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INCOME INEQUALITY AND CARBON EMISSIONS IN THE UNITED STATES: 

A STATE-LEVEL ANALYSIS, 1997-2012 

ABSTRACT 

This study investigates the relationship between U.S. state-level CO2 emissions and two 

measures of income inequality: the income share of the top ten percent and the Gini 

coefficient. Each of the inequality measures, which focus on unique characteristics of income 

distributions, is used to evaluate the arguments of different analytical approaches. Results of 

the longitudinal analysis for the 1997 to 2012 period indicate that state-level emissions are 

positively associated with the income share of the top ten percent, while the effect of the Gini 

coefficient on emissions is nonsignificant. The statistically significant relationship between CO2 

emissions and the concentration of income among the top ten percent is consistent with 

analytical approaches that focus on political economy dynamics and Veblen effects, which 

highlight the potential political and economic power and emulative influence of the wealthy. 

The null effect of the Gini coefficient is generally inconsistent with the marginal propensity to 

emit approach, which posits that when incomes become more equally distributed, the poor will 

increase their consumption of energy and other carbon-intensive products as they move into 

the middle class.   
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INCOME INEQUALITY AND CARBON EMISSIONS IN THE UNITED STATES: 

A STATE-LEVEL ANALYSIS, 1997-2012 

1. INTRODUCTION 

In recent years, researchers across various disciplines have begun to pay more attention 

to the role of inequality in climate change. The bulk of attention has been given to international 

and global inequalities, such as global North-South differences in historic CO2 emissions 

(Chancel and Piketty 2015; Jorgenson 2014; Rosa and Dietz 2012), disproportionate impacts of 

climate effects (IPCC 2014; Roberts and Parks 2006) and power imbalances between nations in 

the global North and South with respect to climate policy (Ciplet et al. 2015; Dunlap and Brulle 

2015). A relatively unexplored question is the role that income inequality plays as a driver of 

anthropogenic CO2 emissions. Does the existence of income inequality itself contribute to the 

volume of emissions? Are societies with more inequality higher emitters? Or does greater 

income equality lead to higher levels of emissions because there are more middle-class people 

with carbon-intensive lifestyles?  

 To the extent that this question has been addressed, most of the studies have taken 

their unit of analysis as the nation state, asking how domestic measures of income inequality 

affect CO2 emissions across countries and over time (Ravallion et al. 2000; Grunewald et al. 

2012; Jorgenson 2015). The results of these studies are mixed, with findings differing by group 

of countries, time periods, and modeling techniques (Borghesi 2006). This is not surprising, as 

there are a number of different pathways through which income inequality might affect 

emissions. 
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 In this study, we shift the analysis of CO2 emissions and income inequality to a different 

scale—the sub-national, and more specifically the U.S. state level. We analyze anthropogenic 

emissions across all 50 U.S. states and the District of Columbia, over the period 1997-2012, 

asking how the level of income inequality within a state affects its CO2 emissions. To our 

knowledge, with the exception of a preliminary analysis using a more restricted measure of 

emissions (Jorgenson et al. 2015), the present study is the first to analyze the relationship 

between CO2 emissions and inequality in a longitudinal, U.S. cross-state context.1 Furthermore, 

we include two measures of income inequality that capture different characteristics of 

inequality within income distributions: the Gini coefficient and the income share of the top ten 

percent.  As we note in the following literature review, each of these measures is well suited for 

empirically evaluating the arguments of different analytical approaches.   

2. LITERATURE REVIEW 

There are a variety of pathways through which income inequality can potentially affect 

emissions. The research literature, while relatively small, includes multiple approaches that 

identify different possibilities. The first approach, attributable originally to James Boyce (1994, 

2007; Boyce et al. 1999), is a political-economy explanation in which income concentration 

operates mainly via political influence on environmental policy. Boyce argues that the wealthy 

reap disproportionate economic benefits from polluting activities, both via their ownership of 

companies that engage in them and because they are better able to protect themselves from 

                                                           
1 Jorgenson et al. (2015) conduct a preliminary U.S. state-level analysis of the effect of one 
measure of income inequality – the Theil index – on CO2 emissions from just the residential 
sector. Their estimated models include a very limited number of control variables, and their 
literature review and theoretical discussion are very short and relatively narrow in scope.    
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negative impacts. They convert their preference for less environmental protection into 

influence in the political sphere.  Studies in this tradition were originally about environmental 

policies and outcomes other than greenhouse gases, although there are a few recent analyses 

which address climate change. A second approach, which we term “propensity to emit,” argues 

that at different levels of income, individuals’ or households’ propensity to consume carbon-

intensive goods varies as consumption patterns change (Borghesi 2006; Grunewald et al. 2012; 

Ravallion et al. 2000). For this reason, changes in the income distribution across households 

yield changes in emissions. A third approach posits that greater concentrations of income at the 

top of the distribution lead to heightened consumption competition and longer hours of work, 

which in turn increases energy consumption and emissions (Bowles and Park 2005; Jorgenson 

et al. 2015; Schor 1998). This is a kind of Veblen (1934) effect in which the wealthy consume 

expensive, publicly visible goods and services to gain status. We discuss these three approaches 

in turn. 

The political economy approach developed by Boyce (Boyce 1994, 2007; Boyce et al. 

1999) argues that inequality is likely to be associated with higher levels of energy use (e.g., 

fossil-fuels), pollution and environmental degradation. Increased fossil-fuel consumption has 

both global and local consequences, given that it leads to higher levels of CO2 emissions as well 

as other pollutants with more localized effects, including increases in the emission of carbon 

monoxide (CO) and nitrogen oxides (NOx). While Boyce offers a number of arguments about 

these relationships, a primary one is that the wealthy prefer more pollution. This is both 

because they are more likely to be owners of polluting firms and because they consume more 

goods and services, which are in themselves polluting. Thus, environmental protection is 



5 
 

costlier for the wealthy, and the wealthy are better equipped to protect themselves from 

environmental harms while shifting such burdens onto the poor. Boyce concludes that the 

wealthy are likely to use their economic power to gain political power, which they use to 

dominate the policy environment. 

Boyce identifies a “power-weighted social decision rule” in which those with more 

economic and by extension political power have a larger influence on policy outcomes and use 

that power to prevent environmental protection. It is worth noting that these dynamics can be 

occurring even under the standard assumption that the environment is a normal good, that is, 

people want to consume more “environmental amenities” and by extension “environmental 

policy,” as their income rises.  Boyce’s hypothesized effects operate alongside the increasing 

demand for “the environment” as income rises.  

Using data from across the U.S. states, Boyce and collaborators (Boyce et al. 1999) 

estimated a model in which income inequality predicts political power, political power predicts 

environmental policies, and environmental policies predict environmental stress and 

subsequently public health outcomes. Environmental sociologists have engaged this approach, 

similarly arguing that reducing environmental harms may first require a shift toward greater 

political and economic equality (Downey 2015). 

In the second approach, which focuses on the marginal propensity to emit (MPE), there 

is not a single hypothesis, although Ravallion et al. 2000 find that higher levels of within-country 

inequality are associated with lower emissions. Thus, they argue, there is a conflict between 

distributional policies to enhance equality and climate policy to reduce emissions. One 
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argument is that the MPE declines with income, an empirical finding from previous research 

(Ravallion et al. 2000, citing Holtz-Eakin and Selden 1995; Schmalensee et al. 1998; Heil and 

Selden 1999). However, Ravallion et al. (2000) identify a variety of possible effects operating in 

different directions such that the relationship between within-country inequality and emissions 

is theoretically ambiguous. These include the factors identified by Boyce as well as an Ostrom-

type effect on the ability to cooperate to achieve policy outcomes (see also Heerink et al. 2001). 

In these studies, it is generally argued that consumption demand is the key factor 

determining MPE. However, this approach does not consider one class of Keynesian effects. In a 

Keynesian model, lower-income households have a higher marginal propensity to consume 

than higher-income households, so increases in inequality that lower incomes for the poor 

should reduce emissions (Jorgenson et al. 2016). Thus, there is an additional mechanism by 

which higher inequality may reduce emissions, which is that the poor have a higher propensity 

to consume.  

Finally, the relationship may not be linear. If there are three classes of households—

poor, middle class, and wealthy—the propensity to consume and emit may rise and then fall, 

which would make the relationship between inequality and emissions curvilinear. This is partly 

supported by the results of Grunewald et al. (2012), who find that the inequality-emissions link 

varies with the level of inequality. In high inequality countries, reductions in inequality yield 

lower emissions; in low inequality countries, less inequality yields higher emissions. 

The third approach argues that higher inequality leads to more consumption 

competition (Schor 1998), which in turn increases emissions. There are two pathways for this 
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effect. The first, a Veblen effect, is that inequality induces status consumption as households 

increase their spending to keep up with the visible lifestyles of high-income households. 

(Veblen 1934; Schor 1998). Second, growth in inequality has been shown to increase working 

hours (Bowles and Park 2005), and cross-national research suggests that longer working hours 

are drivers of energy consumption and CO2 emissions via both their impacts on economic 

growth and on households’ consumption choices (Fitzgerald et al. 2015; Knight et al. 2013).  

In addition to these approaches to inequality and emissions, there is a growing body of 

research that investigates how CO2 emissions are distributed across households. While these 

studies do not explicitly test for the impact of inequality, a main finding in this research is that 

higher income households emit more CO2 than lower income households. For example, 

Pattison et al. (2014) find that counties in the U.S. with the highest average household incomes 

have greater consumption-based CO2 emissions but lower production-based emissions than 

less affluent counties. Pattison et al. (2014) conclude that rich communities are able to avoid 

some of the consequences of their carbon-intensive consumption by shifting carbon-intensive 

industrial activities into poorer areas, which is similar to arguments in the international 

inequality literatures within environmental sociology and ecological economics on the 

outsourcing of environmental harms from wealthier nations to poorer nations (Dunlap and 

Brulle 2015; Martinez-Alier and Muradian 2015). Weber and Matthews (2008) also find large 

differences by income, with the highest expenditure households emitting 10 times that of the 

lowest (see also Boyce and Riddle 2009; Kunkel and Kammen 2011). 
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In the following study of U.S. state-level emissions, we explore these questions by 

employing two measures of income inequality: the income share of the top ten percent and the 

Gini coefficient. We suggest the former is a more appropriate measure for capturing political 

economy and Veblen effects than the Gini coefficient, because the potential effect of the top 10 

percent measure depends on the economic and political power and emulative pull of the 

wealthy. By contrast, the Gini coefficient does not directly capture the location in the 

distribution where inequality is occurring, and variation in Gini coefficients can be due to 

differences between low and middle income households. For the MPE approach, the Gini 

coefficient remains relevant, although as noted, that approach does not yield clear theoretical 

predictions. 

3. METHODS 

3.1. Sample 

The dataset contains annual observations from 1997 to 2012 for all 50 U.S. states as well 

as the District of Columbia. These are the years in which comparable data suitable for 

longitudinal analyses are currently available for the dependent variable and the key 

independent variables. This yields an overall sample of 816 observations.   

3.2. Model Estimation Techniques 

To estimate the majority of reported models, we use a time-series cross-sectional Prais-

Winsten regression model with panel-corrected standard errors, allowing for disturbances that 

are heteroskedastic and contemporaneously correlated across panels (Beck and Katz 1995). We 

correct for AR(1) disturbances (i.e., first-order autocorrelation) within panels, and since we 
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have no theoretical basis for assuming the process is panel specific, we treat the AR(1) process 

as common to all panels. We control for both year-specific and state-specific effects, the 

equivalent of a two-way fixed effects model (Allison 2009). We note that this technique 

controls out between-state variation in favor of estimating within-state effects, a common 

approach in panel analyses of the human drivers of emissions (Rosa and Dietz 2012; Marquart-

Pyatt et al. 2015).  

To estimate the few reported models that include time-invariant control variables, we 

use generalized least squares random effects regression (Cameron and Trivedi 2009). The 

random effects models also include a correction for first-order autocorrelation (i.e., AR[1] 

correction) as well as year-specific intercepts.  

All non-binary variables are transformed into base 10 logarithmic form (labeled “LG” in 

Tables 1-4), an established approach in research on the drivers of anthropogenic emissions 

(Rosa and Dietz 2012). For such variables, the regression models estimate elasticity coefficients 

where the coefficient for the independent variable is the estimated net percent change in the 

dependent variable associated with a one percent increase in the independent variable (York et 

al. 2003). 

3.3. Dependent Variable 

The dependent variable is annual CO2 emissions from fossil fuel combustion, measured 

in millions of metric tons. This measure includes emissions from the commercial, industrial, 

residential, transportation, and electric power sectors. We obtained these emissions data from 

the United States Environmental Protection Agency’s (EPA) “State Energy CO2 Emissions” online 

database (https://www3.epa.gov/statelocalclimate/resources/state_energyco2inv.html, 
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accessed July 2, 2015). These state-level measures of CO2 emissions are similar to country-level 

measures of  “production-based emissions”, rather than “consumption-based emissions”, 

which are trade-adjusted measures that account for the emissions generated in the processes 

of production, which are then attributed to the consuming rather than producing country using 

input-output analysis techniques. Like prior cross-national studies (e.g., Knight and Schor 2014), 

we would prefer to analyze both production-based and consumption-based measures of state-

level CO2 emissions, but to the best of our knowledge the latter are currently unavailable in 

longitudinal form for U.S. states and the District of Columbia.     

3.4. Key Independent Variables 

We employ two measures of income inequality: the Gini coefficient and the income 

share of the top ten percent. We obtained the Gini coefficient data from the “U.S. State-Level 

Income Inequality” database, hosted by Mark Frank, Professor of Economics at Sam Houston 

State University (http://www.shsu.edu/~eco_mwf/inequality.html, accessed July 15, 2015). The 

values of estimated Gini coefficients can range from zero (perfect equality) to 1 (perfect 

inequality). Thus, we added a constant of one to each score before transformation into 

logarithmic form.  

We gathered the income share of the top ten percent data from the World Wealth and 

Income Database (WWID), which were developed by Mark Frank and colleagues 

(http://www.wid.world/#Database:, accessed July 16, 2015). These data are measured in 

percentages. Both inequality measures are constructed from individual tax filing data available 

from the Internal Revenue Service. For in-depth information on the creation of the two 

measures, see Frank et al. (2015).    
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3.5. Control Variables 

We include population size, measured in the number of persons, which we obtained 

from the United States Census Bureau database for state-level population estimates 

(https://www.census.gov/popest/data/intercensal/index.html, accessed July 10, 2015). We also 

include Gross Domestic Product (GDP) per capita by state (reported in chained 2007 dollars), 

which we gathered from the United States Department of Commerce Bureau of Economic 

Analysis database (http://www.bea.gov/itable/, accessed July 10, 2015). Population size and 

GDP per capita are included in all estimated models. Consistent with past research on 

anthropogenic emissions (Dietz 2015; Jorgenson and Clark 2012; Lamb et al. 2014; Rosa and 

Dietz 2012; York et al. 2003), we anticipate that both population size and GDP per capita will 

exhibit positive effects of state-level CO2 emissions. 

Many of our reported models include state-level measures of the percent of the 

population in urban areas, manufacturing as a percent of GDP, and total fossil-fuel production 

(coal, natural gas, and crude oil) in billions of British thermal units (Btu). The urban data are 

obtained from United States Census (https://www.census.gov, accessed July 10, 2015), and are 

only available each decade (e.g., 1990, 2000, 2010). Using the 1990 and 2000 measures we 

created 1995 estimates (midpoint value), which we use for the years 1997 through 1999. We 

use the available measures for 2000 for the years 2000 through 2004. We calculated (using the 
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2000 and 2010 measures) and employ 2005 estimates for the years 2005 through 2009. We use 

the 2010 measures for the years 2010 through 2012.2         

Scholars have highlighted how urbanization could be more or less carbon-intensive 

(Jorgenson, Auerbach, and Clark 2014). For example, Rees and Wackernagel (1996) argue that 

the organization of urban areas—which use extensive amounts of energy and other natural 

resources—are environmentally unsustainable. In contrast, some bodies of research 

underscore the potentially ecologically beneficial aspects of urbanization, such as energy 

efficiencies associated with higher population concentration (Dodman 2009). Of particular 

relevance for the current study, the relative size of urban populations has been found to be a 

significant predictor of increased energy consumption and CO2 emissions in recent U.S. state-

level analyses (Clement and Schultz 2011).  

The manufacturing data are gathered from the United States Department of Commerce 

“Bureau of Economic Analysis” database (http://www.bea.gov/index.htm, accessed September 

21, 2015). The fossil-fuel production data are obtained from the United States Energy 

Information Administration (EIA) “State Energy Data System” database 

(http://www.eia.gov/state/seds/seds-data-complete.cfm?sid=US#Production, accessed 

February 5, 2016). The EIA database provides production measures for each of the three fossil-

fuels individually, which we summed to create the total measures. Conventional wisdom would 

suggest that both the relative size of a state’s manufacturing sector and its level of fossil-fuel 

                                                           
2 We acknowledge the limitations with these urban measures and recognize that there are a 
variety of techniques for missing data imputation, each of which has relative strengths and 
weaknesses. We therefore report estimated models that include urbanization as well as 
estimated models that do not. 
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production could increase overall state-level emissions. Thus, we consider them to be 

important control variables.       

 We include Dietz et al.’s (2015) measure of state environmentalism in the random 

effects models. These data measure pro-environmental voting by states’ Congressional 

delegations. Dietz et al. create an average of House and Senate scores that are based on the 

League of Conservation Voters’ rating (ranging from 0 to 100) for each member of Congress 

based on her or his votes on environmental issues as identified by the League for the 1990 to 

2005 period. This variable is intended to serve as a proxy for environmental attitudes in the 

state. Dietz et al. (2015) find that state-level carbon emissions are negatively correlated with 

their measure of state environmentalism. While these measures cover a fifteen-year period, 

they are technically time-invariant and perfectly correlated with the state-specific fixed effects. 

The District of Columbia is not included in these measures and thus excluded from the dataset 

for the estimated models that include the state environmentalism measure. 

In the final random effects model we include dummy variables for Census Region, which 

consist of Midwest Census Region, South Census Region, West Census Region, and Northeast 

Census Region.  

3.6. Descriptive Statistics and Bivariate Analysis  

Table 1 provides descriptive statistics (in both regular and base 10 logarithmic form for 

all non-binary variables), and Table 2 reports all pairwise correlations for the variables included 

in the regression models. As noted in Table 2, for the analyzed longitudinal data (yearly point 

estimates from 1997 to 2012, all non-binary variables in base 10 logarithmic form), state-level 
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CO2 emissions is positively associated at .126 with the Gini coefficient and .219 with the income 

share of the top ten percent.   

<Table 1 and Table 2 about here> 

To provide better context of the bivariate associations across the U.S. states and District 

of Columbia, Figure 1 is a scatterplot of the association between percent change from 1997 to 

2012 in CO2 emissions and percent change from 1997 to 2012 in the Gini coefficient. Similarly, 

Figure 2 is a scatterplot of the association between percent change in emissions and percent 

change in the income share of the top ten percent.  Values of the three percent change scores 

for all states and the District of Columbia are provided in the Appendix. For these measures, 

percent change in state-level emissions are positively correlated with percent change in the 

Gini coefficient at .195, and positively correlated at .220 with percent change in the income 

share of the top ten percent.   

<Figure 1 and Figure 2 about here> 

According to Figure 1, and for example, Wyoming is a state that experienced relatively 

large percent increases in both emissions and the Gini coefficient, while Alaska experienced the 

greatest percent decrease in the Gini coefficient, and a modest decrease in emissions as well. 

Turning to Figure 2, Arkansas and North Dakota experienced relatively large percent increases 

in both CO2 emissions and the income share of the top ten percent, while relative to other 

states, Delaware and Maryland experienced notable percent decreases in both emissions and 

income share among the top ten percent. We now turn to the findings for the regression 

analysis.        
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4. RESULTS 

Table 3 provides the estimates for six fixed effects models of CO2 emissions in all 50 U.S. 

States and the District of Columbia, from 1997 to 2012. We note that the close to perfect R-

squared statistic for these models is largely due to the case-specific and year-specific intercepts, 

which by themselves explain the majority of variation in the outcome. Models 1 and 3 each 

consist of one of the two income inequality measures as well as the controls for population size 

and GDP per capita.  The inequality measure in Model 1 is the Gini coefficient, and in Model 3 it 

is the income share of the top ten percent. The estimated effect of the Gini coefficient in Model 

1 is nonsignificant, while in Model 3 the effect of income share of the top ten percent is positive 

and statistically significant. For the latter, a one percent increase in the income share of the top 

ten percent leads to a .134 percent increase in emissions.  As expected, the effects of 

population size and GDP per capita are positive and statistically significant. 

Models 2 and 4 expand Models 1 and 3, and include the other three time-variant 

controls: percent of the population in urban areas, manufacturing as a percent of GDP, and 

fossil-fuel production. With the inclusion of the additional controls, the estimated effect of the 

Gini coefficient remains nonsignificant, while the estimated effect of income share of the top 

ten percent on CO2 emissions remains statistically significant, but slightly decreases in value 

(elasticity coefficient = .122). Population size and GDP per capita continue to have positive 

effects on emissions. The effect of percent of population in urban areas on CO2 emissions is 

positive and statistically significant in both models, while the estimated effects of the other two 

additional controls are nonsignificant. The null finding for the manufacturing measure, we 
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suspect, is at least partly due to the analysis of CO2 emissions from the commercial, industrial, 

residential, transportation, and electric power sectors combined. The state-level measures of 

fossil-fuel production are relatively time-invariant and thus highly correlated with the case-

specific fixed effects, which could explain their nonsignificant effect in both models. 

<Table 3 about here> 

Model 5 includes both of the income inequality measures as well as population size and 

GDP per capita, while Model 6 adds the other three time-variant controls. The findings of 

interest remain the same: the effect of the income share of the top ten percent is positive and 

statistically significant in both models (elasticity coefficient = .138 in Model 5 and .130 and 

Model 6), while the effect of the Gini coefficient continues to be nonsignificant. The findings 

concerning the control variables are consistent with the prior four models. Overall, the results 

reported in Table 3 suggest that the relationship between state-level CO2 emissions and the 

Gini coefficient is nonsignificant, while the effect of income share of the top ten percent on 

emissions is positive and nontrivial in magnitude. Based on the point estimates for the elasticity 

coefficients from these models, a one percent increase in the income share of the top ten 

percent leads to between a .122 to a .138 percent increase in CO2 emissions, net of the various 

time-variant controls and the two-way fixed effects. Using the emissions data for the year 2012, 

this range of elasticity coefficients would suggest that a one percent increase in the income 

share of the top ten percent would lead to between 825,564.4 and 934,174.4 metric tons of 

additional CO2 emissions for Texas (the largest state-level emitter), between 90,661.9 and 

102,551.9 metric tons of additional emissions for South Carolina (the median level of emissions 
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in 2012 compared to the other states and the District of Columbia), and between 3305.0 and 

3738.4 metric tons of additional CO2 emissions for the District of Columbia (lowest level of 

emissions in 2012 compared to the 50 states).  

Table 4 reports the findings for the random effects analysis, labeled as Model 7 and 

Model 8. The two estimated models include all the time-variant predictors as well as the time-

invariant measure of state environmentalism. Model 8 also includes the census region dummy 

variables, where the Northeast census region is the reference category. The results of interest 

are consistent with the fixed effects analysis reported in Table 3: the estimated effect of the 

Gini coefficient on CO2 emissions is nonsignificant, while the elasticity coefficient for the effect 

of income share of the top ten percent is positive and statistically significant. In Model 7, a one 

percent increase in the income share of the top ten percent leads to a .096 percent increase in 

emissions, while in Model 8, a one percent increase in this measure of income inequality leads 

to a .103 percent increase in CO2 emissions.      

<Table 4 about here> 

 Turning briefly to the controls, the results indicate that CO2 emissions are negatively 

associated with state environmentalism. In Model 8, the dummy variables for the Midwest and 

South census regions are positive and statistically significant, suggesting regional variation. The 

effect of fossil-fuel production is positive and statistically significant in both models, while the 

effect of urban population is nonsignificant, which contrasts with the results of the fixed effects 

analysis in Table 3 and could be the result of heterogeneity bias in the random effects models. 
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The effects of all other time-variant controls are consistent with the fixed effects model 

estimates. 

 In additional fixed effects models and random effects models we included quadratics for 

both income inequality measures, a standard approach to testing for curvilinear relationships. 

Both quadratics yielded nonsignificant effects on emissions, the main effect of the Gini 

coefficient remained nonsignificant, while the main effect of income share of the top ten 

percent continued to be positive and statistically significant.3  

5. CONCLUSION 

This study contributes to the multidisciplinary research on the human dimensions of 

climate change by analyzing how different types of income inequality affect CO2 emissions at 

the U.S. state level. Global and international inequalities of various types have been widely 

studied. However, there is limited research on income inequality and CO2 emissions, and it has 

been primarily conducted at the nation state level, focusing on how income inequality across 

nations influences national-level emissions. While potentially illuminating, cross-national 

research might overlook heterogeneity within nations, including the association between 

income inequality and CO2 emissions. Thus, the present study advances climate change 
                                                           
3 In an additional analysis, using robust regression, a relatively conservative approach that 
down-weights the influence of outliers in residuals (Hamilton 1992), we estimated logged and 
differenced models (also known as relative change models) of change in emissions from 1997 to 
2012 on change in both inequality measures from 1997 to 2012, while controlling for change in 
population size and GDP per capita. The results indicate that the estimated effect of change in 
the income share of the top ten percent (from 1997 to 2012) on change in CO2 emissions (from 
1997 to 2012) is positive and statistically significant, while the estimated effect of change in the 
Gini coefficient (from 1997 to 2012) is nonsignificant. These results suggest that the positive 
association between state-level emissions and the income share of the top ten percent also 
occurs, in general, over relatively longer periods of time.     
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research by investigating if and how multiple characteristics of income inequality influence 

emissions, and the analysis is conducted at a sub-national level, providing a more nuanced view 

of these socio-environmental relationships.               

The results of the longitudinal analysis indicate that a higher concentration of income 

among the top ten percent increases U.S. state-level emissions, while the Gini coefficient’s 

effect of CO2 emissions is not significantly different than zero. Our findings concerning the 

concentration of income among the top ten percent are consistent with analytical approaches 

that focus on political economy dynamics and Veblen effects, which highlight the potential 

economic and political power and emulative influence of the wealthy. The null effects of the 

Gini coefficient are generally inconsistent with the marginal propensity to emit approach, which 

suggests that when incomes become more equally distributed, the poor will increase their 

consumption of energy and other products as they move into the middle class, leading to an 

overall increase in anthropogenic emissions. These results hold across multiple model 

specifications, and net of the effects of other established economic, demographic, and political 

drivers of CO2 emissions. 

Given the urgency of reducing carbon emissions, policy approaches that combine 

equality-enhancing effects with direct reductions in emissions are promising. Prior research on 

cap-and-dividend programs, which combine an emissions cap, permit auctioning and per capita 

revenue disbursement suggests they are a progressive policy, in contrast to carbon taxes or 

cap-and-trade schemes which do not explicitly reimburse lower-income households. (According 

to Boyce and Riddle 2009, with a $200 per ton carbon tax and no dividend, income loss among 
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the bottom quintile of households is estimated at 10.2%, or twice the loss for the top quintile. 

By contrast, with a dividend, the top quintile loses 2.4% and the bottom gains 14.8%.) If our 

findings are valid, a cap-and-dividend scheme would yield some emissions reductions above 

those set by the initial cap, via the pathway we have identified. However, because cap-and-

dividend schemes will likely have more impact on the Gini coefficient than the top 10% income 

concentration measure, the additional emissions reductions are likely to be modest. Larger 

impacts may come from conventional measures such as wealth taxes, a financial transactions 

tax, and steeply progressive income taxes, which will have a greater effect on top 10% income 

concentration. 

We conclude by suggesting future steps in this research area. First, it is important to 

conduct analyses which identify the specific pathways through which inequality affects 

emissions. Second, future analyses should investigate the relationship between income 

inequality and CO2 emissions at sub-national levels within other large nations, such as the 

province level within China and the state level within Brazil. Third, while the present study 

focused on two measures that capture unique characteristics of inequities within income 

distributions, other inequality measures, such as the 20:20 ratio, the Hoover index, the Palma 

ratio, and the Theil index capture additional characteristics of income distributions. Future sub-

national and cross-national research should investigate these additional measures, providing a 

more complete picture of the complex interrelationships between inequality and CO2 

emissions. Fourth, a related set of issues to consider is if and how recessions might influence 

the relationship between CO2 emissions and income inequality, and the extent to which this 

might differ between nations and between sub-national units. Finally, future research on other 
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environmental outcomes, such as land cover change and industrial water pollution, should 

investigate the effects of income inequality as well. 4 We hope this study will encourage other 

scholars to join us in pursuing such future empirical investigations. 
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Table 1. Descriptive Statistics     
  

Standard 
  

 
Mean Deviation Minimum Maximum 

CO2 Emissions  112.412 113.784 2.710 712.940 
Gini Coefficient .593 .036 .520 .760 
Income Share of Top Ten Percent 43.627 4.905 33.560 62.260 
Population Size 5765477.941 6426923.470 480000.000 38000000.000 
GDP Per Capita  41646.320 15576.883 25224.000 151257.000 
Percent of Population in Urban Areas 73.120 14.968 38.200 100.000 
Manufacturing as Percent of GDP 13.204 6.086 .210 30.590 
Fossil-Fuel Production 998037.747 1982492.732 .000 13339833.000 
State Environmentalism 51.900 21.610 6.500 90.000 
Midwest Census Region .235 .424 .000 1.000 
South Census Region .314 .464 .000 1.000 
West Census Region .255 .436 .000 1.000 
Northeast Census Region .196 .397 .000 1.000 
CO2 Emissions (LG) 1.855 .453 .433 2.853 
Gini Coefficient (LG) .202 .010 .182 .245 
Income Share of Top Ten Percent (LG) 1.637 .047 1.525 1.794 
Population Size (LG) 6.543 .449 5.681 7.580 
GDP Per Capita (LG) 4.602 .110 4.401 5.180 
Percent of Population in Urban Areas (LG) 1.854 .096 1.582 2.000 
Manufacturing as Percent of GDP (LG) 1.099 .245 .080 1.500 
Fossil-Fuel Production (LG) 3.663 2.756 .000 7.125 
State Environmentalism (LG) 1.660 .247 .813 1.954 

     
     
Notes:       
 
all continuous variables are reported in both original values and 
base 10 logarithmic form (labeled “LG”);    

 
816 total observations for each variable except State Environmentalism (800 total observations) 
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Table 2. Pairwise Correlations               
              
  1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 
CO2 Emissions (LG) 1.             
Gini Coefficient (LG) 2. .126            
Income Share of Top Ten Percent (LG) 3. .219 .629           
Population Size (LG) 4. .856 .173 .411          
GDP Per Capita (LG) 5. -.281 .183 .290 -.139         
Percent of Population in Urban Areas (LG) 6. .218 .206 .428 .417 .522        
Manufacturing as Percent of GDP (LG) 7. .463 -.237 -.114 .404 -.615 -.312       
Fossil-Fuel Production (LG) 8. .512 .147 -.049 .208 -.247 -.028 .069      
State Environmentalism (LG) 9. -.053 -.111 .287 .274 .128 .201 .149 -.458     
Midwest Census Region 10. .151 -.231 -.335 .053 -.070 -.066 .296 .053 .140    
South Census Region 11. .249 .105 .057 .210 -.108 -.180 .044 .172 -.188 -.375   
West Census Region 12. -.151 .115 -.029 -.193 .024 .254 -.329 .187 -.363 -.324 -.395  
Northeast Census Region 13. -.287 -.002 .324 -.090 .175 .002 -.006 -.462 .465 -.274 -.334 -.289 

              
              
Notes:                
all continuous variables are in base 10 logarithmic form (labeled “LG”);            
816 total observations for each variable except State Environmentalism (800 total observations) 
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Table 3. Fixed Effects Longitudinal Models of the Effect of Income Inequality on  
CO2 Emissions in all 50 U.S. States and District of Columbia, 1997 to 2012   
       

 
Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Model 

6 

       
Gini Coefficient (LG) .163 .092   -.040 -.100 

 (.335) (.307)   (.351) (.319) 

       
Income Share of Top Ten Percent (LG)   .134* .122* .138* .130* 

   (.061) (.057) (.066) (.061) 

       
Population Size (LG) .511** .457** .512** .458** .512** .458** 

 (.107) (.115) (.097) (.106) (.097) (.105) 

       
GDP Per Capita (LG) .257** .237** .248** .233** .247** .230** 

 (.062) (.063) (.062) (.064) (.063) (.064) 

       
Percent of Population in Urban Areas (LG)  .834**  .814**  .825** 

  (.308)  (.300)  (.296) 

       
Manufacturing as Percent of GDP (LG)  -.002  -.008  -.007 

  (.020)  (.019)  (.019) 

       
Fossil-Fuel Production (LG)  .004  .003  .004 

  (.003)  (.003)  (.003) 

       
       

R2 .996 .996 .996 .996 .996 .996 
rho .591 .592 .561 .569 .561 .568 

       
Notes: estimated with Prais-Winston regression;      
16 annual observations for 51 cases in all models;      
816 total observations in all models;         
coefficients flagged for statistical significance;      
**p<.01 *p<.05 (two-tailed tests of statistical significance); 

    
panel-corrected standard errors in parentheses;      
models includes AR(1) correction (labeled as "rho");      
models include unreported case-specific and year-specific intercepts (two-way fixed effects); 

 
all continuous variables are in base 10 logarithmic form (labeled “LG”) 
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Table 4. Random Effects Longitudinal Models of the Effect of 
Income Inequality on CO2 Emissions in all 50 U.S. States, 1997 to 2012  

    
 

Model 7 Model 8  
    Gini Coefficient (LG) -.123 -.119  
 (.223) (.220)  
    
Income Share of Top Ten Percent (LG) .096* .103*  
 (.042) (.042)  

    
Population Size (LG) .824** .742**  
 (.043) (.046)  
    
GDP Per Capita (LG) .239** .255**  
 (.065) (.064)  
    
Percent of Population in Urban Areas (LG) -.041 .241  
 (.173) (.183)  
    
Manufacturing as Percent of GDP (LG) .003 -.004  
 (.021) (.021)  
    
Fossil-Fuel Production (LG) .010** .009**  
 (.003) (.003)  
    
State Environmentalism (LG) -.455** -.425**  

 (.076) (.088)  
    

Midwest Census Region  .221**  
  (.054)  
    
South Census Region  .192**  
  (.059)  
    
West Census Region  .004  
  (.061)  
    
R2 .842 .875  
rho .736 .736  
    Notes: estimated with GLS random effects regression; 

  
16 annual observations for 50 cases (excludes District of Columbia); 

 
800 total observations; coefficients flagged for statistical significance;    
**p<.01 *p<.05 (two-tailed tests of statistical significance);   

  
standard errors in parentheses; models includes AR(1) correction (labeled as "rho"); 

 
models include unreported year-specific intercepts; 

  
all continuous variables are in base 10 logarithmic form (labeled “LG”); 

  
Northeast Census Region is reference category in Model 8 
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Figure 1. Scatterplot of the Association Between CO2 Emissions and the Gini Coefficient 

(Both Measured as Percent Change Scores for 1997 to 2012) 
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Figure 2. Scatterplot of the Association Between CO2 Emissions and the Income Share of the Top Ten Percent 

(Both Measured as Percent Change Scores for 1997 to 2012) 
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Appendix. Percent Change Scores (1997 to 2012) for CO2 Emissions and Both Income Inequality Measures 

  
Percent Change in Percent Change in 

  
Percent Change in Percent Change in 

 
Percent Change in the Income Share of  the Gini  

 
Percent Change in the Income Share of  the Gini  

 
CO2 Emissions the Top Ten Percent Coefficient 

 
CO2 Emissions the Top Ten Percent Coefficient 

Alabama -7.896 6.464 6.256 Montana 1.138 19.202 9.779 

Alaska -9.197 4.372 -5.539 Nebraska 22.419 9.026 6.605 

Arizona 27.402 7.904 9.611 Nevada -9.034 23.650 18.263 

Arkansas 10.379 21.723 10.499 New Hampshire -10.326 -2.468 5.405 

California 2.525 17.132 10.985 New Jersey -16.294 7.528 9.336 

Colorado 19.400 13.275 9.521 New Mexico -1.790 8.585 5.714 

Connecticut -18.336 13.699 10.577 New York -20.206 18.544 12.516 

Delaware -17.168 -10.491 4.784 North Carolina -14.934 12.526 9.038 

District of Columbia -36.497 16.634 8.188 North Dakota 20.148 20.337 10.889 

Florida 3.346 13.604 15.356 Ohio -16.560 12.671 8.075 

Georgia -12.686 9.546 10.247 Oklahoma 5.635 16.232 9.215 

Hawaii 1.758 6.837 6.605 Oregon 2.387 9.469 6.485 

Idaho 14.530 12.016 13.822 Pennsylvania -14.335 8.855 6.918 

Illinois -3.987 13.592 9.164 Rhode Island -22.347 3.925 7.343 

Indiana -10.605 7.114 7.502 South Carolina 4.508 13.628 9.722 

Iowa 9.269 9.060 5.616 South Dakota 13.248 11.018 8.445 

Kansas -6.655 11.187 10.137 Tennessee -18.069 5.963 6.919 

Kentucky -2.715 4.380 5.512 Texas -3.409 15.160 7.625 

Louisiana -11.856 6.409 10.680 Utah 1.069 10.298 8.768 

Maine -18.489 3.722 4.914 Vermont -14.587 0.360 6.892 

Maryland -15.589 -4.917 7.276 Virginia -10.329 10.304 9.063 

Massachusetts -26.404 11.635 9.555 Washington -11.212 11.608 9.653 

Michigan -19.393 17.586 10.985 West Virginia -17.994 1.412 5.199 

Minnesota -5.396 14.505 8.112 Wisconsin -12.697 9.413 8.355 

Mississippi 10.357 3.714 6.931 Wyoming 10.674 8.375 23.013 

Missouri 1.334 14.611 9.260 
     


