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Abstract

This dissertation consists of three essays that study macroeconomic modeling and its

application with a particular focus on monetary economics.

In Chapter 1, I develop a New Keynesian model with heterogeneous workers whose

wage settings are subject to downward nominal wage rigidity (DNWR) to address two

puzzles of inflation dynamics: the missing deflation during the Great Recession and

the excessive disinflation afterward. I demonstrate that DNWR introduces a time-

varying wedge between the output gap and the marginal cost of producing one unit

of output, which makes the observed Phillips curve flatter during recessions. En-

dogenous evolution of cross-sectional wage distribution generates various dimensions

of non-linearities, while the presence of the zero lower bound (ZLB) of the nominal

interest rate further reinforces the mechanism. Consequently, the model can quan-

titatively account for the inflation dynamics during and after the Great Recession

under plausible parameter values that are consistent with micro evidence.
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In Chapter 2, I study welfare-maximizing monetary policy rule in the heteroge-

neous agent New Keynesian model with DNWR that is developed in Chapter 1. The

optimal monetary policy rule responds strongly to output to address the inefficiency

generated by DNWR, while responsiveness to inflation plays a minor role in welfare.

Moreover, monetary policy can improve social welfare by responding more aggres-

sively to a contractionary shock than to an expansionary one to offset the asymmetry

stemming from DNWR. In the presence of the ZLB, on the other hand, alterna-

tive policy rules such as forward guidance and price-level targeting can partly offset

the adverse effects of it by committing to a future low interest rate policy. I also

investigate the optimal steady-state inflation rate.

In Chapter 3, which is coauthored with Dongho Song and Jenny Tang, we propose

a method of introducing theory-driven priors into the estimation of the vector autore-

gression (VAR). Our methodology is more flexible than existing methods in that it

allows a researcher to incorporate prior beliefs on a subset of variables in theoretical

models that are of key interest while remaining agnostic about other variables in the

VAR. We apply to the problem of exchange rate forecasting for the British pound

versus the US dollar. By imposing different combinations of priors informed by un-

covered interest rate or purchasing power parity, we find that substantial gains are

realized at longer forecast horizons.
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Chapter 1

Downward Nominal Wage Rigidity

and Inflation Dynamics during and

after the Great Recession

1.1 Introduction

During the financial crisis of 2008-2009 and its aftermath, the U.S. economy experi-

enced little decline of inflation while suffering from severe economic downturn. The

fact is known as the missing deflation puzzle. To this end, Hall (2011), in his Presiden-

tial Address to the American Economic Association, argues that the little response of

inflation to the long-lasting slack after the Great Recession is inconsistent with most

of economic theories. Several years later, the recovery of inflation was excessively

slow despite the sluggish but steady improvement of real economic activities. The

shortfall of inflation from 2 percent without many of adverse factors is expressed as a
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mystery by the Chair of the Federal Reserve in Yellen (2017). Constâncio (2015) la-

bels the phenomenon as excessive disinflation.1 These observations call into question

one of the fundamental theories in modern monetary economics: the Phillips curve

relationship between inflation and the level of economic activity.

In this paper, I argue that downward nominal wage rigidity (DNWR) reconciles

both of the missing deflation during the Great Recession and the excessive disinfla-

tion in the subsequent years. Specifically, I introduce DNWR for individual workers

into an otherwise standard New Keynesian dynamic stochastic general equilibrium

(DSGE) model that embeds monopolistically competitive firms with nominal price

rigidity and the Taylor (1993)-type nominal interest rate feedback rule. To the best

of my knowledge, this is the first study to build a DSGE model with both nomi-

nal price rigidity and the explicit constraint on downward nominal wage adjustment

for individual workers. In this setting, I demonstrate that DNWR accounts for the

flattening of the observed Phillips curve during recessions. Moreover, taking into

account heterogeneity of individual workers’ wages enables the model to replicate

many dimensions of non-linearities in the data through the endogenous evolution of

cross-sectional wage distribution upon an exogenous shock. Compared to previous

studies on DNWR, nominal price rigidity and DNWR have an important interaction

to generate substantial persistence of real wage especially downward. Consequently,

the model can quantitatively match the key moments of inflation dynamics during

and after the Great Recession under plausible parameter values that are consistent
1Constâncio (2015) points out that the excessive disinflation is a common feature of inflation

dynamics in advanced economics in recent years.
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with micro evidence.

The model is motivated by two empirical facts. First, numerous studies point

out that the Phillips curve relationship between inflation and the output gap was al-

tered after the Great Recession (e.g., Stock and Watson (2010), Ball and Mazumder

(2011), Coibion and Gorodnichenko (2015)). However, I find that the marginal cost

representation of the Phillips curve, which is directly derived from firms’ price set-

ting behavior, remained stable in the data. The finding is robust when I relax the

rational expectation assumption. Instead, I document that the relationship between

the output gap and marginal cost is non-linear in the sense that marginal cost is

less responsive to the output gap in recessions. These facts imply that a puzzle in-

deed lies in the relationship between the output gap and marginal cost rather than

in the Phillips curve itself. Therefore, I focus on the relationship between them to

explain the changes of the observed Phillips curve over the business cycle. Second, the

rapidly growing empirical literature using micro data uncovers severe DNWR during

the Great Recession and its aftermath. For instance, previous studies report that the

fraction of workers with zero nominal wage changes substantially increased in the pe-

riods, which is consistent with predictions of DNWR (Daly and Hobijn (2014), Fallick

et al. (2016)). I incorporate the micro evidence into a general equilibrium model to

study its aggregate implications, especially on inflation dynamics.

The key mechanism of the model for generating the missing deflation is as follows.

DNWR creates a time-varying wedge between real wage and the marginal rate of

substitution of consumption for hours worked by impeding wage adjustment to its

desired level. The wedge in turn appears in the output gap representation of the

3



New Keynesian Phillips Curve (NKPC) as a shift parameter, and it accounts for

the flattening of the observed Phillips curve in recessions. Intuitively, the binding

DNWR constraint upon a contractionary shock prevents real wage and therefore

firms’ marginal cost from declining. Since the forward-looking nature of the NKPC

implies that inflation is expressed as infinite sum of the discounted values of the

current and future marginal costs, the dampened responses of marginal cost result

in little decline of inflation in recessions. On the other hand, imperfect adjustments

of price variables are compensated by large contractions of real quantities including

the output gap in general equilibrium. As a consequence, even though the marginal

cost representation of the NKPC remains unchanged, the observed Phillips curve

relationship between inflation and the output gap becomes flatter in recessions in the

presence of DNWR.

I allow for heterogeneity of individual workers’ wages that may or may not be

subject to the DNWR constraint. By doing so, the aggregate dynamics of the model,

including the degree of the aggregate wage and price stickiness, crucially depend on

the evolution of cross-sectional wage distribution. To be precise, the responses of

the model are asymmetric depending on the sign of an exogenous shock. A larger

fraction of workers is constrained by DNWR upon a contractionary shock, whereas

the constraint comes to bind for fewer workers upon an expansionary one. Hence, the

aggregate wage is more rigid downward than upward and that spills over asymmetry of

other variables. The aggregate dynamics are also affected by the size of an exogenous

shock, because a larger shock changes the fraction of workers with or without the

binding constraint more drastically. Therefore, the mechanism of the missing deflation

4



described above is particularly strong for a large and contractionary shock such as

the Great Recession.

It is noteworthy that the mechanism of the missing deflation is reinforced by the

presence of the zero lower bound (ZLB) of the nominal interest rate. As is pointed out

in the existing literature (e.g., Christiano et al. (2011)), the impacts of an exogenous

shock are amplified under the ZLB due to the lack of offsetting monetary policy

responses. However, since the room for downward wage adjustment is limited by

DNWR in my model, the amplification effect of the ZLB is exclusively absorbed by

further contractions of real quantities, without generating a large drop of inflation.

The finding is in stark contrast to previous studies such as Gust et al. (2017), who

find the responses of inflation as well as those of quantities to an exogenous shock are

enlarged when the economy is at the ZLB. This effect helps to reconcile the moderate

decline of inflation and the sharp fall of real quantities during the Great Recession.

On the other hand, I find the state dependency of DNWR to be the key feature

of the model to address the excessive disinflation after the Great Recession. Since

the DNWR constraint holds in terms of the level of wages, once workers’ desired

wages fall short of their actual ones upon a contractionary shock, workers never react

to improvements of the state of the economy until their desired wages exceed their

actual ones. Though this pent-up wage deflation mechanism is mentioned in several

studies (e.g., Daly and Hobijn (2015), Constâncio (2015)), I demonstrate its formal

link to the excessive disinflation, and derive quantitative outcomes in a framework of

a DSGE model.

For quantifying these implications of the model, I overcome two potential chal-

5



lenges in numerical methods. First challenge is computing equilibrium of the model

with heterogeneous agents. In this regard, since the main focus of this paper is on

inflation dynamics at business cycle frequencies, I choose to solve the model under

aggregate uncertainty by applying the Krusell and Smith (1998) algorithm. Although

their original algorithm requires aggregate jump variables to have a closed form so-

lution in terms of aggregate state variables, that condition is not satisfied in my New

Keynesian setting with the ZLB. To address the problem, I propose a modified algo-

rithm in which each of the aggregate- and individual-part of the economy is solved

recursively with a global method.

Another important challenge is parameterization of the degree of price and wage

rigidities. It is widely recognized that an estimated DSGE model often identifies much

higher parameter values for the degree of price stickiness than the ones implied by mi-

cro evidence (Altig et al. (2011), Del Negro et al. (2015)), and the inflation dynamics

of the model heavily relies on that parameter. Similarly, Schmitt-Grohé and Uribe

(2016) discuss that the parameter governing the degree of DNWR is crucial to their

quantitative results. In this regard, I calibrate the model to match various moments

of the price and wage distribution in U.S. data, and find that my model endogenously

generates strong persistence of inflation under the micro founded parameter values.

My quantitative results are summarized as follows. A counterfactual analysis

in the calibrated model predicts that the contractionary shock that has the same

magnitude as the Great Recession only leads to 2.1-2.4 percentage point decline of

the year-on-year inflation rate under plausible assumptions on monetary policy rules.

The quantitative result is comparable to the data during the period when the actual
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inflation rate in the GDP deflator declined by 2.3 percentage point from the peak

to the bottom.2 Regarding the excessive disinflation, the calibrated model suggests

the recovery of inflation from a severe recession state that corresponds to the Great

Recession is three times as slow as from the median state. For comparison, I show

that a stylized New Keynesian model predicts a massive deflation upon the Great

Recession shock and a relatively quick recovery afterward. It is notable that the only

extension of my model from the stylized New Keynesian model is the presence of

DNWR along with the ZLB, and my model successfully matches the key moments of

the inflation dynamics during and after the Great Recession.

The remainder of this paper is organized as follows. Section 2 reviews related

literature. Section 3 provides theoretical and empirical evidence to motivate my

model analysis in the subsequent sections. Section 4 develops my baseline DSGE

model with DNWR, and Section 5 describes an equilibrium computation method

as well as calibration. Section 6 presents numerical results, which are followed by

discussion in Section 7. Section 8 conducts a counterfactual analysis of the Great

Recession to test for the validity of my model to account for the inflation dynamics

in the periods. Section 9 is conclusion.
2The peak of the GDP deflator before the Great Recession is 2.5 percent as of 2007Q4, whereas

the bottom is 0.2 percent as of 2009Q3.
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1.2 Related literature

This paper falls into the growing literature that studies the missing deflation and

the excessive disinflation after the Great Recession. There are mainly two strands

of literature regarding the missing deflation puzzle. The first strand emphasizes the

importance of the formation of the inflation expectations. Bernanke (2010) suggests

that the credibility of modern central banks succeeded in convincing people that

extremely high or low inflation would not occur, and this anchored expectation stabi-

lized the actual inflation. In contrast, Coibion and Gorodnichenko (2015) argue that

the stability of the inflation expectations is not enough to resolve the puzzle quanti-

tatively. They instead claim that the rises of the household inflation expectations due

to the surging commodity prices after 2008 prevented deflation. Bianchi and Melosi

(2017) propose another mechanism that fiscal and monetary policy uncertainty, that

is, a possibility of switching to a high inflation regime driven by large fiscal deficit,

keeps the inflation expectations high enough. Del Negro et al. (2015) reconcile these

views by estimating a medium scale DSGE model that embeds the financial friction

of Bernanke et al. (1999) on the Smets and Wouters (2007) model. They conclude

that the anchored expectation view is plausible if the Phillips curve is sufficiently

flat, because monetary policy can have strong real effects to stabilize the inflation

expectations under a flat Phillips curve.

The second strand of the literature focuses on firms’ marginal cost and price

markup as a potential cause of the missing deflation. Christiano et al. (2015) develop

a model in which financial frictions raise firms’ capital cost to hinge their marginal cost

8



from falling in recessions. Kara and Pirzada (2016) introduce intermediate good prices

in the Smets and Wouters (2007) model to take into account the rises of commodity

prices in the data. On the other hand, Gilchrist et al. (2017), extending the model of

consumer capital by Ravn et al. (2006), suggest that the liquidity needs during the

financial crisis drove firms to raise their price markup given their nominal marginal

cost at the expense of the future customer base.3

Regarding the excessive disinflation, one of the earliest studies to point out the

puzzle is Constâncio (2015). He refers to several hypotheses to settle the puzzle

including anchoring of the inflation expectations and increased international com-

petition, though formal analysis has not yet been provided in the literature, to my

knowledge. On the empirical side, Albuquerque and Baumann (2017) propose to use

a short-run labor market slack measure when estimating the Phillips curve, while

Bobeica and Jarocinski (2017) emphasize the importance of the distinction between

global and domestic factors to determine inflation.

This paper is distinct from these studies in various important dimensions. First

of all, in terms of the inflation expectations, my empirical result of the stability

of the marginal cost representation of the NKPC after the Great Recession holds

when I relax the rational expectation assumption by incorporating the survey based
3However, there is another view in the literature that financial frictions contribute to a decline of

inflation. Kim (2018) finds that liquidity constrained firms committed to fire sales of their inventory

to generate cash flow after the Lehman Brothers’ failure. Although he also find the evidence on

the inflationary effects of financial frictions proposed by Christiano et al. (2015) and Gilchrist et al.

(2017), he reports that the deflationary effects of the inventory fire sales is quantitatively dominant.
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inflation expectations. Moreover, I show that my model with DNWR reconciles both

of the missing deflation and the excessive disinflation coherently. In contrast, if one

argues that the missing deflation is driven by the rises of the inflation expectations

relative to the rational expectations after the Great Recession, it is necessary to seek

for another factor that prevents the recovery of inflation to address the subsequent

excessive disinflation. Compared to other studies that investigate marginal cost and

price markup, on the other hand, I find the quantitative importance of the wage

channel to determine marginal cost. In other words, taking into account DNWR

along with the ZLB explains most of the missing deflation that appears in a stylized

New Keynesian model.

Another class of literature that this paper is deeply related to is that of DNWR.

Here I assess the studies that explore the aggregate implications of DNWR, while

numerous studies have investigated micro evidence of it.4 A seminal work by Ak-

erlof et al. (1996) demonstrates that the long-run wage Phillips curve is no longer

vertical in the presence of DNWR. In other words, involuntary unemployment does

not decay even in the long-run, since once the actual wage exceeds the desired one

the discrepancy between them is not eliminated without inflation. Benigno and Ricci

(2011) analytically characterize the equilibrium with DNWR under a modern setting

with optimizing agents. Applying their insights, recent studies argue that the up-

ward sloping long-run wage Phillips curve due to DNWR together with the ZLB is

a cause behind the jobless recoveries after the Great Recession (Schmitt-Grohé and
4Discussion on the micro evidence of DNWR and its connection to this paper is provided in

section 1.7.
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Uribe (2017)) and secular stagnation (Eggertsson et al. (2017), Kocherlakota (2017)).

Elsby (2009), on the other hand, claims that DNWR does not have significant effects

on the aggregate wage growth since forward looking agents compress their wage hikes

for a precautionary motive. Daly and Hobijn (2014), focusing on transition dynamics,

show that DNWR bends the short-run wage Phillips curve as well, which generates the

non-linear fluctuations of the unemployment rate. Schmitt-Grohé and Uribe (2016)

develop a small open economy model to claim that DNWR is the fundamental cause

of the high unemployment rate in the euro area in recent years.

A crucial difference of my model from the existing literature on DNWR is that I

introduce DNWR into the New Keynesian setting with nominal price rigidity. It is

worth pointing out that the studies on DNWR discussed above are conducted under

flexible prices. More specifically, these models are developed either in the steady

state with a constant inflation rate (Akerlof et al. (1996), Elsby (2009), Benigno

and Ricci (2011), Schmitt-Grohé and Uribe (2017), Eggertsson et al. (2017), Kocher-

lakota (2017)) or under a time-varying but fully flexible inflation rate (Daly and

Hobijn (2014), Schmitt-Grohé and Uribe (2016)). However, nominal price rigidity is

an essential ingredient of the model for my purpose: studying inflation dynamics. In

particular, nominal price rigidity is indispensable to capture the Phillips curve ob-

served in data. I also find that the combination of nominal price rigidity and DNWR

leads to substantial persistence of real wage, which replicates sluggish movements of

price variables and sizable fluctuations of real quantities in data.

In this regard, several papers use a smooth asymmetric wage adjustment cost

function to approximate DNWR (Kim and Ruge-Murcia (2009), Fahr and Smets
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(2010), and Aruoba et al. (2017)). However, I find that the explicit DNWR constraint

in my model generates a strong non-linear dynamics, and therefore the model is able

to match the data under micro founded parameter values. Moreover, whereas these

studies use a perturbation method to derive an approximated solution around the

steady state, my global solution method captures the state-dependency of the model,

which I find is essential to resolving the excessive disinflation.

On the methodological side, the model developed in this paper is classified as a

heterogeneous agent model with aggregate uncertainty, which is initiated by Krusell

and Smith (1998). This class of model has been used to study various dimensions

of the economy in the existing literature, including asset and consumption dynamics

(e.g., Krusell and Smith (1998), Krueger et al. (2016)), search and matching (e.g.,

Krusell et al. (2010), Nakajima (2012)), and price setting behavior (e.g., Nakamura

and Steinsson (2010), Vavra (2013)). Among others, my model is closely related to

Gornemann et al. (2016), McKay and Reis (2016), and Blanco (2018), who apply

the equilibrium concept to the New Keynesian model with the Taylor (1993)-type

monetary policy rule, but distinct from them in that I examine the heterogeneity of

individual wages arising from DNWR.

1.3 Motivating evidence

This section presents motivating evidence for the model analysis in the subsequent

sections. First, using a stylized New Keynesian model, I point out that the key

assumption to bring about a difficulty in accounting for the inflation dynamics after
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the Great Recession is in the relationship between marginal cost and the output gap.

Second, I provide empirical evidence to show that the assumption does not hold in

the data. Specifically, I estimate two representations of the NKPC: the output gap

representation and the marginal cost representation, to uncover that, whereas the

farmer became flatter after the Great Recession, the latter remained stable. I also

assess the empirical relationship between marginal cost and the output gap in the

data.

1.3.1 Example in a stylized New Keynesian model

To see the core of the problem of a New Keynesian model in resolving the missing

inflation and the excessive disinflation, I consider a stylized linear New Keynesian

system that consists of the Euler equation (1.1), the NKPC (1.2), and the Taylor rule

(1.3), as well as the relationship between marginal cost of the output gap (1.4):

yt = Et[yt+1]− 1
σ

(it − Et[πt+1]) + εt (1.1)

πt = βEt[πt+1] + κmct (1.2)

it = δππt + δyyt (1.3)

mct = (σ + η)yt (1.4)

where εt = ρεεt−1 + eε,t, eε,t ∼ i.i.d.N(0, σ2
ε )

yt, πt, it, and mct denote the output gap, the inflation rate, the nominal interest rate,

and marginal cost, respectively. Each variable is in the log-deviation from the zero-

inflation steady state. Loosely speaking, the Euler equation (1.1) and the Taylor rule

(1.3) govern the demand side of the economy, whereas the NKPC (1.2) the supply side.
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Figure 1.1: IR in the 3-equation New Keynesian model and data
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Notes: The impulse responses (IR) of the stylized New Keynesian model are those to an exogenous
innovation eε,t. Size of shock is calibrated to match the drop of the output gap in data. For the
series of data, the inflation rate is the year-on-year growth rate of the GDP implicit price deflator.
The output gap is the one estimated by the Congressional Budget Office (CBO). Each data series
is in the deviation from the business cycle peak before the Great Recession that is defined by the
NBER (2007Q4).

They are connected through the relationship between marginal cost of the output gap

(1.4), which is derived from the labor market equilibrium condition. The derivation

of the equations follows Walsh (2010).

For simplicity, I suppose that the error term in the Euler equation εt, which

follows an AR(1) process, is the only exogenous component of the economy. For the

numerical exercise below, parameter values are set as follows: the discount factor

β = 0.995, the relative risk aversion σ = 2.00, the inverse of the Frisch labor supply

elasticity η = 0.25, the Taylor rule coefficients δπ = 1.50, δy = 0.25, the slope of the

NKPC κ = 0.20, and the persistence of the exogenous shock ρε = 0.80. Though these

parameter values are in line with the literature, the choice of the parameter values is

discussed in Section 1.5.

Figure 1.1 compares the impulse responses of the stylized New Keynesian model
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and the data after the Great Recession. It is immediate to see that the stylized New

Keynesian model predicts massive deflation (-42 percentage point), whereas the actual

inflation rate declined moderately (-2.3 percentage point). It is also notable that the

inflation rate in the model quickly reverts toward its steady-state value, whereas the

recovery of the actual inflation were so sluggish with a sizable gap from the pre-crisis

rate even 20 quarters after the Great Recession.

Among others, one of the key features to bring about these undesirable results in

the stylized New Keynesian model is the relationship between the output gap and

marginal cost (1.4). To be precise, the households’ marginal rate of substitution

between consumption and hours worked is equalized to real wage in a frictionless

labor market. Real wage is proportional to the firms’ marginal cost of producing one

unit of output, whereas the marginal rate of substitution is related to households’

consumption and hours worked, and it is therefore tied with the output gap in general

equilibrium. In other words, the labor market equilibrium condition determines the

relationship between the output gap and marginal cost. In fact, one can derive

a linear relationship between them in the stylized New Keynesian setting. Since

inflation is pined down by the current and future marginal costs through the NKPC,

it is quite difficult to obtain a small decline of inflation and a large drop of the output

gap simultaneously as long as the linear relationship between the output gap and

marginal cost is taken as given.
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1.3.2 Empirical evidence

1.3.2.1 Estimation of the NKPC

This subsection estimates the NKPC in U.S. data. The NKPC is originally formulated

from a firms’ profit maximization problem under nominal price rigidity. Therefore,

it relates firms’ marginal cost to inflation, whereas the output gap representation is

obtained as a consequence of general equilibrium. On the empirical side, early studies

by Gali and Gertler (1999) and Sbordone (2002) obtain significant estimates for the

slope parameter of the NKPC when they use a measure of marginal cost rather than

the output gap as a regressor. Both studies conclude that employing marginal cost

is preferable for the estimation of the NKPC because it purely represents the firms’

optimization behavior without imposing additional assumptions on the other parts of

the economy. On the other hand, many of recent studies including Ball and Mazumder

(2011), Murphy (2014), and Coibion and Gorodnichenko (2015) report the flattening

of the NKPC after the Great Recession by estimating the output gap representation.

Therefore, it would be worthwhile to examine whether the flattening of the NKPC is

also present in the marginal cost representation.

Before proceeding to a regression analysis, Figure 1.2 displays the output gap

representation of the NKPC in U.S. data. The fitted lines in the figure suggest that

the output gap representation became flatter in the sample after 2008Q1 in line with

findings of previous studies. It implies not only that the initial decline of inflation

during the Great Recession was small but also that the recovery of inflation has been

slow compared to the improvements of real economic activities.
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Figure 1.2: The output gap representation of the NKPC in U.S. data
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Notes: The x-axis is the unemployment gap as a proxy for the output gap (xt). The y-axis represents
the inflation rate minus the inflation expectation term (πt − βπet ) where the discount factor β is
calibrated to be 0.995. The inflation measure is the GDP implicit price deflator. The inflation
expectation is the median forecast of the SPF. The slope of the fitted lines represents the slope of
the NKPC in each sub-sample.

I estimate the following specification of the NKPC:

πt = βπet + γπt−1 + κxt + et (1.5)

Three modifications are added to the NKPC of Equation (1.2). First, the expectation

term Et[πt+1] is replaced with the survey based expectation πet . It reflects empirical

findings in the literature that using survey based expectation measures substantially

improve the fit of a regression model (e.g., Adam and Padula (2011), Coibion and

Gorodnichenko (2015), Furhrer (2017)). Second, following a convention of the litera-

ture, the lagged inflation term πt−1 is included to incorporate the persistent fluctua-

tions of inflation in the data. Lastly, the error term et captures exogenous innovations

to the current inflation such as markup shocks. Notice that, under this assumption,

the OLS delivers an unbiased estimator, while the GMM estimator is often used in

the literature to deal with endogeneity when the rational expectation error appears
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in the error term.

I use the GDP implicit price deflator as a measure of inflation. It is considered

to be preferable to the Consumer Price Index (CPI) or the Personal Consumption

Expenditures (PCE) inflation for the purpose of this regression analysis, because

the inflation rate that appears in the NKPC need to reflect the pricing behavior

of domestic firms rather than the price index faced by domestic households. The

measure of the inflation expectations is the median forecast of the GDP deflator in

the Survey of Professional Forecast (SPF) provided by the Federal Reserve Bank of

Philadelphia. The SPF is the only survey that asks the forecast of the GDP deflator.

Two cases are considered for the choice of varialbe xt: the output gap and marginal

cost. Following Coibion and Gorodnichenko (2015), I use the unemployment gap as

a proxy variable for the output gap.5 Regarding a series of marginal cost, since it is

infeasible to directly observe firms’ marginal cost, I follow the insights of Hall (1986)

to resort to firms’ optimizing behavior to estimate it. Specifically, I consider a cost

minimization problem:

min
Ht,Kt

: PH
t Ht + PK

t Kt (1.6)

s.t. Yt = F (Ht, Kt, Zt) (1.7)

where Yt denotes output, Zt technology, Ht labor inputs, Kt capital inputs. Produc-

tion technology is given by F . Firms are assumed to be price taker in factor markets.
5I use the long-term unemployment gap provided by the CBO in my baseline estimation. However,

I find that main results are robust to other slack measures such as the detrended output and the

employment rate.
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The first order condition (FOC) for the problem takes the form:

P J
t = λt

∂Ft
∂Jt

for J = K,H (1.8)

where λt denotes the Lagrangian multiplier that represents the nominal marginal cost

of producing one unit of output. The FOC can be rearranged to:

MCt ≡
λt
Pt

=
(
∂log(Ft)
∂log(Jt)

)−1

︸ ︷︷ ︸
(θJt )−1

P J
t Jt
PtYt︸ ︷︷ ︸
sJt

(1.9)

with θJt and sJt being the output elasticity with respect to input J and the expenditure

share of input J , respectively. Equation (1.9) allows one to construct the real marginal

cost MCt with observable variables sJt and θJt . I use the labor share of income for

the non-farm business sector to represent the expenditure share sJt . To estimate the

elasticity θJt , on the other hand, I impose an assumption on the functional form of

the production technology F . Following Basu (1996), Gagnon and Khan (2005), and

Nekarda and Ramey (2013), I assume the Cobb-Douglas production function with

overhead labor (CDOH) for a baseline case. Alternative specifications of the Cobb-

Douglas production function (CD) and a production function with constant elasticity

of substitution (CES) are investigated in Appendix 1.10.1.

Table 1.1 presents the estimation result of the NKPC (1.5). Each coefficient

without interaction is highly significant with intended sign. Regarding the changes of

the slope parameter, in column (1) and (2) the coefficient of the output gap shrinks

to less than a half once the observations after 2008Q1 are included. Moreover, the

interaction term with the dummy variable for the post-Great Recession period is

significantly negative in column (3). In contrast, the coefficient of marginal cost
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Table 1.1: OLS estimation of the NKPC

(1) (2) (3) (4) (5) (6)
Measure of xt Unemployment gap Marginal cost (CDOH)

Before GR Full sample Before GR Full sample
πet 0.609∗∗∗ 0.570∗∗∗ 0.621∗∗∗ 0.420∗∗∗ 0.468∗∗∗ 0.441∗∗∗

(0.082) (0.078) (0.080) (0.080) (0.074) (0.078)
πt−1 0.423∗∗∗ 0.448∗∗∗ 0.410∗∗∗ 0.573∗∗∗ 0.526∗∗∗ 0.552∗∗∗

(0.077) (0.075) (0.076) (0.081) (0.075) (0.080)
xt 0.332∗∗∗ 0.158∗∗∗ 0.310∗∗∗ 0.236∗∗∗ 0.186∗∗∗ 0.212∗∗∗

(0.059) (0.046) (0.056) (0.077) (0.062) (0.073)
postGRt × πet 0.054 0.372

(0.218) (0.223)
postGRt × πt−1 -0.164 -0.362

(0.221) (0.234)
postGRt × xt -0.333∗∗∗ -0.0796

(0.091) (0.130)
Adjusted R2 0.956 0.948 0.950 0.953 0.947 0.947

N 157 193 193 157 193 193
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Dependent variable is the current inflation rate πt. Heteroscedasticity corrected standard
errors are reported in parentheses. The sign of the coefficient of the unemployment gap is flipped
for a comparison purpose. postGRt is a dummy variable that takes 1 after 2008Q1. The time-
series spans quarterly from 1968Q4 to 2007Q4 for Before GR, and from 1968Q4 to 2016Q4 for
Full sample, respectively. The start point of the time-series corresponds to when the SPF became
available.

in column (4) and (5) is quite stable after the Great Recession with one standard

error of each coefficient covering the other. The interaction term with the post-Great

Recession dummy in column (6) is insignificant.

For robustness check, I assess the following alternative cases: 1) alternative mea-

sures for marginal cost and the output gap, 2) the purely forward looking NKPC, 3)

the rational expectation assumption, 4) rolling regression, and 5) Markov-switching

model of the parameter values. I also conduct 6) dynamic panel estimation using

industry level data. These alternative cases confirm the baseline result in that the

coefficient of marginal cost is stable over time whereas the coefficient of the output
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gap drops after the Great Recession or is insignificant even before the Great Recession

in some specifications.6 The details are presented in Appendix 1.10.1.

1.3.2.2 Relationship between marginal cost and the output gap

This subsection examines the empirical relationship between marginal cost and the

output gap using the industry level data of KLEMS 2017. An advantage of employing

industry level data is that the intermediate share is available to measure marginal cost.

To this regard, a number of studies suggest that intermediate inputs have desirable

features in various dimensions (e.g., Basu (1995), Nekarda and Ramey (2013), and

Bils et al. (2014)). For instance, adjustment costs for intermediates are considered

to be low relative to those for capital or labor. In addition, the assumption of no

overhead component seems more defensible for intermediates. Using industry level

data also removes composition bias among industries.7

I run the following panel regression of marginal cost on measures of the output
6For example, I find that the coefficient of the output gap is insignificant under the rational

expectation assumption regardless of sample periods. The result is indeed consistent with the existing

literature. Adam and Padula (2011) report that the coefficient of the output gap is significant only

when a survey based expectation measure is used instead of the rational expectation assumption.
7Despite these desirable properties, the survey based inflation expectations are not available

for each industry. Therefore, for the estimation analysis of the NKPC in the previous subsection,

I use the labor share in the aggregate data in the baseline estimation. However, for robustness

check, I estimated the NKPC by using the intermediate share in the industry level data under the

rational expectation assumption. The regression result confirms the baseline findings. The details

are provided in Appendix 1.10.1.
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gap:

IntSharei,t = β0 + β1xi,t + β1Di,txi,t + αi + γt + εi,t (1.10)

or

IntSharei,t = β0 + β1xt + β2Dtxt + αi + εi,t (1.11)

where αi and γt are fixed effects for industry i and time t, respectively. IntSharei,t

denotes the intermediate share, which is a measure of marginal cost. For measures

of the output gap x, I use the industry level detrended output Outputi,t and the ag-

gregate unemployment gap UnempGapt. In order to capture potential non-linearity,

I include interaction terms with dummy variables D for the post-Great Recession

periods postGR, or the higher- and lower-quantiles of each series of x, HQT and

LQT .

Table 1.2 presents the regression results. The coefficient of the detrended output

is significantly positive in column (1)-(4). The finding supports the procyclicality

of marginal cost (counter-cyclical markup) in line with previous studies (e.g., Basu

(1995), Gali et al. (2007), and Bils et al. (2014)). Moreover, the data identifies

convexity in the relation between marginal cost and the detrended output. To be

precise, the interaction term with the post-Great Recession dummy is significantly

negative in column (2), implying that marginal cost did not decline as much as the

detrended output did after the Great Recession. Interestingly, the interaction term

with the lower quartile in column (3) is negative, whereas that with the higher quartile

in column (4) is positive. These observations imply that the convex relationship is

present over the business cycle in general, and it appeared significantly after the Great
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Table 1.2: Panel regression of the cyclicality of marginal cost to the output gap
measures

Dependent variable : IntSharei,t
(1) (2) (3) (4) (5) (6) (7) (8)

Linear post-GR LQT HQT Linear post-
GR

LQT HQT

Outputi,t 0.316+++0.371+++ 0.395+++ 0.258+++

(0.031) (0.035) (0.048) (0.043)
postGRt ×Outputi,t -0.245∗∗∗

(0.076)
LQTi,t ×Outputi,t -0.164∗∗

(0.078)
HQTi,t ×Outputi,t 0.129∗

(0.066)
UnempGapt 0.676+++1.159∗∗∗ 1.118∗∗∗ 0.242

(0.167) (0.362) (0.410) (0.223)
postGRt×UnempGapt -1.004∗∗

(0.393)
LQTt × UnempGapt -0.902∗∗

(0.438)
HQTt × UnempGapt 1.074

(1.064)
Industry FE YES YES YES YES YES YES YES YES

Time FE YES YES YES YES NO NO NO NO
N of ind. 60 60 60 60 60 60 60 60

N of total obs. 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, +++ p < 0.001

Notes: Standard errors are clustered within each industry and reported in parentheses. The inter-
mediate share and the detrended output are taken log and detrended by the Hamilton filter. The
sign of the coefficient of the unemployment gap is flipped for a comparison purpose. postGRt is a
dummy variable that takes 1 after year 2008. LQTi,t and HQTi,t is a dummy variable that takes 1 if
the observation is in the lower and higher 25 percentile of the sample, respectively. Sample is annual
data from 1985 to 2014 for 60 industries in the non-farm business sector, including 18 manufacturing
and 42 non-manufacturing. In column 5-8, dummy variables for year 2008 and 2009 are included to
control for the large variations during the financial crisis.

Recession. These results are supported with respect to the aggregate unemployment

gap in column (5)-(8) as well.

In sum, the empirical evidence in this section suggests that the marginal cost

representation of the NKPC remained stable after the Great Recession, while I confirm
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the flattening of the output gap representation in line with the existing literature. I

also find that marginal cost has a convex relationship with the output gap, and the

convexity significantly appeared after the Great Recession. I take these findings as

suggestive. In particular, I do not claim that the cyclicality of markup represents

causality. However, the evidence cast a doubt on one of the key features in a stylized

New Keynesian model that the output gap and marginal cost has a linear relationship.

In the next section, therefore, I develop a model in which labor market friction arising

from DNWR creates a wedge between them. The model addresses non-linearity in

the observed Phillips curve relationship between inflation and the output gap, while

keeping the marginal cost representation of the NKPC unchanged.

1.4 Model

This section develops a DSGE model that embeds the DNWR constraint for indi-

vidual workers. Other parts of the economy share many features of a standard New

Keynesian model in the literature such as the one by Erceg et al. (2000), Ireland

(2004), and Christiano et al. (2005). The economy consists of monopolistically com-

petitive firms that set their prices with the quadratic adjustment cost á la Rotemberg

(1982), households who make saving-consumption decision and supply differentiated

labor service to the production sector, and the central bank that follows the Taylor

(1993)-type nominal interest rate policy to stabilize inflation and output.
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1.4.1 Households

In the economy, there is a continuum of households indexed by j on the unit interval,

each of whom supplies a differentiated labor service to the production sector. The

aggregate labor supply has the Dixit-Stiglitz form:

Ht ≡
(∫ 1

0
ht(j)

θw−1
θw dj

) θw
θw−1

(1.12)

where θw represents the labor demand elasticity. The user of labor service minimizes

the cost of using certain amount of composite labor inputs, taking each labor service’s

wage as given. The FOC for the cost minimization problem leads to the individual

labor demand function:

ht(j) =
(
wt(j)
Wt

)−θw
Ht (1.13)

where the aggregate wage index Wt is defined as

Wt ≡
(∫ 1

0
wt(j)1−θwdj

) 1
1−θw

. (1.14)

The utility function of each household j is assumed to be additive separable in CRRA

utility from consumption ct(j) and CRRA disutility from hours worked ht(j) with

parameter σ and η respectively. The disutility from labor is subject to an uninsurable

idiosyncratic shock χt(j), which follows an i.i.d. log-normal distribution. The time-

varying discount factor βt is exogenous and common for each household. It captures

exogenous changes of households’ preference. The expected lifetime utility is given
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by

Et
[ ∞∑
s=0

Dt,t+s

(
1

1− σct(j)
1−σ − 1

1 + η
χt(j)ht(j)1+η

)]
(1.15)

where log(χt(j)) ∼ i.i.d.N(−σ2
χ/2, σ2

χ)

Dt,t+s = βt+sDt,t+s−1.

Notice that the mean of the log(χt(j)) is adjusted such that E[χt(j)] = 1. The

aggregate discount factor βt follows an AR(1) process:

log(βt) = (1− ρd)log(β̄) + ρdlog(βt−1) + εd,t , εd,t ∼ i.i.d.N(0, σ2
d) (1.16)

where β̄ represents the unconditional mean of βt. One can interpret a positive εd,t as

a contractionary discount factor shock where households lose their desire to consume

in the current period.

Household j’s budget constraint in period t is given by

ct(j) + at(j)
Pt
≤ (1 + τw)wt(j)

Pt
ht(j) +Rt−1

at−1(j)
Pt

+ τt(j)
Pt

+ Φt(j) (1.17)

where at(j) is the amount of asset holding, τt(j) is the lump-sum tax, and Φt(j) is

the share of producer’s real profits distributed to household j. I assume that house-

holds do not internalize the fluctuations of τt(j) nor Φt(j). Pt, Rt−1, and τw denote

the aggregate price index, the gross nominal interest rate, and the labor subsidy,

respectively.

Household’s nominal wage might be subject to the DNWR constraint. I assume

that 1−α fraction of households is not allowed to reduce their nominal wages in each

period with 0 < α < 1, whereas the remaining α fraction of them is free to change
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their wages without the constraint:

wt(j) ≥ wt−1(j) with prob. 1− α. (1.18)

This assumption reflects a well known empirical fact that nominal wage reduction

is rare to occur. For instance, Baratteiri et al. (2014), who study the frequency of

individual nominal wage changes in the Survey of Income and Program Participa-

tion (SIPP) during 1996-1999, report that nominal wage reduction only corresponds

to 12.3 percent of all the non-zero nominal wage changes after correcting for mea-

surement errors. Each household j maximizes the expected lifetime utility (1.15) by

choosing her consumption ct(j), asset holding at(j), and nominal wage wt(j) sub-

ject to her budget constraint (1.17), individual labor demand (1.13), and the DNWR

constraint (1.18) if she is subject to it. The FOCs for the problem take the form:

Et

βt
(
ct+1(j)
ct(j)

)−σ
Rt

Πt+1

 = 1 (1.19)

ψt(j) =
(
wt(j)
Pt
− µ̄w

1 + τw
mrst(j)

)(
1 + τw
µ̄w

ct(j)−σ
θwht(j)
wt(j)

)
+ βtEt[ψt+1(j)] (1.20)

where mrst(j) ≡
χt(j)ht(j)η
ct(j)−σ

with µ̄w ≡ θw/(θw − 1) being the steady-state wage markup and Πt ≡ Pt/Pt−1 being

the gross price inflation rate. µ̄w is the steady state wage markup stemming from

the monopolistic power of each household for her differentiated labor service, and

mrst(j) is the marginal rate of substitution of household j. ψt(j) denotes the Lagrange

multiplier for the DNWR constraint, which represents the shadow value of easing the

DNWR constraint by one unit. The complementary slackness conditions for the

27



DNWR constraint (1.18) are given by

ψt(j) ≥ 0 (1.21)

ψt(j)(wt(j)− wt−1(j)) = 0. (1.22)

In the following analysis, I impose two additional assumptions to focus on my main

points while keeping the model tractable. First, I assume that each household has an

access to a complete insurance market for consumption, though she is still subject to

an uninsurable idiosyncratic labor disutility shock. The assumption together with the

additive separable utility function8 guarantees that consumption is identical across

households:

ct(j) = Ct. (1.23)

Second, following Erceg et al. (2000), I assume that the labor subsidy is set to remove

the steady state wage markup:

1 + τw = µ̄w. (1.24)

Due to these assumptions, the FOCs (1.19) and (1.20) can be simplified to

Et
[
βt

(
Ct+1

Ct

)−σ Rt

Πt+1

]
= 1 (1.25)

ψt(j) =
(
wt(j)
Pt
−mrst(j)

)(
C−σt

θwht(j)
wt(j)

)
+ βtEt[ψt+1(j)]. (1.26)

8The assumption is extensively used in the literature. On the other hand, several studies in-

vestigate non-separable preferences (King et al. (1988), Hall (2009), Christiano et al. (2011), etc.)

and Basu and Kimball (2002) provide empirical support for them. In this regard, Guerrón-Quintana

(2008) shows that non-separability makes consumption more responsive to wage. His result indicates

that non-separable preferences reinforce my results in that they help the model reconcile a large drop

of real quantities and a small decline of price variables after the Great Recession.
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The optimality conditions for individual wage setting are characterized by (1.21),

(1.22), and (1.26). If it were not for the DNWR constraint, then, ψt(j) = 0 would

hold for all j and t. In that case, the optimality conditions are reduced to

wft (j)
P f
t

= mrsft (j) (1.27)

where xft denotes the variable xt under flexible prices and wages. Equation (1.27)

formulates an optimality condition under flexible wages to equalize real wage to the

marginal rate of substitution. On the other hand, in the presence of the DNWR con-

straint, the complementary slackness conditions for the constraint imply that either

of the following has to hold true:

wt(j) = wt−1(j) (1.28)

or

ψt(j) = 0. (1.29)

The former condition corresponds to the case where the DNWR constraint binds in

the current period, whereas the latter the case where it does not. The latter condition

is rearranged by using (1.26):

wt(j)
Pt

= mrst(j)− βtEt[ψt+1(j)]
(
C−σt

θwht(j)
wt(j)

)−1

. (1.30)

The first term in the RHS of (1.30) coincides with the optimal wage under flexible

wages, whereas the second term represents the reserved wage hike due to the like-

lihood of the DNWR constraint binding in the future periods. It is worth pointing

that the optimal wages implied by (1.30) are weakly lower than their marginal rate
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of substitution since ψt(j) is non-negative by (1.21). In other words, DNWR endoge-

nously generates upward wage stickiness. Intuitively, a household internalizes the

possibilities that her DNWR constraint might bind in the future periods, and she

therefore desires to hold some buffer to prevent the future constraint from binding

even if the constraint does not bind in the current period. This property is in line with

the finding of the previous studies such as Elsby (2009), Benigno and Ricci (2011),

and Daly and Hobijn (2014). To summarize the conditions above, the optimal wage

of household j who are subject to the DNWR constraint follows the rule:

wt(j) = max

{
wdt (j), wt−1(j)

}
(1.31)

where the desired wage wdt (j) satisfies the condition (1.30).

1.4.2 Firms

There is a continuum of monopolistically competitive firms indexed by i on the unit

interval, each of which produces a differentiated good. The production technology

available for the firm producing good i is given by

yt(i) = Ztht(i) (1.32)

where ht(i) =
(∫ 1

0
ht(i, j)

θw−1
θw dj

) θw
θw−1

. (1.33)

Technology Zt is exogenous and common for each firm. Firm i uses the composite

labor inputs ht(i), where h(i, j) denotes the labor service supplied by household j and

used in firm i.
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The cost minimization problem to determine the labor inputs ht(i) is given by

min
ht(i)

: Wt

Pt
ht(i) s.t. (1.32). (1.34)

The FOC takes the form:

mct(i) = Wt

ZtPt
≡MCt (1.35)

where MCt is the real marginal cost of producing one unit of output. (1.35) implies

that the marginal cost is identical across firms. This is because each firm has the

identical labor demand elasticity and takes labor service’s wages as given.

I next formulate the firms’ profit maximization problem. Firms face the quadratic

price adjustment cost formulated by Rotemberg (1982) with parameter φp governing

the degree of price stickiness. A firm chooses its price to maximize the expected profit

subject to the individual good demand function that is analogous to the individual

labor demand function:

max
pt(i)

: Et

 ∞∑
s=0

SDFt,t+sΦt+s(i)
 (1.36)

where SDFt,t+s = Dt,t+s

(
Ct+s
Ct

)−σ

Φt(i) = (1 + τp)
pt(i)
Pt

yt(i)−MCtyt(i)−
φp
2 (Πt(i)− Π∗)2Ct

s.t. yt(i) =
(
pt(i)
Pt

)−θp
Yt. (1.37)

Πt(i) ≡ Pt(i)/Pt−1(i) and Φt(i) are the gross price changes and the real profits of firm

i, while SDFt,t+s is the stochastic discount factor between t and t + s. τp denotes

the production subsidy. As in the households’ problem, I assume that the production

subsidy removes the steady state price markup that arises from firms’ monopolistic
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power:

1 + τp = µ̄p (1.38)

where µ̄p ≡ θp/(θp − 1). I focus on the symmetric equilibrium where each firm sets

identical price. The FOC for the profit maximization problem yields the NKPC:

(Πt − Π∗)Πt = βtEt
[(
Ct+1

Ct

)−σ (Yt+1

Yt

)
(Πt+1 − Π∗)Πt+1

]
+ κ (MCt − 1) (1.39)

where MCt is defined in (1.35). κ ≡ θp/φp represents the slope of the NKPC. The

aggregate production function in the symmetric equilibrium is given by

Yt = ZtHt. (1.40)

1.4.3 Central bank and government

In the baseline model, I assume a Taylor (1993)-type monetary policy rule where the

central bank sets the gross nominal interest rate Rt to stabilize the gross inflation

rate Πt and output Yt around their target level Π∗ and Y ∗:

Rt = R∗
(

Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.41)

where R∗ = Π∗/β. Note that I introduce the ZLB to conduct a counterfactual analysis

for the Great Recession in Section 1.8.

In this economy, the government is passive in the sense that it levies lump-sum

tax on households and distributes it as production and labor subsidies to firms and

households with a balanced budget:

∫ 1

0
τt(j)dj = τw

∫ 1

0
wt(j)ht(j)dj + τp

∫ 1

0
pt(i)yt(i)di. (1.42)
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1.4.4 Market clearing

Market clearing conditions are given as follows.

At ≡
∫ 1

0
at(j)dj = 0 (1.43)

Yt = Ct + φp
2 (Πt − Π∗)2Ct (1.44)

Ht =
∫ 1

0
ht(i)di. (1.45)

The asset market clearing (1.43) is trivial because consumption is identical across

households and it is therefore not necessary to keep track of individual asset holdings

to characterize equilibrium. The goods market clearing (1.44) should hold in the

aggregate level since I restrict the attention to the symmetric equilibrium. It should

be noticed that the labor market clearing (1.45) is automatically satisfied in the

symmetric equilibrium as well.

1.4.5 Equilibrium

Definition. A recursive competitive equilibrium is a household’s policy function for

individual real wages w̃ = h(w̃−1, χ; g−1, β, Z), a policy function for a set of aggregate

jump variables X ≡ {C, Y,H,Π, R} = f(g−1, β, Z), and a law of motion Γ for cross-

sectional density of individual real wages g, such that

(i) a household’s policy function h solves a recursive wage setting problem,
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V dnwr
(
w̃−1, χ; g−1, β, Z

)
= max

w̃
: − 1

1 + η
eχh1+η + C−σ(1 + τw)(w̃h)

+ βE
[
V
(
w̃, χ′; g, β′, Z ′

)
|g−1, β, Z

]

s.t. h =
(
w̃/W̃

)−θw
H

w̃ ≥ w̃−1/Π

V no
(
χ; g−1, β, Z

)
= max

w̃
: − 1

1 + η
eχh1+η + C−σ(1 + τw)(w̃h)

+ βE
[
V
(
w̃, χ′; g, β′, Z ′

)
|g−1, β, Z

]

s.t. h =
(
w̃/W̃

)−θw
H

where E
[
V
(
w̃, χ′; g, β′, Z ′

)
|g−1, β, Z

]
= (1− α)E

[
V dnwr

(
w̃, χ′; g, β′, Z ′

)
|g−1, β, Z

]

+ αE
[
V no

(
χ′; g, β′, Z ′

)
|g−1, β, Z

]

with W̃ being the aggregate real wage generated by the cross-sectional density g and

C, H, and Π being consistent with the aggregate policy function f .

(ii) an aggregate policy function f solve the Euler equation (1.25), the NKPC (1.39),

the monetary policy rule (1.41), the production function (1.40), and the market clear-

ing conditions (1.44),

(iii) a law of motion Γ is generated by g, that is, the cross-sectional density g satisfies

a recursive rule:

g = Γ(g−1, β, Z).
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1.4.6 Analytical example

I briefly discuss the key mechanism of the model before proceeding to a numerical

solution to it. For the example below, I impose several additional assumptions to

analytically characterize equilibrium. To be precise, I consider log-utility from con-

sumption and linear-disutility from labor, i.e. σ = 1 and η = 0. I also assume that

there are no idiosyncratic disutility shocks.

Under flexible prices and wages, the labor market equilibrium condition requires

the marginal product of labor MPL and the marginal rate of substitution between

consumption and hours worked MRS to be equalized with each other through real

wage:

MPLft = W f
t

P f
t

= MRSft (1.46)

where MPLft = Zt

MRSft = Y f
t

where Y f
t denotes the output under flexible prices and wages. Notice that j notation

for each household is dropped in (1.46) since the marginal rate of substitution does not

have idiosyncratic components in this example. In addition, wage and price markups

do not appear in (1.46) because both markups are constant under flexible prices and

wages and the steady state markups are canceled out with the labor and production

subsidy. In the presence of DNWR and price stickiness, on the other hand, markups
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are no longer constant. The labor market equilibrium condition takes the form:

MCtMPLt = Wt

Pt
= µw,tMRSt (1.47)

where MPLt = Zt

MRSt = Yt.

The aggregate wage markup µw,t summarizes the wedge between the real wage and

the marginal rate of substitution due to the DNWR constraint. On the other hand,

MCt(≡ 1/µp,t) captures the fluctuations in the real marginal cost that results from

imperfect price adjustment due to the nominal price rigidity. By combining (1.46)

and (1.47) and taking logarithm of both sides, the relationship between the output

gap and marginal cost is given by

M̂Ct = (Ŷt − Ŷ f
t ) + µ̂w,t (1.48)

where I define x̂t ≡ log(xt). The first term in the RHS of (1.48) is the definition of

the output gap, whereas the second term is the wage markup arising from DNWR.

I next examine the effect of the wage markup due to DNWR on price inflation.

It is immediate to see the wage markup appears in the output gap representation of

the NKPC by substituting (1.48) into the linearized version of (1.39):

πt = βEt [πt+1] + κM̂Ct

= βEt [πt+1] + κ(Ŷt − Ŷ f
t ) + κµ̂w,t (1.49)

where πt ≡ log(Πt). Equation (1.48) and (1.49) suggest that DNWR creates a time-

varying wedge between the output gap and marginal cost and it works as a shift
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parameter of the output gap representation of the NKPC. In recessions when the

wedge increases due to the binding DNWR constraint, the output representation of

the NKPC shifts up, which makes the observed relationship between inflation and

the output gap flatter. To quantify these implications, I solve the model numerically

in the next section.

1.5 Numerical Method and Calibration

This section presents an equilibrium computation method to solve the model devel-

oped in Section 1.4, and explains my calibration strategy.

1.5.1 Modified Krusell-Smith algorithm

I present an equilibrium computation method to solve the model numerically. I

choose to solve the model in a dynamic setting because my main focus is on inflation

dynamics at business cycle frequencies. To this end, a perturbation method, which

is widely used to solve DSGE models in the literature, cannot be applied to my

model. The first reason is non-differentiability. Since the occasionally binding DNWR

constraint makes the individual policy function kinked, the function is no longer

differentiable. The presence of the ZLB is another source of non-differentiability.

Second, the DNWR constraint introduces heterogeneity of wages among households.

This is due to the state-dependent nature of the DNWR constraint. Unlike a time-

dependent constraint such as the staggered contract of Calvo (1983), whether the

DNWR constraint binds or not crucially depends on the previous period’s wages.
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Therefore, in order to characterize equilibrium, it is necessary to keep track of the

history of individual wages, i.e. cross-sectional wage distribution.9

For these reasons, I apply the Krusell-Smith algorithm to the model. Since cross-

sectional distribution is an infinite dimensional object, it is in practice impossible

to track all the information in it. In this regard, Krusell and Smith (1998) propose

an approximated equilibrium where each agent perceives the evolution of aggregate

state variables as being a function of a small number of moments of cross-sectional

distribution. Adopting their insight, I assume that the aggregate endogenous state

variable, real wage W̃t, is governed by the following aggregate law of motion (ALM):

W̃t = Γ(W̃t−1, βt, Zt). (1.50)

An important challenge is that, even though the original Krusell-Smith algorithm

requires aggregate jump variables to have a closed form solution in terms of aggregate

state variables, that condition does not hold in the New Keynesian setting. Therefore,

I propose a modified algorithm. Specifically, given a guess for the ALM of the aggre-

gate state variable (1.50), I first solve for the aggregate jump variables, consumption

Ct, hours worked Ht, price inflation Πt, and nominal interest rate Rt, as general equi-

librium outcomes of the aggregate part of the economy. Notice that the aggregate

part of the economy consists of the 3-equation New Keynesian system, that is, the

Euler equation (1.25), the NKPC (1.39), and the Taylor rule (1.41), as well as the

production function (1.40) and the market clearing condition (1.44). Importantly,

it is independent of individual workers’ behavior conditional on the aggregate real
9Recent studies propose several computation methods to solve a model with heterogeneity. Dis-

cussion on the selection of computation methods is provided in Appendix 1.10.2
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wage. Then, given all the aggregate variables, an individual variable, each worker’s

real wage w̃t(j), can be obtained as a solution to the individual wage setting problem.

Finally, I numerically integrate the individual variables to recover the aggregate state

variable and update the initial guess for the ALM. To address non-linearity stemming

from DNWR and the ZLB, I used a global method in each step. The details of the

computation algorithm are provided in Appendix 1.10.2.

1.5.2 Calibration

Due to the complexity of my model, I follow a calibration strategy to set parameter

values. The time frequency is quarterly. The externally fixed parameters are listed in

Panel (A) of Table 2.1. The choice of the discount factor β and the target inflation

rate Π∗ corresponds to the annual real interest rate of 2 percent and the annual price

inflation rate of 2 percent, respectively. The relative risk aversion of households σ is

set at 2.0 and the inverse of the Frisch labor supply elasticity η is at 0.25, which is

in line with the existing literature. The values of θw and θp imply the steady state

markup is 12.5 percent. I follow Fernández-Villaverde et al. (2015) to set δπ = 1.50

and δy = 0.25. The value of the degree of price stickiness φp is calibrated according

to the frequency of individual price changes reported by Nakamura and Steinsson

(2008). They find that the median frequency excluding temporary sales is 11-13

percent per month, which implies the slope of the NKPC is around 0.20 and the

corresponding parameter value is φp = 45.0 in my model. Notice that the parameter

value implies that 1 (5) percentage point deviation of inflation from its trend generates
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Table 1.3: Calibration

Panel (A): Fixed parameters
Description SymbolValue Target/Source

Average discount factor β̄ 0.995 S.S. real interest rate = 2.0% (annual)
Relative risk aversion σ 2.00 IES = 0.5

Inverse of Frisch labor supply elasticity η 0.25 King and Rebelo (1999)
Labor demand elasticity θw 9.00 S.S. wage markup = 12.5%
Goods demand elasticity θp 9.00 S.S. price markup = 12.5%

Price adjustment cost φp 45.0 Slope of NKPC = 0.20
(Corresponding Calvo parameter) - (0.64) Nakamura and Steinsson (2008)

Coefficient of inflation in the Taylor rule δπ 1.50 Fernández-Villaverde et al. (2015)
Coefficient of output in the Taylor rule δy 0.25 Same as above

Target inflation rate Π∗ 1.005 S.S. inflation rate = 2.0% (annual)
Target output Y ∗ 1.000 Externally fixed

Panel (B): Parameters for cross-sectional wage distribution
Parameter SymbolValue Target/Source

Fraction of workers without being α 0.0610 Frequency of wage changes=0.266;
subject to the DNWR constraint Barattieri et al. (2014)

S.D. of idiosyncratic labor σχ 0.1540 S.D. of wage changes (annual)=0.108;
disutility shock Fallick et al. (2016)

Notes: Barattieri et al. (2014) identify the fraction of workers with non-zero wage changes to be
between 0.211 and 0.266 depending on the assumptions they use in their estimation. I use the most
conservative value 0.266 in terms of generating wage stickiness, since the model exclude any other
possibilities to generate wage rigidity than DNWR.

Panel (C): Parameters for aggregate exogenous processes
Parameter SymbolValue Target/Source

AR(1) coefficient of discount factor ρβ 0.865 First-order autocorr. of output=0.85
S.D. of innovations to discount factor σβ 0.00562 S.D. of output=1.55%

Notes: Targets are the HP-filtered real GDP from 1955Q1 to 2007Q4. The end point of the sample
is determined to exclude the ZLB periods.

0.225 (5.625) percent loss of consumption.10 Although previous studies in the New

Keynesian literature tend to use higher values for the price stickiness parameter to

reproduce the persistence of the actual inflation, I investigate whether the model

can account for the data under the parameterization that is consistent with micro
10The consumption loss is calculated as follows. φp

2 (Πt−Π∗)2∗100 = 45/2∗0.012∗100 = 0.225(%)
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evidence.

The parameters regarding cross-sectional wage distribution are calibrated to match

the empirical distribution in U.S. data. I choose parameter values to minimize the

quadratic distance between the moments of the stationary distribution of individual

wage changes in the model and the target moments in data by using a grid search

method. The target moments and the calibrated parameter values are listed in Panel

(B) of Table 2.1.

In the following, I focus on the consequence of exogenous variations of discount

factor βt, while keeping technology constant at the unity, i.e., Zt = Z̄ = 1.11 This

is because a plenty of evidence in the literature suggests that a demand side shock,

in particular, a wedge in the intertemporal substitution, is the key determinant of

the severe contractions during the Great Recession. Many of previous studies reach

that conclusion by a reduced from regression analysis (Hall (2011)) and an estimation

analysis of a structural model (Justiniano et al. (2011), Christiano et al. (2014), Gust

et al. (2017), etc.). To this end, as Justiniano et al. (2011) point out, the time-varying

discount factor is a parsimonious way to represent the shock. For parameterization,

the AR(1) coefficient of the discount factor ρβ and the standard deviation of inno-

vations to it σβ are calibrated to match the persistence and the standard deviation

of the real GDP in the post-war U.S. data. The calibrated parameters are listed in

Panel (C) of Table 2.1.
11For a curious reader, the effect of a technology shock is investigated in Appendix 1.10.4.
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1.6 Numerical Results

1.6.1 Unconditional moments

Before proceeding to my main analysis, this subsection presents the unconditional

cross-sectional and time-series moments of the model to check the validity of it.

1.6.1.1 Stationary distribution

Figure 1.3 displays the stationary distribution of non-zero wage changes in the cali-

brated model. The definition of the stationary equilibrium is provided in Appendix

1.10.3. Table 1.4 reports the cross-sectional moments. The model replicates key fea-

tures of the empirical distribution including: 1) a large spike at zero (not shown in

the figure), 2) much less individuals with nominal wage reductions than increases, 3)

a discrete difference in the density between the positive and negative sides around

zero, and 4) higher mean than median. It should be noted that I do not target the

asymmetry of the empirical distribution when calibrating parameters. Instead, these

properties arise as a consequence of the specifications of the model.

1.6.1.2 Time-series moments

Table 1.5 compares the time-series moments of the model with the data. For this

analysis, I simulate the model for 51,000 periods and discarded the initial 1,000 ob-

servations to calculate the moments. The table also reports the moments in a model

without DNWR, which coincides with a stylized New Keynesian model presented in

Section 1.3. The baseline model with DNWR does fairly well in matching the time-
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Figure 1.3: Stationary distribution of non-zero wage changes
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Table 1.4: Cross-sectional moments

Description Model Data Source
Targeted moment:

Fraction of workers with non-zero wage
changes

0.267 0.266 Barattieri et al. (2014)

S.D. of individual wage changes (annual) 0.108 0.108 Fallick et al. (2016)
Untargeted moment:

Fraction of wage cuts out of 0.147 0.123 Barattieri et al. (2014)
non-zero wage changes 0.22, 0.32 Author’s calculation based

on Elsby et al. (2016)
Mean of wage changes (annual) 0.019 0.033 Fallick et al. (2016)

Median of wage changes (annual) 0.0098 0.028 Fallick et al. (2016)

Notes: The data source and the sample period of each paper is as follows; Barattieri et al. (2014):
SIPP, 1996-1999. Fallick et al. (2016): ECI, 1982-2014. Elsby et al. (2016): CPS, 1980-2012. For
the fraction of wage cuts out of non-zero wage changes, 0.22 is for hourly paid workers and 0.32 is
for non-hourly paid workers. Data frequency is quarterly, unless otherwise noted. The higher order
moments of the distribution are not reported since I find that they are sometimes sensitive to small
changes in parameter values. It might be because a large mass of workers is at the zero wage change.
To this regard, Fallick et al. (2016) report the skewness of the distribution in the data takes positive
and negative values in each year without a clear pattern.

series moments of the data in a number of dimensions including: 1) low standard

deviation of price inflation and wage growth relative to that of output and hours

worked, 2) positive skewness of price inflation, wage growth, and real wage, 3) neg-
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Table 1.5: Time-series moments

Data Model
55Q1-07Q4 Baseline w/o DNWR

σ(Y ) 1.55 1.55 0.44
σ(H) 1.82 1.55 0.44
σ(πp) 0.58 0.60 1.40
σ(πw) 0.74 0.66 1.62
σ(W/P ) 0.84 0.46 0.99
σ(i) 0.82 1.26 2.23
ρ(Y ) 0.85 0.85 0.86
ρ(H) 0.90 0.85 0.86
ρ(πp) 0.86 0.90 0.87
ρ(πw) 0.40 0.81 0.64
ρ(W/P ) 0.78 0.94 0.86
ρ(i) 0.95 0.89 0.87
Sk(Y ) -0.49 (-0.59) -0.38 (-0.11) 0.34 (0.06)
Sk(H) -0.28 (-0.59) -0.38 (-0.11) 0.34 (0.06)
Sk(πp) 1.25 (0.25) 1.50 (0.36) -0.07 (-0.01)
Sk(πw) 0.23 (0.02) 1.75 (0.38) 0.04 (-0.01)
Sk(W/P ) 0.53 (-0.77) 2.26 (-0.11) 0.36 (0.07)
Sk(i) 1.17 (0.10) 1.01 (0.23) -0.02 (-0.00)

Notes: The standard deviation σ, the first order autocorrelation ρ, and the skewness Sk are reported.
For the skewness, as well as the standard definition Sk1, an alternative skewness measure Sk2 is
reported in parentheses. Sk2 is defined as Sk2 = (µ−Q)/σ with the mean µ and the median Q, and
bounded between -1 and 1. Kim and White (2003) argue that Sk2 is robust to outliers. Regarding
the moments of data, Y is the real GDP, H is the total hours in the non-farm business sector, πp is
the GDP implicit price deflator, πw is the compensation per hour in the non-farm business sector,
and i is the effective federal funds rate. Y and H are taken log and detrended by the HP-filter. πp
and πw are the quarter-on-quarter growth rate. i is the annual rate divided by 4 (quarterly rate).
Sample period is from 1955Q1 to 2007Q4. The end point of the sample is determined to exclude
the ZLB periods. For computing the moments of the models, we simulate the economy for 51,000
periods and discard the initial 1,000 observations. The model without DNWR is solved by a policy
function iteration and simulated under the same parameter values as the baseline model.

ative skewness of output and hours. On the other hand, the model without DNWR

fails to match them. In particular, it generates positive skewness of output and hours

worked due to the concavity of utility function.
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1.6.2 Generalized impulse responses

Figure 1.4 presents the generalized impulse responses (GIR) to a 2 S.D. discount fac-

tor shock. The construction of the GIR is provided in Appendix 1.10.2. A discount

factor shock, as a demand side shock, generates comovements among quantity and

price variables. More importantly, the responses of wage growth, price inflation, and

marginal cost display strong asymmetry to contractionary and expansionary shocks.

They are much more sluggish downward than upward in the presence of DNWR.

On the other hand, the responses of output and consumption are larger to a contrac-

tionary shock. It implies that real quantities are adjusted instead of price variables as

a consequence of general equilibrium. I find that the asymmetry of real quantities are

relatively smaller than that of price variables, because the concavity of utility function

makes households resist a decline of consumption more strongly than they appreciate

an increase of it, and that effect partly offsets the asymmetry arising from DNWR.

Moreover, the half-lives of the price variables are longer upon a contractionary shock.

For example, the half-lives of price inflation are 10 quarters for a contractionary shock

whereas they are 8 quarters for an expansionary one. Those of wage growth are 6 and

4 quarters, respectively. There is not clear asymmetry in the half-lives of quantity

variables.

To quantify the degree of asymmetry, I introduce the following measure:

Asym(y, k, ε0) =
k∑
t=1
|GIR(y, t, ε0)|/

k∑
t=1
|GIR(y, t,−ε0)| (1.51)

where y is the target variable and ε0 is the initial exogenous shock with ε0 > 0. k

is the time-horizon, which is set at 4. The measure compares relative size of the
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Figure 1.4: GIR to a 2 S.D. discount factor shock
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Notes: The x-axes represent the time horizon after the initial shock. The y-axes are in terms of the
deviation from the stochastic mean (s.m.). The GIR are the conditional expectation on the initial
shock. The construction of the GIR is provided in Appendix 1.10.2.

responses to a contractionary shock. Table 1.6 shows that the degree of asymmetry is

increasing in the size of shock. Consider the responses of price inflation, for example.

The response to a 2.5 S.D. contractionary shock is smaller by 50 percent than that to

an expansionary shock with the same magnitude. In contrast, the difference is only

17 percent for a 0.5 S.D. shock.

1.6.3 Simulated Phillips curve

In Figure 1.5, I simulate the model economy to plot the two representations of the

Phillips curve. The output gap representation of the NKPC, shown in the left panel,

becomes flatter when the output gap takes negative values, and the quadratic fitted
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Table 1.6: Degree of asymmetry to different size of shocks

Asym(·, k = 4, ε0)
ε0 πw πp MC Y H i r β

0.5 S.D. 0.80 0.83 0.62 1.05 1.05 0.89 0.94 1.00
1.0 S.D. 0.65 0.70 0.40 1.11 1.11 0.80 0.89 1.00
1.5 S.D. 0.56 0.62 0.34 1.16 1.16 0.74 0.86 1.00
2.0 S.D. 0.49 0.57 0.35 1.20 1.20 0.70 0.83 1.00
2.5 S.D. 0.46 0.50 0.31 1.24 1.24 0.64 0.78 1.00

Notes: The table reports the asymmetry measure defined in (1.51). Higher values indicate that the
GIR is larger upon a contractionary shock than to an expansionary one.

curve exhibits strong convexity. This is exactly because the binding DNWR constraint

creates a wedge between the output gap and marginal cost and the wedge shifts up the

NKPC in recessions. Since the effect is increasing in the size of shocks, the Phillips

curve looks downward sloping on its left end. On the other hand, the marginal cost

representation of the Phillips curve, displayed in the right panel, stays almost linear.

It reflects the fact that the firms’ price setting behavior given a level of marginal cost

does not change over the business cycle in the model, though small deviations can

emerge due to the fluctuations of the stochastic discount factor.

1.7 Discussion and relation to literature

This section provides discussion on the key mechanism of the model and its relation

to the existing literature.

Shifts of cross-sectional wage distribution. A key feature to understand the non-

linear dynamics of the model is the endogenous shifts of cross-sectional distribution.
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Figure 1.5: Simulated Phillips curve
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Notes: Each panel displays scatter plots of the simulated data and the quadratic fitted curves
of it. Since I discretize the state space with the relatively small number of exogenous states, I use
interpolation between observations to generate a smooth transition path between states. Specifically,
I generated a time-series of data for 5,000 periods on the discretized state space and interpolated at
the middle point of exogenous states using the linear interpolation. The total number of observations
is therefore 9,999 in each panel.

Figure 1.6 shows the cross-sectional distribution of individual wage changes when the

economy is hit by contractionary and expansionary discount factor shocks. The size

of spike at zero wage changes indicates that a larger fraction of workers is stuck at the

DNWR constraint upon a contractionary shock. The observation is consistent with

the micro evidence of Daly and Hobijn (2014) and Fallick et al. (2016), who document

that the fraction of workers with zero wage changes substantially increased after the

Great Recession. That leads to a stronger downward sluggishness of the aggregate

wage than upward.

Another important feature is the role of idiosyncratic shocks. The calibrated pa-

rameter values identify the standard deviation of idiosyncratic shocks is much larger

than that of aggregate shocks. Consequently, non-trivial fraction of workers experi-
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Figure 1.6: Cross-sectional distribution of individual wage changes upon aggregate

shocks
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ences wage increases even after a contractionary aggregate shock because the effects

of their positive idiosyncratic shock exceed the contraction of the aggregate economy.

On the other hand, downward wage adjustment is truncated at zero as long as work-

ers are subject to the DNWR constraint. Thus, the Jensen’s inequality implies that

the average wage change becomes higher than the case without idiosyncratic shocks.

That further impedes the adjustment of the aggregate wage upon a contractionary

shock.12

Wage markup. The wage markup in my model is closely related to that of Erceg

et al. (2000), Christiano et al. (2005), and many others who incorporate the stag-
12It is worth pointing out that the importance of idiosyncratic shocks is also emphasized in the

literature of price stickiness . For instance, Nakamura and Steinsson (2010) argue that, in their

calibrated menu cost model, idiosyncratic shocks are large enough so that firms react to idiosyn-

cratic shocks rather than aggregate shocks, which results in a substantial degree of aggregate price

stickiness.

49



Figure 1.7: Asymmetry of wage markup fluctuations
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gered contract of Calvo (1983) into wage settings. In their models, the wage rigidity

introduces a time-varying wage wedge between real wage and the marginal rate of

substitution between consumption and hours worked as well. However, my model is

distinguished from theirs in several important dimensions. First of all, the fluctua-

tions of the wage markup in my model depend on the sign of an exogenous shock,

which leads to significant asymmetric dynamics in booms and recessions. Intuition

is obtained by individual labor market equilibrium shown in Figure 1.7. In the left

panel, the negative income effect reduces the marginal rate of substitution upon a

contractionary shock. However, since nominal wage reductions are prevented by the

DNWR constraint, the wage markup should increase so that the labor supply curve

shifts up to meet the labor demand curve.13 In the right panel, in contrast, the wage

markup does not respond to an expansionary shock as long as the DNWR constraint

does not bind.
13I suppose that the price level is constant upon a shock in this partial equilibrium analysis.
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The fluctuations of the wage markup also depend on the size of an exogenous

shock. In this regard, an exogenous shock has two effects on the wage markup. The

direct effect is that an exogenous shock affects the individual wage markups for the

workers whose DNWR constraint is already binding. In addition, an exogenous shock

changes the portion of workers with and without the binding constraint by changing

their desired wages. Therefore, the total effect is increasing in the size of shocks.

In contrast, the staggered contract of Calvo (1983), in which a constant fraction of

workers faces with the constraint in each period, lacks the second effect and the model

therefore does not generate significant non-linearity.

Markup shock to the NKPC. King and Watson (2012) point out that a medium

scale DSGE model often requires sizable and frequent exogenous markup shocks to

the NKPC to account for the actual inflation. In line with their finding, Del Negro

et al. (2015) argue that a large positive markup shock should be in company with

a negative demand shock to answer the missing deflation puzzle under a relatively

steep NKPC. They instead propose that a sufficiently flat Phillips curve as in the right

panel of Figure 1.8 can address the puzzle. To this end, my model generates a rise

in the wage markup endogenously upon a negative demand shock through DNWR.

The rise of the wage markup shifts up the NKPC (the AS curve), as a consequence

of which the decline of inflation is moderate despite a large shift of the AD curve as

shown in the left panel of Figure 1.8.

Implication to anchoring inflation expectations. Several studies emphasize
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Figure 1.8: Demand and markup shocks with different slope of the NKPC
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Notes: This figure corresponds to FIGURE 5 of Del Negro et al. (2015).

the fact that the inflation expectation was stable during and after the Great Re-

cession to address the missing deflation puzzle. Some of them attribute it to the

departure from the full information and rational expectation (FIRE) model (Coibion

and Gorodnichenko (2015)) or discrete regime changes of the economy (Bianchi and

Melosi (2017)). On the other hand, I argue that the stable inflation expectations are

consistent with my model although I stick to a FIRE model without regime switching.

To see this point, iterating the linearized version of the NKPC (1.39) forward yields

Et[πt+1] = κEt
[ ∞∑
s=0

Dt+s+1M̂Ct+s+1

]
. (1.52)

(1.52) implies that the inflation expectation Et[πt+1] is the infinite sum of the dis-

counted values of the future marginal costs. Therefore, the model potentially address

the stable inflation expectations as long as the future marginal costs are sufficiently

stabilized. I show that the model indeed predicts a moderate decline of the inflation

expectations that matches the survey based inflation expectations in the data after
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the Great Recession in a counterfactual analysis in Section 1.8.

Comparison with different specifications of wage adjustment. In Appendix

1.10.5, I compare the dynamics across models with different specifications of wage

adjustment. Specifically, I solve and calibrate a flexible wage model and a quadratic

wage adjustment cost model as well as the baseline model with DNWR. Notice that

the quadratic wage adjustment cost model coincides with the Calvo-type staggered

contract model in the first order, which is widely used in the existing New Keyne-

sian literature. I calibrate the parameter for wage stickiness according to the micro

evidence reported by Barattieri et al. (2014). Other parts of the models than wage

adjustment are identical to the baseline model. Figure 1.17 compares the GIR in

different models. In the flexible wage model, wage growth, marginal cost, and price

inflation respond strongly to a discount factor shock. Since the effects of an exogenous

shock are absorbed by adjustments of price variables, real quantities such as output

and consumption do not react a lot. On the other hand, the quadratic wage adjust-

ment model generates moderate responses in price variables and sizable responses of

quantity variables. However, there are several important differences from the model

with DNWR. First of all, the quadratic adjustment cost model does not bring about

significant asymmetry since the wage adjustment cost is symmetric by construction.14

As a result, the inflation responses to a 2 S.D. contractionary discount factor shock
14Since the model is solved by a global method, non-linearity can arise from other parts of the

model than the wage adjustment such as the curvature of the utility function. However, I find that

such non-linearity is quantitatively small.
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is almost twice as large as those in the model with DNWR, while the responses to an

expansionary shock with the same magnitude is slightly smaller. Second, the prop-

agation of an exogenous shock is not as stringent as the model with DNWR. The

half-lives of wage growth and price inflation to a 2 S.D. contractionary shock are 2

and 7 quarters in the quadratic wage adjustment cost model, whereas they are 6 and

10 quarters in the model with DNWR. The difference reflects the state-dependency

of DNWR. To be precise, after a contractionary shock, workers does not react to

improvements of the state of the economy at all as long as the DNWR constraint

binds, whereas the quadratic adjustment cost model allows for gradual responses in

each period. Further discussion on the state-dependency of the model is provided in

Section 1.8.

I also compare the baseline model with a model that embeds asymmetric wage

adjustment costs, because the class of model potentially generates non-linearity in

aggregate dynamics. In the literature, Kim and Ruge-Murcia (2009) and Fahr and

Smets (2010) propose to use an asymmetric wage adjustment cost function to ap-

proximate DNWR. More recently, Aruoba et al. (2017) augment the model to include

both of asymmetric wage and price adjustment cost to find that the model can cap-

ture the non-linearity in the data well. I calibrate an asymmetric wage and price

adjustment cost model based on the estimated parameters of Aruoba et al. (2017).15

Figure 1.19 compares the GIR of key variables to different sign and size of discount

factor shocks. Interestingly, the non-linearity of price inflation and output are quite
15I use the posterior mean for the sample of 1960Q1-2007Q4 reported by Aruoba et al. (2017).

The details are provided in Appendix 1.10.5.
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similar in the two models. However, it is worth pointing out that my model with

DNWR is calibrated consistently with the frequency of individual price changes in

micro data, whereas Aruoba et al. (2017) identify a much higher parameter value for

the degree of price stickiness (flatter Phillips curve). Moreover, the responses of wage

growth and real wage display much stronger non-linearity in the model with DNWR.

This is because the non-linearity of the model with DNWR stems from asymmet-

ric individual wage adjustments, whereas Aruoba et al. (2017)’s estimates indicate

strong asymmetry in price adjustment rather than wage adjustment. Indeed, I find,

in the counterfactual analysis in Section 1.8, that the model with DNWR matches

the moderate decline of wage growth and real wage after the Great Recession fairly

well. However, further investigation on the comparison of different models is left for

future research.

Connection to the literature of the micro evidence on DNWR. A crucial

assumption of my model is the DNWR constraint for individual wage settings. Hence,

I quickly review the literature on the micro evidence of DNWR to assess the validity

of the assumption. More comprehensive literature review is found in Basu and House

(2016). McLaughlin (1994) is one of the earliest studies to test for the presence of

DNWR using individual wage data in the U.S. Though his result was not favorable

for DNWR, subsequent studies found evidence of it. For instance, Card and Hyslop

(1997), using the individual wage data in the CPS, find a large spike at zero in

wage change distribution. Lebow et al. (1995) report asymmetry of wage change

distribution arising from DNWR, and Kahn (1997) propose a formal test to verify
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the asymmetry of distribution. To elaborate their findings, Gottschalk (2005) corrects

for a measurement error problem in self-reported data by applying an econometric

strategy that detects structural breaks. Barattieri et al. (2014) employ his technique

to find that nominal wage reductions correspond only to 12.3 percent of non-zero

nominal wage changes in the SIPP during 1996-1999 after correcting for measurement

errors.

One might be concerned about the possibility that benefits such as bonus, pen-

sions, and other supplementary payments are used to adjust the total compensation

of workers even if wages are downward rigid. However, evidence is mixed in the litera-

ture. Kurmann and McEntarfer (2017) report that, using administrative worker-firm

linked data in Washington state, the spike at zero of the changes in the average hourly

compensation (sum of wages and benefits) is much smaller than that of wages only,

and declines of compensation are not rare in individual data. They claim that their

results are less affected by measurement errors than the studies using self-reported

data since they use administrative data. On the other hand, Lebow et al. (2003), com-

puting changes of wages and benefits separately in the individual data of the ECI,

document that, although benefits change more frequently than wages, the changes

of benefits are not systematically related to wage changes. Based on these observa-

tions, they conclude that the hypothesis that benefits are used to offset nominal wage

rigidities is not supported in the data.16 Moreover, Gu and Prasad (2018) find that
16It should be noted that the unit of observation of the ECI is jobs instead of workers. How much

their empirical results are affected by the difference in the unit of observations would be a subject

of future research.
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benefits come to more rigid over time, due to the increases of quasi-fixed benefits

such as health insurance and defined contributions (IRAs, 401k, etc.). They report

that the increased rigidity of benefits made the total compensation countercyclical

especially after the Great Recession.

Another interesting finding in the empirical literature is international differences in

the degree of DNWR, though this paper exclusively focuses on the inflation dynamics

in the U.S.17 For instance, Smith (2000) investigates the weekly average compensation

in the U.K. during 1991-1996 to report that only 1 percent of workers are constrained

by DNWR after correcting measurement errors and long-term contracts. Elsby et al.

(2016) report that the degree of DNWR in the U.K. is weaker than the U.S. using a

longer time-series of data and argue that the downward flexibility of nominal wages

in the U.K. resulted in the relatively rapid adjustment of real wage after the Great

Recession. On the other hand, a sequence of studies by Kuroda and Yamamoto (2003)

and Kuroda and Yamamoto (2014) documents that, after the financial crisis in the

late 1990s of Japan, DNWR disappeared from the individual wage data in Japan

although it was present until the mid 1990s. The consequence of these cross-country

variations in the degree of DNWR for the inflation dynamics of each country would

be an interesting research question, although it is beyond the scope of this paper.
17In terms of wage rigidities in general, Dickens et al. (2007) find, in the International Wage

Flexibility Project, the degree of nominal and real wage rigidity significantly varies across countries.
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1.8 Modeling the Great Recession

This section adds several extensions to the baseline model to investigate whether the

model can account for the inflation dynamics during and after the Great Recession.

1.8.1 ZLB

A number of studies argue that the ZLB of the nominal interest rate is an essen-

tial element to understand the Great Recession (Christiano et al. (2015), Basu and

Bundick (2017), Aruoba et al. (2018), etc). In this subsection, therefore, I introduce

the ZLB into the baseline model to explore its implications.

I assume that the central bank follows the Taylor (1993) rule with the ZLB:

Rd
t = R∗

(
Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.53)

Rt = max{ Rd
t , 1 } (1.54)

Although most of the previous studies that investigate the role of the ZLB after the

Great Recession assume the standard Taylor rule in (2.25),18 the Federal Reserve

announced a commitment to keep the low interest rate policy when they faced the

ZLB. To take into account the effect of this type of forward guidance, I also consider

the history-dependent rule proposed by Reifschneider and Williams (2000):

Rd
t = R∗

(
Rd
t−1

Rt−1

)(
Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.55)

Rt = max{ Rd
t , 1 } (1.56)

18Few exceptions include Basu and Bundick (2015) and Katagiri (2016).
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Under the history-dependent rule, the central bank keeps track of the past interest rate

gap, that is, the difference between the desired interest rate implied by (1.55) Rd
t−1 and

the actual rate Rt−1. Once the nominal interest rate is constrained at the ZLB, the

central bank continues the low interest rate policy until the gap is cleared, even if the

interest rate implied by the standard Taylor rule becomes positive. Though several

ways to implement forward guidance in a general equilibrium model has been studied

in the literature (Eggertsson and Woodford (2003), Del Negro et al. (2012), McKay et

al. (2016a), for example), the history-dependent rule is distinguished from others in

that it is fully embedded in the rational expectation equilibrium as a monetary policy

rule. Basu and Bundick (2015) argue that the history-dependent rule has desirable

properties to remove the contractionary bias of the ZLB, that is, the bias that the

central bank charges higher interest rate than the desired one on average over business

cycles in the presence of the ZLB.

Figure 1.9 displays the GIR under different monetary policy rules with and with-

out the ZLB. Several aspects of the results are noteworthy. First, in line with previous

studies, the ZLB has an amplification effect to a demand shock. Second, the ampli-

fication effect in the model works much more strongly for real quantities than price

variables. For instance, the responses of price inflation are larger by around 20 per-

cent in the presence of the ZLB, while the output responses are amplified by more

than 50 percent. Economic intuition behind the results is as follows. At the ZLB,

a contractionary demand shock raises real interest rate due to the lack of offsetting

monetary policy responses, and it reduces consumption through the Euler equation.

In a frictionless labor market, the decreased marginal rate of substitution due to the
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Figure 1.9: GIR with and without the ZLB

5 10 15 20
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

5 10 15 20
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

5 10 15 20

-2

-1

0

1

2

3

5 10 15 20
-0.5

0

0.5

5 10 15 20

-5

-4

-3

-2

-1

0

5 10 15 20

-5

-4

-3

-2

-1

0

5 10 15 20

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

5 10 15 20
0

0.5

1

1.5

2

2.5

3
Taylor with ZLB
Taylor without ZLB
History dependent with ZLB

Notes: Each panel shows the GIR to a 3 S.D. contractionary discount factor shock. The x-axes
represent the time horizon after the initial shock. The y-axes are in terms of the deviation from the
value before the shock except for the nominal interest rate, which is shown in the level. Models with
different monetary policy rules are solved under the same parameter values.

negative income effect leads to a decline of real wage, which in turn reduces inflation

through the NKPC. However, in the presence of DNWR, the decline of real wage

is hindered by the binding DNWR constraint. On the other hand, the dampened

response of real wage is compensated by a further contraction of hours worked as

a consequence of the labor market equilibrium. Third, the history-dependent rule

partly offset the amplification effect of the ZLB because the commitment to the fu-

ture low interest rates affects the current consumption through the forward looking

nature of the Euler equation.
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1.8.2 Counterfactual for the Great Recession

This subsection conducts a counterfactual analysis of the Great Recession. To cal-

ibrate the model to U.S. data during the Great Recession, I adopt the concept of

“severe recession” proposed by Krueger et al. (2016). They define severe recession as

the periods in which unemployment rate hits 9 percent at least in one quarter and

stays above 7 percent. In the post-war U.S. economy, 1980Q2-1986Q2 and 2009Q1-

2013Q2 satisfy these criteria. I employ their calibrated values for state transition

probabilities:

Pβ =

 PL→L PL→H

PH→L PH→H

 =

 0.9910 0.0090

0.0455 0.9545

 (1.57)

where the high discount factor state denoted by H corresponds to the severe recession.

Notice that the expected duration of the severe recession is much shorter (around 22Q)

than that of the normal state (around 111Q).

Figure 1.10 and Figure 1.11 display the counterfactual to the contractionary shock

that replicates the Great Recession. The size of the shock is calibrated to match the

drop of the output gap in the data in each model. In Figure 1.10, the calibrated

Great Recession shock only leads to 2.4 percentage point decline of the year-on-

year inflation rate under the standard Taylor rule with the ZLB. This quantitative

result is comparable with the U.S. economy during the Great Recession, in which the

actual inflation rate in the GDP implicit price deflator declined by 2.3 percentage

point from the peak to the bottom (2007Q4:2.5 percent→2009Q3:0.2 percent). The

model also replicates the sluggish recovery of inflation in the data. In Appendix
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Figure 1.10: Counterfactual for the Great Recession (1)
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Notes: Each panel shows the GIR to exogenous 6 quarter consecutive severe recession shock after
24 quarters of boom periods. The length of shocks and boom periods correspond to those of the
Great Recession (expansion: 2002Q1-2007Q4, contraction: 2008Q1-2009Q2). The nominal interest
rate in the data is the effective federal funds rate. The definition of other variables is the same as
Figure 1.1.

1.10.5, I compare the counterfactual in the models with different specifications of

wage adjustment. Each model is calibrated with the same parameter values as the

baseline model except for wage rigidities, and solved under the standard Taylor rule

with the ZLB. The results shown in Figure 1.20 suggest that the flexible wage model

leads to around -35 percent of deflation, while the quadratic adjustment cost leads to

-10 percent, both of which are far from the actual data.

Interestingly, the magnitude of the decline of inflation under the history-dependent

rule is 2.1 percentage point. It indicates that, once the magnitude of the output gap

drop is taken as given, the history-dependent rule and the standard Taylor rules yield

similar responses of inflation. The result is indeed reasonable because the relative re-

sponses of inflation to the output gap are governed by the NKPC and the relationship

between marginal cost and the output gap, while the monetary policy rule affects the

demand side of the economy through the consumption Euler equation.
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Figure 1.11: Counterfactual for the Great Recession (2)
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Notes: The definition of GIR is the same as Figure 1.10. Data is in the deviation from the business
cycle peak before the Great Recession defined by the NBER (2007Q4). In the top panels, wage
growth πw is the wage and salary in the Employment Cost Index and the compensation per hour in
the non-farm business sector. The compensation series is smoothed as five quarters centered moving
average. Inflation expectation E[πp] is the median forecast for one quarter and four quarters ahead
GDP deflator in the Survey of Professional Forecast. The one quarter ahead forecast is annualized.
For real wage W/P , price index is the GDP implicit price deflator. Wage is the average hourly
earnings of production and non-supervisory employees in the private sector and the compensation
per hour in the non-farm business sector. Real wage series is detrended by the HP filter. In the
bottom panels, output Y is the real GDP, hours H is the total hours in the non-farm business
sector, consumption C is the real personal consumption expenditures. Each series is taken log and
detrended by the HP filter and the Hamilton filter.

In Figure 1.11, the model replicates the dynamics of other variables fairly well.

In particular, the data suggests that both of wage and compensation declined mod-

erately after the Great Recession and the model captures these movements, with the
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difference in the magnitude of the responses from the data being less than 1 per-

centage point. It is also notable that the model is consistent with the stable inflation

expectation in the data. This is because the dampened responses of marginal cost due

to DNWR prevent the inflation expectations from declining. As for real quantities,

though the model cannot perfectly replicate the relatively larger drop of hours worked

and the smaller decline of consumption in the data, they are presumably because I

abstract away capital investment, which is not the main focus of this paper. Rather,

it is worth noting that the model does not have a number of ingredients that previous

studies argue are important to account for the missing deflation such as high degree

of price stickiness, exogenous shocks to the inflation expectations, and financial fric-

tions. Instead, the only extension from the stylized New Keynesian model presented

in Section 1.3 is the presence of the DNWR constraint for individual workers and the

ZLB, but still the model succeeds in accounting for the key moments regarding the

missing deflation puzzle.

1.8.3 Implication to the excessive disinflation

I next investigate the implications of the model to the excessive disinflation after the

Great Recession. Figure 1.12 shows the GIR to a 1 S.D. expansionary shock from

different initial states. The model displays significantly divergent responses in each

initial state. For example, starting from a 3 S.D. recession state, which corresponds

to the severe recession state, the positive responses of wage growth and price inflation

are roughly three times smaller than those from the median state.
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Figure 1.12: State dependency of GIR

Initial states Initial states Initial states

Notes: Each bar shows the cumulative responses in the four quarters after a 1 S.D. expansionary
discount factor shock from different initial states. To draw each initial state, I simulate the model
economy randomly for ten quarters after the median state, 2 S.D. recession state, and 3 S.D. recession
state, respectively.

This is due to the state-dependent nature of DNWR. Upon a severe recession

shock, workers’ desired wages decline due to the negative income effect and fall short

of their actual wages since the DNWR constraint binds. In a recovery phase, even

when their desired wages start to rise as the state of the economy improves, workers

never raise their actual wages as long as the DNWR constraint binds. This mechanism

delays the recovery of wage growth, which in turn leads to a slow recovery of inflation

through sluggish rises of marginal cost. On the other hand, the recovery of output is

relatively fast from a severe recession, but the quantitative result suggests that the

differences of the output responses are not as significant as wage growth nor price

inflation.

Lastly, Figure 1.13 exhibits the distribution of price inflation in time-series sim-

ulation of the model and the data. I estimate the kernel density to smooth jagged

observations In the model, the distribution of inflation is positive skewed because
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of the asymmetric effect of DNWR. Consequently, the median inflation rate (1.21

percent) is substantially lower than the 2 percent of the calibrated target rate in the

Taylor rule, while the mean inflation rate (2.07 percent) is almost around the target.

In other words, lower inflation rates than the target level are more likely to realize

in each period even if the target rate is achieved in the mean. This finding might be

counterintuitive, but is indeed consistent with a wide class of the Taylor-type mon-

etary policy rule. To see this point, taking the the unconditional expectation of the

Taylor rule (1.41) leads to:

log(E[Rt])− log(R∗) ∼= δπ(log(E[Πt])− log(Π∗)) + δy(log(E[Yt])− log(Y ∗)) (1.58)

Notice that the equation does not strictly hold because I ignore the Jensen’s inequality

terms. Equation (1.58) implies that inflation is stabilized in the mean under the

Taylor rule, although the equation does not guarantee the stabilization of the median

inflation to the target rate.

1.9 Conclusion

In this paper, I introduce DNWR for individual workers into an otherwise standard

New Keynesian DSGE model. DNWR accounts for the flattening of the observed

Phillips curve relationship between inflation and the output gap, while keeping the

marginal cost representation of the NKPC unchanged. The endogenous evolution of

cross-sectional wage distribution generates non-linear dynamics in many dimensions,

including the sign-, the size-, and the state-dependency of the consequence of an

exogenous shock. Consequently, the calibrated model successfully matches the key
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Figure 1.13: Distribution of inflation
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Notes: The kernel density estimator is computed from simulated and actual data. In the model,
I simulate the model economy for 51,000 periods and discard the initial 1,000 observations. Data
is the quarter on quarter growth rate of the GDP implicit price deflator. Sample period is from
1955Q1 to 2007Q4. The end point of the sample period is determined to exclude the ZLB periods.

moments of the inflation dynamics during and after the Great Recession, which are

often referred to as the missing deflation and the excessive disinflation.

A number of extensions are possible for future research. First, assessing other

dimensions of aggregate dynamics through the lens of my model is a natural extension.

For instance, incorporating unemployment is one promising option. Studying the

interaction between the heterogeneity of labor and that of consumption would be also

interesting. In this regard, though recent papers such as Hall (2017) identify that the

movements of discount factor are essential to explain the aggregate dynamics after

the Great Recession, dealing with heterogeneity might help one to reconcile the large

fluctuations of discount factor. Second, it would be worthwhile exploring optimal

monetary policy in the economy with DNWR. Although previous studies investigate

optimal policy in a representative agent framework (e.g., Kim and Ruge-Murcia (2009)

and Coibion et al. (2012)), taking into account heterogeneity might deliver rich policy
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implications. Moreover, though the state of the economy is characterized by cross-

sectional distribution in a heterogeneous agent setting, it is almost impossible in

practice for the central bank to keep track of the distribution in a timely manner.

Therefore, how to approximate the optimal policy as an implementable policy rule

would be a valuable question. Lastly, on the empirical side, my model yields a number

of testable implications. In particular, it would be beneficial to explore how much

the model can account for the evolution of cross-sectional wage distribution after the

Great Recession in more detail.

1.10 Appendix

1.10.1 Empirical Evidence

1.10.1.1 Construction of marginal cost

Specification of production function. For a baseline case, I assume the Cobb-

Douglas production function with overhead labor (CDOH):

Yt = F (Ht, Kt, Zt) = {Zt(Ht − H̄)}αK1−α
t (1.59)

where Yt denotes output, Zt labor augmenting technology, Ht labor inputs, Kt capital

inputs. H̄ is the overhead component of labor inputs that is not directly linked to

value added production. The first order condition (FOC) for labor inputs implies

θHt ≡
∂log(Ft)
∂log(Ht)

= α
Ht

Ht − H̄
(1.60)
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Using (2.8), the FOC is rearranged to the specification of marginal cost:

MCCDOH
t = 1

α

(
1− H̄

Ht

)
sHt (1.61)

with sHt = WtHt
PtYt

being the labor share. The specification leads to

M̂C
CDOH

t = H̄/Hss

1− H̄/Hss
Ĥt + ŝHt (1.62)

where x̂ denotes the log-deviation from the steady state. For parameterization, I

borrow the estimated value of Basu (1996) to calibrate H̄/Hss = 0.288. The value

is in line with other estimates in literature such as 0.20 of Ramey (1991) and 0.14

of Bartelsman et al. (2013). Bartelsman et al. (2013) point out as a reference that

in the U.S. manufacturing industries non-production workers compose of roughly 30

percent of total employment and managers of 10 percent.

For robustness check, I consider alternative specifications: the Cobb-Douglas pro-

duction function (CD) and a production function with constant elasticity of substi-

tution (CES). The Cobb-Douglas production function is given by:

F (Ht, Kt, Zt) = (ZtHt)αK1−α
t (1.63)

The FOC for labor inputs formulates marginal cost to be proportional to the labor

share:

MCCD
t = 1

α
sHt (1.64)

and

M̂C
CD

t = ŝHt (1.65)
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Under a CES production function,

F (Ht, Kt, Zt) =
{
α (ZtHt)

ν−1
ν + (1− α)K

ν−1
ν

t

} ν
ν−1

(1.66)

we obtain

MCCES
t = 1

α

(
Yt
ZtHt

) ν−1
ν

sHt (1.67)

and

M̂C
CES

t = ν − 1
ν

(Ŷt − Ẑt − Ĥt) + ŝHt (1.68)

where ν represents the elasticity of substitution between labor and capital inputs.

I follow Gali et al. (2007) to calibrate ν = 0.5. For the series of Zt, I use the

utilization-adjusted quarterly-TFP for the U.S. business sector constructed based on

Fernald (2014).

Detrending. An important issue when using the series of the labor share in U.S.

data is detrending, because the data displays a low frequent downward trend. Though

there is substantial debate regarding the causes behind the trend, many of existing

studies attribute it to structural changes of the economy such as offshoring of manu-

facturing industries and declining relative price of investment goods due to advances

in information technology, or others point out mismeasurement of data (Elsby et al.

(2013), Karabarbounis and Neiman (2013), etc). Since the main focus of this paper is

on business cycle fluctuations related to inflation dynamics, I use a filtering method

to extract cyclical components of the labor share. Similar methods are employed by

Mavroeidis et al. (2014) when they estimate the NKPC. Specifically, each series of
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marginal cost is detrended by the Hamilton filter. Hamilton (2017) argues that the

Hamilton filter has desirable time-series properties compared to the HP-filter, which

is widely used in business cycle analysis. In particular, the one-sided method of the

Hamilton filter addresses the end of sample problem of the HP-filter.

1.10.1.2 Robustness checks for the estimation of the NKPC

1.10.1.3 Robustness check (1): alternative measures for marginal cost

and the output gap

Table 1.7 reports the results of the OLS estimation of the NKPC (1.5) with alterna-

tive measures for marginal cost: marginal cost based on the Cobb-Douglas produc-

tion function (CD) in column 1-4 and a production function with constant elasticity

of substitution (CES) in column 5-8. The estimation results display quite similar

patterns to the baseline specification of the Cobb-Douglas production function with

overhead labor (CDOH) in Table 1.1. In other words, the coefficients of marginal

cost remain stable after the Great Recession, and the interaction terms with the post

Great Recession dummy are not statistically significant.
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Table 1.7: OLS estimation with alternative measures of marginal cost

(1) (2) (3) (4) (5) (6)
Measure of x Marginal cost (CD) Marginal cost (CES)

Before GR Full sample Before GR Full sample
πet 0.447∗∗∗ 0.485∗∗∗ 0.465∗∗∗ 0.419∗∗∗ 0.467∗∗∗ 0.441∗∗∗

(0.079) (0.074) (0.078) (0.080) (0.074) (0.079)
πt−1 0.548∗∗∗ 0.510∗∗∗ 0.529∗∗∗ 0.575∗∗∗ 0.527∗∗∗ 0.552∗∗∗

(0.080) (0.074) (0.079) (0.082) (0.075) (0.081)
xt 0.208∗∗ 0.167∗∗ 0.193∗∗ 0.170∗∗∗ 0.136∗∗∗ 0.148∗∗∗

(0.082) (0.067) (0.078) (0.056) (0.045) (0.053)
postGRt × πet 0.290 0.439∗

(0.219) (0.226)
postGRt × πt−1 -0.308 -0.404∗

(0.232) (0.234)
postGRt × xt -0.120 -0.130

(0.155) (0.098)
Adjusted R2 0.952 0.946 0.946 0.935 0.931 0.930

N of obs. 157 193 193 157 193 193
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Dependent variable is the current inflation rate πt. Heteroscedasticity corrected standard
errors are reported in parentheses. postGRt is a dummy variable that takes 1 after 2008Q1. Sample
period is from 1968Q4 to 2007Q4 for Before GR and from 1968Q4 to 2016Q4 for Full sample,
respectively. The starting period corresponds to the period when the SPF became available.

I next explore alternative measures for the output gap. Following the literature, I

use the detrended output. Specifically, I construct the detrended output by removing

a quadratic trend from the log output.19 I also investigate the employment rate, which

is defined as the ratio of employment out of the population older than 16 years. The

employment rate potentially addresses issues regarding the changes in the labor force

participation after the Great Recession. Table 1.8 reports the regression results. In

line with my baseline estimation, the interaction terms of the output gap measures

with the post-Great Recession dummy variable are significantly negative. The results
19Though many of previous studies (e.g., Gali and Gertler (1999), Adam and Padula (2011)) only

take into account a linear trend, I find the quadratic term is significant at the one percent level.
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indicate that the flattening of the output gap representation of the NKPC holds with

alternative measures as well.

Table 1.8: OLS estimation with alternative measures for the output gap

(1) (2) (3) (4) (5) (6)
Measure of x Detrended output Employment rate

Before GR Full sample Before GR Full sample
πet 0.555∗∗∗ 0.583∗∗∗ 0.580∗∗∗ 0.462∗∗∗ 0.497∗∗∗ 0.482∗∗∗

(0.085) (0.078) (0.083) (0.080) (0.074) (0.078)
πt−1 0.447∗∗∗ 0.421∗∗∗ 0.424∗∗∗ 0.532∗∗∗ 0.496∗∗∗ 0.511∗∗∗

(0.084) (0.077) (0.082) (0.080) (0.075) (0.078)
xt 0.0948∗∗∗ 0.0861∗∗∗ 0.0920∗∗∗ 0.317∗∗ 0.232∗∗∗ 0.308∗∗

(0.021) (0.019) (0.020) (0.138) (0.119) (0.138)
postGRt × πet 0.132 0.216

(0.210) (0.215)
postGRt × πt−1 -0.185 -0.254

(0.230) (0.221)
postGRt × xt -0.105∗ -0.418∗

(0.056) (0.222)
Adjusted R2 0.954 0.949 0.948 0.951 0.945 0.945

N of obs. 157 193 193 157 193 193
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Dependent variable is the current inflation rate πt. Heteroscedasticity corrected standard
errors are reported in parentheses. postGRt is a dummy variable that takes 1 after 2008Q1. Sample
period is from 1968Q4 to 2007Q4 for Before GR and from 1968Q4 to 2016Q4 for Full sample,
respectively. The starting period corresponds to the period when the SPF became available.

1.10.1.4 Robustness check (2): the purely forward looking NKPC

I estimate the following purely forward looking NKPC:

πt = βπet + κxt + et (1.69)

Table 1.9 reports the results of the OLS estimation of the purely forward looking

NKPC (1.69). Similar to the hybrid NKPC in Table 1.1, the coefficient of the marginal

cost is stable after the Great Recession, and the interaction term of the marginal cost

and the dummy variable for the post-Great Recession period is not significant.
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Table 1.9: OLS estimation of the purely forward looking NKPC

(1) (2) (3) (4) (5) (6)
Measure of x Unemployment gap Marginal cost (CDOH)

Before GR Full sample Before GR Full sample
πet 1.048∗∗∗ 1.029∗∗∗ 1.045∗∗∗ 0.998∗∗∗ 0.996∗∗∗ 0.996∗∗∗

(0.023) (0.024) (0.023) (0.024) (0.023) (0.023)
xt 0.458∗∗∗ 0.229∗∗ 0.425∗∗∗ 0.162∗ 0.140∗∗ 0.138∗

(0.063) (0.052) (0.060) (0.083) (0.066) (0.080)
postGRt × πet -0.126 0.00500

(0.137) (0.097)
postGRt × xt -0.444∗∗∗ 0.0112

(0.099) (0.128)
Adjusted R2 0.947 0.936 0.941 0.934 0.930 0.929

N of obs. 157 193 193 157 193 193
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: Dependent variable is the current inflation rate πt. Heteroscedasticity corrected standard
errors are reported in parentheses. The sign of the coefficient of the unemployment gap is flipped
for comparison purposes. postGRt is a dummy variable that takes 1 after 2008Q1. Sample period is
from 1968Q4 to 2007Q4 for Before GR and from 1968Q4 to 2016Q4 for Full sample, respectively.
The starting period corresponds to the period when the SPF became available.

1.10.1.5 Robustness check (3): the rational expectation assumption

I follow Gali and Gertler (1999) to assume the rational expectation for seeing ro-

bustness of the baseline result in terms of assumptions on the expectation formation.

Using the rational expectation assumption, the expected inflation can be replaced

with the realized inflation and the rational expectation error:

Et[πt+1] = πt+1 + ẽt+1 (1.70)

The NKPC is rearranged to:

πt = βπt+1 + γπt−1 + κxt + et+1 (1.71)

with et+1 ≡ βẽt+1. Notice that the OLS estimator is biased because et+1 might be

correlated with πt+1. Adopting the insight of Gali and Gertler (1999), therefore, I
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use lagged variables as instruments for πt+1 to derive the GMM estimator. To this

end, any variables at and before period t are valid instruments, because the rational

expectation error et+1 is orthogonal to any variable in the information set at period t.

The estimation result is reported in Table 1.10. The coefficient of the unemployment

gap is not significant in column 1 and 2, and weakly significant with a negative sign

to in column 3. Although the result is inconsistent with the theory of the NKPC, it is

in line with the findings of previous empirical studies. To be precise, Gali and Gertler

(1999) and Sbordone (2002) obtain insignificant estimates for the coefficient of the

output gap under the rational expectation assumption. More recently, Adam and

Padula (2011) find that the coefficient of the output gap is significant only when a

survey based expectation measure is used instead of the rational expectation assump-

tion. On the other hand, I confirm the baseline result regarding the marginal cost

representation of the NKPC. The coefficient of marginal cost is significantly positive

and does not decline after the Great Recession.
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Table 1.10: GMM estimation under the rational expectation assumption

(1) (2) (3) (4) (5) (6)
Measure of x Unemployment gap Marginal cost (CDOH)

Before GR Full sample Before GR Full sample
πt+1 0.729∗∗∗ 0.700∗∗∗ 0.709∗∗∗ 0.704∗∗∗ 0.683∗∗∗ 0.692∗∗∗

(0.051) (0.045) (0.058) (0.048) (0.056) (0.053)
πt−1 0.261∗∗∗ 0.289∗∗∗ 0.277∗∗∗ 0.283∗∗∗ 0.304∗∗∗ 0.294∗∗∗

(0.051) (0.046) (0.058) (0.049) (0.056) (0.053)
xt -0.0273 -0.0138 -0.0350∗ 0.129∗∗∗ 0.104∗∗∗ 0.111∗∗∗

(0.021) (0.012) (0.021) (0.040) (0.033) (0.040)
postGRt × πt+1 0.208 -0.00340

(0.284) (0.164)
postGRt × πt−1 0.174 0.0632

(0.152) (0.166)
postGRt × xt 0.210∗∗ -0.150

(0.090) (0.147)
N of obs. 208 243 243 208 243 243

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Notes: The two step GMM with an HAC weight matrix is employed. Instruments are the first to
forth lagged GDP implicit price deflator, marginal cost, labor share, output gap, wage growth rate,
commodity price inflation, short-long term interest rate spread, post-Great Recession dummy. HAC
corrected standard errors are reported in parentheses. postGRt is a dummy variable that takes 1
after 2008Q1. Sample period is from 1955Q1 to 2007Q4 for Before GR and from 1955Q1 to 2016Q3
for Full sample, respectively.

1.10.1.6 Robustness check (4): rolling OLS regression

To identify the specific timing of the changes of coefficients in the NKPC, I conduct a

rolling OLS regression of the NKPC. I roll over 25 year window samples, each of which

includes 100 observations. In order to save the number of parameters to estimate in

a relatively small sample size, I impose a restriction β + γ = 1 as is often assumed in

the literature such as Blanchard et al. (2015). The regression model for each rolling

sample is given by:

πt = βTπ
e
t + (1− βT )πt−1 + κTxt + et, for t ∈ [T − 99, T ] (1.72)
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Figure 1.14 shows the evolution of the estimated coefficients. The coefficient of the

output gap shown in the left-bottom panel has a sharp drop around 2010 and stays

around zero afterward. On the other hand, the coefficient of marginal cost in the

right-bottom panel remains roughly constant around the period. The estimation

result detects other interesting patterns in the time-variations of coefficients, such as

a rise in the coefficients of the forward looking inflation term after mid 2000s and a

slowly declining trend in the coefficient of the output gap and marginal cost in 1990s.

However, they are beyond the scope of this paper.

Figure 1.14: Rolling OLS regression of the NKPC with 25 year window
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Notes: Solid line is the OLS estimator, while dashed line is the 68% confidence band. The definition

of each variable is the same as Table 1.1.
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1.10.1.7 Robustness check (5): Markov-switching model

One might be concerned that the result of the rolling regression reflects particular

observations in each sample window. The Bayesian methods, on the other hand, make

full use of the entire sample to specify the timings of parameter changes. Specifically,

I estimate the Markov-switching model for the coefficients and the standard deviation

of the error term in the NKPC:

πt = β(St)πet + (1− β(St))πt−1 + κ(St)xt + et, et ∼ N(0, σ(St)2) (1.73)

I consider high and low regime for each parameter {β, κ, σ}. The total number of

regimes is 2× 2× 2 = 8.

St = {βH , βL} × {κH , κL} × {σH , σL} (1.74)

The latent states are estimated by the Hamilton filter given a set of parameters,

and the parameter values are estimated to maximize the likelihood of the model.

Figure 1.15 shows the estimated probabilities of each regime. For the slope parameter

of the NKPC κ, the estimated probabilities of high regime declines sharply in terms

of the output gap around 2010. The coefficient of marginal cost is roughly stable

over time, though volatile state probabilities indicates that the series include sizable

noises. The estimation result delivers other interseting observations including a rise of

the volatility σ during the Great Inflation period in 1970s and rises of the coefficient

of the forward looking inflation term β around the Volcker period in the early 1980s

and after the Great Recession. These observations are subject to future research,

although I focus on the differences in the differences in the slope parameter in the

output gap and the marginal cost representations of the NKPC.
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Figure 1.15: Smoothed probabilities of high parameter regime

Notes: Smoothed probabilities are the centered 5 quarters average of the state probabilities.

1.10.1.8 Robustness check (6): dynamic panel estimation using industry

level data

One concern regarding the estimation of the NKPC using the aggregate variables is

that the estimated marginal cost might include considerable measurement errors. In

this subsection, therefore, I investigate the intermediate share in industry level data

as an alternative measure of marginal cost for assuring robustness of the analysis. To

this end, it is notable that the firm’s cost minimization condition can be applied to

any factor inputs. Moreover, a number of studies, for example, Basu (1995), Nekarda
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and Ramey (2013) and Bils et al. (2014), suggest that intermediate inputs are promis-

ing in many dimensions. First, adjustment costs for intermediates are considered to

be low relative to those for capital or labor. Second, the assumption of no overhead

component seems more defensible for intermediates. In addition, using industry level

data removes composition bias among industries. I use the KLEMS 2017 dataset to

construct the intermediate share. The KLEMS 2017 dataset is annual from 1947 to

2014, covering 65 industries. I focus on 60 industries in the non-farm business sector,

including 18 manufacturing and 42 non-manufacturing.

Since a measure of inflation expectations is not available for each industry, I rely

on the rational expectation assumption to estimate the industry level NKPC:

πi,t = αi + βπi,t+1 + γπi,t−1 + κxi,t + ei,t+1 (1.75)

where Et[πi,t+1] = πi,t+1 + ẽi,t+1 (1.76)

with ei,t+1 = βẽi,t+1. For varialbe xi,t, I consider marginal cost measured by the

intermediate share, and the detrended output as a measure of the output gap. αi

is an unobserved industry fixed effect and ei,t+1 is the rational expectation error of

industry i in period t + 1. I employ the two step GMM model procedure to correct

industry fixed effects, which is called the Arellano-Bond estimator. Since I take the

first difference of (1.75) to remove industry fixed effects, valid instruments for moment

conditions are one-period more lagged than those in the standard GMM estimator.

More discussion is found in Arellano and Bond (1991). The estimation result is

presented in Table 1.11. The coefficient of the detrended output is insignificant in
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each specification, which is in line with our GMM estimation with aggregate data.

On the other hand, the coefficient of intermediate share is significantly positive and

the interaction term is not significant in each case.The purely forward looking NKPC

yields similar results to the hybrid NKPC. These results confirm the observations of

the baseline estimation that the decline of the slope of the NKPC is not observed in

terms of marginal cost.
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Table 1.11: Dynamic panel GMM estimation of the NKPC in industry level data

Dependent : Output price inflation π

(1) (2) (3) (4) (5) (6)
Hybrid NKPC Purely forward looking NKPC

before GR Full sample Before GR Full sample
πt+1 0.358+++ 0.239+++ 0.240+++ 0.403+++ 0.263∗∗∗ 0.264∗∗∗

(0.045) (0.069) (0.070) (0.075) (0.093) (0.096)
πt−1 0.321+++ 0.227+++ 0.235+++

(0.033) (0.061) (0.059)
Outputt 0.0139 0.00224 0.0117 -0.0214 -0.0130 -0.0120

(0.024) (0.024) (0.027) (0.029) (0.027) (0.031)
postGRt ×Outputt -0.0690 -0.00946

(0.065) (0.076)
AR(p) test 1 1 1 1 1 1
N of ind. 60 60 60 60 60 60

N of total obs. 3,180 3,540 3,540 3,180 3,540 3,540

Dependent : Output price inflation πt

(1) (2) (3) (4) (5) (6)
Hybrid NKPC Purely forward looking NKPC

Before GR Full sample Before GR Full sample
πt+1 0.359+++ 0.244+++ 0.244+++ 0.393+++ 0.261∗∗∗ 0.254∗∗∗

(0.045) (0.072) (0.073) (0.073) (0.093) (0.095)
πt−1 0.316+++ 0.222+++ 0.225+++

(0.032) (0.060) (0.060)
IntSharet 0.0164∗∗ 0.0337∗ 0.0347∗ 0.0259∗∗ 0.0375∗ 0.0413∗∗

(0.008) (0.018) (0.020) (0.013) (0.019) (0.021)
postGRt × IntSharet 0.00270 0.00799

(0.005) (0.005)
AR(p) test 1 1 1 1 1 1
N of ind. 60 60 60 60 60 60

N of total obs. 3,180 3,540 3,540 3,180 3,540 3,540
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01, +++ p < 0.001

Notes: The two step GMM is employed. Output is taken log and detrended by the Hamilton filter.
Output price inflation and intermediate price inflation are in log difference while the intermediate
share is in log level. Instruments are the second to forth lagged output price inflation rate, the inter-
mediate share, intermediate price inflation, the detrended output. Windmeijer corrected standard
errors are reported in parentheses. AR(p) test indicates the order of AR process implied by the
Arellano-Bond AR(p) test. Industry fixed effects are included. postGRt is a dummy variable that
takes 1 after 2008. A dummy variable for year 2009 is included as an independent variable to control
for volatile price inflation of the year, which is not reported in table. Sample period is from 1955 to
2014 for beforeGR and from 1955 to 2014 for fullsample, respectively.
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1.10.2 Computation

1.10.2.1 Details of equilibrium computation algorithm

ALM. Following the insight of Krusell and Smith (1998), I conjecture that the ag-

gregate law of motion (ALM) Γ is given by a quadratic form:

log(W̃s) = B0,s +B1,slog(W̃−1) +B2,slog(W̃−1)2 , for βt = βs (1.77)

where s denotes the exogenous state of the economy. Notice that, even though the

ALM is quadratic in terms of log(W̃−1), it can capture rich non-linear dynamics of

the model because the coefficients Bs are different across states s.

Modified Krusell-Smith algorithm. I sketch the outline of the equilibrium com-

putation. The algorithm takes the following steps in each iteration m = 1, 2, 3...

1. (Initial guess) Each agent uses the ALM B(m) = {B(m)
0,s , B

(m)
1,s }Ss=1 to forecast the

aggregate state variable W̃ .

2. (Aggregate problem) Given the aggregate state variables {β, W̃}, the policy

function for aggregate jump variables f (m) is obtained by solving a New Keyne-

sian system, i.e., the Euler equation, the NKPC, and the Taylor rule, together

with the production function and the market clearing condition. A policy func-

tion iteration is used for this procedure.
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3. (Individual problem) Given the aggregate policy function f (m), households solve

their wage setting problem to derive their policy function h(m). A value function

iteration is used for this procedure.

4. (Stochastic aggregation) Given the aggregate policy function f (m) and the indi-

vidual policy function h(m), I simulate the model economy with N households

for T periods and discard the initial T0 periods to obtain the series of aggregate

variables {X(m)
t }Tt=T0+1. I set N = 10, 000, T = 51, 000, and T0 = 1, 000. I

confirm that the computation results do not change even if I further increase N

or T .

5. (Update) Using the simulated variables {X(m)
t }Tt=T0+1, I obtain the suggested

ALM B̂ by running the OLS of the ALM (1.77). Then, I update the coefficients

B(m+1) according to:

B(m+1) = λB̂ + (1− λ)B(m) (1.78)

where λ is the weight for updating. λ is set to be 0.2.

6. Repeat from step 1 to step 5 until a criteria for convergence of B is attained.

Discretization. I discretize the AR(1) process of exogenous variables using the

Rouwenhorst (1995) method. Though the Tauchen (1986) method is widely used in

the literature for this purpose, as Kopecky and Suen (2010) pointed out, the Rouwen-

horst (1995) method can precisely match several moments of stationary AR(1) process

including the first-order autocorrelation and the unconditional variance, even when

the process is highly persistent and the number of discretized states is relatively small.
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State space of endogenous state variables are discretized to use a value function it-

eration and a policy function iteration, and the linear interpolation is employed to

approximate the variables between grids when simulating the economy.

Accuracy check of the ALM. For checking accuracy of the ALM, the Den Haan

(2010) statistics is employed. The statistics measures the maximum distance between

the aggregate state variables computed according to the ALM (W̃ )almt , and those

derived from equilibrium conditions in the simulation (W̃ )simt :

DH(B) = supt∈[T0+1,T ] |log(W̃ )simt − log(W̃ )almt | (1.79)

The critical value is set at DH(B) = 10−3, which means that the cumulative error

of agents’ prediction is smaller than 0.1% over 50,000 periods. The criteria is much

more strict than R2, because R2 measures the average error in the one-period ahead

forecast.

1.10.2.2 Discussion on other computation methods

The model developed in this paper is classified into a heterogeneous agent model

with aggregate uncertainty, which starts from Krusell and Smith (1998). On the other

hand, recent studies propose other computation methods to deal with a heterogeneous

agent model. For instance, Reiter (2009) approximates cross-sectional distribution

with finite dimensional histograms, whereas Winberry (2016) propose a method to

parameterize the distribution by using a family of polynomial functions. Moreover,

Ahn et al. (2017) and Kaplan et al. (2018) build a continuous time model where

85



the evolution of the distribution is formulated in the Kolmogorov forward equation

and its boundary conditions. These studies use the first order approximation around

the stationary distribution in terms of aggregate dynamics to gain the efficiency of

computation. However, as discussed in Ahn et al. (2017), this class of solution method

cannot capture the sign- and the size-dependency of the effects of an aggregate shock

as long as the aggregate dynamics is approximated in the first order. In contrast, I

find that the sign- and the size dependency are crucial to accounting for the missing

deflation because a large and negative shock such as the Great Recession changes

the cross-sectional wage distribution severely. Moreover, the endogenous shifts of

the cross-sectional distribution after the initial shocks allow the model to address

the excessive disinflation in the subsequent periods. In addition, the ZLB is another

reason for us to use a global solution method in terms of the aggregate dynamics,

because a local method cannot be used due to the kink of the monetary policy rule.

1.10.2.3 Construction of generalized impulse responses

Definition. Following Koop et al. (1996), I define the generalized impulse responses

(GIR) as follows:

GIR(y, t, ε0) = E[yt|ε0]− E[yt] (1.80)

= E
[
E[yt|β0 = β̃0e

−ε0 , β1 = β̃1, · · ·, βt = β̃t, ω0 = ω̃0]|ε0
]

− E
[
E[yt|β0 = β̃0, β1 = ˜̃β1, · · ·, βt = ˜̃βt, ω0 = ω̃0]

]
(1.81)

where yt, ωt, and εt are target variables, state variables, and exogenous shocks, re-

spectively.
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Computation. Since the GIR do not have a closed form solution, a simulation based

method is employed. The construction of the GIR takes the following steps:

1. Draw an initial state ω̃0 and β̃0 randomly.

2. Draw a series of exogenous shocks {β̃s}ts=1 and { ˜̃βs}ts=1 with or without the

initial shock ε0, given the initial state.

3. Simulate the economy along with the path of exogenous variables.

4. Repeat the procedure 1-3 for 10,000 times and take the mean to compute ex-

pectation.

1.10.3 Model

1.10.3.1 Definition of stationary equilibrium

Definition. A stationary equilibrium is a household’s policy function for individual

real wages w̃ = h(w̃−1, χ), aggregate variables X = {W̃ , C, Y,H,Π, R}, and a proba-

bility distribution p(w̃, χ), such that
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(i) a household’s policy function h solves a recursive wage setting problem,

V dnwr
(
w̃−1, χ

)
= max

w̃
: − 1

1 + η
eχh1+η + C−σ(1 + τw)(w̃h) + βE

[
V
(
w̃, χ′

)]
(1.82)

s.t. h =
(
w̃/W̃

)−θw
H

w̃ ≥ w̃−1/Π

V no
(
χ
)

= max
w̃

: − 1
1 + η

eχh1+η + C−σ(1 + τw)(w̃h) + βE
[
V
(
w̃, χ′

)]
(1.83)

s.t. h =
(
w̃/W̃

)−θw
H

where E
[
V
(
w̃, χ′

)]
= (1− α)E

[
V dnwr

(
w̃, χ′

)]
+ αE

[
V no

(
χ′
)]

(ii) aggregate jump variables X solve the Euler equation (1.25), the NKPC (1.39), the

monetary policy rule (1.41), the production function (1.40), and the market clearing

conditions (1.44), that is,

W̃ = Z , Y = ZH = C , Π = Π∗ , R = Π∗/β̄ (1.84)

(iii) a probability distribution p is a stationary distribution, that is,

p(w̃′, χ′) =
∫
χ

∫
w̃:w̃′=h(w̃,χ′)

p(w̃, χ)P (χ′|χ)dw̃dχ (1.85)

(iv) the aggregate hours H satisfies the market clearing condition,

H =
(∫

χ

∫
w̃

{
(w̃/W̃ )−θwHp(w̃, χ)

} θw−1
θw dw̃dχ

) θw
θw−1

(1.86)
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1.10.4 Additional Results

1.10.4.1 Effects of supply side shock

This subsection investigates the effects of a technology shock in the model. For this

exercise, I consider that the aggregate technology Zt follows an AR(1) process while

keeping the discount factor constant:

log(Zt) = ρzlog(Zt−1) + εz,t , εz,t ∼ N(0, σ2
z) (1.87)

For parameterization, I follow Fernández-Villaverde et al. (2015) to set ρz = 0.900 and

σz = 0.0025. Figure 1.16 shows the GIR to a 2 S.D. technology shock. Interestingly, a

technology shock does not generate significant asymmetry in the GIR. In addition, the

relative response of price inflation to that of output is much larger than the response

to a demand shock in Figure 1.4. It might be because a technology shock directly

affects firms’ marginal cost through Equation (1.35) and that results in an almost

symmetric and large effect on price inflation through the NKPC. This mechanism is

considered to be particularly strong given the relatively low degree of price stickiness

in my calibration. In literature, on the other hand, Altig et al. (2011) find moderate

responses of price inflation to a neutral technology shock in the VAR analysis. They

propose to take into account the firm specific capital to match the VAR responses

under the micro founded degree of price stickiness. These ingredients might be a

potential extension of the model.

89



Figure 1.16: GIR to a 2 S.D. technology shock
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1.10.5 Model Comparison

1.10.5.1 Flexible wage model

Wage setting. The friction less labor market equilibrium implies that real wage is

equalized to the marginal rate of substitution.

Wt

Pt
= Hη

t

C−σt
(1.88)

Other parts of the model. The Euler equation, the NKPC, the Taylor rule, and
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the resource constraint.

1 = βtEt
[(
Ct+1

Ct

)−σ Rt

Πt+1

]
(1.89)

(Πt − Π∗)Πt = βtEt
[(
Ct+1

Ct

)−σ (Yt+1

Yt

)
(Πt+1 − Π∗)Πt+1

]
+ θp
φp

(
Wt

Pt
− 1

)
(1.90)

Rt = R∗
(

Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.91)

Yt = Ht = Ct + φp
2 (Πt − Π∗)2Ct (1.92)

Computation. I discretize the state space and use a policy function iteration to

derive a global solution.

1.10.5.2 Quadratic wage adjustment cost model

Wage setting. Households are subject to the following budget constraint with

quadratic wage adjustment cost:

Ct + At
Pt
≤ (1 + τw)Wt

Pt
Ht −

φw
2 (Πw

t − Π∗)2Ht +Rt−1
At−1

Pt
+ Φt

Pt
(1.93)

where the notation follows the benchmark model. The FOC yields the wage Phillips

curve:

(Πw
t − Π∗)Πw

t = βtEt
[(
Ct+1

Ct

)−σ (Ht+1

Ht

)
(Πw

t+1 − Π∗)Πw
t+1

]
+ θw
φw

(
Hη
t

C−σt
− Wt

Pt

)

(1.94)

Other parts of the model. The Euler equation, the NKPC, the Taylor rule, and
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the resource constraint.

1 = βtEt
[(
Ct+1

Ct

)−σ Rt

Πt+1

]
(1.95)

(Πt − Π∗)Πt = βtEt
[(
Ct+1

Ct

)−σ (Yt+1

Yt

)
(Πt+1 − Π∗)Πt+1

]
+ θp
φp

(
Wt

Pt
− 1

)
(1.96)

Rt = R∗
(

Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.97)

Yt = Ht = Ct + φp
2 (Πt − Π∗)2Ct + φw

2 (Πw
t − Π∗)2Ct (1.98)

Computation. The same solution method is used as the flexible wage model.

Calibration. I calibrate the parameter value for the degree of wage stickiness φw

according to the micro evidence reported by Barattieri et al. (2014). They identify

the frequency of individual wage changes to be 23.9% per quarter as the midpoint of

the estimates under different plausible assumptions. The estimate implies the slope

of the wage Phillips curve to be 0.076.

1.10.5.3 Asymmetric wage and price adjustment cost model

Model equations. The model consists of the Euler equation, the price Phillips curve,

the wage Phillips curve, the Taylor rule, and the resource constraint. Derivations
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follow Aruoba et al. (2017).

1 = βtEt
[(
Ct+1

Ct

)−σ Rt

Πt+1

]
(1.99)

Φ′p(Π
p
t )Πt = βtEt

[(
Ct+1

Ct

)−σ (Yt+1

Yt

)
Φ′p(Π

p
t+1)Πt+1

]
+ θp

(
Wt

Pt
− 1

)
(1.100)

where Φp ≡ φp

(
exp(−ψp(Πp

t − Π∗)) + ψp(Πp
t − Π∗)− 1

ψ2
p

)

Φ′w(Πw
t )Πw

t = βtEt
[(
Ct+1

Ct

)−σ (Ht+1

Ht

)
Φ′w(Πw

t+1)Πw
t+1

]
+ θw

(
Hη
t

C−σt
− Wt

Pt

)
(1.101)

where Φw ≡ φw

(
exp(−ψw(Πw

t − Π∗)) + ψw(Πw
t − Π∗)− 1

ψ2
w

)

Rt = R∗
(

Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(1.102)

Yt = Ht = Ct + Φp(Πp
t )Ct + Φw(Πw

t )Ct (1.103)

where φ and ψ govern the slope and the curvature of the Phillips curve, respectively.

Computation. Following Aruoba et al. (2017), I use the second order perturbation

method around the steady state to solve the model.

Calibration. The parameter values for adjustment cost functions are set according

to the posterior mean of Aruoba et al. (2017) for the sample of 1960Q1-2007Q4. Other

parameters are identical to the baseline model.
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Table 1.12: Calibrated parameter values in an asymmetric wage and price adjustment
cost model

φp (ξp) ψp φw (ξw) ψw

450 (0.87) 150 28.1 (0.57) 67.4

Notes: ξ is the Calvo parameter corresponding to φ with θ/φ = (1− ξ)(1− βξ)/ξ. Italic values are
the author’s calculation based on Aruoba et al. (2017). For example, the posterior mean of Aruoba
et al. (2017) for the slope of price Phillips curve is 0.02. In our model, 0.02 = θp/φp and θp = 9
implies φp = 450.

1.10.5.4 Numerical results

1.10.5.5 Comparison of GIR

Figure 1.17 presents the GIR to discount factor shocks in the flexible wage model

and the quadratic wage adjustment cost model as well as our baseline model with

DNWR.
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Figure 1.17: GIR in different models
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1.10.5.6 Comparison of non-linearity

To compare the non-linearity in terms of the responses to exogenous shocks in each

model, Figure 1.18 and Figure 1.19 display the cumulative responses of the selected

aggregate variables in the initial 4 quarters after different size and direction of discount

factor shocks.
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Figure 1.18: Comparison of non-linearity (1)
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Notes: Each panel displays the cumulative responses in the initial 4 quarters after discount factor
shocks. For the asymmetric wage adjustment cost model, the parameter for the asymmetry of price
adjustment cost ψp is set at zero.
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Figure 1.19: Comparison of non-linearity (2)
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Notes: Each panel displays the cumulative responses in the initial 4 quarters after discount factor
shocks. For the asymmetric wage adjustment cost model, the parameter for the asymmetry of price
adjustment cost ψp is set at zero.

1.10.5.7 Comparison of counterfactual for the Great Recession

Figure 1.20 shows the the counterfactual analysis of the Great Recession in each

model. The size of an exogenous shock is calibrated to match the drop of the output

gap in the data.
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Figure 1.20: Counterfactual in different models
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Chapter 2

Optimal Monetary Policy Rule in a

Heterogeneous Agent Model with

Nominal Rigidities

2.1 Introduction

The heterogeneous agent (HA) model has attracted a lot of attention of researchers

in recent years. To this end, Heathcote et al. (2009), who review the literature on

HA models with incomplete markets, point out that one of the main advantages of

HA models is that the models answer welfare questions in realistic situations. They

argue that the welfare consequences of HA models can differ substantially from those

of representative agent (RA) models since aggregate fluctuations do not necessarily

have symmetric effects on each agent, and they therefore stress that explorations of

HA models can deliver rich policy implications.
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In the analysis of monetary policy, the New Keynesian literature contains tremen-

dous efforts to build a stylized model that formulates the laws of motion of aggregate

variables while abstracting heterogeneity among agents in both positive and norma-

tive analysis (Clarida et al. (1999), Christiano et al. (2005), etc.). However, recent

studies argue that heterogeneity can have significant effects on the transmission mech-

anism of monetary policy. For example, Kaplan et al. (2018) find that asset distri-

bution changes how the income and the substitution effect of monetary policy work

in a New Keynesian model with incomplete markets. A natural subsequent question

is the welfare consequences and the policy implications of HA models for monetary

policy analysis, which is the main theme of this paper.

In this paper, I investigate the optimal monetary policy rule in a HA New Key-

nesian model. Specifically, I focus on the heterogeneity of individual workers’ wages

that arises from downward nominal wage rigidities (DNWR) and the resulting ineffi-

cient allocation in the labor market. Although there are considerable variations in the

dimensions of heterogeneity in reality, I set focus on these aspect for several reasons.

First, DNWR is a robust feature in data. Numerous studies test for the presence

of DNWR in individual wage data. Moreover, recent micro evidence suggests severe

DNWR after the Great Recession (Daly and Hobijn (2014), Fallick et al. (2016)).

Motivated by these observations, subsequent studies investigate the significance of

DNWR in accounting for aggregate dynamics, including the high unemployment rate

after the Great Recession (Schmitt-Grohé and Uribe (2016)) and secular stagnation

(Eggertsson et al. (2017)). In this paper, on the other hand, I contribute to the

literature by exploring a normative aspect of DNWR.
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Second, DNWR naturally introduces heterogeneity among workers’ wages that

cannot be attributed to aggregate variables. In this regard, it is worth pointing out

that most studies in the New Keynesian literature that investigate nominal wage

(price) rigidities assume monopolistic competitors that determine their individual

wages (prices), and these models therefore inherently embed heterogeneity among

agents. However, in the staggered contract model of Calvo (1983), which is widely

used in the literature, for example, aggregate variables are sufficient statistics to

measure social welfare to the second-order, because it is possible to summarize cross-

sectional variations in the variance of aggregate inflation (Rotemberg and Woodford

(1997), Erceg et al. (2000), etc.).1 In contrast, I show that, once I take DNWR

into account, due to the state-dependent nature of the constraint, the cross-sectional

distribution of wages matters for social welfare, even being conditional on aggregate

variables.

Third, previous studies do not address the welfare consequences of the heteroge-

neous individual wages and the optimal monetary policy in the setting well. In fact,

there are only a few studies that examine optimal monetary policy in HA models,

and these studies focus on heterogeneous asset holdings (Lippi et al. (2015), Nuño

and Thomas (2017)) or heterogeneous firm productivity (Adam and Weber (2017),

Blanco (2018)). It is also noteworthy that the existing literature on the optimal mon-

etary policy in a model with DNWR uses RA models (Kim and Ruge-Murcia (2009),
1The adjustment cost model, such as Rotemberg (1982), is another popular model in the liter-

ature. In that class of model, it is a convention to focus on the symmetric equilibrium where each

agent behaves identically.
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Coibion et al. (2012), Carlsson and Westermark (2016)).

For the analysis in this paper, I use the New Keynesian dynamic stochastic general

equilibrium (DSGE) model developed in Chapter 1.The model embeds heterogeneous

workers whose wages might be subject to the DNWR constraint. The other parts

of the model shares many features with the existing New Keynesian literature, such

as monopolistically competitive firms that set their prices with quadratic adjustment

cost á la Rotemberg (1982), and households who share consumption across agents

to make the saving-consumption decision. To analyze the realistic policy trade-off, I

consider both demand- and supply-side shocks as sources of aggregate fluctuations,

though Mineyama (2018) focuses on the demand side shock to study the Great Reces-

sion. To solve the model, I apply a modified version of the Krusell-Smith algorithm,

and calibrate the model to match various moments of U.S. macro and micro data.

In terms of monetary policy, I adopt the idea of simple and implementable mone-

tary policy rules, as Schmitt-Grohé and Uribe (2007) suggest. To be precise, I restrict

the attention to simple monetary policy rules in which the central bank sets the nom-

inal interest rate in response to observable macroeconomic variables. One prominent

example is the Taylor (1993) rule, i.e., an interest rate feedback rule that reacts to

measures of inflation and output. On the other hand, implementability requires mon-

etary policy rules to deliver the determinacy of the rational expectation equilibrium.

Assuming such a stylized monetary policy rule, I explore the optimal responsiveness

to each macroeconomic variable to maximize social welfare.

In this regard, another possible subject for study is the solution to the Ramsey

problem, which delivers optimal monetary policy as a function of the state variables
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of the model. In my HA setting, however, state variables include the cross-sectional

distribution of wages, which is nearly impossible for the central bank to observe in

a timely manner in practice. On the other hand, the only information necessary to

conduct monetary policy under simple and implementable rules is aggregate vari-

ables. Therefore, such policy rules are justifiable as a feasible solution to an economic

problem that the central bank faces in reality. Moreover, Schmitt-Grohé and Uribe

(2007) argue that simple policy rules have an advantage in that they can be easily

explained to the public.

I also consider the zero lower bound (ZLB) of the nominal interest rate. The

literature contains extensive studies on the welfare cost of the ZLB and remedies for

it. However, as Coibion et al. (2012) discuss, the welfare implications of the ZLB

might differ considerably depending on the setting of each model. To this end, I

revisit the consequences of the ZLB in my model with a particular focus on how the

HA setting affects the quantitative results.

My main findings are as follows. First, the welfare cost of DNWR in the HA

model is much larger than in the RA model. Under the calibrated Taylor rule that

replicates the Federal Reserve’s actual policy responses, the consumption-equivalent

welfare loss from the undistorted economy is -2.3 percent in the HA model, whereas it

is -0.4 percent once heterogeneity is removed. The result is in stark contrast to previ-

ous studies that use RA models to find a moderate welfare cost of DNWR (Kim and

Ruge-Murcia (2009), Coibion et al. (2012), Carlsson and Westermark (2016)). The

key reason the HA model generates a large welfare cost is that individual workers

face much larger uncertainty about their desired wages due to idiosyncratic varia-
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tions compared to that stemming from aggregate fluctuations. Since the disutility of

inefficient wage allocation is convex in the size of the deviations of their wages from

their desired levels, the average cross-sectional welfare cost of DNWR is much larger

than that for a hypothetical RA.

Second, in a class of the Taylor rule, the optimal monetary policy rule responds

strongly to output, whereas responsiveness to inflation plays a minor role in welfare.

To obtain the intuition behind this result, it is helpful to see that, in a stylized New

Keynesian model without wage rigidity, the strict inflation targeting rule restores

efficient allocation by closing the price markup due to nominal price rigidity. In

my model, on the other hand, since DNWR creates another markup; that is, the

wage markup between real wages and the marginal rate of substitution, the central

bank faces a trade-off in closing two markups. Loosely put, responsiveness to output

stabilizes the fluctuations of the marginal rate of substitution, and therefore helps

to offsetting the wage markup. Quantitatively, I find that social welfare is sensitive

to responsiveness to output rather than to inflation, since the welfare loss associated

with the wage markup is larger.

Third, monetary policy can improve social welfare by responding more aggressively

to a contractionary shock than to an expansionary one. This is due to the asymmetric

distortion generated by DNWR. For instance, upon a contractionary demand shock,

a larger fraction of workers is constrained by DNWR since their desired wages fall due

to the negative income effect. As a consequence, the wage markup sharply increases.

On the other hand, a decline in the wage markup is moderate upon an expansionary

demand shock because the DNWR constraint does not bind for many workers. To
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offset the asymmetric fluctuations of the wage markup, monetary policy needs to

react more strongly to a contractionary shock.

Fourth, regarding the ZLB, I find that the ZLB enlarges the welfare loss by -0.4

percentage point under the Taylor rule since the lack of monetary policy responses

to an exogenous shock at the ZLB amplifies the fluctuations of the economy. In this

regard, alternative policy rules, such as forward guidance and price-level targeting,

can partly offset the adverse effects of the ZLB by committing to a future low interest

rate policy when the economy is constrained at the ZLB.

Fifth, my model has a sharp prediction about the optimal steady-state inflation

rate. Positive steady-state inflation benefits the economy because DNWR and the

ZLB are less likely to bind under higher inflation, whereas higher inflation generates

larger cost of price adjustments. The optimal rate is determined as a consequence

of trade-off between the benefit and the cost of inflation. Quantitatively, I find that

the optimal rate considerably differs depending on the model specification, including

the assumptions about monetary policy rules. However, given each specification, the

optimal rate in the HA model is higher than in the RA model by from 0.5 to 5.5

percentage points in the annual rate. The result suggests that the implications of

previous studies that uses RA models need to be reconsidered.
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2.2 Related literature

There is a long line of literature examining optimal monetary policy in a RA frame-

work with nominal rigidities.2 Clarida et al. (1999) and Woodford (2003) show that

an inflation stabilization policy is welfare-maximizing in an economy with nominal

price rigidity. Subsequent studies extend the model in many dimensions, such as

wage rigidity (Erceg et al. (2000)), the ZLB (Kato and Nishiyama (2005)), informa-

tion frictions (Ball et al. (2005)), financial frictions (Cúrdia and Woodford (2016)),

house prices (Notarpietro and Siviero (2015)), and so on. On the methodological side,

Khan et al. (2003) formulate a method to characterize optimal monetary policy as a

solution to the Ramsey problem.

Optimal monetary policy in HA models, on the other hand, is a relatively new

research field. Several studies investigate optimal monetary policy in stylized two-

sector models (Aoki (2001), Menna and Tirelli (2017), etc.). Recent studies explore

models with a continuum of heterogeneous agents. For instance, Nuño and Thomas

(2017) solve the Ramsey problem in an incomplete market model with heterogeneous

nominal asset and debt holdings. Adam and Weber (2017) and Blanco (2018), on
2In a model with money, on the other hand, Friedman (1969) formulates the so-called Friedman

rule. He argues that setting nominal interest rates at zero is welfare-maximizing since it minimizes

the opportunity cost of holding real money balances as long as the cost of the money supply is

zero. The rule is examined by subsequent studies in different settings, such as under distortionary

taxes (Chari and Kehoe (1999)) and monopolistic competition (Ireland (2003)). In the HA setting,

a recent study by Lippi et al. (2015) build a model with heterogeneous money holdings and studies

the distributional effects of money injection.
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the other hand, study the consequences of firms’ heterogeneous productivity on the

optimal steady-state inflation rate. This paper is distinct from these studies in that

I investigate the heterogeneity in individual wages and that I focus on simple and

implementable monetary policy rules.

Regarding the optimal stead-state inflation rate, a number of studies explore the

benefits of positive steady-state inflation with respect to DNWR (Kim and Ruge-

Murcia (2009), Carlsson and Westermark (2016)), the ZLB (Schmitt-Grohé and Uribe

(2010), Coibion et al. (2012)), shifts of the natural interest rate (Andrade et al.

(2018)), different trends in consumption and investment goods prices (Ikeda (2015)),

a life-cycle model with capital accumulation (Oda (2016)), and so on. On the other

hand, previous studies point out that non-zero steady-state inflation generates sizable

welfare loss through nominal price rigidities. In this regard, Ascari et al. (2015) claim

that shifting the steady-state inflation from 2 to 4 percent decreases social welfare

by around 4 percent due to the increased price dispersion in the staggered contract

model of Calvo (1983). As a consequence, most studies conclude that a moderate

positive rate, if any, is optimal in the different specifications of the model mentioned

above. As for DNWR, Kim and Ruge-Murcia (2009) find that the optimal inflation

rate in the Ramsey policy is 0.35 percent in the annual rate, while Carlsson and

Westermark (2016) suggest that it is 1.16 percent. Though both studies use a RA

model, I investigate how the result changes in the presence of heterogeneity. Indeed,

I find that the optimal steady-state inflation is substantially higher once I take into

account heterogeneous wages among workers. The finding is related to recent studies

by Adam and Weber (2017) and Blanco (2018), who study the heterogeneity on the
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firm side.

This paper is also related to the growing literature on the link between mone-

tary policy and heterogeneity in a broad sense. On the one hand, previous studies

investigate how heterogeneity changes monetary policy transmission (Kaplan et al.

(2018), Gornemann et al. (2016), Wong (2018), etc.). For example, Kaplan et al.

(2018) develop a HA New Keynesian model with incomplete markets to demonstrate

that, in the presence of liquidity constrained households, a monetary policy shock

generates real effects through the income effect due to the increase in aggregate in-

come rather than the substitution effect by interest rate changes. On the other hand,

some studies examine the distributional effects of monetary policy (Coibion et al.

(2017), Beraja et al. (2017), etc.). A pioneering work by Coibion et al. (2017) finds

that a contractionary monetary policy shock increases the inequality of income and

consumption across households. Beraja et al. (2017) argue that the first round of

the Federal ReserveâĂŹs large-scale asset purchase program (QE1) enlarged regional

consumption heterogeneity since the regions with more depressed housing prices are

less likely to refinance their mortgage loans to benefit from the interest rate cuts.
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2.3 Model and Numerical Method

2.3.1 Equilibrium equations

I use the New Keynesian DSGE model developed in Chapter 1.The model embeds

individual households who supply differentiated labor service to the production sector

and whose nominal wages might be subject to the DNWR constraint. Other parts

of the economy share many features of a standard New Keynesian model in the

literature, such as the one by Erceg et al. (2000), Ireland (2004), and Christiano et

al. (2005). The economy consists of monopolistically competitive firms that set their

prices with quadratic adjustment cost á la Rotemberg (1982), households who share

consumption across agents to make saving-consumption decision, and the central bank

that determines the nominal interest rate. The steady-state distortion arising from

the monopolistic power of households and firms is eliminated by distortionary labor

and production subsidies that are financed by lump-sum tax. There are two sources

of aggregate fluctuations: discount factor shocks and technology shocks.

Equilibrium equations are presented as follows. The aggregate economy is formu-

lated as a 3-equation New Keynesian system that consists of the consumption Euler

equation (2.1), the New Keynesian Phillips curve (NKPC) (2.2), and the monetary

policy rule (2.3), together with the resource constraint (2.4) and the production func-

tion (2.5). In a baseline case, I assume the Taylor (1993)-type interest rate feedback

rule that responds to inflation and output. More discussion about the specification

of the monetary policy rule will be provided shortly. The key ingredient of the model

is individual wages that are determined by (2.6)-(2.10). Individual workers are mo-
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nopolistic competitors to determine their wages given the individual labor demand

function. I assume that 1−α fraction of workers is subject to the DNWR constraint

in each period, whereas the remaining α fraction can change their wages without the

constraint. Exogenous processes are governed by the laws of motion in (2.11)-(2.13).

Derivation of each equation is presented in Section 1.4.

Aggregate economy.

βtEt
[(
Ct+1

Ct

)−σ Rt

Πp
t+1

]
= 1 (Euler equation) (2.1)

(Πp
t − Π̄)Πp

t = βtEt
[(
Ct+1

Ct

)−σ (Yt+1

Yt

)
(Πp

t+1 − Π̄)Πp
t+1

]
+ θp
φp

(
W̃t

Zt
− 1

)
(NKPC)

(2.2)

Rt = R∗
(

Πt

Π∗

)δπ ( Yt
Y ∗

)δy
(baseline monetary policy rule) (2.3)

Yt = Ct + φp
2 (Πp

t − Π̄)2Ct (resource constraint) (2.4)

Yt = ZtHt (production function) (2.5)

where βt: discount factor, Zt: technology, Ct: consumption, Yt: output, Ht: hours

worked, Rt: gross nominal interest rate, W̃t: real wage index, Πp
t : gross price inflation

rate, Π̄: reference rate for price adjustment costs, Π∗: target inflation, and Y ∗: target

output.
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Individual wage setting.

ψt(j) = (w̃t(j)−mrst(j))
(
C−σt

θwht(j)
w̃t(j)

)
+ βtEt[ψt+1(j)] (2.6)

ψt(j)
(
w̃t(j)−

w̃t−1(j)
Πp
t

)
= 0 , ψt(j) ≥ 0 w.pr. 1− α (wage setting with DNWR)

(2.7)

or

w̃t(j) = mrst(j)− βtEt[ψt+1(j)]
(
C−σt

θwht(j)
w̃t(j)

)−1

w.pr. α (wage setting without DNWR)

(2.8)

where mrst(j) ≡
χt(j)ht(j)η

C−σt
(marginal rate of substitution) (2.9)

ht(j) =
(
w̃t(j)
W̃t

)−θw
Ht (individual labor demand) (2.10)

with χt(j): idiosyncratic labor disutility, w̃t(j): real wage, ht: hours worked, ψt(j):

shadow value of the DNWR constraint of household j.

Exogenous processes.

log(βt) = (1− ρβ)log(β̄) + ρβlog(βt−1) + εβ,t , εβ,t ∼ i.i.d.N(0, σ2
β) (2.11)

log(Zt) = ρzlog(Zt−1) + εz,t , εz,t ∼ i.i.d.N(0, σ2
z) (2.12)

log(χt(j)) ∼ i.i.d.N(−σ2
χ/2, σ2

χ). (2.13)
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2.3.2 Social welfare

I define the social welfare as the unconditional expectation of average household

utility:

SW ≡ E

 1
1− σC

1−σ
t − 1

1 + η

∫ 1

0
χt(j)ht(j)1+ηdj

. (2.14)

To obtain the intuition behind the welfare loss of the economy, I derive the second

order approximation of the social welfare around the deterministic steady state. Proof

is provided in Appendix 2.8.1.

SW − SW f ≈ −1
2(σ + η)Var

(
Ŷ gap
t

)
− φp

2 Var
(
log(Πp

t )
)

︸ ︷︷ ︸
Aggregate variance

−1
2

(
η + 1

θw

)
E
[
Varj

(
ĥt(j)

)
− Varj

(
ĥft (j)

)]
︸ ︷︷ ︸

Cross−sectional variance

−E
[
Covj

(
χ̂t(j), ĥt(j)

)
− Covj

(
χ̂t(j), ĥft (j)

)]
︸ ︷︷ ︸

Cross−sectional covariance

(2.15)

where the deterministic steady state is the economy under flexible prices and wages

without any exogenous shocks. I define â ≡ log(a) − log(ā) with ā being the value

of a in the deterministic steady state, whereas af denotes the value of a in economy

under the flexible prices and wages. Varj(·) and Covj(·, ·) represent the cross-sectional

variance and covariance, respectively.

Equation (2.15) gives three main sources of the welfare loss of this economy; 1) the

variance of the output gap and price inflation, and 2) the inefficient cross-sectional

variance of hours worked, and 3) the inefficient cross-sectional covariance between

hours worked and labor disutility shocks. Variations of the output gap and price
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inflation are sources of welfare loss as are in a standard New Keynesian model with

nominal price rigidity. The magnitude depends on the curvature of utility function

governed by σ and η, and the cost of price adjustment φp. Regarding cross-sectional

moments, larger variance of hours worked reduces social welfare due to the convexity

of the disutility of labor and the production inefficiency stemming from the concavity

of the labor aggregates. In fact, if the disutility of labor is linear η = 0 and each

labor service is the perfect substitute θw = ∞, then, the cross-sectional variance

term vanishes. The other key cross-sectional moment is the covariance between hours

worked and labor disutility shocks. Intuitively, workers with high (low) disutility are

willing to set higher (lower) wages to decrease (increase) their hours worked through

the individual labor demand function. Disability of such adjustment due to DNWR

is a source of welfare loss.

It is worth pointing out that the cross-sectional moments in (2.15) cannot be

summarized to aggregate variables in the presence of DNWR, while Erceg et al.

(2000) demonstrate that, in the Calvo-type staggered wage model, it is represented

by the variance of the aggregate wage growth. To see this point, I begin with the fact

that the variance of hours worked is linked to that of wages through individual labor

demand function:

Varj(ĥt(j)) = θ2
wVarj(log(wt(j))). (2.16)

Moreover, in the Calvo model without idiosyncratic shocks, it can be shown that:

E
[
Varj(log(wCalvot (j)))

]
= ξw

(1− ξw)2Var
(
log(Πw,Calvo

t )
)

(2.17)
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where aCalvo denotes the variable a in the Calvo model. ξw denotes the fraction of

workers without wage changes in each period. In Appendix 2.8.1, I demonstrate that

the key assumptions to derive the result above are; 1) the fraction of workers with

and without wage changes is constant over time and 2) the reset wage is identical

across workers. In my model, on the other hand, the first assumption does not hold

due to DNWR, whereas the second is violated by the presence of idiosyncratic shocks.

To focus on the effects of DNWR, I suppose that there are no idiosyncratic shocks,

i.e. χt(j) = χ̄. Now that the second assumption is satisfied. However, the first

assumption still does not hold and I obtain the following expression:

E
[
Varj(log(wt(j)))

]
= 1

1− E[ξw,t]
E
[

ξw,t
1− ξw,t

]
Var

(
log(Πw

t )
)

+ 1
1− E[ξw,t]

{
Cov

(
ξw,t,Varj(log(wt−1(j)))

)
+ Cov

(
ξw,t

1− ξw,t
, (log(Πw

t ))2
)

+ E
[
C
]}

(2.18)

where C includes several cross-sectional moments. Details are provided in Appendix

2.8.1. Several differences between (2.17) and (2.18) are noteworthy. First of all, the

fraction of workers without wage changes ξw,t in (2.18) is time-varying in the presence

of DNWR. Therefore, the coefficient of the variance of the aggregate wage growth in

(2.18) does not necessarily coincide with that of the Calvo model in (2.17). More

importantly, even being conditional on the aggregate wage growth, cross-sectional

moments that appear in the second term of the RHS in (2.18) matter for social welfare.

For example, the fraction of workers with and without wage changes depends on the

cross-sectional wage distribution in the previous period and the current wage growth.

Indeed, the sign of the covariance terms in (2.18) is ambiguous.
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2.3.3 Numerical method

I use the modified Krusell-Smith algorithm developed in Chapter 1 to solve the model

numerically. The details are presented in Appendix 1.10.2.

2.3.4 Calibration

I calibrate the model to U.S. macro and micro data. The time frequency is quarterly.

The externally fixed parameters are listed in Panel (A) of Table 2.1. The value of

the average discount factor β̄ and that of the target inflation rate Π∗ in the Taylor

rule (2.3) correspond to the annual real interest rate of 2 percent and the annual

price inflation rate of 2 percent, respectively. I set the reference inflation rate for

price adjustment costs at Π̄ = 1 to take into account the welfare cost of the steady-

state inflation. I fix the target output in (2.3) at Y ∗ = 1. The relative risk aversion

of households σ is set at 2 and the inverse of the Frisch labor supply elasticity η

is at 0.25, which are in line with the literature. I follow Coibion et al. (2012) to

choose the elasticity of substitution across individual goods θp = 7. The value implies

the steady-state price markup is 17 percent, which is broadly consistent with the

empirical literature such as Basu and Fernald (1997). I use the same value for the

elasticity of substitution across individual labor service θw. The value of the degree of

price stickiness φp is calibrated according to the frequency of individual price changes

reported by Nakamura and Steinsson (2008). They find that the median frequency

excluding temporary sales is 11-13 percent per month, which implies the slope of the

115



NKPC is around 0.20 and the corresponding parameter value is φp = 35 in my model.3

The parameter value implies that the adjustment cost of 1 (5) percentage price change

is 0.175 (4.375) percent of consumption.4 Notice that the nominal price rigidity

generates welfare loss through changing the dynamics of the model as a consequence

of general equilibrium as well as the direct cost of price adjustments. In this regard,

I demonstrate that, in Section 2.4.1, the welfare loss of the calibrated model without

DNWR is in line with that of corresponding models in the existing literature.

The parameters regarding cross-sectional wage distribution, that is, the fraction

of workers without being subject to the DNWR α and the standard deviation of

labor disutility shocks σχ, are calibrated to match the empirical distribution in U.S.

data. Specifically, I choose the parameter values to minimize the quadratic distance

between the moments of the stationary distribution of individual wage changes in the

model and the target moments in data by using a grid search method. The target

moments and the calibrated parameter values are listed in Panel (B) of Table 2.1.

The definition of stationary equilibrium is provided in Appendix 1.10.5.

For parameterization of aggregate exogenous processes, the AR(1) coefficient of

technology ρz and the standard deviation of innovations to it σz are set according

to Fernández-Villaverde et al. (2015). For those of discount factor shocks, I first set

the policy parameters in the Taylor rule (2.3) at δp = 1.50 and δy = 0.25 following
3The slope of the NKPC in my model is given by θp/φp in (2.2). θp/φp = 0.20 leads to φp =

7/0.2 = 35.
4The consumption loss of 1 percent inflation is calculated as follows. Then, φp

2 (Πt − Π̄)2 ∗ 100 =

35/2 ∗ 0.012 ∗ 100 = 0.175(%).
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Table 2.1: Baseline calibration

Panel (A): Fixed parameters
Description SymbolValue Target/Source

Average discount factor β̄ 0.995 S.S. real interest rate = 2.0% (annual)
Relative risk aversion σ 2.00 IES = 0.5

Inverse of Frisch labor supply elasticity η 0.25 King and Rebelo (1999)
Labor demand elasticity θw 7.00 S.S. markup = 16.7%
Goods demand elasticity θp 7.00 Coibion et al. (2012)

Price adjustment cost φp 35.0 Slope of NKPC = 0.20
(Corresponding Calvo parameter) - (0.64) Nakamura and Steinsson (2008)

Target inflation rate Π∗ 1.005 S.S. inflation rate = 2.0% (annual)
Target output Y ∗ 1.000 Externally fixed

Panel (B): Parameters for cross-sectional wage distribution
Parameter SymbolValue Target/Source

Fraction of workers without being α 0.0600 Frequency of wage changes=0.266;
subject to the DNWR constraint Barattieri et al. (2014)

S.D. of idiosyncratic labor σχ 0.1360 S.D. of wage changes (annual)=0.108;
disutility shock Fallick et al. (2016)

Panel (C): Parameters for aggregate exogenous processes
Parameter SymbolValue Target/Source

AR(1) coefficient of technology ρz 0.900 Fernández-Villaverde et al. (2015)
S.D. of innovations to technology σz 0.0025 same as above

AR(1) coefficient of discount factor ρβ 0.865 First-order autocorr. of output=0.85
S.D. of innovations to discount factor σβ 0.0053 S.D. of output=1.55%

Notes: Targets are the HP-filtered real GDP from 1955Q1 to 2007Q4. For calibration, policy
parameters are set at δp = 1.50 and δy = 0.25 following Fernández-Villaverde et al. (2015).

Fernández-Villaverde et al. (2015). These parameter values are intended to replicate

the Federal Reserve’s actual policy reactions. Then, the parameters ρβ and σβ are

calibrated to match the persistence and the standard deviation of the real GDP in

the post-war U.S. data. The calibrated parameters are listed in Panel (C) of Table

2.1.
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2.4 Numerical Results

2.4.1 Social welfare under calibrated Taylor rule

This subsection computes the social welfare under the calibrate Taylor rule. Since the

social welfare of the economy (2.14) does not have the exact closed form solution, I

numerically compute it by simulating the economy with a large number of households

for a long period of time and taking the unconditional mean.

For this analysis, I assume the following specification for the monetary policy rule:

Rt = R∗
(

Πp
t

Π∗

)δp ( Yt
Y ∗

)δy
(2.19)

where R∗ ≡ Π∗/β̄ is the target gross nominal interest rate. The policy rule (2.19)

corresponds to the Taylor (1993) rule, in which the central bank sets the nominal

interest rate in response to inflation and output. I calibrate the policy parameters

δp = 1.50 and δy = 0.25. These parameter values are standard ones in the literature

to replicate the Federal Reserve’s actual policy responses.

Table 2.2 reports the social welfare and its relevant moments under the calibrated

Taylor rule. The consumption-equivalent welfare loss from the undistorted economy,

which is the one under flexible prices and wages, is -2.31 percent in my baseline model

in column (1). To see the contribution of aggregate and idiosyncratic shocks, I mute

one of them in column (2) and (3). When aggregate shocks are muted in column (2),

the economy still bears fairly large welfare loss of -1.83 percent. On the other hand,

in column (3), once idiosyncratic labor disutility shocks are muted, the welfare loss is

reduced to -0.36 percent. Notice that the model without idiosyncratic shocks roughly
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correspond to a RA model with DNWR in the literature, although the model still

has cross-sectional dispersion due to the random probability of being subject to the

DNWR constraint. These results suggest that, even without the welfare loss from the

variations of aggregate variables, idiosyncratic labor disutility shocks to individual

workers lead to considerable inefficiency in the labor market since DNWR prevents

the adjustment of individual wages.

The economy without DNWR in column (4) corresponds to the 3-equation New

Keynesian model that consists of the Euler equation, the NKPC, and the Taylor rule.

Although idiosyncratic labor disutility shocks still leads to cross-sectional dispersion,

they do not generate welfare loss because individual labor is efficiently allocated.

The magnitude of welfare loss, -0.46 percent, in the economy is in line with previous

studies. For example, Nakamura et al. (Forthcoming) find that the welfare loss in

their calibrated models ranges from -0.4 percent in the menu cost model to -1.0

percent in the Calvo model. Interestingly, comparing column (3) and (4), adding

DNWR without idiosyncratic shocks to the stylized New Keynesian model is welfare

improving. Although the result might be counterintuitive, it can be the case because

DNWR reduces the variance of inflation by adding persistence of firms’ marginal

cost. It is indeed consistent with the findings of previous studies such as Carlsson

and Westermark (2008) and Coibion et al. (2012) who find that DNWR is welfare

improving in RA models.5

5Coibion et al. (2012), who build a RA model with the ZLB and DNWR, find that DNWR

improves social welfare through reducing the likelihood of hitting the ZLB as well as decreasing the

inflation variations.
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Table 2.2: Social welfare under calibrated Taylor rule
(1) (2) (3) (4)

with DNWR w/o DNWR
Baseline w/o aggregate w/o idiosyncratic

shocks shocks
Social welfare:

C.E. (%) -2.31 -1.83 -0.36 -0.46
σ(Y gap) 1.55 0.00 1.39 0.58
σ(Πp) 0.61 0.00 0.90 1.33
σ(hj) 0.12 0.11 0.08 0.35

ρ(hj , χj) -0.37 -0.50 - -1.00

Notes: C.E. denotes the consumption-equivalent welfare loss from the economy under flexible prices
and wages. µ(·), σ(·), and ρ(·, ·) represent the mean, the standard deviation, and the correlation,
respectively. In column (2), aggregate shocks are set constant, i.e., βt = β̄ and Zt = 1. The
economy coincides with the stationary equilibrium. In column (3), idiosyncratic shocks are muted,
i.e., χt(j) = 1. In column (4), DNWR is removed by setting α = 1.

2.4.2 Optimal Taylor rule

This subsection turns to investigation of optimal monetary policy rule. I choose the

policy parameters δp and δy in (2.19) to maximize social welfare by adopting the grid

search method used by Schmitt-Grohé and Uribe (2007). Specifically, I set the equally

spaced grid points in the parameter space δp ∈ [0.0, 3.5] and δy ∈ [0.0, 3.5] with the

width of each interval 0.25. The range of the parameter space is slightly wider than

the one used by Schmitt-Grohé and Uribe (2007) to guarantee an interior solution

in the baseline model.6 I search for the maximum of the social welfare (2.14) on the

grids points. For this analysis, the target inflation rate is fixed at Π∗ = 1.005, which

indicates 2 percent steady-state inflation in the annual rate.

Table 2.3 presents the optimized parameter values and the welfare measures. The

table also reports the outcomes of the calibrated Taylor rule in column (1) for a
6Schmitt-Grohé and Uribe (2007) restrict the parameter space within [0.0,3.0].
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Table 2.3: Optimal Taylor rule
(1) (2) (3) (4)

Calibration Optimized rule
Πp targeting Y targeting Hybrid targeting

δp 1.50 1.50 - 1.50
δy 0.25 - 2.75 3.00

Social welfare:
C.E. (%) -2.31 -2.72 -2.12 -2.11
σ(Y gap) 1.54 2.45 0.58 0.42
σ(Πp) 0.61 0.78 0.35 0.29
σ(hj) 0.12 0.17 0.11 0.11

ρ(hj , χj) -0.37 -0.22 -0.46 -0.48

Notes: For each specification in column (2)-(4), the parameter values of δp and δy are chosen to
maximize social welfare on the equally spaced grid points in the parameter space of δp ∈ [0.0, 3.5]
and δy ∈ [0.0, 3.5] with the width of each interval 0.25. C.E. denotes the consumption-equivalent
welfare loss from the economy under flexible prices and wages. σ(·) and ρ(·, ·) represent the standard
deviation, and the correlation, respectively.

comparison purpose. To begin with, in column (2) and (3), I focus on single variable

targeting rules by setting one of the parameters δp and δy at zero. In column (2),

the optimized inflation targeting rule deteriorates social welfare compared to the

calibrated Taylor rule in column (1). Without responsiveness to output, the inflation

targeting rule generates a large variations of the output gap, and that also leads to an

inefficient allocation of labor. In column (3), on the other hand, the output targeting

rule improves social welfare from the calibrated rule. The strong responsiveness to

output decreases the variance of both the output gap and inflation. The stabilized

aggregate variables improves the cross-sectional efficiency in the labor market as well.

When I allow for responsiveness to both of inflation and output in column (4), the

hybrid targeting rule does not improve a lot from output targeting rule. Each welfare

relevant moment is fairly similar in column (3) and (4).

Figure 2.1 displays the optimal and implementable policies on the parameter space.
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In Panel (A), the filled circle denotes the optimal pair of the parameters (δp, δy), while

unfilled ones indicate the ”nearly-optimal” pairs that are sub-optimal but whose wel-

fare loss is close to that of the optimal one.7 The figure suggests that, as long as

responsiveness to output is high enough, different responsiveness to inflation does not

change social welfare significantly. Regarding implementability, the implementable

policies that deliver the determinacy of equilibrium are shown with crosses in the fig-

ure. When responsiveness to inflation and output is not strong enough, the economy

suffers from indeterminacy of equilibrium, as is the case in a simple New Keynesian

model without DNWR. Moreover, too strong responsiveness to inflation without re-

acting to output can lead to indeterminacy as well. Intuitively, in my model, the

relationship between real quantities and price variables is loosened since DNWR cre-

ates a wedge between them. In particular, upon a negative technology shock, strong

responsiveness to inflation reduces consumption by raising the real interest rate. How-

ever, the policy does not necessarily stabilize inflation since real wage, and therefore

marginal cost, does not decline in response to the drop of real quantities in the pres-

ence of DNWR. Consequently, such strong responsiveness to inflation can make the

economy unstable.8

For comparison, Panel (B) shows the results in the model without idiosyncratic
7I define the nearly-optimal policy as the pairs of the parameters whose welfare loss is within

0.03 percentage point of that of the optimal policy.
8In contrast, in a simple New Keynesian model without DNWR, the labor market equilibrium

formulates a one-to-one relationship between the output gap and marginal cost. As long as the

relationship holds, responsiveness to inflation stabilizes both of real quantities and price variables,

and delivers the determinacy of equilibrium.
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shocks. The figure shares much areas of the implementable policy and the nearly-

optimal policy with those in Panel (A). However, without idiosyncratic shocks, the

output targeting rule is strictly suboptimal. It is also worth pointing out that the

optimal point without idiosyncratic shocks in Panel (B) is strictly sub-optimal in the

baseline model in Panel (A). These results imply that the optimal monetary policy

analysis without taking into account idiosyncratic shocks can be misleading because

the analysis understates the inefficient cross-sectional allocation in the labor market.

Panel (C) presents those for the model without DNWR. Since the welfare loss

in the model only stems from the nominal price rigidity, strong responsiveness to

inflation improves social welfare. The result is consistent with the findings of previous

studies showing that an inflation stabilization policy is welfare-maximizing in a model

with nominal price rigidities, such as Clarida et al. (1999) and Schmitt-Grohé and

Uribe (2007).9

9I find that, even without DNWR, small responsiveness to output is welfare improving. Indeed,

the optimal response is δp = 3.50 and δy = 0.25 in Panel (B). In this regard, since the model is solved

globally and the social welfare is computed without the Taylor approximation, the strict inflation

targeting does not necessarily maximize social welfare. In the numerical analysis, I find that under a

non-zero steady-state inflation rate, both inflation and the output gap tend to become more volatile

than in the economy around the zero steady-state inflation, and responsiveness to output helps to

stabilize them.
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Figure 2.1: Optimal Taylor rule

Panel (A): Baseline model with DNWR
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Panel (B): Model without idiosyncratic shock
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Notes: The optimal policy is the pair of the parameters (δp, δy) that delivers the highest social
welfare in the parameter space. The nearly-optimal policy is the ones whose welfare loss is within
0.03 percentage point of that of the optimal policy. The implementable policy is the ones that
delivers the determinacy of equilibrium.
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Panel (C): Model without DNWR
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To understand the mechanism behind the results above, it is important to notice

that the baseline model has two sources of welfare loss. The first source is nominal

price rigidity, that is, the price adjustment cost of firms. It introduces the price

markup µp between firms’ real marginal costs and their relative prices:

pt(i)
Pt

= µpt (i)MCt(i) (2.20)

where i denotes each firm. On the other hand, DNWR is the second source of welfare

loss. It creates the wage markup µw between workers’ real wages and their marginal

rate of substitution:

wt(j)
Pt

= µwt (j)MRSt(j). (2.21)

where j denotes each worker. As Erceg et al. (2000) discuss, since the central bank

has only one policy instrument, that is, the nominal interest rate, they face trade-off
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in closing two markups.10 Loosely speaking, the inflation targeting rule reduces the

fluctuations of the price markup by stabilizing inflation. On the other hand, the

output targeting rule offsets the fluctuations of output, and that in turn stabilizes

the marginal rate of substitution, because it is determined by consumption and hours

worked, which are linked to output in general equilibrium. Hence, the output target-

ing rule helps to reduce the fluctuations of the wage markup. Quantitatively, since

DNWR together with idiosyncratic shocks generates sizable welfare loss through the

fluctuations of the wage markup, the optimal monetary policy rule needs to put a

sufficiently large weight on output rather than on inflation.

2.4.3 Alternative policy rules

This subsection explores alternative policy rules to the Taylor rule investigated in the

previous subsection. Specifically, I investigate the performance of asymmetric Taylor

rule and wage growth and employment targeting rule.

2.4.3.1 Asymmetric Taylor rule

I consider the following asymmetric Taylor rule:

Rt = R∗
(

Πp
t

Π∗

)δp,t ( Yt
Y ∗

)δy,t
(2.22)

where δp,t ≡ 1Πpt≥Π∗ δ
+
p + (1− 1Πpt≥Π∗) δ−p

δy,t ≡ 1Yt≥Y ∗ δ+
y + (1− 1Yt≥Y ∗) δ−y .

10Another way of interpreting this result is that the ”divine coincidence” discussed by Blanchard

and Gali (2005) does not hold in the presence of the wage markup.
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Each coefficient δp,t and δy,t can take two different values depending on whether the

target variable is above or below the target level. The specification is based on the

conjecture that monetary policy rule might improve social welfare by responding

differently upward and downward since DNWR is an asymmetric constraint.

Table 2.4 reports the optimized parameter values and the resulting welfare mea-

sures. The optimized responsiveness are larger to negative deviations of target vari-

ables from their target levels than to positive ones in each specification. This result

reflects the fact that DNWR binds for more workers upon a contractionary shock

than upon an expansionary one, which leads to a larger welfare loss. To address

the asymmetry, monetary policy rule needs to respond more aggressively to negative

deviations than to positive ones. In fact, the asymmetric Taylor rule delivers higher

social welfare than the baseline Taylor rule in Section 2.4.2. For example, in the

hybrid targeting rule, the gain of adopting the asymmetric rule is about 0.1 percent

in terms of the consumption-equivalent welfare loss.

2.4.3.2 Wage growth and employment targeting rule

I next investigate a targeting rule that responds to wage growth and employment.

Since one of the main distortion of the economy arises from wage rigidity, it is natural

for monetary policy rule to respond to measures of the labor market. In the real world,

the Federal Reserve has their mandate of achieving maximum sustainable employment

as well as price stability. Although my model does not explicitly distinguish the

employment and unemployment status of workers, since individual hours worked is

determined through individual labor demand function, hours worked Ht can be seen
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Table 2.4: Optimal asymmetric Taylor rule
(1) (2) (3)

Πp targeting Y targeting Hybrid targeting
δ+
p 1.25 - 1.50
δ−p 2.50 - 3.00
δ+
y - 2.25 0.75
δ−y - 3.00 3.50

Social welfare:
C.E. (%) -2.30 -2.11 -2.03
σ(Y gap) 2.60 0.62 0.60
σ(Πp) 0.69 0.39 0.40
σ(h(j)) 0.13 0.11 0.12

ρ(χ(j), h(j)) -0.46 -0.49 -0.54

Notes: In column (1) and (2), the parameter values are chosen as the global maximum in the
parameter space [0.0,3.5] by using the grid search method as in Section 2.4.2. In column (3), on the
other hand, due to the high dimensionality of the parameter space, I search for a local maximum
around the optimized parameter values in the symmetric targeting rule in Section 2.4.2. C.E.
denotes the consumption-equivalent welfare loss compared from the economy under flexible prices
and wages. σ(·) and ρ(·, ·) represent the standard deviation and the correlation, respectively.

as a measure of employment. Wage growth Πw
t is another relevant measure since the

tightness of DNWR crucially depends on it. To implement the idea, I define the wage

growth and employment targeting rule as follows:

Rt = R∗
(

Πw
t

Π∗

)δw (Ht

H∗

)δh
(2.23)

where δw and δh govern the responsiveness to each variable. I fix at H∗ = 1.

Table 2.5 shows the results. Interestingly, the wage growth and employment tar-

geting rule delivers quite similar outcomes to the baseline Taylor rule in Section 2.4.2.

To be precise, in single variable targeting rules, the wage growth targeting in column

(2) deteriorates social welfare compared to the calibrated rule, and the employment

targeting rule in column (3) improves it. The hybrid targeting rule in column (4) has

little improvement from the employment targeting rule. Moreover, the magnitude of

the welfare loss in the optimized rules is within the range of 0.1 percent from that
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Table 2.5: Optimal wage growth and employment targeting rule
(1) (2) (3) (4)

Calibration Optimized rule
Parameters: Πw targeting H targeting Hybrid targeting

δw 1.50 1.50 - 2.50
δh 0.25 - 2.25 2.25

Social welfare:
C.E. (%) -2.58 -2.65 -2.15 -2.10
σ(Y gap) 1.52 2.58 0.54 0.38
σ(Πp) 0.89 0.89 0.23 0.19
σ(hj) 0.16 0.16 0.10 0.11

ρ(hj , χj) -0.24 -0.26 -0.44 -0.48

Notes: For each specification, the parameter values are chosen to maximize social welfare on the
equally spaced grid points in the parameter space [0.0,3.5] with the width of each interval 0.25. C.E.
denotes the consumption-equivalent welfare loss from the economy under flexible prices and wages.
σ(·) and ρ(·, ·) represent the standard deviation and the correlation, respectively.

in the baseline Taylor rule. In this regard, in my model, hours worked co-moves

with output except for the fluctuations of technology through the production func-

tion, whereas wage growth is defined as the product of price inflation and real wage

growth. Therefore, responsiveness to employment roughly corresponds to the out-

put targeting, while responsiveness to wage growth resembles the inflation targeting.

These findings imply that, even though a large part of the distortion of the economy

arises from the labor market friction, that is, DNWR, responding to measures of the

labor market does not deliver significant gains as long as each aggregate measure is

tightly linked in general equilibrium.
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2.5 ZLB

2.5.1 Policy rules with ZLB

This section introduces the ZLB of the nominal interest rate into the baseline model.

In the literature, particularly after the Great Recession when most of the central banks

in advanced economies experienced or were threatened by it, the ZLB is regarded as

one of essential elements to consider in monetary policy analysis. The constraint

simply suggests that the nominal net (gross) interest rate cannot be below zero (one):

Rt = max
{
Rd
t , 1

}
(2.24)

where Rd
t denotes the desired interest rate that is determined by monetary policy

rules.

For monetary policy rules with the ZLB, I consider several variations of alterna-

tive rules suggested in the literature as well as the standard Taylor rule.

Standard Taylor rule. The Standard Taylor rule is given by:

Rd
t = R∗

(
Πp
t

Π∗

)δp ( Yt
Y ∗

)δy
. (2.25)

History-dependent rule. The Federal Reserve announced a commitment to keep

the low interest rate policy when they faced the ZLB after the Great Recession. To

take into account the effect of this type of forward guidance, I consider the history-
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dependent rule proposed by Reifschneider and Williams (2000):

Rd
t = R∗

(
Rd
t−1

Rt−1

)(
Πp
t

Π∗

)δp ( Yt
Y ∗

)δy
. (2.26)

Under the history-dependent rule, the central bank keeps track of the past interest

rate gap, that is, the difference between the desired interest rate implied by (2.26)

Rd
t−1 and the actual rate Rt−1. Therefore, once the nominal interest rate is con-

strained at the ZLB, the central bank continues a low interest rate policy until the

gap is cleared, even if the interest rate implied by the standard Taylor rule becomes

positive.

Price-level targeting rule. I also consider the price-level targeting rule. Vestin

(2006) shows that the price-level targeting rule generates desirable history depen-

dence, which provides a commitment device for the central bank.11 Though the main

interest of his study is in the monetary policy analysis under discretion, his insight

can also be applied to the ZLB. I use the following specification of the rule:

Rd
t = R∗

(
Pt
P ∗

)δpl ( Yt
Y ∗

)δy
(2.27)

where δpl governs responsiveness to price level. I normalize P ∗ such that Pt/P ∗ repre-

sents the deviation of price level from the deterministic path due to the steady-state

inflation. It is noteworthy that the nominal GDP targeting rule, which is proposed

by Jensen (2002) and recently studied by Gaŕın et al. (2016) and Billi (2017), is a

special case of the rule (2.27) where responsiveness to price level and output is set
11There are several earlier studies that refer to the price-level targeting rule, such as Wolman

(1999) and Blinder (2000).
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equal, i.e., δpl = δy.

Temporary price-level targeting rule. A recent study by Bernanke (2017) pro-

poses the temporary price-level targeting rule. A possible disadvantage of the price-

level targeting is that the strong commitment to price level can generate large welfare

loss upon a negative supply-side shock, and he argues that the central bank can ad-

dress the problem by restricting its usage during the ZLB periods. I specify the rule

in the following way:

Rd
t =


R∗
(Πpt

Π∗
)δp ( Yt

Y ∗

)δy
if Rt−1 > 1

R∗
(
Pt
P ∗

)δpl ( Yt
Y ∗

)δy
if Rt−1 = 1.

(2.28)

Under the temporary price-level targeting rule, as long as the economy is out of the

ZLB, the central bank implements the standard Taylor rule. On the other hand, once

the economy hits the ZLB, the central bank switches the policy rule to the price-level

targeting until the economy exits from it.

2.5.2 Numerical results with the ZLB

I choose the parameter values in each monetary policy rule to maximize social wel-

fare in the same way as in the previous section. Table 2.6 summarizes the optimized

parameter values and the welfare measures. The table also reports the mean con-

sumption and the frequency of staying at the ZLB.

Several points are noteworthy in the table. First, under the optimized Taylor rule,

the welfare loss in the economy with the ZLB shown in column (2) is larger by -0.38

percent point than the one without the ZLB in column (1). At the ZLB, the effects
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of an exogenous shock are amplified because of the lack of offsetting monetary policy

responses, as is pointed out in the existing literature. My numerical results suggest

that the variance of the output gap is 5.6 times larger in the presence of the ZLB,

while that of inflation is twice. The ZLB also leads to larger inefficient cross-sectional

allocation in the labor market because larger aggregate fluctuations make workers’

desired wages more volatile. In addition, it is worth pointing out that the mean

consumption is lower by around -0.25 percent in the presence of the ZLB. The binding

ZLB implies that the actual nominal interest rate is higher than the level implied by

the Taylor rule. Consequently, the monetary policy rule is more contractionary on

average, and the higher real interest rate reduces consumption through the Euler

equation. Basu and Bundick (2015) call the property as the contractionary bias of

the ZLB. Since larger responsiveness to inflation and output enlarges the bias, the

optimized parameters with the ZLB are much smaller than those in the rule without

it.

Second, the alternative policy rules with the ZLB shown in column (3)-(5) can

reduce the adverse effects of the ZLB to achieve the social welfare that is close to

that in the economy without the ZLB. This is because the alternative policy rules

commit to a future low interest rate policy when the economy hits the ZLB. The

commitment reduces the future real interest rates, which affects the current variables

through the forward looking nature of the Euler equation.12 Due to the commitment,
12Since the model is solved globally, the precautionary saving of households discounts the effects

of the future interest rate changes to some extent. Therefore, the alternative policy rules fail to

fully recover the social welfare in the economy without the ZLB. Related discussion is found in the
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the frequency of staying at the ZLB is substantially higher in the alternative rules

than the Taylor rule.

Third, among the alternative policy rules, the price-level and the temporary price-

level targeting rules in column (4) and (5) performs slightly better than the history-

dependent rule in column (3). In this regard, both of the history-dependent rule and

the price-level targeting rule remove the contractionary bias by fully responding to the

fluctuations of the target variables in an unconditional sense. Therefore, both rules

almost restore the mean consumption in the Taylor rule without the ZLB. However,

the price-level targeting generates more persistence of the nominal interest rate, which

helps to reduce the volatility of the economy than the history-dependent rule.13 On

the other hand, I did not find significant differences of welfare outcomes between the

price-level targeting rule and the temporary price-level targeting rule.

2.6 Optimal steady-state inflation

This section investigates the optimal steady-state inflation rate. In my model, positive

steady-state inflation can benefit the economy because DNWR and the ZLB are less

likely to bind under higher inflation. On the other hand, higher inflation generates a

larger cost of price adjustments. The optimal rate is determined as a consequence of

trade-off between the benefit and cost of inflation.
literature on the forward guidance puzzle, such as Del Negro et al. (2012), McKay et al. (2016b)

and Gabaix (2016).
13A possible modification to the history-dependent rule is introducing the lagged interest rate

term to strengthen the inertia of the nominal interest rate. That is a subject to the future research.
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Table 2.6: Optimal monetary policy rules with the ZLB

(1) (2) (3) (4) (5)
w/o ZLB with ZLB
Standard Standard Alternative rules

Taylor Taylor History- Price-level Temporary
dependent targeting price-level

δp 3.00 1.50 2.50 - 1.50
δpl - - - 1.00 1.00
δy 2.75 0.25 0.25 1.25 1.25

Social
welfare:

C.E. (%) -2.11 -2.49 -2.24 -2.14 -2.13
σ(Y gap) 0.37 2.09 1.41 0.76 0.84
σ(Πp) 0.24 0.46 0.35 0.16 0.21
σ(hj) 0.11 0.14 0.11 0.10 0.11

ρ(hj , χj) -0.47 -0.26 -0.40 -0.46 -0.46
µ(C) 0.9993 0.9968 0.9991 0.9990 0.9988

Prob.(ZLB) 0.00 0.139 0.299 0.311 0.321
Dura.(ZLB) - 5.4 8.5 6.7 6.9

Notes: For each specification, the parameter values are chosen to maximize social welfare on the
equally spaced grid points in the parameter space [0.0,3.5] with the width of each interval 0.25.
C.E. denotes the consumption-equivalent welfare losses compared from the economy under flexible
prices and wages. µ(·), σ(·), and ρ(·, ·) represent the mean, the standard deviation, and the corre-
lation, respectively. Prob.(ZLB) is the unconditional probabilities of staying at the ZLB, whereas
Dura.(ZLB) is the average duration of each ZLB episode.

For the numerical analysis below, I change the target inflation rate in monetary

policy rules Π∗ from 1.000 (0 percent inflation in the annual rate) to 1.025 (10 percent)

with an interval 0.00125 (0.5 percent) to search for the welfare-maximizing one. I

consider three monetary policy rules; 1) the Taylor rule without the ZLB (2.19), 2)

the Taylor rule with the ZLB (2.25), and 3) the history-dependent rule with the ZLB

(2.26). The policy parameters in each policy rule are fixed at δp = 2.50 and δy = 1.50.

These parameter values roughly correspond to those used by Coibion et al. (2012).

The reason for using the higher values than the calibration in Section 2.4.1 is to

guarantee the determinacy of equilibrium under high steady-state inflation.
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Figure 2.2 displays the optimal steady-state inflation rate as a function of the

parameter governing the cost of price adjustment φp. The baseline calibration φp = 35

corresponds to the left end of each figure. The figure reports the results for the RA

model with DNWR as well as the baseline specification of the HA model.

The first thing to note is that the optimal steady-state inflation rate differs con-

siderably depending on the model specification. For example, under the Taylor rule

without the ZLB in Panel (A), the optimal rate ranges from 1.5 percent to 7.0 percent

for different parameter values of the price adjustment cost. In this regard, though I

determine the parameter φp to match the slope of the NKPC implied by micro data

of individual price changes in the baseline calibration, it is widely known that an es-

timated DSGE model often identifies a higher value for the parameter.14 In addition,

the optimal rate also depends on the assumptions about the monetary policy rule.

Under the Taylor rule in Panel (A) and (B), when the ZLB is taken into account, the

optimal rate increases by 0.5-1.5 percentage point, because the ZLB is another source

to generate the benefit of inflation. On the other hand, once the history-dependent

rule is implemented in Panel (C), the optimal rate is reduced to around the same

range as that under the Taylor rule without the ZLB.

Though the optimal steady-state inflation rate depends on the model specification,

in each specification, taking into account heterogeneity increases the optimal rate. To
14For instance, Del Negro et al. (2015), who estimate the medium-scale DSGE model with financial

frictions, obtain 0.868 as the posterior mean of the Calvo parameter (the average duration of price

changes is 7.6 quarters). The value corresponds to φp = 350 in my model, which is shown on the

right end of Figure 2.2.
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be precise, the optimal rate in the HA model is higher than that in the RA model, by

from 0.5 to 5.5 percentage point under the Taylor rule without the ZLB, from 0.5 to

3.5 percentage point under the Taylor rule with the ZLB, and 0.5 to 4.0 percentage

point under the history-dependent rule. Since the HA model generates the sizable

welfare loss associated with the cross-sectional inefficiency in the labor market, the

benefit of higher inflation is larger in the HA model than in the RA model. The

finding suggests that the policy implications of the existing literature that ignores

the effects of HA, such as Kim and Ruge-Murcia (2009), Coibion et al. (2012), and

Carlsson and Westermark (2016), need to be reconsidered.
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Figure 2.2: Optimal steady-state inflation rate

Panel (A): Taylor rule without the ZLB
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Panel (B): Taylor rule with the ZLB
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Panel (C): History-dependent rule with the ZLB
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Notes: For each specification, the steady-state inflation rate Π∗ is chosen to maximize social welfare
on the equally spaced grid points in the parameter space [1.000,1.025] ([0.0,2.5] percent inflation in
the annual rate) with the width of each interval 0.0125 (0.5 percent). The parameters of responsive-
ness are fixed at δp = 2.5 and δy = 1.5. The x-axis is in terms of the adjustment cost of 2 percent
inflation in the annual rate. The corresponding parameter values of φp ranges from 35 to 350. The
shaded area and the thin dashed lines indicate the nearly-optimal rate whose welfare loss is within
0.03 percentage point of that of the optimal rate. In Panel (B), the optimal rate in the RA model
when φp = 35 (on the left end) is not shown, because the model does not deliver the determinacy
of equilibrium under most cases of different steady-state inflation rates.
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2.7 Conclusion

In this paper, I study the optimal simple and implementable monetary policy rule

in a heterogeneous agent model with DNWR and the ZLB. In the calibrated model,

DNWR generates sizable welfare loss through cross-sectional inefficiency in the la-

bor market as well as aggregate fluctuations. As a consequence, the model delivers

rich policy implications for both the optimal responsiveness to the fluctuations of

aggregate variables and the optimal steady-state inflation rate.

The methodology that is used in this paper is fairly general to leave many possible

extensions for future works. First of all, studying other dimensions of heterogeneity

is a natural extension. For example, Kaplan et al. (2018) argue that heterogeneity of

asset holdings with incomplete markets significantly changes the transmission mecha-

nism of monetary policy. Exploring optimal monetary policy rule in the model would

be of great interest. Moreover, recent studies point out that the cost of inflation dif-

fers considerably depending on the specification of the firm side of the model, though

I use the stylized Rotemberg (1982) price adjustment cost to keep the tractability of

the model. In this regard, Burstein and Hellwig (2008) find that the menu cost model

generates much smaller welfare loss of inflation than that of the Calvo model due to

the selection effect of price changes.15 It would be worth investigating how the speci-

fication of firms affects optimal monetary policy. Lastly, though I focus on monetary

policy in this paper, there are other policy alternatives to address the distortion of
15Alvarez et al. (2011) and Nakamura et al. (Forthcoming) find empirical evidence to favor the

menu cost model than the Calvo model.
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DNWR and the ZLB. In particular, since cross-sectional inefficiency is a main source

of welfare loss in the economy, a promising candidate would be the redistribution

through tax and transfer policies.

2.8 Appendix

2.8.1 Social welfare

2.8.1.1 Derivation of the second order approximation of social welfare

The approach adopted in this subsection largely follows Rotemberg and Woodford

(1997) and Erceg et al. (2000). I take the second order Taylor expansion of the

current social welfare around the deterministic steady state:

SWt ≡
1

1− σC
1−σ
t − 1

1 + η

∫ 1

0
χt(j)ht(j)1+ηdj (2.29)

≈ ¯SW + C̄1−σ
(
dCt

C̄

)
− 1

2σC̄
1−σ

(
dCt

C̄

)2

− χ̄h̄1+η
∫ 1

0

(
dht(j)
h̄

)
dj − 1

2ηχ̄h̄
1+η

∫ 1

0

(
dht(j)
h̄

)2

dj

− 1
1 + η

χ̄h̄1+η
∫ 1

0

(
dχt(j)
χ̄

)
dj

− χ̄h̄1+η
∫ 1

0

(
dχt(j)
χ̄

)(
dht(j)
h̄

)
dj (2.30)

with
dat
ā
≡ at − ā

ā

where I define the deterministic steady state as the economy under flexible prices and

wages without any exogenous shocks. ā is the value of a in the deterministic steady

state.
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Following Erceg et al. (2000), I use two approximations:

dat
ā
≡ at − ā

ā
≈ ât + 1

2 â
2
t (2.31)

where ât ≡ log(at)− log(ā)

and, if at = [
∫ 1

0 at(j)ϕdj]1/ϕ, then

ât ≈ Ej[ât(j)] + 1
2ϕVarj(ât(j)) (2.32)

where Ej[·] and Varj(·) are the expectation and the variance across j.

In the following, I assume:

Z̄ = χ̄ = 1 and Π̄p = Π̄ (2.33)

That leads to:

Ȳ = C̄ = H̄ = h̄ = 1 (2.34)

Using (2.31), (2.33), and (2.34), (2.30) can be rearranged to:

SWt ≈ ¯SW +
(
Ĉt + 1

2Ĉ
2
t

)
− 1

2σ
(
Ĉt + 1

2Ĉ
2
t

)2

−
∫ 1

0

(
ĥt(j) + 1

2 ĥt(j)
2
)
dj − 1

2η
∫ 1

0

(
ĥt(j) + 1

2 ĥt(j)
2
)2
dj

− 1
1 + η

∫ 1

0

(
χ̂t(j) + 1

2 χ̂t(j)
2
)
dj

−
∫ 1

0

(
χ̂t(j) + 1

2 χ̂t(j)
2
)(

ĥt(j) + 1
2 ĥt(j)

2
)
dj (2.35)

≈ ¯SW + Ĉt −
1
2(σ − 1)Ĉ2

t

−
∫ 1

0
ĥt(j)dj −

1
2(1 + η)

∫ 1

0
ĥt(j)2dj

− 1
1 + η

∫ 1

0

(
χ̂t(j) + 1

2 χ̂t(j)
2
)
dj

−
∫ 1

0
χ̂t(j)ĥt(j)dj (2.36)
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Notice that, from (2.35) to (2.36), I ignore the third and higher order terms since I

focus on the second-order approximation.

By (2.31), the aggregation of labor service leads to:

Ĥt ≈ Ej[ht(j)] + 1
2
θw − 1
θw

Varj(ht(j)) (2.37)

On the other hand, the resource constraint and the production function lead to:

Ŷt ≈ Ĉt + φp
2 (log(Πp

t )− log(Π̄))2 (2.38)

Ŷ 2
t ≈ Ĉ2

t (2.39)

and

Ŷt ≈ Ẑt + Ĥt (2.40)

Ŷ 2
t ≈ Ẑ2

t + 2ẐtĤt + Ĥ2
t (2.41)

By substituting (2.37)-(2.41) into (2.36) and taking difference from the social

welfare in the economy under flexible prices and wages, I obtain:

SWt − SW f
t ≈ −

1
2(σ + η)

(
(Ŷt)2 − (Ŷ f

t )2
)

+ (1 + η)Ẑt(Ŷt − Ŷ f
t )

− φp
2

(
log(Πp

t )− log(Π∗)
)2

− 1
2

(
η + 1

θw

)(
Varj(ĥt(j))− Varj(ĥft (j))

)

−
(
Covj(χt(j), ĥt(j))− Covj(χt(j), ĥft (j))

)
(2.42)

Under flexible prices and wages, it can be shown that:

Ŷ f
t = 1 + η

σ + η
Ẑt (2.43)
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Then, the first two terms in the RHS of (2.42) can be summarized as:

−1
2(σ + η)

(
Ŷt − Ŷ f

t

)2

Notice that the term corresponds to the variance of the output gap since Ŷ gap
t =

Ŷt − Ŷ f
t .

By taking unconditional expectation with respect to t, I finally obtain (2.15).

SW − SW f ≈ −1
2(σ + η)Var

(
Ŷ gap
t

)
− φp

2 Var
(
log(Πp

t )
)

− 1
2

(
η + 1

θw

)
E
[
Varj

(
ĥt(j)

)
− Varj

(
ĥft (j)

)]

− E
[
Covj

(
χ̂t(j), ĥt(j)

)
− Covj

(
χ̂t(j), ĥft (j)

)]
(2.44)

where I assume that E[Ŷ gap
t ] and E[log(Πp)t−log(Π̄)] are of second-order based on the

insights of Erceg et al. (2000), and therefore (E[Ŷ gap
t ])2 and (E[log(Πp)t − log(Π̄)])2

are neglected in the second-order approximation.

2.8.1.2 Relation to the staggered contract model of Calvo (1983)

This subsection provides the intuition behind the fact that cross-sectional wage dis-

tribution matters for social welfare in the presence of DNWR even being conditional

on aggregate variables.

To see differences of the welfare implication of DNWR from the Calvo model, it is

convenient to begin with the relationship between cross-sectional dispersion of hours

worked and wages. Taking the logarithm of the individual labor demand function

(1.13) leads to:

ĥt(j) = −θw
(
log(wt(j))− log(Wt)

)
+ Ĥt (2.45)
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Taking cross-sectional moments of (2.45), I obtain:

Varj(ĥt(j)) = θ2
wVarj(log(wt(j))) (2.46)

Covj(χ̂t(j), ĥt(j)) = −θwCovj(χ̂t(j), log(wt(j))) (2.47)

(2.46) and (2.47) determine the tight link between the cross-sectional dispersion of

hours worked and that of wages.

Calvo model. In the Calvo model without idiosyncratic shocks, which is a standard

setting in the literature including Erceg et al. (2000) and Christiano et al. (2005), the

cross-sectional variance of wages is expressed as:

Varj(log(wCalvot (j))) = ξwEj
[
log(wCalvot−1 (j))− Ej[log(wCalvot (j))]

]2
+ (1− ξw)

(
log(wd,Calvot )− Ej[log(wCalvot (j))]

)2
(2.48)

where ξw is the fraction of workers without wage changes and wd,Calvot is the reset

wage set by workers who change their wages. It should be noted that ξw is constant

over time by construction. Using the following relationship

Ej
[
log(wCalvot−1 (j))− Ej[log(wCalvot (j))]

]2
= Var(log(wCalvot (j))) + (log(Πw,Calvo

t ))2

(2.49)

and

log(wd,Calvot )− Ej[log(wCalvot (j))] = ξw
1− ξw

log(Πw,Calvo
t ) (2.50)

I obtain a recursive expression of the cross-sectional variance of wages:

Varj(log(wCalvot (j))) = ξwVarj(log(wCalvot−1 (j))) + ξw
1− ξw

log(Πw,Calvo
t )2 (2.51)
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Finally, by taking the unconditional expectation with respect to t, the cross-sectional

variance of wages is represented by the variance of aggregate wage growth rate:

E
[
Varj(log(wCalvot (j)))

]
= ξw

(1− ξw)2Var
(
log(Πw,Calvo

t )
)

(2.52)

DNWR. Essential assumptions to obtain the result above are: 1) the fraction of

workers without wage changes ξw is constant over time, and 2) the reset wage wd,Calvot

is identical across workers. However, neither of them holds in the presence of DNWR

and idiosyncratic shocks. To focus on the effect of DNWR, in the following, I assume

that there are no idiosyncratic shocks, i.e. χt(j) = χ̄. Then,

Varj(log(wt(j))) = Ej
[
It(j)(log(wt−1(j))− log(Wt))2

]
+ Ej

[
(1− It(j))(log(wdt )− log(Wt))2

]
(2.53)

where It(j) is an indicator function that takes one if worker j does not change her

wage from the previous period. The equation is rearranged to:

Varj(log(wt(j))) = ξw,tEj
[
(log(wt−1(j))− log(Wt))2

]
+ Covj

(
It(j), (log(wt−1(j))− log(Wt))2

)
+ (1− ξw,t)(log(wdt )− log(Wt))2 (2.54)

where ξw,t ≡ Ej
[
It(j)

]

Notice that the covariance term appears since ξw,t is time-varying.

Each term in the RHS of (2.54) can be rewritten as follows.

Ej
[
(log(wt−1(j))− log(Wt))2

]
= Ej

[
((log(wt−1(j))− log(Wt−1))− (log(Wt)− log(Wt−1)))2

]

= Varj
(
log(wt−1(j))

)
+
(
log(Πw

t )
)2

(2.55)
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Covj
(
It(j), (log(wt−1(j))− log(Wt))2

)

= Covj
(
It(j), ((log(wt−1(j))− log(Wt−1))− (log(Wt)− log(Wt−1)))2

)

= Covj
(
It(j), (log(wt−1(j))− log(Wt−1))2

)
− 2Covj

(
It(j), log(wt−1(j))

)
log(Πw

t )

(2.56)

where log(Πw
t ) ≡ log(Wt)− log(Wt−1), and

log(wdt )− log(Wt) = log(wdt )−
∫ 1

0

{
(1− It(j))log(wdt ) + It(j)log(wt−1(j))

}
dj

= log(wdt )− (1− ξw,t)log(wdt )− ξw,tlog(Wt−1)− Cov
(
It(j), log(wt−1(j))

)

= ξw,t(log(wdt )− log(Wt)) + ξw,tlog(Πw
t )− Cov

(
It(j), log(wt−1(j))

)

⇔ log(wdt )− log(Wt) = ξw,t
1− ξw,t

log(Πw
t )− 1

1− ξw,t
Cov

(
It(j), log(wt−1(j))

)
(2.57)

By substituting (2.55)-(2.57) into (2.54) and rearranging it, I obtain

Varj
(
log(wt(j))

)
= ξw,tVarj

(
log(wt−1(j))

)
+ ξw,t

1− ξw,t
(log(Πw

t ))2 + C (2.58)

where C ≡ − 2
1− ξw,t

Covj
(
It(j), log(wt−1(j))

)
log(Πw

t )

+ Covj
(
It(j), (log(wt−1(j))− log(Wt−1))2

)

+ 1
1− ξw,t

Cov
(
It(j), log(wt−1(j))

)2

By taking the unconditional expectation with respect to t and rearrange it, I finally
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obtain (2.18).

E
[
Varj

(
log(wt(j))

)]
= E

[
ξw,t

]
E
[
Varj

(
log(wt−1(j))

)]
+ Cov

(
ξw,t,Varj

(
log(wt−1(j))

))

+ E
[

ξw,t
1− ξw,t

]
E
[
(log(Πw

t ))2
]

+ Cov
(

ξw,t
1− ξw,t

, (log(Πw
t ))2

)
+ E

[
C
]

⇔ E
[
Varj(log(wt(j)))

]
= 1

1− E[ξw,t]
E
[

ξw,t
1− ξw,t

]
Var

(
log(Πw

t )
)

+ 1
1− E[ξw,t]

{
Cov

(
ξw,t,Varj

(
log(wt−1(j))

))
+ Cov

(
ξw,t

1− ξw,t
, (log(Πw

t ))2
)

+ E
[
C
]}

(2.59)
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Chapter 3

Dynamic Priors for VAR

Coauthored with: Dongho Song (Boston College) and Jenny Tang (Federal Reserve

Bank of Boston). 1

3.1 Introduction

This paper proposes a method of introducing theory-driven priors into the estimation

of vector autoregressions (VARs) that is more flexible than existing methods. VARs

are an important tool for empirical macroeconomists because of their flexibility in

capturing dynamic relationships across economic variables (see Sims (1980)). The

literature offers several approaches to formulating priors for the coefficients of VARs

which can lead to more precise estimates and greater forecasting performance. A

widely used prior in the literature is the so-called Minnesota prior (MN), which dates
1The views expressed in this paper are those of the authors and do not necessarily represent the

views of the Federal Reserve Bank of Boston or the Federal Reserve System.
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back to Litterman (1980). The idea behind the Minnesota prior is to impose prior

values that imply random-walk behavior for each model variable. Doan et al. (1984),

Sims (1993), Kadiyala and Karlsson (1993), Kadiyala and Karlsson (1997), and Sims

and Zha (1998) extend the idea of the Minnesota prior and additionally include priors

for cross-variable restrictions such as the sums-of-coefficient prior or the co-persistence

priors.2

A more recent literature has advocated the use of structural economic models in

formulating priors for the coefficients of VARs. For example, the DSGE-VAR litera-

ture of DeJong et al. (1993), Ingram and Whiteman (1994), Del Negro and Schorfheide

(2004) and Del Negro et al. (2007) introduce a prior that pulls the likelihood estimate

of the VAR parameters toward the restrictions implied from a Dynamic Stochastic

General Equilibrium (DSGE) model.3

Building on the insights of the DSGE-VAR literature, we generalize the method-

ology to allow more flexibility. More specifically, we allow the researcher to rely on

a wide class of theoretical models for predictions on a subset of variables that are of
2Kadiyala and Karlsson (1997) consider general prior distributions that incorporate cross-variable

dependence and unknown residual variance-covariance matrix. They also discuss the benefit of using

other prior distributions such as a truncated normal distribution to account for the behavior of the

data. Sims and Zha (1998) formulate a tractable method to incorporate prior beliefs into structural

VAR models by augmenting the Minnesota prior of Litterman (1980).
3The magnitude of deviations is governed by a hyperparameter which captures the degree of

misspecification of the DSGE model. In the two polar cases where the hyperparameter goes to infinity

or is zero, the cross-variable restrictions of the DSGE model are strictly enforced or completely

ignored, respectively.
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key interest while remaining agnostic about other variables in the VAR. Practically

speaking, one could be more interested in the dynamics of a subset of economic vari-

ables, e.g., output or inflation, than other variables in the VAR system. In addition,

it may be difficult to find a benchmark theoretical model that provides a complete

set of restrictions on all cross-equation dynamics. This is going to be increasingly

relevant when the number of variables included in the VAR is large. These are prac-

tically important concerns when estimating VARs. Another consideration is that a

researcher may have more faith in a subset of the predictions of a theoretical model.

Our method allows the researcher to introduce theory-based priors for only a subset of

the VAR dynamics while the remaining dynamics can be shrinked toward, for exam-

ple, random-walk behavior, which is known to achieve great forecasting performance.

In this sense, we are very much related to the work of Giannone et al. (2016) who

propose a prior that disciplines only the long-run behavior of VARs based on economic

theory. However, they employ a commonly used Minnesota prior for the coefficients

of a VAR which does not allow the variable’s dynamics to be influenced by other

variables’ lagged terms. While one can introduce, for example, the co-persistence

prior, proposed by Sims (1993), to induce correlation among the coefficients on other

variables’ lags, it can only be implemented in a non-theory-driven way. We demon-

strate that a theory-driven elicitation of the prior for VAR coefficients can be easily

implemented while the same prior can also provide guidance to the long-run dynam-

ics of the VAR in a consistent manner. This can be important if the researcher is

interested in both short- and long-horizon forecasts.

It is important to emphasize that our framework can flexibly incorporate theory-
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led dynamic restrictions across variables not just through the first lagged terms, but

through distant lagged terms as well. Since our priors preserve conjugacy and can be

easily implemented with dummy observations, inference can be achieved by the direct

sampling. The selection of hyperparameters, which control the variance of the prior

distribution, is based on a data-driven way of maximizing the marginal likelihood

which is obtained in closed form.

We apply our methodology to the problem of exchange rate forecasting. We

choose this application for two reasons. First, exchange rates are notoriously difficult

to forecast (see Cheung et al. (2005) and Rogoff and Stavrakeva (2008)). Second, if

a researcher is mainly interested in forecasting an exchange rate, it may be desirable

to elicit priors only from theoretical relationships that exist in a wide range of open-

economy macroeconomic models—such as those between exchange rates and nominal

interest rates (as in uncovered interest rate parity (UIP)) or price levels (as in pur-

chasing power parity (PPP))—while remaining agnostic about other predictions of

these models. For example, a researcher who wishes to tilt an estimated VAR toward

some version of a UIP relationship may not wish to take a theory-implied stand on

the behavior of nominal interest rates.

We use our econometric framework to generate exchange rate forecasts for the

British pound versus the US dollar (the GBP/USD pair) using different combinations

of priors on short- and/or long-run dynamics informed by UIP and/or PPP. We

compare the forecasting ability of our VAR relative to a näıve random walk as well

as a VAR estimated using a standard Minnesota prior. We find that most of the

forecasting gains of our priors are realized at longer forecast horizons. This is a result
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that is distinct from, but consistent with, the literature showing that UIP and PPP

relationships are less-often rejected in direct regressions of long-horizon exchange rate

changes (see Chinn and Meredith (2004) and Rogoff (1996)). Furthermore, we find

some interesting variation over time in the extent to which data is consistent with

priors based on these relationships. More specifically, the data favors UIP-based

priors more in samples that include more recent data.

3.2 Modeling Framework

3.2.1 A vector autoregressive model

We consider a vector autoregressive model

yt = Φ1yt−1 + ...+ Φpyt−p + Φ0 + εt, εt ∼ N(0,Σ), (3.1)

where yt is an n × 1 vector of observables, Φjs are parameters, j ∈ {0, 1, ..., p}, and

εt is an n × 1 vector of one-step-ahead forecast error shocks which does not have a

specific economic interpretation.

3.2.2 Prior elicitation

An important challenge in practice with VARs is to cope with the dimensionality of

the parameter matrix Φ. Informative prior distributions can often mitigate the curse

of dimensionality. We introduce priors that preserve the stationarity of the linear

combinations of the model variables, yt. Define

zt ≡ H0yt −H1yt−1 · · · −Hpyt−p (3.2)
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where zt is an n×1 stationary vector, and H0, H1, ..., Hp are n×n invertible matrices

that determine dynamic relationship among model variables. For ease of illustration,

we work with non-zero H0 and H1 only.

Note that (3.2) conveniently characterizes the existing priors in general form. For

example, consider the values of H0 = In and H1 = In + ΛH∗. The discussion on H∗

will be provided shortly. The stationary component becomes

zt = ∆yt − ΛH∗yt−1. (3.3)

A widely used prior in the VAR literature is the so-called Minnesota prior (MN),

which dates back to Litterman (1980). The Minnesota prior is a special case of

(3.3) in which Λ = 0 is assumed. The idea behind the Minnesota prior is to impose

prior value that implies a random-walk behavior for each component of the model

variables. Doan et al. (1984), Sims (1993), and Sims and Zha (1998) extend the idea

of the Minnesota prior and additionally incorporates the possibility of cointegration

among model variables through the sums-of-coefficient prior. Their idea is to set

H∗ = In and shrink Λ, which governs the degree of error correction, toward zero.

To the extent that data favor cointegration relationship within model variables, some

columns of Λ will be shrunk less to zero.

A more recent paper by Giannone et al. (2016) proposes a prior, which is called

the prior for the long run (LR), that disciplines the long-run behavior of the model.

Giannone et al. (2016) essentially rely on the setting of (3.3) in which H∗ = HLR

based on the long-run predictions of economic theory.4 They formulate a prior on
4One of the examples provided in Giannone et al. (2016) suggests that output and investment
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Λ conditional on H∗ that combines data in a way that distinguishes the stationary

combinations from the non-stationary ones.

We adopt the main insight of Giannone et al. (2016) that economic theory should

play a central role for the elicitation of priors. That is, we assume that the long-run

predictions of economic theory can guide us on the selection matrices. We work with

the general form of (3.2) because it can richly accommodate both intra- and inter-

temporal restrictions among variables. In the context of exchange rate forecasting,

the optimal forecast of the change in the exchange rate between time t and t+1 is the

interest differential between the home and foreign country at time t if the uncovered

interest parity (UIP) condition held. Alternatively, if the purchasing power parity

(PPP) condition held, then the optimal forecast of the change in the exchange rate

between time t and t + 1 is the inflation differential between the home and foreign

country at time t + 1. These priors on parities can be easily accommodated in our

setting by including the level of exchange rate and interest rates (inflations) for the

home and foreign country in yt and specifying the selection matrix H0 and H1 in (3.2)

in a way that imposes the UIP (PPP) condition.5 The specific forms of H0 and H1

are likely to share a common trend, while the log-investment-to-output ratio is expected to be

stationary. In their bivariate VAR example, the observation vector is defined by yt = [gdpt, it]′ and

the corresponding HLR matrix is set to

H =

 1 1

−1 1

 .
5Technically speaking, the UIP condition can be accommodated in (3.3) then it no longer pre-

serves the error correction interpretation. However, to accommodate the PPP condition we ought
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are provided in Section 3.3.

We now show how to formulate prior beliefs of (3.2) within the benchmark VAR

model (3.1). Our exposition follows the version Del Negro and Schorfheide (2011)

which is based on Sims and Zha (1998). We re-express (3.2) by

H0yt = H1yt−1 + zt (3.4)

yt = Hyt−1 + rt.

The second line is from the invertibility of H0 and H = H−1
0 H1 and rt = H−1

0 zt. We

re-arrange the VAR model (3.1) below

yt = Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + Φ0 + εt (3.5)

= Φ̃1ỹt−1 + Φ2yt−2 + ...+ Φpyt−p + Φ0 + εt

where Φ̃1 = Φ1H
−1 and ỹt−1 = Hyt−1. Our goal is to shrink the VAR coefficients in

(3.5) towards the coefficients that reflect our prior beliefs in (3.4). This amounts to

shrinking Φ̃1 towards an identity matrix6

vec(Φ̃1)|H,Σ ∼ N

vec(In), diag
(

1
θ2
i s

2
i

)
⊗ Σ

 (3.6)

θi is a hyperparameter, which corresponds to the i-th column, that controls the tight-

ness of the prior and si is the pre-sample standard deviation of the i-th element of

yt.

While our prior beliefs in (3.4) formulate the relationship in two periods, we can

extend to multi-periods easily. We can re-write the VAR model (3.1) in the following

to work with a non-identity matrix H0 and rely on the specification (3.2).
6Note that vec(Φ1)|H,Σ ∼ N

(
vec(H), (H ′diag

(
1/(θ2

i s
2
i )
)
H) ⊗ Σ

)
and Φ1 no longer shrinks

toward an identity matrix.
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way

yt = Φ̃1ỹt−1 + Φ̃2ỹt−2 + ...+ Φ̃pỹt−p + Φ0 + εt (3.7)

where Φ̃j = ΦjH
−1 and ỹt−j = Hyt−j for j ∈ {2, ..., p}. We consider priors that imply

Φ̃j shrinks towards zero

vec(Φ̃j)|H,Σ ∼ N

0, diag
(

1
θ2
i s

2
i j
µ

)
⊗ Σ

 (3.8)

where µ is a hyperparameter that governs the shrinkage of distant lagged terms.

Notice that the variance-covariance structure of Φj is adjusted by H such that each

column of Φ̃j shrinks towards the prior mean proportionally to that of Φ̃1.7 In other

words, we regard ỹt−j (instead of yt−j) as a relevant variable of the model which is

consistent with our prior beliefs (3.4).

To the extent that the linear combinations of the model variables affect the short-

run dynamics, the corresponding VAR can have an error correction representation of

the form

∆yt = Πyt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + Φ0 + εt, (3.9)

= Λỹt−1 + Γ1∆yt−1 + ...+ Γp−1∆yt−p+1 + Φ0 + εt,

where Π = (Φ1 + ... + Φp − In) and Γj = −(Φj+1 + ... + Φp) with j ∈ {1, ..., p − 1}

and Π (Λ) captures the effect of yt−1 (ỹt−1) on ∆yt with Π = ΛH. We are primarily

interested in eliciting a prior for Π. As shown in Giannone et al. (2016), choosing a

prior on Π is isomorphic to choosing a prior on Λ conditional on the selection matrix

H. If any row of H contains the coefficients of a linear combination of y that is
7Note that vec(Φj)|H,Σ ∼ N

(
0, (H ′diag

(
1/(θ2

i s
2
i )jµ

)
H)⊗ Σ

)
.

156



likely to be stationary (non-stationary), one can apply less (more) shrinkage on the

elements of the corresponding column of Λ. If the corresponding column of Λ were all

zero, then the error correction feature is not added to ∆yt. The sums-of-coefficient

prior introduced by Doan et al. (1984), subsequently developed by Sims and Zha

(1998), shrinks Π or Λ toward a zero matrix. In our setting, however, we impose the

following prior distribution on Λ conditional on H

vec(Λ)|H,Σ ∼ N

vec(Λd.p.), diag
(

1
κ2
i r

2
i

)
⊗ Σ

 (3.10)

where Λd.p. = I − H−1 and ri is the pre-sample mean of the i-th element of rt. A

hyperparameter κi governs the shrinkage of each column Λ·i toward the prior mean.

This prior implies that all the variables of the VAR are forced to follow (3.4) at

dogmatic prior value.8 We provide the prior expressions for the constant term in

Appendix 3.5.2.

We use dummy observations to implement priors. The use of dummy observations

provides a parsimonious way of introducing plausible correlations between parame-

ters. This insight of introducing prior information in the form of dummy observation

dates back at least to Theil and Goldberger (1961). The details are provided in Ap-

pendix 3.5.2. After collecting T ∗ dummy observations in matrices Y ∗ and X∗, we now

use the likelihood function (provided in Appendix 3.5.1) to relate the dummy observa-

tions to the parameters Φ and Σ. Combining the likelihood function with the improper

prior p(Φ,Σ) ∝ |Σ|−(n+1)/2, we can deduce that the product p(Y ∗|Φ,Σ) · |Σ|−(n+1)/2

8Note that vec(Π)|H,Σ ∼ N
(
vec(H − I), (H ′diag

(
1/(κ2

i r
2
i )
)
H)⊗ Σ

)
.
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can be interpreted as

(Φ,Σ) ∼MNIW (Φ, (X∗′X∗)−1, S, T ∗ − k), (3.11)

where Φ and S are Φ = (X∗′X∗)−1X∗′Y ∗ and S = (Y ∗ − X∗Φ)′(Y ∗ − X∗Φ) and

MNIW refers to the Normal-Inverted Wishart distribution. Provided that T ∗ > k+n

and X∗
′
X∗ is invertible, the prior distribution is proper.

3.2.3 Direct sampler

Since our prior for (Φ,Σ) belongs to the Normal-Inverted Wishart distribution fam-

ily, so does the posterior and draws from this posterior can be obtained by direct

Monte Carlo sampling. A detailed discussion of these computations can be found in

Del Negro and Schorfheide (2011).

3.2.4 Hyperparameter selection

The empirical performance of the VAR depends on the choice of hyperparameters,

Θ = {θ1, . . . , θn, µ, ν, κ1, . . . , κn, ω} (3.12)

which controls degree of shrinkage. Note that θi and κi are the key hyperparmeters

that govern the degree of shrinkage of the first lagged term and the error correction

term, respectively. We explain the role of ν and ω in Appendix 3.5.2. The prior

is parameterized such that Θ → 0 corresponds to a flat prior for (Φ,Σ). On the

other hand, as Θ → ∞, the VAR is estimated subject dogmatically to our prior

restriction on the H matrix. The best forecasting performance of the VAR is likely
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to be achieved for values of Θ that are in between the two extremes. We select the

hyperparameters Θ to maximize the marginal data density (MDD). The details are

provided in Appendix 3.5.3.

3.3 Application to the Exchange Rate Forecasts

3.3.1 Evidence for UIP and PPP

Uncovered interest parity. The UIP hypothesis is that, under risk-neutrality, an

investor should expect equal home-currency returns from investing in a home currency

asset or a foreign currency asset (by converting home into foreign currency to make

the investment and then converting the returns back). For an investment horizons of

h periods, this parity relationship can be expressed in terms of log variables as

Et[st+h − st] = ijt,h − ikt,h,

where st denotes the time t nominal exchange rate in terms of units of country j’s

currency per unit of country k’s currency and {ijt,h, ikt,h} denote the nominal h-period

asset returns denominated in each currency.

Under rational expectations, this hypothesis can be tested using the Fama (1984)

regression,

st+h − st = α + β(ijt,h − ikt,h) + errort+h,

where the null hypothesis under UIP is that α = 0 and β = 1 while the error term

reflects a rational forecast error equal to Et[st+h]− st+h that should be uncorrelated
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with variables observable at time t. The UIP hypothesis can be relaxed to allow a

non-zero α if the investor is considered to not be risk-neutral but to require a constant

risk premium on this investment.

Froot and Thaler (1990) survey evidence from this test for investment horizons

under a year and find that estimates of β tend to be quite negative. Bansal and

Dahlquist (2000) find more mixed results. Chinn and Meredith (2004) and Chinn

and Quayyum (2012) find estimates of β that are closer to 1 for longer investment

horizons.

Purchasing power parity. The PPP hypothesis states that the exchange rate

between two country’s currencies should be equal to the ratio of the two countries’

overall price levels. That is, the purchasing power of currencies in terms of real goods

should be equal across countries. In other words, PPP states that the real exchange

rate between two countries should be equal to 1.9

Many tests of PPP are based on examining behavior of deviations from PPP

or testing mean-reversion in real exchange rates. Rogoff (1996) finds 3-5 year half

lives of PPP deviations. These estimates are confirmed by Murray and Papell (2005)

using panel methods while Alba and Papell (2007) finds stronger evidence for PPP in

countries that are more open, with lower inflation, moderate exchange rate volatility,

and growth rates similar to that of the U.S.
9The law of one price holding for all individual goods is sufficient, but not necessary, for PPP to

hold.
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3.3.2 Selection of the H matrix

Uncovered interest parity. As stated above, the UIP condition under rational

expectations for an investment horizon of one period implies that the realized excess

return, ∆st+1 − (ijt − ikt ), is uncorrelated with time t variables and is mean zero. For

our empirical specification, we will use a much weaker form of the UIP condition

which simply states that ∆st+1 − (ijt − ikt ) is stationary. These relationships can be

included in our setup as follows:

zuipt = Huip
0 yt −Huip

1 yt−1 (3.13)

where

yt =



st

ijt

ikt


, Huip

0 =



1 0 0

0 1 0

0 0 1


, Huip

1 =



1 1 −1

0 1 0

0 0 1


. (3.14)

Notice that we are imposing a random-walk prior on the nominal interest rates in the

second and third rows to ensure the invertability of Huip
0 and Huip

1 . We emphasize

that the empirical results are not sensitive to the prior choices of the additional rows

because we allow for individual hyperparameters governing the degree of shrinkage

toward our prior which are selected in a data-driven way.

Purchasing power parity. The purchasing power parity (PPP) condition states

that, in log terms,

st = pjt − pkt ,

where {pj, pk} are price levels in each country. We can write this in changes as

∆st = πjt − πkt ,
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where {πj, πk} are inflation rates in each country. A prior based on this relationship

that also uses agnostic random-walk priors for inflation can be included in our setup

as follows:

zpppt = Hppp
0 yt −Hppp

1 yt−1 (3.15)

where

yt =



st

πjt

πkt


, Hppp

0 =



1 −1 1

0 1 0

0 0 1


, Hppp

1 =



1 0 0

0 1 0

0 0 1


. (3.16)

Combining UIP and PPP. We can also write a larger VAR with priors that are

informed by both the UIP and PPP relationships. The UIP and PPP conditions

along with the assumptions that ∆ij +∆ik, ∆πj +∆πk, and ∆ij−∆πj are stationary

give

zuip&pppt = Huip&ppp
0 yt −Huip&ppp

1 yt−1 (3.17)

where

yt =



st

ijt

ikt

πjt

πkt


, Huip&ppp

0 =



1 0 0 0 0

1 0 0 −1 1

0 1 1 0 0

0 0 0 1 1

0 1 0 −1 0


, Huip&ppp

1 =



1 1 −1 0 0

1 0 0 0 0

0 1 1 0 0

0 0 0 1 1

0 1 0 −1 0


.(3.18)

The additional assumptions are required to ensure the invertibility of Huip&ppp
0 and

Huip&ppp
1 matrices.
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Table 3.1: Descriptive statistics of the data

st ∆st iukt iust πukt πust

Mean -0.665 0.012 0.072 0.040 0.026 0.036
Std. 0.246 0.304 0.047 0.029 0.029 0.030

Autocorr.(1) 0.992 0.078 0.989 0.989 0.323 0.618
Autocorr.(2) 0.982 0.038 0.977 0.978 0.332 0.484

Note: The U.K. corresponds to country j, whereas the U.S. to k in the notations above. Each series
except for st is in the annual rate. Moments are computed based on the full length of the available
sample for each series.

3.3.3 Data

We use the exchange rate of U.S. and U.K. (GBP/USD) and 1-month LIBOR rates

and CPI inflation rates for the two countries. The exchange rate is expressed in log

levels, the LIBOR rate is de-annualized, and CPI inflation is the log difference of the

CPI level from the previous month. We use monthly data from 1984:M12 to 2016:M9

for the UIP condition, and from 1988:M2 to 2016:M9 for the PPP condition and the

combination of the two conditions. The sample start dates are determined by the

availability of the U.S LIBOR rates and the U.K. CPI, respectively.10 Descriptive

statistics are reported in Table 3.1.

We consider an increasing sequence of estimation-samples Y−p+1:T , T = Tmin, . . . , Tmax,

and generate the out-of-sample forecasts for periods T +1, . . . , T +Fh. The maximum

forecast horizon Fh is set to be 120 months (10 years). We use the initial 60 months

(5 years) as the pre-sample to construct the dummy observations, and start the esti-
10The availability of each series is as follows. The GBP/USD exchange rate: from 1955:M1 to

2016:M9, the 1 month U.K. LIBOR: from 1976:M1 to 2016:M9, the 1 month U.S. LIBOR: from

1984:M12 to 2016:M9, the U.K. CPI: from 1988:M2 to 2017:M2, and the U.S. CPI: from 1955:M2

to 2017:M2.
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mation with a minimum sample length of 120 months (10 years). More specifically, in

the UIP specification, the data from 1984:M12 to 1989:M11 is used as the pre-sample,

and the first estimation sample spans from 1989:M12 to 1999:M11, to generate the

out-of-sample forecast for 1999:M12 to 2009:M11. The lag length of the VAR system

is set at p = 6.

3.3.4 Empirical results

For each estimation sample, we determine hyperparameters to maximize the MDD.

However, we find it challenging in practice to search for the maximum over the high

dimensional parameter space of hyperparamters. For ease of exposition, the set of

hyperparameters is reproduced below

Θ = {θ1, . . . , θn, µ, ν, κ1, . . . , κn, ω} (3.19)

where θi and κi are the key hyperparmeters that govern the shrinkage of the first

lagged term and the error correction term towards our priors, respectively. We refer

to Appendix 3.5.2 for the rest of hyperparameters. Notice that n = 3 for the UIP

and the PPP and n = 5 for the combination of the UIP and the PPP. Therefore,

the number of hyperparameters to select is 8 in the UIP and the PPP, and 12 in the

combination of the UIP and the PPP.11

To reduce the burden of dimensionarity, we impose an additional restriction that

the hyperparameters governing the tightness of the error correction representation κi
11In practice, we often fix ν. Then, the number of hyperparamters to select is reduced by 1 from

the number of parameters in (3.19).
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are proportional to the hyperparameters for the overall shrinkage θi. That is,

κi = κθi. (3.20)

With the restriction, the number of hyperparameters is reduced to 6 in the UIP and

the PPP, and 8 in the combination of the UIP and the PPP. The restriction implies

that the shrinkage of each column of coefficient matrices Φ̃j in the VAR system

towards our priors is proportional to that of each column of Λ in the error correction

representation. For example, if the UIP relationship (the first row of H matrices in

(3.14)) holds more tightly than the random-walk of the interest rates (the second

and third rows) in the VAR system, we conjecture that it is also the case in the

error correction representation. More discussion on restrictions of hyperparameters

is provided in Appendix 3.5.4.

Given the hyperparameters, we generate 20,000 draws from the posterior distri-

bution of Φ and Σ using the direst sampler. We discard the first 5,000 draws and

use the remaining 15,000 draws. We compare our baseline model of dynamic priors

(DP) with the Minnesota prior (MN) and the näıve random walk (RW). All forecasts

are evaluated based on their mean absolute forecast errors (MAFE) relative to the

MAFE based on the DP. Notice that higher ratios indicate an improvement on the

DP forecasts.

Results are reported in Table 3.2. For all specifications, the DP leads to a substan-

tial MAFE reduction in the long run. Consider the UIP case. The MAFE of the RW

is larger than that of the DP by 32% in the 5-year horizon. The gap increases to 75%

in the 7-year horizon, and 115% in the 10-year horizon. The improvement relative to
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Table 3.2: Forecasting the exchange rates of US and UK

Forecast horizon
1 year 3 year 5 year 7 year 10 year

Uncovered interest parity (UIP)
MN 0.88 0.93 1.34 1.74 2.15
RW 0.83 1.00 1.32 1.75 2.19

Purchasing power parity (PPP)
MN 0.96 1.03 1.45 1.63 1.62
RW 1.02 1.06 1.49 1.91 1.85

UIP & PPP
MN 0.93 1.00 1.18 1.26 1.28
RW 1.00 1.13 1.42 1.65 1.66

Note: All forecasts are evaluated based on their mean absolute forecast errors (MAFE) relative to
the MAFE based on the dynamic priors (DP). Higher ratios indicate an improvement on the DP
forecasts.

the MN is quite similar, which brings about a MAFE reduction by more than 100%

in the 10-year horizon. Moreover, in the PPP case and with the combination of both

UIP and PPP, the DP uniformly improves the MAFE after the 3-year horizon. The

improvement on the DP also increases in the forecast horizon. In the 10-year horizon,

for instance, the reduction of the MAFE is 62% relative to the MN and 85% to the

RW in the PPP case, and 28% to the MN and 66% to the RW in the combination of

UIP and PPP.

We next compare the forecasting performance of each specification. For this pur-

pose, it is convenient to consider the RW as a benchmark, since the MAFE of the RW

does not depend on the model specification. The MAFE relative to the DP in the

UIP case is larger than that in the PPP case in the 10-year horizon, whereas that is

smaller in the other horizons. The result implies that the UIP prior performs better

than the PPP prior in the long run in terms of forecasting the exchange rate with

166



Figure 3.1: Evolution of hyperparameters

Panel (A): UIP
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Panel (B): PPP
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Notes: Each panel displays the 12 month backwards moving average of the selected hyperparameters.
θ1 denotes the hyperparameter governing the overall shrinkage towards the UIP and the PPP,
whereas κ is the one for the tightness of the error correction representation. The x-axis is the end
point of each estimation sample. Notice that the start point is identical for each estimation sample
since we consider an increasing sequence of estimation samples.

the DP. Interestingly, once we combine UIP and PPP, the forecasting performance in

the 7- and 10-year horizon is worse than each case of using the UIP and PPP priors

individually.
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Figure 3.1 reports the evolution of the selected hyperparameters in each estimation

sample. We focus on the hyperparameter governing the overall shrinkage towards the

UIP or PPP priors individually, θ1, and the hyperparameter for the tightness of

the error correction representation, κ. In the UIP specification in Panel (A), the

hyperparameters for the DP tend to rise over time. It indicates that the more recent

data supports stronger shrinkage of the estimates toward the UIP prior. On the

other hand, the hyperparameters for the MN do not have a particular trend. Similar

patterns are found in the PPP case shown in Panel (B), even though the number of

data points is relatively smaller the due to the availability of data.

3.4 Conclusion

We propose a method of introducing theory-driven priors into the estimation of VARs.

Our methodology is more flexible than existing methods in that it allows a researcher

to incorporate prior beliefs on a subset of variables in theoretical models that are of key

interest while remaining agnostic about other variables in the VAR. We demonstrate

that our method can be easily implemented with dummy observations and inference

is achieved by the standard direct sampling. We apply to the problem of exchange

rate forecasting for the British pound versus the US dollar by imposing different

combinations of priors informed by uncovered interest rate or purchasing power parity.

Compared to the forecasting ability of a näıve random walk as well as a VAR estimated

using a standard Minnesota prior, substantial gains are realized at longer forecast

horizons.

168



3.5 Appendix

3.5.1 The Likelihood Function

We express the likelihood function. Let k = np + 1 and define the k × n matrix

Φ = [Φ1, ...,Φp,Φ0]′. Using this notation, we can re-express (3.1) as

y′t = x′tΦ + ε′t, (3.21)

where the k × 1 vector xt is given by x′t = [y′t−1, ..., y
′
t−p, 1]. The joint density of Y1:T

conditional on Y1−p:0 and parameters Φ,Σ can be expressed as

p(Y1:T |Φ,Σ, Y1−p:0) =
T∏
t=1

p(yt|Φ,Σ, Y1−p:t−1) (3.22)

∝ |Σ|−T/2 exp
{
− 1

2 tr[Σ
−1Ŝ]

}
exp

{
− 1

2 tr[Σ
−1(Φ− Φ̂)′X ′X(Φ− Φ̂)]

}
,

where Y is the T × n matrix with rows y′t, X is the T × k matrix with rows x′t and

Φ̂ = (X ′X)−1X ′Y, Ŝ = (Y −XΦ̂)′(Y −XΦ̂).

Φ̂ is the maximum-likelihood estimator (MLE) of Φ, and Ŝ is a matrix with sums of

squared residuals.

3.5.2 Prior Implementation with Dummy Observations

We use dummy observations to implement priors. In turn, we will specify the rows of

the matrices Y ∗ and X∗. To simplify the exposition, suppose that n = 2 and p = 2.

Thus, (3.21) reduces to

yt = Φ1yt−1 + Φ2yt−2 + Φ0 + εt, εt ∼ N(0,Σ). (3.23)
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The priors are specified conditional on several hyperparameters. Using a pre-

sample, let y and s be n× 1 vectors of means and standard deviations. The dummy

observations are interpreted as observations from the regression model

Y ∗ = X∗Φ + ε. (3.24)

We begin with dummy observations that generate a prior distribution for Φ1. Define

a 2× 2 matrix Y ∗ and a 2× 5 matrix X∗ such that

Y ∗ = diag(θ)diag(s), X∗ =
[
diag(θ)diag(s)(H−1)′ 02×2 02×1

]
(3.25)

where θ is a n × 1 vector with elements θj. The dummy observations are plugged

into (3.24):  θ1s1 0

0 θ2s2

 =

 θ1s1 0 0 0 0

0 θ2s2 0 0 0

 Φ̃ +

 ε11 ε12

ε21 ε22

 (3.26)

where Φ̃ = [Φ1H
−1,Φ2H

−1, ...,ΦpH
−1,Φ0]′ = [Φ̃1, Φ̃2, ..., Φ̃p,Φ0]′. According to the

distributional assumption, the rows of ε are normally distributed. Thus, we can

rewrite the first row of (3.26) as

θ1s1 = θ1s1φ̃11 + ε11, 0 = θ1s1φ̃21 + ε12

and interpret it as

φ̃11 ∼ N(1,Σ11/(θ2
1s

2
1)), φ̃21 ∼ N(0,Σ22/(θ2

1s
2
1)).

φ̃ij denotes the element i, j of the matrix Φ̃1, and Σij corresponds to element i, j of

Σ. The hyperparameter θ1 controls the tightness of the prior.
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The prior for Φ2 is implemented with the dummy observations

Y ∗ = 02×2, X∗ =
[

02×2 diag(θ)diag(s)2µ(H−1)′ 02×1

]
. (3.27)

which imply  0 0

0 0

 =

 0 0 θ1s12µ 0 0

0 0 0 θ2s22µ 0

 Φ̃ + ε, (3.28)

where the hyperparameter µ is used to scale the prior standard deviations for coeffi-

cients associated with yt−l according to l−µ.

A prior for the covariance matrix Σ, centered at a matrix that is diagonal with

elements equal to the pre-sample variance of yt, can be obtained by stacking the

observations  s1 0

0 s2

 =

 0 0 0 0 0

0 0 0 0 0

Φ + ε (3.29)

ν times. Note that we assume ν = 1.

The remaining sets of dummy observations provide a prior for the intercept Φ0

and will generate some a priori correlation between the coefficients. They favor

unit roots and cointegration, which is consistent with the beliefs of many applied

macroeconomists, and they tend to improve VAR forecasting performance.

The sums-of-coefficients dummy observations are defined by

Y ∗ = H−1diag(κ)diag(r)diag(Hy) (3.30)

where κ is a n× 1 vector with elements κj. r is the pre-sample mean of rt defined in

(3.4). We re-express the error correction representation (3.9) by

Γ(L)∆yt = ΛHyt−1 + εt (3.31)
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and plug dummy observations into (3.31): 0 0

0 0

 =

 κ1r1 0

0 κ2r2

Λ′ + ε. (3.32)

According to the distributional assumption, the rows of ε are normally distributed.

Thus, we can rewrite the first row as

0 = λ11κ1r1 + ε11, 0 = λ12κ2r2 + ε12

and interpret it as

λ11 ∼ N(0,Σ11/
(
κ2

1r
2
1

)
), λ12 ∼ N(0,Σ22/

(
κ2

2r
2
2

)
).

The co-persistence dummy observations, proposed by Sims (1993) reflect the belief

that when all lagged yt’s are at the level y, yt tends to persist at that level:

[
ωy1 ωy2

]
=
[
ωy1 ωy2 ωy1 ωy2 ω

]
Φ + ε. (3.33)

The strength of these beliefs is controlled by κ and ω. These two sets of dummy

observations introduce correlations in prior beliefs about all coefficients, including

the intercept, in a given equation.

3.5.3 Marginal Data Density and Hyperparameters

The set of hyperparameters is Θ = {θ, µ, ν, κ, ω}. The marginal data density (MDD)

is obtained as

pΘ(Y1:T |Y1−p:0) =
∫
p(Y1:T |Φ,Σ, Y1−p:0)p(Φ,Σ|Θ)d(Φ,Σ) (3.34)
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The MDD can be rewritten as

pΘ(Y1:T |Y1−p:0) =
T∏
t=1

∫
p(yt|Φ,Σ, Y1−p:t−1)p(Φ,Σ|Y1−p:t−1,Θ)d(Φ,Σ) (3.35)

In other words, maximizing the MDD is interpreted as the maximizing the one-step-

ahead prediction performance. Zellner (1971) shows that the MDD can be calculated

from the normalization constants of the MNIW distribution:

pΘ(Y1:T |Y1−p:0) = (2π)−nT/2× |X̄
′X̄|n/2|S̄|−(T̄−k)/2

|X∗′X∗|n/2|S|−(T ∗−k)/2×
2n(T̄−k)/2∏n

i=1 Γ[(T̄ − k + 1− i)/2]
2n(T ∗−k)/2∏n

i=1 Γ[(T ∗ − k + 1− i)/2]

(3.36)

where Γ denotes the gamma function. X∗ and Y ∗ are the dummy observations, and

X̄ = [X∗′, X ′]′ and Ȳ = [Y ∗′, Y ′]′ combine the dummy observations and the actual

ones. The length of X̄ and Ȳ is given by T̄ = T ∗+T . S and S̄ are the sum of squared

residuals of the MLE estimator. Notice that hyperparameters enter the MDD through

the dummy observations.

3.5.4 Restrictions on hyperparamters

In the baseline empirical analysis in Section 3.3 , we impose a restriction (3.20) to

reduce the burden of dimensionality when choosing hyperparameters. In this section,

we investigate the forecasting performance of other restrictions on hyperparameters.

We begin with a general specification where we allow for different hyperparameters

of the overall shrinkage θi and the tightness of the error correction representation κi for

each row of coefficient matrices. In other words, we select the set of hyperparameters

Θ = {θ1, . . . , θn, µ, ν, κ1, . . . , κn, ω} (3.37)
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where n = 3 for the UIP and the PPP and n = 5 for the combination of the UIP and

the PPP. Table 3.3 reports the MAFE relative to the DP. In the UIP and the PPP

cases, the DP reduces the MAFE in the long run compared to the MN and the RW,

as in our baseline results. However, in the combination of the UIP and the PPP, the

DP leads to larger MAFE than the MN, and the improvement relative to the RW is

substantially smaller than our baseline. In this regard, the curse of dimensionality

might be especially severe for the combination of the UIP and the PPP, since the

number of hyperparmeters is larger than the other specifications.12

Table 3.3: Forecasting the exchange rates of US and UK - General case

Forecast horizon
1 year 3 year 5 year 7 year 10 year

Uncovered interest parity (UIP)
MN 0.85 1.02 1.34 1.70 2.07
RW 0.87 1.04 1.32 1.67 2.04

Purchasing power parity (PPP)
MN 0.78 0.80 1.13 1.41 2.00
RW 0.85 0.87 1.14 1.45 2.02

UIP & PPP
MN 0.95 1.04 0.90 0.82 0.85
RW 0.99 1.15 1.05 1.13 1.12

Note: The set of hyperparameters is listed in (3.37). The number of hyperparameters to select is 8
(3 for θi, 1 for µ, 3 for κi, and 1 for ω) for the UIP and the PPP, and 12 (5 for θi, 1 for µ, 5 for κi,
and 1 for ω) for the combination of the UIP and the PPP. All forecasts are evaluated based on their
mean absolute forecast errors (MAFE) relative to the MAFE based on the dynamic priors (DP).
Higher ratios indicate an improvement on the DP forecasts.

We next consider several additional assumptions on hyperparameters to our base-
12For the combination of the UIP and the PPP, the total number of hyperparameters to select is

12 (5 for θi, 1 for µ, 5 for κi, and 1 for ω). For the UIP and the PPP, on the other hand, it is 8 (3

for θi, 1 for µ, 3 for κi, and 1 for ω). Notice that ν is fixed following a convention in the literature.
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line restriction (3.20). First, we add a restriction that the overall shrinkage is common

for each country. The set of hyperparameters for the UIP and the PPP is

Θ = {θ1, θ2, µ, ν, κ, ω} (3.38)

where θ2 = θ3 and κi = κθi for i = 1, 2, 3. For example, in the UIP case, θ2 = θ3

implies that the tightness of a random-walk behavior of the US nominal interest rate

is identical to that of the UK. For the combination of the UIP and the PPP, on the

other hand, it is

Θ = {θ1, θ2, θ4, µ, ν, κ, ω} (3.39)

where θ2 = θ3, θ4 = θ5, and κi = κθi for i = 1, ..., 5. Notice that θ2 and θ3 govern

the tightness of a random-walk behavior of the nominal interest rate in each country,

whereas θ4 and θ5 govern that of the inflation rate. Table 3.4 shows results. Under

the additional restriction, the MAFE relative to the MN is slightly less than one,

while the other specifications lead to a substantial MAFE reduction in the long run

as in our baseline results.
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Table 3.4: Forecasting the exchange rates of US and UK - Common overall shrinkage
θ for each country, as well as the baseline restriction

Forecast horizon
1 year 3 year 5 year 7 year 10 year

Uncovered interest parity (UIP)
MN 0.88 0.92 1.35 1.75 2.17
RW 0.83 0.98 1.31 1.73 2.18

Purchasing power parity (PPP)
MN 0.95 1.02 1.53 1.81 1.82
RW 1.01 1.06 1.48 1.93 1.87

UIP & PPP
MN 0.96 1.00 0.96 0.90 0.91
RW 1.00 1.13 1.44 1.67 1.69

Note: The set of hyperparameters is listed in (3.38) and (3.39). The number of hyperparameters to
select is 5 (2 for θi, 1 for µ, 1 for κ, and 1 for ω) for the UIP and the PPP, and 6 (3 for θi, 1 for µ,
1 for κ, and 1 for ω) for the combination of the UIP and the PPP. All forecasts are evaluated based
on their mean absolute forecast errors (MAFE) relative to the MAFE based on the dynamic priors
(DP). Higher ratios indicate an improvement on the DP forecasts.

We also consider a restriction that the tightness of the error correction represen-

tation is identical among each variable. The set of hyperparameters are given by

Θ = {θ1, . . . , θn, µ, ν, κ, ω} (3.40)

where n = 3 for the UIP and the PPP and n = 5 for the combination of the UIP and

the PPP. Table 3.5 reports results. Similar to the previous case, the DP reduces the

MAFE in the long run, except for the combination of the UIP and the PPP relative

to the MN.
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Table 3.5: Forecasting the exchange rates of US and UK - Common shrinkage of the
error correction representation κ

Forecast horizon
1 year 3 year 5 year 7 year 10 year

Uncovered interest parity (UIP)
MN 0.87 0.90 1.24 1.61 1.99
RW 0.83 1.00 1.33 1.75 2.24

Purchasing power parity (PPP)
MN 0.99 0.99 1.08 1.14 1.15
RW 1.01 1.06 1.46 1.93 1.88

UIP & PPP
MN 0.98 0.98 0.98 0.92 0.95
RW 1.01 1.13 1.41 1.64 1.65

Note: The set of hyperparameters is listed in (3.40). The number of hyperparameters to select is 6
(3 for θi, 1 for µ, 1 for κ, and 1 for ω) for the UIP and the PPP, and 8 (5 for θi, 1 for µ, 1 for κ,
and 1 for ω) for the combination of the UIP and the PPP. All forecasts are evaluated based on their
mean absolute forecast errors (MAFE) relative to the MAFE based on the dynamic priors (DP).
Higher ratios indicate an improvement on the DP forecasts.
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