ3 (6 km from mouth). Fluxes correspond to model-guided values reported in Table 4. 
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Figure 14. Effects of river discharge on salt intrusion length and sediment flux. a) 
Cumulative frequency distribution for all discharge data measured at Thompsonville, CT 
(USGS gauge #01184000) from 1929-2016. The x-axis has been truncated to only 
include discharge values observed during this study (the largest recorded discharge is 
7872 m3/s), and only 0.3% of recorded values exceed this range. b) Inverse power-law 
relationship between discharge and salt intrusion length, defined by the maximum 
upstream distance where salinity was detected above 2 psu during each tidal cycle, as 
constrained by the four long-term moored CTDs. c) Relationship between discharge and 
residual sediment flux in the lower layer from all three field deployments. Landward 
(positive) fluxes are observed for discharges below ~400 m3/s. 
 
 
 
 
 
 
 
 
 

 

 



 53 

 
 
Figure 15. a) Map 
of the Connecticut 
River estuary and 
northeastern Long 
Island Sound (LIS) 
showing the percent 
of fine sediments 
(>4 ϕ or <63 µm) at 
each sampling 
location. Blue lines 
are bathymetry, and 
notable features are 
labeled. Hamburg 
Cove grain-size data 
are from Yellen et al. (2017), estuary data are modified from Valentine (2015) and 
Lavallee (2017), and LIS data are from this study. b) Mean normalized grain-size 
distributions of fine sediments from sediment traps inside Hamburg Cove, near-bed 
suspended samples, mud drape sediment, and bed sediment from the estuary margins, 
estuary mouth and LIS. All grain-size distributions are unimodal with modes of 4.5 ϕ for 
the bed samples and 5.5 ϕ for the recently-suspended samples. Legend includes the 
number of individual distributions for each sample type that were averaged. The mud 
drape distribution (dashed black line) ended with a large value at 10.5 ϕ which was 
equally divided over the range 10.5-12 ϕ. 

Long 

Hamburg Cove 

Sand Shoal 

a) 
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mouth samples 
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Figure 16. Zoom-in of time-series data during low discharge at the beginning of the Fall 
2015 deployment in FZ4, illustrating the role of the advancing salt intrusion in 
transporting sediment landward. a) Water depth and bottom salinity. b) Depth-averaged 
and near-bed velocity. c) Depth-averaged and near-bed SSC. d) Near-bed suspended-
sediment flux. Positive values of velocity and flux are up-estuary (landward). Vertical 
dashed lines denote the times of peak near-bed SSC during the flood tide (green) and ebb 
tide (red). 
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