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ABSTRACT

In this work, we first examine nonlocal behavior in plasmonic systems and develop

or expand upon models that enable calculation of higher-order, nonlocal responses

for systems with novel geometries. The effects of nonlocality, i.e., spatial dispersion,

are prominent in nanostuctures with small feature sizes, and accurate calculations of

the nonlocal response of nanostructures are increasingly important for the study of

novel physics at the nanoscale. Next, we consider a specific biological system, double-

stranded DNA, and investigate the nonlocal and nonlinear model that describes its

dynamics. We consider the regime of strong driving with THz radiation and study the

parameter-space where molecular damage occurs, motivated by the prospect of using

selective damage for potential novel therapies. In a related study, we also consider the

possibility of generating THz radiation through the nonlinear, difference-frequency

response of a plasmonic system. Plasmonic difference-frequency generation could

enable deep penetration of THz signals into the body and, therefore, these projects

are intimately connected. Ultimately, these two regimes of behavior, nonlocality and

nonlinearity, represent rich areas for applicable research.
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CHAPTER 1

Introduction

This thesis is an examination of second-order response phenomena of plasmonic sys-

tems. By second-order phenomena, we mean physics that is generally neglected in

leading-order models because the contributions of such effects are small in magni-

tude compared to leading-order effects, in typical regimes of interest. For instance,

the nonlocal (q-dependent) response of plasmonic systems is usually neglected in

regimes of small q, such that χ(q, ω) ≈ χ(0, ω). Similarly, higher-order responses

introduced by nonlinearities in plasmonic systems are typically not considered, such

that χ(t) = χ(1)(t) + χ(2)(t) + χ(3)(t) + · · · ≈ χ(1)(t). In this work, we investigate

response models, χ(q, ω), in the moderate to large-q range, and second-order effects

introduced by nonlinearities, χ(2)(t), for plasmonic systems with nontrivial geome-

tries and structures. In this chapter, we define the terminology introduced above,

develop a general picture of response theory, and explain how nonlocality and nonlin-

earity are manifested in generic systems. We conclude by summarizing the material

to be presented in the remaining chapters.

BD2db
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1.1 Plasmonic Systems

At a most basic level, a plasmonic system is metallic. It has free carriers (i.e., elec-

trons in its conduction band) that behave, to first order, like a free electron gas.

Metallic systems range form alkali metals to noble metals with electron densities

on the order of n ∼ 1028 m−3. Other systems, e.g., doped semiconductors, also ex-

hibit metallic behavior. The collective properties of these free carriers are defined as

plasmonic properties and include plasma waves of various types. For instance, bulk

plasmon waves called “plasmons” propogate through metals above a characteristic

plasma frequency, ω2
p = ne2/meffε0, that depends on the density of the charge car-

riers, n, their effective mass, meff , their charge e, and the permittivity, ε0 [1] (we

include a list of physical constants in Appendix A). Plasma waves cannot propagate

below this frequency [1] and, therefore, metals are reflective below ωp, from visible

frequencies and below, but they can be transparent for frequencies above the ωp, e.g.,

in the UV range [1].

Additionally, in the next chapter we discuss surface plasmons (SPs), which prop-

agate at the interfaces of a metallic systems. The coupling between surface plasmons

and light generates surface-plasmon-polaritons (SPPs), which manifest themselves,

e.g., in the reflective properties of a system [1]. Plasmons also interact with phonons

[2] and single electrons [3] and, therefore, they augment thermal and transport prop-

erties. Plasmonic systems host a huge variety of phenomena.

Finally, structured metallic systems can also exhibit plasmonic dynamics as a

result of their effective medium behavior [1], i.e., subwavelength stuctures induce

collective effects that make the system behave as if it were imbued with the properties

of a completely different medium [4]. Thus, the sensitivity of plasmonic modes to

material and structural degrees of freedom obviously permits a large design space

for the realization of novel phenomena including cloaking [5], perfect absorption [6],

2



epsilon near-zero materials [7, 8], etc. For a rich and thorough review of plasmonic

properties see [1]. We will elaborate on some of the above material in the next

chapter.

In this thesis, we argue that nonlocal and nonlinear properties of plasmonic sys-

tems offer yet additional degrees that may be tuned to affect the response phenomena

of these systems. In the next section, we expand upon this concept.

1.2 Response Functions

By “response phenomena,” we refer to the behavior of a system when acted upon

by external forces. Response functions of plasmonic systems, e.g., the dielectric

function, ε(q, ω), or electric susceptibility, χ(q, ω), can be used to calculate observable

properties like reflectance, where the reflection coefficient at normal incidence on

a flat interface between vacuum and a material is related to ε(q, ω) through r =

(ε(q, ω)−1)/(ε(q, ω)+1), in the non-retarded limit, or scattering rates, which involve

terms that depend on Im{ε−1(q, ω)}. Largely, this thesis is a study of response

functions, which take into account the microscopic properties of a system.

To illustrate the simplest possible example of a response function, and to intro-

duce a model that we will subsequently return to in this work, we briefly consider

the polarization of a system composed of bound charges in response to an oscillating

electric field. Eq. (1.1) gives the local, time-dependent polarization of a medium in

response to an applied field ~E(t) (for now, we drop the spatial dependence ~r), where

χ~

~

(t− t′) is the retarded electric susceptibility:

~P (t) = ε0

∫
χ~

~

(t− t′) ~E(t′)dt′ (1.1)

3



For a geometry in three spatial dimensions, the response function χ~

~

(t − t′) is

a tensor. Thus the ith component of the polarization would be written as Pi(t) =

ε0

∫
χij(t− t′)Ej(t′)dt′, for an incident field Ej(t). For simplicity, we drop the vector

notation and just refer to the scalar response. Also, it is often useful to work with

the frequency response of the system, rather than the time-dependent response. This

is obtained through the Fourier transform of the time-dependent response, using the

convolution theorem, and is given as:

P (ω) = ε0χ(ω)E(ω) (1.2)

To obtain χ(ω), which is our objective, we consider the microscopic physics. Each

bound charge (i.e., electron coupled to a large, fixed ion) can be modeled as a mass

in a harmonic potential, driven by a sinusoidal electric field, E(t) = E(ω) exp [−iωt].

The equation of motion is:

mẍ(t) + γmẋ(t) +mω2
0x(t) = −eE(t) (1.3)

where m and e are the mass and charge of the particle, γ is the phenomenological

damping paramter, and ω0 is the resonant frequency of the system. The dynamical

variable x(t) is the position of the electron.

Assuming that the system exhibits a harmonic, time-dependent response, x(t) =

x(ω) exp [−iωt], we can rewrite the equation of motion in the frequency domain:

−ω2x(ω)− iωγx(ω) + ω2
0x(ω) = − e

m
E(ω) (1.4)

4



Solving for the electron’s frequency-dependent amplitude, we get:

x(ω) = − e

m

E(ω)

(ω2
0 − ω2 − iγω)

(1.5)

The polarization is related to the amplitude of the system via P (ω) = ε0χ(ω)E(ω) =

−nex(ω), leading to:

χ(ω) =
ω2
p(

ω2
0 − ω2

j − iγωj
) (1.6)

where n is the number density of bound charges and we have used the definition of

the plasma frequency, ω2
p = ne2/mε0.

In this simple example, we have illustrated how a response function, in this case

the electric susceptibility, convolves an external force to produce a response of the

system. The response function is “built” from knowledge of the underlying, micro-

scopic properties of the system. In chapter 2, we will discuss response theory as it

relates to electron systems, and this theory will take into account the proper, quan-

tum mechanical details of electron-electron interactions. However, one conclusion

from the above analysis is quite general. That is, once the response function of a

system is known, whether it is derived from first principles or a phenomenological

model, the behavior of a system in response to external forces can be fully described.

The models of plasmonic response functions that we investigate will enable us to de-

scribe physical observables (e.g., reflection coefficients, scattering amplitudes, etc.)

of systems under investigation.
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1.3 Nonlocality and Nonlinearity

Continuing with the general example of polarization, we now discuss nonlocality and

nonlinearity. Locality refers to a response that occurs at the same space-time coordi-

nates as an external perturbation. The form of the electric susceptibility introduced

in the previous section, Eq. (1.6), is temporally nonlocal (i.e., retarded) because it

generates polarization at time t that depends on the electric field at all previous times

t′. A temporally local response (i.e., non-retarded) occurs instantaneously in time.

Now, referring to the spatial dependence of response phenomena, a spatially local

response only occurs where a force is applied, whereas a spatially nonlocal response

occurs at many spatial locations. Again, considering the electric susceptibility re-

sponse function, nonlocality must be incorporated as follows (here we work in the

frequency domain):

P (~r;ω) = ε0

∫
χ(~r − ~r′;ω)E(~r;ω)d~r′ (1.7)

As done in the previous section, we can express the Fourier transform of Eq. (1.7)

using the convolution theorem, where the conjugate variable of ~r is the wave-vector,

~q:

P (~q, ω) = ε0χ(~q, ω)E(~q, ω) (1.8)

We will often be working with the conjugate variable ~q, so it is important to em-

phasize the meaning of locality and nonlocality in terms of the q-dependence of a

response function. Clearly, if a response function is spatially nonlocal, then it will be

q-dependent, as shown by Eq. (1.8). On the other hand, a local response function

will not depend on q. To see this by way of example, we consider a fictitious nonlocal

response function, a Gaussian in one spatial dimension. The response function and
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its Fourier transform are given below:

χ(x− x′;ω) = χ0(ω) exp
{[
−a2(x− x′)2

]}
(1.9)

χ(q, ω) = χ0(ω)
(π
a

)3/2

exp

{[
−
( π

2a

)2

q2

]}
(1.10)

Now, we consider a fictitious local response function, a delta-function in one spatial

dimension. Again, the response function and its Fourier transform are given below:

χ(x− x′;ω) = χ0(ω)δ(x− x′) (1.11)

χ(q, ω) = χ0(ω) (1.12)

These functions are plotted in Fig. 1.1 - 1.4. The Fourier transform of a spatially

nonlocal response is q-dependent, whereas the Fourier transform of a spatially local

response (e.g., a delta-function) is q-independent.

We mentioned that nonlocal effects become pronounced in small systems and,

therefore, must be considered in response models of plasmonic systems. The simplis-

tic reasoning is that, in a large system, the response in one spatial part of the system

does not necessarily need be considered when calculating the response at another

part of the system. However, for spatially confined systems, part of the system may

greatly affect nearby parts, and therefore, spatial dependence is more pronounced.
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Figure 1.1: Gaussian spatial response: based on Eq. (1.9)

Figure 1.2: Fourier transform of gaussian spatial response: based on Eq. (1.10)
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Figure 1.3: Delta-function spatial response: based on Eq. (1.11)

Figure 1.4: Fourier transform of delta-function spatial response: based on
Eq. (1.12)
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Another aspect of systems that we are studying in this thesis is the production

of higher-order response phenomena caused by nonlinearity. To examine this charac-

teristic, we again refer to the situation where a local system is driven by a harmonic

electric field:

P (t) = ε0

∫
χ(t− t′)E(t′)dt′ (1.13)

Now, we will make a perturbative expansion of the response, thus introducing higher

order terms, like χ(2), χ(3), etc.

P (t) = ε0

[ ∫
χ(1)(t− t′)E(t′)dt′

+

∫ ∫
χ(2)(t− t′, t′ − t′′)E(t′)E(t′′)dt′dt′′

+ · · ·
] (1.14)

Again, system is most readily analyzed in Fourier space. If we assume that the driving

signal has the form E(t) = E(ω) cos(ωt), then the Fourier transform of Eq. (1.14) is:

P (ω) = ε0

[
χ(1)(ω)E(ω)︸ ︷︷ ︸

1st order

+χ(2)(0)E2(0) + χ(2)(2ω)E2(2ω)︸ ︷︷ ︸
2nd order

+...
]

(1.15)

Thus, the first order response of the system is the harmonic response, and there

exist two contributors to the second-order response, for the specific example of a

harmonic driving signal. These two contributions are the so-called DC response

and the second-harmonic response. In other words, in a simple linear system, the

“output” signal has the same frequency components as the “input” signal. How-

ever, the existence of nonlinearity in a system will cause additional harmonics to

appear in the output signal. We note that a nonlinear system can generate many

different frequency combinations in its second-order response depending on the har-
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monic characteristics of the driving input. For instance, the second-order response

for a driving electric field with two frequency components will contain signals at the

sum-frequency and difference-frequency of the inputs, in addition to the DC and

second-harmonic responses.

The responses of two realistic systems to harmonic driving forces are shown in the

following figures, one shows a simple, linear harmonic oscillator and the other shows

a nonlinear, anharmonic oscillator. The equation of motion for the linear system is

given by Eq. (1.3), and the equation for the nonlinear system is:

mẍ(t) + γmẋ(t) +mω2
0x(t) +max2(t) = −eE(t) (1.16)

where a is the strength of the nonlinearity of the system. The response is shown

in both the time domain and frequency domain. In the frequency domain, we can

observe that the nonlinear oscillator indeed exhibits a second-order response, seen as

an additional frequency characteristic at ω = 2ω0.
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Figure 1.5: Linear harmonic oscillator response. Left: the symmetric, harmonic
potential. Center: the time series response of the oscillator. Right: the Fourier
transform of the time series. There is a single feature in the frequency domain, at
the driving frequency.

Figure 1.6: Anharmonic oscillator response. Same format as above. The nonlin-
earity makes the potential non-symmetric and introduces a feature in the frequency
domain at the second harmonic of the driving frequency.
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1.4 Motivation and Overview

In Part I of this work, we discuss nonlocal extensions to the canonical, local Drude

response theory of metallic systems [9]. We explore q-dependent models of plasmonic

response functions that are applicable to structured surfaces and non-trivial geome-

tries ranging from the nanoscale to mesoscale. Existing nonlocal models of electronic

response include the phenomenological hydrodynamic approximation (HDA) [10] and

the ab initio d-function formalism [11, 12]. In §2, we discuss these formalisms and

lay the groundwork for understanding the models presented in subsequent chapters.

In §3, we discuss how to combine the aforementioned d-function formalism and

HDA to produce an “extended d-function formalism,” which is capable of qualita-

tively describing nonlocal properties of plasmonic systems to higher order in q. We

demonstrate that this model describes the nonlocal dispersion of surface plasmons at

the interface of a metallic slab, through comparison with ab initio calculations, and

argue how it can be applied to structured surfaces with effective medium parame-

ters (e.g., metamaterials). The work in this chapter was published by the author in

Ref. [13].

Finally, in §4, we investigate methods to incorporate the nonlocal characteristics

of real metals into local FDTD calculations using the d-function formalism. This

is done via mapping nonlocal properties onto a local, fictitious film, which can be

explicitly included in local calculation schemes. It is the permittivity of the added

film that imbues the system with nonlocal properties, thus the proper choice of

permittivity is required. The non-uniqueness of the mapping relation leads to several

possible choices of permittivity, which are discussed. Several mappings are physically

valid, but we argue that one solution best reflects the nonlocal physics. Finally,

we discuss how the incorporation of this film affects the nonlocal Mie resonance of

spherical nanoparticles and compare with literature. The work in this chapter is
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related to our publication, Ref. [14].

In Part II, we focus on one project, with several interconnected areas of investiga-

tion, related to the realization of damaging double-stranded DNA via THz radiation,

and supported by the National Science Foundation, grant No. PHY1725118. This

study comprises the nonlocal and nonlinear behavior of both biological and plas-

monic phenomena and is thus an extension of the theme of this thesis, which is the

examination of higher-order response phenomena.

In §5, we study the behavior of double-stranded DNA in the regime of strong driv-

ing, where the system is highly nonlinear. We discuss destructive behavior, where

the system is driven towards “breaking” in certain regions of parameter-space. The

objective of this investigation was to find the regions of parameter-space where dam-

age occurs (i.e., for different driving amplitudes and frequencies), such that DNA is

effectively destroyed. This investigation is motivated by an ongoing effort to demon-

strate selective molecular damage at THz frequencies for potential therapies, and at

the date of publication of this thesis, we are preparing these results for publication.

A major complication of using THz radiation to selectively damage biological

constituents in vivo is that the body is opaque to THz frequencies. Thus, it is desir-

able to use higher frequencies to deeply penetrate the body, then locally convert this

power into a THz signal. This frequency conversion—specifically, the demodulation

of two high frequencies into a lower frequency that is equal to their difference—is a

nonlinear phenomenon called difference-frequency generation (DFG), that could be

promoted by local plasmonic constituents. Therefore, in the remaining two chapters,

we examine nonlinear models of plasmonic response, primarily utilizing the anhar-

monic oscillator model as a classical analogy, with the objective of promoting DFG

in plasmonic systems.

In §6, we first present a thorough derivation and analysis of the response of a
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simple anharmonic oscillator. We derive the classical “Miller’s rule” [15], which

perturbatively relates the second-order response function of a system to a product

of first-order response functions. We numerically integrate the equation of motion of

this simple system to calculate the full nonlinear response and demonstrate that the

numerically simulated properties adhere to Miller’s rule, in a perturbative limit. We

seek to utilize a Miller-like relation for complex plasmonic systems, where simulation

of first-order properties can be readily performed.

Finally, in §7, we explore the nonlinear response of plasmonic oscillators (e.g.,

metallic nanoparticles). Specifically, we examine a modal model of plasmonic re-

sponse and propose an “effective” Miller’s rule, which describes the second-order

polarizability of the plasmonic system in terms of its first-order polarizability. We

discuss the potential use of this model for understanding and optimizing difference-

frequency generation (DFG) from plasmonic nanoparticles, with the objective of

utilizing plasmonic-DFG to generate strong THz fields within the body to target

DNA.
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PART I:

NONLOCAL RESPONSE PHENOMENA
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CHAPTER 2

Nonlocal Physics of Plasmonic Systems

In the introduction, we discussed some salient properties of response functions, very

generally, and introduced the definition of nonlocality, but in this chapter we will

specifically discuss these properties as they relate to plasmonic systems. First, we

examine the local Drude model and discuss regimes where it is accurate, as well as

where it fails. Then we introduce first-principles calculations of the nonlocal elec-

tronic response and examine two formalisms: the phenomenological hydrodynamic

approximation (HDA) and the d-function formalism. In the subsequent two chap-

ters, we expand upon these approaches.

BD2db

2.1 Electronic Response: Drude, RPA, & LDA

Starting from the forced, damped, simple harmonic oscillator model of a charge from

the previous chapter, it is straightforward to derive the Drude model response of

a metal [1,2]. The Drude model response is equivalent to the assumption that the

electron experiences no restoring force, therefore the susceptibility is:

χ(ω) = −
ω2
p

ω (ω + iγ)
(2.1)
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and the dielectric function is related to the susceptibility through ε(ω) = 1 + χ(ω),

such that:

ε(ω) = 1−
ω2
p

ω (ω + iγ)
(2.2)

Eq. (2.2) is a rudimentary, classical model of electronic response, but it goes quite

far in accurately describing real systems. For instance, the Drude model fit to the

dielectric function of aluminum (Al) is shown in Fig. 2.1 on a log-scale, where Drude

model parameters are from [16] and dielectric function data are from [17]. The Drude

response has high fidelity at high frequencies, and captures the low frequency features

qualitatively.
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Figure 2.1: Drude model fit to Al. Drude model parameters are from [16] (dashed
lines) and dielectric function data are from [17] (solid lines). The black and red colors
correspond to real and imaginary parts of ε, respectively.
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Additionally, the Drude model response yields an accurate prediction for the SP

dispersion in the small-q regime, as measured experimentally from reflection spec-

tra. Below, we derive the SP dispersion relation and afterwards compare with data

from literature. For a plane wave incident on the planar interface of a nonmagnetic

medium, the boundary conditions for the fields lead to the following relation for the

wavevector [1] (see Appendix B for Maxwell’s equations and Appendix C for a full

derivation, based on reflection geometry of Fig. 4.2):

q =
ω

c

√
ε(ω)

ε(ω) + 1
(2.3)

Inserting the Drude model into the above equation and solving for ω(q), we obtain the

surface plasmon dispersion. In the equation below, we have used γ = 0 to simplify

the expression (when γ 6= 0, the dispersion is cumbersome to express analytically,

but still straightforward to compute numerically).

ω(q) =

ω2
p

2
+ (cq)2 ±

[(
ω2
p

2

)2

+ (cq)4

]1/2
1/2

(2.4)

From Eq. (2.4), we see that the surface plasmon mode has an upper branch and

lower branch, which fall above and below the light-line, ω = cq, respectively. The

upper surface plasmon branch is radiative and, therefore, dissipates quickly [1]. The

lower surface plasmon branch follows the light-line for small wavevectors and reaches

a plateau at the surface plasma frequency ωsp = ωp/
√

2, in the ω/c << q limit. The

SP frequency can also be derived from the roots of the reflection coefficient for light

normally incident on a planar surface, r = (ε(ω)− 1) / (ε(ω) + 1), which yields the

relation ε(ω) = −1, for which ωsp is a solution.

In Fig. 2.2, we show the SP dispersion for aluminum in the small-q, retarded
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regime, with experimental data shown in the figure inset [18]. The two branches of

Eq. (2.4) are shown as black lines, ωp is shown as a magenta line, ωsp is shown as a

cyan line, and the red-dashed line shows the solution to Eq. (2.3) for γ 6= 0. Note,

the upper and lower modes are connected in a characteristic s-shape. The light-line,

ω = cq, is also shown as a black-dashed line.

The Drude model is accurate in the retarded limit, ω/c ∼ q, which is why it is

so predictive for the SP dispersion near the light-line. However, the model begins

to break down in the non-retarded limit, where ω/c << q. For instance, at higher

wavevectors, q ∼ 10−1Å−1, the Drude model no longer captures observed behavior.

We show this highly nonlocal regime in the second figure, Fig. 2.3, with data of

the SP mode at high-q obtained from electron energy-loss spectroscopy (EELS) [19].

The EELS data for the SP mode are slightly less than the classical SP frequency for

moderate q-values (q ∼ 10−1Å−1), and then become greater than ωsp for higher-q.

The high-q despersive behavior can be described by ab initio quantum formalisms,

which we detail next. We plot the results from one formalism, the local density

approximation (LDA) [19], in Fig. 2.3 to illustrate the nonlocal behavior and we will

discuss the details of this formalism later. However, we emphasize that ab initio

quantum formalisms are cumbersome if not intractable when applied to complex,

structured systems. Thus it is the objective of this work to extend existing nonlocal

formalisms using an effective medium perspective, without the need for intractable,

first-principles calculations. We will expand more on this point in the next two

chapters.
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Figure 2.2: SP disperion of Al for small-q. Dispersion based on the Drude model
parameters of [16]. The dispersion is plotted for γ = 0 (black solid line) and γ 6= 0
(red dashed line), showing that the lossy Drude model yields a characteristic s-
shaped dispersion. Shown are the light-line, ω = cq (black dashed line), the plasma
frequency, ωp (magenta dash-dotted line), and the SP frequency, ωsp = ωp/

√
2 (green

dash-dotted line). The inset shows measured SP dispersion with data from [18].
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Figure 2.3: Nonlocal SP disperion of Al. The lines are identical to Fig. 2.2 and
the inset shows part of the range of Fig. 2.2, for reference. Data points from [19]
(magenta) show the nonlocal dispersion measured by EELS. The black dash-dotted
line is the nonlocal SP dispersion calculated by LDA [19].
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Higher-order formalisms, beyond the Drude model, essentially entail calculating

ε(q, ω) based on approximations of the screening potential felt by electronic charges

in a system [1, 2]. The dielectric function, ε(q, ω), “measures” the response of a

system to an external potential, Vi(q, ω), through the ratio:

ε(~q, ω) =
Vi(~q, ω)

V (~q, ω)
(2.5)

where V ( ~q, ω) is the “dressed” potential of the system due to charges which screen

the external potential. Thus,

V ( ~q, ω) = Vi( ~q, ω) + Vs( ~q, ω) (2.6)

and different formalisms amount to calculating Vs( ~q, ω) using different models and

approximations (for full review, see Ref. [2]). For instance, in the simplest nonlocal

scheme, the semi-classical Thomas-Fermi model, the screening potential and dressed

potential are related by

Vs(~q) = −
(
qTF
q

)2

V (~q) (2.7)

where q2
TF is the Thomas-Fermi wavevector. Inserting into Eq. (2.6) leads to Vi(~q)

V (~q)
=

1 +
(
qTF

q

)2

, where immediately the dielectric function can be identified as

ε(~q) = 1 +

(
qTF
q

)2

(2.8)

In the RPA, the screening potential is again related to the dressed potential, such

that

Vs(~q) = vqP
(1)(~q)V (~q) (2.9)
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where vq is the Coulomb potential and P (1)(~q) is the single-particle polarizability.

Again, inserting into Eq. (2.6) leads to Vi(~q)
V (~q)

= 1− vqP (1)(~q), so

εRPA(~q) = 1− vqP (1)(~q) (2.10)

Obviously, the form of Eq. (2.10) is reminiscent of the local response formalism,

ε = 1 + χe, where χe is the electric susceptibility. The single-particle polarizability,

P (1)(~q), is quantum mechanical in origin and can be calculated from either a density-

operator approach or a diagrammatic approach [2, 20]. In the RPA, the result for a

free electron gas (i.e., no lattice or impurities) is [2]:

P (1)(~q) =
1

V

∑
k

fk − fk+q

εk − εk+q + ω + iδ
(2.11)

where fk terms are the Fermi-Dirac distribution functions and εk terms are the

eigenenergies of the system.

Calculating εRPA(~q) requires calculating the quantum mechanical eigenstates of

the system, which are simply plane waves for a 3D isotropic, free electron gas. How-

ever, these eigenstates are different for a system that contains an interface, i.e., a

half-space. Unlike the isotropic system, a half-space exhibits a potential that varies

at the surface, which must be accounted for in the electronic ground states. This

surface potential was self-consistently calculated by Lang and Kohn [21] for metals of

various electron densities, and we perform RPA calculations for a planar slab using

this potential in the next chapter. One could also calculate the electronic ground

states and, consequently, ε(q, ω), for any complex geometry based on this ab initio

procedure, but such an approach is wildly impractical for more complicated systems

due to computational load.

Finally, the LDA is yet another approximation to calculate the screening poten-

25



tial, by including electron exchange and correlation energies. Again, this requires

calculation of the complete quantum ground states of the system and, therefore, is

similarly impractical for non-trivial systems. It should now be clear why ab initio for-

malisms like the RPA and LDA are cumbersome for complex structures. Calculation

of eigenstates, etc., is inordinately difficult for large-scale, non-symmetric systems,

whereas it is relatively straightforward for highly symmetric geometries and small

systems. To circumvent this difficulty, we wish to use an effective response formalism

that captures the relevant detail without requiring ab initio calculations. Next, we

show two approximate, small-q models that are derived from the above formalisms.

2.2 The Hydrodynamic Approximation

The RPA dielectric function for a bulk, 3D electron gas is called the Linhard function,

and it reduces to the HDA in the small-q limit [1]. The real part of the Lindhard

function yields [2]:

lim
q→0

Re {εRPA(q, ω)} = 1−
ω2
p

ω2

{
1 +

1

ω2

[
3

5
v2
F q

2 + ε2
q

]
+O(ω−4)

}
≈ 1−

ω2
p

ω2

[
1 +

βq2

ω2

] (2.12)

where the so-called hydrodynamic term, β = 3
5
v2
F , is identified, and vF is the Fermi

velocity. Furthermore, in this limit, one may express the dielectric function as [10, 22]

ε(q, ω) = 1−
ω2
p

ω(ω + iγ)− βq2
, (2.13)

where γ is the loss parameter (rate of electron scattering with phonons and defects).

The hydrodynamic term is effectively an extension of the Drude model, such that

ε(q, ω) = 1 − ω2
p/ω̃

2, where ω̃2 = ω(ω + iγ) − βq2. Note, Eq. (2.13), reduces to

the Drude model for high frequency, ω2 >> βq2, and the Thomas-Fermi model for
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vanishing frequency, ε(q, 0) = 1+q2
TF/q

2, showing that the Thomas-Fermi wavevector

is given by qTF = ωp/
√
β. Finally, the SP dispersion for the HDA can be derived

from the condition ε(q, ω) = −1, and is:

ω(q) = ωsp
[
1 +

β

2ω2
sp

q2
]

(2.14)

In Fig. 2.4, we plot the SP dispersion of the alkali metal potassium using the

HDA model (blue-line), compared to the full LDA calculation (black dashed line)

and experimental data (squares) [19]. For potassium (rs = 4.86) the quadratic term

in the HDA is equal to β/2ω2
sp ≈ 1.00Å. Ultimately, the SP dispersion calculated

using the HDA fails to match the negative dispersion exhibited by alkali metals

[23, 24]. Additionally, it cannot account for the upper plasmonic branch, which we

will discuss in the next section.

Before moving on, we emphasize that the definition of β from the HDA is purely

a bulk definition and, therefore, it may not accurately capture the behavior of surface

modes. Presumably there is an equivalence for surface problems, where βsurface ∝ v2
F .

Thus, the HDA is useful in a phenomenological way, but β is not really representative

of first-principles information pertaining to metal surfaces.
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Figure 2.4: Comparison of HDA dispersion with LDA & exp. (for potassium) The
pure HDA result, Eq. (2.14), is shown as blue line. LDA calculations (black dashed
line) and experimental data (squares) are shown from literature [19]
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2.3 The d-Function Formalism

The issue with the HDA, as previously mentioned, is that it is an approximation

related to the bulk response and does not explicitly take the surface into account.

Therefore, it is inadequate in some regimes, as shown in the previous section. In

contrast, the d-function formalism of Feibelman explicitly takes surface states into

account and may be calculated from the RPA or LDA [11, 12]. The d -function for-

malism has been thoroughly confirmed by electron energy loss spectroscopy (EELS)

experiments [19, 25] and provides deep insight into the SP dynamics at small q.

Therefore, any first-order calculation of non-local surface physics should incorporate

the d -function.

The d-function is a complex surface response function, calculated from ab initio

quantum states, which naturally augments the standard Fresnel formulas for reflec-

tion from a metallic half-space in the following way [12]:

rp =
ε(ω)− ε0

k2
k1

+ i [ε(ω)−ε0]
k1

q2d(ω)

ε(ω) + ε0
k2
k1
− i [ε(ω)−ε0]

k1
q2d(ω)

(2.15)

where rp is the p-polarized reflection coefficient, ε(ω) is the Drude model dielectric

function of the metal half-space, ε0 is the dielectric function of the outer half-space,

the wavevectors are ~kj = (q,−kj), where kj =
√

(ω/c)2εj − q2 is the z-component

and q is the in-plane component, and indices refer to the half-spaces of the outer

dielectric (j = 1) and metal (j = 2). Feibelman showed that this nonlocal Fresnel

formula is exact to linear order in q, and may be readily calculated for simple (alkali)

metal surfaces [12].

The d-function is given by

d(ω) =

∫∞
−∞ dzzδρ(z, q = 0, ω)∫∞
−∞ dzδρ(z, q = 0, ω)

(2.16)
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where δρ(z, ω) is the in-plane charge density induced by a long-wavelength field at

frequency ω, and integration is over the entire domain perpendicular to the surface

[1]. Physically, d(ω) is a response function, like ε(ω), but localized at the surface

of a system. It is a complex function that obeys Kramers-Kronig relations and has

the high-frequency behavior lim
ω→∞

d(ω) = 0. We expand upon the notion of d(ω) as a

surface response function in Chapter 4, where we consider response models that use

thin, surface films with properties related to d(ω).

In addition to being a type of response function, d(ω) represents the physical

location of the induced charge density. For alkali metals, this centroid of induced

charge is located outside of the surface, in the long-wavelength limit (q = 0). The

induced charge density, calculated in the RPA, is [26]:

δρ(z;ω) =

∫
dz′χ0(z, z′;ω)

[
Vext +

∫
dz′′Vc(z

′, z′′)δρ(z′′;ω)

]
(2.17)

where Vc(z, z
′) = e2/ |z − z′| is the Coulomb potential, and χ0(z, z′;ω) is the single

particle susceptibility given by:

χ0(z, z′;ω) =
∑
k

∑
k′

fk − fk′
εk − εk′ + ~ω

ψ∗k(z)ψk′(z)ψ∗k′(z
′)ψk(z

′) (2.18)

where fk terms are Fermi-distribution functions and εk and ψk are eigen-energies and

eigenstates of the system.

The d-functions have been calculated for various simple (alkali) and complex (no-

ble) metals, using both RPA and LDA formalisms [23, 27, 28, 29, 30]. For instance,

the d-function of potassium is shown in Fig. 2.5, where the data have been taken

from [23]. Note, data are only available for ω/ωp < 0.95. The d-function exhibits

two pole-structures: one at ω/ωp ≈ 0.82, which is the so-called “multipole” feature,

and one at ω/ωp ≈ 1, which we will discuss below.
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Figure 2.5: The d-function of potassium from literature [23]. Real and imaginary
parts are shown (black and red, respectively).
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The pole structure of the d-function at ωp can be seen from the alternate form

of Eq. (2.16), where integration of the charge centroid is carried out over the outside

region only (z > 0), which leads to [23]:

d(ω) =
ε(ω)− 1

ε(ω)
f(ω) (2.19)

where

f(ω) =

∫∞
0
dzzδρ(z, q = 0, ω)∫∞

−∞ dzδρ(z, q = 0, ω)
(2.20)

as in [23]. The so-called dynamic force sum rule enables the d-function to be ex-

pressed in this way [23]. The function f(ω) only has two resonant features, one at

the multipole frequency, and one at a lower frequency that is related to the work

function [23]. Therefore, the pole structure of d(ω) at ω/ωp ≈ 1 is solely due to the

condition ε(ω) = 0 in Eq. (2.19).

Motivated by this discussion, we propose a simple Lorentzian-like model for the

d-function, which will enable us to perform numerical calculations more easily in later

work. Our model simply treats f(ω) as the sum of two Lorentzian contributions and

a bulk contribution, f∞, such that:

f(ω) = f∞ +
A1

ω2
1 − ω(ω + iγ1)

+
A2

ω2
2 − ω(ω + iγ2)

(2.21)

where ω1 is approximately equal to the threshold frequency of the work function,

and ω2 is the multipole resonance. Using this model and the definition of Eq. (2.19),

we explored parameter fits for the d-function of potassium and found the following:

f∞ ≈ 0.372 Å, A1/ω
2
p ≈ 0.054 Å, ω1/ωp ≈ 0.75, γ1/ωp ≈ 0.25, A2/ω

2
p ≈ 0.126 Å,

ω2/ωp ≈ 0.825, and γ2/ωp ≈ 0.065. Our model fit is shown in the following figure.
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Figure 2.6: Model fit to the d-function of potassium. The model of Eqs. (2.19)
& (2.21) is fit to the d-function from literature [23]. Real and imaginary parts are
shown (black and red, respectively).
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We also note that our model exhibits expected behavior for ω/ωp > 1, for which

Re[d(ω)] < 0 and Im[d(ω)] < 0. This behavior was confirmed by [29]. It also has the

necessary high-frequency behavior, lim
ω→∞

d(ω) = 0.

Now we briefly discuss the dispersive properties. Using the d-function formalism,

a very simple, non-local expression for the SP dispersion of metals can be obtained

by solving for the roots of Eq. (2.15). In the non-retarded limit, where k1 = k2 = iq,

Eq. (2.15) becomes

rp =
(εm − ε0) + (εm − ε0) qd(ω)

(εm + ε0)− (εm − ε0) qd(ω)
(2.22)

which yields the well know result [12]

ω(q) = ωsp

[
1− 1

2
d(ω)q

]
, (2.23)

Since d(ω) > 0 for all alkali metals [24], Eq. (2.23) demonstrates that the initial

slope of the dispersion, for small q, is negative for these metals. Another feature of

this dispersion is the existence of a second SP branch, which arises from the pole

structure of the d-function. We exemplify these features in Fig. 2.7, where we again

plot the SP dispersion of the alkali metal potassium, this time using Eq. (2.23) with

d(ω) from our fit function, and compare to the full LDA calculation (solid black line)

and experimental data (squares) [19], as in Fig. 2.4.
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Figure 2.7: Comparison of d-function dispersion with LDA & exp. (for potassium)
The d-function result, Eq. (2.23), is shown as red line. LDA calculations (black
dashed line) and experimental data (squares) are shown from literature [19].
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Fig. 2.7 shows that there are two plasmon branches, the lower branch is the

monopole SP and the upper branch is the multipole SP, and these branches are

connected in a characteristic s-shape due to the lossiness of the d-function. The

d-function formalism captures both the initial negative dispersion and the multipole

feature, as opposed to the HDA, which only has the correct qualitative behavior at

high-q.

From Fig. 2.4 and Fig. 2.7, we note that both the d-function formalism and the

HDA fail to describe the SP dispersion in its entirety. In particular, the d-function

formalism does not capture the positivity of the dispersion for intermediate to high-q

values, and the HDA does not capture the initial negative slope of the dispersion.

Thus, a formalism is required which includes both linear and quadratic orders.

The most naive way to achieve a higher-order model would be to combine the

Feibelman formalism, O(q), with the HDA, O(q2):

ω(q) = ωsp

[
1− 1

2
d(ω)q +

β

2ω2
sp

q2

]
. (2.24)

As we show in the following, Fig. 2.8, this simple combination does not reflect what

is observed from experiment or first-principles calculations. In fact, the HDA param-

eter, β = 3
5
v2
F , significantly underestimates the observed positive dispersion. In the

next chapter, we examine if either the d-function formalism or the HDA can provide

insight into the full, nonlocal dispersion.
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Figure 2.8: Comparison of extended dispersion with LDA & exp. (for potassium)
The extended dispersion of Eq. (2.24) is shown as magenta line. LDA calculations
(black dashed line) and experimental data (squares) are shown from literature [19].
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2.4 Charge Centroid Model of the d-Function

Finally, we conclude with a more in-depth discussion the d-function, which we will

expand upon in the following chapter. We previously mentioned that the d-function

is the location of the induced charge centroid. This identification also explains the

small-q dispersion behavior, as explained by Tsuei [31], which we summarize here.

The SP frequency is related to the average charge density at the location of the

induced charge centroid by:

ω(q) =
√
navg(q)e2/mε0 (2.25)

which is the typical definition of the plasma frequency, but renormalized by an ef-

fective electron density, navg(q). In Ref. [31], Tsuei argued that the average electron

density experienced by the induced charge at a metal surface would decrease with

increasing q, leading to a negative surface plasmon dispersion, if the induced charge

was located outside of the surface. The argument follows from the following definition

of the average charge density:

navg(q) =

∫
dzn(z)φ(z, q)∫
dzφ(z, q)

(2.26)

where,

φ(z, q) =

∫
dz′δn(z′) exp (−q |z − z′|) (2.27)

where δn(z) is the induced density, i.e., δn(z) = δρ(z)/e, and n(z) is the background

jellium density. Thus, φ(z, q) is a quantity that decreases with increasing q, which

means that the average charge density, navg(q), samples less of the jellium charge

distribution n(z) when δn(z) is located outside of the jellium background, and more
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of n(z) when δn(z) is located inside. See the following Fig. 2.9, reprinted from

Ref. [31]. Note, the convention of our axis is flipped from this picture, where we use

n(z) > 0 for z > 0 in our analysis. The behavior of the induced charge centroid and

the interpretation of d(ω) is the same, however.
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Figure 2.9: Tsuei model of SP dispersion Figure taken from [31]. In (a) the induced
charge centroid, δn(z), lies outside the jellium background. As q increases, the charge
centroid experiences less of the background, leading to a reduced effective plasma
frequency and negative dispersion. In (b), the induced charge centroid lies inside
the jellium background. As q increases, the charge centroid experiences more of the
background, leading to a increased effective plasma frequency and positive dispersion.
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To understand this model, mathematically, we consider the following. Beginning

from Eq. (2.26), we treat the background static charge density as a simple step

function, such that n(z) = n0H[z], where n0 is the background density and H[z] is the

Heaviside step function. In the most simplified terms, we consider the induced charge

to be a delta-function located at the centroid position, such that δn(z)→ ∆nδ(z−z0),

where z0 represents the position of the centroid. Then, using Eq. (2.27), the coulomb

potential of the induced charge is simply given by,

φ(z, q) ≈ ∆n exp (−q |z − z0|) (2.28)

Eq. (2.28), inserted into Eq. (2.26), leads to the following expression for the average

background charge density experienced by the induced charge:

navg = n0

[
1− 1

2
exp (−qz0)

]
(2.29)

Now we expand Eq. (2.29) in the long-wavelength limit:

navg ≈ n0

[
1− 1

2
(1− z0q)

]
≈ n0

1

2
[1 + z0q] (2.30)

Finally, the dispersion is obtained using Eq. (2.25):

ω(q) = ωsp

[
1 +

1

2
z0q

]
(2.31)

Thus, it is clear from the above derivation that z0 = −d(ω) in the q = 0 limit.

In the next chapter, we investigate the possibility of “combining” the HDA and

d-function formalism to create a higher-q model. Then in the final chapter of Part

I, we present a new method of incorporating the d-function into FDTD calculations

of complex systems.
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CHAPTER 3

Extended d-function Formalism

In this chapter, we explore the higher-order nonlocal behavior of plasmonic surfaces,

with the aim of extending existing formalisms. The d-function formalism, introduced

in the previous chapter, is explicitly applicable to surfaces, but only exact to order

q. On the other hand, the HDA is a higher-order model, O(q2), but it has limited

applicability to problems involving surface plasmons since it is an approximation

related to bulk properties. We propose extending the d-function formalism to order

q2, first by considering an extension of the Tsuei model, and then by considering

an extension using the HDA. We demonstrate the viability of the latter model by

comparing with published ab initio calculations and experiments, as well as by per-

forming our own RPA calculations (valid for all q) of the surface plasmon dispersions

for simple metals with various electron gas densities. We argue that this model can

be applied to arbitrary plasmonic/metamaterial structures, as long as the non-flat in-

terfaces can be modeled as effective media films. This work was published in Ref. [13].

BD2db
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3.1 Dynamic Charge Centroid Model

Generically, a quadratic extension of the surface plasmon dispersion will have the

following form:

ω(q) = ωsp
[
1− aq + bq2

]
(3.1)

We first examine extending the d-function formalism to O(q2) by augmenting

the Tsuei model [31], rather than by simply adding a hydrodynamic-like term. Ul-

timately, we discuss the limitations of this strategy, but we demonstrate that this

extended model is capable of describing qualitative features of the surface plasmon

dispersion to higher order in q and has a natural physical interpretation.

We developed the extended Tsuei model by expanding the d-function to linear

order in q, as such:

d(ω, q) ≈ d(ω, q)|q=0 +

(
d

dq
d(ω, q)|q=0

)
q (3.2)

where d(ω, q)|q=0 = d(ω) is the definition of the Feibelman d-function. Thus, the SP

dispersion of Eq. (2.23), from the previous chapter, is extended to order q2:

ω(q) ≈ ωsp

[
1− 1

2
d(ω)q − 1

2

(
d

dq
d(ω, q)|q=0

)
q2

]
(3.3)

This model has the following physical implication. In order to match the observed

SP dispersion at high-q, it is required that d
dq
d(ω, q)|q=0 < 0, such that the quadratic

dispersion is positive. This means that the charge centroid must move towards the

jellium surface background of the metal as q increases.

Using this extended model of the d-function, we calculate the SP dispersion within

the Tsuei model and show how a “dynamic charge centroid” captures the qualitative
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features of the nonlocal dispersion, as calculated in the RPA. Specifically, we use

Eq. (2.31) of the previous chapter with z0 → z(q), where z(q) now has the following,

phenomenological form:

z(q) = −a′ + b′q (3.4)

The variable a′ represents the location of the charge centroid outside of the jellium

background at q = 0. Nominally, a′ = d(ω), but here we consider it to be a parameter

in our analysis. The variable b′ represents the rate at which the charge centroid

changes its position, as a function of q. In the small-q limit, we can calculate the SP

dispersion based on the approximations of the previous chapter to obtain:

ω(q) = ωsp

[
1− 1

2
a′q +

1

2
b′q2

]
(3.5)

Thus, this form of the d-function generates the desired quadratic extension to the

SP dispersion and, based on Eq. (3.1), we can identify a = 1
2
a′ and b = 1

2
b′.

In the following analysis, we show that the parameters a′ and b′ in Eq. (3.5) may

be chosen such that the model dispersion is in excellent agreement with the ab intio

dispersion calculated in the RPA for a semi-infinite slab. Specifically, we calculate

ω(q)/ωsp, which, based on the definition of Eq. (2.25) in the previous chapter, is

ω(q)/ωsp =
√

2navg(q)/n0. We numerically calculate navg(q) based on Eq. (2.26), for

an idealized system. We consider a static background charge density that is smoothly

varying at the surface with the following functional form:

n(z) =
1

2
[tanh(cz) + 1] (3.6)

Eq. (3.6) was chosen for ease of numerical calculation, but the true self-consistent
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charge density, which has a similar qualitative shape, should be used for quantitative

comparisons—here, we are merely trying to demonstrate that the model works.

In the following plots, we show how different parameter choices for a′ and b′ affect

the SP dispersion. The bars below all figures permit a′, b′, and q to be changed, and

their values are stated in each figure. In each figure, the top plot depicts the

location of the charge centroid as given by Eq. (3.4) (solid-black line). The dotted-

red line and red-point are meant to aide the eye as q is varied. The dotted-black line

represents the location of the metal surface (z = 0). The middle plot shows the

background charge density (Eq. (3.6); blue line), Coulomb potential of the induced

charge (Eq. (2.27); green line), and normalized background charge experienced by

the charge centroid (grey-shaded region). The latter quantity is the integrand of

Eq. (2.26) and, therefore, the integrated area of the grey-shaded region yields navg(q).

As in the first plot, the dotted-red line shows the location of the charge centroid and

the dotted-black line represents the location of the metal surface (z = 0). Finally,

the bottom plot shows ω(q)/ωsp (proportional to the integrated area of the grey-

shaded region) as a green-solid line and ω(q)/ωsp as calculated in the RPA for a

semi-infinite slab (blue-points) [19]. Again, the red-point references the same point

in the right-most plot, and is meant to guide the eye as parameters are varied.

Here we describe the salient observations for each figure:

• Fig. 3.1 & 3.2 show the “best fit” model for z(q) at different q points. For

z(q) < 0, the charge centroid is outside of the jellium background and the

dispersion is negative. The dispersion becomes positive as q increases and,

ultimately, the charge centroid lies inside the jellium background for large q.

• When the intercept a′ is varied, the portion of the curve that has negative dis-

persion changes—with increasing a′ (i.e., the charge centroid “starts” farther

away from the jellium edge at low q), the negative portion of the surface plas-
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mon dispersion persists until a turning point at higher q (Fig. 3.3). For lower

a′, the dispersion is more positive (Fig. 3.4).

• When the slope b′ is varied, the steepness of the surface plasmon dispersion

changes—increasing the parameter b′ leads to a steeper dispersion (Fig. 3.5),

whereas the limit of b′ → 0 causes the dispersion to be negative (Fig. 3.6). This

is the regime of the original Feibelman formalism.

46



Figure 3.1: Dynamic charge centroid model fit to RPA calculation (1). Fit parame-
ters given in figure. For q = 0.05 Å−1, the charge centroid (red dashed line) is outside
of the jellium bulk. The dispersion is negative in this regime.
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Figure 3.2: Dynamic charge centroid model fit to RPA calculation (2). Fit param-
eters given in figure. For q = 0.27 Å−1, the charge centroid (red dashed line) is inside
of the jellium bulk. The dispersion is positive in this regime.
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Figure 3.3: Dynamic charge centroid model fit to RPA calculation (3). Fit pa-
rameters given in figure. When the parameter a′ is large, the dispersion is more
negative.
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Figure 3.4: Dynamic charge centroid model fit to RPA calculation (4). Fit param-
eters given in figure. When the parameter a′ is small, the dispersion approaches the
HDA result.
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Figure 3.5: Dynamic charge centroid model fit to RPA calculation (5). Fit param-
eters given in figure. When the slope of z(q) is large (i.e., large b′), the dispersion
also has a steeper slope.
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Figure 3.6: Dynamic charge centroid model fit to RPA calculation (6). Fit param-
eters given in figure. When the slope of z(q) is small (i.e., small b′), the dispersion
approximates the d-function prediction, Eq. (2.23).
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The physical picture that emerges can be easily understood. Firstly, when the

centroid is outside of the slab, the induced charge initially “sees” less of the static

background as q increases. This leads to an initial decrease in the surface plasma

frequency, as noted by Tsuei. If the centroid begins farther outside of the surface,

the negative part of the dispersion should be enhanced (see Fig. 3.3). As q increases

further, the centroid moves inward and, consequently, the induced charge will begin

to experience a region of higher static charge density. This will lead to an increase

in the surface plasma frequency and a positive dispersion. If z(q) rapidly increases

with q, the charge centroid will experience more of the background charge at smaller

values of q, and the dispersion will increase more quickly (see Fig. 3.5). On the

other hand, when the rate of increase of the charge centroid is less steep (Fig. 3.6), it

will take longer for the induced charge to experience an increased background charge

density as q is increased and, thus, the dispersion should be shallower.

The Tsuei model has not previously been extended to interpret the positive disper-

sion in this manner. This extension is admittedly heuristic. For instance, it assumes

that both the background static charge density and the induced charge density are

q-independent. These assumptions may not be entirely valid, and should perhaps

be considered more carefully moving forward. Nonetheless, this model is attractive

because it only relies upon two free parameters (a′ & b′) and provides physical insight.

Ultimately, the limitation of the dynamic charge centroid model is that it does

not provide a way to readily calculate the quadratic term b′. The d-function formal-

ism is based on the first-principles, local calculation of d(ω), i.e., at q = 0. A way to

calculate b′ = d
dq
d(ω, q)|q=0 must, similarly, be established based on first-principles.

However, this is not our objective, since we wish to approximate the linear and

quadratic terms of the dispersion without the need for additional ab initio calcula-

tions. Thus, in the next sections, we focus our investigation on the behavior of the
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leading terms of the SP dispersion from a phenomenological perspective, and seek to

uncover scaling relations of these terms with physical parameters of the system, like

rs, m, and e.

3.2 Full ab initio Nonlocal Response of Metallic Slabs

In this section, we calculate the nonlocal SP dispersion of a thick metallic slab exactly

in the RPA, for various electron densities, in order to examine how the dispersion

depends the parameter rs. We also compare our calculations to other ab initio

calculations and experimental data of the SP dispersion for simple metallic surfaces,

as reported in the literature. Our objective is to fit Eq. (3.1) to our calculated

dispersions and elucidate the functional dependence of the parameters a ≡ a(rs) and

b ≡ b(rs) on this system property. Ultimately, we demonstrate that the HDA can

be used to estimate the parameters a(rs) and b(rs), and, in the following sections,

we argue that this model can also be applied to arbitrary plasmonic/metamaterial

structures, as long as the non-flat interfaces can be modeled as effective media films.

This work was published in Ref. [13].

Our RPA calculations use a proprietary Fortran code and are based on the for-

malism of Ref. [32] applied to a metallic slab of finite thickness [19, 33]. The SP

dispersion was calculated from the roots of the reflection coefficient, r(q, ω), which

depends on the the induced density, δρ(z, ω), in the following way:

r(q, ω) =

∫
dzeqzδρ(z;ω) (3.7)

The induced density, δρ(z, ω), was introduced previously as Eq. (2.17), and it is

related to the single-particle susceptibility, given previously as Eq. (2.18). The single-
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particle susceptibility depends on the eigen-energies and eigenstates of the system, εk

and ψk(z), respectively. Thus, in order to calculate r(q, ω), it was first necessary to

calculate εk and ψk(z) for our slab geometry. To do this, the single-particle energies

and eigenstates were determined from the Hamiltonian of the system, using the self-

consistent Lang-Kohn potential Veff [21].

[
− ~2

2me

∇2 + Veff

]
ψk = εkψk (3.8)

Veff , which we show in Fig. 3.7, represents the energy profile of the jellium back-

ground, which has the form of a smooth, step-like function. In the slab geometry that

we chose, this profile is symmetric about its center. This symmetric slab was bounded

by an infinite potential, followed by a plateau region of fixed width, smoothly con-

nected to the Lang-Kohn (LK) potential [21].

Eigenfunctions of the system were calculated using numerical integration and a

cutoff number (∼50 eigenstates) was chosen based on the mesh resolution of the

potential (i.e. the wavelength of the highest eigenfunction was still resolved within

the spacing of points). The choice of total number of eigenstates used in the calcu-

lation did not seem to change the results, as long as there were a sufficient number

of states above the maximum of the LK potential and the eigenfunctions themselves

were spatially resolved. Below, we show the LK potential (Fig. 3.7) and the calcu-

lated eigenfunctions (Fig. 3.8). Eigenstates with energies below the plateau of the

LK potential decay exponentially at the boundaries, while eigenstates with energies

above this value are oscillatory outside of the LK potential.
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Figure 3.7: Lang-Kohn potential of metallic slab. The self-consistent potential [21]
is symmetric about the center of the slab. There is a plateau region outside of the
slab, bounded by infinite potentials.
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Figure 3.8: Eigenfunctions calculated within the Lang-Kohn potential. The eigen-
functions are normalized and offset vertically for readability. A total of 50 eigenstates
are computed.
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As stated, the electron density, δρ(z;ω), and reflection coefficient, r(q, ω), were

calculated following Ref. [32]. We computed r(q, ω) for four different electron densi-

ties, parametrized by Wigner-Seitz radii rs =2, 3, 4, and 5. These values were chosen

because they match available data in the literature and approximately correspond

to the following real elemental values: Al (rs = 2.07), Li (rs = 3.25), Na (rs = 3.93),

and K (rs = 4.86). Fig. 3.9 shows color maps of log[Im{r(q, ω)}] plotted vs. ω/ωp

and wavevector q, for each rs value. Maxima of Im{r(q, ω)} occur at the surface

plasmon condition, and those maxima are marked as open circles on these maps.

Due to the finite thickness of the slab and the resulting coupling between SPs on

opposite sides, there is a well-known split of the dispersion at small momenta (here

for q < 0.05 Å
−1

), with the upper and lower branches representing the anti-symmetric

and symmetric coupled SP modes, respectively. The maxima corresponding to these

split-modes have not been marked, but are visible due to color-coding. For larger q

(of interest here) a single branch exists, representing the SP mode of a single surface.

The thin-solid lines represent the results of RPA calculations for semi-infinite metallic

systems, available in the literature [19, 25], calculated for similar electron densities,

and squares are experimental data [19].

There is an excellent agreement between our slab and the semi-infinite calcula-

tions for q > 0.1 Å
−1

, demonstrating the usefulness of the slab scheme. We note,

however, that there was a very small, constant shift of the calculated dispersion for

a given density resulting from the finite thickness employed in our calculations. This

spurious shift was removed by enforcing all dispersions to start at 0.707ωp. The previ-

ously calculated dispersions and experimental data are in qualitative agreement with

our calculations in the q > 0.1 Å
−1

range, in particular at higher electron densities.

Note, that no simulation or experimental data exist in the literature for rs = 3.
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Figure 3.9: RPA calculations of metallic jellium. Color maps of log[Im{r(q, ω)}]
from RPA calculations of metallic jellium slabs for: (a) rs = 2, (b) rs = 3, (c) rs = 4,
and (d) rs = 5. Circles represent maxima of r(q, ω), which occur at the SP dispersion
condition. Solid lines represent the RPA calculated results for semi-infinite jellium
[19] and squares are experimental results [19] for: (a) rs = 2.07, (c) rs = 3.93, and
(d) rs = 4.86 . No simulation or experimental data are available in literature for
rs = 3.
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3.3 HDA-extended d-function Formalism

We then investigated the density scaling properties in detail by fitting Eq. (3.1) to the

calculated dispersions of Fig. 3.9 using the least-squares method. Fig. 3.10(a) shows

that this fit is excellent, again confirming that our extended d -function formalism is

well-motivated. Fig. 3.10(b) shows the fit-extracted parameters a (black triangles)

and b (red squares) plotted as a function of rs.

Clearly, b scales linearly with rs, with the red-dashed line a guide to the eye. This

linear scaling is consistent with the behavior of β in the HDA, implying that the HDA

is a good model for b. As shown in the previous chapter, the HDA dispersion has

the form ω
ωsp

=
[
1 + β

2ω2
sp
q2
]
, thus b can be identified:

b = β/2ω2
sp ∝ rs. (3.9)

Similarly, the dependence of a on rs can be understood by assuming the HDA-form

of the d-function. This result was derived by [22, 12]:

dHDA(ω) =
√
β/
[
ω2
p/εb − ω(ω + iγ)

]
, (3.10)

Thus, the paramter a has the following functional dependence:

a =
√
β/2ωsp ∝

√
rs. (3.11)

The black-dashed line in Fig. 3.10(b) represents the scaling given by Eq. (3.11). This

demonstrates that the HDA can be used to estimate the electron density scaling of

both the a and b parameters of our extended d -function formalism. We note, however,

that although the functional dependencies of parameters a and b are described by

the HDA, the constants of proportionality in Eq. (3.9) and Eq. (3.11) are not.
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Figure 3.10: SP dispersions for metallic jellium slabs. In (a), we plot RPA-
calculations (symbols), least-square fits to these calculations using Eq. (3.1) (solid
lines), for the densities rs = 2, 3, 4 and 5. In (b), we plot fit-extracted parameters a
(black triangles) and b (red squares) plotted as a function of rs. The red and black
colored lines correspond to Eqs. (3.9) & (3.11), respectively.
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In the next section, we examine other possible scaling relations of the parameters

a and b. Ultimately, we argue that one can create a useful nonlocal extension of the

material response, i.e., ε(ω)→ ε(q, ω), for structured systems using effective medium

scaling arguments.

3.4 Effective Medium Scaling Properties

In the previous section, we explicitly examined rs scaling, and here we comment on

other scaling behavior, motivated by the notion that simple scalings are expected

to hold for structures with non-flat interfaces, treated as flat effective media films.

This idea is supported by Pendry et al. [4] in their important paper, which pioneered

the metamaterial concept. They showed that the effective dielectric function of a 3D

cubic metallic wire array in the long-wavelength limit is given by the Drude form, but

with the plasma frequency renormalized by the effectively reduced density (electrons

are confined to wires, and thus occupy smaller volume of the array), which is an

rs-scaling property. Also, the plasma frequency incorporates an increased effective

mass, which is an inductive effect, and in what follows we parameterize the effective

mass by η, such that m = ηm0. As a result of both renormalizations, the wire

medium was shown to have its plasma frequency dramatically shifted down from the

UV to the radio range, with both scaling factors of the same order (∼ 105 ). The

same phenomenon is expected for other metamaterial structures, e.g for those with

non-flat surface morphology.

Now we examine the effective mass scaling, where m = ηm0. Relations Eq. (3.9)

and Eq. (3.11) from the previous section suggest that for systems with the effective
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electron mass changed, m = ηm0, at constant rs, the following scalings hold:

b ∝ 1/η (3.12)

and

a ∝ 1/
√
η. (3.13)

Finally, for completeness, we consider a case where the entire dispersion scales

by a common factor, such that ω(q) = ω(q)/η, where ω(q) represents the scaled

plasma frequency. To make this possible, we require m = ηm0 and Veff = Veff/η,

where η now parameterizes both the magnitude of the effective electron mass and the

screening of electronic interactions. We argue that such a scaling is possible, since

the presence of plasmonic structures will inductively increase the mass of electrons in

a system and simultaneously screen the electronic charge. For simplicity, we require

that these properties scale by the same amount, thereby reducing the scaling of the

response to one effective parameter, η.

We determine the behavior of the dispersion by starting with the Hamiltonian

equation:

[
− ~2

2m
∇2 + V eff

]
ψ
¯k

= ε
¯k
ψ
¯k

(3.14)

The above scaling ansatz leads to renormalization of the electron energies of the

system, while the eigenstates are unaffected; i.e. Eq. (3.14) may be written as:

[
− ~2

2me

∇2 + Veff

]
ψk = ηε

¯k
ψk (3.15)

where ε
¯k

= εk/η. The response of the scaled system is then related to the response
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of the bare system in the following way:

χ0(z, z′;ω) =
∑
k

∑
k′

f
¯k
− f

¯k
′

ε
¯k
− ε

¯k
′ + ~ω

ψ
¯

∗
k
(z)ψ

¯k
′(z)ψ

¯

∗
k′

(z′)ψ
¯k

(z′)

= η
∑
k

∑
k′

fk − fk′
εk − εk′ + η~ω

ψ∗k(z)ψk′(z)ψ∗k′(z
′)ψk(z

′)

= ηχ0(z, z′;ω)

(3.16)

where we define ω = ω/η, where ω is the complex frequency of the bare system.

The induced charge density, Eq. (2.15), is given by:

δρ(z;ω) =

∫
dz′χ0(z, z′;ω)

[
Vext +

∫
dz′′V c(z

′, z′′)δρ(z′′;ω)

]
=

∫
dz′ηχ0(z, z′;ω)

[
Vext +

∫
dz′′

Vc(z
′, z′′)

η
δρ(z′′;ω)

] (3.17)

We can immediately identify δρ(z;ω) = ηδρ(z;ω), which makes Eq. (3.17) identical

to Eq. (2.17). Thus, according to Eq. (3.7), the surface response of the scaled system

is related to that of the bare system by, r(q, ω) = ηr(q, ω).

The above relation implies that the poles of the bare system, r(q, ω), must be

equal to the poles of the scaled system r(q, ω), and thus the effect of our scaling ansatz

is such that the overall surface plasmon dispersion of the bare system is simply scaled

by our effective parameter, i.e., ω(q) = ω(q)/η. Specifically, the long-wavelength

surface plasma frequency is redshifted and dispersion is “flattened” compared to the

bare system

3.5 Self-Energy Extension of Dielectric Response

Finally, the nonlocal response ε(q, ω) can be constructed from knowledge of the SP

dispersion, so if this dispersion is known (i.e., based on effective medium scaling prop-

erties), then other response phenomena can be calculated. To incorporate knowledge
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of the dispersion into ε(q, ω), we make the ansatz, as in Ref [34]:

ε(q, ω) = εb −
ω2
p

ω(ω + iγ) + Σ
, (3.18)

and require that the roots of the nonlocal reflection coefficient, rp = ε(q,ω)−ε0
ε(q,ω)+ε0

, yield

the dispersion of our extended model, i.e., Eq. (3.1). This leads to the identification:

Σ = 2ω2
sp

(
aq − bq2

)
, (3.19)

where a and b can be estimated by the HDA.

Therefore, accounting for non-local effects amounts to the following, very simple

transformation in the effective dielectric function formula:

ω(ω + iγ)→ ω(ω + iγ) + Σ. (3.20)

The same transformation can be used in the more general Drude-Lorentz form of the

effective dielectric function

ε(ω) = εb +
∑
m

ω2
pm

ω2
0m − ω(ω + iγ)

. (3.21)

Thus, the full procedure to implement the nonlocal extensions is as follows.

Firstly, a local simulation of a metamaterial structure should be performed, for ex-

ample by employing FDTD. Secondly, the effective local dielectric function should

be extracted, for example, by using the standard procedure developed in [35], and

fitted with the Drude-Lorentz form Eq. (3.21). Finally, the transformation Eq. (3.20)

provides the desired extension. A similar procedure was applied in the recent study

of the electron scattering in the presence of phonons and plasmons, which requires

non-local corrections [3], except, in this case, a simple linear model of Σ was used
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instead of Eq. (3.19) and a different method was employed to extract the dielectric

function.

In this chapter, we proposed a simple q2 extension of the d -function formalism

and demonstrated the usefulness of this scheme in describing SP dispersions for

very large q. Ultimately, we showed that the HDA, even though itself incapable of

describing SP dispersions, can be used to estimate the parameters of our extension.

We supported this HDA-extended d -function formalism with our own ab initio RPA

calculations for metallic films with flat surfaces, for various electron densities, and

we also explored other valid scaling relations. Finally, we have generalized the HDA-

extended d -function formalism to arbitrary plasmonic/metamaterial structures, in

which non-flat interfaces can be modeled as effective media films. We presented how

ε(q, ω) may be calculated for such structures based on the “self-energy” ansatz.

66



CHAPTER 4

Effective Thin-Film Method

As emphasized in the Part I of this thesis, nonlocality strongly affects the electro-

magnetic response of nanostructures with small or sharp features and, therefore,

should be taken into account in simulations. However, this is typically not done in

FDTD calculations because of the inherent local dependence of the algorithms. We

demonstrate that nonlocality can be accounted for in such simulations by including

a thin-film over structures of interest, where the thin-film has an effective dielec-

tric response related to the d-function. Thus, any local calculations or simulations

that include this film become automatically nonlocal to the same order. We pro-

pose a form for the effective response that is physically valid, and we show that our

formalism correctly yields red-shifts of the Mie resonance for spheres, compared to

classical calculations. Moreover, we show that our formalism is identical to known

analytic results in the limit of small film-thickness. Aspects of what we present in

this chapter were published in Ref. [14], where our effective thin-film method was

used in FDTD simulations to calculate absorption and electric field enhancement

from metallic nanospheres and these results were consistent with published, first-

principles calculations.

BD2db
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4.1 Geometric Mapping of d-Function Formalism

Nonlocal physics greatly affects the electromagnetic response of metallic nanostruc-

tures with feature-sizes much smaller than the wavelength of incoming light, for

instance, the Mie resonance frequency of nano-spheres, nano-rods, and nano-tips is

known to be shifted (red-shifted for alkali metals and blue-shifted for noble met-

als) compared to classically derived values [36]. A fully self-consistent, quantum

mechanical treatment of the single-particle electron response in metals can be used

to calculate nonlocal behavior, as addressed in the previous chapters. However, we

also established that first-principles calculations of nonlocal effects are not straight-

forward to carry out for complex plasmonic systems due to numerical complexity.

Thus, we seek a simple strategy for incorporating the appropriate nonlocal physics

into local calculations involving nontrivial structures.

The strategy that we developed, motivated by Ref. [22, 37], involves the iden-

tification of an equivalence between the reflection coefficient for a planar, nonlocal

system and the reflection coefficient for a planar, local system whose surface is aug-

mented by an additional material layer. One of our insights was to use the d-function

formalism, since the d-function is a surface response function. Before delving into

the derivation, we present a schematic that illustrates the proposed equivalence. On

the one hand, the nonlocal physics of a metal, system A, is described by the non-

local response function, ε(q, ω), which occupies a half-space. Light is incident from

an outter half-space, whose dielectric function is ε0. The local equivalent, system

B, consists of an outter dielectric, ε0, surface layer, εs(ω), and metal, ε(ω), in the

configuration depicted in Fig. 4.1.
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Figure 4.1: Schematic of effective thin-film method. The reflection coefficient of a
nonlocal system (left) is equivalent to the reflection coefficient of a local system with
an intermediate layer of thickness ∆d (right). The dielectric function of the layer,
εs, is defined such that the correspondence is preserved.
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If there exists a function, εs(ω), that makes the reflection coefficient of system

B equal to system A, then the physics of system A may be simulated by system B,

where the advantage is that system B only consists of local response functions. In

other words, the nonlocal physics of system A may be conveniently mapped onto the

local surface dielectric function of a thin, fictitious film (of thickness ∆d) placed on

top of a local metal surface, as depicted for system B, and the calculations for system

B may be performed entirely within standard FDTD codes.

To determine the form of εs(ω), we derive the p-polarized reflection coefficient

for the geometry of system B, for which we use the superscript TF for “thin-film,”

and compare to the known, nonlocal reflection coefficient for system A, for which we

use the superscript NL for “nonlocal.” We partition the system into three regions,

shown below, and write the electric field components in each region.

For a monochromatic, transverse wave (p-polarized) incident from the left upon

the system described above, the electric field in the three regions can be written as:

~E1(~r, t) = ~E1+e
i(ωt−qx+k1z) + ~E1−e

i(ωt−qx−k1z) (4.1a)

~Es(~r, t) = ~Es+e
i(ωt−qx+ksz) + ~Es−e

i(ωt−qx−ksz) (4.1b)

~E2(~r, t) = ~E2+e
i(ωt−qx+k2z) (4.1c)

where ~Ej± is the electric field vector of the incoming (+) or outgoing (-) wave in the

outside dielectric (j = 1), surface layer (j = s), or metal (j = 2). The the respective

wavevectors are ~kj± = (q,∓kj), where kj =
√

(ω/c)2εj − q2 is the z-component and

q is the in-plane component.
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Figure 4.2: Reflection geometry for p-polarized light. Light incident on a layered
system from the positive z-direction. A slab of thickness ∆d and permittivity εs(ω)
acts as an intermediate layer (index s), confined by a dielectric half-space with per-
mittivity ε0 (index 1) and a metallic half-space with Drude permittivity ε(ω) (index
2). The plane of incidence is the xz-plane.
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Using the standard boundary conditions across an interface (Dz and Ex contin-

uous), the reflection coefficient is

rTFp ≈
ε(ω)− ε0

k2
k1
− i ε(ω)ε0

εs(ω)k1
q2∆d+ iα−(ω)∆d

ε(ω) + ε0
k2
k1

+ i ε(ω)ε0
εs(ω)k1

q2∆d− iα+(ω)∆d
(4.2)

where α±(ω) =
[
ε(ω)ε0
k1

(
ω
c

)2 ± εs(ω)k2

]
and an overall phase has been neglected (see

Appendix D for a thorough derivation of this formula and additional details).

Now, the non-local reflection coefficient for this geometry, but without the pres-

ence of a film, was derived by Feibelman [12] and stated in Chapter 2. We restate it

here:

rNLp =
ε(ω)− ε0

k2
k1

+ i [ε(ω)−ε0]
k1

q2d(ω)

ε(ω) + ε0
k2
k1
− i [ε(ω)−ε0]

k1
q2d(ω)

, (4.3)

where positive d(ω) lies above the metal surface. In order to identify the mapping,

we require that Eq. (4.2) is identical to Eq. (4.3) in the nonretarded limit, where

ω/c << q and k1 = k2 = iq. In this limit, rTFp and rNLp have the following forms:

rTFp =
(εm − ε0) + (εs − εm/εs) q∆d
(εm + ε0) + (εs + εm/εs) q∆d

(4.4)

and

rNLp =
(εm − ε0) + (εm − ε0) qd(ω)

(εm + ε0)− (εm − ε0) qd(ω)
(4.5)

where we make the simplification of notation εs(ω) → εs and ε(ω) → εm. There is

more than one solution to the above set of equations and, as we will argue in the

next section, only one solution is physically valid.

To continue, one must expand the Eq. (4.4) and Eq. (4.5), assuming that q is
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small. The expansion for the thin-film response is:

rTFp = rCLp

[
1 + 2

(ε2s − ε2m)

εs (εm − ε0) (εm + ε0)
q∆d

]
(4.6)

where the classical reflection coefficient, rCLp = (εm − ε0) / (εm + ε0) has been identi-

fied. The expansion for the Feibelman response is:

rNLp = rCLp

[
1 + 2

εm
(εm + ε0)

qd(ω)

]
(4.7)

We note that each response is a series expansion of the classical response, rCLp . In

fact, it is interesting to note that Eq. (4.7) also has the form:

rNLp = rCLp
[
1 + rCLp 2f(ω)

]
(4.8)

based on the definition of Eq. (2.19). Therefore, rNLp is a series expansion in orders

of rCLp .

Now we make the following identification between Eqs. (4.6) & (4.7):

(ε2s − ε2m)

εs (εm − ε0)
∆d = εmd(ω) (4.9)

The solutions to this equation are:

εs =
εm
2

(εm − ε0)
d(ω)

∆d
±

[
(εm − ε0)2

(
d(ω)

∆d

)2

+ 4

]1/2
 (4.10)

Immediately, it is clear that the solutions are inversely proportional to ∆d, which

leads to a compensating effect, i.e., the thin-film strongly affects absorption even

though it may be dimensionally negligible. The thin-film response is also directly

proportional to d(ω), which underscores the physical explanation that the d-function
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behaves like a surface response function. We also note that the response functions

within the thin-film formula, ε(ω) and d(ω), are complex. Thus, the appropriate

choice of branch-cut must be made when taking the square-root.

4.2 Identification of Physically Valid Response

We now consider the (+) and (-) solutions in the limits of small ∆d and large ∆d,

and scrutinize their validity. For Case 1, the positive solution (i.e., ± → +), we have

the following:

(a) in the limit of ∆d << d(ω),

εs ≈ εm (εm − ε0)
d(ω)

∆d
(4.11)

(b) in the limit of ∆d >> d(ω),

εs ≈ −εm (4.12)

For Case2 , the negative solution (i.e., ± → −), we have the following:

(a) in the limit of ∆d << d(ω),

εs ≈ −
εm

(εm − ε0)

∆d

d(ω)
(4.13)

(b) in the limit of ∆d >> d(ω),

εs ≈ εm (4.14)

Plots of εs(ω) for these two solutions, Case 1 and Case 2, are shown in the following

figures for varying film thickness, compared to the Drude model.
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Figure 4.3: Thin-film dielectric function (1). Eq. (4.10) is used to calculate the
thin-film dielectric function corresponding to Case 1, as film-thickness is varied. Also
shown is the classical, Drude dielectric function. Real and imaginary parts are shown
in black and red, respectively.
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Figure 4.4: Thin-film dielectric function (1). Eq. (4.10) is used to calculate the
thin-film dielectric function corresponding to Case 2, as film-thickness is varied. Also
shown is the classical, Drude dielectric function. Real and imaginary parts are shown
in black and red, respectively.
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Here, we note some salient features of the thin-film response in Case 1 and Case

2. Firstly, it is clear that the dielectric function corresponding to Case 1 behaves

like an “anti-metal” in the regime of small film-thickness and large film-thickness.

That is, the real and imaginary parts of εs(ω) are flipped compared to the nominal

Drude behavior (see Fig. 4.3) . Immediately, this seems strange, particularly because

the negative imaginary part implies that εs(ω) acts like a gain medium. In contrast,

Case 2 approaches the metal dielectric function for large film thickness and exhibits

metallic behavior, i.e., a negative real permittivity, for small film thickness (see

Fig. 4.4). This metallic behavior satisfies our expectation, which is that the thin-film

should have the properties of a metal, but with a reduced density of free electrons.

This is because the surface region, in actuality, is a region of lower electron density

compared to the bulk, where a tail of free electrons diminishes towards the vacuum.

In Fig. 4.5, now we plot the thin-film reflection coefficient, Eq. (4.4) with εs(ω)

from Eq. (4.10), for varying film thickness, at fixed q. We compare to the Fiebelman

reflection formulae, Eq. (4.5), and the local reflection formula. These reflectance

plots also confirm our intuition that Case 2 is the appropriate choice. The reflectance

spectra for Case 2, which uses the (-) solution of Eq. (4.10), approaches the nonlocal

Fiebelman formula in the small thickness limit, i.e., the first plot of Fig. 4.6. It also

approaches and the normal Drude reflectance in the limit of large thickness limit,

i.e., the last plot of Fig. 4.6. On the other hand, Case 1 clearly exhibits incorrect

behavior, as shown in Fig. 4.5.
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Figure 4.5: Thin-film reflection coefficient (1). Eq. (4.4) with εs(ω) from Eq. (4.10)
is used to calculate the thin-film reflection coefficient corresponding to Case 1, as
film-thickness is varied (solid line). This is compared to the local reflection coefficient
(dashed line) and the nonlocal reflection coefficient (dash-dotted line).
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Figure 4.6: Thin-film reflection coefficient (2). Eq. (4.4) with εs(ω) from Eq. (4.10)
is used to calculate the thin-film reflection coefficient corresponding to Case 2, as
film-thickness is varied (solid line). This is compared to the local reflection coefficient
(dashed line) and the nonlocal reflection coefficient (dash-dotted line).
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Ultimately, we propose that Case 2, which uses the (-) solution of Eq. (4.10), is

a physically valid choice for the thin-film response. To support this claim, we could

also show that this formula satisfies Kramers-Kronig relations,

Re [εs(ω)] = 1 +
2

π
P

∫ ∞
0

ω′Im [εs(ω
′)]− ωIm [εs(ω)]

(ω′2 − ω2)
dω′ (4.15a)

Im [εs(ω)] = −2ω

π
P

∫ ∞
0

Re [εs(ω
′)]− Re [εs(ω)]

(ω′2 − ω2)
dω′ (4.15b)

and sum rules [2],

∫ ∞
0

ωIm [εs(ω)] dω =
π

2
ω2
p (4.16a)∫ ∞

0

ωIm
[
ε−1
s (ω)

]
dω = −π

2
ω2
p (4.16b)∫ ∞

0

ω−1Im
[
ε−1
s (ω)

]
dω =

π

2
(4.16c)

For instance, in our related paper [14], we performed these calculations for a simpli-

fied, alternative thin-film formulation. However, we do not present a similar calcula-

tion in this thesis because Eq. (4.10) poses significant numerical difficulty. Nonethe-

less, we believe that it should be possible, using the appropriate numerical scheme

and choice of branch-cuts, to demonstrate that Eqns. (4.15) & (4.16) are satisfied.

Now, to conclude this section, we briefly report other incarnations of this thin-

film correspondence. Firstly, Kempa & Gerhardts [22] first examined the ellipsometry

ratio (i.e. ρ = rp/rs) of nonlocal thin-films and concluded that the nonlocal prop-

erties of a simple surface could be represented by local optics. Thus, by matching

ρTF (q, ω) → ρNL(q, ω), they derived the following thin-film correspondence (with a

proper (-) sign for compatibility with our convention, and ε0 = 1):

d(ω) =
(εs − εm)

(εm − 1)

(
1

εm
− 1

)
∆d (4.17)
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which has the following solution (not presented previously):

εs =
1

2

[
(εm + 1)− (εm − 1)

d(ω)

∆d

]
±1

2

[[
(εm + 1)− (εm − 1)

d(ω)

∆d

]
− 4εm

]1/2

(4.18)

For the (-) solution, Eq. (4.18) yields εs ≈ − (εm − 1) d(ω)
∆d

in the limit of small film-

thickness, and εs ≈ 1 in the limit of large film-thickness. Thus, the thin-film takes

on the properties of the vacuum when ∆d is very large, as if it is no longer present.

For the (+) solution, Eq. (4.18) is identical to our result. In the limit of small film-

thickness, it yields εs ≈ − εm
(εm−1)

∆d
d(ω)

, and in the limit of large film-thickness, it yields

εs ≈ εm. This is nice, since it shows that the additional information incorporated

into the ellipsometry ratio does not greatly change the thin-film correspondence.

Finally, the HDA version of this mapping of non-local effects into local films was

also recently studied in Ref. [37]. In fact, as we show below, our Eq. (4.10) reduces to

the corresponding equation in Ref.[37] after a formula for the d -function, appropriate

for the HDA, is used [22, 12]. The derivation of Ref.[37] proceeds from the ansatz

that εs(ω) ∝ ∆d, which then leads to the following form of Eq. (4.4):

rTFp =
(εm − ε0)− (εm/εs) q∆d

(εm + ε0) + (εm/εs) q∆d
(4.19)

Comparing Eq. (4.19) to Eq. (4.5), we can identify the relation εs = − εm
(εm−ε0)

∆d
d(ω)

. To

get the result of Ref.[37], the HDA form of the d-function should be used. This for-

mula was introduced in the previous chapter, dHDA(ω) =
√
β/
[
ω2
p/εb − ω(ω + iγ)

]
,

but we now note the additional definition which enables the correspondence between

our result and that of Ref.[37]:

dHDA(ω) ≡ 1

iqpl
(4.20)

81



where qpl is the plasmon normal wavevector, obtained from the condition ε(q, ω) = 0,

with ε(q, ω) given by the hydrodynamic model. Ultimately, this solution suffers from

the ad hoc assumption εs(ω) ∝ ∆d and, therefore, it is not complete. Our derivation

reduces to this function in the small ∆d limit.

4.3 Nonlocal Mie Resonance of Metallic Spheres

We now apply our thin-film formula to calculate the absorption cross-section of

metallic nanospheres. We also demonstrate that the scheme which employs our

physically valid result also correctly predicts the red-shift of the Mie resonance of

metallic nanospheres, compared to the classical Mie frequency.

The absorption cross-section is proportional to the imaginary part of the particle

polarizability, which has the following classical form in the long-wavelength limit:

αCL = 4πR3 ε(ω)− 1

ε(ω) + 2
(4.21)

where R is the particle radius. For a local metal, the Mie frequency is determined

from the poles of Eq. (4.21), which yields ωCLMie = ωp/
√

3 for a Drude metal. Liebsch

derived this Mie frequency using the nonlocal d-function formalism and found [34]:

ωNLMie =
ωp√

3

[
1− d(ω)

R

]
(4.22)

This size-dependent dispersion has been confirmed elsewhere in the literature [38,

31, 1]. Liebsch proposed a nonlocal extension to the Drude dielectric function,

ε(ω) → ε(q, ω), which produces the correct, nonlocal Mie frequency when inserted

into Eq. (4.21). The generic form of this extension was presented as Eq. (3.18), i.e.,

ε(q, ω) = 1 − ω2
p

ω(ω+iγ)+Σ
. For a spherical particle of radius R, the self-energy should
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have the form Σ = d(ω)(ω2
p − ω2)/R [34], in order for Eq. (4.21) to yield Eq. (4.22).

Next, we compare our thin-film approach to both Liebsch’s model and the standard

local Drude model.

Our thin-film method uses a core-shell geometry, where we use the standard, local

Drude formula for the core of radius Rc, and the effective dielectric function εs(ω) for

the shell of thickness ∆d. The following analytic form for the core-shell polarizability

was used to calculate the nonlocal absorption cross-section:

αTF = 4π (Rc + ∆d)3
(εs − 1) (εm + 2εs) +

(
Rc

Rc+∆d

)3

(εm − εs) (2εs + 1)

(εs + 1) (εm + 2εs) +
(

Rc

Rc+∆d

)3

(εm − εs) (2εs − 2)
(4.23)

In the following figure, we plot ωIm{αTF} by substituting Eq. (4.10) into Eq. (4.23).

We also plot the absorption cross-section calculated using Liebsch’s ansatz with

ε(ω) → ε(q, ω) in Eq. (4.21), which we call ωIm{αLiebsch}. Finally, we compare

both of these results to the local absorption cross-section, ωIm{αCL}. For the first

figure, Fig. 4.7, we fix the core size to Rc = 5 nm and vary ∆d, enforcing the relation

R = Rc + ∆d.
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Figure 4.7: Absorption cross-section: fixed Rc. The absorption cross-section of the
thin-film system, ωIm{αTF}, is plotted compared to Liebsch’s ansatz, ωIm{αLiebsch},
and the local absorption cross-section, ωIm{αCL}. The core size is fixed, Rc = 5 nm,
while ∆d is varied. The relation R = Rc + ∆d is enforced.
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We first note the most prominent distinction between the classical absorption

cross-section and the nonlocal results, which is the presence of the multipole reso-

nance at ω ≈ 0.85ωp. Another important result is that the presence of the thin-film

produces a redshift of the resonance frequency compared to the classical peak, and

this effect is enhanced for smaller particle size, R. In Fig. 4.8, we use a fixed shell-

thickness, ∆d = 0.1 nm, and we vary Rc. Similar results are observed.

Finally, in Fig. 4.9, we fix the total particle size, R, and vary both Rc and

∆d. The results that we observe indicate that the absorption cross-section is nearly

independent of the ratio ∆d/Rc, for fixed R. This is somewhat astonishing, and likely

a result that is specific to closed geometries (i.e., particles). Ultimately, it suggests

that in both the limit of vanishing film-thickness, ∆d → 0 (i.e., when the film is

vanishingly small), and the limit where ∆d → R (i.e., when the entire particle is

composed of the material εs), the nonlocal absorption cross-sections are qualitatively

equivalent. This is an attractive property, which implies that film-thickness does not

strongly effect the underlying results.
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Figure 4.8: Absorption cross-section: fixed ∆d. The absorption cross-section of the
thin-film system, ωIm{αTF}, is plotted compared to Liebsch’s ansatz, ωIm{αLiebsch},
and the local absorption cross-section, ωIm{αCL}. The film-thickness, ∆d = 0.1 nm,
is fixed while the core size, Rc, is varied. The relation R = Rc + ∆d is enforced.
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Figure 4.9: Absorption cross-section: fixed R. The absorption cross-section of the
thin-film system, ωIm{αTF}, is plotted compared to Liebsch’s ansatz, ωIm{αLiebsch},
and the local absorption cross-section, ωIm{αCL}. Both the film-thickness, ∆d,
and the core size, Rc, are varied for fixed particle size, R = 5 nm. The relation
R = Rc + ∆d is enforced.
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Now we consider the frequency dispersion of metal particles as a function of

particle size. Earlier in this section, we reported that the Mie frequency exhibits a

redshift that is inversely proportional to the particle radius, i.e., Eq. (4.22). This

dispersion can be derived explicitly from our formalism in the limit of small film-

thickness, where ∆d << Rc and Rc → R. Then, the polarizability of Eq. (4.23)

reduces to

αTF ≈ 4πR3
(εm − 1)− ∆d

R

[
(2εm − 1) +

(
εm
εs
− 2εs

)]
(εm + 2)− 2∆d

R

[
(εm + 1)−

(
εm
εs

+ εs

)] (4.24)

and inserting our thin-film formula in the limit of small ∆d, i.e, Eq. (4.13), we have

αTF ≈ 4πR3 (εm − 1)− 2d(ω)
R

(εm − 1)

(εm + 2)− 2d(ω)
R

(εm − 1)
(4.25)

The roots of Eq. (4.25) determine the dispersion, which is equal to Eq. (4.22). Thus,

our thin-film method produces the correct Mie frequency shift, as established by ab

initio calculations [34] and experiment [38].

In Fig. 4.10, we plot the calculated Mie frequency shift as a function of inverse

particle size, using our full thin-film formula, Eq. (4.10), with no approximations.

We compare to the analytic dispersion and the classical Mie frequency ω/ωp = 1/
√

3.

We plot our dispersion for various ratios of film thicnkness and core radius, using the

definitions ∆d = rR and Rc = (1− r)R, where R is the total particle size, such that

the condition ∆d+Rc = R is satisfied. Ultimately, we observe that the dispersion does

depend on the coefficient r, and asymptotes to the expected behavior of Eq. (4.22)

in the limit of r → 0. This subtlety is difficult to see from the full spectrum, Fig. 4.9

and, therefore, represents a near-negligible effect.
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Figure 4.10: Mie frequency vs. particle size. The resonance frequency of the thin-
film system is compared to both the Liebsch model and the classical Mie frequency
as particle size is varied. Different ratios of film-thickness, ∆d = rR, and core size,
Rc = (1− r)R, are plotted.
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Finally, we note our thin-film calculation of the nonlocal absorption cross-section

from nanoparticles is superior to the self-energy approach of Liebsch. This is be-

cause Liebsch’s formula requires the geometry of the system to be incorporated into

the nonlocal dielectric response through Σ, whereas our formula uses an effective

thin-film response that is entirely independent of the geometry of the underlying

system. Our method does not require the dispersion of the system to be known a

priori and, thus, it’s application to any system will yield valid results in the limit

of small film-thickness. Moreover, our method lends itself to the derivation of ana-

lytic dispersion relations, like Eq. (4.22), in geometries that have known core-shell

expressions. Ultimately, Liebsch’s approach is less general.

Based on our method, one has a simple prescription for extending any local cal-

culation or simulation, such as FDTD, into the small q, non-local domain: before

performing a simulation, one must first add a fictitious, dielectric film of finite thick-

ness ∆d to any metallic surface of the structure. This film must have the complex,

frequency-dependent (but local and non-retarded) dielectric function εs(ω) given by

Eq. (4.10). The simulations now include non-local effects, accurate to lowest order

in q. The capability of our approach was demonstrated in [14] by implementing the

effective thin-film method using COMSOL Multiphysics, albeit for a different form

of εs(ω) than presented here. Additionally, in the referenced work, the modified

electric field enhancement between the spheres was examined and compared to pub-

lished DFT calculations. The effective thin-film method proved capable of capturing

the qualitative features of ab initio calculations, but was more straightforward and

simple to apply.

In this chapter, we have introduced a form for the effective response of a thin-

film, which mimics the nonlocal effects of a bulk metal when added to its surface.

We corroborated the physical validity of this equation by ensuring that it has rea-
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sonable limiting behavior. We stated the caveat that this formula should also sat-

isfy Kramers-Kronig relations and sum rules, although we were unable to include

these calculations. Finally, using this effective thin-film method, we derived analytic

expressions for the Mie frequency-shift induced by nonlocal effects in alkali metal

nanospheres, which match known results. Ultimately, nonlocal effects modify the

classical electromagnetic response of nanostructures that have extremely subwave-

length geometries (e.g. nano-spheres, nano-rods, nano-tips, etc.), and we anticipate

that the effective thin-film method will be indispensable for accurate simulations of

such structures.
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PART II:

NONLINEAR RESPONE PHENOMENA
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CHAPTER 5

Nonlinear Response of DNA with Strong Driving

We shift our focus from Part I of this thesis to study nonlinear models of biolog-

ical and plasmonic systems. Ultimately, we tie this focus back to an investigation

of the response function of plasmonic nanoparticles. In this chapter, we study the

nonlinear molecular dynamics of double-stranded DNA in the presence of a thermal

environment using an established physical model and demonstrate that it is possible

to induce damage selectively between base-pair types by driving with pulsed THz ra-

diation. Such selectivity could be useful for targeted therapies, and we briefly discuss

potential applications. Specifically, we analyze the amplitude-frequency parameter-

space where large DNA base-pair separations occur, which we use as a proxy for

“damage,” and we identify regions of the parameter space that distinguish between

different base-pair types. In later chapters, we address how plasmonic particles may

be used to generate in vivo THz fields via nonlinear effects, which is a scheme that is

designed to overcome the body’s natural opacity to THz radiation and, thus, allow

access to areas deep within the body.

BD2db
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5.1 Motivation & General Characteristics of DNA

This work is exploratory in nature, motivated by the proposed use of electromagnetic

(EM) radiation to selectively damage nefarious biological actors, e.g., pathogens or

cancer, within the body, and thereby create an effective therapy for disease. We chose

to study the effects of THz radiation (λ ∼100 µm - 1 mm) on these constituents,

based on previous work showing that biological materials exhibit “finger-print” char-

acteristics in the THz range, which make them identifiable [39, 40]. Specifically, we

focus on the dynamical response of DNA to THz radiation, since a possible pathway

to inhibiting the spread of biological constituents is through structural damage to

their DNA, which may disrupt their ability to replicate [41, 42]. Moreover, previous

experimental studies have shown that THz radiation can induce damage in DNA

sequences [43]. However, we emphasize that we are not focusing on a particular

biological target for our proposed scheme. Rather, we want to understand, very

generally, the possible damaging effects that THz radiation can have on DNA and

whether these effects are selective between different DNA sequences.

With this caveat in mind, we briefly mention two possible applications in order to

provide context and motivation. Firstly, cancer is an obvious target, and the scheme

that we are proposing could prove superior to harsher, less discriminating therapies

like chemotherapy or radiation therapy. Alternatively, other targets might include

infectious agents, which are rapidly becoming inured to the effects of antibiotics and,

therefore, require alternative remediations [44, 45]. We emphasize that any potential

application will necessitate that the target DNA is sufficiently distinguishable from

“healthy” human DNA and, again, we leave additional details of these applications

for future consideration.

Now, we briefly give an overview of the structure of DNA and discuss the many

ways in which it is affected by its environment, including radiation across the EM
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spectrum. The type of DNA that we are investigating is double-stranded DNA,

which has a characteristic double-helix. The helices are composed of phosphate

groups, which are bound to nucleobase pairs [41]. These base-pairs (BPs) occur in

two realizations, adenine-thymine (AT) and guanine-cytosine (GC), and the prop-

erties (e.g., binding energy [46]) of each of these two types of pairs are different.

Furthermore, double-stranded DNA can occur in different natural conformational

states, for example A-conformation or B-conformation [47]. Our study assumes a

B-conformation geometry, which is typical inside the body, so hereafter we refer to

this structure when we use the general term “DNA.” Below, in Fig. 5.1, we include

a diagram from Ref. [47] illustrating the geometry and scale of a DNA strand.

Figure 5.1: DNA geometry. Two conformational states of DNA are shown, in a
figure from Ref. [47].
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DNA exhibits rich dynamics, including twisting, bending, localized openings (i.e.,

breathing), unzipping, breaking, etc. [41, 48, 49, 50]. Damage to the DNA strand

happens when such openings and breaks occur [41]. Although DNA repairs itself

through various mechanisms (e.g., see the review by Ref. [51]), persistent damage

could disrupt replication and lead to cell “death” [42].

Thermal influences contribute significantly to DNA damage and there is a vast

literature focused on the melting properties (i.e., dissociative properties) of DNA

as a function of temperature [52, 53, 54, 55, 46]. Thus, in any minimal model

of DNA dynamics, the thermal environment must be considered. The response of

DNA to EM radiation has also been well studied, for instance UV radiation [56]—

though obviously the response of DNA in some regions of the EM spectrum is less

understood, as this is the focus of our investigation.

There have been studies of DNA response to THz frequencies, which is our inter-

est. For review, see Ref. [57, 58]. For instance, the authors of Ref. [59] studied the

affect of THz radiation on the melting properties of DNA, finding that higher driving

amplitudes reduced the melting temperature of all types of DNA strands (i.e, with

both homogeneous and heterogeneous BP sequences). The authors only examined

driving at certain frequencies. Additionally, in Ref. [60], the authors studied the ef-

fect of THz radiation on the unzipping properties of DNA sequences at fixed driving

amplitude. Ultimately, some studies found evidence for THz induced damage, e.g.,

Ref. [61, 62, 63, 64, 65], while other studies did not, e.g., Ref. [66, 67].

Thus far, no study has investigated the complete range of amplitude-frequency

parameter-space pertaining to driving with THz radiation, which is what we en-

deavor to do. We specifically want to find the amplitudes and frequencies at which

DNA will be damaged and whether this damage is selective at the single BP level.

Thus, we are not investigating the thermalization effects of driving—this was partly
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explored by Ref. [59], who explicitly allowed the system to equilibrate with the driv-

ing field—rather, our focus is to study the nonequilibrium excitation of DNA and

examine the parameter space where DNA damage is most likely to occur.

5.2 Nonlinear Model of Double-Stranded DNA

We consider a dynamical model of DNA proposed by Tapia-Rojo et al. [46], which is a

modified form of the canonical Peyrard-Bishop-Dauxois (PBD) model [55]. The orig-

inal PBD model uses minimal assumptions and treats the forces between BPs based

on their ladder-like geometry: the interaction within a BP is governed by a Morse-

like, intra-base-pair potential, U(yn), while the outer phosphate strands provide an

effective inter-base-pair potential, W (yn, yn±1), which is the so-called “stacking” po-

tential. This stacking potential actually consists of two terms, one for base-pairs

either above or below any given BP within a sequence. The dynamics of the BPs are

parameterized by the coordinate yn, which is defined as the normalized separation

between the nth BP. The pairs are normalized relative to their equilibrium position

(at T = 0), which is yn = 0 in the center of mass-frame of the base-pair. The follow-

ing diagram, Fig. 5.2, depicts these interactions schematically.
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Figure 5.2: PBD schematic diagram. Intra-base-pair forces are depicted horizon-
tally and inter-base-pair forces are depicted vertically.

In the absence of external forces, the generalized equation of motion for this

system is:

mÿn = −U ′(yn)−W ′(yn, yn+1)−W ′(yn, yn−1)−mγẏn (5.1)

where γ is a phenomenological dissipative term and the primed terms represent spa-

tial derivatives: e.g., U ′(yn) = ∂
∂yn

U(yn). In the original PBD model, the hydrogen

bond connecting each nucleobase was modeled via a simple Morse potential [55]:

U(yn) = Dn[exp(−αnyn) − 1]2. However, simulations of bubble lifetimes [46] and

THz driving [59] demonstrate that this model does not reflect observed behavior

accurately. A more realistic model includes a potential barrier to reassociation [46],

which reflects the physical propensity of BPs to be slightly repelled from each other

after separation. This behavior arrises from several sources: a repulsive force be-

tween BPs and the phosphate strand, BP’s affinity to react with physical solvents
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once separated [60], in addition to other possible phenomenological reasons. Thus,

a modified Morse potential represents a more physically reasonable model for the

intra-base-pair interaction, reflecting the energy barrier to reassociation that occurs

during the DNA denaturation process.

In the model of Ref. [46], which we are using in this work, the Morse potential

is augmented with a Gaussian barrier, which results in more realistic simulations of

bubble lifetimes [46]:

U(yn) = Dn[exp(−αnyn)− 1]2 +Gn exp
[
−(yn − dn)2/bn

]
(5.2)

The stacking potential is modeled using a position-dependent spring-constant [46],

as in the original PBD model:

W (yn, yn±1) =
k

2
[1 + ρ exp[−δ(yn + yn±1)](yn − yn±1)2 (5.3)

The parameters Dn, αn, Gn, dn, and bn are BP-specific, meaning that they are

different for AT vs. GC pairs. Their values are: Dn[AT] = 0.05185eV, αn[AT] =

4 Å
−1

, Dn[GC] = 1.5Dn[AT], αn[GC] = 1.5αn[AT], Gn = 3Dn, dn = 2/αn, and

bn = 1/(2α2
n). The other parameters are independent of BP type: k = 0.03eVÅ

−2
,

ρ = 3, δ = 0.8Å
−1

, γ = 1ps−1, and m=300 amu. The total equilibrium potential,

Eqs. (5.2) & (5.3), is plotted in Fig. 5.3 for the Tapia-Rojo [46] modified PBD model

(mPBD) for both AT pairs (blue) and GC pairs (red). Overall, the GC potential

is steeper, representing the stronger intra-pair bonds. Next, we explore some other

features of this potential.
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Figure 5.3: Total potential energy of AT and GC pairs at equilibrium. AT pair
(blue line) and GC pair (red line).
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The mPBD equilibrium potential for the nth base-pair of an AT sequence is

again shown in Fig. 5.4, where the Morse potential, stacking potential, and total

potential are now delineated. At equilibrium, yn = yn±1 = 0. The first diagram

depicts the potential when the neighboring BPs are at their equilibrium positions,

which is the potential that the nth BP feels due to the n+1 and n-1 BPs. The

horizontal bars at the bottom of the figure show the normalized separation of the

n+1 and n-1 BPs, which are zero in this case. The black-dashed lines represent

Taylor expansions about the minima of the potential. The frequency of oscillations

about these potential minima can readily be calculated (i.e., ω2 ≈ U ′′(ymin)/m). For

an AT pair at equilibrium, these frequencies are fa = 1.26 THz and fb = 1.28 THz.

For a GC pair at equilibrium (not shown), these frequencies are fa = 2.21 THz and

fb = 1.65 THz. The subscript a refers to the lower potential energy well, and b refers

to the higher well.

The movement of the neighboring BPs alters the potential landscape, e.g., as

depicted in Fig. 5.5 & 5.6, for the given displacements of the n+1 and n-1 base-pairs.

When the yn±1 BPs are both moved to the same large separation, i.e., Fig. 5.5, it

becomes energetically favorable for the nth BP to also separate. In a realistic system,

when both yn±1 BPs are moving continuously, Fig. 5.6 shows that the potential

experienced by the nth BP can be quite altered.
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Figure 5.4: Contributions to potential energy of nth AT pair (1). Solid blue line is
total potential, red-dashed line is stacking potential, and black-dashed line is Taylor
expansion about potential minima. The horizontal bars at the bottom of the figure
show the normalized separation of the n+1 and n-1 BPs.
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Figure 5.5: Contributions to potential energy of nth AT pair (2). Neighboring
pairs, yn±1 are at large separations and yn+1 = yn−1.
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Figure 5.6: Contributions to potential energy of nth AT pair (3). Neighboring
pairs, yn±1 are at different separations.
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5.3 Model Simulations

Within this formalism, we model thermal fluctuations using a Langevin forcing term,

η(t), and external driving using a sinusoidal field, F (t) = A sin(ωt). The Langevin

term represents a random force, drawn from a thermal Gaussian distribution with

variance 2mγkBT , as in [68]. The temperature was set to T = 290 K (∼room

temperature) for this study. The reason for this choice, in part, was to compare with

previous published numerical studies, specifically Ref. [59], who examined the effect

of THz driving on the melting transition of DNA at fixed driving frequency. The

authors showed, generally, that THz driving lowers the melting temperature.

Following our study at T = 290 K, we performed a limited study at T = 310 K

(human body temperature). The difficulty of performing simulations at this higher

temperature is that it is very close to the melting transition of DNA and, because of

this, the system takes longer to thermalize using our simulation scheme. Ultimately,

we think that our simulations at T = 290 K are generalizable, but we also discuss

our results at T = 310 K in Appendix E.

The full equation of motion that incorporates thermal fluctuations is shown below:

mÿn = −U ′(yn)−W ′(yn, yn+1)−W ′(yn, yn−1)−mγẏn − η(t)− F (t) (5.4)

The dynamics were numerically integrated using a Verlet-type algorithm [68] for

a sequence of 64 BPs, with periodic boundary conditions such that the last BP in

a sequence is “neighbors” with the first BP. We chose 64 BPs in order to follow a

procedure similar to what has been reported in literature (e.g., Ref. [48]), and did not

consider the effect of sequence length in our subsequent simulations. We did consider

other algorithms, for instance the Euler-Cromer [69], Runge-Kutta [70], BBK meth-

ods [71], etc. However, the chosen algorithm requires fewer intermediate calculations
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per iteration and is sufficiently accurate—moreover, the Verlet-type algorithms are

a frequent choice for molecular dynamics simulations [68].

We tested the algorithm by first calculating the thermodynamic energy of our

system at low temperatures, without driving. For low levels of thermal excitation,

the mPBD model behaves linearly and, thus, the calculated energy of the system

can be approximated by the equipartition theorem for a SHO: i.e, 1
2
kBT = 1

2
m 〈v2〉.

We verified that our system was behaving as expected in this limit.

In order to achieve valid results, it was necessary to allow the system to thermally

equilibrate before initiating driving. We determined the amount of time needed to

reach this equilibrium state by comparing the time-dependent average energy of

our system with known results. The average energy per time is defined as 〈u〉N =

1
N

∑
n

[U(yn) +W (yn, yn−1)], where the average has been taken over all BPs [46]. For a

homogeneous AT sequence, the time-averaged energy over all BPs has been reported

as 〈u〉NT ≈ 0.019eV for a temperature of 290K [46], where the subscripts N and T

represent the number of BPs and time. We calculated 〈u〉N as a function of time

for 10 different trials, averaging over all BPs and trials. The following plot, Fig. 5.7,

shows the time-series for a given trial, where the BP-index is on the vertical axis and

the color intensity represents the magnitude of the energy per BP. The lower plot

shows 〈u〉N as a function of time.

From Fig. 5.7, it is clear that ∼ 5000ps is adequate for thermalization, since

〈u〉N plateaus at this timescale. On the next plot, Fig. 5.8, the time-average of

the last 2000ps is plotted as a red point alongside the data from literature, showing

excellent agreement between our calculations and the reported time-averaged energy,

〈u〉NT ≈ 0.019eV. It is interesting to note the critical behavior of 〈u〉NT as a function

of temperature, shown in Fig. 5.8, which represents the so-called “melting transition.”

In this study, we remain below this critical limit.
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Figure 5.7: Average energy vs. simulation time. The simulation is run for 5000
ps and data are taken over 10 independent trials. Top: the time-series data for one
trial, where the color intensity is the energy per BP, and the index of the BPs is on
the vertical axis. Bottom: the time-series data of the average energy, averaged over
all 64 BPs and 10 trials.
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Figure 5.8: Average energy and melting transition. The red-dot represents our
calculation, averaged over the last 2000 ps of a 5000 ps simulation, and the blue-line
is from literature [46].
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Before exploring the entire parameter space of interest, we first examine the

effects of driving for certain values of amplitude and frequency. Specifically, we want

to understand the effects of driving for different durations of time.

We have established that 5000 ps is an adequate amount of time to prepare the

system in an equilibrium state, at a temperature of T = 290 K and, therefore, in

our simulations with driving, we prepare the system by simulating for 5000 ps before

driving is initiated. For each combination of driving amplitude and frequency that

we explore, we run 10 different trials using 10 different prepared states as initial

conditions. We use the same 10 different prepared states for initialization of all

points that we simulate with driving. We chose to drive the system for 10 ps and,

afterwards, we measured the average separation of BPs and used this as a proxy for

damage. The average was taken over the last full period of oscillation, based on the

driving frequency, and over all 64 BPs and 10 trials. The simulation duration, 10 ps,

is a representative time for pulsed THz radiation, but we also examine the behavior

of different pulse times and comment on the compounding effects of pulse duration,

amplitude, and frequency.

We discuss all of these results in the next section, but first show a typical simula-

tion run in Fig. 5.9, for a homogeneous AT sequence of 64 BPs, driven with A=200

pN and f=1.5 THz. The upper plot shows the time series for all BPs, where color

intensity represents amplitude of yn. The lower plot shows the time series for the

n = 0 BP, only. As time increases, the average amplitude of BPs also increases, seen

from the color-intensity. The system also has a characteristic oscillation frequency

equal to the driving frequency, seen in the time-series data.
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Figure 5.9: Time-series: GC sequence at A=200 pN and f=1.5 THz. Top: the
time-series data for one trial, where the color intensity is the separation per BP, and
the index of the BPs is on the vertical axis. Bottom: the time-series data for the
specific BP with index n = 0.
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5.4 Behavior of Homogeneous AT and GC Sequences

The objective of this section is to examine the behavior of homogeneous AT and GC

sequences for different driving amplitudes and frequencies and to determine where

damage occurs within this parameter-space. There are several metrics of “damage”

that could be used, for instance the time-averaged separation, the time-averaged

energy, or others, and when these quantities exceed a certain value, we can say

that the BPs have become damaged. As stated in the previous section, we will use

the average separation as a proxy for damage. Specifically, we identify a potentially

damaged BP as having a time-averaged separation greater than the separation length

associated with the turning point of the modified Morse potential, 〈yn〉 > 0.5125 Å

for AT pairs and 〈yn〉 > 0.338 Å for GC pairs, where the time average is over the last

full period of oscillation for a given driving frequency. This is an obvious condition

to use, since base-pairs that have a separation greater than these distances will

experience an energy penalty for “recombination,” i.e., they will have to overcome

a potential barrier to decrease their separation and, thus, are more likely to remain

separated. For each sequence, AT vs. GC, we also average over all 64 BPs and 10

trials.

The simulation was run separately on homogeneous AT and CG sequences, for all

points in the amplitude-frequency parameter space spanning A∈[100 pN, 400 pN] and

f∈[1 THz, 3.25 THz]. These values were chosen based partly on previous literature,

but mostly on exploratory analysis. For the points in this parameter space, the

average separation of all BPs within a sequence, over 10 trials, is shown in Fig. 5.10

& 5.11 for AT and CG sequences, respectively. The boundary for damage onset is

indicated by a solid white line in each figure.
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Figure 5.10: Average base-pair separation for homogeneous AT sequence. The
intensity scale represents the average base-pair separation and the line indicates the
boundary where the onset of damage occurs (average separation > 0.5125 Å).
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Figure 5.11: Average base-pair separation for homogeneous GC sequence. The
intensity scale represents the average base-pair separation and the line indicates the
boundary where the onset of damage occurs (average separation > 0.338 Å).
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From the above results, it is clear that the two sequences inhabit different regions

of parameter-space, although there is potentially some overlap at higher driving am-

plitudes (not investigated). Importantly, lower amplitudes result in higher frequency

selectivity, as is indicated by the narrowing regions of the diagram for both sequences.

For the homogeneous AT sequence, damage may occur at a minimum amplitude of

A ∼ 120 pN, at the frequency f ∼ 1.5 THZ, while for the CG sequence these minimal

parameters are A ∼ 210 pN and f ∼ 2.8 THz. We note that these frequencies roughly

correspond to the resonance frequencies of each system, which are fAT ≈ 1.26 THz

and fCG ≈ 2.21, as mentioned previously. Apparently, the frequency of damage onset

is blue-shifted relative to the natural linear resonance frequency of each system.

Now we consider how pulse duration might affect the above results, by examining

4 points in the parameter-space of Fig. 5.10 (for a homogeneous AT sequence): a)

A=100 pN, f=1.5 THz; b) A=150 pN, f=1.5 THz; c) A=150 pN, f=1 THz; and

d) A=100 pN, f=1 THz. For these points, we first initialize the system for 5000 ps

without driving, as previously described. Then we examine the effects of a continuous

pulse and let the system evolve for an additional 500 ps. For a given amplitude and

frequency, in each figure we depict a sample time-series and then the time-dependent

average separation over all BPs and 10 trials. The damage threshold is marked by a

horizontal red line.
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Figure 5.12: Continuous driving at A=100 pN and f=1.5 THz. Data for a homoge-
neous AT sequence. Top: the time-series data for one trial, where the color intensity
is the separation per BP, and the index of the BPs is on the vertical axis. Bottom:
the time-series data for the average BP separation, averaged over all 64 BPs and
10 trials. The horizontal red dashed line indicates the damage threshold (average
separation > 0.5125 Å).
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Figure 5.13: Continuous driving at A=150 pN and f=1.5 THz. Data for a homoge-
neous AT sequence. Top: the time-series data for one trial, where the color intensity
is the separation per BP, and the index of the BPs is on the vertical axis. Bottom:
the time-series data for the average BP separation, averaged over all 64 BPs and
10 trials. The horizontal red dashed line indicates the damage threshold (average
separation > 0.5125 Å).
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Figure 5.14: Continuous driving at A=150 pN and f=1 THz. Data for a homoge-
neous AT sequence. Top: the time-series data for one trial, where the color intensity
is the separation per BP, and the index of the BPs is on the vertical axis. Bottom:
the time-series data for the average BP separation, averaged over all 64 BPs and
10 trials. The horizontal red dashed line indicates the damage threshold (average
separation > 0.5125 Å).
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Figure 5.15: Continuous driving at A=100 pN and f=1 THz. Data for a homoge-
neous AT sequence. Top: the time-series data for one trial, where the color intensity
is the separation per BP, and the index of the BPs is on the vertical axis. Bottom:
the time-series data for the average BP separation, averaged over all 64 BPs and
10 trials. The horizontal red dashed line indicates the damage threshold (average
separation > 0.5125 Å).
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The results can be summarized as follows:

1. In the resonant region (f=1.5 THz), the average separation tends to increase

in time and then plateaus (Fig. 5.12 & 5.13).

2. The onset of the plateau is later for lower driving amplitude.

3. The increase in average separation over time is approximately linear for short

times (before the plateau region).

4. The rate of increase in the average separation is greater for higher driving

amplitudes (i.e., higher slope).

5. In the off-resonant region (f=1 THz), the system does not exceed the damage

threshold for either amplitude (Fig. 5.14 & 5.15).

From these observations, we make two conclusions. Firstly, for some values of

amplitude and frequency, the slope is approximately zero (e.g., Fig. 5.14 & 5.15),

meaning an increase in pulse duration will not lead to an increase in average sepa-

ration. Secondly, at a fixed frequency, the slope appears to increase with increasing

amplitude (e.g., Fig. 5.12 & 5.13)—i.e., this means that longer pulses can be used

to achieve damage at lower driving amplitudes. In the following plots, we show that

either increasing pulse duration at fixed amplitude or increasing amplitude at fixed

pulse duration can lead to damage within the resonant window. Specifically, for

f = 1.5 THz, we examine the effects of a 10 ps pulse compared to a pulse of 50 ps,

when driving at A = 100 pN (Fig. 5.16 & 5.17). The pulse duration is marked by a

vertical, black dashed line in these plots. We show that 10 ps is insufficient to cause

damage, while 50 ps ultimately achieves this objective. We also compare Fig. 5.16

to a 10 ps pulse at A = 150 pN (Fig. 5.18), which shows that the shorter pulse at

higher amplitude is also capable of achieving damage.
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Figure 5.16: 10ps pulse at A=100 pN and f=1.5 THz. Top: the time-series data
for one trial, where the color intensity is the separation per BP, and the index of
the BPs is on the vertical axis. Bottom: the time-series data for the average BP
separation, averaged over all 64 BPs and 10 trials. The horizontal red dashed line
indicates the damage threshold, and vertical black dashed line indicates the pulse
duration.

120



Figure 5.17: 50ps pulse at A=100 pN and f=1.5 THz. Top: the time-series data
for one trial, where the color intensity is the separation per BP, and the index of
the BPs is on the vertical axis. Bottom: the time-series data for the average BP
separation, averaged over all 64 BPs and 10 trials. The horizontal red dashed line
indicates the damage threshold, and vertical black dashed line indicates the pulse
duration.
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Figure 5.18: 10ps pulse at A=150 pN and f=1.5 THz. Top: the time-series data
for one trial, where the color intensity is the separation per BP, and the index of
the BPs is on the vertical axis. Bottom: the time-series data for the average BP
separation, averaged over all 64 BPs and 10 trials. The horizontal red dashed line
indicates the damage threshold, and vertical black dashed line indicates the pulse
duration.
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5.5 Behavior of Single Base-Pairs in Heterogeneous Sequences

Next, we studied the destructive behavior of single BPs of a different type, inserted

into otherwise homogeneous sequences. Specifically, we considered cases where one

alternate base-pair was substituted into a homogeneous sequence—i.e., one GC pair

within an AT sequence, and visa versa. We sought to determine whether substituted

BPs would exhibit damage within the regions of parameter-space that were identified

in the previous section, i.e., Fig. 5.10 & 5.11, and to what extent the presence

of surrounding BPs would affect the likelihood of damage to the substituted pair,

or themselves be damaged. Thus, we explored the extent to which individual BPs

can be selectively targeted. Furthermore, we endeavored to quantify whether the

occurrence of damage for a substituted BP differed significantly from the occurrence

of damage for BPs within a completely homogeneous sequence. In other words, does

the likelihood of damage, vis-á-vis the parameter-space identified in the previous

section, depend significantly on neighboring BPs?

For the following points, depicted in Fig. 5.19, we looked at the behavior of a

homogeneous AT sequence with GC substitution, and visa versa: a) A=400 pN, f=1.5

THz; b) A=400 pN, f=2.8 THz; c) A=200 pN, f=1.5 THz; and d) A=200 pN, f=2.8

THz. For each point, we prepared 30 thermal equilibrium trials, and used these for

initial states in subsequent runs with driving. When driving the system, we recorded

the time-averaged separation per base-pair over 30 independent simulations, after

driving for 10ps (as before), and created a normalized histogram of the occurrences

when a given base-pair exceeded its damage threshold. Thus, these histograms show

the normalized occurrence of damage for each base-pair (i.e., a value of 1 indicates

that a base-pair always exceeded its damage threshold for the simulations that were

considered).
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Figure 5.19: Damage threshold for homogeneous AT & GC sequences Parameter
space with threshold levels are indicated for a homogeneous AT sequence (dashed
line) and homogeneous GC sequence (dash-dotted line). Points represent parameter
values chosen for following values of frequency and amplitude: A=400 pN; f=1.5
THz and f=2.8 THz (filled squares); A=200 pN; f=1.5 THz and f=2.8 THz (open
squares).
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The first pair of histograms are shown in Fig. 5.20, below, and they represent

the point A=400 pN and f=1.5 THz. For the homogeneous AT sequence with one

GC substitution, the AT base-pairs are unsurprisingly always above threshold. For a

homogeneous GC sequence with one AT substitution, the AT base-pair is strongly af-

fected despite the nearest neighbor influences of the GC pairs, which are less affected

at this point in parameter space.

The inverse is shown in Fig. 5.21, for the point A=400 pN and f=2.8THz. In

this set of histograms, it is apparent that the GC base pair within the otherwise

homogeneous AT sequence is strongly affected whereas the neighboring AT base

pairs are less affected—this is expected, since this point represents driving at the

destructive resonance of GC base pairs. Again, the inverted sequence, i.e., GC

base-pairs with only one AT pair included, also shows the expected behavior—GC

base pairs are excited above threshold, while the AT pair is not. We further this

investigation by exploring points for a lower driving amplitude of A=200 pN.

The behavior of Fig. 5.22 is very similar to Fig. 5.20, although somewhat attenu-

ated. In other words, AT pairs are selectively driven above threshold relative to GC

pairs, but the number of times these base pairs exceed their threshold is less than

when they are driven at the amplitude A=400 pN. Finally, at the point A=200 pN

and f = 2.8 THz, Fig. 5.23, there appears to be little selectivity between AT and GC

pairs. In this region of parameter-space, neither base-pair type exhibits destructive

behavior, based on Fig. 5.10 & 5.11, and therefore we do not expect either base-pair

type to be strongly selected at this point. This is what is observed. Ultimately,

these results show strong selectivity at the single base-pair level, where it appears

that the qualitative behavior of single base-pairs under driven conditions depends

almost solely on the intrinsic properties of each base-pair type, and perhaps less

significantly on nearest neighbor effects.
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Figure 5.20: Homogeneous sequences with one BP substitution: A=400 pN and
f=1.5 THz. The histograms represent the normalized number of occurrences when a
given BP exceeds its damage threshold, where BP index is plotted on the horizontal
axis. Upper plot: AT sequence with GC substitution at site 32. Lower plot: GC
sequence with AT substitution at site 32.
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Figure 5.21: Homogeneous sequences with one BP substitution: A=400 pN and
f=2.8 THz. The histograms represent the normalized number of occurrences when a
given BP exceeds its damage threshold, where BP index is plotted on the horizontal
axis. Upper plot: AT sequence with GC substitution at site 32. Lower plot: GC
sequence with AT substitution at site 32.
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Figure 5.22: Homogeneous sequences with one BP substitution: A=200 pN and
f=1.5 THz. The histograms represent the normalized number of occurrences when a
given BP exceeds its damage threshold, where BP index is plotted on the horizontal
axis. Upper plot: AT sequence with GC substitution at site 32. Lower plot: GC
sequence with AT substitution at site 32.
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Figure 5.23: Homogeneous sequences with one BP substitution: A=200 pN and
f=2.8 THz. The histograms represent the normalized number of occurrences when a
given BP exceeds its damage threshold, where BP index is plotted on the horizontal
axis.Upper plot: AT sequence with GC substitution at site 32. Lower plot: GC
sequence with AT substitution at site 32.
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Now we quantify whether the normalized occurrence of damage for substituted

BPs is significantly different from that of BPs within a purely homogeneous sequence.

In this way, we examine if neighboring BPs of a different type have a statistically

significant effect on the occurrence of damage for a single BP. In this analysis, we

vary frequency continuously and examine the single-BP response for the amplitudes,

A=400 pN and A = 200 pN (Fig. 5.24 & 5.25). We plot the normalized occurrence

of damage for substituted BPs compared to the normalized occurrence of damage

for BPs within homogeneous sequences. The normalized occurrence of damage vs.

frequency for a GC-substituted BP is shown in red in each figure, and the normalized

occurrence of damage vs. frequency for an AT-substituted BP is shown in blue.

For instance, the red solid line in the upper plot of Fig. 5.24 shows the normalized

occurrence of damage of a GC pair inserted into an AT sequence at A=400 pN, and

the specific frequency f=2.8 THz in this plot corresponds to the data represented in

the upper plot of Fig. 5.21. The blue solid line in the lower plot of Fig. 5.24 shows

the normalized occurrence of damage of an AT pair inserted into a GC sequence at

A=400 pN, and the specific frequency f=1.5 THz in this plot corresponds to the data

represented in the lower plot of Fig. 5.20. Fig. 5.25 is similarly related to Figs. 5.22 &

5.23. The normalized occurrence of damage for BPs within homogeneous sequences

are shown as dashed lines in these figures. Certain points are highlighted with open

markers, which we discuss next.
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Figure 5.24: Heterogeneous vs. homogeneous sequences: A=400 pN. For driving at
A = 400 pN, normalized occurrence of BP damage is compared between homogeneous
sequences (dashed line) and heterogeneous sequences with one BP substitution (solid
line). Upper plot: AT sequence with one GC substitution. Lower plot: GC sequence
with one AT substitution. Open circles represent points where the occurrence of
damage for a substituted BP (solid line) is statistically significantly different from
the occurrence of damage for a BP of the same type in a homogeneous sequence.
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Figure 5.25: Heterogeneous vs. homogeneous sequences: A=200 pN. For driving at
A = 200 pN, normalized occurrence of BP damage is compared between homogeneous
sequences (dashed line) and heterogeneous sequences with one BP substitution (solid
line). Upper plot: AT sequence with one GC substitution. Lower plot: GC sequence
with one AT substitution. Open circles represent points where the occurrence of
damage for a substituted BP (solid line) is statistically significantly different from
the occurrence of damage for a BP of the same type in a homogeneous sequence.
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The open circles in these plots indicate points for which the occurrence of dam-

age for a substituted BP is statistically significantly different from the occurrence of

damage for a BP within a homogeneous sequence, at the p<0.05 level, based on a two-

sample Chi-Square test (using the Python function scipy.stats.chi2 contingency).This

function measures whether the number of “successes” (in this case, the occurrence

of damage) is statistically significantly different between two samples. Ultimately,

these open circles show that there are some frequency values for which the normal-

ized occurrence of damage is different for a configuration in which a single BP is

surrounded by different BP-types, compared to a configuration of similar BP-types

(i.e., a homogeneous sequence).

Additionally, we observe that the damage spectra for substituted BPs appear to

be shifted to higher frequency, compared to that of homogeneous BPs. This makes

sense physically, since one can imagine that any BPs that are not driven above their

breaking threshold would provide a greater restoring force for a substituted BP,

thereby increasing the resonance frequency of that pair. Ultimately, since the dam-

age spectra of different sequences are statically significantly different, this suggests

that selectivity could be possible at the level of distinct sequences. We investigate

this notion further in the next section.

5.6 Comparison of Different Heterogeneous Sequences

In this final study, we examine damage in two different heterogeneous sequences, each

containing an equal number of AT and GC pairs. First we consider a sequence in

which the BPs are evenly ordered, with AT-GC pairs occurring in an “every-other”

sequence. Then we consider a sequence in which BPs are randomly ordered. As in

the last section, we plot histograms of normalized damage occurrence for the param-
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eters A=400 pN and f = 1.5 THz (this time performing 10 independent simulations,

rather than 30). We then plot the normalized damage occurrence over a range of

frequencies and, again, perform a two-sample Chi-Square test to determine whether

the occurrence of damage in heterogeneous sequences is statistically significantly

different from damage in homogeneous sequences.

The results are shown in the following figures, first for an evenly ordered se-

quence and then for a randomly ordered sequence. As in the previous section, we

observe that substituted BPs are selectively driven in regions of parameter space that

roughly correspond to the regions identified in Fig. 5.19. It is also clear, from the

open circles in Fig. 5.27 & 5.29, that the frequency-dependence of the occurrence of

damage in both heterogeneous sequences is statistically significantly different from

the occurrence of damage in homogeneous sequences.

Finally, we directly compare the occurrence of damage for evenly-ordered se-

quences to that of randomly-ordered sequences, for a range of frequencies. The

result, in Fig. 5.30, shows that there is a statistically significant difference between

the occurrence of damage in these two sequences, for some frequencies. This very

interesting result demonstrates that two sequences with the same number of AT and

GC pairs can be distinguished based solely on the ordering of BPs.
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Figure 5.26: Heterogeneous sequence with evenly ordered BP substitution: A=400
pN and f=1.5 THz. The histograms represent the normalized number of occurrences
when a given BP exceeds its damage threshold, where BP index is plotted on the
horizontal axis. The sequence of 64 BPs contains 32 AT and GC pairs, distributed
evenly.

135



Figure 5.27: Heterogeneous-even vs. homogeneous sequences: A=400 pN. For driv-
ing at A = 400 pN, normalized occurrence of BP damage is compared between homo-
geneous sequences (dashed line) and heterogeneous sequences with evenly ordered,
half-and-half BP substitution (solid line). Upper plot: damage of GC pairs . Lower
plot: damage of AT pairs. Open circles represent points where the occurrence of
damage for BPs in a heterogeneous sequence (solid line) is statistically significantly
different from the occurrence of damage for BPs of the same type in a homogeneous
sequence.
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Figure 5.28: Heterogeneous sequence with randomly ordered BP substitution:
A=400 pN and f=1.5 THz. The histograms represent the normalized number of
occurrences when a given BP exceeds its damage threshold, where BP index is plot-
ted on the horizontal axis. The sequence of 64 BPs contains 32 AT and GC pairs,
distributed randomly.
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Figure 5.29: Heterogeneous-random vs. homogeneous sequences: A=400 pN. For
driving at A = 400 pN, normalized occurrence of BP damage is compared between
homogeneous sequences (dashed line) and heterogeneous sequences with randomly
ordered, half-and-half BP substitution (solid line). Upper plot: damage of GC pairs .
Lower plot: damage of AT pairs. Open circles represent points where the occurrence
of damage for BPs in a heterogeneous sequence (solid line) is statistically significantly
different from the occurrence of damage for BPs of the same type in a homogeneous
sequence.
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Figure 5.30: Heterogeneous-random vs. heterogeneous-even: A=400 pN. For driv-
ing at A = 400 pN, normalized occurrence of BP damage is compared between het-
erogeneous sequences with randomly ordered, half-and-half BP substitution (dashed
line) and heterogeneous sequences with evenly ordered, half-and-half BP substitu-
tion (solid line). Upper plot: damage of GC pairs . Lower plot: damage of AT
pairs. Open circles represent points where the occurrence of damage for BPs in ran-
domly ordered sequences is statistically significantly different from the occurrence of
damage for BPs of the same type in evenly ordered sequences.
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5.7 Discussion and Caveats

We have studied the damage of DNA sequences caused by driving with radiation

at THz frequencies. We have demonstrated that damage, defined by a threshold

of base-pair separation, can be induced for particular amplitudes and frequencies

of radiation, and that AT and GC base-pairs exhibit strong responses in entirely

different regions of parameter space. Moreover, their distinct responses enable base-

pairs of different types to be selectively targeted. Specifically, we demonstrated

that BP substitutions within homogeneous sequences can be driven to the point of

damage, without the proportionate damage of the rest of the sequence, for certain

amplitudes and frequencies. Additionally, we determined that neighboring BPs had

statistically significant effects on the occurrence of damage for substituted BPs, in

certain regions of parameter-space. Finally, we showed that selectivity is possible at

the level of distinct sequences, by examining the effect of BP ordering on damage

occurrence in heterogeneous sequences with the same number of AT and GC pairs.

However, there is an underlying problem, which we intend to address, regard-

ing the use of THz radiation for in vivo targeting. The penetration depth of THz

radiation in the body is on the order of hundreds of microns ( 0.1mm) [72], which

may only be useful for therapies that are very superficial. This is mainly due to the

absorptive properties of water, as depicted in Fig. 5.31 [73, 74], where THz radiation

falls within the range λ ∼100 µm - 1 mm, as mentioned previously. Water is very

highly absorptive and, consequently, this radiation does not penetrate far. For a

more thorough review of the absorptive behavior of human tissues in the THz range,

see Refs. [72, 75].

We note, however, that although the penetration depth in some human tissues

can be greater depending on their content [76], and that deeper penetration depths

can be also achieved using pulsed THz radiation [77], ultimately it would be more
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desirable to use higher frequencies because they are even more deeply penetrating.

We expand upon this point in the next section, where we propose a novel scheme

that could enable the local generation of THz radiation within the body using a more

penetrative, high-frequency signal, thus circumventing the bodies natural opacity.

Figure 5.31: Absorption spectrum of water. Figure adapted from [73], who used
spectral data from [74]. There is significant absorption in the THz range due to the
body’s water content.
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CHAPTER 6

Difference Frequency Generation for Biological Applications

In the previous chapter, we investigated the strong nonlinear response of DNA to

THz radiation and demonstrated that damage can be selectively induced at the

individual base-pair level. However, we also emphasized that the body is opaque

to THz radiation, thus inhibiting the effectiveness of targeted therapies utilizing

this approach. In this chapter, we propose a novel way to allow THz signals to

infiltrate the body—through the local generation of THz frequencies at the difference

of two higher frequencies. These high frequencies (e.g., NIR) could be tailored to the

transparent window of the human body, enabling greater penetration depth. Then,

a local, microscopic constituent could demodulate the signal, producing radiation at

the difference of the two frequencies.

This chapter is dedicated, first, to the detailed exposition of the above scheme,

clarifying the underlying concept with supporting calculations. Then, the derivation

of difference-frequency generation (DFG) is thoroughly presented. DFG is a nonlin-

ear phenomenon and, thus, is quite relevant to the major investigation of this thesis.

Moreover, in the final chapter we propose that plasmonic particles could be used as

promoters of DFG. Ultimately, in that chapter, we aim to discuss the phenomenon

of DFG by addressing nonlinear response models of plasmonic systems.

BD2db
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6.1 Enhanced Penetration Depth via DFG

As outlined previously, the penetration depth of THz radiation in the body is pro-

hibitively small for useful therapies. Although absorption is significant within the

THz range, there exists a NIR window where absorption is very low. Specifically, in

a range of NIR wavelengths from about 600nm - 1400nm [78, 79], the penetration

depth of radiation significantly increases. For instance, Ref. [80] presents an exhaus-

tive study of penetration depths in the 600nm-800nm range, showing typical values

on the order of millimeter length scales. At longer wavelengths the penetration depth

increases even more, for instance, see the minimum in the absorbance spectrum of

biological constituents, shown in Fig. 6.1 [78]. Thus, NIR frequencies represent an

ideal range for “carrier” signals into the human body.

Figure 6.1: Absorption spectrum of human body. From Ref. [78]. At short wave-
lengths, melanin dominates absorbant properties, while at longer wavelengths water
dominates.
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The objective of our study is to use a local, microscopic constituent to demodulate

the signal from a high-frequency “carrier.” Demodulation will occur through the

“subtraction” of the carrier frequencies to generate a new signal with the frequency

of their difference—thus, if the carrier frequencies are detuned to a THz frequency,

the local demodulation will create a THz signal. Again, we will discuss the realization

of this demodulation mechanism later.

By “carrier,” we specifically mean an amplitude-modulated (AM) signal:

S(t) = A cos(ωmt) cos(ωct) (6.1)

where the high-frequency waveform with frequency ωc is modulated by a lower fre-

quency, ωm, such that ωm < ωc. This AM signal can be expressed as the sum of two

higher-frequency signals:

S(t) =
A

2
[cos
(
ω+

0 t
)

+ cos
(
ω−0 t

)
] (6.2)

where ω±0 = ωc ± ωm. These high frequencies could carry information about the

low-frequency component into the body, if they occur within the NIR window of low

absorption.

The other part of this scheme involves the local “demodulation” of the AM signal

to produce a low-frequency (THz) component. The specific “demodulation” to which

we are referring is called difference-frequency generation (DFG), wherein a signal is

generated at the difference of two input frequencies through a nonlinear process.

DFG is produced by the second-order dipole moment of a particle. Recall that the

first-order dipole moment is given by p(1)(t) = α(1)E(t), where α(1) is the linear

polarizability of the particle and E(t) is the incident field. The second-order dipole

moment is given by p(2)(t) = α(2)E2(t), where α(2) is the second-order, nonlinear
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polarizability [15]. Note, the response is proportional to the field squared.

Since DFG is proportional to the square of the incident field, let’s see how it

arises from our proposed AM signal (a similar derivation is done for an FM signal in

the Appendix F). Using the form of Eq. (6.2), the square of the incident signal is:

S2(t) =

(
A

2

)2 [
1 +

1

2
cos
(
2ω+

0 t
)

+
1

2
cos
(
2ω−0 t

)
+ cos

(
[ω+

0 + ω−0 ]t
)

+ cos
(
[ω+

0 − ω−0 ]t
)] (6.3)

There are 5 terms: 1) the DC term, 2) the second harmonic of ω+
0 , 3) the second

harmonic of ω−0 , 4) the sum-frequency term, and 5) the difference-frequency term.

Note the difference-frequency term occurs at twice the modulation frequency, i.e.,

|ω+
0 − ω−0 | = 2ωm.

Through the appropriate choice of carrier/modulation frequencies in an AM sig-

nal, one can generate DFG at any desired frequency. For instance, our desired

DFG frequency is ωTHz, which means that the modulation frequency should be

ωm = ωTHz/2. Thus, we can choose ωc such that the frequencies ω±0 both fall

within the NIR window, which would enable maximal penetration of the original

AM signal. This is because the absorption from an AM signal can be decomposed

into absorption from each frequency component, i.e., S(t) = S+(t) + S−(t), where

S±(t) = A
2

cos(ω±t).

The figure below, Fig. 6.2, illustrates this scheme and shows the penetration

depth of THz compared to NIR radiation (wavelength and penetration depth not to

scale). An AM signal, composed of two high frequency components, will penetrate

significantly farther than a lower frequency, THz signal. A local particle can act

as a demodulator, creating a second-order signal at the difference frequency of the

incident field.
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Figure 6.2: Penetration depth schematic. A long wavelength, THz signal penetrates
less far than a short wavelength, NIR signal. A local plasmonic nanoparticle could
demodulate two high frequency signals to produce a long wavelength signal at their
difference.

Now we consider the possibility of choosing ω±0 such that ∆ω0 = ωTHz, where

∆ω0 ≡ |ω+
0 − ω−0 |. Specifically, we examine ∆ω0 = ωAT and ∆ω0 = ωGC, where ωAT

and ωGC are the destructive resonance frequencies for AT and GC sequences, found

in the previous chapter (i.e, fAT = 1.5 THz and fGC = 2.8 THz). The question

that we want to answer is “what is the total absorption of a signal composed of

two frequencies, f1 and f2 within the range of the NIR window, for the cases where

|f1−f2| = fAT and |f1−f2| = fGC?” Thus, we examine the total, relative absorption

of this signal in the parameter-space where f1, f2 ∈ [200 THz, 500 THz].

Fig. 6.3 shows this parameter space, where the two marked lines indicate the

conditions when |f1− f2| = 1.5 THz and 2.8 THz (squares and circles, respectively).

The color intensity map gives the total relative absorbance of the carrier signal

(in arbitrary units)—that is, the sum of the absorbance of the NIR carrier signals,

S1(t) = A
2

cos(2πf1t) and S2(t) = A
2

cos(2πf2t), based on the spectral absorbance

given by Fig. 6.1. Note, only the half-parameter space is shown, since obviously the

plot is symmetric about the line f1 = f2. The boxed region in Fig. 6.3 indicates the

frequency region from ∼ 265− 285 THz, and Fig. 6.4 highlights this region.
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Figure 6.3: DFG parameter space (1). Wavelength pairs are shown, which lead
to DFG at 1.5 THz (squares) and 2.8 THz (circles). Color intensity represents the
total absorbance of a signal composed of both wavelengths, from Fig. 6.1 [15]. The
dashed box represents the range shown in Fig. 6.4.
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Figure 6.4: DFG parameter space(2). A similar plot to Fig. 6.3, with a narrower
range of frequencies.
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The above figure illustrates that it is possible to achieve DFG at either 1.5 THz

or 2.8 THz with minimized absorbance. For instance, a frequency combination of

f1 = 275 THz and f2 = 272.2 THz will yield a difference frequency of 2.8 THz. In

terms of wavelengths, these correspond to λNIR
1 ≈ 1.090µm and λNIR

2 ≈ 1.101µm. For

an AM signal, this requires ωm = 8.8 THz and ωc = 1719.4 THz, where ωm = ωTHz/2

and ωc = (ω1 + ω2)/2. Clearly, it is quite feasible to find combinations of carrier fre-

quencies within the minimum of the NIR window that will yield DFG at the requisite

THz frequencies for DNA destruction. Ultimately, we conclude that the scheme, as

described thus far, is not prohibited based on the most basic physical analysis.

6.2 Derivation of Classical Miller’s Rule for DFG

Moving forward, we want to understand not only how DFG originates, but how

to optimize it for maximal efficacy. This requires knowledge of the second-order

response of the system, which is the object that we wish to optimize. As stated in

the previous section, the source of DFG is the second-order dipole moment, given

by:

p(2)(ω1 − ω2) = 2α(2)(ω1 − ω2)E2
0(ω1, ω2) (6.4)

where E0(ω1, ω2) is the incident field and α(2)(ω1 − ω2) is the second-order polar-

izability of the system at the difference-frequency. Therefore, in order to optimize

DFG, one should optimize α
(2)
DFG ≡ α(2)(ω1 − ω2).

We now proceed to show how α
(2)
DFG will arise from nonlinearity in a system,

using the classical anharmonic oscillator as an example. Moreover, we show how

α
(2)
DFG depends only on the linear response of the system, α(1), in the perturbative
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limit. Thus, we suggest that α
(2)
DFG might be most readily optimized through knowl-

edge of α(1). This strategy is particularly important for our ultimate goal, which is

to optimize DFG from a local plasmonic particle. The second-order response of a

plasmonic particle may be difficult to simulate in FDTD solvers—moreover, it may

be equally difficult to ascertain the origin of the underlying response, and the route

to optimization, from simulated results. For instance, having calculated α
(2)
DFG in an

FDTD solver, it is perhaps not clear, a priori, how to alter the system to enhance

DFG effects. For this reason, it would be beneficial to utilize the relation between a

system’s known linear response and its unknown second-order response, in order to

aid in the optimization process. Since it is likely that α(1) is better understood and

easier to simulate, only a link between α(1) and α
(2)
DFG is necessary.

As a model system, we consider a simple, anharmonic oscillator that is driven

and damped. The model consists of a charged particle, bound in an anharmonic

potential and coupled to the driving electric field. The equation of motion is:

mẍ(t) + γmẋ(t) +mω2
0x(t) +max2(t) = −eE(t) (6.5)

where m and e are the mass and charge of the particle, γ is a damping paramter, ω0

is the resonant frequency of the system, and a is the strength of the nonlinearity of

the system. The dynamical variable x(t) is the position of the oscillator.

There exists and an analytically tractable solution for x(t) when a = 0, which

is the linear regime of behavior that we initially introduced in Chapter 1. Let’s

consider this solution by expressing the driving field as a Fourier series, with driving

amplitude E(ωj) and frequency ω, where the summation is now over all positive
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frequencies:

E(t) =
∑
j

E(ωj) exp [−iωjt] + c.c. (6.6)

Expressing the solution as a Fourier series, with Fourier amplitudes x(ωj), we have:

x(t) =
∑
j

x(ωj) exp [−iωjt] + c.c. (6.7)

Then the equation of motion takes the following form in Fourier space, where the fre-

quencies are separable since each part of the equation has a common term exp [−iωjt]:

−ω2
jx(ωj)− iωjγx(ωj) + ω2

0x(ωj) = − e

m
E(ωj) (6.8)

and the solution is:

x(ωj) = − e

m

E(ωj)(
ω2

0 − ω2
j − iγωj

) (6.9)

Dropping the “j” subscripts, we wish to know the response of the system, α(ω),

which is related to x(ω) through the dipole moment [81]:

p(ω) = α(ω)E(ω) = −ex(ω) (6.10)

The above identities, Eq. (6.9) & (6.10), allow us to solve for α(ω):

α(ω) =
e2/m

(ω2
0 − ω2 − iγω)

(6.11)

Note, for a system composed of N non-interacting dipoles, the polarization is equal

to the dipole moment per volume, times N : i.e., P (ω) = np(ω), where n = N/V
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is the number density. This is related to the susceptibility through the relation

P (ω) = ε0χ(ω)E(ω), such that χ(ω) = ω2
p/
(
ω2

0 − ω2
j − iγωj

)
, where we have used

the definition of the plasma frequency, ω2
p = ne2/mε0.

Now that we have established the analytical expression for the linear response,

α(1)(ω) given by Eq. (6.11), we can progress towards deriving the higher-order re-

sponse. To treat the nonlinearity of the system in the weakly nonlinear regime, we

perturbatively expand the equation of motion in orders of the nonlinearity [15]. The

driving force and the amplitude response of the system acquire the following forms:

E(t)→ λE(t) (6.12)

x(t)→ λx(1)(t) + λ2x(2)(t) + · · · (6.13)

Next, we write corresponding equations of motion to orders of λ. To order O(λ):

mẍ(1)(t) + γmẋ(1)(t) +mω2
0x

(1)(t) = −eE(t) (6.14)

To order O(λ2):

mẍ(2)(t) + γmẋ(2)(t) +mω2
0x

(2)(t) +ma
[
x(1)(t)

]2
= 0 (6.15)

Note, using this perturbative expansion, we can rearrange the previous equation to

interpret the first order term as being the “source” of the driving to second-order,

i.e., mẍ(2)(t) + γmẋ(2)(t) +mω2
0x

(2)(t) = −ma
[
x(1)(t)

]2
. The first and second order

equations are coupled, and x(2)(t) can be solved with knowledge of x(1)(t). Again,
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this can be done in Fourier space. Solving for
[
x(1)(t)

]2
,

[
x(1)(t)

]2
=

{∑
j

x(1)(ωj) exp [−iωjt] + c.c

}

×

{∑
k

x(1)(ωk) exp [−iωkt] + c.c

}

=
∑
j

∑
k

[
x(1)(ωj)x

(1)(ωk) exp [−i(ωj + ωk)t] + c.c.

+ x(1)(ωj)x
(1)(−ωk) exp [−i(ωj − ωk)t] + c.c.

]
(6.16)

We split the sum into terms where j = k and j 6= k:

[
x(1)(t)

]2
=2
∑
j

x(1)(ωj)x
(1)(−ωj)

+
∑
j

[
x(1)(ωj)

]2
exp [−i2ωjt] + c.c.

+ 2
∑
j

∑
k,(j<k)

x(1)(ωj)x
(1)(ωk) exp [−i(ωj + ωk)t] + c.c.

+ 2
∑
j

∑
k,(j<k)

x(1)(ωj)x
(1)(−ωk) exp [−i(ωj − ωk)t] + c.c.

(6.17)

Now, the second-order response has the following Fourier series expansion:

x(2)(t) =
∑
l

x(2)(ωl) exp [−iωlt] + c.c. (6.18)

Since there must be a correspondence between the frequency components of
[
x(1)(t)

]2
and x(2)(t), we see from Eq. (6.17) that there are 4 types of second-order response:

(1) the DC (zero-frequency) response, x(2)(0); (2) the second-harmonic response,

x(2)(2ωj); (3) the sum-frequency response, x(2)(ωj + ωk); and (4) the difference-

frequency response, x(2)(ωj − ωk). It is now straightforward to solve for any of these

second-order responses by expressing the coupled equations of motion in Fourier
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space. Specifically, the equation of motion for the difference-frequency response is

shown below, and subsequently solved for. We require ωl = ωj − ωk in order to

match the DFG term in Eq. (6.17). Thus, x(2)(ωl) = x(2)(ωj − ωk). Further, we

define x
(2)
DFG ≡ x(2)(ωj − ωk) to simplify notation.

−(ωj − ωk)2x
(2)
DFG − i(ωj − ωk)γx

(2)
DFG + ω2

0x
(2)
DFG = −2ax(1)(ωj)x

(1)(−ωk) (6.19)

x
(2)
DFG = −2am

eE0

x(1)(ωj − ωk)x(1)(ωj)x
(1)(−ωk) (6.20)

The general form, x(1)(ω) = − e
m
E(ω)/ (ω2

0 − ω2 − iγω), of the first-order response

has been used and we assume that the incident field amplitude is frequency inde-

pendent (i.e., E(ω) = E0). Using the second-order relations for the polarizability,

p
(2)
DFG = 2α

(2)
DFGE

2
0 = −ex(2)

DFG, we can solve for the second-order response:

α
(2)
DFG = aκα(1)(ω1 − ω2)α(1)(ω1)α(1)(−ω2) (6.21)

where κ = m/e3. Note, α
(2)
DFG and χ

(2)
DFG are related by a factor of (ε0/n)2 such that

χ
(2)
DFG = aκ′χ(1)(ω1 − ω2)χ(1)(ω1)χ(1)(−ω2), where κ′ = κ(ε0/n)2 = (e/m)ω−4

p .

The relation between the linear response and the nonlinear response is known

as Miller’s rule [15]. In the most general terms, Miller’s rule states that the second

order response can be expressed in terms of the first order response and the propor-

tionality is related to the strength of the nonlinearity. Importantly, Miller’s rule is

also extremely useful when knowledge of the first order response is already available.

In the next section, we further our investigation of the classical anharmonic oscil-

lator by simulating a hypothetical system. We use the simulated linear response of

this system to “predict” the second-order response using Miller’s rule, and compare

with results from full simulation of the second-order response. This serves as the

simplest “proof of concept” that first-order simulation results can be used to gain
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understanding of second-order phenomena. Moreover, we argue that this is a useful

route towards the optimization of real systems.

6.3 Simulation of DFG from Classical Anharmonic Oscillator

For a given system, we suggest that it is possible to make tailored adjustments to the

linear response in order to optimize the DFG response, without ever having to directly

simulate the second order response of the system. To investigate this, we simulate

DFG from a classical anharmonic oscillator and retrieve the full response of the

system to all orders, without approximations. We then use Miller’s rule, along with

the simulated first-order data, to calculate the second-order response of the system

and compare with the simulated second-order response. Thus, we demonstrate the

possibility of obtaining the second-order response through knowledge of the first-

order response only.

Our equation of motion has the same form of Eq. (6.5) of the previous section,

namely:

ẍ(t) + γẋ(t) + ω2
0x(t) + ax2(t) = F (t) (6.22)

We consider a driving field, F (t) = B
2

[cos(ω1t) + cos(ω2t)], that explicitly has two

frequency components, which can be expressed as an AM signal with amplitude B.

We use the following parameter values: γ = 0.1 rad/s, ω0 = 4 rad/s, a = 2m3/s2,

and B = 0.2m/s2. We simulate Eq. (6.22) in the time domain, using the two driving

frequencies ω1 = 4 rad/s and ω2 = 3.5 rad/s. We again use the Verlet algorithm to

numerically integrate the equation of motion, as previously detailed. The potential

experienced by the particle, and the time series data, are depicted in Fig. 6.5—the
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potential exhibits a subtle nonlinearity. The Fourier transform of the time series is

also shown on a log-scale, where the amplitude of the Fourier transform, AFT , is

related to the root-mean-square (rms) amplitude of the time series in the following

way: AFT = x2
rms(ω), where xrms(ω) = 1√

2
|x(ω)|.

There are 6 peaks that can be seen in the FT spectrum of Fig. 6.5, labeled

alphabetically: (a) the DFG peak, occuring at ω1 − ω2 = 0.5 rad/s; (b) the linear

response of the system at the input driving frequency ω2 = 3.5 rad/s; (c) the linear

response of the system at the input driving frequency ω1 = 4 rad/s; (d) the second-

harmonic frequency of ω2, which occurs at 2ω2 = 7 rad/s; (e) the sum-frequency

component, occurring at the frequency ω1 + ω2 = 7.5 rad/s; and (f) the second-

harmonic frequency of ω1, which occurs at 2ω1 = 8 rad/s.
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Figure 6.5: Time series and Fourier transform of anharmonic oscillator. Upper:
anharmonic potential. Middle: time series of system response. Lower: Fourier
transform of time series data.
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The previous figure, Fig. 6.5, represents the response of the system at two fixed

frequencies. We now look at the response when one input frequency is varied. For

instance, Fig. 6.6 shows this response for the fixed frequency ω2 = 3.5 rad/s, while

varying ω1, where the vertical axis is the Fourier frequency and the color intensity

represents the Fourier amplitude. Thus, the Fourier spectrum of Fig. 6.5 is repre-

sented as a vertical slice in Fig. 6.6 at ω1 = 4 rad/s (not shown).

The main diagonal of Fig. 6.6 represents the linear response of the system as the

driving frequency ω1 is swept. There are other first-order response features in this

plot, for instance the constant response feature at ω = 3.5 rad/s corresponds to linear

response of the system at the fixed driving frequency ω2 = 3.5 rad/s. Additionally,

some artifacts of the simulation process due to the finiteness of the data set are

present.
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Figure 6.6: Full response of anharmonic oscillator to two driving frequencies. For
one fixed frequency, ω2 = 3.5 rad/s, the other driving frequency, ω1, is swept. The
Fourier transform of the time series data is plotted on the y-axis.
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Next, we examine the second-order features of Fig. 6.6. The second-order features

can be better visualized when the first order response is subtracted from the plot of

the full response. Thus, we simulated the system when the nonlinearity was set to

zero and then we subtracted this data from the full nonlinear response, leaving only

higher order terms (predominantly second order terms) in Fig. 6.7. The location of

several second order features are indicated in Fig. 6.8: the second-harmonic response

of ω1 (blue line), the second-harmonic response of ω2 (yellow line), the sum-frequency

response of ω1 and ω2 (green line), and the difference-frequency response of ω1 and ω2

(red line). We are interested in the DFG response, so we will examine the amplitude

along the red line in what follows:
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Figure 6.7: Second-order response of anharmonic oscillator (1). The data from a
simulated harmonic oscillator are subtracted from the nonlinear anharmonic oscilla-
tor, to reveal the higher order response only.
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Figure 6.8: Second-order response of anharmonic oscillator (2). The data from
a simulated harmonic oscillator are subtracted from the nonlinear anharmonic os-
cillator, to reveal the higher order response only. Colored lines represent different
second-order response features: the second-harmonic response of ω1 (blue line), the
second-harmonic response of ω2 (yellow line), the sum-frequency response of ω1 and
ω2 (green line), and the difference-frequency response of ω1 and ω2 (red line).
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Now, we wish to compare the simulated DFG amplitude with the calculation using

Miller’s rule, Eq. (6.20): |x(2)
DFG| = 2a

(B/2)
|x(1)(ω1 − ω2)x(1)(ω1)x(1)(−ω2)|. Note that

the first-order response in this formula represents the amplitude of the system when

driven at a single frequency—i.e., x(1)(ω1) is a solution to the equation of motion,

Eq. (6.22), for F (t) = B
2

cos(ω1t). Thus, the first order response at frequency ω1 is:

x(1)(ω1) =
B/2

(ω2
0 − ω2

1 − iγω1)
(6.23)

To obtain the first-order response from simulation, we simulate driving for F (t) =

B
2

cos(ωt) and plot the spectral response diagram, as in Fig. 6.6. Then, the diagonal

of this diagram, Fig. 6.9, represents the linear response, which we plot in Fig. 6.10

& 6.11, along with the above analytic formula, which matches the simulation, as

expected.

We then plot the simulated DFG response from Fig. 6.7 along with the results

given by Miller’s rule, in both analytic and simulated form. This is shown in Fig. 6.12

& 6.13. The three results—second-order simulation, analytic Miller’s rule, and sim-

ulated Miller’s rule—agree extremely well, as expected.
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Figure 6.9: Analytic vs. simulated linear response of anharmonic oscillator. The
blue data points are from simulation, and the black solid line is a fit to those points,
based on the analytic formula.
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Figure 6.10: Comparison of simulated first-order response with analytic formula
(1). The blue data points are from simulation, and the black solid line is a fit to
those points, based on the analytic formula related to Eq. (6.23).
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Figure 6.11: Comparison of simulated first-order response with analytic formula
(2). The blue data points are from simulation, and the black solid line is a fit to
those points, based on the analytic formula related to Eq. (6.23).
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Figure 6.12: Comparison of simulated DFG response and Miller’s rule (1). Red
line is simulated second-order data (i.e., the red line from Fig. 6.8), black line is
Miller’s rule using first-order simulated data (i.e., from Fig. 6.10), and black solid
line is Miller’s rule using analytic formula Eq. (6.23).
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Figure 6.13: Comparison of simulated DFG response and Miller’s rule (2). See
previous figure for legend information.
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There are 2 main features in the DFG response of Fig. 6.12, which can be under-

stood by examining Miller’s rule. The most prominent feature occurs when one of

the driving frequencies is on-resonance with the system, in this case when ω1 = ω0 (4

rad/s). The second feature occurs when the difference-frequency is on-resonance with

the system, in this case when ω1 − ω2 = ω0, i.e., when ω1 = 7.5 rad/s. Miller’s rule

not only yields the qualitative features of the second-order response, it also gives the

amplitude. We note that the DFG amplitudes (simulated vs. Miller’s rule) do not

match exactly, which we attribute to non-ideality introduced by the Fourier trans-

form of discrete data. The analytic amplitude fits the envelope of the simulated data.

We emphasize that we have used the actual simulated first-order response data, thus

demonstrating that analytic formulae for the dynamical response of the system need

not be known, only the Miller relation that connects first- and second-order terms.

Assuming x(1) can be measured or calculated, the only term that must be known is

“a,” the magnitude of the nonlinearity. We note that it is also possible to determine

“a” from measurement of the first-order response as driving amplitude is varied (not

presented here). This would then represent a completely first-order calculation of

second-order effects.

We have established that Miller’s rule provides a quantitative way to calculate the

DFG response and we have compared theory with simulation for one fixed driving

frequency, ω2. Now we calculate the DFG response for all possible values of ω1 and

ω2, using the analytical expression for Miller’s rule. The purpose of this calculation

is to examine the conditions when |x(2)
DFG| is maximized. Now, instead of a one-

dimensional spectrum, |x(2)
DFG| is a surface in the parameter-space of ω1 and ω2. To

visualize this surface, consider that |x(2)
DFG| is represented in Fig. 6.6 by a line (i.e.,

the red line in Fig. 6.8). Now, when varying ω2, Fig. 6.6 can be represented as a slice

in Fig. 6.14, and the line in Fig. 6.8 is now a surface in Fig. 6.14.
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Figure 6.14: 3D parameter space of ω1, ω2 and Fourier spectra. The vertical slice
indicates the simulation space that we have thus far considered, for fixed ω2 (i.e.,
Fig. 6.6). The DFG response is represented by a red line on this slice (i.e., the red line
in Fig. 6.8). When ω2 is also varied, the DFG response will occur at the intersection
of the vertical slice and the v-shaped plane (grey). The response is symmetric about
the line ω1 = ω2.
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Finally, Fig. 6.15 shows |x(2)
DFG|, where the color intensity represents the amplitude

of the DFG response in the parameter space of ω1 and ω2, for ω1 ≥ ω2. Also shown

is the linear response of the system in the subplot, which has a resonance at ω0 = 4

rad/s, as stated previously. The white-dashed line in this parameter space represents

the locus for a desired difference-frequency. For instance, it is set to the value 0.5

rad/s, indicating that frequency combinations falling on this locus will generate a

DFG signal of 0.5 rad/s. The primary finding of this plot is that DFG is maximized

on resonance, since the color intensity along the white dashed line is greatest when

either ω1 = ω0 or ω2 = ω0. Intensity is also relatively higher when ω1−ω2 = ω0, but

this is far away from the desired difference-frequency. We also plot the response in

this parameter space for a different resonance, ω0 = 6 rad/s in Fig. 6.16. Again, it

is clear that DFG will be maximized when either ω1 or ω2 are on resonance.

We leave this chapter with the following questions, with a look towards generat-

ing DFG using a plasmonic particle: Is driving a particle on-resonance a sufficient

condition for generating DFG? Is it possible to optimize DFG using multiple reso-

nances? Are the resonant features all that matter, or are there other mechanisms to

optimize? Ultimately, what is the theory that will yield answers to these questions?
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Figure 6.15: DFG response for ω2 ≥ ω1 and ω0 = 4 rad/s. Color intensity repre-

sents the amplitude of |x(2)
DFG|. The white-dashed line represents the specific condition

ω2−ω1 = 0.5 rad/s. Thus, the intensity along this line represents the strength of the
DFG signal for ω2 − ω1 = 0.5 rad/s. The bottom plot represents the linear response
of the system for ω0 = 4 rad/s.
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Figure 6.16: DFG response for ω2 ≥ ω1 and ω0 = 6 rad/s. Same format as
previous figure, but the linear resonance of the system is shifted to ω0 = 6 rad/s.
This indicates that DFG is strongest when either ω2 = ω0 or ω1 = ω0, as expected.
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CHAPTER 7

Effective Miller’s Rule for Plasmonic DFG

We now consider the nonlinear behavior of plasmonic nanoparticles (PNPs), with

the goal of optimizing DFG in such systems. We apply the eigenmode expansion

proposed by Ref. [82] to a generic PNP and demonstrate that DFG can be enhanced

due to the resonances of the structure. Specifically, when the PNP is resonant at

both input frequencies and their difference, significant DFG can be achieved. This

resonant coupling effect can be described by an effective Miller’s rule for nonlinear

plasmonic response, but the rule is modified from the standard formula. Through

DFG, PNPs are capable of demodulating an amplitude-modulated signal, paving a

new route to the control of light at the nanoscale. In the context of the previous

chapters, we argue that plasmonic-DFG could be a useful way to target DNA at

THz frequencies, in vivo, through the demodulation of high-frequency, more deeply

penetrating signals (e.g., NIR).

BD2db

7.1 Modal Model of Plasmonic Response

There is extensive literature regarding the study of second-order response phenomena

in plasmonic systems. For instance, see Ref. [83] for a general review of nonlinear plas-

monics. Much of the work has focused on understanding, measuring, and designing
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second-harmonic generation (SHG) from plasmonic structures, e.g., see the review by

Ref. [84], and generally there has been less focus on other second-order phenomena

like difference-frequency generation (DFG). For instance, many fundamental studies

of the nonlinearity of metal surfaces explicitly focused on SHG [85, 86, 87, 88, 89, 90].

From a theoretical perspective, there are a variety of approaches for studying SHG

from plasmonic structures, including approaches which use a full, nonlinear wave

equation [91, 92], those which model nonlinear response through a multipole ex-

pansion [93, 94, 95], those which use an eigenmode approach [82, 96], among other

theoretical and numerical approaches [97, 98, 99, 100, 101].

It was our objective to find a universal framework for studying DFG in plasmonic

nanoparticles (PNPs), in order to draw the most general conclusions. Our first avenue

of inquiry was to find a Miller-like relation that describes the nonlinear response

of PNPs using knowledge of the first-order response, as in the previous chapter.

Modeling the second-order response, α(2), in terms of the linear response, α(1), is

advantageous because the linear response of nanoscale plasmonic structures can be

calculated straightforwardly via FDTD solvers, whereas the second-order response

of such systems may not be calculated as readily. Even in cases where it might by

simple to calculate α(2) explicitly, it will still be useful to allow knowledge of α(1)

to lead design and optimization efforts, since the physical nature of α(1) is probably

better known. Ultimately, the route to optimization requires such a basis in physical

understanding.

In the literature, it has been demonstrated that the second-order response of

plasmonic nanostructures depends solely on first-order characteristics of the system

(e.g., Ref. [102, 103]). But studies have refuted that Miller’s rule, in the canonical

form of Eq. (6.21), can be applied to the second-order response of plasmonic systems

[84]. For instance, an experimental study explicitly showed that SHG from split-ring
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resonators did not follow Miller’s rule [103]. Thus, we sought to determine if α(2)

could be expressed in terms of α(1) in any possible way, if not in the canonical way.

To begin our investigation, we use the modal analysis framework of Zeng et al. [82]

and then expand upon their derivation. The authors of Ref. [82] applied eigenmode

analysis to the study of nonlinear plasmonic nanostructures and demonstrated that

the nonlinear response could be expressed in terms of linear eigenmodes. They

concluded that this formalism could be used to calculate the second-order response

from the first-order response of a system, and they stressed that the eigenmodes,

therefore, play an important role in optimizing nonlinear effects (specifically, they

investigated SHG). Finally, they proposed a way to determine the eigenmodes of a

system from Lorentzian fitting to simulation data (in the appendix of Ref. [82]).

We extend the study of Ref. [82] to investigate DFG. Furthermore, we extend

their results to express a succinct, Miller-like relation between α(1) and α(2), and

underscore a way in which first-order simulations can be used to calculate DFG by

modeling α(1) as a Lorentzian series. Our Lorentzian modeling is not borrowed from

Ref. [82]—they use Lorentzian fitting to find eigenfrequencies only, and then use this

information to find the eigenvectors from subsequent simulation. We explicitly model

the linear response, α(1), as a Lorentzian series, whose oscillator strengths implicitly

depend on the eigenmodes of the system. Finally, we systematically explore how

the characteristics of α(1) affect α(2) and thereby determine the constraints on DFG

optimization.

To start, following Ref. [82], we make the basic assumption that Maxwell’s equa-

tions can be solved for the system under consideration (e.g., via FDTD solvers) and

we assume that there exist eigenmodes of the system. The type of system that we

are considering is a closed particle. Then the eigenvalue equation that describes the

176



system, in the absence of external fields, is [82]:

Lu = ωu (7.1)

where u is the eigenvector of the system, containing information about the fields,

ω is the frequency of the eigenmode (the eigenvalue), and L is the operator that

contains the relations between various field compoents, i.e., L encapsulates Maxwell’s

equations (and auxiliary equations). Again, we refer to Appendix B for the complete

set of Maxwell and auxillary equations, and we refer to Ref. [82] for further details

about this eigenvalue equation.

We now study the influence of a driving force on the system. External fields are

represented by the vector S, and the new eigenvalue equation is [82]:

LU + S = ωU (7.2)

where the vector U now contains information about the total field response. At this

point, it is useful to use bra-ket notation, noting that the spatial dependence can be

defined as follows: u(r) = 〈r|u〉. Continuing to follow [82], we express the total field

as an expansion of eigenstates of the unperturbed system:

|U〉 =
∑
m

〈u†m|S〉
ω − ωm

|um〉 (7.3)

As Ref. [82] describes, the quantity 〈u†m|S〉 is the projection of the external

excitation onto a given mode, which may be calculated via spatial integration (the

closure relation), i.e.:

〈u†m|S〉 =

∫
particle

um(r) · S(r)dV (7.4)
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Let’s consider, as in Ref. [82], how to calculate the main object of interest for this

study, the electric polarizability. In previous chapters, we have treated the equation

p(t) = αE(t) as a scalar relation, but α is really a tensor. Thus,

p(r) = α~

~

· E(r) (7.5)

and, polarization is related to polarizability by P = np. In the new formalism that

has been presented, the polarization is simply the “P-component” of |U〉 [82]:

P(r) = 〈r|UP〉 (7.6)

Therefore,

P(r) ≡ UP(r) =
∑
m

〈u†m|S〉
ω − ωm

uP
m(r) (7.7)

At this point, we expand upon the work of Ref. [82] and go on to derive the

explicit form of the polarizability, αij(ω). If the source is an electric field, S = SE,

then the inner product 〈u†m|S〉 contains only electric field components, i.e., 〈u†m|S〉 =∫
uE†

m(r) · SE(r)dV , where the integration is over the location of the PNP. Thus,

UP(r) =
∑
m

[∫
uE†

m(r) · SE(r)dV
]

ω − ωm
uP

m(r) (7.8)

Furthermore, we can suppose that SE(r) = Ej(r)ĵ for a polarized incident field,

without loss of generality. Thus,

UP
i (r) =

∑
m

[∫
uE†m,j(r)Ej(r)dV

]
ω − ωm

uPm,i(r) (7.9)
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Now, we can also make the assumption that the structure is subwavelength, such

that Ej(r) ≈ Ej over the volume of the PNP. We explicitly require this condition.

Since we have defined the integration to be over the region of the PNP, the equation

becomes:

UP
i (r) =

∑
m

Ej

[∫
uE†m,j(r)dV

]
ω − ωm

uPm,i(r) (7.10)

Then, by the definition Pi = αijEj, we can solve for αij:

αij =

∫
UP
i (r)dV

Ej

=
∑
m

[∫
uE†m,j(r)dV

]
ω − ωm

[∫
uPm,i(r)dV

]
=
∑
m

αmij

(7.11)

where we have defined,

αmij ≡

[∫
uE†m,j(r)dV

]
ω − ωm

[∫
uPm,i(r)dV

]
(7.12)

Now, to investigate higher order terms in a perturbative expansion, the eigenvalue

equation can be expanded to orders of the driving field (as in Ref. [82]):

LU(n) + S(n) = ωU(n) (7.13)

then, the corresponding eigenvector expansion is:

|U(n)〉 =
∑
m

〈u†m|S(n)〉
ω − ωm

|um〉 (7.14)
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Zeng et al. [82] used the above expansion to study SHG. We extend their derivation,

using our result from Eq. (7.11) to express α
(2)
SHG in terms of α(1), then we address

DFG.

The SHG response is defined as,

|U(2)(2ω)〉 =
∑
m

〈u†m|S(2)(2ω)〉
2ω − ωm

|um〉 (7.15)

where Zeng et al. [82] express |S(2)(2ω)〉 in terms of the lower order fields, through

the action of the nonlinear operator β̂:

|S(2)(2ω)〉 = β̂ |U(1)(ω)U(1)(ω)〉

=
∑
l

∑
n

〈u†l |S(1)(ω)〉
ω − ωl

〈u†n|S(1)(ω)〉
ω − ωn

β̂ |ulun〉
(7.16)

Zeng et al. [82] define χ as the nonlinear operator, but we use a different variable

to avoid confusion with the typical definition of material response. The operator

β̂ needs to be calculated/simulated explicitly—it is the object which encapsulates

nonlinear effects in the system. It is apparent that all second order terms would

vanish if β̂ = 0. Plugging the above expression, Eq. (7.16), into Eq. (7.15) yields:

|U(2)(2ω)〉 =
∑
lmn

〈u†l |S(1)(ω)〉
ω − ωl

〈u†n|S(1)(ω)〉
ω − ωn

〈u†m| β̂ |ulun〉
2ω − ωm

|um〉 (7.17)

At this point, again, we diverge from Ref. [82] and go on to derive α
(2)
SHG. Since

P
(2)
i = α

(2)
ij E

2
j , we first obtain U

P (2)
i using the same reasoning as for the derivation

of Eq. (7.10):

U
P (2)
i (r, 2ω) =

∑
lmn

E2
j

[∫
uE†l,j (r)dV

]
ω − ωl

[∫
uE†n,j(r)dV

]
ω − ωn

〈u†m| β̂ |ulun〉
2ω − ωm

uPm,i(r) (7.18)
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Next, we use the relation α
(2)
ijj(2ω) = [

∫
U
P (2)
i (r, 2ω))dV ]/E2

j to solve for α
(2)
ijj(2ω):

α
(2)
ijj(2ω) =

∑
lmn

[∫
uE†l,j (r)dV

]
(ω − ωl)

[∫
uE†n,j(r)dV

]
(ω − ωn)

[∫
uPm,i(r)dV

]
(2ω − ωm)

〈u†m| β̂ |ulun〉

=
∑
lmn

α
(1), l
ij (ω)α

(1), n
ij (ω)α

(1),m
ij (2ω)

〈u†m| β̂ |ulun〉
ΓPl,iΓ

P
n,iΓ

E†
m,j

=
∑
lmn

α
(1), l
ij (ω)α

(1), n
ij (ω)α

(1),m
ij (2ω)βlmniij

(7.19)

where α(1) terms are as defined in Eq. (7.12), and we have created the definitions

ΓPn,i ≡
∫
uPn,i(r)dV , etc., and βlmniij ≡

〈u†
m|β̂|ulun〉

ΓP
l,iΓ

P
n,iΓ

E†
m,j

. Thus, this modal analysis has yielded

a relation between first and second-order terms, similar to Miller’s rule for second-

harmonic generation, which, in it’s usual form, states α(2)(2ω) ∝ α(1)(2ω)
[
α(1)(ω)

]2
.

However, in the derivation above, we have found that α
(2)
ijj(2ω) is equal to a sum

over modal contributions with weights given by the modal overlap term, βlmniij . This

is in contrast to Miller’s rule, where all weights are equivalent, i.e., α
(2)
ijj,Miller(2ω) =

βα
(1)
ij (2ω)

[
α

(1)
ij (ω)

]2

.

We can extend this derivation to the DFG second-order term by assuming that,

in the presence of two driving frequencies, ω1 and ω2, the second-order source term

has the following form:

|S(2)(ω1 − ω2)〉 = β̂ |U(1)(ω1)U(1)(−ω2)〉 (7.20)

then, the result is:

α
(2)
ijk(ω1 − ω2) =

∑
lmn

α
(1), l
ij (ω1)α

(1), n
jk (−ω2)α

(1),m
ik (ω1 − ω2)βlmnijk (7.21)

where βlmnijk ≡
〈u†

m|β̂|ulun〉
ΓP
l,iΓ

P
n,jΓE†

m,k

. This is the main result of this section. We propose that

it is possible to express the DFG response of a PNP in terms of its first-order po-

181



larizability. However, the relation is not a simple product of polarizabilities, as the

classical Miller’s rule might suggest. Rather, the distinct modes of the system con-

tribute an amount that is weighted by the nonlinear, modal-overlap coefficient, βlmnijk .

The authors of Ref. [82] suggested a similar conclusion for SHG, but they did not

ultimately relate the second-order polarizability to first-order polarizabilities.

Our form of Zeng’s modal model immediately suggests the following possibility—

one may simulate α
(1)
ij from scattering calculations and, after decomposing it as

α
(1)
ij =

∑
m

α
(1),m
ij , quite readily calculate the structure of α

(2)
ijk. However, it is addi-

tionally necessary to calculate βlmnijk terms in such a simulation, which involves explicit

modeling of the nonlinearity β̂. Thus, knowledge of α
(1)
ij is not entirely sufficient for

predicting α
(2)
ijk.

Importantly, one may use Eq. (7.21) to guide the design of a PNP with specific

DFG properties. For instance, it is apparent that a particle should include 3 res-

onances in order to have the strongest DFG response: a resonance at each driving

frequency and a resonance at the difference frequency. Using this design constraint,

one may endeavor to maximize the βlmnijk terms that contribute to this response. How-

ever, it is also possible to have DFG from a bi-resonant structure, but necessarily at

lower amplitude. We explore these possibilities in the next section.

Based on the results of this section, we summarize the following findings regarding

plasmonic-DFG in the modal-model:

1. Results of first-order simulations, i.e., α(1), are useful for determining the pos-

sible behavior of DFG from a subwavelength PNP.

2. In order to maximize DFG, a PNP should exhibit 3 resonances, one at each

driving frequency and another at the difference frequency.

3. The magnitude of the DFG response depends on the coupling between the 3

modes that are involved in the process. This coupling (or “modal overlap”)
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represents the strength of the nonlinearity. The “modal overlap” is a quantity

that can likely be calculated in COMSOL or other FDTD solvers.

7.2 Optimization of Difference Frequency Generation

In this section, we wish to illustrate our findings and explore other possible phenom-

ena resulting from Eq. (7.21) by modeling DFG from a generic plasmonic particle

with three resonances. We leave the physical realization of this particle to be deter-

mined, so do not specify a geometry—rather, we treat this investigation as a thought

experiment. As an idealization, we consider a one-dimensional type model, where

our two incident sources and the resultant DFG are all polarized along the same

direction. Thus, we can drop the subscripts in Eq. (7.21) and use the form:

α(2)(ω1 − ω2) =
∑
lmn

α(1), l(ω1)α(1), n(ω2)α(1),m(ω1 − ω2)βlmn (7.22)

We define a triply resonant linear response, α(1)(ω) =
∑

m=a,b,c

α(1),m(ω), where

α(1),m(ω) = fm/(ω
2
m − ω2 − iγmω) is a Lorentzian oscillator with resonant frequency

ωm and oscillator strength fm, where a, b, and c are the modes of the particle—this

Drude-Lorentz model, mentioned in Chapter 3, is a common way to describe the

response of plasmonic resonators. We allow the oscillator strengths, fm, and the

coupling strengths, βlmn, to range from 0 to a normalized value of 1. In this way,

we vary which resonances and coupling terms are “turned on” in the subsequent

analysis.

Now we plot, in Fig. 7.1, the difference-frequency response of the system for

all values of ω1 and ω2 in the half-parameter space below the diagonal. As in the

previous chapter, we do not plot the values in the upper diagonal space since the
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plot has mirror symmetry across the ω1 = ω2 line. The color intensity represents

the amplitude of the DFG response, |α(2)
DFG|, on a log-scale. We plot the linear

response, Im{ωα(1)}, which is proportional to the absorption cross-section, in the

middle portion of the figure, as well as values for the resonance frequencies ωa, ωb,

and ωc, and their respective oscillator strengths, fa, fb, and fc. Also shown are

various parameter settings for the modal interactions, βlmn, indicated in the lower

portion of the plot by bars with numeric values.

Two lines and an annulus are drawn on the DFG intensity plot in order to aid the

eye. The black-dashed lines represent the driving frequencies, ω1 and ω2, which may

be set by the user. The annulus is the intersection of these frequencies, where DFG

will occur for the chosen driving frequencies. The DFG frequency, ∆ω12 = |ω1−ω2|,

is shown in the legend of the figure.

In Fig. 7.1, we initially set the driving frequencies to ω1 = 0.80 and ω2 = 0.90

(all units in rad/s). Thus, the DFG frequency is ∆ω12 = 0.10. We set the resonances

of the particle to match the driving frequencies and difference frequency: ωa = 0.90,

ωb = 0.80, and ωc = 0.10. We set all oscillator strengths to 1 and only keep coupling

terms that contribute significantly to DFG.

Fig. 7.1 demonstrates the most significant result from our analysis, that the DFG

response is maximized for a system with three resonances when the system is driven

at two high-frequency resonances and when the third resonance of the system is

tuned to the difference frequency. This is seen from the maximum intensity, which

occurs in the annulus, which is the region of parameter-space associated with DFG at

0.1 THz. Thus, we have the following conditions: ωa = ω2, ωb = ω1, and ωc = ∆ω12.

Additionally, we can see that only a small number of coupling terms dominate the

strength of the response. In this case, all coupling terms are turned off except for

the terms responsible for the strong DFG response.
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Figure 7.1: DFG from PNP model with three resonances (1). The idealized modal
model is shown, where the particle has three resonances and the lowest frequency
resonance is at the difference-frequency of the two higher frequency resonances: ωa−
ωb = ωc. The half-parameter space is shown for the two driving frequencies ω1 and ω2,
where the color intensity shows the magnitude of DFG on a log-scale. The lower plot
shows the linear response of the system, Im{ωα(1)}. The bars in the lower portion
of the figure indicate parameter settings, for instance the coupling parameters that
ensure maximal DFG are the “cba” and “cab” terms.
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We now vary the parameters and report what happens. The parameter variations

and results are as follows:

• Fig. 7.2: Compared to Fig. 7.1, the first driving frequency is changed to ω1 =

1.19, and DFG will occur at ∆ω12 = 0.29. Since the resonances of the system

are at their previous setting, ωa = 0.90, ωb = 0.80, and ωc = 0.10, the DFG

amplitude is not maximized within the annulus.

• Fig. 7.3: Compared to Fig. 7.2, the second resonance of the system is changed

such that ωb = 1.19. DFG is enhanced, but not yet maximized.

• Fig. 7.4: Compared to Fig. 7.3, the third resonance of the system is changed

such that ωc = 0.29. DFG is maximized since the system exhibits resonances

at the driving frequencies and their difference.

• Fig. 7.5: Compared to Fig. 7.4, the oscillator strength of resonance c is de-

creased. Consequently, the DFG amplitude also decreases.

• Fig. 7.6: Compared to Fig. 7.5, the oscillator strength of resonance c is set to

zero. The DFG response is now only possible when other coupling terms are

active. Specifically, the terms aba and bba lead to enhanced DFG.

• Fig. 7.7: Compared to Fig. 7.6, the oscillator strength of resonance b is de-

creased. Consequently, the DFG amplitude also decreases.

• Fig. 7.8: Compared to Fig. 7.7, the oscillator strength of resonance b is set to

zero. The DFG response is now only possible when the coupling term aaa is

active.

• Fig. 7.9: Compared to Fig. 7.1, the third resonance of the system is changed

such that ωc = 0.50. The DFG amplitude is no longer maximized, since ωc 6=

∆ω12.
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• Fig. 7.10: Compared to Fig. 7.1, the second resonance of the system is changed

such that ωb = 0.51. The DFG amplitude is no longer maximized, since both

resonances of the system do not coincide with both driving frequencies, i.e,

(ωa, ωb) 6= (ω1, ω2).

• Fig. 7.11: Compared to Fig. 7.10, the first driving frequency is changed such

that ω1 = 0.51. Now two resonances of the system coincide with the driving

frequencies, i.e, (ωa, ωb) = (ω1, ω2), but DFG is still not maximized since

ωc 6= ∆ω12.

• Fig. 7.12: Compared to Fig. 7.1, the first resonance of the system is changed

such that ωa = 1.26. The DFG amplitude is no longer maximized, since both

resonances of the system do not coincide with both driving frequencies, i.e,

(ωa, ωb) 6= (ω1, ω2).

• Fig. 7.13: Compared to Fig. 7.12, the second driving frequency is changed such

that ω2 = 1.25. Now two resonances of the system coincide (approximately)

with the driving frequencies, i.e, (ωa, ωb) = (ω1, ω2), but DFG is still not

maximized since ωc 6= ∆ω12.

• Fig. 7.14: Compared to Fig. 7.1, all coupling terms are now active. When

all coupling parameters are equal, the modal model reduces to the classical

Miller’s rule.

• Fig. 7.15: Compared to Fig. 7.14, the coupling terms cba and cab are deacti-

vated. The DFG response decreases, indicating that these terms are responsible

for significant DFG amplitude.
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Figure 7.2: DFG from PNP model with three resonances (2). Compared to Fig. 7.1,
the first driving frequency is changed to ω1 = 1.19, and DFG will occur at ∆ω12 =
0.29. Since the resonances of the system are at their previous setting, ωa = 0.90,
ωb = 0.80, and ωc = 0.10, the DFG amplitude is not maximized.
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Figure 7.3: DFG from PNP model with three resonances (3). Compared to Fig. 7.2,
the second resonance of the system is changed such that ωb = 1.19. DFG is enhanced,
but not yet maximized.
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Figure 7.4: DFG from PNP model with three resonances (4). Compared to Fig. 7.3,
the third resonance of the system is changed such that ωc = 0.29. DFG is maximized
since the system exhibits resonances at the driving frequencies and their difference.
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Figure 7.5: DFG from PNP model with three resonances (5). Compared to Fig. 7.4,
the oscillator strength of resonance c is decreased. Consequently, the DFG amplitude
also decreases.
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Figure 7.6: DFG from PNP model with three resonances (6). Compared to Fig. 7.5,
the oscillator strength of resonance c is set to zero. The DFG response is now only
possible when other coupling terms are active. Specifically, the terms aba and bba
lead to enhanced DFG.
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Figure 7.7: DFG from PNP model with three resonances (7). Compared to Fig. 7.6,
the oscillator strength of resonance b is decreased. Consequently, the DFG amplitude
also decreases.
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Figure 7.8: DFG from PNP model with three resonances (8). Compared to Fig. 7.7,
the oscillator strength of resonance b is set to zero. The DFG response is now only
possible when the coupling term aaa is active.

194



Figure 7.9: DFG from PNP model with three resonances (9). Compared to Fig. 7.1,
the third resonance of the system is changed such that ωc = 0.50. The DFG ampli-
tude is no longer maximized, since ωc 6= ∆ω12.
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Figure 7.10: DFG from PNP model with three resonances (10). Compared to
Fig. 7.1, the second resonance of the system is changed such that ωb = 0.51. The
DFG amplitude is no longer maximized, since both resonances of the system do not
coincide with both driving frequencies, i.e, (ωa, ωb) 6= (ω1, ω2).
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Figure 7.11: DFG from PNP model with three resonances (11). Compared to
Fig. 7.10, the first driving frequency is changed such that ω1 = 0.51. Now two reso-
nances of the system coincide with the driving frequencies, i.e, (ωa, ωb) = (ω1, ω2),
but DFG is still not maximized since ωc 6= ∆ω12.
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Figure 7.12: DFG from PNP model with three resonances (12). Compared to
Fig. 7.1, the first resonance of the system is changed such that ωa = 1.26. The
DFG amplitude is no longer maximized, since both resonances of the system do not
coincide with both driving frequencies, i.e, (ωa, ωb) 6= (ω1, ω2).
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Figure 7.13: DFG from PNP model with three resonances (13). Compared to
Fig. 7.12, the second driving frequency is changed such that ω2 = 1.25. Now two
resonances of the system coincide (approximately) with the driving frequencies, i.e,
(ωa, ωb) = (ω1, ω2), but DFG is still not maximized since ωc 6= ∆ω12.
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Figure 7.14: DFG from PNP model with three resonances (14). Compared to
Fig. 7.1, all coupling terms are now active. When all coupling parameters are equal,
the modal model reduces to the classical Miller’s rule.
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Figure 7.15: DFG from PNP model with three resonances (15). Compared to
Fig. 7.14, the coupling terms cba and cab are deactivated. The DFG response de-
creases, indicating that these terms are responsible for significant DFG amplitude.
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This modal model is a useful route towards understanding and optimizing the

DFG response. If possible, a tri-resonant system should be designed and the coupling

between all three modes should be maximized. Fortunately, of the many possible

coupling terms, only a minimal number participate in the DFG response. Simple

particles with three resonances do exist, for instance [104], although it may be difficult

to engineer a low-frequency response that also allows the particle to be sufficiently

small. Of course, it is also possible to obtain enhanced DFG from a doubly resonant

system, although our analysis establishes that the amplitude of the response will

necessarily be less than that of a tri-resonant system.

The resonant enhancement that this formalisms suggests is also a characteristic

of SHG, as Eq. (7.19) implies, and as Ref. [82] stated in their work. In fact, reso-

nantly enhanced SHG has been observed in plasmonic systems, e.g., Ref. [105, 106,

107, 108, 109]. The resonant enhancement of other nonlinear phenomena has also

been observed [110, 111]. This formalism for DFG reflects what is known about the

behavior of other second-order response phenomena. Ultimately, the modal response

model of Ref. [82], and our subsequent expression of a modified Miller’s rule, is ap-

plicable to any system with resonant characteristics, not just plasmonic particles.

Plasmonic characteristics enter through calculation of the linear polarizability and

the microscopic details of the nonlinear coupling terms.

7.3 Driven DNA Damage with Plasmonic DFG

In the last section of this thesis, before the conclusion, we will try to tie together

everything that was discussed in Part II by revisiting the study of DNA destruction

from Chapter 5. Namely, we now wish to consider driving DNA towards destruction

using a local plasmonic resonator, based on the scheme that was initially introduced.
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The setup will be comprised of two driving fields at different frequencies that influence

both a local, nonlinear PNP and a DNA strand. As per the model of the previous

section, the PNP promotes DFG, which the DNA strand also experiences. Thus, the

equation of motion of the nth base-pair of the DNA strand is:

mÿn = −U ′(yn)−W ′(yn, yn+1)−W ′(yn, yn−1)−mγẏn+η(t)+Finc(t)+FDFG(t) (7.23)

where the incident AM field is

Finc(t) = Ainc cos(ωmt) cos(ωct) =
Ainc

2
[cos(ω1t) + cos(ω2t)] (7.24)

and the DFG source, originating from a local PNP, is

FDFG(t) = ADFG cos [(ω1 − ω2)t] (7.25)

Note, if FDFG(t) = 0 and ω1 = ω2, we have the same configuration as was investigated

in Chapter 5.

First, we simulated the linear response of the system for a range of frequencies

within the NIR window, fNIR ∈[250 THz, 400 THz], for a setup that has no DFG

signal. The amplitude-frequency response of AT and GC homogeneous sequences is

shown below, for driving at a single frequency (i.e., f1 = f2).
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Figure 7.16: Homogeneous AT sequence at high frequencies. The intensity scale
represents the average base-pair separation and the line indicates the boundary where
the onset of damage occurs (average separation > 0.5125 Å).

Figure 7.17: Homogeneous GC sequence at high frequencies. The intensity scale
represents the average base-pair separation and the line indicates the boundary where
the onset of damage occurs (average separation > 0.338 Å).
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Fig. 7.16 & 7.17 show that the amplitude that causes DNA damage is incredibly

high in this frequency range, with ANIR
max > 3 × 105pN. Within this region we chose

two specific frequencies that would create a difference frequency of 1.5 THz, which

is the destructive resonance of AT base-pairs: f1 = 375 THz and f2 = 373.5 THz

(equivalent to λ1 ≈ 0.799µm and λ2 ≈ 0.803µm). To see the effects of DFG on

DNA damage with these driving frequencies, we simulated the response of single

BPs substituted into homogeneous sequences, as in Chapter 5.

First, we simulated driving at these frequencies without DFG, i.e., for Finc(t) =

Ainc

2
[cos(2πf1t) + cos(2πf2t)] and FDFG(t) = 0, where the driving amplitude was set

to a value below the destructive threshold found in the previous figure, Ainc = 3×105

pN. This was in order to determine the bare response of BPs in the absence of DFG

promoters. As in Chapter 5, we plot the normalized histogram of the occurrences

when a given base-pair exceeds its damage threshold, shown in Fig. 7.18. As was

expected, significant destruction did not occur for these values of amplitude and

frequency.

Next we simulated the driving of DNA in the presence of DFG. We assumed that

the response of this hypothetical particle was tailored to have optimal DFG at 1.5

THz. Based on the conclusions of the previous section, this would mean that the

particle is resonant at fa = 375 THz, fb = 373.5 THz, and fc = 1.5 THz. Further-

more, we know that the threshold for driving at f = 1.5 THz is ATHz
thresh ∼120 pN, so

we wish to simulate a DFG amplitude greater than this threshold. We calculate the

histograms of base-pair separation for this full simulation in Fig. 7.13, where f1 = 375

THz, f2 = 373.5 THz, |f1 − f2| = 1.5 THz, Ainc = 3× 105 pN, and ADFG = 200 pN.

Destructive behavior is observed.
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Figure 7.18: Homogeneous sequence with one BP substitution: driving with no
DFG Driving at Ainc = 3 × 105 pN and two high frequencies: 375 THz and 373.5
THz. The histograms represent the normalized number of occurrences when a given
BP exceeds its damage threshold, where BP index is plotted on the horizontal axis.
Upper plot: AT sequence with GC substitution at site 32. Lower plot: GC sequence
with AT substitution at site 32.
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Figure 7.19: Homogeneous sequence with one BP substitution: driving with DFG
Driving at Ainc = 3×105 pN and ADFG = 200 pN and two high frequencies: 375 THz
and 373.5 THz. DFG occurs at 1.5 THz. The histograms represent the normalized
number of occurrences when a given BP exceeds its damage threshold, where BP in-
dex is plotted on the horizontal axis. Upper plot: AT sequence with GC substitution
at site 32. Lower plot: GC sequence with AT substitution at site 32.
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Thus, we have demonstrated from raw simulation that it is possible, under an

idealized configuration, to cause DNA damage at THz frequencies via DFG from an

AM signal that uses an NIR carrier frequency. However, up to this point we have not

said anything about the properties of the DFG source, other than that originates from

a PNP, which produces the driving amplitude ADFG. Now, we consider the strength

of the nonlinearity that is necessary to produce this destructive behavior. Since

second-order terms are proportional to the field strength squared, we can express

FDFG(t) as:

FDFG(t) =

[
Ainc

2

]2

ζDFG cos [(ω1 − ω2)t] (7.26)

where ζDFG is the nonlinear coupling amplitude. Thus, ADFG = [Ainc

2
]2ζDFG. The

minimum nonlinear coupling amplitude that is necessary to cause damage at the

difference-frequency, ζTHz
thresh, corresponds to the condition ADFG ≥ ATHz

thresh, where

ATHz
thresh is a quantity estimated through our simulation, as defined earlier in this

section. Additionally, we wish to use incident fields that are smaller in amplitude

than the destructive threshold for NIR radiation, ANIR
max, lest the NIR radiation destroy

the DNA at the expense of selectivity. Therefore, Ainc ≤ ANIR
max. Finally, we can relate

these terms and solve for ζTHz
thresh:

ζTHz
thresh ≥

ATHz
thresh[
ANIR

max

2

]2 & 5.34× 10−9 pN−1 (7.27)

The parameter ζTHz
thresh can be related to the DFG polarizability, α(2), to estimate

the requirements of a PNP that are necessary to facilitate destruction.
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CHAPTER 8

Conclusion

In this chapter, we summarize the findings of this thesis with regards to nonlocal and

nonlinear response phenomena. We then consider areas for additional investigation.

BD2db

8.1 Summary of Work

In this thesis, we have examined nonlocal and nonlinear response models of plas-

monic systems. In chapter 2, we introduced nonlocal models of plasmonic response,

including the ab initio d-function formalism and the phenomenological hydrody-

namic approximation. In chapter 3 we proposed a way of combining the d-function

formalism and HDA to form an “extended d-function formalism.” We performed

ab initio calculations of metallic slabs and demonstrated some scaling properties

of this model, which we also argued could be used to predict nonlocal properties

of subwavelength plasmonic nanostructures (e.g., metamaterials) based on effective

medium arguments. In chapter 4, we introduced a method that enabled us to map the

nonlocal properties of a plasmonic system onto a local, fictitious thin film using the

d-function formalism. The film, which models the nonlocal response to linear order

in q, provides a way to incorporate nonlocal physics into local calculation schemes,

and can be utilized in existing FDTD simulation methods.
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We also examined nonlinear models of response functions and tried to apply this

to the analysis of difference-frequency generation from plasmonic systems, in the

specific context of utilizing plasmonic DFG to create THz radiation in vivo. The

goal of this endeavor was to selectively promote the destruction of specific DNA

sequences within the human body.

In chapter 5, we first began by looking at the response of DNA to THz fields and

tried to identify and understand regimes of destruction where the system was driven

to a breaking point. We used a nonlinear oscillator model for double-stranded DNA,

which incorporated inter- and intra-base-pair forces and thermal interactions, and we

first drove the system with a sinusoidal force field to simulate monochromatic light.

We found that, under certain combinations of driving amplitude and frequency, the

system was driven to a regime of large BP separation, which we used as a proxy

for damage. We also found that the region of amplitude-frequency parameter-space

where such damage occurred was different for sequences composed of different BPs.

Moreover, we found that we could selectively drive either AT or GC pairs within a

heterogeneous sequence, allowing for the possibility of selective damage at the single

base-pair level. Finally, our simulations of heterogeneous sequences also suggest that

damage might be selective based on the ordering of BPs within a sequence.

In chapter 6, we introduced the nonlinear phenomenon of difference-frequency

generation (DFG) as a means to enable THz signals to penetrate deeply into the

body, with the goal of targeting DNA in vivo. We explained the concept that a local

plasmonic constituent could be used to demodulate two high frequency signals into

a signal at their difference-frequency. We presented the mathematical derivation of

DFG and simulated the response of a classical anharmonic oscillator to demonstrate

this process. Importantly, we introduced the concept of Miller’s rule and applied it

to our simulation—Miller’s rule prescribes how to calculate the DFG response from
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knowledge of the linear response of the system. In chapter 7 we extended the analogy

of a simple anharmonic oscillator to plasmonic oscillators and proposed an effective

Miller’s Rule for such systems. Thus, we demonstrated that it might be possible to

express the DFG response of a plasmonic system in terms of its linear response. This

tool would enable one to effectively estimate the magnitude of plasmonic DFG with

knowledge of the linear response of a plasmonic system, which could be obtained from

FDTD solvers, for instance. We emphasized the useful insights that such a relation

would provide for optimization calculations, specifically the observation that DFG is

maximized for a particle that exhibits 3 resonances: one at each driving frequency,

and one at the difference-frequency.

Finally, we finished our investigation by conducting a model-based simulation

of the response of a DNA sequence in the presence of a plasmonic-DFG promoter.

Considering our proposed model for plasmonic-DFG, we simulated driving a hetero-

geneous sequence with two high-frequency signals and examined the parameter-space

where destruction occurred. In the presence of two driving signals, the DNA strand

was driven towards breaking for certain parameter values when DFG was present,

but not when DFG was absent. Thus, we demonstrated a proof-of-concept for this

scheme, albeit in an idealized environment.

8.2 Outlook and Future Work

We have shown that heuristic models of nonlocality (i.e., extensions of existing for-

malisms to new regimes of applicability) are useful for modeling the response phe-

nomena of plasmonic systems. For instance, the extended d-function formalism ade-

quately captures the nonlocal behavior of plasmonic response at moderate to high-q

values. Thus, such extensions are a valid and useful program for studying nonlocal-

ity in nontrivial systems. If possible, ab initio calculations of structured plasmonic
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systems, rather than planar slabs, should be undertaken to further demonstrate the

validity of the extended d-function formalism.

We have also demonstrated that it is possible to map the complex physics of non-

locality, specifically, the d-function formalism, into local response models, thereby

incorporating the inherent quantum nature of plasmonic systems and enabling cal-

culations using local computational schemes (e.g., FDTD). This was done with our

thin-film mapping scheme. As a future endeavor, this scheme should be applied to

other geometries and structures, perhaps leading to the discovery of novel response

phenomena. Additionally, similar geometric mapping schemes should be identified

for multi-layer or gradient films, which should be even more accurate.

In another area, our analysis of DNA damage offers many promising avenues

for future research. Specifically, we showed that it is possible to selectively drive

DNA towards destruction in certain regions of amplitude-frequency space. As a

follow-up, one could consider whether designer signals could expand the destructive

regime, i.e., whether it might be possible to destroy DNA at even lower amplitudes

using combinations of different pulses or polarizations, for instance. Also, one could

examine the sensitivity of the destructive dynamics to the model parameters used

in simulation—different physical models have been proposed in the literature and

may influence the parameter-space where damage is predicted to occur. Finally, one

could investigate specific DNA sequences corresponding to known biological entities,

in order to determine selectivity between real systems. Ultimately, we hope that

this study will inform future projects which seek to target cellular destruction for

therapeutic purposes.

Finally, we have also shown that the modal model of nonlinear response can be

used as an effective tool to predict the characteristics of difference-frequency gener-

ation. To follow-up, simulations of plasmonic particles should be run in COMSOL
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to confirm that a Miller-like relation holds between first-order and second-order po-

larizabilities. Informed by the modal model, one should be able to quickly optimize

second-order responses by focusing only on relevant modal coupling terms, rather

than the whole parameter-space. Designing subwavelength particles to exhibit de-

sired resonances and modal-coupling terms will certainly be a challenge, but designer

DFG (and other second-order response phenomena) will be yet another way to con-

trol light-matter interactions at the nanoscale for future novel applications.
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[56] R. P. Sinha and D.-P. Häder, “UV-induced DNA damage and repair: a review,”
Photochemical & Photobiological Sciences 1, 225 (2002).

[57] G. J. Wilmink and J. E. Grundt, “Invited review article: current state of
research on biological effects of terahertz radiation,” Journal of Infrared, Mil-
limeter, and Terahertz Waves 32, 1074 (2011).

217



[58] L. Zhao, Y.-H. Hao, and R.-Y. Peng, “Advances in the biological effects of
terahertz wave radiation,” Military Medical Research 1, 26 (2014).

[59] A. E. Bergues-Pupo, J. M. Bergues, and F. Falo, “Modeling the interaction of
DNA with alternating fields,” Physical Review E 87, 022703 (2013).

[60] A. Bergues-Pupo, J. Bergues, and F. Falo, “Unzipping of DNA under the influ-
ence of external fields,” Physica A: Statistical Mechanics and its Applications
396, 99 (2014).

[61] V. Franchini, S. De Sanctis, J. Marinaccio, A. De Amicis, E. Coluzzi,
S. Di Cristofaro, F. Lista, E. Regalbuto, A. Doria, E. Giovenale, et al., “Study
of the effects of 0.15 terahertz radiation on genome integrity of adult fibrob-
lasts,” Environmental and molecular mutagenesis (2018).

[62] A. A. Angeluts, A. B. Gapeyev, M. N. Esaulkov, O. G. Kosareva, S. N.
Matyunin, M. M. Nazarov, T. N. Pashovkin, P. M. Solyankin, O. P. Cherkasova,
and A. P. Shkurinov, “Study of terahertz-radiation-induced DNA damage in
human blood leukocytes,” Quantum Electronics 44, 247 (2014).

[63] K.-T. Kim, J. Park, S. J. Jo, S. Jung, O. S. Kwon, G. P. Gallerano, W.-
Y. Park, and G.-S. Park, “High-power femtosecond-terahertz pulse induces a
wound response in mouse skin,” Scientific reports 3, 2296 (2013).

[64] H. Hintzsche, C. Jastrow, T. Kleine-Ostmann, H. Stopper, E. Schmid, and
T. Schrader, “Terahertz radiation induces spindle disturbances in human-
hamster hybrid cells,” Radiation research 175, 569 (2011).

[65] E. V. Demidova, T. N. Goryachkovskaya, T. K. Malup, S. V. Bannikova, A. I.
Semenov, N. A. Vinokurov, N. A. Kolchanov, V. M. Popik, and S. E. Peltek,
“Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP
biosensor cells,” Bioelectromagnetics 34, 15 (2013).

[66] H. Hintzsche, C. Jastrow, T. Kleine-Ostmann, U. Kärst, T. Schrader, and
H. Stopper, “Terahertz electromagnetic fields (0.106 THz) do not induce man-
ifest genomic damage in vitro,” PloS one 7, e46397 (2012).

[67] A. Bogomazova, E. M. Vassina, T. Goryachkovskaya, V. Popik, A. Sokolov,
N. Kolchanov, M. Lagarkova, S. Kiselev, and S. Peltek, “No DNA damage
response and negligible genome-wide transcriptional changes in human em-
bryonic stem cells exposed to terahertz radiation,” Scientific reports 5, 7749
(2015).

[68] N. Grønbech-Jensen and O. Farago, “A simple and effective Verlet-type algo-
rithm for simulating Langevin dynamics,” Molecular Physics 111, 983 (2013).

[69] A. Cromer, “Stable solutions using the Euler approximation,” American Jour-
nal of Physics 49, 455 (1981).

218



[70] J. Butcher, “Runge-Kutta methods,” Scholarpedia 2, 3147 (2007).
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[104] D. C. Tzarouchis, P. Ylä-Oijala, T. Ala-Nissila, and A. Sihvola, “Plasmonic
properties and energy flow in rounded hexahedral and octahedral nanoparti-
cles,” JOSA B 33, 2626 (2016).

[105] M.-L. Ren, S.-Y. Liu, B.-L. Wang, B.-Q. Chen, J. Li, and Z.-Y. Li, “Giant
enhancement of second harmonic generation by engineering double plasmonic
resonances at nanoscale,” Optics Express 22, 28653 (2014).

[106] K. Thyagarajan, S. Rivier, A. Lovera, and O. J. Martin, “Enhanced second-
harmonic generation from double resonant plasmonic antennae,” Optics ex-
press 20, 12860 (2012).

[107] P. Ginzburg, A. Krasavin, Y. Sonnefraud, A. Murphy, R. J. Pollard, S. A.
Maier, and A. V. Zayats, “Nonlinearly coupled localized plasmon resonances:
Resonant second-harmonic generation,” Physical Review B 86, 085422 (2012).

[108] H. Linnenbank and S. Linden, “Second harmonic generation spectroscopy on
second harmonic resonant plasmonic metamaterials,” Optica 2, 698 (2015).

[109] B. Metzger, L. Gui, J. Fuchs, D. Floess, M. Hentschel, and H. Giessen, “Strong
enhancement of second harmonic emission by plasmonic resonances at the sec-
ond harmonic wavelength,” Nano letters 15, 3917 (2015).

221



[110] M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold
nanoparticles,” Physical Review Letters 98, 026104 (2007).

[111] M. Hentschel, T. Utikal, H. Giessen, and M. Lippitz, “Quantitative modeling
of the third harmonic emission spectrum of plasmonic nanoantennas,” Nano
letters 12, 3778 (2012).

[112] D. Griffiths, Introduction to Electrodynamics (Prentice Hall, 1999), 3rd ed.

[113] URL https://www.hit.ac.il/.upload/imported_files/file/Handasa/

tikshoret/experiment_6-Frequency%20modulation.pdf.

222



APPENDICES

223



APPENDIX A

List of Physical Constants

~ = 6.58211957× 10−16 eVs reduced Planck constant (A.1)

c = 2.99792458× 108 m/s speed of light (A.2)

ε0 = 8.854× 10−12 C2/Nm2 vacuum permittivity (A.3)

µ0 = 4π × 10−7 Tm/A vacuum permeability (A.4)

e = 1.602176634× 10−19 C charge of electron (A.5)

me = 0.5109 MeV/c2 mass of electron (A.6)

rs = 5.2917721067 Å Bohr radius (A.7)

kB = 1.38064852× 10−23 J/K Boltzmann constant (A.8)
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APPENDIX B

Maxwell and Auxiliary Equations

Maxwell’s equations in vacuum are [112]:

∇ · E =
ρ

ε0
Gauss’s Law (B.1a)

∇× E = −∂B

∂t
Faraday’s law of induction (B.1b)

∇ ·B = 0 Gauss’s law for magnetism (B.1c)

∇×B = µ0J + µ0ε0
∂E

∂t
Ampère’s law (B.1d)

Maxwell’s equations in media are:

∇ ·D = ρf (B.2a)

∇× E = −∂B

∂t
(B.2b)

∇ ·B = 0 (B.2c)

∇×H = Jf +
∂D

∂t
(B.2d)

The electric auxiliary fields in linear media are:

D = ε0E + P (B.3)

P = ε0χeE (B.4)

D = εE (B.5)

ε = ε0 (1 + χe) (B.6)
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The magnetic auxiliary fields in linear media are:

H =
1

µ0

B−M (B.7)

M = χmH (B.8)

H =
1

µ
B (B.9)

H =
1

µ
B (B.10)

µ = µ0 (1 + χm) (B.11)
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APPENDIX C

Derivation of Surface Plasmon Condition

Starting from Fig. 4.2, we write the electric field on each side an interface (without

an intermediate slab):

~E1(~r, t) = ~E1+e
i(ωt−qx+k1z) + ~E1−e

i(ωt−qx−k1z) (C.1a)

~E2(~r, t) = ~E2+e
i(ωt−qx+k2z) (C.1b)

where ~Ej± is the electric field vector of the incoming (+) or outgoing (-) wave in

the outside dielectric (j = 1) or metal (j = 2). The the respective wavevectors are

~kj± = (q,∓kj), where kj =
√

(ω/c)2εj − q2 is the z-component and q is the in-plane

component. The boundary conditions are Dz and Ex continuous:

Dz(0
−) = Dz(0

+) (C.2a)

Ex(0
−) = Ex(0

+) (C.2b)

which lead to the following relations:

ε1E1iz + ε1E1rz = ε2Etz (C.3a)

E1ix − E1rx = Etx (C.3b)

Now we use Gauss’s law, ∇ · ~E = 0 and ∇ · ~D = 0, evaluated at (x, z) = (0, d):

∇ · ~E1i = qE1ix − k1E1iz = 0 (C.4a)

∇ · ~E1r = −qErix + k1Eriz = 0 (C.4b)

∇ · ~Et = qEtx − k2Etz = 0 (C.4c)
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which result in the following relations:

E1ix =
k1

q
E1iz (C.5a)

E1rx =
k1

q
E1rz (C.5b)

Etx =
k2

q
Etz (C.5c)

and

k1E1iz − k1E1rz = k2Etz (C.6)

Using the definitions r = E1rz/E1iz and t = Etz/E1iz, we have:

ε1 + ε1r = ε2t (C.7a)

k1 − k1r = k2t (C.7b)

and can solve for r to obtain:

r =
ε2 − ε1 k2k1
ε2 + ε1

k2
k1

(C.8)

Now, to find the SP condition, we find the poles of the reflection coefficient,

0 = ε2 + ε1
k2

k1

(C.9)

which, with the relation kj =
√

(ω/c)2εj − q2, results in the SP condition:

q =
ω

c

√
ε1ε2
ε1 + ε2

(C.10)
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APPENDIX D

Derivation of Reflection from Two Layers

Starting from Fig. 4.2, we again write the electric field in each region:

~E1(~r, t) = ~E1+e
i(ωt−qx+k1z) + ~E1−e

i(ωt−qx−k1z) (D.1a)

~Es(~r, t) = ~Es+e
i(ωt−qx+ksz) + ~Es−e

i(ωt−qx−ksz) (D.1b)

~E2(~r, t) = ~E2+e
i(ωt−qx+k2z) (D.1c)

where ~Ej± is the electric field vector of the incoming (+) or outgoing (-) wave in the

outside dielectric (j = 1), surface layer (j = s), or metal (j = 2). The the respective

wavevectors are ~kj± = (q,∓kj), where kj =
√

(ω/c)2εj − q2 is the z-component and

q is the in-plane component. The boundary conditions are Dz and Ex continuous:

Dz(0
−) = Dz(0

+) (D.2a)

Dz(d
−) = Dz(d

+) (D.2b)

Ex(0
−) = Ex(0

+) (D.2c)

Ex(d
−) = Ex(d

+) (D.2d)

which lead to the following relations:

ε1E1iz + ε1E1rz = εsEsiz + εsEsrz (D.3a)

εsEsiz exp[iksd] + εsEsrz exp[−iksd] = εsEtz exp[ik2d] (D.3b)

E1ix − E1rx = Esix − Esrx (D.3c)

Esix exp[iksd]− Esrx exp[−iksd] = Etx exp[ik2d] (D.3d)
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Now we use Gauss’s law, ∇ · ~E = 0 and ∇ · ~D = 0, evaluated at (x, z) = (0, d):

∇ · ~E1i = qE1ix − k1E1iz = 0 (D.4a)

∇ · ~E1r = −qErix + k1Eriz = 0 (D.4b)

∇ · ~Esi = qEsix − ksEsiz = 0 (D.4c)

∇ · ~Esr = −qEsrx + ksEsrz = 0 (D.4d)

∇ · ~Et = qEtx − k2Etz = 0 (D.4e)

which result in the following relations:

E1ix =
k1

q
E1iz (D.5a)

E1rx =
k1

q
E1rz (D.5b)

Esix =
ks
q
Esiz (D.5c)

Esrx =
ks
q
Esrz (D.5d)

Etx =
k2

q
Etz (D.5e)

and

k1E1iz − k1E1rz = ksEsiz − ksEsrz (D.6a)

ksEsiz exp[iksd]− ksEsrx exp[−iksd] = k2Etz exp[ik2d] (D.6b)

Our objective is to solve for rp = E1rz/E1iz. The above relations can be formulated
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into the following matrix equation:


1 − εs

ε1
− εs
ε1

1 ks
k1

−ks
k1

0
(
εs
ε2
− ks

k2

)
eiks∆d

(
εs
ε2

+ ks
k2

)
e−iks∆d



E1rz

E1iz

Esiz

E1iz

Esrz

E1iz

 =


−1

1

0

 (D.7)

Solving for rp, we obtain the following:

rp =

∣∣∣∣∣∣∣∣∣∣
−1 − εs

ε1
− εs
ε1

1 ks
k1

−ks
k1

0
(
εs
ε2
− ks

k2

)
eiks∆d

(
εs
ε2

+ ks
k2

)
e−iks∆d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 − εs

ε1
− εs
ε1

1 ks
k1

−ks
k1

0
(
εs
ε2
− ks

k2

)
eiks∆d

(
εs
ε2

+ ks
k2

)
e−iks∆d

∣∣∣∣∣∣∣∣∣∣

, (D.8)

which reduces to:

rp =

(
ε(ω)− ε1

k2
k1

)
cos ks∆d− i

(
εsk2
ks
− ε1ε2ks

εsk1

)
sin ks∆d(

ε(ω) + ε1
k2
k1

)
cos ks∆d− i

(
εsk2
ks

+ ε1ε2ks
εsk1

)
sin ks∆d

. (D.9)

In the limit of ks∆d � 1, and with the identification of ε1 = ε0 and ε2 = ε(ω),

Eq. (D.9) reduces to that of Eq. (4.2) in the main text.

rTFp ≈
ε(ω)− ε0

k2
k1
− i ε(ω)ε0

εs(ω)k1
q2∆d+ iα−(ω)∆d

ε(ω) + ε0
k2
k1

+ i ε(ω)ε0
εs(ω)k1

q2∆d− iα+(ω)∆d
(D.10)

231



APPENDIX E

Simulations of mPBD Model at T=310 K

We investigated damage to a homogeneous AT sequence of 64 BPs at a temperature

of T=310 K. Our approach is identical to Chapter 5.3 & 5.4. First, we performed a

simulation without driving, in order to determine the time it takes for the system to

thermalize. In Fig. E.1, we show the average energy of BPs over 10 trials, simulated

for 10000 ps (note, this is twice as long as in Chapter 5.3). We compare results for

T=310 K (red) and T=290 K (blue). As we found in Chapter 5.3, the system at

T=290 K equilibrates on the order of 3000 ps, whereas it appears that the system

at T=310 K does not come to equilibrium, even after 10000 ps. This behavior is

unsurprising since T=310 K is very close to the melting transition. We note that

additional work must be done to determine an appropriate thermalization time.

We then simulated the system with driving, for all points in the amplitude-

frequency parameter space spanning A∈[0 pN, 300 pN] and f∈[1 THz, 2 THz]. For

each trial, we first allowed the system to thermalize for 10000 ps. The average

separation of all BPs within a sequence, over 10 trials, is shown in Fig. E.2, and

the boundary for damage onset is indicated by a solid white line. Compared to

Fig. 5.10, the boundary of damage onset occurs at lower amplitude and it is broader in

frequency. Additionally, many different “islands” of damage occur in this parameter

space, which suggests that the system is near a transitional state. Importantly,

these results show that selectivity is preserved at this higher temperature, since the

boundary of damage onset and the average separation amplitude (color scale) exhibit

amplitude and frequency dependent characteristics.

232



Figure E.1: Average energy vs. simulation time: T=310 K vs. T=290 K The
simulation is run for 10000 ps and data are taken over 10 independent trials. The
time-series data of the average energy, averaged over all 64 BPs and 10 trials, is
shown for T=310 K (red) compared to T=290 K (blue).
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Figure E.2: Average base-pair separation for homogeneous AT sequence (T=310 K).
The intensity scale represents the average base-pair separation and the line indicates
the boundary where the onset of damage occurs (average separation > 0.5125 Å).
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APPENDIX F

Derivation of DFG from Frequency Modulated Signal

We start by deriving an expression, S(t), for a frequency modulated signal, and

then obtain the corresponding DFG terms form the expression of S2(t). Initially, we

follow the outline and notation of Ref. [113]. For carrier frequency ωc and modulation

frequency ωm:

S(t) = A cos [ωct+ β sin (ωmt)] (F.1)

where β = kfAm/ωm. We express S(t) as a Fourier series:

S(t) = Re {A exp [i (ωct+ β sin (ωmt))]}

= Re {A exp [iωct] exp [iβ sin (ωmt)]}
(F.2)

where,

exp{[iβ sin (ωmt)]} =
∞∑
−∞

Cn exp [inωmt] (F.3)

We can determine the Fourier coefficients, Cn:

Cn =
ωm
2π

∫ Tm/2

−Tm/2
exp [iβ sin (ωmt)] exp [−inωmt] dt (F.4)

where, the integration occurs over the fill period, Tm = 2π/ωm. Now, with the

substitution θ = ωmt:

Cn =
ωm
2π

∫ π

−π
exp [i (β sin (θ)− nθ)] dθ (F.5)
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which is the definition of a Bessel function. Therefore,

Cn = Jn(β) (F.6)

which we can plug back into Eq. (F.2) to obtain

S(t) = Re

{
A exp [iωct]

∞∑
−∞

Jn(β) exp [inωmt]

}

= A

∞∑
−∞

Jn(β) cos [(ωc + nωm) t]

(F.7)

The previous derivation explicitly follows Ref. [113]. Now, we begin our original

analysis and go on to calculate the components of S2(t). First, we further reduce

S(t), using the identity J−n(β) = (−1)nJn(β):

S(t) =AJ0(β) cos(ωct)

+ A
∞∑
n=1

Jn(β) cos [(ωc + nωm) t]

+ A
∞∑
n=1

(−1)nJn(β) cos [(ωc − nωm) t]

(F.8)

Grouping odd and even terms, we have:

S(t) =AJ0(β) cos(ωct)

+ A

∞∑
n=odd

Jn(β) {cos [(ωc + nωm) t]− cos [(ωc − nωm) t]}

+ A

∞∑
n=even

Jn(β) {cos [(ωc + nωm) t] + cos [(ωc − nωm) t]}

(F.9)
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Using the identity cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b), we have:

S(t) =AJ0(β) cos(ωct)

− 2A
∞∑

n=odd

Jn(β) sin(ωct) sin(nωmt)

+ 2A
∞∑

n=even

Jn(β) cos(ωct) cos(nωmt)

(F.10)

Ultimately, the frequency modulated signal can be expressed as a sum of three com-

ponents, which are a signal at the original carrier frequency and two amplitude

modulated signals. The DFG term arises from S2(t), which has many possible

combinations of frequency components. This is a rather laborious derivation, but

straightforward. We report the result, considering only terms that are independent

of ωc. From our previous definition in the Chapter, the DFG frequency is related to

the modulation frequency by ωDFG = 2ωm, and the corresponding DFG term is:

S2(t) = A2
∑
|n−k|=1

[J2n−1(β)J2k−1(β) + J2n(β)J2k(β)] cos(ωDFGt) (F.11)

The DFG amplitude also has the following form in the limit of β << 1:

ADFG = A2
∑
|n−k|=1

[J2n−1(β)J2k−1(β) + J2n(β)J2k(β)]

≈ A2 [J1(β)J3(β) + J2(β)J4(β)]

(F.12)

Clearly, the amplitude of DFG from a frequency modulated signal is less than the

amplitude from an amplitude modulated signal, since Jn>1(β << 1) << 1.
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