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Three Essays in Factor Analysis of Asset Pricing

Wenzhi Wang

Abstract

My dissertation is comprised of three chapters. The first chapter is motivated by many low-

frequency sources of systemic risk in the economy. We propose a two-stage learning procedure to

construct a high-frequency (i.e., daily) systemic risk factor from a cross-section of low-frequency

(i.e., monthly) risk sources. In the first stage, we use a Kalman-Filter approach to synthesize

the information about systemic risk contained in 19 different proxies for systemic risk. The low

frequency (i.e., monthly) Bayesian factor can predict the cross-section of stock returns out of

sample. In particular, a strategy that goes long the quintile portfolio with the highest exposure

to the Bayesian factor and short the quintile portfolio with the lowest exposure to the Bayesian

factor yields a Fama–French–Carhart alpha of 1.7% per month (20.4% annualized). The second

stage is to convert this low frequency Bayesian factor into a high-frequency factor. We use textual

analysis Word2Vec that reads the headlines and abstracts of all daily articles from the business

section of the New York Times from 1980 to 2016 to collect distributional information on a per

word basis and store it in high-dimensional vectors. These vectors are then used in a LASSO model

to predict the Bayesian factor. The result is a series of coefficients that can then be used to produce

a high-frequency estimate of the Bayesian factor of systemic risk. This high-frequency indicator is

validated in several ways including by showing how well it captures the 2008 crisis. We also find

that the high frequency factor is priced in the cross-section of stock returns and able to predict large

swings in the VIX using a quantile regression approach, which sheds some light on the puzzling

relation between the macro-economy and stock market volatility.

The second chapter of my dissertation provides a basic quantitative description of a compendium

of macro economic variables based on their ability to predict bond returns and stock returns . We

use three methods( asymptotic PCA, LASSO and Support Vector Machine) to construct factors out

of 133 monthly time series of economic activity spanning a period from 1996:1 to 2015:12 and classify

these factors into two groups: bond demand factors and bond supply factors. In PCA regression,

we find both demand factors and supply factors are unspanned by bond yields and have stronger

predictability power for future bond excess returns than CP factors. This predictability finding

is confirmed and enhanced by machine learning technique LASSO and Support Vector Machine.

More interestingly, LASSO can be used to identify 15 most important economic variables and give

direct economic explanations of predictors for bond returns. Regarding to stock predictability,

we find both demand and supply PC factors are priced by the cross-section of stock returns. In

particular, portfolios with highest exposure to aggregate supply factor outperform portfolios with
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lowest exposure to aggregate supply factor 1.8% per month while portfolios with lowest exposure to

aggregate demand factor outperform portfolios with highest exposure to aggregate demand factor

2.1% per month. The finding is consistent with ”fly to safety” explanation. Furthermore, variance

decomposition from VAR shows that demand factors are much more important than supply factors

in explaining asset returns. Finally, we incorporate demand factors and supply factors into macro-

finance affine term structure (MTSMs) to estimate market price of risk of factors and find that

demand factors affect level risk and supply factors affect slope risk. Moreover, MTSMs enable us

to decompose bond yields into expectation component and yield risk premium component and we

find MTSMs without macro factors under-estimate yield risk premium.

The third chapter,coauthored with Dmitriy Muravyev and Aurelio Vasquez, is motived from the

fact that a typical stock has hundreds of listed options. We use principal component analysis (PCA)

to preserve their rich information content while reducing dimensionality. Applying PCA to implied

volatility surfaces across all US stocks, we find that the first five components capture most of the

variation. The aggregate PC factor that combines only the first three components predicts future

stock returns up to six months with a monthly alpha of about 1%; results are similar out-of-sample.

In joint regressions, the aggregate PC factor drives out all of the popular option-based predictors of

stock returns. Perhaps, the aggregate factor better aggregates option price information. However,

shorting costs in the underlying drive out the aggregate factor’s predictive ability. This result is

consistent with the hypothesis that option prices predict future stock returns primarily because

they reflect short sale constraints.
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“Thus, when Heaven is about to confer a great office on any man, it first exercises his mind
with suffering, and his sinews and bones with toil. It exposes his body to hunger, and subjects him
to extreme poverty. It confounds his undertakings. By all these methods it stimulates his minds,
hardens his nature, and supplies his incompentencies.(Translated by James Legge in The Works of
Mencius)”

Mencius (Mengzi. Gaozi. Part II)
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I. Chapter 1: Two-Stage Learning of a Systemic Risk Factor

The ability of systemic risk to trigger sharp financial downturns has made this risk a focal point

of research. In the aftermath of the 2007-2009 financial crisis, many systemic risk measures have

been proposed at the low-frequency (monthly) level. In this paper, we have two complementary

objectives for establishing an understanding of systemic risk measures.

Our first goal is to condense a cross-section of low-frequency systemic risk measures into one

low-frequency systemic risk factor. We examine 19 previously proposed monthly systemic risk

measures and use Particle-MCMC to combine them to one latent monthly systemic risk factor,

which we have named the Bayesian factor. We find this monthly Bayesian factor can be projected

onto the monthly textual information from the New York Times based on LASSO. A simple Granger

Causality test shows that the monthly textual information from the New York Times can Granger

cause the monthly Bayesian factor while the monthly Bayesian factor can not Granger cause the

monthly textual information. Based on this causal relationship, our second goal is to feed the

LASSO regression with the high-frequency (daily) textual information from the New York Times

and use the fitted value for constructing a high-frequency (daily) textual factor. We find that both

the low-frequency Bayesian factor and the high-frequency textual factor are significantly priced in

a cross-section of stock returns. In particular, a strategy that goes long the quintile portfolio with

the highest exposure to monthly Bayesian factor and short the quintile portfolio with the lowest

exposure to monthly Bayesian factor yields a Fama–French–Carhart alpha of 1.7% per month

(20.4% annualized). Additionally, We find that our monthly Bayesian factor is linked to distress

related firm characteristics and more distressed firms are more sensitive to our Bayesian factor.

This sheds some light on why distress risk could be a severe risk for investors. Incorporating our

monthly Bayesian factor can help explain 36% of the distress anomaly. Lastly, our daily textual

systemic risk factor is very informative in predicting future macro financial conditions, for example,
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the time-varying VIX index shocks and the TED-spread shocks.

The estimation of the price of risk on both factors consistently identifies a negative market

price of systemic risk. As financial crash risk is accumulating, intermediary investors marginal

value of wealth is going up. Assets that pay off poorly when crash risk peaks are therefore risky

and must offer high returns. Equivalently, financial systemic risk is countercyclical and the cross-

sectional price of systemic risk should be negative. This significantly negative systemic risk premium

is also consistent with the intertemporal capital asset pricing model (ICAPM) ofMerton (1973).

An increase in systemic risk and economic downside risk shock reduces future investment and

consumption opportunities. To hedge against such an unfavorable shift, investors prefer to hold

stocks whose returns increase in times of high systemic risk. When systemic risk rises, investors

suffer through a reduction in optimal consumption and future investment opportunities. They

are able to compensate for this loss by holding stocks that positively correlate with systemic risk.

This intertemporal hedging demand argument implies that investors are willing to hold stocks with

higher covariance with systemic risk, and they pay higher prices and accept lower returns for stocks

with higher systemic risk betas.

Our study contributes to several strands of the asset pricing literature. First, it is related to how

to aggregate individual measures for systemic risk. Giglio, Kelly, and Pruitt (2016) (henceforth

GKP) extract a latent factor out of the same cross section of systemic risk measures and find

that their factor can predict lower quantiles of future macroeconomic shocks instead of the central

tendency of those shocks. There are two key differences between GKP and our paper. First, the

two papers’ motivations and focus are very different. They focus their analysis on the interactions

between systemic risk and the macro-economy to highlight which measures are valuable as an input

to regulatory or policy choices. Therefore, it is not surprising to find out that their measure can not

explain the cross-section of equity excess returns. Instead, our focus lies on constructing a measure
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for the pricing kernel and examining the asset pricing implications of this measure. Empirical

results in this paper suggest that our factors are better proxies for the pricing kernel than their

Partial Quantile Regression (henceforth PQR) Factor. Second, the two papers employ very different

methodologies. Motivated by exploring the relationship between systemic risk and the distribution

of macro-economic shocks, GKP uses the quantile regression to find that systemic risk can predict

a downside quantile of industry production innovations. Moreover, their method of dimension

reduction, Partial Quantile Regression, condenses the cross section of predictors according to each

predictors quantile covariation with the forecast target,choosing a linear combination of predictors

that is a consistent quantile forecast. So, their methods rely highly on quantile regression and

have already utilized the information of the forecast variable which consists of industry production

shocks. In contrast, our Bayesian method is casting the dynamics of cross-section of predictors into

a State-Space Model and it uses Particle-MCMC to extract a Bayesian factor. Our high-frequency

textual Bayesian factor is constructed by projecting the Bayesian factor onto textual information

and using the fitted value as our second financial systemic risk factor. So, we condense the cross

section according to covariance within the predictors, disregarding how closely each predictor relates

to the target, which are asset prices in our case.

Secondly, this paper advances the empirical ICAPM literature. Over 40 years of macro-finance

research, there are still very few of empirical studies successfully linking macroeconomic risk ex-

posure to the cross-section of stock returns. The most recent paper focusing on this issue is by

Bali, Brown, Peng, and Tang (2016). They use Ludvigson and Ng’s macro uncertainty measure to

proxy for the ICAPM state variable and find this uncertainty measure is priced in a cross-section

of stocks over the sample of 1977 and 2014. Our paper is very different from their paper because

we are focusing on a priced crash risk or a downside tail risk while they are paying attention to a

priced uncertainty measure. More importantly, their uncertainty measure is not significantly priced
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over the sample from 1995 to 2014, but our financial crash risk is significantly priced during this

period. It is important to use the sample after 1995 to test the asset pricing implications because

several important priced factors are published before 1995 and their predictability power for stock

returns shrinks a lot after their publication,McLean and Pontiff (2016). Of course, this paper is

also related to the intermediary asset pricing literature. Brunnermeier and Pedersen (2009) show

how intermediary funding liquidity determines the pricing kernel when investors face funding con-

straints. Specifically, funding liquidity, φ1, is also the Lagrange multiplier on the time-one funding

constraint. Risk-neutral investors subject to a funding constraint maximize E0[φ1W1], where W1

is investors’ wealth at time 1. Equivalently, SDF is simply φ1
E0[φ1] . There are several funding

illiquidity measures constructed along this line, for example, Fontaine, Garcia, and Gungor (2016),

Chen and Lu (2016), and Lee (2013). Unfortunately, all of these funding illiquidity risk factors are

not significantly priced in our sample period. In contrast, our financial crash risk is significantly

priced, which gives direct empirical support for our strategy of combining both macro information

and financial intermediary information.

Thirdly, the construction of our high-frequency textual risk factor is motivated by an explosion

of empirical economics research using text as data. An ever increasing share of human interaction,

communication, and culture is recorded as digital text and the information encoded in text is a

rich complement to the more structured kinds of data traditionally used in research. For example,

major newspapers usually contain a large collection of high quality articles analyzing, summarizing,

and even predicting people’s thinking and belief on current economic issues. Manela and Moreira

(2017) take a text regression approach to construct an index of news-implied market volatility based

on text from the Wall Street Journal from 1890-2009. They apply support vector regression, which

uses a penalized least squares objective to identify a small subset of words whose frequencies are

most useful for matching patterns of turbulence in financial markets. They find that high levels of
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news-implied volatility forecast high future stock market returns. However, the training subsample

used to estimate the dependency between news data and implied volatility is from 1996 to 2009

while the test subsample used for out-of-sample tests of model fit is from 1986 to 1995. A potential

concern is that because the training sample period is chronologically after the predict subsample,

they are using new information, unavailable to those who lived during the predict subsample, to

predict future returns. Instead, our training sample is from 1990 to 2003 and the test sample is

from 2004 to 2011, which is a regular sample splitting design. Furthermore, we adopt a cutting-

edge Natural Language Processing (NLP) technology called Word Embedding to construct our

textual systemic risk factor out of Business Section articles in New York Times from 1980 to 2016.

This method of utilizing textual data brings about a high-frequency textual factor which shows

more asset pricing power in a cross-section of portfolio. To my best knowledge, we are the first to

construct such a high-frequency textual systemic risk measure. Most the of well-studied measures

are constructed at the monthly level either due to lack of high frequency data, such as book leverage

of big financial institutions, or due to a long-term rolling-window based estimation procedure, such

as Marginal Expected Shortfall or DCI. It is well-known that low frequency data would give rise to

a noisy estimation of risk factor exposure β in the first stage of a Fama-Macbeth regression, and

therefore constructing high frequency data could possibly mitigate this measurement error concern.

Lastly, we are interested in explaining latent factors such as a Bayesian latent factor and textual

information can help us to achieve this goal to some degree.

Finally, we contribute to the literature on measuring the state of the economy in a time-series

setting, commonly referred to as ”now-casting.” One of the important papers in this field is Beber,

Brandt, and Luisi (2015). They use PCA to extract daily principal components from economic

news release associated with a specific information type. They think of each news series as a

continuously evolving time series observed only once per month and simply forward-fill the lat
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observed release until the next announcement. Put differently, there is no update of information

between two announcements and this is the limitation of using macro news announcement data to

now-cast high-frequency macro fundamentals. Instead of using numerical news data, we utilize the

real high-frequency data, the textual data, to fill in the gap between two announcements and solve

the missing variable problem. Our method would give rise to a high-frequency time-varying series

instead of a high-frequency step-function series.

The remainder of the paper is organized as follows. Section I describes the data and empirical

strategy used to collect individual financial systemic risk measures. Section II describes the first-

stage Bayesian aggregation of individual systemic risk variables. Section III constructs the second-

stage high-frequency textual risk factor out of monthly numeric systemic risk measures in three

steps. Section IV conducts a number of asset pricing tests in the cross-section of stock returns and

shows the predictive power of the systemic risk factor. Section V investigates the properties of our

high-frequency textual systemic risk factor. Section VI concludes.

A. Data and Methodology

A.1. Data

This section outlines our construction of financial systemic risk measures and provides a brief

summary of comovement among the measures. Individual measures are based on data for financial

institutions identified by 2-digit SIC codes 60 through 67 (finance, insurance and real estate).

Equity returns for US financial institutions are obtained from CRSP and book data are obtained

from Compustat. We are interested in capturing primary intermediary systemic risk, and thus

construct our measures using data for the 20 largest financial institutions in each period, including

the likes of Goldman Sachs, JP Morgan, and Deutsche Bank. Whenever the financial systemic risk

measure is aggregated from institution-level measures, we compute the measure for each of the 20
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largest institutions in each period and take an equal weighted average. We closely follow the Giglio,

Kelly, and Pruitt (2016) procedure to categorize and collect 19 financial systemic risk measures,

which also covers the major part of 30 risk measures discussed by Bisias, Flood, Lo, and Valavanis

(2012). Below we provide a brief overview of the measures that we build grouped by their defining

features. A more detailed list of definitions can be found in Table 1.

The first set of measures are institution-specific measures and include CoVaR and ∆CoVaR

from Adrian and Brunnermeier (2016), marginal expected shortfall (MES) from Acharya, Ped-

ersen, Philippon, and Richardson (2017), and MES-BE, a version of marginal expected shortfall

proposed by Brownlees and Engle (2012). The second set of measures is intended to quantify co-

movement and contagion among intermediary equity returns. Kritzman, Li, Page, and Rigobon

(2011) construct the Absorption Ratio to capture the fraction of the financial system variance ex-

plained by the first K=3 PCAs. The Dynamic Causality Index (DCI) from Billio, Getmansky, Lo,

and Pelizzon (2012) counts the number of significant Granger-causal relationships among financial

institutions equity returns, and the International Spillover Index from Diebold and Yilmaz (2009)

measures co-movement in macroeconomic variables across different countries. The third set of mea-

sures is intended to capture the primary intermediary volatility. One simple measure is just the

average equity volatility of the primary institutions. In addition, a turbulence variable following

Kritzman and Li (2010) considers returns recent covariance relative to a longer-term covariance

estimate. Another VaR measure from Allen, Bali, and Tang (2012) is derived by looking at the

cross section of financial firms at any one point in time. Size concentration in the financial industry

(the market capitalization Herfindal index) is also included to capture a potential instability in

the sector. The fourth set of measures is designed to proxy for Liquidity and credit conditions in

financial markets. These are Amihud (2002)’s illiquidity measure (AIM) aggregated across financial

institutions, the TED spread (LIBOR minus the T-bill rate),the default spread (BAA bond yield
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minus AAA bond yield), the Gilchrist-Zakrajsek measure of the credit spread (GZ, proposed in

Gilchrist and Zakraǰsek (2012)) and the term spread (the slope of the Treasury yield curve). Of

course, we include both book leverage and market leverage for the largest 20 financial institutions

in our sample to serve as counterparts to the AEM leverage factor and the HKM capital ratio

factor.

In Figure 8, We inspect the correlation among individual systemic risk measures. Most cor-

relations are quite low. Only two groups of measures comove strongly. First, Catfin, turbulence,

volatility, and the TED spread are relatively highly correlated. Secondly, CoVaR, ∆CoV aR, MES,

GZ, size concentration, and Absorption tend to comove. The other measures display low or even

negative correlations with each other, suggesting that many measures capture different aspects of

financial system distress or are subject to substantial noise. Only using one or two leverage factors

to proxy for pricing kernel might not be good enough due to a complicated relationship among

different distress proxies and potential noise within those proxies. So, we need dimension reduction

techniques to help detect the relationship between the large collection of financial distress measures

and asset prices, above and beyond the information in these potentially noise-ridden individual

measures.
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Figure 1. This figure plots the correlation matrix of all the individual financial systemic risk
measures.

16



B. The Bayesian Systemic Risk Factor

Our Bayesian Factor model is similar to the dynamic factor framework used in Stock and

Watson (1989) to estimate the coincident economic indicator. I put the dynamic factor model into

a state space framework. For i = 1, · · · , N , denote xi,t to be observation for unit i at time t. The

measurement equation for the state space model is:

(1− ψiL)Xi,t = (1− ψiL)(βi,0 + βi,1L+ βi,2L
2)gt + εx,i,t (1)

or more compactly,

X?
i,t = β?i gt + εX,i,t. (2)

where gt is the latent Bayesian Factor at time t, L is a lag operator, and εX,i,t ∼ N(0, σX,i,t) The

transition equation is :

gt = ψggt−1 + εg,t. (3)

where εg,t ∼ N(0, σg,t).

We adopt a general method Particle-MCMC similar to Lindsten, Jordan, and Schön (2014) and

Andrieu, Doucet, and Holenstein (2010) to estimate the latent factor gT and the model parameters.

The only difference here is that the dynamic factor model is not Markovian. Existing literatures

suggest two ways to solve these non-Markov models. One way is to construct auxiliary variables

and transform the non-Markov model into a Markovian State Space Model, such as Herbst and

Schorfheide (2015). The other way to attack this problem is to derive the joint smoothing distri-
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bution directly and approximate them. In this model, because the observation equation only relies

on four lags of the latent factor, I can derive the joint smoothing distribution analytically without

any approximation and I can also derive the importance weights in sampling as follows:

Smoothing Distribution ≡
Pθ

(
(gi1: t−1, g

′
t : T ), x1: T

)
Pθ

(
gi1: t−1, x1: t−1

) = Pθ

(
g
′
t : T , xt : T |gi1: t−1, x1: t−1

)
(4)

= Pθ

(
g
′
t, xt, xt+1, xt+2|g

′
t+1: T , xt+3: T , g

i
1: t−1, x1: t−1

)
× Pθ

(
g
′
t+1: T , xt+3: T |gi1: t−1, x1: t−1

)
(5)

∝ Pθ(xt+2|git−1, g
′
t : t+2)× Pθ(xt+1|git−2: t−1, g

′
t : t+1)× Pθ(xt|git−3: t−1, g

′
t)× fθ(g

′
t|git−1) (6)

Importance Weights ≡ wit =
P (gi1: t|x1: t)

rθ,t(g
i
1: t|x1: t)

(7)

∝
G(xt|git−3: t)fθ(g

i
t|git−1)P (gi1: t−1|x1: t−1)

rθ,t(g
i
t|git−1, xt)rθ,t−1(gi1: t−1|x1: t−1)

(8)

= G(xt|git−3: t) (9)

where rθ,t(g
i
t|git−1, xt) = fθ(g

i
t|git−1)

Here I summarize the procedure in Algorithm 1 and 2.

Figure 9 plots the time series of the Bayesian Factor and compares our Bayesian Factor(red dots)

to the Partial Quantile Regression Factor (green dots) from Giglio, Kelly, and Pruitt (2016). The

black line plots the S&P500 risk premia. Surprisingly, the shape of our Bayesian Factor coincides

with the shape of PQR spanning the sample period from 1990 to 2011. This is very interesting

because these two factors are estimated based on two different models: one is Bayesian estimation

of a dynamic factor model and the other is Frequentist estimation of a partial quantile regression
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Algorithm 1 PGAS non-Markov kernel for the smoothing distribution pθ(g1: T |x1: T )

Require: Reference trajectory g
′
1: T and parameter θ ∈ Θ.

Ensure: Sample g?1: T ∼ PNθ (g
′
1: T , ·) from the PGAS Markov kernel.

1: Draw
{
gi1, g

i
2, g

i
3, g

i
4

}
∼ rθ,1(g1, g2, g3, g4|x1, x2, x3, x4) for i = 1 · · ·N − 1.

2: Set
{
gN1 , g

N
2 , g

N
3 , g

N
4

}
=
{
g
′
1, g

′
2, g

′
3, g

′
4

}
.

3: Set
{
wi1, w

i
2, w

i
3, w

i
4

}
= Gθ(x1, x2, x3, x4|gi1, gi2, gi3, gi4)/ ? By observation equation ? /

4: for t = 5 to T do
5: Generate

{
g̃i1: t−1

}N−1

i=1
by sampling N − 1 times with replacement from{

gi1: t−1

}N
i=1
/? with probability proportional to the importance weights

{
wit−1

}N
i=1

/ ?Multinomial Resampling Scheme ? /
6: Draw J with

P (J = i) =
wit−1Gθ(xt+2|git−1,g

′
t : t+2)Gθ(xt+1|git−2: t−1,g

′
t : t+1)Gθ(xt|git−3: t−1,g

′
t)fθ(g

′
t|git−1)

Σlw
l
t−1Gθ(xt+2|glt−1,g

′
t : t+2)Gθ(xt+1|glt−2: t−1,g

′
t : t+1)Gθ(xt|glt−3: t−1,g

′
t)fθ(g

′
t|glt−1)

, for i =

1 · · ·N
and set g̃N1:t−1 = gJ1:t−1.
/ ? Particle propagation ? /

7: Simulate git ∼ fθ(gt|g̃it−1) for i = 1, · · · , N − 1/ ? By transition equation ? /

8: Set gNt = g
′
t.

9: Set gi1: t = (g̃i1: t−1, g
i
t) for i = 1, · · · , N

/ ? Importance Weights ? /
10: Set wit = Gθ(xt|git)
11: end for
12: Draw k with P (k = i) ∝ wiT .

Algorithm 2 PGAS for State Space Model

1: Set θ[0] and g1: T [0] arbitrarily.
2: for n ≥ 1 do
3: Draw g1: T [n] ∼ PNθ[n−1](g1: T [n− 1], ·)./ ? By running Algorithm 1 ? /

4: Draw θ[n] ∼ p(θ|g1: T [n], x1: T )
5: end for
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model. This coincidence implies that both factors could be good candidates to proxy for systemic

risk. However, our Bayesian Factor is better in tracking the movement of S&P500 risk premia while

PQR is almost always below the risk premia line. Furthermore, PQR can not explain the cross-

section of individual stock excess returns based on a two-stage Fama-Macbeth regression, which we

will discuss more in the asset pricing implication section. More interestingly, Figure 18 shows our

Bayesian factor is really correlated with new measures capturing the spillover effect of distress risk

or financial crash risk, such as Co V ar, DCI,and MES, instead of old fashion volatility measures

or liquidity measures. In contrast, PQR can not achieve this goal. In all, we can say our Bayesian

Factor is a better measure of financial systemic risk for asset pricing purposes.
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Figure 2. This figure compares Bayesian factor to partial quantile regression factor (PQR) by
Gigli, Kelly, and Pruitt (2016).
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Figure 3. This figure plots the correlation matrix of shocks to all the individual financial systemic
risk measures plus the Bayesian Factor.
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C. High Frequency Textual Systemic Risk Factor

This section describes how our high-frequency textual factor is constructed in three steps. The

first step is sift through news articles from the New York Times business section and to construct

a textual vector based on the semantic neural network language model Word Embedding. Then,

the second step is using LASSO to project the monthly Bayesian factor onto the monthly textual

vector and using the fitted value as our monthly textual Bayesian factor. Thirdly, we can feed

the high-frequency textual data to this trained LASSO model and take the fitted value as our

high-frequency textual risk factor. We also project principal components of cross-section of risk

measures onto word vectors as a robustness check. More details about PCA can be found in the

Appendix.

C.1. Neural Network Language Model

The textual information in this paper consists of the headlines and abstracts of all the articles

from the business section of New York Times from 1980 to 2016. We collect the daily newspaper

information from New York Times API website using Python from January 1, 1980 to December

31, 2016. We adopt a new technology called Word Embedding to collect distributional information

on a per word basis and store it in high-dimensional vectors. The vector can then be used as a

representational framework to characterize how any given word is semantically related to other

words in the corpus. Simply speaking, one word can be represented by one high-dimension vector.

This step is done using neural networks as in Mikolov, Sutskever, Chen, Corrado, and Dean (2013)

.

Word embedding/Word2Vec tries to understand words meaning based on those appearing in

their contexts. Our goal is to parameterize this model using word vectors, a simple feed-forward

neural network model. In this model, Word embedding/Word2Vec is just an unsupervised training
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of a shallow two-layer feed forward neural network model of words. Usually, the neural network

includes three layers: the input layer, the hidden layer, and the output layer. The input layer

consists of one-hot vector representation of word wt. So the input layer has |V | nodes, which is

the size of vocabulary. The hidden layer consists of d = 100 hidden units, which is determined

via state-of-art technique. The values of these components are computed using the embedding

matrix W of size |V |×d. The output layer has each component to represent the probability of each

of context words given input word wt. Similar to the input word wt, the context words are also

represented as one-hot vectors. Assuming the number of context word is 4, the number of output

component in this case is just 4|V |. The output layer is computed via multiplying the hidden layer

and another output matrix W
′

of size d× |V |. Then, we can extract the ith row of the embedding

matrix W as a vector for word i: v(wi) = W T
i . We can now write down easily the probability of a

context word wt+j given input word wt in terms of the word vectors, or just the likelihood of this

neural network model. Specifically,

P (Wt+j |Wt) =
ev(wt)×v

′
(wt+1)

Σw∈V ev(wt)×v′ (w)
(10)

where the same distribution is used for j = ±1,±2 (because the number of context word is 4, so

the window size k = 2 in our example). To train this model our goal will be to find v(w) and v′(w),

w ∈ V , so as to maximize

max ΣtΣ
k
j=−k logP (Wt+j |Wt) (11)

The optimization is done via stochastic gradient ascent algorithm. Again, v(wi) is just what we

call a word vector and it is used to representing each word wi.

Table XIII shows the machine understanding of the word’s meaning based on Word2Vec. Panel
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A shows the detection of the least-matching word in one word groups. For example, within the

group of ”man, woman, child, and kitchen”, Word2Vec can detect that the most different word in

this group is kitchen. Another example is that Word2Vec can pick Austria out of a group of words

including ” Paris, Berlin, London, and Austria”. Panel B shows the most similar words to one

specific word selected by Word2Vec. For example, the top ten most similar words to ”Stock” are:

Shares, Capital, Nasdaq, Bond, Securities, Eurobond, Value, Bull, Volume, and Mondays. The

interesting thing is that Word2Vec can detect a Monday effect in the stock market. Additionally,

because each word is represented as a vector, we can implement simple algebraic operations directly

on words. A very famous example is ” Women + King = Queen ”.

C.2. LASSO Trained Textual Factor of Systemic Risk Measures

Now that we have one Bayesian factor, two PCs , and a 100 dimensional word vector represen-

tation of textual information, we can project both the Bayesian factor and the PCs onto the 100

dimensional vector using LASSO and take the fitted values as our textual risk measures. The reason

to use LASSO here is because LASSO is a dimension reduction technique and we can use LASSO

to reduce the over-fitting problem due to the 100 dimensionality of our independent variables. We

discuss a little bit more about LASSO as follows. Consider the penalized estimation problem:

β̂penalized = arg min(ΣT
t=1(yt − Σiβixi,t)

2 + λΣK
i=1|βi|q) (12)

More specifically, the lasso (short for Least Absolute Shrinkage and Selection Operator), introduced

in the seminal work of Tibshirani (1996), solves the OLS plus L1-penalized problem :
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Table I: Machine Understanding of Words’ Meaning based on Word2Vec

Reported is the mismatch and similarity among words based on Trained Model.

Panel A: Non-Matching Words

Group of Words Non-Matching Word

Man Woman Child Kitchen Kitchen
France England Germany Berlin Berlin

Paris Berlin London Austria Austria

Panel B: Most Similar Words

Man Stock Government Negative Positive

Hero 0.78 Shares 0.71 Authorities 0.73 Gloomy 0.71 Upbeat 0.75
Salesman 0.73 Capital 0.56 Admin 0.70 Conflicting 0.69 Rosy 0.73
Friend 0.73 Nasdaq 0.55 Ministry 0.68 pessimism 0.69 Solid 0.72
Teenager 0.72 Bond 0.54 Parliament 0.68 troubling 0.68 Strong 0.72
Woman 0.70 Securities 0.53 Congress 0.68 persistent 0.66 Strength 0.71
Guy 0.69 Eurobond 0.52 IMF 0.67 Dire 0.64 Resilience 0.69
Boy 0.68 Value 0.49 Regulators 0.64 Lingering 0.63 Reassuring 0.67
Actor 0.68 Bull 0.45 Bailout 0.63 Worsening 0.63 Firmer 0.65
Himself 0.67 Volume 0.44 Reserve 0.62 Warnings 0.62 Robust 0.65
Father 0.66 Mondays 0.43 Reform 0.60 Adverse 0.62 Subdued 0.63
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β̂LASSO = arg min(ΣT
t=1(yt − Σiβixi,t)

2 + λΣK
i=1|βi|) (13)

So Lasso shrinks and selects. It uses the smallest q for which the minimization problem is convex,

which is valuable computationally.

Table XVI shows both the in-sample and out-of-sample fit of projecting factors onto word

vectors based on LASSO. The results are generally very good. In the training period from January

1990 to December 2006, the in-sample R2 of projecting PC1 onto the news vector is 90% and the

in-sample R2 of projecting PC2 onto the news vector is 73%, which means news information can

be well-trained to capture financial systemic risks. The in-sample R2 of projecting Bayesian factor

onto the news vector is 95%, much higher than the projection R2 of PCs. We also examine the out-

of-sample performance of training, and the R2 for PC1, PC2, and Bayesian factor are respectively

25% , 17%, and 30%. This reduces a lot of over-fitting concerns about our LASSO model. We also

show that news information can be trained to explain individual systemic risk measures very well,

such as the Ted-spread and turbulence. The goodness of fit can also be seen from Figure 13, Figure

16, and Figure 14, in which textual factors closely track the original numerical factors.

Another natural question to ask here is whether textual information can ex-ante predict numeric

information or whether it just reflects numeric information ex-post. To shed some light on this issue,

we further explore the Granger Causality relationship between the textual systemic measures and

the numeric risk measures in Table XVII. The results are in favor of textual information granger

causing numeric information. Textual PC1 and Textual PC2 both Granger-cause numerical PC1

and PC2 at 1% significance level while numeric PC1 does not cause Textual PC1. Additionally,

Textual Bayesian factor can Granger cause the Bayesian Factor while the reverse relationship does
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Table II: In-sample and Out-of-sample Distress Risk prediction using word vector based on
LASSO

Reported are in-sample and out-of-sample LASSO fit statistics using both the train subsample and test subsample.

LASSO is specified as DistressRiskt = β0 +
∑
i=1...100 β1,iXi,t + εt+1, where X1,t, . . . , X100,t are 100 vectors un-

supervised trained from all business section articles of New York Times in each month from 1980 to 2016. Panel

A reports variance of the predicted value Textual measures as a fraction of actual Distress Risk measures variance

using in-sample data from 1990.01 to 2006.12. Panel B reports out-of-sample variance of the predicted value Textual

factors as a fraction of original distress measures’ variance using out-of-sample data from 2007.01 to 2009.12.

Lasso Regression: DistressRiskt = β0 +
∑

i=1...100 β1,iXi,t + εt+1

Distress Risk: In sample R2

Ted Spread 0.75
Turbulence 0.70
Bayesian factor 0.95
PC1 0.90
PC2 0.73

Distress Risk: Out of sample R2

Ted Spread 0.21
Turbulence 0.12
Bayesian factor 0.30
PC1 0.25
PC2 0.17

not hold. This supports the conjecture that news information is ex-ante predicting the numeric

information instead of only ex-post summarizing or explaining the numeric information. However,

PC2 indeed Granger-causes textual PC2.
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Figure 4. Textual PC1 from 1990 to 2009. Solid line is end-of-month PC1 extracted out of 19 risk
measures . Dots are Textual PC1,fitted values from the regression PC1,t = β0 +

∑
i=1...100 β1,iXi,t+

εt+1, where xi,t are vector representation of end-of-month text and β is estimated with LASSO.
The training subsample, 1990 to 2006, is used to estimate the dependency between news data and
financial systemic risk. The test subsample, 2007-2009, is used for out-of-sample tests of model fit.
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Figure 5. Textual PC2 from 1990 to 2009. Solid line is end-of-month PC2 extracted out of
19 risk measures . Dots are news implied PC2, fitted values from the regression PC2,t = β0 +∑

i=1...100 β1,iXi,t+εt+1, where xi,t are vector representation of end-of-month text and β is estimated
with LASSO. The training subsample, 1990 to 2006, is used to estimate the dependency between
news data and financial systemic risk. The test subsample, 2007-2009, is used for out-of-sample
tests of model fit.
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Figure 6. Textual Bayesian Factor from 1990 to 2009. Solid line is end-of-month Bayesian factor
extracted out of 19 risk measures . Dots are Textual Bayesian Factors, fitted values from the
regression BayesianFactor2,t = β0 +

∑
i=1...100 β1,iXi,t + εt+1, where xi,t are vector representation

of end-of-month text and β is estimated with LASSO. The training subsample, 1990 to 2003, is
used to estimate the dependency between news data and intermediary systemic risk. The test
subsample, 2004-2009, is used for out-of-sample tests of model fit.
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Table III: Granger causality tests between news information and systemic risk

Reported are Granger causality tests between textual information and numeric information based on training sample.

Panel A reports the test of causality from numeric information to textual information. Panel B reports the test of

causality from textual information to numeric information.∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance

levels, respectively.

Numerical Information causes News Information: p-value
PQR 0.026
Bayesian Factor 0.31
PC1 0.18
PC2 0.002∗∗∗

News Information causes Numerical Information: p-value
PQR 0.001∗∗∗

Bayesian Factor 0.001∗∗∗

PC1 0.000∗∗∗

PC2 0.000∗∗∗

D. Asset Pricing Implication of Bayesian Factor
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D.1. Portfolio Sort Results based on exposure to Bayesian Factor

Table V reports out-of-sample factor regression results across the Bayesian Factor Exposure

βBayesi,t , where βBayesi,t is firm i’s exposure to the Bayesian systemic risk factor in month t. Decile

portfolios are formed at the conclusion of each month, ranging from 1 to 10 with the highest

(lowest) values located in the 10th (1st) decile. Value-Weighted portfolio returns are measured in

the next month and regressed on contemporaneous risk factors: the three Fama-French Factors and

momentum factors(UMD).The intercept in this regression(Intercept) is the portfolio alpha. Our

main result is that intercepts from these regressions increase with βBayes, indicating high βBayes

outperform low βBayes firms. The row ”1-10” contains a statistical test for the difference between

low and high βBayes decile portfolios and shows that the 1.1% difference in the four-factor alphas are

statistically significant (t-statistics = 2.77). The final row ”(1+2) - (9+10)” at the bottom of the

table contains another statistic test for the difference of low and high βBayes quintile portfolios. A

strategy that goes long the quintile portfolio with the highest βBayes and short the quintile portfolio

with the lowest βBayes yields a Fama–French–Carhart alpha of 1.7% per month (t-statistics = 2.77).

The sharpe ratio for this strategy is almost 1. Similar results hold for out-of-sample equal-weighted

portfolio sort based on exposure to the Bayesian factor in table IV.
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Table IV: Out-of-Sample Portfolio Sort Based on Bayesian Factor Exposure

Reported are out-of-sample factor regression results across Bayesian Factor Exposure βBayesi,t , where βBayesi,t is firm
i’s exposure to Bayesian Factor in month t. Decile portfolios are formed at the conclusion of each month, ranging
from 1 to 10 with the highest (lowest) values located in the 10th (1st) decile. The sample consists of 814,997 firm-
months spanning 1995 through 2013. Equal-Weighted portfolio returns are measured in next month and regressed
on contemporaneous risk factors: the three Fama-French Factors and momentum factors(UMD).The intercept in this
regression(Intercept) is the portfolio alpha. t-statistics are shown in the underlying row. ∗, ∗∗, and ∗ ∗ ∗ indicate
10%, 5%, and 1% significance levels, respectively.

Portfolio Decile Intercept mktrf SMB HML UMD

1 0.01*** 0.961*** 1.06*** -0.016 -0.184***
5.88 24.37 21.29 -0.3 -5.61

2 0.006*** 0.866*** 0.695*** 0.23*** -0.094***
4.42 28.36 18.21 5.51 -3.84

3 0.005*** 0.8*** 0.564*** 0.342*** -0.1***
4.18 32.32 18.21 10.1 -5.01

4 0.005*** 0.786*** 0.496*** 0.374*** -0.091***
5.06 36.76 18.57 12.81 -5.31

5 0.006*** 0.755*** 0.491*** 0.361*** -0.115***
5.91 33.98 17.66 11.9 -6.4

6 0.006*** 0.788*** 0.502*** 0.38*** -0.103***
6.9 37.25 18.98 13.14 -6.03

7 0.006*** 0.829*** 0.57*** 0.386*** -0.119***
6.17 38.1 20.95 12.97 -6.81

8 0.008*** 0.831*** 0.631*** 0.33*** -0.173***
6.37 30.52 18.53 8.86 -7.87

9 0.01*** 0.933*** 0.819*** 0.282*** -0.203***
7.21 30.19 21.2 6.68 -8.15

10 0.017*** 0.999*** 1.107*** 0.111 -0.335***
7.48 19.65 17.42 1.6 -8.19

1-10 -0.009*** -0.022 -0.016 -0.181** 0.134***
-3.35 -0.36 -0.21 -2.14 2.69

(1+2)-(9+10) -0.013*** -0.089 -0.14 -0.233* 0.242***
-3.22 -0.97 -1.22 -1.86 3.28
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Table V: Out-of-Sample Portfolio Sort Based on Bayesian Factor Exposure

Reported are out-of-sample factor regression results across Bayesian Factor Exposure βBayesi,t , where βBayesi,t is firm
i’s exposure to Bayesian Factor in month t. Decile portfolios are formed at the conclusion of each month, ranging
from 1 to 10 with the highest (lowest) values located in the 10th (1st) decile. The sample consists of 814,997 firm-
months spanning 1995 through 2013. Value-Weighted portfolio returns are measured in next month and regressed
on contemporaneous risk factors: the three Fama-French Factors and momentum factors(UMD).The intercept in this
regression(Intercept) is the portfolio alpha. t-statistics are shown in the underlying row. ∗, ∗∗, and ∗ ∗ ∗ indicate
10%, 5%, and 1% significance levels, respectively.

Portfolio Decile Intercept mktrf SMB HML UMD

1 -0.003* 1.171*** 0.353*** -0.334*** -0.055
-1.72 26.57 6.34 -5.47 -1.51

2 -0.001 1.091*** 0.082 -0.127** 0.03
-0.28 26.71 1.6 -2.27 0.9

3 -0.002 1.066*** -0.135*** -0.092* 0.06**
-1.45 30.29 3.07 -1.91 2.12

4 -0.001 0.924*** -0.099** -0.017 0.016
-0.56 29.88 -2.56 -0.4 0.65

5 -0.0 0.862*** -0.103*** 0.108*** -0.018
-0.22 32.36 -3.08 2.97 -0.83

6 0.0 0.947*** -0.178*** 0.152*** 0.018
0.34 36.5 -5.48 4.28 0.87

7 0.002 0.945*** -0.083** 0.172*** -0.035
1.56 34.43 -2.42 4.59 -1.6

8 0.003* 0.946*** 0.104** 0.188*** -0.098***
1.91 28.51 2.51 4.15 -3.68

9 0.005*** 1.009*** 0.119*** 0.038 -0.165***
3.02 28.67 2.71 0.79 -5.84

10 0.004 1.474*** 0.575*** 0.191** -0.18***
1.4 21.06 6.57 1.99 -3.2

1-10 -0.011*** -0.272*** -0.165 -0.579*** 0.11
-2.77 -2.93 -1.42 -4.56 1.46

(1+2)-(9+10) -0.017*** -0.19 -0.203 -0.744*** 0.304***
-2.77 -1.41 -1.2 -4.02 2.8
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D.2. FamaMacbeth Regression of Bayesian Factor Exposure

We run Fama and MacBeth (1973a) regressions on the individual firm level in the period from

1995 to 2011. Table VI presents the regression results of monthly future excess returns on systemic

risk exposure in the first two columns and the results of existing funding illiquidity/constraint

exposures in other columns. The first two columns show a significant positive relationship between

systemic risk exposure and future stock returns. Our systemic risk measure is low when financial

systemic risk is high and so a positive coefficient here implies a negative market price of risk on

systemic risk. More interesting, column two shows that after controlling for firm characteristics, the

statistical significance of our risk exposure is even increasing. The regression results also give out

the economic significance of risk exposure and a one standard deviation increase in systemic risk

exposure would result in a 20 basis point increase in stock excess return per month. In contrast,

existing measures for funding liquidity or financial constraint are not working very well. βFGG

is the exposure to funding liquidity measure from Fontaine, Garcia, and Gungor (2016), βCL is

similar funding liquidity measure from Chen and Lu (2014), and βLee is another measure from Lee

(2013). None of three risk exposures are significantly priced in our sample period. This finding

is consistent with our initial conjecture that combining both intermediary information and macro

economic information is better in constructing the pricing kernel than only using either of them.

This is also empirical evidence to motivate a model combining intermediary asset pricing model

, disaster risk model, and the ICAPM. Column seven shows another significant risk factor which

is the intermediary capital ratio factor. However, the HKM factor is not robust enough because

Table VII column four shows that including our risk exposure into the regression would make the

HKM factor insignificant. The last column in Table VII shows regression results including all of

the risk exposures and our risk exposure is the only significant variable in this regression.
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Table VI: Fama-MacBeth Regression of Different Factor Exposures

This table presents Fama-MacBeth regression results from regressing next month returns on my Bayesian factor

exposure and on other risk exposures. The sample consists of 566,186 firm-months spanning 1995 through 2011.

Each column corresponds to a different regression with different risk factor exposure.βFGG is the funding liquidity

measure from Fontaine, Garcia, and Gungor (2016), βCL is a similar funding liquidity measure from Chen and Lu

(2014), and βLee is another measure from Lee (2013).βHKM is the intermediary capital ratio factor exposure. All

regressions have the same controls, including StkVol, Ret(0), Ret(11M), Size, B/M, ROA, and ∆ROA. Ret(0) is past

month firm excess returns. StkVol equals the firm’s total stock trading volume in the observation month. Ret(11M)

equals the cumulative market-adjusted returns measured over the prior eleven months, and it capture the momentum

effect. Size is the log of market capitalization of the firm and B/M is the firm’s book-to-market ratio measured

at the firm’s last yearly announcement date. Amihud is the Amihud illiquidity ratio of the firm in the observation

month. All independent variables are standardized in cross section before Fama-Macbeth regression. Standard errors

are computed across weekly coefficient estimates,following Fama and MacBeth (1973). The resulting t-statistics are

shown in parentheses. ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

M1 M2 M3 M4 M5 M6 M7 M8

Intercept 0.012** 0.028 0.023 0.029 0.024 0.027 0.022 0.028
(2.43) (1.48) (1.39) (1.53) (1.33) (1.45) (1.24) (1.47)

β Bayes 0.029*** 0.015*** – – – – – –
(2.72) (3.12) – – – – – –

β Mkt – – 0.003 – – – – –
– – (1.21) – – – – –

β FGG – – – 0.024 – – – –
– – – (0.68) – – – –

β CL – – – – -0.001 – – –
– – – – (-0.34) – – –

β Lee – – – – – -0.011 – –
– – – – – (-1.16) – –

β HKM – – – – – – 0.007** –
– – – – – – (2.60) –

β PQR – – – – – – – -0.000
– – – – – – – (-1.18)

Ret(1M) – -0.055*** -0.057*** -0.054*** -0.056*** -0.054*** -0.056*** -0.054***
– (-6.83) (-7.43) (-7.06) (-7.07) (-7.26) (-7.28) (-6.70)

Ret(11M) – -0.002 -0.001 -0.001 -0.002 -0.002 -0.002 -0.002
– (-0.48) (-0.39) (-0.32) (-0.61) (-0.66) (-0.50) (-0.50)

Size – -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
– (-4.26) (-4.21) (-4.29) (-4.09) (-4.25) (-4.17) (-4.19)

StkVolume – 0.000*** 0.000*** 0.000*** 0.000** 0.000** 0.000** 0.000***
– (2.68) (2.80) (2.66) (2.59) (2.57) (2.56) (2.62)

Amihud – 0.002** 0.002*** 0.002** 0.001** 0.001** 0.002*** 0.002**
– (2.35) (2.94) (2.32) (2.31) (2.39) (2.71) (2.33)

Profitability – 0.016* 0.017* 0.017* 0.016* 0.017* 0.016* 0.016*
– (1.77) (1.89) (1.93) (1.87) (1.90) (1.79) (1.85)

Distress – -0.003** -0.003** -0.003** -0.003** -0.003** -0.003** -0.003**
– (-2.01) (-2.28) (-2.00) (-2.22) (-2.09) (-2.48) (-1.99)

BE/ME – 0.005** 0.005** 0.005** 0.005** 0.005** 0.005** 0.005**
– (2.33) (2.59) (2.30) (2.39) (2.34) (2.41) (2.46)

Adj R2 0.003 0.048 0.054 0.049 0.049 0.05 0.05 0.048

No. Obs 566185 566185 566185 566185 566185 566185 566185 566185
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Table VII: Comparison among Different Factor Exposures

This table compares Fama-MacBeth regression results from regressing the next month returns on my Bayesian factor

exposure and on other risk exposures. The sample consists of 566,186 firm-months spanning 1995 through 2011. Each

column corresponds to a different regression with different risk factor exposure after controlling for our risk exposure.

All regressions have the same controls, including StkVol, Ret(0), Ret(11M), Size, B/M, ROA, and ∆ROA. Ret(0)

is past month firm excess returns. StkVol equals the firm’s total stock trading volume in the observation month.

Ret(11M) equals the cumulative market-adjusted returns measured over the prior eleven months, and it captures

momentum effect. Size is the log of market capitalization of the firm and B/M is the firm’s book-to-market ratio

measured at the firm’s last yearly announcement date. Amihud is the Amihud illiquidity ratio of firm in observation

month. All independent variables are standardized in cross section before Fama-Macbeth regression. Standard errors

are computed across weekly coefficient estimates,following Fama and MacBeth (1973). The resulting t-statistics are

shown in parentheses. ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

M1 M2 M3 M4 M5 M6

Intercept 0.025 0.021 0.024 0.023 0.023 0.022
(1.49) (1.30) (1.44) (1.40) (1.38) (1.36)

β Bayes 0.013*** 0.013*** 0.014*** 0.012** 0.016*** 0.009**
(3.03) (3.09) (3.26) (2.47) (3.49) (2.04)

β FGG 0.019 – – – – 0.031
(0.72) – – – – (1.24)

β CL – -0.002 – – – -0.004
– (-0.80) – – – (-1.29)

β Lee – – -0.008 – – -0.004
– – (-1.20) – – (-0.61)

β HKM – – – 0.004 – 0.004
– – – (1.16) – (1.26)

β PQR – – – – -0.000 -0.000
– – – – (-0.67) (-0.83)

β Mkt 0.002 0.002 0.002 0.001 0.002 -0.000
(1.10) (0.99) (0.97) (0.34) (0.91) (-0.06)

Ret(1M) -0.061*** -0.060*** -0.059*** -0.060*** -0.060*** -0.063***
(-7.44) (-7.21) (-7.37) (-7.31) (-6.99) (-7.09)

Ret(11M) -0.000 -0.001 -0.000 -0.001 -0.001 -0.000
(-0.14) (-0.37) (-0.11) (-0.37) (-0.28) (-0.08)

Size -0.004*** -0.004*** -0.004*** -0.004*** -0.004*** -0.004***
(-4.34) (-4.18) (-4.32) (-4.34) (-4.23) (-4.43)

StkVolume 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
(2.90) (2.82) (2.81) (2.86) (2.83) (2.82)

Amihud 0.002*** 0.002*** 0.002*** 0.002*** 0.002*** 0.002***
(2.95) (2.99) (2.99) (2.97) (2.99) (3.03)

Profitability 0.017* 0.016* 0.016* 0.015* 0.016* 0.016*
(1.89) (1.86) (1.87) (1.77) (1.85) (1.85)

BE/ME 0.005** 0.005** 0.005** 0.005** 0.005** 0.004**
(2.40) (2.51) (2.46) (2.43) (2.54) (2.35)

Adj R2 0.055*** 0.055*** 0.055*** 0.056*** 0.055*** 0.059***

No. Obs 566185 566185 566185 566185 566185 566185
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D.3. Relationship between Systemic Risk Factor and Firm Distress Characteristics

As our systemic risk factor is intending to measure macro financial crash risk, a firm’s exposure

to this factor should be capturing firm’s distress probability: the more sensitive a firm is to the

systemic risk factor, the higher is the firms distress probability. So, in this section, we explore

the link between systemic risk exposure and firm characteristics related to distress risk. More

specifically, we try to see if a firm’s exposure to the systemic risk factor can affect the ability of the

firm’s distress-related characteristics to predict stock returns. We choose three firm characteristics

related to distress risk: distress probability from Campbell, Hilscher, and Szilagyi (2008) Chava

and Jarrow (2004) Chava (2014) Alanis, Chava, and Kumar (2016), gross profitability from Novy-

Marx (2013), and idiosyncratic volatility from Ang, Hodrick, Xing, and Zhang (2006). Table VIII

shows the Fama-MacBeth regression results from regressing next month returns on those three

characteristics with or without controlling for our systemic risk exposure. The main result is that

systemic risk exposure indeed shrinks the predictability of distress related characteristic for stock

returns. Column four in table VIII shows that distress probability is negatively associated with

stock returns with a t-statistics of -2.48. Inclusion of systemic risk exposure in column five shrinks

in absolute value the distress probability t-statistic to -1.77, a barely significant level. Similarly,

the idiosyncratic volatility t-statistic has been reduced n absolute value from -2.07 in column six to

-1.33 in column 7 after including systemic risk exposure. To gain more insight in this direction, we

construct a five-factor alpha based on a new five-factor model that includes systemic risk factor.

The systemic risk factor here consists of a mimicking portfolio returns constructed by long the low

systemic risk exposure quintile and short the high systemic risk exposure quintile. This table shows

a big difference between the four-factor alpha and the five-factor alpha. For example, t he four-

factor distress alpha is -0.638 per month while the five-factor distress alpha is -0.406 per month, a

37% decrease in alpha. The t-statistics also shrinks in absolute value from -2.07 to -1.21, making
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the distress anomaly not significant anymore. People used to struggle to explain this negative

distress anomaly. Here, as distress anomaly loads positively on the systemic risk mimicking factor,

a possible way to explain the distress anomaly is that more distressed firms have bigger exposure to

the systemic risk and then distress risk is a severe risk to investors. With respect to the profitability

anomaly and the idiosycratic volatility anomaly, both of them are explained by the systemic risk

factor about 22%. Table X shows the results of a bivariate portfolio sort conditioned on systemic

risk exposure first and then each of three firm characteristics. We find that after neutralizing

systemic risk exposure, those three anomalies are not significant anymore.
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Table VIII: Bayesian Factor Exposure and Firm Characteristics

This table compares Fama-MacBeth regression results from regressing next month returns on distress-related firm

characteristics with or without controlling for systemic risk exposure. The sample consists of 566,186 firm-months

spanning 1995 through 2011. Each column corresponds to each regression with or without including the Bayesian sys-

temic factor exposure. GP is gross profitability (Robert Novy-Marx,2013), Distress is default probability(Campbell,

Hilscher and Szilagyi, 2008), and IdVOL is idiosyncratic volatility. All regressions have the same controls, including

StkVol, Ret(0), Ret(11M), Size, B/M, ROA, and ∆ROA. Ret(0) is past month firm excess returns. StkVol equals

the firm’s total stock trading volume in the observation month. Ret(11M) equals the cumulative market-adjusted

returns measured over the prior eleven months , and it captures the momentum effect. Size is the log of the firm’s

market capitalization and B/M is the firm’s book-to-market ratio measured at the firm’s last yearly announcement

date. Amihud is the Amihud illiquidity ratio of firm in observation month. All independent variables are standard-

ized in cross section before the Fama-Macbeth regression. Standard errors are computed across weekly coefficient

estimates,following Fama and MacBeth (1973). The resulting t-statistics are shown in parentheses. ∗, ∗∗, and ∗ ∗ ∗
indicate 10%, 5%, and 1% significance levels, respectively.

M1 M2 M3 M4 M5 M6 M7

Intercept 0.026 0.022 0.024 0.025 0.023 0.022 0.023
(1.53) (1.32) (1.41) (1.41) (1.37) (1.33) (1.37)

GP – 0.0025*** 0.002** – – – –
– (3.3) (2.36) – – – –

Distress – – – -0.0041** -0.0033* – –
– – – (-2.48) (-1.77) – –

IdVOL – – – – – -0.0029** -0.002
– – – – – (-2.07) (-1.33)

βBayes 0.0015*** – 0.0013** – 0.0011** – 0.0011**
(2.58) – (2.35) – (2.04) – (2.04)

Controls Yes Yes Yes Yes Yes Yes Yes

Adj R2 0.051 0.051 0.051 0.051 0.051 0.051 0.051

No. Obs 566185 566185 566185 566185 566185 566185 566185
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Table IX: Anomaly strategy average returns and abnormal performance

This table reports the average excess returns and alphas for strategies formed by sorting on profitability, distress and

idiosyncratic volatility. Strategies are longshort extreme quintiles from a sort on the corresponding variable,employing

NYSE breaks,and returns are value-weighted. FF4 alpha is Fama-French four factor alpha, and alpha is constructed

from five factor model including systemic risk mimicking portfolio. t-statistics are shown in the underlying row. ∗,

∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively. The sample covers January 1995 through

December2011.

Sorting Variables alpha and factor loadings

H-L FF4 alpha alpha Mkt SMB HML UMD MimicFactor

Profitability 0.412** 0.485** 0.378 -0.136*** -0.121** -0.165** 0.092** -0.035*
2.02 2.00 1.51 -2.7 -2.01 -2.43 2.31 -1.66

Distress -0.761 -0.638** -0.406 0.509*** 0.430*** 0.017 -0.910*** 0.122***
-1.14 -2.07 -1.21 8.25 5.82 0.21 -18.67 2.91

IdVOL -0.926 -0.948** -0.774 0.994*** 1.194*** -0.798*** -0.436*** 0.096*
-1.14 -2.10 -1.61 10.17 10.75 -6.39 -5.95 1.67

Table X: Value-Weighted Portfolio Sort based on Bayesian Factor Exposure and Firm Charac-
teristics

This table reports average monthly returns of portfolios sorted on stock characteristics and Bayesian factor exposure

over our sample period from January 1995 to December 2011. Each month we sort stocks in ascending order into

quintile portfolios on the basis of one of our Bayesian factor exposure measures. Within each quintile, we sort stocks

into five additional portfolios (Low, 2, 3, 4, and High) based on each firm characteristics, and then average each of the

portfolios across the five quintiles that resulted from the first sort. We use value-weigh stocks in each portfolio.We

compute the difference between portfolio High and portfolio Low (H-L) and four-factor alpha. t-statistics are shown

in the underlying row. ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

Double Sort Conditioned on βBayes

Variable H-L α Mkt SMB HML UMD

Profitability 0.192 0.305 -0.14** -0.146** 0.092 0.063
0.76 1.25 -2.47 -2.23 -1.33 1.57

Distress -0.465 -0.448 0.408*** 0.384*** 0.054 -0.814***
-0.74 -1.45 5.86 4.75 0.64 -16.55

IdVOL 0.018 -0.285 0.76*** 1.056*** -0.607*** -0.397***
0.02 -0.68 7.8 9.36 -5.14 -5.78

42



E. Property of High Frequency Daily Textual Factor

As we can use LASSO to project the monthly systemic risk factor onto monthly textual infor-

mation with good fit both in sample and out of sample (section II.C), we can then multiply the

LASSO weights by daily textual information to construct a high-frequency(daily) textual systemic

risk factor. Actually, this an unsupervised learning of the high-frequency systemic risk factor due

to the lack of the supervised objective, the true systemic risk factor. But, we are comfortable to say

that our high-frequency measure captures what we want because we find that this daily textual sys-

temic risk factor has a significant 12% correlation with the daily systemic-risk Mimicking-portfolio

returns at 99% confidence level. On top of this, the daily textual systemic risk factor is better

than the daily systemic-risk mimicking-portfolio returns in predicting future macro financial states,

for example the VIX index. We focus on VIX here because Engle and Rangel (2008) refer to the

relation between the macro economy and stock market volatility as the central unsolved problem of

25 years of volatility research. We try to shed some light on this issue and use our high-frequency

daily systemic risk to predict this very informative measure VIX at the daily level. Table XI show

estimates of predictive regressions of future VIX shocks onto high-frequency systemic risk shocks.

The textual systemic risk shocks have significant positive association with future VIX shocks while

the systemic risk mimicking portfolio does not show any predictive power for future VIX shocks.

We also formally use the Fama-Macbeth two-step procedure to estimate the market price of risk

on this high-frequency daily textual systemic risk factor and Table XII show a consistent positive

market price on this high-frequency risk factor. This is a pure out-of-sample test because the

training period of the high-frequency risk factor is from 1990 to 2003 while the asset pricing test

sample is from 2007 to 2015. Each row corresponds to an asset pricing test with different portfolios.

The first row uses the Fama-French 25 portfolios based on size nad momentum, the second row

utilizes the Fama-French 25 portfolio based on size and book-to-market ratio, and the last row uses
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Figure 7. The Daily Textual Bayesian Factor and TED Spread from 2006 to 2010. Red line is
the daily Textual Bayesian Factor and blue line is the daily TED Spread.

the Fama-French 25 portfolios based size and investment. All three tests show a positive market

price on the daily systemic risk factor, consistent with monthly Fama-Macbeth regression in table

VI. The estimated annualized risk premiums based on three sets of portfolios are respectively 8.7%,

6.44%, and 4.92%. More importantly, the J-statistics are not very high in this case, which means

this four-factor model is probably a good asset pricing model.
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Table XI: Predicting ∆V IX

This table shows estimates of the following predictive regression: ∆V IXt+1 = a + bSystemicShockt + εt+1. The
sample is daily observations from January 2006 through December 2014. Robust Newey-West t-statistics are reported
in parentheses.

Predictive Regression: ∆V IXt+1 = a+ b ∗ SystemicShockt + εt+1

Constant 0.0018 0.0022 0.0019* 0.0021**
(1.14) (1.377) (1.860) (2.056)

V IXt -0.119*** -0.0868***
(-5.6) (-5.396)

Textual Systemic Risk Shock 0.0129** 0.0115**
(2.245) (2.024)

Systemic Risk Mimicking Portfolio -0.0546 0.0367
(-0.562) (0.373)

Table XII: Market Price of Daily Textual Factor Mimicking Portfolio

Reported are the market price risk for the Daily Textual Factor across different portfolios. Each row is estimated
as E[Re] = λ0 + βfacλfac. E[Re] are expected excess returns for each portfolios. VWMe, SMB and HML are
the Fama-French three factors. HKM denotes the intermediary capital factor from He, Kelly and Manela(2016).
Bayesian Factor is the first difference of our Bayesian Factor. The first row estimates the market price of risk using
monthly Fama-French 25 Portfolios Formed on Size and Book-to-Market from Jan 1990 to Dec 2009. The second
row estimates market price of risk using monthly Fama-French 25 Portfolios Formed on Size and Momentum. The
third row estimates market price of risk using both Fama-French 25 Portfolios Formed on Size and Book-to-Market
and Fama-French 10 Portfolios Formed on Momentum from Jan 1990 to Dec 2009. The following rows report similar
results for bond portfolios, option portfolios, commodity portfolios, and currency portfolios. The J statistic, which
tests whether the pricing errors are jointly zero, is shown in the last column of each row. Fama-MacBeth t-statistics
are reported in parenthesis and ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

VWMe SMB HML SystemicRisk

25SizeMoM0715 10.974
(22.081)

∗∗∗ 1.904
(8.198)

∗∗∗ −0.035
(−0.074)

8.700
(17.489)

∗∗∗ J-stat: 46.2
(0.006)

25SizeBe0715 9.982
(20.105)

∗∗∗ 0.954
(4.303)

∗∗∗ −1.735
(−6.466)

∗∗∗ 6.437
(28.121)

∗∗∗ J-stat: 54.0
(0.001)

25SizeInv0715 10.033
(20.221)

∗∗∗ −1.906
(−7.043)

∗∗∗ 8.117
(18.489)

∗∗∗ 4.916
(13.143)

∗∗∗ J-stat: 45.0
(0.008)
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F. Conclusion

We extract a commonality of 19 individual financial distress measures to construct an aggregate

Bayesian systemic risk factor based on Particle-MCMC. The Bayesian factor is significantly and

consistently priced by different portfolios and implies a negative market price of financial systemic

risk. Furthermore, exposure to the Bayesian Factor can predict the future cross-section of stock

excess returns and firms with high Bayesian Factor exposures out-perform those with low Bayesian

Factor exposures by 1.7% per month. Additionally, We find our systemic risk factor is linked to

distress related firm characteristics and more distressed firms are more sensitive to our systemic risk

factor. This shed some light on why distress risk could be a severe risk for investors. Incorporating

our systemic risk factor can help explain 36% of the distress anomaly.

More interestingly, we project our monthly Bayesian latent factor onto textual data to construct

a high-frequency textual risk measure. Textual information indeed shows good explanatory power

for systemic risk both in-sample and out-of-sample. Simple Granger Causality test shows that Tex-

tual Factors can Granger cause the Bayesian factor while the Bayesian factor can not Granger cause

the news based factor. This sheds some light on an open question of whether textual information

only reflects numeric information or could lead numeric information in the first place. Besides,

we utilize the fitted values out of our LASSO projection to construct a high-frequency risk factor

and we find this high-frequency factor is also consistently and significantly priced across different

equity portfolios. Actually, it has a significant 12% correlation with daily systemic-risk mimicking-

portfolio returns at a 99% confidence level. On top of this, the daily textual systemic risk factor

is more informative than the daily systemic-risk mimicking-portfolio returns in predicting future

macro financial conditions, for example, the time-varying VIX index.
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II. Chapter 2: Combining Bond Demand and Supply Factors

Recent empirical study in asset pricing has uncovered significant predicable variation in the

excess returns of U.S. government bonds, a violation of expectations hypothesis.( Cochrane and

Piazzesi (2002),Ludvigson and Ng (2009)). Except for those literature mainly focusing on demand

of bond, there is another stream of literate examining how supply of bond affect bond excess re-

turns. (Greenwood, Hanson, and Stein (2015),Greenwood and Vayanos (2014),Krishnamurthy and

Vissing-Jorgensen (2011)) While individual demand and supply measures are explored in separate

papers, there has been little empirical analysis of them as a group.The first question this paper

addresses is how to extract commonality of ”factor zoos” related to both demand of bond and

supply of bond. One way around ”big data” problem is asymptotic principle component analysis

for high-dimensional datasets. Asymptotic PCA allows me to extract a few estimated factors out

of a large number of series , and eliminate the arbitrary reliance on a small number of indicators

to proxy for macroeconomic fundamentals. To my best knowledge, this paper is the first one to

combine both demand of bond and supply of bond to revisit the question of whether there ex-

ists important macro economic factors in bond risk premia . Another way to solve this kind of

problem is using machine learning technique called LASSO. We use LASSO predictive regression

to confirm the predictability of bond demand factors and supply factors and also to pick out the

most important underlying macro economic variables for the purpose of prediction. So, this paper

adopts two different methodology to estimates common latent factors from a monthly panel of 133

measures of economic activity and divide them into two groups: demand factor and supply factor.

We begin with a comprehensive analysis of whether demand factor or supply factor predict excess

bond returns, and then move on to investigate how related factors influence excess bond returns

and which one would be more important. Our results indicate that excess bond returns are indeed

forecastable by both demand and supply factor in the sample from 1996:1 to 2015:12. The pred-
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icative power of estimated factors is stronger for longer bonds and have their strongest predictive

power for five-year bonds, explaining 24.58% of the one-year-ahead variation in their excess returns.

More interestingly, CP factor is not significant in predicting excess bond returns anymore in this

sample. This means that the estimated factors contain substantial information about future bond

returns that is not contained in CP factor. We also try to put economic interpretation on estimated

latent factors. The first demand factor, the most important demand factor out of all the estimated

factors we study, is highly correlated with output and labor market but not highly correlated with

prices or financial market. The second demand factor highly correlated with measures of the ag-

gregate price-level and the fifth factor highly correlated with consumption and inventory orders

also have significant predictive power for excess bond returns. On the other hand, the first supply

factor highly correlated with public debt and the second supply factor highly correlated with money

supply have substantial predictive power for excess bond returns. On top of this roughly economic

characterization of bond factors, we use LASSO to identify 15 most important underlying economic

variables out of original 133 variables and classify them into bond demand group and supply group.

This procedure helps to give the direct economic meaning to bond demand variables and supply

variables. We find labor market variables are the most important components of our demand factors

and total amount of us government bonds outstanding is the most important supply variable.

Except for bond return predictability of demand factors and supply factors, we also examine the

cross-sectional stock return predictability of those factors. This is motivated by the hypothesis that

bond factors should be good state variables for pricing kernel and can price different classes of asset

prices. Actually, this paper is the first study trying to sort stock portfolios based on stocks’ exposure

to bond factors. This idea is consistent with consumption/production capital asset pricing model

or Merton (1973) ICAPM, the building blocks of modern asset pricing theory. Over the recently

thirty yeas, there are very few research along this direction because people can not find empirical
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evidence for a priced consumption growth factor or production growth factor. This paper tries to

utilize exhaustively many economic variables and macroeconomy-bond nexus to shed some light

on this issue. Indeed, we find that both of aggregate demand factor and aggregate supply factor

(constructed as CP factor) are priced by the cross-section of stock returns. In particular, portfolios

with highest exposure to aggregate supply factor outperform portfolios with lowest exposure to

supply factor 1.8% per month while portfolios with lowest exposure to aggregate demand factor

outperform portfolios with highest exposure to demand factor 2.1% per month.

We further build a VAR including supply factor, demand factor, excess bond return, and CP

factor to implement variance decomposition analysis. It is shown that most of the variation in

excess bond return and yields are not due to contemporaneous demand factor and supply factor,

but demand factor can explain more share of variation in excess bond returns than supply factor.

The finding of VAR is also supportive of unspanned factor conjecture in existing literature including

Duffee (2011),Joslin, Priebsch, and Singleton (2014). Unspanned factors are those factors which are

unspanned by contemporaneous yield curve but have predictive power for excess bond returns in

the future. This is puzzling because there is no consensus on why there exist unspanned factors and

which kind of variables are unspanned factors for bond. Following this direction, the second question

this paper tries to address is whether predictive demand factor or supply factor is unspanned and

how these unspanned factor affect market price of risk of spanned factors. We adopt Adrian, Crump,

and Moench(2013)’s three step linear regressions to test if demand and supply factors are unspanned

and to estimate the effects of unspanned factors on the market price of spanned factors. The

results show that both demand and supply factors are unspanned and they have significant effects

on market price of risk. Moreover, MTSMs enable us to decompose bond yields into expectation

component and yield risk premium component and we find MTSMs without unspanned factors

under-estimate yield risk premium.
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The rest of this paper is organized as follows. In the next section, we briefly review related

literature discussed above. Section 2 lays out asymptotic principal components analysis to estimate

demand and supply factors. We also present the results of one-year-ahead predictive regressions

for excess bond returns and discuss the economic interpretation of significant demand and supply

factors. Section 3 is alternative machine learning of bond demand factors and supply factors to

identify the most important economic variables based on LASSO. Section 4 is portfolio sort based

on stocks’ exposure to demand and supply factors. Section 5 describe the VAR model with impulse

response function and variance decomposition analysis for supply factor, demand factor, excess

bond return, and bond yields. Section 6 follows Adrian, Crump, and Moench(2013)’s three step

linear regressions to estimate market price of risk of affine term structure model and decompose

bond yield into two different components. Section 7 concludes.

A. Related literature

This paper is related to Ludvigson and Ng (2009), which uses static and dynamic factor model

to examine whether macroeconomic variables could predict bond excess returns. They construct a

monthly panel of 132 measures of economic activity and extract eight latent common factors out

of those 132 economic variables using two methods:Asymptotic PCA and Gibbs-MCMC. They find

these latent factors could predict bond excess returns in the following twelve months beyond CP

factors both in sample and out of sample. This paper differs from their paper in the sense that

their macroeconomic variables are only reflecting the demand of bond while this paper constructs

economic variables covering both demand and supply of bond and compares the predictability of

bond excess returns using demand factors and/or supply factors. So, this paper is also related to

existing literature talking about supply factors of bond excess returns. Greenwood, Hanson, and

Stein (2015) finds that supply of T-bills affects ”z-spread” of yield curve, which reflects a money-
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like premium on short-term T-bills, above and beyond the liquidity and safety premia embedded in

longer term Treasury yields. Greenwood and Vayanos (2014) explores how the supply and maturity

structure of U.S. debt affect U.S. Treasury bond yields and expected returns. They construct the

duration of government debt as the maturity-weighted-debt-to-GDP ratio and find that this ratio

is positively associated with bond yields and can predict future bond returns. Moreover, they show

that these effects are stronger for longer-maturity bonds and following periods when arbitrageurs

have lost money. Those literature on supply factors talk about one ore two ad hoc explanatory

variables in each paper and never link factors to each other. In this paper, we combine all these

supply factors to construct the latent common supply factor and examine its predictive power for

bond excess returns.

B. PCA Analysis of Economic Variables

B.1. Implementation and Data

I study monthly data spanning the period 1996:12015:12, a sample newer than the one in

Ludvigson and Ng (2008). Observations on one- through five-year zero-coupon U.S. Treasury bond

prices are taken from the Fama-Bliss dataset available from the Center for Research in Securities

Prices (CRSP). Excess bond returns, yields, and forward rates are constructed from this dataset. I

estimate factors from a balanced panel of 133 macroeconomic time series, each spanning the period

1996:1 to 2015:12. Most of series are coming from large macroeconomic database called FRED-MD

on Michael W. McCracken’s website. The remaining series are from Global Insight. The series

were selected to represent broad categories of macroeconomic time series including both demand

and supply sides of economy: output and income, labor market, consumption and orders, order

and inventories, international trade and foreign exchange measures, prices, stock market indicators,

money and credit, treasury bond outstanding, fiscal deficit, UP public debt,and bond duration. The
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more detailed description of economic series is given in the Appendix, where the coding column

indicates how the original data were transformed to stationary series. All of the raw data have

been standardized prior to estimation.

The econometric framework in this paper involves estimating common factors from a big dataset

of economic activity. This estimation is carried out via asymptotic principle components analysis,

a procedure that has been used for forecasting bond excess returns in Ludvigson and Ng (2008).

Principal component analysis (PCA) is based on the (NN) sample covariance matrix Ω̂N = 1
TX

′
X

where X is N × T matrix of observed variables.Asymptotic principal component analysis is based

on the (TT ) covariance matrix Ω̂T︸︷︷︸
T×T

= 1
NXX

′
. My notation for bond returns and yields closely

follows that in Ludvigson and Ng (2008) and Cochrane (2005). I refer the reader to those papers for

a more detailed description of the econometric method. The implementation involves an estimation

of the following equation:

xi,t = λift + ei,t (14)

rx
(n)
t+1 = α

′
Ft + β

′
Zt + εt+1 (15)

where xi,t, i = 1, · · ·N, t = 1, · · · , T are T ×N panel of macroeconomic data , where the cross-

sectional dimension N is large, and possibly larger than the number of time periods, T. ft is r × 1

latent common factors , λi is a corresponding r×1 vector of factor loadings, and ei,t are idiosyncratic

errors. rx
(n)
t+1 denotes the continuously compounded (log) excess return on an n-year discount bond

in period t + 1. Excess returns are defined as the difference between the log holding period return

from buying an n-year bond at time t and selling it as an n 1 year bond at time t + 1, and the

log yield on the one-year bond. Finally, Ft ⊆ ft, and Zt are control variables such as CP factors.
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I pick the number of latent common factors according to the panel information criteria developed

in Bai and Ng (2002). As common factors are hidden factors and not observed , I estimate them via

asymptotic PCA, which is optimally minimizing the sum of squared residuals xt −Λft to estimate

time t factors f̂t .In this paper, hats denotes estimated values.

B.2. Asymptotic Principle Component Analysis

Table 1 Panel A shows the OLS predictive regression results for two year bond excess returns. In

this newer sample, CP factor itself only explains 4.1% of the variation of bond excess returns. Back

to Cochrane and Piazzesi (2005), CP factor could explain a much bigger portion of the variation

of bond excess returns, which is around 31%. So the predictability of CP factor decreases a lot

as times goes by and there might be a new economic regime after 1996. Adding seven demand

factors into regression results in an increase in adjusted R-square of 7.73%, showing an important

role of demand factor in predicting bond excess returns. Especially, the first demand factor has a

significant negative effect on bond excess returns and 1 standard deviation increase in this factor

would dampen bond excess return by 33 basis point. Another interesting observation is that CP

factor is not statistically significant after adding the demand factors. So macro factors might

be more useful in predicting bond risk premia than CP factors. In the last specification, supply

factors are included and adjusted R-square increases further to 17.26%. Supply factors are at

least as important as demand factors in predicting bond risk premia. I then follow Ludvigson and

Ng (2009) to construct single demand factor and single supply factor as the fitted values from a

regression of average (across four different maturities) excess returns on the set of demand and

supply factors, respectively. I denote them as FDemandt and FSupplyt . Panel A shows that both

of them have economic and statistic significance in affecting excess bond returns. A 1 standard

deviation increase in demand factor and/or supply factor would increase excess bond return by 36
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basis point and 45 basis point respectively. Panel B, Panel C, and Panel D shows the predicative

regression results for three year excess bond returns, four year excess bond returns, and five year

excess bond returns respectively. For each excess bond return, the regressions show very similar

qualitative implications. One important interesting observation here is that the more maturity

bond is, the predictability of both demand and supply factors are. This might be because economic

variables take effect in a medium run instead of in a short run. Another explanation might be that

economic factors take time to affect excess bond returns and therefore a lagged effect exist here.

Also, this fact is consistent with unspanned factor assumption: factors which are not spanned by

contemporaneous bond yields could predict future bond returns. I will talk more about this later.
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Table XIIIRegression of monthly excess bond returns on lagged factors

The table reports estimates from OLS regressions of excess bond returns on the lagged variables named in column
1. The dependent variable rxnt+1is the excess log return on the n-year Treasury bond. F̂t denotes a set of regressors.
These denote factors estimated by the method of asymptotic principal components using a panel of data with 133
individual series over the period 1996:12014:12. FSupply is the single factor constructed as a linear combination of the
four estimated supply factors .FDemand , is the single factor constructed as a linear combination of the seven estimated
demand factors. CPt is the Cochrane and Piazzesi (2005) factor that is a linear combination of five forward spreads.
Newey and West (1987) corrected t-statistics have lag order 18 months and are reported in parentheses. Coefficients
that are statistically significant at the 5% or better level are highlighted in bold. A constant is always included in
the regression even though its estimate is not reported in the table. The sample spans the period 1996:12014:12.

55



F̂D
1t F̂D

2t F̂D
3t F̂D

4t F̂D
5t F̂D

6t F̂D
7t F̂S

1t F̂S
2t F̂S

3t F̂S
4t CPt FDemand

t FSupply
t adj. R2

Panel A: rx
(2)
t+1 = β0 + β′1F̂t + β2CPt + εt+1

a 0.18 4.1%

(1.07)

b −0.33 0.09 -0.06 0.003 -0.08 0.008 -0.09 0.21 11.83%

(-2.09) (1.73) (-0.33) (0.03) (-0.99) (0.05) ( -0.60) (1.08)

c −0.47 0.16 -0.15 0.01 −0.16 -0.04 -0.11 0.29 -0.003 0.12 −0.17 0.21 17.26%

(-3.05) (2.83) (-0.97) ( 0.09) (-1.99) (-0.31) (-0.76) (3.71) (-0.07) (1.62) (-2.27) (1.11)

d 0.16 0.23 9.86%

(0.93) (2.29)

e 0.13 0.36 0.45 14.37%

(0.76) (3.17) (2.30)

Panel B: rx
(3)
t+1 = β0 + β′1F̂t + β2CPt + εt+1

a 0.42 5.91%

(1.24)

b −0.57 0.19 -0.25 0.05 -0.23 -0.08 -0.08 0.45 13.91%

(-2.05) (1.9284) (-0.79) (0.24) (-1.56) (-0.31) ( -0.3) (1.17) 13.91%

c −0.81 0.30 -0.40 0.06 −0.36 -0.16 -0.1 0.48 -0.007 0.23 −0.28 0.45 17.9%

(-2.92) (2.82) (-1.44) ( 0.29) (-2.53) (-0.67) (-0.37) (3.65) (-0.09) (1.78) (-2.13) (1.18)

d 0.36 0.53 14.61%

(1.08) (2.76)

e 0.31 0.75 0.79 18.39%

(0.76) (3.73) (2.52)
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F̂D
1t F̂D

2t F̂D
3t F̂D

4t F̂D
5t F̂D

6t F̂D
7t F̂S

1t F̂S
2t F̂S

3t F̂S
4t CPt FDemand

t FSupply
t adj. R2

Panel C: rx
(4)
t+1 = β0 + β′1F̂t + β2CPt + εt+1

a 0.71 8.6%

(1.6)

b -0.57 0.3 -0.66 0.04 -0.36 -0.26 -0.03 0.77 17.66%

(-1.51) (2.13) (-1.59) (0.16) (-1.76) (0.72) ( -0.06) (1.41)

c −0.87 0.44 −0.85 0.06 −0.51 -0.36 0.01 0.58 0.01 0.32 −0.39 0.76 20.73%

(-2.34) (2.89) (-2.28) ( 0.19) (-2.7) (-1.05) (0.02) (3.38) (0.08) (1.95) (-2.24) (1.42)

d 0.62 0.79 18.91%

(1.43) (2.73)

e 0.55 1.09 1.05 22.32%

(1.29) (3.86) (2.99)

Panel D: rx
(5)
t+1 = β0 + β′1F̂t + β2CPt + εt+1

a 0.91 8.94%

(1.82)

b -0.59 0.46 −1.11 -0.01 −0.54 -0.45 0.20 1.02 22.6%

(-1.44) (2.63) (-2.24) (-0.03) (-2.18) (-1.03) ( 0.44) (1.57)

c −0.91 0.60 −1.32 0.01 −0.70 -0.56 -0.19 0.64 -0.01 0.38 −0.38 1 24.58%

(-2.2) (3.2) (-2.9) ( 0.03) (-2.96) (-1.34) (0.42) (3.25) (-0.05) (2.02) (-1.98) (1.56)

d 0.78 1.12 21.76%

(1.63) (2.85)

e 0.70 1.45 1.16 24.26%

(1.48) (3.87) (3.06)
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Figure 8. Marginal R-squares for F̂D1t .

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂D1t .
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.

B.3. Economic interpretation of the factors

I also examine the economic interpretation of all estimated factors. The first demand factor,

the most important demand factor out of all the estimated factors I study, is highly correlated with

output and labor market but not highly correlated with prices or financial market. The second

demand factor highly correlated with measures of the aggregate price-level and the fifth factor

highly correlated with consumption and inventory orders also have significant predictive power for

excess bond returns. On the other hand, the first supply factor highly correlated with public debt

and the second supply factor highly correlated with money supply have substantial predictive power

for excess bond returns. The details are shown in following graphs from figure 1 to figure 6.
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Figure 9. Marginal R-squares for F̂D2t .

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂D2t .
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.

Figure 10. Marginal R-squares for F̂D5t .

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂D5t .
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.
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Figure 11. Marginal R-squares for F̂S1t.

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂S1t.
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.

Figure 12. Marginal R-squares for F̂S2t.

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂S2t.
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.
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Figure 13. Marginal R-squares for F̂S4t.

Note: Chart shows the R-square from regressing the series number given on the x-axis onto F̂S4t.
See the Appendix for a description of the numbered series. The factors are estimated using data
from 1996:1 to 2015:12.
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C. Machine Learning of Important Economic Variables

Although we briefly characterize the latent factors by relating them to the underlying variables in

our panel dataset, the factors are identifiable only up to an r r matrix and a detailed interpretation

of the individual factors would be inappropriate. Moreover, we caution that any labeling of the

factors is imperfect, because each is influenced to some degree by all the variables in our large

dataset and the orthogonalization means that no one of them will correspond exactly to a precise

economic concept like output or unemployment, which are naturally correlated. To avoid this

issue and give more economic interpretation about bond predictability, we unitize machine learning

technique LASSO to identify the underlying meaningful economic variable for predicting bond risk

permia. We first use LASSO to run similar predictive regression to see whether the same 133 macro

economic variables can still generate bond predictability under new methodology. Simultaneously,

LASSO will automatically pick the most important variables in predicting bond excess returns and

we call them as key economic variables. Then, we examine the pricing power of those key economic

variables for cross-section of stock returns.

C.1. LASSO Identification of Key Economic Variables

Table XIV shows both the in-sample and out-of-sample fit of projecting bond excess returns

onto 133 macro economic variables based on LASSO. The results are generally very good and much

better than PCA regression. In training period from March 1996 to March 2009, the in-sample R2

of projecting the excess return on the 2-year treasury bond rx2
t+1 onto macro economic variables

is 20% and is much better than the same R2 in table XIII. The in-sample R2 of regressing the

excess return on the 5-year treasury bond rx5
t+1 is even reaching up to 40%. We also examine

the out-of-sample performance of training, and the R2 for rx2
t+1, rx3

t+1, rx4
t+1, and rx5

t+1 are

respectively 2%, 14%, 26%, and 34%, which would reduce a lot of over-fitting concerns about our
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LASSO model. Similar strong predictability results hold for alternative machine learning technique

Support Vector Machine, as shown in panel B of table XIV. Figures 14 and 15 show the fitness of

LASSO and SVM graphically. More importantly, LASSO can automatically penalize unimportant

variables and shrink coefficients on those unimportant variables to zero. Only important variables

are left with nonzero coefficients, as shown in table XV. Now, instead of having to look at 133

macro economic variables, we only need to focus on those 15 important variables to predict bond

excess returns. Those 15 economic variables can also be divided into two groups: bond demand

group and bond supply group. In particular, Fiscal Deficit, US Total Public Debt Outstanding

Notes, and US Total Public Debt Outstanding belong to supply group and the other variables

belong to demand group. These 15 observed variables have their own economic meanings and can

give us direct interpretations. For example , IPDMAT represents industry production of durable

materials and IPNMAT is industry production of nondurable materials. Out of 13 industrial

production index, only those two index are important for predicting bond returns and should be

classified as one of demand variables. Another striking feature here is that labor market is the

most important component of our demand factor. Seven out of ten demand variables are coming

from labor market variables: UEMP27OV, CES1021000001, USCONS, SRVPRD, USWTRADE,

USFIRE, and CES0600000007.
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Table XIV: In-sample and Out-of-sample Bond Risk Premia prediction using macro-economic
Variables based on LASSO and SVM

Reported are in-sample and out-of-sample LASSO fit statistics using both the train subsample and test subsample.

LASSO is specified as rett = β0 +
∑
i=1...131 β1,iXi,t + εt+1, where X1,t, . . . , X131,t are 131 macro-economic variables.

Panel A reports variance of the predicted value as a fraction of actual bond risk premia’s variance using in-sample

data from 1996.03 to 2009.03. Panel B reports out-of-sample variance of the predicted value as a fraction of original

risk premia’ variance using out-of-sample data from 2009.04 to 2014.12.

Panel A Lasso: rxt+1 = β0 +
∑

i=1...131 β1,iXi,t + εt+1

Bond Risk Premia: In sample R2

rx
(2)
t+1 0.2

rx
(3)
t+1 0.31

rx
(4)
t+1 0.35

rx
(5)
t+1 0.40

Bond Risk Premia: Out of sample R2

rx
(2)
t+1 0.02

rx
(3)
t+1 0.14

rx
(4)
t+1 0.26

rx
(5)
t+1 0.34

Panel B SVM: rxt+1 = β0 +
∑

i=1...131 β1,iXi,t + εt+1

Bond Risk Premia: In sample R2

rx
(2)
t+1 0.16

rx
(3)
t+1 0.15

rx
(4)
t+1 0.27

rx
(5)
t+1 0.32

Bond Risk Premia: Out of sample R2

rx
(2)
t+1 0.01

rx
(3)
t+1 0.11

rx
(4)
t+1 0.11

rx
(5)
t+1 0.21
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Figure 14. Predictability of Bond Risk Premia based on LASSO .
Note: Bond Risk Premia from 1960.3 to 2014.12. Solid line is one-year-ahead bond risk premia.
Dots are LASSO Factor,fitted value from regression ret1,t = β0 +

∑
i=1...131 β1,iXi,t+εt+1, where xi,t

are vector representation of end-of-month demand and supply macro variables and β is estimated
with LASSO. The train subsample, 1996.3 to 2009.3, is used to estimate the dependency between
bond risk premia and real macro-economic variables. The test subsample, 2009.4-2014.12, is used
for out-of-sample tests of model fit.
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Figure 15. Predictability of Bond Risk Premia based on Support Vector Machine .
Note: Bond Risk Premia from 1960.3 to 2014.12. Solid line is one-year-ahead bond risk premia.
Dots are SVM Factor,fitted value from regression ret1,t = β0 +

∑
i=1...131 β1,iXi,t + εt+1, where xi,t

are vector representation of end-of-month demand and supply macro variables and β is estimated
with Support Vector Machine. The train subsample, 1996.3 to 2009.3, is used to estimate the
dependency between bond risk premia and real macro-economic variables. The test subsample,
2009.4-2014.12, is used for out-of-sample tests of model fit.
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Table XV: Key Macro Economic Variables Identified by LASSO

Reported are in-sample LASSO estimated non-zero coefficients on key macro economic variables. LASSO is

specified as rxt+1 = β0 +
∑
i=1...131 β1,iXi,t + εt+1, where X1,t, . . . , X131,t are 131 macro-economic variables.

Different columns correspond to different specifications of dependent variables.

Name rx
(3)
t+1 rx

(4)
t+1 rx

(5)
t+1

IPDMAT 0.0 0.102 0.131
IPNMAT 0.0 0.049 0.159

UEMP27OV 0.023 0.049 0.062
CES1021000001 0.392 0.708 1.115

USCONS -0.543 -0.931 -1.239
SRVPRD 0.0 -1.089 -2.042

USWTRADE -1.568 -1.567 -1.915
USFIRE 0.0 -0.634 -1.576

CES0600000007 0.004 0.012 0.016
S&P INDUST -0.009 -0.013 -0.028

M2REAL -0.253 -0.543 -0.476
TOTRESNS 0.002 0.019 0.017

FISCAL DEFICIT 0.0 -0.001 -0.004
US TOTAL PUBLIC DEBT OUTSTANDING NOTES -0.16 -0.174 -0.202

US TOTAL PUBLIC DEBT OUTSTANDING 0.0 -0.011 -0.028

D. Stock Portfolio Sort Results based on Exposure to Demand and Supply Factors

As informative state variables for bond risk premium, both bond supply factor and demand

factor should be closely related to stochastic discount factor, which is devised to price all asset

returns in theory. So, it is interesting to see whether our supply factor and demand factor can also

be priced in stocks. This section utilize portfolio sort method to test the pricing power of both

supply factor and demand in cross-section of stocks.

Table XVI reports factor regression results across Supply factor exposure βSupplyi,t , where βSupplyi,t

is firm i’s exposure to aggregate bond supply factor in month t. Decile portfolios are formed at

the conclusion of each month, ranging from 1 to 10 with the highest (lowest) values located in the

10th (1st) decile. Equal-Weighted portfolio returns are measured in next month and regressed on

contemporaneous risk factors: the three Fama-French Factors and momentum factors(UMD).The

intercept in this regression(Intercept) is the portfolio alpha. Our main result is that intercepts from
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those regressions increase with βSupply, indicating high βSupply outperform low βSupply firms. The

row ”1-10” contains a statistics test for the difference of low and high βSupply decile portfolios and

shows that the 1.3% difference in the four-factor alphas are statistically significant (t-statistics =

4.95). The final row ”(1+2) - (9+10)” at the bottom of the table contains another statistic test

for the difference of low and high βSupply quintile portfolios. A strategy that goes long the quintile

portfolio with the highest βSupply and short the quintile portfolio with the lowest βSupply yields a

Fama–French–Carhart alpha of 1.8% per month (t-statistics = 4.66). Sharpe ratio for this strategy

is almost 1. Analogous significant results hold for equal-weighted portfolio sort based on exposure

to bond demand factor in table XVII.
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Table XVI: Equity Portfolio Sort Based on Supply Factor Exposure

Reported are factor regression results across supply factor Exposure βSupplyi,t , where βSupplyi,t is firm i’s exposure to
Supply Factor in month t. Decile portfolios are formed at the conclusion of each month, ranging from 1 to 10 with the
highest (lowest) values located in the 10th (1st) decile. The sample consists of 814,997 firm-months spanning 1996
through 2015. Equal-Weighted portfolio returns are measured in next month and regressed on contemporaneous risk
factors: the three Fama-French Factors and momentum factors(UMD).The intercept in this regression(Intercept) is
the portfolio alpha. t-statistics are shown in the underlying row. ∗, ∗∗, and ∗∗∗ indicate 10%, 5%, and 1% significance
levels, respectively.

Intercept mktrf SMB HML UMD

1 0.006*** 0.927*** 0.972*** 0.199*** -0.104***
3.28 21.41 14.28 3.65 -3.12

2 0.005*** 0.812*** 0.77*** 0.329*** -0.073***
3.76 25.88 15.63 8.34 -3.01

3 0.005*** 0.789*** 0.542*** 0.34*** -0.039*
4.71 30.26 13.22 10.38 -1.94

4 0.005*** 0.772*** 0.526*** 0.347*** -0.037**
4.9 33.48 14.52 11.97 -2.09

5 0.005*** 0.801*** 0.503*** 0.398*** -0.059***
5.4 35.26 14.09 13.94 -3.4

6 0.006*** 0.78*** 0.588*** 0.366*** -0.106***
6.44 33.81 16.21 12.63 -6.01

7 0.006*** 0.81*** 0.651*** 0.406*** -0.129***
6.67 35.35 18.08 14.09 -7.32

8 0.007*** 0.912*** 0.687*** 0.329*** -0.168***
6.66 32.84 15.73 9.43 -7.87

9 0.01*** 0.899*** 0.86*** 0.214*** -0.255***
7.55 26.64 16.2 5.03 -9.82

10 0.017*** 1.001*** 1.021*** -0.012 -0.41***
7.83 18.49 11.99 -0.18 -9.86

1-10 -0.013*** -0.07 -0.05 0.202** 0.306***
-4.95 -1.08 -0.5 2.49 6.18

(1+2)-(9+10) -0.018*** -0.158 -0.139 0.317** 0.488***
-4.65 -1.61 -0.9 2.57 6.48
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Table XVII: Equity Portfolio Sort Based on Demand Factor Exposure

Reported are factor regression results across demand factor Exposure βDemandi,t , where βDemandi,t is firm i’s exposure to
Demand Factor in month t. Decile portfolios are formed at the conclusion of each month, ranging from 1 to 10 with
the highest (lowest) values located in the 10th (1st) decile. The sample consists of 814,997 firm-months spanning
1996 through 2015. Equal-Weighted portfolio returns are measured in next month and regressed on contemporaneous
risk factors: the three Fama-French Factors and momentum factors(UMD).The intercept in this regression(Intercept)
is the portfolio alpha. t-statistics are shown in the underlying row. ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1%
significance levels, respectively.

Intercept mktrf SMB HML UMD

1 0.019*** 0.954*** 1.298*** -0.079 -0.672***
6.42 12.86 11.14 -0.85 -11.8

2 0.011*** 0.99*** 0.962*** 0.138** -0.35***
6.06 23.21 14.35 2.57 -10.7

3 0.009*** 0.902*** 0.826*** 0.278*** -0.269***
6.49 27.47 16.01 6.72 -10.7

4 0.007*** 0.902*** 0.679*** 0.391*** -0.148***
6.44 33.96 16.27 11.71 -7.27

5 0.006*** 0.837*** 0.6*** 0.388*** -0.089***
6.33 34.36 15.68 12.68 -4.74

6 0.005*** 0.794*** 0.556*** 0.417*** -0.026
5.47 34.04 15.15 14.21 -1.45

7 0.004*** 0.733*** 0.495*** 0.389*** 0.001
4.42 29.79 12.79 12.58 0.04

8 0.003*** 0.717*** 0.499*** 0.346*** 0.028
3.54 29.87 13.23 11.46 1.52

9 0.003*** 0.761*** 0.502*** 0.375*** 0.052**
2.71 28.68 12.03 11.25 2.55

10 0.005*** 0.914*** 0.699*** 0.271*** 0.096***
2.79 22.05 10.73 5.2 3.0

1-10 0.013*** 0.045 0.599*** -0.359*** -0.768***
3.86 0.53 4.55 -3.41 -11.9

(1+2)-(9+10) 0.021*** 0.274** 1.059*** -0.596*** -1.171***
4.05 2.17 5.35 -3.77 -12.1
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E. VAR and Impulse Response Function

We estimate three monthly pth-order vector autoregression (VAR) models to examine impulse

response functions of excess bond returns to demand ans supply shocks. We use Hamilton ’s

notation for VAR.

Yt+1/12 − µ = Φ1(Yt − µ) + Φ2(Yt−1/12 − µ) + · · ·+ Φp(Yt− p−1
12
− µ) + εt+1/12 (16)

The VAR (p) can be stacked in the first-order companion form to become a VAR(1):

ξt+1/12 = Aξt + vt+1/12 (17)

where ξt+1/12 =



Yt − µ

Yt−1/12 − µ

...

Yt− p−1
12
− µ



A =



Φ1 Φ2 Φ3 · · · Φp

In 0 0 · · · 0

0 In 0 · · · 0

...
...

...
...

...

0 0 · · · In 0
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vt+1/12 =



εt+1/12

0

...

0


We usew Python Statsmodels to generate Orthogonalized Impulse Response Functions and

Variance Decomposition Results for VAR(p). The first model is a 1-order VAR with five variables:

supply factor, demand factor, CP factor, two-year-bond excess return, four-year-bond excess return.

The second model is a 12-order VAR with the same variables. The third model is a 12-order VAR

with different variables: supply factor, demand factor, CP factor, two-year-bond yield, and four-

year-bond yield. We plot the monthly time series of annualized variables in model 1 from March

1996 to December 2014. It shows that all series are stationary and three explanatory factors

are very different from each other. Excess bond returns are countercyclical. CP factors are also

countercyclical except for financial crisis. Standardized Demand factor is also countercyclical after

financial crisis but acyclical before that. In contrast, Supply factor is procyclical after financial

crisis and acyclical before that. Two-year-bond excess return shows a similar time sires pattern as

four-year-bond excess return. The IRF shows how each factor shocks affect four-year-bond excess

return in sixty months. We find one-standard-deviation increase in supply shock result in a 10 basis

point decrease in four-year-bond monthly excess return in month 3 and since then, the supply effect

dissipates gradually in three years. In contrast, one-standard-deviation increase in demand shock

result in a 30 basis point increase in four-year-bond monthly excess return in month 3 and since

then the demand effect disappear gradually in three years. Both of effects are short to medium

term effects rather than long term effects. Figure 16 is variance decomposition analysis for this

VAR. It is surprising to see demand factor explains much more variations in bond excess returns

than supply factor. One of potential reasons is that demand factor is extracted out of 80 macro
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variables while supply factor is constructed only from 30 variables. Figure 17 is VAR(12) with the

same variables. This is just robustness check and IRF are still not statistically significant.
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Figure 16. This figure plots the variance decomposition results for supply factor, demand factor,
CP factor, two-year-bond excess return, four-year-bond excess return for a 1-order VAR.
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Figure 17. This figure plots the variance decomposition results for supply factor, demand factor,
CP factor, two-year-bond excess return, four-year-bond excess return for a 12-order VAR.
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F. Market Price of Risk on Bond Factors

From previous discussions, we find that both demand factors and supply factors are impor-

tant for bond prediction no matter which method we employ, tradition PCA or machine learning

LASSO/SVM. These findings are ruled out by unrestricted (and commonly employed) affine term

structure models, where the forecastability of bond returns and bond yields is completely summa-

rized by the cross-section of yields or forward rates. So, we want to extend term structure model to

incorporate those macro factors and formally estimate market price of risk on those factors. Term

structure model would also give us a decomposition of bond yield into expectation part and yield

risk premium part.

F.1. General Setup for Continuous-time Macro Finance Affine Term Structure Model:

MTSMs

Continuous Macro Finance Affine Term Structure Model (MTSMs) are typically constructed

from the following three key ingredients:

First, we assume that the time-series process for state variables X under the risk-neutral pricing

measure Q, induced by numeraire price P (t), which is the price of a continuously compounded risk

free rate (short rate, or bank deposit), has the drift and volatility functions of the risk factors

satisfying

µQX(t) = κQ(θQ −X(t)), (18)

where θQ is an N × 1 vector and κQ

σX(t) = Σ
√
S(t) (19)
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where Sii(t) = αi + βiX(t), Sij(t) = 0, i 6= j, 1 ≤ i, j ≤ N , and Σ is N ×N matrix of constants.

Second, We assume the time-series process for X under the actual measure P follows a Markovian-

state Process, with

dX(t) = µPX(X, t)dt+ σX(X, t)dB(t), (20)

where µPX(X, t) is an N × 1 vector of drifts under P and σX(X, t) is an N ×N state dependent

factor-volatility matrix. In this diffusion setting, the pricing kernel Mt can be written generically

as

dMt

Mt
= −rtdt− Λ

′
tdB(t), (21)

where rt = r(X(t), t) is the instantaneous riskless rate, B(t) is a vector of N independent

Brownian motions, and Λt = Λ(X(t), t) is the N-vector of market prices of risk. For simplicity, We

take the risk factors driving Mt and Xt to be one and the same.

Given σX(t) satisfying Equation (15), the requirement of Equation (14) determines the drift

of X under the actual measure, µPX(t), once the market prices of risk Λt are specified, and vice

versa, because σX(t) is the same for both measure Q and measure P. (Q-drift of X(t) is µQX(t) =

µPX −σX(t)Λ(t).) So, We follow Duffee (2002) and propose flexible “essentially affine” specification

of market price of risk Λ(t) that has the form

Λ(t) =
√
Stλ1 +

√
S−t λ2X(t) (22)
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where λ1 is N×1 vector, and λ2 is N×N vector, and S−ii (t) = (αi+β
′
iXt)

−1, if inf(αi+β
′
iXt)

−1 ≥

0

Third, instantaneous riskless rate or the short rate, r(t) is a function of state variables, X(t):

r(t) = δ0 + δ
′
XX(t) (23)

For a fixed income security with a dividend rate h(X(t), t) for t ≤ T and terminal payoff g(X(T ))

at date T, its price at datet ≤ T can be expressed in terms of the pricing kernel as

P (X(t), t) = EP
t

[ ∫ T

t

M(s)

M(t)
h(X(s), s)ds

]
+ EP

t

[
M(T )

M(t)
g(X(t), t)

]
(24)

where Et denotes expectation conditioned on date t information under actual measure P.

The solution to Equation (19) is also the solution to the following fundamental partial differential

equation (PDE) [e.g., Duffie (1996)],

[
∂

∂t
+A

]
Pt − rtPt + ht = 0 (25)

where A is the infinitesimal generator

A = (µPt − σXtΛt)
′ ∂

∂Xt
+

1

2
Trace

[
σXtσ

′
Xt

∂2

∂Xt∂X
′
t

]
. (26)

The expected excess return from holding a fixed income security with price P is given by

78



Duffie and Kan (1996) show that under these three assumptions, the solution to the PDE of

Equation (20) for U.S. government zero-coupon bond D(t, T ) is exponentially affine in underlying

state variables:

D(t, T ) = eγ0(T−t)+γX(T−t)′X(t) (27)

where γ0 and γX satisfy known ordinary differential equations (ODEs).

F.2. State Variables and Expected Returns

In this section, We discrete the above MTSMs and use exactly Adrian, Crump, and Moench

(2013)’s three step linear regressions to estimate the term structure. We closely follow their nota-

tion and show their derivation for data generating process for arbitrage-free excess holding period

returns. Based on their model, We can derive the closed form solution for the decomposition of

bond yields into expectation component and yield risk premium. We put vector auto-regression

(VAR(1)) on dynamics of a K × 1 vector of state variables Xt:

Xt+1 = µ+ φXt + vt+1. (28)

Where, the shocks vt+1 follow a Conditional Gaussian distribution with covariance matrix Σ:

vt+1|{Xs}ts=0 ∼ N(0,Σ), (29)

79



where {Xs}ts=0 denotes the path of Xt. We denote P
(n)
t the U.S. zero coupon Treasury bond

price with maturity n at time t. No-arbitrage assumption implies that there exists a Stochastic

Discount Factor Mt such that

P
(n)
t = Et

[
Mt+1P

(n−1)
t+1

]
, (30)

Mt+1 = exp
(
− rt −

1

2
λ
′
tλt − λ

′
tΣ
−1/2vt+1

)
(31)

where rt = lnP
(1)
t is considered as continuously compounded risk-free rate. Market prices of

risk are assumed to be of the essentially affine form:

λt = Σ−1/2(λ0 + λ1Xt). (32)

We denote rx
(n−1)
t+1 the log excess holding return of a bond maturing in n periods:

rx
(n−1)
t+1 = lnP

(n−1)
t+1 − lnP

(n)
t − rt. (33)

Using Eq. (17) and Eq.(19) in Eq.(16) yields

1 = Et

[
exp
(
rx

(n−1)
t+1 − 1

2
λ
′
tλt − λ

′
tΣ
−1/2vt+1

)]
. (34)

Assuming that
{
rx

(n−1)
t+1 , vt+1

}
are jointly normally distributed,
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Et

[
rx

(n−1)
t+1

]
= Covt

[
rx

(n−1)
t+1 , v

′
t+1Σ−1/2λt

]
− 1

2
V art

[
rx

(n−1)
t+1

]
. (35)

We denote

β
(n−1)′

t = Covt

[
rx

(n−1)
t+1 , v

′
t+1

]
Σ−1, (36)

and using Eq. (18) We obtain

Et

[
rx

(n−1)
t+1

]
= β

(n−1)′

t (λ0 + λ1Xt)−
1

2
V art

[
rx

(n−1)
t+1

]
. (37)

Unexpected excess return can be decomposed into one component that is correlated with vt+1

and another component that is conditionally orthogonal. Then We find

rx
(n−1)
t+1 − Et

[
rx

(n−1)
t+1

]
= γ

(n−1)′

t vt+1 + e
(n−1)
t+1 . (38)

Wet is easy to see γ
(n−1)
t = β

(n−1)
t based on Eq. (22). We assume that the return pricing errors

e
(n−1)
t+1 are conditionally independently and identically distributed (i.i.d.) with variance σ2. β is

assumed to be constant.

The data generating process for log excess holding period returns is then
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rx
(n−1)
t+1 = β(n−1)′(λ0 + λ1Xt)−

1

2
(β(n−1)′Σβ(n−1) + σ2) + β(n−1)′vt+1 + e

(n−1)
t+1 (39)

Stacking this system across maturities and time periods, the matrix form looks like

rx = β
′
(λ0ι

′
T + λ1X−)− 1

2
(B?vec(Σ) + σ2ιN )ι

′
T + β

′
V + E (40)

where rx is a N ∗ T matrix of excess returns, β = [β(1)β(2) · · ·β(N)] is a K ∗N matrix of factor

loadings, ιT and ιN are a T ∗ 1 and N ∗ 1 vectors of ones, X− = [X0X1 · · ·XT−1] is a K ∗ T matrix

of lagged pricing factors, B? = [vec(β(1)β(1)′) · · · vec(β(N)β(N)′)] is an N ∗K2 matrix, V is a K ∗ T

matrix, and E is an N ∗ T matrix.

F.3. Unspanned Factors Estimation

Unsnapped factor model assumes that a given factor does not affect bond yields under the

pricing measure, which is equivalent to imposing the restriction that the corresponding elements of

{Bn, n = 1, · · · , N} be exactly equal to zero.

Partition the factors into spanned factors Xs
t with nonzero risk exposures and unspanned factors

Xu
t , which have zero risk exposures. The factors continue to follow a joint VAR process under the

P measure

Xs
t

Xu
t

 = µ+ φ

Xs
t−1

Xu
t−1

+

νst
νut

 (41)
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where Xs
t is of dimension Ks ∗ 1, Xu

t is of dimension Ku ∗ 1, and µ and φ are partitioned

accordingly. The spanning restriction implies that the upper right Ks ∗Ku block of the risk-neutral

transition matrix Φ? = (Φ− λ1) is zero, i.e.

Φ? =

Φss − λss1 0

Φus − λus1 Φuu − λuu1

 (42)

With this restriction, the data generating process can be rewritten as

rx
(n−1)
t+1 = β(n−1)′(λ0

s + λ1Xt + νt+1)− 1

2
(β(n−1)′Σβ(n−1) + σ2) + e

(n−1)
t+1 (43)

= β(n−1)′(λ0
s + λ1Xt +Xt+1 − ΦXt − µ)− 1

2
(β(n−1)′Σβ(n−1) + σ2) + e

(n−1)
t+1 (44)

= −β(n−1)′
s (µ?s + Φ?

ssX
s
t )− 1

2
(β(n−1)′
s Σssβ

(n−1)
s + σ2) + e

(n−1)
t+1 (45)

where µ?s denotes the upper ks ∗ 1 sub-vector of the risk-neutral mean µ(?) = (µ− λ0), Φ?
ss denotes

the upper Ks ∗Ks block of Φ?, and Σss is equal to the upper left Ks ∗Ks block of Σ. Estimation of

this model proceeds with the three-step regression adopted by Adrian, Crump, and Moench (2013).

Estimates of the market prices of risk and the corresponding test statistics are provided in the

following table. It shows that demand factors affect level risk and supply factors affect slope risk.
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Table XVIIIMacro factor model: market prices of risk

This table summarizes the estimates of the market price of risk parameters λ0 and λ1.Panel A summarizes the

estimates of the market price of risk parameters λ0 and λ1 for the MTSM without unspanned factors and panel B

is for MTSM with unspanned factors. t-Statistics are reported in parentheses. Standard errors have been computed

according to the formulas from Section 4.1. Wald statistics for tests of the rows of and of 1 being different from zero

are reported along each row, with the corresponding p-values in parentheses. PC1,, PC3 denote the first through

third principal components of Treasury yields. Bolded coefficients represent significance at the 5% level.

Panel A: λ0 λ1,1 λ1,2 λ1,3 λ1,4 λ1,5

PC1 -0.0177 -0.006 -0.0253 -0.0176 0.0113 0.0236

PC2 -0.0198 0.0104 -0.0470 -0.0106 -0.0137 0.0379

PC3 0.0228 -0.0535 0.0324 -0.1285 -0.1663 -0.0919

Panel B: λ0 λ1,1 λ1,2 λ1,3 λ1,demand λ1,supply

PC1 -0.0180 -0.0217 -0.0160 -0.0092 -0.0234 0.0075

PC2 -0.0186 0.0113 -0.0416 -0.0130 -0.0062 -0.0105

PC3 0.0159 0.0117 -0.0387 -0.1361 0.0606 -0.0748

F.4. Unspanned Factors Inference

F.5. Affine Yields

Under this model, bond prices are exponentially affine in the vector of state variables:

lnP
(n)
t = An +B

′
Xt + u

(n)
t . (46)

By substituting Eq. (32) into Eq. (19), we see that
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rx
(n−1)
t+1 = An−1 +B

′
n−1Xt+1 + u

(n−1)
t+1 −An −B

′
nXt − u(n)

t +A1 +B
′
1Xt + u

(1)
t . (47)

Equating this expression for excess returns with the return generating expression in Eq. (25),

we find

An−1 +B
′
n−1(µ+ φXt + νt+1) + u

(n−1)
t+1 −An −B

′
nXt − u(n)

t +A1 +B
′
1Xt + u

(1)
t (48)

= β(n−1)′(λ0 + λ1Xt + νt+1)− 1

2
(β(n−1)′Σβ(n−1) + σ2) + e

(n−1)
t+1 . (49)

This equation has to hold state by state. Let A1 = −δ0 and B1 = −δ1. Matching terms, we

obtain the following system of recursive linear restrictions for the bond pricing parameters:

An = An−1 +B
′
n−1(µ− λ0) +

1

2
(B
′
n−1ΣBn−1 + σ2)− δ0, (50)

B
′
n = +B

′
n−1(φ− λ1)− δ′1, (51)

A0 = 0, B
′
0 = 0, β(n)′ = B

′
n. (52)

F.6. Decomposition of Bond Yields into Expectation and Yield Risk Premium

Based on Campbell and Ammer (1993) decomposition, bond yields could be decomposed into

two parts: expectation component and yield risk premium component.
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y
(n)
t =

1

n
Et
(
y

(1)
t + y

(1)
t+1 + · · ·+ y

(1)
t+n−1

)
︸ ︷︷ ︸

Expectation Component

+
1

n
Et
(
rx

(n−1)
t+1 + rx

(n−2)
t+2 + · · ·+ rx

(0)
t+n

)
︸ ︷︷ ︸

Yield Risk Premium

(53)

Using Eq. (32), we can calculate expectation component as follows:

EC
(n)
t = −A1 −

1

n
B
′
1(I − φ)−1(I − φn)Xt (54)

Accordingly, yield risk premium is the residual in Eq (27).

Yield Risk Premium ≡ Ξ
(n)
t = y

(n)
t − EC(n)

t (55)

The following two graphs plot the decomposition results for unspanned factor model and

spanned factor model. Figure 11 plots decomposition results for only spanned factor model. It

is clear that yield risk premium follows a opposite path against bond yield pre-2009 and tracks

exactly the bond yield path post-2009. In 2001 and 2007, yield risk premium reached zero level,

which is definitely underestimating bond risk. In contrast, the model with unspanned factors would

generate a higher level of yield risk premium with counter-cyclical path pattern.
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Figure 18. This figure plots the decomposition of 10 year US zero coupon treasury bond yields
using unspanned factors.

G. Conclusion

We use asymptotic PCA to construct seven demand factors and four supply factors out of 133

monthly time series of economic activity spanning a period from 1996:1 to 2015:12. We find both

demand factors and supply factors are unspanned by bond yields and have stronger predictability

power for future bond excess returns even than CP factors. The longer maturity the bond have, the

more predictive power these factors show. These predictive results are robust to or even stronger

for machine learning technique LASSO. More interestingly, we can use LASSO to identify 15 most

important economic variables out of original 133 variables and give direct economic explanation

for bond demand factors and supply factors. Regarding to the equity market, we find both of

demand and supply factors are priced by the cross-section of stock returns. In particular, portfolios
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with highest exposure to supply factor outperform portfolios with lowest exposure to supply factor

1.8% per month while portfolios with lowest exposure to demand factor outperform portfolios

with highest exposure to demand factor 2.1% per month. This is consistent with ”fly to safety”

explanation. Furthermore, variance decomposition from VAR including supply factor, demand

factor, excess return, and bond yield shows that demand factors are much more important than

supply factors in explaining bond excess returns. Finally, we use macro-finance affine term structure

models (MTSMs) to estimate market price of risk of factors and find unspanned factors affect

significantly the market price of risk of spanned factors. Demand factors affect level risk and

supply factors affect slope risk. Yield risk premium for MTSMs with unspanned factor model and

MTSMs with only spanned factor model are very different from each other and MISMs with only

spanned factor model underestimate yield risk premium.
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III. Chapter 3: Making Better Use of Options to Predict Stock

Returns

A typical stock has several hundred listed options of different types, moneyness levels, and ex-

pirations. Thus, a rich multi-dimensional set of option information is available for a given stock on

a given day. In this paper, we present a parsimonious method for summarizing this option informa-

tion in just a few numbers using conventional dimensionality reduction techniques. In particular,

we perform a principal component analysis (PCA) on the cross-section of implied volatility surfaces

to extract its factor structure. We then study how this condensed option information represented

by the main principal components predicts future stock and option returns. This topic has not been

explored and is important since the literature documents that (combinations of) implied volatilities

predict stock returns. Our main goals are to document the existence of a factor structure in the

cross-section of implied volatility surfaces, to examine if these factors predict future stock returns,

and to establish the information carried out by these factors.

We study the factor structure of implied volatility surfaces using the entire universe of U.S

optionable stocks for the period 1996-2014. Given that the number of options varies across stocks,

we use Optionmetrics data that contains the interpolated volatility surfaces for each security on each

day. In particular, we extract 112 implied volatilities for each stock that span across option types

(calls and puts), specified option maturities (from 30 to 365 days), and moneyness levels (absolute

option deltas from 0.2 to 0.8). For each date, we perform PCA to the cross-stock correlation matrix

of the demeaned volatility surfaces. PCA has been used to understand the term structure of interest

rates (Litterman and Scheinkman (1991)), the term structure of credit and CDS spreads (Collin-

Dufresn, Goldstein, and Martin (2001) and Pan and Singleton (2008)), and more recently, the

equity volatility levels, skews, and term structures (Christoffersen, Fournier, and Jacobs (2017)).
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The cross-section of implied volatility surfaces reveals a strong factor structure. The first five

principal components (PCs) factors explain more than 70% of the variation of the cross-section

of implied volatilities. The first factor alone explains 32% of the variation of the data. Since the

volatility surfaces are demeaned, the first PC factor is not a level factor. Instead, the first PC

factor captures two simultaneous effects: 1) call put spread: implied volatilities for calls and puts

move in opposite directions, and 2) option skew: the differential between implied volatilities for

OTM puts (ITM calls) and ITM puts (OTM calls). The second PC factor explains 18% of the data

and captures the slope of the term structure effect: short-term volatilities and long-term volatilities

move in opposite direction. The third PC explains 11% of the variation and captures the option

skew, the volatility slope between OTM puts (ITM calls) and ITM puts (OTM calls). The fourth

and fifth PCs explain 8% and 4% of the variation of the data and they capture non-linear aspects

of the volatility surface.

Next we examine the relation between the first five PC factors and future stock returns. Fama-

Macbeth regressions show that the first three PCs predict one-week and one-month stock returns.

The relation of stock returns and the first three principal components is positive and significant

for PC1, PC2, and PC3. Note that the sign of the relation between PCs and returns as well as

the sign of the PCs is arbitrary since changing the sign of the PCs does not change the variance

that is contained on each component. Using this information and the fact that the PC factors are

orthogonal by construction, we create an aggregate PC factor equal to sum of the first three PCs.

The aggregate PC factor predicts weekly and monthly stock returns. At the weekly level,

a strategy that buys the portfolio with the highest aggregate PC factor and sells the portfolio

with the lowest aggregate factor has a return of 0.38% for equal weighted returns and 0.28% for

value-weighted returns with corresponding t-statistics of 6.01 and 2.44. The risk-adjusted Fama-

French-Carhart alphas remain of the same magitude and significance than the raw returns. At the
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monthly level, the long-short returns are 1.36% and 1.00% for equal and value weighted portfolios

with t-statistics above 4.7. The Fama-French-Carhart alphas remain unchanged at 1.32% for equal-

weighted and 0.94% for value-weighted portfolios but with higher t-statistics of 12.6 and 5.03

respectively. These results are confirmed with Fama-MacBeth regressions. The results remains

unchanged when we perform the PCA decomposition using volatility surface data prior to the

returns predicted date. We conclude that the aggregate PC factor predicts returns in- and out-of-

sample.

Our paper is related to the literature that uses option market information to predict future

stock returns. These predictors can be grouped in four categories: 1) call-put implied volatility

spread (Bali and Hovakimian (2009), Cremers and Weinbaum (2010), and Yan (2011)), 2) risk-

neutral skewness (Xing, Zhang, and Zhao (2010), Rehman and Vilkov (2012), Conrad, Dittmar,

and Ghysels (2013), Stilger, Kostakis, and Poon (2016), and Bali, Hu, and Murray (2016)), 3)

option to stock volume ratio (Roll, Schwartz, and Subrahmanyam (2010), and Johnson and So

(2012)) and 4) volatility of implied volatility (Baltussen, Van Bekkum, and Van Der Grient (2012)).

How are these predictors related to the PC factors from the cross-section of the implied volatility

surfaces? The correlation matrix reveals that PC1 is highly correlated with the call-put implied

volatility spread (−39% correlation) and the option skew used in Xing, Zhang, and Zhao (2010)

(66% correlation). The second PC shows no strong correlation with any of the existing predictors,

and the third PC as a correlation of 34% with the call-put implied volatility spread and −23% with

risk-neutral skewness. Finally, the aggregate PC factor (PC1 + PC2 + PC3) is highly correlated

with the call-put implied volatility spread (−50%) and the option skew from Xing, Zhang, and

Zhao (2010) (52%), and mildly correlated with the option to stock volume ratio from Johnson and

So (2012) (−11%).

Univariate and multivariate Fama-MacBeth regressions uncover the true power of the aggregate
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PC factor. In univariate regressions, the call-put implied volatility spread, risk-neutral skewness,

and the option to stock volume ratio successfully predict future stock returns. However, bivariate

regressions reveal that only the aggregate PC factor predicts stock returns at the expense of existing

option predictors. The aggregate PC factor seems to carry the predictive information of existing

predictors from the option market.

We contribute to the vast literature that studies why option prices predict future returns in

several ways. First, we show that the first five principal components explain more than 70%

of variation in the implied volatility surfaces across stocks. Thus, the entire IV surface can be

replaced with these few PCs with little information loss. In contrast with Christoffersen, Fournier,

and Jacobs (2017) who also study the factor structure of implied volatilities for 30 stocks, we use

the entire cross-section of volatility surfaces. While they develop a new option pricing model, we

examine the stock return predictability of the PC factors.

Second, it is well-known that option prices and implied volatilities predict future stock returns.

These predictors can be grouped in four categories: 1) the call-put implied volatility spread ,

2) risk-neutral moments such as skewness , 3) option to stock volume ratio, and 4) volatility of

implied volatility. Obviously, these ad hoc ways to aggregate the IV surface can lose or miss relevant

information. We could include the entire surface in the predictive return regression. However the

IV surface contains more than one-hundred volatilities and we might incur in overfitting and data

mining. This is one of the main reasons the literature uses ad hoc IV aggregations in the first

place. Instead we replace the surface with its main principal components and use them as return

predictors. We go even further and aggregate the main PCs into a single factor: “the aggregate

PC.” Not only this aggregate PC factor strongly predicts future stock returns but it also completely

wipes out the predictability of existing option-based predictors mentioned above. The fact that a

single variable aggregates the information of all option-based predictors is striking.
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To uncover the economic driver of the return predictability, we study how the aggregate PC

interacts with proxies for alternative hypotheses. The three main explanations that we test are 1)

informed trading (Cremers and Weinbaum (2010), Roll, Schwartz, and Subrahmanyam (2010), and

Xing, Zhang, and Zhao (2010)), 2) jump risk (Bali and Hovakimian (2009), and Yan (2011)), and

3)short sale constraints (Johnson and So (2012), and Stilger, Kostakis, and Poon (2016)). We find

that measures of short-sale constraints such as the stock lending fee drive out the predictability of

the aggregate PC making it insignificant in stock return regressions. Perhaps, option prices predict

returns simply because they reflect short-sale constraints.

Given that we work with the factor structure of the implied volatility surface, we also examine

its relation with the cross-section of option returns. Univariate regressions reveal a negative and

significant correlation between the aggregate PC factor and future option returns at the weekly

level. Fama-MacBeth regressions confirm the negative relation after we control for the slope of the

volatility term structure (Vasquez (2017)), historical minus implied volatility (Goyal and Saretto

(2009)), and idiosyncratic volatility (Cao and Han (2013)).

The paper is organized as follows. Section 2 describes the data and the methodology we follow

to study the factor structure of the cross-section of implied volatilities. Section 3 explores the

predictability of the principal components on future stock returns. Section 4 tests the robustness

of the results as well as the predictability of option returns. Section 5 concludes.

A. Data and Methodology

In this section we first describe the data. We then explain how the principal component anal-

ysis is performed on the volatility surfaces to construct the aggregate principal component factor.

Finally, we form portfolios by sorting stocks into deciles based on the exposure to the principal

components, and then report on the characteristics of these portfolios.
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A.1. Data

We use the cross-section of volatility surfaces from the Optionmetrics Ivy database which pro-

vides end-of-day summary statistics on all exchange-listed option on U.S. equities from 1996 to

2014. The Optionmetrics volatility surface data contain the interpolated volatility surfaces for each

security on each day, using a methodology based on a kernel smoothing algorithm. A standardized

option is included only if there exists option price data to properly interpolate the required values.

The volatility surface data contains implied volatility data for calls and puts across standardized

maturities and deltas for each stock. The standardized expirations are 30, 60, 91, 122, 152, 182,

273, and 365 calendar days at absolute deltas 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8. Each stock has

112 standardized implied volatilities across different option types, option maturities, and option

moneyness levels. We eliminate close-end funds, real estate investment trusts, American depository

receipts, and stock with price below $1.

We report variables obtained from the option market that are related with future stock returns.

We compute the call put parity volatility spread as the open-interest weighted difference between

call and put implied volatilities as in Cremers and Weinbaum (2010).1 Risk-neutral volatility,

skewness, and kurtosis is calculated as in Bakshi, Kapadia, and Madan (2003) for the last trading

day before the testing period as used in Rehman and Vilkov (2012) and Stilger, Kostakis, and Poon

(2016). Option skewness is the difference between OTM put and ATM call implied volatilities as

computed by Xing, Zhang, and Zhao (2010). The option to stock volume ratio is the total volume

in option contracts across all strikes for options with less than 30 days to expiration over the total

volume in the stock as in Johnson and So (2012) and Roll, Schwartz, and Subrahmanyam (2010).

The volatility of implied volatility is the standard deviation of the previous month ATM implied

volatilities as in Baltussen, Van Bekkum, and Van Der Grient (2012). The slope of the implied

1Bali and Hovakimian (2009) and Yan (2011) define the call-put spread as the negative difference between one-
month implied volatilities of a call and a put with absolute delta of 0.5.
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volatility term structure is defined as the difference between long and short term ATM implied

volatilities.

We also include firm characteristics in the analisys. These variables are extracted from Center

for Research and Security Prices (CRSP) and Compustat. The final data sample is formed by

the intersection of Optionmetrics, CRSP, and Compustat data. From CRSP, we extract the stock

market capitalization (size) and we use daily returns to calculate weekly returns from Tuesday

close to Tuesday close, and monthly returns to compute the 6-month return for all firms. From

Compustat we extract book values to calculate book-to-market ratios of individual firms. The

predictive variables are computed skipping one day before the trading period.

A.2. Methodology

Using the implied volatility surfaces for all stocks and for every Monday over the 1996 to 2014

period, we compute the correlation matrix of the 112 demeaned implied volatilities. To ensure valid

volatility surfaces, we only include stocks that traded at least 50 calls and 50 put contracts. After

decomposing the correlation matrix using principal component analysis (PCA), we find that the

first five principal components (PCs) explain 78% of the total variance of the demeaned implied

volatilities. Figure 1 plots the relative contribution of the first ten principal components. The first

five principal components explain 32%, 21%, 13%, 8%, and 4% of the variation of the data. By

construction these PC factors are orthogonal and independent of each other.

**Wenzhi Comment: Using the implied volatility surfaces for all stocks and for every week over

the 1996 to 2014 period (we collpase daily data obtained from Optionmetrics to weekly data by

averaging the daily oberservations for each week), we compute the correlation matrix of the 112

demeaned implied volatilities. To ensure valid volatility surfaces, we only include stocks that traded

at least 50 calls and 50 put contracts. After decomposing the correlation matrix using principal
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component analysis (PCA), we find that the first five principal components (PCs) explain 78% of

the total variance of the demeaned implied volatilities. Figure 1 plots the relative contribution of

the first ten principal components. The first five principal components explain 32%, 21%, 13%,

8%, and 4% of the variation of the data. By construction these PC factors are orthogonal and

independent of each other. **

[Figure 1 about here]

Every Monday, we compute the exposure of each stock to each of the five PCs. The implied

volatility exposure of a stock to a principal component is computed as the multiplication of the

vector of 112 demeaned implied volatilities with the PC vector. Using this procedure we obtain a

weekly measure of the exposure of each stock to each of the five PCs. Overall we obtain 1, 897, 536

firm-weeks corresponding to 936 weeks and 1, 982 unique firms.

**Wenzhi Comment: Every week, we compute the exposure of each stock to each of the five

PCs. The implied volatility exposure of a stock to a principal component is computed as the

multiplication of the vector of 112 demeaned implied volatilities with the PC vector. Using this

procedure we obtain a weekly measure of the exposure of each stock to each of the five PCs. Overall

we obtain 1, 897, 536 firm-weeks corresponding to 936 weeks and 1, 982 unique firms. **

A.3. Summary Statistics

[Table 1 about here]

Table 1 reports summary statistics for the first five principal components, the option market

measures, and the underlying stock measures. The first five principal components have a mean of

zero given that we work with demeaned volatility surfaces. Based on the predictability results from
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Table 3, we construct an aggregate PC factor that adds up the first three PCs.2 The aggregate PC

factor also has zero mean.

[Figure 2 about here]

Figures 2 plots the first 5 principal components for the cross-section of implied volatility surfaces.

To facilitate interpretation, we plot one graph for calls and one for puts across moneyness, defined

as strike over stock price, and maturities. Each surface contains 56 datapoints. Panel A of Figure

1 reports the first principal component (PC1) that explains 32% of the variance of the data. PC1

can be interpreted as the call-put volatility spread factor combined with the option skew. While

the factor loadings for calls are all positive, those for puts are all negative. According to PC1,

put and call implied volatilities move in opposite directions. In addition, the loadings for OTM

(ITM) volatilities for puts (calls) are lower than those of ITM (OTM) volatilities which reflects the

well know option skew. When the first PC factor increases, call implied volatilities go up and put

volatilities go down; but OTM (ITM) volatility for puts (calls) increases more than those of ITM

(OTM) volatilities for puts (calls). This interpretation is confirmed by the correlations reported

in Table 2. PC1 has a correlation of 66% and −39% with the call-put volatility spread defined in

Cremers and Weinbaum (2010) and the option skew defined in Xing, Zhang, and Zhao (2010).

The second principal component (PC2) is reported in Panel B of Figure 1. PC2 explains

18% of the total variance of the data and represents a term-structure factor. While the factor

loadings are positive for short-term maturities for both calls and puts, they are negative for long-

term maturities. The factor loading changes signs at about 150 days to expiration. Panel C of

Figure 1 reports the third principal component (PC3) that explains 11% of the data variation and

corresponds to the option skew. For puts (calls), the factor loadings are positive (negative) for ITM

2The rationale to add PC1, PC2, and PC3 is that these PCs have a positive and significant relation with future
stock returns. We only include the first three PCs since they explain most of the variation of the cross-section of
volatility surfaces. Note that the sign on the principal component loadings is arbitrary, hence the predictability could
be negative as well.
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options and negative (positive) for OTM options. PC3 has a correlation of 28% with the option

skew and −22% with risk-neutral skewness. Finally, PC4 and PC5 are reported in Panel D and E

of Figure 1, and they explain 8% and 4% of the variation of the data. These factors are non-linear

and their interpretation is not straightforward. The highest absolute correlations are between PC4

and risk-neutral skewness at −15%, and between PC5 and the implied volatility spread at −26%.

[Figure 3 about here]

Figure 3 reports the time series average of the first three principal components. Panel A plots

the time series for PC1. The time-series revolves around zero and increases its variability after

2008. PC1 does not seem to be persistent since the autocorrelation of lag 1 is only 7%. Panel

B plots the time series for PC2 and PC3. Both PCs also revolve around zero and they appear

to be more persistent than PC1. The lag 1 autocorrelations for PC2 and PC3 are 90% and 95%,

respectively. Both reach their maximum value in 2008.

[Figure 4 about here]

Figure 4 contains the loadings and the time series average of the aggregate PC factor defined as

the sum of the first three PCs. As displayed in Panel A, the aggregate PC factor loadings are the

most negative for low levels of moneyness, defined as strike over stock price, and short maturities

for both calls and puts. As the maturity and the moneyness increase, so does the factor loadings.

The factor loadings are the most positive for high levels of moneynes and long term maturities.

The factor loadings change sign for a moneyness of 1 for calls with maturity below 90 days. For

puts, the sign of the loading changes for long term maturities (above 240 days) with moneyness

above 1.1.

Figure 4, Panel B graphs the time series average of the aggregate PC factor. The aggregate PC

takes positive and negative values. In calm periods, the aggregate PC remains positive. However,
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in crash periods such as September 2001 or the crisis in 2008, the aggregate PC factor displays big

negative spikes similar to those of the volatility index VIX.

[Table 2 about here]

Table 2 reports the correlation matrix of the principal components, option measures, and firm

characteristics. PC1 is highly correlated with two variables that predict stocks returns: the implied

volatility spread by Cremers and Weinbaum (2010) with a correlation of 71% and the option skew

by Xing, Zhang, and Zhao (2010) with a correlation of −46%. PC2 is not correlated with any

existing variables that predicts stock returns. PC3 is mildly correlated with the option skew and

the risk-neutral skewness with correlations of 28% and −22%, respectively. The aggregate PC

factor is a linear combination of the first three PCs (PC1 + PC2 + PC3) and the correlations are

74% with PC1, 53% with PC2, and 41% with PC3. The correlation of the aggregate PC factor with

the volatility spread and the option skew is 55% and −51%, and it is not highly correlated with any

other variable. The correlation matrix in Table 2 shows that existing factors such as size, book-to-

market, and illiquidity are not related with the PC factors computed from the implied volatility

surfaces. For this reason, any stock return predictability coming from the implied volatility surface

PC factors is not likely to be related to firm characteristics such as size, book-to-market, momentum,

reversal, or illiquidity.

We conclude that the first five principal components explain most of the variation of the data

and they are highly correlated with existing return predictors extracted from options such as the

implied volatility spread, the option skew, and the risk neutral skewness. We now turn to explore

the ability of these principal components to predict stock returns.
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B. Principal Components and Future Stock Returns

In this section, we first analyze the relationship between the current week’s returns and the

previous week’s principal components using the Fama and MacBeth (1973b) methodology. Next

we explore the predictability of the aggregate PC factor and we then run a horse race between the

aggregate PC factor and existing predictors of stock returns extracted from options to see which

one is the best predictor. We also form portfolios by sorting stocks based on an aggregate PC

factor.

B.1. Fama-MacBeth Regressions

B.2. First Five Principal Components

To assess the relationship between future returns and principal components, we carry out various

cross-sectional regressions using the method proposed in Fama and MacBeth (1973b). Each week t,

we compute the principal components for firm i and estimate the following cross-sectional regression:

ri,t+1 = γ0,t + γ1,tPC1i,t + γ2,tPC2i,t + γ3,tPC3i,t + γ4,tPC4i,t + γ5,tPC5i,t + φ′tZi,t + εi,t+1, (56)

where ri,t+1 is the weekly return of the ith stock for week t + 1 (from Tuesday close to Tuesday

close), PC1 to PC5 are the first five principal components for firm i at the end of week t (Friday),

and Zi,t represents a vector of characteristics and controls for the ith firm observed at the end of

week t (Friday). Note that we skip one day between portfolio formation and testing period.

[Table 3 about here]

Table 3 presents the results of the Fama-MacBeth regressions from regressing one-week and one-

month stock returns on the volatility surface PCs factors, option variables, and firm characteristics.
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In the first regression we include all PCs and the contemporaneous return to control for return-

reversal. The first three PCs significantly predict stock returns at the 1% level. PC1, PC2, and

PC3 are positively and significantly related with future stock returns. The coefficient for PC4 is

not significant, while that of PC5 is negative and significant at the 10% level. Regression 4 presents

the results for monthly returns which are similar to those of one-week returns.

In regression 2, we include firm related control variables such as lagged one-week return, lagged

six-month return, size, book-to-market ratio, and the illiquidity measure by Amihud. The results

remain unchanged compared to regression 1: PC1, PC2, PC3, and PC5 continue to predict stock

returns significantly. A similar pattern is observed for monthly returns in regression 5.

Finally, we include three option related variables that are commonly used to charaterize the

implied volatiltiy surface. The first variable is the slope of the implied volatility surface defined as

the difference between long-term and short-term ATM implied volatilities. The second variable is

the option skew as Xing, Zhang, and Zhao (2010), and the third variable is the implied volatility

spread as defined by Cremers and Weinbaum (2010). We also include the option to stock volume

ratio as defined by Johnson and So (2012). Regression 3 and 6 present the results for weekly and

monthly returns. The predictability of the first two PCs is confirmed in the two regressions after

we include all control variables.

We now proceed to aggregate the information of the first three principal components into a

single factor and explore the predictability of that aggregate factor.

B.3. Aggregate Principal Component Factor

Given that the first three principal components predict stock returns and that by construction

the PC factors are uncorrelated, we create an aggregate principal component (PC) factor. The goal

of the aggregate PC factor is to combine the information from the three PCs that predict stock
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returns into a single variable. The aggregate PC factor is a linear combination of the first three

PCs. Since PC1, PC2, and PC3 have a positive relation with future stock returns, we define the

aggregate PC factor as PC1 + PC2 + PC3.

[Table 4 about here]

In Table 4, we present the results of regressing one-week and one-month future stock returns on

the aggregate PC factor. In regression 1 and 4, we control for the reversal effect. The aggregate PC

factor successfully predicts one-week and one-month returns. Next we include firm characteristics

such as lagged six-month return, size, book-to-market ration and the Amihud illiquidity meaure.

As reported in regressions 2 and 5, the coefficient of the aggregate PC factor remains unchanged

and the significance increases.

Finally, we include in regressions 3 and 6 three variables that are normally used to describe

the implied volatility surface: 1) the slope of the implied volatility surface defined as the difference

between long-term and short-term ATM implied volatilities, 2) the option skew as Xing, Zhang, and

Zhao (2010), and 3) the implied volatility spread as defined by Cremers and Weinbaum (2010). We

also include the option to stock volume ratio as defined by Johnson and So (2012). The aggregate

PC factor continues to predict future weekly and monthly returns. The coefficient is positive and

highly significant.

We conclude that the aggregate PC factor successfully combines the information of the first

three PCs to predict future stock returns.

B.4. Aggregate PC Factor and Existing Predictors from Options

Several papers show that there is a connection between the option and the stock markets.

The four main variables extracted from the option market that predict stock returns are the call-

put implied volatility spread, risk-neutral skewness, the option to stock volume ratio, and the
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volatility of implied volatility. Various definitions of the call-put implied volatility spread are

used to predict returns in Cremers and Weinbaum (2010), Bali and Hovakimian (2009), and Yan

(2011). Risk-neutral skewness predictability is documented in Bali, Hu, and Murray (2016), Conrad,

Dittmar, and Ghysels (2013), Rehman and Vilkov (2012), Stilger, Kostakis, and Poon (2016), and

Xing, Zhang, and Zhao (2010). The predictability of the option to stock volume ratio has been

documented by Johnson and So (2012) and Roll, Schwartz, and Subrahmanyam (2010). The

volatility of implied volatility predicts future stock returns according to Baltussen, Van Bekkum,

and Van Der Grient (2012).

In this section we first confirm the predictability of these variables extracted from the option

market. Then we explore how these variables predict returns in the presence of the aggregate PC

factor. Given that the aggregate PC factor incorporates the most relevant information from the

variation in the implied volatility surfaces, we expect that it subsumes the predictability of existing

option based predictors.

[Table 5 about here]

Table 5 reports the results from regressing future stock returns on predictors extracted from

the option market and on the aggregate PC factor. We explore six option based predictors: 1)

the implied volatility spread, the average difference between call and put options, as defined by

Cremers and Weinbaum (2010), 2) the volatility smirk or option skew, the difference beweeen OTM

put and ATM call implied volatilities, as defined by Xing, Zhang, and Zhao (2010), 3) the risk-

neutral skewness and 4) risk-neutral kurtosis as defined in Conrad, Dittmar, and Ghysels (2013),

5) the O/S option to stock volume ratio as defined in Johnson and So (2012), and 6) the volatility

of implied volatility as defined in Baltussen, Van Bekkum, and Van Der Grient (2012).

First, we perform univariate regressions of future stock returns on each of these variables ex-

tracted from the option market. We confirm the predictability of the volatility spread, the option
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skew, risk-neutral skewness, the O/S ratio predict stock returns, and the volatility of volatility.

The volatility spread and risk neutral skewness have a positive and significant relation with future

stock returns, while the option skew, the O/S ratio, and the volatility of volatility have a negative

and significant relation with stock returns. The results hold for weekly and monthly returns as

reported in Panel A and Panel B.

In the second set of regressions, we explore the impact that the aggregate PC factor has on the

predictability of these 6 option based variables. After including the aggregate PC factor as a control

variable, none of the option-based variables predicts stock returns anymore. The predictability is

driven by aggregate PC factor whose coefficient is positive and significant in all regressions. These

results hold for weekly and monthly returns.

We conclude that the aggregate PC factor outperforms existing stock return predictors that

use combinations of implied volatilities such as the volatility spread, the option skew, risk-neutral

skewness, and volatility of implied volatility. The aggregate PC factor seems to successfully embed

the information of all of the existing option-based predictors.

B.5. Portfolio Sorts by the Aggregate PC Factor

We have shown that the aggregate PC factor predicts stock returns above and beyond existing

predictors extracted from options. We now explore the predictability of the aggregate PC factor

using the portfolio sort methodology. Every week we sort stocks by the aggregate PC factor

and form ten portfolios. Portfolios 1 (10) contains stocks with the lowest (highest) level in the

aggregate PC factor. We report the long-short portfolio which buys portfolio 10 and sells portfolio

1. Additionally we risk-adjust all portfolio returns with the Fama-French and Carhart factors.

[Table 6 about here]

Table 6 reports average returns and risk-adjusted returns of decile portfolios sorted by the
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aggregate PC factor. We report equal and value weighted weekly and monthly returns. In the first

column, we present the results for equal-weighted weekly returns. Returns for decile 1 are lower

than those for decile 10. The long-short portfolio has a weekly return of −0.38% with a t-statistic

of 6.01. In the second column we regress the average portfolio returns on the Fama-French-Carhart

factors. The risk-adjusted return for portfolio 1 is negative while the return for portfolio 10 is

positive. The alpha of the long-short portfolio is positive and significant. In the third and fourth

column we report the results for value-weighted weekly returns. The positive relation between the

aggregate PC factor and stock returns is confirmed.

We repeat the portfolio sorts for monthly returns. The equal-weighted monthly returns are

positive and significant and the magnitude of the long-short return is about 4 times that of the

weekly return. The t-statistic is twice as big as the one of weekly returns. The Fama-French-

Carhart alpha and the t-statistic of the long-short returns are almost identical to that of the raw

returns. The results for value-weighted monthly returns confirm the results.

We conclude that the aggregate PC factor extracted from the cross-section of implied volatility

surfaces predicts stock returns at the weekly and monthly horizons for equal-weighted and value

weighted portolios. The results cannot be explained by the Fama-French-Carhart model.

B.6. Persistence of the Aggregate PC Factor

We have shown that the aggregate PC factor predicts future stock returns at the weekly and

monthly frequencies. To assess how persistent the aggregate PC factor is, we now analyse the

transition probabilities across decile portfolios. Table 7 reports the probability that a stock moves

up or down one portfolio, that it remains in the same portfolio or that it moves to any other

portfolio. These probabilities are reported for all portfolios and for portfolio 10 at the weekly and

monthly frequencies.
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When analysing all 10 decile portfolios, we find that the probability of remaining in the same

portfolios is much higher than the probability of moving either up or down one portfolio. The

probability of remaining in the same portfolio is 24% at the weekly horizon and 36% at the monthly

horizon. Note that the unconditional probability of moving to any portfolio is 10%.

We report the same probabilities for decile portfolio 10 since most of the long-short stock return

predictability at the weekly and monthly frequencies comes from that portfolio. We find that the

probability of remining in portfolio 10 is 41% and 59% for weekly and monthly frequencies. These

numbers show that the aggregate PC factor is highly persistent and that portfolio 10 returns are

generated by similar stocks from week to week.

[Table 7 about here]

B.7. Long-Term Predictability

Given that the aggregate PC factor is persistent, we explore the long-term predictability of the

aggregate PC factor. So far we showed that the aggregate PC factor can predict stock returns over

1 week and 1 month horizons. Xing, Zhang, and Zhao (2010) and Johnson and So (2012) show

that the option smirk and the implied volatility spread can predict stock returns at longer horizon

than one week. Because the aggregate PC drives out the predictability of the option smirk and the

implied volatility spread, the aggregate PC factor might predict stock returns beyond one month.

For this reasons, the aggregate PC factor might predict stock returns well beyond one month.

[Figure 5 about here]

Figure 5 plots the long-short value-weighted return of the portfolios sorted by the aggregate PC

factor over 30 weeks (about 7 months). Panel A reports the average return of the value-weighted

long-short portfolio at week t, where t varies from 1 to 30. The average return is surrounded by
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error bars that represent the 95% confidence interval. We observe that the returns are consistently

positive and significant up to week 15. From week 16 to week 26, the returns are positive and

significant 7 times out of 11. After week 27, the returns are not significant anymore.

Panel B graphs the cumulative weekly returns of the long-short portfolio. The cummulative

returns are positive and increasing up to week 26. On the first week, the long-short return is 0.38%

and it accummulates to 2.6% after 26 weeks. We conclude that the aggregate PC factor predicts

stock returns for long horizons up to six months.

B.8. Potential Explanantions

In this section we explore potential explanations of the sources of the return predictability by

the aggregate PC factor from the cross-section of implied volatility surfaces. To do so we first

look at existing predictors from the option market and the explanations provided to explain their

results. There are several explanations of the predictability such as short-sale constraints in the

equity market, informed traders deciding to trade in options to profit from leverage or to profit

from mispriced stocks, jump risk, firm misvaluation, and risk-return trade off. The most popular

explanations are short sale constraints (Johnson and So (2012), and Stilger, Kostakis, and Poon

(2016)), informed trading (Cremers and Weinbaum (2010), Roll, Schwartz, and Subrahmanyam

(2010), and Xing, Zhang, and Zhao (2010)), and jump risk (Bali and Hovakimian (2009), and Yan

(2011)).

[Table 8 about here]

In Table 8 we study the relation between short sale constraints, the aggregate PC factor, and

future stock returns. We use the lending fee as a proxy of short-sale constraints. In the first

regressions we confirm the relation between the aggregate PC factors. In the second regression

we use the lending fee to predict future stock returns. The stock lending fee has a negative and
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significant relation with returns. In the last regressions we include both the aggregate PC factor and

the stock lending fee. Surprisingly the stock lending fee wipes out the predictability power of the

aggregate PC factor. Therefore, the aggregate PC factor might be a proxy of short sale constraints.

Stock that are harder to short sale must pay a premium to the investor and the aggregate PC factor

is just a proxy of these short-sale constraints.

C. Robustness

We now look at the robustness of our results. First we compute the aggregate PC factor out-

of.sample, that is, using information before the period to be predicted. Second, we study the

relation between the aggregate PC factor and future option returns in the cross-section.

C.1. Out of Sample Aggregate PC Factor

In this study we document a positive relation between the aggregate PC factor extracted from

the cross section of volatility surfaces and future stock returns. To perform the PCA analysis we

use the full data period, so we incur in a look-ahead bias. To avoid this concern, we perform the

PCA analysis using a 3-year rolling window of volatility surfaces. We use volatility surfaces up to

time t to forecast returns on week t+1. Then we use the first three PCs to contruct the aggregate

PC factor that is used to predict weekly and monthly returns. Table 9 presents the results of

the Fama-MacBeth regressions of next week and next month returns on the aggregate PC factor.

The positive and significant relation between the aggregate PC factor and future stock returns is

confirmed in all regressions.

[Table 8 about here]
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C.2. Option Returns

In this paper we extract the aggregate PC factor information from the cross-section of equity

implied volatility surfaces and document that it predicts stock returns. A more natural experiment

is to study the relation between the aggregate PC factor and future option returns in the cross-

section. In this section, we study the relation between the aggregate PC factor and weekly straddle

returns. The straddle is an option strategy that simultaneously buys an at–the–money call option

and an at–the–money put option of the same underlying stock, with the same strike price, and the

same expiration date. This position is almost delta neutral so that the stock price is not the main

driver of the straddle return. We study portfolio sorts and Fama-MacBeth regressions of one-week

straddle returns formed with options that expire in 3 to 6 weeks.

C.3. Portfolio Sorts

Straddle returns are mainly driven by changes in volatility since its delta is close to zero. The

aggregate PC factor has two qualities that make it a ideal candidate to predict straddle returns.

First, it is extracted from implied volatilities of equity options. Therefore it captures the drivers of

volatilities which are the main variables that affect straddle returns. Second, since the aggregate

PC factor is highly persistent it should be related with contemporaneous as well as future returns.

[Table 10 about here]

Every week we form decile portfolios based on the aggregate PC factor and report next-week

straddle returns. Panel A of Table 10 shows that there is a negative relation between the aggregate

PC factor and future straddle returns. The portfolio that buys decile 10 and sells decile 1 has

a weekly return of –4.2% with a t-statistic of –14.83. The returns of the long-short portfolio

are negatively skewned and fat tailed. The predictability remains very similar for value-weighted

returns.
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C.4. Fama-MacBeth Regressions

To further confirm that the aggregate PC factor predicts straddle returns, we run Fama-

MacBeth regressions on weekly straddle returns. Panel B of Table 10 presents the results. The first

column reports univariate regressions that confirm the robustness of the negative relation between

the aggregate PC factor and straddle returns. In the second column, we include three variables that

predict option returns: the slope of the volatility term structure (Vasquez (2017)), historical minus

implied volatility (Goyal and Saretto (2009)), and idiosyncratic volatility (Cao and Han (2013)).

The multivariate regression confirms that the aggregate PC factor is related with option returns.

The coefficient of the aggregate PC factor and its significance are higher in the multivariate than

in the univariate regression. Moreover, the significance of the aggregate PC factor is the highest

among all regressors.

We conclude that portfolio sorts and Fama-MacBeth regressions support the negative relation

between the aggregate PC factor and future straddle returns.

D. Conclusion

In this paper we study the factor structure of the cross-section of implied volatility surfaces from

Optionmetrics for the period 1996-2014. We find that five principal components (PC) explain more

than 70% of the variability of the volatility surfaces. The PC factors contain information related

to existing stock return predictors obtained from the option market such as the difference between

put and call implied volatility, the option smirk, and the term structure of implied volatilities.

Next, we show that the first 3 PC factors predict stock returns. We construct an aggregate PC

factor based on these 3 PC factors, and show that not only it explains stock returns but also drives

out the predictability of existing predictors extracted from the option market.

We examine potential explanations of our results. Short-sale constraints seems the most plau-
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sible explation as it wipes out the predictability of the aggregate PC factor. Finally, we find that

the aggregate PC factor also predicts the cross-section of option returns.
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Table 1: Variable Definition

Key Financial Systemic Risk Variables and Definition:

Absorption: fraction of return variance of a set of N financial institutions explained by the first k PCs

Aim: a weighted average of stock-level illiquidity measures

Book lvg: aggregate book leverage for large financial institutions

Catfin : time-varying value at risk (VaR) of financial institutions at the 99% confidence level

Covar: value-at-risk (VaR) of the financial system as a whole conditional on an institution being in distress

Dci : how interconnected a set of financial institutions is by computing the fraction of
significant Granger-causality relationships among their returns

Def spr: baa bond yield minus aaa bond yield

Delta absorption: difference between absorption ratios calculated for long and short estimation windows

Delta covar: the difference between the conditional value at risk (CoVaR) of the financial system
conditional on an institution being in distress and the CoVaR conditional on the median state

Gz: Gilchrist-Zakrajsek measure of credit spread

Intl spillover: measures co-movement in macroeconomic variables across countries.

Mes : the expected return of a firm conditional on the system being in its lower tail

Mes be: a version of marginal expected shortfall proposed by Brownlees and Engle (2011)

Mkt lvg: aggregate market leverage for large financial institutions

Real vol: average equity volatility of the largest financial institutions

Size conc: Herfindal index of the size distribution among financial firms:

Ted spr: 3-month LIBOR minus the 3-month T-bill rate

Term spr: slope of Treasury Yield Curve

Turbulence: a measure of excess volatility that compares the realized squared returns
of financial institutions with their historical volatility
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Appendix .2. Factor Stochvol Model of 19 Individual Risk Measures

This section mainly follows Natesh’s notes. Factor analysis is a method for investigating whether

a number of variables of interest Y1, Y2, ..., Yd are related to a smaller number of unobservable factors

F1, F2, ..., Fk where k � d (we use 3 in our analysis, similar to the PCA; worth adding one or two

more factors). The fact that the factors are not observable makes it harder to use regression and

other standard statistical models. Kannan (and others) use orthogonal regression. This seems

interesting; we have not studied this yet for this data set, and comparing this with what we do is

on our list of things to do next.

We introduce a model which performs factor analysis that aims at extracting the latent factors

relating to the observed variables. This model, initiated by ? is a multi-factor stochastic volatility

model or simply, Factor Stochvol. We assume discrete time point t ∈ {1, . . . , T}, although noting

this assumption can be relaxed to incorporate varying time points. Denoting the observed variables

of M dimensions at each time point t as yt, and the full observation as Y, we have

yt :=



y1t

y2t

...

yMt


, Y := [y1 ,y2 , · · · ,yT ] =



y11 y12 · · · y1T

y21 y22 · · · y2T

...
...

. . .
...

yM1 yM2 · · · yMT


, t = 1, . . . , T . (A1)

The observation yt follows the multivariate factor model with stochastic volatility:

yt ∼ Normal(Λft ,Ut) (A2)

ft ∼ Normal(0,Vt) (A3)
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where Λ an M × R matrix called the factor loadings and ft is an R × 1 vector of factors. The

number of factors, R, is a parameter we choose. We have M is about 20 and we choose R = 3 (the

data analysis showed that perhaps one or two factors might be present as well, but they contribute

very little compared to the first three).

Λ :=



Λ11 Λ12 · · · Λ1R

Λ21 Λ22 · · · Λ2R

...
...

. . .
...

ΛM1 ΛM2 · · · ΛMR


, ft :=



f1t

f2t

...

fRt


. (A4)

We let the noises to be independent given a fix time t, thus the matrices Ut and Vt are diagonal

matrices. In particular, we formulate them as

Ut :=



exp(h1t) 0 · · · 0

0 exp(h2t) · · · 0

...
...

. . .
...

0 0 · · · exp(hMt)


, dim = (M ×M) , (A5)

Vt :=



exp(hM+1,t) 0 · · · 0

0 exp(hM+2,t) · · · 0

...
...

. . .
...

0 0 · · · exp(hM+R,t)


, dim = (R×R) , (A6)

where the log variances (or also known as the latent volatilities) hit, i = 1, . . . ,M + R, follow an

autoregressive process of order one, i.e., AR(1) process. This also means that each of the variances

i.e. V[ymt],V[frt] respects the discretized Black-Karasinski model (?). The AR(1) process for each
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hit is given as

hit |hi,t−1 ∼ Normal
(
µi + φi (hi,t−1 − µi) , σ2

i

)
, i = 1, . . . ,M +R; t = 1, . . . , T . (A7)

where µi , φi , and σi are parameters to be learned, and we define hi0 as the initial log variance

corresponding to time t = 0. Here, the starting value hi0 is treated as a parameter to be learned.

The inference to estimate the latent factors is via Bayesian inference based on a set of carefully

selected proper priors:

µi ∼ Normal(bµ, Bµ),
(φi + 1)

2
∼ Beta(a0, b0) , σ2

i ∼ Gamma
(1

2
,

1

2Bσ

)
, i = 1, . . . ,M +R. (A8)

Further choose the conditional prior for starting values hi0 , which is the stationary distribution of

the AR(1) process:

hi0 |µi, φi, σi ∼ Normal
(
µi , σ

2
i /(1− φ2

i )
)
. (A9)

Finally, for each of the elements in the loading factors Λ, we choose a conjugate zero-mean

Gaussian distribution prior, that is,

Λij ∼ (0, BΛ) , i = 1, . . . ,M ; j = 1, . . . , R . (A10)

For the estimation algortihm, we refer to ?. Running the factorstochvol.R script on the Risk

dataset to determine the unobserved factors yields factor loadings of three latent factors based on

Factor Stochastic Volatility model In Figure 19,
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Figure 19. This figure plots factor loadings of all the systemic risk measures.
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Appendix .3. Principal Component Analysis of 19 Individual Systemic Measures

The first step is to construct PCA of all individual measures. As is standard practice in PCA,

we demean the data and standardize it to have unit empirical variance. We describe PCA analysis a

little bit here. Recall that the eigenvectors of covariance YYT are closely connected to the singular

value decomposition (SVD) of Y ∈ Rd×n. First, recall the eigendecomposition of the real and

symmetric matrix YYT :

YYT = PΛPT , (A11)

where PTP = I and Λ is a diagonal with non-increasing entries. Next recall that the singular value

decomposition (SVD) of any Y ∈ Rd×n,

Y = UΣVT (A12)

where U ∈ Rd×d,Σ ∈ Rd×n,V ∈ Rn×n, with UTU = VTV = I and Σ is a square diagonal matrix.

Using the SVD, we proceed to find that:

YYT = UΣVT (UΣVT )T = UΣVTVΣTUT = U(ΣΣT )UT since VTV = I. (A13)

Further note that ΣΣT ∈ Rn×n is a diagonal matrix. Thus this has precisely the same form as

the eigendecomposition of YYT , c.f. with equation (A11), i.e. set P = U,Λ := ΣΣT . It follows

that the left singular vectors U of Y will be the eigenvectors of YYT , with corresponding eigenvalues

ΣΣT . Now let Uk ∈ Rd×k be a truncated version of U, where we just take the first k columns. Then

Uk ∈ Rd×k equivalently consists of an orthonormal basis for the eigenspace of the k eigenvalues of

YYT . So the solution to the PCA problem is expressible as: Eigenvectors : Ŵ = Uk, Projection :
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Ẑ = UT
kY, Reconstruction : Ŷ = UkU

T
kY, Reconstruction error : R̂E = ||Ŷ−Y||2F where || · ||F

denotes the Frobenius norm.

Figure 10 shows variances explained by first 10 principal components extracted out of cross-

section. The first PCA explains 25% of variations in all series and the second PCA explains nearly

23% of total variations. All together,the first two PCAs explain almost 50% of total variations.

So we will focus on the first two PCAs in the remainder of this paper. Although we plot PCA

loadings on each specific risk measure in Figure 20, it is hard to give economic explanation for each

PCA. However, if we can project PCs onto news information, there would be textual explanation

for those latent factors. This is part of reasons why we bring text data into picture.
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Figure 20. This figure plots heat map of all principal components.
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Table 2: Market Price of PC1

Reported are market price risk for PC1 across different portfolios. Each row is estimated as E[Re] = λ0 + βfacλfac.
E[Re] are expected excess returns for each portfolios. VWMe, SMB and HML are Fama-French three factors. HKM
denotes intermediary capital factor from He, Kelly and Manela(2016). ∆PC1 is the first difference of our Principal
Component 1. The first row estimates market price of risk using monthly Fama-French 25 Portfolios Formed on
Size and Book-to-Market from Jan 1995 to Dec 2009. The second row estimates market price of risk using monthly
Fama-French 25 Portfolios Formed on Size and Momentum. The third row estimates market price of risk using both
Fama-French 25 Portfolios Formed on Size and Book-to-Market and Fama-French 10 Portfolios Formed on Momentum
from Jan 1995 to Dec 2009. J statistic that tests whether the pricing errors are jointly zero is shown in the last column
of each row. Fama-MacBeth t-statistics are reported in parenthesis and ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1%
significance levels, respectively.

VWMe SMB HML HKM ∆PC1

25SizeBe 3.602
(2.827)

∗∗∗ 2.504
(2.403)

∗∗ 5.039
(5.023)

∗∗∗ 0.256
(6.997)

∗∗∗ −1.409
(−2.319)

∗∗ J-stat: 74.8
(0.000)

VWMe SMB HML HKM ∆PC1

25SizeMoM 3.383
(2.626)

∗∗∗ 3.977
(3.638)

∗∗∗ 6.258
(5.254)

∗∗∗ −0.321
(−6.052)

∗∗∗ 3.564
(5.629)

∗∗∗ J-stat: 58.4
(0.000)

VWMe SMB HML HKM ∆PC1

35SizeBeMoM 3.445
(2.707)

∗∗∗ 3.066
(2.926)

∗∗∗ 4.417
(4.372)

∗∗∗ −0.151
(−3.224)

∗∗∗ 0.188
(0.325)

J-stat: 91.6
(0.000)

Appendix .4. Market Price of Risk
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Table 3: Market Price of Textual PC1

Reported are market price risk for the Textual PC1 across different portfolios. Each row is estimated as E[Re] =
λ0 +βfacλfac. E[Re] are expected excess returns for each portfolios. VWMe, SMB and HML are Fama-French three
factors. HKM denotes intermediary capital factor from He, kelly and Manela(2016). ∆TPC1 is the first difference of
our Textual Based Principal Component 1. The first row estimates market price of risk using monthly Fama-French
25 Portfolios Formed on Size and Book-to-Market from Jan 1995 to Dec 2009. The second row estimates market
price of risk using monthly Fama-French 25 Portfolios Formed on Size and Momentum. The third row estimates
market price of risk using both Fama-French 25 Portfolios Formed on Size and Book-to-Market and Fama-French 10
Portfolios Formed on Momentum from Jan 1995 to Dec 2009. J statistic that tests whether the pricing errors are
jointly zero is shown in the last column of each row. Fama-MacBeth t-statistics are reported in parenthesis and ∗,
∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

VWMe SMB HML HKM ∆TPC1

25SizeBe 3.803
(2.988)

∗∗∗ 2.361
(2.284)

∗∗ 5.201
(5.231)

∗∗∗ 0.263
(7.221)

∗∗∗ −1.494
(−3.619)

∗∗∗ J-stat: 72.8
(0.000)

VWMe SMB HML HKM ∆TPC1

25SizeMoM 2.867
(2.212)

∗∗ 4.237
(3.880)

∗∗∗ 6.926
(5.727)

∗∗∗ −0.291
(−5.426)

∗∗∗ 2.633
(4.987)

∗∗∗ J-stat: 58.2
(0.000)

VWMe SMB HML HKM ∆TPC1

35SizeBeMoM 3.392
(2.661)

∗∗∗ 2.983
(2.859)

∗∗∗ 4.605
(4.623)

∗∗∗ −0.147
(−3.226)

∗∗∗ 1.139
(2.551)

∗∗ J-stat: 91.1
(0.000)

Appendix .5. Predictability of Time Series of Government Bond Excess Returns

Table VI shows monthly bond return predictability regressions based on TPC1, TPC2, original

PC1 , original PC2 and Bayesian Factor. The dependent variables are annualized one year holding

period returns on three year US government bond (Results are robust to different US government

bonds). Each column represents a different regression. The in sample columns examine period

from 1990.1 to 2006.12, and the out of sample columns focus on the financial crisis period from

2007.1 to 2014.12. tNW are Newey and West corrected t-statistics with 24 lags. ∗, ∗∗, and ∗ ∗ ∗

indicate 10%, 5%, and 1% significance levels, respectively. Panel A and Panel B show results for

PCAs and Bayesian Factor respectively. In Panel A, before financial crisis, neither of textual PCs

nor original PCs have any significant effects on future bond risk premia while CP factor has very

significant effect on bond risk premia. In contrast, after financial crisis, CP factor can not affect

significantly future bond risk premia while systemic risk measures can predict future bond risk
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premia very significantly. More interestingly, textual PCs have more predictive power than original

PCs. For example, the adj R2 of regressing bond risk premia onto Textual PC2 is 27.1%, which is

much larger than the adj R2 5% from regression of bond risk premia onto PC2. This means that

news embed additional information beyond number information and combing news and number

information gives a larger predictive power for future bond risk premia. In Panel B, Bayesian

Factor shows predictive power not only after financial crisis but also before financial crisis. This

is very important because a good pricing kernel measure should have pricing power both in crisis

period and normal period and our Bayesian Factor satisfies this requirement. Although we didn’t

show the result, PQR factor does not have a predictive power for future bond excess returns in

normal period.

Textual Code: Data: CitiGroup AND NOT Morning Agenda AND NOT Paid Notice AND

NOT Profit Scoreboard AND NOT In Quote AND NOT Residential Sales AND NOT Treasury

Auction AND NOT Morning Takeout AND NOT Wedding AND NOT Business Digest AND NOT

Executive Change AND NOT Brief

Appendix B. Appendix: Combining Bond Demand and Supply

Factors

Appendix C. Appendix: Making Better Use of Option Prices to

Predict Stock Returns

Figure 1: Principal Components of Implied Volatility Surfaces

This figure plots the relative contribution of the first ten principal components of the correlation matrix of the
cross-section of implied volatility surfaces. Every Monday, we extract the implied volatility surfaces for all
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Table 4: Bond Predictability of PCs, Textual PCs, and Bayesian Factor

Reported are monthly bond return predictability regressions based on Financial Distress Factor. Panel A show regres-

sions for Textual PC1, Textual PC2, PC1 and PC2. Panel B show regressions for Bayesian Factor. The dependent

variables are annualized one year holding period returns on three year US government bond. The independent vari-

ables are each distress measure plus CP factor. In Panel B, we did not report CA factor estimation. Each column

represents a different regression. The in sample columns examine period from 1990.1 to 2006.12, and the out of

sample columns focus on the financial crisis period from 2007.1 to 2014.12. tNW are Newey and West corrected

t-statistics with 24 lags. ∗, ∗∗, and ∗ ∗ ∗ indicate 10%, 5%, and 1% significance levels, respectively.

rbondt+1 = β0 + β1Xt + CPt + εt+1

Panel A In Sample :1990 - 2006 Out of Sample 2007-2014

TPC1 −0.0035 0.0230∗∗∗

tNW (-0.531) (2.586)

TPC2 0.0037 0.0309∗∗∗

tNW (0.755) (4.785)

PC1 −0.0028 0.009∗∗∗

tNW (-0.743) (2.838)

PC2 0.0055 0.0026
tNW (1.422) (0.412)

CP 0.0126∗∗∗ 0.0131∗∗∗ 0.0126∗∗∗ 0.0135∗∗∗ 0.0001 0.0044 0.013 0.0102
tNW (5.137) (5.722) (5.095) (6.096) (0.397) (0.939) (1.647) (1.452)

Adj. R2 36.7% 36.5% 36% 38% 21.5% 27.1% 19% 5%

Obs. 204 204 204 204 96 96 96 96

Panel B In Sample :1990 - 2006 Total Sample :1990 - 2014

Bayesian Factor -0.0977*** -0.0935***
tNW (-2.257) (-4.927)

Adj. R2 38.6% 38.5%

Obs. 204 300

Table 5Macro Variable Description

The column tcode denotes the following data transformation for a series x: (1) no transformation; (2)∆xt ; (3) ∆2xt

; (4) log(xt); (5) ∆log(xt); (6) ∆2log(xt). (7) ∆(xt/xt11.0). The FRED column gives mnemonics in FRED followed

by a short description. The comparable series in Global Insight is given in the column GSI.

131



firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains 112 volatilities defined
across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152,
182, 273, and 365 calendar days. After demeaning each volatility surface, we compute the correlation matrix
of the cross-section of implied volatility surfaces and decompose it using principal component analysis.

(2).png
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Figure 2: Principal Components of Implied Volatility Surfaces

This figure plots the loadings for the first five principal components of the correlation matrix of the cross-
section of implied volatility surfaces across maturity (in days) and moneyness (Strike over stock price). Every
Monday, we extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each
implied volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning
each volatility surface, we compute the correlation matrix of the cross-section of implied volatility surfaces
and decompose it using principal component analysis. Panel A to E report the loadings of the first five
principal components (out of 112).

Panel A: First Principal Component (PC1)

(2).png
Panel B: Second Principal Component (PC2)

(2).png
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Panel C: Third Principal Component (PC3)

(2).png
Panel D: Fourth Principal Component (PC4)

Panel E: Fifth Principal Component (PC5)

134



Figure 3: Time-series Average of Principal Components of Implied Volatility Surfaces

This figure plots the time-series average of the first three principal components (PC1, PC2, and PC3) of the
correlation matrix of the cross-section of implied volatility surfaces. Every Monday, we extract the implied
volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains
112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities
30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility surface, we compute
the correlation matrix of the cross-section of implied volatility surfaces and decompose it using principal
component analysis. Panel A reports the time-series average of the first principal component (out of 112).
Panel B reports the time-series average of the second and third principal components (out of 112).

Panel A: Average First Principal Component

Panel B: Average Second and Third Principal Component

135



Figure 4: Aggregate PC Factor

This figure plots the loadings of the aggregate principal component (PC) factor across maturity (in days)
and moneyness (Strike over stock price) in Panel A and the time-series average (along with the 5-day moving
average) of the aggregate PC factor in Panel B. To construct the aggregate PC factor, every Monday we
extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied
volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each
volatility surface, we compute the correlation matrix of the cross-section of implied volatility surfaces and
decompose it using principal component analysis. The agregate PC factor is computed with the first three
PCs and is equal to PC1 + PC2 + PC3.

Panel A: Aggregate PC Factor Loadings

Panel B: Time-Series Average
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Figure 5: Long Term Return Predictability of the Aggregate PC Factor

This figure plots the long-term return predictability of the aggregate principal component (PC) factor. Panel
A reports the economic significance of the aggregate PC factor in predicting week t value-weighted return and
Panel B reports cumulative week t value-weighted returns, where t goes from 1 to 30 weeks. The surrounding
error bars represent the 95% confidence interval. To construct the aggregate PC factor, every Monday we
extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied
volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each
volatility surface, we compute the correlation matrix of the cross-section of implied volatility surfaces and
decompose it using principal component analysis. The agregate PC factor is computed with the first three
PCs and is equal to PC1 + PC2 + PC3.

Panel A: Future Weekly Returns

Panel B: Cummulative Future Weekly Returns
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Table 1: Summary Statistics

This table reports summary statistics of the variables. We report the first five principal components (out of
112), PC1 to PC5, of the cross-section of volatility surfaces. Every Monday, we extract the implied volatility
surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains 112
volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities
30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility surface, we compute
the correlation matrix of the cross-section of implied volatility surfaces and decompose it using principal
component analysis. We report an agregate PC factor that is equal to PC1 +PC2 +PC3, implied volatility
skew as in Xing, Zhang, and Zhao (2010), implied volatility spread as in Cremers and Weinbaum (2010),
the slope of the implied volatility term structure defined as the difference between long and short term ATM
implied volatilities, volatility of implied volatilities as in Baltussen, Van Bekkum, and Van Der Grient (2012),
risk-neutral moments as defined in Conrad, Dittmar, and Ghysels (2013), O/S option to stock volume ration
as defined in Johnson and So (2012), contemporaneous weekly return (Ret 1w), lagged six-month return
(Ret 6M), the logarithm of the market-capitalization (Size), book-to-market (BE/ME), and the Amihud
measure of illiquidity.

Variables Mean Std 5% Percentile 50%Percentile 95%Percentile

PC1 0.000 0.287 -0.292 0.019 0.256

PC2 0.000 0.246 -0.401 0.044 0.243

PC3 0.000 0.179 -0.218 -0.006 0.248

PC4 0.000 0.136 -0.149 -0.009 0.185

PC5 0.000 0.096 -0.092 -0.016 0.153

Agg. PC Factor 0.000 0.419 -0.547 0.048 0.395

IVskew 0.055 0.074 -0.009 0.040 0.182

IVspread -0.008 0.067 -0.078 -0.005 0.055

SlopeIV TS -0.029 0.079 -0.149 -0.017 0.046

VoV 0.085 0.065 0.028 0.067 0.207

RNvol 0.469 0.153 0.253 0.452 0.745

RNskew -0.361 0.306 -0.893 -0.336 0.087

RNkurt 3.064 0.649 2.193 3.002 4.150

O/S 3.374 7.707 0.000 1.000 13.907

Ret 1w 0.002 0.065 -0.089 0.000 0.099

Ret 6M 0.151 0.801 -0.571 -0.002 1.325

Size 7.261 1.584 4.927 7.105 10.134

BE/ME 0.549 0.634 0.067 0.447 1.370

Amihud 0.032 0.345 0.000 0.003 0.075
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Table 2: Correlation Matrix

This table reports the correlation matrix of the principal components and firm variables. We report the
first five principal components (out of 112), PC1 to PC5, of the cross-section of volatility surfaces. Every
Monday, we extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014.
Each implied volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After
demeaning each volatility surface, we compute the correlation matrix of the cross-section of implied volatility
surfaces and decompose it using principal component analysis. The remaining variables are an agregate PC
factor that is equal to PC1 + PC2 + PC3, implied volatility spread as in Cremers and Weinbaum (2010),
implied volatility skew as in Xing, Zhang, and Zhao (2010), risk-neutral skewness and risk-neutral kurtosis
as defined in Conrad, Dittmar, and Ghysels (2013), O/S option to stock volume ration as defined in Johnson
and So (2012), contemporaneous weekly return (Ret 1w), lagged six-month return (Ret 6M), the market-
capitalization (Size), book-to-market (BE/ME), and the Amihud measure of illiquidity.

PC1

PC2 0.9 PC2

PC3 -1.4 -4.2 PC3

PC4 1.0 1.7 -1.7 PC4

PC5 -0.9 -2.7 0.7 -6.8 PC5

Agg. PC Factor 71.1 -55.6 -40.8 0.4 0.6 Agg. PC Factor

IVskew -39.2 16.4 34.4 13.5 22.1 -49.7 IVskew

IVspread 66.1 -8.5 -2.1 -9.1 -3.7 51.7 -56.3 IVspread

RNskew 4.7 9.8 -23.2 -16.0 -0.4 6.1 -31.5 9.1 RNskew

RNkurt 0.7 -9.6 1.9 10.3 5.5 5.9 11.0 0.7 -69.7 RNkurt

O/S -8.1 3.3 7.3 -7.2 -3.9 -10.8 8.0 -6.5 -9.2 8.2 O/S

Ret 1w -5.7 -2.0 1.0 2.0 0.0 -3.3 5.9 -10.7 -2.5 1.7 1.4 Ret 1w

Ret 6M -0.8 0.0 3.6 -1.3 -3.1 -2.1 -2.3 -0.6 5.3 -5.4 5.3 0.0 Ret 6M

Size 3.6 -15.8 16.9 -6.2 -10.2 4.6 -4.3 4.1 -38.2 34.1 18.6 3.4 3.0 Size

BE/ME 3.2 5.1 -4.8 0.9 6.9 1.4 9.8 1.2 1.3 -2.6 -6.6 -4.6 -10.9 -14.3 BE/ME

Amihud -6.5 1.6 -2.8 1.3 -2.6 -4.4 6.5 -7.2 3.9 -4.6 -0.5 0.0 5.9 -7.3 -0.9 Amihud
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Table 3: Fama-Macbeth Regressions and Principal Components

This table presents the Fama-Macbeth results from regressing next-week and next-month stock returns on
the first five principal components (out of 112), PC1 to PC5, of the cross-section of volatility surfaces.
Every Monday, we extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014.
Each implied volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After
demeaning each volatility surface, we compute the correlation matrix of the cross-section of implied volatility
surfaces and decompose it using principal component analysis. The remaining variables are an agregate PC
factor that is equal to PC1 + PC2 + PC3, the slope of the implied volatility term structure defined as the
difference between long and short term ATM implied volatilities, implied volatility spread as in Cremers and
Weinbaum (2010), implied volatility skew as in Xing, Zhang, and Zhao (2010), O/S option to stock volume
ration as defined in Johnson and So (2012), contemporaneous weekly return (Ret 1w), lagged six-month
return (Ret 6M), the market-capitalization (Size), book-to-market (BE/ME), and the Amihud measure of
illiquidity.

Weekly Return Monthly Return

1 2 3 4 5 6

Intercept 0.0018 0.0016 0.0019 0.0071* 0.0089 0.0096

(1.49) (0.61) (0.71) (1.75) (0.98) (1.05)

PC1 0.0041*** 0.0041*** 0.0037*** 0.0120*** 0.0120*** 0.0127***

(7.41) (8.31) (5.11) (7.22) (7.96) (5.65)

PC2 0.0031*** 0.0035*** 0.0018 0.0101*** 0.0117*** 0.0068**

(3.62) (5.23) (1.48) (3.57) (5.40) (1.99)

PC3 0.0036*** 0.0031*** 0.0028*** 0.0111*** 0.0085*** 0.0083**

(3.70) (3.17) (2.89) (3.34) (2.60) (2.56)

PC4 -0.0002 -0.0006 -0.0011 0.0031 0.0014 -0.0002

(-0.15) (-0.46) (-0.86) (0.58) (0.32) (-0.04)

PC5 -0.0025* -0.0032*** -0.0040*** -0.0110** -0.0135*** -0.0168***

(-1.65) (-2.86) (-3.31) (-2.18) (-3.69) (-4.16)

SlopeIV TS 0.0060* 0.0171*

(1.81) (1.78)

IVskew -0.0009 -0.0022

(-0.43) (-0.32)

IVspread 0.0022 -0.0045

(0.58) (-0.38)

O/S -0.0001 -0.0002

(-1.58) (-1.43)

Ret 1w -0.0193*** -0.0204*** -0.0204*** -0.0235*** -0.0277*** -0.0280***

(-5.40) (-6.30) (-6.35) (-2.80) (-3.84) (-3.92)

Ret 6M -0.0002 -0.0002 -0.0017 -0.0015

(-0.45) (-0.39) (-0.95) (-0.88)

Size -0.0000 -0.0000 -0.0005 -0.0004

(-0.21) (-0.07) (-0.63) (-0.47)

B/M 0.0008* 0.0007 0.0022 0.0020

(1.69) (1.60) (1.24) (1.15)

Amihud -0.0021 -0.0022 -0.0076 -0.0084

(-0.35) (-0.36) (-0.37) (-0.40)

Adj.R2 0.0245*** 0.0500*** 0.0532*** 0.0253*** 0.0539*** 0.0575***
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Table 4: Fama-Macbeth Regressions and the Aggregate PC Factor

This table presents the Fama-Macbeth results from regressing next-week and next-month stock returns on the
aggregate principal component (PC) factor. To construct the aggregate PC factor, every Monday we extract
the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied volatility
surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility
surface, we compute the correlation matrix of the cross-section of implied volatility surfaces and decompose
it using principal component analysis. The agregate PC factor that is equal to PC1 + PC2 + PC3. The
remaining variables are the agregate PC factor that is equal to PC1 +PC2 +PC3, the slope of the implied
volatility term structure defined as the difference between long and short term ATM implied volatilities,
implied volatility spread as in Cremers and Weinbaum (2010), implied volatility skew as in Xing, Zhang,
and Zhao (2010), O/S option to stock volume ration as defined in Johnson and So (2012), contemporaneous
weekly return (Ret 1w), lagged six-month return (Ret 6M), the market-capitalization (Size), book-to-market
(BE/ME), and the Amihud measure of illiquidity.

Weekly Return Monthly Return

1 2 3 4 5 6

Intercept 0.0017 0.0016 0.0015 0.0071* 0.0082 0.0080

(1.48) (0.60) (0.57) (1.76) (0.91) (0.87)

Agg. PC Factor 0.0035*** 0.0036*** 0.0031*** 0.0115*** 0.0118*** 0.0117***

(5.98) (7.10) (4.42) (5.84) (6.94) (4.84)

SlopeIV TS 0.0001 -0.0004

(0.05) (-0.05)

IVskew -0.0018 -0.0015

(-0.90) (-0.24)

IVspread 0.0043 -0.0085

(1.24) (-0.72)

O/S -0.0001 -0.0002

(-1.57) (-1.45)

Ret 1w -0.0195*** -0.0209*** -0.0207*** -0.0232** -0.0282*** -0.0296***

(-5.17) (-6.22) (-6.37) (-2.54) (-3.67) (-4.07)

Ret 6M -0.0002 -0.0002 -0.0017 -0.0015

(-0.44) (-0.31) (-0.91) (-0.82)

Size -0.0001 0.0000 -0.0004 -0.0002

(-0.24) (0.04) (-0.50) (-0.29)

B/M 0.0008* 0.0007 0.0023 0.0019

(1.70) (1.57) (1.22) (1.07)

Amihud -0.0028 -0.0026 -0.0117 -0.0129

(-0.43) (-0.42) (-0.54) (-0.60)

Adj.R2 0.0151*** 0.0432*** 0.0490*** 0.0149*** 0.0467*** 0.0528***
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Table 5: Aggregate PC Factor vs. Option Implied Predictors

This table presents the Fama-Macbeth results from future stock returns on existing option implied predictors
and the aggregate principal component (PC) factor. Panel A reports next-week returns (Ret1W ) and Panel
B next-month returns (Ret1M ). To construct the aggregate PC factor, every Monday we extract the implied
volatility surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains
112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities
30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility surface, we compute
the correlation matrix of the cross-section of implied volatility surfaces and decompose it using principal
component analysis. The aggregate PC factor that is equal to PC1 + PC2 + PC3. The option implied
predictors are the implied volatility spread as in Cremers and Weinbaum (2010), implied volatility skew
as in Xing, Zhang, and Zhao (2010), risk-neutral skewness and risk-neutral kurtosis as defined in Conrad,
Dittmar, and Ghysels (2013), O/S option to stock volume ration as defined in Johnson and So (2012), and
the volatility of implied volatility as defined in Baltussen, Van Bekkum, and Van Der Grient (2012). The
control variables are contemporaneous weekly return, lagged six-month return, the market-capitalization,
book-to-market, and the Amihud measure of illiquidity.

Panel A: Weekly Return Regressions

1 2 3 4 5 6

X: IVspread IVskew RNSkew RNkurt O/S VoV

Intercept 0.001 0.001 0.0015 0.0020 0.000 0.001 0.001 0.002 0.0011 0.0014 0.0029 0.0023

(0.33) (0.56) (0.66) (0.85) (0.11) (0.42) (0.26) (0.49) (0.41) (0.55) (1.19) (0.91)

X 0.009 -0.003 -0.0116 -0.0031 0.003 0.001 -0.000 -0.000 -0.0001 -0.0001 -0.0053 -0.0053

(4.69) (-0.83) (-3.85) (-0.93) (3.27) (1.53) (-0.60) (-0.57) (-2.41) (-1.87) (-2.70) (-2.81)

Agg. PC 0.003 0.0026 0.003 0.003 0.0024 0.0031

(4.47) (2.89) (3.60) (4.29) (6.52) (4.23)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj.R2 0.049 0.055 0.0584 0.0654 0.057 0.063 0.054 0.06 0.0424 0.0449 0.0482 0.0496

# Obs. 1,290,234 1,290,234 716,525 716,525 822,451 822,451 822,451 822,451 1,883,069 1,883,069 1,899,437 1,899,437

Panel B: Monthly Return Regressions

1 2 3 4 5 6

X: IVspread IVskew RNSkew RNkurt O/S VoV

Intercept 0.006 0.008 0.0069 0.0085 0.004 0.007 0.007 0.009 0.0062 0.0076 0.0125 0.0101

(0.68) (0.93) (0.89) (1.11) (0.45) (0.69) (0.56) (0.79) (0.75) (0.92) (1.45) (1.12)

X 0.031 -0.010 -0.0374 -0.0071 0.009 0.005 -0.001 -0.001 -0.0003 -0.0002 -0.0208 -0.0200

(6.18) (-1.14) (-4.43) (-0.78) (3.35) (1.77) (-1.17) (-1.14) (-2.52) (-1.93) (-3.72) (-3.69)

Agg. PC 0.011 0.0091 0.010 0.011 0.0081 0.0119

(4.99) (3.49) (3.71) (4.49) (7.21) (4.76)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Adj.R2 0.049 0.055 0.0549 0.0549 0.06 0.066 0.058 0.063 0.0488 0.0486 0.0512 0.053

# Obs. 1,280,309 1,280,309 711,015 711,015 819,569 819,569 819,569 819,569 1,865,482 1,865,482 1,881,809 1,881,809
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Table 6: Portfolio Sorts by Aggregate PC Factor

This table forms decile portfolios based on the aggregate principal component (PC) factor and reports weekly
and monthly equal-weighted and value-weighted returns. The portfolio alpha, αFFC , is the intercept of the
regression of each portfolio on the Fama-French-Carhart factors. To construct the aggregate PC factor,
every Monday we extract the implied volatility surfaces for all firms from Optionmetrics from 1996 to 2014.
Each implied volatility surface contains 112 volatilities defined across calls and puts, absolute deltas of 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After
demeaning each volatility surface, we compute the correlation matrix of the cross-section of implied volatility
surfaces and decompose it using principal component analysis. The aggregate PC factor that is equal to
PC1 + PC2 + PC3. We report the t-statistics in parenthesis and the significance levels are indicated with
* (10%), ** (5%), *** (1%).

Weekly Returns Monthly Returns

EW VW EW VW

Decile Return αFFC Return αFFC Return αFFC Return αFFC
1 0.0002 -0.0011 0.001 -0.001 0.001 -0.0034** 0.003 -0.001

(0.1) (-0.98) (0.34) (-0.35) (0.38) (-2.25) (0.79) (-0.64)

2 0.002 0.0007 0.002 0.001 0.007** 0.0022* 0.0053** 0.001

(1.36) (0.65) (1.22) (0.69) (2.44) (1.7) (2.01) (0.86)

3 0.0019 0.0005 0.001 0.0 0.0075*** 0.0024** 0.0058** 0.001

(1.41) (0.57) (0.88) (0.0) (2.93) (2.13) (2.5) (0.86)

4 0.0021* 0.0008 0.001 0.0 0.0082*** 0.003*** 0.005** 0.0

(1.75) (0.91) (1.25) (0.3) (3.51) (2.8) (2.43) (0.28)

5 0.0019 0.005 0.002 0.0 0.008*** 0.0027*** 0.0062*** 0.002

(1.64) (0.69) (1.49) (0.5) (3.73) (2.73) (3.38) (1.51)

6 0.0021** 0.0008 0.001 0.0 0.0083*** 0.003*** 0.0046*** 0.0

(1.97) (1.07) (1.38) (0.27) (4.07) (3.12) (2.73) (0.08)

7 0.0022** 0.0009 0.001 0.0 0.0081*** 0.0027*** 0.0053*** 0.001

(2.08) (1.18) (1.48) (0.34) (4.13) (2.95) (3.35) (0.87)

8 0.0018* 0.0005 0.001 0.0 0.0077*** 0.0024*** 0.0052*** 0.001

(1.78) (0.76) (1.63) (0.55) (3.91) (2.6) (3.43) (0.72)

9 0.0021** 0.0009 0.0019** 0.001 0.0091*** 0.0039*** 0.0069*** 0.0025***

(2.01) (1.2) (2.23) (1.36) (4.34) (4.01) (4.35) (2.66)

10 0.0035** 0.0022** 0.0029*** 0.0018** 0.0129*** 0.008*** 0.0107*** 0.0063***

(2.56) (2.35) (2.62) (2.14) (4.71) (6.25) (5.15) (5.3)

10-1 0.0038*** 0.0038*** 0.0028** 0.0027*** 0.0136*** 0.0132*** 0.01*** 0.0094***

(6.01) (6.6) (2.44) (2.58) (11.3) (12.6) (4.76) (5.03)

143



Table 7: Portfolios Transition Probabilities

This table reports the transition probabilities from one period to the next of decile portfolios formed based
on the aggregate principal component (PC) factor. Every Monday, we extract the implied volatility surfaces
for all firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains 112 volatilities
defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122,
152, 182, 273, and 365 calendar days. After demeaning each volatility surface, we compute the correlation
matrix of the cross-section of implied volatility surfaces and decompose it using principal component analysis.
The agregate PC factor that is equal to PC1 +PC2 +PC3. We report the probabilities that a stock moves
one portofolio up, one portfolio down, that it remains in the same portfolio or that it moves to any other
portfolios. The probabilities are reported for all portfolios and for portfolio 10 at the weekly and monthly
frequency.

Weekly Monthly

All portfolios Portfolio 10 All portfolios Portfolio 10

Move up one portfolio 17% 0% 14% 0%

Remain in same portfolio 36% 41% 24% 59%

Move down one portfolio 17% 15% 14% 17%

Move to other portfolios 30% 44% 48% 24%
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Table 8: Lending Fee and the Aggregate PC Factor

This table forms decile portfolios based on the aggregate principal component (PC) factor and reports weekly
and monthly equal-weighted and value-weighted returns. Every Monday, we extract the implied volatility
surfaces for all firms from Optionmetrics from 1996 to 2014. Each implied volatility surface contains 112
volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities
30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility surface, we compute
the correlation matrix of the cross-section of implied volatility surfaces and decompose it using principal
component analysis. The agregate PC factor that is equal to PC1+PC2+PC3. Each portfolio is regressed on
contemporaneous risk factors: the Fama-French and the momentum factors. The intercept of the regression
is the portfolio alpha, α. We report the t-statistics in parenthesis and the significance levels are indicated
with * (10%), ** (5%), *** (1%).

Weekly Returns Monthly Returns

1 2 3 1 2 3

Intercept 0.0017 0.0040 0.0041 0.0071* 0.0183* 0.0176*

(1.48) (1.46) (1.44) (1.76) (1.91) (1.75)

Agg. PC Factor 0.0035*** 0.0003 0.0115*** 0.0029

(5.98) (0.52) (5.84) (1.23)

Stock Lending Fee -0.0184*** -0.0181*** -0.0841*** -0.0783***

(-3.84) (-3.79) (-4.82) (-4.63)

Controls Yes Yes Yes Yes Yes Yes

Adj. R2 0.0151 0.0467 0.048 0.0151 0.0427 0.044

# Obs. 1,914,768 878,087 878,087 1,914,768 867,802 867,802
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Table 9: Out-of-Sample Aggregate PC Factor

This table presents the Fama-Macbeth results from regressing next-week and next-month stock returns
on the aggregate principal component (PC) factor. To construct the aggregate PC factor, every Monday
we use a 3-year rolling window of implied volatility surfaces for all firms. Each implied volatility surface
contains 112 volatilities defined across calls and puts, absolute deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and
0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar days. After demeaning each volatility
surface, we compute the correlation matrix of the cross-section of implied volatility surfaces and decompose
it using principal component analysis. The agregate PC factor that is equal to PC1 + PC2 + PC3. The
remaining variables are the slope of the implied volatility term structure defined as the difference between
long and short term ATM implied volatilities, implied volatility spread as in Cremers and Weinbaum (2010),
implied volatility skew as in Xing, Zhang, and Zhao (2010), O/S option to stock volume ration as defined
in Johnson and So (2012), contemporaneous weekly return (Ret 1w), lagged six-month return (Ret 6M),
the market-capitalization (Size), book-to-market (BE/ME), and the Amihud measure of illiquidity. We use
Optionmetrics data from 1996 to 2014.

Weekly Return Monthly Return

1 2 3 4 5 6

Intercept 0.0018 0.0015 0.0013 0.0073* 0.0080 0.0072

(1.53) (0.56) (0.47) (1.73) (0.88) (0.77)

Agg. PC Factor 0.0027*** 0.0029*** 0.0029*** 0.0092*** 0.0095*** 0.0104***

(3.96) (5.19) (3.84) (3.84) (5.00) (3.93)

SlopeIV TS -0.0020 -0.0082

(-0.72) (-0.89)

IVskew -0.0015 -0.0018

(-0.70) (-0.24)

IVspread 0.0068** 0.0007

(2.18) (0.06)

O/S -0.0001 -0.0002

(-1.58) (-1.53)

Ret 1w -0.0211*** -0.0206*** -0.0292*** -0.0295***

(-6.34) (-6.35) (-3.85) (-4.06)

Ret 6M -0.0002 -0.0002 -0.0017 -0.0014

(-0.44) (-0.32) (-0.90) (-0.80)

Size -0.0001 0.0000 -0.0004 -0.0003

(-0.25) (0.02) (-0.55) (-0.32)

B/M 0.0009* 0.0007 0.0024 0.0020

(1.77) (1.59) (1.30) (1.12)

Amihud -0.0026 -0.0023 -0.0115 -0.0120

(-0.41) (-0.37) (-0.53) (-0.55)

Adj.R2 0.0066*** 0.0439*** 0.0492*** 0.0067*** 0.0473*** 0.0531***
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Table 10: Aggregate PC Factor and Option Returns

This table reports the results on the relation between the aggregate PC factor and weekly straddle returns
computed from Optionmetrics for the period 1996 to 2012. Panel A forms decile portfolios based on the
aggregate principal component (PC) factor and reports next-week equal-weighted and value-weighted strad-
dle returns. Panel B presents the Fama-Macbeth results from regressing next-week straddle returns on the
aggregate principal component (PC) factor, the slope of the volatility term structure as in Vasquez (2017),
historical minus implied volatility as in Goyal and Saretto (2009), and idiosyncratic volatility as in Cao and
Han (2013). Every Monday, we extract the implied volatility surfaces for all firms from Optionmetrics from
1996 to 2014. Each implied volatility surface contains 112 volatilities defined across calls and puts, absolute
deltas of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 at maturities 30, 60, 91, 122, 152, 182, 273, and 365 calendar
days. After demeaning each volatility surface, we compute the correlation matrix of the cross-section of
implied volatility surfaces and decompose it using principal component analysis. The agregate PC factor
that is equal to PC1 + PC2 + PC3. We report the t-statistics in parenthesis.

Panel A: Weekly Straddle Returns
P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P10-P1

Agg. PC Factor -0.772 -0.22 -0.1 -0.029 0.024 0.069 0.111 0.156 0.219 0.541

Equal Weighted Straddle Returns

Mean 0.017 0.006 -0.002 -0.004 -0.009 -0.01 -0.016 -0.018 -0.02 -0.026 -0.042

t-stat (6.20) (2.43) (-0.92) (-1.66) (-3.72) (-4.32) (-6.76) (-7.22) (-7.83) (-7.89) (-14.83)

StDev 0.076 0.073 0.072 0.072 0.068 0.069 0.065 0.07 0.074 0.093 0.081

Skewness 0.873 0.68 0.747 0.99 0.634 0.969 0.393 0.352 1.251 1.341 0.386

Kurtosis 4.10 5.18 7.49 6.99 7.02 8.45 5.10 5.30 11.21 10.48 2.26

Min -0.244 -0.26 -0.362 -0.281 -0.344 -0.337 -0.338 -0.339 -0.377 -0.386 -0.305

Max 0.489 0.523 0.541 0.498 0.479 0.497 0.378 0.436 0.651 0.777 0.335

Value Weighted Straddle Returns

Mean 0.018 0.007 -0.002 -0.003 -0.009 -0.01 -0.016 -0.018 -0.021 -0.026 -0.045

t-stat (6.73) (2.73) (-0.60) (-1.32) (-3.65) (-4.20) (-6.80) (-7.36) (-8.25) (-8.14) (-15.64)

StDev 0.078 0.074 0.072 0.073 0.068 0.069 0.065 0.07 0.073 0.092 0.081

Skewness 0.944 0.797 0.809 1.067 0.636 1.071 0.409 0.455 1.266 1.496 0.268

Kurtosis 4.26 5.74 7.50 6.78 6.27 8.28 4.80 5.51 11.08 11.74 1.83

Min -0.242 -0.258 -0.358 -0.273 -0.338 -0.325 -0.333 -0.336 -0.366 -0.395 -0.346

Max 0.515 0.56 0.545 0.489 0.453 0.485 0.363 0.453 0.639 0.792 0.322

Panel B: Weekly Straddle Return Regressions

1 2

Intercept -0.0082 0.0052

(-3.47) (1.67)

Agg. PC Factor -0.0324 -0.0654

(-15.37) (-21.41)

Slope of VTS 0.2552

(18.71)

HV–IV 0.0564

(10.61)

Idio. Volatility -0.4315

(-9.85)

Adj. R2 0.0053 0.0229

(11.10) (20.93)
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