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Abstract 
 Uncertainty is a key part of any sports game; without it, there is little reason to be 
interested in the outcome. This thesis attempts to quantify the uncertainty inherent in NHL 
hockey games by building a real-time win probability model that estimates both teams’ 
likelihood of winning based on what has happened in the game so far. The model is built using 
historical data from the 2009-2010 season all the way to the 2016-2017 season. Given the 
differential and the time left, the model evaluates historical data for that specific game-state and 
calculates a win probability. The model also uses a multi-regression approach to incorporate pre-
game Vegas odds as a way to factor the strength of both teams; to my knowledge, this is the first 
publicly available hockey win probability model to do so. Finally, the model also factors in 
elements unique to the sport of hockey, like power plays and shootout periods. 
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1. Introduction 

 Your favorite hockey team is up by one goal at the end of the second period. Obviously 

you’re feeling good about the game, but you know a lot could happen in the third period. What 

are the odds that your team actually holds the lead and wins the game? Should you accept the 

weighted bet that your friend just proposed you, or is the return unfavorable? 

 These are the questions that this thesis attempts to address by developing a real-time win 

probability model for NHL hockey games. Though prevalent in other sports like baseball, 

football, and basketball, win probability models have taken longer to adapt to the sport of 

hockey. This paper uses methods developed in other hockey win probability models as well as 

more advanced methods used in basketball and football models.  

 

2. Win Probability Models in Other Sports 

 Win probability models began with baseball, a sport that can be easily analyzed as 

distinct sequential events rather than one continuous event. Each moment of the game can be 

characterized by a game-state, which typically captures at least the following: the score 

differential, the current inning, the number of outs and which bases are taken. Given the 

relatively low number of distinct game-states and the large dataset of historical games, it is 

possible to accurately predict the win expectancy based on the historical final results of that 

game-state.  
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In Figure 1, we can see the difference that no bases and loaded bases have on win 

expectancy is considerable, especially when there are no outs. We also see that fully loaded 

bases are considerably more favorable when there are no outs than when there are two outs. Such 

win expectancies are calculable for every game-state. 

Approaches inspired by this one were created to analyze other sports. However, defining 

the game-state in other sports is not as clear and definite as it is in baseball. Most sports, like 

football, basketball, and hockey, run on continuous time, and score differentials can be extremely 

variable. Models are therefore adapted to incorporate the complexities associated with the sport 

they analyze. 

For basketball, two things to consider are the large amount of differentials possible and 

the considerable variance in strengths of the two teams. Tackling these challenges, Phil Everson 

Figure	1:	Win	expectancy	for	every	game-state	
of	a	tied	game	in	the	bottom	of	the	ninth	inning,	
compiled	by	Tom	Tango	(2007)	
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and Jimmy Charite (2013) developed a model that estimates the distribution of the final margin 

of victory (MOV) of the home team at the end of regulation. Theoretically, the probability that 

the MOV falls above 0 is the win probability. This approach allows flexibility and avoids the 

need to have win expectancy tied to a specific game-state; given that differentials often reach 

twenty points or higher, there would often be a lack of available data to accurately calculate the 

win expectancy. Their model is based on three factors: the amount of time remaining in the 

game, the betting spreads at the beginning of the game, or the predicted MOV, and the current 

score differential. Understandably, at the beginning of the game, the betting spread will have 

more weight than the score differential, which can be variable. However, at the end of the game, 

the score differential will have much more weight than the betting spread. Figure 2 demonstrates 

the relationship between the regression coefficient and minutes remaining, and we can see how 

the model changes as time goes on. We also see that the decrease in the spread coefficient is not 

quite linear; it will therefore be interesting to see if this is the same for hockey. At each point in 

the game, the mean and variance of the distribution are be fitted using the results of Figure 2, and 

from the distribution, the probability that the MOV is greater than 0 is calculated. This 

percentage is equivalent to the win probability. 
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Just like basketball models, football win expectancy models are usually based on three 

major factors: score differential, time remaining, and betting spreads prior to the game. However, 

there are other key factors that need to be considered: which team is in possession of the ball, the 

number of downs, and the field position. For example, the win probability of a team that is up by 

one with five seconds left will be extremely different if the ball is on their own 10-yard line or on 

their opponent’s 10-yard line. To address this caveat, the “Pro-Football-Reference” model first 

calculates the win probability model assuming neutral possession and field position by 

normalizing the standard deviation based on the time left in the game—see Figure 3. Then, the 

model calculates the expected points: based on historical data of field position and number of 

Figure	2:	Regression	of	Home	MOV	and	Current	
Home	Lead,	taken	from	Everson	and	Charite’s	
model	(2013).	“Spread	Coefficient”	refers	to	the	
Vegas	expected	spread,	and	“Home	Lead	
Coefficient”	refers	to	the	actual	score	
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downs, what is the expected net point from scoring drive for the offensive team? The model then 

recalculates the win probability based on the expected points of the next scoring play. 

 

 

 For each sport, win probability models are influenced by the chronology of the game and 

the score differential. Then, models are adapted to take the specific characteristics of the sports 

into account. Hockey is no different. Given that differentials are not very variable—generally the 

differential is within 3 goals—our approach will be closer to the game-state one that baseball 

uses, with the game-state being defined as a two-value vector consisting of time and score 

differential. However, just like in Everson and Charite’s model, the model will need to account 

for the tradeoff between betting odds and score differential.  The model will also include 

elements specific to hockey, like power plays, overtime, and shootouts. 

 

3. Stephen Pettigrew’s Win Probability Model  

 As a starting point for this paper, I analyzed a model developed by Stephen Pettigrew, a 

doctoral student at Harvard University (Pettigrew, 2014). He published demonstrations of the 

model and its methodology on his website, Rink Stats. Pettigrew bases his model on four 

metrics: time remaining, score differential, power plays, and shootout percentages. As previously 

discussed, he defines the game-state as a two-dimensional vector consisting of time and score 

Figure	3:	Example	of	the	Excel	formula	used	to	
calculate	win	expectancy	after	one	quarter.	The	
formula	assumes	neutral	possession	and	
position	(Pro-Football-Reference)	
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differential. He therefore calculated historical frequencies of wins based on the current game-

state, which are represented in Figure 3. 

 

 

 These results are very intuitive. We see that the home team win expectancy begins at 

55% and converges to 50% as time goes on. For all the other differentials, the win expectancy 

approaches 100% with increasing marginal expectancy. Therefore, the score will determine 

which curve is used, and the time will determine where on the curve the value is taken. When a 

goal is scored, the model will “shift” one curve up or one curve down depending on which team 

scored the goal. 

 This game-state represents the bulk of the model. But the model also takes into account 

power plays by using conditional probabilities. Indeed, the model calculates the probability that a 

goal will be scored based on the time left in the penalty, and then incorporates the effect that 

such a goal would have on the win expectancy. Figure 5 shows the formula used. 

Figure	4:	Smoothed	empirical	probabilities	of	home	
team	winning	conditional	on	goal	differential,	taken	
from	Pettigrew’s	Rink	Stats	(2014)	
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 In Figure 6, we can see the model applied retrodictively to a hockey game played on 

March 22nd, 2013. On the time axis, we can see when goals were scored, and we can see the 

associated shift in the win probability model. We can also observe smaller shifts—these 

represent power plays opportunities. We notice that for power plays, the curve follows a saw 

Figure	5:	Pettigrew’s	formula	to	account	for	
power	plays	(Pettigrew,	2014)	

Figure	6:	Pettigrew’s	model	applied	to	a	game,	
taken	from	Rink	Stats	(Pettigrew,	2014)	
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tooth shape: a jump at the beginning of the power play, followed by a gradual decline as time 

goes on. 

 Though well constructed, one main shortcoming that my model will attempt to address is 

the omission of betting odds as the starting point. Indeed, the model always gives the home team 

a 55% win probability at the beginning of the game, which assumes equal strength. Using betting 

odds would account for the difference in strength as well as home-ice advantage. To incorporate 

Vegas odds, we will need to model the diminishing weight that they have as the game goes on, 

similar to what we saw in Figure 2.  

4. Data Collection 

 To build my own model, I first wanted to compile the widest dataset possible. I decided 

to look at games starting with the 2009-2010 season, which constitutes almost 10,000 games. I 

first needed the score at every second of all these games, and who ended up winning the game. 

Using this, I would be able to reconstruct the game-state graph created by Pettigrew (Figure 4). 

Given that I did not know exactly what data I would need later on, I searched for the data source 

that would give me the most information possible, and I would narrow it down from there. This 

led me to NHL Play-By-Play reports, which are official reports in HTML format posted by the 

NHL after every game. Figure 7 displays one example of these reports: each line represents a 

different event. Events can be anything from goals to shots to face-offs to whistles. The line 

incorporates the event type, the description, the time at which the event occurred, and who was 

on the ice at the time of the event.  
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 To retrieve this information, I used a Python scraping program that reads every line of the 

report and writes the information in a text file, separating the information with pipes. The 

program then loops through every game of a season and appends each game to the text file. The 

program retrieves the data for one regular season, so the program is modified to retrieve data for 

a different season. After manipulating the data, I arrived to an Excel dataset containing the 

following: time of the event, details about the event, who was on the ice for that event, and the 

final score of the game associated with that event. The 2017 season alone contained almost 

400,000 observations. Given that there is a total of 8 seasons, the total number of observations 

compiled is over 3 million. This dataset contains virtually all the information regarding what 

happened in every regular season game, and therefore constitutes the raw data of the model. 

Figure	7:	Screenshot	of	the	Play-By-Play	report	
posted	after	a	game	played	on	December	16th	
2016	
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5. Analyzing Win-Frequencies Based on Game-States 

 The next step was to calculate the historical win frequencies of every game-state. To do 

so, I extracted all the goals from the raw dataset, resulting in a dataset of about 52,000 goals. 

Then, I modified the dataset into a matrix containing the score differential associated with the 

game ID and the number of seconds in the game. Therefore, each game is treated as a separate 

event, and the differential is mapped for every second of that game. This matrix can be treated as 

a function accepting the game ID and the time left and returning the score differential. Then, this 

matrix was separated into two separate matrices. The first one counted the number of 

occurrences of a certain goal differential at each point in time. The second matrix looked at the 

same criteria, but only counted instances where the home team ended up winning the game. 

Therefore, dividing every cell of the second matrix by the cells in the first matrix yielded the win 

frequency given the game-state, which can be observed in Figure 8. Note that differentials over 

five goals were combined in one category, and frequencies at times with less than ten 

occurrences were not calculated. 

 Figure 8 confirms Pettigrew’s previous observations regarding game-state win 

frequencies. When the game is tied, the home ice advantage begins at around 55%, and 

progressively converges to 50% with time. Understandably, the curves are also roughly mirrored 

about the 50% line. We can still see the home ice-advantage when comparing leads for home 

teams to leads for visiting teams. For example, home teams with a one goal lead reach an 80% 

win probability about 400 seconds earlier than visiting teams do. 
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However, the model we are looking to develop will not differentiate between home and 

away teams. Rather, the model will factor in betting odds at the start of the game as a measure of 

team strengths. Therefore, the split between home and away teams is unnecessary. Figure 9 

combines them to display win probabilities for the leading team. As expected, the results are not 

extremely different, with the curves following a trend that is similar to the trends in Figure 8.  
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Figure	8:	Home	team	win	probabilities	based	on	
current	score	differential	
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6. Incorporating Opening Betting-Odds 

 The next step in the construction of the model was to incorporate Vegas betting odds at 

the start of the game. This variable would be used as a way to control for the strengths of both 

teams. There is not one definitive source for betting odds, as different bookkeepers can assign 

different odds to the same game. Yet given that I needed eight years worth of historical betting 

odds, my options were slightly limited. I was able to extract the data I needed from the website 

“covers.com”.  The website includes betting odds for both teams for every game dating back to 

the 2008-2009 season. The odds retrieved are in the “American Odds” format. If the odds are 

positive, they refer to payout one would receive if they placed a $100 bet. For example, if the 

odds for the Montreal Canadiens to beat the Toronto Maple Leafs are +225, one would receive a 

$225 payout if they placed a $100 bet. If the odds are negative, they refer to the size of the bet 

Figure	9:	Leading	team	win	probabilities	based	
on	current	score	differential	

50%	

55%	

60%	

65%	

70%	

75%	

80%	

85%	

90%	

95%	

100%	

0	 300	 600	 900	 1200	 1500	 1800	 2100	 2400	 2700	 3000	 3300	 3600	

5+	

4	

3	

2	

1	



	

	 17	

one needs to place to receive a payout of $100. For example, if the odds for the Montreal 

Canadiens to beat the Toronto Maple Leafs are -225, one would have to place a bet of $225 to 

receive a payout of $100. 

  From these betting odds I derived an implied win probability. The formula depends on 

whether the odds are positive or negative. Below are the two different formulas.  

𝑝𝑟𝑜𝑏 = !""
!!!!""

×100 

 

 

𝑝𝑟𝑜𝑏 = !!
!!!!""

×100 

 

 

 Using the examples above, if the Canadiens had +225 odds, this would result in an 

implied probability of 30.8%. If on the other hand they had -225 odds, they would have an 

implied probability of 69.2%. Therefore, for each game since the 2008-2009 season, I not only 

had the American Odds for both teams, but also their implied win probability. However, for 

every bet placed, the dealer profits by taking a small cut of the bets. Therefore, the implied 

probabilities are inflated and add up to a number greater than a 100%. If the dealer took no cut 

from the bets, then the implied probabilities would add up to 100%. Yet since a cut is taken, the 

implied probability represents a number higher than the true implied probability. If the 

probabilities added up to a number less than 100%, then a bettor could make money without risk 

by placing a bet on both teams, creating an arbitrage opportunity. To account for this, I divided 

Figure	10:	Implied	win	probability	for	positive	
American	Odds	

Figure	11:	Implied	win	probability	for	negative	
American	Odds	
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the implied win probability by the sum of the two implied win probabilities for that game. By 

construction, those two add up to 100%. There are multiple ways to scale implied win 

probability, but I judged this to be the best way to go about it. This new probability was used as a 

team’s win probability at the start of the game. For example, on October 22nd, the Canadiens 

played the Boston Bruins, with betting odds -116 and 103, respectively. This translates to 

implied probabilities of 53.7% and 48.8%. These odds add up to 102.5%, so I divided both by 

that value to get new probabilities of 52.4% and 47.6%, respectively. 

 Given this data, I compiled the win season averages of win probabilities for each team 

going back to 2008-2009. Though not directly related to the final model, this data represents an 

interesting analysis of which teams have been the most dominant in the past few years. I first 

differentiated teams by seasons to see which teams have had the most dominant regular season 

performances.  

Figure 12 represents the top 20 teams in terms of their season-average opening odds. 

Apart from Detroit and San Jose in 2008-2009, the pack is clustered within close to 2% of each 

other, showing there is not much variation for dominant teams. An interesting observation to 

note is the low number of Stanley Cup wins. One would expect that the most dominant teams in 

the regular season would be much more likely to win the championship, but the relationship 

seems relatively weak. Since the 2008-2009 season, the average of the season-average opening 

odds for Stanley Cup champions is 56.3%, roughly the 87th percentile of all recorded seasons. 
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Figure 13 displays the bottom 20 teams of the ranking. Though for the top teams the 

percentages were clustered, there is a lot more variation for the percentages of the bottom teams. 

The 2014-2015 Buffalo Sabres were by far the worst team in terms of opening odds. They ended 

the season with a 23-51-8 record, the worst of the league for that season. 

 

 

 

 

	

Team ID Average Odds 
Detroit 2008-2009  63.2% 
San Jose 2008-2009  62.5% 
Chicago 2009-2010 * 59.9% 
Washington 2009-2010  59.9% 
Chicago 2014-2015 * 59.7% 
Boston 2012-2013  59.4% 
Washington 2016-2017  59.3% 
San Jose 2013-2014  59.1% 
St. Louis 2013-2014  58.9% 
Chicago 2013-2014  58.9% 
Boston 2011-2012  58.7% 
San Jose 2009-2010  58.7% 
Vancouver 2010-2011  58.6% 
Vancouver 2011-2012  58.4% 
Boston 2013-2014  58.2% 
Pittsburgh 2012-2013  58.1% 
Pittsburgh 2016-2017 * 57.9% 
Pittsburgh 2014-2015  57.8% 
Boston 2008-2009  57.7% 
Los Angeles 2015-2016  57.7% 

Figure	12:	Top	20	most	dominant	teams	in	
terms	of	average	opening	odds.	“*”	denotes	
Stanley	Cup	champions.	
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Team ID Average Odds 
Buffalo 2014-2015  31.6% 
NY Islanders 2008-2009  36.8% 
Buffalo 2013-2014  37.7% 
Edmonton 2014-2015  37.9% 
Arizona 2016-2017  38.1% 
Colorado 2016-2017  39.2% 
Edmonton 2010-2011  39.7% 
Columbus 2011-2012  39.8% 
Arizona 2014-2015  40.2% 
Vancouver 2016-2017  40.3% 
Edmonton 2009-2010  40.4% 
NY Islanders 2010-2011  40.5% 
Winnipeg 2008-2009  41.0% 
Calgary 2013-2014  41.3% 
Tampa Bay 2008-2009  41.4% 
Toronto 2015-2016  41.5% 
Florida 2013-2014  41.8% 
Buffalo 2015-2016  41.9% 
Florida 2012-2013  42.0% 
Arizona 2015-2016  42.1% 

 

 

 

Finally, Figure 14 compiles the team averages for the past nine seasons, showing which 

franchises have been the most dominant in recent years. Chicago, San Jose, and Pittsburgh form 

the top 3. While both Chicago and Pittsburgh have 3 titles each, San Jose is still winless despite 

constantly performing well in the regular season. Edmonton, Buffalo, and Arizona take the 

bottom three spots. 

 

Figure	13:	Top	20	least	dominant	teams	in	
terms	of	average	opening	odds.	
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 In the Appendix, I included the season-wide odds for each team dating back to the 2008-

2009 season. Returning to the model, I combined the odds data with the original game dataset, so 

that each game has both team’s win probabilities at the start of the game. Incorporating the odds 

Figure	14:	Average	of	opening	win	probability	
odds	and	number	of	titles	for	the	past	9	seasons	

Team Average	Odds Titles
Chicago 56.9% 3
San	Jose 56.8% 0
Pittsburgh 56.3% 3
Boston 56.2% 1
Washington 54.9% 0
Detroit 53.6% 0
Los	Angeles 53.4% 2
NY	Rangers 53.1% 0
St.	Louis 52.7% 0
Vancouver 52.4% 0
Anaheim 51.8% 0
Montreal 51.2% 0
Philadelphia 51.1% 0
Nashville 50.2% 0
Minnesota 49.9% 0
Tampa	Bay 49.8% 0
Dallas 49.0% 0
New	Jersey 48.7% 0
Calgary 47.8% 0
Ottawa 47.6% 0
Carolina 46.9% 0
Columbus 45.7% 0
Winnipeg 46.3% 0
Toronto 46.0% 0
Florida 45.9% 0
Colorado 45.7% 0
NY	Islanders 45.7% 0
Arizona 45.7% 0
Buffalo 45.1% 0
Edmonton 43.7% 0
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in the model proved to be a challenge. As discussed earlier, basketball and football models were 

based on a tradeoff between the score differential and the betting spread. As time goes on, the 

former gains weight and the latter loses weight in the equation. This tradeoff was something I 

hoped to replicate, but for hockey games. But the different natures of the models made it 

impossible to use their method directly. Instead of using percentage odds, the model used the 

spread from Vegas bookkeepers. The models also attempt to predict the final score and its 

distribution, while my model calculates the win probability directly from historical data. Given 

that their methodology was not replicable, I needed to come up with one myself. 

 My first thought was to replicate Figure 9, but separating teams in three tiers: favored, 

evenly-matched, and disfavored. Looking at the win probabilities of every game played in the 

past nine seasons, I used the 66th and 33rd percentiles to separate the lot in three tiers. These 

percentiles roughly corresponded to opening odds of 55% and 45% respectively. In other words, 

if the opening odds of a team were above 55%, the team was labeled as “favored.” If their 

opening odds were less than 45%, they were labeled as “disfavored”. If they were between the 

two, then the team was labeled as “evenly-matched.” I used the same methodology discussed for 

the construction of Figure 8 and 9. Instead of coming up for a single line for each goal 

differential, I came up with three different lines for each differential based on which tier the team 

was placed in. I expected the lines of the same differential to follow similar trends, with the 

“favored” line above the other two and the “disfavored” line below the other two.  
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Figure	15:	Win	probabilities	of	team	leading	by	one	goal.	“H1”	refers	to	teams	
with	win	probabilities	above	55%,	and	“L1”	refers	to	teams	with	win	
probabilities	below	45%	

Figure	16:	Win	probabilities	of	team	leading	by	two	goals.	“H1”	refers	to	
teams	with	win	probabilities	above	55%,	and	“L1”	refers	to	teams	with	win	
probabilities	below	45%	
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Figures 15 and 16 represent the real time win probabilities for teams up by one and two 

goals, respectively. Both display expected results. Looking at Figure 15, we see that all three 

curves follow a similar trajectory: concave up converging to 100%. We can also notice that the 

spread between the center curves and the other curves decreases as time goes on. We observe 

similar things with the two-goal differential, except the lines are more clustered towards 100% 

and the convergence is much more linear. 

 This method is one way to account for both goal differential and opening odds. It is very 

simple and intuitive and builds well on previous results. However, there are clear downfalls with 

the method. The main one is when a team has opening odds close to one of the cut-offs. A slight 

change in the odds can have a huge difference on the expected win probability, which would be a 

flaw in the model. Generally, the fact that two teams with very different odds follow the same 

line represents a flawed and primitive model. One option to remedy the situation is to include 

more segments, avoiding large gaps between small probabilities. However, the more segments 

there are, the less data points there are, and the less accurate the estimate it. This was therefore 

not an effective way to successfully introduce odds data in the model. Instead, I needed to find a 

way where a small difference in the odds will result in a similarly small change in the win 

probability. 

 I decided instead to create a regression-based model. Given a time and a goal differential, 

the model would have as dependent variable the binary “win” variable (1 if the leading team won 

the game and 0 if they lost) and would have as independent variable the opening odds. I ran this 

regression for every goal differential, at every 60-second interval. I also ran separate regressions 

if the leading team was home or away.  
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𝑤𝑖𝑛(!,!) = 𝛽!(!,!)𝑜𝑑𝑑𝑠 + 𝛽!(!,!) 

 

 

 

For simplicity’s sake, I subtracted 50% from the opening odds, so that if two teams were 

perfectly matched they would both have odds 0. Therefore, the constant term represents the win 

probability at a specific game-state if two teams are evenly matched. I expect this coefficient to 

follow a similar trend than the results observed in Figures 6 and 7. The first coefficient 

represents the weight that a difference from 50% has on the final odds. For example, if a team’s 

opening odds are 60%, then the odds variable would have value 10%, and it would get multiplied 

by the coefficient 𝛽_1. If a team’s opening odds are 40%, then the odds variable would be -10%. 

I expect the size of this coefficient to decrease as time goes on, since the predictive power of the 

score increases with time. This is analogous to the trend observed in basketball models (see 

Figure 2) where as time goes on, the weight of the differential increases and the weight of the 

betting odds decrease. 

 

 

 

 

Figure	17:	Equation	for	the	regression,	conditional	on	the	
differential	i	and	the	time	t.	The	“win”	variable	is	a	dummy	
variable,	and	the	“odds”	variable	is	the	opening	odds	minus	50%	
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Figure 18 displays the regression coefficients for the situation where a game is tied. In 

this graph, each line represent the coefficient of a different regression, ran at 1-minute intervals. 

Naturally, 𝛽_1 will be the same if you calculate the win probability from the perspective of the 

home team or the away team. The 𝛽_1 line follows the expected trend. The weight starts at 

around 1 and decreases in a concave down fashion, which is what was observed in Everson and 

Charite’s basketball model. I expected the two 𝛽_0 lines to be equal at 50%, yet the results are 

slightly different. The 𝛽_0 line for the away team hovers slightly over 50% while the 𝛽_0 line for 

home teams is slightly below 50%. This presents an issue. For example, if two teams both have 

50% betting odds, then the model would favor the visiting team. That advantage climbs to 52.6% 

at minute 52.  

Figure	18:	Regression	coefficients	where	the	two	teams	are	
tied	
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There are several reasons why this discrepancy occurs. The first could be that the odds 

data gathered are biased towards home teams and inflate their odds. Given that I only had one 

data source available, then it could be the values were slightly off compared to the true market 

values. The second reason could be that the odds are correct, and this is simply the way to 

minimize least square residuals. It is possible that given that visiting teams tend to have lower 

odds, an adjustment is needed in the constant term.  
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Figure	19:	Regression	coefficients	where	the	home	team	is	
up	by	one	goal	
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 Now, let’s look at the graphs with one goal differentials. Figure 19 plots the regression 

values if the home team is up by one goal, and Figure 20 plots the values if the visiting team is 

up by one goal. Not that for these, as well as all the other differentials, I start the analysis at the 

600th second to makes sure I have enough observations for solid results. The lines for the 

constant terms are quite similar. They follow the same concave up convergence to 100% 

observed in Figures 8 and 9. However, we can observe that the constant terms for the visiting 

team is slightly greater than the constant terms for the home teams, with the spread reaching 

close to 4%. The 𝛽_1 curves are slightly different from one graph to the other. For the visiting 

teams, the curve starts higher, but eventually stabilizes close to 0.8 just like the home team. 

While the 𝛽_1 curve for the home team is more concave down, the curve for the visiting team is 

closer to linear, especially in the third period. 

Figure	20:	Regression	coefficients	where	the	visiting	team	
is	up	by	one	goal	
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 Looking at all the different differentials (graphs available in the Appendix), there is 

almost always a discrepancy between the constant terms of the home teams and the away teams. 

Therefore, to rectify this, I decided to fix the constant terms of both graphs to be the values found 

in Figure 9. That way, if two teams are equal in strength, then they will have a win probability 

independent of whether they are the home team or away team. For a tied game, I restricted the 

constant term to be 50%.  

 

 

Figure 21 displays the regression coefficients with the constant term restricted to 0.5. We 

see that the 𝛽_1 follows roughly the same trend as in Figure 18. It is worth noting that the 𝑅! 

values for this restricted model will be lower than when not restricted. However, I am willing to 

make that sacrifice for the model to be more standardized and sensible. 

Figure	21:	Restricted	regression	coefficients	for	a	tied	game	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

25%	

30%	

35%	

40%	

45%	

50%	

55%	

60%	

65%	

70%	

75%	

0	 300	 600	 900	 1200	 1500	 1800	 2100	 2400	 2700	 3000	 3300	 3600	

B_0:	Constant	term	
(left	axis)	

B_1:	Weight	of	odds	
(right	axis)	



	

	 30	

Figure 22 displays the regression coefficients when teams are up by one goal with the 

constant terms restricted to the historical frequencies displayed in Figure 7. Again, both curves 

for the weight of the odds are quite similar to the ones calculated in the unrestricted regressions. 

However, it seems like now the spread between the two curves is smaller, which was the desired 

result. It is curious why the weight of the visitor odds is so high during the first period, especially 

compared to the weight of the odds of the home team. After the first period, this spread decreases 

greatly and the curves are quite close to one another. 

 

 

 

We observe similar results in Figure 23. The spread between the two lines is quite large 

in the first period, mostly due to the weight of the away team taking on very high values, 

reaching a weight of 1.2. In the second half of the game however, the spread is close to 0, and the 

lines follow similar trends as they converge to 0.  
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Figure	22:	Restricted	regression	coefficients	for	a	one	goal	
differential	
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Figure	24:	Restricted	regression	coefficients	for	a	three-
goal	differential	
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Figure	23:	Restricted	regression	coefficients	for	a	two-goal	
differential	
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The coefficients for the constrained regression for a three-goal differential are slightly 

counter-intuitive. First of all, there is a strange drop in the constant term between minutes 18 and 

26. Coinciding with this drop, there is a random large spike in both the home team and the away 

team 𝛽_1 curves. To attempt to rectify this drop, I adjusted the constant term to eliminate the 

drop. Therefore, for minutes 18 to 26, I fixed the value of the constant to be 94%, coinciding 

with the constant values for minutes 17 and 27.  

 

 

  

Figure 25 displays the results of the adjustment discussed above. The adjustment 

successfully reduced the coefficients for the home team. However, it increased the coefficients 

for the away team. This is somewhat counter-intuitive, and would only really make sense if on 

average, away teams that go up 3 goals in that time period are teams with odds less than 50%. I 
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Figure	25:	Restricted	regression	coefficients	for	a	three-
goal	differential	with	constant	terms	adjusted	
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checked this hypothesis by calculating the mean of the visiting team odds if they were up by 3 

during that time period. I found that on average, visiting teams had betting odds of around 47.5% 

during that time, compared to average odds of around 45% for all visiting teams. On the other 

hand, some teams that were up by 3 in that time period had odds around 57.5%, compared to 

average odds of around 55% for all home teams. It is slightly surprising that visiting teams that 

reach a 3 goal lead on average have betting odds of less than 50%.  

 Given that this adjustment was not very successful in achieving a better graph, I instead 

decided to fix the constant term to 91% for values in the first period. Therefore, instead of 

inflating the constant, I deflated it. Figure 26 shows the resulting curves. 

 

 

  

 

 

 

 

 

 

 

 

 

At first glance, this adjustment seems to stabilize the line for home teams but greatly 

distort it for visiting teams. However, the curve only dips severely in the first period, and it is 

Figure	26:	Restricted	regression	coefficients	for	a	three-
goal	differential	with	constant	terms	adjusted	
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quite rare for teams to get a three-goal lead in the first period. I decided to stick with this 

adjustment and cap the weight of odds for the visiting team to fix this distortion. This will result 

in a deflation of the true forecast for a team that is up three goals in the first period, but this in 

my opinion is the best way to fix the unintuitive dip in the constant term.  

For simplicity’s sake, I decided to completely eliminate the distinction between home 

teams and away teams in calculating the weight of the odds. For the majority of game-states, the 

spread between the weight of the odds for the home teams and visiting teams is usually less than 

0.1. Two thirds of teams have odds between 45% and 55%, so their odds values are between       

-0.05 and 0.05. Therefore, the difference between the forecast with averaging and without would 

be about 0.1*0.05, which is half of a percentage point. I am willing to sacrifice this small 

accuracy for a simpler, more usable model. Therefore, for differentials from 1 to 5, I created a 

new curve that was the linear average between the two curves. The resulting graphs are available 

in the Appendix. For the three-goal differential graph, I fixed the weight to be 0.5 for the first 

period to take into account the adjustment I discussed earlier. 

7. Smoothing the Curves  

Now that I have the curves for every single game-state, I needed to smooth the curves to 

reduce the jitteriness that resulted from the inherent variation in the data. I decided to use an OLS 

cubic fit model to smooth the curves. In other words, the regressions would have the desired data 

to be smoothed out as the dependent variables and would have as independent variables the 

seconds, the square of the seconds, and the cube of the seconds. I also constrained the 

regressions so that as time goes to 3600, the constant terms would converge to 1 and the weight 

of the odds would converge to 0.  
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𝑐𝑜𝑛𝑠 + 3600 𝑠𝑒𝑐 + 3600!𝑠𝑒𝑐2+ 3600!𝑠𝑒𝑐3 = 1 

 

 

𝑐𝑜𝑛𝑠 + 3600 𝑠𝑒𝑐 + 3600!𝑠𝑒𝑐2+ 3600!𝑠𝑒𝑐3 = 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure	29:	Coefficients	of	the	cubic	regression	on	the	
constant	term	for	each	differential	

Figure	30:	Coefficients	of	the	cubic	regression	on	the	
weight	of	the	odds	for	each	differential	

Figure	27:	Constraint	inputted	in	STATA	for	the	cubic	
regressions	of	the	constant	terms,	where	sec2	and	sec3	are	
the	coefficients	for	the	seconds	squared	and	cubed,	
respectively	

Figure	28:	Constraint	inputted	in	STATA	for	the	cubic	
regressions	of	the	weight	of	the	odds	

	
Differential Constant Sec Sec2 Sec3 

0 1.11308 -5.33E-04 0.000000337 -7.63E-11 
1 1.245982 -7.93E-04 4.30E-07 -8.49E-11 
2 1.134884 -4.06E-04 -2.15E-08 1.30E-11 
3 0.6834897 -1.24E-04 -1.16E-07 2.72E-11 
4 1.007633 -8.57E-04 2.26E-07 -1.84E-11 

5+ 0 0 0 0 

	
Differential Constant Sec Sec2 Sec3 

0 0.5 0 0 0 
1 0.5463485 2.61E-04 -1.47E-07 3.05E-11 
2 0.9313658 -7.29E-05 6.22E-08 -1.02E-11 
3 0.9897124 -4.76E-06 6.29E-09 -1.16E-12 
4 0.9897124 -4.76E-06 6.29E-09 -1.16E-12 

5+ 1 0 0 0 
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Figures 29 and 30 display the coefficients of the regressions for each of the cubic fit 

regressions. I used these coefficients to calculate the constant terms and the weight of the odds 

for each second in the game. For the weight of the odds, I used the coefficients to calculate the 

weight in the additional 300 seconds of an overtime period in the event of a tie. I also capped all 

the values to be between 0 and 1. Therefore, if a predicted value were above 1, it would be 

adjusted to 1. Similarly, if it were below 0, it would be adjusted to 0. Finally, in the regression 

analysis, only values after the 600th second were used to calculate the curves for one to three goal 

differentials, and after the 1200th second for four and five goal differentials. Before that mark, I 

have the graphs take on the value at second 600 or 1200. For the constant terms, I did the same 

adjustment for values before the 600th second. 

 

 
Figure	31:	Smoothed	curves	of	the	constant	terms	for	each	
differential	
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 Figures 31 and 32 display the final, smoothed curves for the model. Depending on time 

and differential, the model retrieves a value on both graphs above and uses the odds data to 

calculate the final forecast. There might be a necessary adjustment to make to that value (i.e. if it 

is above 100% or below 0%), but these two graphs contain the information necessary to calculate 

the forecast.  

 

8. Incorporating Penalties 

 The next step in the construction of the model is to account for power plays. In hockey, if 

a team is given a penalty, they play one player short for usually 2 minutes. If the other team 

scores while on power play, the power play ends and the game returns to full strength. If the 

short-handed team scores, the power play continues.  
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Figure	32:	Smoothed	curves	of	the	weight	of	the	odds	for	
each	differential	
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 If a team is on the power play, their chances of scoring increase, so their win probability 

increases. I decided to replicate Pettigrew’s method of using conditional probabilities to calculate 

the necessary adjustment to the model. To do so, I gathered all the penalties committed in the 

past 8 seasons as well as all goals scored on a power play by either team in that same time 

period. My goal was to evaluate each team’s probability of scoring a goal before the end of the 

power play, depending on how much time is left in it. To facilitate the analysis, I eliminated 

overlapping penalties from my scope as well as penalties that were not 2 minutes long. 

Therefore, I was left with only single minor penalties that had no other penalties called during 

their duration. This was a total of 46,194 penalties, or on average just under five penalties per 

game  

 From that dataset that included the penalties and the goals scored, I collapsed the data so 

that it was only expressed in terms of individual power plays. Each line of the data was an 

individual power play that included the start time, if and when a goal was scored, and which 

team scored it. In the eventuality that multiple goals were scored on one power play, there were 

multiple entries for that power play including the different goals scored. 

From there, I generated 120 variables denoting each second of the power play. These 

variables took on a 0 if a goal was not scored in the time left in the power play, a 1 if a power 

play goal was scored, and nothing if the power play ended (if the power play team already scored 

a goal before that point). I repeated the same process for shorthanded goals. I was therefore able 

to produce a second by second forecast of whether or not a power play goal would be scored in 

the time remaining on the power play, and whether a shorthanded goal would be scored. 
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Figure	33:	Probability	of	a	power	play	goal	based	on	how	
much	time	has	elapsed	in	the	penalty	

Figure	34:	Probability	of	a	shorthanded	goal	based	on	how	
much	time	has	elapsed	in	the	penalty	
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Figures 33 and 34 display the probability of a goal scored on the power play based on 

how much time there is left on the power play. For both power play goals and short-handed 

goals, the trend is very linear apart from the first 5 seconds when goals are rarely scored. We also 

notice here how unlikely shorthanded goals are. In his model, Pettigrew calculates the 

probability of the home team winning conditional on a shorthanded goal times the probability of 

a shorthanded goal. However, that probability is quite small so that it will have only a miniscule 

effect on the model. For simplicity’s sake, I decided to instead use the expected goals scored for 

my formula. I therefore subtracted the probability of a shorthanded goal from the probability of a 

power play goal. I also ran a linear fit through that line, giving the result below. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure	35:	Linear	fit	of	the	difference	between	the	
probability	of	a	power	play	goal	and	a	shorthanded	goal,	
constrained	to	equal	0	at	time	0		
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9. Developing a Model for Shootouts 

 For regular season games, if the game is tied after sixty minutes of play, teams play an 

additional five minutes of overtime. If the game is still tied after that, a shootout is necessary. In 

a shootout, each team alternates to send three shooters alone against the goalie. After these three 

rounds, the team with the most goals wins the game. If there is no winner, an additional round is 

added until a winner is reached. 

 In the eventuality of a shootout, one cannot use the model developed above as it is almost 

completely independent from the previous 65 minutes of play. Therefore, I evaluated shootout 

data from the past eight seasons to develop a win probability model that solely evaluates 

shootouts. Just like Pettigrew did in his model, I treated the first three rounds independently, and 

then collapsed all additional rounds to develop one single estimate for them. For the first three 

rounds, I calculated historical win probability after each shooter based on the goal differential. 

  

 

Figure	36:	Equation	of	the	constrained	linear	fit	above,	
where	sec	is	the	time	left	on	the	power	play		

Figure	37:	Win-probability	equation	conditional	on	the	
number	of	seconds	left	in	a	power	play	

𝑔𝑜𝑎𝑙 = 0.0015066 𝑠𝑒𝑐	

𝑃(𝑙𝑒𝑎𝑑 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛) =  𝑃(𝑙𝑒𝑎𝑑 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 | 𝑃𝑃𝐺)(0.0015 𝑠𝑒𝑐)	
+𝑃(𝑙𝑒𝑎𝑑 𝑡𝑒𝑎𝑚 𝑤𝑖𝑛 | 𝑁𝑜 𝑃𝑃𝐺)(1− 0.0015 𝑠𝑒𝑐)	
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Figure 38 displays the historical win frequencies based on the shooting round and the 

differential. One way to interpret the table is as follows. After the first shooter, the win 

probability of his team will be either 38.0% or 72.0%. If the next shooter does not score, simply 

go down one cell and that is the new win probability. If he does, go the cell one down and one 

left. Repeat this process for the third shooter, except if he scores go to the cell on down and to 

the right. Repeat this alternating method until the last shooter goes or a cell containing 0% or 

100% is reached. 

For example on April 9th 2017, the Carolina Hurricanes and the Philadelphia Flyers 

played a shootout period to determine the winner. At the beginning of the shootout, both teams 

had 50% win expectancy. Philadelphia went first and missed, so their win expectancy went to 

38%. Carolina scored on their first attempt, so Philadelphia’s win expectancy decreased to 

15.7%. Philadelphia scored on their second attempt, increasing their win expectancy to 36.9%. 

Carolina and Philadelphia both missed their next attempts, so Philadelphia’s win expectancy 

went to 52.7% and then down to 33.5%. Finally, Carolina scored on their final attempt, so 

Philadelphia’s win expectancy went to 0%; the game was done, and Carolina won. 

  -2 -1 0 1 2 
1     38.0% 72.0%   
2   15.7% 49.3% 84.5%   
3   5.0% 36.9% 78.6% 96.8% 
4 0.0% 8.8% 52.7% 91.7% 100.0% 
5   0.0% 33.5% 88.6% 100.0% 
6   0.0% 50.0% 100.0%   

Differential	after	the	shooter	from	the	
perspective	of	the	first	shooting	team	

Shooter	
number	

Figure	38:	First	shooting	team’s	win	probability	based	on	
how	many	shots	have	been	taken	and	the	goal	differential	
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If the game is still tied after three rounds, or six shot attempts, for each following round 

the win probability will depend on whether or not the first shooter scores. Indeed, after the 

second shooter, the game will either be over or the win expectancy will reset back to 50%. It is 

therefore only dependent on the outcome of the first shot of the additional round. I therefore 

calculated the first shooting team’s historical win frequency based conditional on what happened 

in the first shot. If the shooter scores, the win probability of his team is 82.3%; if not, the win 

probability is 33.3%.  

10. Comparison with Pettigrew’s Model 

 With the model complete, I can now compare it to Pettigrew’s model for a given game. 

From his website, I captured screenshots of some of the games he used as examples. The first is 

between Chicago and Washington, played on October 1st 2013. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure	39:	Pettigrew’s	model	applied	to	a	game,	
taken	from	Rink	Stats	(Pettigrew,	2014)	
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Generally the two curves are very similar. It is very easy to identify when goals were 

scored from the large swings. It is also easy to identify when the power plays occurred from the 

smaller jumps in the curve. One slight difference occurs towards the end of the game, when 

Pettigrew’s model dips slightly more than mine. This is because a 5-on-3 power play occurred, 

and my model simply treats it as the start of a new penalty whereas his model recognizes the 

additional advantage. We notice also that the though the curves follow a similar trend, they 

aren’t quite at the same level. This is because Chicago had pre-game Vegas odds of 59.5%, and 

my model takes this advantage into account. My model has a different starting point and reaches 

values that are slightly above Pettigrew’s. To demonstrate this difference, in Figure 41 I 

compared the win probability graph above with the graph if the two teams had been evenly 

matched. 
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Figure	40:	My	model	applied	to	the	same	game	
as	above	
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As we can see, the spread between the two curves is non-negligible. Especially in the 

beginning of the game, when the odds carry a lot of explanatory weight, the spread reaches close 

to 10%. As the game goes on, the spread becomes smaller as the score differential carries 

increasingly more weight in the equation. 

 We repeat the process for another game, this time one that was decided in a shootout 

period. We will therefore be able to compare my shootout model to Pettigrew’s. 

  

 

 

 

Figure	41:	Effect	of	pre-game	odds	on	the	win-
probability	model	
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Figure	42:	Pettigrew’s	model	applied	to	a	game,	
taken	from	Rink	Stats	(Pettigrew,	2014)	

Figure	43:	My	model	applied	to	the	same	game	
as	above	
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 As with the previous game, the curves follow very similar trends. The jumps for goals 

and the smaller jumps for power plays occur at the same time. Again, one major difference 

between the two curves is the inclusion of pre-game betting odds. Minnesota started the game 

with a win probability of 63.8%, a clear advantage. We can see that advantage by noticing the 

spread between Pettigrew’s estimate and my estimate. Finally, looking at the shootout period, we 

see that the two curves are virtually identical. Though it is tough to see the exact values in 

Pettigrew’s model, from simply looking at them we can see how similar they are. I therefore 

conclude that Pettigrew arrived to very similar shootout probabilities than I did. 

 

11. Conclusion 

 This thesis focused on building a NHL real-time win probability model from the ground 

up. I used a game-state method inspired from Pettigrew’s work to build the basics of the model, 

and arrived to very similar results than he did. I was able to develop a novel method of 

incorporating Vegas odds to the game-state approach by using a multi-regression based method. 

In the process of building the model, I also pieced together several extensive NHL datasets, 

including a detailed play-by-play dataset spanning eight seasons and extensive historical odds 

data. 

 To improve the model, I would start by increasing the breadth of power plays evaluated 

to be able to include 5-on-3 penalties. I would also look at shots and time of possession to 

estimate future goals scored; I imagine this information would be especially useful for tied 

games. I would also look at the path to the game-state to see identify if a momentum effect 

exists. Finally, I would develop the model so that it can process information real-time and 

continuously update itself as the game goes on. 
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2008-2009 2009-2010 2010-2011 2011-2012 2012-2013 2013-2014 2014-2015 2015-2016 2016-2017

Colorado 45.1% 47.5% 45.8% 46.4% 44.3% 51.2% 46.3% 45.2% 39.2%
Detroit 63.2% 55.3% 56.0% 57.1% 50.9% 50.2% 53.9% 51.0% 44.9%
Boston 57.7% 52.9% 55.9% 58.7% 59.4% 58.2% 55.3% 52.9% 55.1%
NY	Islanders 36.8% 42.2% 40.5% 44.4% 48.2% 44.3% 54.1% 53.0% 47.5%
Carolina 50.7% 44.9% 49.1% 45.6% 47.5% 45.9% 43.7% 46.3% 48.4%
NY	Rangers 52.8% 50.2% 50.6% 54.8% 54.9% 53.5% 54.2% 54.0% 53.3%
Pittsburgh 54.1% 57.2% 53.7% 56.6% 58.1% 57.6% 57.8% 53.9% 57.9%
Toronto 42.6% 45.3% 46.3% 47.2% 47.8% 48.0% 44.4% 41.5% 50.7%
Ottawa 47.8% 50.0% 44.1% 47.3% 48.5% 49.3% 48.1% 46.6% 46.9%
Buffalo 51.8% 52.7% 50.9% 50.0% 45.6% 37.7% 31.6% 41.9% 43.4%
Montreal 54.9% 46.5% 49.8% 47.1% 53.1% 52.4% 53.9% 49.3% 53.7%
Philadelphia 53.5% 54.4% 56.7% 54.1% 48.4% 49.5% 46.9% 47.6% 48.5%
New	Jersey 54.1% 54.6% 49.5% 49.3% 49.9% 48.2% 45.1% 44.0% 43.2%
Florida 47.0% 44.0% 44.6% 47.6% 42.0% 41.8% 46.0% 50.8% 49.4%
Washington 56.2% 59.9% 57.2% 52.6% 49.0% 49.4% 53.3% 57.6% 59.3%
St.	Louis 43.9% 48.5% 49.7% 54.3% 55.4% 58.9% 56.6% 53.7% 53.1%
Tampa	Bay 41.4% 44.5% 50.9% 46.8% 49.8% 51.1% 56.4% 56.0% 51.6%
Calgary 54.1% 52.0% 49.5% 47.4% 43.9% 41.3% 47.0% 45.5% 49.2%
Arizona 44.4% 48.1% 49.2% 48.9% 49.0% 51.0% 40.2% 42.1% 38.1%
Dallas 48.6% 48.5% 49.4% 47.5% 45.5% 48.6% 49.3% 54.9% 48.5%
San	Jose 62.5% 58.7% 55.9% 56.6% 53.4% 59.1% 53.7% 54.7% 56.9%
Chicago 55.2% 59.9% 56.5% 54.6% 57.0% 58.9% 59.7% 56.1% 54.0%
Los	Angeles 43.4% 50.6% 54.0% 53.0% 55.3% 55.7% 57.2% 57.7% 53.8%
Edmonton 47.7% 40.4% 39.7% 43.7% 45.7% 42.2% 37.9% 43.9% 52.3%
Anaheim 52.4% 48.1% 47.3% 48.6% 52.3% 54.9% 55.2% 55.1% 52.5%
Vancouver 54.0% 54.9% 58.6% 58.4% 57.0% 51.5% 52.3% 45.0% 40.3%
Nashville 46.7% 48.2% 50.1% 51.3% 47.4% 45.9% 54.1% 55.1% 53.2%
Winnipeg 41.0% 46.2% 46.5% 46.0% 47.9% 45.3% 48.9% 47.1% 47.6%
Minnesota 50.1% 47.1% 45.8% 44.0% 50.2% 50.3% 53.0% 53.0% 55.4%
Columbus 46.6% 46.6% 46.6% 39.8% 42.7% 48.2% 44.0% 44.8% 52.2%

Appendix	Figure	1:	Historical	odds	for	each	team	for	each	
season.	Note	that	some	teams	have	changed	names	or	cities;	
their	most	recent	city	is	the	one	displayed	
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Appendix	Figure	2:	Win	probabilities	of	team	leading	by	one	
goal.	“H1”	refers	to	teams	with	win	probabilities	above	55%,	
and	“L1”	refers	to	teams	with	win	probabilities	below	45%	
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Appendix	Figure	3:	Win	probabilities	of	team	leading	by	two	
goals.	“H1”	refers	to	teams	with	win	probabilities	above	55%,	
and	“L1”	refers	to	teams	with	win	probabilities	below	45%	
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Appendix	Figure	4:	Win	probabilities	of	team	leading	by	three	
goals.	“H1”	refers	to	teams	with	win	probabilities	above	55%,	and	
“L1”	refers	to	teams	with	win	probabilities	below	45%	
	

Appendix	Figure	5:	Win	probabilities	of	team	leading	by	four	
goals.	“H1”	refers	to	teams	with	win	probabilities	above	55%,	and	
“L1”	refers	to	teams	with	win	probabilities	below	45%	
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Appendix	Figure	6:	Regression	coefficients	where	the	game	is	
tied	

Appendix	Figure	7:	Regression	coefficients	where	the	home	
team	is	up	by	one	goal	
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Appendix	Figure	8:	Regression	coefficients	where	the	away	
team	is	up	by	one	goal	

Appendix	Figure	9:	Regression	coefficients	where	the	home	
team	is	up	by	two	goals	
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Appendix	Figure	10:	Regression	coefficients	where	the	away	
team	is	up	by	two	goals	

Appendix	Figure	11:	Regression	coefficients	where	the	home	
team	is	up	by	three	goals	
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Appendix	Figure	12:	Regression	coefficients	where	the	away	
team	is	up	by	three	goals	

Appendix	Figure	13:	Regression	coefficients	where	the	home	
team	is	up	by	four	goals	or	five	or	more	goals	
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Appendix	Figure	14:	Regression	coefficients	where	the	away	
team	is	up	by	four	goals		

Appendix	Figure	15:	Regression	coefficients	where	the	away	
team	is	up	by	five	or	more	goals		
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Appendix	Figure	16:	Restricted	regression	coefficients	for	a	tied	
game	
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Appendix	Figure	17:	Restricted	regression	coefficients	for	a	one	
goal	differential	
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Appendix	Figure	18:	Restricted	regression	coefficients	for	a	two	
goal	differential	
	

Appendix	Figure	19:	Restricted	regression	coefficients	for	a	
three	goal	differential	with	the	constant	term	adjusted	
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Appendix	Figure	20:	Restricted	regression	coefficients	for	a	four	
goal	differential		
	

Appendix	Figure	21:	Restricted	regression	coefficients	for	a	five	
goal	differential		
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Appendix	Figure	22:	Restricted	regression	coefficients	for	a	one	
goal	differential,	where	the	weight	of	the	odds	is	the	average	of	
the	home	and	away	coefficients		
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Appendix	Figure	23:	Restricted	regression	coefficients	for	a	two	
goal	differential,	where	the	weight	of	the	odds	is	the	average	of	
the	home	and	away	coefficients		
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Appendix	Figure	24:	Restricted	regression	coefficients	for	a	
three	goal	differential,	where	the	weight	of	the	odds	is	the	
average	of	the	home	and	away	coefficients	and	both	curves	were	
capped	before	the	23rd	minute		
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Appendix	Figure	25:	Restricted	regression	coefficients	for	a	four	
goal	differential,	where	the	weight	of	the	odds	is	the	average	of	
the	home	and	away	coefficients		
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Appendix	Figure	26:	Restricted	regression	coefficients	for	a	five	
goal	differential,	where	the	weight	of	the	odds	is	the	average	of	
the	home	and	away	coefficients		
	


