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ABSTRACT 

Taxing different classes of property at different effective rates 

is a widespread occurrence in the United States, even though the practice 

violates many state constitutions. For purposes of tax discrimination, 

urban real property is commonly divided according to the use to which 

the property is applied. Typically, the major property categories con-

sid~red are residential and business, or residential, commercial, and 

industrial. 

This thesis investigates the structural and welfare effects of a 

change from a tax structure in an urban area that classifies property 

by use for tax purposes to one that does not discriminate in its treat-

ment of property. To accomplish this, long run equilibrium models of 

urban spatial location are developed. In all models wage rates, and 

for one model output price of a composite commodity produced in the 

urban area, can vary in response to the change in tax policy. Condi-

tions guaranteeing the existence of equilibrium for some of the models 

are developed, and proofs of the existence of equilibrium for those 



models are provided. 

Due to the analytical intractability of the models, the tax policy 

changes are simulated numerically through the use of a fixed point algo-

rithm. The models are stylized, to the extent possible, to the Boston 

metropolitan area. In particular, the classification tax structure and 

parameterization of the functions of the model are chosen so that a re-

sultant equilibrium resembles the Boston metropolitan area in or around 

1980. 

General equilibrium versions of compensating and equivalent varia-

tions in income are used as measures of welfare change. The qualitative 

welfare results obtained are quite robust. ~rn all of the simulations 

conducted there is a welfare gain in moving from the particular classi-

fication tax structure used to one in which all property is taxed at the 

same effective rate. 
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CHAPTER l 

INTRODUCTION 

In the last two decades there have been significant theoretical 

advances in the field of urban economics. This work has provided a 

rigorous framework for analyzing and explaining important land use 

characteristics found in many urban areas. The analysis, for the 

most part, has consisted of micro-theoretic models of spatial 

location and has been structured so as to yield long-run static 

equilibrium solutions [see, for example, Henderson (1977), Mills 

(1980), and Muth (1969)]. Although most models have been fairly 

simple in structure, they have provided explanations for such wide-

spread urban phenomena as population densities, structural densities, 

and land rent gradients that decline with distance from commercial 

and employment centers. Even though the basic framework of these 

models seems well suited to handling comparative static analyses of 

public policy changes, very little work utilizing a spatial structure 

to deal with local public finance policy problems has been done.1 

In fact, a public sector is totally absent from a good deal of work 

in the area. 

The strong simplifying assumptions present in typical spatial 

location models have been made, generally speaking, to obtain 

analytic solutions. Usually, even slight generalizations and exten-

sions render the models mathematically intractable. As a result, 



Mills and MacKinnon (1973) have argued in favor of the increased use 

of numerical computation to find .solutions to otherwise intractable 

models of urban land use. A growing literature on the simulation of 

spatial models of urban economies has arisen in recent years. Much 

of this work has been accomplished through the use of a recently 

developed class of algorithms. 2,3,4 These "fixed point" or 

"simplicial search" methods of computing solutions to general equi-

librium models have already proven to be useful tools in many areas 
. l . 5 of economic ana ys1s. 

This study makes use of one of these computational techniques 6 

to simulate an urban spatial location model in order to investigate 

the differential incidence of alternative property tax systems. In 

particular, the excess burden of a property tax system under which 

effective tax rates on real property differ according to the use to 

which the property is applied is compared to the excess burden of a 

system under which all effective property tax rates are required to 
7 be equal. Differential property tax treatment, or as it is more 

commonly called, property tax classification, is a fairly widespread 

phenomenon in the United States. It is sometimes legally sanctioned 

but, for the most part, it has been practiced in an extra-legal 
8 manner. An analysis which can ascertain whether or not a non-

discriminatory property tax system is inferior, at least in terms of 

excess burden, to a currently existing classification scheme in an 

urban area has important policy implications. 

There is a paucity of any such analyses in the literature. In 

one of only two theoretical studies that I have found which are 

2 



closely related to this problem, Grieson (1974) presents a model in 

which property tax discrimination is allowed and suggests that some 

property tax assessors may classify property so as to minimize the 

deadweight loss of the tax. Besides a question as to whether 

assessors, in reality, have acted in such an optimal manner in 

classifying property, the analysis suffers from several short-

comings. A single town is considered in isolation. Thus, the 

effects of interaction with agents in other jurisdictions, at least 

in the particular urban area of which the town is a part, are ignored. 

In addition, restrictive functional forms are used. Demand and 

marginal cost are assumed to be linear. 

In the other theoretical paper on the subject, Sonstelie (1979) 

develops a model of the incidence of a classified property tax. 

Results are first derived, as in the Grieson paper, in the context of 

a single jurisdiction model. The analysis is later extended, though, 

to a three jurisdiction model. The functional forms are also much 

more general than those found in the Grieson work. The Sonstelie 

framework differs, however, substantially from that found in this 

study. The spatial structure in the Sonstelie paper is, as 

acknowledged by the author, barely developed. In particular, the 

costs and nature of the transportation of people or goods is not 

modelled. The Sonstelie article treats the property tax as an 

ad valorem tax on the value of the production of two commodities, 

which he refers to as commercial and residential real estate. In our 

study the property tax, when levied on commercial or "business" 

property is an ad valorem tax on the capital and land inputs used in 

3 



production. In the Sonstelie article, the tax policy changes, on 

which the incidence results are based, involve marginal increases in 

one or both of the tax rates on the two property types in a juris-

diction, with no regard for the amount of revenues raised in the 

jurisdiction before and after the change. Two policy changes are 

considered: an increase in the commercial real estate tax rate with 

no change in the residential tax rate, and an equal increase in both 

tax rates. In contrast, in our study an equilibrium in which the tax 

rates differ, but are in a given proportion to one another, is used 

4 

as a base, and is compared to an equilibrium in which the tax rates are 

equal, but yield the same amount in tax revenues. In addition, the 

tax policy schemes analyzed in this study entail metropolitan wide, 

rather than jurisdiction specific, changes. Another important differ-

ence between Sonstelie's paper and this study involves the use of 

labor. Labor is not used as an input in production in the Sontelie 

article, whereas all non-housing production in this study can employ 

labor. Thus, the Sonstelie approach cannot capture the effects on 

wage income of changes in tax policy. Finally, the approach to 

measuring tax incidence in the Sontelie article differs fundamen-

tally from the approach taken here. In the Sontelie paper incidence 

is described in terms of the effects that the tax policy changes 

have on the gross rents for commercial and residential real estate 

and on land rents. In this study the household utility maximization 

problem is explicitly considered and used to deflne incidence in 

terms of willingness-to-pay measures of welfare change. 

From an empirical viewpoint, Cooper and Weinberg (1975) and 
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Wheaton (1975) have investigated the effect of a movement from a 

classification system, as has existed in Boston and Massachusetts 

generally, to a non-discriminatory system. In these studies, given 

full market values of existing residential, commercial, and industrial 

properties, effective tax rates on these properties, and the amounts 

of property tax revenues to be raised in each jurisdiction, the 

effect of a movement to an equal effective tax rate system is 

measured by changes in the tax liabilities of the residential and 

business sectors when either property values remain unchanged or 

change in accordance with some tax capitalization process. While this 

sort of analysis may have some relevance in the short-run, it clearly 

cannot suffice in the intermedi.ate or long-run, for implicit in these 

studies is the assumption that no new structures are built, no old 

structures are demolished, and existing structures are maintained at 

the same level of quality and used for the same purposes. 

The models developed in this study allow for the interaction of 

firms and residents in an entire urban area and for a reshaping of 

property values, structures, and uses in the region. These general 

models are stylized, somewhat, to fit the Boston metropolitan region. 

The treatment of the property tax given here is similar to its treat-

ment in what may be called the classical view of property tax 

incidence. The key analogue, here, to the classical treatment is the 

assumption that the supply of structures, or capital, to the urban 

area is perfectly elastic. This assumption can be justified on the 

grounds that capital is sold in a national market and the demand for 

capital from the city under consideration is a small part of aggregate 
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national demand. The controversy between the new view of the property 

tax [as represented in Aaron (1974, 1975) and Mieszkowski (1972)] and 

the classical view centers on the global incidence of the tax. Under 

the new view, however, the analysis of local changes is essentially 

the same as that which is found i'n the classical approach. Since we 

are considering, in this study, changes in the property tax system 

in one urban area, the analysis presented below cannot be said to show 

agreement with one approach as opposed to the other. 

Evidence of the empirical significance of property tax rate dis-

crimination is given in Table l .1 taken from Aaron (1975, p. 60). 

Given the practice of imposing the same nominal tax rate on all 

property types in a city, the figures indica~e clearly that housing 

and commercial-industrial property are treated differently. Commercial-

industrial property is taxed at an effective rate that is higher than 

those for both types of housing in ten of the cities and that is higher 

than that for single-family housing in sixteen of the cities. This kind 

of disparity in effective rates is particularly notable in New York, 

San Diego, and Boston, whereas the practice of taxing commercial-

industrial property at significantly lower rates is found in Memphis and 

St. Louis. Further evidence that the city of Boston, the metropolitan 

area of which is the object of consideration in this study, differen-

tiates among property uses in levying taxes is found in Holland and 

Oldman (1974). As pointed out in Aaron (1975) it is estimated in that 

study that the average effective tax rate on commercial property in 

Boston was 8.2 percent, while the rate for residential property averaged 

5.5 percent. Finally, Table l .2 shows the differences in 



TABLE 1.1. RELATIVE ASSESSMENT RATES ON SELECTED CLASSES OF PROPERTY 
IN THE TWENTY-FIVE LARGEST U.S. CITIES, 1971 

PERCENT OF AVERAGE ASSESSMENT RATES FOR ALL PROPERTIES; 
CITY-WIDE AVERAGE= 100 

Housing 
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City Single-Family Multifamily Commercial/Industrial 

New York 71 108 151 
Chicago 95 111 145 
Los Angeles 104 93 109 
Philadelphia 94 114 110 
Detroit 99 109 108 
Houston 102 119 98 
Baltimore 97 140 103 
Dallas 89 136 100 
Washington D.C. 98 112 92 
Cleveland 97 106 128 
Indianapolis 100 139 90 
Mi 1 waukee 99 104 121 
San Francisco 106 91 108 
San Di ego 82 75 181 
San Antonio 101 88 102 
Boston 75 101 167 
Honolulu 101 92 95 
Memphis 100 109 67 
St. Louis 105 135 76 
New Orleans 101 101 110 
Phoenix 93 117 104 
Columbus 104 82 88 
Seattle 94 140 NA 
Pittsburgh 99 105 86 
Denver 97 108 103 

Source: Calculated from U.S. Bureau of the Census, 1972, Census of 
Governments, unpublished tabulations 

NA: Not Available 
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effective tax rates in 1980 for a sample of ten cities and towns 

in the Boston metropolitan area. The jurisdictions vary in population 

and geographic location within the metropolitan area. Within a 

population group and geographic area, with the exception of Boston, 

the cities and towns were chosen randomly. Although the general level 

of tax rates appears to decline with population (and distance from 

the center of the region), the tendency of jurisdictions in this 

region, regardless of size and location, to tax business enterprises 

at rates in excess of those applied to residences is evident. The 

differences appear to be too large and too widespread to have occurred 

by chance. 

The next part of this chapter reviews briefly the extant 

literature which uses a computational approach, specifically through 

implementation of a fixed point algorithm, to analyze issues in urban 

economics, usually in the context of traditional urban spatial loca-

tion models. The nature of the models found in this work and the 

kinds of conclusions they engender is discussed. A brief survey of 

work in other fields of economics that use fixed point algorithms to 

compute equilibria and address policy questions is also provided. 

The final section of this chapter provides an overview of what the 

following chapters contain. 

I. A Survey of the Literature on Economic Applications of Simplicial 

Search Algorithms 

The first published application of a simplicial search 

algorithm to urban economics is a paper by MacKinnon (1974). It 

describes intuitively, but thoroughly, one type of simplicial search 



TABLE l .2. EFFECTIVE PROPERTY TAX RATES IN SELECTED CITIES AND TOWNS IN THE BOSTON SMSA, 1980 

Effective Tax Rate(% of Full Market Value) 

City/Town Population Group Single Family Commercial Industrial 
Boston > 50,000 4.60 l 0. 52 13.59 
Brookline > 50,000 4.05 5.90 5. 98 
Cambridge > 50,000 3.82 5. l O 6.28 
Newton > 50,000 3. 01 5 .18 5.65 
Belmont 25,000-50,000 2.82 3.80 4.31 
Natick 25,000-50,000 3.24 4.52 4.26 
Marblehead 10,000-25,000 2. 31 2.67 5.25 
Sictuate l 0,000-25,000 3.50 4.20 4.20 
Mi 11 is 5,000-10,000 2.95 3.53 3.96 
Wrenham < 5,000 2.28 2.63 2.70 

Source: The Assessing Department of the City of Boston 

lO 



10 

algorithm known as the Sandwich Method. The algorithm was used to 

solve several numerical models of urban land use. The purpose of doing 

so in the manner found in the paper was, as the author points out, to 

gain some computational experience, at modest cost, in investigating 

the difficulties in modelling discrete general equilibrium urban 

systems and to uncover fruitful directions for future research. The 

models followed along traditional lines in this area. The city is 

assumed to be circular, the central business district is taken to be a 

point at the center of the city, and residents commute to the central 

business district to work. In terms of functional forms, households 

maximize a Cobb Douglas utility function. The housing services pro-

duction function (the only production function in the model) is also 

Cobb-Douglas. The algorithm searches over a set of prices for land, 

one for each ring in the urban area. A ring is the area between two 

concentric circles about the center of the city. In contrast, the 

models developed in this study exploit some duality tricks which, in 

the one household type model, allow us to search over just one housing 

service price instead of a whole set of such prices, one for each 

ring (or, alternatively, the set of land prices for the rings). This 

greatly improves on computational efficiency and a 11 ows for the 

handling, at reasonable cost, of richer models with additional endo-

genous variables. Sensitivity analysis, whereby the effects of changes 

in parameter values on the structure of the city and the welfare of 

its residents are determined, was carried out in the MacKinnon paper. 

One of the more interesting results obtained in this way was that, in 

the two household group model, increasing the size or income of one 
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group reduced the welfare of the other, with a particularly strong 

effect occurring when the income of the richer group is raised. 

Arnott and MacKinnon (1977a) then published a paper which, of 

all the simulation work published in this area, is closest in nature 

and intent to what is attempted here. The major questions asked in 

this study, however, are different and the modelling here is more 

general. The central business district in the Arnott and MacKinnon 

paper is again taken to be a point at the center of the region to 

which households commute to work. Cobb-Douglas functional forms are 

used. Unlike the previous paper, however, a property tax on housing is 

levied. Its value is fixed and there are no provisions in the model for 

determining the amount of property tax revenues that must be raised. 

In our study the tax rate is allowed to vary so that tax revenues raised 

equal an exogenously specified level. The model in Arnott and 

MacKinnon is parameterized to some extent to resemble metropolitan 

Toronto. The simplicial search algorithm that is utilized is one called 

the Vector Sandwich Method and is described rigorously in MacKinnon 

(1975). Key results obtained from their paper are that, depending on 

the model and welfare measure used, imposition of the property tax 

results in an excess burden that is 8.0% to 8.5% of net property 

tax revenues (revenues from the tax minus the reduction in land rents 

induced by the tax). 

Another paper by Arnott and MacKinnon (1977b) uses essentially 

the same general equilibrium spatial location model as before 

(exclusive of a property tax), except that a choice of transportation 

mode is included. Four modes of travel are available to commuters: 
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walking, public transportation, inexpensive car and expensive car. 

Essentially the same computational procedure that was used in the 

previous paper is applied here. The effects of several types of 

government policy changes with respect to the various modes of travel 

are investigated. In particular, the policies involve changing prices 

and upgrading transportation facilities. The aggregate benefits and 

distributional impacts of these kinds of changes are quantified for a 

parameterization of the model that leads to a reasonably realistic city. 

King (1977) presents a computational routine, based on the 

algorithm developed by Scarf (1973), for a spatial location model that 

is more general than that of MacKinnon (1974). An application of the 

algorithm to an urban economy, where utility and production are 

represented by CES functional forms, is presented. It is done, 

though, merely for illustrative purposes. The major contribution of 

the paper is the computational routine that is developed in it. 

Arnott and MacKinnon (1978) simulate an urban residential location 

model that is similar to those found in their aforementioned papers. 

A major difference, though, is that the time costs of transportation 

congestion in the urban area are carefully modelled in this paper. 

They use a variant of the Vector Sandwich Method, mentioned above, 

to compute equilibria. The major results of this work are obtained 

when it is shown, by way of numerical counterexample, that, contrary 

to conventional wisdom, the shadow rent on land in residential use 

can be less than the market rent, and the shadow rent on land in 

transportation can be negative. The correct calculation of the 

shadow rents on land in residential and transportation use is 
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important for cost-benefit analyses of government projects, such as 

road construction, that involve the acquisition of land. The authors 

argue in favor of future development of more sophisticated urban simu-

lation models that can accurately calculate the shadow rents on land. 

Richter (1978a) exhibits a use for these fixed point algorithms 

other than the obvious one--the numerical simulation of economic 

equilibrium models. In this paper the algorithm found in Scarf (1973) 

and the theorem underlying it are used to provide a constructive proof 

of the existence of equilibrium in a general function model. In 

particular, existence of a general equilibrium is proven for a model 

where local public goods are provided in different regions and con-

sumers are free to move among regions to maximize utility on the basis 

of private goods prices and the public goods menus found in 

individual regions. There is a single tax authority that raises the 

revenues required to pay for the public goods provided in the region 

by imposing a proportional wealth tax. Production possibilities are 

described by an activity analysis matrix. Although the model might be 

applied to a set of suburbs in an urban area where different jurisdic-

tion can provide different kinds and levels of local public goods, it 

is not in the tradition of urban spatial land use models since provision 

is not made for travel to an employment center. The set of suburbs 

application, however, does seem to be an appropriate vehicle to use to 

investigate the efficiency of local public goods economies of the type 

envisioned in Tiebout (1956). The Scarf algorithm can be used to 

calculate an equilibrium for the model in the paper once a set of 

functional forms and parameter values are specified. Such a numerical 
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example is provided in the paper, but for illustrative purposes only. 

Richter (1978b), however, presents a model that is of the tra-

ditional urban spatial location variety and shows how the Scarf 

algorithm can be used to compute equilibria for it. How the algorithm 

may be used to compute equilibria for urban land use models that 

include such realistic complications as various types of zoning, racial 

discrimination, and multiple work places is sketched. A small numerical 

example is also provided. 

In a chapter on computational approaches to the study of neighbor-

hood effects on urban land use, Richter (1979) explains intuitively how 

simplicial search algorithms can be used to simulate equilibria for 

urban spatial location models that include neighborhood externalities 

such as those generated by pollution, the level of which depends on 

proximity to the polluting activity, and the racial composition of 

neighborhoods in the presence of discriminatory attitudes. It is shown 

how both exogenous and endogenous neighborhood effects can be included 

in urban spatial location models that are amenable to simulation by 

fixed point algorithms. For illustrative purposes several computational 

examples are provided. 

In a later paper, Richter {1980) provides a synthesis and 

generalization of much of the work on the use of simplicial search 

algorithms in computing solutions to urban spatial land use models. 

The centerpiece of this paper is a theorem (that is crucial to this 

dissertation) which, when applied to general equilibrium models, pro-

vides sufficient conditions for the existence of an equilibrium and 

indicates how a simplicial search algorithm can be used to compute 
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that equilibrium. This synthesizes and generalizes the computational 

approaches of King (1977), Richter (1978b). and the papers of Arnott 

and MacKinnon described above. The procedures of King (1977) and 

Richter (1978b) utilize the Walras law and the property of homogeneity 

of degree zero of excess demands. As noted in the paper, though, it 

may be appropriate and useful fn urban models to let some prices be 

exogenous. The price of capital is an obvious candidate since it may 

be bought and sold in a national market. In addition, part of house-

hold income may be exogenous and some of the income generated in the 

urban economy may flow out of the system as would be the case if 

absentee landowners existed. In these circumstances neither the 

Walras law nor homogeneity of degree zero for excess demands will be 

satisfied. Neither property, however, is required by the theorem. The 

Arnott and MacKinnon models do not require these properties but they 

are restricted in other ways. The theorem, however, can be applied to 

these models as well. General models which satisfy the hypotheses of 

the theorem are discussed. These include urban spatial models with 

endogenous externalities. So called dual or bid rent approaches to 

computation in urban models, whereby the equal utility for households 

of a given type and zero profits for competitive markets equilibrium 

conditions are exploited, are discussed. It is shown how they can be 

used to reduce the number of endogenous prices over which a fixed 

point algorithm must search, thereby increasing computational 

efficiency. 

Finally, King (1980) shows how the Scarf algorithm can be used to 

compute equilibria for certain kinds of models with externalities. 



16 

Simple numerical examples are given for urban spatial location models 

with two different types of externalities. One simulation works with 

a model where discrimination by whites against blacks exists. The 

other involves a model that can be applied to a situation where a 

bakery, say, emits smoke that dirties the laundry wash and irritates 

the throats of nearby residents. The examples are meant merely to 

illustrate the procedure. In the general modelling in this paper four 

assumptions about externalities are made. Externalities are assumed 

to be non-depletable, producers and consumers act on the basis of 

anticipated levels of externalities, there is no possibility that 

recipients of externalities might bribe the producers, and the produc-

tion of externalities is a linear homogeneous function of relevant 

inputs, outputs, or consumption. 

While the above survey of that part of the urban economics 

literature that makes use of simplicial search algorithms is intended 

to be as complete as possible, we make no such claims for the following 

brief survey of work in other fields that also use these computational 

techniques. Our intent here is merely to convey something of the wide 

applicability and usefullness of these fixed point algorithms to 

economics. 

In a series of related papers Shaven and Whalley (1973, 1974, 1977) 

discuss the issues of the existence and computation of a general 

equi 1 i brium for an economy with ad va 1 orem consumer and producer taxes. 

Shaven and Whalley (1973) describe a computational technique, based on 

Scarf's algorithm, that can be used to find a competitive equilibrium 

for a general Walrasian model with an arbitrary set of fixed ad valorem 
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tax rates and where the revenue generated from the tax system is 

distributed among the consumers and/or is retained by government for 

the purchase of privately produced goods and services. The shares of 

the tax revenue distributed to the different consumers and government 

are fixed. It is also required that each recipient's allocation of 

tax revenues be a continuous function of total tax revenues. Produc-

tion is described by an activity analysis matrix. In Shaven and 

Whalley (1974) this basic approach was extended to include a many 

country model with tariffs applying to trade flows. In these papers 

the computational routine essentially involves searching over a set 

prices and tax revenues to find an equilibrium. In an interesting 

extension to the earlier papers, Shaven and Whalley (1977) consider 

of 

the notion of equal yield tax alternatives and the problem of making 

the tax rates endogenous. In evaluating alternative tax systems, 

policymakers often compare proposals that will yield a given amount of 

tax revenue. It should be important, then, to develop computational 

procedures that can calculate equilibria for models constructed so 

that alternative tax regimes imposed within them have equal yields. 

The question of what are equal yields for different tax systems in a 

general equilibrium framework is an interesting one. In general, 

changes in the tax structure will alter relative prices. In such cases 

maintaining the same nominal amount of tax revenues may be inappro-

priate. In the paper different notions of tax yield equality are 

presented. It is shown how, using price indices applied to the 

amounts of revenue raised, it is possible to give every consumer the 

same real transfer payment with different tax schemes. It is also 
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suggested that one might use a model where government is thought of as 

having a utility function defined on commodities purchased from the 

private sector in the case where tax revenues are retained by government 

and spent on goods and services. Computational routines, based on 

Scarf's algorithm, are constructed to handle all of these cases. To 

illustrate the use of the technique a model of the U.K. economy for 

the period 1968-1970 is simulated. In particular, the replacement of 

the distortionary system of taxation of income from capital in the U.K. 

by a single rate nondistortionary tax on capital income from all indus-

tries is considered. Although ad valorem tax rates are used in our 

study, the routines developed in the paper cannot be applied here since 

the models of the paper are restricted, for our purposes, in important 

ways. For example, in the paper production is characterized by an 

activity analysis matrix instead of continuous production functions 

and the framework is non-spatial. 

As the Shoven and Whalley papers extended the range of models to 

which fixed point algorithms may be applied in one direction, MacKinnon 

(1979) extended their application in another--to the solution of models 

in which some or all industries exhibit increasing returns to scale. 

It is suggested that such equilibrium models may be useful in investi-

gating policy changes where increasing returns to scale should not be 

assumed away. The paper provides an existence of equilibrium proof 

for a restricted class of models with increasing returns to scale 

industries and illustrates, with a numerical example, how fixed point 

algorithms can be used to calculate such equilibria. 

In Mansur and Whalley (1982a) the fixed point algorithm approach 
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to computing equilbria is applied to a general equilibrium multi-

jurisdictional model where incomes of jurisdictions are interdependent. 

They have in mind, essentially, situations where production in one 

community has spillover effects in neighboring communities, as might 

occur with the production of some local public goods. The model is 

limited in this respect, though, in that no public good characteristics 

of the commodities which exhibit spillover effects are considered. The 

spillovers are expressed as a transfer of given fractions of production 

of outputs from one community to another. It is shown how Scarf's 

original algorithm [Scarf (1973)], or a recently developed refinement 

by Van der Laan and Talman (1979) that is much more computationally 

efficient, can be used to compute equilibria for the model. Application 

of the basic approach to an extension which models "brain-drain" 

migration is suggested as an avenue for future research. 

In another area of application, Imam and Whalley (1982) consider 

equilibrium with price regulation. Three formulations of equilibrium 

under price intervention policies are presented. The first considers 

product-specific legislated minimum and ceiling prices which are 

supported by a government marketing agency. The second involves 

legislated minimum prices with segmented markets of the type found in 

the urban-rural migration literature. The third formulation considers 

economy-wide minimum or ceiling prices supported through government 

market interventions similar to those that occur with agricultural 

price support programs. Some numerical examples obtained through the 

application of a fixed point algorithm are presented. It is suggested 

that it may be possible, with some modification, to apply the 



computational framework to analysis of financial market failures in 

less developed countries, where government monopolies of the types 

modelled in the paper as well as interest rate ceilings and floors 

often exist. Other possible areas of application mentioned include 

energy and transportation price regulation. 

Finally, Fullerton, Shaven, and Whalley (1983) use a fixed point 

algorithm (the one used in this study) to investigate the welfare 
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effects of alternative tax policies at the national level. In particular, 

they study the effects of a change from the existing United States in-

come tax to a progressive consumption tax using a dynamic general 

equilibrium model of the United States economy. They calculate that the 

switch yields a stream of net gains the present discounted value of 

which is $650 billion in 1973 dollars. The effects of changing from the 

existing tax system to seven other tax plans, some of which involve the 

integration of corporate and personal income taxes, are calculated. 

They find that a combined policy of tax integration and savings deduc-

tion from the personal income tax yields the largest welfare gain, with 

the present discounted value of the stream of net gains in the neighbor-

hood of $1 to $1 .5 trillion. 

As noted above, this last set of applications of simplicial search 

algorithms was given to illustrate the potential of these computational 

procedures. The applications, potential and actual, included topics 

in such areas as national public finance, international trade, labor 

economics, and price regulation. 
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II. Overview of the Study 

Chapter 2 of this study will set out in general terms a base urban 

spatial location land use model that is to be used to investigate the 

efficiency aspects of property tax classffication in an urban area. 

The model has many of the features of traditional urban land use 

models. It is a long-run equilibrium land use model where land is 

rented to the use that bids the most for it. The workers of households 

commute, from their residences, to work in a central business district, 

although unlike many, but not all, of these models the employment 

center here is more than just a point in space. The model differs, 

however, from all others of this type in that an endogenously deter-

mined property tax rate is included. The chapter concludes with a 

specification of functional forms for the functions of the base model 

and some derivations, obtained using those functional forms, that are 

needed to compute equilibria. The forms are not very restrictive. All 

production functions are of the CES type. Utility is CES in commod-

ities and contains a leisure component. Chapter 3 begins with a 

discussion of the restrictions on the functions of the model needed to 

make them amenable to use on a computer and to ensure that they are 

consistent with economic theory. Conditions on the parameters that 

guarantee the existence of equilibrium for the model are then developed. 

An existence of equilibrium proof ts provided which, by way of its 

dependence on a fixed point algorithm, also indicates how such an 

equilibrium can be computed. Any practical computation of this sort 

will, in general, result in only an-approximation to an equilibrium 

and the last section of the chapter presents a discussion of how the 



22 

error of the approximation can be shifted so that its interpretation 

is made economically meaningful. Chapter 4 develops two major 

extensions to the base model. First, a non-housing composite commodity 

which is bought and sold only in the urban area under consideration is 

added to the model. Second, multiple household types are included. The 

household groups can differ by preferences and/or income (exogenous, 

endogenous, or both). For the case where households differ in their 

endogenous income multiple labor types are added to the model. In the 

last section of this chapter the welfare measures that will be used in 

the sensitivity analysis are discussed. They are general equilibrium 

versions of compensating and equivalent variations in income. Chapter 5 

begins with a specification of parameter values. Sensitivity analysis 

for the various models follows. Finally, Chapter 6 summarizes the 

results of the study and discusses prospects for future research. 
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FOOTNOTES 

1 Richard Arnott (1979), however, has made a first step toward 
integrating residential location theory and optimal tax theory. 

2 A good treatment of the mathematical theory underlying these 
computational techniques and applications to standard Walrasian general 
equilibrium models, non-linear programming, and game theory can be found 
in the seminal work of Scarf (1973), and also in a more recent exposi-
tion, Scarf (1983). 

3 As mentioned below, Richter (1979, 1980) contain reasonably 
non-technical discussions of how these algorithms can be used to find 
solutions to urban spatial location models. For more technical dis-
discussions and applications of these techniques to spatial models 
see Arnott and MacKinnon (1977a? 1977b, 1978), MacKinnon (1974), 
King (1977), and Richter (1978b;. 

4 For examples of simulations of urban spatial location models 
which do not make use of these algorithms, see Mills (1972), Muth (1975), 
Steen (1982), and Sullivan (1983a, 1983b, 1983c). 

5 They have already found applications in such diverse fields as 
national public finance, international trade, and energy economics. 
The techniques seem to be particularly useful for analyzing public 
policy. 

6 The alqorithm used in this study was developed by Merrill (1972) 
and is a variant of an algorithm developed by Scarf {1967) for com-
puting fixed points. 

7 In practice, usually, residential, commercial, and industrial 
property are distinguished from one another for tax purposes. For the 
base model presented in Chapters 2 and 3, where there is one non-housing 
production sector, the differentiation will be between residential and 
"business" property. In the extensions to the base model presented in 
Chapter 4, however, where a local goods sector is added to the one 
traded good non-housing production sector, a distinction will be made 
between 11commercial11 and 11industrial 11 business property. 

23 
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8 Most state constitutions prohibit classification of property for 
tax purposes. Currently, however, the constitutions of six states do 
permit property tax discrimination. In particular, the Massachusetts 
legislature, as a response to a court rul i'ng, Town of Sudbury et al. v. 
Commissioner of Car orations and Taxation et al. Mass. 321, N.E. 2d 641 
1974 ,which found that classification violated the Massachusetts state 

constitution, has recently passed an amendment to the state constitution 
which sanctions classification. Property tax discrimination, however, 
had been widely practiced tn Massachusetts and elsewhere for many years 
in spite of state law. 



CHAPTER 2 

A MODEL OF AN URBAN ECONOMY 

Various models of urban spatial location and economic interaction 

will be employed to determine the welfare and structural implications 

of alternative means of financing local public services in an urban 

area, and to ascertain which economic parameters have important effects 

on the results, either normative or positive, or both. This set of 

models may be viewed as consisting of what may be called the base 

model and models that extend the basic framework in various directions. 

This chapter will set out the structure, in detail, of the base model. 

The model will first be expounded in terms that are as general as 

possible. That is, only general functional forms will be assumed. 

Then the specific functional forms chosen for the purpose of computer 

simulation and the derivations carried out on those functional forms, 

needed to perform the simulations, will be presented. 

I. The Base Model 

A. The General Setting 

The analysis is carried on in the now familiar setting of 

a monocentric circular city. 1 The area of the city is divided into a 

set of distinct sections. These sections are concentric rings 

anchored about the geographic center of the urban area. The reason 

that concentric rings are chosen as the basic geographic unit is that 

different areas of the city will be differentiated one from another 
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mainly by straight line distance to the city center. Concentric 

rings, if their widths are chosen small enough, possess the property 

that the distances from all points in the ring to the center of the 

region are all approximately the same. The fi'rst or innermost ring 

is taken to be relatively large and is meant to provide the area 
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within which a central business district, or CBD, is located. The CBD 

fs surrounded by much small er rings which wfll house most or all of 

the res.idents of the city. 2 A fraction of the land in each ring is 

assumed to be devoted to what fs to be considered exogenous uses. 

This fraction can be made to vary from ring to ring and may reflect, 

for example, the presence of land that is under water or otherwise 

unusable for housing and business purposes, land that is devoted to the 

transportation network, and land that is used by non-profit institu-

tions such as hospitals, schools, and government agencies. Although 

these particular public, semi-public, and private users of land may 

indeed alter their location and the intensity with which they use land 

when relative prices fn the urban area change, they all enjoy the 

benefit, at least in the urban area focused upon, of being exempt from 

the imposition of property taxes. Since this study is concerned 

primarily with the effects of changes in the property tax system, and 

since inclusion of the determtnants of locational choice and quantity 

of land purchased by these institutions would be difficult and 

cumbersome, at best, we abstract from the effects on the urban area of 

changes in their decisions when property tax rates change. The portion 

of land in any ring that is left for what are consi.dered to be endo-

genous uses is assumed to be homogeneous in quality. 
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There is assumed to be a given population of N identical house-

holds residing in the city. Each household contains one worker \<Jho 

makes a fixed number of work trips each year to the CBD. The analysis 

can be carried on in the same way with only cosmetic changes if it is 

assumed that households contain more than one worker, even a non-

integral amount, so long as the number is given exogenously. Just one 

work trip on any given work day is allowed, although here, also, no 

problems arise if more than one work trip is made provided that the 

number is given exogenously. The transportation network is assumed to 

be radial and dense, so that circumferential travel can be ignored. 

Commuting distance to the CBD, therefore, is just straight line 

distance. Every household residing in a given ring is treated, for 

commuting purposes, as though it lives at the midpoint of the ring. 

This is a very reasonable assumption if the widths of the rings are 

small. The work trips are assumed to be the only travel that the house-

holds undertake. These assumptions imply that all households residing 

in a given ring incur the same transportation costs. 

B. Households 

The analysis, of course, requires a more detailed characterization 

of the households residing in the urban area. Household labor supply 

is assumed to be constrained by an institutional work day. The house-

hold's worker must work eight hours, or however many are determined 

by convention, each day that is defined, also by institutional conven-

tion, to be a work day. Assuming full employment, then, each \'1orker 

must supply a fixed amount of labor each year. Time, as will be seen 



28 

below, will enter the analysis, so it is important to consider non-work 

hours. It is assumed that the time that a worker does not spend 

working is divided between leisure and commuting. 

The households are utility maximizers. They are assumed, in the 

base model, to maximize utility over housing services, leisure, and what 

may oe called a traded good. The traded good is a composite good which 

is sold in a national market of which the local market is a small part. 

The price of the traded good in the local market is therefore taken to 

be fixed. This composite commodity can be produced in the city, and 

can be exported from or imported to the city to eliminate surpluses 

and shortages in the local market. 

A property tax is levied on residential housing. The tax is paid 

directly by households in the form of an ad valorem tax on housing 

services. The effective tax rate is uniform throughout the region. 

This assumption is made in full recognition of the fact that effective 

property tax rates do vary across and within jurisdictions in an urban 

area, even for property of the same type. Inclusion of the sorts of 

inadequate and uneven assessment practices and fiscal competition which 

may give rise to such variations would enormously complicate the 

analysis. In addition, it does not seem that these considerations bear 

directly on the issue of the efficiency of property tax classification 

for an entire urban area. This seems particularly true in a long-run 

analysis with one household type. A list of reasons why could include 

the following three. First, unfairly high or low assessment/sales 

ratios on individual structures or sets of structures in certain 

neighborhoods in a jurisdiction are likely to be randomly distributed 
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about the average assessment/sales ratio for property of the same type 

in the jurisdiction if a lengthy enough time frame is used. The 

long-run average assessment/sales ratios, then, on individual struc-

tures and sites should be the same. Also, assessment techniques used 

in some jurisdictions which are clearly inferior to those used in other 

jurisdictions in the same urban area will almost certainly not persist 

for very long. Second, fiscal competition among local jurisdictions 

for residents, as characterized in the abundant Tiebout literature, 3 

is probably relevant only for those internally homogeneous suburbs 

found in the outermost rings of metropolitan areas, and only for those 

regions which contain a large number of these communities. In this 

literature the form in which the fiscal competition is expressed con-

sists of different jurisdictions offering different tax-expenditure 

packages to their residents to attract certain segments of the popula-

tion. It is assumed that fiscal preferences can vary among individuals. 

With one household type, though, abstracting from differences in cost 

conditions and natural amenities among jurisdictions, there is no 

reason for different tax rates to arise in jurisdictions of roughly the 

same distance from the city center. 4 At different distances from the 

center, however, the residential tax base per capita can vary, the 

extent of which depends crucially on the price elasticity of housing 

demand. Then, tax rates would, in general, vary, even allowing for 

substitutions of consumption of other goods and services for some 

public services in low tax base jurisdictions. If the price elasticity 

of housing demand is inelastic, as some studies have indicated, then, 

in a one household type model, tax rates should be higher in 
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communities with lower housing prices, restricting our attention of 

course, to jurisdictions that do not contain a significant amount of 

business property, or at least to those for which the business tax base 

per capita is roughly the same. In a monocentric circular city model 

of the type discussed here, housing prices decline with distance. Thus, 

if housing demand fs fnelastfc, and per capita local public expenditures 

are constant throughout the region, tax rates would increase with 

distance, although perhaps not by much. In reality, though, we 

typically observe the reverse. That is, tax rates generally decline 

with distance from the central city, although the variation is probably 

much less among those distant suburbs which contain little business 

property than for the urban area as a whole. The difference can 

probably be accounted for by the observation that higher income groups 

tend to be more concentrated at locations further from the center. 

Thus, even if housing demand ts inelastic, the effect of lower housing 

prices at greater distances on per capita residential tax bases can be 

offset and even somewhat more than offset by the effect of higher 

income on demand, if housing fs a normal ~ood, as it almost certainly 

is. Third, on the expenditure side, in the one household type model 

presented here, public service requirements would not vary, for 

example, for the commonly cited reason that some jurisdictions contain 

unusua1ly large numbers of poor residents who have large demands for 

certain public services. In sum, then, with one household type, 

demands for local public services should not vary much, and per capita 

tax bases may not either, so that the use of an average tax rate for the 

entire region may not be a bad approximation to a more realistic model. 



31 

The households in this model are free to reside in any part of the 

region (i.e., to locate in any ring) subject only to their own financial 

and time constraints and the availability of housing. Instead of con-

sidering directly the full household choice problem (which includes the 

location decision), it will turn out to be very convenient, as will 

become apparent below, to consider the utility maximizing response of a 

household when it is required to locate in a given ring. 

The choice problem facing a household, then, that is required to 

reside in a given ring, say ring j, can be expressed mathematically as 

follows: 

subject to the constraints, 

where xj = T 
xj = H 
Q,j = 

Pr = 

annual consumption 

annual consumption 

M + p • W - c• uj w 

of the traded good 

of housing services 

annual amount of leisure enjoyed by the 

exogenous price of a unit of the traded 

(2. l) 

(2. 2) 

(2.3) 

household's worker 

good 

pj = price of a unit of housing services per year in ring j 
H 

aR = assessment/sales ratfo for residential property 



t = nominal property tax rate 

M = exogenous annual household income 

Pw = hourly wage rate 
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W = fixed amount of man hours supplied each year by a worker 

(the product of the number of hours in the institutional 

work day and the fixed annual number of work trips made by 

a worker) 

c = the product of twice the money cost of transporting one 

person one mile and the number of work trips made annually 

by a worker 

uj = distance in miles from the midpoint of ring j to the city 

cen·ter 

v = the product of twice the amount of time spent by a worker 

each year commuting one mile and the number of work trips 

made annually by a worker 

T = total amount of time available yearly for leisure, work, 

and commuting. 

The houshold maximizes utility (2.1) over just its consumption 

of the traded good and housing services, subject to the budget con-

straint (2.2), which states that yearly expenditures on the traded 

good and housing services plus property tax payments must equal income 

net of the cost of transporting the worker to and from the CBD, and to 

the time constraint (2.3), which states that the time used for leisure, 

working, and commuting must add to a fixed amount. The unit time cost 

of travel term, v, is assumed to be constant. For a household 

residing in a given ring, then, the assumption of a fixed supply of 
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labor implies that the amount of time available for leisure is fixed. 

The amount of time used for commuting and work is completely deter-

mined by location which leaves a given amount of time for leisure. 

Since the maximization is done subject to the household residing in 

ring j, the amount of leisure is not a choice variable. So, to carry 

out the maximization process for a given ring, we can substitute the 

time constraint (2.3), or in other words, the fixed amount of leisure, 

into the utility function U and then just maximize over the traded 

good and housing services subject to just the budget constraint (2.2). 

Finally, the unit money cost of travel term, c, is assumed to be con-

stant. This, together with the assumption that vis constant, implies 

that we are ignoring transportation congestion. 

C. Land Markets 

Land is an integral component of this and any spatial location 

model and, as such, its ownership and use in production processes 

should be explicitly considered. Due to computational limitations 

engendered by the endogeneity of city size and the solution technique 

used (which, nonetheless, allows for a great deal of flexibility in 

modelling other aspects of the urban economy), it is necessary to 

treat residents and landowners as distinct groups. 5 The solution pro-

cedure will be described in detail below. We can assume either that 

the local government (since we are abstracting from inter-jurisdictional 

variations in tax and expenditure policies we may conceptualize local 

government as consisting of a single metropolitan-wide government or 

taxing authority) or a group of absentee landlords own all of the land 

in the city. 
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The uses to which land may be put are restricted by zoning regu-

lations. The zoning takes the form of what may be called cumulative 

districting. In this form of zoning the different potential private 

uses of land are ranked. If an area is said to be zoned for one of 

these uses, it means that that type of land use and all uses that are 

ranked higher can locate there, but all land uses that are ranked 

lower are prohibited from locating there. In this model, there are 

three types of endogenous private land use. Land available for 

endogenous use can be used in the production of the traded good, in 

the production of housing services, and in an agricultural sector. We 

may refer to production of the traded good as an industrial activity. 

In the ranking of land uses for zoning purposes, then, industrial use 

is ranked lowest and residential use i's ranked next. It is assumed 

that agricultural producers can locate anyplace in the region where 

landowners will rent to them. The first, or innermost ring, which is 

relatively large, is zoned industrial, which means that all three 

activities can locate in the CBD. All other rings are zoned residential, 

whi.ch means that only housfng and agricultural production can locate 

there. The purpose of these zoning assumptions, aside from adding a 

characteristic of land markets actually observed, is to contain 

business activity within an area of definite size at the center of the 

city. This i's necessitated by computational limitations. In any case, 

although suburbanization of employment has been an important 

phenomenon in urban development, business activity is still highly 

concentrated in many central cities. 

Landowners in the region maximize their income by renting only 



to the highest bidder. If there should be a tie in the bid for land 

in a ring, it is assumed that any or all of the tied activities can 

locate there, landowners being indifferent as to which of the tied 

activities rents their land. 

D. The Industrial Sector 

A detailed specification of the behavioral assumptions made by 
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the different kinds of firms that locate in the area, as well as the 

institutional settings, technological constraints, and market structures 

which they face is required. It is to that task that we now turn. 

First, it is assumed that housing services in a ring are produced 

with a constant returns·to scale technology using capital and land from 

that ring. Thus, the yearly aggregate supply of housing services in 

ring j is given by the production function: 

where Ki= amount of capital used yearly in the production of 

housing services in ring j 

( 2. 4) 

Li= amount of land used yearly in the production of housing 

services in ring j 

and sH is homogeneous of degree l in capital and land. The producers 

of housing are assumed to be profit maximizers and the market for 

housing services is taken to be perfectly competitive. The capital and 

land markets are also presumed to be competitive, so that housing pro-

ducers are price takers with respect to input as well as output prices. 



The traded good is al so produced with a constant returns to seal e 

technology. Its production, however, is restricted to the CBD and it 

uses capital, labor, and land from the CBD as inputs. The yearly 

aggregate supply of the traded good from producers in the urban area 

is given by the production function: 

(2. 5) 

where KT= amount of capital used yearly in local production of the 

traded good 

Li= amount of land in the CBD used yearly in the production of 

the traded good 

WT= amount of labor used yearly in local production of the 

traded good 
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and sT is homogeneous of degree l in capital, land, and labor. The 

producers of the traded good are profit maximizers and the market for 

this good is perfectly competitive. The market for labor is also 

assumed to be competitive so that traded good producers, like housing 

producers, are price takers with respect to all input and output prices. 

Capital is sold in a national market so that we can take the price, 

inclusive of opportunity costs, of a unit of annual capital services, 

pK, to be fixed. We also make the assumption, which is fairly standard 

in these kinds of models, that capital can be transported, where needed, 

costlessly within the urban area. 

As was mentioned above, the property tax levied on housing is 

applied to the value of housing services and is paid by residents. 



Thus, profits in aggregate to producers of housing in ring j, if they 

are successful in bidding for land in the ring, may be expressed as 

follows: 
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TTj = p·i j -p Kj p j • Lj 
H H8H K0 H LH H (2.6) 

where 1ri = aggregate annual economic profits of housing producers from 

operations in ring j 

p2H= annual rental on land bid by housing producers for use of 

land in ring j 

These assumptions will determine the behavior of housing producers. 

Producers of the traded good, however, are treated somewhat differently 

with respect to the tax system. In particular, the property tax 

levied on industrial property is treated as a factor value tax. 6 It 

is imposed on the values of capital and land used by the producers of 

the traded good. Thus, aggregate profits to these producers, if they 

are successful in bidding for land in the CBD, may be expressed as 

follows: 

(2. 7) 

where TIT= aggregate annual economic profits of traded good producers 

from operations in the CBD 

a1 = assessment/sales ratio for industrial property 

l pLT= annual rental on land bid by traded good producers for 

use of land in the CBD 

To close the production side of the model we assume that the rent 
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offered for land anywhere in the region by the agricultural sector, pA, 

is given exogenously, and that the agricultural sector is untaxed. A 

fixed bid rent for land by the agricultural sector will allow for the 

determination of city size without taking conditions in agricultural 

markets explicitly into account. Such an assumption is common in 

circular city models with a variable border between the urban area and 

the agricultural hinterland. While this is certainly a simplification, 

making more realistic assumptions about a farm sector should not 

appreciably affect the results. 

E. The Government Sector 

The behavior of local government in this model has been specified 

to a large extent already. It has been stated that local government can 

be thought of as consisting of one regional government or taxing 

authority. Zoning regulations enacted by this government have been 

expressed,as well as the possibility of having the government own all 

the land in the region. It is also assumed that, under alternative 

tax schemes, the level of property tax revenues raised in the urban 

area is to be equal to a pre-specified amount. This requirement is made 

for the purpose of conducting differential incidence analysis. The 

intent is to examine the effects of different tax policies, all of which 

yield the same amount in revenues. Finally, the expenditure side of 

local public finance is abstracted from in that it is assumed that the 

government spends its tax revenues (also the land rents it collects 

if it owns the land) elsewhere. 7 
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F. Solution Procedure 

Solving this model involves finding a set of prices and a property 

tax rate which satisfy certain conditions. First, the requirements of 

market equilibrium must be met. In particular, for non-zero prices, 

the excess demands for housing services, land in each ring, and labor 

must be zero. Second, the amount of property taxes raised in the urban 

area at the equilibrium prices must be equal to the pre-specified 

amount mentioned above. 

The fixed-point algorithm that is used essentially searches over a 

set of prices and property tax rates until a combination of prices and 

tax rate which yields an approximation to a solution, as just described, 

is found. There are many prices in the model, but the solution 

technique used allows for a reduction of the dimensionality of the 

search to a point where the algorithm need search over just three 

variables. Specifically, the algorithm searches over a set of vectors, 
2 p = {pw,PH,t). The second component is the price of housing services in 

the second ring. All of the other prices in the model are either 

exogenous or, given the solution technique used, can be determined from 

a given vector p. 

To see that this is so, let us first return to the utility maximi-

zation problem (2.1-2.3). Consider the choice problem facing a 

household required to reside in ring 2. Assuming the utility function 

is strictly quasi-concav~ increasing in its argument~ and possesses 
8 the property of smoothness, then, given a wage rate, Pw' a price of 

housing, p~, and a tax rate, t, the maximization can be undertaken, in 

principle, and will result in unique consumption levels of housing 
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services and the. traded good. Since the maximization can be performed, 

we can form the indirect utility function of a household required to 

reside in ring 2 as, 

(2.8) 

suppressing the other parameters of the utility maximization problem 

including the price of the traded good, Pr, and exogenous income, M. In 

other words, we can find a maximized level of utility, for households 

residing in ring 2, given any vector p. 

It must be true, though, that in an equilibrium the level of utility 

achieved by all households, regardless of location, is the same.9 We 

can exploit this equilibrium condition to find bid prices for housing 

services offered by households in all other rings. 10 To do this, con-

sider the indirect utility function for a household residing in ring j, 

. (2.9) 

It must be true, though, in equilibrium that Vj = v2, for all rings j 

in which households reside. If inversion of the indirect utility 

function with respect to the price of housing is possible, then know-

ledge of the value of v2 will enable us to find a bid price for housing 

services in any ring j (i.e., a price such that the level of utility 

achieved by a resident of ring j is the same as that of a resident of 

ring 2}. To ensure this we make the assumption that the direct utility 

function is such that households will wish to purchase a positive amount 
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of housing services at every set of prices. Given this and the assump-

tion that the direct utility function is increasing in each of its 

arguments, i.e., the property of local nonsatiation, the indirect 

utility function is decreasing in the price of housing. 11 Thus, Vj is 

a one-to-one function with respect to the price of housing in ring j. 12 

Hence, we can indeed invert the indirect utility function, Vj, to obtain 

the bid price for housing services in ring j, 

(2.10) 

where, again, other parameters of the maximization problem have been 

suppressed. We will, below, insure that, by construction, these housing 

service prices are equilibrium prices. 

Before we can show that, though, we must turn to the production side 

of the economy and the allocation of land to different uses. In a com-

petitive equilibrium with a constant returns to scale technology profits 

must be zero. We can impose a zero profits condition on producers in 

the model and exploit it to find bid rents for land by the housing and 

traded good industries, given only values for the components of the 

vector p and exogenous prices. 

In particular, let us first turn to housing production. Assuming 

that the housing production function, sH, possesses continuous second-

order partial derivatives and ts quasiconcave, the second-order 

condition for cost minimization will be satisfied (see Varian (1978), 

p. 12). Thus, in principle, we can find a cost function for housing 

services, cH, and write costs in ring j as, 
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(2.11) 

It has been assumed, though, that the production function exhibits 

constant returns to scale. In such a case, minimized cost, for given 

input prices, is proportional to output. Specifically, in this 

situation, we may write minimized cost in ring j as, 

(2.12) 

where 

As noted above, in equilibrium the profits of housing producers must be 

zero. In other words, the price of housing services in a ring must be 

equal to the average cost of producing housing in that ring so that, 

at a solution, we may write, 

(2.13) 

Given the price of housing services in ring j as determined above, 

then, a bid price for land in ring j by housing producers (i.e., a land 

rent such that profit-maximizing housing producers would be earning 0 
A 

profits) can be found if we can invert the average cost function, cH, 

with respect to PCw The average cost function, though, is increasing 
13 in the price of land. Thus, the function, cH' is one-to-one with 

respect to the price of land. Therefore, we can invert it with respect 

to PCH and so find the bid rent for land by housing producers as, 
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(2.15) 

The traded good production technology is also constant returns to 

sale, so that we may write costs as proportional to output, 

(2.16) 

where 

Profits must also be zero for traded good producers in long-run equili-

brium so that we must have, 

(2.17) 

The average cost function, cT, is increasing in the price of land in 

the CBD bid by traded good producers (see footnote 13), which indicates 
l that it is one-to-one· with respect to pLT" Thus, we can invert the 

average cost function to find a bid rent for CBD land from traded 

good producers: 

(2.18) 

Thus, given a vector p, land rents that are consistent with zero profits 

for profit-maximizing traded good and housing producers can 



44 

be determined. 

Do the housing bid rents actually prevail in the rings outside the 

CBD? What of rents in the CBD where both housing and traded good 

producers compete for land? To allocate land to alternative uses and 

so determine actual land rentals, we must refer to the assumption made 

earlier that land is rented to the highest bidder (or bidders). The 

actual land rentals, then, which prevail in the various rings, pr, in 

equilibrium, are given by 

(2.19) 

(2.20) 

In the case of a tie in bid rents, the land in the ring may be divided 

arbitrarily among the tied activities. 14 If we let Lj be the total 

amount of land in ring j available for endogenous uses, then the alloca-

tion of land to uses may be summarized as follows. For the housing 

industry, 

< pj = 0 L 

If pj = pj (tie for maximum bid) then Lj E [O, L j] 
LH L H 

= pj (no ties) = Lj 
L 

For the traded good industry, 
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l 

< PL = 0 
l l (tie for bid) Ll [O, L j] If PL T = PL maximum then £ T 

= PL (no ties) = Ll 

For the agricultural sector, 

< pj 
L = 0 

If PA = pj (tie for maximum bid) then Lj £ [0,Lj] L A 

= pj (no ties) = Lj 
L 

where Lf is the amount of endogenous land in ring j allocated to 

agriculture. To ensure that the land allocations are consistent with 

available supplies we require that, 

(2.21) 

(2.22) 

If we let these land allocations be the demands for .land for these 

activities, and make the plausible assumption that the agricultural bid 

land rent, pA, is positive, then the land market will be in equilibrium. 

This can be done since the existence of constant returns to scale in 

production and the fact that bid rents are chosen so as to yield zero 

profits, implies that choosinQ the allocations to be consistent with 

the supply of land just amounts to specifying an otherwise indefinite 
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scale of operation. Thus, for any vector p, by construction, the 

demand and supply of land everywhere in the city (i.e., in each ring) 

will be equated. 

Having allocated land to uses we can now find supplies and other 

factor demands conditional on the vector p and the prices that have 

been derived from p. Given an allocation of land to the housing 

industry in a ring and the assumption that production is constant 

returns to scale, the supply of· housing in a ring, obtained from 

profit maximization, will be determinate. In particular, the supply 

of housing in ring j is 15 

(2.23) 

Returning once again to the utility maximization problem (2.1-2.3), 

we see that, given a vector p, a unique optimizing level of demand for 
j j - ) housing services from a household residing in ring j, xH(pH,PT'Pw,t , 

can be found. In order to guarantee housing market equilibrium, a 

population level for ring j is selected so that the aggregate demand 

for housing in this ring is equal to the supply. In other words, we 

choose a population 1 eve 1 , j that Nl • xj j The value that NG' so = SH" H 
Nl takes, of course, will depend on the vector p. We therefore, in a 

sense, generate a population for each ring in which housing is 

* present. It had better be, of course, that for a solution vector p 

the aggregate generated population is equal to the given urban 

population, N. The computational procedure that is used finds a 

vector p for which this condition is approximately satisfied. Given 
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any vector p, though, the generated population for the entire city is 

given by 

y . 
r NJ 

j=l G 
(2.24) 

where y is the largest index value for rings which contain a positive 

amount of housing. It must be true that at a solution, as mentioned 

above, NG= N. 

With the vector p, the traded good bid land rental generated 

from it, the exogenous prices of capital, and the allocation of CBD 

land, the profit maximizing levels of demand for labor and capital 

from the traded good industry can be found. The demand for labor, in 

l . . byl 6 genera , 1s given 

(2.25) 

The demand for capital, in general, fs gfven by 

(2.26) 

By construction both the housing and land markets will always be 

in equilibrium. Given an arbitrary vector p, however, the labor market 

may not be in equilibrium, the generated population may not be equal 

to the given population N, and the amount of property tax revenues 

generated in the urban area may not be equal to a pre-·specified 

level, R. 



To describe what a solution to our problem means, we can form 

what may loosely be called an excess demand correspondence. ~Je 

associate with every non-negative vector p the set 17 E(p), where 

- N•W 

E ( p) = (2.27) 
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The term RG is the amount of property tax revenues generated in the 

urban area, given values for the components of the vector p. In other 

words, 

(2.28) 

To summarize, an outline of the bask elements of the foregoing 

procedure to derive a typical element of the excess demand corres-

pondence E(p), for a given vector p, is illustrated in figures (2.1-

2.4). Households and housing sector calculations are dealt with in 

figure 2.1. First, at a given vector p, the indirect utility of a 

household residing in ring 2, v2 , is found. This value is then used 

to derive bid housing service prices, pi, for households in other 

rings. These bid housing prices, in turn, are used to calculate bid 
j land rents for housing producers, pLH' and, if housing succeeds in 

acquiring land in the ring, household demands for housing, x~, for the 

associated rings. In addition, the bid land rents, assuming that 
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housing is ,allocated land in the ring, detennine housing service 

supplies, si, for the corresponding rings. Finally, the housing 

supplies and the household demands for housing are used to calculate 

generated population levels, Nl, for the rings, which are then summed 

to obtain the total generated population, NG. Figure 2.2 symbolizes 

the progression of derivations for the traded good sector. Given a 

vector p, a bid land rent for CBD land for traded good producers is 

found. A comparison of this with the bid land rent for CBD land for 

housing producers and the exogenous agricultural land rent is used 

to determine the allocation of CBD land to the traded good industry, 

and this allocation, fn turn, fs used to derive the traded good 

industry's demands for labor and capital. Figure 2.3 illustrates, 

merely, that the bid land rents for the traded good and housing sectors, 

together with the agricultural land rent, are used to detennine the 

actual land rents that prevail in the various rfngs and the allocation 

of land to the traded good and housfng industries. Finally, figure 

2.4 lists all of the endogenous prices and quantities that can be 

used to calculate generated property tax revenues, RG. In principle, 

our goal is to find a vector p* ~ o,18 such that OE E(p*). 19 In 

practice, however, the computational procedure employed finds a vector 

p with an associated set E(p) such that E(p) contains an element 

which is at least approximately equal to a vector of zeroes. 

II. Specific Functional Fonns 

In order to actually carry out the numerical calculations 

mentioned above we must first specify, precisely, the forms of the 
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FIGURE2.l 
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FIGURE 2.2 

FIGURE 2.3 

FIGURE 2.4 
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functions that we have been using, which up to now have been quite 

general. An advantage of the computational approach that we are using 

is that it allows us to specify fairly complex forms. Ue need not 

restrict our modelling, for example, to linear excess demands or 

Cobb-Douglas utility and production functions. The functional forms 

that we do choose, however, are constrained by the requirement that 

all of the manipulations of them proposed in the previous section can 

be carried out in closed-form or approximated in some way. It is to 

that specification that we now turn. 

First, the utility function of a household residing in ring j 

is specified to be 

-1 
. a. . -p . -p p 

U = A-(iJ} i.[a.H(x~) + a.T(xf) ] (2.29) 

where A> O, a.£,a.H,a.T > O, p > -1 and pf 0. The utility function 

is in a constant elasticity of substitution, CES, form with regard 

to housing services and the traded good. Leisure, however, is com-

bined with housing and the traded good in a multiplicatively separable 

manner in which the component containing leisure is given by a power 

f t . 20 unc ,on. 

The other functional forms to be specified are the production 

functions. The production of housing services in ring j is given by 

the CES function 

si = B• ~KH(Ki)-pH + "LH(Li)-pH}~ (2.30) 

where 



Production of the traded good is also carried out by means of a CES 

production function 
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( 2. 31 ) 

where 

Given these three functions we can carry out all of the derivations 

mentioned in the previous section. 

From the utility maximization problem (2.1-2.3) we will have to 

derive, given a vector p, the maximized level of utility attained by a 

household required to reside in ring 2. To do this we can first look 

at the dual problem of minimizing expenditures subject to a given 

level of utility, which determines the compensated demands for housing 

and ~he traded good, and so determines the expenditure function. 

Mathematically we may express this problem as 

(2.32) 

(2.33) 

As indicated in the previous section, though, we will have to derive 

the cost functions associated with the production of both commodities. 

Since the cost minimization problem on the production side and the 

expenditure minimization problem on the consumer side are formally 
indentical, and since the utility function, taking leisure as fixed, is 
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CES in its other argu~ents, as the productions functions are, it will 

be useful to consider the problem (2.32-2.33) in a more general setting, 

with more general notation. This is done so that we may, with appro-

priate notational changes use the derived expenditure function in the 

general case to tell us not only what the expenditure function is in 

our specific instance, but also what the cost functions on the produc-

tion side are for this model. Thus, to consider the problem in the 

most general way, let x1 ,x2 , .•• ,xn be the com~odities over which 

utility is maximized, and p1 ,p2 , •.• ,pn be the associated prices. Let 

utility be given by the CES function, 

U ( x, , ... , x ) =A 1 • ( ~ •. x. -p\ -l 
n i=l 1 1 / 

where A' > O, a. > 0, p' > -1, p' f O. The expenditure minimization 
l 

problem can then be written as 

min 
X. 

l 

n 
Z:: p.x. 

. l l l 1= 

subject to U ( x1 , ••• , xn ) = U • 

(2.34) 

(2.35) 

The first-order conditions for this problem yield, for goods i and j, 

au 
ax."" p. 

1 1 s,·nce au=p:-or, 
J ax. 

J 

k = l ,2, ... ,n we may write 



= 
p. X. 

l • l 
p. x. 

J• J 
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(2.36) 

Since (2.36} holds for all i, we may sum both sides over i to obtain 

n I -p I a.x. 
i'= 1 l l 

-p' a.x. 
J J 

n 
I p.x. 

i=l l l =---
Pj"Xj 

( 2. 37) 

Assuming the x.'s are solution values to the expenditure minimization 
l 

problem, we may write the expenditure function as 

n 
= L p.x. 

i=l l l 

Substituting into (2.37}~ then, and rearranging to obtain an expression 

for the compensated demand function x., we get 
J 

l - l 
T+pT T+pT 

• ( p j) (2.38) 

Since this must hold for all j, we can multiply expression (2.38) by p. 
J 

and sum over all j to get 

n 
I p.x. 

j=l J J 
(2.39) 
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Getting the expenditur~ function, c , on one side of the equation gives u 
us, finally, 

a p' )l+p' U n p . l+p' -P-,-
= (-,)• I a.(.:...J.) 

A l J a. 
(2.40) 

= J 

This general expenditure function can be useful, in finding expressions 

for the functions that we need to solve the model as discussed in the 

previous section, on both the consumption and production sides. To 

see this, first return to the optimization problem (2.32-2.33). The 

expenditure function for this problem is given by (2.40) if we let 

n = 2, x1 
a 

and Al -- .fo2l Q,. ~~/ The expenditure function, then, for a household re-

siding in ring 2 is 

If we define income net of transport costs for households in ring j to 

be Yj (i.e., Yj = M + p ·W - c·uj), then we may invert the expenditure w 
function (2.41) to find the maximized level of utility for a household 

The utility of a household 

found by using Yj, ,e,j, and 

(2.42) 

residing in ring j, Vj, can, of course, be 
. 2 2 2 p~ instead of Y ,,e, and pH in (2.42). 
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As indicated in the previous section, to solve the model we must invert 

the expression for vj with respect to pi, letting Vj = v2 where v2 

is deter~ined by (2.42). Doing this yields the bid price for housing 

services for households in ring j, 

-1 

-[ ~-Y~2('j;, ~ 
p ,~pi l +p 

pj a.H P l +p Pr p 
= (1 +aR •t) - a.T(-) (2.43) H a.T 

One other set of expressions on the demand side is required. They are 

the ordinary demand functions for housing services in each of the 

occupied rings, x~, which will be needed to calculate the generated 

population levels, Ni, for each ring. We can find the x~'s by 

differentiating the indirect 
-avj 

equation, x~ = 

utility function, Vj, as shown in the 

, which is an application of what has 

often been referred to as Roy's identity. Performing both differentia-

tions we obtain, 
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Thus, the demand for housing services in ring j is given by, 

(2.44) 

On the production side, to solve the model, we need to be able to 

find the producers' bid prices for land in rings in which they are 

allowed to locate. Here, the general expenditure function, (2.40), will 

be of use, for if we interpret the prices there as input prices, U as 

an output level, and the utility function parameters in the expenditure 

function as corresponding parameters in the production functions, then 

(2.40) will give- us producer cost functions. Specifically, if we let 

n = 2,x 1 = K~,x2 =· L~,pl = pK,p2 = p2H,al = aKH' a2 = aLH' P1 
= PH' 

j U = sH, and A' = B, we obtain the cost function for housing services in 

ring j, 

(2.45) 

Setting the price of housing services in ring j, p~, equal to average 
CH j cost, or-., and inverting with respect to pLH gives us the bid 
SJ 

H 

rents for land in ring j for housing producers, 

p j = [!cB•p~/H) 1 ;PH _ (.K~(j\J°H\;PH 
LH \ aLH \~ LH -; 

(2.46) 
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Similarly, for the traded good, if, in (2.40) we let n = 3, x1 = KT' 
l x2 = LT' X3 = WT, P1 = i\•(l+ar•t), P2 = PLr•(l+ar•t), P3 = PW, 

a1 = aKT' a2 = aLT' a3 = awT'p' = PT' U = sT, and A' = C, then we 

obtain the cost function for traded good production in the CBD as 

( 2. 47) 

Setting the price of the traded good, Pr, equal to average cost, or 

CT l 
5 , and inverting ~lith respect to pLT gives us the bid rent for CBD 

T 
land for traded good producers, 

~ c-Pr ~);PT 
l 

_ Pr~•Pr 
l ( l +a I• t) ~T• ( pK) 

PLT = 
aLT aLT 

-(T 
n) l;PT 

l +pT 
PT (2.48) 

aLT 

Expressions for several more production side quantities are 

needed if the model is to be solved as proposed in the previous section. 

The supply of housing services in each occupied ring, s~, is required 

to calculate the generated population levels in the various rings. We 
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also need expressions for the demand for labor from traded good 

producers to find the excess demand for labor component of E(p), an9 

the demand for capital from traded good producers so as to be able to 

calculate that part of generated property tax revenue that is collected 

from the business sector. Given, though, that all production is 

accomplished with a constant returns to scale technology, these 

outputs and factor demands are indeterminate unless the scale of pro-

duction is somehow specified. It is the allocation of land, in each 

ring, to production according to bid rents, as described above, that 

will render these quantities determinate. To see how, let us 

consider the cost minimization condition (2.36). 21 Rearranging terms, 

we can express the factor X; in terms of the factor xj as follows: 

l 
a.p. T+p" 

X = (__.:!._J_) "X i Ct .p. j 
J l 

(2.49) 

Thus, given a level of use for one input we can determine the profit-

maximizing levels for all other inputs. In the case of housing we can, 

in (2.49), let \ = Ki, xj = Li, et;= aKH' aj = aLH' P; = PK, 
j pj = pLH' and p = pH to obtain the demand for capital from housing 

producers in ring j, 
l 

. l +PH 
Ct p J . 

j KH· LH "L•1 
KH = Ca _ ) H 

LH • 1-'K 
(2.50) 

To find the supply of housing servi.ces in ring j we can substitute 

(2.50) into the production function (2.30} and obtain 
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PH -1 

~ _Dno; PH 
sj B• 

aLH.pK Lj (2.51) = aKH j + aLH H • H 
aKH0 PLH 

Finally, using (2.49) we can, as desired, also find the demands for 

labor and capital by traded good producers. Letting xj = L~ and 

making the obvious substitutions for the other variables, and taking 

note of the fact that capital and land, but not labor, are taxed, we 

find that the demand for labor is given by 

(2.52) 

and the demand for capital from traded good producers is 

(2.53) 

With (2.51-2.53) we now have all of the expressions needed to 

calculate an excess demand vector associated with a "price" vector, 

2 p = (pw,PH,t). Actually, some problems in computation arise with some 

of these expressions when certain "price" vectors, p, are used in con-

junction with a given parameterization. These problems and adjustments 



made to deal with them, along with the issue of the existence of 

equilibrium for the model are discussed in the next chapter. 
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CHAPTER 2 

FOOTNOTES 

1 By city I do not mean any particular political jurisdiction, but 
rather an economically integrated urbanized region in which the labor 
demanded by employers located in the center is supplied, to an over-
whelming extent, by the residents of the region. I have in mind, 
essentially, a metropolitan area. 

2 As will become clear below, it is possible to house some of the 
residents in the CBD alongside the firms which locate there. 

3 The seminal article for this literature is Tiebout (1956). 

4 The assumption of one household type, of course, is an analytical 
simplification. It will be relaxed below, although computations will 
still be done with a uniform tax rate posited. Conjectures on the 
implications of the tax policy changes considered on individual welfare 
in a model with multiple household types and the sort of fiscal com-
petition present in the Tiebout context will be given below. 

5 The effect of changes in tax policies on land rents though, will 
be included in the welfare analysis to be discussed below. The purpose 
is to somehow capture the impact of tax policy on landowner welfare. 

6 This distinction is made primarily for analytical convenience, 
but it also reflects a difference in the way the tax is actually 
imposed. As a tax on residential property it is levied on the value 
of output (housing). As a tax on commercial or industrial property 
it must be levied on the value of some of the inputs. 

7 The assumption that the government spends its revenues else-
where, of course, is not very realistic. Concentration on the revenue 
side of the government's budget, however, should suffice for differ-
ential incidence analysis. It is also possible, though, to easily 
incorporate a transfer of tax revenues in a lump sum fashion to the 
residents of the city. 

8 By smoothness we mean that continuous first and second order 
partial derivatives exist. 
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9 The definition of equilibrium requires that no agent in the 
economy has an incentive to alter behavior. With no moving costs, if 
a household residing in a ring obtains a lower level of utility than 
households in some other ring, there is an incentive for that house-
hold to move, thus violating the definition of equilibrium. 

lO The duality process followed here is a slight generalization of· 
a procedure found in Arnott and MacKinnon (1977a). 

11 The argument establishing this is fairly straightforward. 
Suppose we are given a price of housing pi, together with s~~e wage 
and tax rate, and an associated level of indirect utility, vJ. If 
the price of housing is lowered, then the household could now purchase 
at least as much of every commodity as it did before, and more of some 
or all of the commodities. Given local nonsatiation, then, the 
maximized level of utility in the new situation will be larger, as 
desired. The amount of time available for leisure need not concern us 
since the maximization problem considered has built into it a fixed 
amount of leisure. The result actually can also be established with 
the weaker assumption of loc~l nonsatiation with respect to just one, 
any one, of the commodities. The level of utility must be higher with 
the lower price since the household can purchase more of the commodity 
with which it is nonsatiated and the same amount of all other 
commodities. 

12 vj is ~ne-to~one wit~ resp~ct to pi if and only if pi f Pi 
implies vJ{pw,~,t) f vJ(pw,P~,t) for all pw,t ~ 0. 

13 An argument establishing this may be given as follows. Suppose 
PCH is a price of land facing housing producers in ring j, and ri 
is the associated minimum cost of producing one unit of housing 
services. Now, let the price of land in ring j fall. Housing pro-
ducers, then, could use the same amounts of capital and land to pro-
duce each unit of housing services as they did before, yet now the 
cost of doing so would be lower, providing that a positive amount of 
land had previously been employed. We may presume this to be true. 
The technology is constant returns to scale so that any amount of land 
usage is consistent with profit maximization. As shown below, we will 
fix the scale of operation by taking the amount of land used to be 
the amount in the ring available for endogenous use, when housing 
outbids all other uses for land in the ring. Since the objective here 
is merely to calculate a bid land rent, the fact that housing pro-
ducers may be outbid for land by competing uses and thus employ no land 
is of no consequence. Thus, assuming that a positive amount of land 
is employed, average costs in the new situation must be lower. 
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14 It happens to be the case that, for technical reasons relating 
to the way the algorithm approximates a solution, it does not matter 
how we allocate land in the case of a tie. Even though the computer 
program corresponding to the solution technique discussed in the text 
allocates land in some particular but arbitrary way in the case of ties 
among bid rents, when it searches over vectors p, the final output of 
the algorithm will indicate precisely how land is to be allocated 
among alternative uses in a ring, if the final solution approximation 
indicates ties in bid rents for land, so as to be consistent with an 
approximate equilibrium. This allocation, determined at an approx-
imate equilibrium, may be quite different from the arbitrary rules of 
allocation adopted in the programming of the model described in the 
text. 

15 The output price, p~, can be excluded from the argument list 
since, in the computational procedure used, it, and the bid land 

j rent, pLH' are not independent of one another. 

16 A . th . s ,n e previous 
excluded from the argument 
it, and the bid land rent, 
one another. 

footnote, the output price, Pr, can be 
lists for the two factor demands, since 
p~T' are not determined independently of 

17 The fact that land can be arbitrarily allocated to different 
uses in the case of ties in bid rents implies that Eis a correspon-
dence and not a function. 

18 * * By p > 0 we mean that all components of the vector p are 
nonnegative. 

19 We are therefore not considering cases where the "supply" 
exceeds the "demand" at zero prices. For the population and tax 
revenues components of E(p) the reason is obvious. We could hardly 
consider a situation where the generated population exceeds the given 
population or where the tax revenues generated exceed the pre-
specified required amount to be a solution. In the case of the labor 
component, an excess supply at a zero price would imply that 
individuals are supplying labor services and incurring commuting costs 
for no return at all. An extension which makes the supply of labor 
endogenous will be developed in the next chapter. 

2Q Because of a trade-off between generality in functional form 
and the number of parameters that must be specified, and a lack of 
much empirical evidence on the values of such parameters, we choose 
to stop at this level of generality. One may wonder, though, why 
the multiplicative power function of leisure form was chosen instead 
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of simply treating leisure in the same way as are all the commodities 
(i.e., add a third term to the "CES part 11 of the utility function). 
Since we are concerned with maximizing utility at a given location, 
however, leisure is treated as a constant in the optimization 
processes. If leisure is thought of as a constant it can be seen that 
either of these two utility functions is just a monotonic transfor-
mation of the other. Thus, they will yield the same demand and bid 
rent functions. It is a little more cumbersome to derive these 
functions, though, when utility is of the "full CES" type. For com-
pleteness in modelling, however, an option to refrain from work is 
given to households in the next chapter. The decision to work the 
institutional work day or not work at all can differ according to 
which of the two utility specifications is used. They will generally 
be in agreement, though, as to the labor-leisure choice. Finally, the 
analysis presented below (the proof of existence of equilibrium) is 
more easily conducted with the utility function given in the text. 
It should also be noted that, considering the labor-leisure choice as 
variable, neither of the two utility specifications is a generaliza-
tion of the other. 

21 Alternatively, we could consider the problem of maximizing 
profits over the levels of use of the inputs. This would yield an 
identical first-order condition. 



CHAPTER 3 

COMPUTATION AND EXISTENCE OF 

EQUILIBRIUM IN THE BASE MODEL 

Although we have elaborated fatrly extensively on the method of 

computing an excess demand correspondence for a given "price" vector, 

we have not covered all of the fine points associated with actually 

calculating, on the computer, excess demands using the specific 

functional forms posited in the last chapter, and not much mention has 

been made of the search process, i.e., the algorithm that is used to 

find an equilibrium. In addition, the question of whether an equili-

brium for the model exists and can be found by using the algorithm 

adopted has not been considered. All of these problems will be dealt 

with in this chapter. In section I, adjustments needed to ensure that 

some of the functions derived from the specification in section II of 

the last chapter can be calculated on a computer, and which restrict 

them so that they make economic sense for all possible price vectors, 

will be described. Restrictions on some of the derived functions and 

their parameterizations, which can be used to show that an equilibrium 

exists and can be obtained by using the algorithm, will also be given. 

Section II of this chapter contains a constructive proof of the 

existence of equilibrium for certain parameterizations of the model. 

The proof is dependent upon the algorithm that is chosen for use in this 

study. Thus, it not only establishes the existence of an equilibrium, 

GG 



but it also indicates a means by which an equilibrium can be found. 

Finally, a discussion of how the burden of the error of approximation 

can be shifted to make the interpretation of the error economically 

meaningful is given in section lI I. 

I. Further Functional Restrictions 
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Even restricting our search to non-negative price-tax rate vectors, 

problems arise when one attempts to calculate some of the derived 

functions of the model, given the functional forms chosen for utility 

and production functions, at some price-tax rate combinations. They 

occur, in particular, with the producer bid land rent functional forms. 

To be specific let us review the bid land rent function (2.46) for 

housing producers. This, and any bid rent function, will make economic 

sense only if it yields a non-negative rent. Since the price of capital 

services, pK, is constant, though, and since the price of housing 

services in the second ring can, in the course of the search fall to 

zero, the expression in brackets, 

( 3. 1 ) 

which is to be raised to a power, can be zero or negative. This 

problem and its remedy, though, differs with the sign of the substitu-

tion 

when 

term, Pwl Spe£ifically, if pH> O then (3.1} is non-positive 
· 1 PK 

P~ ~ (aKH)-;;;• (8 ). ~Jhat happens if this occurs, with the 

inequality being strict? If (3.1) is negative, the resulting bid land 



rent, using the form (2 •. 46) as is, would be a negative, complex, or 

positive number depending on the value of PH. Clearly, we can rule 

out, as economically meaningless, negative or complex land rents. 

~Jhat, though, if the expression (2.46) yields a positive value for 
ji 

PLH" Returning to the cost function (2.45) and dividing bys~ to 
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obtain average cost, we can see that the problem c·an arise if we allow 

negative roots to be taken. If, for example, PCH = 25 and pH= l, then 
PH 

( j )i+p -Pul H - .:!:_ 5. Allowing both roots, though, would render the cost 

function not a function at all, since the same land rent would be 

associated with two costs. To deal with this problem, then, besides 

restricting PCH to non-negative values, we will allow only positive 

roots to be taken in expressions (2.45) and (2.46). In fact it will 

be presumed that wherever roots are encountered, whether in the utility 

function, the production functions, the bid rent functions or elsewhere, 

they will be positive. In relation to the bid land rent function for 

housing producers, these restrictions will ensure that (2.45) is a 
j well-defined, one-to-one function with respect to pLH' which can be 

unambiguously inverted. What is to be done, though, about the bid 

land rent in a ring when (3.1) is negative (i.e., when 

l - p 
p~ < (a.KH)PH· ( 8K))? Given the restrictions assumed, the value of the 

CH 
(constant} average cost function,-.-, cannot fall below a certain 

SJ 
H 

l 

level . P. PK j It's minimum is (a.KH} H • (8 }, which it achieves at pLH = 0. 

Thus, if the price of housing services is low enough so that (3.1) 
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is negative, then profits must be negative. Intuitively, land rents 

must fall as the price of housing falls in order to keep profits zero. 

The rents cannot, however, fall below zero. Since, for this case, rents 

can fall to zero at a positive price of housing, profits must be nega-

tive at still lower housing prices. Housing producers would not want to 

locate in rings where this occurs. As a practical matter, though, in 

the programming a housing producer bid rent for land in a ring should 

be assigned when this problem is encountered. It can occur because 

the algorithm may indeed search in a region of price space where pi 

is low enough relative to pK to make profits negative in ring 2 and/or 

other rings considered (the algorithm is structured so that the 

potential region of search can include prices that are close to zero). 

The adjustment we shall make in this situation is to take the bid rent 

for land by housing producers in a ring to be zero whenever the price 

of housing services in that ring is less than or equal to 

l 
P PK (aKH) H • (8 ). No harm is done by adopting this procedure since 

housing will not be allocated any land in a ring if the housing pro-

ducer bid rent is zero. Housing producers would be outbid for land by 

agricultural producers. 3 

The situation is somewhat different if pH< 0. In this case, even 

though the bid land rent falls with the bid price of housing, the 

expression (3.1) is non-positive if pi is too large. In particular, 

l 
• PK 

this is true if p~ > (aKH)PH · (8 ). Returning again to the cost 

function (2.46), it can be seen that average costs are bounded from 
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above, although in this case they can approach zero. Substituting 

PCH = 00 into (2.46) and dividing by si reveals that the average cost of 

l 
housing production in a ring cannot exceed (aKH)~ 

pi is larger than this value, f.e., if (3.1) is negative, then profits 

are positive. A price of housing, therefore, which is large enough to 

make (3.1) non-positive is inconststent with an equilibrium with zero 

profits and a positive finfte land rent. We should not, however, adopt 

what was done for the case pH > 0, whi'ch was to set the bid rent for 

land, in the programming, equal to zero. As (3.l) falls from positive 

levels to zero, with increases in the price of housing, the bid rent 

for land approaches infinity. Assigning infinity to the bid rent for , 
J. PH - PK 

land whenever pH .::_ (aKH) • (8 ) cannot be done on the computer. ~-Je 

must, therefore, somehow place an upper bound on the bid rent function. 4 

In addition, to complicate matters somewhat, there is an upper limit, 

albeit quite large, on numbers which can be stored by a computer. The 

upper bound on rents, therefore, cannot in practice be made arbitrarily 

large. The adjustment made in this situation is to choose an upper 
A 

bound on housing bid land rents, say pLH' that is small enough to be 

handled by the computer, but so large that it can be safely ruled out 

as a land rent in a reasonable (i.e., realistic) equilibrium. Certainly, 

for a base case, which is meant to represent a real world urban 
A 

economy, we can pick a value for pLH that is significantly larger than 

any land rent that can be expected to prevail in reality. Although 

changing tax policies relati've to those that prevail in a base case, 
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as will be done below, will alter equilibrium land rents, it is highly 

unlikely that the system is so volatile as to lead to massive changes 

in land rents of the kind that would result in equilibrium land rents 
" of pLH or higher when the types of policies that will be considered are 

" implemented. In terms of computation, once a value for pLH is chosen 
" we may assign a bid land rent of pLH whenever the bid price of housing 

is high enough. In particular, dividing (2.46) by si to obtain average 

cost, a bid rent of Put is posited for housing producers in ring j 

5 whenever, 

(3.2) 

One more problem in this case (PH< 0) remains. Inspection of (2.46) 

shows that pi must be raised to a negative power. This is not something 

the computer will handle when pi= 9 or some positive number it takes 

to be zero. 6 We can avoid this problem, though, by calculating the bid 

price of housing which would yield a bid land rent equal to the 

agricultural rent. Then, if the bid price of housing is less than that 

which would yield the agricultural rent, we may assign a value of zero 

to the bid land rent. Specifically, p2H = 0 when, 

PJH. l 
< B • (3.3) 



Again, this will do no harm since, in such situations, housing 

producers would not be allocated any land in the ring. 
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Turning now to bid land rents by traded good producers, it can be 

seen that the problems that can arise here are somewhat more complicated. 

Again it is assumed that only non-negative finite bid rents are 

admissible and that only positive roots are taken. Considering first 

the easier case of PT> 0, an adjustment in our calculations of the bid 

land rent for CBD land for traded good producers, as given by (2.48), 

must be made. As was the case for ~ousing, a problem arises when the 

bracketed expression in (2.48) 

1 

C·Pr l+pr 
(---} PT 

(1 +a I• t) 

aLT 

becomes negative for some wage and tax rate combinations. To avoid, 

though, the possibility that (3.4) cannot be positive for any wage and 

tax rate, we adopt the following condition on the parameters of the 

model: 1 
PT 1 +pT 

- a KT (p-K) > 0 

aLT 

( C. 1 ) 

If this were not true, then, given that the tax rate must be non-

negative, expression (3.41 would always be non-positive. In the case 

where PT< 0, condition (c.l} also insures that the difference of the 

first two terms in (3.4) will always be positive. In any case, when 
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PT> 0, the same sort of problem occurs when (3.4) is negative as when 

(3.2) is negative. With a little rearranging we can see that a negative 

(3.4) implies that, 

l p < - • T C ( 3. 5) 

Inspection of (2.47) then reveals that whenever the wage and tax rates 

are such that (3.4) is negative, the price of the traded good output 

will be less than the average cost of producing it, and so profits 

would be negative. To deal with this possibility we make the same 

sort of adjustment that was made for housing when pH> 0. Specifically, 

whenever the wage and tax rates are such that (3.5) holds, the bid 

rent for CBD land by traded good producers is taken to be zero. This 

procedure serves the purpose of assigning a bid land rent for all price-

tax rate combinations over which the algorithm searches in a natural 

and continuous manner. It also insures that the traded good industry is 

not allocated any land in the CBD when prices and the tax rate are such 

that profits to firms in the industry would be negative. 

The situation, though, is much more complicated when Pr< 0. 

Analogous to the case pH< 0 in housing production, computational 

problems arise when expression (3.4) is non-positive and when components 

of (3.4) involve attempts to raise zero, or a number that the computer 

takes to be zero, to a negative power. Since Pr< 0 the bid land rent, 

given by (2.48), rises to infinity as expression (3.4) falls to zero 



74 

from positive levels. When (3.41 is negative, using (2.48) as is 

requires raising a negative number to a power. These problem situations 

(i.e., when· (3.4} is non-positive} occur when the following inequality 

holds: 

aKT 

PT 
pK(l+a 1•t) l+pT 

(---) 
a KT 

(3.6) 

In other words, gfven that land rents should be real, finite, and non-

negative, a non-positive (3.4), taking note of the cost function (2.47), 

implies that the prfce of the traded good exceeds the average cost of 

producing it. Profits, then, would be positive. A non-positive (3.4), 

therefore, is inconsistent with an equilibrium that possesses zero 

profits and sensible land rents. 

What adjustments in assfgning bid land rents should be made in this 

case? Here we take a somewhat different tack than was taken for 

housing production. The main purpose of the procedure which follows, 

though, is the same as that for the housing case. It has the effect 

of placing an upper bound on the bid rent for land from traded good 

producers and allo\'JS for the assignment of a non-negative bid land 

rent for all price-tax rate combinations. 7 To begin, we first 

calculate, given the tax rate component of the vector p used in the 

search process, the wage rate which would yield a bid rent for CBD 

land from traded good producers equal to the agricultural rent. 

Specifically, we obtain this "agricultural" wage rate, p~, from the 

expression 
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( 3. 7) 

Next we note that, in the model, the supply of labor is given exogen-

ously. Let us take an amount of labor significantly in excess of 

this exogenous amount and use it in the demand for labor equation 

(2.52) along with the wage rate, (3.7), to obtain a rent for land. 

In particular, substituting, say b•N•W (where b»l ), for WT and r~ 
for p in (2.52), making the assumption that all endogenous CBD land is w 
allocated to the traded good sector, and solving for the bid land rent 

yields 

(3.8) 

This is the land rent which, given the tax rate and the wage rate that 

yields a bid land rent equal to the agricultural rent, results in a 

demand for labor that is b times the supply. In general the wage rate 
A 

Pw and the land rent A l 
PLT are not consistent in the sense that, given 

the tax rate, a wage rate of pA would not yield a bid land rent of w 
A l 
pLT. To account for this, we next invert the bid rent function (2.48) 

in terms of the wage rate to find that wage rate which would yield a 
A l 

bid rent of pLT· Specifically, we find that wage rate, which we .will 
A 

write asp , according to the expression w 
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We can use this value as a cutoff wage to bound the bid land rent and 

the demand for labor. If the actual wage rate, i.e., the wage rate 

component of the vector p, pw, is less than pw then p~T is automatically 

assigned as the bid rent for CBD land for traded good producers. Thus, 

we avoid the problem of trying to raise expression (3.4) to a negative 

power when that expression is negative, zero, or even positive but very 

close to zero. This procedure, then, places, for a given tax rate, an 
8 upper bound on the bid land rent for traded good producers. The model 

requires, though, that a demand for labor be assigned in a 11 cases. 
A 

The adjustment made here (i.e., when p < p ) is to assign, assuming 
w - "'' 

that the traded good industry successfully bids for all of the endo-

genous CBD land, a demand determined by the de~and equation (2.52) 

with p~T substituted for p~T' pw for pw' and L1 for Li- The procedure, 

therefore, also places an upper bound on the demand for labor. This 

demand, though, is not in general b-N-W. It actually can be a somewhat 

larger value since p is likely to be smaller than pA_ 9 It is assumed w w 
that p~T is chosen, by picking a large enough value for b, so that it 
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is greater than the maximum bid land rent for the housing industry 

(pLH if pH< 0 and, if pH> O, the value for p~H when the largest 

admissible value for p~ is substituted in (2.46). As a practical matter, 
l an upper bound for pH can be calculated, for a given size of the 

price-tax rate simplex, by substituting into (2.43) appropriate values 

a 
2 yl(tl) t_ 

for p -,,,.......,.--- and t. What values we s haul d choose for these terms, 
H' Y2(t2)at' 

given the size of the simplex, canoe ascertained by adapting part of 

the discussion oelow relating to condition (c.4) to this problem). 

This truncation of labor demand is appropriate since equilibrium 

requires that labor demand be equal to or less than the given labor 

supply. The somewhat artificial limit placed on demand, then, does not 

preclude a true equilibrium price vector from consideration if the 

limit on demand is chosen to be greater than the fixed supply. 

II. The Existence of Equilibrium 

In this section the problem of whether an equilibrium for the 

urban economy exists is explicitly considered. First, the algorithm 

that is used to compute an equilibrium is discussed briefly and a 

theorem that will be used to help establish the existence of equili-

brium in this model will be stated. Next, a minor theoretical addition 

to the model, which allows us to depict, in an economically sensible 

manner, solutions to the model which involve zero wage rates, will be 

discussed. Then, several conditions on the parameters of the model 

which, together with condition (c.l), will be used to establish the 

existence of equilibrium are developed. Finally, a proof of the 
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existence of equilibrium for the model is presented. 

The algorithm that is used ii a variant of a fixed-point compu-

tational procedure initially developed by Scarf (1967). The Scarf 

algorithm can be used to compute fixed points of certain kinds of 

functions and correspondences. We can describe the essence of the com-

putational routine briefly. The procedure involves a search along a 

unit simplex, 
n 

S = {p .:::_ OI r P;=l} • For economic models, points on 
i =l 

the simplex usually represent price vectors. Each of the vectors, on 

the si:mplex, that are considered has associated with it what is referred 

to as a label. In many economic applications, including the ones done 

here, the labels are excess demands calculated on the basis of the 

associated price vector. At any one stage of the process, the search 

is conducted over a finite set of points selected in a regular fashion 

to serve as a grid for the simplex. Actually the search process con-

siders collections of vectors on the gird, the number of them being 

equal to the number of components of a vector on the simplex, that are 

close together in the ordinary Euclidean sense. These collections are 

referred to as pri mi ti ve sets. Geometrically, they possess the property 

that they form subsimplices with the same orientation as the unit 

simplex. The search continues along the simplex until a primitive set 

is found for which the associated labels satisfy a certain mathematical 

property. In terms of our economic application, a set of 11price" 

vectors is found which are close together fo the sense mentioned above 

(i.e., they form a primitl've set I and for which a weighted average, 

with the weights determined by the algorithm, of the associated excess 

demands i's approximately equal to a vector of zeroes. A weighted 
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average of the "price" vectors ,n the primitive set, with the weights 

being the same as those_ for the excess demands, is then calculated. 

This is to serve as an approximate equil iorium "price" vector. Its 

associated excess demand vector may then be calculated as well. This 

is done for a given grid size. The grid size, however, may be increased, 

i.e., the grid is made denser so that the vectors in primitive sets are 

even closer together, in order to obtain a better approximation. A new 

approximate equilibrium price vector can then be found. The computa-

tional routine used keeps increasing the grid size until successive 

final "price" vectors (the ones obtained by taking the weighted average 

of the "price" vectors in the final primitive set) differ from each 

other, component by component, by an amount no larger than a level 

pre-specified by the user. In economic applications it can usually be 

shown that, in the limit, that is as the grid approaches infinite 

density, the vectors in the final primitive sets converge to an 

equilibrium price vector. Thus, in this sense a desired level of 

accuracy can be obtained by specifying the maximum amount by v,hich the 

last two final price vectors can differ. 

The algorithm that is actually used for this study is one 

developed by Merrill (1971) and is an extension of the Scarf algorithm. 

This routine improves upon the computational efficiency of the Scarf 

algorithm. In the latter algorithm the search is always initiated at a 

corner of the simplex. In the Merrill extension the addition of an 

artificial or "dummy" dimension to the simplex allows the search to be 

started at any point along the simplex. In particular, when moving 

from one grid size to a higher one the algorithm allows for the search 
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along the denser grid to begin where the search along the previous 

coarser grid ended. 

The algorithms mentioned above both work with the unit simplex. 

It will however, turn out to be necessary here to be able to use sim-

plices of any stze. This discrepancy, however, can be easily handled 

through an appropriate transformation of price vectors. There exists a 

one-to-one correspondence between simpltces of any size and the unit 

simplex. Thus, searchtng over a unit stmplex can be equivalent to 

searching over~ simplex where the components of the price vectors sum 

to something larger than l. We will indeed use such a mapping to trans-

late prices on the unit simplex, over which the algorithm searches, 

into prices on the larger simplex, whi'ch are then used to calculate the 

excess demands that are to be the labels of the alqorithm. A more 

troublesome aspect of these algorithms, though, is that the need to 

restrict the search to a simplex seemingly implies the necessity to 

normali.ze prices, i.e., to have the components of any price vector sum 

to l or some positi've constant. Unfortunately, we cannot work with such 

a normalization in a model where some prices are given exogenously. 

The models considered here do contatn exogenous prices. The price of 

capital is set in a national market. Furthermore, income has an 

exogenous component (presumably it can be tnterpreted as asset income 

derived from a fixed quantity of assets and the exogenous national rate 

of return on capital}. Fortunately, though, a theorem found in Richter 

(19801, which will be presented below, can be invoked to show that the 

Scarf and Merrill algorithms can still be used to find equilibria for 

models with some exogenous prices. Hie search is still conducted over a 
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simplex but now we require merely that the sum of the components of a 

vector of the endogenous prices over which we search be no larger than 

a positive constant. The dffference between the constant and the sum 

of the components of the vector of endogenous prices is accounted for 

by an artificial variable (i.e., one which has no economic significance). 

The al ~orithm, therefore, is made to search over vectors which contain 

as components the endogenous variables mentioned plus this one arti-

ficial variable. 

The manner in which the algorithm terminates, as described above, 

allows us to adequately handle the possibility of having to, in an 

equilibrium, allocate land in a given ring to more than one use be-

cause of ties in bid land rents. It was stated in footnote 14 of 

Chapter 2 that the final output of the algorithm will indicate how land 

in a ring is to be allocated to several uses if an equilibrium calls 

for this even though an arbitrary allocation is made in the programming 

when ties in bid land rents occur for given "price" vectors considered 

in the process of search. The part of the final output which does 

this consists of the weights mentioned above. The excess demands 

associated with the final primitive set are calculated using the 

particular land allocation rule adopted in the programming. The weighted 

average of these excess demands, however, yields a zero vector. The 

weights, then, which are part of the final output of the algorithm, 

can be used to allocate land in a given ring at a solution. For 

example, suppose the final primitive set consists of four "price" 
l 0 vectors.· Suppose also that the first two primitive set vectors call 

for all endogenous CBD land to be allocated to the traded good industry, 
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while the remaining two call for all of that land to be used by the 

housing sector. Then, if the weights yielded at the termination of the 

l · th 3 2 2 l t. l . th . t · 1 . b . a gar, m were 8 , 8 , 8 , 8 respec 1ve y, 1n e approx,ma e equ1 1 r1um 

~ of the land available in the CBD would be allocated to the traded 

good industry while the remaining~ would be allocated to the housing 

sector. The final price vector, calculated using the weights, of course 

\'lould not in general yield such an allocation. An excess demand calcu-

lated on the basis of it might call for all of the CBD land to be 

allocated to the traded good industry, or all of it to be allocated to 

the housing industry. The "price 11 vectors in the final primitive set, 

however, should all be close to one another as well as close to the 

final "price" vector. Thus, the final "price" vector can sti 11 be 

thought of as an approximation to one which yields a solution which 

allocates land as described above. It may well be the case, though, 

that all of the final primiti've set vectors call for the same allocation 

of land to uses. In such cases, because of the continuity of the 

functions of the model, the final "price" vector should yield that same 

allocation and have an associated excess demand that is close to zero. 

It may also be the case that the final primitive set vectors yield 

essentially the same land allocations and the excess demands associated 

with the final "price" vector are small. In both situations we will use 

the final "price" vector and the a 11 ocations and quantities associated 

with it to represent an approxi'mate solution. 

Up to this point we have presumed that the algorithm will terminate 

at an approximate solution. It is not at all obvious, however, that a 
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solution exists let alone that the algorithm employed will find an 

approximation to it if it does. As a first step towards dealing with 

the issues of the existence of equilibrium and a method for calculating 

approximations to an equil H:irium, we state the fol lowing theorem due 

to Richter (1980). 

Theorem 1. Let E:P + Rm be a correspondence, where Rm denotes Euclidean 
m 

m-space, P = {p .::_OI I p.<d} and d > 0. Suppose that: 
i=l ,-

(H. 1) Eis upper semicontinuous, bounded and convex; 
m (H.2) for each p E P with I p. = d, there exists a non-zero, 

. 1 l ,= 
non-negative vector a= (a1 , .•• ,am) such that a•e < 0 

for all eEE(p), with a. > 0 only if p. > 0. 
* *l * l ** Then there exists e < 0 and p E p withe E E(p*) and p •e = 0. 

In applying this theorem to an economic model, the vectors p would 

usually be taken to be price vectors, and E would be taken to be an ex-

cess demand correspondence. Thus, given the hypotheses posited in the 

theorem, the conclusion would be interpreted to mean that an equil-
* ibrium exists. It states that there exists a price vector p such 

that its positive price components are associated with zero excess 

demands, and any zero price components are associated with zero or 

negative excess demands. The proof of the theorem uses the basic 

theorem underlying the Scarf algorithm (see Richter (1980)). As such, 

if the conditions of the theorem hold, we not only have a proof of the 

existence of equilibrium, but the proof itself indicates how that 

equilibrium can be computed. In particular, Scarf's algorithm (or 

Merrill's extension) can be used to find an approximate equilibrium. 



For our purposes we may take the components of the vectors pin the 

theorem to be the wage rate, the price of housing services in ring 2, 

and a variable, to be explained below, that is related to the nominal 

* property tax rate. If the vector p in the theorem turns out to be 
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strictly positive, and the algorithm employed finds an approximation to 

it, then we will have found an approximation to a zero of the excess 

demand correspondence given in (2.27). This, of course, would mean that 

the labor market is in approximate equilibrium, the generated population 

is approximately equal to the given population, and generated tax 

revenues are approximately equal to the pre-specified level. Since, by 

construction, the housing and land markets are in equilibrium at any 

"price" vector, we would have found an approximate solution to the model. 

Before we prove that, under certain restrictions on the parameters, 

our model satisfies the conditions of Theorem l and so possesses an 

equilibrium that can be approximated by the algorithm, let us extend 

the theoretical framework in the base model to allow households the 

option of choosing not to work. Implicit in the utility maximization 

problem (2.1-2.3) is the presumption that workers will commute to the 

CBD to work. Commuting money costs are subtracted from income, and the 

amount of time that must be spent in transit is a component of the 

time constraint (2.3). While this may be appropriate for most price-tax 

rate configurations, and certainly for reasonable equilibria, the 

algorithm can search over prices where it is not conceptually appropri-

ate or, more importantly, it may even be the case that the parameter-

ization calls for an equilibrium where the choice to work is not 

rational. If households are not literally forced to commute to the 
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CBD to work, then at very low wage rates it can be optimal for the 

household's worker to remai.n at home. This i's feasible because of 

the exogenous income component of total income. The household, then, 

should have the option of avoiding the money and time costs of commuting 

and living off its exogenous income. If the wage rate is low enough, 

for given values of other prices, the parameters, and the tax rate, 

the household can achieve higher utility by refusing to work. This is 

obvious in the case of a zero wage rate, a value over which the 

algorithm, in the limit, can search, because working then returns 

nothing to the household in the form of additional income and yet it 

reduces its leisure time and requires it to pay the money costs of travel 

to and from the CBD on work trips. ~Je can, without too much trouble, 

though, make adjustments to deal with such situations. To allow house-

holds the choice between working and not working we can extend the 

model to include a double utility maximization process. Here each 

household, required to reside in a ring, can be thought of as solving 

two utility maximization problems. The choice problem (2.1-2.3) is 

retained as one of the two. In addition, households will consider and 

solve the following optimization problem. 

(3.10) 

subject to the constraint, 

(3. 11} 
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This is the choice problem for a household that decides not to work. 

The amount of time taken for leisure is now the total time available 

for work, leisure, and commuting. Thus, Tis substituted in the utility 

function for leisure and the time constraint is eliminated. In addi-

tion, money costs of travel are deleted from the budget constraint so 

that expenditures can now be no larger than exogenous income. The 

maximized levels of utility for the two problems, say Vj and Vj 
"' Nw' 

respectively, are compared. The household chooses to work or not to 

work based on which level of indirect utility is higher. Thus, the 

level of utility actually achieved by a household residing in ring j 

is given by Vj = max{Vj,VNj }. Household demands, of course, are depen-w w 
dent on which option is taken. For the solution technique adopted, the 

relevant demand is the demand for housing services. Expression (2.44) 

shows us what that will be if, given the specific functional forms 

used, the household residing in ring j chooses to work. · If, on the 

other hand, the household can achieve a higher level of utility by not 

working, then a solution of the problem (3.10-3.ll) will give as the 

demand for housing services the following expression. 

(3.12) 

This demand differs from that in (2.44), which we may now write as 

xJw, only in that total income (endogenous plus exogenous) net of the 

money costs of travel in the numerator is replaced by exogenous income. 

The solution procedure, however, involves finding just one level of 
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utility for a given price-tax rate vector. The level of utility for 

households residing in the second ring is calculated and then used as 

the standard for the entire urban area, enabling bid prices for housing 

services to be determined. In this extension the same basic procedure 

is followed. The level of utility for households residing in ring two 

is calculated, as indicated above, as the maximum of v2 and vN2 • This w w 
level of utili'ty is then used to find bid housing prices in other rings. 

Only now, given that households anywhere have the option of not working 

if it is in their best interest, there are two indirect utility functions 

which can be inverted with respect to the price of housing services. 

They will, in general, yield different bid prices. We choose, as the 

actual bid price of housing services, the larger of these two. Thus, if 

pjw, and pjNw represent the bid prices for housing if the household 

decides to work and if it decides not to work, respectively, then the 

actual bid price in ring j is taken to be pi = max{pjw,PHJJ• This 

is consistent with the assumption that households choose the labor 

option which yields the highest utility. Both indirect utility 

functions Vj and VNj, are decreasing functions of the price of housing 
~" w 

services. Thus, given a price of housing services, p~, as determined 

above, the labor option which yields a lower bid price of housing will 

also Jield a lower level of utility. 11 The option, then, which yields 

the higher bid price in a ring i's the one that is adopted by the house-

holds residing in that ring, and demands are then calculated accordingly. 

If there should be a tie in the bid prices for housing in a ring, or in 

the level of utility in the second ri'ng, then the residents of the ring 

would be indifferent between working and not working. In such cases we 



can arbitrarily allocate the land in the ring available for housing, 

if the housing sector acquires land tn the ring, between its use to 

provide housing for households that send members to work in the CBD 

and its use to provide housing for those households whose members 
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remain at home. Given, then, the supply function for housing services 

in a ring, (2.51 ), and the household demands for housing by those that 

have members who work and those that do not, we can determine the number 

of households of each type to fit i'nto the ring. This, in turn, allows 

us to ftnd the generated populatton and housing property tax revenues 

for the ri'ng. The fact that we allow the land, in a ring where house-

holds are i'ndifferent between worki'ng and not working, to be allocated 

in any way implies that the upper semicontinuity of the excess demand 

correspondence is preserved. As was true with the allocation of land 

amony different production sectors in the case of ties in their bid 

land rents, tt ts also the case that the final output of the algorithm 

will indicate how land is to be allocated, in this situation, between 

its uses as housing for workers and houstng for non-workers, at a 

soluHon for which households in some rings are as well off choosing 

to have all its members remain at home as they are having members work. 

The way in which the final output can be used to determine the alloca-

tion is the same. Given a rule for breaking ties in the bid housing 

prices, and in the utiltties in ring two adopted in the programming, 

the number of households in a ring that send someone to work and the 

number that have all members rematn at home are determined by taking 

a weighted average of the excess demand vectors associated with the 

final primitive set vectors, with the weights found by the algorithm 
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at termination, as mentioned above. 

Although the addition to the model of a labor choice corrects 

what may be considered a theoretical deficiency in one part of the 

model, it also creates a new problem in another part. The supply of 

labor in the model has been given exogenously. With an institutional 

work day, the presumption of a fixed number of workers implies that 

labor supply is constant. Since each of the given number of potential 

workers now have the option of not working, the supply of labor must be 

variable. Whatis more, although in an equilibrium the number of 

potential workers is fixed as a result of the exogeneity of population, 

the number of potential workers in the process of search can be thought 

of as varying as the price-tax rate vectors change, since the generated 

population varies. To account for this, we extend the model to make the 

supply of labor variable. At a given price-tax rate vector it is deter-

mined as that which is supplied by those potential workers among the 

generated population who find it optimal to work. The fact that labor 

supply is not fi'xed, however, necessitates that we posit another con-

dition on the parameters, which will be used to establish the existence 

of equilibrium. Returning again to expression (2.48), as we did for 

condition (c.l), and using the first two terms in the bracketed 

expression, deleting the tax rate, we adopt the following condition on 

( C. 2} 
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The need for this condition vJill become apparent below in the existence 

proof. Inspection of equation (2.48) reveals the economic significance 

of the condition. When Pr< 0 and the wage rate is large enough rela-

tive to the tax rate, the condition implies that traded good producers 

will be outbid for land in the CBD by the agricultural sector. Thus, 

in such a situation the traded good industry would not acquire any land 

in the urban area. The importance of this, as will be seen below, is 

that in such situati'ons the demand for labor in the urban area would 

have to be zero. 

Now that we have introduced a labor choice in the model we can turn 

to one more computational loose end and investigate fully what can 

happen to the housing sector when the price of housing services over 

which we search, p~, is zero, in order to form another condition which 

is to be used to establish the existence of equilibrium. l:Jith respect 

to the computation of the functi'ons of the model, a problem can arise 
2 with expressions (2.42) and (2.43). In (2.42) pH is raised to a power. 

Two cases present themselves~ p < 0 and p > 0. If p < 0 and p~ is zero, 

or sma 11 enough that the computer takes it to be zero, then the level 

of utility, v2, is infinite. This needn't, though, be a problem. iJhen 
2 ts PH zero, whether pH i:s pas iti ve or negative, the bid price for land 

in the second rtng from housing producers is taken to be zero. Housing, 

therefore, is not produced in the second ring. Furthermore, since the 

bid land rent function is nontncreasing in di stance from the CCD, 

housing would not be allocated any land in rings further out. ~Jha t, 

though, of the bid land rent in the first ring? Inspection of (2.43) 

reveals that if v2 is infinite, and p < 0, the bid price for CBD land 
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from housing producers must also be zero. Therefore, housing cannot 

1 ocate anywhere in the urban area and the generated population must be 

Thus, 2 0 and p < 0, we needn't bother with attempting zero. when pH = 

to calculate (2. 42} or (2.43}. In such cases, when constructing a 

label for the given price-tax rate vector we may simply define the 

generated population, the generated housing property tax revenues, and 

the supply of labor to be zero. On the other hand, when p > 0 the 

indirect utility function, v2, with respect to changes in p~, is 

bounded from above. rt achteves thts upper bound when p~ = 0. If we 

substitute this bound 

expression (2.43) for 
t ( ) pj-( 1 +p ) 

2 2 a Q, Pr Fp P 
A• Y • ( 9, ) -

T aT 

j = 1 we obtain · 

, into 

(3.13) 

It will be useful to form a condition on the parameters which guarantees 

that the bid price of housing in the CBD, for any wage and tax rate, is 

low enough so that the housing bid land rent is less than the agricul-
2 tural rent when pH= 0 and p > O. If this condition holds then, noting 

the discussion above for the case p < O, housing will not be allocated 

any land and the generated population will be zero, for any p, whenever 
2 pH= O. The advantage of this will become apparent in the existence 

proof below. Such a condition would not seem to be very restrictive 

since, assuming, realistically, that the distance from the midpoint of 

the second ring to the midpotnt of the CBD is not large, the bid price 
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of housing in the CBD should not be very different from p~, which 

in this case is 0. Given, then, ~hat a price of housing close to zero 

would yield a low bid land rent, it does not seem unreasonable to 

suppose that the housing sector would be outbid for land, at least by 

the agricultural sector. In any case, the condition we adopt which 

guarantees this is given as 

( C. 3) 

where pHA is the price of housing services which would yield a bid 

land rent equal to pA from housing producers, which can be found by 

inverting (2.46} \'lith respect to pi and substituting PA for PCH' and 
l 2 £w,£w are the amounts of lei'sure time available to residents of rings 

l and 2, respectively, if they work. One may wonder how (c.3) satisfies 

the requirement for the conditi'on mentioned above. To see this, we 

note the similarities and differences with expression (3.13). The 

condition is the same as (3.13) except that t = 0 and the total incomes 

are replaced by exogenous income net of the money cost of commuting. 

The requirement will be satisfied if (3.13) can be shown to be no 

larger than the left-hand side of the inequality in (c.3). Since 

t ~ 0, the component to the left of the brackets in (3. 13) is less 

than or equal to the corresponding component in (c.3). Attention, then, 

must be focused on the bracketed expressions. Given the addition of a 

labor choice to the model, we need to consider three cases. He may ask 
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what occurs, given that p~ = 0 and p > 0, when the price-tax rate 

vector is such that it is optimal for potential residents in both rings 

1 and 2 to work, when it is such that it is optimal for potential 

residents of ring 1 to work and for those of ring 2 to remain at home, 

and when it is such that it is optimal for potential residents of both 
12 rings not to work. Note also that we ignored the case of potential 

residents of ri'ng 1 choosing not to work, with those of ring 2 choosing 

instead to work. The reason i's that it is not possible for residents 

in a given ring to find it best to remain at home while those in rings 

further out find tt in their interest to work. This can be seen by 

noting that (2.43) is an increasfog function of the product, 

. . a.i . . 
yJ.c~Jl . To find PJw' this product is given as (M-pw•W-c•uJ). 

- j a. t j a.£ 
•(T-W-v•u ) . To find pHNw' the appropriate product to use is M•T • 

Since the labor decision depends on which housing price is larger, it is 

optimal for residents of ring j to remain at home when 

O.i - j) - ja.i M•T > (M + p •W-C•u (T-W-v•u ) w 

For residents living in rings further out, however, both the total 

income earned and the amount of time for leisure associated with a 

decision to work will be lower (higher money and time costs of commuting) 

than those associated with the work decision for residents of ring j. 

Thus, the product of exogenous income and total time raised to the power 

a. i must also exceed the product of total income and leisure time raised 

to the power a. i if the residents work, in all rings at greater distances 
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from the center than ring j. Hence, if it is optimal for potential 

residents of ring l not to work, it must also be optimal for those in 

ring 2 not to work. Returning, though, to the cases to be considered, 

suppose that resi'dents in both rings l and 2 decide to work. In that 

- l 
l
's yl _ M+p ·W-cu case the ratio of incomes in (3 13} __ w __ -- 2 . 

· • v2 - M+pw•W-cu 
This is a 

13 Y l M-c • u l decreasing functi'on of the wage rate. Consequently, 2 .::_ 2 • 
Y M-c•u 

Thus, the bid price of housing in the CBD, p~, is no larger than the 

left-hand side of the inequality in (c. 3) and, as a result, the agri-

cultural sector would outbid the housing sector for land everywhere in 

the urban area. Suppose, now, that potential residents of ring l find 

it optimal to work, but those of ring 2 do not. It must then be the 
a,Q, '( - 2 - 2 a,Q, case that MT > M + pw•W-c•u )·0--W-v•u ) . The ratio of products 

of income and leisure raised to the power a,Q, in (3.13), however, in 

this situation becomes 

inequality above, we then find that 

- l (M+p •W-c • u ) w 
- 2 (M+p • ~J-c • u ) w 

Given the 

l Thus, once again we have pH< pHA" Finally, consider the situation 

where residents of both rings find it best not to work. Then the 

ratio of products in (3.13} becomes 
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Since u1 2 
< u ' 

l 
however, (M-c • u ) 

(M-c-u2) 

(i, ti 
_w __ > 1, and the desired result 

a. 
(i2) i 

w 
follows immediately. In sum, condition (c.3) will insure that housing 

2 is not allocated any land when pH= 0 and p > 0. 

Before the last conditi'on on the parameters of the model is 

expressed, a modtftcatton to the search process must be mentioned. 

Up to now the process has been characterized as a search over values 

of three endogenous variables--the wage rate, the price of housing 

services in ring 2, and the nominal property tax rate. This is still 

essentially what will be done. For the purposes of computation and 

proving the existence of equil i bri urns, however, the third component 

must be changed to a variable that involves, but is not merely, the 

tax rate. Let Ljw and LJNw be the amounts of land in ring j allocated 

to housing households that choose to work and households that choose 

to remain at home, respectively. The term L~ in Chapter 2 represented 

the amount of land allocated to housing in ring 2, when all households 

were assumed to commute to work. We still retain the definition of 

L~ as the amount of land allocated to housing in ring 2, only now it 

includes land allocated to housing either or both household types 
2 2 2 (those that work and those tftat do not). That is, LH=LHw + LHNw" 

A similar interpretation and forQulation holds for Li. Next, note that 

the housing supply expression, (2.51 ), is the product of a term that is 



constant, given a vector of prices for the model, and the amount of 

land in the ring allocated to housing. The supplies of housing for 

the two household types that can locate in the ring can be found as 
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the product of this same constant term (for a given price vector) and 

the amounts of land allocated to the respective household types. Thus, 

since Li= LJw + LJNw' the total supply of housing in the ring can 

still be given by (2.51 }. We are interested, however, in the total 

value of housing services in ring 2. This can be expressed as 
2 2 2 is defined by (2. 51 1, . 2 the price of housing Pw SH' where SH using pH as 

services facing producers. We are also interested in the total value 

of housing services in ring 2 when the price of housing services there 

i.s such that the bid rent for land by housing producers in the ring 

i.s just equal to the agricultural land rental. This can be expressed 
- -2 -2 as PHA.sHA' where SHA is the supply of housing services in ring 2 that 

arises when the price of housing services in ring 2 is pHA and all 

available land in the ring is allocated to housing (i.e., L~ = L2 ). 

It is a function only of the parameters and so can be calculated 

independently of the vector of variables over which we search, which 

we now write asp= {pw,P~,T). The new third component of this vector 

is related to the tax rate. In particular, the nominal property tax 

rate is now defined to be 

(3.14) 

where aR > 0. Looki'ng at this differently, it can be seen that the 
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new variable, is the level of property tax revenues raised from 

housing in ring 2 when the price of housing services is high enough so 

that housing outbids agriculture for land in the ring or, if tied 

with agriculture, is allocated all of the available land in the ring, 

since p~-s~ is the total value of all housing services purchased in 

ring 2. 

A redeftnitton of E(pl is now in order so as to include the 

modifications in the base model described above, and to accommodate 

the needs of computation and of the proof of the existence of equili-

brium. The first component of E(p), representing the excess demand 

for labor, must now include a variable supply of labor, call it Ws, 

which was defined above. With regard to the second component, the 

generated population must reflect the fact that there are now two 

household types; those that choose to work and those that choose 

instead to be unemployed. Thus, letting N~j and N~wj be the number 

of households in ring j that choose to work and remain at home 

respectively, the generated population can be expressed as 

N = i (Nwj + NNwj). The change needed in the last componet of E(p) 
G j=l G G 

is much less obvious. In fact, its purpose can be seen only in the 

context of the existence proofs. Thus, it will simply be presented 

at this point with no immediate explanation offered. In place of 

generated tax·revenues, as gtven by (2.28), there is now the sum of,, 

property tax revenues from housing for all rings except the second, and 

all business property tax revenues. Specifically, generated "property 

tax revenues II can now be defined as 
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T + 
y 

t•(a • L 
R j=l 

(3. l 5) 

j~2 

Note that RG gives what may be called the actual level of property tax 

revenues generated at a given vector p, when p~ is large enough so that, 

as menttoned above, T represents the actual level of residential 

prpperty tax revenues ratsed in ring 2. 

One more concern must be addressed before we proceed to the last 

condition on the parameters and the existence proof. Some artificial, 

but nonetheless harmless, bounds must be placed on some of the corres-

pondences ofthemodel. Inspection of (2.43) reveals that the bid 

prices of housing services for households choosing to remain at home, 
j pHNw' are constant across all rings, for a given vector p. Intuitively, 

the reason that the bid housing price gradient for households that do 

not work is flat is that housing prices need not adjust to offset 

differences in the money and time costs of travel and the loss of 

leisure due to time spent working .at different distances from the 

center, since no such costs and losses are incurred by these households 

anywhere in the region. Call this constant bid price for housing, 

pHNw" The bid rents for land used in housing these household types, 

then, in light of (2.46}~ are also constant across rings, for a given 

p. Thus, if pHNw is high enough, housing for households of this type 

will outbid agriculture for land in any ring and, as a result, the 

generated population becomes infinite. Since the housing bid price 

gradient for households that choose to work is downward sloping, it 
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must eventually fall below the constant bid price, pHNw' if it is 

not already below it at the center. 14 Thus, at least after a certain 

distance, housing for households that decide not to work outbids all 

other uses for land when pHNw is high enough. This means that we 

would have to continue housing these households in rings ad infinitum 

as we move further and further away from the center. The generated 

population, in such circumstances, would have to be taken to be 

infinite. 15 Obviously we cannot allow this on the computer. It would 

also create problems for the existence proof. To avoid the problem, 

an upper bound is placed on the generated population of households who 
"' "' do not work, say N, where N is well in excess of the given total popu-

lation, N. We continue housing these household types in rings further 

and further out from the center until the number so housed equals N. 

Using such a bound is innocuous stnce, in an equilibrium, the generated 

population must equal the given population. We are not, therefore, 

ruling out, with this procedure, any potential equilibria. 

One more problem in this regard, though, remains to be resolved. 

Suppose that pHNw is such that the bid land rent for housing of house-

holds who choose not to work is equal to the agricultural land rental, 

pA. In such cases none, some, or all of the available land in all 

rings, at least after a certain distance, can be allocated to housing 

these households. Thus, an infinite generated population is a possi-

bility, but only one of many. In particular, we cannot rule out the 

possibility that an equilibrium involves just such a situation. Of 

course, if we do have an equilibrium, then the amount of land in a 

ring allocated to housing households who do not work must be less than 
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the total amount available, except possibly for a finite number of 

rings. Furthermore, a given number of households of this type can 

be allocated to rings, at least beyond a certain point, in an infinite 

number of ways. It matters not in this model to households of this 

type if 1000 of them are housed in the lOO'th ring or one of the 

1000 is placed in each ring from the 101 'th to the 11001 th. The 

convention adopted here to deal with these cases is to restrict the 

number of rtngs that will be considered. In particular, assuming that 

the bid price of land for producers of housing for households that 
" do not work, say pLNw' equals pA, we find the first ring, say j, for 

which housing for these households is not outbid for land in the ring 

by any use. Next we find the ring, call it j, for which a generated 
" population of households that choose to be unemployed of N arises when 

... 
all of the available land in ring j that is not allocated to business 

or housing households that choose to work is allocated to housing 

households that choose to be unemployed, all of the available land in 
" " rings beyond j up to but not including j is allocated to housing house-

holds that choose to be unemployed, at least some of the available 

land in ring 3 is allocated to housing households that choose to be 
" unemployed, and none of the land beyond ring j is allocated to housing. 

The convention, then, is that no land is to be allocated to housing in 
" rings beyond j. Restricting the number of rings to be considered in 

" this way places an upper bound of N on the number of generated house-
" holds that do not work. Note, however, that j will, in general, vary 

with the vector p. To be more precise, though, about the process 

whenever pLNw = pA' it is assumed that the generated population of 
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households that do not work can take on any value in the interval 
" [O,N]. That generated population is housed in the following manner. 

" All of the available land in ring j that is not used for business or 

housing households that choose to work, if any, is allocated to housing 
" households that do not work and all available land in rings beyond j 

is allocated to housing households that do not work, until the gener-

ated population of these households is reached. Of course, in general, 

only part of the available land in the last ring considered, which may 
" be j itself, will be allocated to housing. Any equilibrium where 

pLNw = PA can be characterized in this way. Clearly the entire popula-

tion can be housed at such an equili'brium with the restricted city 
" size since there is enough room to house as many as N > N households 

who choose to be unemployed. Within the context of the model, tech-

nically, there really is no need to justify this process of cramming 

the households who choose not to work, given their demand for housing, 

as close together as possible since, in a sense, an equilibrium where 

this occurs is as good as an alternative one in which a different 
" " pattern of location exists for those households within rings j to j, 

" or where households who remain at home are housed in rings beyond j. 

The only difference among such equilibria is the location of households 
" that do not work, in ring j and beyond, and households of this type are 

indifferent vdth respect to those locations. 

Finally, we need to place an upper bound on labor demand when 

Pr > 0 (_as shown above labor demand when PT < 0 wi 11 be bounded given 

the restrictions plac~d on the model tn this case). A level of labor 
" demand, say W, which is well in excess of the maximum labor supply, 
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N°W, is chosen. For pw > 0, WT may be calculated according to (2.52). 

If, however, the value obtained for WT equals or exceeds W, we use W 

as the traded goad's demand for labor. If the value obtained is less 
" than 1~ then we use that value for labor demand. Since W exceeds the 

maximum labor supply we are not precluding any potential equilibria. 

Thus, although the bound is somewhat arbitrary, it is nonetheless 

harmless. A curious problem arises, however, when PT> 0 and Pw = 0. 

Use of (2.52} to calculate labor demand would mean that, in these cases, 

infinity would have to be assigned to labor demand when any positive 

amount of the CBD land is allocated to the traded good industry, and 

zero would have to be assigned to labor demand when the traded good 

industry is not allocated any CBD land. In such s_ituations (pT > 0, 
" pw = 0), even if we assigned a value of W to labor demand when the 

amount of land allocated to the traded good industry is positive, a 
" problem would still exist. The jump in labor demand from zero to l·J 

would destroy the upper semicontinuity of the excess demand for labor, 

a property we need to establish the existence of equilibrium. To remedy 

this we define the demand for labor when Pr> 0 and p = O in the w 
following manner. If the traded good industry is not allocated any 

land in the CBD then, as always, the labor demand is taken to be zero. 

On the other hand, if the traded good industry is allocated some CBD 

land then labor demand can take on any positive value up to and including 

W. This can be summarized symboli"cally as follows: 

WT [c (o_l1J 

t 0 
if 

L l > 0 
T 

L l = 0 .,. 
I 

(3.16) 



where WT is labor demand when PT > 0 and pw = 0. This formulation 

forces the demand for labor to be upper semicontinuous. Of course, 

when L~ > 0 this assignment of labor demand does not make economic 

sense. Gtven the functional forms used in the model, however, no 

genuine economtc equilibrium would involve L~ > 0 when PT> 0 and 
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pw = 0 since then it could be said that the actual labor demand 

(infinite) would exceed the supply of labor. Furthermore, it will be 

seen below that the algortthrn, tn the ltmtt, will not terminate at a 
l l potnt where pw = 0 and LT~ 0. On the other hand, when LT= 0 the 

assignment of labor demand by (3.16) would be in complete accord with 

the economics of the situatton. 

With the alteration in the search process and other modifications 

that have been made, the last condition on the parameters needed to 

establish existence can be developed. The objective of the condition 

is to ensure that it is not possible to house, in the city, the 

given number of households when the price of housing in ring 2 is so 

low that housing is outbid for land in ring 2 by agriculture or, if 

tied in its bid land rent in ring 2 with agriculture, is allocated less 

than the total amount of land in the ring available for endogenous use 

(in other words, when p~ .s~ < pHA.sJA' and the other conditions for a 

solution (in particular that RG equals R) are satisfied). As will be 

seen below, the purpose of the condition is to guarantee that a 

solution to the model found by the search process represents a genuine 

economtc equilibrium. Attention must be restricted to the generated 

populatfon in the first two rings. 16 An upper bound for this population 

is to be found. The generated population of a household type in a ring 
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is determined as the ratio of the supply of housing to that type and 

the demand for housing by such a household. Observation of expressions 

(2.46) and (2.51) reveals that the supply of housing in a ring is an 

increasing function of the bid price of housing services there. Furthe~ 

more, inspection of expressions (2.42) and (2.43) shows that the bid 

price of housing services in ring l is an increasing function of p~. 

Finally, according to expression (2.44} the demand for housing in a 

ring is a decreasing function of the oid price for housing in that ring. 

Therefore, to find an expression which bounds from above the generated 
2 populatton in the situattons considered, only the case of pH= pHA is 

utilized. Given that the prtce of housing services in ring 2 is set, 

we seek to choose values of other variables that make p~ as large as 

possible. Inspection of (2.42] and (2.43} reveals that p~ is an 

increasing function If households in both rings decide 

to work then this ratio can be expressed as the product of ratios, 

( - 2)( - 2 a,Q, M+p ·W-c•u T-W-v•u ) w 

It was stated above (and proved in 

footnote 13), however, that the first ratio is a decreasing function of 

the wage rate. The second is constant, assuming that residents of both 

rings work. Households in any ring, j, will, as noted above, choose 

not to \'/Ork when the wage rate is low enough so that 

• • a,Q, 
- J - J a,Q, (M+p •W-c•u )•(T-W-v•u ) <MT w 



and be 1ndifferent between working and not working when there is 

equality of these two expressions. To establish an upper bound for 
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Yl(,Q,l)°',Q, "' , then, we find the wage rate, pw, at which households residing 
v2c/)°',Q, 

in ring 2 are indifferent between working and not working (i.e., find 
2 t:t a l 

Pw such that (M+pw•W-c•u )·(T-W-v•u ),Q, = MT ,Q,). Since ~2 is a 

decreasing function of pw when households in both rings work, 

yl(,Q,l) 
CL ,Q, 

v2(,Q,2)°',Q, 

'\, decreases as the wage rate increases above Pw• For wage rates 

below pw households in ring 2 choose not to work. '\, Thus, for p < p , w - w 

( - l) ( - l )CL,Q, M+p •W-C•U • T-W-V•U This function max [ w 
CL ,Q, 

M~T 
l ] • 

decreases with decreases in pw :to the point where the wage rate is low 

enough so that households in ring l are indifferent between working 

and not working. At that point and for wage rates even lower, 
CL 

yl(,Q,l) ,Q, "' Therefore,--=----- is maximized when p = Pw• 
CL W y2(,Q,2) ,Q, 

CL 'v - l - l CL,Q, 
1( 1) ,Q, (M+p •W-c•u )·{T-W-v•u ) 

result, the value y ,Q, = w will 
Y2(,Q,2)CL,Q, MTCL,Q, 

As a 

be used 

to find an upper bound for the generated population. 

There is one more variable which has an effect on the value of 
l pH--the nominal property tax rate. First, it should be noted that the 

tax rate must be bounded. It must be bounded from below by O and, if 

generated tax revenues are not to exceed the given level R, from above 
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as well. In order to ascertain what value oft to choose to make p~ 

as large as possible, the derivative of (2.43) for j=l, after (2.42) 

has been substituted in, with respect to the tax rate is taken. To 

simplify the exposition of thi's derivative the following substitutions 

for specific parameter expressions are made. 

0 = _P_ 
l +p 

_, 
o, = aH p 

r . 0 
'\, l l i 

o., = 
(M+pw•W-c•u ~(T-W-v•u ) 

'-
MT i 

a ·&HA. (1 +aR •t0 0 

03 = H aH 

Pr 0 
64 = ar• (-) aT 

_, 
05 (03 + 04) 0 = 

06 = o2-((l+aR•t)•o 5)- 0- o4 • ( l +aR • t (0 

2 Let the bid price of housing services in ring l, when PH= PHA and 

pw = Pw, be written as P~A- The derivative of this bid price with 

respect to the tax rate can now be expressed as follows: 

(3.17) 

All of the terms in the product on the right-hand side of (3.17) except 
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the last are unambiguously positive. The sign of (3.17) therefore, 
a a 

'v- 1-:-- 1 !l !l varies with the sign of (l-0 2). Since (M+pw•W-c•u )(T-H-v•u 1 >MT , 

o? involves raising a number greater than 1 to a power the sign of 
L. 

which varies with the sign of p, the substitution term in the utility 

function. Thus, the followi'ng assertfons can be made. 

-1 
p > 0 02 > 

dpHA 
0 = ,~err-< 

(3.18) 
-1 

p < 0 
dpHA 

0 - 02 > 1 ~ cit > 

2 Hence, the bid price of housing services in ring 1, when pH= PHA and 

Pw = ~w' is maximized when t = 0 if p > 0, and when t is as large as 

possible if p < 0. 

How can t be bounded for the case p > O? Let R~ be the generated 

property tax base in ring 1. Then, assuming we have a zero of the 
1 third component of E(p) (i.e., R6 = R), we must have T + t RG = R, 

because no housing exists beyond ring 2 in the situation considered 

here. in this case, we can solve for T and 

obtain T = This tn turn allows us to write the tax 

lJha t i's needed, though, is an upper 

bound for t that is a function of parameters only. The generated 
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property tax base in ring l l , RG, varies viith P. For the purpose of 

expressing the upper bound that is -1 sought, let sHA = l - l) sH(pA,L 

be the supply of housing in ring l when the bid land rental for CBD 

land by the housing industry is equal to the agricultural land rental, 
- l -PA (i.e., when pH= pHA), and all of the endogenous land in the CBD is 

- (- l) allocated to housing. Also let KT= KT PA,L be capital demand by 

the traded good industry when its bid land rental is pA' and all of 

the endogenous CBD land is allocated to the traded good industry. Then, 

since the supply of housing to ring l and capital demand by the traded 

good industry are proportional, for a given p, to the respective 

amounts of CBD land allocated to these sectors, and the actual land 
2 -rental that prevails in the CBD, in the case considered (pH = pH·A)' 

- -1 -exceeds PA (because PHA > PHA)' it must be true, even if CBD land is 

divided between housing and the traded good industry, that 

[ - -1 - l - - J l l min aR-pHA-sHA, ar•(pA•L + pR-KT) < RG. Replacing RG in the 

expression fort with the left-hand side of this inequality gives us an 

upper bound fort that depends only on the parameters of the model. 
,, 

Specifically, we define the bound t as follows: 

(3.19) 

This value is to be used in forming a condition which satisfies our 

original objective. In particular, we want an upper bound for the 

generated population. ~fhen p < 0, since the supply of housing in 

ring 1, for a given allocation of land, increases and the household 
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demands for housing in rings l and 2 decrease with increases int, the 

value twill be substituted fort in calculating the upper bound on 

population. Hhen p > 0, while the demands for housing still decrease 

with increases int, the supply of housing in ring l, for a given alloca-

tion of land now also decreases with increases int. Since a solution 

to the problem of maximizing the ratio of the supply of housing in ring 

l to the household demand for housing in ·ri'ng l \rlith respect to the 

tax rate, in the situation considered, has not been found, we let the 

tax rate take on the value t when calculating household demand, but 
-1 the value zero when calculating pHA' and so the supply of housing in 

ring l. 

Before the condition can be stated, something must be decided about 

the income term in the demand functtons. Demand obviously decreases 

with decreases in net income here. Since (T-W-v•uj) < T for any j and 

households have the option of not working, net income will never fall 

below exogenous income, M. Therefore, we let v1 = v2 = M in calculating 

housing demand in the context of the formation of the condition. 

To ease exposition of tne condi'ti'on we suppress all variables 

except the price of housing in the ring and the amount of land in the 

ring allocated to housing in expressing the supply of housing services 
. j - j( j j) for the ring. Thus, we write sH - sH pH,LH . Similarly for housing 

demand we suppress all variables except the price of housing in the 

ring, the tax rate, and household net income in the ring. Thus, we 

write xi= xi(pi,t,Yj}. This now allows usto express uppe.r bounds for 

the generated populations tn the two rings. In particular, define N~ 
to be the upper bound for ring las follows: 
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p < 0 

if (3.20) 

p > 0 

"2 Next, we define NG to be the upper bound for ring 2 as fol lows: 

(3.21) 

Note that all of the endogenous land in rings l and 2 is assumed to 

be allocated to housing. We can use these bounds to finally exhibit 

our last condition on the parameters of the model. 

N~ + N~ < N (c.4) 

Condition (c.4) insures that a solution of the model (in the sense of 
* ( * 2 2 - -2 a vector p such that OEE p )) with pH-sH < pHA-sHA does not exist. 

Several things should be noted about this condition. First, 

satisfaction of the condition depends on the level of exogenous income 

relative to the required amount of property tax revenues. To be 

more precise, the condition is satisfied only if the actual level of 

exogenous income in the urban economy (based on the given number of 

households) exceeds the pre-specified level of property tax revenues 
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to be raised. To see this, first note that from (3.19) and the fact 

that pH!> pHA we can obtain 

" - -2 - -1 - l - -R = t•(aR-pHA0 SHA + min[aR-pHA0 SHA'a1•(pA•L + PK-KT)]) < 

" (- - l - - 2 " (- l l - - 2 l aR•t PHA.sHA + PHA.sHA) < aR•t• pHA.sH + pHA.sHA), where sH is as 

defined in (3.20). Next, note that, from the definitions of N~ and 

N~ in (3.20) and (3.21), the fact that household net income must more 

than cover household tax payments, and condition (c.4), we must have 
" -1 l - -2 "l "2 "l "2 aR•t•(pHA.sH + pHA.sHA) <M•NG + M·NG = M·(NG +NG)< M·N. Thus, 

R < M·N and so total exogenous income for the given number of house-

holds must be larger than the property tax revenues to be raised, if 

the condition is to be satisfied. Second, the intent of the condition, 

to insure that it is not possible to house as many households as there 
2 2 - -2 actually are when pH•sH < pHA.sHA and the non-population aspects of a 

solution are satisfied, will be achieved for some parameterizations 

which violate the condition. The condition was constructed on a 

worse than worst possible outcome basis. By this we mean that, in 

the situation considered, not all of the values of the variables used 

in finding the upper bounds for population in (3.20) and (3.21) can 

occur simultaneously, or even occur at all. For instance, in forming 

the condition it was assumed that L~ = L2. Yet if all of the 
2 2 -2 available land in ring 2 is allocated to housing, then pH•sH = pHA.sHA 

wheres~ is as defined in (3.21). The amount of land in ring 2 

actually allocated to housing, in the cases considered, must be less 

than L2. Thus, the generated population in ring 2 must really be 
"2 ,.. less than NG. The tax rate used in the condition, t, is an upper 
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bound. The actual tax rate may be less than t, with the result that 

the generated population in both rings would be lower. Furthermore, 

the tax rate in the case P > 0 involves an incongruity. One value is -, assumed in calculating pHA and another is assumed to face households 

in ring 1. "l The two values were chosen to make NG as large as possible. 

Thus, if the tax rate is the same for both situations, as it must 

really be, the generated population in 
~ yl(tl)at 

A wage rate of p was used in----------w a£ 
v2(t2) 

"l ring l must be less than NG. 
-1 for calculating pHA' yet 

household income in ring l is taken to be M, even though households 

in that ring will choose to work, and so receive a higher net income, 

if the wage rate is p. Finally, the condition does not reflect the w 
presumption that the labor market is in equilibrium. Indeed it is 

inconsistent with labor market equilibrium since the condition in-

volves allocating all endogenous CBD land to housing, implying that 

labor demand is zero. Yet the wage rate pw > 0 is used in part of 

(3.20) and, as noted, labor supply forthcoming from ring l will be 

positive if the wage rate is pw and housing is allocated some land 

there. In sum, then, condition (c.4) is sufficient but not necessary 

for our purposes. There are many parameterizations which give us 

what we want in spite of the fact that they do not satisfy (c.4). 

Finally, it should be noted that there are parameterizations that 

do satisfy (c.4). In fact, for any set of parameter values, 

exclusive of M, condition (c.4) will be satisfied if exogenous 

income is large enough. Proof of this assertion can be drawn from 

part of the proof of Corollary 2.5 below and the fact that household 
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demand for housing in a ring, other things equal, goes to infinity as 

income tends toward infinity. 

Given the conditions and restrictions mentioned above, we may 

finally establish that an equilibrium exists for the model. This will 

be accomplished by applying Theorem l. ~Je may state our result 

rigorously in the form of a second theorem. 

2 2 Theorem 2. Let P = {p = (pw,PH,T) IPw +pH+ T ~ d} and d > 0. Given 

the model described above, with conditions (c.l )-(c.4), there exists 

d > 0 such that an economic equilibrium (with no excess supplies) 

exists. In particular, there is some d > 0 for which there exists 
* * * * p EP and e E E(p ) such that e = 0 (with actual property tax 

revenue raised equal to the given amount). 

Proof. To establish this we first show that the hypotheses of 

Theorem l are satisfied for some d > 0. This will prove that there 
* * * * * exists p E P and e E E(p) such that e < 0 and p • e = 0. We 

* then argue that we must have e = 0. 

The upper semicontinuity of Eis not difficult to see. 17 Each 

of the components of vectors in E(p) involves a sum of terms. With 

the exception of labor demand when Pr> 0, each of these terms is 

either a constant, one of the components of p (Tin the third compon-

ent of vectors in E(p}), or an expression that is the product of a 

continuous function of p and the amount of land in a ring allocated 

to a particular endogenous use. If each of the correspondences 

(when they are defined on and map to sets of real numbers) in a sum 

of correspondences is upper semicontinuous, then the sum itself is an 
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Furthermore, if E.(p) is defined 
l 

to be the set of ith components of vectors in E(p), we may consider 

E; itself to be a correspondence. It can be shown that if E. is upper 
l 

semi'conti'nuous, for all i, then Eis upper semicontinuous. Thus, if 

we show that each of the terms in each component of vectors in E(p) 

is upper semiconti'nuous then it must be true that Eis upper semi-

conttnuous. 

The constant terms and the term involving just a component of p 

can obviously be considered to be upper semicontinuous. As noted 

above, all other terms, with the exception of labor demand when Pr> 0, 

are, at a given p, proportional to the amount of land allocated to 

some use. We may cover all of these cases by investigating the upper 

semicontinuity of the correspondence ~:P + R. This correspondence 

is to map "price" vectors p E Pinto sets of real numbers, elements of 

which, for a given p, take the form ~(p)•L~(p), where ~(p) is some 

continuous function of p and L~(p) is the amount of land in ring j 
l 

allocated to use i when the price vector is p. 

Recalling the model, we note that use i is allocated all of 

the land available for endogenous use in ring j, Lj, if it outbids 

all other uses; it is allocated none of the land if it is outbid by 

some other use; and it can be allocated any amount of land in the 

interval [0,Lj] if it is not outbid for land in the ring but ties at 

least one other use with its bid rent for land. Suppose that 
1 2 k p ,p , •.. ,p , •.. is a sequence of points in P that converges to a 

. t O . p porn p ,n • Assume that 



l_ l jl 2_ 2 j2 k_ k jk e - <J>(p )•li(p ),e - <j>(p )•li(p ), ••. ,e - <j>(p )•li(p ), ••. 

is a sequence that converges to the point e. We must consider each 

of the three land allocation cases mentioned above when the price 

t . 0 vec or , s p . Suppose that p0 is such that use i outbids all other 

uses for land in ring j. Then, <J>(p0 )-L~(p0 ) = $(p0
) 0 Lj. Given the 

continuity of the bid price functions it must be that, for price 

vectors pk close enough to p0 (say k 2_ K), use i obtains all of the 
k k . available land in ring j. Tnus, e = <j>(p )•LJ fork large enough 

(k 2_ K). Hence, by the assumed continuity of <J> we must have 

115 

e = <J>(po).Lj = <J>(po)•l~(po) E ;(po). Suppose now that p0 is such that 

use i is outbid for land by some other use. 

For price vectors, k , close enough to Po, p 

outbid for land in ring j and so obtaining 
k k . k e = <j>(p )-L~(p ) = 0 fork large enough. 

l 

Then, <J>(po)•l~(po) = O. 
l 

now, we have use i being 

no land. Thus, 

Hence, once again we have 
0 j O " 0 e = $(P )•li(p ) e <J>(p ). Finally, suppose that p0 is such that use 

i is not outbid for land in ring j but is tied by some other use. 

In this case ;(p 0 ) is a set of points since L~(p0 ) can take on any 

value in [0,lj]. Because <J> is continuous, and use i cannot be 

allocated more than Lj units of land at any price vector, the sequence 

l 2 k "f ·t t t ( 0 ) L e ,e , •.• e .•. , 1 1 converges, mus converge o e = <J> p · , 

where Le [0,Lj]. Thus, since Le li(p 0 ), we have e = <j>(p0 ).L e ;(p 0
). 

Therefore <J> is an upper semicontinuous correspondence. 

Finally, consider labor demand when Pr> 0. In the region of 
" price space where the above-mentioned upper bound, W, on labor demand 

cannot be encountered, the actual demand for labor can be expressed as 
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the product of a continuous function of p and the amount of land 

allocated to the traded good industry. The analysis just undertaken, 

then, can be used to show that the labor demand term in the first 

component of Eis upper semicontinuous in this restricted region. 

Therefore, we may confine our attention to sequences of prices that 

converge to points where the upper bound may be binding. Again, we 

consider three possible land allocations at a point p0
, to which the 

sequence of prices p1 ,p2, ••• ,pk, ... converges. Let WT(p) represent 

labor demand at the price vector p, which will be a set of points if 

the traded good industry's bid land rent ties some other use in bidding 

for CBD land, but is not outbid by any use. If the \'Jage rate component 

of p0 ,p0
, is zero then, it should be recalled, labor demand is defined w 

1 1 2 2 k k by (3.16). Assume that ew £ WT(p ),ew £ WT{p ), .•• , ew £ WT(p ), ... 

is a sequence that converges to the point ew. Suppose that p0 is such 

that the traded good industry outbids all other uses for CBD land. 

Then, W £ ~JT(p0 ) since the traded good industry is allocated all of 

the available CBD land (L~(p0 ) = L1) and we are assuming that p0 is 

in a region of price space where (2.52) yields a value that exceeds 
" W for more than one allocation of CBD land to the traded good in-

dustry.18•19 For price vectors, pk, close enough to p0 (say k _:: K), 

then, the upper bound will be binding for some CBD land allocations 

and the traded good industry is allocated L 1 units of land. Thus,. 
k k " ew = Wp(P) = W fork large enough (k.:.. K). Hence, we must have 

ew = W £ WT(p0 ). Suppose now that p0 is such that the traded good 

industry is outbid for CBD land by some other use. Then, \'Jhether or 

not p~ is zero,WT(p0
) = O since L~ = 0. For price vectors, pk, close 
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enough to p0 now, the traded good industry is outbid for CBD land. 
k k Thus, ew = WT(p ) = O for k large enough. So, since ew = Owe again 

have ew E WT(p0 ). Finally, suppose that p0 is such that the traded 

good industry is not outbid for CBD land, but its bid land rent is 

tied with that of some other use. Since Li(p0
) can now take on any 

value in [O,L1], labor demand at p0 , whether p0 = O or not, can w ,. 
assume any value in [0,~1]. Because labor demand when PT > 0 cannot 

d t"'1 th l 2 k . f . t t excee ·, e sequence ew,ew, •.• ,ew' ••. , , , converges, mus con-

verge to a point e , where e E [O,W]. Thus, once again we have w w 
ew E WT(p0 )~ which shows finally that labor demand is upper semi-

continuous. Therefore, every term in each component of Eis upper 

semicontinuous. This establishes the upper semicontinuity of E. 

The correspondence Eis also easily seen to be bounded. The 

first component of E(p} is bounded from below since the demand for 

labor is nonnegative and the number of generated households that 

work, for a given d, is bounded from above. 20 The excess demand for 

labor is also bounded from above, because labor demand is bounded from 
,. 

above. When Pr> 0 labor demand is bounded from above by W. When 

Pr< 0 as indicated in a discussion above, it is made to be bounded 
,. l ,. 21 

from above through the use of pLT and pw The second component is 

bounded from below since the generated population of households that 
,. 

choose to be unemployed is bounded from above by N, while, as noted, 

for a given d the generated population of households that work is also 

bounded from above. The second component is bounded from above by N. 

The third component is bounded from below because, for a given d, T 

is bounded from above (in particular it can be no larger than d) and 
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both the bid land rent and capital demand for the traded good industry 

are bounded from above. 22 The third component is bounded from above 

by R. Thus, Eis a bounded correspondence. 

The correspondence Eis convex if and only if, for any p E P and 

>-. E [O,l] with e,e' E E(p}, we have >-.•e + (1->-.)•e' E E{p). Let us 

examine the k'th components of these vectors. As has been noted, 

all of the components of vectors in E(p}~ with the exception of 

the first when PT> 0, can be expressed as sums of terms where each 

is a constant, a component of p, or an expression that is the product 

of a function of p and the amount of land allocated to some endo-

genous use. The component of p and the functions of p just mentioned 

can be treated as constants here since the definition of convexity 

involves a single, although arbitrary, value of p. To aid in the 

analysis the following definitions of terms are made. 

j j' 
n;, ni the proportions of available land in ring j allocated 

to the endogenous, non-agricultural, use i associated 

with the "excess demands" e and e', respectively. 

the proportions of available land in ring j allocated 

to agriculture associated with the vectors e and e', 

respectively. 

ek the k'th component of the vector e. 

e' the k' th component of the vector e'. k 

iJ>j_k the non-land allocation term in the k'th component of 
l 

e and e' that relates to use i in ring j. 
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We must have L n1 = l - Tlj and L Tl~ I : 1-rJj I for a 11 j. 
all i l A all i l A 

"k Note that qi~ is a function of p and is constant for a given p. Thus, 

it is invariant from one vector to another in the set E(p). The 
"k terms qi~ are meant to represent those functions of p which, when 

multiplied by the amount of land in ring j allocated to use i, are 

the above-mentioned products that are particular items in the sums 

that comprise the "excess demands," or components of E(p). As such, ,. 
'k we would define qi~ to be zero for all j if a product term relating 

" to use i does not appear in the sum that represents the k'th component 

of vectors in E(p) (as would be the situation for the traded good 

industry in the second component). Excluding the case of the first 

component of the excess demand vectors when Pr> 0, we can write the 

k'th components of e and e', respectively, as: 

CD 'k . 
ek =ck+ L L qi~ (p)•L~(p) = 

j=l a 11 i 1 1 

e' = C + k k 

CD 

I I _qit(p)•Lf (p) = 
j=l all 1 

where L~ and L~
1 

are the amounts of land in ring j allocated 
l l 

under e and e' respectively, and ck is constant for a given 

ask if the k' th component of the vector Ae + (1-A)e' can be 

(3.22) 

to use 

p. We 

the k'th 

i 

"excess demand" of some vector in E(p). This component can be written 

using (3.22), as follows: 
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co . ., "k . 
ck+ E E (>-n~ + (1->-)n~ )•q,J. LJ 

j=l a 11 i 1 1 1 
(3.23) 

This will represent the k'th component of a vector in E(p) if, treating 

(>-n~ + (l->-)n~
1

) as the proportion of land in ring j allocated to use l l 

i, (3.23) is consistent with a feasible allocation of land in all 

rings, given the price vector p. If this is true then we must have 

E (>-n~ + (l->-)n~
1

) < l, for all j, with agriculture's allocated 
all i 1 1 -
proportion of available land in ring j being the difference between l 

and the left-hand side of the inequality. Using the definitions it 

can be seen that E (>-n~ + (1->-)nf) = >- E n~ + (1->-) E n~' = 
all i 1 1 all i 1 all i 1 

>-·(l - ni) + (l->-)•(1-nf) = l - (>-nl + (1->-)nf) < l since 

nl,ni' ~ 0. In what is really the natural approach to take, we assign 
• j I 

(>-ni + (1->-)nA) to be the proportion of endogenous land in ring j 

allocated to agriculture. This allocation of land is consistent with 

the price vector p. If, under p, use i is outbid for land in ring j, 

then n~ = n1' = 0 and so (>-n~ + (1->-)n~') = 0 as well. If use i out-

gids all other uses for land in ring j, then n~ = n~
1 

= l and so 

(>-n~ + (1->-)nr) = l also. Finally, if use i is tied with at least one 
l l 

other use and not outbid by any use for land in ring j, then 

0 < n~, n~
1 

< l and so O < (>-n~ + (l->-)n~
1

) < l. Therefore, the -1 1- - l l -

allocation of land defined by using (>-n1 + (l->-)n~
1

) is in line with 

the model in that, at the given vector p, a use would receive no land 

in a ring if it is outbid by some other use, all of the available land 

if it outbids all other uses, and anything from none to all of the 
available land if its bid land rent ties at least one other use and is 



121 

not outbid by any use there. Combining all of this with the fact that 

the land allocation is consistent across k (i.e., use i receives the 

same proportion of land in ring j in each of the components of the 

"weighted average" vector) proves that >,.e + (1-).)•e• E E(p). 

This would be enough to prove the convexity of E except that we 

have excluded one possibility. Suppose that Pr> 0. If pw r O there 

is no problem since then, labor demand can be expressed as the product 

of a function of p and the amount of CBD land allocated to the traded 

good industry. In these cases the first component of vectors in E(p) 

can be represented by (3. 22). Thus, we need be concerned only \'lith the 

case Pw = 0. In this case, labor demand is defined by (3.15). Since 

labor supply can be expressed in the form needed for (3.22), we need 

only be concerned with labor demand. In particular, if we let WT(p) 

and w+(p) represent labor demand under e and e' respectively, then we 

must show that ).WT(p) + (1-).)WT(p) is a potential labor demand, as we 

have defined it, when Pr> 0 and pw = 0. Any such demand for labor 
,., 

must lie in the interval [0,W]. If the traded good industry is outbid 

for CBD land, then ~JT(p) = vlT(p) = 0 and so ).WT(p) + {1-).nJT(p) = 0 

as well. If the traded good industry outbids all other uses for CBD 
,., ,., 

land then O < HT(p), WT(p) .::_Wand so O < ).WT(p) + {1-).)•Wr(p) ..::. W. 

Finally, if the traded good industry ties some other use in bidding for 

CBD land, but is not outbid for CBD land by any use, then 
,., ,., 

0.::. WT(p),WT(p) ~Wand so O ~ ).v/T(p) + (1-).)WT(p) ~Was well. Hence, 

).WT(p) + (l->,.)WT(p) can serve as labor demand when the price vector is 

p. Therefore, Eis a convex correspondence. 

The upper semicontinuity, boundedness, and convexity of E imply 
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that hypothesis (H.l) of Theorem l is satisfied. It remains to be 

shown that hypothesis (H.2) of that theorem is satisfied. To do this, 
2 we restrict our attention to price vectors p such that pw +pH+ T = d, 

for some d > 0. ~Je must show that there is some d > O so that for every 
2 p £ P with pw +pH+ T = d, there is a vector a= (a1 ,a 2,a 3) > O 

such that a•e < 0 for all e £ E(p), with a. > 0 only if p. > O. To 
l l 

2 2 do this we apportion d among pw,PH, and T by letting pw = a 1d, pH= a2d, 

and T = a3d, where O < a1,a 2,a 3 ~ l and a1 + a2 + a3 = l. 

Before we discuss the various situations associated with different 

combinations of values for the ai's, we must develop a certain constant 

term. There is a distance beyond which households that work cannot 

reside, no matter how high their earned income. Given an institution-

ally determined set of work days and length of time to be spent 

working on such days, along with the fixed per unit travel time, 

households residing in rings far enough from the CBD simply could not 

find enough time on work days to work and do the commuting needed to 

get to and from the workplace. Let j' be the index of the last ring 

for which residents of the ring who are employed would not have to 

spend more time working and commuting to and from work on a work day 

than the total amount of time available on such days. 23 Given this 
A 

index and other parameters of the model the term, a, can be defined. 
W•N 

• I 
a = j=2 

l + W•N (3.24) _, . a Q, 

PH j I . Q,J 
B•(aLH) • I L J. {-) 

Q,2 
j=2 
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'\, '\, '\, A Note that 0 < a < l. Now define a new term, a, as follows: a= a+ E, 

A 

where E is some positive constant such that E < l - a. Thus, we 
'\, have 0 <a< 1. 

'\, 
Given the definition of a we can subdivide our problem of finding 

an appropriated and vectors a , into the following three cases. 

(i) '\, 

a2 > a 
'\, '\, 

(ii) 1-a '\, l 1-a a, -2- ' a2 < a, a3 ~ - -2-= 
'\, "\, 

(iii) 1-a 1-a "\, 

a3 > -2-, a, < -- a2 < a 
2 ' 

All of the ai's, of course, are assumed in all cases to be non-negative 
,, 

and sum to 1. With respect to the values that pw,PH' and T can assume 

when they sum to d, these cases are mutually exclusive and collectively 

exhaustive. 

Let us first consider case (i). Here p~ is always positive and 

increases with increases ind for any admissible a2. If d,- and so 
2 pH can be chosen high enough so that the generated population exceeds 

the given population, then we can choose a= (0,1 ,0) so as to satisfy 

(H.2) when the price vector is such that case (i) is in effect. To 

investigate this possibility, let us first consider the supply of 

housing in ring 2. As noted, the generated population of a household 

type in a ring is the ratio of the supply of housing to that type to 

the household demand for housing from a household of that type. 

We will concentrate first on the generated population of households in 

ring 2 that choose to work. If dis high enough, then p~ will be 
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large enough so that housing outbids agriculture for land in ring 2. 

Assume then that all of the available land in ring 2 is allocated to 

housing and, in particular, to housing households that work. Using 

the apportionment of d to the three "prices" via the ai's, we study 

what happens to the supply of housing in ring 2 as d increases. In 
2 particular, using (2.46) and (2.51) we take the limit of sH as d goes 

to infinity. 

l . 2 
1m SH = 

d~ 

( 3. 25) 

The value of this limit depends on the Sign Of PH" In particular, 

t ~LH.p~ ,::H f I 2 PH < 0 B. a.KH. A + a.LH . L 
a.KH·PLH 

l . 2 -1 if (3.26) 
1m SH = 

d~ B•(a.LH/H ·L2 PH > 0 

The limit when PH < 0 is, in essence, infinite since in theory the 
A 

upper bound, pLH' can be made as large as desired. 

Turning now to household demand for housing services in ring 2 

for those households that work, we again take the limit as d goes to 

in fi ni ty. 



2 l im XHW = 
d-+«> 

•2·d [ •3·d J + 2 
a2°d-sH 

Note that the form -- 1
2-- 2 aR-pH•sH 

M + al •d•~/-C•U 2 

a •d 3 
_P_ a2°d• l + 2 - l +p a2•d•sH 

+ aT(PT) 
aH aT 

has been used for the tax rate, t. 

is the form it must take for large values of d, since then 
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( 3. 27) 
l 

l +p 

This 

2 PH= a2•d > pHA· By dividing the numerator and denominator of the 

expression in (3.27) by d the limit can be evaluated. Again the value 

of the limit depends on the sign of a substitution parameter. 

0 p < 0 

l im 2 = 
al • ~·J 

if (3.28) XHw d-+«> 
a2 + 

a3 
p > 0 

l . 2 1m SH 
d-+«> 

Since a2 ~a> 0 the limit of x~~ when p > 0 is finite for admissible 

values of a1 ,a 2, and a3. In three out of the four sign combinations 

for pH and p, the generated population of households in ring 2 that 

work, Nw2 
G = 

2 
SH 

-2-· goes to infinity or, with an appropriate choice of 
XHw 
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pLH' as large a value as desired as d tends toward infinity. In these 

cases, then, the generated population can be made to exceed the given 

population by choosing a large enough value ford (and a large enough 
A 

value for pLH when PH< 0 and p > O}. This result holds true even if 

we allow for the possibility that some or all of the land can be 

allocated to housing households that choose to be unemployed. For a 

given d, this will happen for small enough values of a3. To be 
'\, 

precise, if a3 

to work, if a3 
'\, 

Pw 
> d then 

'\, 

Pw 
< d they 

all households residing in ring 2 will decide 

all will choose to be be unemployed, and if 
p 

a3 = dw they will be indifferent between working and not working. 24 

The limit of the supply of housing services provided for households 

in ring 2 that do not work would be given by (3.26) with LiNw replacing 

L2. The limit of household demand for housing by such households, on 

the other hand, will be zero no matter what sign p has, since house-

hold income for this group is M. Thus, d can be chosen large enough 

so that both N~2, when L2 units of land in ring 2 are allocated to 

housing households Nw2 that work, and NG , when L2 units of land in ring 

2 are allocated to housing households that do not work, are greater 

than N. Therefore, ford large enough, the total generated ~opulation 
Pw Pw in ring 2 exceeds the given population for a3 > d and a3 < cf· The 

total generated population in ring 2 will also be greater than N 
'\, 

when a3 = :w since, for a given p, N~2 and N~w2 are proportional to 

the amounts of land allocated to housing the respective household 

types. 

When PH'P > 0, however, the limit of the generated population 



of households that work, lim N~2, is finite and may not exceed the 
d-+ ao 
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given population. If the bid land rent gradient for housing of house-

holds that work could extend out from the center indefinitely asp~ 

increased to infinity, then this case could be dispensed with quickly 

and easily. We would simply note that the supply and demand limits 

would be the same for all rings and the amount of land in a ring 

available for endogenous use increases to infinity as the distance of 

the ring from the center increases. As noted above, however, settle-

ment of rings by households that work must be limited to rings l to j 1
• 

Thus, in this case, the limit of the total generated population of 

households that choose to work and reside in rings 2 and beyond, if 

all of the available land in these rings is allocated to housing these 

households, is 

j I 

l im E 
d-+00 j=2 

• j I 

NWJ = E 
G • 2 J= 

-1 

(a_2 _· B_• _( a_LH_)_P _H •_L J_· _+_a;\ . ~ \ 2 

\- a, •i~ / r~ / (3.29) 

The minimum value that this limit can assume for case (i) is obtained 
'\, '\, 

by letting a1 = 1-a, a2 = a, a3 = 0. In this case (3.29) becomes 

~ .!!. •(a );~ • { Lj/J_\"•. Given the definition of .l' via (3.24) 
1-~ w LH j=l F2/ 
then, it can be seen that the limit (3.29), for any set of admissible 

values for the a;'s, exceeds N. Thus, ford large enough, the total 

generated population of households that work, when all of the available 
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land in rings 2 to j' is allocated to housing these households, is 
greater than the given population. The part of the discussion 
for the other three sign combinations above on the possibility of 
having some or all of the available land allocated to housing house-
holds that do not work can be applied in total to this situation as 
well. Thus, a value can be found so that, if d equals or exceeds it, 
the total generated population of all households in the urban area 
will be larger than the given population, for any combination of signs 
for pH and p. Therefore, for all price vectors satisfying case (i) 
we can choose a= (0,1,0). Hypothesis (H.2)~ for case (i), would 
then be satisfied. 

Let us next consider price vectors associated with case (ii). 
Here we will concentrate on the excess supply of labor. In particular, 
we seek to find what happens to the demand for labor as d increases. 
To do so we analyze the bid land rent for CBD land by the traded good 
industry. Using the apportionment of d defined by the use of the 
terms, ai, and doing a little rearranging, we may rewrite the bid 
land rent, (2.48), as 

a 1°a3 °d 
l + --.;:..__~-~2------2-J 

aR•max[a2•d•sH,PHA•sHA 

(3.30) 
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wheres~ is a function of d (in particular, of p~ = a2·d). 

When PT> 0, given that a1 > 0, it can be seen from (3.30) that the 

bid land rent falls to zero as d increases from low levels. It becomes 

zero at a finite value ford. For higher values, expression (3.5) 

will be operative and, by the convention adopted above, a bid land rent 

of zero would continue to be assigned. Thus, ford large enough the 

traded good industry will be outbid for CBD land. As a result, for 

d large enough, the demand for labor is zero. Suppose instead that 

Pr< 0. As d increases, since a1 > 0, the bracketed expression in 

(3.30) approaches and can even become larger than the bracketed 

expression in condition (c.2). Thus, once again, ford large enough 

the traded good industry wi 11 be outbid for CBD land. Therefore, 

regardless of the sign of PT' a finite value can be found such that 

if d equals or exceeds this value, the demand for labor must be zero. 

Since the supply of labor is always nonnegative, a value ford then 

can be chosen high enough so that the excess demand for labor is non-

positive. Thus, for such a valu~ of d, hypothesis (H.2), for all 

price vectors associated with case (i'i}, can be satisfied by choosing 

a = (1,0,0). 

Finally, consider price vectors associated with case (iii). Here 

the salient feature is that a3 > 0 .. Generated property tax revenues, 

RG' as defined in (3.15)~ clearly increase to infinity as T does. 

Since Tis defined as a3°d, generated property tax revenues will 

exceed the given amount of property tax revenues for large enough 

values of d. Thus, for such values of d, (H.2), for price vectors 
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associated with case (iii), can be satisfied by letting a= (0,0,l ). 

2 Since all price vectors p E P with p + p + T =dare included w H 
in one of the three cases, we can now be assured that hypothesis (H.2) 

is satisfied for some d > 0. With both hypothesis of Theorem l 

satisfied, its conclusion is available to us. It tells us that there 
* is a price vector p E P such that all of the components of some 

* * excess demand vector, e E E(p ), associated with it are nonpositive 
* and, for any component of e that is negative, the associated price 

is zero. It can be shown, however, that for our model all of the com-

ponents of this excess demand vector must be zero. 
* * * Suppose that pw = 0, where pw is the wage rate component of p • 

With a zero wage rate no household residing anywhere in the city would 

choose to work. Thus, the supply of labor would be zero. Since 
* * e ~ O, then, the demand for labor under e must also be zero. Hence, 

* the first component of e , the excess demand for labor, must be zero. 
Suppose now that p~* = 0, where p~* is the price of housing services 

* in ring 2 component of p • As noted above, if p < 0 the bid price 

of housing (for households that work or remain at home) and so the 

housing bid land rent in all rings is zero. The generated population 
would then be zero. Condition (c.3), as noted above also, ensures 

that housing will be outbid by agriculture in all rings when p > 0 and 

the price of housing in ring 2 is zero. Thus, the generated popula-

tion would be zero in this case as well. This would mean, however, 

that the given population exceeds the generated population, and so 
* * the second component of e would be positive. Since e ~ 0, then, 

2* we must have pH > 0 and the generated population equal to the given 



* population (i.e., the second component of e is zero). Finally 
* suppose that T = 0, where * T 

* is the third component of p • 

1 31 

This 

implies that the nominal property tax rate is zero as well, and so 

that generated property tax revenues, as defined by (3.15), are zero. 

Thus, the given level of property tax revenues would exceed RG under 
* * e and, as a result, the third component of e would be positive. 

* * Hence, we must have T > 0 with the third component of e equal to 
* zero. Therefore, e = 0. All markets clear and the generated popu-

lation equals the given population. The actual level of property tax 

revenues raised in this urban economy, however, would be 
2* 2* pre-specified amount of revenues to be raised if pH •sH 

leSS than the 
-2 

< PHA0 sHA' 
2* where sH is the 

2* supply of housing in ring 2 evaluated at PH • Then 

the actual level of property tax revenues raised in ring 2, 

( 
* T 

aR• - 2 
PHA -~HA 

) •Pr•sr, ,iould be less than their surrogate in 

* (3.15), T. As discussed above, however, condition (c.4) guarantees 

that such a situation is not possible. Under (c.4) we cannot have 

2* 2* - 2 . * PH •SH < PHA-sHA withe, = 

tion would be less than the 

* e3 = 0, since then the generated 

* given population (i.e., e2 > 0) · 

popula-

Q.E.D. 

This proof is valuable not merely because it demonstrates, under 

certain conditions on the parameters, the existence of equilibrium 

for the model but, as indicated above, it can be used to sh~W that 

the Scarf alqorithm (or the Merrill extension) can be emplo_,Yed to 
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* * find approximations to the p and e of the theorem. This is 

precisely what we will do below in order to analyze the implications 

of certain tax policy changes. Thus, we get simultaneously, an 

existence proof and a method to compute an equilibrium (or at least 

an approximation to one). 

There are several additional interesting results that can be ob-

tained by using Theorem 2 and the analysis underlying it. Before we 

express and prove them, let us define three notions which will aid in 
* the exposition. First, though, note that the term RG in definition 2 

* is taken to be RG as defined by (3.15), evaluated at p and the 
* associated vector e • 

Definition 1. A normal equilibrium is defined to be a price vector 
* * * * p E P and an excess demand vector e E E(p ) such that e = 0 and 

2* 2* -2 
PH •SH ~ PHA.sHA" 

Definition 2. A non-normal equilibrium is defined to be a price 
* * * vector p E P and an excess demand vector e E E(p ) such that 

* * * * * 2* 2* 2* 2* -2 e1 = e2 = 0, R = RG - T + aR•t •pH •SH , and pH •SH < PHA.sHA" 

Definition 3. A pseudo equilibrium is defined to be a price vector 
* * * * p E P and an excess demand Nector e E E(p ) such that e = 0 and 

Non-normal equilibria are distinguished from normal equilibria by city 

size. Under a non-normal equilibrium no households locate beyond 

the first two rings and at least some of the endogenous land in 
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ring 2 must be allocated to agriculture. Under a normal equilibrium 

households either locate beyond ring 2 or, if restricted to the first 

two rings, are allocated, for housing, all of the endogenous land in 

ring 2. The equilibrium of the conclusion of Theorem 2, by these 

definitions, is a normal equilibrium. Were it not for condition (c.4), 

though, the conclusion of the theorem would have to be modified to 
* * include the possibility that p and e could represent a pseudo 

equilibrium. 

The existence of an equilibrium for the urban economy can be 

proven more easily, and with fewer condi'tions, in the absence of a 

government sector or, for the model above with the restriction that 

the amount of tax revenue to be raised is zero. In particular, we 

can state and prove the following corollary to Theorem 2. 

Corollary 2.1. Given the model described above, exclusive of a 

government sector or with R = 0, and a parameterization that satisfies 

conditions(c.l )-(c.3), an equilibrium (with no excess supplies) exists. 

Proof. Let p = (pw,p~) and E(p) be restricted to its first two com-

ponents under the full model. The proof of Theorem 2, exclusive of 

any reference to taxes and tax rates, carries over completely to this 

situation. Thus, an equilibrium (with no excess supplies) exists for 

the model above with no government sector. If the full model is 

retained, with the exception that R = 0, then an equilibrium (with no 

excess supplies) also exists. If (p:,p~*) is the equilibrium price 
* 2* vector in the model with no government sector, then (pw,PH ,0) can 

serve as an equilibrium price vector for the full model with R = O. 
Q.E.D. 
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Note that the equilibrium in the conclusion of Corollary 2.1 may be 

normal or non-normal. Note also that condition (c.4) is no longer 

needed. Since, in the proof of the above corollary, the proof of 

Theorem 2 was used directly to show existence for the model with no 

government sector, we can be assured that the algorithm mentioned can 

be used to approximate the equi1 ibrium for this model. The existence 

of equilibrium for the full model with R = 0, however, followed not 

from the proof of Theorem 2 directly, but rather from the existence 

of equilibrium for the model with no government sector. An alternative 

proof for the full model case, though, which uses the proof of 

Theorem 2 dir0ctly could have been presented almost as easily. The 

proof of Theorem 2 carries over to the full model with R = 0, except 

* * * that now we must have T = O instead of T > 0. If T > 0, then 
* * * RG > 0 and so R-RG = -RG < O. This would violate the conclusion of 

Theorem l as applied to our model. Of course, it would likely be 

more computationally efficient to use instead the model with no 

government sector. It should also be noted that the proof of Theorem 

2 can be used, in essentially the same way as it was used in the proof 

of Corollary 2.1, to show that an equilibrium (normal or non-normal) 

must exist for the model-, as described originally, but with a finite 

non-zero fixed property tax rate and no property tax revenue con-

straint. This can be stated as another corollary. 

Corollary 2.2. Let the model be as described originally, except 

that the nominal property tax rate, t; 0, is fixed and there is no 

revenue requirement. Then, given a parameterization that satisfies 



conditions (c.1)-(c.3), an equilibrium (with no excess supplies) 

exists. 
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Proof. Let p = (p ,p2H) and E(p) be restricted to its first two com-"' ponents under the full model. The proof of Theorem 2, without refer-

ence to the third component of E in the full model but with reference 

to the fixed tax rate as it relates to the labor and housin§ components 
of E can clearly be applied here. 

Q.E.D. 

Existence of equilibrium is also obtained more easily if the 

model is weakened in another direction. Suppose now that production of 

the traded good is not modelled and, as in some urban residential 

location models, households receive all of their income exogenously 

but nonetheless commute to the point at the center of the region for 

employment. What was the original CBD can now be divided into a 

number of residential rings. Suppose also that there is still a 

property tax and a certain amount of revenues to be raised. For this 
restricted model we have the following result. 

Corollary 2.3. Given the amended model just described, and a para-

meterization that satisfies conditions (c.3) and (c.4), a normal 

equilibrium exists. 

Proof. Let p = {p~,T) and E(p) be restricted to the second and third 

components under the full model. Apply the proof of Theorem 2 without 
reference to production of the traded good and the wage rate. 

Q.E.D. 



l 36 

Of course, this equilibrium can be approximated by the above-mentioned 

computational routine. 

Weakening the model still further by ignoring both production in 

the (non-housing) business sector, and the government sector as it 

relates to revenue requirements, gives us what is essentially a 

generalization of the "Muth model II found in Arnott and MacKinnon 

(1977a). Such a model allows us to cut down even further on the number 

of conditions on the parameters required to establish the existence 

of equilibrium and a means of computing such an equilibrium. In 

particular, we have the following result. 

Corollary 2.4. Let the model be that of Corollary 2.3, except that 

now there is no property tax revenue requirement and the nominal 

property tax rate, t ~ 0, is fixed. Then, given a parameterization 

that satisfies condition (c.3), an equilibrium (with no excess 

supplies} exists. 

Proof. Let p = p~ and E(p) be restricted to the second component 

under the full model. The proof of Theorem 2 with no reference to 

the business sector and a property tax revenue constraint, but with 

reference to a fixed (possibly zero) nominai property tax rate, 

obviously can be applied here. 
Q.E.D. 

Note that the only condition on the parameters required here is the 

rather innocuous condition (c.3). In structure the Muth model in 

Arnott and Mac Kinnon ( 1977a) differs from this version of the base 
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model in only one way. It differs in its treatment of the time cost 

of travel. Leisure does not enter the utility function there. Time 

costs, instead, are reflected in the budget constraint, as a constant 

per mile loss in money income for travel to and from the point CBD. 

While our way of treating the time problem seems superior, our model 

nonetheless could be amended to match the structure of the Arnott 

and MacKinnon model in this regard. None of our results would be 

altered. Indeed it would not even necessitate any changes in the 

proofs of our results. The model of Corollary 2.4 (amended by relega-

ting time costs to the budget constraint) is a generalization of the 

Muth model in two ways. First, city size in Arnott and MacKinnon 

(1977a) is arbitrarily bounded from above by fixing the number of rings 

to be dealt with, although the actual radius of urban settlement can 

vary up to this bound. There is no bound on urban development in our 

model. Of course, no problem arises with parameterizations that lead 

to city sizes that are smaller than the bound. Second, Cobb-Douglas 

utility and production functions are used in the Muth model, whereas 

general CES functions are used here. The Cobb-Douglas function, of 

course, is just a special case (in the limit) of the general CES 

function. Our analysis would actually become easier with Cobb-Douglas 

forms. In fact, use of a Cobb-Douglas utility function eliminates the 

need for condition (c.3). 25 Arnott and MacKinnon (1977a) do not address 

the issue of existence in their paper. The analysis presented here, 

though, shows clearly than an equilibrium for their Muth model exists 

and can be approximated by a fixed point algorithm. 

Returning to the full model, a few more results can be obtained. 



138 

It was stated above that satisfaction of condition (c.4) depends on 

the level of property tax revenues to be raised and/or exogenous income. 

Suppose we have a parameterization that satisfies condition (c.l )-(c.4) 

and so yields a normal equiltbrtum. We may ask how much we may presume 

about the existence of equilibrium for parameterizations with different 

levels of tax revenues to be raised and/or exogenous income. This 

leads us to the following result. 

Corollary 2.5. Let the model be as described originally, with con-

dition (c.l )-(c.4) satisfied for some parameterization with R = R 

and M = M. Then a normal equilibrium exists for any parameterization 

with O ~ R ~Rand M ~~,and the same values that are given in the 

initial parameterization for all other parameters. 

Proof. Conditions (c.l) and (c.2) are independent of Rand Mand 

so will be satisfied by all parameterizations alluded to in the con-

l 
clusion. The term M-c•u2 decreases 

M-c•u 
Thus, condition (c.3) is satisfied 

M = M. 
... , 

Increases in M reduce NG+ 

. th . . t1 . l 2 w, increases ,n r since u· < u. 

for M > M if it is satisfied at 
"2 NG in two ways. First, increases 

in exogenous income, other things equal, increase household demands, 

x~ and x~. Second, changes in M affect N6 through changes in pH1A. 

'\., - l - l a.t 
(M + Pw•W-c•u )(T-W-v u ) 

The term------------- decreases with increases in M. 
a. 

M•T t 
-1 Decreases in this value, in turn, reduces pHA" The reduction in 

price reduces supply, s~, and increases demand, x~. Thus, N~ 
is lowered. Given values of the other parameters, then, if 
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condition (c.4) is satisfied for some value of M, it \-Jill be satisfied 

for all higher values of r.,. The pre-specified level of tax revenues, 

R, has an impact on condition (c.4) only through the tax rate term, t. 
" Reductions in R reduce t. A.decrease in the tax rate used will 

· l 2 A 

increase household demands, xH and xH, directly. The term t can also 
-1 " -1 

affect pHA" If p < 0, then reductions int decrease pHA" The lower 
1 price, in turn, lowers supply, sH, and 1 increases demand, xH, thereby 

" "1 lowering NG. If p > 0 then changes int have -1 no effect on pHA" 

In sum, reductions in R "1 "2 lower NG+ NG. Thus, given values for the other 

parameters, if (c.4) is satisfied for some value of R, it wi 11 also be 

sa tis fi ed for lower values of R. Thus, conditions (c.1 )- (_c.4) will be 

sa tis fi ed for 0 ~ R ~ Rand M > ff. The proof of Theorem 2 can then be 

applied for the cases where R > o. Coro 11 a r y 2 . 1 shows that an equi-

1 ibriulil exists for R = O. It must be normal since,. here, (c.4) is 

satisfied at R = 0. 
Q.E.D. 

Thus, if we have a parameterization that satisfies the four conditions, 

we know not only that, for this parameterization, a normal equilibrium 

exists and can be approximated by the algorithm, but also that the same 

can be said if we lower the level of tax revenues to be raised and/or 

increase exogenous income. 

The exogeneity of R suggests that genuine (i.e., normal and non-

normal) equilibria may not exist for some parameterizations. There 

seems to be no a priori reason to suppose that, for a given population 

size, the wage and tax rates can always adjust to allow the urban 

economy to meet the revenue requirements of government, when those 
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requirements are arbitrarily selected. It would seem that there 

may not exist a genuine equilibrium if R is chosen too high. This 

is certainly the case for a restricted version of the model. Suppose 

that (non-housing) business sector production is not modelled and 

households receive all of their income exogenously. Suppose also 

that the required amount of revenues, R, exceeds or equals aggregate 

household income. Then, a genuine equilibrium cannot exist. The 

city is simply too poor to support property tax revenue needs. In 

the full model, however, the issue becomes muddled by the fact that 

households can receive endogenous income and the business sector 

may contribute to property tax payments. Although we cannot prove it, 

it does not seem unreasonable to suppose that equilibrium may not 

exist for a parameterization th.at has, in some sense, tax revenue 

requirements that are too high. 

Our last result concerns pseudo equilibria, which, as noted 

above, we cannot rule out as a possibility for a solution of the 

computational routine in the limit, if condition (c.4) is not 

satisfied. Even though we do not demonstrate the existence of a 

pseudo equilibrium for some parameterization, we may ask how might 

we change parameter values to get a genuine equilibrium should the 

algorithm, in the limit, yield a pseudo equilibrium for some para-

meterization. Of course, we may attempt to change parameter values 

so as to satisfy (c.4). This can certainly be done by simply raising 

exogenous income enough. Let us concentrate, though, on the tax 

revenues to be raised, R. \tie might satisfy (c.4) by lowering R 

enough. Then, assuming conditions (c.l )-(c.3) are satisfied, we 
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could obtain a normal equilibrium for a particular value of Rand 

all values lower than it. For some parameterizations, ho\'Jever, (c.4) 

will not be satisfied (just ch.oose t1 low enough} even if R = 0. 

Can equilibria be found for some value of R in these cases? The 

problem with pseudo equilibria is that the tax revenues actually 

raised in the second ring in these cases are less than what is meant 
* * to represent them in RG--tne variable T • Since the level of tax 

revenues to be raised is a parameter, we might think of lowering it to 

the level of the tax revenues actually raised in these cases. This 

leads to the following result. 

Corollary 2.6. Let the model be as described originally, with con-

ditions (c.l )-(c.3) satisfied for a particular parameterization. 

Let R be the given level of tax revenues to be raised under this 

parameterization. Suppose that, for this parameterization, the com-
* putational routine, in the limit, terminates at a price vector p and 

* excess demand vector e that represents a pseudo equilibrium. Then 

a non-normal equilibrium exists if the level of tax revenues to be 

i;i., " * - -2 2* 2* raised is changed to K = R - aR•t •(pHA.sHA - PH •sH }. 

Proof. * * 2* * l* At the price vector p = (pw,PH ,T } define RG to be RG, 
* * as given by (3.15} evaluated at p and the associated vector e , minus 

* * ,... * l* 
T • Then, at p , we have R = T + RG • Actual tax revenues raised, 

* 2* 2* l * however, are aR.t .pH .s 8 + RG. In this situation, by the definition 

oft gtven in (3.14), we have Thus, at the price 

* vector p , actual tax revenues ratsed will be equal to the required 
~ * * level if that amount is R. Since p and the associated vector e , 



142 
* with R = R, represents a pseudo equilibrium, then, at p , even if 

* * R = R, there is an excess demand vector, e E E(p ), with the generated 

population equal to the given population and labor demand equal to labor 

supply. 
Q.E.D. 

Thus, ·by 1 oweri ng revenues to be raised by just the right amount we can 
'v show the existence of a non-normal equilibrium. Note that R > 0. This 

can be seen by observing that 

'v * - -2 2* 2* k = R aR•t (pHA0 sHA PH •SH ) = 

* * * l* * T 2* 2* l* T 2* 2* = T + RG T + •pH •SH = RG + . PH •sH _2 _2 
PHA 5 HA PHA0 sHA 

* This last expression must be positive since -r > 0 and, if no land 
2* 1 * is allocated to housing in ring 2 (i.e., sH = 0), RG > 0 because 

then, all of the given population must be housed in ring 1. Unfor-

tunately, though, the equilibrium we are discussing is not a solution 
* that the computational routine would find. At p , generated tax 

h '\, '\, revenues are R > R. If the algorithm were run with R = R, then it 

would have to terminate, in the limit, at a different price vector. 

In fact, assuming that (c.1)-(c.3) are satisfied, the computational 

routine used will never terminate, in the limit, at a non-normal 

equilibrium. If (c.1)-(c.3) are not violated, then the algorithm, 

in the limit, will terminate at a price vector and associated excess 
* demand vector where RG = R. Suppose that the terminal price vector 
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* p yields a non-normal equilibrium. At a non-normal equilibrium, 
2* 2* -2 however, pH •SH < pHA"sHA" Hence, the actual tax revenues generated 

* at p would be less than the given level of revenues thereby violating 

the definition of a non-normal equilibrium. This weakness of th.e 

framework, however, is greatly mitigated by the fact that non-normal 

equilibria are exceedingly uninteresting. At such an equilibrium all 

economic activity in the urban area occurs in the CBD, or in the CBD 

and the first, rather small, residential ring surrounding it. Clearly, 

no realistic equilibrium for the urban area would be characterized in 

this way. What happens, though, in the situation considered in 

Corollary 2.6 when the computational routine is run with the lower 
'\, 

level of revenues, R? Given the assumption that (c.l )-(c.3) are 

satisfied and the proof of Theorem 2, the outcome, in the limit, 

must be either a normal equilibrium or another pseudo equilibrium. 

The possibility that a normal equilibrium could result raises the 

spectre of multiple equilibria. Unfortunately, we cannot rule out 

the possibility of multiple equilibria of any kind (multiple non-

normal equilibria, multiple normal equilibria, and combinations of 

normal and non-normal equilibria). As has been done in some studies 

that use these fixed point algorithms, to test for multiple equilibria 

we will start the algorithm, for a given parameterization, at widely 

differing points on the price simplex. Although this does not prove 

uniqueness of a normal equilibrium that has been found by the 

algorithm, it does seem to provide some evidence that other normal 

equilibria do not exist for the given parameterization. It does not, 

however, provide any evidence that non-normal equilibria do not exist 
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for the given parameterization since, as noted, the algorithm cannot 

terminate, in the limit, at such equilibria. If running the algorithm 
"\., 

wi~h R = R results in another pseudo equilibrium then the process can 

be repeated. The level of given tax revenues can be lowered again and 

the existence of another non-normal equilibrium established. This 

could, in theory, continue indefinitely. Thus, it can be stated if 

a pseudo equilibrium is found by the computational routine for some 

parameterization, then multiple equilibria exist and/or an infinite 

number of non-normal equilibria exist for the set of parameterizations 

that differ from the given parameterization only by virtue of having 

a lower value of R. 

III. The Burden of the Error of Approxtmation 
* The solution price vector p to which we have been referring 

will be found, it has been stated, at termination of the algorithm 

in the limit. By this it is meant that the price vectors at which 
* the algorithm terminates for given grid sizes tend toward p as the 

grid becomes infinitely dense. In practice, the grid size in use when 

the routine terminates must be finite. Thus, in general, the price 

vector found at termination will be only an approximation to the true 

equilibrium price vector. Of course, the approximate equilibrium 

price vector can be made arbitrarily close to the true equilibrium 

price vector by choosing a dense enough grid. In general, though, 

the components of the excess demand vector associated with the terminal 

price vector will be only approximately zero. In partfcular, the 

difference between the final generated population and the given 
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population may be non-zero. 

One may object on aesthetic grounds to a characterization of a 

solutton to the model in which not all of the given number of house-

holds or more than the given number of households are actually housed 

in the urban area. It might be better at termination to house exactly 

the number of households given in the parameterization and, as a 

result, shift the error of approximation for the second component of 

E(p} to one or some of the markets in the model. Errors of approxi-

mation could then be expressed in terms of excess demands or sub-

optimal behavior on the part of agents in markets. 

There are several ways, that we can imagine, to do this. We 

might, for instance, if too few households are generated, somehow fit 

the difference uniformly across rings by placing an equal number in 

each ring. Although this seems, at first glance, to be a symmetric 

approach, in a meaningful sense it really is not. It amounts to 

treating different rings differently since population densities vary 

from ring to ring. A better approach to take, it seems, would be to 

change the population of each ring by the same percentage of the popu-
* lation generated by the algorithm. In particular, let NG represent 

the generated population at termination of the algorithm. Regardless 

of whether the final generated population exceeds or is less than the 

given population, we define the percentage change in the population of 

each ring in the set of rings occupted in the final approximation to 

be 

( 3. 31 ) 
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* . "* The population of an occupied ring now becomes (1 + n6]•Ni , where 

Nj* is the generated population of ring j at the final approximation. G 

In this way the population of each ring is changed by the same propor-

tion, and the number of households finally housed in the urban area 

equals the given number. 

We must ask, though, just how we are to acco~plish this addition 

or s·ubtraction of households from rings. In this regard we must also 

consider what effects the process will have on the markets of the 

model. We could shift the population error to the housing markets 

by increasing the aggregate demand for housing in each ring by the 

same percentage referred to above, while keeping household demands the 

same. This would preserve the optimization processes of households. 

It suffers, however, from the same sort of interpretational weakness 

as does the final approximation. Since nothing was done to alter 

supply in a ring, it is not possible to house more households than is 

done in the final approximation, when too few households are generated 

there. The best approach to take seems to be the following. Change 

the number of households in a ring, not by changing aggregate demand 

for housing in a ring, but rather by changing housing supply in each 

ring. The supplies in each ring are to increase or decrease by the 

same proportion as does the population. This places the burden of the 

error associated with the generated population on housing producers. 

We can still preserve land market equilibrium by having the increased 

(decreased) supply arise not from housing producers using more (less) 

land than is allocated to housing in the final approximation, but 

rather by housing producers using more (less] capital than is optimal 
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at the final price vector. Housing producers, of course, would then 

be earning negative economic profits. The story that would have to be 

told here to justify an approximation of this type is that actual 

rates of return to housing producers in an acceptable approximate solu-

tion are less than a normal rate of return, by an amount small enough 

that housing producers would not bother to alter their production 

plans. 

In the results to be presented below, population densities and 

capital/land ratios will be reported. They should be adjusted, though, 

to account for the changes mentioned. It is easy to calculate the 

new population densities. They are simply the densities under the 

final approximation, increased or decreased by the proportion given 

in (3.31). We can obtain the new capital/land ratios via the housing 

production function using the amount of land allocated to housing in a 

ring under the final approximation, and the new supply of housing for 

that ring. This process of adding and subtracting households also has 

effects elsewhere in the model. In particular, labor supply and tax 

revenues generated would change. Thus, appropriate adjustments to 

the errors in the first and third components of E should be made. It 

is a simple matter to do this for tax revenues generated. Housing 
* '* '* property tax revenues in ring j can be expressed as aR•t -p~ -s~ , 

and the adjustment that is to be made to housing supply has already 

been noted. Matters are a little more complicated with labor supply 

because of the option that households have to refrai"n from work. If 

all households in a ring, under the final approximation, cho:ose to work, 

then all of the households added to or subtracted from the ring, as the 
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case may be, are used for the recalculation of labor supply. If all 

of the households in a ring, under the final approximation, choose to 

be unemployed, then the change in population in that ring ts to have 

no effect on labor supply. Finally, if, under the final approximation, 

some households in a ring choose to work while others in the ring do 

not, then labor supply is adjusted in accordance with the proportion 

of the total population of the ring, under the final approximation, 

that choose to work. That is, the potential labor services of a 

proportion of the households added to (subtracted from) the ring is 

added to (subtracted from) aggregate labor supply, with this proportion 

being the proportion of the population of the ring, under the final 

approximation, that work. 

As has been noted, the burden of the population error in the final 

approximation can be shifted entirely. For the most part, it is 

shifted onto the housing producer profit maximization process. But 

just what happens to profits when this is done, and is it measurable? 

We may define a rate of return to housing producers as follows. Let 

pK be the purchase price of a physical unit of capital and r be the 

annual interest cost of (or normal rate of return on) capital. The 

relationship of these new variables with the annual rental price of a 

unit of capital, pK, given in the model above is pK = r-pK. We may 

then define the actual rate of return received by housing producers 

for housing in ring j on a dollar's worth of capital expenditures to be 

(3.32) 
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If the optimal amount of capital used in ring j by housing producers 
"* for the final approximate price vector, say K~ , is used, then the 

normal rate of return, r, will be earned by producers. Using more or 

less capital will result in a value of ra that is less that r. To 

measure the error due to using non-optimal amounts of capital in 

housing production, which would be done to house exactly the given 

number of households, we need not specify values for the new variables, 

pK and r. We express the error as the percentage decline in the actual 

rate of return from the level of the normal rate of return as follows: 

(3.33) 

where_ K~ is the amount of capital that must be used in housing pro-

duction in ring j, to yield the supply of housing in that ring required 

to house the given number of households in the urban area under the 

procedure to shift errors mentioned above, and all other variables 

assume the values given for them at the solution obtained at termina-

tion of the algorithm. 

Acceptable errors can then be defined in terms of this percentage 

decline in the rate of return. Note finally that the sub-optimal 

rates of return earned by housing producers will, in general, vary 

from ring to ring. 
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CHAPTER 3 

FOOTNOTES 

1 The elasticity of factor substitution 
1 A positive pH implies that the = 1 +pH . 

less than 1, while a negative PH implies 
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in housing production is 

elasticity of substitution 

that it is greater than 1. 

2 It can be positive if, for instance, pH= 1. Then if, say, 

(
(BpljH /H)l +!H 

a.LH 

1 

<
. PH)~ KHCi\) 

= 5 and a.LH = 10, expression (2.46) would 

yield pljH = 25. 

3 Inspection of (2.43) reveals that the bid price of housing 
services declines with distance from the CBD. Thus, if the housing 
price in a ring is low enough to yield a zero bid land rent in the 
ring, then we know that this must also be true for all rings farther 
out. Land is not allocated to housing, though, unless the bid rent by 
housing producers is at least as large as the agricultural rent. We 
should not, therefore, continue to calculate bid prices for rings 
farther out after one is found which yields a land rent which is equal 
to or less than the agricultural rent. 

4 As will be indicated below, in any attempt to use the algorithm, 
the size of the price-tax rate simplex over which the program searches 
must be pre-specified. This can be set at will but, as described 
below, it must be large enough to allow equilibrium prices to be found. 
Thus, given a specification of the size of the simplex, the bid price 
of housing services cannot exceed a certain amount. It may be that a 
size can be chosen which is large enough to yield an approximate 
equilibrium and yet is small enough so that (3.1) is never non-positive. 
In this case the bid rent function need not be bounded. In general, 
though, an adjustment should be made. 

5 As can be seen from the existence proof presented below, choosing 
an upper bound on housing bid land rents will not prevent an approxi-
mate equilibrium from being found if the bound can be as large as 
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desired. In principle we could keep increasing the bound until the 
equilibrium is found, but, as mentioned above, there is a limit to 
how high the bound can be when the computer is used. The existence 
proof provided below presumes that this machine constraint is not 
binding. 

6 Just as the computer is limited in its ability to deal with 
extremely large, in absolute value, numbers it is also limited in 
dealing with very small, in absolute value, non-zero numbers. If the 
value of a variable is positive but sufficiently small the computer 
will treat it as though it were zero. 

7 It has the additional effect of placing an upper bound on the 
demand for labor. The importance of this, aside from allowing us to 
avoid the problem of dealing with infinity on the computer, will 
become apparent in the next section when the issue of the existence 
of equilibrium is raised. 

8 The bound varies with the tax rate as can be seen by noting 
that it appears directly as an argument in expression (3.8) and 
indirectly through its influence on pA. Actually, we can state 
unambiguously the direction of changewin p~H as the tax rate changes. 
Inspection of (2.48), \'Jith the substitution of pA for p~T' reveals 

PA 
that (l+a:•t) appears separately as an argument. The only other place 

where it has an effect is in the first component of the bracketed 
expression in (2.48). An increase int will raise that component. To 
offset this effect, so as to keep the bid rent constant at pA, the 

A 
Pw 

term (l+a •t) must be decreased. Taking note of this, an inspection 
I ,. l 

of (3.8) shows that pLT must decrease with increases in the tax rate. 
There is a limit, though, to how low p~T can be, for a given size of 
the price-tax rate simplex, since an upper bound on the tax rate 
exists. In any case, the level of b can be raised to make 
p~H' for any given size of the simplex, as large as desired. 

9 Arguing heuristically, the agricultural rent should be relatively 
low and, since the bid land rent is inversely related in (2.48) to the 
wage rate, the wage rate which yields the agricultural rent, for a 
given tax rate, should be relatively large. For reasonable parameteri-
zations., i.e., those that yield equilibrium CBD land rents for traded 
good producers well in excess of the agricultural rent, it would seem 
that the labor demand derived using the agricultural land rent and the 
wage rate associated with it is not likely to be very large for many 
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values for the tax rate. l In such cases pLT would generally exceed 
A pA, and pw would be less than Pw· ~Jhenever it should happen, though, 

A that p > p for some tax rate, no CBD land would be allocated to the w w 
traded good industry. To be more precise, though, the whole issue 
can be avoided with certainty by choosing a large enough value for b. As 

noted above, 
PA 

__ w __ decreases as t increases. 
( l +a I •t) 

Given a size of the 

simplex, however, t cannot exceed a certain level; say t. We can 
Al 

choose b large enough, then, so A that pLT evaluated at tis greater 
than pA. If this is done then p~T will exceed pA, and ~w will be 
less than p~ for any admissible tax rate. 

lO For the basic model this will be true even though 
p = (p!,p~,t) contains three components. Use of the procedure to 
find a solution that is indicated by the proof of Theorem l, to be 
stated below, requires that a fourth dimension be added. This extra 
"price" is a dummy variable with no economic interpretation. It also 
does not correspond to the artificial dimension introduced as part of 
the Merrill extension mentioned above. 

11 More precisely, the bid prices pJw and pJNw are chosen so that 
the households would attain the same level of utility, v2, under 
either option. Then, if the actual price of housing services is the 
higher of the two bid prices, the option w~th the lower bid price 
would yield a level of utility less than V • 

12 For simplicity of argument, we may presume that cases of 
indifference between working and not working are treated as though the 
optimal decision is to work. The result that (c.3) 2implies that the 
housing sector is outbid for land in the CBD when pH= 0 and p > 0 is 
not ::•n ged liy exp l i cit l; considering cases of ind if fer•:e:) -

Differentiating~ with respect to pw, we obtain dp -
y w 

This is negative since u1 2 
< u • 
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14 At greater distances net income falls to zero. Noting (2.43)~ 
we can see that the bid price for housing, and so the bid land 
rent by the housing industry, falls to zero as income does. Thus, the 
housing bid land rent gradient for households that work must eventually 
fall below any positive value. 

15 One may wonder if thi's conclusion need be true since it might 
oo • N • 

seem that the infinite series .t::'\, N~wJ, where NGWJ was defined above 
J=J 

and J is the i'ndex of the first ring for which housing for these 
household types outbids all other uses for land, can be convergent. 

N • 
This, however, does not occur. The term NGwJ can be calculated as the 

ratio of the supply of housing in ring j allocated to households who 
do not work divided by the demand for housing in the ring by such a 
household. This supply of housi'ng, however, is, for a given price 
vector, proportional to the amount of land in the ring allocated to 
housing for this group. In the situation considered, all of the 
endogenous land, Lj, ts allocated to housing this household type. 
Thus, our sum can be written, for a given p, as the product of a 
constant term and the sum of the amounts of endogenous land for all 

00 • 

. f 'v LJ rings rom J on, .t::'\, • It can be easily shown, however, that the 
J=J 

areas of concentric rings of a given width increase to infinity as 
the radius of the rings goes to infinity. ln particular, in our 
context, let the radius of some ring be u and the width of any ring 
be w. Then, the land area avai'lable for endogenous use in the next 
ring, assuming say that one-third of all land in a ring is available 

for endogenous use, is i·((u+w) 2 - u2) = 3(2uw + w2). Clearly this 
(D • 

area goes to infinity as u does. Therefore, I LJ = 00 , and so . '\, 

(D 

NNwj = 00 

G 

J=J 

16 One may question whether this is valid when PHNw = PHA = P~-
In such cases, households who choose to be unemployed can be generated 
and housed in rings beyond ring 2. Only housing and agriculture, how-
ever, can use endogenous land in ring 2 and beyond. Given then the 
convention referred to above, by which the total generated population 
of households who do not work are housed, given their demand for 
housing, as close together as possible starting a! ring j (ring 2 in 
this case) if some of the available land in ring j is not allocated 
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,... 

to other non-agricultural uses, or at j + l if all of the available 
,... 

land in ring j is allocated to other non-agricultural uses, housing 
extends beyond ring 2 only if all of the endogenous land in ring 2 

2 2 - -2 is used for housing. But then pH-sH = PHA.sHA" 

17 A correspondence E:P + V can be defined to be upper semi-con-
tinuous in the following manner. Suppose p!p: •.. ,pk, •.. is a sequence 
of points in P which converges to a potnt p0 tn P(pk + p0 ). Let 
e' E E(p1 ):e 2 

E E(p2), ... ,ek E E(pk}, •.• be a sequence that converges 
to a point e (ek + e). Then Eis upper semicontinuous if e E E(p). 

18 If p~ "f O then W = HT(p0 ). If, however, p~ = 0 then by (3.15), 
,... ,... 
WE WT(p0 ) (i.e., labor demand is a set of points, one of which is W). 

19 The situation where p0 is such that (2.52) yields W when 
Li= L1 will not be explicitly considered, in this case, since the 
upper semicontinuity result would then follow straightforwardly from 
combining the two approaches (i.e., the analyses for the two distinct 
regions of price space). 

2° For a given d, p~ and T (and sot) are bounded from above. 
Given the functional forms posited, this implies that the generated 
population of households that work in a ring is bounded from above. 
The number of rings with households that work must be finite since 
the bid land rent gradient for housing such households must fall belml/ 
the agricultural land rental at some finite distance. Thus, the 
generated population of households that work is bounded. 

21 ,... l ,... 
Both pLT and pw are defined and produce an upper bound for 

labor for a given finite t. Since T is bounded for a given d, the 
tax rate will be bounded as well. Thus, the upper bound on labor 
would be the largest of the upper bounds for the set of admissible 
values oft. 

22 When PT < O the bid land rent is bounded by the highest value 
that can be obtained for p~T' for the given value of d. Hhen PT > 0 
the bid land rent is bounded by the value of p~T obtained after 
substituting zero for p and t in (2.48). From (2.53) it can be seen w 
that capital demand is bounded from above if the bid land rent for 
the traded good industry is bounded from above. 
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23 Households residing in a ring, where commuting time plus work 
time equals the total amount of time available for commuting, working, 
and (say, non-sleep) leisure on work days, might still be willing to 
work. So long as the number of work days in a year is less than the 
total number of days in the year, households would find it optimal to 
work if the wage rate were high enough. They could enjoy positive 
amounts of leisure (and so non-zero utility) from their non-work days. 

24 This statement is valid, of course, only if we presume that d 
~ 

is large enough so that .Pw < l. 
d 

25. If the utility of a household residing in ring j is given by 
. . . a . S 

U(x~,x?) = A·(x~) (x?) with a+S = l, then the bid price of housing 
l 

services in ring j would be, p~ = p~ (~) 0 Thus, if p~ = 0 then 

we must have p~ = 0. 



CHAPTER 4 

EXTENSIONS TO THE BASE MODEL 

Taxing business property in the urban area at a higher effective 

tax rate, holding revenues constant, appears to give obvious direct 

benefits to residents in the model. The residential effective tax rate, 

it would seem, should fall. There are, however, in reality opposing 

effects on the welfare of households, one of which has found expression 

in the base model. Higher effective tax rates on commercial-indu.strial 

property should lead to reduced demands for labor and so lower wage rates. 

Production for a business sector (the traded good industry) that uses 

labor as an input has been modelled. Thus, the effect of changes in tax 

structure on labor income has in some way been captured. One other poten-

tial major effect on household welfare, however, has not. Changes in 

relative effective tax rates might cause price changes for some non-

housing consumer commodities. To allow for this, in section I we extend 

the base model so that it includes what may be called a local good. It 

is a commodity that may be consumed by households and produced in the 

urban area. Although this same commodity1 may be produced elsewhere, it 

is not imported to the urban area under consideration. Neither is any 

of the local good that is produced in the urban area exported to other 

regions. Thus, the relevant market is the urban area, and so, unlike 

the traded good, its price can change in response to changes in business 

tax rates in the given urban area. The modificationsthat must be made 

to accomodate incorporation of this new commodity in the extended model 

are presented in section I. Section II considers an additional 

156 
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important extension. Neither the base model nor the model which in-

cludes a local good can tell us anything about distributional issues. 

To address such concerns, in section II multiple household groups are 

added to the framework. The household groups may differ by preferences 

and/or income.2 The differences in income may arise because of dif-

ferences in exogenous household income and/or differences in endogenous 

labor income. To yield labor incomes that vary by household group, 

multiple labor types are incorporated in the production technologies of 

the traded and local goods. Finally, section III introduces and dis-

cusses the welfare measures that are to be used in the numerical simula-

tions. 

I. A Model with a Local Good 

To extend the base model in a desired direction we add a commodity 

which can be consumed and produced in the urban area under consideration 

and has a price that is endogenous. To ensure this we assume that the 

commodity cannot be imported to or exported from the city. Thus, market 

clearing for the commodity involves equating local demand and local 

supply. The price of the local good will therefore be sensitive to 

changes in local tax policy. 

A. Structure of the New Model 

Production of the local good is to be thought of as a commercial 

activity, whereas production of the traded good is now considered to be 

an industrial activity. This allows us to make a three-way classification 

of pro~erty in the model which mirrors the three major categories found 
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in practice - commercial industrial, and residential. This classifica-

tion is made operative in the model by adding an assessment/sales ratio 

for commercial property, ac, which may differ from the assessment/sales 

ratios already introduced (i.e. a1 and aR). As with the traded good, 

we restrict production of the local good to a CBD. We now, however, 

divide that CBD into two rings. To the cumulative districting scheme 

mentioned above we now add to the ranking of land uses, commercial 

(i.e. local good) production. It is ranked above industrial (i.e. traded 

good) use of land but below housing production. The first ring is zoned 

industrial so that all uses, including local good production, may locate 

there. The second ring, however, is zoned commercial so that all land 

uses, with the exception of traded good production, are allowed there. 

The third ring and all rings further out are zoned residential so that 

only housing and agriculture can bid for land in these rings. 

The production technology for the local good is constant returns to 

scale and uses capital, labor, and land from the first two rings as in-

puts. In particular, output of the local good in a ring is given by the 

following CES production function. 

( 4. 1 ) 

for j = 1 ,2 and with D>O, aKC' aLC' awc>O, Pc>-1, Peto 

The term K~, W~, and Ll represent capital, labor, and land usage, 

respectively, by the local good industry in ring j. Setting price equal 

to average cost for the local good industry and inverting yields the 



industry's bid land rent. 

1 
l+pc 

where Pc is the endogenous price of local good output. 
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l+pc 
Pc ( 4. 2) 

Households may purchase the commodity at the same price regardless of the 

location of their residence. Note that the bid land rent is not indexed 

by ring even though the local good industry may locate in either or both 

of the first two rings. No cost of transporting the good to a marketplace 

is assumed and labor can be hired at the same rate anywhere in the CBD, 

so that the industry's bid land rent gradient is flat. This bid land rent 

and the first order conditions for cost minimization can be used to find 

expressions for the· local good industry's demands for labor and capital. 

wj = (awc·PLc· (l+act)) ,:Pc Ll 
C aLC PW / 

j = 1,2 (4.3) 

1 
Kj = (aKC.pLc\ l+pC 
C aLCTiK/ 

j = 1, 2 (4.4) 

where Ll is the amount of land in ring j available for endogenous use that 

is allocated to the local good industry. 

These demand relations can be used to express local good supply from a ring 

as a function of input prices and the amount of land in the ring allo-

cated to local good production. In particular, we may write 
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(4.5) 

Turning to the consumption side, we add the local good to the house-

hold's list of commodities for potential consumption by forming the follow-

ing household utility function for ring j. 

• • a,9., • -p . -p . -p -1 
uJ = A,{9.,J) ,[aw(x~) + aT•(xf) + ac(xi) Jp (4.6) 

where A>0, aH' aT' ac > 0, p > -1, pt 0 

The term xl is consumption of the local good by a household residing in 

ring j. 

The price of housing services over which the algorithm will search 

is again taken to be the one for the first ring that is zoned residential; 

in this case, ring 3. The benchmark utility level is now given by the in-

direct utility function for households residing in ring 3. It can be 

The housing bid price gradient is then found by inverting expression (4.7). 

In particular, the bid price for housing services in ring j is given as 

(4.8) 

Given an expression for indirect utility, use of Roy's identity will 

yield the following demands for housing services and the local good for 

households residing in ring j. 
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yj 

x~ = -P~--(_l_+_a R-_-t-) +_a_T_~_P T-.)-,-~p-.-( P-~~-(-l -+a_R ___ t_1_,..,,...!-P +-a-c{_P_c_) _1 ~-o--(-P-~-(-1 +_a_R __ -t )-. -,-lo-( 4 . 9) 

l aT aH \ac aH 

(4.10) 

We may again distinguish between the demands of households in a ring that 

work and of those in a ring that do not work. They will differ only in the 

income terms in (4.9) and (4.10). For the local good, the demands for 

households that choose to work and households that choose to be unemployed 

will be represented by x~W and x~NW' respectively. 

The excess demand correspondence, E(p), defined on the price vector, 

p, is to be represented, in part, by the three components given for it 

above - one for the excess demand for labor, one for the difference be-

tween the given population and the generated population, and one for the 

difference between a pre-specified level of tax revenues and generated tax 

revenues. Some adjustments must be made, however, to the expressions for 

the demand for labor and the generated property tax revenues. Labor demand 

can now arise from two industries. Thus, aggregate labor demand, wd, is 

given as 

wd = w + w1 + w2 
T C C (4.11) 

Business property tax revenues can now also arise from two industries. 

Thus, we let generated property tax revenues be expressed as 
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The property tax rate, t, is now defined in terms of ring 3. In particular, 

it is now expressed as 

(4.13) 

where aR > 0 and sHA3 is the supply of housing services in ring 3 forth-

coming when the price of housing services there is pHA and all available 

land in the ring is allocated to housing production (i.e. L~ = L3). 

The price vector, p, and the excess demand correspondence, E(p), must, 

however, be augmented in the extended model by a fourth component. For 

the price vector the new component is the price of the local good. Thus, 

search is now to be conducted over vectors p=(i:w, p~,T,Pc). The corres-

ponding component of E(p) is the excess demand for the local good. Aggre-

gate demand for the local good is dependent on household demand and on the 

size and distribution of the generated population. Aggregate demand for 

the local good, x~, may be determined as follows: 

xd = t (xj ·N Wj+ xj ·N N~Jj) 
C j=l CW G CNW G 

(4.14) 

The aggregate supply of the local good, sc, is just the sum of the sup-

plies from the two CBD rings. Thus, we may write 

{4.15) 
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The excess demand correspondence, E, defined on price vectors, p, can 

now be represented as follows: 

Wd - ws 

E(p) = N - NG 
R - RG 
Xd -C SC 

* * 3* * Our goal is to find a price vector p = (pw,PH ,T*,pc) 
* * * * * * d* * exists e EE(p) with e1 = e2 = e3 = O and Pc•(Xc - sc) 

* 

(4.16) 

such that there 
d* ; o, where Xe 

and scare aggregate demand and supply for the local good, respectively, 

evaluated at p*. 3 

B. Restrictions on the New Model 

In addition to the restrictions on the functional forms and the con-

ditions on the parameters delineated in the previous chapter for the base 

model, similar restrictions and conditions relating to the local good must 

be imposed here. As was true for the traded good industry's bid land rent, 

problems can arise when the bracketed expression in (4.2) becomes negative. 

If Pc> 0, for a wage rate-tax rate-price of local good combination at 

which the bracketed expression is negative, the price of the local good 

will be less than the average cost of producing it, and so profits would 

be negative. 4 Proceeding as we did with the traded good, then, a bid land 

rent of zero is assumed for the local good industry when Pc> 0 and the 

bracketed expression in (4.2) is negative. 

On the other hand, the problems are again more complicated when 

Pc< 0. When Pc< 0 and the price vector is such that the bracketed ex-

pression in (4.2) is negative, the price of the local good will exceed the 
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average cost of producing it, and so profits would be positive. Dealing 

with this sort of problem, in relation to the local good is, however, 

more complicated than it was for the traded good since output price can 

now vary. Once again, however, we choose some level of labor demand, 

say b~-N-W, well in excess of the maximum potential supply, N-W. Working, 

as we are, with a given simplex, the wage rate must be bounded from above. 

In particular, it cannot exceed d. Our approach is to first substituted 

for the wage rate and the large level of labor services just mentioned 

(b~-N-W) for labor demand in expression (4.3). Then, using the minimum of 

the total amounts of land available for endogenous use in the two CBD 

rings and inverting (4.3) with respect to pLC' we obtain, at a given tax 
A 

rate, an upper bound, say pLC' for the local good industry's bid land rent. 

(4.17) 

Next, we find the local good output price that is consistent with this bid 

land rent and a wage rate of d. That is, we invert (4.2) with respect to 

Pc and substitute pLC for PLC and d for Pw to obtain 

l l 
,.,. _ 1 [ [ ( ) ,.,. J Pc T+"p Pc 1 +pc Pc- l'f (c\C l+aC.t ·PLC ) C + (aKC[(l+act)•1\J ) 

l l+pC 
PC T+°p --+(aWC(d) ) C] Pc (4.18) 

A convention that we adopt to bound the bid land rent, then, is to assign 

a value of pLC for the local good industry's bid land rent whenever 

Pc; Pc·5 More must be done, however, if the bid land rent is to be 
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bounded in all situations. If Pc< Pc, then we must look to the wage 

rate. In particular, we invert (4.2) with respect to the wage rate and 

substitute PLC for PLC to obtain 

l 
l+pc 

(4.19) 

This is the wage rate consistent with the actual output price, Pc, a bid 

land rent of PLC' and the given tax rate. To have the bid land rent 

bounded by pLC' we assign a value of pLC for the local good industry's 

bid land rent whenever Pw; Pwc and Pc< Pc·6 In all other cases (with 

Pc< 0), the bid land rent is assigned by calculating the right-hand side 

of (4.2). The result is that, for Pc< 0, the bid land rent for the local 

good industry will never exceed PLC' 

It is assumed that the minimum upper bound on the local goad's bid 

land rent {pLC when tis as high as it can be, given d) is chosen so that 

it is greater than the upper bound on housing bid land rents. It is also 

assumed that the maximum upper bound on the local goad's bid land rent 

(pLC when t = 0) is less than the minimum upper bound on the traded good 

industry bid land rent when Pr< o.7 This will ensure that the local 

good industry will outbid housing and agriculture for land in ring 2 when 

the constraint pLC; pLC is binding, and that the traded good 
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industry will outbid housing, agriculture, and the local good industry 

for land in ring l when the traded good bid land rent bound is binding. 

The implication of this is that labor demand will exceed the maximum 

potential supply of labor when either the local or traded good1s upper 

bound on bid land rents is binding. 

We wish, as we did in the base model, to make E(p) a bounded corres-

pondence. In particular, we must have bounded demands for labor. Assump-

tions made in the previous chapter serve to bound the traded good indus-

try1s demand for labor. Bounding the local good industry demand for labor 

when Pc< 0, however, calls for a somewhat different analysis. Setting 

Pw = Pwc in (4.3) to calculate an upper bound for labor demand is not satis-
A 

factory since Pwc falls to zero as Pc does. Instead, we assign as the 

local good industry demand for labor in a ring, assuming that the industry 

successfully bids for some land in the ring, the minimum of b~-N-W and the 

demand that would be found by using (4.3) and the actual wage rate. No 

potential equilibrium is sacrificed in this process since b~-N-W exceeds 

the maximum labor supply. In practice, we may assign b~-N-W as the local 

good labor demand in a ring when the bound on bid land rents, PLC' is 

binding and the local good industry outbids other uses for land in the 

ring. A practical problem can arise, though, when pLC is not in effect. 

The value for Pwc can be very small. If the actual wage rate is very close 

to a very small Pwc' then calculation of labor demand by (4.3) can lead to 

a very high value - perhaps too high for the computer. To avoid this 

potential problem we circumvent the calculation of labor demand via (4.3) 

when it would yield a value higher than b~.N-W, in the following way. 
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First calculate the bid land rent, PLC' for the given price vector (we 

are assuming that Pc< Pc and Pw > Pwc). Using this value and the given 

tax rate in expression (4.3) and setting labor demand in (4.3) equal to 

b~-N-W, we then solve for the wage rate. If the actual wage rate for 

the given vector pis less than this value, then actual labor demand, as 

determined by (4.3), would exceed b~·N·W. Thus, if the actual wage rate 

is less than or equal to the value of Pw that has been calculated in the 

manner mentioned above, we automatically assign a labor demand of b~-N-W 

(assuming the local good industry outbids other uses for land in the ring), 

without first calculating the actual demand for labor. If the actual wage 

rate is greater than the wage rate value mentioned above, then labor demand 

is calculated and assigned according to (4.3), with the actual wage rate 

used as the value of Pw· 
If Pc> 0, then the problem of bounding the local good labor demands 

is completely analagous to the problem of bounding the traded good demand 

for labor in the base model. A level of labor demand, say w, which is 

well in excess of the maximum labor supply is chosen. 8 If Pw > 0, W~ may 

be calculated, in principle, according to (4.3). If, however, the value 

that would be obtained for W~ equals or exceeds W, then Wis assigned as 

the local good demand for labor in ring j. On the other hand, as before, 

the case Pw = O presents problems for both boundedness and upper semi-

continuity. They are resolved here as they were for the traded good in 

the base model. If the local good industry is not allocated any land in 

a CBD ring then local good labor demand for that ring is taken to be zero. 

If, however, the local good industry is allocated some land in the ring 
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then local good labor demand in the ring can take on any positive value 
A 

up to and including W. Symbolically, the assignment of local good labor 

demand when Pc> O and Pw = 0 is given as follows: 

A 

(O,W] if Lj > 0 C 

Lj 
j - l , 2 

= 0 C 
(4.20) 

One last bounding problem remains. The new (fourth) component of 

E(p), the excess demand for the local good, can be infinite. Inspection 

of (4.10) reveals that household demand for the local good (and so aggre-

gate demand when a positive number of households is generated) becomes 

infinite when the price of the local good is zero. We have no choice, 

then, but to place a lower bound on the local good price. In particular, 

we choose some low positive value, Pc· If, in the search process, the 

price vector is such that the actual value for Pc is less than Pc, then 

we let Pc be the value assumed for the local good price in all calcula-

tions. In principle, this needn't be a problem since, for any parameteri-

zation, it can be shown that an equilibrium, with a zero local good price, 

cannot exist. To see this, first note that, at an equilibrium with a 

zero local good price, aggregate demand for the local good must be in-

finite. This follows from the fact that a positive number of households 

must be generated at an equilibrium. Supply of the local good, on the 

other hand, must be finite since land, labor, and capital used in pro-

duction are all bounded from above.9 Therefore, it is impossible to 

have a zero or negative excess demand for the local good at an equili-

brium with a zero local good price. Hence, no such equilibrium exists. 



The bound, Pc' can be chosen low enough, then, so that the effective 

region of search on the price-tax rate simplex contains the 11price 11 

vector associated with any particular equilibrium. 10 
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Now that the special structure for this new model has been delineated, 

it is natural to ask if an equilibrium for the model, at least under cer-

tain conditions on the parameters, exists. Unfortunately, unlike what 

was done in the previous chapter for the base model, a rigorous existence 

proof for the extended model was not obtained. It is possible, however, 

to present the following argument which is, in part, heuristic. 

We again attempt to use Theorem l as the basis for the existence 

argument. In particular, the reasoning again proceeds along lines needed 

to show that the two hypotheses of that theorem are satisfied. In order 

to preserve results obtained for the base model we retain conditions 

(c.l) - (c.3). Condition (c.4) must, however, be altered somewhat in 

structure, but not in nature, to account for changes in the specification 

of the model. Instead of relating to the first two rings, the condition 

must now refer to the first three rings, with the third ring taking the 

place of the second ring in the base model condition. Furthermore, the 

upper bound on the tax rate, t, must be re-defined. In the situation 

relevant to the condition (which has been discussed in chapter 3), the 
R actual tax rate can now be written as t = __ 3 l 2 , 

aR PHA s HA + ( RG + RG) 
-3 where sHA is the supply of housing services in ring 3 when the land rent 

facing the housing industry for land in the ring is PA and all of the 

land in the ring available for endogenous use is allocated to the housing 

industry, and R~ is the generated property tax base in ring 2. Suppose 
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we let Kl= Kl(pA' Lj) be capital demand by the local good industry .for 

CBD ring j when its bid land rent is pA and all available land in ring j 

is allocated to the local good industry, and define the following two 

variables. 

( 4. 21 ) 

(4.22) 

Then,by reasoning analogous to that given for the base model in a similar 
l l 2 2 situation, it must be true that R < RG and R < RG. Using these facts, 

we define the upper bound on the tax rate as follows: 

t = R 
(4.23) 

It is also necessary to re-define Pw so that it refers to ring 3. Finally, 
Al to form the new condition, say (c.4)~, equation (3.20), which defines NG' 

"2 is retained and equation (3.21), which defines NG' is indexed to refer to 

ring 3 instead of ring 2. This leaves the term N~ to be specified. It 

is defined exactly as is N~ in (3.20), with all ring indices referring to 

ring 2. The condition, appropriate to the extended model, that is the 

analogue of (c.4) can now be given as follows: 

N1 + N2 + N3 < N G G G (c.4)~ 

Satisfaction of hypothesis (H.l) of Theorem l for the extended model 

can be established rigorously. To do this, we must first argue that Eis 

upper semicontinuous. It is clear that the arguments establishing this 

for the base model in the proof of Theorem 2 can be used here. The sup-

plies of the local good, the demands by the local good industry for labor 
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(when Pc< 0) and capital, and aggregate demand for the local good in a 

ring can be expressed as products of a continuous function of p and the 

amount of land in a ring allocated to some endogenous use. In addition, 

the argument in the proof of Theorem 2 establishing the upper semi-

continuity of traded good labor demand when PT< 0 can be invoked to show 

the upper semicontinuity of local good labor demand, using (4.20) in 

place of (3.16), when Pc< 0. Thus, E, for the extended model, is upper 

semi continuous. 

Second, it must be shown that E(p) is a bounded set for any admissible 

p. Clearly, from the analysis for the base model, the population component 

of E(p) is bounded. The labor and tax revenue components are also bounded. 

This follows from the analysis in the previous chapter and the fact that 

labor and capital demands for the local good industry are bounded, for a 

given d. Since labor and capital demands and the amount of land used by 

the local good industry are bounded, the supply of the local good must 

also be bounded. Household demand for the local good is bounded from above 

since the local good price is bounded from below by Pc· From the analysis 

in the previous chapter, for a given d, the generated population is bounded 

from above. Thus, aggregate demand for the local good is bounded, and so 

the component of E(p) that represents the excess demand for the local good 

must be bounded. Hence, E(p) is a bounded set. 

Finally, the convexity of E(p), for any p, must be verified. It is 

clear that, with the exception of cases where Pw = 0 with PT> 0 and/or 

Pc> 0, all of the components of excess demand vectors for this model can 

once again be put in the form (3.22). As noted above, the terms in the 

excess demand components relating to the local good, in these situations, 
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can be expressed as the products of a function of p and the amount of 

land in a ring allocated to some endogenous use. Thus, convexity follows 

for these cases. When Pw = 0 and Pc> 0, the argument in the proof of 

Theorem 2 proving the convexity of the traded good demand for labor when 

Pw = 0 and PT> 0 can be adapted in total to show the convexity of the 

local good labor demand. Thus, Eis a convex correspondence and so hypo-

thesis (H.l) of Theorem l must be satisfied. 

In turning to hypothesis (H.2) of Theorem l, however, the argument 

must lose some rigor. The complexity added by considering this local good, 

that competes for land with other endogenous uses in the two CBD rings and 

for which its aggregate demand and supply must be equated, is sufficiently 

great to make it necessary that our argument, at this point, be merely 

heuristic. Hypothesis (H.2) will be satisfied if, for a given p and large 

enough value of d, we can find a vector a such that a-e; 0 for all es E{p), 

with a. positive only if the corresponding 11price 11
, p., is positive. To , , 

find such a vector, we make the following assumption [which can also be 

found in Richter (1980)]: 

Assumption l. There exists d>O such that for all p > 0 with r 
all i 

p-e < 0 for all es E{p). 

P. > d' , 

This assumption, at least for many parameterizations, seems plausible. 

It implies that if the sum of the components of the price vector pis suf-

ficiently large, then the value of the 11excess demands11 for all vectors 

es E(p) is negative. It seems reasonable to expect this to be true for 

many parameterizations if high prices are associated with negative excess 
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demands for the corresponding components of e; while low prices are asso-

ciated with positive excess demands for the corresponding components of e. 

The value of the excess demands, p.e, can be viewed as a weighted average 

of the excess demand components, with the highest weights attached to the 

excess demands that are likely to be negative, and the lowest weights 

attached to those excess demands that are likely to be positive. Thus, 

in such situations, we may expect p-e to be negative if prices can be large 

enough. 

In the case of a component of e that actually does represent an 

excess demand for some good or service, this association between the magni-

tude of the price and the sign of the corresponding excess demand certainly 

seems likely and natural. The two components of vectors in E(p) that are 

of this type are the excess demands for labor services and the local good. 

Inspection of the labor demands for the traded good and local good indus-

tries particular to our specification shows that they behave normally with 

respect to the wage rate; increases in the wage rate, ceteris paribus, 

lowers labor demand in a ring (assuming that the particular industry out-

bids all other uses for land in the CBD ring). In addition, the supply of 

labor tends to exhibit a positive relationship to the wage rate, since 

higher wage rates can lead some households, that would otherwise choose 

to be unemployed, to send a member to work.11 Thus, there seems to be a 

tendency for high wage rates to be associated with negative excess demands 

for labor. With respect to the excess demand for the local good, the rele-

vant price is Pc· It is easily seen that the household demand for the 

local good, (4.10), is negatively related to the price of the local good, 
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while the supply function, (4.5), is positively related to Pc· Thus, 

there appears to be a natural tendency for high local good prices to be 

associated with negative excess demands for the local good.12 

In our model, however, two components of "excess demand" vectors 

are not excess demands for some good or service: the population and tax 

revenue components. The price associated with the population component 

is the price of housing services in ring 3. It can be seen from the 
3 definition of the generated population in a ring that an increase in pH, 

provided that housing is able to obtain land in ring 3, will lead directly 

to an increase in the aggregate generated population via an increase in 

the generated population for ring 3. Equations (2.51) and (4.9) show 

that a higher price for housing in ring 3 leads to an increased supply 

and a decreased household demand there. An increase in~~ also tends to 

increase the total generated population through a shifting- up of the entire 

housing price gradient. At least for increases in p~ above the level at 

which no land is allocated to housing, the total generated population must 

increase because the higher housing prices in previously occupied rings 

leads to increases in the generated populations in those rings, for the 

same reasons mentioned above in relation to ring 3, and the higher housing 

price gradient increases the number of rings in which land is allocated to 

housing. Thus, high housing prices for ring 3 tend to be associated with 

large total generated pooulations and so, negative population components. 

Finally, the 11price 11 associated with the tax revenue component is the 

variable, T. Clearly, if Tis large enough, then the tax revenue component 

will be negative. 
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Thus, there seems to be a tendency for high 11price 11 components of 

the vector, p, to be associated with negative excess demands in the 

corresponding elements of vectors in E(p). So, Assumption 1 may be 

satisfied for some parameterizations of the model. In such cases, hypo-

thesis (H.2) will be satisfied and a solution of the type given in the 

conclusion of Theorem 1 exists. Condition (c.4)~ guarantees that such 

1 t . t 1 ·1 ·b . 13 a sou ,on represen s a norma equ, , r,um. 

II. Models with Multiple Household Types 

All of the models considered to this point have used the assumption 

that all households in the urban area are identical. Homogeneity was 

posited, in particular, for preferences and exogenous income, and, to the 

extent that all households had the option of working an institutional 

work day at the same rate of pay, for endogenous income as well. It 

would be interesting, however, to investigate the effects that alterna-

tive property tax schemes have on different groups; particularly different 

income groups. In the following sections, the changes and additional 

restrictions that must be made to model different household groups, as 

well as the question of the existence of equilibrium, will be explored. 

A. Preference and Income Differentials 

To capture the possibility that different residents have different 

tastes, the household utility functions must be indexed by group. Re-

taining the same functional form for utility, then, the level of utility 

for a household of type i residing in ring j is given as follows: 
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(4.24) 

i where A > 0, aHi' aTi' aCi > 0, pi > -1, pi t 0 

Note that the amount of leisure time enjoyed by a household residing in 

ring j is not indexed by household group. This reflects an assumption 

that commuting time for households residing at a given distance from the 

center of the region does not differ by household type. This, in turn, 

is consistent with the implicit assumption of one mode of transport. 

Household demands for any of the goods can differ because of differences 

in the preference parameters and/or differences in income. With one type 

of labor, variation in income net of the money cost of travel can arise 

only from differences in exogenous income. The amount of exogenous in-

come received by most households, however, is likely to be, in realistic 

terms, only a small part of total income. For this reason, it may be use-

ful to allow for variation in the endogenously determined component of in-

come. To do this, multiple labor types must be introduced along with the 

multiple household types. Households, then, may differ not only by pre-

ferences, but also by the type of labor skills that they possess. Pro-

ducers are assumed to treat the services of different labor types as dif-

ferent inputs in production. Thus, the wages of different labor types are 

determined in different markets. The supply sides of these labor markets 

are assumed to be independent in the sense that workers cannot acquire 

skills that they do not have or lose skills that they do possess, and so 

move from one market to another, even if relative wage rates change. The 

market wage rate facing household group i is defined to be Pwi· If we let 

Mi represent the exogenous income of household group i, then income net of 
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the money cost of commuting for a household of this type residing in 

ring j can be written as follows: 

ij - j Y = M. + Pw·•W - C•U , , (4.25) 

The demands for the goods are defined as they were before, but with yij 

replacing Yj and the utility function parameters now indexed by i. This 

also applies to the indirect utility and bid housing price functions. 

Now that there are multiple household types in the model, the 

question of which group or groups are allowed to reside in a given ring 

arises. To answer this question, bid housing prices for the first ring 

zoned residential for all of the household types are introduced to the 

set of prices over which the algorithm is to search. In a model with a 

local good the first residential ring is the third. Let pi3 be the bid 

price of housing services in the third ring for the i 1 th household group. 

The actual price of housing for the third ring is chosen to be the maxi-

mum of the bid prices for the different groups. Thus, assuming that there 
3 13 are n household types, the price of housing in ring 3 is pH= max {pH , 

23 n3 
PH ' ••• ' PH }. Whether or not a household group manages to locate in 

' 
ring 3, its bid housing price there can be used to establish its bench-

mark utility level. Once again, the option of not working can be pro-

vided to households in the model. Thus, the level of utility achieved by 

a household of type i anywhere in the region, at a given vector of prices 
·3 i3 i3 over which the algorithm searches, is given by V1 = max {Vw , VNW}, 

i3 i3 where Vw and VNW are the utility levels of a household of type i resid-

ing in ring 3 when the household chooses to send and not to send, respec-

tively, a member to work. The utilities are calculated on the basis of 
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i3 pH and the other non-housing 11price 11 components of the search vector. 

The utility levels can then be used to determine the bid housing prices, 
i j i j PHw and PHNW' for households of a given type, residing in rings other 

than the third, that have some or no members, respectively, that work. 

The price of housing that actually prevails in one of these rings is ·taken 

to be the maximum of these bid prices for the ring for all household groups. 

Thus, the price of housing in ring j is given as pi= max {p~~ •... , p~~. 

l j nj PHNw•···• PHNW}. The maximum, if it is unique, determines which group 

resides in the ring and whether or not such households work. If there is 

a tie for the maximum, then households of different types and/or households 

that make different decisions about labor supply may reside in the same 

ring, with the available land in the ring arbitrarily allocated to housing 

these households. 

Turning to a depiction of the production side, the multiple labor 

types are considered to be separate inputs in the production functions. 

The number of labor types need not be equal to the number of household 

groups, but it cannot exceed that number. Assuming that the number of 

labor types ism< n, output of the traded and local goods can be written 

as follows: 

(4.26) 

(4.27) 

where C,D,aKT' aKC' aLT'aLC' aWTi' C\JCi > 0 and Pr• Pc> -1, Pr• Pc f 0 

The terms WTi and wl; represent labor demands for the traded and local 
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good industries, respectively. The bid land rents for the two industries 

can then be expressed and calculated as follows: 

(4.28) 

(4.29) 

Each industry now has multiple demands for labor. They each, of course, 

are dependent on the wage rate set in the market for that type of labor. 

Given the production functions, (4.26) and (4.27), labor demands can be 

(4.30) 

j = l ,2 ( 4. 31 ) 

for i = 1,2, ... ,m 

With multiple labor types more markets must be cleared in equili-

brium. Because of this, the number of elements of vectors in the range 
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of the excess demand correspondence E must be expanded to include the 

excess demands for the different kinds of labor. The associated prices 

are the wage rates, Pwi· The excess demand vectors must also be expanded 

in another direction. It is assumed that the numbers of households of 

each type, Ni' to be housed in the urban area are given exogenously. 

Analagous to what was done in the one group model, the number of house-

holds of a given type and labor supply decision generated in a ring is the 

ratio of the supply of housing to the group to the demand for housing by 

a household from this group. In an equilibrium we must have the total 

number of generated households of each type equal to the exogenously given 

number for that type. If we let NWG~ and NNG~j be the numbers of generated 
l l l 

households of type i residing in ring j that do and do not send a member 

to work, respectively, then our new population equilibrium conditions can 

be written as follows: 

N. - i (NW~+ NN~j) = 0 
l j=l G, Gl i=l,2, ... ,n (4.32) 

As a result, we add as components to the excess demand vectors, the dif-

ferentials between the given and generated populations for the various 

household types. The prices that are to be associated with these popula-
i3 tion differentials are the bid housing prices, pH , for the third ring. 

Thus, the price vector over which the algorithm is to search, in general, 
13 n3 for this model is given asp= (pw1, ... ,p!-Jm'PH , .. ,pH, 1, Pc). The dimen-

sion of the simplex over which the algorithm is to search, therefore, is 

increased by n+m-2 over that for the one household type models. 

B. Restrictions on the Model 

Although most of the bounding procedures for the base and local good 
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models can be retained, keeping the excess demand correspondence bounded 

in the presence of multiple household and labor types introduces a few 

additional considerations. Care must be taken to guarantee the bounded-

ness of the generated populations of households of each type, the demands 

for the various kinds of labor services, and the industry bid land rents. 

The following exposition will be confined, as much as possible, to the 

new aspects of the bounding problem. Previous-discussions on the rationale 

for certain bounding procedures that remain relevant for the new model will 

not be repeated here. 
A 

In the one household group model a bound of N, greater than the total 

given population N, on the generated number of households that do not send 

any members to work was imposed. The same thing can be done in this model 
n 

A 

for each household type. For simplicity, we let N = I N. and choose N 
. l l 

A ,= 
well- in excess of N. The value N can then be taken as an upper bound for 

all household groups on the number of generated households that supply no 

labor. Since housing prices are bounded from above for a given value of d, 

the number of generated households, for any group, that supply labor is 

also bounded from above. Thus, the total generated population of each 

household group is bounded. This also clearly indicates that the aggre-

gate demand for the local good is bounded from above, provided that the 

lower bound on the local good price, Pc, is retained. 

Matters are a bit more complicated when it comes to bounding and 

calculating industry bid land rents and labor demands. As was true be-

fore, however, no particularly thorny problems arise here in calculating 

bid land rents for the traded good industry when Pr> 0 or the local good 

industry when Pc> 0. What was done in this regard in the earlier models 
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is still valid. Extra care must be taken, however, in other situations. 

Suppose that Pr< 0. We again choose some level of labor demand, 

b-N•W, that is well in excess of the maximum potential labor supply for 

any labor type. 14 Next, we find the minimum of the labor coefficients, 

aWTi' in the production function (4.26). Let k be the index for the mini-
15 mum. Thus, aWTk = m~n {aWTi}. An upper bound, at a given tax rate, on 

, A 

the traded good bid land rent, pLT' is then found by inverting the labor 
demand function (4.30) for the k1 th labor type with respect to the land 

rent, using b-N•W for labor demand, L1 for the amount of land used by the 

traded good industry, and d for the wage rate. Thus, this upper bound can 

be written as follows: 

" ( b · N -w) l + PT ( al T. d \ 
PL T = L 1 • -a~-JT-k-. (....,.l_+_a 1- . ...,...t )j (4.33) 

For practical reasons, though, consider what values of the endogenous 

variables lead to a binding bid land rent constraint. 16 The constraint 

will be binding for low values of one or more of the wage rates. To place 

lower bounds on the individual wage rates such that actual wage rates be-

low these values must result in a binding bid land rent constraint, the 

following terms, derived by inverting (4.28) with respect to the sum 

found therein and substituting pLT for pLT' is defined. 

1 1 

Pwrs = (c ·Prl(l+•r. t) /r) 1 +pT - ( akT. Ci\) Pr) 1 +Pr -0\rl 1 ::T 
al T al T 

(4.34) 

If the i 1 th labor type were the only labor group, then (4.34) can be used 

to define the wage rate, ~WTi' that would yield a bid land rent of ~Lr· 
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In particular, this term is given as follows: 

l+pT l 

Pwri = {pWTs) Pr .(aLT/aWTi) Pr -(l+aI·t) (4.35) 

Clearly, if Pwi ~ PwTi' for any i, then the land rent constraint must be 

binding, and pLT would be assigned as the traded good industry bid land 

rent. If none of the wage rates are this low, then attention is turned 

to the sum in (4.28). If the value of the sum is greater than or equal 

to Pwrs' then the constraint must be binding, and so the assigned bid land 
" rent would be pLT" 

Essentially the same procedure is undertaken for the local good indus-

try when Pc< 0, although the analysis is more involved due to the fact 

that the local good price is endogenous. As was done in the local good 

model, a large level of labor demand, b~-N,W, the minimum of the amounts 

of land available in the two CBD rings, and the size of the simplex term, 

d, are used to define an upper bound, pLC' on the local good bid land rent. 

Analagous to what was done for the traded good industry, the minimum of 

the labor coefficients in the production function (4.27) is used. Thus, 

assuming that the index of the minimum coefficient is h, the upper bound 

on the bid land rent, for a given tax rate, can be written as follows: 

(4.36) 

This time, finding which price vectors result in a binding bid land rent 

constraint must involve considering variation in output price. If the 

local good price is high enough, then the bid land rent constraint will 
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be binding. To find a value such that the constraint must be binding if 

the local good price exceeds it, we merely re-define Pc by substituting 

the minimum labor coefficient, aWCh' for awe in (4.18). Then, if Pc~ Pc 

the constraint will be binding and a bid land rent of pLC can be assigned 

automatically. When Pc< ~C the analysis proceeds exactly as it did for 

the traded good industry. Expressions analogous to (4.34) and (4.35) can 

be defined as follows: 

A 

Pwcs 
= ifo·Pcl(l+ac•t))c~1!Pc - /4c·CPk)p2\l!Pc 
~ ~c ) ~ ~c ) 

A 

Pwc; = 

l+pC l 
(Pwcs)~ . (ale/awe;) Pc 

A 

· ( l +a · t) C 

Pc 
l+pc 

(pLC) ( 4. 37) 

(4.38) 

If Pw; ~ Pwci' for any i, then the land rent constraint is binding and a 

bid land rent of PLC can be assigned automatically. If Pwi > Pwci' for 

all i, then the sum in (4.29) should be calculated. If it is greater than 

or equal to Pwcs' then a bid land rent of pLC is automatically assigned. 

Otherwise, the bid land rent is calculated according to (4.29). 

The procedure for bounding labor demand when Pc< 0 in the one house-

hold group model mentioned above can also be applied here for the local 

good industry when Pc< 0 and for the traded good industry when PT< 0. 

Upper bounds of b,N,W for each of the traded good labor demands and b~,N-W 

for each of the local good labor demands are chosen. Thus, in assigning 

labor demand for the i'th labor type the minimum of b,N,W and the value 

calculated according to (4.30) is taken to be the traded goad's demand, 

and the minimum of b~-N,W and the value calculated according to (4.31) is 

taken to be the local good demand. When the bid land rent constraint for 
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one of the industries is binding, and the industry outbids all other uses 

for land in a ring, the labor demand constraints for all of the labor types 

used by the industry in the ring must also be binding, and so the appro-

priate upper bound can be assigned as labor demand, without first using 

(4.30) or (4.31) to calculate any values. If a bid land rent constraint 

is not binding, then, as was done for the one group local good model, the 

problem of attempting to calculate demand according to (4.30) or (4.31), 

when that would yield a very high value, can be circumvented by substituting 

the appropriate upper bound on labor demand in the equation and then solving 

for the wage rate. If the actual wage rate is less than or equal to this 

value, and the industry outbids other uses for land in the ring, then the 

upper bound is automatically assigned as labor demand. Otherwise, demand 

is assigned according to (4.30) or (4.31). 

Finally, for the cases Pr> 0 and Pc> 0 an upper bound on labor 
A 

demand of W, well in excess of the maximum labor supply for any labor type, 

is set as was done in the previous model. The process of assigning labor 

demand in these situations is identical to what has been done above for the 

two industries. If Pw; = 0, then labor demand is assigned as follows: 

to:WJ 
l 0 LT> 

WT; if (4.39) 
Ll = 0 T 

eo:WJ Lj > 0 
We; if C j = l , 2 (4.40) 

Lj = 0 C 
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C. Existence of Equilibrium 

In the most general multiple group model (one which contains a local 

good) a discussion of the existence of equilibrium must, as it was in the 

local good model with one group, be, at least in part, heuristic. We shall 

discuss briefly the elements of the argument that are peculiar to the 

multiple group model, taking the existence of equilibrium discussion for 

the local good model mentioned above as given. 

First, the conditions (c.3) and (c.4)~ should be replaced in a straight-

forward manner by sets of similar conditions, {{c.31), ... ,(c.3n),(c.41)~, 

... ,(c.4n)~}, one condition of each type for each household group. The 

demands and supplies in the conditions (c.4i)~, and the utility function 

and budget constraint parameters of conditions (c.3i) should refer to indi-

vidual household groups. 17second, the restrictions made in the previous 

section imply that the generated population levels for the various house-

hold groups and the labor demands for the different labor types are bounded. 

As a result, the excess demand correspondence for this model, E, is bounded. 

Upper semicontinuity of the labor demands when Pc> 0 and/or Pr> 0 follows 

from (4.39) and (4.40). Clearly, all of the components of other "excess 

demands11
, labor supplies, and labor demands for other cases are upper semi-

continuous. Convexity is also obviously satisfied in the new model. Thus, 

hypothesis (H.l) of Theorem l must hold. 

Hypothesis (H.2) will also be satisfied if, once again, Assumption l 

can be made. Its plausibility in terms of the one group local good model 

has already been mentioned. That analysis carries over here. The only 

difference in structure between the models as far as the argument is con-

cerned is that there simply are more population differentials and excess 
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demand for labor components to consider. The prices, however, associated 

with the population differentials are the corresponding housing prices in 

ring 3, and those associated with the excess demands for labor are the 

wage rates for the corresponding labor types. Thus, the arguments for 

the one population differential and the one excess demand for labor, given 

above, can clearly be applied here to cover the multiple group cases. 

With Assumption l satisfied, a solution as given in the conclusion of 

Theorem l exists. Conditions (c.41)~- (c.4n)~ guarantee that such a solu-

tion will be a normal equilibrium. 

Although we are forced to rely on this heuristic argument for the most 

general multiple group model, a rigorous proof of the existence of equili-

brium can be obtained for a somewhat more restrictive model. The problems 

involved in trying to prove existence for the full multiple group and the 

one group local good models arise, essentially from the complications caused 

by the presence of the local good. Eliminating the local good from the 

model, then, might allow us to prove the existence of equilibrium, at 

least under certain conditions on the parameters. This is indeed the case. 

An existence proof for a multiple group model with a traded, but not a 

local, good can be presented. While such a model is, of course, not as 

general as the multiple group model with a local good, it does constitute 

a generalization of the base model. 

Structurally, eliminating the local good from the multiple group 

model set forth in the previous two subsections involves merely striking 

any references to the local good sector in the functional forms of the 

model, and the price and excess demand vectors. For simplicity of nota-

tion and clarity in highlighting the important adjustments that must be 
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made to the base model proof in order to prove existence for the multiple 

group model, the following theorem is presented in terms of a two house-

hold and one labor group model. The proof, however, can easily be general-

ized to cover a model involving any number of household and labor groups. 

Theorem 3. 12 22 . 12 22 Let p = {p = (pw, PH' PH ,r)!Pw + PH + PH + T; d} and d>O. 

Given the model described above with two household groups and one labor 

type, and conditions (c.l), (c.2), (c.31), (c.32) and at least one of con-

ditions (c.41)~ and (c.42)~, 18 there exists d > 0 such that an economic 

equilibrium (with zero excess suoplies) exists. In particular, there is 

some d > 0 for which there exists p* s P and e* s E(p*) such that e* = 0. 

(with actual property tax revenues raised equal to the pre-specified amount). 

Proof. From the discussion given above it is clear that the excess demand 

correspondence, E, for this model is upper semicontinuous, bounded, and 

convex. Thus, hypothesis (H.l) of Theorem l must be satisfied. It re-

mains to be shown that hypothesis (H.2) of that theorem is also satisfied. 

As was done in the proof of Theorem 2, to show that (H.2) holds we 

restrict our attention to price vectors where the price components sum to 
12 22 d (i.e., Pw + pH + pH + -r = d). To keep the notation consistent, as 

much as possible, with that of the proof of Theorem 2, we apportion d 
12 22 12 among Pw, pH , pH , and -r by letting Pw = a1;d,pH = a2-d, -r = a3-d, and 

22 pH = a4,d. The ai's are defined so that O; a1, a2, a3, a4 < l and 

a1 + a2 + a3 + a4 = l. The constant term a, expressed in (3.24) in the 

proof of Theorem 2, must be re-defined to serve a similar purpose in this 

proof. Taking note of the fact that there are two household groups, a is 

defined as follows: 
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(4.41) 

l+ (W-N)/(B.(aLH)pH :~ (Lj/2)-min [(i~/i~)ai, (i~/i~)ai]) 
~1=2 

As was done in the proof for the base model, a positive constant,~, is 

used to define the term a= a+~, where~< l 

O<a<l. 
~ 

,.._ 
- a. Thus, we again have 

The term, a, is used to partition the problem of finding a value of d 

high enough so that (H.2) is satisfied by considering the following three 

cases: 

( ,. ,· ,·) 1 -a 1-a ~ a3 > -2-, a, < -2-, a2 + a4 < a 

The analysis for cases (ii) and (iii) here is identical to that given 

for cases (ii) and (iii) in the proof of Theorem 2, and so will not be re-

peated. For case (ii) the vector a= (l ,O,O,O), and for case (iii) the 

vector a= (0,0,0,l), can be chosen to satisfy (H.2). Thus, we need only 

be concerned with case (i). Without loss of generality, we may assume that 

a2 ; a4 for price vectors satisfying case (i). 

For all cases other than pl, pH> 0, the proof of Theorem 2 may be 

applied, and so a= (O,l ,0,0) chosen to satisfy (H.2). Furthermore, if 

p2 < 0 and the second household group is allocated all of the available 

land in some ring for a high enough value of d, then, from (3.28), it can 

be seen that the generated population of households of this type will ex-

ceed the given number, and so we may choose a= (0,0,0,l). If the second 

group is not allocated all of the land in a rin~ in the limit when P2 < 0, 
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then it can be seen that the analysis to be presented below for the case 

pl, P2,PH > 0 will suffice since, for a high enough value of d, the second 

group's household demand for housing in a ring when p2 < 0 will be less than 

it is when p2 > 0. Thus, we restrict our attention to situations where 

P1 ' P2' PH > 0. 

We again seek to show that the limit as d goes to infinity of the total 

generated population of households of all types that choose to work and reside 

in rings 2 and beyond, when all of the available land in these rings is allo-

cated to housing households that send a member to work, is greater than the 

total number of households, N = N1 + N2• There are now two household types 

competing for land in rings 2 to j~. Which group, in the limit, is allocated 

land in a ring, j, can be determined, using expression (2.43) indexed by house-

hold type, 

1 im 
·d-+w 

by noting the 
1 . p J 

H 
~ PHJ 

= 

following limit: 

(4.42) 

If the limit (4.42) is greater than 1, then household group 1 is allocated, in 

the limit, all of the available land in ring j. If the limit is less than 1, 

then household group 2 obtains, in the limit, all of the land in the ring. 

Finally, if the value of the limit is 1, then the land, in the limit, can be 

arbitrarily allocated to the two household groups. Taking note now, of (4.42), 

the limits (3.26) and (3.28), and the definition of the generated population 

in a ring of households of a given type that send a member to work, it can be 

seen that the following inequality, for the limit of the total generated popu-

lation of households referred to above, must hold. 
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(4.43) 

Note that the right hand side will equal the limit on the left hand side if 

a3 = 0. It is also important to see the validity of the following: 
l 2 l 2 

j 2 ai j 2 ai a . j 2 ai j 2 ai 
max[a2.(iwfiw) , a4-~iwliw) J ~ 2'm,n[(iwfiw) , (iwfiw) J 

... 
(4.44) 

This inequality follows from the fact that a2 s 1· Finally, given the defini-

tions of a and a, the following inequality also holds. 

- l . ,. l 2 

1~a·(B/W)-(aLH)PH JL (LjR)-min[(¼/i~)"i, (t~/i~j"il > N (4.45) 

Given the restrictions on the ai's implicit in case (i) and the assumption that 

a2 s a4, and inequality (4.44), the right hand side of (4.43) must be greater 

than or equal to the left hand side of (4.45). Thus, ford large enough, the 

total generated population of households that work, when all of the available 

land in rings 2 to j,. is allocated to housing these households, is greater than 

the sum of the given population levels for the two groups. Therefore, in such 

situations, hypothesis (H.2) will be satisfied when a= (0,1 ,0,1) is chosen. 

The discussion in the proof of Theorem 2 on the possibility of having some or 

all of the available land allocated to housing households that do not work can 

clearly be adapted here to cover all of the possible sign combinations for 

p1, p2, and pH. Hence, hypothesis (H.2) must hold for this model. 

Thus, the conclusion of Theorem l is valid here. That is, there is a 

price vector p* E P and e* E E(p*) such that e*; 0 and p* e* = 0. The dis-

cussion in the proof of Theorem 2 showing that e* = 0 for the base model can 
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also be used to show that e* = 0 for this model. In the context nf this model, 

it is condition (c.31) that ensures that p~2*> 0, while condition (c.32) en-

sures that p~2*> 0. Finally, satisfaction of at least one of the conditions 

(c.41)~ and (c.42)~ ensures that the solution, (p*,e*), is a normal economic 

equilibrium. 
Q.E.D. 

III. Welfare Measures 

There are several types of welfare measures that might be applied to the 

models to determine the normative ef{ects of tax system changes. The ones 

used here take account of household preferences and are, essentially, general 

equilibrium versions of the partial equilibrium concepts of Hicks compensating 

and equivalent variation in income. The computational procedure used in this 

study can easily deal wit~ such measures. 

To describe how these measures can be formed and computed, we consider a 

solution for the model under a property tax classification scheme for different 

property uses that mirrors, at least on average, a real world classification 

system to be a base case. The change contemplated for the tax system is a 

movement to a tax structure in which there is no discrimination in the treat-

ment of property (ie. all users are taxed at the same effective rate). We 

shall refer to the former solution type as the classification case, and the 

latter as the equal rate case. 

A compensating variation measure can be formed as follows. First, a solu-

tion for the classification case is found, and the level of utility attained 

by households in that solution is noted. Now, consider a situation in which 

the government can levy a lump sum tax or subsidy on households. Next, find 

a solution to the equal rate version of the model with the government collect-
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ing the lump sum tax or providing the lump sum subsidy so as to constrain 

the level of utility attained in equilibrium to be equal to the level 

that was achieved in the classification case. This tax or subsidy pro-

vides a willingness-to-pay measure for the households. Thus, it can be 

used as a measure of welfare change for residents. Landowners, whether 

they be absentee private owners or the government, however, are affected 

by the tax system changes through changes in land rents. Differential 

land rents for a solution can be defined as the difference between aggre-

gate land rents in the urban area on land used for endogenous purposes 

and what rents for the urban area would be if all endogenous land were 
- 19 rented at the agricultural rental, pA. The change in differential land 

rents in moving from the classification case to the equal rate con-

strained utility case can be used as a measure of welfare change for 

landowners and/or simply added to the sum of the compensating variations 
20 for the households to obtain an aggregate measure of welfare change. 

Something very similar to this can be done to find an equivalent varia-

tion measure. To do this we find a solution for the equal rate case, and 

note the level of utility obtained by households in that solution. Next, 

we find a solution to the classification model with the government levy-

ing a lump sum tax or subsidy so as to constrain the level of utility to 

be what it was in the equal rate case. This tax or subsidy constitutes 

another measure of welfare change for the residents of the urban area. A 

change in differential land rents can again be used to capture the welfare 

effects of the change in the tax system on landowners. 

One other means of distinguishing between the two tax systems involves 



194 

comparing what may be called the excess burdens of the alternative tax 

regimes. We consider a no-tax system here to be a base case and compare 

what are, essentially, equivalent variation measures of the two systems 

relative to the base case. 21 The model is run under the assumption that 

there are no property taxes, with the government levying a lump sum tax or 

subsidy so as to ensure that the level of utility attained in equilibrium 

is, first, equal to what it is in the classification case, and then, to 

what it is in the equal rate case. Taking into account the lost property 

tax revenues and changes in differential land rents, we can find measures 

of the deadweight loss for each tax system. To keep computation costs 

reasonable, this last means of measuring welfare change was not employed 

in the simulations to be presented in the next chapter. 

Finally, it should be noted that for a multiple household group model, 

the compensating and equivalent variation measures can be applied to each 

group. Thus, we could obtain information on how, and the extent to which 

different household groups are affected by a given change in the tax system. 
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1 The commodity is, like the traded good, a composite commodity. 
In view of the nature of contemporary urban production it may be thought 
of as being heavily weighted in favor of services. 

2 Given a concern with distributional issues and limited information 
on differences in preferences, the emphasis here should be on differences 
in income. 

3 Although in principle, for a general function model, a zero local 
good price equilibrium is a possibility, it is not one that we can find 
since, for technical reasons, we will have to bound the local good price 
from below at a positive level. As indicated below, however, given the 
functional forms used, a zero local good price equilibrium is not possible. 

4 Note that a condition analagous to (c.l) is not required here since 
output price can vary. 

5 If this were not done then, no matter what the wage rate, the local 
good indu$try bid land rent, as calculated by (4.2), would exceed pLC and 
increase to infinity as Pc rose above Pc up to the point where the bracketed 
expression in (4.2) became zero. Higher values of Pc would be inconsistent 
with zero profits. 

6 It can be seen from (4.2) that, when Pc< Pc, wage rates below Pwc 
would yield bid land rents in excess of pLC" The bid land rents increase 
to infinity as the wage rate falls to the point where the bracketed ex-
pression in (4.2) becomes zero. Still lower values of Pw would be incon-
sistent with zero profits. 

7 This can always be done if appropriate choices of the values of b 
and b~ are made. 

8 For simplicity, we use the same notation, and so implicitly the same 
value, for the bound on the local good labor demands as we do for the 
traded good labor demand. The analysis is not altered if the bounds differ 
from one another. 
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9 From (4.4) it can be seen that capital demand for the local good 
industry is bounded from above if the local good industry bid land rent 
is bounded from above. 

lO Of course, if multiple equilibria exist, then the practice of bound-
ing the local good price could exclude some equilibrium price vectors 
from the search. If, however, the local good price components of all the 
~quilibrium price vectors are bounded from below at a positive level, then 
Pc can be chosen low enough, in theory, so that the region of search con-
tains all possible equilibrium price vectors. 

11 Since this is not the only factor at work in the model with respect 
to labor supply, however, the stated relationship is tentative for at least 
one reason. Although an analysis of (4.8) shows that an increase in the 
wage rate will flatten the housing price gradient about the price of housing 
in ring 3 and so extend the boundary of the urban area, the effect on aggre-
gate labor supply is actually unclear. The supply of workers may diminish 
because the lower housing bid land rents in the CBD rings may mean that 
housing is outbid for land there, when it may not have been prior to the 
increase in the wage rate, and because household demands for housing in the 
residential rings initially occupied rise with the higher incomes, thus 
lowering the generated population in those rings. 

12 Once again the question of what happens to the size of the generated 
population is relevant. Aggregate demand for the local good is dependent 
on the number of households generated, as well as on household demand. If 
the generated population rises with an increase in Pc, then aggregate demand 
for the local good may increase. Furthermore, the issue of what happens to 
aggregate supply depends on whether the local good industry is able to 
obtain some CBD land. If the industry is initially outbid by other uses 
for land, then a given increase in Pc may not lead to the industry out-
bidding other uses for land, and so may not lead to an increase in supply. 

13The definition of a normal equilibrium should, of course, now be 
extended to include the excess demand for the local good. A normal equili-
brium would be one for which the excess demand for the local good is zero. 
It has been argued above that a zero local good price equilibrium is not 
possible given the functional forms used in this model. 

14 If there is more than one labor type, then N,W must exceed the maxi-
mum potential labor supply for any labor type. 

15 If there is a tie for the minimum, then we arbitrarily choose the 
index of one of the tied coefficients. 



16 As noted previouslj, the computer cannot raise zero, positive 
numbers it takes to be zero, or negative numbers to a power. 
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17 Note that if the local good sector is included in the model, a 
value for Pc must be chosen in conditions (c.3i) and (c.4i)~. In both 
cases the value to choose would have to bed, thus making satisfaction 
of the conditions dependent on the size of the simplex. 

18 Conditions (c.41)~ and (c.42)~ for this model, of course, are 
defined for the first two, not the first three, rings and make no refer-
ence to a local good sector. 

19In order to make meaningful comparisons of aggregate land rents for 
different solutions it is necessary to subtract agricultural rents because 
the number of rings in urban use is endogenous and no limit is set, in the 
model, on the number of rings that can be considered for some use. 

20 Implicit in summing the dollar measures for the different agents to 
obtain a measure of the total gain or loss to society is the assumption, 
commonly made for practical reasons in many welfare analyses, that a 
dollar given to one individual is vaJued the same as a dollar given to 
any other individual; or at least that this is a suitable approximation. 

21 An equivalent variation measure, as opposed to a compensating varia-
tion measure, should be used here since three different equilibrium cases 
are involved in the comparisons. It is well known that an equivalent 
variation measure is transitive, while a compensating variation measure 
is not. 



CHAPTER 5 

PARAMETERIZATION AND SENSITIVITY ANALYSIS 

The models presented in the previous chapters are sufficiently com-

plex to render them analytically intractable. Thus, to obtain any results 

about the effects of changes in the property tax system, qualitative or 

quantitative, numerical simulations must be done. To accomplish this, 

values must be chosen for the parameters of the models. It is our in-

tent to parameterize the models so that a base case equilibrium for each 

of them corresponds roughly to the reality for the Boston metropolitan 

area in or around the year 1980. This chapter presents a detailed dis-

cussion of the analysis and data used to parameterize these models and 

the results of sensitivity analysis applied to the base case parameteriza-

tion. 

There does not seem to be good data available on some of the para-

meters of the model. On the other hand, realistic data are available on 

what should be reasonable values for some of the endogenous prices in the 

model. Through exploitation of some equilibrium conditions, and budget 

share and elasticity definitions, these 11desirable 11 solution prices are 

used to find values for the otherwise difficult to determine parameters. 

Thus, our base case parameterizations are conditional on equilibrium 

values of some of the endogenous prices. As a result, there are basically 

two approaches to the sensitivity analysis that can be taken. After find-

ing a base case parameterization and solution, and welfare results for a 

change in tax structure for that parameterization, sensitivity analysis 

can be conducted, in a rather simplistic way, by just varying parameter 

values from what they are in the base case. New equilibria can then be 
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computed for the classification tax structure, and also for changes in 

that system. Resultant changes in urban structure and welfare from that 

of the base case can be noted. Since some of the parameters in the base 

case are calculated conditional on certain endogenous prices and other 

parameters, varying a parameter value without re-calibrating, in accor-

dance with the relationships among prices and parameters used to find the 

original parameterization, the whole set of parameter values can lead to 

an equilibrium that is fundamentally different than the base case equili-

brium. Thus, if the base case equilibrium is thought to represent reality, 

then this approach should be viewed as one which can tell us how the equili-

brium under one tax system or another will change if there is a change in 

tastes and/or technology. It can also tell us how the welfare results will 

be altered by such changes in tastes and technology. In such an approach, 

then, the original parameterization is taken to be the "correct" one. 

Alternatively, for any change in a parameter value, the entire system of 

parameters can be re-calculated in accordance with the equilibrium and 

other relations that were exploited to complete the parameterization for 

the base case. If this approach is taken, then we should not expect much 

of a change in the nature of the equilibrium for a given tax system, but 

the welfare effects for a given system may be quite different. This app-

roach, then, is consistent with the notion that the parameters, or the 

raw data used to calculate some of them, may be subject to estimation or 

measurement error. As such, the sensitivity analysis can therefore be 

interpreted' as an attempt to take these potential errors into account when 

presenting results; particularly the welfare effects. With a few exceptions, 
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to be noted below, the latter approach is the one taken here. 

Due to computational problems and costs, results for a multiple 

group model are not given. Since exogenous household income should 

represent only a small portion of total income, a multiple group model 

of any significance should allow for multiple labor types. Attempts to 

find solutions for a three household type - three labor type model (in 

particular one with low, middle and high income groups) were unsuccessful. 

Accumulated numerical round-off errors, it seemed, prevented convergence 

of the algorithm. The errors, in turn, may have been caused by the sub-

stantial amount of bounding of the functions of the model that must be 

done. In any case, the lack of success and costs of computation argued 

against further attempts at this time. Computational costs tend to in-

crease dramatically with the dimensions of the simplex over which algo-

rithms of this type search. Experience with the base and local good 

models showed that solutions obtained for the local good model generally 

took three times as long to find as solutions for the base model. The in-

crease in the dimensionality of search over the base model, however, was 

just one. The multiple group model, in general, involves an increase in 

dimensionality over that for the local good model of n + m - 2. For the 

three household type - three labor type model, in particular, the number 

of endogenous prices over which the algorithm searches is double that for 

the local good model.1 As a result, attempts to find solutions by further 

use of the algorithm employed in this study, or by using more efficient 

algorithms, will be relegated to future research. 

The parameterization of the base case for the base model is discussed 
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in detail in section I. The results of the sensitivity analysis for the 

base model are presented in section II. The methods by which the base 

case for the local good model is parameterized, and the values of model 

parameters, are delineated in section III, while the sensitivity analysis 

results for this model are presented in section IV, the final section of 

the chapter. 

II. Base Model Parameterization 

As noted above, we seek to parameterize a base case so that the re-

sultant equilibrium yields an urban area that resembles, in some ways, the 

Boston metropolitan area in 1980. Thus, the data used to parameterize the 

base case for the base model, to the extent possible, are selected from 

published reports relating to the Boston region for this year. In all, 

for the base model there are twenty-seven parameters to choose. 2 The 

values of those parameters chosen for the base case are presented in table 

5.1. The rest of this section is devoted to discussing the methodology 

and data used to select those parameter values. 

Direct estimates of the coefficients of the household utility function 

are not available. Housing price elasticity of demand estimates and budget 

share data, however, can be found. This information and the definitions of 

the own-price elasticity of housing demand and the housing budget share for 

typical households can then be used to implicitly define the household 

utility function parameters - aT' aH' and p. 3 This can be done in the 

following manner. From the housing demand function (2.44), it is easy to 

see that the own-full price 4 elasticity of housing demand, nj, for a house-

hold residing in ring j is given as follows: 



202 

( 5 .1) 

j This elasticity varies with the housing services price, pH, and so, in 
general, will vary by ring. We focus attention, though, on the elasticity 
for a typical, or average, household living somewhere in the interior of 
the urban area. The unit price of housing facing such a household in a 

realistic equilibrium is to be expressed as pH' while tis to represent 
the nominal property tax rate facing all households in an equilibrium that 
is to mirror, on average, the actual situation for metropolitan Boston in 
or around 1980. For ease of exposition, the following definitions are 
made. 

(5.2) 

(5.3) 

Thus, the housing price elasticity of demand, n, for our average household 

can be written as follows: 

_ -(a+(l/(l+p))·b) 
n - a + b (5.4) 

This expression can then be inverted to express the elasticity of sub-

stitution term, p, in terms of a, b, and n. 

-b p=-~-- 1 (a+b)-n+a - (5.5) 

Thus, to choose a value for p, we must find values for these three terms. 
Since property tax discrimination was operative in the Boston area during 
the period in question, a classification scheme is assumed for the base 
case. Figures used for the assessment/sales ratios for different property 
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classes in the classification amendment to the Massachusetts state consti-

tution that was passed ( which were thought to represent the status quo, 

on average, for the state) were 40% for residential property, 50% for com-

mercial property, and 55 % for industrial property. The average figures 

for the Boston area may actually show a greater divergence between resi-

dential and business ratios, and so the higher business property figure, 

55%, was used for industrial property in the base model, even though no 

business property in that model is defined as commercial. In particular, 

we let aR = .40 and a1 = .55. To find a value for a, something must be 

assumed about what the nominal tax rate is likely to be in a base case 

equilibrium. It is commonly noted that urban residential property tax 

rates, expressed as a percent of annual housing rentals, generally average 

about 20 to 25 percent (see e.g. Mills {1980), p. 128). Since Massachusetts, 

and the Boston region in particular, is thought to be a high property tax 

area, a residential tax rate of 25% was targeted for the base case. Given 

that aR = .40, this implies a value oft= .625. Finally, an assumption 

about the value of the unit price of housing services facing the average 

household in the base case equilibrium must be made. The value chosen will 

be that derived from data on FHA-insured existing single-family homes in 

Massachusetts in 1981.5 A discussion of how it is derived must be de-

ferred until we take up the parameterization of the housing production 

function. For now, we simply note that it can be derived from published 

data, and the value found is pH= $4752.42. Thus, the value for a is 

$5940.525. 

A value for b can be found by looking at budget share data. The gross 
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of tax housing budget share of income net of commuting costs for a typical 

household, h, can be expressed ash =a/(a+b). This can be inverted to 

find b = [(l-h)-a]/h. Two sources were used to determine a housing budget 

share net of property taxes for before-tax income. Data from U.S. Depart-

ment of Housing and Urban Development (1982) on FHA-insured homes for 

Massachusetts in 1981 on borrower income and housing costs 6 indicated a 

housing budget share net of ~roperty taxes for before-tax income of approxi-

mately 18.6%. On the other hand, data from U.S. Department of Labor (1978) 

on average shelter expenditures and before-tax income for families in the 

Boston SMSA during 1972-73 yielded a figure of slightly more than 15.1% 

for the above-mentioned budget share. As a compromise, the approximate 

average of 16.8% was used for this budget share in the base case para-

meterization. Income for the model, though, should be viewed as after-tax 

income not saved (i.e. consumption expenditures). To obtain the budget 

share, h, we must also net out commuting costs from consumption expendi-

tures. The consumer expenditure survey data in U.S. Department of Labor 

(1978) include an average annual family consumption expenditure level, in-

clusive of transportation costs, of $9302.ll for the Boston SMSA in 1972-

73. This figure can be scaled up, in a manner described below, so that 

it is expressed in 1981 dollars. An annual per-mile money cost of com-

muting of $32.4375, also discussed below, is assumed. Since commuting 

costs vary by residential location, a location must be assumed for the 

average household. It is assumed that the typical household lives 5.5 

miles from the employment center for the region. 7 The consumption expendi-

ture figure mentioned can then be adjusted to account for the commuting 

costs of a household living 5.5 miles from the center. This gives a 
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figure that allows us to convert the budget share of 16.8% found above in-

to one appropriate to income net of transportation costs for the model. 

Doing so yields a housing budget share, net of property taxes, of 20.87%. 

Using a residential property tax rate of 25%, a gross of property tax bud-

get share of h = 26.1% is found. Given this value and that for the term 

a found above, we find that b = 16820.107. 

The price elasticity of housing demand for samples of FHA data for 

owner-occupants across different cities and time periods has been estimated 

in Muth (1971) and Polinsky and Ellwood (1979). These studies suggest a 

price elasticity of -.7. Thus, we let n = -.7. The values for a,b, and n 

can then be used to determine, through (5.5), the value p = .6834. The 

utility function coefficients, °T and aH, can be set by using (5.3). In-

verting (5.3) with respect to the ratio of these coefficients yields: 

(5.6) 

Since the units in which we measure the traded good are arbitrary, what 

matters for the analysis is the product, C-pT, rather than Pr and C con-

sidered independently of one another. Thus, one of the two terms may be 

chosen arbitrarily. We choose Pr~ 100. Substituting this into (5.6) 

then gives a ratio for the utility coefficients of 93.975781. Normalizing 

so that the coefficients add to l, then yields the values °T = .989471 and 

aH = .010529. 

Parameters in the household budget and time constraints yet to be 

determined are v, W, T, c, and M. An average rush-hour travel speed for 

urban travel of 20 m.p.h. seems reasonable. It is assumed that each 
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worker works 250 days a year, while the institutionally determined length 

of a work day is 8 hours. Thus, we choose v = 25 and W = 2000. The total 

amount of time per day available for work, leisure, and commuting is taken 

to be 16 hours. Thus, using a 365 day year, we assume that T = 5840. Data 

on the money cost of travel were obtained from U.S. Department of Trans-

portation (1980). The cost per vehicle-mile was calculated from data con-

tained in the study to be 10.38¢/mi .. 8 A vehicle occupancy rate of l .6 

persons/vehicle was assumed. This is a common highway engineer's estimate 

and also agrees precisely with data on the numbers of vehicles and passen-

gers per day crossing a boundary of the downtown Boston business district 

in a Boston region transportation study [Boston Redevelopment Authority 

(1967, p.44)]. Thus, the value chosen for the money travel cost parameter 

is c = $32.4375. The data in U.S. Department of Labor (1978) on total 

family income and wages and salaries indicate that the proportion of income 

that has wages and salaries as its source fluctuates in a very narrow range 

about 75% for Boston, other regions in the Northeast, and the country as a 

whole. As a result, we take exogenous income to be 25% of total income. 

As noted above, however, the relevant income measure for the model is con-

sumption expenditure. We have that value for Boston for the 1972-73 period. 

We need the corresponding figure, though, for the 1980-81 period. Personal 

outlays in the U.S. between 1972 and 1981 increased from $747.2 billion to 

$1,898.9 billion, while the number of households increased from 66.7 million 

to 82.4 million. 9 Thus, we can multiply 1972 consumption expenditures for 

the Boston SMSA by a factor of (1898.9/82.4)/(747.2/66.7) to express income 

in 1981 dollars. Doing so, we obtain approximately $19,136 for income. 

Thus, we choose M = $4784. 
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The housing production function is parameterized in the manner given 

in Muth (1975). From previous work [Muth {1969)], Muth assumes a value 

for the housing elasticity of substitution of 0H = .75. This implies that 

pH= .3333. Koenker (1972) has also estimated 0H' and found a value of 

.7. For the base case, the Muth figure is used. The procedure employed 

by Muth to estimate the coefficients of the CES production function in-

volves solving a set of two simultaneous equations, for these coefficients, 

that were parameterized using 1966 FHA data for a number of cities, and 

the assumed value for 0H. For this study, we use the 1981 FHA data for 

Massachusetts. The equations, which result from profit maximization and 

the production technology, are given as follows: 

l 
0 

( aLH/ aKH) = ( PLH. LH/ Ci\· KH )) H. ( PLH/i\) 

-{l-0) {l ) ___ H_ - -0H 
0H - l 

] . ( sH) crH 

(5.7) 

(5.8) 

Note that the equations are not indexed by ring. Thus, terms like pLH' 

LH' and KH should be thought of as referring to housing for an average 

household. Equation (5.7) is derived by taking the ratio of the two mar-

ginal productivity conditions for profit maximization, while equation 

{5.8) is simply a re-statement of the production function. A unit of 

housing is taken to be the amount supplied by a typical FHA-insured exist-

ing home in Massachusetts for 1981. As a result, we let sH = l, and use 

the FHA data for such a typical house in choosing values in (5.7) and 

(5.8). The data alluded to reveals a median lot size for existing homes 
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of 7200 sq. ft., or LH = .1652893 acres. A median site price of $.87/ 

sq. ft. therefore yields site expenditures for the median lot of $6264. 

Since such a price embodies expenditures for non-building capital invested 

in the land, we follow Muth's p-ractice of reducing this figure by one-

half to obtain a price for raw land. Doing so, yields a per-acre price 

of land of $18949. Assuming an interest rate of 8.5% per year 10, gives 

us pLH = $1610.63. We define a unit of structure (capital) to be that 

obtained with an expenditure of $1000. The FHA data reveals a median house 

price for existing homes in Massachusetts of $36,363. Subtracting the 

derived price of raw land for the median lot, $3132, from the median house 

price gives us structural expenditures of $33,231. Thus, we take KH=33.231. 

Assuming depreciation, maintenance, and repair costs of 3.5% per year, and 

mortgage insurance, hazard insurance, and miscellaneous costs of 1.5% per 

year, together with the interest rate of 8.5%, the annual rental for a unit 

of structure is pK = $135. Substituting these values into (5.7) and (5.8) 

will then yield aLH = .0307426 and aKH = 3.0349022. Finally, these co-

efficients can be used to find a value for the unit price of annual hous-

ing services facing the typical household in the base case. Setting price 

equal to average cost for housing for the typical household yields: 

(5.9) 

Using the values obtained, for the terms on the right hand side of (5.9), 

gives a price of housing services, mentioned above, of pH= $4752.42. 

The CBD size in the model is fixed. We wish the radius of the em-

ployment node to be roughly consistent with the reality for the Boston 
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area. Employment in the model, however, is completely centralized. In 

reality, much employment is suburbanized. The real world Boston CBD, 

therefore, will employ fewer workers than will the model CBD (assuming 

all workers in the model choose to work). Thus, it is reasonable to 

choose the size of the CBD in the model to be larger than that of the 

actual CBD. Some data which helps in this regard can be found in a trans-

portation study for the city of Boston [Boston Redevelopment Authority 

(1967)]. A geographical area, referred to as "Boston Proper" and defined 

in the study, can be used as a notion of a CBD (for the city of Boston). 

Data is also available in the study on the number of persons crossing the 

boundary of this area during the workday peak travel periods. A value 

for the number of workers traveling to the Boston CBD during the morning 

peak can be approximated using this data. One approach to take to deter-

mine the CBD size for the model, would be to first estimate the radius 

of the Boston Proper area, and find the total amount of land inan annulus 

with that radius. The employment total can then be used to establish a 

figure for number of workers per unit of land. This and the number of 

workers specified in the model can be used to determine the amount of land 

in the first ring, and so a CBD radius, required to yield the same value 

for workers per unit of land. One problem with this approach, though, is 

that, given jurisdictional boundaries in the region, the actual CBD for 

the region as a whole surely extends beyond the city of Boston's border. 

Thus, the figure for employment probably under-estimates the actual number 

of CBD workers and so the number of workers per unit of land. It seems 

that it would be better, instead, to estimate the actual amount of land, 

used for production, in arriving at a figure for the number of workers 
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per unit of land. Our estimate for the Boston Proper land area is 2.64 

square miles, or 1687 acres. Not all of this land, though, is used for 

production. The study indicates that 34.7% of the land in what is called 

the Central Area of Boston (a subset of the Boston Proper Area) is de-

voted to roads and parking. In addition, some of the land in the 

Boston Proper area is used for parks, churches, and the like. As a re-

sult, we assume that 60% of the Boston Proper area (i.e. 1012 acres) is 

allocated to production. Data on the number of people crossing the Boston 

Proper boundary during peak periods by mode is given in Table 12 of the 

study. Excluding those crossing the boundary in steamships and trucks, 

we arrive at an estimate of the number of workers in the Boston Proper 

area after adjusting the table figures, which give totals for the two 

peak periods combined, to account for the fact that some drivers enter 

and exit the boundary during the same peak period, and so that the data 

refer to just the morning peak period. 11 The figure arrived at for the 

number of workers is 165,798. This gives a worker per acre figure of 

163.83. The data on total population and the number of people per house-

hold in U.S. Bureau of the Census (1982b) show that the number of house-

holds in both the Boston SMSA and the Boston Urbanized Area for 1980 is 

very close to l million. Thus, we choose N = l million. We also make 

the assumption of l worker per household, so that there are l million 

workers in the model (assuming that all households choose to send a mem-

ber to work). Finally, it is also assumed that one-third of the land in 

every ring is available for endogenous use. This is consistent with 

what is assumed in other studies of this type (see e.g. Muth (1975) and 
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Richter (1979)]. Thus, the model CBD should contain 18,312 acres in 

total {6104 acres available for endogenous use). This implies a CBD 

radius of 3.02 miles. This was rounded down to 3 miles. All other rings 

are assumed to have a width of one-eighth of a mile. This particular 

figure was chosen because it is the length of an average city block. 

There is not much of a problem, though, with choosing an even smaller 

width. Computational costs are not very sensitive to this term. 

To param~terize the traded good production function, the value of 

certain endogenous prices must be targeted. That is, values which some 

endogenous prices should hold, at least approximately, in the base case 

equilibrium must be chosen. In particular, we seek solution values for 

Pw and p~T that are consistent with a realistic base case equilibrium. 

To determine PW we use the annual total income (exogenous plus endo-

genous) figure of $19,136 for a typical household, expressed in 1981 

dollars, given above. Assuming that wages constitute 75% of income, we 

obtain a target hourly wage rate of $7.18. For the CBD traded good land 

rental, a value is sought that is high enough so that we can be assured 

that the traded good industry will be allocated all of the available CBD 

land in the base case equilibrium, but low enough so that it is reasonably 

close to the housing bid land rent for the first residential ring. 12 

Thus, given the values chosen for the housing production function para-
1 meters, we choose a target CBD annual land rent of pLT = $12,000. A 

value of the elasticity of substitution term, PT, can now be determined 

conditional on a ratio of production function coefficients. Assuming 

full employment of the potential labor force in equilibrium and that the 

traded good industry outbids other uses for CBD land, the labor demand 
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equation (2.52) can be inverted with respect to pT to obtain 

(5.10) 

If we determine the value of PT in this way, and the scale parameter, C, 

in a manner to be mentioned below, it can be seen that our target prices 

will be approximately realized in equilibrium, no matter what value is 

chosen for the ratio aWT/aLT (provided, of course, that it is not chosen 

so that (5.10) yields a value that lies outside of the range of accep-

tible values for pT). Given this degree of arbitrariness, then, we let 

aWT = .20 and aLT = .01. Substituting these values into (5.10), we ob-

tain PT= -.1572. To parameterize aKT and C, we must look to the amount 

of tax revenues that are to be raised in equilibrium. Data provided to 

me by the Assessing Department of the city of Boston shows that the cities 

and towns in the Boston SMSA raised approximately $1.7 billion in property 

tax revenues for 1980. Thus, we let R = $1 .7 billion. It is possible to 

establish, approximately, what the amount of property tax revenues raised 

from the residential sector should be in the base case equilibrium, and 

so, given R, approximately what the level of business tax revenues will 

be. It was stated above that the typical household in the base case 

equilibrium is to have an income of $19,136, live 5.5 miles from the 

employment center, and spend 20.87% of its income net of commuting costs 

on housing. Given the value chosen for c and a residential tax rate of 

25%, then, the typical household should pay about $989 per year in pro-

perty taxes. Thus, residential property taxes for the entire urban area 
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should approximate $989 million. Consequently, business property taxes 

should approximate $711 million. The business property tax rate is im-

plied by the assumed value oft= .625. Therefore, with the value taken 
1 for pLT in equilibrium and assuming again that the traded good industry 

obtains all of the available CBD land, revenues arising from the business 

tax on land can be subtracted from total business tax revenues to obtain 

revenues from the tax on the traded good1 s use of capital. Given the 

business property tax rate and the rental rate on capital, pK' we can 

then determine the amount of capital, KT' that the traded good industry 

should be using in the base case equilibrium. Hence, we can finally de-

termine a value for aKT by inverting (2.53) as follows: 

_ 1 l+pT - 1 
aKT - (KT/L) -(aLT · pK/pLT) (5.11) 

Substituting in the values found for the terms on the right hand side of 

(5.11) yields aKT = .0808035. The scale parameter, C, can now be found 

by inverting the bid land rent function (2.48) with respect to C. All 

other terms in (2.48) have been specified. Using these values in the 

inverted expression yields C = 777.11. 

Just two parameters remain to be specified-- PA and at. Their 

values were simply chosen so that, with the other parameter values 

selected, a reasonable population density gradient and city size would 

result. The effects of changes in these values are realized mainly in 

the steepness of the housing price gradient and in city size, with in-

creases in at and pA both leading to steeper gradients and smaller city 

sizes. The values chosen for the base case parameterization were 

PA= $450/acre and at= .31. 
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TABLE 5.1 

BASE CASE PARAMETERIZATION 

Utility Function: A= 1 aH= .010529 aT=.989471 ai=.31 p=.6834 

Budget and Time Constraints: v=25 W=2000 c=32.4375 T=5840 M=4784 

Housing Production Function: B=l aLH=.0307426 aKH=3.0349022 pH=.3333 

Traded Good Production Function: C=777.ll aLT=.01 awT=.20 aKT=.0808035 
pT=-.1572 

Miscellaneous: pT=lOO pA=450 aR=.40 aI=.55 pK=l35 N=l ,000,000 
R=l,700,000 CBD radius=3 
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II. Base Model Results 

In this section computed solutions (i.e. economic equilibria) for 

the base model are presented and discussed. The solutions were found 

with the aid of a fixed point algorithm, FIXPOINT, developed at the Com-

puter Research Center of the National Bureau of Economic Research. To 

make use of this program users must write a subroutine peculiar to their 

particular applications. To measure the computation costs for these 

solutions, it is perhaps better to note the number of excess demand 

vectors calculated, and so the number of price vectors passed by the 

algorithm to the user written subroutine, before an equilibrium is found, 

rather than actual CPU time. All of the base model solutions presented 

were found after 100 to 200 price vectors were examined by the sub-

routine. 

The parameterization in table 5.1 was used to yield the status quo 

solution, i.e. the one which is to reflect the reality for the Boston 

SMSA, and serve as the basis of comparison for a move to an equal rate 

tax system and changes in the technological and other parameters of the 

model. Tables 5.2 to 5.16 present detailed results for various solu-

tions. Data is provided for the first, or CBD, ring, the second ring, 

every tenth ring thereafter, and the last, or boundary, ring. The popu-

lation density gradients are expressed in terms of households per acre 

of land used for residential development, the housing capital/land 

ratios are measured in units of capital per acre of residential land, 

and the bid housing price and land rent gradients are expressed in 

dollars per acre. Other data given for individual solutions are the 
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equilibrium hourly wage rate, the effective property tax rates, the resi-

dential and business tax bases, the traded aood bid land rent for CBD 

land, and aggregate land rents for the urban area. With the exceptions 

of table 5.3, which characterizes the equilibrium for the base case 

parameterization with an equal tax rate system, and table 5.14, which re-

lates to an equal rate tax system and a change in the population para-

meter, these tables apply to solutions for the classification tax scheme 

(i.e. aR = .40 and a1 = .55). 

As noted in the previous section, there are basically two approaches 

that we can take in conducting the sensitivity analysis; one being to re-

calibrate the entire parameterization when considering a change in one 

parameter value so that the resultant equilibrium, under tax classifica-

tion, is essentially the same as the base case classification equilibrium. 

We may then investigate whether the welfare results are affected, even 

though the classification solutions are the same. For most of the re-

ported parameter changes this is what was done. However, the second 

approach mentioned above (simply change one parameter value with no con-

cern for duplicating the base case solution) was tried on a number of para-

meters. It is the solutions for these changes that are presented in 

tables5.4 to 5.16. Since all parameter changes of the first type are 

designed to yield the important aspects of a given solution, the struc-

tural characteristics of solutions for these changes are not presented. 

Welfare results for these changes, and those of the second type as well, 

are, however, depicted in tables 5.17 and 5.18. The zeroes for popu-

lation density and the capital/land ratio for the CBD ring in all of the 
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tables reflect the fact that the traded good industry outbids housing 

for CBD land in all solutions. With tables 5.2 and 5.3, analysis of the 

important structural effects of a change from a status-quo classification 

tax system to a non-discriminatory one can be given. It can be seen that 

the gradients (density, capital/land ratio, housing price, housing land 

rent) become flatter with the move to· an equal rate system. City size, 

however, remains constant. As might be expected, the more favorable 

treatment of business property in the equal rate case relative to the 

classification case leads, in equilibrium, to greater demands for labor 

and land, and so a higher wage rate and CBD land rent. The effective tax 

rate, for all property types, in the equal rate solution is between the 

rates on residential and commercial property for the classification case. 

Thus, the traded good industry faces a lower tax rate, and the residents 

a higher tax rate, in the new equilibrium. As a result, the urban area's 

residents spend less, net of property taxes, in aggregate on housing and 

the value of the property (capital and land) used by the traded good 

industry increases. Finally, aggregate land rents in the urban area in-

crease. Welfare results for this and other situations will be discussed 

below. 

Since the FHA data used to parameterize the housing production func-

tion was thought to be fairly reliable, re-calibration to duplicate the 

base case solution for cases where one of the housing production para-

meters is altered was not done. Instead, we consider, in tables 5.4 to 

5.9, changes (increases and decreases) in individual housing production 

function parameters, holding all other parameters constant. Thus, we 
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may view comparisons of the solutions for these changes with that for the 

base case as an indication of what would happen if the housing production 

technology changes. 

Since it was thought that the solutions may be much more sensitive 

to changes in the elasticity of factor substitution than to changes in 

the land and capital coefficients, the latter were increased and decreased 

by 20%, while the elasticity of substitution was increased and decreased 

by only 10%.13 Table 5.4 characterizes the equilibrium when the elasti-

city of substitution is lowered from .75 to .675 (i.e. pH= .4815). 

Table 5.5 characterizes the solution when the elasticity of substitution 

is increased to .825. Results here are perhaps surprising. A comparison 

of equilibrium utilities for the two changes and the base case reveal that, 

at least over the range of parameter values considered, the welfare of the 

residents is increased with decreases in the elasticity of substitution. 

Decreased substitution possibilities led to higher welfare in spite of 

the fact that wages fell ($7.30 to $7.10) and the residential tax rate 

nearly doubled (16.6% to 31.3%). An explanation of the welfare result 

seems to lie in the fact that housing prices increased substantially with 

increases in the elasticity of substitution. Housing prices in the first 

residential ring increased by a factor of nearly 16 for the high elasti-

city relative to the low elasticity case. One last effect that is quite 

noticeable is that city size appears to be sensitive to the elasticity, 

but only on the low elasticity side. There is virtually no difference 

in city size between the base case and the increased elasticity case, 

but the urban area increases by 12 rings (1 .5 miles) for the decreased 

elasticity case. 
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Tables 5.6 and 5.7 show the effects of a 20% decrease and a 20% in-

crease, respectively, for the land coefficient, aLH" Here the effects 

on wages and the tax rates are minimal. There is no change in the wage 

rate and small increases in the tax rates, with a lower coefficient. 

Examination of the utilities again reveals that decreases in the para-

meter lead to increases in welfare. This also, it seems, can be attri-

buted to lower housing prices in the case where the parameter is de-

creased. In this case, though, just what it is that causes this effect 

seems clear. A decrease in aLH can be shown to imply technological pro-

gress. Given that pH> 0 in this case, a decrease in aLH means that 

more housing services can be produced with the same amounts of capital 

and land. Thus, it is not surprising that equilibrium housing land rents 

fall and welfare increases. Finally, city size is sensitive to the co-

efficient, with decreases in aLH leading to smaller city sizes. This 

time the effect is symmetric, with a change in size of 10 rings for both 

cases. Tables 5.9 and 5.10 reveal that the effects of increases and de-

creases in aKH are qualitatively the same as those for aLH' except that 

there is now a measurable change in the wage rate. As might be expected, 

though, the changes in aLH have a greater impact on the population den-

sity gradient. 

Tables 5.10 and 5.11 show the effects of 50% changes in the agri-

cultural land rent. For the most part, the effects are minor. Changes 

in the parameter seem to have greatest impact on city size and the steep-

ness of the population density gradient. Decreases in the agricultural 

land rent appear, not surprisingly, to lead to larger city sizes and 
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flatter density gradients. Also not surprisingly, a smaller pA seems 

to lead to higher utility for the area residents. Since there is no 

change in the wage rate and even a slight increase in the residential 

tax rate with the lower agricultural rent, the effect on welfare again 

seems to be fueled by lower housing prices. 

The results for changes in at are similar. Tables 5.12 and 5.13 

depict solutions for a 20% decrease and a 20% increase, respectively, 

for this parameter. Again, city size is smaller and the population den-

sity gradient flatter for a decrease in the value of the parameter. Wel-

fare comparisons do not make sense here since it is a utility function 

parameter that is being varied. 

As will be discussed below, a move to an equal rate tax system for 

the base case parameterization leads to an increase in household welfare. 

If the change is made, then, it would seem possible that some migration 

to this urban area from other regions would occur. The model, however, 

depicts a closed region. There can be intra-regional movement, but pro-

vision is not made for inter-regional migration. In reality, if the wel-

fare gain is large enough (it must at least cover moving costs) residents 

in other regions would be attracted to the area in which the tax change 

is made. To examine the effects on the area of such migration, and to 

bound the extent of the movement, the population parameter was increased 

by 20% to 1.2 million. If the population is increased, however, so 

should the tax revenues that have to be raised. The simple assumption 

made here is that per capita tax revenues should be constant. Thus, we 

also increase tax revenues by 20% so that R = $2.04 billion. The model 
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was then run under the equal rate system. The results are presented in 

table 5.14. As was to be expected, the gradients are shifted up, the 

city expands, and the tax bases increase. The wage and tax rates, how-

ever, are virtually unaffected. Examination of equilibrium utilities 

reveals that household welfare is lower with the larger population than 

it is for the base case under the classification tax scheme. Thus, even 

with zero moving costs, migration to the area because of the tax policy 

change would be less than the 200,000 household increase set for this 

case. 

Finally, the impact of decisions to decrease or increase the size 

of the area that is zoned industrial (i.e. the CBD) can be studied. 

Tables 5.15 and 5.16 show the effects of changes in zoning policy that 

would decrease and increase, respectively, by 10% the radius of the CBD 

ring. There appear to be tendencies for wage rates to increase, and the 

traded good industry bid CBD land rent to decrease with increases in CBD 

size. Both of these effects can be attributed, quite understandably, to 

an increase in the supply of land to the traded good industry. There 

also seems to be a weak tendency for the rates to decrease with CBD 

size. The size of the urban area, after accounting for a change in the 

radius of the first ring, increases with increases in CBD size. The 

equilibrium utilities also show that household welfare tends to increase 

with the radius of the CBD. 

Tables 5.17 and 5.18 present welfare results for various parameter 

changes of movements from a classification tax system to an equal rate 

system. For the base case such a move results in a compensating varia-
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tion welfare gain of about $36.5 million per year for residents of the 

area. Taking into account changes in differential land rents, the aggre-

gate welfare change is $37.1 million. Results using an equivalent varia-

measure (not shown) agree quite closely with those compensating varia-

tion based figures. The household equivalent variation welfare gain is 

$33.9 million per year and the aggregate welfare gain is $34.8 million 

per year. To keep compensation costs low, it was decided to use just 

one of the two measures for the parameter changes. Since a classifica-

tion solution was calculated in each case, the compensating variation 

measure was chosen. The compensating variation approach requires the 

computation of two equilibria, while using the equivalent variation 

approach would result in the calculation of three solutions for each 

parameter change. 

The second to tenth sets of results in table 5.17 refer to changes 

considered for individual parameters or data values used to find model 

parameter values, that are accompanied by whatever changes in the whole 

set of parameters are necessary to maintain the major aspects of the 

base case classification solution. The second set listed in the table 

correspond to the two budget share extremes gleaned from two different 

sources - the Consumer Expenditure Survey and the FHA data. The hous-

ing budget shares, net of property taxes, on before-tax income for these 

two sources were 15.1% and 18.6%, respectively. These figures give rise 

to the values of h that are listed. The third set reflects a decrease 

and an increase in the assumed value for the housing price elasticity 

of demand which, it can be recalled, was used to parameterize the utility 
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function. The value for pH in case 4 of the table refers to an alter-

native estimate of the housing elasticity of factor substitution (oH=.7) 

found by Koenker (1972). Cases 5 and 6 refer to changes in income levels. 

The assumed percentage of total income, for the typical household, that 

is exogenous was altered to 15% and then to 35%. The base case figure 

for total income was decreased and then increased by 20%. Case 7 pre-

sents results for 20% changes in the per mile money cost of commuting. 

Case 8 refers to 10% changes in the CBD radius. A figure of $12,000 for 

the CBD land rent in equilibrium was assumed in the base case parameteriza-

tion. Case 9 of the table shows the effects of varying this land rent by 

50%. Finally, case 10 relates to 10% changes in the assumed residential 

tax rate of 25% (t=.625). Cases 11 to 16 give the welfare results for 

the parameter changes referred to in tables 5.4 to 5.16. It should be 

recalled that the ratio aWT/aLT was chosen arbitrarily, within certain 

limits, for the base case parameterization. The elasticity of substitu-

tion term was calculated conditional on this ratio. Altering the ratio, 

which is equivalent to altering the value of the elasticity of substitu-

tion for traded good production, will not change the classification solu-

tion, but could change the welfare results. Such results for three very 

different ratios are presented in case 17. 

For a given awT/aLT ratio, the results in table 17 reveal a notable 

consistency, both qualitatively and quantitatively. In all cases the 

residents benefit from a change to an equal rate tax system. There is 

an aggregate welfare gain in all cases as well. Changes in differential 

land rents are all small relative to the compensating variation measure. 
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Among the parameter changes for which the parameterization is re-cali-

brated, the largest variations in welfare are for the budget share, 

price elasticity, and total income changes. The changes that result 

in the greatest variation in welfare - 20% changes in total income -

also seem to yield the most interesting conclusion. The gain in house-

hold welfare from the change in tax policy is greater for lower total 

household income levels. This suggests that perhaps, in a multiple 

group model, the lowest income groups will benefit the most, in terms 

of a dollar measure of willingness-to-pay, from a shift to a non-dis-

criminatory tax system, thus strengthening the argument for such a change. 

Among the parameter changes for which there is no re-calibration, 

the largest welfare variation results from the 20% changes in the capi-

tal coefficient, aKH. All changes, though, agree quite closely with the 

welfare results for the base case. More significant divergences from 

the·base case welfare results are found for the variations in c,~T/aLT" 

Given the method of parameterization, the ratio is positively related 

to Pr, and so negatively related to oT, the traded good elasticity of 

factor substitution. The result obtained, stated in terms of this elas-

ticity, is that the welfare gains are greater for larger assumed values 

of oT. Thus, we may state that our welfare results are conditional on 

the value of one arbitrarily specified parameter, aT. If this parameter 

can be estimated, though, we can then be quite confident in the magni-

tude of the welfare results for the base case. Unfortunately, it 

would seem to be a difficult parameter to estimate. It is a production 

function parameter for a rather general composite commodity - one which 
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is a composite of all non-housing consumer goods and services for an ur-

ban area. It should be strongly noted, though, that the qualitative re-

sults are robust. In all cases, including those for variation in the 

assumed value of 0T' there is a welfare gain for households, and in 

aggregate, in adopting an equal rate tax system. 

All of the results considered above are based, in essence, on 

changes in one parameter or data value at a time. It is possible that 

the results could be quite different for multiple changes. It is not 

feasible, though, to investigate the thousands of parameter change com-

binations that could be considered. To gather some evidence on the 

effects that multiple parameter changes would have and on bounds for the 

welfare changes, the following was done. For each of the re-calibration 

single parameter cases (2-10) of table 5.17, which change resulted in 

the higher compensating variation value and which resulted in the higher 

aggregate welfare gain was noted. Solutions were then found for para-

meterizations where all of the kinds of parameter or data value changes 

for cases 2 to 10 occur simultaneously. Welfare results are given in 

table 5.18. Cases l and 2 of the table give the results for parameteriza-

tions that use all of the changes for cases 2 to 10 of table 5.17 that 

lead to the higher welfare gain. Case l uses the changes that led to 

the higher compensating variation, and case 2 uses the changes that led 

to the higher aggregate welfare gain. Cases 3 and 4 present results for 

parameterizations that use all of the changes for cases 2 to 10 of table 

5.17 that lead to the smaller welfare gain. Since, for some of the cases 

in table 5.17, both of the compensating variation and aggregate welfare 

measures were lower than the corresponding measures for the base case 
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solution, cases 5 and 6 of table 5.18 refer to parameterizations for 

which the base case parameter values for those cases in table 5.17 

where this occurs were used along with the changes that led to the 

higher welfare gain in the other cases. Although we cannot be certain 

of it, the lowest and highest welfare gains in table 5.18 can serve as 

lower and upper bounds on the welfare gain for any combination of the 

parameter changes given in cases 2 to 10 of table 5.17. It seems likely 

that these values should at least be close to the true bounds. The re-

sults in table 5.18 show that the aggregate welfare gain varies from 

$9.5 million to $57.8 million per year. The qualitative result that a 

change to an equal rate tax system leads to an improvement in welfare, 

however, still holds. 



TABLE 5.2 - BASE CLASSIFICATION 

Population Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

1 (CBD) 0 0 5232 
2 20.94 587. 18 5228 

12 17. 68 494.23 51 37 
22 14. 75 411.15 5047 
32 12. 14 337.51 4958 
42 9.85 272. 85 4869 
52 7.84 216.68 4781 
62 6. 12 1 68. 51 4693 
72 4.66 127.83 4606 
82 3.44 94.08 4520 
87 (City 2. 91 79.62 4477 

Limit) 

Wage rate: $7. 18 
Effective tax rate (residential property): 24.9% 
Effective tax rate (industrial property): 34.2% 
Residential tax base: $3.9419 x 109 

Business tax base: $2.0669 x 109 

Traded good industry bid land rent (CBD): $11,996 
Aggregate land rents: $3.6081 x 108 

227 

Housing Land 
Rents 

6798 
5343 
5342 
4180 
3213 
2420 
1779 
1273 
880 
585 
468 



TABLE 5.3 ~ BASE CASE: EQUAL RATE 

Population Capital /Land Housing Service 
Ring Density Ratios:Housing Prices 

1 (CBD) 0 0 5226 
2 20.84 579.98 5221 

12 17. 61 488.63 5132 
22 14. 71 406.93 5042 
32 12. 12 334.45 4954 
42 9.84 270.75 4866 
52 7.85 215. 37 4779 
62 6. 14 167.82 4692 
72 4.68 127.60 4606 
82 3.47 94. 18 4520 
87 (City 2.94 79.84 4478 

Limit) 

Wage rate: $7.25 
Effective tax rate (residential property): 27 .5% 
Effective tax rate (industrial property): 27.5% 
Residential tax base: $3.9130 x 109 

Business tax base: $2.2214 x 109 

Traded good industry bid land rent (CBD): $12,752 
Aggregate land rents: $3.6213 x 108 

228 

Housing Land 
Rents 

6686 
6613 
5262 
4123 
3174 
2395 
1765 
1266 
878 
586 
470 



TABLE 5.4 - pH = • 4815 

Population Capital/Land Housing Service 
Ring Density Rati'os :Housing Prices 

l (CBD) 0 a 2099 
2 14. 71 279.93 2097 

12 13. 07 248.26 2049 
22 11. 52 218.40 2002 
32 l 0. 07 190. 37 1955 
42 8.70 l 64. l 9 1909 
52 7.43 139.87 1863 
62 6.25 117. 45 1818 
72 5. 17 96. 94 1774 
82 4.1 9 78.36 1729 
92 3. 31 61. 73 1686 
99 (City 2.75 51. 26 1655 

Limit}_ 

Wage rate: $7.10 
Effective tax rate (residential property}: 31.3% 
Effective tax rate (industrial property}: 43.0% 
Residential tax base: $2.7912 x 109 

Business tax base: $1.8588 x 109 

Traded good industry bill land rent (CBD}: $10.964 
Aggregate land rents: $3.8390 x 108 

229 

Housing Land 
Rents 

5821 
5771 
4830 
3955 
3259 
2618 
2065 
1594 
1199 
875 
615 
467 



TABLE 5.5 - pH= .2121 

Population Capi'ta l /Land Housing Service 
Ring Density Ratios :Housing Prices 

l (CBD} 0 0 32687 
2 23.83 1200. 30 32669 

12 19. 36 972. 72 32316 
22 15.56 779.51 31963 
32 12. 35 616. 99 31612 
42 9.67 481 .66 31262 
52 7.45 370.26 30913 
62 5.64 279. 71 30564 
72 4 .19 207.19 30217 
82 3.05 150.04 29871 
88 (City 2.48 122. 12 29664 

Limit} 

Wage rate: $7.30 
Effective tax rate (residential property): 16.6% 
Effective tax rate (industrial property): 22.9% 
Residential tax base: $6.9004 x 109 

Business tax base: $2.3287 x 109 

Traded good industry bid land rent (CBD): $13,272 
Aggregate land rents: $3.8130 x 108 

230 

Housing Land 
Rents 

7477 
7385 
5724 
4376 
3296 
2442 
1775 
1264 
878 
594 
463 



TABLE 5.6 - aLH = .0245941 

Popul a ti'on Capital/Land Housing Service 
Ring Density Ratios :Housing Prices 

l (CBD} 0 0 5006 
2 26.06 728. 37 5002 

12 21 • 36 595. 25 4914 
22 17. 23 478.74 4827 
32 l 3. 65 377. 93 4740 
42 l O. 57 291 . 85 4654 
52 7.98 219.52 4569 
62 5.83 159.90 4484 
72 4.09 111 . 90 4400 
77 (City 3.37 91 . 91 4358 

Limit l 

Hage rate: $7. l 8 
Effective tax rate (residential property): 25.0% 
Effe.ctive tax rate (industrial property): 34.4% 
Residential tax base: $3.8970 x 109 

Business tax base: $2.0615 x 109 

Traded good industry bid land rent (CBD): $11,970 
Aggregate land rents: $3.2865 x 108 

231 

Housing Land 
Rents 

7261 
7168 
5477 
4096 
2989 
2118 
1449 

949 
590 
454 



TABLE 5.7 ~ aLH = .0368911 

Population Capital /Land Housing Service 
Ring Density Ratios:Housing Prices 

l (CBD) 0 0 5448 
2 17 .43 490.16 5444 

12 15. 02 421 • 14 5350 
22 12.82 358.56 5258 
32 l 0. 84 302. 17 5166 
42 9.06 251. 71 5074 
52 7.47 206.95 4983 
62 6.07 167.59 4893 
72 4.84 133. 36 4804 
82 3.79 l 03. 95 4715 
92 2.89 79.07 4627 
97 (City 2 .50 68.23 4583 

Limit) 

Wage rate: $7.18 
Effective tax rate (residential property): 24.7% 
Effective tax rate (industrial property): 34.0% 
Residential tax base: $3.9899 x 109 

Business tax base: $2.0707 x 109 

Traded good industry bid land rent (CBD): $12,015 
Aggregate land rents: $3.9090 x 108 

232 

Housing Land 
Rents 

6403 
6341 
5179 
4179 
3327 
2608 
2008 
151 6 
1118 
802 
557 
457 



TABLE 5.8 - aKH = 2.4279218 

Populati'on Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

l (CBD) 0 0 2831 
2 21. 97 489.96 2828 

12 18.45 41 o. 01 2769 
22 15.30 338.81 2711 
32 l 2. 51 275.97 2653 
42 l 0. 06 221.06 2596 
52 7.93 173. 66 2539 
62 6 .11 133. 31 2483 
72 4.58 99.52 2428 
82 3.32 71 • 81 2373 
84 (City 3.09 66.95 2362 

Limit) 

Wage rate: $7.13 
Effective tax rate (residential property): 28.8% 
Effective tax rate (industrial property): 39.6% 
Residential tax base: $3.1549 x 109 

Business tax base: $1 .9484 x 109 

Traded good industry bid land rent (CBD): $11,411 
Aggregate land rents: $3.4014 x 108 

233 

Housing Land 
Rents 

6677 
6601 
5206 
4037 
3071 
2284 
1656 
1164 
788 
510 
465 



TABLE 5.9 - aKH= 3.6418826 

Population Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

l (CBD) 0 0 8693 
2 20.33 679.94 8687 

12 17. 21 574.18 8556 
22 14. 41 479.47 8426 
32 11 • 91 395.32 8296 
42 9.70 321. 22 8168 
52 7. 77 256.64 8040 
62 6. 11 201 .04 791 3 
72 4.68 153.84 7786 
82 3.49 114. 45 7660 
89 (City 2.79 91 . l 9 7573 

Limit) 

Wage rate: $7.22 
Effective tax rate (residential property): 22.1% 
Effective tax rate (industrial property): 30.4% 
Residential tax base: $4.6769 x 109 

Business tax base: $2.1571 x 109 

Traded good industry bid land rent (CBD): $12,439 
Aggregate land rents: $3.7505 x 108 
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Housing Land 
Rents 

6887 
6812 
5437 
4276 
3306 
2506 
1858 
1342 

939 
633 
468 



TABLE 5.10 - PA= 225 

Population Capital /Land Housing Service 
Ring Density Ratios :Housing Prices 

l (CBD) 0 0 5208 
2 20. 01 560.64 5203 

12 16.84 470.58 5113 
22 14. 01 390.25 5023 
32 11 . 49 31 9. 20 4934 
42 9.28 256.97 4845 
52 7.36 203.08 4757 
62 5.71 157.03 4670 
72 4. 31 118.29 4584 
82 3. 16 86.32 4498 
92 2.22 60.55 4412 
98 (City l. 76 47. 81 4361 

Limit) 

Wage rate: $7. 18 
Effective tax rate (residential property): 24.9% 
Effective tax rate (industrial property): 34.3% 
Residential tax base: $3.9205 x 109 

Business tax base: $2.0619 x 109 

Traded good industry bid land rent (CBD}: $11,972 
Aggregate land rents: $3.4764 x 108 
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Housing Land 
Rents 

6392 
6320 
5004 
3899 
2983 
2234 
1632 
1158 
794 
522 
325 
237 



TABLE 5. 11 - PA= 675 

Population Capita 1 /Land Housing Service 
Ring Density Ratios :Housing Prices 

1 (CBD) 0. a 5254 
2 21. 77 610.86 5250 

12 18.42 515.37 5159 
22 15. 41 429.88 5068 
32 12. 73 353. 95 4979 
42 10. 36 287. 14 4890 
52 8.28 228. 96 4801 
62 6.49 178.92 4713 
72 4.97 1 36. 50 4626 
80 (City 3.93 107. 70 4557 

Limit) 

Wage rate: $7.18 
Effective tax rate (residential property): 24.8% 
Effective tax rate (industrial property): 34.1% 
Residential tax base: $3.9488 x 109 

Business tax base: $2.0678 x 109 

Traded good industry bid land rent (CBD): $12,001 
Aggregate land rents: $3.7111 x 108 

236 

Housing Land 
Rents 

7165 
7086 
5649 
4436 
3423 
2590 
1915 
1378 
961 
701 



TABLE 5.12 - a£ = .248 

Population Capital/Land Housing Service 
Ring Density Ratios :Housing Prices 

l (CBD) a 0 5176 
2 18.87 528.58 5172 

12 16. 14 451.02 5092 
22 13. 68 381.06 5012 
32 11 .46 318.38 4933 
42 9.49 262.67 4854 
52 7.74 21 3. 60 4776 
62 6.20 l 70. 80 4698 
72 4.88 l 33. 94 4620 
82 3.75 l 02. 62 4544 
91 (City 2.89 78.85 4475 

Limit) 

Wage rate: $7.18 
Effective tax rate (residential property): 24.9% 
Effective tax rate (industrial property): 34.3% 
Residential tax base: $3.9346 x 109 

Business tax base: $2.0655 x 109 

Traded good industry bid land rent (CBD): $11,990 
Aggregate land rents: $3.4760 x 108 
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Housing Land 
Rents 

5903 
5843 
4729 
3777 
2972 
2300 
1746 
1296 

937 
657 
462 



TABLE 5.13 - ai = .372 

Population Capital /Land Housing Service 
Ring Density Ratios:Housing Prices 

l (CBD) 0 0 5285 
2 22.96 644.35 5280 

12 l 9. l 3 5 35. 16 5178 
22 15.72 438.46 5078 
32 12. 72 353.64 4978 
42 10. l 0 280.06 4880 
52 7.86 217.08 4782 
62 5. 95 163.99 4684 
72 4. 37 l 20. 07 4588 
82 3.09 84.56 4492 
84 (City 2.87 78.40 4473 

Limit) 

Wage rate: $7 .18 
Effective tax rate (residential property): 24.8% 
Effective tax rate (industrial property): 34.n~ 
Residential tax base: $3.9517 x 109 

Business tax base: $2.0737 x 109 

Traded good industry bid land rent (CBD}: $12,030 
Aggregate land rents: $3.7357 x 108 

238 

Housing Land 
Rents 

7701 
7609 
5940 
4554 
3419 
2505 
1784 
1227 
810 
507 
459 



TABLE 5.14 - EQUAL RATE: N=l.2xl0 9, R=2.04xl09 

Population Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

1 (CBD) 0 0 5285 
2 23.18 645. 01 5280 

12 1 9. 71 546.78 5190 
22 16. 58 458.54 5100 
32 13. 77 379.87 5011 
42 11. 29 310. 34 4922 
52 9. 10 249.50 4834 
62 7.20 1 96. 85 4746 
72 5.58 1 51 . 92 4660 
82 4.20 114.17 4573 
92 3.07 83.07 4488 
94 (City 2.87 77. 60 4471 

Umit) 

Wage rate: $7.24 
Effective tax rate (residential property): 27.5% 
Effective tax rate (industrial property): 27.5% 
Residential tax base: $4.7161 x 109 

Business tax base: $2.6555 x 109 

Traded good industry bid land rent (CBD): $14,834 
Aggregate land rents: $4.3808 x 108 
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Housing Land 
Rents 

7701 
7260 
6113 
4834 
3761 
2873 
2148 
1566 
1108 
757 
496 
453 
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TABLE 5.15 - CBD RADIUS= 2.7 MI. (NO RE-CALIBRATION) 

Population Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

1 (CBD) 0 Q 5246 
2 21.46 601 . 31 5241 

12 18. 15 506.88 5150 
22 15. 17 422.38 5060 
32 12. 51 347.40 4970 
42 10. 17 281.46 4882 
52 8. 12 224. 10 4793 
62 6.35 174.82 4706 
72 4.85 133.10 4619 
82 3.60 98.39 4532 
89 (City 2.86 77. 98 4472 

Limit) 

Wage r~te: $7.17 
Effective tax rate (residential property}: 24.9% 
Effective tax rate (industrial property): 34.2% 
Residential tax base: $3.9448 x 109 

Business tax base: $2.0609 x 109 

Traded good industry bid land rent (CBD): $14,306 
Aggregate land rents: $3.5199 x 108 

Housing Land 
Rents 

7016 
6939 
5526 
4333 
3339 
2522 
1861 
1337 
929 
621 
455 
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TABLE 5.16 - CBD RADIUS= 3.3 MI. (NO RE-CALIBRATION) 

Population Capital/Land Housing Service 
Ring Density Ratios :Housing Prices 

l (CBD) 0 0 5218 
2 20.38 571. 92 5214 

12 l 7. 18 480.59 5123 
22 14. 31 399.06 5033 
32 11 • 7 5 326.89 4944 
42 9.51 263.60 4855 
52 7.55 208.73 4767 
62 5.87 161.78 4680 
72 4.45 122.21 4593 
82 3.27 89.48 4507 
86 (City 2.86 78. 19 4473 

Limit) 

Wage rate: $7.19 
Effective tax rate (residential property): 24.8% 
Effective tax rate (industrial property): 34.1% 
Residential tax base: $3.9446 x 109 

Business tax base: $2.0780 x 109 

Traded good industry bid land rent (CBD): $10,253 
Aggregate land rents: $3.6936 x 108 

Housing Land 
Rents 

6564 
6491 
5147 
4017 
3079 
2311 
1693 
1205 
829 
547 
457 
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TABLE 5.17 ~ WELFARE CHANGE 
(classification to equal rate} 

Compensating 1:, in Aggregate 
Parameter t:, Variation Differential Rents Hel fa re ti 

1 • Base Case 36.477 X 106 6.652 X 10 5 37. 142 X 106 

2. h = .234 40.667 X 106 -6. 912 X 10 5 39.976 X 10 6 

h = .289 32.037 X 10 6 1.054 X 10 6 33.091 X 106 

3. n = -0.5 40.759 X 106 5. 384 X 10 5 41 .298 X 106 

n = -0.9 33.083 X 10 6 -9.835 X 10 5 32.100 X 106 

4. pH= .4286 34. 41 0 X 1 0 6 1 . 503 X 106 35.913 X 106 

5. M = 2870 34.710 X 106 6. 041 X 1 o5 35. 314 X 106 

M = 6697 34.293 X 106 2.970 X 10 6 37.263 X 106 

6. Y = 15309 44.754 X 106 -4.720 X 10 4 44.706 X 106 

Y = 22962 24.918 X 106 1 . 652 X 106 26.570 X 106 

7. 25.95 6 9.399 X 106 35. 925 X 106 C = 34. 984 X 10 

C = 38.925 34. 908 X 106 7.942 X 106 35.703 X 106 

8. CBD: 2. 7 mi . 37. 362 X 10 6 -2.251 X 10 5 37. 137 X 106 
(re-calibrated) 

CBD: 3.3 mf. 33.156 X 106 l.173xl0 6 34. 328 X 106 
(re-calibrated) 

i; 

9. 1 i 39.602 X 106 5 38. 638 X 106 pLT = 8000 1 -9.642 X 10 
I • ! 

1 a '6 1.592 X 106 33.474 X 106 pLT = 16000 l 31 . 882 X 1 0 
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TABLE 5.17 (continued) 

Compensating tJ. in Aggregate 
Parameter tJ. Variation Differential Rents t~elfare tJ. 

10. t = .5625 

t = .6875 

37.439 X 106 -4.758 X 105 36.963 X 106 

30.597 X 106 2.617 X 106 33.214 X 106 

11. pH = • 4815 

(not re-cali-
brated) 

47.081 X 106 -7.166 X 105 36.963 X 106 

PH = . 2121 

(not re-cali-
brated) 

19.725 X 106 

12. aLH=.0245941 34.974 x 106 

aLH=. 0368911 35 .196 x l 06 

13. aKH=?..4279218 41 .468 x 106 

aKH=3.6418826 30.153 x 106 

14. PA = 225 

PA= 675 

15. a = Q, 

a = Q, 

.248 

.372 

I 35.109 X 106 
1 ; 

! 34.887 X 106 

. 34.974 X 106 

35.398 X 106 

16. CBD: 2.7 mi. 35.485 x 106 
(not re-cali-
brated) 

CBD: 3.3 mi. 35.120 x 106 
(not re-cal i-
bra ted) 

2. 387 x l 06 

3.583 X 105 

3. 301 x l OS 

l . 145 x l 06 

l . 01 5 x l 06 

7.247 X 105 

8.476 X 105 

8.479 X 105 

7. 540 x l o4 

4.l83xlo 5 

4.364 X 105 

6 33.214 X 10 

35.333 X 106 

35.526 X 106 

42. 61 3 x l 06 

31. 168 x l 06 

35.834 X 106 

35.735 X 106 

35.849 X 106 

35.473 X 106 

6 35.903 X 10 

35.557 X 106 
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TABLE 5.17 (continued) 

Compensating in /J. Aggregate 
Parameter /J. Variation Differential Rents Welfare 1::. 

17. aLT=awT = .10 57.160 X 106 2.004 X 106 59.165 X 106 

aLT = .005, 
28. 162 X l 06 l • 278 x l 06 29.440 x l 06 

awT = .40 

aLT = .02, 
43.278 X 106 6 44.313 X 106 1.035 X 10 

a = • l 0 wT 
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TABLE 5.18 - WELFARE RESULTS 
(multiple parameter changes) 

Compensating t:,, in Aggregate 
Parameter t-. Variation Differential Rents ~Jel fare 1:,, 

1. r1ax welfare t 
x l 06 

X 106 x l 06 (resident} 54.208 -1.512 52.697 

2. Max welfare t:,, 
x l 06 

X 105 X 106 (aggregate) 58. 724 -9. 187 57.805 

3. Minwelfaret:,, 
x l 06 106 X 106 (resident) 2.726 6.786 X 9. 511 

4. Mi n we l fa re t:,, 
X 106 X 106 x l 06 (aggregate) 4 .146 5.542 9.688 

5. Max we l fa re t-. 
(resident; 6 6 54.027 X 106 base) 55.748 X 10 -1 • 345 x l 0 

6. Max welfare t:,, 
(aggregate; 6 3.352 X 106 6 base) 48.055 X 10 51.407 X 10 
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III. Local Good Model Parameterization 

In comparison to what was done for the base model, full para-

meterization of a base case for the local good model is much more 

difficult. This is so not merely because there is an additional 

production function to parameterize. The problem of parameterization 

is also made much more difffcult because there is an additional price 

in the demand functions and the local good market must clear at an 

equilibrium pri'ce vector. As a result, we will find it necessary to 

ma,~e assumpti:ons about the local good i'ndustry'·s shares of the labor 

force and tax revenues raised from the business sector. On the other 

hand, we are fortunate in that many of the parameter values chosen for 

the base case of the base model can be retained for the parameteri za-

tion of the local good model. Thus, the analysis and data underlying 

the chot:ce of such values need not be mentfoned again. 

The CBD in the local good model consists of two rings and some-

thing explicit should now be stated about commuting to an employment 

center. The simulations reported for the base model were run on the 

assumption that the employment node was located at the midpoint of 

the one CBD ring. All workers were assumed to commute along a 

straight line to this midpoint. For workers residing i'n the first 

ring, the terminal points of the work trip were taken to be the mid-

point of the CBD and the boundary between the COD and the next ring 

along any ray from the mathematical center of all the annuli. For 

lack of evidence that something else is more appropriate, in the 

parameterization of the local good model the radius of each of the 

two CBD rings is taken to be half of the CBD radius in the base case 
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parameterization of the base model. In particular, the radius of 

each of the first two rings is taken to be 1.5 miles. For purposes 

of establishing commuting distance, all workers are assumed to travel 

along a ray to an employment node located at the midpoint of the CBD. 

Since the radius of the two CBD rings is the same, the workers travel 

to the border beb,een the two rings. lJorkers residing in either of 

the two CBD rings are assumed to commute, along a ray, from the mid-

point of the ring in which they reside to the boundary between the 

two rings. Because the radius of the two rings is the same, this 

commuting assumption implies that work trip distance is the same for 

households residing in the ftrst two rings, and thus that bid housing 

service prices and land rents will be the same in the two rings. 

Aside from having to distinguish between the two CBD rings in the 

local good model, all of the miscellaneous parameter values listed in 

Table 5.17 for the base Jilodel can be retained for the local good model. 

The parameter values listed in Table 5.17 for the budget and time 

constraints, and the housing production function also remain the 

same in our parameterization of the local good model. In addition, 

an extra assessment/sales ratio must be added to the parameter list. 

Following what was specified in the Massachusetts classification 

amendment, we let ac = .50. 

Finding values for the utility function, traded good production 

function, and local good production function parameters, though, 

requires some analysis. Once again, the process of parameterization 

is conducted in terms of the choices of a typical household in long 

run equilibrium. The basic approach to selecting values for the 
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utility function substitution term, P, that was used for the base 

model parameterization can also be used here. Formally, the only 

difference is that the term b must be redefined to take account of 

the extra term in the denominc:1tor of the household demand functi.on 

in the local good model. In particular, bis defined as follows~ 

p 1 
( ) 1 +p J ( )l+p Pc/a.c • a/a.H (5.12) 

Given this definition, it is once again true that h = a/(a+b), where 

hand a are as defined above. Since the values used for hand a 

should be the same as they were in the base model parameterization, 

the value of b must remain the same. The term p can again be defined 

by (5.5). Thus, the value chosen for p in the local good model is 

identical to the value used in the base case parameterization of the 

base model. The process of finding the coefficients of the goods in 

the utility function, however, does differ from what was done before. 

To find these values we first note that the local· good budget share 

on income net of commuting costs for a typical household, q, can be 

written as follows: 

Pc 
q = 

(5.13) 

We denote the denominator of (5.13), which also happens to be the 

denominator of the demand function for the local good, xc, for a 

typical household, by using the term, i. Thus, we have q = Peli. 



We also note that aggregate supply and demand for the local ~ood 

must be equal in equilibrium. Aggregate demand in the base case 

equilibrium will be approximately equal to N,xc. Let the variable 
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A2 A2 
sc be defined as sc = N•xc. This term should be approximately equal 

to aggregate supply of the local good in th.e base case equilibrium. 

The superscript of 2 indicates that our target (base case) equilibrium 

is to be one in which the local good is produced only in the second 

CBD ring. The first ring, in the target equilibrium, is to be 

reserved for traded good production. A2 With the definition of sc, and 

the local good demand, xc, we may writes "2 = N•Y/sc, where Y is once 

again taken to be income net of commuting costs for the typical house-

hold. Given the value of Y used in the base case parameterization of 

the base model, and using the target supply of the local good forth-

coming from production in the second ring in equilibrium (which will 
"2 be established below) as the value of sc, a value for scan be deter-

mined. This value, together with a target equilibrium price, Pc, for 

the local good, then allows us to find the budget share q. The target 

price may be chosen arbitrarily. Doing so, we let Pc = 100. 

Manipulation of the definition of s yields the following equality: 

s - Pc 
l 

( ) l +p 
Pc 

(5.14) 

Given the definition of q, the left hand side of (5.14) can be expressed 
p 

as [(l-q)/q].(pc)T+'i3". This expression is determinate given the values 
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of P, q, and the target price, Pc' mentioned above. We may also now 

rewrite equation (5.12) as follows: 

(5.15} 

The left hand side of (5.15} ts determinate, given the data. Equations 

(5.14) and (5.15) constitute a system of two equations, in the three 

unknown utility function coefftcients, that must hold in equilibrium. 

To aid in the exposition of the method of solution for the utility 

function coefficients, we define the following terms: 

l 
cl = b/(a)l+'p 

p 

c2 = [(1-q)/q]•(Pcll+p 

p 

cll = c22 = (pT)T+p 

p 

cl2 = (pc)T+p 

p 

c21 = (a) l +P 

This allows us to write the system of two simultaneous equations more 

succinctly as follows: 

(5.16) 



251 

(5. 17) 

We seek to find values for a.H,a.T' and ac· To do this, first solve 

equation (5.17) for a,C- This yields the following: 

l +P 

(5.18) 

Next, substitute the right hand side of (5.18) for ac in equation 

(5.16). After some rearranging, we obtain an expression for the ratio 

aT/aH as follows: 

re, - cc 1 2 • c 21 i z 2 ) J 
[c,,+ (c,2•C22lc2)] 

l +p 

(5. l 9) 

The value of this ratio is determinate, given the data and target 

values mentioned above. For ease in exposition, define c to be 

equal to the term inside the outer parenthesis on the right hand side 

of (5.19). 
l 

L )1 +p ~T/aH • 

be found. 

Next, substitute this value in equation (5.17) for 

After a little rearranging, an expression for ~/aH can 

In particular, we obtain 

l +P 

(5.20) 
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The individual utility coefficient values can now be found if we 

normalize so that the coefficients add to some constant. In 

particular, we normalize so that the coefficients add to 1. Thus, we 

may find aH in terms of the ratios in (5.19) and (5.20} as follows: 

(5.21) 

The values of aT and ac can then be determfned by usi'ng the value of 

aH obtained, and the values of the right hand sides of (5.19) and 

(5.20). All of this is conditional, of course, on the local good 

budget share, and that, in turn, is dependent upon~~- Thus, we must 

establish, approximately, the amount of the local good that is to be 

supplied in equilibrium. 

The amount of the local good supplied in a base case equili'brium 

depends on the target local good price, which has already been 

specified, and the local good production function parameters. Given 

p , we specify the local good production function parameters i'n the 
C 

same manner used to parameterize the traded good production function 

for the base model. To do so, however, assumptions must be made about 

the number of workers employed by the local good industry and the amount 

of tax revenues to be raised from the local good sector. We may, fur 

example, assume that 50 percent of the given labor force is to be 

employed in the local ~ood sector, and 50 percent of the total amount 

of tax revenues to be raised from taxes on business property 14 is 

to arise from the local good sector~ Analogous to what was done for 
the traded good in the base model, then, the labor demand function 
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for the local good industry for production in ring 2 can be inverted 

to find the substitution term, Pc' once a target land rent for ring 2, 

and the coefficient ratio awc/aLC' have been chosen. For the base case 

parametertzatton, to ensure that the local good industry outbids 

housing for land in ring 2, we choose pLC = $10,000/acre. The values 

of the coefficients, awe and aLC were chosen, somewhat arbitrarily, 

to be awe= .30 and aLC = .01. An analogue to equation (5.10) for the 

local good can then be used to find Pc• Given the data and the target 

prices used, 15 we find a value of Pc= -.1133. The amount of business 

tax revenues assumed to be raised from taxes on local good property 

can be used to find the amount of capital, Kc, used by the local good 

industry in equilibrium. A local good analogue (for ring 2) to equation 

(5.11) is then used to determine the coefficient aKC" Given the value 

found for Pc and values chosen for other parameters and the target 

local good bid land rent, a value of aKT = .09096017 is obtained. The 

bid land rent function (4.2) can now be inverted with respect to 

the scale parameter, D. All other terms in (4.2) have been specified. 

As a result, we obtain D = 676.07. 

With the values of the parameters of the local good production 

function chosen, and the amounts of labor, capital, and land used by 

local good producers in the base case equilibrium known, the aggregate 

amount of the local good that will be supplied in equilibrium can be 

determined. "2 "2 It is this value that is used for sc· Given sc, the local 

good budget share for a typical household, and so the utility function 

coefficients, can be chosen. For the data used to parameterize the 

base case, the local good budget share is 45.75% and the utility 
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function coefficients are qH = .01627393, ~T = .3013052, and 

qc = .6824208. 

Finally, values of the parame.ters of the traded good producti_on 

function can be found in the manner given in the dtscussi.on of the 

parameterizatfon of the base model. What is different now is that the 

number of workers employed by the traded good industry and the tax 

re.venues raised from taxes on traded good property are less than what 

they were for the base model parameterization. Values for the traded 

good production function and all other parameters, when the traded 

and local good industries each employ 50 percent of the labor force 

and each contribute 50 percent of total tax revenues raised from the 

business sector, are listed in Table 5.19. 



TABLE 5. 19 
Base Case Parameterization 

Utility Function: A= l aH=.01627393 aT=.3013052 ac=.6824208 

o =.6834 

Budget and Time 
Constraints: v = 25 W=2000 c=32.4375 T=5840 M=4784 

Housing Production 
Function: B = l aLH=.0307426 aKH=3.0349022 pH=.3333 

Traded Good 
Production 
Function: 

Local Good Pro-

C = 251.94 aLT=.01 awT=.20 aKT=.09096017 

PT= -.1794 

duction Function: D = 676.07 aLC=.01 awe=.30 aKC=.1033591 

PC = - • 11 33 

255 

Miscellaneous: Pr= 100 pA=450 aR=.40 ac=.50 a1=.55 

PK= 135 N=l ,000,000 R=l,700,000 

CBD ring l radius= l .5 CBD ring 2 radius= l .5 



256 

IV. Local Good Model Results 

This section presents the more important results obtained for 

equilibria of the model with a local good. These solutions were, 

generally, much more difficult and costly to find than those for the base 

model. As noted above, the local good solutions were often three times 

as costly, in terms of the number of price vectors examined by the user 

written subroutine, as the base case solutions. The typical cost 

increase may be thought of as being even larger than this since, in 

general, the computational time involved in calculating excess demand 

vectors for price vectors used in the search is greater for the local 

good model due to its increased complexity. Variation in the cost of 

the local good model solutions, however, was quite substantial. The 

number of price vectors examined before a solution was found varied from 

about 160 to just over 1000. 

In the absence of strong evidence to the contrary, the equilibrium 

obtained under classification with labor and tax revenue shares of 

50% was, somewhat arbitrarily, taken, for illustrative purposes, to be 

a base case solution. As can be seen in Table 5.25, the welfare results 

for the case agree fairly closely with those of the base case for the 

base model. The aggregate welfare change for a move to an equal rate tax 

system using a compensating variation measure is about $31 .7 million per 

year, while the same change in tax structure yields, using an equivalent 

variation measure (not shown), an aggregate welfare gain of about $33.2 

million. The major characteristics of urban area structure for the 

base case parameterization under classification and equal rate tax 

systems are given in Tables 5.20 and 5.21, respectively. As was true 
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for the base model, the gradients reported became somewhat flatter with 

a move to a non-discriminatory tax system. Results for both models 

are also qualitatively the same for the wage rate, the tax rates, and 

the residential tax base. The more favorable treatment of business 

property and less favorable treatment of residential property results 

in an increased demand for labor and so a higher wage rate, a higher 

effective tax rate on residential property as well as lower rates for 

business property, and lower household expenditures on housing net of 

property taxes. The lower tax rates on business property also, as 

expected, yield higher land rents for both CBD rings, and higher 

business tax bases in equilibrium. Unlike the base model, though, the 

move to an equal rate system for the local good base case parameter-

ization results in slightly lower aggregate land rents. What is, 

however, perhaps most surprising about the results is that the local 

good price rises after the change to an equal rate system. One might 

expect that the lower effective tax rate facing the local good i'ndustry 

would result in a lower local good price. rt appears, though, that in 

the new general equilibrium the supply side effects of the tax rate 

reduction are outweighed by income effects on the demand side. Wage 

rates, and so household incomes, rise under the equal rate system. 

Apparently, the increase in demand for the local good induced by the 

higher incomes is large enough to raise the local good price in the 

new equilibrium. 

To investigate how different assumptions about the local good 

industry's employment and tax revenue shares affect the results, the 

shares were each varied to values of 25% and 75%, as well as 50%. 
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This yields nine different combinations of employment and tax revenue 

shares. The results for a combination of a 50% employment and a 50% 

tax revenue share were discussed above. rmportant charactertsttcs of 

urban structure under an equal rate tax system for the other eight 

combinations are presented in Tables 5.22 to 5.24. The parameterizations 

for each of these combinations were chosen so that they yielded solu-

tions under a classification tax scheme that duplicated the important 

aspects of a certain solution--one which is meant to represent, as best 

as possible, the reality for the Boston SMSA in or around 1980. Thus, 

the structural results for the solutions obtained for these combinations 

under the classification tax scheme are not presented. 

Inspection of Tables 5.22 to 5.24 reveals that some of the 

equilibrium values of the variables presented tend to vary monoton-

ically with changes in the employment and tax shares. The wage rate 

clearly varies positively with the local goad's employment share and 

negatively with the tax share. No such monotonicity can be shown for 

the effective tax rate on local good property. On the other hand, 

the local good price unequivocably shows a tendency to increase with 

increases in the employment share and decrease with increases in the 

tax share. The price of housing services in the first residential 

ring (i.e., ring 3) tends to vary negatively with the tax share. With 

one exception (tax share= 75%), it increases or remains constant 

with increases in the employment share, holding constant the tax share. 

Also, with one exception each, the residential tax base tends to 

increase with increases in the employment share and decrease with 

increases in the tax share. The local good tax base in the equal rate 
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equilibria varies positively with assumed values of each of the 

shares. On the other hand, the traded good tax base exhibits a 

relationship with the er.iployrnent share that is not monotonic. It is, 

however, negatively related to the local qood tax share. The local 

good bid land rent for CBD land in the equal rate equilibria varies 

positively with the employment share and negatively with the tax share. 

While the traded good bid land rent for CBD land also varies positively 

with the local good employment share, its relationship with the tax 

share is not monotonic. Finally, aggregate land rents for the urban 

area, with one exception (employment share= 25%), appears to decrease 

with increases in the local good tax share, while its relationship 

with the employment share does not exhibit monotonicity. 

Welfare results for the nine combinations of employment and tax 

share for a move from a classification to an equal rate tax system are 

presented in Table 5.25. Compensating variation and aggregate welfare 

change measures for the different combinations are given. The range 

of the welfare gains is larger than that shown for the base model. 

Compensating variation ranges from $17.l million to $75.8 million, 

while the aggregate welfare change measure varies from $14.8 million 

to $78.6 million. The combinations which yield welfare gains closest 

to those found for the base case of the base model are 50% for both 

employment and tax share, and 25% for both shares. Whatever the 

variation in magnitudes, the robustness of the qualitative result 

that there is a welfare gain in the long run, both for households 

considered separately and in conjunction with landowners, in moving 

from a status-quo classification tax structure to one in which all 
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property is taxed at the same effective rate is once again clearly 

demonstrated. As was the case for tlie base model, there i.s a welfare 

gain from such a change in tax structure in all cases considered for 

the local good model. 



TA8LE 5.20 - BASE CASE::: CL/~SSIFIC/HION 

Popuiation Capital/Land Housing Service 
Ring Density Rati O!:: Hous ·i ng Prices 

l (CBD) 0 0 5276 
2 (CBD) 0 0 S276 
... 20.54 575.76 ~1217 .J 

, ... 17.32 484. o~ .. 5127 I .:, 
....... 14.43 402.21 5037 t:,.) 

,, ... 
.:;.) 11 . 86 329.5B 4948 
43 9.60 265.96 485~ 
i:;"' ... .) 7.63 210. 77 4771 
63 5.94 163. 51 4683 
...... LL 51 123. 66 4597 /.) 

83 3.31 90.67 4510 
87(city limit)2.90 79.2.8 4476 

Wage rate: $7.18 
Effective tax rate (residential property): 24.9% 
Effective ta.x rate (commercial property): 31 .1% 
Effective tax rate (industrial property): 34.2% 
Local good price: $100 
Residential tax base: $3.9820 x 109 

9 Local good tax base: $1.1310 x 10 
Traded good tax base: $1.0241 x 109 

Local good CBD land rent: $9S46 
Traded good CBD land rent: $15,369 
Aggregate land rents: $3.0435 x 108 
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Housing Land 
Rents 

7553 
7r:c::," ;;_..) 

6549 
5196 
4058 
3113 
2338 
1715 
1222 
842 
557 
466 



TABLE 5.21 - BASE CASE: EQUAL RATE 

Population Capital/Land Housing Service 
Ring Density Ratios:Housing Prices 

1 (CBD) 0 0 5271 
2 (CBD) 0 0 5271 
3 20.45 570.24 5212 

13 17. 25 479.81 5122 
23 14.39 399.00 5033 
33 11 .84 327.39 4945 
43 9.60 264.53 4857 
53 7.64 209.95 4769 
63 5.96 163. 17 4683 
73 4.53 123.67 4597 
83 3.34 90.92 4511 
87 ( city 2.93 79.59 4477 

limit) 

Wage rate: $7.26 
Effective tax rate (residential property): 27.1% 
Effective tax rate (commercial property): 27.1% 
Effective tax rate (industrial property): 27.1% 
Local good price: $100.34 
Residential tax base: $3.9609 x 109 

Local good tax base: $1 .1803 x 109 

Traded good tax base: $1.1234 x 109 

Local good CBD land rent: $10,332 
Traded good CBD land rent: $17,131 

8 Aggregate land rents: $3.0405 x 10 
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Housing Land 
Rents 

7452 
7452 
6465 
5136 
4016 
3085 
2322 
1706 
1219 
842 
559 
468 



263 

TABLE 5.22 - EQUAL RATE 

Employment Tax Wage Tax Local Good Housing Service 
Share Share Rate Rate Price Price (ring 3) 

25% 50% $7.24 27. 1 % $99.63 $5212 
75% 50% 7.32 26.8 101 . 08 5213 
25% 25% 7.26 27.2 100. 41 5212 
50% 25% 7. 31 27.0 101 . 09 5213 
75% 25% 7 .41 26.6 102. 55 5216 
25% 75% 7.21 27.1 99.04 5212 
50% 75% 7.23 27.0 99.55 5211 
75% 75% 7.24 26.9 99.89 5213 
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TABLE 5.23 - EQUAL RATE 

Employment Tax Tax Base 
Share Share Residential Local Good Traded Good 

25% 50% $3. 9647 X 109 $1.1756 X 109 $1.1215 X 109 

75% 50% 3.9713 X 109 l. 1841 x 109 l. 1590 x 109 

25% 25% 3.9586 X 109 5.9050 X 108 l. 6464 x 109 

50% 25% 3. 9696 X 109 6.0266 X 10 8 1.6434 X 109 

75% 25% 4.0226 X 109 6. 0811 x l 0 8 l. 7685 x 109 

25% 75% 3. 9581 X 109 1.7558 X 109 5, 5852 X 108 

50% 75% 3.9550 X 109 1. 7604 x l o9 5.5776 X 108 

75% 75% 3.9681 X 109 1.7649 X 109 5.7013 X 108 
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TABLE 5.24 - EQUAL RATE 

Employment Tax Land Rents 
Share Share Local Good Traded Good Aggregate 

(CBD) (CBD) 

25% 50% $10312 $17065 $3.0426 x 108 

75% 50% 10347 17665 3.0496 x 108 

25% 25% 10358 16772 3.0394 X 108 

50% 25% 10527 16772 3.0560 X 108 

75% 25% 10593 17927 3.0923 x 108 

25% 75% 10270 17016 3.0355 X 108 

50% 75% 10277 17029 3.0332 x 108 

75% 75% 10289 17421 3.0446 X 108 
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TABLE 5.25 - WELFARE CHANGE 
(classification to equal rate) 

Employment Tax Compensating ti in Aggregate 
Share Share Variation Differential Welfare ti 

Rents 

50% 50% 32.045 X 106 -4.058 x 105 31.639 X 106 

25% 50% 27.252 X 106 -2.051 X 106 25.200 X l 06 

75% 50% 50.603 X 106 l. 934 x l 06 52.537 X l 06 

25% 25% 37.674 X l 06 -2.120 X 106 35.553 X 106 

50% 25% 45.501 X 10 6 -7.973 x 105 44.704 X 106 

75% 25% 75.769 X l 06 2.801 X 106 78.570 X 106 

25% 75% 17.098 X 106 -2.328 X 106 14. 771 x l 06 

50% 75% 20.964 X 106 - 1. 954 x l 06 19. 011 X 106 

75% 75% 29.281 X 106 -1 . 118 x l 06 28.163 X 106 



CHAPTER 5 

FOOTNOTES 
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1 The dimension of the simplex over which the algorithm searches 
actually less than doubles. As noted above, the set of search vari-
ables for any case must include one artificial, i.e. non-economic, 
variable. 

2 The parameters to which we refer are those found in the economic 
model that is used. In addition to these, there are some, what may be 
called, system parameters to choose, such as the initial grid size, 
the number of significant digits desired for accuracy purposes, and so 
on that relate to the mathematical operations carried on by the algo-
rithm for any application. Values for these parameters will not be 
discussed. 

3 Since only ordinal utility matters, the scale term, A, in the 
utility function can be chosen arbitrarily. For all parameterizations 
it will be taken to be 1. 

4 By full price we mean the housing price gross of property tax 
payments. In particular, we are referring to p~.(l+aR,t). 

5 Although the FHA data is provided for selected housing areas as 
well as for states, Boston is not one of the selected areas. Data for 
existing, rather than new, homes had to be used since a small sample 
size precluded reporting of data on new homes for Massachusetts. 

6 Housing costs used were reported average monthly payments to 
principal and interest, mortgage insurance premium, debt service, 
hazard insurance, and maintenance and repairs. 

7 Although this assumption must be made somewhat arbitrarily, the 
distance chosen seems reasonable a priori, and, in fact, corresponds 

·closely to what is obtained in the computed solutions. In any case, 
the results are not very sen~itive to this assumption. 



8 Costs such as maintenance and repairs, replacement tires, 
line, oil, and state and federal taxes on gasoline and oil were 
The data applies to a compact size, 2-door sedan, purchased for 
operated 100,000 miles over a 10-year period, and then scrapped 
$40. Prices used were for the Baltimore area. 
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gaso-
used. 
$5,215, 
for 

9 Data on personal outlays can be found in U.S. Department of 
Commerce (1973, 1982), while that on the number of households is found 
in U.S. Bureau of the Census (1973, 1982a). 

lO The appropriate interest rate, it seems, should be a nominal one 
and reflect, to some extent, experience relative to the period for 
which the data is provided. Since interest rates rose in the 701 s and 
801 s over traditional levels, a value somewhat higher than the 6% used 
by Muth was chosen. The interest rate chosen also yields a housing 
rental rate, net of property taxes, that corresponds closely with that 
which would be obtained from the data on median house price and assumed 
percentages to account for costs of depreciation, maintenance, insurance, 
and so forth, mentioned below. 

11 It is likely that many drivers are simply passing through the 
Boston CBD on their way to work during the morning peak. Table 22 of 
the study shows that, for what is probably only a part of the true 
morning peak period, on average 36,130 vehicles entered and 22,260 
left the Boston Proper area. To somehow account for the phenomenon of 
drivers simply passing through the area, it was assumed that one-half 
of the 22,260 vehicles that exited the area were also vehicle~ that had 
entered the area during the morning peak. Thus, we assume that 42.8% 
of the auto (we also make the same assumption for the relatively small 
number of pedestrians in the data) travellers crossing the area boundary 
during the morning peak are area workers. This kind of adjustment was 
not made for public transit passengers. Finally, since 58,390 vehicles 
crossed the boundary during the limited (7:30 - 8:30 am) morning peak 
period mentioned and 64,212 vehicles crossed the boundary during a 
similarly limited (4:30 - 5:30 pm) afternoon peak, the data in Table 12, 
which give totals for the morning (7:30 - 9:00 am) and afternoon (4:30 -
6:00 pm) peak periods combined, were decreased by 53.4%. 

12 The CBD land rental needn1 t be very close to the housing land 
rental in ring 2 since it can be thought of as an average land rent for 
a relatively large annulus. 

13 Care should be taken to limit the extent of changes in parameters 
because this can lead to problems in finding system parameters that lead 
to searches for equilibria that are reasonably short in duration, and 
because equilibria may not exist for large enough parameter changes. 
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14 The total amount of property tax revenues to be raised, and the 
amount arising from the tax on residential property, take on the same 
values here that were given in the base case parameterization of the 
base model. Thus, the total amount of tax revenues to be raised from 
taxes on business property is given. 

15 Since income for the typical household and the effective resi-
dential tax rate paid by households should be what they were for the 
base model, the values chosen for Pw and t do not change. 



CHAPTER 6 

CONCLUSIONS AND PROSPECTS FOR FUTURE RESEARCH 

This study has presented a framework for analyzing the structural 

and normative effects of replacing a property tax system which classi-

fies property according to use for tax purposes with one which does not 

discriminate in its treatment of real property. The analysis was con-

ducted within a long run equilibrium model of urban land use. Results 

were obtained by numerical simulation which was conducted with the use 

of a fixed point algorithm. Section I of this chapter briefly reviews 

and summarizes the simulation results, while section II outlines some 

extensions and variants of the models developed above that may be pur-

sued in the future. 

I. Summary of Results 

Equilibria for monocentric models of urban spatial location were 

calculated under classification and equal rate property tax regimes. A 

model in which all labor is employed in an industry that produced a good 

that could be exported to or· imported from the urban area, so that its 

price is set in a national market, served as a base model for the simu-

lations. An extension to the model with a traded good sector was also 

simulated. The extension added a local good sector to the urban area. 

In particular, in addition to the traded good industry, labor could 

find employment in an industry which produced a good which cannot be 

270 
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imported to or exported from the urban area. Base case parameteriza-

tions for the two models were chosen so that the resultant equilibria 

produced urban areas that are stylized after the Boston metropolitan 

area in or around 1980. Sensitivity analysis was conducted by vary-

ing parameter values from their base case levels. Structurally, the 

effects of a change from a classification tax scheme that is meant to 

represent, on average, the reality for the Boston metropolitan area to 

an equal rate tax system for the region were qualitatively the same for 

all parameterizations considered. The change resulted in lower effective 

tax rates on business property, and higher effective rates on residential 

property, in equilibrium. This, in turn, led to increased demands for 

labor and land from the business sector, and so higher wage rates and 

CBD land rents in equilibrium. Households spent less on housing net of 

property taxes, but more on housing gross of property taxes, in the new 

(equal rate) equilibria. The higher residential tax rates induced house-

holds to live further out, on average, from the center of the region to 

locations where net of tax housing prices are lower, in order'to offset, 

somewhat, the effect of the higher tax rate on gross of tax housing 

costs. This is evidenced by the flatter population density gradients 

for the equal rate solutions. The welfare results showed some degree 

of variability for different parameterizations. Multiple parameter 

changes from base case values yielded a range of $9.5 million to $54 

million annually for the aggregate welfare gain in moving to an equal 

rate system. Results for different assumptions about the local good 

industry's shares of employment and business tax revenues showed aggre-
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gate welfare gains varying from $14.8 million to $78.6 million annually. 

The qualitative result that there is a welfare gain in moving from a 

classification scheme as has existed in the Boston metropolitan area 

to an equal rate system, however, was seen to hold for all of the simu-

lations. 

II. Future Research 

It is possible, using the basic computational framework presented 

in this study to extend the analysis in several directions. Modelling 

for multiple household and labor types has already been developed and 

exposited in Chapter 4. It is hoped that the severe computational 

problerrsencountered when attempts were made to find solutions for 

multiple group specifications that were sufficiently complex to warrant 

investigation, can be overcome in the future through further experimen-

tation with the algorithm used for this study or through the use of 

more efficient algorithms. 

One extension not mentioned above is the incorporation of costs of 

transport for the business sectors. We may envision producers of the 

traded or local good having to incur a cost to transport their product 

to a certain point for distribution. It would be a simple matter to 

include such an extension. The one CBD ring in the base model and the 

two CBD rings in the local qood model can be divided into a number of 

smaller rings equal in width, say, to that of the residential rings. 

It can be assumed, then, that traded and local good producers in the 

various rings must ship their product to a distribution center. If the 

per-mile cost of transporting a unit of a particular good is taken to be 
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constant, then all that need be done to account for business sector 

transportation costs is to establish bid land rent, labor~ and capital 

demand functions for the various CBD rings in which the traded and local 

good industries can locate, and use output price net of the cost of 

transporting a unit of the good from the ring to the distribution 
center in place of output price in these functions. Although attempts 
may be made in the future to incorporate such an extension, it does 

not seem likely that this sort of change would appreciably affect 

the results. 

It may prove more interesting, however, to consider adapting the 
computational framework to handle somewhat different tax policy 

questions. We may, fur example, attempt to examine the impact of 
replacing the property tax in the model partially or fully with a sales 

tax. The sales tax could be imposed on sales of the traded and/or 

local qood in the urban area. It is also possible to investigate 

another, but much less widely practiced, form of property tax classi-

fication; that of classification by type of property. It is a fairly 
simple matter to allow for different effective property tax rates on 

land and capital. The nature of the way the tax is imposed on 
residential property, however, would have to be altered. Property 

taxes would be levied on the capital and land used in the production 
of housing and pa-id by housing producers. The effects on urban 

structure, and the welfare of residents and landowners, of changing 

the ratio of effective tax rates for capital and land can then be 
studied. 

An extension to the analysis that will be attempted is to search, 
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within the context of the model already developed, for an optimal 

classification of property for tax purposes. Both the particular 

classification scheme used in this study, and the equal rate system 

are merely special cases of general property tax classification. Thus, 

if it is assumed that property taxes are to be imposed, it ts natural 

to ask which classification of residential and business property, out 

of the infinite number possible, leads to the largest level of welfare 

for households, or landowners and households combined. A search process 

for the base model that may be ·used can be outlined as follows. To keep 

matters simple, we consi_der only household welfare. Different classi ... 

fi cation schemes can be posited b.y making appropriate assumptions about 

the values of the assessment/sales ratios, aR and a1. There is no 

loss of generality in normalizing so that the ratios sum to one. Thus, 

we search over the set G = {(aR,a 1) laR,aI ~ 0, aR + a 1 = l} for values 

of aR and a1 that maximize household equilibrium utility. Calculation 

of equilibrium utility for different combinations of aR and a1 
requires separate simulations. Thus, to keep computation and time 

costs down to a reasonable level the search process should economize 

on the number of combinations considered. In that spirit, the following 

is proposed. Solutions of the model are calculated for vectors in G 

where aR is some multiple of .05. Noting equation (3.14), it can be 

seen that the case (aR,a 1) = (0,1) cannot be considered because of the 

way that the nominal property tax rate is defined. Of the solutions 

calculated, the one yielding the highest household utility in 

equilibrium is noted. Suppose that the vector in G that is associated 

with this solution has aR = m~(.05}, where mis some positive integer 
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less than 20. Solutions are then calculated for vectors in G with 

components that are multiples of .01 and have (m-1 )·(.05) < aR < 

(m+ll•(.05). If m = 20, then the additional solutionscalculated are 

only those for vectors in G with components that are multiples of .01 

and have .95 < aR < 1. The equi.librium utility levels for this 

second set of solutions are compared to one another and to the utility 

level for the case aR = m·(.05). Of the vectors in G that are 

associated with these equilibrium utility levels, the one that yields 

the highest household utility is taken to be the optimal classifica-
tion scheme. The welfare gain in moving from the classification scheme 

that represents the reality for the urban area to the optimal classi-

fication scheme can then be calculated by using a compensating or 

equivalent variation measure in the same manner as was done in con-

sidering a change to an equal rate system. Assuming that m < 20, the 

search for the optimal classification scheme descri.bed above entails 

finding 27 solutions in addition to those for the status quo 

classification and equal rate systems [t.e., in addition to those 

Something quite strnilar can be done i'n searching for an optimal 

classification scheme for the local ~ood model. Search must now be 

conducted over vectors in the set H = {(aR,a 1,ac)laR,a 1,ac > 0, 

aR + a1 + ac = l} to find assessment/sales ratios, aR, a1, and ac, 

that maximize equilibrium household utility. To keep search costs 

reasonable, the following is suggested. Instead of using multiples 

of .05· at the first stage, we consider values of aR that are positive 

multiples of .10. For each such value of aR, solutions are computed 



276 

for all vectors in H for which al + ac = l - aR and the ratios a1 and 

ac take on values that are multiples of .10. There are fifty-five 

of these solutions to calculate. From the group of vectors in H 

associated with these solutions, the one whi'ch yields the largest 

equilibri'um household utiHty is noted. The next stage in the search 

process involves findi'ng solutions for some vectors i'n H that are 

close to the one that i's noted at the end of th.e first stage. In 

particular, we use vectors in H for which one of the three components 

is larger by the amount .05 and another of the three is smaller by 

the amount • 05 than the correspondi'ng components for the vector found 

at the end of the first stage of the process. There are six vectors 

of this sort, and so six more solutions must be computed at this stage. 

The equilibrium household utilities for each of these cases are com-

pared to one another and to the utility level for the vector that 

yielded maximum utility at the first stage. Of the vectors associated 

with these solutions, the one which yields the highest household utility 

is noted. The third stage then involves finding solutions for vectors 

in H that are very close to the one found at the end of the second 

stage •. In particular, the vectors vary by .02 in two of their compon-

ents from the values of the corresponding components for the vector 

found at the end of the second stage. This again produces six vectors 

and so requires an additional six solutions. Utility levels are noted 

and compared as in the second stage, and this produces a vector that 

yields maximum utility for the group considered. Finally, the fourth 

stage entails finding solutions for vectors in H which have two com-

ponents that differ by .01 from the corresponding components of the 



277 

vector found at the end of the third stage. The vector yielding highest 

household utility at the end of the fourth stage is taken to be the opti-

mal classification. When the vectors found at the end of each stage are 

all interior to the simplex H, this search process requires the calcula-

tion of 73 solutions. 

One last prospect for future research involves extending the models 

to allow for regional migration; that is, a system of cities model may 

be constructed. The models developed above are models of a closed region. 

It is possible that tax policy changes for a metropolitan area may induce 

some migration from other areas. To capture this, we may develop a model 

of a system of metropolitan areas in which the population level of each 

urban area is endogenous. As is customary in the system of cities litera-

ture, the model would have, as an equilibrium condition, households of 

the same type achieving the same level of utility at a solution~ regard-

less of the urban area in which they locate. 

The computational problems that may arise when attempting to solve 

a full multi-region model could, however, be quite severe. For such a 

model, in the list of variables over which the algorithm searches, we 

should have variables of the type used in the one region model specified 

for each urban area. In addition, one other variable would probably have 

to be listed. It is one that should be associated with an expression re-

lating to the allocation of a fixed economy-wide population to the dif-

ferent urban areas. As noted above, computational costs tend to in-

crease substantially (usually exponentially) with the number of variables 

over which the algorithm searches. Mansur and Whalley (1982b) and 
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Richter (1981), however, decompose large models, if they contain enough 

special structure to allow this, into a number of partially independent 

subsystems. The basic approach is to find a solution to the large system 

by combining solutions to the smaller subsystems. Solutions for the sub-

systems would involve search over a number of variables that is substan-

tially less than the total number of search variables for the entire sys-

tem. The cost of doing this is that the number of solutions that have to 

be computed increases; only one solution is required for the original 

model. Given the relationship between computed costs and the number of 

variables over which the fixed point algorithm searches, however, the 

benefits of using a decomposed structure can outweigh the costs of doing 

so. 

Richter (1981) presents an outline of a decomposition of a general 

competitive equilibrium model for possible computation by fixed point 

algorithms. Computing a solution to the full model entails finding a 

price vector that yields zero excess demands for all the goods in the 

economy. If, however, the model can be decomposed appropriately, in-

stead of searching over a simplex constructed by using all of the prices 

in the economy, to increase computational efficiency basically the follow-

i ng is suggested. Let {p1,p2, . .. ,pn} be the set of prices for all com-

modities in the economy. Suppose that a proper subset of this set, say 

{p1,p2, ... ,pn }, appear as arguments in ~11 of the excess demand func-
o 

tions. It is assumed that the commodities, and so their excess demand 

functions~ can be divided into a number of distinct groups. In one group 

the excess demands are functions of all the prices . In each of th~ other 
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groups the excess demands are functions only of p0=(p1,p2, ... ,pn ) and 
0 

a proper subset of the remaining prices, none of which appear as argu-

ments, with the exception of the first group mentioned, in the excess 

demand functions for other groups. The computational strategy involves 

two levels of calculation. At the lower level solutions are found for 

each of the commodity groups, with the exception of the first, conditional 

on the vector of prices p0
• By a solution for a group we mean values for 

the prices on which the excess demand functions for the group depend that 

yield zeroes for all excess demands in the group. Computation of these 

solutions may be accomplished with the use of a fixed point algorithm. 

The solutions generate values for all prices in the economy other than 

those in p0
• These values are then passed to the first level where, to-

gether with p0
, they are substituted into the excess demand functions for 

the first group. If this results in zeroes for all of the excess demand 

functions in the group, then we have found an equilibrium for the full 

model. If not, then the prices in p0 are adjusted in some manner and the 

new vector .is then passed to the second level where the process outlined 

above is repeated. Search continues in this way until a solution on the 

first level is found. The adjustment of p0 to find a solution for the 

system of excess demands on the first level may be conducted according 

to a fixed point algorithm. 

As mentioned in Richter (1981), an example of an economic system 

that can be decomposed in this way would be a competitive equilibrium 

model of a regional economy with traded and non-traded goods. The traded 

good markets are national, while the non-traded good markets are regional. 
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Thus, the excess demands on the first level of the decomposition men-

tioned above can be taken to be those for the traded goods. Each group 

on the second level would consist of the excess demands for the non-

traded goods marketed in a given region. 

It is our intent here, though, to discuss how a bi-level decomposi-

tion can be applie~ to a generalization of the models developed and simu-

lated for this study that includes multiple urban areas and household 

inter-regional migration. A heuristic proof of the existence of equili-

brium that utilizes Theorem l will be presented. Computation of solutions 

to such a model may be done in the future with the use of a fixed point 

algorithm adjusted to deal with a decomposed model. 

For simplicity, we assume that there are just two urban areas of the 

type modelled above and one household group. Let N. and N now be defined 
l 

as the population in region i and the total fixed economy-wide population, 

respectively. The regional populations are allowed to vary, but in equili-

brium we must have N1+N2=N. It is assumed that movement from one urban 

area to another by households is costless. The property tax revenues to 

be raised in an urban area should, in some way, depend on the population 

in the area. The simplest assumption to make is that per capita tax 

revenues raised in an urban area are constant with respect to population 
A 

changes. Thus, we let Ri = Ri-Ni be the amount of property tax revenues 
A 

to be raised in region i, where R. is the fixed per capita revenue level 
l 

for the region. Per capita tax revenues may vary across regions. Now, 
* let v. (N.), i=l,2, be the equilibrium level of utility in region i when 
l l 

the population for the area is constrained to be equal to Ni. It is 
* assumed that Vi is strictly decreasing in Ni. 
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An intuitive explanation of why this last assumption may be valid 

might go something like this. An increase in population will tend to 

depress wage rates because of the increased supply of labor, and to 

raise housing service prices because of increased demand for housing. 

Both of these factors tend to decrease equilibrium household utility. 

Urban area agglomeration economies, however, have thus far been ignored. 

This may be appropriate for the models developed above since the urban 

area 1 s population size is constant. The absence of explicit treatment 

of urban area agglomeration economies in a system of cities model is, 

however, less tenable. Incorporation of agglomeration economies might 

render the equilibrium utility assumption invalid at low population levels. 

Increases in population may lead to economies that outweigh the negative 

effects of size mentioned above and so result in higher equilibrium 

utility. In neighborhoods of reasonable equilibrium population levels 

for the regions, however, scale economies may be exhausted or more than 

offset by the negative price effects of size. In any case, in order to 

keep the discussion at this preliminary stage simple, we ignore the scale 

economies issue, and so are able to preserve the equilibrium utility 

assumption and the existence of equilibrium arguments given above for 

the one region models. 

Setting up the full model to be solved at one stage using a fixed 

point algorithm would involve search over two sets of the variables 

given above for a one region model plus at least one of the population 

levels for the two regions. This may be quite costly and troublesome. 

Thus, in the hope of achieving greater computational efficiency, the 
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following decomposition of the model is proposed. We set up a bi-level 

process where the lower l�vel would consist of equilibrium problems for 

the two regions, conditional on population levels for each of the· regions. 

The upper level passes population levels, N
1 

and N
2

, to the lower level. 

A fixed point algorithm is then used to find regional equilibria. This 
* * 

results in the equilibrium utility levels, v
1 

(N
1
) and v

2 
(N

2
). These 

utility values are then passed to the upper level, where they are checked 

to see whether or not they are equal. If they are equal, and the popula­

tion levels used to generate them add to the fixed total population, N, 

then an equilibrium for the full model would have been found. If either of 

the utilities are not equal or the regional populationsdo not sum to N, 

then the regional population levels are adjusted according to a fixed 

point algorithm, and the new values are passed to the lower level where 

the process is repeated. 

The process of search and the existence of equilibrium for the 

regional economies on the lower level has already been discussed. Thus, 

we confine our attention to the upper level. At this level a fixed point 

algorithm searches over the simplex Su ={(N
1 
,N

2
); OJN

1
+N

2
; d} where

d > 0. There are two "excess demand functions 11 associated with vectors

in Su. In particular, we define the vector-valued function, Eu, as

Values for the regional population levels that yield a zero vector for the 
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value of the function Eu would represent part of a solution to the 

full model. To prove that such values exist and will be found by the 

algorithm, we seek to show that the conditions of Theorem 1 are satis-

fied. Before this can be done, though, another assumption must be 

made. To ensure the boundedness of Eu' we must truncate the equilibrium 

utility functions should they rise to infinity at low population levels. 

To accomplish this and to satisfy hypothesis (H.2) of Theorem 1, the 

following is assumed about the nature of the two urban areas. It is 

assumed that small enough population levels, n1 and n2, can be found so 
* * * * that v1 (n1) > v2 (N) and v2 (n2) > v1 (N). Given this, the equilibrium 

utility functions can be truncated as follows: 

if 

The boundedness, continuity, and convexity assumptions of hypothe-

sis (H.1) are now easily seen to be satisfied for Eu. Hypothesis (H.2) 

is also satisfied. Suppose that M1+N2=d for a large value of d; in 

particular, we should have d>N. For N2 > 0, we choose a=(0, 1). Then, 

N-(N1+N2)=N-d<0. If N2=o, then a=(l ,0) is chosen. In that case, 
* * * * * * v1 (N1)-V2 (N2)=V1 (d)-V2 (0)<Vl (N)-V2 (n2)<0. Thus, both hypotheses 

of the theorem are satisfied, and so the conclusion, expressed in terms 
* * of regional population levels, N1 and N2 , and Eu' is available to us. 

* * * * * * * We cannot have N1 = 0, for then_ v1 (N1 )-V2 (N2 )=V1 (0)-V2 (N) = 
* * * * * * v1 (n1)-V2 (N) > 0, since N1 = N2 = 0 would imply that N-(N1 +N2 )>0. 

* * * * * * * We also cannot have N2 =0, for then v1 (N1 )-V2 (N2 ) _::_ v1 (N) - V2 (0) = 
* * - * * v1 (N)-V2 (n2)< 0, since N1 ~ N if N2 = 0. Hence, provided that it 
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* * turns out that N1 2'._ n1 and N2 2'._ n2, the regional population levels, 
* * N1 and N2 , represent a solution to the upper level problem, and so 

we would have found an equilibrium for the full model. Further analy-

sis and computation of such a model, and/or a similar one which in-

corporates agglomeration economies, may be attempted in the future. 
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