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Abstract

We propose a model of local-regret behavior that allows the sepa-
ration of regret behavior between random variables that are close to
each other and between random variables that are far apart. This en-
ables a reinterpretation of evidence related to intransitive behavior in
the laboratory. When viewed through this paper’s analysis of regret,
the laboratory evidence need not imply intransitive behavior for large
risky decisions such as investment choices and insurance.
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1 Introduction

Transitivity is a fundamental assumption of decision theory, both at the in-
dividual and at the social level. The requirement that if A precedes B and B
precedes C then A precedes C seems almost obvious. Yet we know that not
all decision rules satisfy transitivity. The voting paradox of Condorcet (see,
e.g., Muller [15]) shows that the majority rule may lead to a cyclic viola-
tion of transitivity. Nor do decision makers always behave according to this
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rule. Many experiments show that individual preferences are often intran-
sitive, especially preferences over random variables. The preference reversal
phenomenon (Lichtenstein and Slovic [10] and Grether and Plott [8]) shows
that decision makers prefer a random variable like P = (4, 35

36
; −1, 1

36
) to

S = (16, 11
36
; −1.5, 25

36
), yet they set a higher selling price rS on S than the

selling price rP they set on P . This behaviour violates transitivity, because
presumably rP ∼ P ≻ S ∼ rS ≻ rP . For other documented violations of
transitivity, see e.g. Loomes, Starmer, and Sugden [12], Starmer [18], Birn-
baum and Schmidt [5], and Regenwetter, Dana, and Davis-Stober [17].

Bell [2] and Loomes and Sugden [11] independently offered a simple idea
to explain violations of transitivity. Unlike standard models of economics,
where the value of an outcome depends only on the outcome itself, regret
theory postulates that decision makers evaluate each possible outcome they
may receive by comparing it to the alternative outcome they could have
received by choosing differently. When comparing the random variable X =
(x1, s1; . . . ; xn, sn) with Y = (y1, s1; . . . ; yn, sn), the decision maker computes
the expected value of a (subjective) elation/regret function ψ(x, y) and will
choose X over Y if and only if this value is positive. Formally, he prefers X
to Y if and only if

∑

i Pr(si)ψ(xi, yi) > 0.

Regret theory often assumes that decision makers are regret averse. That
is, if x > y > z then ψ(x, z) > ψ(x, y) + ψ(y, z). The justification for this
assumption is that large differences between what one obtained and what one
would have obtained from an alternative choice give rise to disproportion-
ately larger regret and elation. Several violations of expected utility can be
explained by regret aversion. In particular, it implies that preferences are not
transitive, see e.g. Loomes, Starmer, and Sugden [12] or Starmer [18]. For
an axiomatization of regret aversion, see Diecidue and Somasundaram [6].

But do these aforementioned experiments prove that decision makers vi-
olate transitivity on a large range of random variables? The justification for
the cycles presented by Loomes et al. [12] is regret aversion. For instance, the
regret/elation difference between 8 and 0 is significant, while the differences
between 8 and 4 and between 4 and 0 are not. But suppose that the payoffs
are multiplied by 1,000. Can one really argue that any of these differences
are is insignificant? The argument that ψ(8, 0) is significantly larger than
ψ(8, 4) + ψ(4, 0) seems less convincing when the outcomes are 8,000, 4,000,
and 0.

The purpose of the present paper is two fold. First, we formalize this
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last argument. We show that violations of transitivity on triples of random
variables that are close to each other do not imply violations of transitivity
everywhere. Moreover, we show that one can have regret behaviour with
respect to random variables that are close to each other together with transi-
tive behaviour for random variables that are not too close. In this we do not
claim that regret theory is not a valid theory. What we claim is that applying
this theory to decisions involving “large” random variables (like insurance or
investment decisions) cannot be justified based on these experiments.

Our second objective is to establish that even if regret theory, as orig-
inally formulated, applies only to random variables that are close to each
other, it is still a very powerful theory and preferences in different neighbor-
hoods are not independent of each other. Formally, suppose that for each
random variable W there is a neighborhood around W on which preferences
are induced by regret theory, but the regret function may change from one
random variable W to another. We show that to a certain extent, all these
“local” regret functions are tightly knitted to each other. In other words,
even if experiments showing regret “in the small” do not prove regret “in the
large,” they should still indicate strong connection between local behaviors
around different random variables.

The original papers on regret, [2] and [11], assumed linearity in proba-
bilities, that is, they evaluated regret by taking expected values of a regret
function. Much of the subsequent literature also assumed regret that is linear
in probabilities. We show that with linear regret, intransitivity is pervasive
in the sense that the existence of one intransitive cycle implies the existence
of intransitive cycles everywhere. Moreover, observing one cycle the theory
predicts many other specific cycles. Although this is not an experimental
paper, we offer behavioral predictions that can support or refute the original
form of regret theory. In fact, it turns out that even for more general forms
of regret (as in [3]), some predictions can be made regarding the connection
between cycles of preferences in different neighborhoods.

The paper is organized as follows. The linear-regret model is presented
in Section 2, where it is shown that intransitivity in one part of the domain
implies intransitivity everywhere. A more general regret model, which per-
mits a decoupling of regret between random variables that are close to each
other and regret between random variables that are far apart, is considered
in Section 3. All proofs are in an appendix.
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2 Linear Regret

Consider a set L of finite-valued random variables X of the form X =
(x1, s1; . . . ; xn, sn) where the outcomes are monetary payoffs (which may
be positive or negative).1 The events s1, . . . , sn are pairwise disjoint and
their union is the sure event. The probability of si is pi. The set L is
endowed with the L2 norm. Thus, for X = (x1, s1, . . . ; xn, sn) and W =
(w1, s1; . . . ;wn, sn),

2 we have ||X −W || =
∑n

i=1 pi(xi −wi)
2. An ε-neighbor-

hood of W is the set B(W, ε) = {X : ||X −W || < ε}.

A decision maker’s preferences on L are represented by a complete binary
relation � which may or may not be transitive. The standard definition of
transitivity, if X � Y and Y � Z, then X � Z, implies that preferences are
not transitive if there exists even one triplet X, Y, Z ∈ L such that X � Y ,
Y � Z, yet Z ≻ X. We are however interested in more complex situations,
where preferences may be transitive on some domains but intransitive on
others. More importantly, we want to investigate how pervasive are such
intransitive cycles, and if they exist, whether they are sporadic or must they
appear everywhere.

Regret is a convenient way to model intransitive preferences.3 Bell [2] and
Loomes and Sugden [11] suggested a model of linear regret : for two random
variables X = (x1, s1; . . . ; xn, sn) and Y = (y1, s1; . . . ; yn, sn) over the same
set of events,

X � Y if and only if
∑

i

piψ(xi, yi) > 0 (1)

where pi is the probability of si and ψ is a regret function which is continuous
and for all x and y,

(i) ψ(x, y) = −ψ(y, x),

(ii) ψ is increasing in its first argument,

(iii) ψ is decreasing in the second argument.

1We assume an unbounded domain of payoffs, but our analysis holds for the case of
bounded domain as well.

2Two random variables can be written on the same list of events without loss of gen-
erality. See Appendix A.

3Tserenjigmid [19] provides a related model of intransitivity using intra-dimensional
comparisons. See also Nishimura [16].
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The function ψ represents the feelings of the decision maker when he wins x,
knowing that had he chosen differently his outcome would have been y. If
x > y he will be elated (and ψ(x, y) > 0), but if x < y he will be disappointed
and regretful (hence ψ(x, y) < 0). Condition (i) simply says that the elation
from winning x greater than y equals the regret of winning y less than x.
The two other conditions assert that elation is increasing with the winning
outcome and decreasing with the foregone one. A consequence of the first
condition is that ψ(x, x) = 0.

The basic linear model of regret, as suggested by Bell [2] and by Loomes
and Sugden [11], was extended by Bikhchandani and Segal [3] to more gen-
eral evaluations. Let Ψ(X, Y ) = (ψ(x1, y1), p1; . . . ; ψ(xn, yn), pn) be a regret
lottery. Define

X � Y if and only if V (Ψ(X, Y )) > 0 (2)

where the function V is any general function evaluating regret lotteries Ψ.
If �, represented as in eq. (2), is transitive, then [3] showed that it must
be expected utility. Thus regret-based behavior is not consistent with any
transitive non-expected utility choice.4

Assume linear regret. If for some x1, x2, x3 and s1, s2, s3 such that Pr(s1) =
Pr(s2) = Pr(s3) = 1

3
, (x1, s1; x2, s2; x3, s3) ∼ (x3, s1; x1, s2; x2, s3) ∼ (x2, s1;

x3, s2; x1, s3) ∼ (x1, s1; x2, s2; x3, s3), then eq. (1) implies that ψ(x1, x3) =
ψ(x1, x2) + ψ(x2, x3). If the above indifferences hold for all x1, x2, x3, it fol-
lows from the proof of [3, Lemma 7] that there exists u : ℜ → ℜ such that
ψ(x, y) = u(x)−u(y) which yields expected utility. Therefore, if linear regret
preferences violate transitivity, then there exist x1, x2, x3 such that

(x1, s1; x2, s2; x3, s3) ≻ (x3, s1; x1, s2; x2, s3) (3)

≻ (x2, s1; x3, s2; x1, s3) ≻ (x1, s1; x2, s2; x3, s3)

As the next result shows, if non-expected utility preferences can be rep-
resented by linear regret, then intransitivities are pervasive. Not only does
the existence of one cycle imply the existence of many other cycles, but it
also implies that in the neighborhood of each random variable there are such
cycles.

4However, regret over pairs of independent lotteries (rather than random variables)
is compatible with betweenness and other transitive non-expected utility models. See
Bikhchandani and Segal [4].
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Proposition 1 Suppose that preferences can be represented by linear regret
and are non-expected utility. Then for every W and ε > 0 there are X, Y, Z ∈
B(W, ε) such that X ≻ Y ≻ Z ≻ X.

The proof of this proposition makes specific predictions that can be
checked experimentally. A violation of transitivity implies a cycle as in
eq. (3). Then for every y there is a sufficiently small ε > 0 such that for
s0, . . . , s3 where Pr(s0) = 1− ε and Pr(s1) = Pr(s2) = Pr(s3) =

ε
3
,

(y, s0; x1, s1; x2, s2; x3, s3) ≻ (y, s0; x3, s1; x1, s2; x2, s3) ≻

(y, s0; x2, s1; x3, s2; x1, s3) ≻ (y, s0; x1, s1; x2, s2; x3, s3)

Proposition 1 strongly depends on the assumption that regret is linear in
probabilities, but it does not hold for the general model of regret. Example 1
in Appendix B presents a model of regret which is expected utility in all small
neighborhoods, yet has a lot of intransitive cycles when random variables are
sufficiently far apart from each other. In fact, once regret is not linear in
probabilities, the opposite is also possible. Example 2 provides a regret
relation that is transitive for random variables that are far away from each
other, yet violates transitivity in all sufficiently small neighborhoods.

Although non-linear regret permits a separation between the attitudes
towards transitivity in the small and in the large, it nevertheless imposes
some strict restrictions over preferences in small neighborhoods. We analyze
such preferences in the next section.

3 Local preferences and regret

To facilitate a distinction between intransitive cycles where random variables
are far away from each other and cycles where random variables are all in
a small neighborhood, define preferences to be locally regret-based (or to
satisfy regret in the small) if they can be represented as in eq. (2) above in a
neighborhood around each random variableW , albeit with different functions
ψ and V . Formally, a binary relation is locally regret-based if for every W
there is ε > 0 such that for all X, Y ∈ B(W, ε),

X � Y if and only if VW (ΨW (X, Y )) > 0
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For clarity, hereafter we refer to preferences as defined in eqs. (1) or (2) as
satisfying regret in the large.

As we show below, regret in the small does not imply regret in the large
Yet local regret does impose some restrictions on ψW and VW across different
values of W . In particular, local regret satisfies two consistency properties.
First, all the local-regret functions ψW can be taken to be the same (Proposi-
tion 2). Secondly, the signs of any two local-regret functionals VW , VW ′ agree
on regret lotteries that are generated in neighborhoods of both W and W ′

(Proposition 4). These consistency properties are implied by the fact that
(i) any pair of random variables that are close to each other belong to many
neighborhoods of nearby random variables and (ii) all local-regret preferences
over the pair must be in agreement.

Proposition 2 If preferences are locally regret-based, then all the ψW func-
tions are ordinally equivalent and can be taken to be the same.

The reason that all the ordinally equivalent ψW functions can be taken
to be the same is that the functions VW can be adjusted so that a trans-
formation of the regret function ψW can be achieved by letting the function
VW transform the values of ψW . It is therefore clear that the local-regret
functionals, VW , may be different. However, if each local regret is linear in
probabilities, then local-regret lotteries are identically evaluated.

Proposition 3 If preferences are locally regret-based and each local-regret
functional VW is linear in probabilities, then there is a common (up to positive
multiplication) local-regret function ψ for all W .

Proposition 2 makes some simple behavioral predictions. Let W j =
(wj

1, s1; . . . ;w
j
n, sn), j = 1, 2 where Pr(s1) = Pr(s2) = δ. Let ε > 0 and

let Xj = (x1, s1; x2, s2;w
j
3, s3; . . . ;w

j
n, sn) and Y j = (y1, s1; y2, s2;w

j
3, s3; . . . ;

wj
n, sn) be in B(W j, ε), j = 1, 2.

Fact 1 If X1 ∼ Y 1, then ψW 1(x1, y1) = −ψW 1(x2, y2).

By Proposition 2, ψW 2 is an increasing ordinal transformation of ψW 1 .
Therefore, by Fact 1, X1 ∼ Y 1 implies that ψW 2(x1, y1) = −ψW 2(x2, y2) and
thus X2 ∼ Y 2. Using monotonicity, this provides another test for preferences
satisfying local regret: X1 � Y 1 if and only if X2 � Y 2.
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If some or all of the VW functions are not linear, then there may be local
differences. Nevertheless, local regret is “concordant” in the following sense.
Consider two regret functionals V1 and V2 defined on sets of regret lotteries
R1 and R2. Then V1 and V2 are concordant if they have the same sign on
regret lotteries common to both domains. That is, for all R ∈ R1 ∩ R2,
V1(R) R 0 if and only if V2(R) R 0. Note that R1 ∩ R2 is non-empty as the
regret lottery that yields 0 with probability 1 is in this open set.

Proposition 4 If preferences are locally regret-based, then any pair of local-
regret functionals VW and VW ′ are concordant.

Regret in the large, being universal, implies (the same) regret in the small,
but the converse statement does not hold. As already noted, Examples 1
and 2 in Appendix B demonstrate the compatibility of local transitivity with
intransitivity in the large, and vice versa. These examples also show that
regret in the small does not pin down regret in the large. That is, there may
be multiple regret-based extensions of local-regret preferences to the entire
domain. In fact, preferences may satisfy regret in the small but may not be
regret-based in the large (see Example 3 in Appendix B).

Our distinction between preferences in the small and in the large should
not be confused with Machina’s [14] model of Fréchet differentiable represen-
tations, where preferences violate the independence axiom while converging
at each point to expected utility. Intransitive regret models of the type
discussed in this paper do not permit a representation function (which nec-
essarily implies transitivity), hence are orthogonal to Machina’s analysis.

4 Discussion

Example 2 proves that violations of transitivity when random variables are
close to each other do not imply the existence of intransitive cycles when
random variables are far apart from each other. And as experiments are done
with “small” random variables, then it is questionable to what extent one
may deduce from these experiments that individuals violate transitivity in
“big” decisions like financial investments, real-estate purchases, or retirement
planning.

But isn’t this true for all experimental results? For example, when real
payments are involved, experiments regarding the Allais paradox (Allais [1];
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see also MacCrimmon and Larsson [13], Kahneman and Tversky [9], and
Starmer [18]) are conducted, for obvious reasons, with small amounts of
money. A similar argument to the one made in the paper will lead to the
conclusion that we cannot learn from these experiments that the Allais para-
dox really exists.

We believe that there is an important difference between the analysis of
transitivity and regret and that of phenomena like the Allais paradox. A
standard presentation of this decision problem asks the decision maker to
choose between A = (5M, 0.1; 0, 0.9) and B = (1M, 0.11; 0, 0.89), and then
between C = (5M, 0.1; 1M, 0.89; 0, 0.01) and D = (1M, 1). The common
preferences A ≻ B together with D ≻ C violate expected utility maximiza-
tion. The psychological rationale behind these preferences is simple. Random
variables A and B offer similar probabilities of success, but A offers a much
higher payoff. This argument applies to random variables C and D as well,
but there another factor that tilts the scales in favour of D, and this is the
possibility of winning zero in random variable C. Before making the choice
the decision maker knows that he will feel devastated if after choosing C he
were to win zero, when he could have avoided all risk by choosing D (and
receiving 1M).

This argument becomes less powerful if all outcomes are scaled down,
yet such preferences persist even after such modifications (see for example
problems 1 and 2 in [9]). The actual experimental data regarding the Allais
paradox therefore supports that hypothesis that this phenomenon exists not
only in the small but also in the large.

Regret theory, on the other hand, is based on the intuition that for
x > y > z, the elation from obtaining x when the alternative is z is greater
than the sum of the two smaller elations, from receiving x when the alter-
native is y and from receiving y when the alternative is z. This intuition
is convincing when there is a certain threshold above which the decision
maker’s feelings of elation or regret become relevant. But it is much less ob-
vious that this property also holds for large numbers. So even if it is true that
ψ(8000, 0) > ψ(8000, 4000) + ψ(4000, 0), it may well happen (and indeed, is
quite reasonable to expect) that

ψ(8000, 0)

ψ(8000, 4000) + ψ(4000, 0)
<

ψ(8, 0)

ψ(8, 4) + ψ(4, 0)

To summarize, our argument that a certain behavior in the small may not
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necessarily indicate a similar behavior in the large can be formally extended
to other violations of expected utility theory. However, with respect to other
phenomena, violations in the small are less likely to happen than violations in
the large, and therefore, experiments showing violations in the small correctly
predict violations in the large. In contrast, with respect to regret theory the
opposite may be true. Violations in the small are more likely to happen than
violations in the large, and therefore experiments showing violations in the
small do not necessarily indicate similar violations in the large.

Appendix A: Proofs

First, we show that a finite number of finite-valued random variables may be
written on the same list of events. For two random variables

Xj = (xj1, s
j
1; . . . ; x

j
ij
, sjij), j = 1, 2

define s1,1, . . . , s1,i2 , . . . , si1,1, . . . , si1,i2 by si,j = s1i ∩ s
2
j . Note that

X1 = (x11,∪ks1,k; . . . ; x
1
i1
,∪ksi1,k)

X2 = (x21,∪ksk,1; . . . ; x
2
i2
,∪ksk,i2)

Therefore, we can assume without loss of generality that any finite number
of random variables can be defined on the same list of events.

Second, any event may be partitioned into two sub-events with any prob-
ability ratio. For an event si and α ∈ [0, 1], define β(si, α) such that
Pr(si,α) := Pr(si ∩ [0, β(si, α)]) = αPr(si), and let s′i,1−α = si\si,α. (Note
that β(si, α) exists because the probability measure is atomless).

Proof of Proposition 1: As preferences are non-expected utility and rep-
resented by a linear functional, there exist x1, x2, x3 which admit the intran-
sitive cycle of eq. (3). Hence

V (ψ(x1, x3),
1
3
;ψ(x2, x1),

1
3
;ψ(x3, x2),

1
3
) = (4)

ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3
> 0
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Let W = (w1, t1; . . . ;wℓ, tℓ) ∈ L. For any m > 1
ε
, let s1, . . . , s3m be pair-

wise disjoint with the probabilities 1
3m

each. The random variables X, Y, Z
defined below are in an ε-neighborhood of W :

X = (x1, s1; x2, s2; x3, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

Y = (x3, s1; x1, s2; x2, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

Z = (x2, s1; x3, s2; x1, s3;w1, t1 ∩ (∪3m
j=4sj); . . . ;wℓ, tℓ ∩ (∪3m

j=4sj))

That X ≻ Y ≻ Z ≻ X follows from

V (ψ(x1, x3),
1
3m

;ψ(x2, x1),
1
3m

;ψ(x3, x2),
1
3m

; 0, m−1
m

)

=
ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3m
> 0

where the inequality follows from (4). �

Proof of Proposition 2: First, we show that for any regret functional V ,

V
(

r, 1
ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ

)

= V
(

−r, 1
ℓ
; r, 1

ℓ
; 0, ℓ−2

ℓ

)

= 0 (5)

for any regret level r and integer ℓ ≥ 2. The first equality is true as
(r, 1

ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ
) and

(

−r, 1
ℓ
; r, 1

ℓ
; 0, ℓ−2

ℓ

)

are the same regret lottery. Sup-
pose that V

(

r, 1
ℓ
;−r, 1

ℓ
; 0, ℓ−2

ℓ

)

> 0. Let x1, x2 be such that ψ(x1, x2) = r.
By skew symmetry, ψ(x2, x1) = −r. With equiprobable events s1, . . . , sℓ, we
have

(x1, s1; x2, s2; x3, s3; . . . ; xℓ, sℓ) ≻ (x2, s1; x1, s2; x3, s3; . . . ; xℓ, sℓ)

≻ (x1, s1; x2, s2; x3, s3; . . . ; xℓ, sℓ)

which is a violation of irreflexivity. Hence (5).

Define the ⊕ operation as follows. Let X = (x1, s1; . . . ; xn, sn) and Y =
(y1, s1; . . . ; yn, sn). Then

αX ⊕ (1− α)Y = (x1, s1,α; . . . ; xn, sn,α, y1, s
′
1,1−α, . . . ; yn, s

′
n,1−α)

Let [W,W ′] = {αW ⊕ (1−α)W ′ : α ∈ [0, 1]}. The set {α ∈ [0, 1] : αW ⊕ (1−
α)W ′ ∈ B(βW ⊕ (1−β)W ′, ε)} is open. As [0, 1] is compact, there is a finite
sequence of overlapping neighborhoods B(W, ε) = B(W1, ε), . . . ,B(Wn, ε) =
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B(W ′, ε) covering [W,W ′]. We show that for i = 1, . . . , n − 1, ψi and ψi+1

are ordinally equivalent. Suppose not. Then there are (x, y), (x′, y′) such
that ψi(x, y) > ψi(x

′, y′) but ψi+1(x, y) 6 ψi+1(x
′, y′). Let Z ∈ B(Wi, ε) ∩

B(Wi+1, ε). As this intersection is open, there is a sufficiently small β such
that

X = β(x,H; y′, T )⊕ (1− β)Z, Y = β(y,H; x′, T )⊕ (1− β)Z

and X, Y ∈ B(Wi, εi) ∩ B(Wi+1, εi+1). With ℓ > 2
β
we obtain that

Vi(Ψi(X, Y )) = Vi

(

ψi(x, y),
1

ℓ
;ψi(y

′, x′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

= Vi

(

ψi(x, y),
1

ℓ
;−ψi(x

′, y′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

> Vi

(

ψi(x, y),
1

ℓ
;−ψi(x, y),

1

ℓ
; 0,

ℓ− 2

ℓ

)

= 0

where we use the fact that ψ is skew symmetric, −ψi(x, y) < −ψi(x
′, y′), the

monotonicity of V (·), and equation (5). Therefore, X ≻ Y . Similarly,

Vi+1(Ψi+1(X, Y )) = Vi+1

(

ψi+1(x, y),
1

ℓ
;ψi+1(y

′, x′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

= Vi+1

(

ψi+1(x, y),
1

ℓ
;−ψi+1(x

′, y′),
1

ℓ
; 0,

ℓ− 2

ℓ

)

6 Vi+1

(

ψi+1(x, y),
1

ℓ
;−ψi+1(x, y),

1

ℓ
; 0,

ℓ− 2

ℓ

)

= 0

and therefore X � Y , a contradiction.

Therefore, for all (x, y), (x′, y′) such that ψi(x, y) > ψi(x
′, y′) we have

ψi+1(x, y) > ψi+1(x
′, y′). Hence there exists a well-defined increasing function

hi+1, i such that hi+1, i(ψi(x, y)) = ψi+1(x, y), for all x, y. Since ψ1, . . . , ψn are
ordinally equivalent, so are ψW and ψW ′ .

Fix a random variable W0 and let ψ0 be the local-regret function at W0.
Ordinal equivalence of local-regret functions implies that for each W ∈ L
there is an increasing function hW : ℜ → ℜ such that ψW = hW ◦ ψ0, where
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ψW is the local-regret function at W . Define a new local-regret functional
at W

V̂W (ψ0(x1, y1), p1; . . . ;ψ0(xn, yn), pn) ≡

VW (hW ◦ ψ0(x1, y1), p1; . . . ;hw ◦ ψ0(xn, yn), pn)

Thus, for each W , local-regret preferences may be represented by ψ0, V̂W . �

Proof of Proposition 3: Let W = (w1, s1;w2, s2; . . . ;wn, sn). Let ψW be a
local-regret function at W . First, we show that the linearity of VW implies
that each ψW is unique up to positive multiples.

For two regret levels r1, r2 > 0, let x, y > 0 be monetary outcomes such
that r1 = ψW (x,−x) and r2 = ψW (y,−y). Define

X = (x, s1,ε1 ;−y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

Y = (−x, s1,ε1 ; y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

where ε1, ε2 > 0, ε1 + ε2 < 1, ε2/ε1 = r1/r2, and Pr[s1,εℓ ] = εℓ, ℓ = 1, 2.
Choose ε1, ε2 small enough so that X, Y ∈ B(W, ε). Thus,

VW (ΨW (X, Y )) = ψW (x,−x) Pr[s1,ε1 ] + ψW (−y, y) Pr[s1,ε2 ]

= r1ε1 − r2ε2

= 0

Hence, X ∼ Y .

Let ψ̂W be another local-regret function at W for which the regret func-
tional V̂W is linear in probability. From X ∼ Y we conclude

V̂W (Ψ̂W (X, Y )) = ψ̂W (x,−x) Pr[s1,ε1 ] + ψ̂W (−y, y) Pr[s1,ε2 ]

= r̂1ε1 − r̂2ε2

= 0

Thus, there exists a such that ψ̂W (x,−x) = aψW (x,−x) = ar1 and ψ̂W (y,−y)
= aψW (y,−y) = ar2. That, a > 0 follows from the fact that ψ̂W (x,−x) > 0.
By varying r2 (and y, ε2 in the above construction), we conclude that ψ̂W ≡
aψW for some a > 0.

Let W,W ′ ∈ L. We show that ψW and ψW ′ are positive multiples of each
other. As in the proof of Proposition 2, there is a finite sequence of random
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variables W = W1,W2, . . . ,Wn = W ′ such that the open neighborhoods
B(Wj , ε), j = 1, . . . ,m cover the line segment [W,W ′]. Thus, for each j,
there exists

Ŵj = (ŵ1j, s1; ŵ2j , s2; . . . ; ŵnj, sn)

on the line segment joiningWj andWj+1 such that Ŵj ∈ B(Wj , ε)∩B(Wj+1, ε).

Let ψj be the local-regret functional at Wj. Define

Xj = (x, s1,ε1j ;−y, s1,ε2j ; ŵ1j , s1,1−ε1−ε2 ; ŵ2j , s2; . . . ; ŵnj, sn)

Yj = (−x, s1,ε1j ; y, s1,ε2j ; ŵ1j , s1,1−ε1−ε2 ; ŵ2j , s2; . . . ; ŵnj, sn)

where ε1, ε2 > 0, ε2/ε1 = ψj(x,−x)/ψj(y,−y), and Pr[s1,εℓ ] = εℓ, ℓ = 1, 2.
Choose ε1, ε2 small enough so that X, Y ∈ B(Wj , ε) ∩ B(Wj+1, ε). Thus,
local regret evaluated at Wj implies that Xj ∼ Yj. Hence, the local regret
evaluated atWj+1 also impliesXj ∼ Yj. As x and y are arbitrary, we conclude
that ψj+1 is a positive multiple of ψj. Consequently, ψW ′ is a positive multiple
of ψW . �

Proof of Fact 1 By the skew-symmetry of the functions ψ,

X1 ∼ Y 1 ⇐⇒ VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1− 2δ) = 0

⇐⇒ VW 1(−ψW 1(y1, x1), δ; −ψW 1(y2, x2), δ; 0, 1− 2δ) = 0

Therefore, ψW 1(x1, y1) > −ψW 1(y2, x2) iff ψW 1(x2, y2) 6 −ψW 1(y1, x1). How-
ever, ψW 1(x1, y1) > −ψW 1(x2, y2) implies

−ψW 1(x1, y1) = ψW 1(y1, x1) < −ψW 1(y2, x2) = ψW 1(x2, y2) =⇒

VW 1(ψW 1(y1, x1), δ; ψW 1(y2, x2), δ; 0, 1− 2δ) <

VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1− 2δ) = 0

A contradiction to Y 1 ∼ X1. �

Proof of Proposition 4: Let W,W ′ ∈ L. We know from Proposition 2
that there exists a regret function ψ such that preferences are locally regret
with ψ and VW on B(W, ε) and locally regret with ψ and VW ′ on B(W ′, ε).

Let RW be the set of regret lotteries generated by X, Y ∈ B(W, ε) and
RW ′ be the set of regret lotteries generated by X ′, Y ′ ∈ B(W ′, ε). Take
R ∈ RW ∩RW ′ . If R = (0, 1) then VW (R) = VW ′(R) = 0.
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Suppose that (0, 1) 6= R ∈ RW ∩RW ′ . Thus, there exist X, Y ∈ B(W, ε),
X 6= Y and X ′, Y ′ ∈ B(W ′, ε), X ′ 6= Y ′ such that R = Ψ(X, Y ) = Ψ(X ′, Y ′).
Without loss of generality we may write X,X ′,W , and W ′ on the same list
of events s1, . . . , sn. We can partition each si into two sub-events, si,α and
si,1−α, such that Pr(si,α) = αPr(si) and Pr(si,1−α) = (1− α) Pr(si). Thus,

αX ⊕ (1− α)X ′ = (x1, s1,α; . . . ; xn, sn,α; x
′
1, s1,1−α; . . . ; x

′
n, sn,1−α)

αY ⊕ (1− α)Y ′ = (y1, s1,α; . . . ; yn, sn,α; y
′
1, s1,1−α; . . . ;

′
n , sn,1−α) (6)

αW ⊕ (1− α)W ′ = (w1, s1,α; . . . ;wn, sn,α;w
′
1, s1,1−α; . . . ;w

′
n, sn,1−α)

and

||αX ⊕ (1− α)X ′ − [αW ⊕ (1− α)W ′]||

=
n

∑

i=1

(xi − wi)
2 Pr(si,α) +

n
∑

i=1

(x′i − w′
i)
2 Pr(s1,1−α)

= α
n

∑

i=1

(xi − wi)
2 Pr(si) + (1− α)

n
∑

i=1

(x′i − w′
i)
2 Pr(si)

= α||X −W ||+ (1− α)||X ′ −W ′||

Consequently, if X ∈ B(W, ε) and X ′ ∈ B(W ′, ε) then

αX ⊕ (1− α)X ′ ∈ B(αW ⊕ (1− α)W ′, ε)

Similarly, αY ⊕ (1 − α)Y ′ ∈ B(αW ⊕ (1 − α)W ′, ε) if Y ∈ B(W, ε) and
Y ′ ∈ B(W ′, ε). From eq. (6), it follows that

Ψ(αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′) = R

Hence, if R ∈ RW ∩RW ′ then R ∈ RαW⊕(1−α)W ′ for any α ∈ (0, 1). That is,
if the regret lottery R is locally generated in the neighborhoods ofW andW ′,
then R is locally generated in the neighborhood of each random variable on
the line segment joining W and W ′.

Suppose that VW and VW ′ are not concordant. In particular, VW (R) > 0
and VW ′(R) ≤ 0. Let

α = sup{α ∈ [0, 1] : VαW⊕(1−α)W ′(R) ≤ 0 }

As the regret lottery R is locally generated at each αW ⊕ (1 − α)W ′, α
is well-defined. Further, VW ′(R) ≤ 0 implies that the sup is taken over a
non-empty set.
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From the continuity of � it follows that α < 1, VαW⊕(1−α)W ′(R) = 0, and
that

VαW⊕(1−α)W ′(R) > 0, ∀α ∈ (α, 1]

We know that

αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′ ∈ B(αW ⊕ (1− α)W ′, ε) (7)

As
R = Ψ(αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′)

eq. (7) together with VαW⊕(1−α)W ′(R) = 0 implies that

αX ⊕ (1− α)X ′ ∼ αY ⊕ (1− α)Y

For α1 close to α,

αX ⊕ (1− α)X ′, αY ⊕ (1− α)Y ′ ∈ B(α1W ⊕ (1− α1)W
′, ε)

Take such a α1 > α. Then Vα1W⊕(1−α1)W ′(R) > 0 implies that

αX ⊕ (1− α)X ′ ≻ αY ⊕ (1− α)Y

Contradiction. �

Appendix B: Examples

Example 1 Transitive in the small, intransitive in the large

Let ψ(x, y) = x − y be a regret function. For X = (x1, s1; . . . ; xn, sn),
Y = (y1, s1; . . . ; yn, sn), Pr(si) = pi define

V (Ψ(X, Y )) =



































∑n

i=1 piψ(xi, yi) ||Ψ(X, Y )|| < ε

1−α(X, Y ))
∑n

i=1 piψ(xi, yi)+

α(X, Y )
∑n

i=1 pi [ψ(xi, yi)]
3 ε 6 ||Ψ(X, Y )|| < 1

∑n

i=1 pi [ψ(xi, yi)]
3 1 6 ||Ψ(X, Y )||
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where α(X, Y ) ≡ ||Ψ(X,Y )||−ε

1−ε
. If ||Ψ(X, Y )|| > ε, then 0 < α(X, Y ) < 1 and

if ||Ψ(X, Y )|| = ε, then α(X, Y ) = 1. Hence, V is a continuous functional.

If ||Ψ(X, Y )|| < ε then V (Ψ(X, Y )) = E[X] − E[Y]. Therefore, for each
W local regret in B(W, 0.5ε) is transitive.

Take a > 0. Define X = (−a, s1; 0, s2; a, s3), Y = (0, s1; a, s2;−a, s3),
and Z = (a, s1;−a, s2; 0, s3), where s1, s2, s3 are equiprobable, disjoint events
with s1 ∪ s2 ∪ s3 = S. For large enough a, ||Ψ(X, Y )|| > 1, ||Ψ(Y, Z)|| > 1,
and ||Ψ(X,Z)|| > 1. Therefore,

V (Ψ(X, Y )) = V (Ψ(Y, Z)) = V (Ψ(Z,X)) = 2a3 > 0

which implies X ≻ Y ≻ Z ≻ X. Regret in the large is intransitive.

Note that the regret functional V is not linear in probabilities. That is,
there exist regret lotteries R1, R2, and a constant c ∈ (0, 1), such that

V
(

cR1 + (1− c)R2

)

6= cV (R1) + (1− c)V (R2)

To see this, take two regret lotteries, R1, R2, with ||R1|| < ε < ||R2||. Let c
be sufficiently close to 1 so that ||cR1 + (1− c)R2|| < ε. Then

V (cR1 + (1− c)R2)

= cE[R1] + (1− c)E[R2]

6= cE[R1] + (1− c)
((

1−||R2||
1−ε

)

E[R2] +
(

||R2||−ε

1−ε

)

(E[R2])
3
)

= cV (R1) + (1− c)V (R2)
�

Local-regret preferences do not uniquely determine regret preferences in
the large. For instance, V (Ψ(X, Y )) = E[X] − E[Y] for all Ψ(X, Y ) has the
same local-regret preferences as Example 1.

Example 2 Intransitive in the small, transitive in the large

Intransitive cycles between random variables close to each other, but not
between random variables that are far apart, are also possible. Let X, Y ,
and ψ(x, y) be as in Example 1. Define

V (Ψ(X, Y )) =















∑n

i=1 piψ(xi, yi) ||Ψ(X, Y )|| > ε

β(X, Y )
∑n

i=1 piψ(xi, yi) +

(1− β(X, Y ))
∑n

i=1 pi[ψ(xi, yi)]
3 otherwise

where β(X, Y ) ≡ min{1, ||Ψ(X, Y )||/ε}. �
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Example 3 Regret in the small but not regret-based

Let ψℓ and ψg be two regret functions that are not ordinally equivalent.
We define � over pairs of random variables based on whether the random
variables are close to each other, neither close nor far, or far away from each
other.

Let

X = (x1, s1; . . . ; xn, sn)

Y = (y1, s1; . . . ; yn, sn)

Define γ(X, Y ) ≡ ||X−Y ||−ε

2ε−ε
, where ε > 0.

If ||X − Y || < ε then

X � Y iff
∑

i

piψℓ(xi, yi) ≥ 0 (8)

If ε ≤ ||X − Y || ≤ 2ε then

X � Y iff (1− γ(X, Y ))
∑

i

piψℓ(xi, yi) + γ(X, Y )
∑

i

piψg(xi, yi) ≥ 0

If ||X − Y || > 2ε then

X � Y iff
∑

i

piψg(xi, yi) ≥ 0 (9)

The binary relation � is complete. It is also continuous as γ(X, Y ) increases
from 0 to 1 as ||X − Y || increases from ε to 2ε.

Suppose that � is regret based. That is, there exists a regret function ψ
and regret functional V such that X � Y if and only if V (Ψ(X, Y )) ≥ 0.
Suppose that ψ is ordinally equivalent to ψℓ. Then it is not ordinally equiv-
alent to ψg. That is, there are (x, y), (x

′, y′) such that ψ(x, y) > ψ(x′, y′) but
ψg(x, y) 6 ψg(x

′, y′). Let s1, . . . , s4 be equiprobable, disjoint events and let

X = (x, s1; x
′, s2; z, s3;−z, s4)

Y = (y, s1; y
′, s2;−z, s3; z, s4)
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Choose z large enough that ||X − Y || > 2ε. Then

V (Ψ(X, Y )) = V (ψ(x, y), 0.25;ψ(x′, y′), 0.25;ψ(z,−z), 0.25;ψ(−z, z), 0.25)

> 0

as ψ(x, y) > ψ(x′, y′). Thus X ≻ Y . However, (9) implies that X � Y as

ψg(x, y) + ψg(x
′, y′) + ψg(z,−z) + ψg(−z, z)

4
≤ 0

which follows from ψg(x, y) ≤ ψg(x
′, y′). Contradiction.

Suppose, instead, that ψ is ordinally equivalent to ψg. Then it is not
ordinally equivalent to ψℓ. That is, there there are (x, y), (x′, y′) such that
ψ(x, y) > ψ(x′, y′) but ψℓ(x, y) 6 ψℓ(x

′, y′). Let s1, s2, s3 be disjoint events
with probability Pr[s1] = Pr[s2] = δ and Pr[s3] = 1− 2δ. Let

X̂ = (x, s1; x
′, s2; z, s3)

Ŷ = (y, s1; y
′, s2; z, s3)

Choose δ small enough that ||X̂−Ŷ || < ε. Then (8) implies that X̂ � Ŷ while
an evaluation of regret with V (Ψ(X, Y )) implies that X̂ ≻ Ŷ . Contradiction.

Thus, � is not regret based. �
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