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Abstract 

The equatorial and low-latitude ionosphere of the Earth exhibits unique features on its 

structuring, coupling, and electrodynamics that offer the possibility to forecast the 

dynamics and fluctuations of ionospheric plasma densities at later times. The scientific 

understanding and forecasting of ionospheric plasma are necessary for several practical 

applications, such as for mitigating the adverse effects of space weather on 

communication, navigation, power grids, space mission, and for various scientific 

experiments and applications. The daytime equatorial electrojet (EEJ), equatorial 

ionization anomaly (EIA), as well as nighttime equatorial plasma bubble (EPB) and 

plasma blobs are the most prominent low-latitude ionospheric phenomena. This 

dissertation focuses on the multi-diagnostic study of the mechanism, properties, 

abnormalities, and interrelationships of these phenomena to provide significant 

Prof. Pradip Bakshi  

Prof. Krzysztof Kempa 

Dr. Keith M. Groves  

 



contributions to space weather communities from the ground- and space-based 

measurements. 

 

A strong longitudinal, seasonal, day-to-day variability and dependency between EEJ, 

ExB vertical plasma drift, and total electron content (TEC) in the EIA distribution are 

seen in the equatorial and low-latitude region. In general, the EEJ strength is stronger in 

the west coast of South America than in its east coast. The variability of the EEJ in the 

dayside ionosphere significantly affects the ionospheric electron density variation, 

dynamics of the peak height of F2-layer, and TEC distributions as the EEJ influences the 

vertical transport mechanism of the ionospheric plasma. 

 

The eastward electric field (EEF) and the neutral wind play a decisive role in controlling 

the actual configuration of the EIA. The trans-equatorial neutral wind profile calculated 

using data from the Second-generation, Optimized, Fabry-Perot Doppler Imager (SOFDI) 

located near the geomagnetic equator and a physics-based numerical model, LLIONS 

(Low-Latitude IONospheric Sector) give new perspectives on the effects of daytime 

meridional neutral winds on the consequent evolution of the asymmetry of the equatorial 

TEC anomalies during the afternoon onwards. The spatial configurations including the 

strength, shape, amplitude and latitudinal extension of the EIA crests are affected by the 

EEF associated with the EEJ under undisturbed conditions, whereas the meridional 

neutral winds play a significant role in the development of their asymmetric structure in 

the low-latitude ionosphere.  



Additionally, the SWARM satellite constellation and the ground-based LISN (Low-

Latitude Ionospheric Sensor Network) data allow us to resolve the space-time ambiguity 

of past single-satellite studies and detect the drastic changes that EPBs and plasma blobs 

undergo on a short time scale. The coordinated quantitative analysis of a plasma density 

observation shows evidence of the association of plasma blobs with EPBs via an 

appropriate geomagnetic flux tube. Plasma blobs were initially associated with the EPBs 

and remained at the equatorial latitude right above the EPBs height, but later were pushed 

away from geomagnetic equator towards EIA latitudes by the EPB/ depleted flux tubes 

that grew in volume.  

 

Further, there exists a strong correlation between the noontime equatorial electrojet and 

the GPS-derived TEC distributions during the afternoon time period, caused by vertical E 

× B drift via the fountain effect. Nevertheless, only a minor correlation likely exists 

between the peak EEJ and the net postsunset ionospheric scintillation index (S4) greater 

than 0.2. This study not only searches for a mutual relationship between the midday, 

afternoon and nighttime ionospheric phenomena but also aims at providing a possible 

route to improve our space weather forecasting capability by predicting nighttime 

ionospheric irregularities based on midday measurements at the equatorial and low 

latitudes. 
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Chapter 1 

 

INTRODUCTION 

 

 

1.1 Motivation  

The geospace environment has become a prominent scientific paradigm in many modern 

technological communities including communication, navigation and power grids 

systems that directly influence daily human life activities. The near-Earth space 

environment encompasses a large number of complex physical processes and effects 

which are mainly influenced by activities of the Sun. Out of many atmospheric layers of 

the Earth, the ionosphere has remained a focus of space research and continues to hold 

interest because of its unique electrodynamics and central role on radio wave 

propagation. Although the ionosphere is a very thin layer with strong abundancies of 

plasma particles, its density perturbation poses challenging threats that cause severe radio 

signal disruptions and hence failures of the communication and navigation systems. A 

1 
2 
3 
3 
6 
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forecasting capability of occurrence of plasma irregularities with precise time and 

location is not straightforward, and varying degrees of scientific efforts have been 

committed to investigating their electrodynamics and seeding conditions till today. The 

unique electrodynamics of the low-latitude ionosphere provides practical opportunities 

for space weather prediction. The fundamental principle of this dissertation is to provide 

a possible route to predict and mitigate space weather effects on man-made technological 

devices of communication and navigation with a general understanding of the structure 

and electrodynamics of the equatorial and low latitude ionosphere from ground and 

space-based observations. 

 

1.2 Research Objectives 

This dissertation intends to study the nature of ionospheric plasma structuring in the 

geomagnetic low-latitude regions especially for the drivers of ionospheric scintillation 

and plasma bubbles through models and the observational analysis of ground as well as 

space-based data. We outline here a number of scientific questions that the research is 

trying to address, which are not only essential but also critical to space weather 

communities. 

 

• What are the characteristic features and spatial/ temporal variability of the low-

latitude ionospheric phenomena [including Equatorial electrojet (EEJ), Equatorial 

ionization Anomaly (EIA), and Equatorial Plasma Bubble (EPB)] over the South 

American sector? 
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• How can we effectively utilize multi-diagnostic observation techniques together with 

computer models to diagnose and understand the low-latitude ionospheric phenomena 

mentioned above (EEJ, EIA, and EPB)? 

• Can we identify physical mechanism(s) that might have played role in causing those 

features and variability? 

• Can we find correlations between various features of these low-latitude ionospheric 

phenomena, which could be used for forecasting near-future behavior of the regional 

ionosphere based on real-time measurements (or data) obtained a few hours earlier? 

 

1.3 Overview of Present Study  

The equatorial and low-latitude ionosphere of the Earth is a powerful podium for space 

weather study. This is because it presents unique features on structuring, coupling and 

electrodynamics, and exhibits rapid as well as slow responses to the changes of its 

various fundamental inputs. In this dissertation, we present a general overview of detailed 

investigations of the generation, structures, and development of equatorial plasma 

irregularities and their interconnectedness with other ionospheric phenomena. The 

fundamental structure and electrodynamical concepts pertaining to the upper atmosphere, 

mainly the ionosphere with emphasis on the equatorial and low-latitude ionosphere are 

presented here. 

 

1.3.1 Description  

The ionosphere is a shell of charged particles surrounding the Earth that is produced 

primarily by extreme ultraviolet (EUV) radiation from the Sun. Therefore, the 
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ionospheric plasma content is expected to follow the Sun’s behavior. At the magnetic 

equator, the Earth's magnetic field lines are horizontal forcing the ionospheric plasma to 

flow along the field lines, favoring the initiation of different types of plasma structures.  

Solar heating and tidal oscillations propagating from below set the thermosphere in 

motion due to the interaction between the neutral atmosphere and the plasma component 

near 100 km altitude. This interaction generates large-scale electric fields through a 

dynamo action, known as the E-region dynamo. This electric field controls the F-region 

dynamics during the day, but diminishes to almost no effect after sunset due to the decay 

of E-region densities. During the night, the F-region dynamo sets the F region in motion 

driven by the zonal neutral wind. 

 

An important feature of the low-latitude ionospheric variability is an enhancement of the 

plasma density that is observed at both sides of the magnetic equator. These 

enhancements have been called the Appleton (also named equatorial) ionization anomaly 

(EIA) [Appleton, 1946].  The anomaly is also observable using latitudinal profiles of total 

electron content (TEC) gathered using a network of GPS receivers [Valladares et al., 

2001].  The anomaly is the result of the upward motion of the plasma at the magnetic 

equator and its consequent diffusion poleward along the magnetic field line [Hanson and 

Moffett, 1966] driven by pressure gradient and gravity forces.  Figure 1 shows a 

schematic representation of the fountain effect and the formation of the equatorial 

anomaly across Brazil. The broken lines indicate the direction of the plasma flow. During 

the day and early evening, the F-region plasma moves upward creating a density gradient 

along the field lines. This produces a pressure gradient force parallel to gravity and both 
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together drive the plasma as indicated in Figure 1.  The TEC anomaly starts to develop as 

early as 1100 LT. It moves away from the equator with increasing local time, as the 

equatorial F-region moves to higher altitudes, reaching a maximum development around 

2000 LT.  After 2100 LT the crests of the anomaly sometimes move rapidly towards the 

equator as the equatorial ionosphere moves downward. This latter process has been called 

“the reverse fountain effect” [Sridharan et al., 1993; Balan and Bailey, 1995]; it is 

propelled by a reversal of sign of the pressure gradient force allowing the plasma to move 

upward and equatorward along the field lines. The presence of a meridional wind 

blowing outwards from the summer hemisphere will create an asymmetry in the 

amplitude of the crests with smaller densities on the wind lee side [Walker et al., 1994]. 

Several experimental and modeling studies have reported the coupling between the 

ionosphere and the troposphere. The FUV images introduced by Sagawa et al. [2005] 

revealed the existence of a 4-node longitudinal structure in the latitudinal displacement of 

the equatorial ionization anomaly (EIA) around the Earth.  This effect was explained in 

terms of an eastward propagating (non-migrating) diurnal tide with zonal wave number 3 

(DE3) excited by tropical tropospheric latent heat release able to modulate the lower 

thermospheric winds [Hagan et al., 2007], resulting in modulation of the electric field in 

the lower ionosphere [Immel et al., 2006].  The modulated electric field produces a wave 

number 4 longitudinal structure in the EIA region across the Earth when observed in a 

Sun-synchronous frame. These studies asserted the role of energy inputs from the lower 

atmosphere in producing a day-to-day variability, and indicated the importance of non-

migrating tides. 
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Other thermospheric sources of energy are planetary waves (PW) able to penetrate up to 

100 km altitude and introduce multi-day periodicities by modulating tidal amplitudes 

[Fuller-Rowell et al., 2008].In summary, all these studies concur that to fully understand 

the day-to-day variability of the low-latitude ionosphere, it is essential to estimate the 

energy and momentum inputs originated from the lower parts of the atmosphere [Hagan 

et al., 2001; Rishbeth, 2006; Fuller-Rowell et al., 2008]. 

 

The low-latitude ionosphere of the Earth presents unique features on structuring, 

coupling, electrodynamics and exhibits rapid as well as slow responses to the changes of 

its various fundamental inputs. The equatorial electrodynamic (ExB) plasma drift 

originated from electric field and Earth’s magnetic field play a fundamental role on the 

distribution and composition of low latitude ionospheric plasma and on the generation of 

plasma waves and density structures. Low latitude quiet-time ionospheric electric fields, 

plasma drifts and currents result mostly from the dynamo action of E and F region neutral 

winds driven by solar and lunar tides, but  can also be significantly affected by 

atmospheric gravity and planetary waves with time scales from tens of minutes to about a 

month [Fejer, 2015]. 

 

1.4 Organization of the Dissertation   

Starting with a general introduction of the low-latitude ionosphere, the content of this 

dissertation systematically deals with a description of the specific research analysis of 

ionospheric phenomena that occur in the low latitudes. To fulfill the demand of the 

objectives of the dissertation presented in the above section, the following is the study 
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design. Chapter 2 gives an overview of the geospace environment emphasizing the 

electrodynamics of the equatorial and low-latitude ionosphere. The electrodynamics and 

mechanism associated with the main equatorial phenomena EEJ, EIA, PRE, EPB, and 

Blobs are reviewed in detail. The mechanism associated with above phenomena, e.g., 

ionospheric current associated with hemispherical neutral dynamo, plasma fountain 

effects based on ExB drifts, and Rayleigh-Taylor instability for the explanation of plasma 

bubbles and blobs have been introduced.  

 

In Chapter 3, experimental techniques and methodologies have been reviewed from 

which data have been used to address the conclusion in this research work. The physics 

behind the measurement techniques adopted in different instruments have also been 

explained. Instruments are categorized under radio, sensor, optical and in-situ techniques. 

The principles and measurement techniques used by the Jicamarca radar antenna, LISN 

GPS, magnetometers, ionosondes, SOFDI interferometer, C/NOFS and SWARM 

satellites are briefly discussed. In Chapter 4, the equatorial electrojet current is described 

at length on its structure, features, variability, uniqueness and its associations. Besides its 

origin, evidence of its dependence on latitude, longitude, season, solar flux and 

geomagnetic activity are introduced. The narrow longitudinal and seasonal variability of 

EEJ is also discussed for the American low latitudes. The equatorial E and F region 

ionosphere are reviewed using data collected via ground-based instruments. The morning 

as well as afternoon depression of EEJ and its association on the motion of F layer 

ionosphere is also explained for the quiet days. In Chapter 5, the origin of the equatorial 

ionization anomaly, the characteristics of the plasma fountain, and detailed investigation 
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of its asymmetry structure created by meridional neutral wind are presented. The results 

from GPS TEC and interferometer obtained from SOFDI ionospheric campaigns near 

equatorial regions are analyzed to give the sense of meridional neutral wind for the 

formation of EIA asymmetry. Chapter 6 reports motion of the ionospheric irregularities 

in the form of plasma bubbles and blobs from simultaneous measurement of space-based 

SWARM constellation and ground-based LISN data. Chapter 7 pertains to the mutual 

relationship of the ionospheric event discussed in chapter 4, 5 and 6. The night time 

ionospheric irregularities signified by S4 index and its association with daytime EEJ and 

GPS-TEC are explained in solar minimum as well as solar maximum conditions. Finally, 

in Chapter 8, we review the results presented in this dissertation. We conclude with 

suggestions for future research work on equatorial and low-latitude ionospheric science. 
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Chapter 2 

 

ELECTRODYNAMICS OF THE LOW-LATITUDE 

IONOSPHERE 
                              

 

2.1 Near-Earth Space Environment 

The dynamic Sun is the main source of energy transfer in the solar system that produces a 

large variability in the geospace environment and planetary space weather phenomena. 

The Sun influences space environment directly and indirectly via radiative, thermal, 

dynamical, and electrodynamical processes. The planetary atmosphere is stably stratified 
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and consists of different regions of varying chemical and physical properties because of 

the variability, transfer, and distribution of the different forms of solar energy. Indeed, the 

terrestrial ionosphere would not exist in the absence of the Sun. This chapter presents the 

physics, chemistry and physiological aspects in the domain of the Sun-Earth interaction 

region in the low-latitude where ionization, photo-dissociation and variability processes 

are controlled by solar and magnetospheric processes from above and by internal waves 

from below. The electrodynamics associated with various low latitude ionospheric 

phenomena and its interconnectedness will also be discussed. This chapter deals with the 

physical processes controlling the structure, composition, and dynamics of planetary 

atmospheres emphasizing the Earth. In addition, it discusses the formation and 

maintenance of ionospheric layers, both photochemical and diffusion-controlled ones (E, 

F1, and F2), and the applicability of these models to magnetic and nonmagnetic planets 

[Bauer, 1973]. 

 

2.1.1 Structures of Earth's Upper Atmosphere 

The Earth’s atmosphere, the gaseous envelope, is divided into distinct layers each with its 

own specific trait demarcated by temperature, chemical composition, dynamics, and 

density. The solar radiation absorption capability of atmospheric particles increases the 

temperature as well as plasma density variation with altitude. Moving skyward from the 

Earth’s surface, taking into account the temperature variation with altitude, these layers 

are named the troposphere (ground to 10km), stratosphere (10km to 50km), mesosphere 

(50km to 85km), thermosphere (85km to 700km), and exosphere (700km to ~10,000km). 

The exosphere gradually vanishes into the domain of interplanetary space. Similarly, if 
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the ionization rate is considered, the atmosphere of the Earth can be divided into two 

main layers: the neutral atmosphere and the ionosphere. 

 

• The troposphere:  Most of the terrestrial atmospheric weather phenomena occur in 

this layer. It ranges from the surface to the tropopause at around 10-12km. It is defined by 

a well-mixed composition of primarily molecular nitrogen and oxygen, with decreasing 

temperatures with altitude.  

 

• The stratosphere: The blanket of the Earth that protects us from hazardous 

radiation is in this region. It is called the ozone layer. It extends from the tropopause to 

a height of around 45-50 km. Its temperature increases with height due to the 

absorption of solar ultraviolet radiation, and this region is thermodynamically stable.  

 
• The mesosphere: This is the coolest region of the atmosphere where most of the 

meteorites that enter into the atmosphere burn up. It extends from the stratopause (45-50 

km) altitude up to the mesopause around 90-95 km. This region experiences very little 

solar absorption and consists of primarily molecular nitrogen and oxygen, but, in 

addition, there are many minor species. Some metals, such as iron and sodium, are 

suspended in the mesosphere from meteoritic debris.  

 

• The thermosphere: This is the hottest part of the atmosphere, where the 

temperature becomes almost constant with altitude even though it initially increases with 

altitude. It extends from about 90 km to 500 km. The thermosphere is the region where 

most of the radiation from the atmospheric atoms and molecules in the visible spectrum 
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originate, i.e., the night glow, day glow, and aurora. The transition to the thermosphere is 

due to the dissociation of diatomic oxygen and ionization through solar radiation 

absorption.  

 

• The exosphere: This is the uppermost layer of the atmosphere where the 

atmosphere gets very tenuous. Particles of light species, like hydrogen, if moving fast 

enough, are able to escape the Earth’s gravity. Gas molecules in this region are unlikely 

to collide with other molecules due to the low-density atmosphere. The outermost region 

where the geomagnetic field controls particle motion is termed the magnetosphere. The 

thermosphere is coupled energetically, dynamically, and chemically to the mesosphere at 

its lower bound, and to the exosphere and magnetosphere at its upper bound. 
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Figure 2.1: Diagrams showing the different layers of the upper atmosphere of the Earth 

from bottom to top: troposphere–stratosphere–mesosphere–thermosphere [Image: 

www.ucar.edu]. 
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2.1.2 Ionosphere and its Layers 

Strictly speaking, the ionosphere is not a distinct layer like the others mentioned above. 

Instead, the ionosphere is a series of regions that share some of the volume of the 

mesosphere and thermosphere. Here, high-energy radiation from the Sun has knocked 

electrons lose from their parent atoms and molecules. Solar extreme ultraviolet radiation 

and electron precipitation are the two major sources of energy input for dissociation and 

ionization into the thermosphere and ionosphere. Photoionization by solar radiation is the 

main source of plasma in the low-latitude ionosphere whereas ionization by energetic 

particle impacts the neutral ionosphere at high latitudes. The electrically charged atoms 

and molecules that are formed in this way are called ions, giving the ionosphere its name 

and endowing this region with some special properties. The ionosphere extends from 

about 60 to 1000 km, and its vertical structure is divided into several layers depending 

upon the local time of day. Specifically, the electron density profile variation exhibits 

three main layers, the D, E and F-regions as shown in the figure below (Figure 2.2). 

During the daytime, the F layer further splits into the F1 and F2-layers whereas, during 

the nighttime, the D and E layers disappear. The different layers are characterized by a 

density maximum at a certain altitude and a density decrease with altitude on both sides 

of the maximum [Schunk and Nagy, 2000]. 
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Figure 2.2: Diagram describing the development of the ionospheric layers during day and 

night [Image: Encyclopedia Britannica, Inc.].  
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• The D-Layer:  This is the lowest part of the ionosphere which ranges from about 

60 to 90km. It appears only during day-time and is controlled by the ionization of 

neutrals by solar X-Rays and cosmic rays. The D layer is normally not dense enough to 

reflect radio waves. The dynamics of the D-region are mostly dominated by the neutral 

atmosphere. N2, O2 and O created by chemical processes are the most abundant neutral 

species in this region. The electron concentration in the D-layer ranges from 107 to 1010 

e–/m3. 

 

• The E-Layer: This layer was recognized first because of its reflective properties 

on radio waves used in telecommunications. This region is chemically dominated 

molecular ions such as N2
+, O2

+, NO+ as its primary constituents and extends from ~90 

km to 150 km altitude. The E region plasma is weakly ionized, and collisions between 

charged particles are not important. The electron concentration in the E-layer varies 

between 1010 and 1011 e–/m3 but drops to about 109 during the nighttime due to 

recombination processes. 

 

• The F-layer: This is the permanent region of the Earth’s ionosphere, with an 

altitude ranging from 130 to 1000 km. Major neutrals are N2 and atomic oxygen O, the 

latter being the main constituent above 200 km. Therefore, ion production in the F-region 

is due to the ionization of atomic oxygen O by Far Ultra Violet (FUV) or extreme Ultra 

Violet (EUV) radiations.  
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Figure 2.3: (a) The electron production rate with height as a function of the intensity/ 

photon flux of ionizing radiation as well as the density of the neutral gas particle.  (b) 

Electron density profile of the equatorial ionosphere at noon and midnight for solar 

minimum and solar maximum conditions. Electron density of the F2-peak (250-300 km) 

is the largest value along the ionospheric profile and strongly depends on solar activity 

[Image: Knipp, 2011]. 
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The F-region sometimes exhibits a double peak in the electron concentration Ne, 

corresponding to two sub-layers F1 and F2 showing specific photochemical reactions. In 

the F region (150-250km), ion-atom interchange and transport processes start to become 

important, and in the F2 region, the ionization maximum occurs as a result of a balance 

between plasma transport and chemical loss processes [Schunk and Nagy, 2000]. The 

plasma in this region is partially ionized, and collisions between the different charged 

particles and between charged particles and neutrals must be taken in to account [Schunk 

and Nagy, 2000]. 

 

2.1.2 Chemistry of Layers 

The Ionosphere is an excellent example of a natural laboratory for the study of atomic 

and molecular plasma processes. Absorption of Extreme Ultra Violet (EUV) radiation by 

thermospheric neutral species leads to photo-ionization in higher altitudes and Lyman-α 

and cosmic radiation in lower altitudes, which creates the bulk of the plasma that, makes 

up the ionosphere, a conducting layer at and above about 60km altitude. Types of 

ionospheric chemical reactions are [Solomon, 2017]: 

 

Radiative Recombination 

 X+ + e-  →  X + hʋ;     slow, rate coefficients of the order of 10-12 cm3 s-1 

Example:     O+ + e- ——–> O + hv 

Dissociative Recombination 

 XY+ + e-  →  X + Y;  fast, rate coefficients of the order of 10-7 cm3 s-1 

 Example:   NO+ + e- ——> N + O 
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Charge Exchange 

 WX+ + YZ  →  WX + YZ+; moderately fast, rate coefficients of the order of 10-10 

cm3 s-1 

Example: O+ + O2 ——> O2
+ + O 

                O+ + N2 ——> N2
+ + O  

              Mg+ + O3 ——–> MgO+ + O2 

Atom-Ion Interchange 

 X+ + YZ  →  XY + Z+; rate depends on the strength of the YZ bond 

Example:     O+ + H2O —–> H2O+ + O 

                     O+ + H2 ——> OH+ + H 

 

N2
+, O2

+, and O+ are the most abundantly produced ions in the Earth’s ionosphere because 

N2, O2 and O are the most abundant neutral species in the lower part of the thermosphere.  

However, the most abundant ions below 300 km are O+, NO+, and O2
+. Atom-ion 

interchange of O+ with N2 is very slow, due to the strength of the N2 bond.  This creates 

the high, dense, persistent “F2 region” and much interesting ionospheric variability. 
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Figure 2.4: (a) Vertical profiles of the mixing ratio of selected species of constituents 

showing ionospheric chemistry. (b) Temperature profile against altitude in the Earth’s 

atmosphere [Image: Solomon, 2017]. 
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2.2 Features of the Low-latitude Ionosphere  

The absorption of solar radiation in the ultra-violet and shorter wavelength bands by the 

Earth's upper atmosphere creates a layer of free electrons and ions between about 60 km 

to 1000 km altitude. The layer, called the ionosphere, is capable of influencing the 

propagation of radio waves [Rishbeth, 1988; Kelley, 1989; Schunk and Nagy, 2000]. The 

differential solar heating of the upper atmosphere, mainly the thermosphere on the day 

and night side hemispheres, creates horizontal pressure gradients. The resultant global 

neutral wind system effectively distributes momentum and energy within conducting 

layers and beyond [Rama Rao, 2006; Sridharan, 1998]. The electrodynamics of the low-

latitude ionosphere is governed by the movement of the electrically conducting upper 

atmosphere across the geomagnetic field by the thermospheric wind which in turn 

provides the mechanical energy for global scale dynamo action within ±60° latitudes 

[Sridharan, 1998]. The ionospheric electrodynamic process is highly variable in the low 

latitudes. This day to day variability of its processes has attracted the attention of 

scientists since more than a half century.  

 

2.2.1 Equatorial Ionosphere 

The equatorial and low latitude ionosphere is the region where the Earth's magnetic field 

lines are nearly horizontal. This uniqueness provides a constraint on the motion of the 

plasma particles that comprise the ionosphere and produces distinctive behavior in the 

equatorial ionosphere. Due to the unique configuration of the mutually perpendicular 

electric field (east-west), geomagnetic field (north-south) and electron density gradient 

(upward), the equatorial ionosphere is susceptible to very dramatic electrodynamical 
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effects [Rama Rao, 2006]. Some of the most important low latitude phenomena are: the 

equatorial electrojet, equatorial ionization anomaly, plasma depletions and enhancements 

(blobs). These phenomena are strongly latitude, longitude, temporal, season, solar cycle 

and, geomagnetic activity dependent [Fejer, 2015]. 

 

2.2.2 Structures in the Low-Latitude Ionosphere 

The plasma instability in the low latitude is mainly driven by the combined effects of the 

geomagnetic field, ionospheric electric field, and vertically downward neutral wind in the 

presence of a vertically upward density gradient. This dissertation reviews the current 

state of understanding of equatorial plasma instabilities at low latitudes and the general 

properties of the irregularities to study their relationship to possible seeding mechanism. 

A few widely recognized categories of ionospheric irregularities are listed below: 

 

• Sporadic E-Layers:  

This is an enhancement of the E region ionization for a short period that can be observed 

at all latitudes and is highly variable in space and time. The origins and causes of 

sporadic-E occurrence change with the geomagnetic region considered. For example, Es 

occurrence in the equatorial region seems to be correlated with the equatorial electrojet, 

in mid-latitude with the wind shear and polar Es are associated with auroral corpuscular 

bombardment (energetic electron precipitation from the magnetosphere). At equatorial 

latitudes, gradient instabilities also play an important role in creating sporadic E layers, 

while at high latitudes they can be created by convection electric fields [Schunk and 

Nagy, 2000]. They have been well studied with backscatter radars and ionosondes, which 
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allowed deriving not only occurrence statistics but also physical properties such as their 

plasma frequency f0Es, virtual height h′Es, or thickness of the layer [Wautelet, 2013]. 

 

• Spread-F Layers:  

Equatorial spread F is a spectacular phenomenon of a plasma instability in which the 

equatorial region ionosphere is restructured after sunset with rising plumes of low 

ionization. These plasma instabilities occur over a broad range of time and length scales, 

spanning several orders of magnitude that make the ionospheric F region an excellent 

place to test new plasma and fluid turbulence theories. These plasma irregularities have 

become important to us because of their tendency to interfere with the operation of space 

borne and ground based technological systems. Specifically, a signal emitted from a 

source above the Earth’s atmosphere interacts with the ionosphere as it travels through 

space to the receiving point, usually a receiving station on the ground [McDaniel, 1998; 

Wautelet, 2013]. 

 

• Traveling Ionospheric Disturbances (TIDs):  

Wave-like fluctuations of the ionospheric electron density are induced by internal 

atmospheric gravity waves (AGWs) in the neutral atmosphere are called TIDs [Yeh and 

Liu, 1974]. They are understood to be the signature of AGWs in the ionospheric plasma. 

Here, the ionosphere plays the role of a passive tracer. In the F-layer, neutral density is 

very weak, and charged particle motion is mapped along the magnetic field lines. The 

passage of an AGW modifies the charged particle height with up/down motions, which 

implies different recombination rates, and translates into changes in f0F2, hF2 and Ne 



Khadka, S. M. (2018), PhD Dissertation. 

24 

[Wautelet, 2013]. There are two classes of TID's: large-scale TID's characterized by 

higher speeds (400-1000 m/ s) and longer periods (0.5-3 hours) with wavelengths greater 

than 1000 km, and medium-scale TID's characterized by lower speeds (100-250 m/ s) and 

shorter periods (15 min-1 hour) with wavelengths of several hundred km [Ogawa et al, 

1987]. TID's have been observed by various methods including vertical soundings, 

incoherent scatter radars, HF Doppler measurements, total electron content measurements 

by Faraday rotation, and in situ measurements of electron density [Francis, 1975; Ogawa 

et al, 1987]. 

 

• Space Weather, Storms, & Geomagnetic Disturbances:   

Space weather refers to the variable conditions on the Sun and in the space environment 

that can influence the performance and reliability of space-borne and ground-based 

technological systems, as well as endanger life or health. Equatorial ionospheric storms 

result from modifications in the zonal electric field, meridional neutral winds, neutral gas 

temperature, and chemical composition [Sastri et al., 2003]. However, the most important 

contributor to the storm time behavior of the equatorial F region is the electric field 

disturbance. During quiet time, the equatorial ionosphere is largely controlled by the 

dynamo generated electric fields and the plasma fountain process associated with it, with 

the meridional winds acting as a modulator of field-aligned plasma transport associated 

with the fountain process [Bailey et al., 1997]. Storm time modifications in equatorial 

zonal electric fields fall into two broad categories, (1) the solar wind-magnetosphere 

dynamo, associated with prompt or direct penetration of the magnetospheric convective 

electric field [Senior and Blanc, 1984; Spiro et al., 1988] and (2) the ionospheric 
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disturbance dynamo field due to the global thermospheric wind circulation associated 

with Joule heating at high latitudes [Blanc and Richmond, 1980; Sreeja et al, 2009]. 

 

2.2.3 Equatorial Electrojet (EEJ) 

The EEJ is an intense band of current flowing in the east-west direction with around a 

roughly ±3° latitudinal extent centered at the magnetic equator in the ionospheric E-

region. It looks like a very simple ionospheric phenomenon but can be used to address 

several outstanding question in low latitude aeronomy. This phenomenon is mainly due 

to the electrodynamical process of a horizontally stratified ionosphere with anisotropic 

conductivities. This current is driven primarily by Sq current (as shown in Figure 2.5) due 

to the global scale hemispheric dynamo action of the neutral wind that meets at the 

equator and manifests as a primarily east-west electric field over the dip equator.  

 

It is also responsible for the strong enhancement in the horizontal component (H) of 

Earth's magnetic field observed by magnetometers over the equator. This height is a 

strongly collisional regime that results in the generation of a vertical hall polarization 

field that, crossing with the east-west field is responsible for the generation of the EEJ. 

Figure 2.5 shows a longitudinal variability for enhancement of the eastward current jet. 
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Figure 2.5: Electrojet current densities inferred from 2600 passes of the CHAMP satellite 

over the magnetic equator between 11:00 and 13:00 local time [Image: geomag.org]. 
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2.2.4    Equatorial Ionization Anomaly (EIA) 

 The EIA is one of the prominent equatorial ionospheric/thermospheric processes. This 

process consists of the development of a double humped structure in the latitudinal 

profile of the F region plasma densities during daytime with the crest located at ±15°-20° 

dip latitude and the trough situated over the dip equator [Sridharan, 1998]. The eastward 

electric field acts perpendicularly to the north-south geomagnetic field lines and gives 

rise to a vertically upward directed plasma motion. As the plasma rises, it encounters the 

horizontal lines of force of the Earth's magnetic field. The electrons diffuse along these 

field lines and reenter the main body of the ionosphere where the field lines cut through 

the F region, giving rise to large clumps of ionization at magnetic latitudes of ± 15-20° on 

either side of the magnetic equator as illustrated in Figure 2.6. These clumps are called 

the peaks or crests, and the low ionization region over the equator is called the trough of 

the equatorial or Appleton anomaly [Rama Rao, 2006]. 



Khadka, S. M. (2018), PhD Dissertation. 

28 

 

Figure 2.6: A typical example of an equatorial ionization anomaly in the American low 

latitude revealed by TEC data from the LISN GPS network. 
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2.2.5   Equatorial Spread-F, Plasma Bubbles and Plasma Blobs  

In general, the postsunset plasma instabilities capable of generating diffuse echoes on 

ionograms that occur in the equatorial ionosphere are called equatorial spread F (ESF). 

The irregularities associated with ESFs occur over a broad range of time and length 

scales, spanning several orders of magnitude [Ossakow, 1981]. At night, a fully 

developed spread F is characterized by equatorial plasma bubbles (EPBs), which are 

vertically elongated wedges of depleted plasma that drift upward from beneath the 

bottomside F layer reaching altitudes as high as 1500km [Schunk and Nagy, 2000]. The 

development of large scale ESF irregularities is mainly driven by the Rayleigh-Taylor 

(RT) instability mechanism operating in the post sunset bottomside F-region. Plasma 

bubbles cause severe ionospheric turbulence at night in the equatorial F region. Bubbles 

are commonly produced in the bottomside of the F region and move into higher altitudes 

where they are detected with in situ satellite instrumentation [Kil et al., 2015].  

 

Plasma blobs are another type of irregularity which are characterized by plasma density 

enhancements relative to ambient plasmas. Although bubbles and blobs have opposite 

characteristics, one phenomenon (bubble) has been understood as a cause and the other 

phenomenon (blob) as an effect [Kil et al., 2015]. The eastward electric field inside an 

EPB would push up high-density plasma at the EIA crest plasma density peak when the 

EPB flux tube reaches EIA latitudes. This would result in the occurrence of a blob just 

above the EPB flux tube [Le et al, 2003; Kim and Hegai, 2016]. 
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Figure 2.7: A signature of an equatorial plasma bubble recorded by the Jicamarca 

Incoherent Scatter Radar in the low latitude ionosphere. 
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2.3  Physics of  the Equatorial and Low-Latitude Ionosphere  

The unique geomagnetic field and electric field in the low latitude ionosphere have been 

drawing the attention of aeronomers and space scientists. Electric fields in the low and 

middle latitude ionosphere result from currents driven internally by neutral winds and 

gravity, and externally by applied potentials. The resulting internal electric polarization 

fields arise from the need to make the total current divergence free. By considering the 

current drivers many of the attributes of the observed ion and electron drifts can be 

understood including the E- and F-region dynamos, the initial growth of ionospheric 

depletions, and the effects at high latitudes [Heelis, 2004].  

 

Solar radiation, an EM wave, is mainly responsible for the production of the ionospheric 

plasma. The interaction of EM waves with the ionosphere ranges from the collisionless 

regime to a highly collisional regime depending on the altitude. Above 150km the 

interaction is essentially collisionless, which means that the electron-neutral collision 

frequency is much lower than the ion gyrofrequency; the ion-neutral collision frequency 

is lower than the ion-cyclotron frequency. Below 150 km the process is collisional. The 

physical processes for wave absorption are very different in these two cases. A transition 

regime can be seen between the collisionless and collisional regimes [Manheimer et al., 

1997]. Figure 2.8 illustrates the various regimes based on electron-neutral and ion-neutral 

collisions. 
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Figure 2.8: Different regions of the ionosphere showing the collisional and collisionless 

regime, and their coupling processes at high latitude. At equatorial latitudes, the 

geomagnetic field acts perpendicular to the zenith [Image adapted from Lotko, 2017]. 
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Solar radiation sets up a global system of neutral winds that push the ionospheric plasma 

across magnetic field lines. Electric fields and currents are generated and these play an 

important role in the distribution of ionization. On the other hand, collisions between the 

neutral atmosphere and the ions, the ions and electrons, and the neutrals and electrons are 

the cause of the conductivity in the ionosphere. The ionospheric conductivity plays a 

major role in the electrodynamics of the F-region. These conductivities are Pedersen, 

Hall, and parallel conductivity. The conductivity parallel to the electric field, and 

perpendicular to the magnetic field, is called the Pederson conductivity. The conductivity 

perpendicular to both the electric and magnetic fields is called Hall conductivity, while 

the conductivity parallel to the magnetic field alone is defined as the parallel 

conductivity. The magnitudes of these conductivities as a function of altitudes are shown 

in Figure 2.9. The Pedersen and Hall conductivity decrease with increasing altitude, 

whereas the parallel conductivity increases continuously with altitude. The parallel 

conductivity is several orders of magnitude larger than both the Pedersen and Hall 

conductivities everywhere above 100 km. Therefore, ionospheric electric fields can be 

transferred along these lines virtually uninhibited [Chapagain, 2011]. 
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Figure 2.9: A comparison of daytime ionospheric conductivities (Parallel, Pedersen, and 

Hall) as a function of altitude in the location (35° N, 135° E) under the noon-time March 

equinox condition for low solar activity [Image: Yamazaki and Maute, 2017].  
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2.3.1     Wind Dynamo and Plasma Dynamics  

The thermosphere is where the differential heating of the upper atmosphere results in the 

neutral winds, which in turn provide the mechanical energy for the global scale dynamo 

action and the generation of electric fields. These electric fields are responsible for a 

variety of electrodynamical processes including several plasma instabilities peculiar to 

the specific geographical location [Sridharan, 1998]. The ions and electrons in the E 

region are coupled to the neutral components of the atmosphere and follow their 

dynamics. Atmospheric winds and tidal oscillations of the atmosphere force the E region 

ion component to move across the magnetic field lines, while the electrons move more 

slowly, perpendicular to both field and the neutral wind. The relative movement creates 

an electric current, and the separation of charges produces an electric field, which in turn 

affects the current. Because of this, the E region bears the name dynamo layer, the 

generator of which is the atmospheric wind motion. The current system created by this 

tidal motion of the atmosphere is called the solar quiet or Sq current. The Sq system 

forms two vortices, one in the northern and the other in the southern hemisphere, which 

touch each other at geomagnetic equator [Baumjohann & Treumann, 2012]. 
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Figure 2.10: Ionospheric dynamo driven by the average Sq current system in which the  

tidal neutral wind system in the ionospheric dynamo layer acts as the driving force 

[Image adapted from Baumjohann & Treumann, 2012]. 
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2.3.2     Ionospheric Currents and Electric Fields  

The ionospheric currents cause a large part of the variation of the geomagnetic field, 

although most of the geomagnetic field itself is generated by the dynamo action in the 

Earth's core. The currents flow according to the Ohm's law, but the electric conductivity 

is anisotropic because of the effect of the geomagnetic field. The atmospheric solar tides 

represent a major contribution to the climatology of the electrojet region [Forbes, 1981]. 

At the geomagnetic equator, the Sq current system of the southern and northern 

hemispheres touch each other and form a jet like current in the ionosphere called the 

electrojet. The special geometry of the magnetic field at the equator, together with a 

nearly perpendicular incidence of solar radiation, cause an equatorial enhancement in the 

effective conductivity, which leads to an amplification of the jet current [Baumjohann & 

Treumann, 2012].  

 

The mechanism of current amplification can be explained as follows. The primary Sq 

Pedersen current (σpEy) flows eastward (e.g. in Figure 2.10), parallel to the primary 

ionospheric current. This primary electric field drives a Hall current (σhEy) which flows 

vertically downward causing charge separation in the equatorial ionosphere and creates 

polarization electric fields (Ez). The polarization electric field drives a vertical Pedersen 

current (σpEz) opposing the Hall current until it compensates for it. The secondary 

polarization electric field generates a secondary Hall current (σhEz). The total current in 

the eastward direction consists of the sum of the primary Pedersen current (σpEy) and the 

secondary Hall current (σhEz). The conductivity associated with this total current is 

called cowling conductivity (σc) and equal to (σp) + (σh)2 /(σp ). 
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Figure 2.11: Mechanism of the amplification of eastward electric field to form equatorial 

electrojet current during noon. 
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Cowling conductivity is higher than Pedersen conductivity, which explains the 

amplification and concentration of the equatorial electrojet current [Baumjohann & 

Treumann, 2012] above the equator as shown in figure 2.11. 

 

2.3.3    Equatorial Plasma Fountains  

The ExB vertical plasma drift in the daytime raises ionized plasma near the geomagnetic 

equator to great heights, where recombination take place at a slower pace. As it reaches a 

certain height, the plasma diffuses down along the magnetic field lines and moves away 

from the equator under the action of the pressure gradient and gravity. This process will 

ultimately dump additional plasma either side of the geomagnetic equator forming two 

crests about ±15° to ±20° latitude regions. These combined phenomena of 

electromagnetic drift and diffusion produce a fountain-like pattern of plasma motions. 

This phenomenon is referred to as the fountain effect or the equatorial fountain [Pfaff, 

2012]. This abnormal ionization distribution is termed the equatorial ionization anomaly 

or Appleton anomaly. The equatorial anomaly usually starts to build up at 11:00 am, with 

a maximum about 14:00 local time (LT), and a second often larger peak, occurring in the 

late evening. The latitude of the peak electron density formations is often not symmetric 

about the magnetic equator because of plasma transport along the magnetic field lines 

produced by an interaction with the neutral winds [Chapagain, 2011]. Basically, there are 

two competing mechanisms for the asymmetric formation of the equatorial anomaly a) 

Intra-hemisphere Transport, and b) Trans-equatorial Transport [Khadka et al., 2018]. As 

the meridional neutral wind crosses the equator, it will drive plasma to higher ionospheric 

heights along field lines where recombination proceeds at a slower pace. This leads to 



Khadka, S. M. (2018), PhD Dissertation. 

40 

higher plasma density in the windward direction than that of leeward direction. Also, the 

trans-equatorial neutral winds usually cause the plasma to be pushed from the one 

hemisphere to the other hemisphere as there is a weak fountain. These two processes are 

the reason behind the asymmetrical form of equatorial anomaly peaks between the two 

hemispheres. 
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Figure 2.12: Mechanism of the plasma fountain effect for the generation of the equatorial 

ionization anomaly in the low latitude ionosphere. 
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2.3.4     Pre-Reversal Enhancement (PRE) 

Gradients in the neutral wind-driven currents and E region conductivities generate 

polarization electric fields, causing the ionospheric plasma to drift primarily in the 

direction of the E region tidal neutral winds. These polarization electric fields in the low-

latitude ionosphere cause plasma near the magnetic dip equator to rise during the day 

under an eastward zonal component of the electric field and descend during the night 

[Eccles et al, 2015]. The eastward daytime electric field in the E and F regions of the 

equatorial ionosphere often shows a significant and fairly sharp increase just before it 

reverses to its nighttime westward direction [e.g., Balsley, 1973; Fejer et al., 1979; Fejer, 

1981, Farley et al, 1986]. Near sunset, a brief and intense uplift of the electric field, 

which results in a height increase in the equatorial ionosphere and an increase in the 

growth rate of the generalized Rayleigh-Taylor instability (RTI), is called the pre-reversal 

enhancement (PRE) [Kelley et al, 2009a]. The PRE can help to initiate the RTI, which 

may generate small scale structure such as equatorial spread F. The magnitude of this 

prereversal enhancement depends upon various factors such as season, level of magnetic 

activity, and phase of the solar Cycle [Farley et al, 1986]. 
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Figure 2.13: The PRE signatures are seen as strong vertical plasma drift at dusk near low 

latitude ionosphere [Image: http://slideplayer.com]. 
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2.3.5     Rayleigh-Taylor Instability (RTI) 

The RT instability is the instability of an interface between two fluids of different 

densities in which a heavier fluid is resting on top of a lighter fluid within a gravitational 

field [Rayleigh 1880; Taylor 1950; Dungey, 1956; Ott, 1978]. Any fluctuation at the fluid 

interface allows gravity to pull the high-density fluid downwards so that the low-density 

fluid ends up on top and an interchange of the two fluids takes place. More generally, 

Figure 2.14 shows a schematic diagram the classical and simple configuration for the 

Rayleigh- Taylor instability.  

 

The primary source by which this instability is triggered is a gravitational force acting on 

an inverted density gradient (a heavy fluid supported by a light fluid) [Chakrabarti and, 

Lekhina, 2003]. The gravitational force is downward, antiparallel to the density gradient, 

and the magnetic field is horizontal, into the paper (Figure 2.14). As small perturbation 

(δE) is triggered in a current system gxB. These fields, in turn, cause an upward δExB 

drift of plasma in the region of plasma depletion and a downward drift in the region 

where density is high. Lower (higher) density plasma is therefore advected upward 

(downward), creating a large perturbation, and the system becomes unstable. In the 

ionospheric case, the light fluid is the low density plasma which carries a gravity driven 

current that provides the JxB force, preventing the plasma from freely falling [Kelley, 

2009a]. Additionally, the onset of ESF may also be affected by the breaking of gravity 

waves propagating upward from the lower altitude and by electric field perturbations of 

high latitude origin during magnetically disturbed conditions.  
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Figure 2.14: Diagram illustrates the mechanism of the Rayleigh Tylor instability that 

shows how the plasma bubble form in the low latitude ionosphere. 
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On the other hand, there are several processes, such as meridional neutral winds, electric 

field shear effects, diffusion, and E-region conductivity, which inhibit the growth of the 

irregularities [Chapagain, 2011]. A further explanation of the RTI instabilities is given in 

Chapter 6 as well. 

 

Further, a strong vertical plasma density gradient at the bottomside of the F layer and a 

strong upward plasma drift during the night combine to destabilize the plasma [Carter, et 

al., 2016]. Rayleigh-Taylor instability can be triggered whenever a certain geometric 

relationship holds between the electron density gradient in the equatorial ionosphere and 

the forces acting on the plasma [Zalesak and Ossakow, 1982]. The linear growth rate γ of 

the generalized R-T instability was derived by Zalesak and Ossakow [1982] for an 

infinitesimal perturbation on the system. Later, the R‐T linear growth rate is adapted by 

Sultan [1996], and further reconstructed by Gentile et al. [2006] and Carter, et al. [2016] 

as  

 

where the first term Vp is the upward plasma drift speed, the second term is the 

Pedersen conductivity‐weighted neutral wind perpendicular to the magnetic field in the 

magnetic meridian plane, and the third term ge/νeff is the altitude‐corrected gravity 

divided by the flux tube integrated effective ion‐neutral collision frequency, weighted by 

the electron density. These terms are multiplied by the flux tube integrated F ( ) and E 

region ( ) Pedersen conductivity ratio and KF, which is the F region flux tube electron 
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content height gradient (i.e., 1/Ne(∂Ne/∂h), where Ne is the flux tube electron content). 

Finally, RT is the flux tube integrated recombination rate. 
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Chapter 3 

 

INSTRUMENTATION AND METHODOLOGY 

 

 

This chapter reviews the basic techniques for studying the terrestrial ionosphere, with 

particular emphasis on the principles, capabilities, and limitations of the techniques when 

they are used to probe the low-latitude ionosphere. The low-latitude ionospheric 

electrodynamics can be probed by using several techniques from the ground as well as 

from space. For Shuttle/ Spacelab mission communication and navigational applications, 

the ionosphere is a natural laboratory for studying complex processes that occur near 

Earth and throughout the universe. Although the existence of conducting layers of the 

upper atmosphere had been suggested by Balfour Steward in 1882, the first remote radio 
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sensing of the Earth’s ionosphere started in late 19th to the beginning of 20th century 

[Appleton’s Nobel Prize Lecture, 1947]. Radio probing experiments of the ionosphere by 

Guglielmo Marconi in 1901 and frequency change experiment by Appleton and Barnett 

in 1925 laid stepping stones in probing the ionosphere. Understanding the ionosphere is 

very important in this modern era to investigate space weather related phenomena and 

their impact on machinery as modern civilization is highly dependent on technological 

systems. In this dissertation work, we use various instruments for active sensing of the 

upper atmosphere using both ground-based and satellite-borne radars that are categorized 

under radar techniques, magnetic sensor techniques, optical technique, and in-situ 

techniques in following sub-sections. The essential physical parameters of the ionosphere 

which have been studied extensively over the half century are 1) the density and 

temperature of both ionized and neutral particles; 2) the chemical composition of the 

ionized and neutral particles; and 3) the electric and the magnetic field [Bauer and Nagy, 

1975]. We present the principles and a description of the instruments in this dissertation, 

whose data are shown and used to study ionospheric electrodynamics. Additionally, 

space weather impacts on space-based technologies in the equatorial and low latitude 

sectors are also explained. 

 

3.1 Remote Radio Wave Techniques  

The remote sensing of the ionospheric plasma density and temperature profiles with 

observations of the solar irradiance at altitudes above ionosphere enables studies of the 

physics and chemistry that govern the formation of the ionosphere and its characteristics. 

Coupling the observation with magnetospheric satellite observation enables studies of 
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magnetospheric dynamics. The two main active remote sensing instruments used for 

observing the ionospheric plasma density are ionosondes and scatter radars. 

Active remote sensing of the ionosphere is essential not only for understanding the basic 

physics of this near-space region but also for predicting the impacts of space weather 

events on our technology-dependent society. Active remote sensing through planetary 

radar astronomy continues to make important contributions to our understanding of the 

solar system, planning for space missions to extraterrestrial objects, and in particular for 

the tracking and characterization of near-Earth asteroids that may pose a threat to society. 

Radio waves reflect and scatter from discontinuities in the index of refraction of the 

medium in which they propagate. In the upper atmosphere, the primary source of such 

discontinuities is gradients of the plasma density. Hence, upper atmospheric active 

remote sensing is primarily sensing of the ionospheric plasma. It is, however, possible to 

study both the magnetosphere and the neutral atmosphere using those ionospheric 

observations. Ion-neutral collisions produce measurable effects in radar returns. At 

altitudes where those effects are significant, it is possible to estimate thermospheric 

properties from the plasma observations [National Academies of Sciences, Engineering, 

and Medicine, 2015].  

 

3.1.1 Radar  

The incoherent scatter radar (ISR) technique, since its introduction in the early 1960's, 

has proved to be the most used and  powerful ground-based remote sensing technique 

which can provide the most information about the terrestrial ionosphere than any other 

technique [Hunsucker, 1991, Gordon, 1958]. Using incoherent scatter technique, vertical 
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electron density profiles, electron and ion temperatures, ion composition and 

photoelectron flux, the ionospheric electric field and a variety of other parameters can be 

measured [Venkatesh, 2013]. It is a ground based radio techniques which can provide the 

most information of the terrestrial ionosphere during calm as well as extremely perturbed 

case. 

 

Here, we used data from the Jicamarca incoherent and coherent scatter radar observations 

located near the geomagnetic equator. ISRs are single-frequency radars that observe 

backscatter from thermal fluctuations of the plasma at altitudes between 90 to 3000 km 

with significant density up to the point where returns become too weak to detect. These 

observations, when coupled with the well-developed theory of incoherent-scattering from 

plasmas, provide altitude profiles of a number of parameters, including plasma density, 

plasma temperature, plasma velocity, ionic composition, and ion-neutral collision 

frequency. ISRs provide detailed high-fidelity information at a few strategic locations 

[National Academies of Sciences, Engineering, and Medicine, 2015]. Moving upward 

from the ground, strong collisions between the ionized and neutral constituents in the 

lowest altitude region become weaker and weaker in the topside of the ionosphere. 

Especially, the region between collisional to collisionless is a natural laboratory for the 

study of plasma behavior.  

 

The ISR theory that needs to be understood is the concept of ‘coherent’ vs. ‘incoherent’ 

scattering. Incoherent scattering applies to the specific case where the dynamics of 

individual electrons can be considered completely independent of the rest of the particles.  
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Figure 3.1: The main radar antenna in Jicamarca Radio Observatory (JRO), Peru, one of 

the largest of all the incoherent scatter radars (ISRs) in the world where the magnetic dip 

angle is about 1°. The main antenna consists of a 300m x 300m square array composed of 

18,432 cross-polarized dipoles. 
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In this case, no collective feature in the spatial distribution of electrons may be produced 

and maintained by the random motions of electrons [Akabari et al. 2017].  

 

In general, the spectrum of the scattered signal consists of two parts, one due to the ions 

and other due to electrons. If the radar wavelength is much smaller than the Debye 

length, the scattered energy is entirely due to the electronic component. On the other 

hand, for radar wavelengths much larger than the Debye length, the largest part of the 

scattered energy resides in the ionic component. The electron and ion temperatures and 

other parameters can be measured [Dougherty and Farley, 1960; Evans, 1969], by using 

various properties of the received spectrum. 

 

In the ionosphere, a purely incoherent scattering only occurs when the ISR probing 

wavelength is smaller than the Debye length [Dougherty and Farley, 1960, Bhatt, 2010]. 

At spatial scales greater than the Debye length, however, the motions of individual 

electrons are affected by the electrostatic fields of other charged particles, such that the 

collective behavior of particles acquires ‘self spatio-temporal coherence’ in the form of 

plasma waves. Such coherent behavior, in turn, introduces constructive interference in the 

scattered fields from individual electrons and leads to the concentration of the spectral 

power into narrow resonant peaks whose characteristics are determined by the 

corresponding plasma waves.  
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Figure 3.2: Experimental echoes from JRO radar showing turbulence from different 

layers of the equatorial ionosphere [Courtesy of Marco Milla].  
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Consequently, ISR measurements from the ionosphere are almost never purely incoherent 

except some echoes obtained with the 50-MHz Jicamarca radar. On the other hand, ISR 

measurements are often not purely coherent either (except echoes from plasma 

instabilities) as the total scattered field is composed of contributions from a continuous 

distribution of self-coherent plasma waves within the illuminated volume who’s phases 

are random with respect to each other [Akabari, 2015]. However, such cases are also 

termed as ‘incoherent scattering’ in radar communities. 

 

3.1.2 GPS: Basic Concepts  

Global Positioning System (GPS) is a satellite based system that consists of 32 or more 

artificial satellites, which orbit the Earth in 6 distinct but uniformly distributed orbital 

planes at an altitude of 20,200km. GPS satellite circle the Earth twice per day with an 

orbital speed of about 14000 km/hour in a precise orbit and continuously transmit signals 

providing positioning, navigation and timing (PNT) information to military and civilian 

users worldwide using a mathematically applied ‘triangulated’ position. GPS satellites 

are not in geosynchronous or geostationary orbits, but the satellite orbits are distributed 

so that at least 4 satellites are always visible from any point on the Earth at any given 

instant (with up to 12 visible at one time). Each satellite carries with it an atomic clock 

that "ticks" with a nominal accuracy of 1 nanosecond (1 billionth of a second). The 

ionosphere is as assumed to be a thin layer in GNSS processing, so that signals from 

global navigation satellites must transit the ionosphere on their way to the receivers.  
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Figure 3.3: Basic design of the GPS satellite constellation (‘navigational satellites’, or ns) 

that fly around the Earth in 6 different orbital planes [Image: www.lanl.gov].  
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The passage exacts a toll in the form of an added delay of the pseudorandom-noise-code 

signals and an advance of the phase of the signals’ carriers, due to the presence of the 

ionosphere’s free electrons.  

 

These perturbations must be taken in to account in some way to achieve high accuracy in 

GNSS positioning, navigation, and timing applications [Langley, 2000; Coster et al., 

2003]. GPS was developed by the United States Department of Defense (DoD) to provide 

a satellite-based navigation system for the U.S. military. It was later put under joint DoD 

and Department of Transportation control to provide for both military and civilian 

navigation uses, and has become a part of daily life. 

 

The GPS receivers can be used to monitor ionospheric instabilities. The satellite 

broadcasts two carrier frequencies, the L1 carrier wave at 1575.42 MHz, and L2 at 

1227.60 MHz These dual frequencies are chosen to eliminate ionospheric dispersion, one 

of the major sources of systematic range error. The pseudo ranges, which are derived 

from signal travel time to the receiver, use two pseudorandom noise (PRN) codes. These 

codes are modulated onto the carrier frequencies. The first code, which is available for 

civilians, is the C/A- code (Course/Acquisition-code), which has a wavelength of 

approximately 300 meters and is modulated only upon L1. The second code, the P-code 

(Precision-code) is available only to the military and a few designated users. P-code, with 

a wavelength of approximately 30 meters and is modulated on both L1 and L2. The 

technique used to transmit the signals from the satellites involves transmitting a carefully 

formulated code known as pseudo-random sequences. The received signals and the 
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transmitted sequences are compared to one another, and the travel time for the signal is 

found by measuring when the two signals are most closely correlated. The Navigation 

Message can be found on the L1 channel, being transmitted at a very slow rate of 50 bps. 

The Navigation Message includes information on the Broadcast Ephemeris, satellite 

clock corrections, almanac data, ionosphere information, and satellite health status 

[Spilker et al., 1996]. 

 

The accuracy and reliability of GPS is a function of both system and environmental 

factors. System factors are associated with the three GPS segments: space, control, and 

user which include errors in the satellite clock and ephemeris information, hardware 

channel biases, satellite geometry effects and thermal noise errors. Environmental factors 

are associated with propagation phenomena and include electromagnetic interference 

from external sources, ionospheric effects (including those associated with both the 

quiescent and the disturbed ionosphere), tropospheric delays, obscuration, and multipath 

[Klobuchar, 1991; Knight, 2000].  
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Figure 3.4: Experimental set up for the measurement/ study of ionospheric phenomena 

using ground- and space-based instruments. 
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3.1.2.1 Total Electron Content (TEC) Measurement 

The Total Electron Content (TEC) is the total number of electrons present along a path 

between a radio transmitter and receiver. Radio waves are affected by the presence of 

electrons. The more electrons in the path of the radio wave, the more the radio signal will 

be affected. For ground to satellite communication and satellite navigation, TEC is a 

good parameter to monitor for possible space weather impacts. The plasma density in the 

ionosphere is modified by changing solar Extreme Ultra-Violet radiation, geomagnetic 

storms, atmospheric waves, and tides that propagate up from the lower atmosphere. The 

TEC will, therefore, depend on local time, latitude, longitude, season, geomagnetic 

conditions, solar cycle and activity, and troposphere conditions.  

 

The signals travelling through the ionosphere experience group delay on the modulation, 

RF carrier phase advance, Doppler shift of the carrier frequency, distortion of pulse 

waveform, Faraday rotation of waves, and angular refraction of wave path. All of the 

above effects are proportional to the total electron content (TEC) encountered by the 

wave when traveling through the ionosphere. It is defined as, 

 

 

 

Where n (h) is the electron content per unit volume as a function of height along with the 

propagation path between satellite and receiver. The unit of TEC is TECU, where 

1TECU = 1016 electrons/m2
. 

 

𝑻𝑻𝑻 = � 𝒏(𝒉)𝒅𝒅
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
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Figure 3.5: Sketch showing the geometry of vertical and slant TEC measurement 

strategies using GPS receivers [Image adapted from Kao et al., 2014]. 
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A GPS receiver measures TEC values along a slanted path that is almost never along the 

true vertical.  Assuming that there are no spatial variations the following formula is used 

to convert the slant TEC to “vertical” TEC: 

                                                       TEC × Cos (arcSin(0.94092*Cos(elevation angle))).   

Due to this approximation, it is called the “equivalent” vertical TEC. Hence, the 

equivalent vertical TEC is defined as the calculated vertical TEC based on measured slant 

TEC. This conversion is done with a mapping function which is associated with a 

trigonometric factor. This terminology is well used in the GPS/GNSS community. 

 

3.1.2.2 Ionospheric Scintillations Measurement 

Scintillations are fluctuations of the parameters of trans-ionospheric waves, i.e., their 

phase, amplitude, direction of propagation and polarization. It is a stochastic (random) 

phenomenon. It is considered that when a radio wave propagates inside the irregular or 

turbulent medium the phase varies. During the propagation in free space down to the 

receiver, radio waves cancel and produce fading [Priyadarshi, 2015]. It is caused by a 

varying refractive index created by charged particles in the ionosphere; periods of 

scintillation often accompany and are the result of solar storms. Scintillation results in 

simultaneous deep fades and rapid phase shifts in the GPS signal [Olivarez, 2013]. 

Scintillation activity is represented by the S4 index, which is the normalized standard 

deviation of signal intensity. The intensity of the ionospheric scintillation is characterized 

by the variance in receiver power S4, which is a dimensionless number called amplitude 

scintillation index, 

𝑺𝟒 =
√(< 𝑰𝟐 >  −< 𝑰 >𝟐)

< 𝑰 >
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Where I is the signal intensity, and S4 is a dimensionless number with a theoretical upper 

limit of 1.0. There are two defined regimes of amplitude scintillation: weak and strong, 

which roughly correspond to the type of scattering associated with each. Strong 

scintillation is generally considered to occur when S4 is greater than ~0.6 and is 

associated with strong scattering of the signal in the ionosphere. Below this is weak 

scintillation. An S4 level below 0.3 is unlikely to have a significant impact on GPS. The 

effects of scintillation are very prominent during the evening hours. Here in this 

dissertation, the S4 index derived from the amplitude scintillation of the GPS signals are 

used more widely than the phase scintillation. 
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Figure 3.6: GPS sites in LISN and other network distributed in Central and South 

America. LISN contemplates the setup of 50 GPS stations, 5 Magnetometers and 5 

Ionosondes for advancement in Equatorial Aeronomy. 
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3.1.3   Vertical Sounders (Ionosondes)  

A sounding technique using Ionosonde is an important tool for investigation of the global 

structure of the upper atmosphere. The atmosphere itself is not physically uniform but has 

significant variations in temperature, pressure, and chemical constituents with altitude. 

Under these circumstances, the ionization in the atmosphere forms several horizontal 

layers, and so the electron concentration and therefore the refractive index of the 

ionosphere varies with height. By broadcasting a range of frequencies, and measuring the 

time it takes for each frequency to be reflected, it is possible to estimate the concentration 

and height of each layer of ionization. Ionosondes are swept frequency devices that 

measure plasma density as a function of altitude up to the altitude where the density 

peaks. They transmit short pulses at a series of frequencies below the peak plasma 

frequency of the ionosphere and observe the time between transmission and reception of 

each pulse to determine the altitude from which it was reflected. They cannot provide 

information on the plasma above the altitude of the peak [National Academies of 

Sciences, Engineering, and Medicine, 2015]. 

 

The path of the radio wave is affected by free charges in the medium through which it is 

traveling. The refractive index is governed by the electron concentration, magnetic field 

of the medium, the frequency of the radio wave and polarization of the transmitted wave. 

The refractive index is inversely proportional to the frequency of the transmitted wave. 

The presence of the earth’s magnetic field causes the ionosphere to be bi-fringent leading 

to two possible ray paths (ordinary and extraordinary components) depending on the 

polarization of the transmitted wave [Venkatesh, 2013]. 
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An Ionosonde broadcasts a sweep of frequencies, usually in the range of 0.1 to 30 MHz 

As the frequency increases, each wave is refracted less by the ionization in the layer, and 

so each penetrates further before it is reflected. As a wave approaches the reflection 

point, its group velocity approaches zero, and this increases the time-of-flight of the 

signal. Eventually, a frequency is reached that enables the wave to penetrate the layer 

without being reflected. For ordinary mode waves, this occurs when the transmitted 

frequency just exceeds the peak plasma frequency of the layer. In the case of the 

extraordinary wave, the magnetic field has an additional effect, and reflection occurs at a 

frequency that is higher than the ordinary wave by half the electron gyrofrequency.   

 

In its simplest form, an ionosonde works, following Hunsucker [1991], basically as 

follows: an oscilloscope sweep is initiated, and a short time later the transmitter sends a 

short pulse of radiofrequency energy at a given radio frequency upwards toward the 

ionosphere. After a time delay of a few milliseconds, the pulse reflected from an 

ionospheric layer returns to the receiver and is displayed on the same oscilloscope sweep. 

If the ground conductivity is high and ionospheric absorption is low, several echoes (or 

"multiples") may be observed. The "virtual height" of the layer may be directly deduced 

from the time delay between the transmitted and received pulses, assuming that the radio 

wave travels at the speed of light. If the transmitter and receiver frequency are then 

slowly varied together over a range of typically 1-20 MHz, an ionogram - a plot of virtual 

height versus frequency is obtained. 
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The refractive index n of a medium of electron density N for a radio frequency f is 

approximately given by, 

n= (1 - e2N/4π2ε0mef2)1/2 

Where e and me are the electron charge and the rest mass respectively, and ε0 is the 

permittivity of free space. Substantial reflection of the signal may be expected as n 

approaches zero and the electron density required to reflect a signal of frequency fc is 

then N = 4 π2ε0me f2/e2. 

 

 

                                                                            Where,     f2
c= N.e2/4 π2ε0me 

The frequency at which a wave just penetrates a layer of ionization is known as the 

critical frequency of that layer. The critical frequency (𝒇𝒄) is related to the electron 

density by the simple relation; 

f2
c= N .e2/4 π2ε0me 

The quantity fc is the plasma frequency i.e. the natural frequency of oscillation for plasma 

density (Ne). Inserting the values of constants, we get, 

fc = 9.99 x (√N),  for ordinary mode 

fc = 9.99 x (√Ne)+ 0.5*Be/me,  for extraordinary mode 

 

In above relations, fc is the critical frequency in Hz, N is the electron concentration per 

meter cubed, B is the magnetic field strength, e is the charge on an electron and m is the 

mass of an electron. 

    𝒏𝟐 = 𝟏 − �
𝒇𝒄
𝒇

 � 𝟐 
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Figure 3.7: An idealized ionogram made near local noon of the day. The flattened base of 

each parabola is the location of the layer peak of the ionosphere [Image: 

www.ukssdc.ac.uk]. 
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All transmitted frequencies above this critical frequency will penetrate the layer without 

being reflected. Their group velocity will, however, will be slowed by any ionization, and 

this will add to the time-of-flight. If such a wave encounters another layer, whose plasma 

frequency is higher than the frequency of the wave, it will be reflected, and the return 

signal will be further delayed as it travels back through the underlying ionization. The 

apparent or virtual height indicated by this time delay will, therefore, be greater than the 

true height. The difference between true-height and virtual height is governed by the 

amount of ionization that the wave has passed through. Recreating the true-height profile 

of electron concentration from ionogram data is an important use of Ionosonde data. 

                                                                                          

An ionogram is a graph of time-of-flight against the transmitted frequency and a measure 

of the ionospheric reflection height with frequency. The ionograms are used to determine 

the electron density distribution as a function of height Ne (h), from the bottom of the E 

layer to the peak of the F2 layer except under spread-F conditions. Each ionospheric layer 

shows up as an approximately smooth curve, separated from each other by a cusp (where 

trace tends to become vertical) indicative of the critical frequencies f0E, f0F1 and f0F2. 

The critical frequencies are those frequencies at which the signals penetrate the respective 

layers, which are a measure of the maximum electron densities of the respective layers. 

The critical frequency of each layer is scaled from the asymptote, and the vertical height 

of each layer is scaled from the lowest point in each curve. Data from the Ionosonde 

located and operated at Jicamarca is used in the present study [Venkatesh, 2013] 
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Figure 3.8: Characteristic signature of echoes from different ionospheric layers seen in 

the ionogram corresponding to non-turbulence (left) and turbulence (right) conditions 

with altitudes [Courtesy of Rezy Pradipta].  
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3.2 Magnetic Sensors and Optical Techniques 

For aeronomical studies, a variety of passive and active sensors as well as optical 

methods, exist in the current space science community. Here, we present introductory 

principle of a fluxgate magnetometer as a sensor and Fabry Perot interferometer (FPI) as 

optical instruments. These instruments are used to probe the upper atmosphere for solar-

terrestrial research and monitoring or forecasting space weather. Fluxgate magnetometers 

provide high precision measurements of the variability of the Earth’s magnetic fields and 

can be used to infer the currents that transport energy and momentum through the 

magnetosphere and ionosphere [Miles, 2017]. Fabry–Perot interferometers (FPIs) are 

used to measure atmospheric wind and temperature in the mesosphere and thermosphere 

through nocturnal airglow emissions [Shiokawa, et al 2001]. Recently, SOFDI (Second-

generation Optimized Fabry Perot Doppler Imager), a newly designed FPI has been 

employed for daytime measurements as well. FPI  has  made  its  appearance  in  a  large  

number  of  disciplines;  from  basic  spectroscopy,  to  laser   cavity  development,  to  

optical  computing,  to  the  telecommunications  industry [Gerrard, 2011a].   

 

 3.2.1 Magnetometer 

Magnetometers are powerful sensors and very sensitive to the variation as well as the 

absolute magnitude of components associated with magnetism; including strengths of the 

earth’s magnetic field. It is a tool for determining the distribution of ionospheric currents, 

field-aligned currents, electric potential, the Joule heat production rate, and the auroral 

particle injection rate over the entire polar region, with a suitable time resolution 

[Akasofu and Kamide, 1985].  
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Measurement of the magnetic fields is of interest for various scientific purposes, 

navigation, geophysical survey, and metal detectors. The measurement of geomagnetic 

phenomena provides essential tools for the understanding of magnetic field strength as 

well as the electromagnetic environment of the Earth. A magnetometer measures 

magnetic flux density at the point in space where the sensor is located but requires a 

nonmagnetic environment to function properly [Ripka, 2001]. The working principle of 

the magnetometer, referring Ripka, [2001], is as follows: each magnetometer has two 

primary coils and a pick up secondary coil surrounds the primary coils. An alternating 

current passes through the two primary coils; symmetrical voltage pulses are then 

generated in the secondary coil each time the AC current changes direction. However, if 

an external magnetic field exists, it can distort the voltage pulses in the secondary coil. 

The magnetometer reacts by supplying a buckling current through the second coil to 

drive the voltage pulses back to their symmetric state. The magnitude of the buckling 

current is proportional to the earth’s magnetic field strength and aligned to the axis of the 

magnetometers [Ripka, 2001]. 

 

Fluxgate magnetometers and proton precession magnetometers are the two types most 

commonly used in magnetic observatories [Love, 2008]. Fluxgate magnetometers sense 

the local magnetic field as a consequence of Faraday’s law. Basically inspired by Ripka 

[2001, 2003] and further interpreted by Miles [2017], in principle, for a coil of wire with 

a high magnetic permeability core, a changing magnetic flux Φ will induce a voltage Vi 
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related to the number of wire turns N the area of the turns A, the magnetic constant μo, 

the relative permeability of the core μr and the magnetic field H. 

𝑉𝑉 =
𝑑𝑑
𝑑𝑑

=
𝑑
𝑑𝑑

(𝑁𝑁𝑁𝑁𝑁𝑁𝑁) 

Observing that A, μr and H can be time varying and considering each separately gives a 

generalized induction equation, 

𝑉𝑉 = (𝑁𝑁𝑁𝑁𝑁𝑁)
𝑑𝑑
𝑑𝑑

+  (𝑁𝑁𝑁𝑁𝑁𝑁)
𝑑𝑑
𝑑𝑑

+ (𝑁𝑁𝑁𝑁𝑁)
𝑑𝑑𝑑
𝑑𝑑

  

The dH/dt term is the basis of an induction coil magnetometer, the dA/dt is typically 

either negligible, or an error term and the dμr/dt term allows the sensing of H and is the 

basis of the fluxgate action. A high-permeability core will normally concentrate the local 

magnetic field, enhancing the flux through a sense coil. Modulating μr will modulate the 

flux carried in the core, and hence the flux surrounded by the sense coil. 

For the equatorial electrojet, the ionospheric current associated with electrojet is related 

to horizontal component of earth’s magnetic field as,  

 

 

The magnetic field at every location on earth has a specific strength and direction. The 

direction of the magnetic field line is defined by the dip angle, which is the angle 

between the magnetic field line and a line tangent to the earth’s surface. Close to the 

earth’s poles, the magnetic field line points down into or up out of the ground with a 

magnetic dip angle close to 90°. 

 

𝑱𝑬𝑬𝑬 ~ ∆𝑯 
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Figure 3.9:  (a) Cartoon showing magnetic field generated due to EEF (and then EEJ) and 

its influence on magnetometer reading on the ground. (b) Equatorial noontime 

enhancement of horizontal component of Earth’s magnetic field (H) as a signature of EEJ 

in the magnetometer reading at geomagnetic equator.  

(a) 

(b) 
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The magnetic field strength is significantly higher at the poles due to the fact that many 

magnetic field lines converge at the poles. At the earth’s equator, the magnetic field lines 

are almost horizontal and point from magnetic north to magnetic south with a magnetic 

dip angle close to 0°. The magnetic field strength is weaker at the equator than at the 

poles as the magnetic field lines are more spread out. 

 

3.2.2 Fabry Perot Interferometer 

The Fabry-Perot interferometer (FPI) is a very powerful and versatile tool for 

spectroscopic measurement. It consists of two parallel flat semi-transparent reflecting 

surfaces separated by a fixed distance, called an etalon [Fabry and Perot, 1897; 

Hernandez, 1986]. A monochromatic light wave incident upon an etalon at an arbitrary 

angle to the normal of the mirror surfaces will undergo multiple reflections within the 

mirrors. The intensity distribution of the etalon-reflected and etalon-transmitted 

interfering beams is found to be, because of the circular symmetry of the device, a set of 

bright concentric rings, or fringes, on a dark background for the transmission case, and a 

complementary set of dark fringes on a light background for the reflection case. The 

angular diameter of these fringes is dependent on the spacing between the etalon mirrors 

and the inverse wavelength (i.e. wavenumber) of the radiation. Thus, the basic function 

of a Fabry-Perot device is to transform wavelength into an angular displacement; 

however, in this process, the etalon adds something of its own to the resultant fringes 

[Hernandez, 1986].  
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Figure 3.10: Schematic of a Fabry-Perot Interferometer [Image: Kelley, 2009b]. 
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The etalon of FPI consists of two flat transparent plates of glass that are mounted parallel 

with a separation gap, d, and with internal faces coated with a mirror surface with 

reflectivity, R. peak transmission occurs over a series of n orders when 

n λ= 2.μ.d.Cosθ 

where is θ the angle through the FPI etalon relative to the normal to the etalon, μ  is the 

refractive index of the medium between the plates (sensitive to density variations), and λ  

is the wavelength of the light ray at angle θ. 

The lack of any angular dependence about the optical axis in this expression indicates 

azimuthal symmetry for the interferogram and indeed, what is observed is a series of 

circular interference circles appearing as equal area rings concentric with the optical axis. 

The pixel spacing between orders decreases in proportion to the square root of the radius 

from the optical axis. The higher frequency orders lie closer to the optical axis, i.e., the 

wavelength scale varies from blue to red as the angle θ increases [Meriwether, 2004]. 

The first application of the FPI to thermospheric/ionospheric measurements was by 

Babcock [1923] with measurements of the upper mesospheric green line at 557.7345 nm, 

now known to be the 1D2-1S0 transition of atomic oxygen (OI). This particular line is 

generated in a narrow altitude region centered around ~96 km altitude, and spectroscopic 

measurements of the emission line result in a measured Doppler shift and Doppler 

broadening when compared to a reference line. These Doppler shifts and Doppler widths 

can, therefore, be converted to absolute wind measurements via  

vr/c= (λm- λo)/ λo 

Where Vr is the radial component of the wind velocity (and thus requires multiple 

measurements to obtain the full wind vector), λm is the measured wavelength at the peak 
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of the emission line, λo is the corresponding Doppler reference wavelength, and c is the 

speed of light. FPI observations of other atmospheric lines originating from different 

altitudes can, therefore, yield important base-state dynamical parameters necessary for 

understanding the upper atmosphere [Gerrard, 2011a]. 

 

3.2.2.1    SOFDI  

Ion-neutral collisional coupling will occur in the F-region depending on the direction and 

magnitude of the thermospheric winds. These effects need to be characterized because 

this “ion drag” coupling will modify the F layer ionospheric structure by changing its 

vertical profile and its height [Meriwether, 2004]. 

 

The SOFDI (Second-generation Optimized Fabry Perot Doppler Imager) is a specially 

designed new approach of the interferometer for daytime measurements from OI 630-nm 

emission which is based upon the reduction of the overall instrumental spectral width 

through the combination of etalon transmission functions at three different resolutions. 

The daytime result represents a major advance in ground-based daytime FPI operations. 

The Fabry-Perot etalons, optics, housing, pressure/thermal and motion control systems of 

the SOFDI instrument were designed and integrated by Michigan Aerospace Corporation, 

Inc. The SOFDI FPI instrument is housed within a relocatable trailer. As explained in 

[Gerrard and Meriwether, 2011; Gerrard, 2011b], this night time 

technique/measurement into the daytime regime comes with a considerable increase in 

instrumental complexity. Specifically, additional etalons, serving to both decrease the 

transmission width of the overall instrument function/response and to block adjacent 
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transmission windows which are located at integer values of the free spectral range from 

the primary order of interest, need to be included into the optical system. The additional 

etalons in SOFDI ultimately reduce the solar “noise” continuum, thus increasing the 

signal-to-noise ratio of the measurement.  

 

3.3  In-situ Techniques 

In-situ measurements techniques consist instrumentation positioned directly within the 

ionosphere and in contact with the plasma environment. A wide range of measurements 

can be made from this technique because it has ability to fully capture the spatial 

variability of geophysical parameters. Monitoring and prediction of solar-terrestrial 

processes are increasingly important for our society which depends more and more on 

advanced technology that relies on continuous power availability, radio wave 

communication and navigation, and satellite operation [Stolle et al., 2013].  

 

3.3.1 SWARM Satellite Constellation 

SWARM mission is dedicated to unraveling one of the most mysterious aspects of our 

planet: the magnetic field. Although invisible, the magnetic field and the electric currents 

in and around the Earth generate complex forces that have an immeasurable impact on 

everyday life. The results from SWARM give a unique “view” inside the Earth from 

space to study the composition and processes of its interior and also allows analyzing the 

Sun’s influence within the Earth system. In addition practical applications in many 

different areas, such as space weather, radiation hazards, navigation and resource 

management, will benefit from its concept [Friis-Christensen et al., 2006]. SWARM 
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satellite mission launched in 2013 consists of a constellation of three circular, near-polar 

orbiting spacecraft. Two of them, Swarm A and B, start their orbit at an altitude of 460 

km and descend down to 300 km over the mission period. Satellites A and B fly side-by-

side in a formation with a longitudinal separation of about ~1.4° (corresponding to a 

distance of 160 km at the equator or difference of 6 min in local time) and the orbits cross 

each other near the poles. The orbit inclination is 87.4°. The third satellite, Swarm C, 

flies at a slightly higher altitude of 530 km with an orbital inclination of 88° and with an 

orbital period of about 90 seconds longer than satellites A and B. Swarm C will be in 

phase with A and B every 92 hours (~4 days) and being 180° out of phase about every 46 

hours (~2 days) [Stolle et al., 2013]. Due to the near-polar orbits of each SWARM 

satellite, the on-board magnetometers record a full profile in latitude of the ionospheric 

current signatures at satellite altitude and offer a unique opportunity to estimate the 

equatorial electric field from measurements of the geomagnetic field [Alken et al., 2013]. 

 

3.3.1.1 Objectives of SWARM Satellite Mission 

According to ESA website, SWARM mission aims to address following objectives: 

• studies of core dynamics, geodynamo processes, and core-mantle interaction 

• mapping of the lithospheric magnetization and its geological interpretation 

• determination of the 3D electrical conductivity of the mantle 

• investigation of electric currents flowing in the magnetosphere and ionosphere 

• identifying the ocean circulation by its magnetic signature 

• quantifying the magnetic forcing of the upper atmosphere 

 



Khadka, S. M. (2018), PhD Dissertation. 

81 

 

 

 

Figure 3.11: The orbit configuration of the constellation of SWARM trio satellites. 

SWARM is used to identify and measure magnetic signals stemming from Earth’s inner 

core to the near-Earth electromagnetic environment and the impact of solar wind on Earth 

[Image: ESA].  
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Chapter 4 

 

Variability of the Equatorial Electrojet and Related 

Ionospheric Features 
 

   

 

The dayside ionospheric current along the geomagnetic equator, driven by the eastward 

electric field (EEF), is assumed to control the development, dynamics, and structuring of 

F-region plasma in the low latitudes. Quantitative understanding on the role of the EEF 

(thus the electrojet) on the equatorial and low-latitude ionospheric electron density 

variability is very useful in estimating ionospheric total electron content (TEC) with 

improved accuracy and corresponding range delays in communication and navigation 

systems.  
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In the present report, the data in four different longitude sectors located along 

geomagnetic equator were examined, and the influence of the equatorial electrojet (EEJ) 

on the digisonde-inferred vertical ExB drift and Global Positioning System (GPS)-

derived ionospheric TEC is investigated in the South American continent. Our findings 

from this comparative study demonstrate that the EEJ is weaker on the eastern side, 

gradually becomes stronger towards the western side of South America, and was 

accompanied by vertical drifts as well as TEC distributions. The TEC profiles associated 

with the EEJ reveal that EEJ strengths have a strong influence on the shape, size, 

amplitude, and separation of Equatorial Ionization Anomaly (EIA) crests as seen through 

the ionospheric TEC distribution. 

 

Additionally, geomagnetically quiet-time characteristics of the normal EEJ and the 

morning/ afternoon counter electrojets (CEJs) are evaluated and illustrated using data 

from ground-based magnetometers in the American low-latitude sector. The role of the 

morning, noon, and afternoon CEJ on the dynamics of the height of the peak ionization in 

the F-layer, as well as GPS-TEC distributions at low latitudes, have been discussed using 

various ionospheric parameters obtained from ionosondes and GPS data. In particular, the 

annual, seasonal, and day-to-day variations of forenoon counter electrojets and their 

correlation on accompanying features of ionospheric F-Layer in the low latitudes have 

been studied in detail. Further, the time delay between the occurrences of the forenoon 

counter electrojet and the well-influenced height and density of the F-layer is studied, and 

the corresponding results are presented. It has been found that the forenoon CEJ has a 



Khadka, S. M. (2018), PhD Dissertation. 

84 

pronounced influence on equatorial plasma fountain, the height of the peak ionization in 

the F-layer and TEC at low latitudes.  

 

4.1. Introduction 

Interestingly, the geomagnetic field strength depends not only on the geodynamo of the 

inner core magma of the bulk Earth but also on the ionospheric current due to the E 

region dynamo at the upper atmosphere. An ionospheric current produced by the motion 

of plasma across the lines of force of the geomagnetic field generates an E region 

dynamo at the upper atmosphere, creating variability on the geomagnetic field strength 

[Steward, 1882; Vestine, 1954; Schuster 1908]. The amplitude of the daily variation of 

the horizontal geomagnetic field intensity (H) measured at the dip equator is called the 

equatorial electrojet (EEJ), after Chapman, [1951]. The EEJ is a narrow laterally limited 

(±3° latitudes) band of intense eastward current flowing at the ionospheric E region over 

the dip equator, and produces strong geomagnetic field variations during the daytime. For 

the first time, Gouin, [1962] reported a case of the reversal of daily variation of H 

phenomena around midday near the geomagnetic equator and suspected that the change 

in this characteristic is either due to a shift in the latitude of the ionospheric current or 

extraordinarily amplified L-effect during a lunation. The phenomenon of negative 

depressions of the regular H-field, when the electrojet starts to flow westward direction is 

called the counter electrojet (CEJ) [Gouin and Mayaud, 1967]. Occasionally, during early 

morning and late afternoon, the horizontal component of the Earth's magnetic field (H) 

(and hence the EEJ) gets depressed rapidly with negative magnitude for a few hours. 

Both EEJ and CEJ events have an impact on the ionospheric layer dynamics. The unique 
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physical properties of the equatorial ionosphere (e.g. EEJs, CEJs) hold great promise for 

unraveling the governing mechanism of the dayside ionospheric dynamics and the onset 

of the enigmatic plasma structures in the geospace environment.  

 

At equatorial latitudes, geomagnetic field lines are horizontal and acting perpendicular to 

the enhanced eastward electric field (EEF), creating vertical ExB drift which can lift 

plasma to the higher altitudes. Due to gravity and pressure gradient forces, elevated 

plasma diffuses downward via the fountain effect mechanism along the geomagnetic field 

lines creating two electron density crests at < 20° latitude in either hemisphere. This is 

called the Equatorial Ionization Anomaly (EIA) [Appleton, 1946], which is also known as 

Appleton anomaly. It is speculated that the EIA is shortly reduced during CEJ events. 

During quiet days, both EEJ and CEJ can influence ionospheric parameters, e.g. EIA, 

foF2 (maximum frequency of the F-layer), hmF2 (peak height of F-layer ionosonde 

echoes). Since these are important products of vertical ExB drift to uplift plasma, 

information on the CEJ can help to understand F-region dynamics. It has been suggested 

that a full understanding of the ionospheric dynamics cannot be obtained if the velocity 

and its driving force, at which ionospheric plasma moves, are not known [Woodman, 

1970, Scherliess and Fejer, 1999, Stoneback et al., 2011]. The daytime vertical ExB drift 

velocity is the main transport mechanism that determines total electron content (TEC) 

distributions over low latitude ionospheric parameters, e.g. EIAs, ESFs, EPBs. The TEC 

distribution is an indicator of ionospheric variability and defined as the total number of 

electrons per square meter along the line of sight from the transmitter on the satellite to 

the receiver (GPS) on the ground. It is measured in units of TECU (1 TEC Unit = 1016 
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electrons/m²). The radio signals traverses the ionosphere carrying signatures of the 

dynamic medium and thus offers opportunities for ionospheric research and scientific 

application [Bhuyan and Borah, 2007]. 

 

Even though features of EEJ strengths have been studied extensively [Rastogi, et al., 

1962; MacDougall, 1969; Balsley, 1970, Deshpande, et al., 1977; Onwumechili and Agu, 

1981, Patil et al., 1990; Anderson, et al., 2002, Hysell et al., 2007; Yizengaw et al., 2014, 

Venkatesh et al., 2015, Yamazaki et al., 2017], relatively little is known about how EEJ 

strengths affect the latitudinal distribution of the ionospheric total electron content (TEC) 

on at low latitudes, and whether there is significant longitudinal variation [Kane,1975; 

Huang, 1989; Scherliess et al., 2008; Jee et al., 2005, Seemala & Valladares, 2011]. If 

information on the generation, evolution, latitudinal extent and relapses of the TEC EIA 

is gathered before it occurs, that will increase the prediction capability of future 

development of ionospheric irregularities.  

 

Multiple studies have suggested the existence of various ionospheric sources and 

variabilities of CEJ during geomagnetically quiet periods. It has been suggested that the 

tidal wind [Richmond 1973; Anandarao, 1976; Forbes and Lindzen, 1976], strong 

vertical wind [Raghavarao and Anandarao, 1980], solar flares [Rastogi et al, 1975; 

Rangarajan and Rastogi, 1981], geomagnetic lunar tides [Bartels and Johnston 1940; 

Onwumechili and Akasofu, 1972; Rastogi 1974; Marriott et al 1979], sudden 

stratospheric warming [Stening et al., 1977; Sridharan et al., 2009; Fejer et al., 2010], 

interaction of gravity waves and tides [Anandarao,1976; Vineeth et al. 2007; 2009], and 
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meteor-affected ionized particles [Muralikrishna and Kulkarni 2008; Vineeth et al., 

2016] can have pronounced effects on the electrojet current and produce CEJ features. 

The most recent reports also concentrated on CEJ variability features at different places 

and different times of the day [Chandrasekhar et al., 2017; Bhardwaj and Rao, 2017, 

Rabiu et al., 2017; Pandey et al., 2018]. Even though abundant investigations have been 

made of the origin and variability of CEJ, long term variations of timeslot-based sectional 

depression of the EEJ (morning or afternoon) are equally promising for drawing new 

findings regarding its association with F-layer dynamics, but these have not been 

addressed using ground observations yet. 

 

The F-layer is the region with the maximum plasma density in the ionosphere that acts as 

a reflector of signals in the HF radio spectrum, making possible worldwide radio 

communications. Predicting day-to-day characteristics of the depression of the EEJ, and 

its consequences on the F-layer dynamics in the equatorial and low-latitude ionosphere is 

of great interest to rocket launching experiments [Robert F. Pfaff, personal 

communication, June 2017], radio communication users ranging from broadcasters to 

radio amateurs, and two way radio communication systems users.  

 

The scientific understanding and forecasting of the ionospheric plasma are necessary for 

several practical applications, and for mitigation of the adverse effects of space weather 

on communication, navigation, power grids, experimental optical emissions, and several 

other applications. The study of the daytime equatorial electrojet can provide a precise 

and reliable signature for forecasting ionospheric layer dynamics. Sometimes, the flow of 
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the EEJ current system reverses its direction temporarily during magnetically quiet as 

well as disturbed conditions producing CEJ in the morning, at noon, and in the afternoon. 

This analysis focused on the day-to-day characteristics of the EEJ and CEJ (morning/ 

afternoon) and is conducted quantitatively to understand their role on the equatorial and 

low-latitude ionospheric F-layer dynamics, as well as plasma density variabilities during 

geomagnetically quiet days. The unique strength of the present analysis is the seasonal 

and long term variation of MED and accompanying F-Layer height variability derived 

from ionosonde in the Peruvian sector. This study categorically contributes to bringing 

minor but crucial ionospheric phenomena that have great influence on electrodynamics 

and may also be used as an ionospheric diagnostic tool for many scientific specifications. 

  

4.2. Instrumentation, Datasets, and Techniques 

The geomagnetic equator in South America swings about 12° below the geographic 

equator in the west coast but is located north of the geographic equator on the east coast. 

This property of the magnetic field in the continent is one of the natural sources for the 

longitudinal variability of several ionospheric parameters. The equatorial ionospheric F 

region is an important region to investigate and examine variations in the ionosphere’s 

shape along with chemical constituents, layer dynamics, and physical processes within it. 

Also, the major part of the global TEC is distributed along the equatorial ionosphere and 

prone to display ionospheric disturbances/ scintillation because of its dynamic nature. We 

have used data from magnetometers, ionosondes, and GPS receivers in the low latitudes. 
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Figure 4.1: Map showing instrument locations in South America for the current analysis 

and the shifting of geomagnetic equator with time. 
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Here, we have chosen equatorial regions to process and analyze the data from a 

permanent array of geophysical instruments deployed in the low latitude region of South 

America which has had a great impact in the study of equatorial ionospheric phenomena. 

Figure 4.1 shows the locations of the analyzed instruments (magnetometers and 

ionosonde) on the continental map of South America. Data from magnetometers listed in 

Table 1, located in the low latitudes, are analyzed to estimate the longitudinal variability 

of EEJ. Data from Jicamarca ionosonde collected along the equatorial latitude are utilized 

to analyze the dynamics of the ionospheric layers. 

 

The daytime EEJ and CEJ can be calculated with a pair of magnetometers by taking the 

difference between measurements at a dip equator station and an off-dip equator station 

[Rastogi and Klobuchar, 1990]. Data from the off-dip equator station are normally used 

directly to represent the global Sq contribution and to subtract from the dip equator 

station to derive the EEJ and CEJ. We used four pairs of ground magnetometer 

measurements from stations located as shown in Figure 4.1, and their coordinates charted 

in Table 1 along the South American sector. Each pair consists of one station close to the 

dip equator and another station at an off-dip equator location around ±6° to ±9° magnetic 

latitude and lying within almost same longitudinal strip for the analysis.  
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Table-1: Coordinates of ground-based magnetometer stations used to estimate EEJ 

Station  Locations 
Station 

Code 

Geographic 

Latitude 

Geographic 

Longitude 

Geomagnetic 

Latitude 

Jicamarca, Peru jica 11.95° S 76.87° W 0.43° N 

Piura, Peru piur 5.17° S 80.63° W 6.32° N 

Puerto Maldonado, Peru puer 12.58° S 69.18° W 2.07° S 

Leticia, Columbia leti 4.19° S 69.94° W 6.30° N 

Alta Floresta, Brazil alta 9.87° S 56.10° W 4.26° S 

Cuiaba, Brazil cuib 15.55° S 56.07° W 9.32° S 

Belem, Brazil belm 1.45° S 48.45° W 0.68° N 

Petrolina, Brazil petr 9.40° S 40.50° W 11.10° S 
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This analysis mainly focuses on the day-to-day and seasonal variations of the EEJ and 

CEJ and the correlation between them and other ionospheric parameters such as foF2 and 

hmF2. We try to get a clear representation of all the ionospheric parameters using the 

Jicamarca ionosonde located in the western meridian of South America. The F layer 

dynamics of the equatorial ionosphere are characterized using MED and AED events for 

geomagnetically quiet days in a long-term database from a pair of magnetometers 

(Jicamarca and Piura), both installed in the Peruvian longitude sector. 

 

In the same tone, the equivalent vertical TEC derived from a chain of GPS receivers 

distributed in South American at low geomagnetic latitudes are also used to detect the 

strength and occurrence of the equatorial anomaly which is mediated by the vertical 

plasma drifts associated with the EEJ. The current study has been conducted using 

vertical TEC data obtained from dual frequency GPS receivers for geomagnetically quiet 

periods. These receivers are distributed at the magnetic equator and on either side of the 

magnetic equator, and they extend beyond the ionization anomaly locations in South 

America. The crests of TEC anomalies have a limited longitudinal extension whose 

distributions are determined by the plasma fountain effect that forms EIAs. To 

understand the dependency of the EEJ/ CEJ on electron density and its ultimate impact on 

ionosonde and GPS-derived TEC profiles, we examine TEC hourly variations on the 

western coast of South America.  
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4.3. Analysis and Results 

This section gives an overview of the longitudinal, seasonal, and the occurrence rate 

variability of the EEJ and its depression. This includes its narrow spatial, long term 

temporal variation, based on data from a chain of magnetic and ionospheric observatories 

within the American low-latitude region. The significance of the variability of the 

depression of the EEJ current observed in the context of vertical plasma drifts, the 

equatorial plasma fountain effect, and variation of the height of the peak ionization in the 

F-layer, as well as GPS-TEC distributions, are carefully investigated. 

 

4.3.1 Narrow Longitudinal Variability of Equatorial Electrojet (EEJ) 

The horizontal component of the Earth’s magnetic field variation (denoted H) for each 

station is normalized using the midnight average values for each day. Each on- and off-

equator magnetometer data set was recalculated using the mean of the nighttime of the H 

component. This offset value is subtracted to give the daytime values. Then, the H 

component observations from these two magnetometers are subtracted to eliminate the 

Dst ring current or tail current and the Sq dynamo contributions to get only the electrojet 

contribution to the H component. The difference of H is proportional to the strength of 

the equatorial electrojet current. The resulting ΔH value is then only related to the 

ionospheric electrojet current and hence the east-west electric field. This electric field 

might originate from the Sq wind dynamo mechanism, could be associated with a 

penetration electric field from high latitudes, or both [Anderson et al., 2002]. 
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Figure 4.2: Narrow longitudinal variability of the EEJ along geomagnetic equator 

measured from the magnetometers located in Figure 4.1 and stations listed in table-1of 

South America. The EEJ strength seems stronger in the western coast than that in the 

eastern coast of South America. 
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In Figure 4.2, the variability of the EEJ strength is presented within less than 10° 

longitude separation in the American sector. A clear example of the longitudinal 

variability of the EEJ is seen in Figure 4.2. It also shows that the maximum EEJ is 

attained on the western side and gradually decreases toward the east. However, the Alta 

Floresta magnetometer station located in Brazil was not on the magnetic equator (or EEJ 

zone) after 2013. Due to this unfortunate event, EEJ in 4.2(b) measured by Alta Floresta-

Cuiaba magnetometers pair in July 15, 2015 is not reliable for longitudinal variability 

comparison. This is due to more rapid variation of the geomagnetic equator in the eastern 

side than that of the western side of the South American continent as presented in Figure 

4.1. Magnetometers were deployed in Belem and Petrolina, Brazil only in February, 2015 

so that EEJ from those longitudes is missing in Figure 4.2 (a) for August 31, 2011. 

 

4.3.2 Day-to-Day Variability of the Counter Equatorial Electrojet (CEJ) 

A case and statistical study of the geomagnetically quiet time depression of EEJ strengths 

is presented using a pair of magnetometers, one located at the dip equator and another off 

the dip equator (±6° to ±9° away) in the American low-latitude regions. Figure 4.3 shows 

surface plots that show the day-to-day variability of the counter EEJ during 

10UT(Universal Time) – 22UT (05LT – 17LT) observed using magnetometers located at 

the Jicamarca and Piura stations during (a) solar minimum 2008 and (b) solar maximum 

2013. In these surface plots, all positive values of EEJ are set to zero aiming to show only 

the depressed or a counter portion of the EEJ.  
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Year 2008 

 

 

 

 

 

 

 

 

Year 2013 

 

 

 

 

 

 

 

 

 

Figure 4.3: Day-to-day variability of the counter EEJ during 10–22 UT (05–17 LT) of the 

day observed using magnetometers located at Jicamarca and Piura stations during (a) 

solar minima 2008 and, (b) solar maxima 2013. Only negative values of EEJ are 

considered and presented in above surface plots. For each of the monthly subplots, 

depressions of EEJ are seen more frequently during morning hours than that of afternoon 

hours in both, solar minimum and maximum years.  
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For each of the monthly plots, EEJs are seen depressed on either side of their positive 

portion centered near local noon (11:00 LT) time. Remarkably, the Morning EEJ 

depression (MED) is observed more frequently than the afternoon EEJ depression (AED) 

for both (a) solar minimum, and (b) solar maximum cases. 

 

During both solar minimum and maximum years, MED events are seen to intensify 

during the months of frequent scintillation occurrence period in the southern hemisphere 

(October, November, and December). This information might become a probing tool to 

understand/ forecast the occurrence and impact of the ionospheric layer dynamics and 

irregularities which is recognized as one of the highest priorities in the space weather 

program implementation plan. 

 

4.3.3 Seasonal Variability of the Morning EEJ Depression (MED) 

Figure 4.4 shows a 7-day time series mass plots of seasonal variability of the morning 

(05LT - 11LT) EEJ during quiet days in the years 2008, 2011, and 2013. It is to be noted 

that 2008 and 2013 are solar minimum and solar maximum years respectively. Seven 

available quiet days’ are presented selecting data from a pool of one month data of ±15 

days from exact equinox and solstice days. The red curve in every subplot represents the 

average seasonal variability of morning section of EEJ. 

A comparative study of the weekly average of the EEJ shows that the September equinox 

(December solstice) seasons have stronger MED events than the March equinox (June 

solstice) seasons. Also, the MED at the December solstice varies significantly with solar 

activity since it is stronger in solar maximum than during a solar minimum year. 
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Figure 4.4: A week of time series plots of seasonal variability of the morning section 10–

16 UT (05-11 LT) of EEJ during quiet days in the years 2008, 2011, and 2013. Seven 

quietest days’ EEJ data are chosen from one month (±15 days from exact equinox and 

solstice days) window. The red curve in every subplot denotes the moving average data 

points of all blue EEJ curves. 
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4.3.4 F-Layer Height Variability in Association with MED 

This sub-section highlights about how ionosonde operation frequency has been used to 

probe the vertical movement of the ionospheric F-layer during the MED events. Figure 

4.5(a) shows a typical EEJ variability containing a short morning depression feature at 

12UT (07LT). The virtual heights of the F-layer are probed using three sounding 

frequencies (2MHz, 3MHz, and 4MHz) as shown with the color bars in Figure 4.5(b). 

The yellow vertical bars in the top panel of Figure 4.5(c) show the 2008 yearlong 

magnitude of the MED choosing the five quietest days of each month. The remaining 

three panels of Figure 4.5 (c) show the virtual height variation corresponding to MED 

events probed by three different sounding frequencies (2MHz, 3MHz, and 4MHz). The 

second panel shows the F-layer height data point corresponding to the time as MED 

becomes maximum. Similarly, the third and fourth panels shows the height variation 

exactly one hour earlier and later than the occurrence of maximum MED. Figure 4.5(d) 

shows the same analysis corresponding to the year 2013. It can be seen that there are 

more virtual height data points below the reference altitude (250 km) of the F-layer 

corresponding to strong MED events. It seems that virtual heights associated with the 

3MHz sounding frequency follows the maximum patterns of MED strengths.  
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Figure 4.5:  

a. Showing a typical example of EEJ variation evaluated using a pair of magnetometers 

located at the magnetic equator (Jicamarca) and off- magnetic equator (Piura) in a day 

where the AED event is absent but not an MED event. The EEJ in the yellow shaded 

region is a depressed portion of EEJ during morning hours. 

b. Showing an example of the ionogram obtained from the Jicamarca Ionosonde. Virtual 

heights of the F-layer ionosphere corresponding to three sounding frequencies 

(2MHz, 3MHz, and 4MHz) are explored respectively. 

c. Showing virtual heights variation corresponding to MED events probed by three 

different sounding frequencies (2MHz, 3MHz, and 4MHz) of Ionosonde at the time 

(and also ±1 hour) when MED becomes maximum in magnitude during the 2008 

solar minimum year. There are more virtual height data points below the reference 

altitude (250 km) of F-layer corresponding to strong MED. It seems that virtual 

heights associated with 3MHz sounding frequency follow maximum patterns of MED 

strengths. 

d. Same as (c) for the solar maximum year 2013. 

e. Showing comparative response of virtual heights of F-layer ionosphere to the quiet 

days’ MED events during one hour interval in 2008. 

(e)  
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From this analysis, it was found that MED events are stronger and more frequent during 

solar maximum than solar minimum. As the MED becomes stronger, the virtual height of 

the F2-layer ionosphere becomes smaller than the reference height (250 km) of the F2 

layer and drops below the value an hour earlier. This minimum stays there for an hour 

during the solar minimum year 2008. A similar relationship can also be seen during the 

solar maximum year 2013. The analysis suggests that the reference height of the F2 layer 

ionosphere must be revised for the solar maximum year. Also, Figure 4.5(e) illustrates the 

height dynamics pattern of F-layer in 2008 with respect to magnitude of the MED in one-

hour interval. The slopes of the straight-line fit are -0.37 and -0.73 for MED events and 

one hour later respectively. The fitted line looks steeper one hour later than the 

occurrence time of MED. It is evidently speculated that this condition is due to a delay in 

response of F-layer ionosphere with the change of equatorial electric field. 

 

4.3.5 Effects of the MED and AED on Peak Height of the F2-Layer and TEC 

Plots presented in Figure 4.6 show the variability of the EEJ for three different days and 

associated morning and afternoon depressions in the Jicamarca longitude sector in the 

low latitudes. The top panel in Figure 4.6(a) shows the depression of EEJ width that 

occurs within a narrow (wide) time window in the morning (afternoon) for the year 2008. 

The second panel shows the variability of the peak height of the F2-layer (hmF2) 

ionosphere obtained from ionosonde data corresponding to the EEJ shown in the first 

panel. The bottom panel shows the TEC patterns derived from the ionogram associated 

with EEJ variation days. Figure 4.6(a) shows similar variability corresponding to the year 

2013. 
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Figure 4.6: 

a) Top Panel: This plot shows the 3-day variability of the EEJ and associated morning 

and afternoon depressions in the low latitudes. The depression of the equatorial 

electrojet (EEJ) occurs within narrow (wide) time window in the morning (afternoon). 

Middle Panel: This plot shows the variability of the peak height of F2-layer (hmF2) 

ionosphere corresponding to EEJ shown in the first panel. Bottom Panel: It shows TEC 

patterns derived from ionogram in association with EEJ variation. 

b) Same as (a) but for the solar maximum year 2013.  
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A comparative study shows that even a small magnitude morning electrojet depression 

(MED) shows a more significant effect on the dynamics of the peak height of F2 layer 

than that of an afternoon depression. The peak height of F2-layer of the ionosphere 

during higher MED time simultaneously dips down below the reference altitude (250km) 

of an F2 layer in the equatorial region. For this particular analysis, the effect of MED is 

also seen in the TEC derived from ionograms. Since MED is a signature of a reverse 

electric field, consequently a negative vertical plasma drift that provides an opportunity 

for the plasmas to recombine with low altitude neutrals. This might be a reason for the 

reduction in TEC within the impact time range of the MED. 

 

3.6 Impacts of the MED on GPS-TEC 

It is well known that ionosonde is a specialized radar system able to probe only 

bottomside of the ionosphere and cannot detect TEC along a vertical path. Due to this 

reason, the TEC obtained from an ionosonde might not provide trustworthy information 

for the justification of impacts of the ionospheric current system in the equatorial 

latitudes. To overcome these issues, Figure 4.7 elucidates the hourly (total 7 hours) GPS-

TEC data along the 75°W longitude sector where MED events are seen. The TEC 

variations are presented for three different days with different magnitude MEDs. The 

maximum magnitude of MED is seen with this 7 hours (11UT - 17UT) window. The 

electric field associated with EEJ and CEJ is a primary driver of the vertical plasma drift 

and the equatorial fountain that ultimately formed the equatorial ionization anomaly 

(EIA). The MED section of CEJ depressed plasma fountain results in a distorted EIA. It 

is clearly seen that hourly stratification of TEC in EIA events is more highly distorted  
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Figure 4.7: Left Top panel: These 3 curves represent three different scenario of quiet 

days’ MED variation of magnitudes in December 2013. Rest of three panels: Showing 

hourly GPS-TEC variation measured using LISN network at and after impact range of 

maximum MED events for seven hours on the equatorial ionization anomaly (EIA) 

structure.  
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corresponding to the higher MED days (December 27, 2013) than during the lowest 

(December 02, 2013) and moderate (December 26, 2013) values. 

 

Asymmetries of EIAs are seen to be more pronounced at and after EEJ depression hours 

than for prior hours. Symmetry in the EIA and stratification of hourly TEC curves are 

inhibited at and after the impact range of a depressed EEJ. Greater strength of the 

southern TEC crests of EIA showing evidence of summer season during December in the 

Southern hemisphere. 

 

4.4. Discussion 

Numerous components, e.g., equatorial electrojet (EEJ), solar quiet (Sq) current, 

prereversal enhancement (PRE), and evening plasma vortex, in the complex low-latitude 

ionospheric regime are related to the others within the ionosphere-thermosphere-

electrodynamic system [Eccles et al, 2015]. The electrojet region provides the best 

avenue for current to be channeled from the dayside to meet the vertical current demands 

of the F region neutral wind dynamo after sunset [Haerendel and Eccles, 1992]. Careful 

analysis of magnetometer and ionosonde data drew some interesting and conclusive facts 

about the role of daytime electric fields variability as seen from the daytime EEJ in the F-

layer dynamics including the TEC distributions within 75°W equatorial latitude region. 

The remarkable longitudinal variability of the electrojet current during quiet days in the 

American sector presented in Figure 4.2 is mainly governed by the unique geometry of 

the geomagnetic equator. The more rapid northward shifting of the geomagnetic equator 

(e.g. Figure 4.1) on the east coast than that of west coast of South America has created 
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another complexity in the ionospheric electrodynamics for the variability of EEJ. Also, 

the signature of the E region ionosphere electric field in the low latitude and the 

accompanying noontime enhancement of the H component might be connected to 

electron density disturbances as indicated by the TEC fluctuations in the equatorial 

ionosphere. This interconnectedness is examined here by choosing impacts of the 

morning EEJ depression events which are a small portion of the EEJ but strong drivers of 

the electron density variability. 

 

The depression of the equatorial electrojet (EEJ) is marked by a westward current due to 

streaming movement of laterally limited (±3°) charged particles in the ionospheric E 

region during the day along the magnetic equator. It is a complex low-latitude 

phenomenon and driven by various sources of electric fields associated with global 

neutral wind, solar, tidal force, and the Interplanetary Magnetic Field (IMF). The 

controlling mechanism of the dayside ionospheric electrodynamics and the onset of the 

enigmatic plasma structures in the ionospheric layers are generally associated with the E 

and F region dynamos. The E-region dynamo current is highly variable since it is forced 

by upward propagating tides from the lower atmosphere due to large Hall conductivity in 

the E-region [Maute and Richmond, 2017]. The variability in both occurrence pattern and 

amplitude of the counter equatorial electrojet are presented in Figure 4.3 and seasonal 

variabilities of morning counter electrojet are in Figure 4.4. Occurrence and variability 

patterns of the MED are noticeably different in different seasons. The results presented in 

Figures 4.5 and 4.6 show the effect of MED for the altitudinal movement of the peak 

height of the F layer ionosphere. The change in electron density of the layered ionosphere 
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is seen clearly in Figure 4.7 as a function of TEC. Equatorial eastward electric field 

(EEF) is a primary factor of vertical plasma transportation. As its direction reverses 

(westward), the vertical plasma transportation will be suppressed, then plasma will be 

unable to go a higher altitude. Ultimately, the peak height of F layer ionosphere formed 

in lower altitudes. 

 

Since the ionospheric dynamo is strongly organized in magnetic coordinates, the Sq 

current foci tends to move along the magnetic equator and appear at the same magnetic 

latitude at different longitudes as a result the geographic latitude of the Sq focus changes 

with longitude [Celik, 2013; Yamazaki and Maute, 2017]. Due to various sources of 

perturbations, these Sq current foci will be changed, leading to the leakage of current 

dynamos to another hemisphere. As leakage of the current dynamo leads to overlap, those 

phenomena cause a latitudinal shift of the daytime equatorial current system and 

ultimately form short or long term CEJ events. 

 

4.5. SUMMARY AND CONCLUSIONS 

We performed a study based on narrow spatial longitudinal observations of the EEJ and 

long term variation of the morning depression of the EEJ in one longitude location. Also, 

the effects of the MED on F layer peak ionization density and TEC are carefully 

analyzed. From our investigations, the following conclusions have been drawn: 
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1. There is strong longitudinal variability and dependency among the EEJ, ExB drift, 

EIA-TEC distribution in the equatorial ionosphere. In general, EEJ strength is 

stronger on the western coast than that on the eastern coast of South America. 

 

2. The morning electrojet depression (MED) has a more significant effect on peak 

height of the F2 layer than that the afternoon depression. The peak height of the F2-

layer of the ionosphere during high MED time simultaneously dips down below the 

reference altitude of 250 km in the equatorial region. 

 

3. The variability of the electrojet in the dayside ionosphere controls the virtual height 

of the F2 layer. Not all sounding frequencies of ionosondes can probe the effect of the 

EEJ depression on F-layer dynamics in the equatorial ionosphere. Observation 

suggests that the reference height (250km) of an F2 layer in the equatorial region 

might be different during the solar minimum than the solar maximum period. 

 

4. Hourly GPS-TEC distributions are clearly stratified before the EEJ depression but 

overlap within its impact time range and also seem to depend upon its strength. The 

southern crests of EIAs are stronger than northern crests since this observation is 

taken during the summer season in the southern hemisphere. 

 

5. The consequence of MED, e.g., morning reversal of the equatorial eastward electric 

field, can be seen more clearly in ionogram-derived density as well as GPS-TEC 

based on above analysis.  
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Long-term statistics relating magnetometer, GPS, and ionogram-derived statistical 

characteristics can contribute significantly to a more precise as well as a more 

economical way to characterize the F-layer dynamics of the ionosphere. 

 

More importantly, this study indicates that even a minor depression of the EEJ plays a 

significant role in the electron density variation and dynamics of the peak height of the 

F2-layer and TEC distributions by changing the vertical transport of the ionospheric 

plasma. This result suggests that a precise observation of the daytime low latitude 

electrojet current system can provide a precise and reliable indicator for forecasting 

ionospheric layer dynamics. More work on other longitude sectors will be necessary to 

achieve logical results, and future analyses with real data have been planned. 
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Chapter 5 

 

Effects of EEJ and Wind on Equatorial Anomaly 

Dynamics* 

 

The zonal electric field and the meridional neutral wind are the principal drivers that 

define the geometry and characteristics of the equatorial ionization anomaly (EIA). Here, 

we present the response of the EIA to the variability of the zonal electric field, based on 

measurements of the equatorial electrojet (EEJ) currents and trans-equatorial neutral 

winds for the generation and control of the asymmetries of the EIA crests of TEC (Total 

Electron Content) in the western side of the South American continent. The EEJ strengths 

are determined using a pair of magnetometers. The 24-hour trans-equatorial neutral wind 
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profile is measured using a Second-generation, Optimized, Fabry-Perot Doppler Imager 

(SOFDI) located near the geomagnetic equator. EIA is evaluated using TEC data 

measured by Global Positioning System (GPS) receivers from the Low-Latitude 

Ionospheric Sensor Network (LISN) and several other networks in South America. A 

physics-based numerical model, LLIONS (Low-Latitude IONospheric Sector), as well as 

SOFDI data, are used to study the effects of daytime meridional neutral winds on the 

consequent evolution of an asymmetry in equatorial TEC anomalies during the afternoon 

and onwards for the first time. We find that the configuration parameters such as strength, 

shape, amplitude, and latitudinal width of the EIAs are affected by the eastward electric 

field associated with the EEJ under undisturbed conditions. The asymmetries of EIA 

crests are observed more frequently during solstices and the September equinox than in 

the March equinox season. Importantly, this study indicates that the meridional neutral 

wind plays a very significant role in the development of the EIA asymmetry by 

transporting the plasma up the field lines. This result suggests that a precise observation 

of the latitudinal TEC profile at low latitudes can be used to derive the meridional wind. 

 

5.1 Introduction 

The equatorial ionosphere is a popular area of research for the space weather community 

due to its unique structuring, coupling, and electrodynamics. The ionosphere exhibits 

both slow and rapid responses to changes in its fundamental input mechanisms, including 

variation induced by electric fields, plasma-neutral coupling, and modulation by solar and 

geomagnetic disturbances. Several observable quantities of the daytime equatorial and 

low latitude ionospheric phenomena offer the possibility to forecast the dynamics and 
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fluctuations of ionospheric plasma densities at later times. For example, the ionospheric 

electric fields, plasma drifts, and currents generally result from the dynamo action of E 

and F region neutral winds driven by solar and lunar tides in the low and mid latitudes. 

The ionospheric electric field is produced by the motion of plasma maintaining its 

fundamental properties, such as its collective behavior and the state of quasi-neutrality. 

Furthermore, polarization fields, conductivity variations, and atmospheric gravity and 

planetary waves can also significantly affect time scales from tens of minutes to about a 

month [Richmond, 1989; Fejer, 1991; Kelley, 2009a; Eccles et al., 2011].  

 

The equatorial electrojet (EEJ) and equatorial ionization anomaly (EIA) are prominent 

daytime effects of the low latitude ionospheric phenomena which are driven by the 

eastward electric field (EEF) [MacDougall, 1969; Heelis, 2004]. The EEJ [Chapman, 

1951] is one of the unique daytime ionospheric phenomena, defined as an intense 

eastward current flowing in the form of a ribbon-shaped band roughly 600 km wide in the 

E region ionosphere flanking the geomagnetic equator of the Earth [Egedal, 1947; 

Forbes, 1981; Onwumechili, 1997]. The pressure gradients from solar and auroral 

heating, with additional forcing by tidal energy from below, are possible drivers of the 

thermospheric neutral winds [Blanc and Richmond, 1980; Titheridge, 1995]. During 

magnetically quiet periods, the atmospheric wind dynamo mechanism within ±60° 

geomagnetic latitudes is the main driver of the ionospheric electric fields and currents in 

which ions and electrons move under the control of neutral winds and electric and 

magnetic fields [Richmond, 1989; Rishbeth, 1997]. The atmospheric wind at ionospheric 

heights sets a tidal motion current due to differential solar heating in the northern and 
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southern hemisphere that converges at the geomagnetic equator and forms a jet-like 

current in the ionosphere. In addition, the special geometry of the geomagnetic field at 

the equator, together with the nearly perpendicular incidence of solar radiation, causes an 

equatorial enhancement in the effective conductivity, which then leads to an 

amplification of the jet current that forms a belt-like structure flowing eastward during 

the day along the geomagnetic equator in the E-region ionosphere [Onwumechili, 1997; 

Baumjohann and Treumann, 2012], forming the EEJ. This enhanced eastward electric 

field acts perpendicular to the northward geomagnetic field at equatorial latitudes and 

lifts up plasma with vertical ExB drift to higher altitudes. When plasma is elevated to 

higher altitudes, it diffuses downward along the geomagnetic field lines due to 

gravitational and pressure gradient forces to about ±17° latitudes on both sides of the 

geomagnetic equator. This mechanism is known as the equatorial plasma fountain effect 

[Appleton, 1946; Martyn, 1947; Anderson, 1973; Schunk and Nagy, 2000]. The fountain 

effect removes plasma from the equator and creates a pair of electron density crests at 

about ±17° either sides of the geomagnetic equator, forming the EIA. The EIA was 

discovered by Edward V. Appleton [1946] and is also known as the Appleton anomaly. 

Indeed, an equatorial eastward electric field is a vital ingredient in generating EIAs and a 

key participant in the onset of equatorial plasma bubbles (EPBs). EIA onset is identified 

by an eastward electric field that subsequently expands to symmetrically < 20° latitudes 

either sides of the equator. Nevertheless, the strength of EIA crest in one hemisphere is 

commonly stronger than that of the opposite hemisphere forming an asymmetry structure. 

A long-standing research question in thermosphere-ionosphere coupling system is the 

process responsible for the asymmetry generation on the EIA. However, the EEJ cannot 
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alone give sufficient evidence of asymmetry structure of the EIAs, and the ultimate aim 

of the present paper is to report the results obtained from a study of the electric field as 

well as neutral wind dependence of the EIA structure.  

 

The thermospheric wind also plays a significant role by controlling the vertical positions 

of the F-region pushing ions along the magnetic field lines and contributes to the unequal 

magnitude of EIA crests as well as formation of additional ionospheric layers [Rishbeth, 

1972; Herrero et al., 1993; Lin et al., 2009; Makela et al., 2013]. Neutral winds cause 

interhemispheric asymmetry in EIAs by modulating the plasma fountain and moving the 

ionospheres at the conjugate hemispheres to different altitudes [Balan et al., 1995; Dang 

et al., 2016]. The seasonal, solar activity, temporal, and longitudinal variations in EIA 

asymmetry also depend on the displacement of the geographic and geomagnetic equators 

and in the magnetic declination angle [Su, et al, 1996, Tulasi Ram et al. 2009; Luan et al. 

2015; Dang et al. 2016] which is the largest in the American sector. Change in 

magnitude and direction of the neutral wind field initiated by global or local pressure 

distribution and ambipolar diffusion associated with neutral density and scale height is 

one of the prime candidates to govern variability of EIA [Sastri, 1990, Kelley, 2009a]. 

The ions and neutral particles are dynamically coupled with each other through ion-

neutral collisions via meridional neutral wind, which is responsible for asymmetric 

generation of the EIAs by controlling the final location of enhanced TEC in the equatorial 

ionosphere [Hei and Valladares, 2010; Valladares and Chau, 2012]. In contrast to the 

large number of studies on thermospheric neutral winds and equatorial ionization 

anomaly, heretofore, daytime measured meridional neutral winds and their role in 
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structural dynamics of EIAs has not been fully addressed. The ground-based Fabry-Perot 

interferometer (FPI) has shown significant effectiveness in the measurement of 

thermospheric neutral winds, but it is restricted to cloudless nighttime observations only 

[Burnside, et al., 1981; Hedin et al., 1991; Meriwether, 2006; Makela et al., 2012]. There 

are various limitations to obtain flawless daytime measured thermospheric neutral winds 

in the upper atmosphere. While there has been intense debate on the capability of various 

methods and models for the estimation of daytime meridional neutral winds, Gerrard and 

Meriwether [2011] developed a new design of triple-etalon interferometer, called SODFI 

(Second-generation, Optimized, Fabry-Perot Doppler Imager), that is able to make 24-

hour measurements of thermospheric winds from OI 630-nm emission in the 

geomagnetic equatorial regions.  

 

Our understanding of the role played by ionospheric electric fields and neutral winds in 

the formation of EIAs is still very limited despite studies done over several decades. In 

this study, the structural pattern of EIA strengths is observed using several networks of 

GPS receivers, while the trans-equatorial neutral winds are determined using SOFDI.  

Both are operated in equatorial and low latitude regions of South America. The Jicamarca 

Incoherent Scatter Radar (ISR) allows for real time equatorial vertical plasma drifts. 

Simultaneously, the physics-based LLIONS (Low-Latitude IONospheric Sector) model is 

also used to estimate daytime meridional neutral winds by taking Jicamarca ISR vertical 

drifts as one of the model’s inputs. A meridional neutral wind was inferred using the 

LLIONS model due to the fact that there are not enough measured wind values during the 

daytime. Such model-inferred meridional wind results are compared with measured 
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values provided by the SOFDI located in Huancayo, Peru. We found a significant 

correlation of the symmetry and asymmetry of EIA anomaly patterns with equatorial 

electrojet and meridional neutral wind respectively during quiet conditions. Thus, this 

observational and modeling effort suggests that the meridional neutral wind influences 

the generation of asymmetry of EIAs in the Earth's low latitude ionosphere. A full 

understanding of the link between the neutral winds and asymmetry structures of EIAs in 

the ionosphere requires higher resolution wind measurements. Finally, a mechanism 

describing the physics behind the plasma flow for the generation of asymmetry on EIAs 

is presented.   

 

5.2   Instrumentation, Datasets, and Methodology  

The low latitude region of the western meridian in South American continent is well 

instrumented with magnetometers, GPS receivers, Fabry-Perot interferometers, radars, 

and different types of ionosondes. We present dual-frequency GPS total electron content 

(TEC) datasets to study the strength, occurrence, and latitudinal distribution of EIAs 

around the 75°W longitude in the equatorial and low-latitude ionosphere. LISN (Low 

Latitude Ionospheric Sensor Network) is a distributed observatory that operates in the 

South American continent. It was designed to probe the disturbed and undisturbed 

ionospheric electrodynamics in the low‐latitudes and also allows us to explore the 

development as well as the decay of the EIA in unprecedented detail. GPS receivers can 

continuously measure TEC integrated along the line-of-sight from GPS satellites to 

receiver. TEC is measured in units of TECU (1 TEC Unit = 1016 electrons/m²).  
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The EEJ strength is a widely-accepted proxy for the daytime EEF in the ionospheric E-

region [Dunford, 1967; Deshpande, 1977; Stolle, et al., 2008a]. The EEJ is estimated 

using the variability of the horizontal components of Earth’s magnetic field intensity 

(denoted H) data from a pair of ground-based magnetometers.  The strengths of H 

component data are recorded using fluxgate magnetometers at a geomagnetic equatorial 

station, Jicamarca (geog.11.9°S, 283.1°E, 0.8°N dip latitude) and an off-equatorial 

station, Piura (geog. 5.2°S, 279.4°E, 6.8°N dip latitude) in the American low latitudes. As 

described in Khadka et al. [2016], magnetometer readings of H from each station are 

normalized with its midnight average background values for each day and subtracted to 

get only the electrojet contribution to H. The difference of electrojet effect on H between 

two magnetometers located at equator and off-equator (±6° to ±9° away) is defined as the 

EEJ strength. 

 

The meridional neutral wind is measured using a specially designed interferometer 

system, SOFDI, and a physics-based numerical model data. SODFI is a unique ground-

based instrument and has a broad range of applications pertaining to both day and night 

time observations of mesosphere and thermosphere airglow emissions. We use 

meridional neutral wind data collected during daytime using SOFDI at the equatorial 

station Huancayo (geog.12.7°S, 284.8°E, and 0.6° S dip latitude), Peru. The detailed 

optical geometry, instrumentation, observation and extraction of neutral wind data by 

removing the background from dayglow emission is explained in Gerrard and 

Meriwether [2011].  
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For the present study, the day to day variability of TEC for the year 2011-2013 is shown 

to introduce the asymmetric patterns of EIA. It is found that all instruments, 

magnetometers, Jicamarca ISR, GPS receivers and SOFDI operated simultaneously for a 

few days in August 2011; thus we discuss in detail the observations and simulations for  

those days. A comparison analysis between meridional neutral wind estimated from 

LLIONS model and that from observed SODFI data and their contributions to EIA 

asymmetries is also computed. 

 

5.3 Analysis and Results 

The asymmetry of the EIA is investigated using equivalent vertical TEC derived from 

GPS receivers spread in South America. Even though the detailed information of 

anomaly drivers is still in debate, our analyses logically address such questions with 

direct measurement and modeling technique. Most of the days, the crests of TEC 

anomalies have an unequal strength and are separated from the magnetic equator by less 

than 20°. The trough of the equatorial anomaly is located at the magnetic equator. The 

strength of EIA asymmetry is calculated by taking the ratio of the maximum value of the 

two hemispheric anomalies TEC crests values. Besides the meridional neutral winds, 

dragging force due to continuous ion accumulation, sudden stratospheric warming 

(SSW), solar fluxes, atmospheric tides, change in composition due to magnetic 

perturbations, photochemical process are also responsible factors for the asymmetry of 

the EIA peaks [Hanson and Moffett, 1966; Abdu et al., 1990, 2008; Immel et al., 2006; 

Tulasi Ram et al., 2009; Goncharenko et al., 2010; Xiong et al, 2013; Jonah et al, 2015; 

Khadka et al., 2016, Dang et al., 2016]. In this study, we particularly focused on 
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analyzing the contribution of meridional neutral wind for the asymmetry generation of 

EIA using observational and modeled winds in the low latitudes ionosphere. 

 

5.3.1 Annual, Seasonal and Day-to-Day Variability of EIA 

The day-to-day variability of three years (2011, 2012, and 2013) of equivalent vertical 

TEC derived from LISN GPS receivers within 70°W - 80°W longitude sector during 

19:00 UT - 22:00 UT are presented in Figure 5.1. This Figure displays the TEC variation 

as a function of geomagnetic latitude and month of the year. It is observed from Figure 

5.1 that the TEC displays higher values during equinoctial months and lower values 

during solstice months. Most of the anomaly crests are located near ±17° magnetic 

latitudes during all seasons. If we focus on the TEC strength in the pair of anomaly crests, 

asymmetry can clearly be seen in the magnitude of the strengths. The anomaly crests are 

well formed and extended into the northern hemisphere on and around June solstice and 

then into the southern hemisphere during December solstice. This characteristic follows 

the fact that the Southern (Northern) hemisphere is in summer season during December 

(June) solstice. A clear trend of increased ion density in the summer hemisphere 

compared with that in winter hemisphere is evident in all three year’s TEC profiles.   
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Figure 5.1 Geomagnetic latitudinal profiles of the annual and day-to-day variability of 

EIA crest of TEC showing an increase of the solar cycle from 2011 to 2013. The seasonal 

effects that alter the patterns of meridional neutral wind cause the differences of 

asymmetries between solstices and equinoxes.  
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Figure 5.1 presents clear evidence of equinoctial and solstitial asymmetry in TEC 

distributions. Anomaly crests are more symmetric during March equinox period than that 

in September equinox period. It is also seen from Figure 5.1 that the asymmetry events 

are more prominent during solstice seasons than in equinox seasons. Solar activity rises 

and falls with an 11-year cycle that affects ionospheric plasma dynamics as well as the 

intensity of geomagnetic activity. Figure 5.1 represents the ionospheric TEC data during 

the ramp up phase to solar maxima of solar cycle 24. Also, one can evidently see that the 

magnitude of TEC is seen increasing from 2011 towards 2013.  

 

Figure 5.2 shows a fifteen days mass plot of seasonal characteristics of EIA during 

different seasons represented by ±7 days for March and September equinox days and 

June and December solstice days corresponding to the years 2011 to 2013. The TEC data 

are chosen within 70°W - 80°W longitude of low latitude sectors during 19:00 - 22:00 

UT (which is around 14:00 – 17:00 LT) period. It’s been already reported that significant 

effects of peak (noontime) values of electric field on the EIA structural patterns can be 

seen within 3 hours of peak EEJ. TEC data corresponding only to geomagnetically quiet 

conditions is plotted to exclude effects due to prompt penetration electric fields and 

disturbance dynamo. The level of disturbances in the Earth's magnetic field is usually 

indicated using Kp index that is used to characterize the magnitude of geomagnetic 

storms. On 15 days duration in each season, we choose only the days having the hourly 

averaged Kp≤4 as provided by http://omniweb.gsfc.nasa.gov/form/dx1.html. 

 

http://omniweb.gsfc.nasa.gov/form/dx1.html
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Figure 5.2 Fifteen days scatter plots of latitudinal variations of maximum TEC data in the 

equinox (first column) and solstice (second column). The red continuous curve represents 

15-day average of available maximum TEC. 
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The six plots in the first column show the anomaly profiles in equinox (March and 

September) seasons, while plots  in the second column represent those of solstice (June 

and December) seasons in 2011, 2012 and 2013 respectively. To determine the seasonal 

patterns of EIA, we construct a 15 day running average filter using a regression analysis 

with weighted linear least squares coefficients. The thick red curve in each plot represents 

the average of the corresponding scatter data distribution in that particular season. It is to 

be noted that out of 15 days, disturbed (KP>4) days, if existing, are excluded in analyzed 

seasons. The scatter plots are interrupted for a few days due to the suppression of 

electrojet and hence drift by storm-induced electric fields. Figure 5.2 represents an 

overall quiet geomagnetic condition with occasional minor magnetic perturbations. 

During solstice, the EIA crests are found weaker and more asymmetric than during 

equinoxes. 

 

Prominent features of these plots are the dominance of the northern crest that persists 

during all seasons. The peak of the northern crest is generally centered near 16-18° 

geomagnetic latitude although, during the June solstice, the northern crest seems located 

between 20 and 22° magnetic latitudes. However, during this season, the whole anomaly 

pattern seems shifted northward with a trough displaced from the magnetic equator by as 

much as 3°-5°. This effect is produced during the summer in the northern hemisphere and 

the large offset between the geographic and magnetic equators (12° at 75 W longitude). 

More symmetric-anomaly events are seen in March equinox than during the September 

equinox. TEC values during the December solstice show higher TEC value than during 

the June solstice. In addition, the northern anomaly crests shift slightly towards the 
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equator from the north with stronger southern crests than that in June solstice. This 

phenomenon is reasonable since there is summer in the southern hemisphere during 

December solstice season. Also, asymmetries between the hemispheric geomagnetic 

fields give rise to an asymmetry in the solar radiation as well as the plasma and neutral 

composition that ultimately leads to hemispheric differences of the electron density in the 

F-region ionosphere [Sojka et al., 1979; Laundal et al., 2016]. All the average curves of 

Figure 5.2 indicate that the overall strength of EIA crests in the northern hemisphere is 

stronger than the southern hemisphere. A reason behind this is due to the large difference 

of geomagnetic and geographic equator since the presented data pertain to this location. It 

is to be noted that western part of South America possesses the largest difference (~12°) 

between geomagnetic and geographic equator than any other part of the world. Moreover, 

the role of EEJ strength for the development of anomaly crests can be seen in a 

simultaneous demonstration of their measured values. Following sections attempt to 

address and present corresponding phenomena.  

 

5.3.2 Day-to-Day Variability of EEJ, Drifts, and EIA Strengths 

The EEF associated with EEJ is a primary driving force for the vertical plasma drift. 

Figure 5.3 shows a variation of the H component measured using magnetometers at the 

equatorial station, Jicamarca (blue) and off-equatorial station Piura (green) in the 

American low latitudes. The red curve represents the net EEJ strength which is enhanced 

during local noontime. 
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Figure 5.3 H-component magnetic field and the difference between two magnetometer 

stations to show the noon-time enhancement of the EEJ to be used as proxy for the EEF. 
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Figure 5.4 characterizes ionospheric plasma drifts measured with the Jicamarca ISR on 

the same days of Figure 5.3. Data are restricted to the height range 250 km to 400 km for 

the analysis, thus reducing uncertainties in the measurements caused by increased scatter 

from higher plasma densities.  Not surprisingly, the variations of the ISR drift follow 

exactly the same patterns of EEJ, with the maximum measured values of the drifts 

observed at noontime along with the maximum EEJ strengths. By comparing Figure 5.3 

and Figure 5.4, it is demonstrated that the stronger the EEJ strengths, the faster is the ISR 

plasma drifts. The diurnal configuration of vertical plasma drift mimics exactly the 

variation pattern of the electric field supported by EEJ measurements. This correlation 

between the plasma drift and the EEJ current is quite typical in the equatorial and low 

latitude regions since both of these are based on the same EEF. 
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Figure 5.4 Average vertical plasma drift profiles in the ionosphere from Jicamarca 

incoherent scatter radar (ISR) at geomagnetic equator.   
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The TEC distributions of Figure 5.5 show the variability of the EIA during the days 

presented in Figures 5.3 and 5.4. This Figure shows the TEC variation as a function of 

geomagnetic latitude and universal time (UT). The anomaly crests are intense and have 

great latitudinal separation if there is strong EEJ leading to a higher value of plasma 

drifts. The weaker EEJ day has a small drift that is unable to build an effective plasma 

fountain for the creation of EIAs. Besides equatorial vertical drift, the day-to-day TEC 

variability in Figure 5.5 can also be related to changes in solar radiations even though the 

solar F10.7 might not show big differences on those days. The maximum strengths of 

anomaly crests appear a few hours after the peak value of EEJ and vertical drift. The 

unequal strength of anomaly crests leads to asymmetry structure of EIAs. The evidence 

and controlling factors behind this phenomenon seen in EIA structure will be discussed in 

detail in the following sections. 
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Figure 5.5 Contour plots of TEC distribution along 70°W on August 7, 8, 9, 10 for 2011. 

The only figure showing a double-peaked EIA is the TEC figure for 8th August 2011. 

The white horizontal line represents the location of the geomagnetic equatorial line. 
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5.3.3 Comparison of Neutral Wind From LLIONS Model & SOFDI Data 

To elucidate the role of the meridional component of neutral wind on EIA asymmetry, a 

physics- based inverse-modeling approach was taken using the LLIONS model. Herein 

we utilized one week of measured neutral wind data in August 2011, as measured from 

SOFDI, for simultaneous comparison with LLIONS model results. We have presented 

four days of August 2011 neutral wind data in this discussion (Figure 5.6) for the 

coincident observation of ISR drift velocity and EEJ as shown in Figure 5.3 and 5.4 

respectively.  

The blue curve in Figure 5.6 displays the meridional neutral wind measured for a whole 

day at the Huancayo observatory located near the magnetic equator in South America. 

The green curve in Figure 5.6 gives the variation of the modeled (LLIONS) meridional 

neutral wind as a function of Universal time for 4 days (2011 August 07, 08, 09, and 10). 

The red bars represent the errors of the SOFDI measurements. A very significant day-to-

day variability is shown in the SOFDI data. The neutral wind moving northward 

(southward) direction is called as positive (negative) wind here in the analysis. On 

August 07, 2011 the wind is positive between 08 and 16 UT and reaches 80 m/s at 12 UT.  

It is mainly negative during the day. On August 08, 2011 the wind shows values between 

±40 m/s except for a period between 00 and 05 UT when it is -40 m/s.  The wind value 

on August 09, 2011 shows a positive peak at 10 UT, and mainly negative during the day. 

August 10, 2011 shows the largest temporal fluctuations with the wind varying between 

+80 m/s at 03 UT and -90 m/s at 22 UT. It is largely negative during the daytime hours.  
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Figure 5.6. This figure shows the meridional wind velocity for each hour at Huancayo for 

7, 8, 9, 10 August 2011 in the western meridian of American low-latitudes. The 

meridional wind velocities for 8th August 2011 are not large, and this day shows the most 

symmetric EIA. The blue (green) curve with circles is the measured (modeled) 

meridional wind velocity by SOFDI (LLIONS) and the vertical red lines represent the 

error bars of the measured wind.  
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The LLIONS model, originally inspired by the Anderson [1973] Low-latitude ionosphere 

model (LOWLAT), is based on the low-latitude portion of the Ionospheric Forecast 

Model [Schunk et al., 1997].  LLIONS calculates the two-dimensional, time-dependent 

density distributions of five major plasma constituents (NO+, O2+, H+, O+, e-) between 

±45° latitude and 90-4000 km altitude. The plasma distribution is solved along magnetic 

field lines with many field lines used to construct a regular output 2D grid in magnetic 

latitude and altitude. Inputs to the model are the vertical E×B drift velocities, horizontal 

neutral winds, the neutral atmospheric densities and temperatures, and the Kp and F10.7 

solar flux indices. 

 

An ensemble of 143 independent runs  is conducted keeping the vertical drift the same 

for each of the model runs, but using different meridional winds for each model run. The 

Horizontal Wind Model (HWM, as presented in Hedin et al., [1991]) provides both the 

zonal and the meridional wind values as a function of latitude, longitude, altitude and 

universal time W (lat, long, alt, UT). To generate 143 different functions of the wind, we 

multiplied W (lat, long, alt, UT), as given by the HWM model, by a variable factor (F1) 

and added another variable factor (F2).  The following expression: F1×W (lat, lon, alt, 

UT) + F2 is used to generate the ensemble of wind functions.  Where, the F1 factor is 

varied between  0.2 and 2.2 in steps of 0.2 (11 factors), and the F2 additional wind value 

is increased between -120 and +120 m/s in steps of 20 m/s (13 numbers). The result of 

each model run provides a two-dimensional density profile over the 75° W longitude 

sector. The density profiles are then used to derive TEC latitudinal distributions. Each 

modeled TEC profile is cross correlated with the TEC values observed in the Peruvian 
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sector (recall that SOFDI is located at a geographic latitude = -12°). Although this 

method can introduce, in some extreme cases, unrealistic wind values, retains the 

latitudinal and height variability of the meridional wind. 

 

A clear example of the latitudinal variability of the meridional wind values that were 

obtained with the ensemble model runs is depicted in Figure 5.7. This Figure shows the 

latitudinal distribution of the wind system that provided the maximum cross correlation 

coefficient for August 09, 2011 between 00 and 06. Figure 5.7 shows the meridional 

wind to be negative at northern latitudes, then reversing and becoming positive in the 

southern hemisphere. The latitude where the wind reverses varies between 50° S 

observed at 00 UT and -12° S (near the magnetic equator) at 06 UT.  It is worth 

mentioning that the meridional wind of 00 UT (Figure 5.7) produced one of the largest 

values (-110 m/s) at the magnetic equator (see Figure 5.6). 

 

A close comparison between the meridional neutral wind estimated from the ensemble of 

LLIONS runs and SOFDI measurements shows a reasonable agreement with respect to 

magnitude and direction. During quiet days, electric field fluctuations in the EEJ altitudes 

are rare because the background electric field mostly overwhelms wind-driven 

perturbation electric fields [Shume et al., 2014; Kelley, 2009a]. The modeled patterns of 

meridional neutral wind also show a trend similar to the variations of the SOFDI 

measurements. The best agreement was obtained on August 07, 2011 when the derived 

winds are between the error bars of the measured wind.  On August 8 and 9, 2011 the 

calculated winds approximate the SOFDI measured winds between 04 and 14 UT.   
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Figure 5.7 Plot showing a variation of LLIONS-modeled meridional neutral wind against 

geographic latitude for 7 hours. 
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In general, one can see that the meridional neutral wind derived by the inverse-modeling 

shows a good qualitative agreement rather than quantitative with the measured values 

presented in Figure 5.6. This result indicates that further improvements of inverse-model 

procedure are needed to get a quantitative agreement with the measured wind.  It is 

suggested to consider the altitude dependence of the vertical drifts that is measured with 

the Jicamarca radar and can be used as input to the LLIONS model. A comparison of the 

TEC contours of Figures 5.5 and the meridional winds of 5.6 points out the close 

relationship of the meridional wind and the EIA asymmetry. On August 7, 9 and 10 the 

meridional wind is negative between 16 and 24 UT when the EIA shows an asymmetry 

with a pronounced northern crest. On August 8, 2011, the SOFDI winds show small 

fluctuations around zero making the anomaly more symmetric. 

 

Figure 5.8 presents the comparison of measured TEC and modeled (LLIONS) TEC 

values. The latter were calculated using neutral winds estimated using the inverse 

modeling approach. The general trends and magnitudes of TEC from GPS and model 

values look comparable in the most of the cases. In Figure 5.8, it is seen that model TEC 

values follow exactly the same magnitude and pattern as LISN measurement at 10UT. 

However, there are some discrepancies between measured and model TEC at 00UT. For 

example, in Figure 5.8, the model and measured peak values of TEC on August 7 and 8, 

2011 are highly correlated with each other regarding their magnitudes as well as in 

trends. While on August 9 and 10, 2011 the magnitudes of TEC values are poorly 

correlated, but their trends are similar. In Figure 5.8, as the meridional neutral wind is 

positive (northward) the southern anomaly peaks in terms of TEC seem to shift farther 
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from the equator towards the southern hemisphere. These cases are seen in all the 

subplots of Figure 5.8 at 10 UT. For the conditions of negative (southward) meridional 

neutral wind, the southern anomaly peaks seem to come closer towards the equator from 

the southern hemisphere. It is to be noted that the actual measured Jicamarca ISR vertical 

drift is one of the inputs in the model discussed here. However, the model does not 

consider the zonal ion drifts, neutral winds other than meridional, and variations of the 

O/N2 ratio. These might be some of the sources of discrepancies in our results. 

Furthermore, the results presented here are for only four days of August of 2011. The 24-

hour measured neutral wind data cannot give a detailed picture for the inference but gives 

the sense of interpretation of meridional neutral wind patterns for the EIA anomalies. 
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Figure 5.8: Plots showing a comparison of LISN-measured (continuous curves) and 

LLIONS-modeled (dotted curves) based TEC variations against geographic latitude. In 

each panel, TEC values are binned in every degree of latitude and plot its variation at 00 

UT (red) and 10 UT (blue) for both measured and modeled cases. 
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Figure 5.9 shows TEC latitudinal profiles measured by several networks of GPS receivers 

in the Peruvian sector (~75° W). These plots are used to relate the asymmetry of the 

anomaly to the sign of the meridional wind that was measured by SOFDI. The TEC 

anomaly curves show symmetric characteristics on August 08, 2011 between 08 and 16 

UT (magnetic equator = 12° S). A highly asymmetric anomaly containing a predominant 

southern crest was observed on August 7, 2011, between 12 and 16 UT. An asymmetric 

anomaly with a dominant northern crest was measured on all 4 days at 20 UT. These 

symmetric and asymmetric characteristics of the anomaly are related to meridional wind.  

For example, on August 08, 2011 the SOFDI winds fluctuate around zero m/s and do not 

influence the development of any crests.  On August 7 and between 12 and 16, the 

meridional wind has been positive for more than 4 hours making the plasma to move up 

the field lines in the southern hemisphere and down in the northern hemisphere. The 

same effect is seen in the wind value near 20 UT for each of the plots.  The velocity is 

negative or follows a long period of negative velocities that enables the development of a 

northern crest. 
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Figure 5.9 Latitudinal profiles of TEC in the four hours interval against geographic 

latitude for 7, 8, 9, 10 August 2011 in the western meridian of South America. 
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5.4 Interpretation and Discussion 

Trans-equatorial neutral winds can have profound influences on numerous ionospheric 

processes including plasma transport, composition, and the formation of structured EIAs. 

We have demonstrated the contribution of the EEJ and meridional neutral wind on the 

prevailing asymmetry structure in equatorial ionization anomaly in the low latitude 

ionosphere using measured as well as model data. In general, the strength, latitudinal 

extension, symmetry/ asymmetry of the anomaly crests are based on regular equatorial 

ionospheric electrodynamical phenomena (e.g. both zonal electric field and meridional 

wind). It is evidently speculated that, in absence of external perturbations, the EEJ 

associated with zonal electric field can alone form the symmetric structure of EIAs in the 

low latitude ionosphere. Observations and model results show the significant role of the 

meridional neutral wind that blows the ionospheric plasma toward the opposite 

hemisphere by moving the plasma along geomagnetic field lines to generate the 

asymmetric structure characteristics of the equatorial anomaly [Bailey et al., 1973; 

Schunk and Nagy, 2000; Venkatraman and Heelis, 2000].   

 

The motion of ionized particles at ionospheric heights is affected by the Earth’s magnetic 

field, which in turn controls the flow of the ionospheric currents as well as the bulk 

movement of the plasma. The EEF and the particular geometry of the geomagnetic field 

lift the plasma to higher altitudes over the equator. As the vertical drift of plasma is 

canceled by the gravitational and pressure forces, the plasma starts moving along the flux 

tube of the Earth’s magnetic field that transports plasma to poleward latitudes from the 

equator, forming the EIA. The occurrence of daytime maximum EEJ and well-developed 
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EIA varies in the time range difference 2.5 to 5hr over the low latitudes sectors [Abdu, et 

al., 1990; Venkatesh, et al., 2015]. Our analysis also lies within the already reported time 

frame for those parameters. 

 

The EIA occurs during the major part of the day, and its intense ionization density 

irregularities distinguish the low latitude ionosphere form other regions. Its asymmetry 

structure can be explained in terms of neutral wind. The winds transport particle mass, 

momentum, and energy throughout the atmosphere. The wind also moves plasma through 

drag/collisions and can induce currents and electric fields. Waves also propagate within 

the neutral atmosphere and can perturb the normal behavior of the thermosphere. Once 

gravity waves and tides reach the ionospheric height, due to the neutral-ions collision of 

the closely coupled ions and neutrals, momentum from neutrals is transferred to ions. The 

ultimate fate of this phenomenon is the formation of asymmetry of ionospheric plasma 

concentration in EIAs. Figures 5.5, 5.6 and 5.9 have shown that when the meridional 

wind is near zero a symmetric anomaly is observed. Figure 5.9 indicated that a positive 

(south to north) wind is associated with a dominant southern crest and for negative 

meridional wind and northern crest prevails. These relationship supports intra-hemisphere 

transport of plasma in the anomaly region. 

 

The population and distribution of excited neutral and/ or ionized species in different 

ionospheric regions depends not only on chemical processes (production, collision, and 

recombination) but also on transport processes associated with field domains and neutral 

winds [Schunk and Nagy, 2000]. One of the key points of this study was to characterize 
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the performance of the models over measured neutral wind for the understanding of EIA 

asymmetry. Further measurements are clearly needed with higher resolution and 

corresponding sensitivities to the daytime wind occurrences of interest for the detailed 

explanation of TEC asymmetry in EIAs. It is known that there are various factors that can 

cause EIA asymmetry in the low-latitude ionosphere. The role of meridional neutral 

winds on EIA asymmetry generation can be explained in the following ways:  

 

a) Intra-hemisphere Transport: - The neutral winds system has ability to move the 

ions and electrons along the geomagnetic field lines and affects its densities because of 

the height dependent nature of the plasma chemical recombination in the F region 

ionosphere [Sastri, 1990; Hargreaves, 1992]. If the meridional neutral wind is blowing 

north to south (south to north), it will drive plasma to higher ionospheric heights along 

field lines where recombination proceeds at a slower pace. This leads to higher plasma 

density in the northern (southern) hemisphere. Then the population of ionospheric plasma 

is enhanced since a strong equatorial plasma fountain restricts the effect of wind in 

windward locations over that in leeward locations. Figure 5.10 (a) illustrates this case 

scenario where plasma density increases in the northern hemisphere.  
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Figure 5.10 A cartoon illustration showing possible evolution and mechanism how 

meridional neutral wind creates asymmetry in EIA anomaly in the ionospheric F layer, 

looking eastward (a) Intra-hemisphere Transport and, (b) Trans-equatorial Transport. The 

size of shaded oval shape represents the strength of EIA crest in the two hemispheres. 
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b) Trans-equatorial Transport: - The interhemispheric field-aligned plasma flow 

organized by season and longitude, depending on the role of meridional wind, can be 

seen during the time of adiabatic heating and cooling at ionospheric heights [Bailey et al., 

1973; Venkatraman and Heelis, 2000].  If the meridional neutral wind is blowing north to 

south (south to north), it will transport plasma along Earth’s magnetic field lines and will 

dump at ionospheric height in the opposite hemisphere since the effect of a weak 

equatorial plasma fountain is easily overcome by wind. That leads to a higher plasma 

density in southern (northern) hemisphere than that in northern (southern) crests. Then 

the population of ionospheric plasma is less in the windward location than leeward 

location. Figure 5.10 (b) illustrates this case scenario where ions have the time to be 

transported to the opposite hemisphere and form asymmetry in EIAs. 

 

5.5 Summary and Conclusions 

This study compares 24-hour measured and modeled meridional neutral winds and 

investigates in detail its effects on the asymmetry of the EIA. The analysis leads to a 

significant advance in the study of the EIA and opens new avenues for future studies into 

the climatology and relationships of the EEF, EEJ, neutral winds, and EIA, during both 

quiet and active solar/geomagnetic conditions. The major outcomes from our study are 

outlined as follows. 

 

1. The vertical ExB plasma drift associated with EEF and geomagnetic fields, as well as 

the neutral wind fields, are the main drivers of EIA anomaly. The meridional 

component of the thermospheric wind is one of the most significant drivers of the 
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EIA asymmetry. The neutral particles use collision to transport ions up the field, but 

the plasma remains within the same hemisphere. 

 

2. The northward (southward) propagation of intense TEC crest is clearly visible in the 

northern (southern) hemispheric summer seasons, while northward (southward) TEC 

crests during equinox periods remained intact at almost similar latitudinal locations. 

The latitudinal distribution of asymmetry in the intensity of northward and southward 

spread is caused by the different motion caused by a wind dynamo. The latitudinal 

extension and strength of anomaly crests are controlled by EEF that is seen as a proxy 

of the EEJ development, but meridional neutral wind mainly acted to create unequal 

strengths of the crests to form anomaly asymmetries in the low latitudes. 

 
3. The meridional neutral wind profiles, which also play a decisive role for the 

generation of asymmetry structure in the EIA, can be estimated using the LLIONS 

model, which utilizes vertical drift measured from Jicamarca ISR as one of the inputs. 

It shows reasonably good agreement within the error range of measurements by 

SOFDI at the geomagnetic equator for similar conditions, which strengthens the 

confidence of our results.   

 

4. The anomaly crests look more symmetric in equinox than in solstice seasons. The 

asymmetries of the EIA observed during December solstice is greater than during 

June solstice, whereas September equinox is less symmetric than March equinox 

seasons. This variability is related to the seasonal dependence of the vertical drift 

[Fejer, 1991] and meridional wind. 
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This effect of meridional neutral wind on the EIA asymmetry is a key mechanism for the 

vertical and latitudinal coupling between different atmospheric layers, and also provides 

an important input on various forms of atmospheric mechanisms such as tides, density 

fluctuation, drift variability, wind dynamo, and even the extension of the EIA from low to 

mid latitudes. Further analysis and investigation with real time data are continuing for a 

better understanding of the meridional wind including zonal wind patterns on 

thermosphere/ neutral composition and the ionosphere over the magnetic equator, and the 

response of EIA under quiet and magnetosphere-induced disturbed conditions. 
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Chapter 6 

 

Satellite and Ground-Based Observations of 

Ionospheric Plasma Irregularities 
 

 

 

Ionospheric plasma irregularities are one of the most important phenomena of space 

weather. A large variety of the numerical as well as empirical ionospheric models have 

been developed to understand their origin. Equatorial plasma bubbles (EPBs) as well as 

plasma enhancement (blobs) are main indications of ionospheric irregularities in the low 

latitudes that disturb the ionosphere producing deep fading of communication and 
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navigation signals. We have examined the behavior of total electron content (TEC), its 

depletions and enhancements in the low latitude ionosphere detected with GPS receivers 

in the American sector and correlated it with the existence of the ionospheric 

irregularities observed with the SWARM constellation when it flies above the Continent. 

Analysis of data is mainly performed in the American low latitude regions for few 

specific days of SWARM satellite observations during the first months of the satellites’ 

operations. Satellite passes are used to examine density variations of the depletions 

between minute scale intervals. The ground-based data serve to indicate the variability of 

the background ionosphere prior and during the development of the EPBs.  In this study, 

we discuss the role played by various ionospheric parameters of the equatorial ionosphere 

in the occurrence, growth, expansion and decay characteristics of plasma irregularities 

seen in the EPBs and blobs events. 

 

6.1 Introduction 

Even in the absence of intense solar activities (CMEs, Solar flares, SEPs), dynamical 

processes in the equatorial ionosphere, mainly governed by the special geometry of 

electromagnetic field, lead to plasma instabilities that cause irregularities of the plasma 

density almost comparable to that caused by moderate geomagnetic storms after sunset. 

The regions of localized plasma depletions (bubbles) and enhancements (blobs) in the 

low-latitude ionosphere are collectively called equatorial plasma irregularities (EPIs) 

which are considered to form/ redistribute along geomagnetic flux tubes after altitudinal 

rise. EPIs have been a vibrant issue in space weather community since these are the chief 
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sources of deep fading of transmission of radio signal associated with communication and 

navigation systems.  

 

Irregularities in the F-layer ionosphere occur abruptly after sunset and often continue 

beyond midnight and usually disappear just after sunrise in the areas close to or on the 

magnetic equator [Kil and Heelis, 1998]. Plasma instability phenomena occurring in the 

equatorial F-region ionosphere is a highly dynamic state of unstable nighttime plasma 

irregularities evolving into various scale sizes, called equatorial spread F (ESF) that 

usually takes the form of EPBs [Tsunoda 1981; Abdu at al., 2001; Kelley, 2009a]. The 

disturbance rises to higher altitudes then later appears at sites away from the magnetic 

equator, indicating that the disturbance at these sites is due to an effect which develops in 

time along the lines of force of the earth's magnetic field [Aarons, 1993]. Disturbed 

plasma structures (e. g. EPBs) in the F region are triggered by strong vertical plasma 

density gradients in the bottomside F region under the action of the Generalized 

Rayleigh-Taylor instability (RTI) [Dungey, 1956; Ossakow, 1981; Haerendel et al. 1992; 

Sultan, 1996; Kelley, 2009a; Wu, 2015]. The gravitational force will provide a current 

responsible for the polarization field that drives the depleted region upward, and the 

background eastward electric field (EEF) produces a polarization field that ultimately 

establishes a rapid growth rate for the perturbations [Hanson and Bamgboye, 1984; Kil 

and Heelis, 1998]. In addition, EEF, the occurrence and seeding of density perturbations, 

may be produced by different sources such as a local variations in the vertical winds, 

gravity waves propagating upward from the troposphere, height of the postsunset F layer, 

prereversal enhancement (PRE), F region evening plasma drift vortex, geomagnetic 
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declination angle, and the inherent variability of low-latitude thermospheric winds 

[Farley et al., 1970; Abdu et al., 1981, 1983; Batista et al., 1986; Fejer, 1991; Mendillo 

et al., 1992; Basu et al, 1996; Fejer  and Scherliess, 1997; Singh et al., 1997; Fejer et al., 

1999; Eccles et al. 1999; Kudeki and Bhattacharyya, 1999; Abdu, 2001; Kudeki et al., 

2008]. In situ measurement techniques have the ability to detect more events confirming 

maximum occurrence rates and are also able to examine large scale sized EPBs [Kil and 

Heelis, 1998; Huang et al., 2002; Gentile et al., 2006; Stolle et al., 2008b].  

 

Plasma blobs occur mostly at higher magnetic latitudes (20°–30°) and form as a result of 

small-scale electron density instabilities essentially driven by neutral winds in the topside 

F region [Oya et al., 1986; Watanabe and Oya, 1986]. The plasma density enhancement 

phenomenon in the F region ionosphere, closely related to equatorial plasma bubbles 

(EPBs), is termed ‘plasma blobs’ [Huang et al., 2014]. Depleted plasma densities 

(bubbles) and enhancements (blobs) with respect to the background ionosphere occur at 

night in the low-latitude F region and are understood to be either causally linked or 

independent [Kil et al., 2015]. With occasional and limited observations in the same 

longitudes, plasma bubble events have  been understood as a cause of another plasma 

blob event [Le et al., 2003; Pimenta et al., 2004; Huang et al., 2014], as both effects 

occurred on the same magnetic flux tube of plasma bubbles [Yokoyama et al., 2007; 

Martinis et al., 2009]. As an intermediate stage, inside the depleted region, polarization 

EEF drives plasma particles to move upward and causes the enhancement of plasma 

density over the depletions [Krall et al., 2010; Retterer, 2010]. Contrary to 

aforementioned assumptions, Kil et al. [2011] proposed that bubbles and blobs are not 
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created by a same mechanism as observation revealed that blobs are detected in the 

regions where bubbles are absent. Plasma bubbles need not be a prerequisite condition for 

the generation of plasma enhancements since blobs frequently occur in the latitudes 

where bubbles cannot reach [Choi et al., 2012; Haaser et al., 2012]. Recent studies [Choi 

et al., 2012; Miller et al., 2014], demonstrated that medium-scale traveling ionospheric 

disturbances (MSTIDs) are possible driving mechanism of formation of the blobs 

independent of  that of bubble as it modulates local F region peak altitudes. 

 

The objective of the present investigation is to study the role played by various 

ionospheric parameters of the equatorial ionosphere in the different characteristics of 

plasma irregularities seen in the EPBs and blobs by two independent techniques – ground  

GPS and in situ Langmuir probe (LP) onboard SWARM measurements. SWARM is a 

minisatellite constellation of three satellites, two fly at a lower altitude, measuring the 

East-West gradient of the magnetic field, and one satellite flies at a higher altitude in a 

different local time sector. Low-Latitude Ionospheric Sensor Network (LISN) is a 

permanent array of geophysical instruments in South America to answer key questions 

about electrodynamics of the equatorial to mid latitude ionosphere and to develop 

forecasting capabilities. 

 

Another question we want to address is the velocity of the disturbed plasma density 

structure (EPBs), and what are the characteristics properties and differences in such 

velocities probed by ground-based LISN network and space-based SWARM 

constellation, and how are the influenced by prevailing conditions? This study also 
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demonstrates results for several specific days of SWARM observations during passes 

throughout the South American continent. Overall, we demonstrate that the in-situ 

SWARM and ground GPS system can serve a useful concurrent tool for detection of the 

low-latitude ionospheric instability events and may essentially contribute to develop a 

comprehensive theory about the generation, development and decay mechanism of EPBs 

and blobs based on observational and modeling studies. 

 

6.2 Instrumentation and Data Processing  

Both ground- and satellite-based datasets have been heretofore extensively used to study 

the space plasma behavior for more than a half century. We investigated and analyzed 

plasma density irregularities using the space-based SWARM constellation of satellite and 

ground-based LISN network, simultaneously.  

SWARM mission consists of the three identical Swarm satellites (A, B, and C) carrying 

sophisticated magnetometers and electric field instruments which were launched on 22 

November 2013 into a near-polar orbit. We have examined ionospheric plasma density 

measurements from SWARM satellites to investigate of EPBs and blobs occurrence in 

the American sector at topside altitudes. Swarm A and C form the lower pair of satellites 

flying side-by-side in 1.4° longitude separation at inclination angle to 87.35° with polar 

orbits at an altitude of about 470 km, whereas Swarm B is cruising at higher orbit of 

about 520 km making inclination angle is equal to 87.75° as shown in Figure 6.1(a). 

SWARM mission provides the best ever survey of the geomagnetic field and its temporal 

evolution and will lead to new insights into the Earth system by improving the current 

understanding of the Earth’s interior and its effect on Geospace, the vast region around 
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the Earth where electrodynamic processes are influenced by the Earth’s magnetic field 

[Friis-Christensen et al., 2006]. 

The low latitude region of South American continent is well instrumented with networks 

of GPS receivers as shown in Figure 6.1(b). We present LISN dual-frequency GPS total 

electron content (TEC) datasets to study plasma densities sampled at low magnetic 

latitudes in the equatorial and low-latitude ionosphere. LISN (Low Latitude Ionospheric 

Sensor Network) [Valladares and Chau, 2012] is a distributed observatory that operates 

in South America. It was designed to probe both the disturbed and undisturbed 

ionospheric plasma density in the low‐latitudes and also allows us to explore the 

development as well as the decay of the plasma instabilities in unprecedented detail. GPS 

receivers can continuously measure TEC integrated along the line-of-sight from GPS 

satellites to receiver. TEC is measured in units of TECU (1 TEC Unit = 1016 

electrons/m²).  

 

The present study fundamentally uses almost simultaneous in-situ measured data from 

the early phase of the SWARM when the distance between the trajectories of all three 

satellites of the constellation was tens of km and the temporal separation was of order one 

minute. This contribution selected a few typical prime local time segment associated with 

plasma instability events that are correspond to the seeding of ionospheric irregularities 

[Valladares et al., 1996; Carter, et al., 2016]. Concurrently, two different ionospheric 

plasma processes (depletions and enhancements) have been studied using ground based 

GPS-TEC data from the LISN network in the low-latitude ionosphere.  
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Figure 6.1 

a)  SWARM constellation with equatorial projection of the SWARM orbit configuration 

over time (image credit: DTU Space). Satellite pair at 450 km initial altitude, flying side-

by-side with 1.5° longitude separation whereas third satellite is at 550 km initial altitude,  

b) Location of GPS receivers in ‘Distributed Observatory’ of Low-Latitude Ionospheric 

Sensor Network (LISN) in South American continent.  
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6.3 Analysis and Results 

In the initial stage of the SWARM mission, the trajectories of all three satellites of the 

constellation were  no more than of a few 100’s of km in terms of distance and the time-

based separation was of the order of one minute. This unique geometry of satellite flight 

allows us to conduct multiple and almost simultaneous in-situ measurements through the 

same low-latitude plasma depletion to investigate their spatial coherence and the motion 

of structures embedded within the EPBs and blobs.  We have used the number density 

measured with the Electric Field Instrument (EFI) on-board the three satellites of the 

SWARM constellation and concurrent TEC values obtained by ground-based LISN-GPS 

receivers to fully diagnose the bubble characteristics at multiple scale sizes. The plasma 

densities presented here were measured with the Langmuir Probes (LPs) on-board the 

three SWARM satellites. Two different ionospheric processes (bubbles and blobs) have 

been studied using SWARM and LISN-TEC data simultaneously. In the following first 

sub-section, we present how plasma bubbles and blobs events are identified using the 

SWARM constellation. In the second and third sub-sections, these events are probed and 

analyzed simultaneously using SWARM satellite and GPS receiver data sets before 

summarizing our results. 

 

6.3.1 Identification of EPBs and Blobs Signature from SWARM  

The current study uses plasma density measured with the SWARM satellite constellation 

during December 2013. The plots presented in Figure 6.2 display the observations in two 

different formats, logarithmic scale of plasma density [log(Ne/cc)] versus time (UT) and 

Ne versus magnetic latitude for each of (a) plasma depletions (EPBs) and, (b) plasma 
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enhancements cases as SWARM satellites crossed the western edge of South American 

continent near 80°W longitude. The observations of density traced by each of three 

different satellites are color coded in Figure 6.2. The events identified in this report took 

place on December 10 for EPBs and 28 for blobs of the year 2013. In these events, the 

SWARM satellite observed EPBs from 06:12 to 06:22 UT and plasma blobs from 01:17 

to 01:22 UT in the ionosphere when it flew over the American low latitude.  

 

In Figure 6.2(a), the upper panel shows a depletion pattern of the plasma density as a 

signature of EPBs against Universal time for 10 minutes interval simultaneously from 

three satellites. It is clearly seen that there is a sharp decrease of plasma density during 

night time. Also, large variability inside the bubbles among satellite passes also gives 

important information that SWARM reveals in these observations. Lower panel in Figure 

6.2(a) shows the variation of logarithmic scale of plasma density against magnetic 

latitude indicating bubbles within less than 10° magnetic latitudes. As we see the bubbles 

extend for more than 10 minutes and also span for around 200 latitudinal separations. The 

width of bubbles decreases from one satellite pass to the next.  
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Figure 6.2  

a) Upper panel showing depletion pattern of the plasma density as a signature of EPBs 

against Universal time from three satellites. It is clearly seen that there is a sharp 

decrease of plasma density during night time. Lower panel is the variation of same 

against magnetic latitude indicating bubbles in the low latitude. 

b) Upper panel showing enhancement pattern of the plasma density as a signature of 

blobs against Universal time. It is seen that there is a sharp increase of plasma density 

during night time as 3 to 4 times the background density. Lower panel is the variation 

of same against magnetic latitude indicating blobs near 20°. 
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Figure 6.2 (b) shows the low latitudinal plasma density variation in a logarithmic scale 

[log (Ne/cc)] against time measured by SWARM constellation in upper panel. It 

illustrates the comparison of three satellites from in-situ measurements for SWARM 

electron density for a 30 minutes interval. In such an interval, within around 5 minute’s 

window, one can clearly see a trend of plasma density scenario by all of three satellites 

that were much higher than that in the local background region. The lower panel in 

Figure 6.2(b) represents the variation of low-latitude plasma density for 300 magnetic 

latitudes. We can see that the satellites have gone through regions of equatorial 

ionospheric ionization region on both sides of the geomagnetic equator and detected a 

plasma blob with strong ion density enhancement near 20°. The sharp increase of plasma 

density during night time can be estimated as 3 to 4 times than that of the background 

density in the lower panel of Figure 6.2(b). 

 

In the sub-sections below, similar types of density variation scenarios will also be probed 

from ground GPS receivers in terms of TEC magnitudes, and corresponding phenomena 

relating their consequences will be presented. Certainly, the outcomes from such 

synchronized observations will improve our current understanding mechanism of EPBs 

and blobs. 

 

6.3.2 Ionospheric Plasma Depletions: EPB Events  

Figure 6.3(a) characterizes six minutes of ionospheric plasma density variation measured 

with the constellation of three SWARM satellites on December 16, 2013 during midnight 

hours. Analyzing data restricted within 4:07UT to 04:09UT, all three satellites indicate 
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clear plasma bubbles phenomena for 2 minutes. The non-fluctuating black curve on the 

top of three curves in Figure 6.3(a) demonstrates the calculated unperturbed plasma 

density. Not surprisingly, the magnitude of the plasma density corresponding to bubble 

events decreases abruptly as one compares its background density represented by the 

continuous curve.  

 

Figure 6.3 (b) shows the scenario of satellite trajectories, geomagnetic field lines and the 

EPBs paths. The geomagnetic field lines are closely aligned with the satellite path and 

EPBs are aligned with the local field lines as well. There exists a longitudinal separation 

between the satellite paths and the field lines over South America which has a non-zero 

magnetic declination. Even though the satellites were flying side-by-side, the SWARM 

satellites will intersect the bubble at different times. The time delays are -28.5 seconds 

and 49.5 seconds respectively. Plasma density curves have been shifted accordingly. On 

comparing two plots 6.2 (a) and (b), the location of the formation of EPBs events can be 

confirmed by identifying trajectories of the SWARM satellite constellation. We have 

calculated the time delays between the individual satellite intersections of the field line 

that crosses the magnetic equator at 54° W longitude which is at the eastern side of the 

South America. 
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Figure 6.3  

a) This plot shows plasma density depletions during a 6 minutes interval on December 

16, 2013. All three satellites are able to indicate clear plasma bubble events that 

occurred between 4:07UT and 4:09UT. 

b) Sketch showing the geometry of the SWARM constellation passes over the field-

aligned plasma bubbles and the local magnetic field lines. It also shows the mapping 

of the satellite paths to the ground as plasma depletions are seen along their 

trajectories. 
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We make use of LISN GPS-TEC in corresponding time span that allows us to concentrate 

on the picture of the TEC variations. Our observations also provide the opportunity to 

investigate the impact on the TEC variation as SWARM sees EBPs events. 

 

The mass plot GPS-TEC presented in Figure 6.4 shows how TEC is interrupted during 

EPBs events as seen by SWARM. The general patterns of low-latitude GPS TEC have 

been seen disturbed since 02UT and lasts till 06UT in the 55°W longitude sector. As 

shown in Figure 6.3(a), SWARM captures the EPB event at around 04UT only. The 

maximum distortion of TEC is seen at 03 UT. It can be said that SWARM only gives a 

snapshot of EPBs whereas ground GPS continuously monitor its impact for a longer 

period. For the examination of the generation to decay mechanism of EPBs, GPS shall be 

a better instrument to bring into practice.  

 

By this simultaneous analysis, we expect to contribute to the understanding of the birth to 

death mechanism of different EPBs properties on a global scale and in a climatological 

sense, which were reported from local and time restricted observations so far. 
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Figure-6.4:  

This plot shows one-hour variations (total 7 hrs) of TEC against geographic latitude 

along the 55°W longitude sector. It is seen that even though SWARM observed bubbles 

between 4:07UT and 4:09UT, the peak of the northern anomaly crest starts to distort at 

02UT because of the bubbles. In-situ measurement of bubbles is simultaneously 

supported by GPS-TEC measurements from the ground.  
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6.3.3 Ionospheric Plasma Enhancements: Blob Events 

Figure 6.5 (a) demonstrates a strong plasma density enhancement during a short six 

minute interval of plasma density variation recorded by the SWARM constellation on 

December 27, 2013. The clear plasma blob events occurred during 3:16UT to 3:18UT 

(i.e. 2 minutes intervals) and the general pattern of the variability within the blob events 

seems rather similar in all three satellite observations. 

 

The satellite track during the density variation reported in Figure 6.5(a) is shown as the 

thick red line over the continental map of the South America in Figure 6.5 (b). It is 

speculated that the enhancement of plasma (blobs) is located near the Caribbean region 

and the density values shifted in time by -46.5 sec (SWARM-B) and 80.5 sec (SWARM-

C). 

 

The GPS-TEC distributions of Figure 6.6(a) show the variability of the equatorial 

ionization anomaly (EIA) during the day and time interval presented in Figures 6.5(a). 

During blobs events, it is seen that the northern crest of the anomaly decreases from its 

peak creating a ‘shoulder’ rather than a sharp TEC density gradient as reported in Figure 

6.4 during EPBs events.  
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    a)                                                                             b) 

 

 

 

 

 

 

 

 

 

 

 

Figure-6.5  

a) Plot showing the plasma density enhancement during a 6 minutes interval on 

December 27, 2013. All three satellites are able to indicate a clear plasma blob event 

that occurred during 3:16UT and 3:18UT.  

b) South American continental map showing the geometry of the SWARM pass along 

thick red line and indicates that the density enhancement is near the Caribbean region.  
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Additionally, in order to explore the response of the plasma enhancements near the 

Caribbean region, TEC recorded by eight different GPS receivers location within 70°W 

to 55°W longitudinal regions in Figure 6.6(b). The noticeable TEC enhancements of the 

order larger than 5 TEC units are also detected at the same location of the SWARM blobs 

using these clusters of GPS receivers.  

 

A well-accepted restriction is that, in general, these coordinated techniques cannot be 

extended to all cases and locations. Further, there are no sophisticated techniques able to 

resolve the lack of continuous and long term temporal and spatial variability of the F 

region topside plasma irregularities on a global scale so far. Even though limited to a few 

EPBs and blobs events presented in this section, the quantitative signatures of EPBs and 

blobs are worthwhile to develop the concept of plasma instability mechanisms in the 

equatorial, low and mid-latitude ionosphere. To interpret the quantitative outcomes from 

coordinated observation of the EPBs and blobs from space and the ground using 

SWARM and GPS receivers respectively, several mechanisms for bubble and blob 

phenomena are proposed and discussed in section 6.4 below based on our results. 

 

 

 

 

 

 

 



Khadka, S. M. (2018), PhD Dissertation. 

167 

 

 

 a)                                                                      b) 

 

 

 

 

 

 

 

 

 

 

Figure 6.6  

a) Mass plots showing one-hour variations (total 7 hrs.) of TEC against geographic 

latitude along 60°W longitudes sector. It is seen that the northern crest of the anomaly 

decreases from its peak creating a ‘shoulder’ because of the plasma enhancement. 

The in-situ measurement of blobs is simultaneously supported by the GPS-TEC 

measurement from ground. 

b) Plots showing the TEC values collected by 8 GPS stations located in the Caribbean 

region. These receivers detected prominent TEC enhancements, larger than 5 TECu, 

at the same location of the SWARM blobs.   
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6.4 Interpretation and Discussion 

With this simultaneous analysis, this report endeavors to contribute to our understanding 

on the initiation, growth, expansion, dynamics, and decay mechanism of different 

properties regarding ionospheric plasma instabilities on a global scale and in a 

climatological sense. Until now, in searching for explanations for the occurrence of 

equatorial ionospheric plasma structure, several aspects of the plasma dynamics and the 

properties of seed perturbations have been reported from local and time restricted 

observations so far. 

 

The sharp decreases of the low latitude ionospheric plasma density also referred to as a 

plasma “bubble,” is thought to be formed and grown by a Rayleigh‐Taylor instability 

(RTI)  acting on the bottomside of the F layer during the nighttime [Woodman and 

LaHoz, 1976; Fejer and Kelley, 1980; Hei et al., 2005]. Regarding the plasma dynamics, 

it is largely understood that the postsunset enhancement in vertical plasma drift may be a 

strong contributor to enhancing the growth rate of the Rayleigh-Taylor instability [Sultan, 

1996; Kil and Heelis, 1998; Stolle, et al., 2008b]. A visual inspection of EPBs events 

reported in figure 6.3(a) about plasma density reduction seen by 3 satellites also provides 

an opportunity to explore the packets of small but deep bubbles within large bubbles. One 

of the key points of this study is that not only snapshot of EPBs density gradient, the 

internal decrease in density gradients can also be distinguished for very small time 

intervals. As seen in section 6.3.2, SWARM basically gives snapshot of EPBs whereas 

ground GPS continuously monitor its impact for longer period. In spite of some 

unavoidable discrepancies, ground GPS shall be an appropriate tool to bring into practice 
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for the examination and understand the mechanism of seeding to decline phase of long-

lasting EPBs. 

 

The plasma density measurements presented in section 6.3.3 is an example of the clear 

and abrupt electron density enhancement by a notable factor, as much as 3–4 times the 

background density, beyond 20°N latitudes along the SWARM satellite tracks in the 

nighttime ionosphere. The sketch in Figure 6.7 illustrates the scenario describing 

formation mechanisms of the blob related to different stages e.g. initial, and fully 

developed stages of EPB evolution.  

 

Equatorial plasma bubbles follow a non-linear evolution of the Rayleigh-Taylor 

instability (RTI) that uplifts the low density plasma and traverses through the high 

density plasma as shown in figure 6.7(a) at near magnetic equator. The region of plasma 

density enhancement (blob) appears just at the top of the bubble in the initial phase as a 

consequence of the uplift of the ionosphere. The occurrence of plasma blobs was 

associated with EPBs over the geomagnetic equator and linkage between their evolutions 

is reported from ground-based observations [Pimenta et al., 2004] as well as space-based 

observation [Huang et al., 2014]. As bubbles are fully grown, the blobs remain only off 

the magnetic equator in the EIA latitudes as a consequence of the diffusion of depleted 

plasma along geomagnetic field lines as shown in Figure 6.7(b). In the initial phase of 

blob formation as in Figure 6.7(a), F layer peak high-density plasma exists just at the top 

of the bubbles in the geomagnetic equator [Le et al., 2003].  Later, in the fully developed  
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Figure 6.7  

Contour illustrations of phases of EPBs and blobs. 

a) Bubble Growing Phase: Plasma bubbles follow a non-linear evolution of the 

Rayleigh-Taylor instability near magnetic equator, plasma density enhancement 

appears above the bubble as a consequence of the uplift of the ionosphere. 

b) Bubble Developed Phase: As bubbles are fully grown, the blobs remain only off the 

magnetic equator as a consequence of the diffusion of depleted plasma along 

geomagnetic field lines. But, in the most of the cases, bubbles are not the major 

source of blobs since bubbles are formed mainly in the equatorial region, and blobs 

exist more than 20° off the equator at mid-latitudes. 

 

 

 

 

 

a) b) 
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EPB phase as in Figure 6.7(b), the blobs are removed from geomagnetic equator and 

relocated around EIA latitudes [Krall et al., 2010]. 

 

Rather interesting is the detection of the EPBs in the form of plasma density depletions 

seen at the geomagnetic equator, as expected, but the plasma enhancements (blobs) also 

reside near mid-latitude region in the current analysis. In most of the cases, bubbles are 

not the major source of blobs since bubbles are formed mainly in the equatorial region, 

and blobs exist more than 20° off the equator at mid-latitudes. Their climatology and 

periodicity suggest that blobs might be associated with nighttime MSTIDs [Klenzing et 

al, 2011; Miller et al., 2014; Kil et al., 2015]. The plasma density enhancements 

presented here were only from selected observations from the SWARM and GPS from 

the LISN network. Reviewing various approaches, it is possible that different 

mechanisms can mutually dependent or independent for bubble/blobs formation 

depending on the location and time of observation. Based on additional observations and 

modeling studies, one can improve our understanding of ionospheric plasma behavior and 

advance current theoretical concepts on generation to decline mechanisms of bubble/blob 

phenomena. 

 

6.5 Summary and Conclusions 

The dynamic features of the equatorial and low-latitude ionosphere are full of 

peculiarities that often amaze space scientists from quantitative evidences using multiple 

probes. In the present study, we attempt to analyze different features associated with 

plasma depletion and enhancement phenomena at low latitudes using space and ground-



Khadka, S. M. (2018), PhD Dissertation. 

172 

based plasma density measurement. The details of the observational results relating to our 

observations and analyses are enumerated below.  

 

1. Space-based SWARM constellation and ground-based LISN network provide data of 

excellent quality that can be used to simultaneously study the low and mid-latitude 

plasma instability processes and identify cases when they are related. 

 

2. The SWARM mission and the LISN data allow us to overcome the space-time 

ambiguity of past single-satellite studies and detect the dramatic changes that plasma 

bubbles suffer in a time frame. Also, the close location of the SWARM satellites 

during the early phase of the SWARM mission can allow us to measure the velocity 

of the plasma bubbles.  

 
3. Ground-based GPS receivers that are part of the LISN network can fully diagnose 

bubbles and blobs characteristics in terms of TEC values.  

 

4. The coordinated analysis of plasma density enhancements (blobs) has indicated that 

the local density at the satellite altitude can increase by a factor as high as 3.  These 

density enhancements were accompanied by TEC enhancements of 5-10 TEC units 

that developed in both the northern and southern hemispheres. 

 
5. There is evidence of the possible association of plasma blobs with EPBs based on the 

densities measured by the SWARM constellation of satellites.  Plasma bubbles have 

been associated with plasma bubbles that grow at equatorial latitudes. It is believed 
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that bubbles as they grow in altitude they also extend to higher latitudes pushing the 

plasma that resides above the bubbles to higher altitudes creating an enhancement of 

the densities for a satellite flying at a constant altitude.  This mechanism may explain 

some of the observations of the blobs presented here.  However, an alternative 

explanation exists in which nighttime MSTIDs may have been excited by the Perkins 

instability creating sheets of enhanced and depleted densities.  Further analysis of the 

SWARM and LISN datasets are needed to elucidate the formation mechanism of the 

density/TEC enhancements.   

 

Further, it can be speculated that there is a possibility that different mechanisms can 

coexist or one predominates depending on time and location of the observations. 

Therefore, it is important to develop a comprehensive theory based on further 

observational, theoretical and modeling studies on the generation, dynamics and decay of 

bubbles/blobs occurrences in the low to mid-latitude ionosphere. A similar data product 

from SWARM and LISN is planned and will be presented in upcoming efforts to better 

understand and solve existing theoretical conflicts on bubbles/blobs phenomena. 
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Chapter 7 

 

Interrelationship between Several Ionospheric 

Parameters* 

 

This chapter presents the interrelationship between the Equatorial Electrojet (EEJ) 

strength, Global Positioning System (GPS)-derived total electron content (TEC) and 

postsunset scintillation from ground observations with the aim of finding reliable 

precursors of the occurrence of ionospheric irregularities. Mutual relationship studies 

provide a possible route to predict the occurrence of TEC fluctuation and scintillation in 

the ionosphere during the late afternoon and night respectively based on daytime 
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measurement of the equatorial ionosphere. Data from ground based observations in the 

low latitudes of the west American longitude sector were examined during the 2008 solar 

minimum. We find a strong relationship exists between the noontime equatorial electrojet 

and GPS-derived TEC distributions during the afternoon mediated by vertical ExB drift 

via the fountain effect, but there is little or no relationship with postsunset ionospheric 

scintillation. 

 

7.1. Introduction 

On account of its peculiar properties, low latitude ionosphere has become one of the most 

widely studied research areas in the past few decades. Even though forecasting the 

ionospheric irregularities phenomena is a challenging topic in the scientific community, 

many researchers have contributed significantly. The interest in the low latitude 

ionosphere irregularities has increased recently. This is because the behavior of equatorial 

ionosphere differs significantly from the behavior of the ionosphere in other regions. The 

special magnetic field geometry at the geomagnetic equator of the Earth leads to various 

geomagnetic as well as ionospheric phenomena, many of which are unique. The transport 

of charged particles along the geomagnetic field lines in the equatorial region is 

associated with a two-humped latitudinal distribution of electron density, with a 

minimum at the magnetic equator. Another distinguishing feature of the equatorial 

ionosphere is the relative abundance of ionospheric electron density irregularities [Cohen, 

1967; Onwumechili, 1997; Kelley, 2009a]. The equatorial anomalies in the topside 

ionosphere and its correlation with E region current system near the magnetic equator of 

the Earth have been studied by many researchers [MacDougall, 1969; Fejer and Kelley, 
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1980]. Plasma structures are produced in the sporadic E layer whereas equatorial plasma 

bubbles (EPBs) are produced at low latitudes of the F region ionosphere. Plasma 

irregularities in the ionosphere are usually field-aligned and vary as a function of space 

and time [Balsley, 1970; Onwumechili and Agu, 1980; Onwumechili, 1997]. Predicting 

ionospheric irregularities is recognized as one of the highest priorities in the national 

space weather program implementation plan. This is because by knowing ionospheric 

electron density irregularities, adverse space weather effects on GPS navigation, 

telecommunications,  and many other  technologies can be prevented and will also guide 

the way to construct better models of  irregularity development and, eventually, 

scintillation prediction [Kintner, et. al., 2007; Doherty, et. al, 2004]. Therefore 

understanding and forecasting the occurrence and impact of ionospheric irregularities is a 

critical societal need. 

 

In presence of solar radiation, the electron density in the E region ionosphere starts to 

increase and the H component (northward) of the magnetic field shows a steady 

enhancement until around noon, after which it starts decreasing. Such magnetic field 

behavior is due to an eastward electric field during daytime that causes intense current 

system to exist in the low latitudes. An intense electric current flowing eastward in the 

ionospheric E-layer in a narrow belt at latitudes (±2°) centered at the dip equator is called 

the equatorial electrojet (EEJ), a term coined by Chapman [1951]. Owing to this electric 

field and horizontal magnetic field at the equator, ExB drifts are produced and the 

electrons (plasma) are lifted to higher altitudes. The plasma lifts to a certain height and 

then diffuses down along magnetic field lines to the F region at higher latitudes (15° - 
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20°). The plasma, diffused down around 15° - 20° latitudes from either sides of magnetic 

equator creating two plasma crests, is called Equatorial Ionization Anomaly (EIA). The 

daytime vertical plasma drift in the equatorial F-region of the ionosphere is the key 

transport mechanism for determining the electron density profiles as a function of 

altitude, latitude, and local time [Deshpande, et al., 1977; Chen et al, 2008; Banola, et 

al., 2001]. The equatorial daytime vertical drift is a very important element for 

ionospheric theoretical models. The strength of the daytime equatorial electrojet can be 

measured using a pair of magnetometers, one situated on the magnetic equator and the 

other displaced by 6° to 9° latitude away. The difference between noontime enhancement 

of the H component observed by two magnetometers placed on and off-equator by ~6° to 

9° is related to the equatorial electrojet strengths and also quantitatively with vertical ExB 

drift in the F region ionosphere [Rastogi, et al., 1962; Rastogi and Klobuchar, 1990; 

Anderson, et al., 2002, 2004]. In the absence of EEJ, the magnetometers do not provide 

reliable vertical drifts.  

 

The equatorial ionosphere starts to structure after sunset causing plasma instabilities 

called equatorial plasma bubbles (EPB). Consequently, one can expect the occurrence of 

TEC depletions and scintillation in the low latitudes after sunset because of the changes 

in noontime EEJ strengths and vertical drifts. The TEC distribution is an indicator of 

ionospheric variability and defined as the total number of electrons integrated along the 

path from receiver (GPS) to satellite. It is measured in units of TECU (1 TEC Unit = 1016 

electrons/m²). The EPB that occurs at the bottom side of the F-region ionosphere thereby 

adversely affect the amplitude and phase of the radio waves in various frequency bands. 
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An unusual fluctuation in the phase/ amplitude of a radio-frequency signal, when it 

passes through an ionospheric region of random irregularities in electron density that acts 

as a variable refractive index in the medium, is called ionospheric scintillation. These 

scintillation phenomena mainly occur in the geomagnetic equatorial region even though 

observed at all latitudes with less intensity. The signal distortion caused by scintillation 

can degrade the performance of navigation system and generate errors in received 

messages. High priority has been given to the study of ionospheric scintillation because 

of its significant impact on satellite radio communication. Quantitatively, scintillation 

intensity is measured as scintillation index (S4) and defined as normalized variance of the 

signal power [Basu et. al, 2002, Valladares, et al., 2004; Wernik, et al., 2004]. The 

physical processes concerning the generation, dynamics and decay of scintillations are 

known to vary widely. Observational results provide consistent evidence that day time 

EEJ and ExB drifts are well correlated. Association between post sunset EIA, 

EPB/scintillation and ExB drift is also reported in many research articles. Near sunset 

prereversal ExB drifts is the most likely key mechanism responsible for the global large-

scale variations in longitudinal distribution of evening EIA enhancement and plasma 

bubble occurrence rates [Li, et. al., 2008]. Equatorial plasma bubbles are the prominent 

candidate for the cause of scintillation in radio wave propagation, but there are almost no 

studies on correlating daytime EEJ hence vertical ExB drift and night time scintillation. 

The present study focuses on particular characteristic of scintillation and irregularities. 

Incorporating such evidences, our study aims to develop a technique to predict the 

interconnection of disturbances of afternoon GPS-derived TEC and scintillation after 

sunset on the basis of noontime electrojet strengths.  
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7.2. Data Selection and Analysis 

The data from a permanent array of geophysical instruments deployed in the low latitude 

region of South America has had great impact in the study of equatorial ionospheric 

phenomena. It has already been revealed that the equatorial vertical ExB drift velocity is 

an important parameter for the prediction and analysis of the structures and dynamics of 

the ionosphere [Scherliess and Fejer, 1999; Kelley, 2009a; Stoneback, et al, 2011; 

Stoneback and Helis, 2014]. Because of its quite different characteristics, the magnetic 

equator is a unique region in the ionosphere. The low latitude region along the western 

meridian of South America is very useful for a long term study of equatorial ionospheric 

electrodynamics. This is because the magnetic equator in the Peruvian sector has not 

changed significantly for more than a decade. The geomagnetic equator passes through 

Jicamarca (Peru) located at 12° latitude south of the geographic equator. 

 

Data analysis is mostly executed for low solar activity conditions from the stations 

located in the Peruvian sector. The daily average of the solar radio flux F10.7 index was 

less than 85 during most of this period of extremely low solar activity period and offers 

an opportunity to study the quiet time relationship at lower solar activity levels than that 

previously observed. For the current analysis, we have used data from the recent solar 

minimum years 2008. Measurements from ground based chains of GPS (Global 

Positioning System) receivers and magnetometers at low latitudes in the Peruvian sector 

of South America were examined.  
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7.2.1 EEJ & Estimation of Vertical Drifts 

For the current analysis, magnetometer data from Jicamarca (geog.11.9°S, 283.1°E, 

0.8°N dip latitude) and Piura (geog. 5.2°S, 279.4°E, 6.8°N dip latitude) in the Peruvian 

sector where universal time is local time + 5 hours, are used to get the EEJ strengths. The 

horizontal components of earth’s magnetic field (denoted H) from each station are 

normalized with its midnight average background values for each day. Then the H 

component observations from these two magnetometers are subtracted to eliminate the 

Dst ring current and Sq dynamo contributions to get only the electrojet contribution to H 

[Rastogi and Klobuchar., 1990; Anderson, et al., 2002]. The magnetometer inferred 

vertical drift is accurate if there is ionospheric current in the E layer of the ionosphere. 

Here, an artificial neural network technique has been considered in order to establish the 

nonlinear relationship between ExB drift velocities and the most relevant six inputs to the 

network. Artificial multilayer feed-forward neural networks have powerful function-

approximation capabilities for pattern recognition, control and signal processing [Haykin, 

2005].  The six inputs for the neural network we have used are the year, DOY (day of the 

year), F10.7, ap index, LT (local time) and dH (difference of H measured at Jicamarca 

and Piura), which are regarded as controlling parameters for the vertical drifts.  
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Figure 7.1 

 (a) Normalized horizontal component, H of the Earth from two magnetometer stations; 

one at EEJ zone (blue curve) in Jicamarca and other off the EEJ zone (red curve) in 

Piura, whose difference refers EEJ,  

(b) Magnetometer inferred vertical ExB drift using artificial neural network technique. 
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The final output from the neural network training analysis is compared with the desired 

output which is measured Jicamarca Incoherent Scatter Radar (ISR) drift in the existing 

case. The weights in the multilayer neural network are obtained from many epochs of the 

six inputs in order to calculate the relationship with ExB drift velocities. 

 

Figure-7.1 (a) shows the variation of the normalized H components of the Earth against 

universal time (UT) observed from equatorial magnetometer station, Jicamarca (blue 

curve) and off-equator station, Piura (red curve). It is clear that there is an enhancement 

of H at local noon time. The difference of two curves (blue and red) gives the net EEJ 

contribution to H at the geomagnetic equator. Figure 7.1 (b) is a sample plot of the ExB 

vertical drift velocity using the neural network technique with six inputs as described 

above. The plot in Figure 7.1 (b) shows that the ExB vertical drift gradually increases and 

becomes maximum around local noontime then starts to decrease gradually following the 

variation pattern of EEJ. Equatorial electrojet (EEJ) and hence vertical drift strength is 

one of the key factors that determine the evolution of EIA anomaly formed by TEC 

distributions. It is a driving force for vertical plasma drift that lifts equatorial plasma to 

higher altitudes which then diffuses down the Earth’s magnetic field lines to form EIA 

crests around ±15° geomagnetic latitude, consequently removing plasma from around the 

magnetic equator. Having established the quantitative relationship between daytime 

Electrojet strengths and inferred ExB vertical drifts in the ionospheric F region in the 

west coast of South America using the Anderson, et al. [2004] technique, our next 

intention is to investigate the dependence of the TEC and nighttime scintillation. 
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7.2.2 Determination of Latitudinal TEC Profiles  

The equivalent vertical TEC derived from GPS receivers spread along the Peruvian sector 

(as seen in Figure-7.1 of Seemala and Valladares, 2011) of South America (76°W) at 

about 12° geographic latitude is used to detect the strength and occurrence of the 

equatorial anomaly which is caused by vertical plasma drifts in association with EEJ. The 

current study has been done using vertical TEC data obtained from dual frequency GPS 

receivers during the low solar activity period of the years 2008 distributed at the magnetic 

equator and either side of it up to and beyond the ionization anomaly locations in South 

America. The TEC enhancements that are measured with the LISN (Low Latitude 

Ionospheric Sensor Network) and other networks of GPS receivers operating in South 

American occurred quite often during low solar activity periods [Valladares and Chau, 

2012]. Crests of TEC anomalies have a limited longitudinal extension whose distributions 

are determined by the fountain effect that forms EIAs.  
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Figure 7.2. Vertical TEC data during 19 – 22 UT obtained from GPS networks and their 

profiles within ± 30° magnetic latitude in January 2008. Dotted and continuous black 

curve represent maximum values of TEC data and fitted data points respectively. 
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Figure 7.2 shows how TEC observed from different GPS stations are extracted for the 

present analysis. First, TEC data for particular hours are sorted and then plotted against 

±30° magnetic latitude. On the scatter plot of TEC, a polynomial fit is done about their 

maximum values. Such extracted polynomial fitted data are then further utilized to get 

surface plots to see their day to day variability and the shape of the anomalies. Figure 7.2 

shows 30 days’ of January 2008 data against magnetic latitude during 19 - 22UT to 

indicate the strengths and spatial separations of anomaly peaks in EIAs. The continuous 

black curves on each of these plots are the polynomial fit on particular magnetic latitude 

whereas dotted black points represent maximum data points in each of magnetic latitude. 

The strength of TEC anomaly is calculated by taking the  maximum value of the TEC. 

Exceptions are seen in the most of the days during and near solstice period. As reported 

by Chau, et al. [2009], there was a strong Sudden Stratospheric Warming (SSW) event 

from January 17-26, 2008 which strongly affects the daytime, vertical ExB drift 

velocities and is largely responsible for the lack of EIA in the afternoon from January 20 

– 26. Our analysis has also replicated the physical evidence as signatures of SSW’s 

impact on EIAs to eliminate its anomaly peaks for those days as seen in Figure 7.2. The 

separation of the anomaly peaks is calculated in the unit of latitude by taking the 

difference of latitudinal location of the crests. That many anomaly peaks look asymmetric 

might be due to other effects than EEJ, such as meridional neutral winds, composition 

changes due to magnetic perturbations, etc.  
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7.2.3 Determination of Net Ionospheric Scintillation S4 Index  

The strongest level of ionospheric scintillation is observed in the equatorial regions 

(Rastogi, 1983, Basu et. al, 2002, Jiao, et.al, 2013). It should be noted here that the term 

scintillation S4 index used in this paper refers to the amplitude fluctuations received by 

GPS. Multipath interference and background scintillation can also produce fluctuations in 

signal intensity.  

 

We develop a model threshold that removed such contamination in the raw S4 data and 

gives net S4 index associated with scintillations. The threshold model has been used to 

filter scintillation from the raw data. The S4 index is detrended based on the threshold 

line. We construct a statistical distribution of the general S4 index as a function of the 

line-of-sight elevation. The mean value of S4 index is calculated for each 5° of elevation 

angle. A threshold value is calculated using the mean value plus two times the standard 

deviation for each elevation interval. The net values of scintillation (S4 index) are 

obtained after removing the effect of the low elevations and background values. 

Subtracting threshold values from S4 data gives net S4 index values. 

The example plots shown in Figure 7.3 illustrate the above procedure. Figure 7.3 (a) 

shows altitudinal variations of S4 index as observed by GPS receiver located at 

Antofagasta (near the southern crest of the EIAs). The pink line over S4 data is a model 

threshold curve which is a border curve between background (below pink curve) and net 

S4 index (above pink curve) data. When the model threshold curve is subtracted and 

plotted against universal time, the result of Figure 7.3 (a) looks like that in the 7.3 (b). 

Figure 7.3 (b) is the 12 hours variation of net S4 index after sunset. 
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Figure 7.3 (a) Relative S4 index observed at Antofagasta GPS station and threshold line 

(pink) against elevation, (b) Net S4 index against universal time after subtracting the 

background and low elevation contribution. 
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This study mainly emphasizes the occurrence of ionospheric disturbances phenomena 

observed via TEC, S4 index and associated EEJ accompanied by daytime equatorial 

vertical ExB drift from Magnetometer data. This paper addresses the linkage of such 

phenomena with EEJ strength, TEC and scintillation S4 index. 

 

7.3. Concurrent Observations of EEJ, TEC and S4 Index 

The data plots presented here are chosen from the pool of analysis that has been done for 

the year 2008. The results of the day-to-day analysis of EEJ, TEC and S4 data of 2008 

are demonstrated in the comparative surface plots in Figures 7.4, 7.5 and 7.6.  For each of 

the monthly plots, EEJs are clearly seen enhanced and centered about local noon (17UT) 

time. The characteristics of the surface plot in figure 7.4 show that local noontime EEJ is 

more intense during/around equinox months than that in solstice months. Latitudinal TEC 

variations during 19-20UT on equinox and solstice days in figure 7.5 show a similar 

variation pattern as that seen in electrojet variations. The location, strengths and the span 

of the anomaly crests show a large degree of variability. From visual inspection of figure 

7.4, it can be said that the EEJ on March and September equinox (around ±30) days 

become strong and a similar pattern is followed by TEC profiles in figure 7.5. The 

corresponding distributions of EEJ and TEC are faint in June and December solstice 

days. These observations show that local late afternoon TEC variations are very 

dependent on the corresponding EEJ variations near local noontime. This relationship 

study can support the idea of forecasting TEC fluctuations a few hours earlier than their 

occurrence by knowing EEJ at low latitudes. 
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Figure 7.4. Surface plots showing the day-to-day variability of EEJ during 10 - 24 UT of 

the day observed using magnetometers located at Jicamarca and Piura stations during 

solar minimum 2008. 
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Figure 7.5 Latitudinal distributions of day-to-day variability TEC profiles within ± 30° 

from magnetic equator in the Peruvian sector. 
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Figure 7.6. Day-to-day variability of scintillation S4 index during 00 - 12 UT obtained 

from GPS receivers spread on magnetic equator to either sides of anomaly region during 

solar minimum 2008. 
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On the other hand, the net S4 variation observed from GPS stations in the Peruvian 

longitude sector does not show any concrete relationship with daytime EEJ variation 

during equinox and solstice days. In figure7. 6, day-to-day variation of net S4 during 00 – 

12UT has greater values not only during equinox but also beyond. As seen in figure 7.6, 

net S4 is higher in January as well as in November. The next section presents the case 

study events for the correlation analysis between EEJ and the net S4 index. This study 

corroborates that there is not a strong relationship between peak value of EEJ and S4 

index in solar minimum periods. 

 

7.4. Discussion 

We have conducted a careful analysis of magnetometer, GPS and scintillation data to 

draw some conclusions on the role of daytime electric fields on the TEC distributions and 

S4 scintillation index. The strong Electrojet current in the E region ionosphere associated 

equatorial vertical ExB plasma drift in the F region ionosphere, and the accompanying 

noontime enhancement of H component, might be connected to electron density 

irregularities and corresponding plasma bubbles that show an indication of the TEC 

disturbances after sunset in the F region ionosphere.  

 

 

 

 

 

 



Khadka, S. M. (2018), PhD Dissertation. 

193 

 

 

Figure 7.7. Correlation analysis of the daily trends of the peak value of equatorial 

electrojet data in the year 2008 with (a) maximum TEC during 19 - 22 UT, (b) the 

separation of the anomaly crests on equinox (September - 22) ± 30 days, (c) S4 index 

greater than 0.2, and (d) S4 less than 0.2 observed during 00-12UT. 
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The study of the daytime equatorial electrojet can provide a precise and reliable signature 

for forecasting ionospheric dynamics. The data presented in figure 7.7 supports the 

statement that the studies of noontime EEJ have some sort of pre-information on the 

forthcoming ionospheric plasma behavior. As demonstrated in figure 7.4, EEJ reflects an 

intense band of eastward electric field at local noontime along the magnetic equator. The 

daytime eastward current in E region ionosphere regulates the strength of EEJ as well as 

vertical drift. Strong EEJ makes greater vertical drift. EEJ looks stronger during March 

and September equinoxes seasons than that in June and December solstice seasons as 

shown in figure 7.4. There are well-formed late afternoon anomaly crests if there is a 

strong corresponding noontime EEJ. The transport of the low latitude ionospheric plasma 

controls the TEC distribution which is originated by the vertical ExB drift and electrojet; 

both of these are driven by eastward electric field. TEC distributions most of the days are 

not placed symmetrically with respect to the magnetic equator and do not have the same 

latitudinal span of anomaly crests as seen in figure 7.5. We have chosen clear anomaly 

crest periods in September equinox and analyzed for ±30 days from the equinox day to 

see the dependence of anomaly separation on EEJ strengths. The strengths and separation 

of anomaly crests shown in figure 7.5 are in good agreement with the EEJ strengths. 

 

The correlation plot in figure 7.7 (a) gives a clear picture of the linear dependence of 

peak values of late afternoon (19-22UT) TEC and 7.7 (b) that of the separation of the 

anomaly crests on the noontime EEJ strength. By comparing the TEC in Figures 7.5 and 

7.7 (a), (b), it can be said that higher EEJ and hence vertical drift causes higher electron 

density in the equatorial ionization anomaly regions and also causes the EIA crests to 
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move farther from the magnetic equator region. The simultaneous study of the 

dependence of EIA strengths and the separation of anomaly crests upon the noontime 

electrojet is one of the main aspects of this analysis. 

 

Another analysis is done to obtain information of nighttime scintillation index S4 based 

on corresponding daytime electrojet strength. For the dependence analysis, looking at the 

S4 data distributions against EEJ variation, the correlation is studied in two regimes as in 

figures 7.7 (c) and (d). S4 Data demonstrated in figures 7.7 (c) and (d) are taken from 

Cuzco GPS station located near the magnetic equator region during 00-12UT in 2008. 

There is a signature of linear dependence of S4 index (>0.2) on peak value of EEJ as 

shown in figure 7.7 (c) but the linear curve looks parallel to the x axis for S4 index (<0.2) 

in figure 7.7 (d). Slight dependence of nighttime S4 index with value greater than 0.2 is 

seen with daytime peak value of EEJ but no correlation is seen with it if S4 index value 

goes below 0.2. There are many factors that inhibit nighttime scintillation. One clue is 

that, the scintillation should be interpreted on the basis of the starting time of magnetic 

disturbance. This study also reveals that the noontime EEJ is not a good predictor for the 

nighttime ionospheric scintillation in the low latitude during low solar activity periods.  

 

7.5. Summary and Conclusions 

A comparative study of electrojet current strength, TEC, and S4 scintillation index from 

magnetometers, and GPS receivers at low latitude stations has been conducted to 

investigate potential predictive signatures for the occurrence of disturbances in the 

equatorial ionosphere.  We found that days with higher value of the equatorial electrojet 
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and hence higher daytime vertical ExB drift are associated with higher TEC values and a 

greater separation of the equatorial anomaly crests. But there is no apparent correlation 

with the S4 scintillation index observed later during the nighttime. Minor correlation of 

peak value of electrojet with net S4 greater than 0.2 likely exists but there is no 

correlation at all below 0.2 for the solar minimum year 2008.  This research study 

suggests that there is a clear association between magnetometer observed daytime EEJ 

and the strength and distribution of GPS-derived TEC during late afternoon in magnetic 

low latitudes.  However, there is little correlation between peak EEJ and the 

corresponding S4 scintillation index observed after sunset. 

 

A large dataset on EEJ strength, ExB drift velocity, and TEC using magnetometers, 

ionosondes, GPS receivers, and radar measurements are needed to establish the precise 

relationships between them under various background conditions.  As in the polar region, 

the equatorial region is also highly susceptible to ionospheric scintillations during strong 

solar activity periods. Extending the analysis to solar maximum conditions with a larger 

database of nighttime S4 index (above 0.2) will certainly be worthwhile project in 

accessing correlations with peak values of daytime EEJ. Collection of long-term statistics 

relating magnetometer-derived drifts and radar-measured drifts can contribute 

significantly to a more economical way to characterize the occurrence of ionospheric 

irregularities.  The development of such model and statistical relations can help in real-

time ionospheric monitoring and improvement in GPS navigation capabilities. 
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Chapter 8 

 

SUMMARY AND FUTURE RESEARCH 

 

 

8.1 Overview of Dissertation Results 

The guiding principle behind this dissertation is to seek ways that can be used to predict 

and mitigate space weather effects on spaced-based technological devices useful to 

mankind with a general understanding of the structure and electrodynamics of the 

equatorial and low-latitude ionosphere based on ground and space-based observations. 

We started, as described in Chapter 1, with the motivation of the investigation by 

designing a set of research questions. It also introduces how low-latitude phenomena 

confined within a very thin shell of ionospheric layer, and their variability affect our 
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practical life being a source of disruptions for critical infrastructure. In chapter 2, a brief 

description of the structure, features, and physics of the geospace environment in the low-

latitude regions are presented. Particularly, the general features, caprices and vagaries of 

the most prevalent ionospheric phenomena in the low-latitude phenomena e.g., EEJ, EIA, 

and EPBs/Blobs, are discussed. The physics and mechanism behind each of these 

phenomena are also presented to look for possible interconnectedness between them. The 

ionosphere is a suitable laboratory for studying various plasma processes that exist in 

near-Earth space environment. Further, Chapter 3 provides an overview of geographical 

area of interest for the study, data sources, methodology for data analysis, and description 

of instruments chosen from ground and space for current investigation. Besides probing 

ionospheric event using single instrument, benefit of the coordinated analysis of an 

ionospheric plasma density observation has also been discussed. With the help of these 

theories, instruments, and approaches, novel conclusions of this dissertation are 

summarized as follows. 

 

8.1.1 Variability of EEJ and its Consequences  

With the analysis developed in Chapter 4, it is clear that EEJ shows a strong variability 

with longitude, season, day-to-day variability and solar activity. Probably for the first 

time, variability of EEJ in a very narrow spatial separation in South American low-

latitute is presented. Overall, the EEJ current is higher in the western American meridian 

and keep decreasing towards the eastern meridian sector of South America. The vertical 

dynamics of F-layer ionosphere and TEC distribution in EIA show a substantial 

association with the variability of the EEJ and its counter portion in the morning period.  
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8.1.2 Asymmetry of EIAs  

We explored the basic characteristics, and then took a look at the asymmetric structure in 

the EIA via the SOFDI measurements and the LLIONS physics-based model in Chapter 

5. For the first time, 24-hours measured meridional neutral wind is presented in order to 

demonstrate its role on the development of asymmetric structure of the EIA in the low-

latitude ionosphere. EEJ as a proxy of EEF is a primary source of the EIA, whereas and 

the trans-equatorial neutral wind controls its asymmetric structure by influencing the 

equatorial plasma fountain mechanism. 

 

 8.1.3 Evolution to Decay of EPBs/ Blobs 

The unique geometry of the path of the SWARM satellite constellation allows us to 

conduct multiple and almost simultaneous in-situ measurement through the same set of 

EPBs/ Blobs over low latitude regions, to investigate their coherence and the motion of 

structures embedded within the EPBs. This benefit of the SWARM satellite is used for 

the coordinated quantitative analysis of a plasma density from ground LISN observation 

as well, and is presented in Chapter 6. The simultaneous analysis provides evidence of 

the initial association of EPBs with plasma blobs at equator and later the blobs are 

separated at EIA latitudes via fountain effect. Different ionospheric processes are also 

discussed and further analysis has been suggested to provide universal theory for 

generation, dynamics, and decay of EPBs and plasma blobs. 
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8.1.4 Mutual Relationship between Ionospheric Parameters 

Understanding and forecasting the occurrence and impact of ionospheric irregularities in 

the space- and ground-based instruments is a critical societal need. To fulfil this 

necessity, this study looks for a mutual relationship between the midday, afternoon and 

nighttime ionospheric phenomena to advance our space weather forecasting capability as 

presented in Chapter 7. Almost all behaviors of the afternoon EIA are influenced by 

noontime EEJ but only a weak influence of the peak EEJ is seen in the ionospheric 

amplitude scintillation (S4) after sunset, above a certain threshold. It is reveal that the 

daytime EEJ can provide a precise and reliable signature for forecasting the nighttime 

ionospheric dynamics, and have some sort of pre-information on the forthcoming 

ionospheric plasma behavior.  

 

8.2 Space Weather and Impacts on Space-Based Technologies 

Exclusively, there is weather in space; mainly driven by solar activities that influence 

modern technologies analogous to what the tropospheric weather does to life of living 

beings on the Earth surface. The dynamic Sun and its subsequent effects in the 

interplanetary space are the main sources of space weather activity on Earth. With the 

establishment of The U. S. National Space Weather Program in 1994, as mentioned in 

Robinson and Behnke, [2001], space weather is officially defined as the conditions on the 

Sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can 

influence the performance and reliability of space-borne and ground-based technological 

systems and can endanger human life or health. Adverse conditions in the space 

environment can cause disruption of satellite operations, communications, navigation, 



Khadka, S. M. (2018), PhD Dissertation. 

201 

and electric power distribution grids, leading to a variety of socioeconomic losses. 

However, space weather is affecting us, our space-borne and ground-based technologies; 

it has presented challenges as well as opportunities for the scientific community to show 

the practical benefits of solar-terrestrial research. Figure 8.1 highlights some of the 

adverse effects of space weather that arise from solar transients on systems, and the 

mechanisms behind the effects. These include damages/ failures in the spacecraft 

electronics caused by high energy protons, electron induced spacecraft surface and 

internal charging leading to discharge currents, solar panel degradation due to particle 

bombardment, human tissue damages due to particle radiation, atmospheric drag 

experienced by low orbit spacecraft, interruptions in the HF communication and 

navigation systems caused by irregularities in the ionosphere (e.g., EPBs), cosmic ray 

induced neutron radiation at airline heights, geomagnetically induced currents (GIC) in 

long conductor systems on the ground caused by rapidly varying ionospheric currents, 

and the possible modulation of the neutral atmospheric weather by space weather 

[Pulkkinen, 2003; MacAlester and Murtagh, 2014].  
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Figure 8.1: Highlights of space weather effects arise from solar transients [Image: 

Subramanian, 2009]. 
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The driving mechanism of space weather is linked by the chain of causal connections and 

physical processes starting from the Sun. Solar events such as Coronal Mass Ejections 

(CMEs), solar flares and associated recombination events are some of the driving factors 

in space weather that can cause potentially devastating effects on the terrestrial power 

grid, associated infrastructure, and assets [Gaunt, 2015; Johnson et al., 2016]. CMEs and 

CIRs (Corotating Interaction Regions) expelled from solar corona have been established 

as the primary source of major geomagnetic storms and large SEP (Solar Energetic 

particle) events [Gosling et al., 1976; Gonzalez et al., 1994; Gopalswamy, 2008]. 

Interplanetary (IP) shocks and the underlying CMEs modify the magnetosphere and 

ionosphere current systems, which then can cause magnetic field variability on the 

ground. These variations cause geomagnetically induced currents (GICs) in terrestrial 

conductors such as electric power grids, buried pipelines, telegraph lines, submarine 

cables and railroads etc. [Boteler et al., 1998; Eroshenko et al., 2010; Knipp, 2015]. 

 

Interplanetary (IP) shocks are mainly responsible for the sudden compression of the 

magnetosphere, causing storm sudden commencements (SCs) and sudden impulses (SIs) 

which are detected by ground-based magnetometers [Veenadhari et al, 2012]. The SC 

events are often the precursors to strong geomagnetic storms and can indicate the onset of 

a more intense solar wind driving and buffeting the magnetosphere [Belakhovsky et al. 

2017]. The stronger dB/dt magnetic spikes at the arrival of interplanetary shocks could 

cause significant GICs and electric fields that might have damaging effects on modern 

ground-based technological infrastructures. The strength of these currents can be detected 

by the time derivative of the ground-based magnetometer observations (dB/dt) [Coles 
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and Boteler, 1993; Forbes and St. Cyr, 2008] and is also significantly quantifiable in the 

equatorial and auroral electrojets [Kappernman and Albertson, 1990; Carter et al., 2015].  

This dissertation also pursues a correlation between the noontime EEJ, the GPS-derived 

TEC distributions in EIA during the afternoon, and postsunset ionospheric scintillation. A 

strong correlation between EEJ and EIA was found, but; only a minor correlation exists 

between the peak EEJ and postsunset ionospheric scintillation index (S4) above a certain 

threshold. Our finding not only establishes a mutual relationship between the midday, 

afternoon and nighttime ionospheric phenomena but also opens an avenue for a possible 

route to improve current space weather forecasting capability at the equatorial and low 

latitudes. The understanding of physical processes involved in this correlation could lead 

to the possible improvement in predicting and forecasting the quiet as well as storm-time 

plasma redistribution and the creation of irregularities. Both the U.S. Department of 

Homeland Security [2011] and U.S. Federal Energy Regulatory Commission [2016] have 

the highest concern for preparedness against adverse space weather events, and address 

the impacts of geomagnetic disturbances. New developments in observational sensors 

now allow for virtualizing and detailing the magnetosphere and ionosphere variations in 

response to solar conditions with great fidelity in space and time which therefore provide 

great potential for new discoveries.  

 

8.3 Directions for Future Research   

The work presented in this dissertation provokes many questions and challenges that need 

to be addressed in future studies. A few possibilities that seem most useful are outlined in 

this section.   
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• Global longitudinal variability of EEJ. 

Day-to-day longitudinal variability of EEJ and its counter feature is always an essential 

baseline to understand ionospheric electrodynamics since it is a proxy of ionospheric 

electric field and is used as inputs in many models in space physics community. 

Currently, a dense network of magnetometers have been installed in the low-latitude 

region around the globe by various research organizations with the purpose of studying 

and forecasting ionospheric phenomena, with special emphasis in the dynamics and 

energy transport processes. New insights need to be continued similar to what has been 

mentioned in Chapter 4, for the study of the occurrence, cause and accompanying 

phenomena of the narrow longitudinal variability of electrojet and counter electrojet 

globally from ground magnetometers and also coordinated with radar, optical, radio and 

satellite observations. 

 

• EEJ as a signature of GIC. 

Influence level of electrojet profile on GICs as dB/dt, ground magnetic signatures, at 

magnetic equator and high latitudes will be used to examine its impact level during 

geomagnetic storms. Extreme space weather events have a low occurrence rate but a 

potentially high impact in high as well as low latitudes region that presents a major 

challenge for our understanding of GIC activity [Carter et al., 2015; Pulkkinen et al., 

2017; Ngwira and Pulkkinen, 2018]. Signatures of GICs at EEJ ultimately become 

another asset for space weather prediction. The extension of the relationship study as 

discussed in Chapter 7, will significantly advance our understanding and modeling 

capabilities describing solar and magnetosphere-ionospheric dynamics, ground 
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conductivity, and accurate forecasting to avoid catastrophic failures of systems and to 

enhance the performance of infrastructures having long metal conductor systems, e.g. in 

electric power lines, underground pipelines, telegraph lines, submarine cables, and 

railroads etc. 

 

• Role of EEJ and its depression on F-region dynamics and onsets of PRE and ESF. 

The ultimate cause of the PRE is associated with the F region zonal neutral wind dynamo 

near the sunset terminator [Haerendel and Eccles, 1992]. The increase in the F-layer 

height and the onsets of equatorial spread-F (ESF) during the evening hours were well 

connected with the ground-measured EEJ strength before sunset, namely, both the height 

increase and ESF onsets were suppressed with afternoon EEJ depression (AED) [Uemoto 

et al., 2010; Eccles et al., 2015]. It would be very important analysis to extend the study 

of the  contribution of the morning EEJ depression (MED) discussed in Chapter 4, as a 

regulating current path during pre-sunset E-region dynamo current and how these electric 

fields are related to evening PRE, the F-region dynamics, and the ESF onsets after sunset.  

 

• Thermospheric neutral wind on EIA asymmetry. 

The thermospheric neutral wind is an unavoidable factor causing the formation of the 

EIA asymmetry formation.  To draw more quantitative conclusions about the role of 

neutral wind as an ionospheric driver of EIA asymmetry, which was discussed in Chapter 

5, a rigorous long-term neutral wind data from real time measurement systems is going to 

be required. Further analysis and investigation with real time data will certainly be a very 

important study to distinguish the relative contribution between the meridional, zonal and 



Khadka, S. M. (2018), PhD Dissertation. 

207 

vertical component of the thermospheric neutral wind for the transportation of plasma 

along the entire flux-tube geometry. This study would eventually be helpful to validate 

the neutral wind in the upper atmosphere derived from existing physics-based as well as 

empirical models under quiet and magnetosphere-induced disturbed conditions. 

 

• Coordinated ground and space-based measurements of ionospheric plasma structures 

for the understanding of generation to decay mechanism. 

There are numerous studies on generation, dynamics, and decay mechanism of plasma 

depletions (bubbles) and enhancements (blobs) in the low-latitude ionosphere.  Kil et al., 

[2015] proposed that bubbles and blobs are created by different mechanism whereas 

Huang et al. [2014] claimed that these are created by the same mechanism. But, recent 

studies by Choi et al., [2012] and Miller et al., [2014] demonstrated that medium-scale 

traveling ionospheric disturbances (MSTIDs) are possible driving mechanism for the 

formation of the blobs independent of that of bubbles. Using coordinated ground and 

space-based multi-probe measurement from different locations as presented in Chapter 6, 

we will be able to address role of aforementioned sources, their relationship, and provide 

universal theory behind generation, dynamics, and decay of plasma bubbles and blobs in 

the low-latitude ionosphere. 
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Chapter 9 

 

References 

 

Aarons, J. (1993), The longitudinal morphology of equatorial F layer irregularities 

relevant to their occurrence, Space Sci. Rev., 63, 209. 

Abdu, M. A. (2001), Outstanding problems in the equatorial ionosphere-thermosphere 

electrodynamics relevant to spread F, J. Atmos. Terr. Phys., 63, 869-884. 

Abdu, M. A., G. O. Walker, B. M. Reddy, J. H. A. Sobral, B. G. Fejer, T. Kikuchi, N. B. 

Trivedi, and E. P. Szuszczewicz (1990), Electric field versus neutral wind control 

of the equatorial anomaly under quiet and disturbed condition: A global 

perspective from SUNDIAL 86, Ann. Geophys. , 8, 419–430. 

Abdu, M. A., J. A. Bittencourt, and I. S. Batista (1981), Magnetic declination control of 

the equatorial F region dynamo electric field development and spread F, J. 

Geophys. Res., 86(A13), 11443–11446, doi:10.1029/JA086iA13p11443. 

Abdu, M. A., R. T. Medeiros, J. A. Bittencourt, and I. S. Batista (1983), Vertical 

ionization drift velocities and range type spread F in the evening equatorial 

ionosphere, J. Geophys. Res. 88, 399-402. 

Abdu, M.A., C. G. M. Brum, I.S. Batista, J. H. A. Sobral, E.R. de Paula, J. R. Souza 

(2008), Solar flux effects on equatorial ionization anomaly and total electron 

content over Brazil: observational results versus IRI representations, Advances in 

Space Research, Vol. 42(4), pp. 617–625, doi:10.1016/j.asr.2007.09.043. 



Khadka, S. M. (2018), PhD Dissertation. 

209 

Akasofu, S.-I., and Y. Kamide, (1985), Meridian chains of magnetometers as a powerful 

“remote-sensing” tool in determining electromagnetic quantities in the ionosphere 

on a global scale, Eos Trans. AGU., 66, 465.  

Akbari, H. (2015), Beam-plasma interactions and Langmuir turbulence in the auroral 

ionosphere, PhD thesis, Boston University. 

Akbari, H., Bhatt, A., La Hoz, C., and Semeter, J. L. (2017), Incoherent Scatter Plasma 

Lines:  Observations and Applications, Space Sci. Rev., 

https://doi.org/10.1007/s11214-017-0355-7. 

Alken, P., S. Maus, P. Vigneron, O. Sirol, and G. Hulot (2013), Swarm SCARF 

equatorial electric field inversion chain, Earth Planets Space, 65, this issue, 

1309–1317. 

Anandarao BG (1976), Effects of gravity wave winds and wind shears on equatorial 

Electrojet. Geophys Res Lett 3:545–547. 

Anderson D. N. (1973), A theoretical study of the ionospheric F region equatorial 

anomaly, I, Theory, Planet. Space Sci., Vol. 21(3), 409–419. doi:10.1016/0032-

0633(73)90040-8. 

Anderson, D., A. Anghel, J. Chau, and O. Veliz (2004), Daytime vertical ExB drift 

velocities inferred from ground-based magnetometer observations at low 

latitudes, Space Weather, Vol. 2, and S11001,  doi:10.1029/2004SW000095. 

Anderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki (2002), Estimating 

daytime vertical ExB drift velocities in the equatorial F-region using ground-

based magnetometer observations, Geophys. Res. Lett., Vol. 29 (12), doi: 

10.1029/2001GL014562. 



Khadka, S. M. (2018), PhD Dissertation. 

210 

Anderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki (2002), Estimating 

daytime vertical ExB drift velocities in the equatorial F-region using ground-

based magnetometer observations, Geophys. Res. Lett., Vol. 29 (12), doi: 

10.1029/2001GL014562. 

Appleton, E. V. (1946), Two anomalies in the ionosphere, Nature, Vol. 157 (3995), 691, 

doi: 10.1038/157691a0. 

Appleton, E. V., M. A. F. Barnett (1925), On some direct evidence for downward 

atmospheric reflection of electric rays, Proc. R. Soc. London, Ser. A, 109, 621–

641.  

Babcock, H. D. (1923), A study of the green auroral line by the interference method, 

Astrophys. J., 57, 209-221.  

Bailey, G. J., N. Balan, and Y. Z. Su (1997), The Sheffield University plasmasphere 

ionosphere model—A review, J. Atmos. Sol. Terr. Phys., 59, 1541–1552, 

doi:10.1016/S1364‐6826(96)00155‐1. 

Bailey, G. J., R. J. Moffett, W. B. Hanson, and S. Sanatani (1973), Effects of 

interhemisphere transport on plasma temperatures at low latitudes, J. Geophys. 

Res., 78(25), 5597–5610, doi:10.1029/JA078i025p05597. 

Balan, N., G. J. Bailey (1995), Modeling studies of the equatorial plasma fountain and 

equatorial anomaly, Adv. Space Res..  

Balan, N., J.J. Bailey, R.J. Moffett, Y.Z. Su, J.E. Titheridge (1995), Modeling studies of 

the conjugate-hemisphere differences in ionospheric ionization at equatorial 

anomaly latitudes, J. Atmos. Terr. Phys. 57(3), 279-292. 

Balfour Steward (1882), Terrestrial magnetism, Encyclopedia Britannica, 9th ed., 16, 181  



Khadka, S. M. (2018), PhD Dissertation. 

211 

Balsley, B B. (1970), Equatorial Electrojet: Seasonal Variation of the Reversal Times, J. 

Geophys. Res., Space Physics, Vol. 75 (22), 4369–4371, doi: 

10.1029/JA075i022p04369. 

Balsley, B B. (1970), Longitudinal variation of electron drift velocity in the equatorial 

electrojet, J. Geophys. Res., Space Physics, Vol. 75 (22), 4291–4297, 

doi:10.1029/JA075i022p04291. 

Balsley, B. B. (1973), Electric fields in the equatorial ionosphere: A review of techniques 

and measurements, J. Atmos. Terr. Phys., 35, 1035–1044.  

Banola, S., B. M. Pathan, and D. R. K. Rao (2001), Strength of the equatorial electrojet 

and geomagnetic activity control on VHF scintillations at the Indian longitudinal 

zone, Indian J. of Radio Space Phys., Vol. 30, 163-171. 

Bartels J, Johnston HF (1940) Geomagnetic tides in horizontal intensity at Huancayo. 

Terr. Mag. Atmos. Elec. 45:269–308. 

Basu, S., et al. (1996), Scintillations, plasma drifts, and neutral winds in the equatorial 

ionosphere after sunset, J. Geophys. Res., 101(A12), 26795–26809, 

doi:10.1029/96JA00760. 

Basu, S., K. M. Groves, Su. Basu, and P. J. Sultan (2002), Specification and forecasting 

of scintillations in communication and navigation links: Current status and future 

plans, J. Atmos. Sol. Terr. Phys., 64 (16), 1745-1754, doi: 10.1016/S1364-

6826(02)00124-4. 

Batista, I. S., M. A. Abdu, and J. A. Bittencourt (1986), Equatorial F region vertical 

plasma drifts: Seasonal and longitudinal asymmetries in the American sector, J. 

Geophys. Res., 91(A11), 12055–12064, doi:10.1029/JA091iA11p12055. 



Khadka, S. M. (2018), PhD Dissertation. 

212 

Bauer, S. J., A. F. Nagy (1975), Ionospheric direct measurement techniques, Proc. IEEE, 

63, 230.  

Bauer, S. J., and R. E. Hartle (1973), On the extent of the Martian ionosphere, J. 

Geophys. Res., 78(16), 3169–3171, doi:10.1029/JA078i016p03169. 

Baumjohann, W. and R. A. Treumann (2012), Basic Space Plasma Physics, Revised 

Edition, Imperial College Press, London. 

Belakhovsky, V. B., V. Pilipenko, Y.A. Sakharov, D.L. Lorentsen, S.N. Samsonov, 

(2017), Geomagnetic and ionospheric response to the interplanetary shock on Jan. 

24, 2012, Earth, Planets Space, 69 (105), 1-25, doi:10.1186/s40623-017-0696-1 

Bhardwaj, S.K. & Subba Rao, P.B.V.(2017) The afternoon counter-electrojet current 

system along the 75°E meridian during the IEEY, Earth Planets Space, 69: 91. 

https://doi-org.proxy.bc.edu/10.1186/s40623-017-0675-6.  

Bhatt, A. N. (2010), Exploring the electron component in incoherent scatter from the 

ionosphere. Ph.D. Thesis, Cornell University. 

Bhuyan P.K. and Borah RR (2007) TEC derived from GPS network in India and 

comparison with IRI. Advances in Space Research, Vol. 39(5), 830-840, 

doi:10.1016/j.asr.2006.12.042 

Blanc, M. and A. D. Richmond (1980), The ionospheric disturbance dynamo, J. Geophys. 

Res., Vol. 85 (A4), 1669–1686, doi: 10.1029/JA085iA04p01669. 

Boteler, D., R. Pirjola, and H. Nevanlinna (1998), The effects of geomagnetic 

disturbances on electrical systems at the Earth’s surface, Adv. Space Res., 22(1), 

17–27, doi:10.1016/S0273-1177(97)01096-X. 



Khadka, S. M. (2018), PhD Dissertation. 

213 

Burnside, R. G., F. A. Herrero, J. W. Meriwether, and J. C. G. Walker (1981), Optical 

observations of thermospheric dynamics at Arecibo, J. Geophys. Res., 86(A7), 

5532–5540, doi:10.1029/JA086iA07p05532. 

Carter, B. A., E. Yizengaw, R. Pradipta, A. J. Halford, R. Norman, and K. Zhang (2015), 

Interplanetary shocks and the resulting geomagnetically induced currents at the 

equator, Geophys. Res. Lett., 42, 6554–6559, doi:10.1002/2015GL065060. 

Carter, B. A., E. Yizengaw, R. Pradipta, J. M. Retterer, K. Groves, C. Valladares, R. 

Caton, C. Bridgwood, R. Norman, and K. Zhang (2016), Global equatorial plasma 

bubble occurrence during the 2015 St. Patrick's Day storm, J. Geophys. Res. 

Space Physics, 121, 894–905, doi:10.1002/2015JA022194. 

Çelik, C. (2013), The solar daily geomagnetic variation and its dependence on sunspot 

number. J. Atmos. Sol.-Terr. Phys. 104, 75–86. 

Chakrabarti, N., and G. S. Lakhina (2003), Collisional Rayleigh‐Taylor instability and 

shear‐flow in equatorial spread F plasma, Ann. Geophys., 21, 1153. 

Chandrasekhar NP, Archana RK, Nagarajan N, Arora K (2017), Variability of Equatorial 

counter electrojet signatures in the Indian region. J Geophys Res. doi: 

10.1002/2016JA022904. 

Chapagain, Narayan P. (2011), Dynamics of Equatorial Spread F Using Ground-Based 

Optical and Radar Measurements, Ph.D. Thesis, Utah State University, Logan, 

Utah, 

Chapman, S. (1951), The equatorial electrojet as detected from the abnormal electric 

current distribution above Huancayo, Peru and elsewhere, Arch. Meteorol., 

Geophys. Bioklimatol., Ser. A, Vol.4(1), 368–390, doi: 10.1007/BF02246814. 



Khadka, S. M. (2018), PhD Dissertation. 

214 

Chau, J. L., B. G. Fejer, and L. P. Goncharenko (2009), Quiet variability of equatorial 

ExB drifts during a sudden stratospheric warming event, Geophys. Res. Lett., 36, 

L05101, doi: 10.1029/2008GL036785. 

Chen, C. H., J. Y. Liu, K. Yumoto, C. H. Lin, and T. W. Fang (2008), Equatorial 

ionization anomaly of the total electron content and equatorial electrojet of 

ground-based geomagnetic field strengths, J. Atmos. Sol. Terr. Phys., Vol.70 (17), 

2172-2183,  doi:10.1016/j.jastp.2008.09.021 

Choi, H.-S., H. Kil, Y.-S. Kwak, R. A. Heelis, W. R. Coley, Y.-D. Park, and K.-S. Cho 

(2012), Comparison of the bubble and blob distributions during the solar 

minimum, J. Geophys. Res., 117, A04314, doi:10.1029/2011JA017292. 

Cohen, R. (1967), The equatorial ionosphere, Physics of Geomagnetic Phenomena. S. 

Matushita and W. Campbell, eds. Academic Press, New York. 

Coles, R. L. and Boteler, D. H. (1993), Geomagnetic induced currents: assessment of 

geomagnetic hazard, GSC (Geological Survey of Canada), Open File 2635, 93 

pages https://doi.org/10.4095/184063. 

Coster, A. J., J. C. Foster, and P. J. Erickson (2003), Monitoring the ionosphere with 

GPS, GPS World, 14(5), 42–49. 

Dang, T., X. Luan, J. Lei, X. Dou, and W. Wan (2016), A numerical study of the 

interhemispheric asymmetry of the equatorial ionization anomaly in solstice at 

solar minimum, J. Geophys. Res. Space Physics, 121, doi: 

10.1002/2016JA023012. 

Davies, K. (1989), Ionospheric Radio, IEE Electromagnetic Wave Series 31, 

http://www.digisonde.com/instrument-description.html. 



Khadka, S. M. (2018), PhD Dissertation. 

215 

Deshpande, M. R., et al. (1977), Effect of electrojet on the total electron content of the 

ionosphere over the Indian subcontinent, Nature 267, 599-600, doi: 

10.1038/267599a0. 

Deshpande, M. R., et al. (1977), Effect of electrojet on the total electron content of the 

ionosphere over the Indian subcontinent, Nature 267, 599-600, doi: 

10.1038/267599a0. 

Doherty, P., A. J. Coster, and W. Murtagh (2004), Space weather effects of October-

November 2003. GPS Solutions, Vol. 8 (4), 267-271, doi: 10.1007ls10291-

0040109-3. 

Dougherty, J. P., and D. T. Farley (1960), A theory of incoherent scattering of radio 

waves by plasma, Proc. Roy.  Soc. London,  A, 259, 79-99.  

Dougherty, J. P., and D. T. Farley Jr. (1963), A theory of incoherent scattering of radio 

waves by a plasma: 3. Scattering in a partly ionized gas, J. Geophys. Res., 68(19), 

5473–5486, doi:10.1029/JZ068i019p05473. 

Dunford, E. (1967), The relationship between the ionospheric equatorial anomaly and the 

E-region current system, J. Atmos. Terr. Phys., 29, 1489–1498. 

Dungey, J. W. (1956), Convective diffusion in the equatorial F-region, J. Atoms. Terr. 

Phys. 9, 304. 

Eccles, J. V., J. P. St. Maurice, and R. W. Schunk (2015), Mechanisms underlying the 

prereversal enhancement of the vertical plasma drift in the low-latitude 

ionosphere, J. Geophys. Res. Space Physics, 120, 4950–4970, 

doi:10.1002/2014JA020664. 



Khadka, S. M. (2018), PhD Dissertation. 

216 

Eccles, J. V., N. Maynard, and G. Wilson (1999), Study of the evening plasma drift 

vortex in the low-latitude ionosphere using San Marco electric field 

measurements, J. Geophys. Res., 104(A12), 28133-28143. 

Eccles, V., D. D. Rice, J. J. Sojka, C. E. Valladares, T. Bullett, and J. L. Chau (2011), 

Lunar atmospheric tidal effects in the plasma drifts observed by the Low-Latitude 

Ionospheric Sensor Network, J. Geophys. Res., 116, A07309, 

doi:10.1029/2010JA016282. 

Egedal, J. (1947), The magnetic diurnal variation of the horizontal force near magnetic 

equator, J. Geophys. Research, Vol. 52(4), 449-451, doi: 

10.1029/TE052i004p00449. 

Eroshenko E. A., Belov A. V., Boteler, D., Gaidash S. P., Lobkov S. L., et al. (2010), 

Effects of Strong Geomagnetic Storms on Northern Railways in Russia, Adv. 

Space Res., 46, 1102- 1110, http://dx.doi.org/10.1016/j.asr.2010.05.017 

Evans, J. (1969). Theory and practice of ionosphere study by Thomson scatter radar. 

Proceedings of the IEEE, 57(4), 496–530. 

https://doi.org/10.1109/PROC.1969.7005 

Fabry, Charles and Alfred Pérot (1897), Sur les franges des lames minces argentées et 

leur application a`la mesure de petites épaisseurs d’air, Ann.Chim. Phys.12, 459–

501. 

Farley, D. T., B. B. Basley, R. F. Woodman, and J. P. McClure (1970), Equatorial spread 

F: Implications of VHF radar observations, J. Geophys. Res., 75, 7199-7216. 



Khadka, S. M. (2018), PhD Dissertation. 

217 

Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen (1986), The prereversal 

enhancement of the zonal electric field in the equatorial ionosphere, J. Geophys. 

Res., 91, 13723. 

Fejer, B. G. (1981), The equatorial ionospheric electric fields: A review, J. Atmos. Terr. 

Phys., 43(516), 377–386, doi:10.1016/0021‐9169(81)90101‐X. 

Fejer, B. G. (1991), Low latitude electrodynamic plasma drifts: A review, J. Atmos. Terr. 

Phys., Vol. 53, 677,  doi:10.1016/0021-9169(91)90121-M. 

Fejer, B. G. and M. C. Kelley (1980), Ionospheric Irregularities, Review of Geophysics, 

Vol. 18 (2), 401-454, doi: 10.1029/RG018i002p00401. 

Fejer, B. G., (2015) The Equatorial Ionosphere: A Tutorial, Lecture presented in CEDAR 

Workshop, Seattle. 

Fejer, B. G., and M. C. Kelley (1980), Ionospheric irregularities, Rev. Geophys., 18, 401–

454. 

Fejer, B. G., Gonzales, C. A., Farley, D. T., Kelley, M. C., & Woodman, R. F. (1979). 

Equatorial electric fields during magnetically disturbed conditions 1. The effect of 

the interplanetary magnetic field. Journal of Geophysical Research, 84(13), 

5797–5802.  

Fejer, B. G., M. E. Olson, J. L. Chau, C. Stolle, H. Lühr, L. P. Goncharenko, K. Yumoto, 

and T. Nagatsuma (2010), Lunar‐dependent equatorial ionospheric 

electrodynamic effects during sudden stratospheric warmings, J. Geophys. Res., 

115, A00G03, doi:10.1029/2010JA015273. 

Fejer, B.G., Scherliess, L. (1997), Empirical models of storm time equatorial zonal 

electric fields, Journal of Geophysical Research 102 (24), 047. 



Khadka, S. M. (2018), PhD Dissertation. 

218 

Fejer, B.G., Scherliess, L., de Paula, E.R. (1999), Effects of the vertical plasma drift 

velocity on the generation and evolution of equatorial spread F, Journal of 

Geophysical Research 104, 19859–19869. 

Forbes, J. M. (1981), The Equatorial electrojet, Rev. of Geophysics and space science, 

Vol. 19 (3), 469-504,  doi: 10.1029/RG019i003p00469. 

Forbes, J. M., R.S. Lindzen (1976), Atmospheric solar tides and their electrodynamic 

effects, II theequatorial electrojet, J. Atmos. Terr. Phys. 38, 911–920.  

Forbes, K. F., and O. C. St. Cyr (2008), Solar activity and economic fundamentals: 

Evidence from 12 geographically disparate power grids, Space Weather, 6, 

S10003, doi:10.1029/2007SW000350 

Francis, S. H., (1975), Global propagation of atmospheric gravity waves: A review, J. 

Atmos. Terr. Phys., 37, 1011.  

Friis-Christensen, E., Lühr, H. & Hulot, G. (2006), Swarm: a constellation to study the 

Earth's magnetic field, Earth, Planets, Space, 58, 351–358. 

Fuller‐Rowell, T. J., et al. (2008), Impact of terrestrial weather on the upper atmosphere, 

Geophys. Res. Lett., 35, L09808, doi:10.1029/2007GL032911.  

Gaunt, C. T. (2015), Why Space Weather Is Relevant to Electrical Power Systems, Space 

Weather, 14, 2–9, doi:10.1002/2015SW001306. 

Gentile, L. C., W. J. Burke, and F. J. Rich (2006), A global climatology for equatorial 

plasma bubbles in the topside ionosphere, Ann. Geophys., 24, 163–172. 

Gerrard A. J. (2011b), Multi-Instrument Study to Investigate the Formation and Growth 

of Equatorial Irregularities, Proposal Report submitted to the Air Force Office of 

Scientific Research. 



Khadka, S. M. (2018), PhD Dissertation. 

219 

Gerrard, A. J. (2011a), Application of the Fabry-Pérot Interferometer to Thermospheric/ 

Ionospheric Measurements (Available at 

https://web.njit.edu/~cao/Fabry_Perot_overview_Gerrard.pdf). 

Gerrard, A. J., and J. W. Meriwether (2011), Initial daytime and nighttime SOFDI 

observations of thermospheric winds from Fabry-Perot Doppler shift 

measurements of the 630-nm OI line-shape profile, Ann. Geophys., 29, 1529–

1536, doi: 10.5194/angeo-29-1529-2011. 

Goncharenko, L. P., A.J. Coster, J.L. Chau, C.E. Valladares (2010), Impact of sudden 

stratospheric warmings on equatorial ionization anomaly, J. Geophys. Res. 115, 

1–11, doi: 10.1029/2010JA015400 

Gonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, 

and V. M. Vasyliunas (1994), What is a geomagnetic storm?, J. Geophys. Res., 

99, 5771–5792, doi:10.1029/93JA02867. 

Gopalswamy, N. (2008), Solar connections of geoeffective magnetic structures, J. Atmos. 

Sol. Terr. Phys., 70, 2078-2100, 10.1016/j.jastp.2008.06.010. 

Gordon W.E. (1958), Incoherent scattering of radio waves by free electrons with 

applications to space exploration by radar, Proc. I.R.E.,46, 1824-1829. 

Gosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman (1976), Solar wind speed 

variations: 1962–1974, J. Geophys. Res., 81(28), 5061–5070, 

doi:10.1029/JA081i028p05061. 

Gouin, P. and P. N. Mayaud, (1967), A propo dell existence possible dun “Counter 

Electrojet” aux latitudes magnetiques equatorials, Ann. Geophys., 23,41–47. 



Khadka, S. M. (2018), PhD Dissertation. 

220 

Gouin,P. (1962), Reversal of the magnetic daily variation at Addis Ababa,, Nature 

London, 193, 1145-1146. 

Haaser, R. A., G. D. Earle, R. A. Heelis, J. Klenzing, R. Stoneback, W. R. Coley, and A. 

G. Burrell (2012), Characteristics of low-latitude ionospheric depletions and 

enhancements during solar minimum, J. Geophys. Res., 117, A10305, 

doi:10.1029/2012JA017814. 

Haerendel, G., and J. V. Eccles (1992), The role of the equatorial electrojet in the evening 

ionosphere, J. Geophys. Res., 97(A2), 1181–1192, doi:10.1029/91JA02227.  

Haerendel, G., J. V. Eccles, and S. Cakir (1992), Theory for modeling the equatorial 

evening ionosphere and the origin of the shear in the horizontal plasma flow, J. 

Geophys. Res., 97, 1209.  

Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England 

(2007), Connections between deep tropical clouds and the Earth's ionosphere, 

Geophys. Res. Lett., 34, L20109, doi:10.1029/2007GL030142.  

Hagan, M. E., R. G. Roble, and J. Hackney (2001), Migrating thermospheric tides, J. 

Geophys. Res., 106(A7), 12739–12752, doi:10.1029/2000JA000344.  

Hanson, W. B., and R. J. Moffett (1966), Ionization transport effects in the equatorial F 

region, J. Geophys. Res., 71(23), 5559–5572, doi:10.1029/JZ071i023p05559. 

Hargreaves, J. K. (1992), The Solar-Terrestrial Environment, Cambridge University 

Press, Cambridge. 

Haykin, S. (2005), Neural Networks: A Comprehensive Foundation, 2nd edition, Pearson 

Education, Delhi, India. 



Khadka, S. M. (2018), PhD Dissertation. 

221 

Hedin, A. E., et al. (1991), Revised global model of thermosphere winds using satellite 

and ground-based observations, J. Geophys. Res., 96(A5), 7657–7688, doi: 

10.1029/91JA00251. 

Heelis, R. A. (2004), Electrodynamics in the low and middle latitude ionosphere: a 

tutorial, Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 66(10), 825-

838, doi:10.1016/j.jastp.2004.01.034. 

Hei, M. A. and C. E. Valladares (2010), The November 2004 superstorm: Comparison of 

low latitude TEC observations with LLIONS model results, Journal of 

Atmospheric and Solar-Terrestrial Physics, Vol. 72(4), 334-343, 

doi:10.1016/j.jastp.2009.03.025. 

Hei, M. A., R. A. Heelis, and J. P. McClure (2005), Seasonal and longitudinal variation 

of large-scale topside equatorial plasma depletions, J. Geophys. Res., 110, 

A12315, doi:10.1029/2005JA011153. 

Hernandez, G. (1986), Fabry-Perot Interferometers, Cambridge Studies in Modern 

Optics, Cambridge: University Press, 1986.  

Herrero, F. A., N. W. Spencer, and H. G. Mayr (1993), Thermosphere and F‐region 

plasma dynamics in the equatorial region, Adv. Space Res., 13, 201–220. 

Huang, C.-S., G. Le, O. de La Beaujardiere, P. A. Roddy, D. E. Hunton, R. F. Pfaff, and 

M. R. Hairston (2014), Relationship between plasma bubbles and density 

enhancements: Observations and interpretation, J. Geophys. Res. Space Physics, 

119, 1325–1336, doi:10.1002/2013JA019579. 



Khadka, S. M. (2018), PhD Dissertation. 

222 

Huang, Y.-N., K. Cheng, and S.-W. Chen (1989), On the equatorial anomaly of the 

ionospheric total electron content near the northern anomaly crest region, J. 

Geophys. Res., 94(A10), 13515–13525, doi:10.1029/JA094iA10p13515. 

Hunsucker, H. D. (1991), Radio Techniques for Probing the Terrestrial Ionosphere, 

Springer Berlin Heidelberg. 

Hysell, D. L., J. Drexler, E.B. Shume, J. L. Chau, D. E. Scipion, M. Vlasov, R. Cuevas,  

and C. Heinselman (2007), Combined radar observations of equatorial electrojet 

irregularities at Jicamarca, Ann. Geophys., Vol. 25 (2), 457–473, 2007, 

doi:10.5194/angeo-25-457-2007. 

Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. 

U. Frey, C. M. Swenson, and L. J. Paxton (2006), Control of equatorial 

ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, 

doi:10.1029/2006GL026161. 

James J. Spilker Jr., Penina Axelrad ; Bradford W. Parkinson ; Per Enge (1996), Global 

Positioning System: Theory and Applications, Volume I, American Institute of 

Aeronautics and Astronautics Washington DC 

Jee, G., R.W. Schunk, L. Scherliess (2005),  On the sensitivity of total electron content 

(TEC) to upper atmospheric/ ionospheric parameters, J. Atmos. Sol. Terr. Phys., 

Vol.67, 1040–1052. 

Jiao, Y., Y. T. Morton, S. Taylor, and W. Pelgrum (2013), Characterization of high-

latitude ionospheric scintillation of GPS signals, Radio Science, Vol. 48 (6), 698-

708, doi: 10.1002/2013RS005259. 



Khadka, S. M. (2018), PhD Dissertation. 

223 

Johnson, M., G. Gorospe, J. Landry, A. Schuster (2016), Review of mitigation 

technologies for terrestrial power grids against space weather effects, Int’l 

Journal of Electrical Power & Energy System, 82, 382-391. 

doi.org/10.1016/j.ijepes.2016.02.049. 

Jonah, O. F., E.R. de Paula, M.T.A.H. Muella, S.L.G. Dutra, E.A. Kherani, P.M.S. 

Negreti, Y. Otsuka (2015), TEC variation during high and low solar activities 

over South American sector, Journal of Atmospheric and Solar-Terrestrial 

Physics, Vol. 135, 22–35, doi:10.1016/j.jastp.2015.10.005. 

Kane, R. P. (1975), Day-to-day variability of ionospheric electron content at mid-

latitudes, J. Geophys. Res., Vol. 80(22), 3091–3099, 

doi:10.1029/JA080i022p03091. 

Kao, S. P., Y. C. Chen, and F. S. Ning (2014), A MARS-based method for estimating 

regional 2-D ionospheric VTEC and receiver differential code bias, Adv. Space 

Res.,53 (2), 190–200, doi: 10.1016/j.asr.2013.11.001. 

Kappernman, J., and V. D. Albertson (1990), Bracing for the geomagnetic storms, IEEE 

Spectr., 27 ( 3), 27–33, doi:10.1109/6.48847. 

Kelley, M . C. (1989), The Earth's Ionosphere Plasma Physics and Electrodynamic Inst,. 

Geophys Set., vol. 43, Academic, San Diego, Calif.,  

Kelley, M. C. (2009a), The Earth’s Ionosphere: Plasma Physics and Electrodynamics, 

2nd edition, Academic Press, San Diego, Calif. 

Kelly, M. C., (2009b) Ionospheric Measurement Techniques: A Tutorial, Lecture 

presented in CEDAR Workshop, Santa Fe. 



Khadka, S. M. (2018), PhD Dissertation. 

224 

Khadka, S. M., C. Valladares, R. Pradipta, E. Pacheco, and P. Condor (2016), On the 

mutual relationship of the equatorial electrojet, TEC and scintillation in the 

Peruvian Sector. Radio Sci., Vol. 51(6), 742-751, doi: 10.1002/2016RS005966. 

Khadka, S. M., Valladares, C. E., Sheehan, R., and Gerrard, A. J. (2018). Effects of 

electric field and neutral wind on the asymmetry of equatorial ionization anomaly. 

Radio Science, 53. https://doi.org/10.1029/2017RS006428. 

Kil H, Heelis RA (1998), Global distribution of density irregularities in the equatorial 

ionosphere. J Geophys Res 103(A1):407–417. doi:https://doi.org/10.1029/ 

97JA02698. 

Kil, H., H.-S. Choi, R. A. Heelis, L. J. Paxton, W. R. Coley, and E. S. Miller (2011), 

Onset conditions of bubbles and blobs: A case study on 2 March 2009, Geophys. 

Res. Lett., 38, L06101, doi:10.1029/2011GL046885. 

Kil, H., Y.-S. Kwak, W. K. Lee, E. S. Miller, S.-J. Oh, and H.-S. Choi (2015), The causal 

relationship between plasma bubbles and blobs in the low-latitude F region during 

a solar minimum. J. Geophys. Res. Space Physics, 120, 3961–3969. doi: 

10.1002/2014JA020847. 

Kim VP, Hegai VV, (2016), On the variability of the ionospheric F2-layer during the 

quietest days in December 2009, J. Astron. Space Sci. 33, 273-

278.https://doi.org/10.5140/JASS.2016.33.4.273 

Kintner, P. M.,  B. M. Ledvina, and E. R. de Paula (2007), GPS and Ionospheric 

scintillations, Space Weather, Vol. 5, S09003, doi:10.1029/2006SW000260. 

Klenzing, J. H., D. E. Rowland, R. F. Pfaff, G. Le, H. Freudenreich, R. A. Haaser, A. G. 

Burrell, R. A. Stoneback, W. R. Coley, and R. A. Heelis (2011), Observations of 



Khadka, S. M. (2018), PhD Dissertation. 

225 

low-latitude plasma density enhancements and their associated plasma drifts, J. 

Geophys. Res., 116, A09324. 

Klobuchar, John A. (1991), Ionospheric effects on GPS, GPS World magazine, Volume 

2, Nx.4. 

Knight, M. F. (2000), Ionospheric Scintillation effects on Global Positioning System 

Receivers, PhD Thesis, The University of Adelaide. 

Knipp, D. J. (2015), Synthesis of Geomagnetically Induced Currents: Commentary and 

Research, Space Weather, 13, 727–729, doi:10.1002/2015SW001317. 

Knipp, D.J. (2011), Understanding Space Weather and the Physics Behind It, McGraw-

Hill, New York, pp. 1–727. 

Krall, J., J. D. Huba, G. Joyce, and T. Yokoyama (2010), Density enhancements 

associated with equatorial spread F, Ann. Geophys., 28, 327, doi:10.5194/angeo-

28-327-2010. 

Kudeki, E., A. Akgiray, M. Milla, J. L. Chau, D. L. Hysell (2008), Equatorial spread F 

initiation: Post-sunset vortex, thermospheric winds, gravity waves, J. Atmos. Sol.-

Terr. Phys., 69, 2416–2427. 

Kudeki, E., and S. Bhattacharyya (1999), Postsunset vortex in equatorial F region plasma 

drifts and implications for bottomside spread F, J. Geophys. Res., 104, 28,163-

28,170. 

Langley, Richard B. (2000), GPS, the ionosphere, and the solar maximum, GPS World 

magazine, Volume11, N.x7.  



Khadka, S. M. (2018), PhD Dissertation. 

226 

Laundal, K. M., I. Cnossen, S. E. Milan, S. E. Haaland, J. Coxon, N. M. Pedatella, M. 

Förster, and J. P. Reistad (2016), North–south asymmetries in Earth's magnetic 

field, Space Sci. Rev., 1–33, doi:10.1007/s11214-016-0273-0. 

Le, G., C.-S. Huang, R. F. Pfaff, S.-Y. Su, H.-C. Yeh, R. A. Heelis, F. J. Rich, and M. 

Hairston (2003), Plasma density enhancements associated with equatorial spread 

F: ROCSAT-1 and DMSP observations, J. Geophys. Res., 108(A8), 1318, 

doi:10.1029/2002JA009592. 

Li, G., B. Ning, L. Liu, B. Zhao X. Yei, J, S.-Y. Su, and S. Venkatraman (2008), 

Correlative study of plasma bubbles, evening equatorial ionization anomaly, and 

equatorial prereversal ExB drifts at solar minimum, Radio Science, Vol. 43, 

RS4005, doi:10.1029/2007RS003760. 

Lin, C. H., A. D. Richmond, G. J. Bailey, J. Y. Liu, G. Lu, and R. A. Heelis (2009), 

Neutral wind effect in producing a storm time ionospheric additional layer in the 

equatorial ionization anomaly region, J. Geophys. Res., 114, A09306, 

doi:10.1029/2009JA014050. 

Lotko, W. (2017), Magnetosphere-Ionosphere Coupling, Lecture presented in CISM 

summer school, Boulder. 

Love, J. J., (2008), Magnetic monitoring of Earth and space, Physics Today, 61, 31-37. 

Luan, X., P. Wang, X. Dou, and Y. C.-M. Liu (2015), Interhemispheric asymmetry of the 

equatorial ionization anomaly in solstices observed by COSMIC during 2007 – 

2012, J. Geophys. Res. Space Physics, 120, 3059 – 3073, doi: 

10.1002/2014JA020820. 



Khadka, S. M. (2018), PhD Dissertation. 

227 

MacAlester, M. H., and W. Murtagh (2014), Extreme Space Weather Impact: An 

Emergency Management Perspective, Space Weather, 12, 530–537, 

doi:10.1002/2014SW001095. 

MacDougall, J. W. (1969), The equatorial ionospheric anomaly and equatorial electrojet, 

Radio Science, Vol. 4 (9), doi: 10.1029/RS004i009p00805. 

Makela, J. J., D. J. Fisher, J. W. Meriwether, R. A. Buriti, and A. F. Medeiros (2013), 

Near-continual ground-based nighttime observations of thermospheric neutral 

winds and temperatures over equatorial Brazil from 2009 to 2012, J. Atmos. Sol. 

Terr. Phys., 103, 94–102, doi:10.1016/j.jastp.2012.11.019. 

Makela, J. J., J. W. Meriwether, A. J. Ridley, M. Ciocca, and M. W. Castellez (2012), 

Large-scale measurements of thermospheric dynamics with a multisite Fabry-

Perot interferometer network: Overview of plans and results from midlatitude 

measurements, Int. J. Geophys., 2012, 1–10, doi:10.1155/2012/872140 

Manheimer, Wallace, Linda E. Sugiyama, Thomas H. Stix, (1996), Plasma Science and 

the Environment, Springer Science & Business Media, 328 pages 

Marriot RT, Richmond AD, Venkateswaram SV (1979) The quiet time equatorial 

electrojet and counter electrojet, J Geomag  Geoelectr 31:311–340. 

Martinis, C., J. Baumgardner, M. Mendillo, S.-Y. Su, and N. Aponte (2009), Brightening 

of 630.0 nm equatorial spread-F airglow depletions, J. Geophys. Res., 114, 

A06318, doi:10.1029/2008JA013931. 

Martyn, D. F. (1947), Atmospheric tides in the ionosphere.1. Solar tides in the F2 region, 

Proceedings of the Royal Society of London A, Vol. 189 (1017), 241-260, doi: 

10.1098/rspa.1947.0037  



Khadka, S. M. (2018), PhD Dissertation. 

228 

Maute, A., & Richmond, A. D. (2017).F-region dynamo simulations at low and mid-

latitude. Space Science Reviews, 206, 471–493. https://doi.org/10.1007/s11214-

016-0262-3 

McDaniel, R. (1998), A review of Equatorial Spread-F,( 

https://www.hsu.edu/academicforum/1998-1999/1998-

9AFA%20Review%20of%20Equatorial%20Spread%20F.pdf)  

Mendillo, M., J. Baumgardner, X. Pi, P. J. Sultan, and R. Tsunoda (1992), Onset 

conditions for equatorial spread F, J. Geophys. Res., 97(A9), 13865–13876, 

doi:10.1029/92JA00647. 

 Meriwether, J. W. (2004), The design and construction of the Second-Generaion 

Optimized Fabry-Perot Doppler Imager, Proposal Report submitted to the Air 

Force Office of Scientific Research. 

Meriwether, J. W. (2006), Studies of thermospheric dynamics with a Fabry-Perot 

interferometer network: a review, Journal of Atmospheric and Solar-Terrestrial 

Physics, vol. 68, no. 13, pp. 1576–1589, doi: 10.1016/j.jastp.2005.11.014. 

Miles, D. (2017), Advances in Fluxgate Magnetometry for Space Physics, PhD Thesis, 

University of Alberta, Canada 

Miles, D. M. (2013), Towards a Radiation Hardened Fluxgate Magnetometer for Space 

Physics Applications, Master’s Thesis, University of Alberta, Edmonton, Alberta, 

Canada. 

Miller, E. S., H. Kil, J. J. Makela, R. A. Heelis, E. R. Talaat, and A. Gross (2014), 

Topside signature of medium-scale traveling ionospheric disturbances, Ann. 

Geophys., 32, 959–965, doi:10.5194/angeo-32-959-2014. 



Khadka, S. M. (2018), PhD Dissertation. 

229 

Muralikrishna, P., V.H. Kulkarni (2008), Modeling the meteoric dust effect on the 

equatorial electrojet. Adv. Space Res. 42, 164–170, doi:10.1016/asr.2007.11.019. 

National Academies of Sciences, Engineering, and Medicine (2015), A Strategy for 

Active Remote Sensing Amid Increased Demand for Radio Spectrum. 

Washington, DC: The National Academies Press. 

Ngwira, C. M., and Pulkkinen, A. A. (2018), An overview of Science challenges 

pertaining to our understanding of extreme geomagnetically induced currents, 

Chapter 8, Extreme Events in Geospace Origins, Predictability, and 

Consequences, edited by Natalia Buzulukova, Elsevier, Amsterdam. 

Ogawa, T., K. Igarashi, K. Aikyo, and H. Maeno (1987), NNSS Satellite observations of 

medium‐scale traveling ionospheric disturbances at southern high‐latitudes, J. 

Geomagn. Geoelectr., 39, 709–721.  

Olivarez, N. (2013), Mitigating the Effects of Ionospheric Scintillation on GPS Carrier 

Recovery, MS Thesis, Worcester Polytechnic Institute, USA. 

Onwumechili, C. A. (1997): The Equatorial Electrojet, Gordon and Breach Science 

Publishers, Netherlands. 

Onwumechili, C. A. (1997): The Equatorial Electrojet, Gordon and Breach Science 

Publishers, Netherlands. 

Onwumechili, C. A. and C. E. Agu (1981), Longitudinal variation of equatorial electrojet 

parameters derived from POGO satellite observation, Planetary and Space 

Science, Vol. 29 (6), 627-634, doi: 10.1016/0032-0633(81)90111-2. 



Khadka, S. M. (2018), PhD Dissertation. 

230 

Onwumechili, C. A. and C. E. Agu (1981), Longitudinal variation of equatorial electrojet 

parameters derived from POGO satellite observation, Planet. Space Sci., Vol. 29 

(6), 627-634, doi: 10.1016/0032-0633(81)90111-2. 

Onwumechilli, A., and S.‐I. Akasofu (1972), On the abnormal depression of Sq(H) under 

the equatorial electrojet in the afternoon, J. Geomagn. Geoelectr., 24, 161–173.  

Ossakow, S. L. (1981), Spread F theories – a review, J. Atmos. Terr. Phys., 43, 437. 

Ott, E. (1978), Theory of Rayleigh‐Taylor bubbles in the equatorial ionosphere, J. 

Geophys. Res., 83, 2066–2070. 

Oya, H., T. Takahashi, and S. Watanabe (1986), Observation of low latitude ionosphere 

by the impedance probe on board the Hinotori satellite, J. Geomagn. Geoelectr., 

38, 111–123. 

Pandey, K., Sekar, R., Anandarao, B. G., Gupta, S. P., & Chakrabarty, D. (2018). On the 

occurrence of afternoon counter electrojet over Indian longitudes during June 

solstice in solar minimum, Journal of Geophysical Research: Space Physics, 123. 

https://doi.org/10.1002/2017JA024725 

Parkinson W. D., (1983), Introduction to Geomagnetism, Scottish Academic Press, 

Edinburgh, 1983 

Patil, A. R., D. R. K. Rao, and R. G. Rastogi (1990), Equatorial electrojet strengths in the 

Indian and American sectors Part II. During high solar activity, J. Geomagn. 

Geoelec.,Vol. 42 (7), 813–823, doi.org/10.5636/jgg.42.813 

Pfaff, R. F. (2012), The near-Earth plasma environment, Space Sci. Rev. 168(1), 23–112. 

          Phys., 9, 304-310. 



Khadka, S. M. (2018), PhD Dissertation. 

231 

Pimenta, A. A., Y. Sahai, J. A. Bittencourt, M. A. Abdu, H. Takahashi, and M. J. Taylor 

(2004), Plasma blobs observed by ground-based optical and radio techniques in 

the Brazilian tropical sector, Geophys. Res. Lett., 31, L12810, 

doi:10.1029/2004GL020233. 

Priyadarshi, S. (2015a), A review of ionospheric scintillation models, Surv. Geophys., 36, 

295–324, doi:10.1007/s10712-015-9319-1.  

Pulkkinen, A. (2003), Geomagnetic induction during highly disturbed Space Weather 

conditions: Study of ground effects, Ph.D. thesis, Univ. of Helsinki, Helsinki. 

Pulkkinen, A., et al. (2017), Geomagnetically induced currents: Science, engineering, and 

applications readiness, Space Weather, 15, 828–856, 

doi:10.1002/2016SW001501. 

Rabiu, A. B., Folarin, O. O., Uozumi, T., Abdul Hamid, N. S., and Yoshikawa, A., 

(2017), Longitudinal variation of equatorial electrojet and the occurrence of its 

counter electrojet, Ann. Geophys., 35, 535 - 545, doi:10.5194/angeo – 35 – 535 - 

2017. 

Raghavarao R., and Anandarao B. G. (1980), Vertical winds as a plausible cause for 

equatorial counter electrojet. Geophys Res Lett 7:357–360. 

Rama Rao, P. V. S. (2006), Characteristics of the Indian equatorial ionosphere, Lecture 

notes in Workshop at ICTP, Italy.  

Rangarajan G. K. and Rastogi R. G. (1981), Solar flare effect in equatorial magnetic field 

during morning counter electrojet. Ind. J Radio Space Phys 10:190–192. 

Rastogi R. G. (1974), Westward Equatorial Electrojet during daytime hours. J Geophys 

Res 79:1503–1512.  



Khadka, S. M. (2018), PhD Dissertation. 

232 

Rastogi R. G., Deshpande M. R., Sastri N. S. (1975), Solar flare effect in equatorial 

counter Electrojet current. Nature 258:218–219. doi: 10.1038/258218a0 

Rastogi, R. G. (1962), Longitudinal variation in the equatorial electrojet, Journal of 

Atmospheric and Terrestrial Physics, Vol. 24 (12), 1031-1040, 

doi:  10.1016/0021-9169(62)90158-7. 

Rastogi, R. G. (1983), Equatorial electrojet and radio scintillations, Journal of 

Atmospheric and Terrestrial Physics, Vol. 45(10), 719-728, doi:  10.1016/S0021-

9169(83)80030-0. 

Rastogi, R. G. and J. A. Klobuchar (1990): Ionospheric electron content within the 

equatorial F2 layer anomaly belt, J. of Geophys. Res., Vol. 95(A11), 19045–

19052, doi: 10.1029/JA095iA11p19045. 

Rastogi, R. G. (1962), Longitudinal variation in the equatorial electrojet, Journal of 

Atmospheric and Terrestrial Physics, Vol. 24(12), 1031-1040, doi:  

10.1016/0021-9169(62)90158-7. 

Rastogi, R. G., and J. A. Klobuchar (1990), Ionospheric Electron Content Within the 

Equatorial F2 Layer Anomaly Belt, J. Geophys. Res., 95, 19,045 –19,052. 

Rayleigh, Lord (1883), Investigation of the character of the equilibrium of an 

incompressible heavy fluid of variable density, Proceedings of the London 

Mathematical Society, 14: 170–177. doi:10.1112/plms/s1-14.1.170 

Retterer, J. M. (2010), Forecasting low-latitude radio scintillation with 3-D ionospheric 

plume models: 1. Plume model, J. Geophys. Res., 115, A03306, 

doi:10.1029/2008JA013839 



Khadka, S. M. (2018), PhD Dissertation. 

233 

Richmond A. D. (1973), Equatorial electrojet. I. Development of model including winds 

and instabilities, J. Atmos Solar Terr Phys 35:1083–1103 

Richmond, A. D. (1989), Modeling the Ionospheric Wind Dynamo: A Review, Pure and 

Applied Geophysics PAGEOPH, Vol.131 (3), 413-435, doi: 

10.1007/BF00876837. 

Ripka, P. (2003), Advances in fluxgate sensors, Sens. Actuators Phys., 106(1), 8–14. 

Ripka, P. (2001), Magnetic Sensors and Magnetometers, Artech House Inc., Norwood, 

MA, USA. 

Rishbeth, H, (1997), The ionospheric E-layer and F-layer dynamos—a tutorial review 

Journal of Atmospheric and Space Physics, Vol. 59 (15), 1873-1880, doi: 

10.1016/S1364-6826(97)00005-9. 

Rishbeth, H. (1972), Thermospheric winds and the F-region: A review, J. Atmos. Terr. 

Phys., 34, 1–47, doi: 10.1016/0021-9169(72)90003-7. 

Rishbeth, H. (1998), How the thermospheric circulation affects the ionospheric F2‐layer. 

Journal of Atmospheric and Solar: Terrestrial Physics, 60, 1385–1402.  

Rishbeth, H. (2006), F region links with the lower atmosphere, J. Atmos. Sol. Terr. Phys., 

68, 469–478, doi:10.1016/j.jastp.2005.03.017.  

Robinson, R. M, and R. A. Behnke (2001), The U.S. National Space Weather Program: A 

Retrospective, Space Weather, AGU Geophysical Monograph, 125, 1.  

Sagawa, E., T. J. Immel, H. U. Frey, and S. B. Mende (2005), Longitudinal structure of 

the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV, J. 

Geophys. Res., 110, A11302, doi:10.1029/2004JA010848.  



Khadka, S. M. (2018), PhD Dissertation. 

234 

Sastri, J. H. (1990), Equatorial anomaly in F region: A review, Indian J. Radio Space 

Phys., 19, 225–240. 

Sastri, J. H., Kamide, Y., & Yumoto, K. (2003). Signatures for magnetospheric substorms 

in the geomagnetic field of dayside equatorial region: Origin of the ionospheric 

component, Journal of Geophysical Research, 108(A10), 1375. https://doi-

org.proxy.bc.edu/10.1029/2003JA009962  

Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region 

vertical drift model, J. Geophys. Res., Vol. 104 (A4), 6829-6842, doi: 

10.1029/1999JA900025. 

Scherliess, L., and B. G. Fejer (1999), Radar and satellite global equatorial F region 

vertical drift model, J. Geophys. Res., Vol. 104 (A4), 6829-6842, doi: 

10.1029/1999JA900025. 

Scherliess, L., D. C. Thompson, and R. W. Schunk (2008), Longitudinal variability of 

low-latitude total electron content: Tidal influences, J. Geophys. Res., Vol. 

113(A1), A01311, doi:10.1029/2007JA012480. 

Schunk R. W. & Nagy A. F. (2000), Ionosphere: Physics, plasma and chemistry, 

Cambridge University Press, New York. 

Schunk, R. W., J. J. Sojka, and J. V. Eccles (1997), Expanded capabilities for the 

ionospheric forecast model, Rep. AFRL-VS-HA-TR-98-0001, Space Vehicles 

Dir., Air Force Res. Lab., Hanscom AFB, Mass. 

Schuster, A. (1908), The diurnal variation of terrestrial magnetism, Philos. Trans. R. Soc. 

Lond. Ser. A 208, 163–204  



Khadka, S. M. (2018), PhD Dissertation. 

235 

Seemala, G. K., and C. E. Valladares (2011), Statistics of total electron content depletions 

observed over the South American continent for the year 2008, Radio Sci., 

Vol.46(5), RS5019, doi:10.1029/2011RS004722. 

Seemala, G. K., and C. E. Valladares (2011), Statistics of total electron content 

depletions observed over the South American continent for the year 2008, Radio 

Sci., 46, RS5019, doi:10.1029/2011RS004722. 

Senior C, Blanc M (1984) On the control of magnetospheric convection by the spatial 

distribution of ionospheric conductivities, J. Geophys Res 89(A1):261–

284.  https://doi-org.proxy.bc.edu/10.1029/JA089iA01p00261.  

Shiokawa, K., T. Kadota, M. K. Ejiri, Y. Otsuka, Y. Katoh, M. Satoh, and T. Ogawa, 

Three‐channel imaging Fabry‐Perot interferometer for midlatitude airglow 

measurement, Appl. Opt., 40, 4286–4296, 2001. 

Shume, E. B., F. S. Rodrigues, A. J. Mannucci, and E. R. de Paula (2014), Modulation of 

equatorial electrojet irregularities by atmospheric gravity waves, J. Geophys. Res. 

Space Physics, 119, 366–374, doi:10.1002/2013JA019300. 

Singh, S., Johnson, F. S., Power, R. A. (1997), Gravity wave seeding of equatorial 

plasma bubbles, Journal of Geophysical Research, 102, 7399. 

Sojka, J., W. Raitt, and R. Schunk (1979), Effect of displaced geomagnetic and 

geographic poles on high-latitude plasma convection and ionospheric depletions, 

J. Geophys. Res., 84 (A10), 5943–5951, doi:10.1029/JA084iA10p05943.. 

Solomon,S. C., ( 2017), Ionospheric structures, Lecture presented in CISM summer 

school, Boulder. 



Khadka, S. M. (2018), PhD Dissertation. 

236 

Spiro, R. W., Wolf, R. A., & Fejer, B. G. (1988), Penetrating of high‐latitude‐electric‐

field effects to low latitudes during SUNDIAL 1984, Annales Geophysicae, 6, 

39–49. 

Sreeja, V., S. Ravindran, T. K. Pant, C. V. Devasia, and L. J. Paxton (2009), Equatorial 

and low‐latitude ionosphere‐thermosphere system response to the space weather 

event of August 2005, J. Geophys. Res., 114, A12307, 

doi:10.1029/2009JA014491.  

Sridharan, R. (1998), Equatorial and low latitude thermosphere-ionosphere interaction, 

PINSA, 64, A No 3,pp. 315-340. 

Sridharan, R., N. K. Modi, D. Pallam Raju, R. Narayanan, T. K. Pant, A. Taori, and D. 

Chakrabarty (1998), A multi-wavelength daytime photometer—A new tool for the 

investigation of atmospheric processes, Meas. Sci. Tech., 9, 585–591. 

Sridharan, R., R. Sekar, S. Gurubaran (1993), Two‐dimensional high‐resolution imaging 

of the equatorial plasma fountain, J. Atmos. Terr. Phys., 55, 1661.  

Sridharan, S., S. Sathis hkumar, and S. Gurubaran (2009), Variabilities of mesospheric 

tides and equatorial electrojet strength during major stratospheric warming events, 

Ann. Geophys., 27, 4125–4130. 

Stening, R. J. (1977), Electron density profile changes associated with the equatorial 

electrojet, J. Atmos. Terr. Phys., 39, 157–164, do i:10.1016/ 0021-

9169(77)90109-X.  

Steward, Balfour, (1882), Terrestrial magnetism, Encyclopedia Britannica, 9th ed., 16, 

181. 



Khadka, S. M. (2018), PhD Dissertation. 

237 

Stolle, C., C. Manoj, H. Lühr, S. Maus, and P. Alken (2008a), Estimating the daytime 

Equatorial Ionization Anomaly strength from electric field proxies, J. Geophys. 

Res., 113, A09310, doi: 10.1029/2007JA012781. 

Stolle, C., H. Lühr, and B. G. Fejer (2008b), Relation between the occurrence rate of ESF 

and the vertical plasma drift velocity at sunset derived from global observations, 

Annales Geophys., 26, 3979-3988, 2008.  

Stolle, C., R. Floberghagen, H. Lühr, S Maus, D. Knudsen, P. Alken, E. Doornbos, B. 

Hamilton, A. Thomson, and P. Visser (2013), Space weather opportunities from 

the Swarm mission including near real time applications, Earth Planets Space, 

65(111), 1375–1383, doi:10.5047/eps.2013.10.002.  

Stoneback, R. A. and Heelis, R. A. (2014), Identifying equatorial ionospheric 

irregularities using in situ ion drifts, Ann. Geophys., 32, 421-429, doi: 

10.5194/angeo-32-421-2014. 

Stoneback, R. A., R. A. Heelis, A. G. Burrell, W. R. Coley, B. G. Fejer, and E. Pacheco 

(2011), Observations of quiet time vertical ion drift in the equatorial ionosphere 

during the solar minimum period of 2009, J. of Geophys. Res., Vol. 116, A12327, 

doi: 10.1029/2011JA016712. 

Stoneback, R. A., R. A. Heelis, A. G. Burrell, W. R. Coley, B. G. Fejer, and E. Pacheco 

(2011), Observations of quiet time vertical ion drift in the equatorial ionosphere 

during the solar minimum period of 2009, J. of Geophys. Res., Vol. 116, A12327, 

doi: 10.1029/2011JA016712. 



Khadka, S. M. (2018), PhD Dissertation. 

238 

Su, Y. Z., G. J. Bailey, K. I., Oyama, and N. Balan (1997), A modelling study of the 

longitudinal variations in the north-south asymmetries of the ionospheric 

equatorial anomaly, J. Atmos. Terr. Phys., 59(11), 1299-1310. 

Subramanian, P. (2009), Forbush decreases and Space weather, Lectures, Indian Institute 

of Astrophysics, p.1-10. 

Sultan, P. J. (1996), Linear theory and modeling of the Rayleigh-Taylor instability 

leading to the occurrence of equatorial spread F, J. Geophys. Res., 101, 26,875–

26,891. 

Taylor, Sir Geoffrey Ingram (1950). The instability of liquid surfaces when accelerated in 

a direction perpendicular to their planes, Proceedings of the Royal Society of 

London. Series A, Mathematical and Physical Sciences. 201 (1065): 192–196,  

doi:10.1098/rspa.1950.0052 

Titheridge, J.E. (1995), Winds in the ionosphere-review, J. Atmos. Terr. Phys. Vol. 

57(14), 1681-1714, doi:10.1016/0021-9169(95)00091-F.  

Tsunoda, R. T., White B. R. (1981), On the generation and growth of equatorial 

backscatter plumes 1. Wave structure in the bottomside F layer. J. Geophys Res 

86(A5):3610–3616. doi:https://doi.org/10.1029/JA086iA05p03610 

Tulasi Ram, S., S. Y. Su, and C. H. Liu (2009), FORMOSAT-3/COSMIC observations of 

seasonal and longitudinal variations of equatorial ionization anomaly and its 

interhemispheric asymmetry during the solar minimum period, J. Geophys. Res., 

Vol. 114, A06311, doi: 10.1029/2008JA013880 



Khadka, S. M. (2018), PhD Dissertation. 

239 

Uemoto, J., T. Maruyama, S. Saito, M. Ishii, and R. Yoshimura (2010), Relationships 

between PRE‐sunset electrojet strength, pre‐reversal enhancement and equatorial 

spread‐F onset, Ann. Geophys., 28, 449–454, doi:10.5194/angeo‐28‐449‐2010. 

US Department of Homeland Security (2011), The Strategic National Risk Assessment in 

Support of Presidential Policy Directive 8: A Comprehensive Risk-Based 

Approach Toward a Secure and Resilient Nation, Department of Homeland 

Security, Washington, D. C.  

US Federal Energy Regulatory Commission (2016), Reliability standard for Transmission 

System Planned performance for geomagnetic disturbance Events, order No. 830, 

22 September, Washington, D. C.  

Valladares, C. E., and J. L. Chau (2012), The low-Latitude Ionospheric Sensor Network: 

Initial results, Radio Science, Vol. 47, RS0L17, doi: 10.1029/2011RS004978. 

Valladares, C. E., and J. L. Chau (2012), The low-Latitude Ionospheric Sensor Network: 

Initial results, Radio Science, Vol. 47, RS0L17, doi: 10.1029/2011RS004978. 

Valladares, C. E., J. Villalobos, R. Sheehan, and M. P. Hagan (2004), Latitudinal 

extension of low-latitude scintillations measured with a network of GPS, Annales 

Geophysicae, Vol. 22, 3355-3175, doi: 10.5194/angeo-22-3155-2004. 

Valladares, C. E., R. Sheehan, S. Basu, H. Kuenzler, and J. Espinoza, (1996), The multi-

instrumented studies of equatorial thermosphere aeronomy scintillation system: 

Climatology of zonal drifts, J. Geophys. Res., 101, 26,839. 

Valladares, C. E., S. Basu, K. Groves, M. P. Hagan, D. Hysell, A. J. Mazella, and R. E. 

Sheehan (2001), Measurement of the latitudinal distributions of total electron 



Khadka, S. M. (2018), PhD Dissertation. 

240 

content during equatorial spread F events, J. Geophys. Res., 106, 29,133–29,152, 

doi:10.1029/2000JA000426.  

Veenadhari, B., R. Selvakumaran, R. Singh, A. K. Maurya, N. Gopalswamy, S. Kumar, 

and T. Kikuchi (2012), Coronal mass ejection–driven shocks and the associated 

sudden commencements/sudden impulses, J. Geophys. Res., 117, A04210, 

doi:10.1029/2011JA017216. 

Venkatesh, K. (2013), Studies on equatorial and low-latitude ionospheric phenomena and 

their effect on satellite based communication and navigation systems, PhD thesis, 

Andhra University, India. 

Venkatesh, K., P. R. Fagundes, D. S. V. V. D. Prasad, C. M. Denardini, A. J. de Abreu, 

R. de Jesus, and M. Gende (2015), Day-today variability of equatorial electrojet 

and its role on the day-to-day characteristics of the equatorial ionization anomaly 

over the Indian and Brazilian sectors, J. Geophys. Res. Space Physics, Vol. 120 

(10), 9117–9131, doi: 10.1002/2015JA021307. 

Venkatraman, S., and R. Heelis (2000), Interhemispheric plasma flows in the equatorial 

topside ionosphere, J. Geophys. Res., 105, 18,457–18,464, doi: 

10.1029/2000JA000012. 

Vestine, E.H. (1954), Winds in the upper atmosphere deduced from the dynamo theory of 

geomagnetic disturbance, J. Geophys. Res. 59(1), 93–128. 

Vineeth C, Pant T. K., Devasia C. V., Sridharan R (2007), Highly localized cooling in 

daytime mesopause temperature over the dip equator during counter electrojet 

events: first results, Geophys Res Lett, 34:L14101. doi: 10.1029/2007GL030298.  



Khadka, S. M. (2018), PhD Dissertation. 

241 

Vineeth C., Pant T. K., Sridharan R (2009), Equatorial counter electrojets and polar 

stratospheric sudden warmings – a classical example of high latitude–low latitude 

coupling? Ann Geophys 27:3147–3153.  

Vineeth, C.,  N. Mridula, P. Muralikrishna, K. K. Kumar, T.K. Pant (2016), First 

observational evidence for the connection between the meteoric activity and 

occurrence of equatorial counter electrojet, J. Atmos. Sol.-Terr. Phys. 147, 71–75.  

Walker, G. O., J. H. K. Ma, E. Golton, The equatorial ionospheric anomaly in electron 

content from solar minimum to solar maximum for south East Asia, Ann. 

Geophys., 12, 195, 1994.  

Watanabe, S., and H. Oya (1986), Occurrence characteristics of low latitude ionosphere 

irregularities observed by the impedance probe on board the Hinotori satellite, J. 

Geomagn. Geoelectr. 38, 125–149. 

Wautelet, G. (2013), Characterization of ionospheric irregularities and their influence on 

high-accuracy positioning with GPS over mid-latitudes, PhD Thesis, University 

de Liege, Belgium 

Wernik, A. W., L. Alfonsi, and M. Materassi (2004), Ionospheric irregularities, 

scintillation and its effect on systems, Acta Geophysica Polonica, Vol. 52 (2), 

237-249. 

Woodmen, R. F. (1970), Vertical plasma drift velocities and east-west electric fields at 

the magnetic equator, J. Geophys. Res., Vol. 75 (31), 6249–6259, doi: 

10.1029/JA075i031p06249. 



Khadka, S. M. (2018), PhD Dissertation. 

242 

Woodman, R. F., and C. La Hoz (1976), Radar observations of F region equatorial 

irregularities, J. Geophys. Res., 81(31), 5447–5466, 

doi:10.1029/JA081i031p05447. 

Wu, Q. (2015), Longitudinal and seasonal variation of the equatorial flux tube integrated 

Rayleigh-Taylor instability growth rate, J. Geophys. Res. Space Physics, 120, 

7952–7957, doi:10.1002/ 2015JA021553. 

Xiong, C., H. Lühr, and S. Y. Ma (2013), The magnitude and inter-hemispheric 

asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE 

observations, J. Atmos. Terr. Phys., 105, 160–169, 

doi:10.1016/j.jastp.2013.09.010. 

Yamazaki, Y. & Maute, A. (2017), Sq and EEJ—A Review on the Daily Variation of the 

Geomagnetic Field Caused by Ionospheric Dynamo Currents, Space Sci Rev, 206: 

299. https://doi-org.proxy.bc.edu/10.1007/s11214-016-0282-z. 

Yamazaki, Y., Stolle, C., Matzka, J., Siddiqui, T. A., Lühr, H., & Alken, P. (2017). 

Longitudinal variation of the lunar tide in the equatorial electrojet, Journal of 

Geophysical Research: Space Physics, 122, 12,445–12,463. https://doi-

org.proxy.bc.edu/10.1002/2017JA024601 

Yeh, K. C., and C. H. Liu (1974), Acoustic‐gravity waves in the upper atmosphere, Rev. 

Geophys., 12(2), 193–216, doi:10.1029/RG012i002p00193.  

Yizengaw, E., M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. 

Rabiu, C. E. Valladares, and R. Stonrback (2014), The longitudinal variability of 

equatorial electrojet and vertical drift velocity in the African and American 

sectors, Annales Geophysicae, Vol. 32, 231-238, doi:10.5194/angeo-32-231-2014. 



Khadka, S. M. (2018), PhD Dissertation. 

243 

Yokoyama, T., S.-Y. Su, and S. Fukao (2007), Plasma blobs and irregularities 

concurrently observed by ROCSAT-1 and Equatorial Atmosphere Radar, J. 

Geophys. Res., 112, A05311, doi:10.1029/2006JA012044. 

Zalesak, S. T. and Ossakow, S. L. (1982), On the prospect for artificially inducing 

equatorial spread F, Memo. Rep. 4899, Nav. Res. Lab., Washington, D.C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Khadka, S. M. (2018), PhD Dissertation. 

244 

Appendix I 

Abbreviations 

 

AED: Afternoon EEJ Depression 

AGW: Atmospheric Gravity Wave 

C/NOFS: Communications/Navigation Outage Forecasting System 

CEDAR: Coupling, Energetics and Dynamics of Atmospheric Regions 

CEJ: Counter Electrojet 

CIRs: Corotating Interaction Regions 

CISM: Center for Integrated Space Weather Modeling 

CMEs: Coronal Mass Ejections 

DoD: Department of Defense 

EEF: Eastward Electric Field 

EEJ: Equatorial Electrojet 

EFI: Electric Field Instrument  

EIA: Equatorial Ionization Anomaly 

EPB: Equatorial Plasma Bubble 

EPIs: Equatorial Plasma Irregularities 

ESA: European Space Agency 

ESF: Equatorial Spread-F 

EUV: Extreme Ultraviolet  

FPI: Fabry Perot Interferometer 
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FUV: Far Ultraviolet 

GIC: Geomagnetically Induced Currents 

GNSS: Global Navigation Satellite System 

GPS: Global Positioning System 

HF: High Frequency 

IP: Interplanetary 

JRO: Jicamarca Radio Observatory 

LISN: Low-Latitude Ionospheric Sensor Network 

LLIONS: Low-Latitude IONospheric Sector 

LP: Langmuir Probe 

LSTID: Large-Scale Traveling Ionospheric Disturbance 

LT: Local Time 

MED: Morning EEJ Depression 

MHz: Mega Hertz 

MSTID: Medium-Scale Traveling Ionospheric Disturbance 

NASA: National Aeronautics and Space Administration 

NJIT: New Jersey Institute of Technology 

NNSS: Navy Navigation Satellite System 

PRE: Pre-Reversal Enhancement 

PRN: Pseudo Random Noise 

PW: Planetary Wave 

RTI: Rayleigh-Taylor instability 

SCs: Sudden Commencements 
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SEPs: Solar Energetic Particles 

SIs: Sudden Impulses 

SLC: School Leaving Certificate  

SOFDI: Second-Generation, Optimized, Fabry-Perot Doppler Imager 

SQ: Solar Quiet 

SSW: Sudden Stratospheric Warming 

TEC: Total Electron Content 

TID: Traveling Ionospheric Disturbance 

TU: Tribhuvan University 

UT: Universal Time 

 

 

 

 

 

 

 

 

 

 

 

 

 



Khadka, S. M. (2018), PhD Dissertation. 

247 

Appendix II 

Publications and Manuscripts 

Space Plasma/Weather Physics | Advisor: Dr. Cesar E. Valladares 

 

 

 

 

 

 

 

 

Material/ Condensed Matter Physics | Advisor: Prof. Stephen D. Wilson 

 

 

 

 

 

 

 

 

 

1. Chetan Dhital, Sovit Khadka (Equal Contribution), Z Yamani, Clarina de la Cruz, TC Hogan, SM 

Disseler, Mani Pokharel, KC Lukas, Wei Tian, C. P. Opeil, Ziqiang Wang, Stephen D Wilson (2012), 

Spin ordering and electronic texture in the bilayer iridate Sr3Ir2O7, Physical Review B 86, 100401. 

2. Chetan Dhital, Tom Hogan, Z Yamani, Clarina de la Cruz, Xiang Chen, Sovit Khadka, Z. Ren, 

Stephen D Wilson (2012), Neutron scattering study of correlated phase behavior in Sr2IrO4, Physical 

Review B 87, 144405. 

3. Yoshinori Okada, Daniel Walkup, Hsin Lin, Chetan Dhital, Tay-Rong Chang, Sovit Khadka, Wenwen 

Zhou, H-T Jeng, M. Paranjape, A. Bansil, Z. Wang, Stephen D. Wilson, Vidya Madhavan (2013), 

Imaging the evolution of metallic states in a correlated iridate, Nature Materials 12,707–713.   

4. Chang Liu, Su-Yang Xu, Nasser Alidoust, Tay-Rong Chang, Hsin Lin, Chetan Dhital, Sovit Khadka, 

Madhab Neupane, Ilya Belopolski, Gabriel Landolt, Horng-Tay Jeng, Robert S. Markiewicz, J. Hugo 

Dil, Arun Bansil, Stephen D. Wilson, M. Zahid Hasan (2014), Spin-correlated electronic state on the 

surface of a spin-orbit Mott system, Physical Review B 90, 045127. 

1. Khadka, Sovit M., Cesar E. Valladares, Rezy Pradipta, Edgardo Pacheco, and Percy Condor (2016), 

On the mutual relationship of the equatorial electrojet, TEC and scintillation in the Peruvian sector, 

Radio Science, Vol. 51 (6), 742-751, doi:10.1002/2016RS005966. 

2.  Khadka, Sovit M., Valladares, C. E., Sheehan, R. & Gerrard, A. J. (2018), Effects of electric field and 

neutral wind on the asymmetry of equatorial ionization anomaly, Radio Science, Vol. 53, 

https://doi.org/10.1029/2017RS006428. 

3. Valladares, Cesar E., Sovit M. Khadka, P. Coisson, and S. Buchert (2018), Observations of the 

Motion of Plasma Depletions using SWARM Constellation and LISN TEC Measurements (Under 

Preparation). 

4. Khadka, Sovit M., Cesar E. Valladares, and Patricia H. Doherty (2018), Day-to-day variability of the 

counter electrojet and F-layer dynamics during geomagnetically quiet days (Under Preparation). 

5. Khadka, Sovit M., Cesar E. Valladares, and Endawoke Yizengaw (2018), Narrow longitudinal and 

seasonal variability of equatorial electrojet and their consequences in American low latitudes (Under 

 



Khadka, S. M. (2018), PhD Dissertation. 

248 

Appendix III 

 

VITA 
 

 
I, Sovit Khadka, was born in Urlabari Municipality - 09 (formerly Rajghat VDC - 07), 

Morang, Nepal. After passing SLC (School Leaving Certificate) from Araniko Secondary 

School in my hometown, I joined Mahendra Morang Adarsh Multiple Campus 

(Tribhuvan University, TU), Biratnagar, Nepal where I earned my Intermediate and 

Bachelor’s degrees in Physical Sciences and finally Master’s degree in Physics from 

Central Department of Physics, TU, Kathmandu, Nepal. Then, I taught Physics to 

undergraduate students in TU affiliated colleges. I have also received M.S. in Physics 

from Western Illinois University, Macomb, IL in 2010. Lastly, I joined Boston College 

and completed Ph.D. degree in Space Plasma/Weather Physics in April 2018. 

 

 


