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We study a new lifting of automorphic representations using the theta representa-

tion Θ on the 4-fold cover of the symplectic group, Sp2r(A). This lifting produces the

first examples of CAP representations on higher degree metaplectic covering groups.

Central to our analysis is the identification of the maximal nilpotent orbit associated

to Θ.

We conjecture a natural extension of Arthur’s parameterization of the discrete

spectrum to Sp2r(A). Assuming this, we compute the effect of our lift on Arthur

parameters and show that the parameter of a representation in the image of the lift

is non-tempered. We conclude by relating the lifting to the dimension equation of

Ginzburg to predict the first non-trivial lift of a generic cuspidal representation of

Sp2r(A).
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Chapter 1

Introduction

1.1 Theta functions and liftings

One of the first modular functions ever studied was the classical theta function of

Jacobi, which may be written as

Θ(τ) =
∑
n∈Z

eπin
2τ , where τ ∈ C, Im(τ) > 0.

While variations of this function were studied as far back as Euler, one of the most

important early applications of the theta function comes in Riemann’s second proof

of the functional equation of the eponymous zeta function. The key property of this

function is the functional equation

Θ(τ) =
1√
τ

Θ

(
−1

τ

)
,

which implies, along with the obvious invariance Θ(τ + 2) = Θ(τ), that Θ is a

modular form of weight 1
2
. Today, we understand, thanks to Weil [Wei64], that

the theory of half-integral weight modular forms may be understood as studying

certain automorphic representations of the metaplectic double cover Mp2(R) of the

1



2 Chapter 1: Introduction

group SL2(R). Moreover, the Jacobi theta function corresponds to a particularly

important automorphic representation ω known as the Segal-Shale-Weil(-oscillator)

representation. In particular, the theory of automorphic forms on the non-linear

covers of reductive groups is as old as the theory of modular forms itself.

Let K be a number field, and let G be a reductive group over K. Motivated

by the classical theory of theta functions and other applications to number theory

([KP84], [Kub69]), the theory of automorphic forms on covers of the group G(A),

where A is the ring of adeles of K, has enjoyed much recent attention (for example,

[KP84, Wei03, Wei14, GG14, FG17, BBF11, Gao18b]). While many people have

developed the theory of topological covering groups of G(A), we will use the theory

of Brylinski and Deligne [BD01] to describe the groups in which we are interested.

Assuming K contain the nth roots of unity, Brylinski and Deligne classify degree n

topological extensions GA of G(A) by µn(K) which arise from the algebraic K-theory

of the field K. More precisely, viewing G as a sheaf of groups on the big Zariski

site over Spec(K), Brylinski-Deligne characterize the objects in the Picard category

CExt(G,K2) of central extensions (of sheaves) of G by Quillen’s algebraic K-theory

sheaf K2. That is, an object G ∈ CExt(G,K2) is a sheaf of groups such that there is

a short exact sequence

1 −→ K2 −→ G −→ G −→ 1 (1.1)

with the image of K2 central in G. The classification is particularly simple when G

is split, and for G semi-simple and simply connected, CExt(G,K2) is discrete with a

single generator, essentially recovering Steinberg’s universal extension. This classifi-

cation of (BD-)covering groups works over a general base scheme S; in particular, we

have an analogous theory over local fields F .
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Given a BD-extension G, we obtain a degree n topological covering group

1 −→ µn(K) −→ G(A)
π−→ G(A) −→ 1

by taking A-points of (1.1) and pushing out by the nth-Hilbert symbol K2(A)
(·,·)n−−−→

µn(A) = µn(K). The reason for studying central extensions by nth-roots of unity is

that, as noticed by Weil [Wei64], the nth-order reciprocity theorem of class field theory

implies that the cover π splits over the discrete subgroup G(K) ⊂ G(A). Thus, upon

fixing a section over the rational points, we may meaningfully study automorphic

forms on G(A). This construction recovers essentially all topological covering groups

that have arisen in automorphic representation theory.

One reason for working with this formalism is that there is a reasonable notion

of an L-group for such covering groups. Given an n-fold topological BD-covering

group G, we may associate to it a natural complex dual group G
∨
, which can be

distinct from the dual group of G. Recently, Weissman has put forward a promising

candidate, LG, for the L-group of such covering groups (see [Wei14] and [Wei15]) as

an extension

1 −→ G
∨ −→ LG −→ WK −→ 1. (1.2)

It is thus important to test if this L-group allows us to extend Langlands functori-

ality and Arthur’s conjectures to the case of BD-covering groups. For example, the

construction of the metaplectic tensor product has been shown to be functorial by

Gan [Gan16].

Historically, the metaplectic 2-fold cover of the symplectic group, Mp(W ), where

(W, 〈·, ·〉) is a symplectic vector space over K, is the first example of a BD-covering

group to be studied. Much is known about the representation theory of Mp(W ); in
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particular, the local Langlands correspondence1 has been extended to this group via

work of Adams-Barbasch [AB95], [AB98] in the real case, and Gan-Savin [GS12] in

the nonarchimedean case. A primary tool in the study of the representation theory of

Mp(W ) has been the theta correspondence, which is an integral lifting construction

utilizing the oscillator representation ωψ
2, the generalization of the classical theta

representation mentioned above.

We pause here to sketch what we mean by an “integral lifting construction”.

Stated imprecisely, given two reductive groups (G,H) such that G×H ⊂ Sp(W ) and

a kernel representation Θ of Mp(W )A, we consider the restriction Θ
∣∣
GA×HA

. In good

settings, this restriction decomposes as a Hilbert direct sum

Θ
∣∣
GA×HA

∼=
⊕̂

π
π � Θ(π)

where the sum ranges over a suitable subset of the automorphic spectrum of GA. For

each such π, the space Θ(π) is an automorphic representation of HA, which may be

viewed as having been “lifted from π by Θ.”

More explicitly, given an irreducible cuspidal automorphic representation (π, V )

of GA, consider the space Θ(π), defined as the Hilbert space closure of the space of

functions on HA of the form

F (h) =

∫
[G]

ϕ(g)θ(g, h) dg,

where ϕ ∈ V and θ ∈ Θ. The map π 7→ Θ(π) is precisely the one indicated above.

This general setup is referred to as the “small representation method” of constructing

liftings of automorphic representations between reductive group (for example, see

1Anachronistically, this correspondence is compatible with the L-group á la Weissman. Histori-
cally, the Shimura correspondence allowed for an ad hoc notion of local Langlands parameter with
which a correspondence may be proved.

2Here we need to fix an additive character ψ : K\A→ C×.
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[Gin14a] for this terminology); we explain what is meant by small in terms of Gelfand-

Kirillov dimension below.

When the kernel representation Θ is the Weil representation ωψ, the lifting is

the theta correspondence, which has played a central role in the automorphic theory

of classical groups. For example, such liftings were recently used by Gan-Ichino to

extend the notion of Arthur parameter to Mp(W )A [GI17]. Motivated by the work

of Bump-Friedberg-Ginzburg [BFG06], one may attempt to study generalizations of

theta liftings on BD-covering groups in the hope of gaining insight into the represen-

tation theory of higher degree covers.

In this thesis, we consider higher degree covers Sp(W )A of Sp(W )A and study

theta-type liftings of automorphic representations of certain dual reductive pairs

inside Sp(W )A. In our lifting constructions, we replace the oscillator representa-

tion ωψ with a (generalized) theta representation Θ. As outlined in Chapter 3,

this representation is a distinguished residual representation obtained from a Borel

Eisenstein series, a process which also gives a construction of ωψ [Shi85]. Such

theta representations have been studied on several different covering groups (see

[KP84, BFG03, FG17, Gao16, Cai16]) and may be defined for a large class of BD-

covering groups.

One of the most important properties of ωψ is that it has Schrödinger-type mod-

els. This both implies that ωψ is a minimal representation (in the sense of minimal

Gelfand-Kirillov dimension; see discussion below) and enables explicit computations.

A crucial distinction in our case is the lack of such a model for Θ or its local com-

ponents. Moreover, Θ is not even a minimal representation, and the Gelfand-Kirillov

dimension of theta representations grows with the degree of the cover. Neverthe-

less, one of our main results is that in the case of the 4-fold cover of Sp(W )A, Θ is
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sufficiently small in a sense to be made precise below. This allows it to effectively

function as a kernel to construct a lifting of automorphic representations between

certain (reducible) dual reductive pairs in Sp(W ).

1.2 Main Results

More specifically, to any decomposition W = W1 ⊕W2 into the sum of two lower

dimensional symplectic spaces, we obtain an embedding

Sp(W1)× Sp(W2) ↪→ Sp(W ).

We study the problem (both locally and globally) of restricting the theta representa-

tion ΘW to the subgroup Sp(W1)×µ4 Sp(W2). We study properties of this represen-

tation from another perspective. Using ideas of Rallis in the theory of the classical

theta correspondence [Ral84], given a symplectic space W = W0, one can form the

larger symplectic space

Wn = Xn ⊕W0 ⊕X∗n,

whereXn is totally isotropic and dimK(Xn) = n, thus giving an embedding Sp(W0) ↪→

Sp(Wn) for each n ≥ 0. Setting Vn = Xn ⊕ X∗n, we may then consider Θn(π), the

representation of Sp(Vn)A formed by the pairing vectors of π with vectors in ΘWn ,

and study properties of this lifting as n varies:

π

Θn+1(π)

Θn(π)

Θ1(π).

...
...

In this spirit, we show the following:
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Theorem 1.2.1. Suppose that π is a cuspidal automorphic representation of Sp(W0)A.

Then

1. If Θk(π) = 0, then Θk−1(π) = 0;

2. There exists an n� 0 such that Θn(π) 6= 0;

3. If Θk−1(π) = 0, then Θk(π) is cuspidal.

Note that these results are analogous to those of Rallis [Ral84] in the context of

liftings between dual reductive pairs of symplectic-orthogonal type, and of those in

[BFG06] for the double cover of odd orthogonal groups. This is the first example of

such results for higher degree covers.

Remark 1.2.2. The restriction to the 4-fold cover in the theorem is not for convenience,

but is necessary for the construction to be well-behaved. For example, while parts

(1) and (2) hold for higher degree covers, part (3) of this theorem intimately relies

on Theorem 1.2.4 stated below, which does not hold for the 2n-th degree cover when

n > 2. See the comments after Theorem 1.2.4 below.

In [Art89], Arthur conjectures for a connected reductive group G over K a pre-

cise decomposition of the discrete spectrum L2
disc(G(K)\G(A)) in terms of Arthur

parameters

Ψ : LK × SL2(C)→ L G .

Here LK is the conjectural Langlands group attached to K, and L G = G∨oWF is

the Langlands L-group associated to G. Understanding parameters Ψ, called non-

tempered parameters, which are nontrivial when restricted to SL2(C) is related to

the classification of non-tempered cuspidal representations of G(A). These represen-

tations, which are called CAP representations, provide counterexamples to the naive

generalization of Ramanujan’s conjecture to groups other than GLn.
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As a corollary of Theorem 1.2.1, for a given cuspidal representation π there is a

first index n(π), where Θ(π) := Θn(π)(π) is a non-zero cuspidal representation. One of

the main results of the paper is that the representation Θ(π) is a CAP representation.

Theorem 1.2.3. Suppose π is a cuspidal representation of Sp(W0), and suppose

Θ(π) := Θn(π)(π) is the first nontrivial lift. Then each irreducible summand of Θ(π)

is CAP with respect to the triple (Qt(π),n, π, χΘ).

The precise notations and results are stated in Section 8. While CAP represen-

tations have previously been studied for Mp(W0) (see [Yam16], for example), this

constitutes the first construction of CAP representations on higher degree covering

groups. Given the connection between Arthur’s parametrization of the discrete auto-

morphic spectrum and CAP representations, it is natural to ask if our construction

may be understood in terms of non-tempered A-parameters, which may be conjec-

turally defined in terms of Weissman’s L-group.

Motivated by a natural unramified correspondence between Sp2r and SO2r+1, we

conjecture in Section 8.2 an extension of Arthur’s parameterization of the discrete

spectrum to Sp2r. Such a result has only recently been achieved in the case of Mp2r

[GI17], and relies heavily on the theta lifting associated to ωψ. Assuming such a pa-

rameterization, in Section 8.3 we compute the effect of our lift on Arthur parameters.

This may be viewed simultaneously as evidence of our conjectural parameterization

as well as an extension of Arthur’s conjectures to BD-covers using the definition of

L-group provided by Weissman. We remark here that this computation must be un-

derstood in light of the fact that local Arthur packets have yet to be defined for any

covering group aside from Mp(W ) [Li11]. Moreover, we do not know how to formulate

the conjectural multiplicity formula for covering groups, so in a strong sense, we are

not yet able to fully generalize Arthur’s conjectures to include covering groups.



Chapter 1: Introduction 9

As indicated above, the properties of this theta lifting rely heavily on the “small-

ness” of Θ. More precisely, we need to compute the maximal nilpotent orbit O(Θ)

associated to Θ. Recall that nilpotent orbits of sp2r(C) may be parametrized by cer-

tain partitions (pe11 · · · p
ek
k ) of 2r, and form a partially ordered set under O ≤ O′ if

O ⊂ O′. We say that a nilpotent orbit O supports an automorphic representation

π if certain Fourier coefficients attached to O do not vanish on π. For details, see

Chapter 4.

Utilizing the notation from [Gin14b], we define O(π) to be the set of orbits max-

imal with respect to the partial order supporting π. Assuming O(π) is a single

nilpotent orbit, the Gelfand-Kirillov dimension of π is given by

dim(π) =
1

2
dimC(O(π)).

For example, π is generic if and only if the regular nilpotent orbit supports π if and

only if dim(π) = r2. The representation ωψ on Mp(W )A is minimal in the sense that

only the minimal nilpotent orbit supports it; this is equivalent to dim(ωψ) = r.

The results of Sections 5.1 and 5.2 may be stated as follows:

Theorem 1.2.4. Let Θ2r denote a theta representation of Sp2r(A). Let OΘ,r = (2r).

1. OΘ,r supports the representation Θ2r.

2. If O′ is any nilpotent orbit greater than or not comparable to OΘ,r, then O′ does

not support the representation Θ2r.

In particular, we have that

dim(Θ2r) =
r(r + 1)

2
.

This result is interesting in its own right as it is an important question in the

non-generic case to understand the nilpotent orbits associated to theta representa-

tions [BFG03, Cai16]. In our context, this identification is crucial to the proofs of
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Theorems 1.2.1 and 1.2.3, and the proof of this theorem occupies Chapter 5. We

note in Appendix A.1 that if one sought to study the corresponding lift in the 2-fold

covering case, the minimality of ωψ forces Θm(π) = 0 for all m. In this sense, the

oscillator representation is “too small” for this lift.

Remark 1.2.5. It is natural to hope that this result may be extended to the 2n-th

degree cover. It is an open question what the nilpotent orbit associated to the theta

representation Θ
(n)
2r on higher degree covers of the symplectic group ought to be.

While Friedberg and Ginzburg have presented a conjecture in the case of odd-degree

covers [FG17], this is still open and there are fundamental obstructions to verifying

this conjecture. See the comments after Proposition 5.2.3. In any case, producing

an analogous conjecture for even degree covers does not seem straightforward. We

remark that the proof of Theorem 1.2.4 (1) shows that for n > 2, we have

O
(

Θ
(2n)
2r

)
≥ (2r),

and in general the inequality is strict. In particular, these representations are too

large for the integral lift considered here, so one must consider different constructions

if one hopes to develop a generalization of this lift to higher degree covers. We expect

a variation on the descent constructions of Friedberg-Ginzburg [FG17] should replace

the theta kernel used in our construction, though this will change the nature of the

local analysis and still requires knowing O(Θ
(2n)
2r ).

Our construction, as well as the value of O(Θ2r), is motivated by Ginzburg’s

dimension equation, which heuristically relates first occurrences of liftings defined

in terms of integral pairings such as ours to a certain equality relating the dimen-

sions of the groups being integrated over to the Gelfand-Kirillov dimension of certain

representations. For more details, see [Gin14b] and Chapter 9. In our case, the di-
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mension equation suggests that in the case that if π is cuspidal and generic, then

n(π) = 1
2

dim(W ) + 1. In Chapter 9, we provide evidence for this conjecture by

relating the Whittaker coefficients of the lift to those of π.

The remainder of this thesis is organized as follows:

After fixing notation in Chapter 2, we recall the definition of BD-covering groups.

Chapter 3 develops the local and global theory of theta representations in this lan-

guage, with emphasis on the role of the dual group G
∨

as we will be interested in an

explicit Satake map in Chapter 6. Chapter 4 recalls the theory of Fourier coefficients

and Jacquet modules associated to a nilpotent orbit O, and in Section 4.2 we define

the local Fourier-Jacobi modules associated to specific orbits. Importantly, Corollary

4.2.4 allows us to relate vanishing of local Fourier-Jacobi modules to the associated

Jacquet module. The study of these modules is our main tool to prove vanishing of

certain global Fourier coefficients. In Section 4.3, we recall the tool (both locally and

globally) of root exchange.

As stated above, Chapter 5 is dedicated to the proof of Theorem 1.2.4. In Section

5.1, we prove Theorem 1.2.4 (2). The method of proof combines in a new way global

results of [GRS03] and [JL15] with a detailed study of local Fourier-Jacobi modules

to force vanishing of the relevant Fourier coefficients. We prove Theorem 1.2.4 (1) in

Section 5.2 in two stages. In the even rank case, we show that the non-vanishing of

the certain Fourier coefficients of Θ4r associated to OΘ,2r = (22r) is equivalent to the

non-vanishing of certain semi-Whittaker coefficients of theta functions on the double

cover of GL2r(A), which are non-zero by results of Bump-Ginzburg [BG92]. We then

show that this forces non-vanishing in the odd rank case by inspecting the restriction

of certain coefficients of theta functions to the root subgroup of the highest root.

In Chapter 6, we study the corresponding local lifting in the case of principal series
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representations. Despite the lack of a Schrödinger model, we establish the existence of

and analyze a filtration of certain Jacquet modules of the local theta representation Θ

(see Appendix A.1). Using the local results obtained in the proof of Theorem 1.2.4,

we explicate the effect of the theta lift on Satake parameters. See Theorem 6.1.1.

This is the technical backbone of Theorem 1.2.3.

Having established the relevant global and local results, we turn to the proofs of

Theorem 1.2.1 and Theorem 1.2.3 in Chapter 7. More specifically, Theorem 7.1.1 of

Sections 7.1 establishes Theorem 1.2.1 (2). The proof utilizes ideas of Rallis and Ikeda

showing that for n� 0, Fourier coefficients of Θ may be approximated with arbitrary

precision by certain coefficients of the lifted representation Θn(π). Our knowledge of

the Fourier coefficients of Θ thus concludes that the lifted representation must have

been non-trivial. In 7.2, we prove Theorem 1.2.1, parts (1) and (3).

In Section 8, we prove Theorem 1.2.3 establishing that the lift produces CAP

representations, and conjecture a natural extension of Arthur’s parametrization of

the discrete spectrum to the case of Sp2r(A). We then relate these results to Arthur’s

conjectures by computing the effect of the generalized theta lift on Arthur parameters.

In particular, we show that when one combines the natural lifting of unramified data

from Sp2r to SO2r+1 with Theorem 6.1.1, we may determine the (non-tempered)

Arthur parameter of the lift.

In Chapter 9, we review the notion of Gelfand-Kirillov dimension and discuss

Ginzburg’s philosophy of the dimension equation [Gin14b] and use it to study the

case of a generic cuspidal representation π of Sp2r. We show that the Whittaker

coefficient of the lift of such a representation to Sp2r+2 may be expressed in terms of

the Whittaker coefficients of π as well as a certain integral over the theta function,

supporting the conjecture that n(π) = r + 1 in this case.



Chapter 2

Notations and Preliminaries

We will work both locally and globally. To distinguish, we let K stand for a

number field which contains the full set of 4th roots of unity, and we use F to denote

a non-archimedean local field. Often F will arise as the completion of our number

field K with respect to some finite place, F = Kν . Fix once and for all an injective

character ε : µ4 → C×. Let A be the associated ring of adeles for the number field

K, and fix a non-trivial additive character ψ : K\A→ C×. Locally, we focus mainly

on the case that F is a local field of residue characteristic p > 2. In this setting, we

fix a nontrivial additive character ψ : F → C× of level 0.

2.1 Subgroups and characters

Let (W, 〈·, ·〉) be a 2r-dimensional symplectic space over F , and let Sp(W )F be

the group of isometries. Upon fixing a choice of basis for W ∼= F 2r, we may identify

Sp(W )F ∼= Sp2r(F ). When we do so, we always use the symplectic form given by −Jr

Jr

 , (2.1)

13



14 Chapter 2: Notations and Preliminaries

where

Jr =


1

. . .

1

 . (2.2)

Note that Jr corresponds to a split quadratic form QJ on F r. We denote the

corresponding set of symmetric matrices by

Symr
J(F ) = {l ∈ Matr×r : Jrl − T lJr = 0}.

With this form, we have the maximal torus Tr of diagonal elements, and Borel sub-

group Br = TrUr of upper triangular matrices. Here, Ur is the unipotent radical of

Br. This choice gives us the (standard) based root datum

(Xr,Φr,∆r, Yr,Φ
∨
r ,∆

∨
r ),

where Xr = X∗(Tr) is the character lattice and Yr = X∗(Tr) is the cocharacter lattice.

We label the associated simple roots as in Bourbaki: ∆ = {α1, · · · , αr}, with αr the

unique long simple root. Also, let W (Sp2r) denote the Weyl group of Sp2r, with wi

the standard representative of the Weyl reflection for the simple root αi.

We need to also set notations for various parabolic subgroups and characters: Let

s = (p1, . . . , pk, r
′) be a partition of r. Set Ps = MsUs to be the standard parabolic

subgroup of Sp2r with Levi factor

Ms
∼= GLp1 × · · · ×GLpk × Sp2r′ .

To ease the notation, we make a separate notation for certain parabolic subgroups.

Namely, set Qk,r−k = P(1,··· ,1,r−k) to be the parabolic subgroups Qk,r−k = Lk,r−kVk,r−k

such that

Lk,r−k ∼= GLk1 × Sp2(r−k) .
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We will have cause to consider two main types of character of Vk,r−k. We set

ψk : Vk,r−k → C× to be the Gelfand-Graev character

ψk(v) = ψ(v1,2 + v2,3 + · · ·+ vk,k+1),

and we set ψ0
k : Vk,r−k → C× to be the character

ψ0
k(v) = ψ(v1,2 + v3,4 + · · · vk0,k0+1),

where k0 is the largest odd integer ≤ k.

For each k ≤ r, one has the subgroup

Hk ↪→ Ur

given by

h(x : y : z) :=



Ik−1

1 x y z

Ir−k y∗

Ir−k x∗

1

Ik−1


x, y ∈ Gr−k

a , z ∈ Ga. (2.3)

We have an isomorphism Hk
∼= H2(r−k)+1, the Heisenberg group on 2(r − k) + 1

variables. Note that the center of Hk, Z(Hk), is the one dimensional root subgroup

corresponding to the long root µk (see the next subsection).

We will often need to integrate over various spaces of the form H(K)\H(A) for

some K-subgroup H ⊂ Sp2r. We adopt the shorthand [H] = H(K)\H(A).
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2.2 Formalism on roots

We work extensively with the root system Φ = Cr, so we take a moment to

introduce a simple notation for the 3 types of root in this system. Recall that we

label the simple roots ∆ = {α1, · · · , αr}, with αr the unique long simple root.

For 1 ≤ i ≤ k ≤ r − 1, set

γi,k = αi + · · ·+ αk.

These parametrize our short roots within the sub-root system of type Ar−1, cor-

responding to the Siegel parabolic. For the long roots, we set

µk = 2αk · · ·+ 2αr−1 + αr, µr = αr.

The positive roots not listed above are of the form

ηi,k = γi,k + µk+1.



Chapter 3

Theta Representations: Local and

Global Theory

In this chapter, we develop the local and global theory of theta representations.

In the local setting we choose to work in the language of Brylinski-Deligne covers.

The primary reason for this is to connect in Chapter 7 with the L-group of Weiss-

man. After recalling the notions of exceptional characters and the associated theta

representations, we specialize to the case of primary interest: the four-fold cover

of symplectic groups. We end our local discussion by stating properties about the

Jacquet modules of these representations.

We then recall the definition of global theta representations as residues of certain

Borel Eisenstein series, and recall results of Friedberg and Ginzburg [FG17] on the

constant terms of global theta functions.

17
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3.1 Theta Representations: local theory

Let F be a local field equipped with a discrete valuation. In this section, we will

develop the theory of local theta representations for Sp2r(F ).

3.1.1 Brylinski-Deligne Extensions

We develop the notion of local theta (or exceptional) representations to facilitate

later comparison with the work of Weissman.

Assume for now that F contains the full set of nth roots of unity, and that |n|F = 1

(this is what Gan-Gao refer to as the tame case [GG14]). Suppose that G is a con-

nected reductive group scheme over F , which for simplicity we assume is split, semi-

simple, and simply-connected. For the more general set up, we refer the reader to

[Gao16].

We fix a pinning (G,T,B, {xα}α∈∆) of G, and consider the corresponding to the

based root datum

(X,Φ,∆, Y,Φ∨,∆∨).

Here, Y = Hom(Gm,T) is the cocharacter lattice and X = Hom(T,Gm) is the char-

acter lattice. Recall that W = N(T)/T is the Weyl group of G.

Let K2 be QuillenK2-sheaf on the big Zariski site over Spec(F ), and set CExt(G,K2)

to be the category of central extensions of G by K2 as sheaves over Spec(F ). With

our restriction on G, then Brylinski and Deligne give a combinatorial description of

CExt(G,K2) (reminiscent of the classification of split reductive groups in terms of

root data) in terms of triples (Q, E , f). Here, Q is a W -invariant Z-valued quadratic

form on Y , E is a central extension of Y by F×, and f is a certain morphism of
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abelian groups which is more subtle. See the exposition in [GG14] for more details,

along with the parallel parameterization in terms of pairs (D, η) where D developed

by Weissman [Wei14]. Note that if G is semi-simple and simply connected, then we

may ignore the more subtle data of f (or η) in the classification.

If we further assume that G is simple and simply connected, then any W -invariant

quadratic form Q : Y → Z is completely determined by its value on α∨, where α ∈ ∆

is any long simple root. In other words,

CExt(G,K2) ∼= Z,

where we view Z as a discrete category. In this case, we will always choose the

quadratic form such that Q(α∨) = −1 for any short coroot α∨.

For simplicity, we assume G is semi-simple and simply connected for the remainder

of the section and fix a central extension G ∈ CExt(G,K2) corresponding to the

quadratic form Q. By taking F -points, we have a short exact sequence of F -groups

1 −→ K2(F ) −→ G(F ) −→ G −→ 1,

where G = G(F ). One of the main properties of classical algebraic K2 is that the nth

Hilbert symbol (·, ·)n gives a homomorphism

(·, ·)n : K2(F )→ µn(F ).

Pushing out the above short exact sequence by this morphism gives rise to the exact

sequence of topological groups

1 −→ µn(F ) −→ G
(n) −→ G −→ 1,

which by the assumptions on F realizes the covering group G
(n)

as a degree n covering

group. This covering group is determined by the data (Q, n), though not uniquely so.

For any subset S ⊂ G, we denote its full inverse image under the covering map by S.



20 Chapter 3: Theta Representations: Local and Global Theory

To the covering group G
(n)

, one may associate a complex dual group which may be

distinct from the dual of G (see [McN12], [FL10], and [Rei12]). Let BQ : Y × Y → Z

be the symmetric bilinear form associated to the quadratic form Q. To the data

(Q, n), we may associate the sublattice

YQ,n = {y ∈ Y : BQ(y, y′) ∈ nZ for all y′ ∈ Y } ⊂ Y.

For each α∨ ∈ Ψ∨, we define nα = n/ gcd(n,Q(α∨)). Set

α∨Q,n = nαα
∨, αQ,n =

1

nα
α.

Set Y sc
Q,n = spanZ{α∨Q,n : α ∈ Φ}. Then the complex dual group G

∨
of G

(n)
is the split

group associated to the root datum

(
YQ,n, {α∨Q,n},Hom(YQ,n,Z), {αQ,n}

)
.

As Sp2r(F ) := Sp
(4)

2r (F ) is the covering group of primary interest for this paper,

we remark that in this case G
∨

= Sp2r(C).

Finally, we remark that the assumption |n|F = 1 implies that the cover K over

a fixed hyperspecial maximal compact subgroup K = G(OF ) is split; that is, there

exists a homomorphism κ : K → G
(n)

splitting the cover. Such a splitting need not

be unique (in fact, splittings form a Hom(K,µn)-torsor). That being said, we fix a

splitting from here on, and nothing shall depend upon this choice.

3.1.2 Principal series and Exceptional representations

We turn now to the theory of principal series representations for the covering

group G
(n)

. We follow the setup and notation in [Gao16] closely.

Fix an embedding ε : µn(F ) → C×. For any subgroup H ⊂ G, we say that a

representation (ρ,W ) of H is (ε-)genuine if ρ|µn(F ) ≡ ε.
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Let T = T(F ) be the split maximal torus in G contained in B = B(F ), and let

T be its full inverse image in G
(n)

. In general, T is no longer abelian, but rather a

2-step nilpotent group. One can show that the center Z(T ) is given by the full inverse

image of the isogeny

i : TQ,n = YQ,n ⊗ F× → T.

Let χ : Z(T ) → C× be a genuine character of Z(T ). For any maximal abelian

subgroup A ⊃ Z(T ), we set

i(χ) = indTA(χ′),

where χ′ is any extension of χ to A. A version of the Stone-Von Neumann theorem

tells us that i(χ) is independent of A or the extension χ′, and that the map

χ 7→ i(χ)

induces a bijection between the irreducible genuine representations of Z(T ) and T .

In particular, we see that any irreducible representation of T is determined up to

isomorphism by its central character. Despite the independence of i(χ) from A, it is

useful to point out that in our setting, we may take A = Z(T )(T ∩K).

Define Ind(χ) := IndG
(n)

B
(i(δ

1/2
B χ)), where δB is the modular character of the Borel

B = B(F ), which we view as a non-genuine character of Z(T ). These are the prin-

cipal series representations of G
(n)

. As in the reductive setting, Ind(χ) is unramified

(Ind(χ)K 6= {0}) if and only if χ is unramified (that is χ|Z(T )∩K ≡ 1). Note that

unramified characters are the same as characters of YQ,n where

1 −→ µn −→ YQ,n −→ YQ,n −→ 1

is the induced (abelian) extension of the lattice.
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We now turn to the definition of an exceptional character. Following the notation

in [Gao16], we have for each root α the natural map hα : Gm → G
(n)

, covering the

embedding into G induced by our choice of pinning.

Definition 3.1.1. An unramified genuine character χ : T → C× is called exceptional

if χ(hα($nα)) = q−1 for each simple root α ∈ ∆.

The set of unramified exceptional characters of G
(n)

is a torsor over

Z(G
∨
) = Hom(YQ,n/Y

sc
Q,n,C×).

To each such character, we may associate a theta representation:

Definition 3.1.2. For a exceptional character χ, the theta representation Θ(G
(n)
, χ)

associated to χ is the unique Langlands quotient of Ind(χ).

For properties of theta representations, see [Gao16] and [BFG03].

3.1.3 The Case at hand: G = Sp2r n = 4

In this section, we inspect further the case of primary interest in this paper: the

4-fold cover Sp2r(F ) of Sp2r(F ). Thus, from this point forward we assume that F is

a local field containing the 4th roots of unity.

As before, we choose our quadratic form such that Q(α∨r ) = −1, where αr is the

unique long simple root. In this case, if we identify Y = Y sc = spanZ{α∨i } → Zr via

∑
i

ciα
∨
i 7→ (c1, c2 − c1, . . . , cr − cr−1),

we obtain (setting n = 4)

Y4 := YQ,4 = {(x1, . . . , xr) : 2|xi}, Y sc
4 = {(x1, . . . , xr) ∈ Y4 : 4|

∑
i

xi}.
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This shows that |Z(G
∨
)| = 2, so there are two distinct unramified exceptional

characters.

For the sake of explicit computations, we find it useful to work with an explicit

cocycle. To this end, we will utilize the bisector D : Y ⊗ Y → Z given by

D(α∨i , α
∨
j ) =



BQ(α∨i , α
∨
j ) : i < j

Q(α∨i ) : i = j

0 : i > j

.

With this choice of bisector, we may compute explicitly the cocycle on the maximal

torus. Since the map H2(Sp2r(F ), µ4)→ H2(Tr, µ4) is injective, we see that this does

in fact determine the cover completely.

Let us identify Sp2r(F ) = Sp2r(F )× µ4, and parametrize Tr via

M(t1, . . . , tr) = diag(t1, . . . , tr, t
−1
r , . . . , t−1

1 ).

Then, our bisector induces the cocycle σD given by

σD(M(t1, . . . , tr),M(s1, . . . , sr)) =
r∏

k=1

(tk, sk)
−1
4 ,

where (·, ·)n is the nth power Hilbert symbol.

Remark 3.1.3. Note that this choice of bisector (since Sp2r is simply connected, we

may set η = 1; see [GG14]), determines our 4-fold covering group up to isomorphism

and identifies it as the pullback along the standard embedding Sp2r ↪→ SL2r of the

4-fold cover of SL2r(F ) with the BLS block compatible cocycle (see [BLS99]).

Recall the isogeny of tori

i : TQ,4 → Tr.

An observation made clear by our choice of bisector is that if t, t′ ∈ i (TQ,4), then

σD(t, t′) = 1. This implies that there is a bijection between characters of i(TQ,4)
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and genuine characters of Z(T ). In particular, the genuine unramified characters of

Z(T ) are in bijection with characters of the lattice Y4. The bijection is not, however,

canonical.

In [GG14], Gan-Gao introduce the idea of a genuine distinguished character χ0

of Z(T ). We do not recall the full definition, but wish to clarify the case of Sp2r(F )

as the choice of distinguished character affects the Satake parameter attached to an

unramified principal series representation. While there are 4 distinct distinguished

characters for Sp2r(F ), only two of them, χ0
+ and χ0

−, are unramified. Here, setting

yi = 2α∨i , these characters are determined by

χ0
±(yi(a), ζ) =


ζ : i < r

±ζ(a, a)2 : i = r.

Here (·, ·)2 is the quadratic Hilbert symbol. and ψ : F → C× is our fixed additive

character. Note that the distinguished character χ0
+ equals the unitary distinguished

character χ0
ψ constructed in [GG14]. One can show that in the 4k-fold covering case,

the dependence on the choice of character ψ : F → C× disappears. We note that if we

were to further assume µ8 ⊂ F×, then (a, a)2 = 1, and χ0
+ becomes essentially trivial.

In any case, precisely one of these characters agrees with the choice of distinguished

character implicit in [FG17].

We fix a choice χ0 of unramified distinguished character to obtain our bijection,

χ 7→ χ0χ,

for any unramified character χ : i(TQ,4) → C×, viewed on the right hand side as a

non-genuine character of Z(T ). This choice also gives us our exceptional character as

follows. Consider the character

ρ4 =
∑
i∈∆

ω∨i ∈ Hom(YQ,n,Z) = X∗(T
∨
),
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the sum of fundamental coweights of the dual group G
∨
. Setting χρ4 : Y4⊗F× → C×

as the corresponding unramified character, we have our chosen genuine unramified

exceptional character

χ = χ0χρ4 .

This choice will become important in Chapter 6 as it fixes a notion of Satake param-

eters relative to a distinguished splitting of the L-group LSp2r (see [Wei14], [Wei15]).

Set Θ2r := Θ(Sp2r, χ) to be the corresponding theta representation.

3.1.4 Jacquet modules of local theta representations

Consider the maximal parabolic subgroup P(k,r−k)(F ) = M(k,r−k)(F )U(k,r−k)(F ),

and note that, by a simple computation using the block compatibility of the cocycle,

the induced cover

M (k,r−k)(F ) = GL
(2)

k (F )×µ4 Sp2(r−k)(F )

is given by the direct product amalgamated at µ4 of a metaplectic cover GL
(2)

k (F )

corresponding to the BD-covering group G̃Lk[−1, 0] (see the notation in [Gao18a,

Section 2.1]) and the 4-fold metaplectic cover Sp2(r−k)(F ).

Remark 3.1.4. We denote the corresponding cover of the general linear group by

GL
(2)

k (F ) despite the fact that it is a four-fold cover since it is the determinantal twist

of the four-fold cover associated to the BD-covering group G̃Lk[0, 2]. The associated

four-fold covering group GL
(4)

k (F )S
1 is the pushout of the double cover GL

(2)

k (F )KP

1The S stands for Savin, per [Gao18a].
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of the Kazhdan-Patterson cover G̃Lk[0, 1]; that is, we have a commutative diagram

1 µ2 GL
(2)

k (F )KP GLk(F ) 1

1 µ4 GL
(4)

k (F )S GLk(F ) 1.

=

It follows that the category of genuine smooth admissable representations of

GL
(2)

k (F )KP is equivalent to the category of ε-genuine smooth admissable representa-

tions of GL
(4)

k (F )S, and for our purposes the determinantal twist does not complicate

things.2 This is useful for translating results about theta representations on the dou-

ble cover to this covering group.

Under the inclusion of covering tori

Z(TGLk)×µ4 Z(T r−k) ↪→ Z(T r),

our choice of distinguished character χ0 induces a distinguished character on both

factors, and either choice of character gives the trivial distinguished character for

Z(TGLk). Let Θ2(r−k) be the corresponding theta representation of Sp2(r−k)(F ). Ad-

ditionally, define the unramified exceptional character of Z(TGLk):

χGL,k(diag(t1, . . . , tk), ζ) = ζ
k∏
i=1

|ti|(2(r−i)+3)/4 (3.1)

Of central importance to the study of theta representations on symplectic groups is

the following version of the “periodicity theorem” of [KP84] and its corollary (see also

[BFG03] for a version in the odd orthogonal case):

Theorem 3.1.5. Let F be a non-archimedean local field, and let Θ2r be the theta rep-

resentation on Sp2r(F ). Let Θ
(2)
GLk

denote the local theta representation on GL
(2)

a (F )

2This is essentially contained in the cocycle computation of Friedberg-Ginzburg [FG17, Section
2].
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associated to the exceptional character χGL,k. Then for any maximal parabolic sub-

group P(k,r−k), we have an isomorphism of GL
(2)
k (F )×µ4 Sp2(r−k)(F ) representations

JUk(Θ2r) ∼= Θ
(2)
GLk
⊗Θ2(r−k).

Proof. This follows as in [BFG03], Theorem 2.3. Note, however, that the exceptional

character for the GL-component of the Levi subgroup differs here from the character

in the odd orthogonal case by multiplication by the character

g 7→ | det(g)|3/4.

This is allowed as the definition of exceptional character depends only on its values

on the image of the root subgroups.

Corollary 3.1.6. There exists a Sp2r(F )-equivariant embedding

Θ2r ↪→ Ind
(

Θ
(2)
GLk
⊗Θ2(r−k)

)
.

Additionally, there exists a value s0 ∈ C such that there is a Sp2r(F )-equivariant

surjection

Ind
(

Θ
(2)
GLk
⊗Θ2(r−k) ⊗ δs0Pk

)
� Θ2r.

3.2 Theta Representations: global theory

Let K be a number field containing the nth roots of unity. In this section, we

develop the necessary global theory of theta representations following the notation of

[Gao17]. The picture is similar to the local one discussed in Section 3.1.2.

Let G be a simple and simply-connected group over K. We fix a choice of maximal

split torus T , Borel subgroup B containing T , and pinning as before. The theory of
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Brylinski and Deligne works similarly to the case of a local field. Fix a K2-covering

G, and let G
(n)

A be the induced topological covering group

1 −→ µn(K) −→ G
(n)

A −→ GA −→ 1.

By [Wei16], TK · Z(TA) is a maximal abelian subgroup of the covering torus TA.

Letting

χ =
∏
ν

χν : Z(TA) −→ C×

be a genuine quasi-character trivial on TK∩Z(TA), we may inflate χ to an automorphic

character on TK ·Z(TA). For each root α ∈ Φ, we obtain a character χα : A× −→ C×

given by

χα((tν)) =
∏
ν

χν(hα(tnαν )).

This is trivial on K×. Similarly to the local picture, we define the notion of a global

exceptional character

Definition 3.2.1. An automorphic character χ : TK · Z(TA) −→ C× is called excep-

tional if for each α ∈ Φ we have χα = | · |A.

Such characters will correspond to reducibility points for certain Eisenstein series,

as we now explain.

Fix our automorphic character χ. As in the local setting, we may form the induced

representation I(χ) be inducing in stages to TA and then parabolically inducing to

G
(n)

A . For f ∈ I(χ), define the Eisenstein series associated to f ,

E(f, χ, g) =
∑

γ∈B(K)\G(K)

f(γg), for g ∈ G
(n)

A

To make sense of this sum, we remark that the space of genuine automorphic char-

acters χ possesses an analytic structure. The Eisenstein series is convergent in a
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particular cone, and possesses meromorphic continuation to the entire space of such

characters. We remark that exceptional characters are not contained in the cone of

characters on which the above sum converges.

The Gindikin-Karpelevich formula for covering groups ([McN16] and [Gao18b]),

along with the theory of global intertwining integrals, tells us that the Eisenstein

series has a multi-pole at exceptional characters. For such an exceptional character,

we define theta functions as the corresponding residues

θ(f, χ, g) := lim
χ′−→χ

∏
α∈Φ

L(χ′α)−1E(f, χ′, g),

where L(χ′α) denotes the Hecke L-function associated to the character χ. Setting

Θ(G
(n)

A , χ) to be the automorphic representation of G
(n)

A generated by these residues.

Then we have Θ(G
(n)

A , χ) ∼=
⊗′

ν Θ(G
(n)

ν , χν), where for almost all finite places Θ(G
(n)

ν , χν)

is a local theta representation associated to the local exceptional character χν , as de-

fined in the previous section. We call Θ(G
(n)

A , χ) a global theta representation.

3.2.1 Restriction to Sp2r(A)

We now specialize to the case of the four-fold cover Sp2r(A). For the sake of

explicit computations and comparison to much of the literature, we shall fix a choice

of global distinguished character χ0 : Z(T r)K\Z(T r)A → C×. This enables us to

make explicit a corresponding automorphic exceptional character

χΘ,2r := χ0χΘ,

where

χΘ(M(t1, . . . , tr)) =
r∏
i=1

|ti|(2(r−i)+1)/4

Let Θ2r := Θ(Sp
(4)

2r (A)) denote the global theta representation with respect to this

choice of character. Thus, Θ2r is an irreducible genuine automorphic representation
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and if χ0 =
∏

ν χ
0
ν ,

3 we have

Θ2r =
⊗
ν

′Θ2r,ν ,

where for almost all places Θ2r,ν is the local theta representation discussed in Section

3.1.3. Note that in [FG17], Friedberg and Ginzburg work with the case χ0
ν is the

trivial distinguished character for each finite place ν. However, the set-up is the same

for a general χ0.

We take note of the following proposition of [FG17, Prop. 1]: Let χGL,k denote the

global analogue of the exceptional character (3.1) of GL
(2)

k from the previous section,

and let Θ
(2)
GLk

be the corresponding global theta representation.

Theorem 3.2.2. Let θ2r ∈ Θ2r. Then there exists θGLk ∈ Θ
(2)
GLk

and θ2(r−k) ∈ Θ2(r−k)

such that for any diagonal g ∈ GL
(2)
k (A) which lies in the center of the Levi of the

parabolic subgroup P (k,r−k)(A) and for all unipotent h ∈ Sp2(r−k) and v ∈ GL
(2)
k (A),

we have ∫
[U(k,r−k)]

θ2r(u(gv, h)) du = χΘ,k(g)θGLk(v)θ2(r−k)(h).

The global analogue of Corollary 3.1.6 also holds. We refer the reader to [FG17]

for the details.

3For each finite place, χ0
ν is automatically distinguished.



Chapter 4

Fourier Coefficients Associated to

a Nilpotent Orbit

In this chapter, we outline the process of associating harmonic-analytic data to

a nilpotent orbit O in a complex Lie algebra g = Lie(G)1 and a representation π of

G. To simplify the exposition, we will discuss only G = Sp2r. However, as these

coefficients are defined globally by integration over certain unipotent subgroups and

locally in terms of certain Jacquet functors, all the definitions and statements in this

section apply without change to the case of a BD-covering group. These concepts are

discussed in more detail in [Gin06], [Mœg96], and [MW87].

We will then discuss the notion of Fourier-Jacobi coefficients, and end with a

discussion of the technical tool of global and local root exchange. In Section 4.3.3, we

develop the notation we use when applying root exchange in subsequence chapters.

1or equivalently, a unipotent orbit in any connected Lie group G such that Lie(G) = g.
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4.1 Algebraic Setup

Let F be any field, and fix an algebraic closure F . Also, let O be a nilpotent orbit

in the F -Lie algebra sp2m. These orbits are finite in number and are parametrized

by symplectic partitions of 2r; that is, partitions where each odd number occurs with

even multiplicity. If the orbit O corresponds to the partition (pe11 p
e2
2 · · · perr ) where

pi ≤ pi+1, we simply write

O = (pe11 p
e2
2 · · · perr ).

There is a natural partial order on both nilpotent orbits (via closure relations)

and partitions (via dominance). The above correspondence identifies these partial

orders.

Let O = (pe11 p
e2
2 · · · perr ) be such an orbit. To each entry pi which appears in the

partition associated to O (including mutiplicities), we associate the torus element

hpi(t) = diag(tpi−1, tpi−3, . . . , t3−pi , t1−pi).

From, these we may produce a semisimple element hO(t) ∈ Sp2r(F (t)) by concate-

nating all the hpi(t) and then conjugating by a Weyl group element until the entries

are such that the powers of t are decreasing. It is a consequence of the fact that O

is a symplectic partition of 2r that the resulting semisimple element lies in Sp2r. See

[CM93] for more background.

Example 4.1.1. When n = 3, and O = (412). In this case

h(412)(t) = diag(t3, t, 1, 1, t−1, t−3).

One can check directly that this matrix is symplectic with respect to our chosen

symplectic form.
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This data induces a filtration on the unipotent radical of B

I ⊂ · · · ⊂ V2(O) ⊂ V1(O) ⊂ V0(O) = U,

where the terms in the filtration are defined in terms of root subgroups

Vl(O) = 〈xα(s) ∈ U : hO(t)xα(s)hO(t)−1 = xα(tks) for some k ≥ l〉.

Also, we define

M(O) = T · 〈x±α(s) : hO(t)xα(s)hO(t)−1 = xα(s)〉.

Note that all of these subgroups are defined over Z, and that PO = M(O)V1(O) is a

parabolic subgroup of Sp2r(F ).

Example 4.1.2. Continuing with the example of O = (412), we find that

V1((412)) =





1 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗

1 ∗ ∗

1 ∗ ∗

1 ∗

1.




and

V2((412)) =





1 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗

1 ∗

1 ∗

1 ∗

1.





.
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We will see below that the Fourier coefficients associated to the orbit O will be defined

as integration against V2(O). This example shows that V2(O) is in general not the

unipotent radical of a parabolic subgroup.

Since we are working with an algebraically closed field, M(O)F acts via conjuga-

tion on the quotient

Z2(O) := V2(O)/[V2(O), V2(O)]

with a dense orbit. Let uO ∈ V2(O) be a representative of this orbit. Set L(O)alg ⊂

M(O)F to be the stabilizer of uO. While the exact group L(O)alg depends on the

choice of representative, its Cartan type does not.

4.1.1 Global Setting and Fourier coefficients

Let K be a number field with adele ring A, and let (π, V ) be an automorphic

representation of Sp2r(A). Since M(O)A acts on V2(O)A by conjugation, one obtains

an action of M(O)K on the character group

(Z2(O)K\Z2(O)A)∨ ∼= Z2(O)K .

We consider only characters ψO : V2(O)K\V2(O)A → C× such that the connected

component of the stabilizer L(O)K := StabM(O),K(ψO) has the same Cartan type

as L(O)alg after base changing to K. Such characters are called generic characters

associated to O. There can exist infinitely many M(O)K-orbits of generic characters.

Definition 4.1.3. Let ψO : V2(O)K\V2(O)A → C× be a generic character associated

to O. For a vector ϕ ∈ π, we consider the coefficient

FψO(ϕ)(g) =

∫
[V2(O)]

$(vg)ψO(v) dv.
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We say that the orbit O supports π if there exists a choice of data (ϕ, ψO) such

that the above integral is not identically zero. Otherwise, we say that O does not

support π.

Note that FψO(ϕ)(g) is an automorphic function of L(O)A.

4.1.2 Local Setting and Jacquet modules

Now suppose that F is a non-archimedean local field. Let U be a unipotent

subgroup of an l-group G (in the terminology of [BZ77]), let χ : U → C× be a

character of U . Suppose that M ⊂ G is a subgroup of G normalizing U and leaving

χ invariant.

Then we have the exact functor

JU,χ : Rep(G)→ Rep(M),

the details of which are discussed in [BZ77], and we refer there for properties of

Jacquet modules. We now define the local analogue of the Fourier coefficients associ-

ated to a nilpotent orbit O. We have the action of M(O)F on Z2(O)F by conjugation,

and hence an action on the Pontryagin dual Z2(O)∨F
∼= Z2(O)F . As in the global setup,

we consider only characters ψO such that the stabilizer L(O)F ⊂ M(O)F is of the

same absolute Cartan type as L(O)alg. We call such characters generic characters

associated to O.

Definition 4.1.4. Let (π, V ) be a smooth admissible representation of finite length

for Sp2r(F ). We define the twisted Jacquet modules associated to the nilpotent

orbit O and the generic character ψO

JψO(π) := JV2(O),ψO(π).
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We say that a nilpotent orbit O supports π if there exists a generic character such

that JψO(π) 6= 0.

It is perhaps worth pausing here to meditate on the relationship between the

local and global data we have attached to a given unipotent orbit O. Suppose that

π ∼= ⊗′νπν is an automorphic representation of Sp2r(A) and suppose that there exists

a vector ϕ and a generic character ψO =
∏

ν ψO,ν such that

FψO(ϕ)(g) =

∫
[V2(O)]

$(vg)ψO(v)dv 6= 0.

We may assume that under the isomorphism π ∼= ⊗νπν ,

ϕ 7→ ⊗νϕν .

Now, choosing any finite place λ, one easily sees that the local character ψO,λ is

generic as well. Consider the functional

v ∈ πλ 7→ FψO(v ⊗

(⊗
ν 6=λ

ϕν

)
)(1).

We see that this gives a nonzero element in

HomV2(O)(πλ,C(ψO,λ)) = HomV2(O)(JψO,λ(πλ),C(ψO,λ)).

Thus, we see that JψO,λ(πλ) 6= 0.

We record this as the following proposition:

Proposition 4.1.5. Suppose that π ∼= ⊗′νπν is an automorphic representation of

Sp2r(A) and suppose that the nilpotent orbit O supports π. Then for any finite place

λ, O also supports πv.
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4.2 Local Fourier-Jacobi Coefficients

Our main technique for proving the vanishing of Fourier coefficients associated

to certain small nilpotent orbits is to study associated local Fourier-Jacobi models.

These are local analogues of the Fourier-Jacobi coefficients studied in [GRS03], and

the functor we study is intimately related to the Fourier-Jacobi map studied by Weiss-

man [Wei03] as well as the generalized Whittaker models of [GGS16], though this is

the first occurrence of this technique in the context of higher degree covering groups.

Letting F be a non-archimedean local field, we note the natural compatibility

between the various covers of Sp2r(F ) arising from a fixed BD-cover induced by the

compatibility between the various Hilbert symbols:

(x, y)nnm = (x, y)m for any x, y ∈ F×.

Thus, there is a canonical covering group morphsim

Sp2r(F ) � Mp2r(F ), (4.1)

where Mp2r(F ) is the classical metaplectic group, viewed as a 2-fold BD-cover of

Sp2r(F ).

Let (π, V ) be a smooth admissible representation of Sp2r(F ), and let O be a

nontrivial nilpotent orbit. To O we have attached the unipotent subgroups V1(O)

and V2(O). It is shown in [GRS03] that the quotient

V1(O)/ ker(ψO) = (X ⊕ Y )⊕ Z,

is a generalized Heisenberg group H2m+1 ⊕ F k, for some m, k ∈ Z≥0. Here Z =

V2(O)/ ker(ψO) forms the center and

V1(O)/V2(O) = X ⊕ Y
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gives the symplectic space of dimension 2m over F . One sees that there always exists

a choice of polarization X⊕Y such that both isotropic subspaces embed as subgroups

of U .

Consider the nilpotent orbits Om = ((2m)12(r−m)) for some 1 ≤ m ≤ r.2 We fix

the following choice of generic character ψm,α := ψOm : for v ∈ V2(Om)F and α ∈ F×,

ψm,α(v) = ψ(v1,2 + · · ·+ vm−1,m + αvm,2r−m+1).

We also define the characters ψm(v) = ψ(v1,2+· · ·+vm−1,m) and ψα(v) = ψ(αvm,2r−m+1).

In terms of matrices, the Heisenberg group Hm = V1(Om)/ ker(ψα) ∼= H2(r−m)+1

associated to the orbit Om may be represented by the natural Heisenberg group

occurring as a subgroup of U by matrices of the form h(x : y : z) as in equation (2.3)

In this way, we may identify ψα as a character of the center

Z(Hm) = {h(0 : 0 : z) : z ∈ F},

and form the corresponding oscillator representation

ωα = indHmY Z(Hm)(ψ
−1
α ),

where Y = {h(0 : y : 0) : y ∈ F r−m} is a Lagrangian subspace. We may identify this

as a representation of V1(Om), and note that twisting by the character ψ−1
m preserves

the induction:

ωm,α = ind
V1(Om)
Y V2(Om)(ψ

−1
α )⊗ ψ−1

m
∼= ind

V1(Om)
Y V2(Om)(ψ

−1
m,α)

Note that the subgroup Mp2(r−m)(F ) ⊂ Mp2r(F ), corresponding to the full inverse

image of L(Om)F ∼= Sp2(r−m)(F ) acts on this oscillator representation. Precompos-

ing with the projection (4.1), we may view ωm,α as a representation of L(Om)F
∼=

Sp2(r−m)(F ).

2The following construction works in full generality, but we need to only consider orbits of this
form.
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Consider the diagonal action of V1(O)oL(Om)F on the tensor product π⊗ ωm,α.

Definition 4.2.1. The Fourier-Jacobi module of π with respect to orbit Om and

character ψm,α is the Jacquet module

FJm,α(π) := JV1(O)(π ⊗ ωm,α).

It is naturally a ε-genuine smooth representation of L(O)F
∼= Sp2(r−m)(F ).

The purpose for introducing Fourier-Jacobi modules rather than working with the

Jacquet modules directly stems largely from the following properties.

Proposition 4.2.2. Set H = StabNL(Om)(Y V2(Om))(ψm,α). As representations of

Y V2(Om) oH, we have an isomorphism

FJm,α(π) ∼= JY V2(Om),ψm,α(π).

Proof. Restricting FJm,α(π) to Y V2(Om)oH, the action is preserved under Frobenius

reciprocity. Therefore, applying Frobenius reciprocity [GGS16, Lemma 2.3.6], we

obtain

FJm,α(π) = JV1(Om)

(
π ⊗ ind

V1(Om)
Y V2(Om)(ψ

−1
m,α)

)
∼= JY V2(Om)

(
π ⊗ ψ−1

m,α

)
.

We are done, since as H-representations,

JY V2(Om)

(
π ⊗ ψ−1

m,α

) ∼= JY V2(Om),ψm,α(π).

In particular, we have that the standard Borel subgroup BOm ⊂ L(Om)F is con-

tained in H = StabNL(Om)(Y V2(Om))(ψm,α), allowing us to conclude the following.
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Proposition 4.2.3. Let V ⊂ BOm be a unipotent subgroup of L(Om)F , and suppose

that ψV is a character of V . Then we have

JV,ψV (FJm,α(π)) ∼= JV,ψV (JY V2(Om),ψm,α(π)).

Note that the case that V = {I} along with local root exchange implies the

following local version of [GRS03, Lemma 1.1]:

Corollary 4.2.4. As representations of V2(Om)F , we have isomorphisms

FJm,α(π) ∼= JY V2(Om),ψm,α(π) ∼= JV2(Om),ψOm
(π)

Thus, Fourier-Jacobi modules are isomorphic as V2(O)-modules to the Jacquet

module associated to Om, implying that we may study one to ascertain vanishing

of the other. The benefit of the Fourier-Jacobi modules is the smooth admissible

L(Om)F -action. This action allows us to apply the following observation:

Proposition 4.2.5. Suppose that G(F ) = G is a reductive group over a non-archimedean

local field F containing a full set of nth roots of unity µn(F ), and suppose that G
(n)

is a central extension of G by µn(F ) arising from G ∈ CExt(G,K2). Let (π, V ) be

a non-zero smooth admissible representation of G. If π is unramified, then π is not

supercuspidal.

Proof. The Satake isomorphism holds in this context and, as in [McN12] and [GG14],

one still has that if (τ,W ) is an irreducible unramified representation, then there

exists an unramified character χ : Z(T̃ )→ C× such that

HomG(τ, IndG
B

(ρ(χ))) 6= 0.

In particular, τ cannot be cuspidal. By [BZ77, Theorem 2.4.a], which is proven for

reductive groups, but the proof goes through without change for metaplectic covers
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once we replace parabolic subgroups with their covers, we have that our representation

decomposes

π = πc ⊕ π⊥c ,

where πc is a cuspidal representation, and π⊥c has no nontrivial cuspidal sub-quotients.

Since(π, V ) is unramified, it has at least one spherical composition factor τπ. This

forces π⊥c 6= 0, and hence π is not itself cuspidal.

4.3 Root Exchange

4.3.1 Global Root Exchange

In this section we will introduce the statement of the general lemma on (global)

root exchange. The main reference for this is [GRS11]. Let K be a number field

with adele ring A. Fix a unipotent subgroup C ⊂ Gm, and let ψC be a non-trivial

character of C(K)\C(A).

Suppose there exist two unipotent F -subgroups X, Y ⊂ G satisfying the following

six properties:

1. X and Y normalize C,

2. X ∩C and Y ∩C are normal in X and Y , respectively, and X ∩C\X, Y ∩C\Y

are both abelian,

3. X(A) and Y (A), acting via conjugation, preserve ψC ,

4. ψC is trivial on (X ∩ C)(A) and (Y ∩ C)(A),

5. [X, Y ] ⊂ C,
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6. The pairing (X ∩ C)(A)\X(A)× (Y ∩ C)(A)\Y (A)→ C×, given by

(x, y) 7→ ψC([x, y]),

is multiplicative in each coordinate , non-degenerate, and identifies

(Y ∩ C)(K)\Y (F ) with the dual of X(K)(X ∩ C)(A)\X(A), and vice versa.

With this set up, set B = Y C, D = XC and extend ψC trivially to both B(K)\B(A)

and D(K)\D(A), referring to each separately as ψB and ψD. Finally, set A = BX =

DY .

Lemma 4.3.1. Suppose that the quadruple (C,ψC , X, Y ) satisfy the above criteria.

If f is an automorphic form on Gm of uniform moderate growth, then

∫
[C]

f(cg)ψ−1
C (c)dc ≡ 0, ∀g ∈ A(A) (4.2)

if and only if ∫
[B]

f(vg)ψ−1
B (v) dv ≡ 0, ∀g ∈ A(A) (4.3)

if and only if ∫
[D]

f(ug)ψ−1
D (u) du ≡ 0, ∀g ∈ A(A), (4.4)

Proof. The main reference is [GRS11][Sec.7.1]. For completeness, we reproduce the

proof here. We show the eqivalence between the vanishing of integral (4.2) and of

integral (4.3). By the symmetry in X and Y in our set up, an identical argument

works for integral (4.4).

By our assumptions (1), (2), and (3), it is immediate that we may decompose the

integral over [B] as

∫
[B]

f(vg)ψ−1
B (v)dv =

∫
Y (F )(Y ∩C)(A)\Y (A)

∫
[C]

f(ycg)ψ−1
C (c)dcdy,
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showing the vanishing of integral (4.2) implying the vanishing of integral (4.3). To

show the other direction, consider the function, for g ∈ A(A)

φ(g) =

∫
[C]

f(cg)ψ−1
C (c)dc.

By assumptions (3) and (4) above, we see that ϕ(g) is invariant under Y (F )(Y ∩C)(A),

and so viewing it as a function on Y (F )(Y ∩C)(A)\Y (A), we expand along this abelian

subgroup (assumption (2)) to get

ϕ(g) =
∑

x∈(X∩C)(F )\X(F )

∫
Y (F )(Y ∩C)(A)\Y (A)

ϕ(yg)ψ−1
C ([y, x])dy,

where we have used assumption (6) to identity (X ∩ C)(F )\X(F ) as the unitary

dual of the compact group Y (F )(Y ∩ C)(A)\Y (A). Note that this sum converges

absolutely and uniformly in compact sets due to the assumption that f is smooth

and of uniform moderate growth.

Thus, we may now identify integral (4.2) with∫
[C]

f(cg)ψ−1
C (c)dc =

∑
x∈(X∩C)(F )\X(F )

∫
Y (F )(Y ∩C)(A)\Y (A)

∫
[C]

f(cyg)ψ−1
C (c[y, x])dcdy.

Consider for the moment the individual summand corresponding to x above. Using

assumption (5), we see that [y, x] ∈ C(A), and so making the change of variables

c 7→ c[y, x]−1, we see that this summand equals∫
Y (F )(Y ∩C)(A)\Y (A)

∫
[C]

f(cxyx−1g)ψ−1
C (c)dcdy

=

∫
Y (F )(Y ∩C)(A)\Y (A)

∫
[C]

f(x−1cxyx−1g)ψ−1
C (c)dcdy,

where we use the automorphy of f . Now using assumption (3), we make another

change of variables to arrive at∫
Y (F )(Y ∩C)(A)\Y (A)

∫
[C]

f(xyx−1g)ψ−1
C (c)dcdy =

∫
[B]

f(vx−1g)ψ−1
B (v)dv
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so that we have the equality∫
[C]

f(cg)ψ−1
C (c)dc =

∑
x∈(X∩C)(F )\X(F )

∫
[B]

f(vxg)ψ−1
B (v)dv,

thus showing that if integral (4.3) vanishes for all g′ ∈ A(A), so does integral (4.2),

and we are done.

4.3.2 Local Root Exchange

Suppose now that F is a non-archimedean local field, and let G be the F -rational

points of a split algebraic group over F or finite cover thereof. As in the global setting,

we consider unipotent subgroups C,X, Y ⊂ G, and a nontrivial character

ψC : C → C×.

As before, set B = Y C, D = XC, and A = BX = DY . We also assume that these

subgroups satisfy the local analogue of the six properties preceding Lemma 4.3.1 (For

a precise statement and proof, see [Cai16, Section 6.1]).

Lemma 4.3.2. Suppose that π is a smooth representation of A, and extend the char-

acter ψC trivially to ψB on B and ψD on D. Then we have an isomorphism of

C-modules

JB,ψB(π) ∼= JD,ψD(π).

Moreover,

JC,ψC (π) = 0 ⇐⇒ JB,ψB(π) = 0 ⇐⇒ JD,ψD(π) = 0.

4.3.3 How one uses root exchange

There are many contexts in which the above lemmas are useful, but we pause here

to introduce a formalism for a particularly common application. We illustrate this
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application globally. Let C and ψC be as above, only now we assume that C ⊂ Ur.

For a positive root β, let Uβ ⊂ Ur be the corresponding root subgroup.

Assume that xβ(t) ∈ C(A) for all t such that the induced character

Ga(K)\Ga(A)
xβ−→ C(K)\C(A)

ψC−→ C×

is nontrivial. Let α, γ ∈ Φ such that the following properties hold:

1. Set ΦC = {γ : xγ(t) ⊂ C}. Then for all i, j ∈ Z>0 such that iα + jγ ∈ Φ, we

have

iα + jγ ∈ ΦC ,

2. For all µ ∈ ΦC and all i, j ∈ Z>0 such that iα + jµ ∈ Φ, we have

iα + jµ ∈ ΦC ,

and likewise for γ and µ.

3. We have

β = α + γ,

4. Suppose β′ ∈ ΦC , with β′ 6= β, such that the induced character on xβ′(t) is also

non-trivial. Then there do not exist i, j such that

β′ = iα + jγ.

Set B = Uα · C, D = Uγ · C.

When the group C and character ψC are clear from the context, we shall refer to

the ordered triple of roots

(α, γ, β)
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as above as an exchange triple.

Suppose then that we have the integral (4.3), and want to apply Lemma 4.3.1

to obtain the integral (4.4). In this setting, we say that we apply root exchange to

the exchange triple (α, γ, β), meaning that we apply Lemma 4.3.1 to the quadruple

(C,ψC , {xα(t)}, {xγ(t)}).

Thus, the equivalence∫
[Uα·C]

f(vg)ψ−1
C (v) dv ≡ 0, ∀g ∈ Gm

if and only if ∫
[Uγ ·C]

f(ug)ψ−1
D (u) du ≡ 0, ∀g ∈ Gm,

from Lemma 4.3.1 tells us that, holding all else constant, we can exchange the inte-

gration over the root group of α with integration over the root group of γ. When we

apply root exchange to the triple (α, β, γ), we say that we exchange the root α for

the root γ.
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Fourier-Whittaker Coefficients:

Identification of the Orbit

In this chapter, we return to G
(n)

= Sp2r with n = 4 and compute the nilpotent

orbit associated to Θ2r. As usual for such statements, the proof comes in two steps:

in Section 5.1, we prove Theorem 5.1.1 which gives an upper bound for O(Θ2r) by

showing the vanishing of local Fourier-Whittaker models. This argument is inductive

in the rank of the group, the base case relying on the fact that Θ4 is non-generic.

In Section 5.2, we establish Theorem 5.2.1, which completes the identification of

O(Θ2r). The argument relies on the parity of the rank: in the even rank case, we view

Θ2r as a residue of the Siegel Eisenstein series induced from a theta representation

on a certain cover of GLr. This enables us to take advantage of the work of [BG92]

to establish global non-vanishing of the appropriate coefficient. The odd rank case

is then deduced from the even rank case. We remark after Proposition 5.2.3 how

this step requires more to use the same technique for higher degree covers of the

symplectic group.

47
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5.1 Vanishing Statements

In this section we seek to prove part (2) of Theorem 1.2.4:

Theorem 5.1.1. Suppose that O′ is a nilpotent orbit such that either O′ > OΘ = (2r)

or O′ and OΘ are not comparable. Then O′ does not support Θ2r.

The proof relies on global results of Ginzburg-Rallis-Soudry [GRS03] and Jiang-

Liu [JL15]. If we can show that nilpotent orbits of the form

O′ = ((2k)12r−2k)

for 2 ≤ k ≤ n do not support Θ2r, then by [GRS03, Lemma 2.6] , it follows that all

orbits of the form

O′ = ((2k)pe11 · · · p
el
l )

with 2 ≤ k ≤ r also fail to support Θ2r. Combining this vanishing with Propositions

3.2 and 3.3 of Jiang-Liu [JL15], we now see that nilpotent orbits of type

O′ = ((2k + 1)2pe11 · · · p
el
l )

for 2 ≤ k ≤ r also fail to support Θ2r. This exhausts those orbits O′ such that either

O′ > OΘ or O′ and OΘ are not comparable. We are thus reduced to showing that

the orbits of the form Ok = ((2k)12r−2k), as well as O′ = (3212r−6), do not support

Θ2r. In fact, it suffices to see that the single orbit O2 = (412r−4) fails to support Θ2r.

We study the orbit O2 by considering the corresponding local Fourier-Jacobi mod-

ule FJ2,α(Θ2r,ν). In particular, subject to mild restrictions on the local field F = Kν ,

we show that if this representation is non-zero, it must be both unramified and su-

percuspidal. This contradicts Proposition 4.2.5. Therefore, by Corollary 4.2.4, we see

that O2 does not support Θ2r. The sufficiency of this result to prove Theorem 5.1.1

will become clear as the argument progresses.
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5.1.1 Local Vanishing results

Consider the nilpotent orbit O2 = (412r−4). The unipotent subgroup V1(O) is

the unipotent radical of the standard parabolic subgroup of Sp2r with Levi subgroup

L2,2r−4
∼= GL2

1× Sp2r−4, and the subgroup V1(O) is as follows:


u X Y

I2r−4 X∗

u−1

 : u ∈ UGL2 ;Y ∈ Sym2
J(F );X ∈ Mat2×(2r−4), X2,i = 0


.

Here UGL2 denotes the subgroup of upper triangular unipotent elements of GL2. The

character ψO may be chosen to be of the form

ψO,α(v) = ψ(v1,2 + αv2,2r−1),

where α ∈ F×/(F×)2.

Let ν be a finite place of K with with odd residue characteristic. In this case,

both Θ2m and ω2,α are unramified representations of Sp2m−4(Kν), so that the local

Fourier-Jacobi module FJ2,α(Θ2m) is unramified as a representation of Sp2m−4(F ) for

all such places. We will work only with F = Kν satisfying this property.

Proposition 5.1.2. Let Θ6 be the theta representation of Sp6(F ). Then the Fourier-

Jacobi module

FJ2,α(Θ6) = JV1(O2)(Θ6 ⊗ ω2,α)

is trivial.

Proof. In this case, one easily checks that L(O)(F ) is the embedded copy of SL2(F )

corresponding to the long simple root of Sp6. Thus, FJ2,α(Θ6) is a smooth ε-genuine

representation of SL2(F ). Let Uα3 be the root subgroup of Sp6(F ) corresponding to

the unipotent radical in SL2(F ).
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By our assumption on ν, it suffices to show that the representation is supercusp-

idal. This will follow if we can show that

JUα3
(JV1(O2)(Θ6 ⊗ ω2,α)) = 0.

By Proposition 4.2.3, we see that this is equivalent to showing that

JUα3
(JY V2(O2),ψ2,α(Θ6)) ∼= JV,ψV (Θ6) = 0.

Here, we have V = {v ∈ U6 : v2,3 = v4,5 = 0}, and ψV (v) = ψ(v1,2 + αv2,5).

Conjugating by the Weyl group element w = w1w2 and applying Lemma 4.3.2 to

the exchange triple

(−γ1,1, γ1,2, γ2,2) = (−α1, α1 + α2, α2),

we see that this module is isomorphic to JU0,ψ0(Θ6), where U0 is the unipotent radical

of the parabolic subgroup associated to the simple coroot α∨1 and ψ0(v) = ψ(v2,3 +

αv3,4).

Since Θ6 is not generic (see [Gao16, Section 5]), we see that this Jacquet module is

isomorphic to JU6,ψ′(Θ6), where ψ′ is the trivial extension of ψ0 to the full unipotent

radical.1 Note that this Jacquet module factors through the constant term of type

GL1× Sp4, and by Theorem 3.1.5, we see that

JU6,ψ′(Θ6) ∼= JU4,ψ(4),α
(Θ4) = 0,

as Θ4 is also not generic.

It follows from Corollary 4.2.4 that the Jacquet module associated to O2 vanishes.

1This follows from noting that the SL2-factor of the Levi subgroup corresponding to the simple
coroot α∨1 preserves the character ψ0, and thus we may view this Jacquet module as an SL2(F )-
representation. As Θ6 is not generic, this SL2(F )-representation has no non-trivial twisted Jacquet
module. Therefore, upon restricting to the unipotent radical, this representation is isomorphic to
its Jacquet module.
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Theorem 5.1.3. Let r ≥ 3 and let Θ2r be the theta representation of Sp2r(F ). Then

the Fourier-Jacobi module

FJ2,α(Θ2r) = JV1(O2)(Θ2r ⊗ ω2,α)

vanishes.

We shall prove this by induction, noting that Proposition 5.1.2 forms the base

case. Thus, we assume the theorem holds for r. In light of this assumption, we are

able to say much about certain Jacquet modules on Θ2r+2:

Proposition 5.1.4. Suppose that Theorem 5.1.3 holds for m ≤ r. Then for all

3 ≤ k ≤ m ≤ r + 1, the nilpotent orbits Om,k = ((2k)12(m−k)) do not support Θ2m.

Proof. The case k = m = 3 is proven so by induction we may assume that it is proven

up to m.

By Corollary 3.1.6, we know that there is a value s0 ∈ C such that there is a

surjection

Ind(δs0 ⊗Θ2m) � Θ2m+2.

Therefore, it suffices to show that

HomV2(Om+1,k)(Ind(δs0 ⊗Θ2m), ψOm+1,k
) = 0.

For this task, we apply [BZ77, Theorem 5.2], and study the double cosets

P(1,m)(F )\ Sp2m+2(F )/ Sp2(m−k−2)(F )V2(Om+1,k)

One can check, using the Bruhat decomposition, that the coset representatives may

be chosen to be Weyl group elements or Weyl group elements times certain unipotent

elements.
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As in the proof of [BFG03, Lemma 7], most cases do not contribute as the Weyl

group element conjugates a root of V2(Om+1,k) where the character is nontrivial into

the unipotent radical of P(1,m). There are only two cases that need to be considered:

1. The representatives of the form w = w1w2 · · ·wm+1u give rise to characters

corresponding to orbits Om′,k′ where m′ < m + 1. By induction, these also

vanish.

2. The relative long element w = w1w2 · · ·wmwm+1wm · · ·w1 gives rise to the char-

acter corresponding to (412m−4) on Θ2m. This vanishes by the assumption that

Theorem 5.1.3 holds for m, and we are done.

Corollary 5.1.5. The orbit (3212r−4) does not support Θ2r+2.

Proof. Set O = (3212r−4). Then we have V2(O) = U(2,r−1) and we may choose the

generic character

ψO(v) = ψ(v1,3 + v2,2r).

Supposing that JψO(Θ2r+2) does not vanish, it follows that it gives to an unramified

representation of L(O)F = SL2(F )∆ × Sp2r−4(F ). Restricting this representation to

the diagonally embedded SL2, we see there exists a character χ of Z(T̃1) ⊂ SL2(F )

such that by Frobenius reciprocity,

0 6= HomSL2(F )(JV2(O),ψO(Θ2r+2), Ind(χ)) ∼= HomT̃1
(JV2(O)N,ψO(Θ2r+2), ι(χ)).

We study the Jacquet module JV2(O)N,ψO(Θ2r+2) by conjugating the Weyl group ele-

ment w2.

Applying the root exchanges associated to the exchange triples

(γ3,i, η2,i, η2,2)
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for 3 ≤ i ≤ r + 1 in increasing values of i followed by the exchange triples

(η3,j, γ2,j, η2,2)

for 3 ≤ j ≤ r in decreasing values for j, one finds that this constant term is isomorphic

to JU ′,ψ′(Θ2r+2) where

U ′ = {u ∈ V2(4212r−4) : u1,2 = 0},

and ψ′(u) = ψ(u2,3+u3,2r). Conjugating by the standard lift of the simple reflection as-

sociated to the long root µ3, and applying root exchange to the triple (−µ3, η2,2, γ2,2),

we obtain an isomorphism with the Jacquet module JL2,r−1,ψ2(Θ2r+2).

However, by the vanishing of of the Jacquet modules associated to ((2k)12(r+1−k))

for k > 2 from the proposition forces this final Jacquet module to be trivial. To see

this, one applies an inductive argument identical to the global proof of Lemma A.2.1.

This is not circular as the argument in the proof of Lemma A.2.1 requires only the

vanishing of the coefficients associated to the aforementioned orbits. By way of a

contradiction, we find that

JV2(O),ψO(Θ2r+2) = 0.

Having established that the inductive hypothesis forces vanishing of the Jacquet

modules associated to Ok for k > 2, as well as for the orbit O′ = (3212r−4), we may

now consider O2.

Proposition 5.1.6. As a representation of Sp2r−2(F ), the Fourier-Jacobi module

FJ2,α(Θ2r+2) is supercuspidal.

Proof. The argument mirrors the one in the base case. Let α0 = µ3 = 2α3 + · · · +

2αn + αr+1 be the long root corresponding to the highest root in the embedded
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copy of Sp2r−2. As the root group Uα0 corresponding to this root is contained in

the unipotent radical of each maximal parabolic of Sp2r−2, to show that the Jacquet

module is supercuspidal, it suffices to see that

JUα0
(FJ2,α(Θ2r+2)) = 0.

To demonstrate this, we note that by Proposition 4.2.3 it suffices to show that

JUα0
(JY V1(O2),ψ2,α(Θ2r+2)) ∼= JV,ψV (Θ2r+2) = 0.

In the above isomorphism, we have used root exchange to remove the roots η2,k for

3 ≤ k ≤ n, which fit into the exchange triples (γ2,k, η2,k, µ2).

Conjugating the subgroup V = V2(4212r−4) by the Weyl group element w = w1w2,

and then applying root exchange to the exchange triple (−α1, α1 +α2, α2), we see that

this Jacquet module is isomorphic to JV w,ψV w (Θ2r+2), where

V w =


v =


Z X Y

I2r−4 X∗

Z∗




,

where Y ∈ Sym3
J(F ), X ∈ Mat3×2r−4(F ) such that Xij 6= 0 implies i = 2, and

Z ∈ U(GL3) is of the form

Z =


1 ∗

1 ∗

1

 .

Here, ψV w(v) = ψ(v2,3 + αv3,2r). It should be noted that JV w,ψV w (Θ2r+2) is a repre-

sentation of Sp2r−4(F ).
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Consider now the abelian subgroup of U2r+2

Z =


z =


1 X 0

I2r X∗

1

 : X ∈ F 2r such that x1 = x2 = x2r−1 = x2r = 0


.

The subgroup Sp2r−4(F ) acts by conjugation on the characters of Z with two orbits.

Expanding JV w,ψV w (Θ2r+2) along Z, we see that all representatives of the nontrivial

orbit vanish as they are isomorphic to a quotient of the Jacquet module associated

to the nilpotent orbit (3212r−4), which were shown to vanish on Θ2r+2 in Corollary

5.1.5.

Therefore, the only term which remains is the trivial orbit, so that our Jacquet

module vanishes if and only if JZV w,ψ0(Θ2r+2) vanishes, where

ψ0(v) = ψ(v2,3 + αv3,2r)

is the trivial extension of ψV w to this larger unipotent subgroup.

Finally, the vanishing of (612r−4) forces this Jacquet module to be isomorphic

to JR,ψ0(Θ2r+2), where R = Uα1ZV
w = V2(612r−4). Factoring this Jacquet module

through the unipotent radical of the maximal parabolic of type GL1× Sp2r, and

applying Theorem 3.1.5, we see that

JR,ψ0(Θ2r+2) ∼= JV2(412r−4),ψ(412r−4)
(Θ2r),

which vanishes by induction.

Thus, we have shown that

FJ2,α(Θ2r+2)

is supercuspidal as a Sp2r−2(F ) representation.
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As remarked above, FJ2,α(Θ2r) = 0 by Proposition 4.2.5. By Corollary 4.2.4, we

have proven the Theorem 5.1.3. Combining this with Proposition 5.1.4, Corollary

5.1.5, and the argument above, we have proven Theorem 5.1.1.

5.2 Non-Vanishing Statement

We turn now to part (1) of Theorem 1.2.4. For the orbit OΘ := OΘ,r = (2r) on

Sp2r, we have

V2(OΘ) =


 Ir Y

Ir

 : Y ∈ Symr
J(A)

 .

For v ∈ V2(OΘ), we define the character ψOΘ,ε : V → C× by

ψOΘ,ε(v) = ψ(ε1v1,2r + · · ·+ εrvr,r+1),

where εi ∈ K×. With this notation, the Fourier coefficients of Θ2r associated to the

nilpotent orbit O are given by

∫
[V2(OΘ)]

θ(vg)ψOΘ,ε(v) dv. (5.1)

By the automorphy of θ, we have the freedom to conjugate the above integral

by various elements t ∈ Tr(K) which, after a change of variables, implies that our

coefficient only depends on εi (mod (K×)2). Additionally, M(OΘ) ∼= GLr is the

Siegel Levi subgroup of Sp2r and one can show that for each choice ε, L(OΘ)K =

StabM(OΘ),K(ψOΘ,ε) is isomorphic to Oε(K), the orthogonal group on Kr with respect

to the quadratic form

qε(v) = ε1v
2
1 + · · ·+ εrv

2
r .

Theorem 5.2.1. The nilpotent orbit OΘ = (2r) supports Θ2r.
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This will be proven in two stages: first proving non-vanishing for Sp4r, then using

this to obtain the result for Sp4r+2.

Proposition 5.2.2. The nilpotent orbit OΘ = (22r) supports Θ4r.

Proof. Set O = OΘ. To prove the proposition, it is sufficient to show that there is

at least one M(O)K-orbit of characters such that (5.1) is non-vanishing. To this end,

suppose ε is such that Oε(K) is split. This is equivalent to the assumption that, up

to conjugation by a Weyl group element, for each 1 ≤ i ≤ 2r − 1 odd,

εiεi+1 = −α2
i

for some αi ∈ K×. With this choice, we refer to ψO,ε as the split character. With

this choice, there exists an l ∈M(O)K such that, conjugating the integral (5.1) by l,

we see that non-vanishing of our Fourier coefficient for the choice of split character is

equivalent to the non-vanishing of

∫
[V2(O)]

θ(vg)ψ̂O(v) dv, (5.2)

where

ψ̂O(v) = ψ(v2r−1,2r+1 + v2r−3,2r+3 + · · ·+ v1,4r−1).

Note that the roots with a nontrivial character on their root subgroups are

βk = η2r−2k+1,2r−2k+1 = α2r−2k+1 + 2α2r−2k+2 + · · ·+ α2r,

for 1 ≤ k ≤ 2r.

Thus, to get to an integral we can work with, for each 1 ≤ i ≤ 2r set ri to be the
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standard lift of the simple reflection for the long root µi; namely

ri =



Ii−1

−1

I4r−2i

1

Ii−1


.

The idea is to iteratively move the character to the appropriate simple roots. We

begin by conjugating (5.2) by r2r. This moves the character from the root β1 to

the simple root α2r−1, but also moves α2r to −α2r. We then need to exchange the

integration over this negative root with an integration over β1, which is permitted by

root exchange. That is, we apply Lemma 4.3.1 to the exchange triple

(−α2r, β1, α2r−1).

After this first step, we obtain the integral∫
[R1]

θ(vg)ψ̂1(v) dv,

where

R1 =





I2r−2 X1 X2 Y

1 t y z X∗2

1 0 y

1 −t X∗1

1

I2r−2


: Y ∈ Mat0

2r−2;Xi ∈ A2r−2; t, y, z ∈ A



,

and

ψ̂1(v) = ψ(v2r−1,2r + v2r−3,2r+3 + · · ·+ v1,4r−1).
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We proceed inductively and assume that we have shown that, for 1 ≤ k ≤ r − 1,

the non-vanishing of (5.1) is equivalent to the non-vanishing of∫
[Rk]

θ(vg)ψ̂k(v) dv, (5.3)

where

Rk =




I2r−2k X Y

Mk X∗

I2r−2k

 : Y ∈ Sym2r−2k
J ;Xi ∈ MatE(2r−2k)×(4k) Mk ∈ Nk


,

MatEl×r = {X ∈ Matl×r : xi,j 6= 0⇒ j even},

and

Nk = {M ∈ U(Sp4k) : for i < j ≤ 4k − i+ 1,mi,j 6= 0⇒ i odd}.

Here we are considering the natural embedding Sp4k ↪→ Sp4r into the Levi subgroup

of P(2r−2k,2k), and the character is given by

ψ̂k(v) = ψ(v2r−1,2r + v2r−3,2r−2 + · · ·+ v2r−2k+1,2r−2k+2)

× ψ(v2r−2k−1,2r+2k+1 + · · ·+ v1,4r−1).

We need to show that the non-vanishing of (5.3) is equivalent to the non-vanishing of∫
[Rk+1]

θ(vg)ψ̂k+1(v) dv.

To this end, the next root we need to move is

βk+1 = α2r−2(k+1)+1 + 2α2r−2k + · · ·+ α2r.

Before conjugating by r2r−2k, we apply root exchange to all the root groups in Vk

which would be conjugated to negative roots. Thus, we apply root exchange to the

triples of type

(γ2(r−k),2(r−i), η2(r−k)−1,2(r−i), βk+1)
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in the order of descending values of i, as i ranges over 1 ≤ i ≤ r − 1. These

correspond to the roots contained in the bottom row of the “even columns” of X

which are contained in the Siegel Levi subgroup.

Next, we apply root exchange on the triples of type

(η2(r−k),2(r−i), γ2(r−k)−1,2(r−i), βk+1)

in order of descending values of j, where here 1 ≤ j ≤ r. These roots correspond to

those even columns not contained in the Siegel Levi.

Finally, we apply root exchange to the triple

(µ2(r−k), α2r−2k−1, βk+1)

to obtain the integral ∫
[Rk]

θ(vg)ψ̂k(v) dv,

where

Rk =




I2r−2(k+1) X Y

Mk+1 X∗

I2r−2(k+1)

 : Y ∈ Sym2r−2k
J ; Mk+1 ∈ Nk+1


,

where

X ∈ Mat∗l×m = {X ∈ Matl×m : xi,j 6= 0 and j < m− 1⇒ j even},

and where the character has the same formula as before. Conjugating this integral

by r2r−2k we see that the resulting integral is∫
[Rk+1]

θ(vg)ψ̂k+1(v) dv,

thus finishing our induction. Thus, we have shown that the non-vanishing of (5.1) is

equivalent to the non-vanishing of∫
[Rr]

θ(vg)ψ̂r(v) dv, (5.4)
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where, in this final form, we recall that

Rr = Nr = {m ∈ U2r : for i < j ≤ 4r − i+ 1,mi,j 6= 0⇒ i odd},

and

ψ̂r(v) = ψ(v1,2 + v3,4 + · · ·+ v2r−1,2r).

We claim that this integral is not trivial for some choice of data. If not, setting U(2r)

to be the unipotent radical of the standard parabolic P(2r) which has Levi subgroup

L ∼= GLr2, one may show (using the results in Appendix A.2) that (5.4) is equal to

the constant term∫
[Rr]

θ(vg)ψ̂r(v) dv =

∫
[U(2r)]

∫
[Rr]

θ(uvg)ψ̂r(v) dvdu =

∫
[U2r]

θ(vg)ψ0
2r(v) dv, (5.5)

which is also zero for all choices of data. Here ψ0
2r is as in Section 2.1. In particular,

the integral vanishes when g = 1. Applying Theorem 3.2.2, we see that this integral

equals, using the notation in [Cai16],∫
[UGL2r

]

θGL2r(u)ψλ(u)du,

where θGL2r ∈ Θ
(2)
GL2r

is a theta function on the double cover of GL2r
2, and UGL2r is

the unipotent radical of the Borel subgroup of GL2r.

This integral is the λ-semi-Whittaker coefficient of θGL corresponding to the par-

tition λ = (2r). This coefficient is non-vanishing on Θ
(2)
GL2r

as seen in [BG92], so that

our assumption gives a contradiction. Thus, there exists a choice of data such that

the integral (5.4) is non-vanishing, and the proposition is proved.

To finish the proof of Theorem 5.2.1, we consider the odd rank case:

2As noted in Section 3.1.4, we are working with a twist of a pushout of this double cover. The
analysis of Bump and Ginzburg in [BG92] on the global theta representation applies to this cover
without essential change.
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Proposition 5.2.3. The orbit OΘ = (22r+1) supports Θ4r+2.

Remark 5.2.4. If one sought to prove analogous results for higher degree covers, a

critical obstruction occurs at this stage. The non-vanishing of the Fourier coefficient

(5.7) below follows from standard results for automorphic forms on SL(2). In the

case of studying Fourier coefficients of Θ
(2n)
2r with n > 2, one needs to prove genericity

results for residues of certain Eisenstein series to obtain the analogous non-vanishing

result. Accomplishing this is a fundamental obstacle to considering generalizations

to higher degree covers.

Proof. Now set O = (22r+1), and consider the integral∫
[V2(O)0]

θ(vg)ψ0(v) dv, (5.6)

where

V2(O)0 =


 I2r+1 Y

I2r+1

 : Y ∈ Sym2r+1
J (A), and y2r+1,1 = 0

 ,

and

ψ0(v) = ψ(ε1v2,4r+1 + · · ·+ εmv2r+1,2r+2).

Here we make the same assumption on εi as before, so that the corresponding orthog-

onal group is split. We claim that this integral is non-vanishing for some choice of

data. If not, then the integral∫
[V1,2r]

∫
[V2(O)0]

θ(uvg)ψ0(v) dvdu,

where V1,2r is the unipotent radical of the maximal parabolic in Sp4r+2 with Levi

L1,2r
∼= GL1× Sp4r, is zero for all choices of data. However, Theorem 3.2.2 tells us

that this integral is equal to ∫
[V (22r)]

θ4r(v)ψε(v) dv,
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which is non-vanishing for some choice of data by Proposition 5.2.2. Thus, the integral

(5.6) is non-vanishing for some choice of data.

As before, our assumption that the stabilizer Oε(K) is a split group tells us that

there exists an h ∈M(O)K such that if we conjugate (5.6) by h we obtain

∫
[V2(O)0]

θ(vg′)ψ̂0(v) dv,

where

ψ̂0(v) = ψ(v2r,2r+1 + v2r−2,2r+3 + · · ·+ v3,4m−3).

Note that the roots with a nontrivial character on the corresponding root group are

η2k,2k = α2k + 2α2k+1 + · · ·+ α2r,

for 1 ≤ k ≤ r.

Consider the following r root triples

(η1,2k,−γ1,2k−1, η2k,2k).

One can check that these are in fact exchange triples, to which we apply Lemma 4.3.1.

Thus, we have that the function

f(g) =

∫
[V ′]

θ(vg)ψ̂0(v) dv,

is a non-zero function in g. Here, we have

V ′ =





1

u I2r

I2r

u∗ 1


 I2r+1 Y

I2r+1



,
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with

Y ∈ Sym2r+1
J (A), and yi,1 = 0 for i odd,

u ∈ A2r with uj = 0 for j even.

The point of this last root exchange is that when we restrict g ∈ Sp4r+2(A) to

the copy of SL2(A) corresponding to the highest root, f is a nonzero automorphic

function on this SL2. That is, f is invariant under the K-points of

ι

 a b

c d

 =


a b

I4r

c d

 .

As a nonzero automorphic function of SL2(A), f◦ι has a non-trivial Fourier coefficient;

thus, there exists an ξ ∈ K× such that the integral

∫
[A]

f

ι
 1 t

1

 g

ψ(ξt) dt (5.7)

is not zero.

Reversing the previous root exchanges, and conjugating by an appropriate element

in M(O)K , we see that the non-vanishing of (5.7) is equivalent to the non-vanishing

of ∫
[V2(O)]

θ(vg)ψO,ε(v) dv.

As a final note, we remark that the equality analogous to (5.5) holds in the odd

rank case. We record this as follows.

Proposition 5.2.5. Set O = (2r). Then the integral∫
[V2(O)]

θr(vg)ψO,ε(u) du 6= 0
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if and only if

θUr,ψ
0
r (g) =

∫
[Ur]

θ(vg)ψ0
r(v) dv 6= 0.

We refer to the function θUr,ψ
0
r (g) as the split coefficient of θ. It arises in the compu-

tation of certain Whittaker coefficients of lifting representations in Chapter 9.



Chapter 6

Unramified Local Lifting and

Satake Parameters

In this chapter, we study the local restriction problem in the case that π and τ are

both principal series representations. More precisely, let W0 be a symplectic space

over our local field F . We require the same restrictions on F imposed in Section 5.1.

For example, F may be the completion of a number field K at a finite place of odd

residue characteristic. This ensures that the results of that section hold for theta

representations over F .

6.1 Statement of the local correspondence

Let Wn = Xn ⊕W0 ⊕ X∗n be the dim(W ) + 2n dimensional symplectic space as

in the introduction. Setting Vn = Xn ⊕ X∗n, we have the embedding of metaplectic

covers

Sp(W0)F ×µ4 Sp(Vn)F → Sp(Wn)F .

66
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Setting dim(W0) = 2m, this embedding restricts to an embedding

Z(Tm)×µ4 Z(T n)→ Z(Tm+n).

As noted in Section 3.1, there are two unramified theta representations, Θ2(m+n), for

Sp(Wn)F corresponding to the two choices of genuine unramified exceptional charac-

ters, corresponding to the two genuine unramified distinguished characters: setting

yi = 2α∨i , these characters are determined by

χ0
±(yi(a), ζ) =


ζ : i < r

±ζ(a, a)2 : i = r

.

Here (·, ·)2 is the quadratic Hilbert symbol.

The importance of this choice is discussed in [GG14], where it is shown that the

choice of such a character is equivalent to choosing a distinguished splitting of the

L-group short exact sequence

1 −→ Sp(Wn)∨ −→ LSp(Wn) −→ WDF −→ 1,

where WDF = WF × SL2(C) denotes the Weil-Deligne group of F . See [Wei14] and

[Wei15]. We fix a such choice, χ0, and note that the restriction to either subtorus

Z(Tm) or Z(T n) is also a distinguished character for the smaller rank group. In

particular, if we choose χ0
± on Z(Tm+n), then the restriction to Z(T ∗) for ∗ ∈ {m,n}

is also the unitary distinguished character χ0
±. Therefore, our choice of unramified

genuine distinguished character in the construction of Θ2(m+n) uniquely determines

an unramified distinguished character for both smaller symplectic groups. Changing

the choice multiplies the Satake parameters by the nontrivial element of Z(G
∨
).

Without loss, assume m ≤ n. Fix a polarization Wn = X ⊕ Y and choose a basis

of X, {e1}m+n
i=1 . Let {fi}m+n

i=1 be the dual basis:

〈ei, fj〉 = δi,m+n−j+1.
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We do this so that by restriction, we have induced polarizations

W0 = spanF{ei : n < i} ⊕ spanF{fj : j ≤ n}

and

Vn = spanF{ei : i ≤ n} ⊕ spanF{fj : n < j}.

Acting by the appropriate Weyl group element ŵ (which respects the polarization of

Wn), we have

ŵ(W0) = spanF{ei : 2 ≤ i ≤ 2n even} ⊕ Y (ŵ(W ))

and

ŵ(Vn) = spanF{ei : 1 ≤ i < 2n+ 1 odd or i > 2n} ⊕ Y (ŵ(Vn)),

where Y (V ) ⊂ Y indicates the appropriate dual to the subspace V ∩ X. In this

section, we use the induced embedding of Sp(W0)F ×µ4 Sp(Vn)F into Sp(Wn)F .

The main reason for this choice is to facilitate easier comparison with our results

on the Jacquet modules of Θ2(m+n).

Having fixed a basis of W0, we now identify Sp(W0)F = Sp2m(F ) and recall the

parametrization of our maximal torus Tm

M(t1, . . . , tm) = diag(t1, . . . , tm, t
−1
m , . . . , t−1

1 ).

With this parametrization, it is easy to parametrize genuine characters of Z(Tm):

χ = χ0χ, with

χ(M(t1, . . . , tm), ε) =
∏
i

χi(ti),

where χi : F× → C× are multiplicative characters. Since we are discussing characters

of Z(Tm), it is implicit in the above formulas that ti ∈ (F×)2.
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Theorem 6.1.1. Suppose χ : Z(Tm)→ C× and µ : Z(Tn)→ C× are characters such

that

HomSp2m(F )×µ4Sp2n(F )(Θ2(m+n), Ind(χ)⊗ Ind(µ)) 6= 0.

Set k = n−m. Then there exist k indices {j1, j2, . . . , jk} ⊂ {1, . . . , n} such that

µji = | · |−(2(k−i)+1)/4.

Furthermore, we have

{
χ±1
i

}
1≤i≤m =

{
µ±1
j

}
j /∈{j1,j2,...,jk}

Remark 6.1.2. In the above notation, we have made explicit use of our choice of distin-

guished character χ0. Therefore, the characters
{
χ±1
i

}
encode the Satake parameters

relative to this choice in the case χ is unramified, and likewise with {µ±1
j }.

Proof. We argue by induction on m. The case of SL2× SL2 ↪→ Sp4 is trivial to work

out and we leave the details to the reader. The argument is of the same form as the

general case.

By transitivity of induction, we identify

Ind(µ) ∼= Ind
Sp2n(F )

P (1,n−1)

(
µ1δ

1/2
(1,n−1) ⊗ Ind(µ′)

)
,

where P(1,n−1) = M(1,n−1)U(1,n−1) is the maximal parabolic of Sp2n(F ) with Levi sub-

group M(1,n−1)
∼= GL1× Sp2n−2, and µ′ : Z(Tn−1) → C× is the character induced by

deleting µ1. Additionally, δ(1,n−1) is the modular character of P(1,n−1).

Therefore by Frobenius reciprocity,

HomSp2m(F )×µ4M(1,n−1)

(
JU1,n−1(Θ2(m+n)), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

)
6= 0 (6.1)

At this point, we note the following proposition:
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Proposition 6.1.3. There exists a Sp2m(F )×µ4 M (1,n−1)-equivariant filtration

0 ⊂ V (Θ, ψ1) ⊂ JU1,n−1(Θ2(m+n))

such that

V (Θ, ψ1) ∼= JU1,n−1

(
ind

Q1,n+m−1

Q
′
2,n+m−2

(
JU1,n+m−1,ψ1(Θ2(m+n))

))
, (6.2)

and

JU1,n−1(Θ2(m+n))/V (Θ, ψ1) ∼= JU1,n+m−1(Θ2(m+n)).

For sake of continuity, the proof of this proposition is postponed to Appendix A.1.

Thus, we have that

0 < dimC

(
Hom

(
JU1,n−1(Θ2(m+n)), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

))
≤ dimC

(
Hom

(
V (Θ, ψ1), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

))
+ dimC

(
Hom

(
JU1,n+m−1(Θ2(m+n)), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

))
.

We have two cases to consider:

Case 1: Suppose that

Hom
(
V (Θ, ψ1), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

)
6= 0. (6.3)

According to the isomorphism (6.2), we may apply [BZ77, Theorem 5.2] and, setting

Hγ =
(
Sp2m(F )× P(1,n−1)

)
∩ γ−1Q′2,n+m−2γ,

we see that this Hom-space is glued together from the vector spaces

HomHγ

(
γ
(
JU1,n+m−1,ψ1(Θ2(m+n))

)
, δ−1

(1,n−1)δHγ ⊗ µ1δ
1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

)
,
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as γ ranges over double coset representatives

γ ∈ Q′2,n+m−2\ Sp2(n+m)(F )/ Sp2m(F )× P(1,n−1),

where we are viewing the group in the right quotient as a subgroup of Sp2(n+m)(F )

It is an enjoyable exercise (of a similar spirit to the proof of [Kud86, Prop. 3.4])

to see that there are only three double cosets. By applying [BZ77, Theorem 5.2], it

is immediate that the only coset which contributes to (6.3) corresponds to γ = 1.

We thus obtain a non-zero H = H1 = (Sp2m(F ) × P(1,n−1)) ∩ Q′1,n+m−1- equivariant

morphism

JU1,n+m−1,ψ1(Θ2(m+n)) −→ δ−1
(1,n−1)δH ⊗ µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′).

We have the following proposition:

Proposition 6.1.4. Suppose r > 1 and consider the local theta representation Θ2r

on Sp2r(F ). Consider the unipotent radical U(2,r−2) of the maximal parabolic subgroup

with Levi subgroup M(2,r−2)
∼= GL2× Sp2r−4. Then there is a surjection of L

′
2,r−2(F )-

modules

JU(2,r−2)
(Θ2r) � JU1,r−1,ψ1(Θ2r),

where L′k,r−k = GL∆
1 × Sp2(r−k) ⊂ Lk,r−k for all 1 ≤ k ≤ r.

Proof. Our assumptions on the field F ensure that Theorem 5.1.3 holds. If we let V

denote the subgroup V = U1,r−1Uµ2 , where Uµ2 is the one dimensional root subgroup

associated to the long positive root

µ2 = 2α2 + · · ·+ 2αr−1 + αr,

then there is a M
′
(2,r−2)(F )-isomorphism

JU1,r−1,ψ1(Θ2r) ∼= JV,ψ1(Θ2r),
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where by a slight abuse of notation, we denote by ψ1 the character of V which trivially

extends ψ1. This is equivalent to the statement that the nilpotent orbit O = (412r−4)

does not support Θ2r.

The proof can proceed in similar fashion to the global argument in Lemma A.2.1

and Lemma A.2.2. It is clear that the result follows if we show that the unipotent

subgroup U1,r−2 ⊂ Sp2(r−1)(F ) ⊂ Sp2r(F ) acts trivially on JV,ψ1(Θ2r). If not, then

there is some nontrivial character of ψ : U1,r−2/Uµ2 → C× such that

JU1,r−2/Uµ2 ,ψ
′(JV,ψ1(Θ2r)) ∼= JV2,r−2,ψ2(Θ2r) 6= 0.

We have made use of the fact that Sp2(r−1)(F ) ⊂ Sp2r(F ) acts transitively on such

characters, so that we obtain the twisted Jacquet module with respect to the Gelfand-

Graev character

ψ2 : V2,r−2 → C×, v 7→ ψ(v1,2 + v2,3).

Again applying Theorem 5.1.3, we have an isomorphism of L
′
3,r−3(F )-modules

JV2,r−2,ψ2(Θ2r) ∼= JV2,r−2Uµ3 ,ψ2(Θ2r),

where µ3 = 2α3 · · · + 2αr−1 + αr is the next long root. This is equivalent to the

statement that the nilpotent orbit O = (612r−6) does not support Θ2r.

We know, as in the proof of Lemma A.2.1, that U1,r−3/Uµ3 cannot act trivially on

this Jacquet module, for if it did then we could apply Theorem 3.1.5 to obtain a non-

zero Whittaker module on Θ
(2)
GL3

, a contradiction as this representation is non-generic.

Hence, as before we conclude the non-vanishing of JV3,r−3,ψ3(Θ2r).

Continuing in this way, we finally arrive at the non-vanishing of JUr,ψr(Θ2r), where

we recall that Ur denotes the full unipotent radical of the Borel subgroup of Sp2r(F )

and ψr is a generic Gelfand-Graev character of Ur. This contradicts the fact that Θ2r

is non-generic, completing the proof.
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It follows from the Proposition along with Theorem 3.1.5 that we in fact have a

non-zero H ∩ L′2,n+m−2(F )U1,n+m−2- equivariant morphism

JN1,ψ′(Θ
(2)
GL2

)⊗Θ2(m+n−2) −→ δ−1
(1,n−1)δH ⊗ µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′).

Here N1 ⊂ GL2(F ) is the subgroup of upper triangular unipotent matrices, and

ψ′

 1 x

1

 = ψ(x).

To simplify the notation, we collect all the characters on the right hand side as

λ = δ−1
(1,n−1)δH ⊗ µ1δ

1/2
(1,n−1)

Note that

H ∩ L′2,n+m−2(F )U1,n+m−2 = Sp2(n−1)×(GL∆
1 × Sp2(m−1))U1,m−1

∼= Sp2(n−1)×Q1,m−1,

By the properties of induction, this implies that

Hom
(

Ind
Sp2(n−1)×Sp2m

Sp2(n−1)×Q1,m−1

(
JN1,ψ′(Θ

(2)
GL2

)⊗Θ2(m+n−2)

)
, λ⊗ Ind(χ)⊗ Ind(µ′)

)
6= 0.

(6.4)

We make use of a result of Bernstein (see [Bus01] for the proof):

Proposition 6.1.5. If P = MU is a parabolic subgroup of G. Let P− = MU− denote

the opposite parabolic of P . If W is a smooth representation of the Levi subgroup M

and V is a smooth representation of G, there there is an isomorphism

HomG(IndGP (W ), V ) ∼= HomM(W,JU−(V )).

Applying this proposition to (6.4), we find that

Hom
(
JN1,ψ′(Θ

(2)
GL2

)⊗Θ2(m+n−2), λ⊗ JU1,m−1
(Ind(χ))⊗ Ind(µ′)

)
6= 0
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Applying the geometric lemma of [BZ77] to this Jacquet module, we have that

there is a M (1,m−1)-equivariant filtration of JU1,m−1
(Ind(χ)) such that the correspond-

ing factors are representations of the form

χ±1
i δ

−1/2
(1,m−1) ⊗ Ind(χ′),

with k ∈ {2, 3, . . . ,m}, and where χ′ : Z(Tm−1)→ C× is a character such that

χ′j ∈ {χ±1
k : k ∈ {2, 3, . . . ,m}, k 6= i}.

Therefore, there exists some k such that our morphism induces a non-zero morphism

(without loss we can assume χ−1
k appears):

JN1,ψ′(Θ
(2)
GL2

)⊗Θ2(m+n−2) −→ λ⊗ χ−1
k δ

−1/2
(1,m−1) ⊗ Ind(χ′)⊗ Ind(µ′).

We now conclude: the diagonal GL1 acts on the right hand side by the accumulated

character

λχ−1
k δ

−1/2
(1,m−1) = µ1χ

−1
k δ−1

(1,n−1)δHδ
1/2
(1,n−1)δ

−1/2
(1,m−1) = µ1χ

−1
k | · |

m+n

where the modular characters are easy to compute, and we note δH = δ(1,n−1)δ(1,m−1).

On the other hand, it acts on the left hand side by the appropriate exceptional

character on GL2 as indicated in Theorem 3.1.5:

χGL,2

 a

a

 = |a|m+n.

Therefore µ1 = χk, and we are left with

HomSp2(m−1)(F )×µ4Sp2(n−1)(F )

(
Θ2(m+n−2), Ind(χ′)⊗ Ind(µ′)

)
6= 0.

By induction, this case is proved. We note that in this case the difference in the rank

of the smaller symplectic groups k remains unchanged.
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Case 2: Suppose instead that

Hom
(
JU1,n+m−1(Θ2(m+n)), µ1δ

1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′)

)
6= 0.

Applying Theorem 3.1.5, we have a non-zero Sp2m(F )×µ4 M (1,n−1)-equivariant map

χGL,1 ⊗Θ2(m+n−1) −→ µ1δ
1/2
(1,n−1) ⊗ Ind(χ)⊗ Ind(µ′).

Here, χGL,1 is the character on GL1(F ) arising in Theorem 3.1.5. Comparing the

action of this GL1-component of M (1,n−1), we find that

χGL,1 = µ1δ
1/2
(1,n−1)

so that µ1 = | · |−(2k−1)/4, where recall that k = n−m. We therefore obtain

HomSp2m(F )×µ4Sp2(n−1)(F )(Θ2(m+n−1), Ind(χ)⊗ Ind(µ′)) 6= 0.

Since our analysis has utilized the choice of embedding

Sp2m× Sp2(n−1) ↪→ Sp2(m+n−1),

continuing the same argument would lead us to now apply transitivity of induction

to Ind(χ) and study the Jacquet module JV1,m−1(Θ2(m+n−1)). As above, this Jacquet

module has a filtration and there are two cases to consider. If Case 1 occurs, then

the analysis is the same and we reduce to

HomSp2(m−1)(F )×µ4Sp2(n−2)(F )(Θ2(m+n−3), Ind(χ′′)⊗ Ind(µ′′)) 6= 0.

Repeat this (i times, say) until Case 2 occurs. Thus, we have a non-zero map

χ1 ⊗Θ2(m+n−2i−1) −→ χ
(i)
1 δ

1/2
(1,m−i−1) ⊗ Ind(χ(i))⊗ Ind(µ(i+1))),

where χ(i) : Z(Tm−i) → C× and µ(i+1) : Z(T n−i−1) → C× are the characters arising

from the argument in Case 1 applied i times. An identical computation to the one

above now shows that

χ
(i)
1 = | · |−(2(1−k)−1)/4 = µ−1

1 .
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This shows that if Case 2 occurs when analyzing Ind(χ), we still obtain χ1 ∈ {µ±1
j }.

This is the only case not immediate from induction. Applying the case-by-case argu-

ment above, the theorem is proven.

In Section 8, we will interpret this result in terms of Arthur’s conjectures, subject

to a natural generalization of Shimura’s correspondence.



Chapter 7

The Global Lifting and Cuspidality

In this chapter, we turn to the global theta lifting and prove Theorem 7.2.1.

7.1 Global Lifting

Suppose now that K is a number field such that |µ4(K)| = 4. As in the introduc-

tion, let W0 be a 2m-dimensional symplectic space over K, and let

Wn = Xn ⊕W0 ⊕X∗n, Vn = Xn ⊕X∗n

be symplectic spaces of dimension 2(m+ n) (resp. 2n). Then there is an inclusion of

symplectic groups

Sp(W0)A × Sp(Vn)A ↪→ Sp(Wn)A.

Here A = AK is the adele ring associated to K. Then the above embedding is covered

by an embedding of metaplectic groups

Sp(W0)A ×µ4 Sp(Vn)A ↪→ Sp(Wn)A

Let π be an ε-genuine cuspidal automorphic representation of Sp(W0)A, and let

77



78 Chapter 7: The Global Lifting and Cuspidality

ΘWn := Θ2(m+n) be the theta representation of Sp(Wn)A. Consider the integral pairing∫
[Sp(W0)]

ϕ(g)θn((h, g)) dg, (7.1)

where ϕ ∈ π and θn ∈ ΘWn . The vector space generated by such integrals as we

vary over all vectors in π and ΘWn forms an ε-genuine automorphic representation

of Sp(Vn)A, which we denote by Θn(π). Note that it is immediate from the spectral

decomposition that if π is cuspidal then, Θ0(π) = 0, and for any π we set Θ−1(π) = 0.

We begin our global study by noting the following theorem:

Theorem 7.1.1. Let π be as above. Then Θ4m(π) 6= 0, so that the π lifts nontrivially

to Sp(V4m)A ∼= Sp8m(A).

We sketch the proof as this result is analogous to Theorem 2 in [BFG06], and is

proved in a similar manner. Supposing toward a contradiction that the integral∫
[Sp(W0)]

ϕ(g)θ4m((h, g)) dg

vanishes for all data, it is clear that the integral∫
[Sp(W0)]

∫
[V2(O)]

ϕ(g)θ4m((v, g))ψO(v) dv dg, (7.2)

where O = (24m12m) and

ψO(v) = ψ(v4m+1,6m+1 + · · · v1,10m−1)

must also vanish for all data. Note that V1(O) has the structure of a generalized

Heisenberg group with center equal to V2(O), so that there is a homomorphism λ :

V1(O)A → H8m2+1(A) to the Heisenberg group on 8m2 + 1 variables.

Denote by ωψ the global oscillator representation of the dual pair (SO4m,Mp2m) ⊂

Mp8m2 and let θ̃φ be the theta function associated to φ ∈ ωψ. Results of Ikeda on
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Fourier-Jacobi coefficients [Ike94] tell us that functions of the form

θ̃φ1(1, g)

∫
[V1(O)]

θ4m (v(1, g)) θ̃φ2 (λ(v)(1, g)) dv (7.3)

are dense in the space of functions of the form

∫
[V2(O)]

θ4m(v, g)ψO(v) dv. (7.4)

Thus, the vanishing (7.2) tells us that if we set

H(g) = ϕ(g)

∫
[V1(O)]

θ4m (v(1, g)) θ̃φ2 (λ(v)(1, g)) dv,

then we have ∫
[Sp(W0)]

H(g)θ̃φ(1, g) dg = 0

for all φ ∈ ωψ. As in [BFG06], since we are considering a high enough lift, the

arguments used in the proof of [Ral84, Theorem I.2.2] allow us to conclude that

H(g) ≡ 0. This forces all functions of the form (7.3) to vanish, and hence the

density results force all functions of the form (7.4) to also vanish. However, it is a

straightforward check to show that the non-vanishing of Fourier coefficients associated

to OΘ,5m = (25m) in Theorem 5.2.1 forces these Fourier coefficients associated to the

orbit O = (24m1m) to be non-vanishing for some choice of data. We therefore obtain

a contradiction.

7.2 Towering property of the theta lift

In this section we prove the rest of Theorem 1.2.1.

Theorem 7.2.1. Suppose that π is a cuspidal automorphic representation of Sp(W0)A.

Then
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1. If Θk(π) = 0, then Θk−1(π) = 0;

2. If Θk−1(π) = 0, then Θk(π) is cuspidal.

Proof. We first prove the persistence property (1). By assumption we have that for all

choices of data, the integral (7.1) vanishes. Thus, if V1,n−1 ⊂ Sp(Vn) is the unipotent

radical of the maximal parabolic preserving an isotropic line, then∫
[Sp(W )]

∫
[V1,n−1]

ϕ(g)θn((u, g))du dg = 0. (7.5)

We have that V1,n−1 ⊂ V1,n+m−1 with an abelian complimentary subgroup

(V1,n+m−1/V1,n−1) ∼= G2m
a . Acting via conjugation, we identify this vector space with

the standard representation of Sp(W ). Expanding the inner integral of (7.5) against

this subgroup, we have that Sp(W )K ∼= Sp2m(K) acts on the character group with

two orbits. Applying Theorem 3.2.2 with a = 1, the trivial orbit gives the integral∫
[Sp2n]

ϕ(g)θn−1((1, g)) dg,

which, as we range over all data, gives an arbitrary element in Θn−1(π). Thus, the

proposition follows if we show that the contribution of the non-trivial orbit in the

above expansion vanishes.

Let Q1,m−1 be the maximal parabolic subgroup of Sp2m preserving a line. We may

choose a representative of the nontrivial Sp2m(F )-orbit to be the character ψ̃(u) =

ψ(u1,m+1), the stabilizer of which is Q′1,m−1 ⊂ Q1,m−1, the subgroup obtained by

omitting the GL1(F ) piece of the Levi. Unfolding, we find that the non-trivial orbit

contributes ∫
Q′1,m−1(K)\ Sp2m(A)

∫
[V1,n+m−1]

ϕ(g)θn(u(1, g))ψ̃(u) du dg.

Consider the Weyl group element w ∈ W preserving U1 such that w · ψ̃ = ψ0
1.

Using automorphy of θn, we may conjugate the inner integration by w and change
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variables so that the above integral equals∫
Q′1,m−1(K)\ Sp2m(A)

ϕ(g)θV1,n+m−1,ψ0
1(w(1, g)) dg, (7.6)

where

θVk,m−k,ψ
0
k(g) =

∫
[Vk,m−k]

θ(vg)ψ0
k(v) dv.

Recall that V1,m−1 is the unipotent radical of Q1,m−1. We may decompose the

outer integral so that we obtain∫
[V1,m−1]

ϕ(vg)θV1,m+n−1,ψ0
1(w(1, vg)) dv

as an inner integration of (7.6). Identifying V1,m−1 with its image in Sp2(m+n), we see

that wV1,m−1w
−1 ⊂ V2,m+n−2, so that by Lemma A.2.2 we may change variables in

θV1,ψ0
1 to remove the dependence on v, implying that the integral equals

c

∫
[V1,m−1]

ϕ(vg) dv,

for some constant c ∈ C. By the cuspidality of π, this is trivial. Therefore, the

non-trivial orbit does not contribute. This completes the proof of part (1).

We now turn to proving part (2). For the sake of this proof, let Rl denote the

image of the unipotent radical U(l,n−l) of the maximal parabolic subgroups of Sp2n.

We need to show that the vanishing of Θn−1(τ) implies the vanishing of the integral∫
[Sp2m]

∫
[Rl]

ϕ(g)θn((v, g)) dv dg. (7.7)

We begin by noting that the root subgroup associated to the highest root α0 = µ1

is a subgroup of the images of Rl for all l. Thus, by identifying this root subgroup

with Z(H1), we may expand the inner integration against [H1/Z(H1)].

As before, Sp2(n+m−1)(K) acts on the characters of this group with two orbits.

By Theorem 3.2.2, the trivial orbit gives an element of the lifting Θm−1(τ), and
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so the corresponding contribution in the Fourier expansion vanishes. Left with the

non-trivial orbit, we unfold to see that (7.7) is equal to

∑
γ∈Q1,n+m−2(K)\ Sp2(n+m−1)(K)

∫
[Sp2m]

∫
[Rl]

ϕ(g)ϑV1,ψ0
1

n (γ(v, g)) dv dg, (7.8)

where Q1,n+m−2 is the maximal parabolic subgroup of Sp2(n+m−1)(K) preserving a

line, and Vi = Vi,n+m−l is the simplifying notation we use in this argument.

Note that we have replaced θ
V1,ψ0

1

n (g) with

ϑV1,ψ0
1

n (g) =
∑
ξ∈K×

θV1,ψ0
1

n (h1(ξ)g),

where

h1(ξ) = diag(1, ξ, 1, . . . , 1, ξ−1, 1).

We do this to simplify the Mackey theory we need to move forward. We may

further decompose the above sum by considering the double cosets

Q1,n+m−2(K)\ Sp2(n+m−1)(K)/Q1,n+m−2(K)

which has 3 elements with the representatives 1, w2, and w0,2 where

w0,2 = w2w3 · · ·wn · · ·w3w2

is the relative long element corresponding to the parabolic subgroup Q1,n+m−2.

We claim that the only double coset to contribute to (7.8) is the coset represented

by w2. In fact, to see that the case of w0,2 does not contribute, we need only comment

that the short root group Uα, where

α = η1,2 = α1 + 2α2 + · · ·+ 2αn−1 + αn

is conjugated by w̃0 to the root group Uα1 . Thus, since this root group is contained
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in Rl for all l, we see that as an inner integration we have

∫
Uα(A)Rl(K)\Rl(A)

∫
[Uα]

ϑV1,ψ0
1

n (w̃0xα(t)(v, g)) dt dv

=

∫
Uα(A)Rl(K)\Rl(A)

∑
ξ∈K×

(∫
[A]

ψ(ξt) dt

)
θV1,ψ0

1
n (h(ξ)w̃0(v, g)) dv.

This vanishes since ξ 6= 0, and thus

∫
[A]

ψ(ξt) dt = 0.

The contribution of w = 1 also vanishes. In this case, the contribution equals

∑
ξ∈K×

∫
[Sp2m]

∫
[Rl]

ϕ(g)θV1,ψ0
1

n (h(ξ)(v, g)) dv dg.

By Lemma A.2.2, we see that we may replace θ
V1,ψ0

1
n = θ

V2,ψ0
2

n . Factoring this integral

along the unipotent radical U(2,n+m−2), and applying Theorem 3.2.2 with a = 2, we

have an inner integration contained in the lifting Θm−2(τ). By part (1) and the

assumption that Θn−1(π) = 0, this vanishes.

Therefore, the only double coset which contributes to (7.8) is the one represented

by w2. With this simplification, we may rewrite (7.8) as

∑
γ∈Q1,n+m−3\ Sp2(n+m−2)(K)

∑
ε∈K

∫
[Sp2m]

∫
[Rl]

ϕ(g)ϑV1,ψ0
1

n (w2γxα2(ε)(v, g)) dv dg. (7.9)

We now consider the set of double cosets Q1,n+m−3\ Sp2(n+m−2)(K)/Q1,n+m−3, which

again has only 3 elements, represented by 1, w3, and w0,3. The argument is the same

as the previous case, and by induction we find that our integral reduces to

∫
Q1,m−1(K)\ Sp2m(A)

∫
[Rl]

ϕ(g)
∑

ε2,··· ,εn

ϑV1,ψ0
1

n (w2xα2(ε2) · · ·wnxαn(εn)(v, g)) dv dg.

Setting w̃2 = w2w3 · · ·wn = diag(w, I2m−2, w
∗), where
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w =


1

1

In−1

 ,

and r(ε2, · · · , εm) = diag(u(ε), I2m−2, u(ε)∗), where

u(ε) =



1 · · · 0

ε2

. . .
...

εn

1


∈ GLn+1(F ),

we may rewrite this as∫
Q1,m−1(K)\Sp2m(A)

∫
[Rl]

ϕ(g)
∑

ε2,··· ,εn

ϑV1,ψ0
1

n (w̃2r(ε1, . . . , εn)(v, g)) dv dg.

We may immediately remove several of the above summands as follows: decompose

our unipotent radical Rl = L ·R0
l where

L′1 = 〈xα(t) : α ∈ {γ1,l, . . . , γ1,n−1}〉 ∼= Gn−l
a .

Decomposing the integration over Rl and conjugating

λ = xγ1,l
(tl) · · · xγ1,n−1(tn−1) ∈ LA

past w̃2r(ε1, . . . , εn), we change variables an obtain an inner integration of the form∫
[An−l+1]

ψ(εl+1tl + · · ·+ εntn−1) dti,

which vanishes unless εl+1 = · · · = εn = 0. Therefore, we have reduced the integral

to the case∫
Q1,m−1(K)\Sp2m(A)

∫
[R1
l ]

ϕ(g)
∑
ε2,··· ,εl

ϑV1,ψ0
1

n (w̃2r(ε2, . . . , εl, 0, · · · , 0)(v, g)) dv dg, (7.10)
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where here R1
l is the subgroup of elements of R such the projection to the root groups

Uα with α ∈ {γ1,k, η1,k : 1 ≤ k ≤ n+m} are trivial. The reason we have this integral

is, as before, decomposing R0
l = L′′1 · R1

l where L′ is the rest of the top row, we can

conjugate L′ past w̃2 and absorb the integration over L′ into the integration over V1

in ϑ
V1,ψ0

1
n (g).

If l = 1 or εi = 0 for all i, then the above integral vanishes. To see this, note that

we may decompose the integration over Q1,m−1(K)\ Sp2m(A) to obtain as an inner

integration over [L1,m−1]. As noted in the proof of part (1), ϑ
V1,ψ0

1
n is invariant under

w̃2L1,m−1w̃
−1
2 , so that upon changing variables we find the constant term∫

[L1,m−1]

ϕ(lg) dl = 0

as an inner integration. In the case l > 1, we have thus reduced to the case εi 6= 0.

Consider, within the Levi subgroup M(l,n−l) ∼= GLl× Sp2(n−l) corresponding to our

unipotent radical, the subgroup GLl−1 embedded as the (lower) mirabolic subgroup

of the GLl factor. Thus, if ζ ∈ GLl−1(K), then ζ embeds into Sp2n as

ζ = diag(1, ζ, I2(m+n−l), ζ
∗, 1).

This subgroup acts by conjugation on the set {r(ε1, . . . , εl, 0, . . . , 0) : εi 6= 0} with one

orbit. One can check that this GLl−1 commutes with embedded Sp2m(A). As it is a

subgroup of the embedded parabolic subgroup

M(l,n−l) ⊂ Sp2n ⊂ Sp2(m+n),

it clearly normalizes Rl. Using these two observations, we may rewrite (7.10) as

∑
ζ∈H1\GLl−1(K)

∫
Q1,m−1(K)\ Sp2m(A)

∫
[R1
l ]

ϕ(g)ϑV1,ψ0
1

n (w̃2r1(v, g)ζ) dv dg.

Here, r1 := r(1, 0, . . . , 0) = xγ2,n(1) and H1 is the stabilizer in GLl−1 of r1. Note that

we have used the fact that w̃2ζ
−1w̃−1

2 stabilizes the integral ϑ
V1,ψ0

1
n (g).
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Thus, by replacing θn with a translate, we see that it suffices to show that∫
Q0

1,m−1(K)\ Sp2m(A)

∫
[R1
l ]

ϕ(g)θV1,ψ0
1

n (w̃2r1(v, g)) dv dg = 0,

where we have unraveled the definition of ϑn and let Q′1,m−1 denote the same parabolic

with the GL1-factor omitted. By Lemma A.2.2, we may replace θ
V1,ψ0

1
n = θ

V2,ψ0
2

2n .

If l = 2, then we may conclude that the above integral vanishes. To see this, one

can show that

Z(H3)V2,m+n−2 ⊂ w̃2r(1)R1
2(w̃2r(1))−1 ⊂ V3,m+n−3.

In fact, after conjugating and changing variables, our integral becomes∫
Q0

1,m−1(K)\ Sp2m(A)

∫
[V 1

3 ]

ϕ(g)θn(w̃2r1(v, g))ψ1
3(v) dv dg.

Here we have V 1
3 ⊂ V3,m+n−3 defined by

V 1
3 = {v ∈ V3,m+n−3 : v3,j 6= 0 =⇒ j ≤ m+ 1 or j ≥ 2(m+ n)− n},

against the character ψ1
3(v) = ψ(v1,2).

Thus, we may expand along the complimentary subgroup (V3\V 1
3 ) ∼= G2m−2

a ⊂ H3

1. The subgroup Sp2m−2(K) ⊂ Sp2m(A) acts via conjugation with two orbits on the

characters of this subgroup.

The trivial orbit does not contribute since, similarly to the proof of part (1), we

note that w̃2r1V1,m−1(w̃2r1)−1 ⊂ V3,n+m−3, and so conjugating and changing variables,

we obtain ∫
[V1,m−1]

ϕ(u′g)du′

as an inner integration. This vanishes by the cuspidality of π. For the nontrivial

orbit, define the character ψ2
3 : V3,m+n−3 → C× to be

ψ2
3(v) = ψ(v1,2 + v3,m+2).

1Note that the center of H3 is already being integrated against.
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Then, we see that our integral becomes

∑
γ∈Q0

1,m−2\Sp2m−2(K)

∫
Q0

1,m−1(K)\Sp2m(A)

ϕ(g)θV3,ψ2
3

n (γw̃2r1(1, g)) dv dg

=

∫
Q0

2,m−2(K)\ Sp2m(A)

ϕ(g)θV3,ψ2
3

n (w̃2r1(1, g)) dv dg,

where we used the fact that γ commutes with w̃2r1 to allow the unfolding. Let w̃4 =

w4 · · ·wn+1 be the Weyl group element preserving V3,m+n−3 such that w̃4 · ψ2
3 = ψ0

3.

Conjugating by this element, we see that our integral becomes∫
Q0

2,m−2(K)\ Sp2m(A)

ϕ(g)θV3,ψ0
3

n (w̃4w̃2r1(1, g)) dv dg.

We claim that this integral vanishes. To see this, note that we may factor the unipo-

tent radical of Q2,m−2

V2,m−2 = N · U(2,m−2),

where U(2,m−2) is the unipotent radical of the maximal parabolic subgroup P(2,m−2) of

Sp2m. Conjugating the integration along U(2,m−2) across w̃4w̃2r1, we see that θ
V3,ψ0

3
2n is

invariant under this subgroup. Thus, we obtain an inner integration of the form∫
[U(2,m−2)]

ϕ(ug) dg,

which vanishes by cuspidality. This completes the case of l = 2.

For l ≥ 3, note that the root subgroup associated to the long root µ2 is contained

in R1
l . Doubling the integration along this root group, we may write our integral as∫

Q0
1,m−1(K)\ Sp2m(A)

∫
[R1
l ]

∫
[A]

ϕ(g)θV2,ψ0
2

n (w̃2r1xµ2(t)(v, g)) dt dv dg,

and conjugating past w̃2r1, we obtain∫
Q0

1,m−1(K)\ Sp2m(A)

∫
[R1
l ]

∫
[Z(H3)]

ϕ(g)θV2,ψ0
2

n (zw̃2r1(v, g))dz dv dg.
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Therefore, we may expand
∫

[Z(H3)]
θV2,ψ0

2(zw̃2r1(v, g))dz along [H3/Z(H3)]. As before,

we obtain two orbits under the action of the subgroup Sp2(m+n−3)(K). Again, we see

that cuspidality kills off the trivial orbit, and we are left to analyze the nontrivial

orbit.

This process is inductive, and the final case will depend on the relation between

m and n. In both cases, one is able to decompose the integration so that we have an

inner integration along an appropriate unipotent radical of Sp2m. After conjugating

across the accrued Weyl group elements and unipotent elements, the period along θn

is invariant under the resulting subgroup. We obtain the constant term of ϕ as an

inner integration, and this vanishes by the cuspidality assumption.

Specifically, if m < n, then in the finale we obtain the integral∫
Um(F )\Sp2m(A)

∫
[Rtl ]

ϕ(g)θV2m,ψ0
2m(w̃r(v, g)) dv dg.

Here Um is the unipotent radical of the Borel subgroup of Sp2m, w̃ ∈ W (Sp(Wn))

is an explicit Weyl group element, r is an explicit unipotent element, and Rt
l is a

subgroup of Rl. To see that this integral vanishes, we decompose the integration to

obtain an inner integration over Um(F )\Um(A). One may then show that θV2m,ψ0
2m is

invariant under (w̃r)Um(A)(w̃r)−1, so that after a change of variables we obtain∫
[Um]

ϕ(ug)du

as an inner integral. This vanishes by cuspidality.

The case of m > n is similar. This final analysis is similar to the considerations

in [BFG06]. We omit the final details, as the form of the argument above deals with

all potential issues. This completes the proof of Theorem 7.2.1.
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CAP Representations and Arthur

Parameters

In this chapter, we draw certain conclusions from the previous sections. We also

relate our results to Arthur’s conjectures.

8.1 CAP representations

We say that two irreducible automorphic representations π = ⊗′νπν and σ = ⊗′νσν

are nearly equivalent if πν ∼= σν for almost all places ν. Recall the definition of a CAP

representation of a reductive group G over K.

Definition 8.1.1. A cuspidal representation π = ⊗′νπν of G(A) is said to be CAP

(or, cuspidal associated to parabolic) if there exists

1. a parabolic subgroup P = MN of G,

2. a cuspidal unitary representation τ of M(A),

3. an unramified character χ of M(A),

89



90 Chapter 8: CAP Representations and Arthur Parameters

such that π is nearly equivalent to a irreducible constituent of IndGP (τ ⊗ χ). Equiva-

lently, πν is isomorphic to the Langlands quotient of IndGP (τν ⊗ χν) for almost all ν.

In this case, we say that π is CAP with respect to (P, τ, χ).

In the case of G quasi-split, Arthur’s conjecture on square-integrable automor-

phic forms produces a precise determination of those triples (P, τ, χ) for which CAP

representations exist.

For covering groups, there is an obvious generalization of the above definition,

where the parabolic P = MN is replaced with the full inverse image P = MN . This

concept has been studied previously in the case of Mp2n, the two-fold metaplectic

cover of Sp2n (see, for example, [Yam16]).

Recall that if π is a cuspidal representation of Sp(W0), then we denote by n(π)

the index such that Θn(π)(π) 6= 0, while Θn(π)−1(π) = 0. By Theorem 7.1.1 such an

index exists and is unique.Set t(π) = n(π)− n.

Theorem 8.1.2. Suppose π is a genuine cuspidal automorphic representation of

Sp(W0), and suppose Θ(π) := Θn(π)(π) is the first nontrivial lift. Then

Θ(π) =
⊕̂
λ∈Λ

τλ

is semi-simple, and the irreducible summands all lie in the same near equivalence

class.

1. If t(π) ≥ 0, then each τλ is CAP with respect to the triple (Qt(π),n, π, χΘ,2t(π)).

Here, we have χΘ,2t(π) = χ0χΘ,2t(π) where

χΘ,2t(π)((M(t1, . . . , tt(π)),m), ζ) =

t(π)∏
i=1

|ti|(2(t(π)−i)+1)/4.

2. If t(π) < 0, then π is CAP with respect to (Q−t(π),n(π), τλ, χθ,−2t(π)) for any

λ ∈ Λ.



Chapter 8: CAP Representations and Arthur Parameters 91

Proof. By Theorem 7.2.1, we know that Θ(π) ↪→ L2
cusp(Sp(Vn(π))F\Sp(Vn(π))A) is

cuspidal. It is therefore semi-simple, and we may write

Θ(π) =
⊕̂
λ∈Λ

τλ,

where for each λ ∈ Λ, τλ is an irreducible cuspidal automorphic representation of

Sp(Vn(π))A. Fix an arbitrary λ. Using the Petersson inner product, we see then that

HomSp(Vn(π))A
(τ∨λ ⊗Θ(π),C) 6= 0,

so that we obtain a nontrivial global trilinear form

HomSp(W0)A×µ4Sp(Vn)A
(τ∨λ ⊗ π ⊗Θn(π),C) 6= 0.

Since all three representations are restricted tensor products, we obtain at each place

ν a non-zero local trilinear form. That is,

HomSp(W0)A×µ4Sp(Vn)A
(τ∨λ,ν ⊗ πν ⊗Θn(π),ν ,C) 6= 0.

This implies, for any place ν, the corresponding local hom-space is non-zero:

HomSp(W0)Kν×µ4Sp(Vn)Kν
(Θn(π),ν , τλ,ν ⊗ π∨ν ) 6= 0,

Suppose ν is a finite place such that all three local representations are unramified.

This holds for all but finitely many places. Thus, we may apply Theorem 6.1.1 to

conclude the appropriate relationship between the local factors.

This constitutes the first construction of CAP representations on higher degree

covering groups. In Chapter 9, we provide evidence based on the dimension equation

that t(π) > 0 holds if π is generic.
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8.2 Conjectural Shimura Lift

Consider a finite place ν of K such that the completion F = Kν has odd residue

characteristic. Recall that to the 4-fold cover Sp2r one may associate the dual root

datum

(YQ,4, {α∨Q,4},Hom(YQ,4,Z), {αQ,4}),

which corresponds to the complex dual group Sp
∨
2r = Sp2r(C). To this root datum,

we may also attach the split linear algebraic group over F , GQ,4 = SO2r+1. Gan-Gao

[GG14] speculate that GQ,4 should be viewed as the principal endoscopic group of

Sp2r. Set GQ,4(F ) = GQ,4.

Let TQ,4 = YQ,4 ⊗ F× ⊂ GQ,4 be the induced split maximal torus. Then the

inclusion YQ,4 ↪→ Y induces an isogeny

i : TQ,4 → Tr.

Let χ : i(TQ,4) → C× be a character of the subtorus i(TQ,4) of Tr. For example, χ

could be an unramified character arising from a character of the lattice YQ,4. Upon

choosing a distinguished character χ0, we previously saw how to obtain the principal

series representation

Ind
Sp2r(F )

Br
(χ0χ).

As noted in [GG14, Section 15], this choice induces a well-defined W -equivariant

lifting

Ind
Sp2r(F )

Br
(χ0χ) 7→ Ind

GQ,4
BQ,4

(χ ◦ i). (8.1)

This lifting provides a bijection between principal series representations of Sp2r(F )

and principal series representations of GQ,4 induced from characters χ′ such that

ker(i) ⊂ ker(χ′).
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One may check that in the case of χ unramified, this lifting has the effect of

squaring the Satake parameter. More explicitly, if

χ(M(t1, . . . , tr)) =
r∏
i=1

χi(ti),

and if we parametrize TQ,4 ⊂ GQ,4 by D(s1, . . . , sr) = diag(s1, . . . , sr, 1, s
−1
r , . . . , s−1

1 ),

then

χ ◦ i(D(s1, . . . , sr)) =
r∏
i=1

χ2
i (si).

A similar unramified correspondence exists for Mp2r and SO2r+1, as follows from

[Kud86], Theorem 2.5. In the classical Shimura correspondence between Mp2 and

PGL2, this is made explicit in [Gan, Sec. 2.17]. With these results in mind, one is led

to the (naive) conjecture of a generalized Shimura-type correspondence (dependent

on our distinguished character χ0):

Shimχ0 : Repε(Sp2r(F )) −→ Rep(GQ,4),

of which this is the restriction to the principal series. One might also hope for an

analogous global correspondence

Shimχ0 : Aε(Sp2r(A)) −→ A(GQ,4(A)) (8.2)

of (genuine) automorphic representations.1 Further evidence for such a conjecture

may be seen in the metaplectic correspondences known for covers of general linear

groups (see [Fli80] and [FK86]).

1Note that the classical dependence upon a choice of additive character ψ is here encoded in the
choice of distinguished character χ0.
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8.3 Arthur’s conjectures

For a reductive linear algebraic group G over a number field K, Arthur has con-

jectured a decomposition

L2
disc(G(K)\G(A)) =

⊕̂
Ψ

L2
Ψ,

where the Hilbert space direct sum runs over equivalence classes of global Arthur

parameters Ψ. These are continuous maps

Ψ : LK × SL2(C)→ G∨,

satisfying certain axioms. Here LK is the conjectural Langlands group of K. For each

Ψ, L2
Ψ is a direct sum of near equivalent representations. For a summary of Arthur’s

conjecture, see [Art89].

The primary motivation for considering the conjectural lifting (8.2) is the hope of

extending the notion of Arthur parameters from GQ,4 to Sp2r. This has only recently

been accomplished by Gan-Ichino [GI17] in the case of Mp2r. The proof uses the local

Shimura correspondence between Mp2r and SO2r+1 along with the global theta liftings

from Mp2r to SO2(r+k)+1 for k > r. This indicates that the conjectural correspondence

(8.2), even if it exists, is likely insufficient to prove a transfer of definition to Sp2r.

Likely further development of the trace formula in the context of BD-covering groups

is necessary. Such investigations are underway in the work of Li.

In any case, given an Arthur parameter Ψ for SO2r+1, the bijection above enables

us to define a near equivalence class AΨ,χ0 of genuine representations for Sp2r(A) as

follows. To the global parameter Ψ, we have a family of local parameters

Ψν : LKν × SL2(C)→ Sp2r(C),
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where if ν is a finite place, then LKν = WDKν is the Weil-Deligne group of Kν . For

almost all finite places, we obtain a Satake parameter

sΨν = Ψν

Frν ,
 q

1/2
ν

q
−1/2
ν


 ,

where Frν is a Frobenius element and qν is the size of the residue field of Kν . This

corresponds to an irreducible spherical representation πΨν of GQ,4(Kν) = SO2r+1(Kν).

Using the unramified lifting (8.1), we obtain an unramified representation of Sp2r(Kν),

πΨν ,χ0 . Thus, Ψ determines the near equivalence class

AΨ,χ0 :=
{
π = ⊗′νπν : πν ∼= πΨν ,χ0 for almost all ν

}
.

We are led to the following:

Conjecture 8.3.1. For a choice of distinguished character χ0,

Aε(Sp2r(A)) =
⊕̂

Ψ

AΨ,χ0 . (8.3)

This is analogous to Theorem 2.3 in [GL17].

In the remainder of this section, we assume the existence of the decomposition (8.3)

and use it to interpret our construction in terms of Arthur parameters of SO2r+1(A).

Let π be a genuine cuspidal representation of Sp2r(A), and suppose Θ(π) := Θr+k(π)

is the first nontrivial lift. Suppose that π ∈ AΨ,χ0 , and consider the parameter

Ψπ : LK × SL2(C)→ Sp2r(C).

If {χ±1
ν,i ($ν)} are the Satake parameters of π at ν relative to χ0, then Theorem

6.1.1 tells us that the corresponding parameters for an irreducible summand τπ of

Θ(π) are given by

{χ±1
ν,i ($ν)} ∪ {qν (2(k−i)+1)/4 : 1 ≤ i ≤ k}.
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Passing through the unramified lifting (8.1), we see that, up to action by the Weyl

group,

sΨπ,ν = M(χ2
ν,1($ν), . . . , χ

2
ν,r($ν)) ∈ Tr(C).

Thus, the parameter of the lift ΨΘ(π) must satisfy

sΨΘ(π),ν
= M(qν

(2k−1)/2, . . . , qν
1/2, χ2

ν,1($ν), . . . , χ
2
ν,r($ν)) ∈ Tr+k(C),

for almost all ν.

Consider the unipotent orbit Ok = ((2k)12r) of Sp2(r+k)(C). This corresponds to a

conjugacy class of morphisms φk : SL2(C)→ Sp2(r+k)(C). Then a simple computation

based on the above requirements shows that the Arthur parameter ΨΘ(π) associated

to the near equivalence class in which Θ(π) sits should be the composition

LK × SL2(C)
Id×∆−−−→ LK × SL2(C)× SL2(C)

Ψπ×Id−−−−→ Sp2r(C)× SL2(C)
ι×φk−−−→ Sp2(r+k)(C),

where ι : Sp2r(C) → Sp2(r+k)(C) has image in the centralizer of the image of φk. In

the notation of [Art13], we have

ΨΘ(π) = Ψπ � S2k,

where S2k is the unique 2k-dimensional irreducible representation of SL2(C). In par-

ticular, the Arthur parameter ΨΘ is non-tempered, in agreement with the represen-

tation Θ(π) being a CAP representation.



Chapter 9

Generic Lifts and the Dimension

Equation

In this final section, we investigate the case that π is assumed to be a generic

cuspidal representation of Sp(W0)A ∼= Sp2m(A); that is, we assume π has a non-trivial

Whittaker model. With this assumption, one expects that n(π) = m+ 1. Moreover,

we anticipate that Θm+1(π) is a generic representation of Sp(Vm+1)A ∼= Sp2m+2(A).

The reason is the dimension equation of Ginzburg (see [Gin14b]), which we recall

now. Suppose π is an automorphic representation of a reductive group or finite

degree cover there of G, and assume O(π) is a single nilpotent orbit. Recall that the

Gelfand-Kirillov dimension of π is given by

dim(π) =
1

2
dimC(O(π)).

The general philosophy of Ginzburg is that one may utilize the dimension equation

to anticipate when a lifting such as the one under consideration is non-vanishing. In

our case, the equation amounts to

dim(π) + dim(ΘWn) = dimC (Sp2m(C)) + dim(Θn(π)). (9.1)

97
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Our computation of O(Θn) in Theorem 1.2.4 tells us that

dim(ΘWn) =
(n+m+ 1)(n+m)

2
.

If we assume π is generic, so that dim(π) = m2, we find equality when n = m+ 1 and

Θm+1(π) is generic.

For the remainder of this section, we compute the Whittaker coefficient of a vector

in Θm+1(π) and showing that it may be expressed in terms of an integral pairing of

the Whittaker coefficients of π and the split coefficient (see Proposition 5.2.5) of

Θm+1. Let ψn,α : Un(K)\Un(A) → C× be the Gelfand-Graev character of the full

unipotent radical of the Borel subgroup of Sp2n corresponding to the square class

α ∈ K×/(K×)2. Thus,

ψn,α(u) = ψ(u1,2 + u2,3 + · · ·+ un−1,n + αun,n+1).

For an automorphic form ϕ of Sp2n(A), we set

Wα(ϕ)(g) =

∫
[Un]

ϕ(ug)ψn,α(u)du

to be the Whittaker coefficient of ϕ with respect to this character.

Proposition 9.0.2. Let π be an irreducible cuspidal generic representation of Sp2m(A),

and let ϕ ∈ π. For a vector θm+1 ∈ ΘWm+1, consider the pairing

Fϕ,θ(h) =

∫
[Sp2m]

ϕ(g)θm+1((h, g)) dg,

where h ∈ Sp2m+2(A). Then we have

Wα(Fϕ,θ)(1) =

∫
Um(A)\ Sp2m(A)

Wα(ϕ)(g)θ
U2m+1,ψ0

2m+1,α

m+1 (g) dg. (9.2)

Proof. We seek to compute the integral∫
[Sp2n]

∫
[Un+1]

ϕτ (g)θ4n+2(u, g)ψn+1,α(u)dudg. (9.3)
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Many of the steps in this proof are structurally similar to the argument in proving

Theorem 7.2.1, except that at certain steps we are able to simplify for different rea-

sons. We will carry out the first few steps in order to illustrate what goes into the

computation before inducting.

We begin by noting that the highest root group Uα0 is contained in the image of

Un+1, so that we may expand θ2n along the subgroup [H1/Z(H1)]. As before, there

are two orbits of characters of this group under the conjugation action of Sp4n(F ).

The trivial orbit vanishes since the root group Uα1 ⊂ V1 is being integrated over

twice: once with in the constant term, and again in the Whittaker coefficient. Thus,

we may obtain as an inner integration∫
Uα1 (A)Un+1,K\Un+1,A

∫
[A]

∫
[V1]

θ4n+2(vxα1(t)(u′, g))ψn+1,α(u′)ψ(t)dvdtdu′ (9.4)

=

(∫
[A]

ψ(t)dt

)∫
Uα1 (A)Un+1,K\Un+1,A

∫
[V1]

θ4n+2(v(u′, g))ψn+1,α(u′)dvdu′ = 0. (9.5)

This leaves the non-trivial orbit, so that we may write (9.3) as

∑
γ∈Q1,2n−1\Sp4n(K)

∫
[Sp2n]

∫
[Un+1]

ϕτ (g)ϑ
V1,ψ0

1
4n+2 (γ(u, g))ψn+1,α(u)dudg, (9.6)

where ϑ4n+2 is defined as in the proof of Theorem 7.2.1. We now must consider the

double cosets

Q1,2n−1\ Sp4n(K)/Q1,2n−1 = {1, w2, w0,1}.

Again we claim that the only orbit which contribute to (9.6) is the orbit associated to

w2. The proof of vanishing of the contribution associated to the relative long element

w0,1 is identical to the same in the proof of Theorem 7.2.1. To see that the trivial

orbit also does not contribute, we utilize Lemma A.2.2 to replace ϑ
V1,ψ0

1
4n+2 with ϑ

V2,ψ0
2

4n+2 .

Now we again find a situation where the root group Uα2 is integrated over twice,

once against a nontrivial character and once without. Hence, this contribution van-
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ishes as with (9.4). We are reduced to the contribution of the coset represented by

w2, and obtain

∑
γ∈Q1,2n−2\ Sp4n−2(K)

∑
ε2∈F

∫
[Sp2n]

∫
[Un+1]

ϕτ (g)ϑ
V1,ψ0

1
4n+2 (w2xα2(ε2)γ(u, g))ψn+1,α(u)dudg,

(9.7)

analogous to the reduction to (7.9) in the proof of Theorem 7.2.1.

We continue in this way until we obtain∫
Q1,n−1\ Sp2n(A)

∫
[Un+1]

ϕτ (g)
∑

ε2,··· ,εn+1

ϑ
V1,ψ0

1
4n+2 (w̃2r(ε2, . . . , εn+1)(u, g))ψn+1,α(u)dudg.

(9.8)

Since the integration over Un+1 contains the unipotent radicals Rl, we are able now to

carry out the same reduction steps. The only difference is the presence of a character

on the integration over Uα1 , so that when conjugating the root group associated to

the root α1 + · · ·+ αn+1, we obtain an inner integration of∫
[A]

ψ((1− ε2ξ−1)t)dt,

which vanishes unless ξ = ε2. Therefore, we are reduced to the expression∫
Q1,n−1\Sp2n(A)

∫
[U1
n+1]

ϕτ (g)
∑
ξ∈K×

θ
V1,ψ0

1
4n+2 (h1(ξ)w̃2r(ξ, 0, . . . , 0)(u1, g))ψn+1,α(u1)du1dg.

Here, the subgroup U1
n+1 indicates that the integration is over only those elements of

U(n+ 1) with zeroes in the first row.

Collapsing the summation with the integration we have∫
Q0

1,n−1\ Sp2n(A)

∫
[U1
n+1]

ϕτ (g)θ
V1,ψ0

1
4n+2 (w̃2r(1, 0, . . . , 0)(u1, g))ψn+1,α(u1)du1dg.

Lemma A.2.2 allows us to now replace θ
V1,ψ0

1
4n+2 with θ

V2,ψ0
2

4n+2 , and since Z(H3) is

contained in the image of U1
n+1, we may further expand along [H3/Z(H3)]. Continuing
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in this way, we eventually obtain∫
Un,K\ Sp2n(A)

∫
[Unn+1]

ϕτ (g)θV2n−1,ψ0
2n−1(w̃r(un, g))ψn+1,α(un)dundg.

We need to explain the notation. Here Un
n+1 = Uµn+1 is the one dimensional subgroup

corresponding to the long simple root of Sp2n+2 ; we have the Weyl group element

w̃ = w̃2n · · · w̃2, where w̃2i = w2i · · ·wn+i;

and finally, we have the unipotent element r = diag(1, u, u∗, 1), where

u =

 In In

In

 .

Replacing θV2n−1,ψ0
2n−1 with θV2n,ψ0

2n by Lemma A.2.2, we come now to the final step.

Note that the root group xµn+1(t) commutes with r, and furthermore,

w̃xµn+1(A)w̃−1 = xα2n+1(A)

so that we find the above integral becomes∫
Un,K\ Sp2n(A)

ϕτ (g)θ
U2n+1,ψ0

2n+1,α

4n+2 (w̃r(1, g))dg.

At this point, we are essentially done, as we may decompose the outer integration

[Un,K\ Sp2n(A)] = [Un,A\ Sp2n(A)][Un,K\Un,A],

so that we have∫
[Un,A\Sp2n(A)]

∫
[Un,K\Un,A]

ϕτ (ng)θ
U2n+1,ψ0

2n+1,α

4n+2 (w̃r(1, ng)) dndg.

Conjugating n past w̃r, and changing variables, we obtain∫
[Un,A\ Sp2n(A)]

(∫
[Un]

ϕτ (ng)ψn,α(n)dn

)
θ
U2n+1,ψ0

2n+1,α

4n+2 (w̃r(1, g)) dg

=

∫
Un,A\Sp2n(A)

Wα(ϕτ )(g)θ
U2n+1,ψ0

2n+1,α

4n+2 (g)dg,

as was to be shown.
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We remark here that the adelic nature of this period motivates analysis of the

corresponding local functional. We intend to return to this question at some point in

the future. In any case, the utter failure of local multiplicity one of Whittaker models

for covering groups means that we cannot conclude that this Whittaker period is

Eulerian.

Combining this proposition with Proposition 5.2.5, we end by concluding the

following.

Corollary 9.0.3. Fix α ∈ K×/(K×)2. If Θm+1(π) is generic with respect to the

α-coefficient, then so is π.



Chapter 10

Future Directions

In this final chapter, we consider possible directions for future work related to this

thesis. Three main directions of inquiry present themselves: further investigating

the index of first occurrence in the theta lift, the local lifting beyond the unramified

setting, and generalizing the construction of CAP representations to higher degree

covers of the symplectic group.

By Theorem 1.2.1, for any cuspidal representation π there is a first index m(π)

where Θ(π) := Θm(π)(π) is a non-zero cuspidal representation. It is important to

understand the possible values of m(π). While Theorem 7.1.1 provides an upper

bound for m(π) in terms of the rank of the initial symplectic group, it is important

to provide a more precise characterization of m(π) in terms of π.

For example, we consider in Chapter 9 the case when π is generic, where it is ex-

pected that m(π) is either r or r+1. Along with heuristics coming from the dimension

equation, this conjecture arises from an analogy with the theta correspondence on the

two-fold metaplectic cover of the symplectic group, in which the first occurrence is

related to both the nilpotent orbit of the representation π but also with arithmetic

invariants such as the global root number and the vanishing or non-vanishing of the

103
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central L-value L(1
2
, π), where L(s, π) is the automorphic L function associated to the

standard representation of the L-group of Sp
(4)

2r (A). While this L-function has been

defined (see [GG14] for a thorough discussion of this definition), essentially nothing

is currently known about its analytic properties.

Towards our conjecture, we prove a formula relating the Whittaker coefficients of

the Θr+1(π) to those of π. The final integral is adelic: both the domain of integration

and the integrand may be written as a product over local components. In the reductive

setting (that is, when the degree of the cover is n = 1), one typically applies global and

local uniqueness of Whittaker models to rewrite this as a product over local integrals

followed by an analysis of the unramified local case. Unfortunately, uniqueness of

Whittaker models fails miserably for the four-fold cover, so such a direct approach is

not sufficient to analyze the non-vanishing of (9.2). Nevertheless, we may pose the

natural question

Question 10.0.4. Considering the local unramified version of (9.2) at a finite place

ν, can one recover the local L-factor associated to πν? Further, can one recover the

conjectural (partial) L-function associated to π by [GG14]?

Additional information on the index of first occurrence will require more under-

standing of the local theta lift. While we have undertaken this study for principal

series representations in Chapter 6, it is important to study the lift on discrete series

representations of covers of p-adic groups. Natural questions include the following

Question 10.0.5. Suppose that F is a p-adic local field and consider Sp2r(F ). Sup-

pose π is a discrete series representation of Sp2r(F ).

1. Does the local theta lift satisfy a towering property similar to Theorem 7.2.1?
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2. Assume such a towering property exists, and let Θ(π) be the first non-zero lift.

Is Θ(π) a discrete series representation? If π is supercuspidal, is Θ(π)?

While the general theory of discrete series representations is not as developed as

for reductive groups, there are notable exceptions (see [HW09] and [Li17] for examples

of depth zero and epipelagic supercuspidal representations, respectively).

Question 10.0.6. How does the local theta lift interact with depth on supercuspidal

representations of Sp2r(F )?

As discussed in the introduction, it is interesting to consider how one might gen-

eralize this construction to higher degree covers of symplectic groups. In general, we

expect there exist generalizations of this lifting to the 4n-fold cover of Sp2r
1. When

n > 1, this will not be a Θ-type lifting, and one ought to replace Θ by a certain Fourier

coefficient. As discussed after Proposition 5.2.3, the most challenging step is to prove

the genericity of certain residual representations. The representations which arise

may be related to theta representations on components of Levi subgroups. In par-

ticular, we would need to prove the following conjecture (or perhaps a more nuanced

version thereof):

Conjecture 10.0.7. Let Θ
(2r+2)
2r be a theta representation of Sp

(2r+2)

2r (A) . Then

Θ
(2r+2)
2r is generic.

Note that the corresponding local statement is known [Gao16]. Moreover this

conjecture is consistent with the general philosophy that the GK dimension of theta

representations increases with the degree of the cover and the conjecture of Friedberg

and Ginzburg in the odd degree covers, which we recall now. In [FG17], Friedberg

1Perhaps also form more general covers.
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and Ginzburg state a conjecture for the nilpotent orbits associated to Θ(Sp2r, n) for

n odd. Write 2r = a(r, n)n + b(r, n) where a(r, n) and b(r, n) are both nonnegative

numbers such that 0 ≤ b(r, n) ≤ n − 1. We recall that a partition λ of 2r is a

symplectic partition if any odd number in the partition occurs with even multiplicity.

Given a partition λ of 2r, define the Sp-collapse of λ to be the greatest symplectic

partition which is smaller than λ.

Conjecture 10.0.8. Let n be an odd number. If n < 2r, then the set O(Θ
(n)
2r ) consists

of the partition which is the Sp-collapse of the partition (na(r, n)b(r, n)). If n > 2r,

then the representation Θ
(n)
2r is generic.

Establishing these conjectures is a necessary first step toward generalizing the

theta lift to higher degree covers of symplectic groups. The methods developed in

Chapter 5, in particular the study of local Fourier-Jacobi models, will play a similar

roll in the verification of the vanishing component of these conjectures for small n.

For genericity, we hope to use the methods of Banks, Bump, and Lieman [BBL03] as

recently generalized by Gao [Gao17] to study the poles of Whittaker coefficients of

certain metaplectic Eisenstein series having Θ
(n)
2r as a certain residue.



Appendix A

Appendices to Part 1

A.1 Local filtration

In this appendix, we sketch the proof of Proposition 6.1.3.

Lemma A.1.1. Suppose π is a smooth representation of Sp2r(F ) or a finite central

extension thereof. If Uα0 denotes the root subgroup for the highest root α0, then there

is a short exact sequence

0 −→ ind
Q1,r−1

Q
′
2,r−2

(
JU1,r−1,ψ1(π)

)
−→ JUα0

(π) −→ JU1,r−1(π) −→ 0. (A.1)

Here Q′2,r−2 indicates the subgroup of Q2,r−2 containing only

GL∆
1 × Sp2(r−2) ⊂ GL2

1× Sp2(r−2) .

Proof. This follows in a similar fashion to [BZ76, Prop. 5.12 (d)] in which the case of

GLn(F ) is handled. The only difference is the need in the symplectic case to study

the Jacquet module JUα0
(π) due to the fact that the unipotent radical of Q1,r−1 is a

Heisenberg group with center Uα0 rather than abelian.

After quotienting out by the center of the unipotent radical, the analysis is similar

to the general linear case. We omit the details.
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We now apply the Jacquet functor JU1,n−1(·) to the short exact sequence (A.1) in

the case that π = Θ2(m+n).
1 Using the exactnesses of the Jacquet functor, we have

the short exact sequence

0 −→ V (Θ, ψ1) −→ JU1,n−1(Θ2(m+n)) −→ JU1,n+m−1(Θ2(m+n)) −→ 0 (A.2)

where

V (Θ, ψ1) = JU1,n−1

(
ind

Q1,n+m−1

Q
′
2,n+m−2

(
JU1,n+m−1,ψ1(Θ2(m+n))

))
.

This completes the proof of Proposition 6.1.3. This lemma also shows us why at-

tempting to study the analogous restriction question in the case of the metaplectic

group Mp2r with the classical theta representation ω2r,ψ will not work: the twisted

Jacquet modules

JU1,r−1,ψ1(ω2r,ψ)

which arise in the short exact sequence vanish due to the minimality of ω2r,ψ. This

implies that the analogous local restriction question forces unique parameters for the

characters χ and µ. Of course, this is due to the isomorphism

ω2r,ψ

∣∣∣∣
Mp2k ×Mp2r−2k

∼= ω2k,ψ ⊗ ω2r−2k,ψ.

A.2 Technical Lemmas

In this section, we gather a few technical lemmas which are used in Section 7.2.

Note that while everything we state here is global, the arguments in Section 5.1.1

allow us to conclude the analogous local results at almost all places. Let Θ2r be the

theta representation on Sp2r(A).

1 Note that, under the our chosen embedding, U1,n−1 contains the root group for the highest root
of Sp2(n+m).
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Lemma A.2.1. Let θ ∈ Θ2r and let 2 ≤ k ≤ r. Then the integrals∫
[Vk,r−k]

θ(vg)ψk(v) dv

vanish for all g ∈ Sp2r(A). Here, recall that

ψk(v) = ψ(v1,2 + v2,3 + · · ·+ vk,k+1).

Proof. Note that the case of k = r is clear as the above integral corresponds to

a Whittaker coefficient of Θ2r (corresponding to the nilpotent orbit (2r)), which

vanishes by Theorem 5.1.1.

We shall induct in m = r − k, the above giving the base case. Suppose now that

the lemma is true for m, and consider m+ 1 = r − k.

Expanding along the root subgroup corresponding to the long root µk+1, we see

that the nontrivial Fourier coefficients correspond to the nilpotent orbit ((2k)12(r−k)),

which vanishes by Theorem 5.1.1. Thus, we have that∫
[Vk,r−k]

θ(vg)ψk(v) dv =

∫
[Uµk+1

Vk,r−k]

θ(vg)ψk(v) dv.

We have integrated over the center of the Heisenberg group Hk+1, which enables us

to expand the above integral along [Hk+1/Z(Hk+1)] ∼= (F\A)2(r−k+1). The subgroup

Sp2(r−k)(F ) acts by conjugation on the dual of this quotient with two orbits. A

representative of the nontrivial orbit is of the form∫
[Hk+1/Z(Hk+1)]

∫
[Uµk+1

Vk,r−k]

θ(vg)ψk(v)ψ(vk+1,k+2) dv =

∫
[Vk+1,r−k−1]

θ(v′g)ψk+1(v′) dv′,

which vanishes by induction. Therefore, setting ψ1
k+1 : Vk+1 → C× to be the trivial

extension of ψk to Vk+1,r−k−1, we have that∫
[Vk]

θ(vg)ψk(v) dv =

∫
[Vk+1,r−k−1]

θ(v′g)ψ1
k+1(v′) dv′.
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This last integral may be decomposed with inner integration the constant term along

U(k,r−k). By Theorem 3.2.2, this constant term is a theta function on a smaller

symplectic group times an integral of the form

∫
[UGLk+1

]

θGLk+1
(uh)ψgen(u)du,

where UGLk+1
is the unipotent radical of the Borel subgroup of GLk+1, θGLk+1

∈

Θ
(2)
GLk+1

, and

ψgen(u) = ψ(u1,2 + · · ·+ uk,k+1).

We see that this integral is a Whittaker coefficient of θGLk+1
, which vanishes as k ≥ 2

(see [KP84]). Thus, ∫
[Vk,r−k]

θ(vg)ψk(v) dv = 0.

For the next lemma, we simplify the notation by setting V2k−1 = V2k−1,r−2k+1.

Lemma A.2.2. Let θ ∈ Θ2r and let 1 ≤ k ≤ r. The function

θV2k−1,ψ
0
2k−1(g) =

∫
[V2k−1]

θ(vg)ψ0
2k−1(v) dv

is invariant under H2k.

Proof. We expand the function fk(g) = θV2k−1,ψ
0
2k−1(g) along the long root group Uµ2k

:

fk(g) =
∑
ξ∈F

∫
[A]

f1(xµ2k
(t)g)ψ(ξt) dt.

For ξ 6= 0, we see that this integral may be decomposed into the constant term

with respect to U(2k−2,r−2k+2) followed by a Fourier coefficient of type (412(r−2k)−2) on

Θ2(r−2k+2), which vanishes by Theorem 5.1.1. Thus, we have that

fk(g) =

∫
[Uµ2k

V2k−1]

θ(vg)ψ0
2k−1(v) dv.
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We now expand along [H2k/Z(H2k)] ∼= (F\A)2(r−2k). The subgroup Sp2(r−2k)(F ) acts

by conjugation on the dual of this quotient with two orbits. A representative of the

nontrivial orbit is of the form∫
[V2k]

θ(vg)ψ0
2k−1(v)ψ(v2k,2k+1) dv,

which may also be decomposed as a constant term along U(2k−2,r−2k+2). Applying

Theorem 3.2.2, we obtain a constant times an integral of the form∫
[V2,(r−2k)−2]

θ2(r−2k)(v
′g′)ψ2(v′) dv′,

where θ2(r−2k) ∈ Θ2(r−2k). This vanishes by the previous lemma. Thus, we are left

with the constant term and we obtain

fk(g) =

∫
[H2k]

f(hg)dh.
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Astérisque, (171-172):13–71, 1989. Orbites unipotentes et représentations,
II.

[Art13] James Arthur. The endoscopic classification of representations, volume 61
of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic
groups.

[BBF11] Ben Brubaker, Daniel Bump, and Solomon Friedberg. Weyl group multiple
Dirichlet series, Eisenstein series and crystal bases. Ann. of Math. (2),
173(2):1081–1120, 2011.

[BBL03] William Banks, Daniel Bump, and Daniel Lieman. Whittaker-Fourier coef-
ficients of metaplectic Eisenstein series. Compositio Math., 135(2):153–178,
2003.

[BD01] Jean-Luc Brylinski and Pierre Deligne. Central extensions of reductive
groups by K2. Publ. Math. Inst. Hautes Études Sci., (94):5–85, 2001.

[BFG03] Daniel Bump, Solomon Friedberg, and David Ginzburg. Small represen-
tations for odd orthogonal groups. Int. Math. Res. Not., (25):1363–1393,
2003.

[BFG06] Daniel Bump, Solomon Friedberg, and David Ginzburg. Lifting automor-
phic representations on the double covers of orthogonal groups. Duke Math.
J., 131(2):363–396, 2006.

[BG92] Daniel Bump and David Ginzburg. Symmetric square L-functions on
GL(r). Ann. of Math. (2), 136(1):137–205, 1992.

[BLS99] William D. Banks, Jason Levy, and Mark R. Sepanski. Block-compatible
metaplectic cocycles. J. Reine Angew. Math., 507:131–163, 1999.

112



Bibliography 113

[Bus01] Colin J. Bushnell. Representations of reductive p-adic groups: localization
of Hecke algebras and applications. J. London Math. Soc. (2), 63(2):364–
386, 2001.

[BZ76] I.N. Bernstein and A.V. Zelevinsky. Representations of the group GL(n, F ),
where F is a local non-Archimedean field. Uspehi Mat. Nauk, 31(3(189)):5–
70, 1976.

[BZ77] I. N. Bernstein and A. V. Zelevinsky. Induced representations of reductive
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