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Abstract 

Measuring Multidimensional Science Learning:  
 

Item Design, Scoring, and Psychometric Considerations 
 

Courtney Castle 
 

Dr. Henry Braun, Chair 
 

The Next Generation Science Standards propose a multidimensional model of 

science learning, comprised of Core Disciplinary Ideas, Science and Engineering 

Practices, and Crosscutting Concepts (NGSS Lead States, 2013). Accordingly, there is a 

need for student assessment aligned with the new standards. Creating assessments that 

validly and reliably measure multidimensional science ability is a challenge for the 

measurement community (Pellegrino, et al., 2014). Multidimensional assessment tasks 

may need to go beyond typical item designs of standalone multiple-choice and short-

answer items. Furthermore, scoring and modeling of student performance should account 

for the multidimensionality of the construct.  

This research contributes to knowledge about best practices for multidimensional 

science assessment by exploring three areas of interest: 1) item design, 2) scoring rubrics, 

and 3) measurement models. This study investigated multidimensional scaffolding and 

response format by comparing alternative item designs on an elementary assessment of 

matter. Item variations had a different number of item prompts and/or response formats. 

Observations about student cognition and performance were collected during cognitive 

interviews and a pilot test.  Items were scored using a holistic rubric and a 

multidimensional rubric, and interrater agreement was examined. Assessment data was 



scaled with multidimensional scores and holistic scores, using unidimensional and 

multidimensional Rasch models, and model-data fit was compared. 

 Results showed that scaffolding is associated with more thorough responses, 

especially among low ability students.  Students tended to utilize different cognitive 

processes to respond to selected-response items and constructed-response items, and were 

more likely to respond to selected-response arguments.  

 Interrater agreement was highest when the structure of the item aligned with the 

structure of the scoring rubric. Holistic scores provided similar reliability and precision as 

multidimensional scores, but item and person fit was poorer. Multidimensional subscales 

had lower reliability, less precise student estimates than the unidimensional model, and 

interdimensional correlations were high. However, the multidimensional rubric and 

model provide nuanced information about student performance and better fit to the 

response data.  

Recommendations about optimal combinations of scaffolding, rubric, and 

measurement models are made for teachers, policymakers, and researchers.  
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Chapter 1: Introduction 
 
Background 
 

The dichotomy of science content and practice. Science is a multidimensional 

discipline, variously characterized over the past century as having multiple subdomains 

of essential knowledge and skills. Comprehensive science education includes coverage of 

science content – the facts that we traditionally associate with scientific knowledge, like 

the number of bones in the body, the atomic weight of carbon, or Newton’s laws of 

motion – and science practice – the skills and processes utilized in the pursuit and 

application of scientific knowledge, like experimentation, data analysis, and modeling.1 

However, the relationship between content and practice in science education in the 

United States has changed markedly over the years, from a strict content-practice 

dichotomy, to the use of inquiry2 in support of conceptual understanding, to the 

integration of content and practice to explain scientific phenomena (Barrow, 2006; 

Committee on a Conceptual Framework for New K-12 Science Education Standards, 

2011).  

Since the early 1990’s, several major science education documents have included 

sections outlining the importance of scientific practice as a critical piece of science 

education in conjunction with scientific knowledge (e.g., Rutherford & Ahlgren, 1989; 

                                                           
1 The NRC Framework (Committee on a Conceptual Framework for New K-12 Science Education 
Standards, 2011) introduced an additional subdomain called “crosscutting concepts” – the core concepts 
that are relevant across multiple scientific disciplines. Prior to this, discussions of multidimensional science 
mainly referred to content and practice, so the discussion here focuses on these two dimensions.  
2 Note that the terms “scientific inquiry” and “science practice” will be used somewhat interchangeably 
throughout this dissertation. These terms are slightly different; “inquiry” is used more often to emphasize 
the process of understanding a scientific phenomenon through observation and inference (National Science 
Teachers Association, 2004), whereas “practice” emphasizes the particular knowledge and skills that are 
utilized by scientists as they engage in the inquiry process (NGSS Lead States, 2013). However, there is 
considerable overlap between the two terms, and both terms describe the more general category of “doing” 
science, as compared to “knowing” scientific concepts. 
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AAAS, 1993; AAAS, 2001; National Research Council, 1996; National Research 

Council, 2000). However, the shift has been slow to trickle down to science education at 

the state, district, school, and classroom level. When inquiry is emphasized, it is often 

implicitly presented as a separate aspect of science with little connection to science 

content. Many state science frameworks include learning goals related to scientific 

practice or inquiry, but they are often separated from the content standards (e.g., 

Massachusetts Department of Education, 20063; Florida Department of Education, 2015). 

This is similar to the approach taken in other academic disciplines: for example, the 

Common Core State Standards for Mathematics also include a separate section on 

mathematical practice, with only a few paragraphs to discuss the integration of practice 

with content (National Governors Association Center for Best Practices & Council of 

Chief State School Officers, 2010). Realization of an integrated relationship between 

science content and science practices thus remains a challenge for science educators.  

Compounding the problem, science assessments at the state and national level 

largely emphasize and report science content knowledge only. Traditional science 

assessments have been designed to facilitate measurement of content; the items are 

designed to facilitate a focus on overall science proficiency, which is defined as science 

content knowledge. This focus is reflected in subsequent reports of student performance, 

which largely describe student proficiency with respect to science content. The result is a 

large amount of inertia as assessment developers must refresh their arsenal of science 

assessment strategies to accommodate the growing emphasis on knowledge in use 

(Pellegrino, Wilson, Koenig, & Beatty, 2014). Assessment is largely considered to be a 

                                                           
3 Note that Massachusetts recently updated their science framework to reflect a stronger emphasis on the 
integration of science practices in science instruction (Massachusetts Department of Education, 2016). 
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motivational agent for instruction (Linn & Herman, 1997), and thus the failure of science 

assessment to account for knowledge and skills beyond just content exacerbates the 

division between science content knowledge and other dimensions of science learning.  

The separation of content from practice has some undesirable side effects. 

Usually, this separation leads to an instructional emphasis on science content only, at the 

expense of science practices. Accordingly, low levels of emphasis on science inquiry 

have been reported among science textbooks (Chiappetta & Fillman, 2007; Eltinge & 

Roberts, 1993; Lumpe & Beck, 1996) and in science classrooms (Weiss, Pasley, Smith, 

Banilower, & Heck, 2003). When science practices are taught, they are often 

disconnected from content learning. Textbooks and science curricula frequently present 

science practices as a separate strand of learning goals, and there is little discussion of 

practices in the context of content (Lumpe & Beck, 1996). Even at the university level, 

science coursework is frequently separated into lecture courses and laboratory courses 

with disparate learning objectives (Kirschner & Meester, 1988). This results in a 

fragmented curricular structure in which students both learn about science content and 

use science practices, but rarely use science practices concurrently with learning about 

content.  

The separation of content from practice misrepresents the discipline of science - 

in the real world, scientists and engineers simultaneously draw on science and 

engineering practices in the context of their conceptual expertise. Science as a discipline 

is not a static body of concepts and procedures, but a dynamic process in pursuit of 

knowledge about the world we live in (Carnegie Corporation of New York, 2009). 

Knowledge and practice contribute to each other - knowledge is uncovered through 
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practice, and knowledge contributes to practice. By keeping knowledge and practice 

separate, students fail to understand science as a process of active inquiry, in which 

questions are asked, investigations are designed, evidence is analyzed, arguments are 

formed, and knowledge is created (Duschl, Schweingruber, & Shouse, 2007). 

The Next Generation Science Standards. In response to growing concerns 

about a) the overemphasis on content knowledge, and b) the isolation of content and 

practice in science instruction, science standards in the 1990’s took a turn towards 

integrating practice into science instruction. (Rutherford & Ahlgren, 1989; AAAS, 1993; 

AAAS, 2001; National Research Council, 1996; National Research Council, 2000). 

These efforts culminated with the NRC Framework for K-12 Science Education 

(Committee on a Conceptual Framework for New K-12 Science Education Standards, 

2011) and the subsequent 2013 release of the Next Generation Science Standards (NGSS) 

(NGSS Lead States, 2013). The NGSS were a collaborative effort, with direct input from 

40 writers in 26 states and indirect input from many more researchers, scientists, 

educators, policymakers, and citizens.  

In the Framework and the subsequent NGSS, explanation is set forth as the goal 

of the scientific enterprise, and investigation as the means to achieve that goal. As young 

children learn about the world, they are naturally curious. They crave explanations, and 

are able to reason about their observations and own ideas. The Framework and the NGSS 

leverage’s children’s early reasoning abilities to build on their early intuition about the 

world, starting with their initial misconceptions and simplifications and guiding them 

towards more sophisticated explanations of natural phenomena. The process of 

explanation-building provides the canvas for the development of science inquiry skills, 
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and is in turn enhanced and supported by inquiry as children progress through the grades 

Learning is a process through which questions are asked and answers are sought by the 

students; this enables students to experience the crux of “doing” science (Committee on a 

Conceptual Framework for New K-12 Science Education Standards, 2011).  

In line with this vision, the NGSS outline the central tenets of science as a set of 3 

interrelated dimensions: core ideas, practices, and crosscutting concepts. Disciplinary 

Core Ideas (DCIs) are the science concepts considered most essential for student 

learning. The Science and Engineering Practices (SEPs) are a list of 8 skills employed by 

scientists and engineers as they conduct research and design solutions to problems. 

Finally, the Crosscutting Concepts are 7 common themes across science - the big ideas 

that are applicable to multiple science topics and subtopics. All three dimensions are 

presented as a set of learning progressions, or descriptions of students’ developing 

understanding over time, and the knowledge/skills present in one dimension support 

those in the other two dimensions.  

A major emphasis of the standards is the integration of all 3 dimensions in 

instruction and assessment, thus facilitating “knowledge in use.” According to the 

standards, “Scientific and Engineering Practices and Crosscutting Concepts are designed 

to be taught in context - not in a vacuum” (NGSS Executive Summary, Page 1). The 

NGSS aim to rectify the widespread disconnect of content and practice by explicitly 

encouraging their integration in a way that a) mimics how science is practiced in the real 

world, and b) draws connections between related concepts across science domains. 

Science learning is thereby an active process of drawing on known concepts and 

reasoning to generate scientific explanations in new contexts. The primary vehicle of the 
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NGSS is a set of performance expectations for student learning and assessment. The 

performance expectations describe the way that students should be able to apply 

knowledge and reasoning in new contexts by linking together core ideas, practices, and 

crosscutting concepts. The simultaneous incorporation of all 3 science learning 

dimensions in performance expectations is a clear signal that the pursuit of scientific 

explanations requires knowledge and practice to be utilized in conjunction.  

Structure of the NGSS. The NGSS and the preceding NRC framework, on which 

the Standards are based, are organized into three dimensions: Disciplinary Core Ideas, 

Science and Engineering Practices, and Crosscutting Concepts (NGSS Lead States, 

2013). These three dimensions capture a wide range of established scientific principles, 

ways of investigating and knowing, and transferable knowledge across scientific 

disciplines.  

 Disciplinary Core Ideas are the topics traditionally covered by science education, 

organized as a set of several learning progressions, which are sequences of progressively 

more sophisticated understandings of science concepts across grade bands. The learning 

progressions are organized into 3 topic areas: Earth and Space Science, Life Science, and 

Physical Science, and each of these topic areas contains several learning progressions 

related to specific science concepts. The number of scientific concepts represented in the 

learning progressions is purportedly less than in preceding documents, such that the 

resulting standards prioritize clarity and depth of understanding over breadth of content 

(NGSS Lead States, 2013).  

 The Science and Engineering Practices are essential skills related to science 

inquiry and engineering design. The practices are included in the NGSS because:  
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Engaging in the practices of science helps students understand how scientific 

knowledge develops; such direct involvement gives them an appreciation of the 

wide range of approaches that are used to investigate, model, and explain the 

world. Engaging in the practices of engineering likewise helps students 

understand the word of engineers, as well as the links between engineering and 

science…The actual doing of science or engineering can also pique students’ 

curiosity, capture their interest, and motivate their continued study; the insights 

thus gained help them recognize that the world of scientists and engineers is a 

creative endeavor – one that has deeply affected the world they live in. (NRC, 

2012, p. 42) 

 

Eight essential science and engineering practices are listed: 1) asking questions (for 

science) and defining problems (for engineering), 2) developing and using models, 3) 

planning and carrying out investigations, 4) analyzing and interpreting data, 5) using 

mathematics and computational thinking, 6) constructing explanations (for science) and 

designing solutions (for engineering), 7) engaging in argument from evidence, and 8) 

obtaining, evaluating, and communicating information (NGSS Lead States, 2013). Each 

of the practices is also presented as a progression, and students are expected to 

demonstrate mastery of successively more sophisticated scientific inquiry and 

engineering design skills at each grade band.  

Finally, the Crosscutting Concepts present central scientific concepts that 

reappear frequently across scientific domains. There are 7 such critical concepts, which 
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“unify the study of science and engineering through their common application across 

fields” (NGSS, 2013, Appendix G, p. 1). These are 1) patterns, 2) cause and effect: 

mechanism and explanation, 3) scale, proportion, and quantity, 4) systems and system 

models, 5) energy and matter: flows, cycles, and conservation, 6) structure and function, 

and 7) stability and change. Again, the seven Crosscutting Concepts are laid out as 

progressions, such that student understanding of these thematic concepts is expected to 

increase in sophistication across time.  

The three dimensions are then integrated to form multidimensional standards.  

Instead of content standards, which simply list the concepts and practices that each 

student should learn over the course of a given time period, the NGSS sets forth 

performance standards (the NGSS calls them performance expectations), which list in 

detail the types of behaviors that students must exhibit to demonstrate mastery of the 

standard.4 Each performance expectation is related to a specific DCI, SEP, and CC, such 

that a certain level of proficiency on all three dimensions is required to demonstrate 

mastery of the performance expectation. See Figure 1.1 for an example performance 

expectation. This requirement, that at least one DCI, SEP, and CC be integrated into each 

performance expectation, is the most novel feature of the NGSS. By requiring the explicit 

integration of content, practice, and crosscutting concepts, the NGSS has emphatically 

prodded science education down a new path – a path in which knowledge, practice, and 

transferable concepts are intertwined.  

                                                           
4 These types of standards are useful benchmarks for assessment, because they explicitly 
describe the evidence desired from a student’s response to an assessment task. 
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Figure 1.1. Example NGSS performance expectation. Retrieved from 
www.nextgenscience.org. 

 

Statement of the problem 

Accompanying the push for multidimensional science learning, as presented in 

the NRC Framework and NGSS, is a need for student assessment aligned with the new 

standards. Assessments are widely regarded as essential elements of educational reform, 

by: 

 

…[c]ommunicating the goals that school systems, schools, teachers, and students 

are expected to achieve; [p]roviding targets for teaching and learning; and 

[s]haping the performance of educators and students…assessments can motivate 

students to learn better, teachers to teach better, and schools to be more 

educationally effective. (Linn & Herman, 1997, p. iii) 

 

Thus, the creation of assessments that reflect the new Next Generation Science Standards 

will be a critical component of the effort to integrate core ideas, practices, and 

crosscutting concepts in science classrooms.  
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The task of creating student assessments that validly and reliably measure student 

science ability along a progression of core ideas, practices, and crosscutting concepts is 

an unprecedented challenge for the measurement community. According to Pellegrino 

(2013), NGSS-aligned assessment should:  

 

... help determine where a student can be placed along a sequence of progressively 

more “scientific” understandings of a given core idea that by definition includes 

successively more sophisticated applications of practices and crosscutting 

concepts. This is an unfamiliar idea in the realm of science assessments, which 

have more often been viewed as simply measuring whether students know about 

particular grade level content. (p. 320) 

 

Traditionally, state assessments of science achievement utilize a unidimensional 

assessment framework that emphasizes content over practice. Furthermore, they 

primarily rely on multiple-choice and short-answer items, which offer the benefit of 

efficient and reliable measurement but fail to elicit some of the richer aspects of 

multidimensional science performance. For example, the Massachusetts science 

assessment blueprints neglect to mention scientific practice entirely (Massachusetts 

Department of Elementary and Secondary Education, 2015). Illinois, on the other hand, 

explicitly includes scientific practice but uses only multiple-choice assessment items to 

measure them (Illinois State Board of Education, 2013). Overall, current science 

accountability assessments are ill-suited to adequately capture evidence of the complex 
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cognitive processes elicited by the integration of core ideas with practices and 

crosscutting concepts. 

 To address the challenges facing the science assessment community, the National 

Research Council released a report entitled “Developing Assessments for the Next 

Generation Science Standards.” The report describes in detail the challenges associated 

with assessing multidimensional science learning, and suggests some strategies for 

policymakers and test developers (Pellegrino, et al., 2014). First and foremost, they 

recommend that the assessment of science learning be implemented as a system of 

assessments, rather than just a single testing occasion. A systems approach differs from 

traditional assessment strategies in that it encourages the implementation of assessments 

that guide and support student learning in the classroom, in addition to large scale 

assessments that monitor students’ proficiency with science concepts and skills along a 

learning progression. This would effect a drastic change in the way science learning is 

taught and assessed in the United States. The authors note:  

 

We see two primary challenges to taking advantage of this opportunity. One is to 

design assessment tasks so that they measure the NGSS performance 

expectations. The other is to determine strategies for assembling these tasks into 

assessments that can be administered in ways that produce scores that are valid, 

reliable, and fair and meet the particular technical measurement requirements 

necessary to support an intended monitoring purpose. (p. 138) 
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 The first challenge refers to the design of multidimensional assessment tasks, in 

particular, “to design tasks that elicit the rich cognitive processes that define the hard-to-

measure constructs as they were conceived and drafted by the standards’ authors” (Gorin 

& Mislevy, 2013, p. 10). NGSS-aligned assessment items need to comprise complex, 

authentic tasks that allow students to demonstrate their ability to apply practices and draw 

connections between concepts in the context of grade-level appropriate science concepts.  

In conjunction with (and facilitated by) a systems approach, Pellegrino, et al., 

recommend that new item types be considered. 

 

To adequately cover the three dimensions, assessment tasks will need to contain 

multiple components, such as a set of interrelated questions. It may be useful to 

focus on individual practices, core ideas, or crosscutting concepts in a specific 

component of an assessment task, but, together, the components need to support 

inferences about students’ three-dimensional science learning as described in a 

given performance expectation. (p. 3) 

 

Specifically, they describe performance-based questions (PBQs) as an example of the 

type of item that falls into this category. PBQs are extended prompts, in which students 

are asked to perform a series of related tasks that demonstrate their knowledge and skills 

(e.g., solve problems, create or use a model, design and interpret the results of an 

experiment). PBQs are rich, authentic tasks that truly fit the bill for integrating all three 

dimensions of science learning. However, there are drawbacks to developing assessments 

that rely heavily on performance-based questions, especially when the purpose of 
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assessment is to monitor student achievement across a large domain. PBQ’s demonstrate 

a large degree of task-specific variance, meaning that a particular PBQ has unique 

features that may differentially affect student performance when compared to other 

PBQ’s that assess the same topic. Task-specific variance makes test equating difficult. 

Without test equating, it becomes challenging to make comparisons of student 

performance across time – one of the major purposes of monitoring assessments 

(Pellegrino, et al., 2014).  Relatedly, PBQ’s demonstrate a large examinee-task 

interaction, such that the pattern of performance on individual tasks varies widely from 

person to person (Baxter, Shavelson, Herman, Brown, & Valadez, 1993). This makes it 

unlikely that a student’s ability can be estimated reliably from a small number of tasks. 

Because PBQ’s are complex, extended tasks within a particular content area, they require 

a large amount of testing time. Using several PBQ’s to reliably monitor a broad range of 

topics further extends the amount of time required for individual student testing. Scoring 

must be done by human raters, which is time-consuming and costly. Considering all of 

these constraints, it will be prudent to supplement performance tasks with other, more 

traditional items, as another part of an assessment system.  

 Ideally, these supplemental items could include a series of smaller components, 

among which the NGSS dimensions are divided. The NRC report uses the term 

“multicomponent” to refer to the structure of test items that utilize multiple subtasks to 

sequentially assess core ideas, science and engineering practices, and/or crosscutting 

concepts (Pellegrino, et al., 2014). Even though the separate components of each item 

may refer to different dimensions and utilize different response formats, these individual 

puzzle pieces can be assembled to paint a coherent picture of student understanding 
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across the dimensions. Multicomponent tasks could feasibly include selected-response,5 

short-answer, or extended response components (Pellegrino, et al., 2014). Their 

discussion of multicomponent items in science assessment is largely hypothetical, leaving 

many questions regarding item assembly, specifically, how to cross response format with 

the NGSS dimensions and which content areas and skills can be assessed in combination 

using a multicomponent item structure.  

 The second challenge noted by Pellegrino, et al. refers to the need for 

psychometric approaches for scaling student proficiency that account for a) the use of 

complex multicomponent items, and b) three separate but integrated dimensions of 

science learning. Traditional psychometric models were designed to scale student 

responses on assessment items measuring unidimensional constructs, and thus are 

inadequate for the new generation of science assessments. There are two major priorities 

for deciding upon the most appropriate psychometric model: reporting needs and 

statistical considerations. Score reporting should reflect the goal of assessment 

(Pellegrino, et al., 2014), and in the case of the Next Generation Science Standards this 

means that a single score may not be sufficient to represent the 3-dimensional structure of 

the standards. Dimensionality is a central concern of NGSS assessment and reporting, so 

psychometric methods that account for multidimensionality should be explored.  

This leads to the second psychometric consideration: statistical power. 

Multidimensional item response models have an additional set of considerations over 

                                                           
5 From a design perspective, the use of some selected-response components may be 
desirable, as selected response items generally take less time for a student to respond. 
This allows for an increase in the total number of responses that can be observed from 
each student, which increases test reliability (Gorin & Mislevy, 2013). 
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unidimensional models: a larger number of parameters are estimated, thus requiring a 

larger sample size, more test items, and greater constraints on the distributions of persons 

and items (Gorin & Mislevy, 2013). Additionally, the type of complex, interrelated multi-

part items described in the NRC report will likely require multiple items to be situated in 

the same context - a violation of conditional independence. There are IRT models to 

account for such a violation (testlet models, e.g., Wang & Wilson, 2005), but again, they 

are more complex than traditional IRT models. Ultimately, it will be prudent to determine 

task types and psychometric modeling techniques concurrently, as they mutually 

influence each other (Gorin & Mislevy, 2013).  

The process of developing NGSS-aligned assessments is laden with many 

challenges - design challenges, psychometric challenges, and logistical challenges - each 

of which can be addressed when encountered separately, but concurrently they present a 

daunting assignment for the assessment community. The design of next-generation 

science assessments should not be rushed; rather it should be undertaken systematically 

and deliberately in order to meet the noble goal of guiding and supporting, instead of 

limiting student learning.  

Purpose of the study 

In response to the NRC Board on Testing and Assessment’s call for development 

of science assessments that capture all three dimensions of the Next Generation Science 

Standards, support student learning, and provide valid and reliable information for 

monitoring (Pellegrino, Wilson, Koenig, & Beatty, 2014), this study contributes to the 

research evaluating different strategies for assessing multidimensional science 

proficiency. In order to assess science learning, we need to learn two things: 1) which 
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kinds of items are best-suited for assessing multidimensional science learning, and 2) 

what kind of measurement model is best-suited for describing multidimensional 

performance in science.  

In order to capture student abilities on multiple dimensions of science learning, 

items must be carefully crafted to elicit responses that demonstrate the student’s level of 

proficiency in three subdomains. It is unclear exactly how this should be done. In 

particular, should items use scaffolding to explicitly elicit separate responses for each 

dimension, and is it possible for selected-response items to clearly elicit evidence of 

student ability on multiple dimensions? This dissertation will explore each of these issues 

by comparing several indicators of assessment quality derived from alternative item 

designs that utilize a) varying amounts of multidimensional scaffolding, and b) open- and 

selected- response formats. It will also explore the impact of these design variations on 

students of varying ability levels.  

To categorize and summarize student performance on individual items into a 

numerical estimate (or estimates) that describe overall performance, individual responses 

must be evaluated and scored and an appropriate measurement model must be selected. 

The chosen scoring rubric and measurement model will reflect the relationships among 

the assessment’s Disciplinary Core Idea, Science and Engineering Practice, and 

Crosscutting Concept. This dissertation will also explore the relationships among the 

student abilities on the three NGSS dimensions of science learning by comparing 

different ways of scoring and scaling student responses. In particular, it will compare the 

appropriateness of using a) a unidimensional scoring rubric that evaluates overall item 

performance holistically along with a unidimensional measurement model, b) a 
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multidimensional scoring rubric that differentiates between the three assessment 

dimensions with a unidimensional measurement model, and c) a multidimensional 

scoring rubric with a multidimensional measurement model.  

Finally, best practices dictate that any inferences drawn from student performance 

on any assessment should be supported by evidence that they are justified; this quality is 

called validity. In this case, the assessment is based on a theory about how students 

develop an understanding of science concepts related to matter, measurement, and 

argumentation. Student performance on the assessment is used to make inferences about 

their ability on the underlying multidimensional construct. Therefore, it is important to 

verify that the assessment tasks and the examinees’ earned scores are indicators of the 

intended constructs, and that observations of student performance conform to the 

underlying theory about the progression of student ability (Kane, 2013). To verify that 

the assessment tasks adequately represent the intended construct, task development 

should involve input from experts who are familiar with the construct and relevant 

student behavior. Students’ cognitive processes can be examined through interview to 

verify that they are utilizing the intended constructs during the tasks. Several 

psychometric criteria can be examined to explore the alignment between student 

performance on the assessment tasks and the underlying theory of the construct. The 

distribution of item difficulty estimates may be compared to the predicted difficulty based 

on the theory. Item fit indicates whether a particular assessment task demonstrates an 

abnormal pattern of responses, which may be the result of construct-irrelevant variance. 

Dimensionality analysis provides an empirical check on the strength of the observed 

relationship between dimensions, which can be compared to the theoretical relationship 
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laid out in the NGSS. Depending on the evaluation of validity, there may be a need to 

make changes to the way that the items are designed, the way that performance on 

individual items is scored and aggregated, or even in the way that the construct is 

defined. These changes, if necessary, are undergone in an effort to ensure that inferences 

reflect the underlying construct. This study will also examine several indicators of 

conformity between the assessment inferences and the three underlying constructs 

(Structure of Matter; Scale, Proportion, and Quantity; and Engaging in Argument from 

Evidence). The results of this evaluation will inform whether any changes to the 

assessment items, measurement model, and/or construct definitions are needed.  

Multidimensional scaffolding. For the remainder of the dissertation, the term 

multidimensional scaffolding 6 will be used to refer to the support provided by the item to 

direct students’ focus to each assessment dimension separately. Multidimensional 

scaffolding is one way to think about organizing multicomponent items (as described by 

Pellegrino, et al., 2014) in a way that simultaneously a) supports student performance on 

complex multidimensional tasks, and b) elicits clearer evidence of student ability relative 

to each dimension. The multidimensional scaffolding used in this study will take various 

forms, including an explicit reference to each dimension within the prompt, or the use of 

a separate item prompt for each dimension. These forms will be contrasted to items 

                                                           
6 A discussion of the term “scaffolding” and its appropriateness for use in assessment can be found in 
Chapter 2. 
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without multidimensional scaffolding, which contain a single task prompt that integrates 

the three dimensions without explicit reference to them separately. 

Research questions 

Based on the general need for assessments that account for multiple dimensions of 

learning, the specific need for science assessments aligned with the Next Generation 

Science standards, and the persistent ambiguity about best practices for multidimensional 

assessment, the following research questions emerge. Research questions 1 and 2 inform 

item design by exploring alternative strategies for writing multidimensional items. 

Research question 3 informs the process of gathering and summarizing information from 

student responses through scoring and scaling. Research question 4 explores the 

assessment’s construct validity.  

Research Questions: 

1. To what extent does multidimensional scaffolding affect the quality of 

information7 gained from students’ responses to multidimensional assessment 

items? 

a. Does the impact of scaffolding vary for students of different abilities?  

2. In the assessment of students’ argumentation ability, does the use of a selected-

response item format affect the extent to which the enacted construct reflects the 

intended construct? 

3. To what extent do unidimensional and multidimensional scoring and modelling 

approaches affect the empirical relationships among the assessment items, and 

                                                           
7 Here, “quality of information” is a general term that encompasses several qualitative and quantitative 
indicators that student responses to an assessment item provide interpretable information that may be used 
to make robust inferences about their underlying ability. A complete list and rationale for the criterion used 
to evaluate “quality” for each Research Question may be found in Chapter 3.  
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what does this imply about the relationships between the 3 dimensions of science 

learning? 

4. How well does student performance reflect the hypothesized definitions of the 

underlying constructs and their relationships?  

Research context 

The proposed research will take place in the context of the development of a 4th 

grade science assessment. The assessment is intended to collect summative information 

about student learning from the Inquiry Project: a science curriculum for Grades 3-5 that 

utilizes an inquiry-based approach to teach students about the nature of matter (TERC, 

2011). The concepts of material, weight, and volume are the main focus of the 

curriculum. These concepts are iteratively explored throughout grades 3-5, ultimately 

forming a foundation for an understanding of the particulate model of matter in later 

grades. The curriculum was developed in conjunction with researchers and educators at 

TERC, an educational research organization in Cambridge, MA, and Tufts University. 

The curriculum incorporates core ideas, science practices, and crosscutting concepts from 

the NGSS, thus providing a suitable opportunity to employ multidimensional, NGSS-

aligned items in assessment.   

In line with the Next Generation Science Standards and the Inquiry Project 

curriculum, the assessment will focus on the learning progression PS1.A “Structure of 

Matter” as the primary Disciplinary Core Idea. In the 3rd grade Inquiry Project 

curriculum, students discuss the material composition of objects and are introduced to the 

concepts of weight and volume. In 4th grade, the curriculum specifically focuses on earth 

materials and introduces the concept of density with both solid and liquid materials. 
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Fourth grade students also discuss conservation of matter when an object is physically 

reshaped or broken into pieces. In 5th grade, students encounter the phase changes of 

water and consider whether air is matter. Students also observe conservation of matter 

when one substance is dissolved in another. The curriculum is structured so that it 

supports a beginning understanding of the particulate model of matter by the end of grade 

5 (TERC, 2011). These curricular activities correspond well with the NGSS learning 

targets for PS1.A “Structure of Matter” for grades 3-5: 

 

Because matter exists as particles that are too small to see, matter is always 

conserved even if it seems to disappear. Measurements of a variety of observable 

properties can be used to identify particular materials. (NGSS Appendix E, p. 7) 

 

The Inquiry Project curriculum contains elements of all 8 Science and 

Engineering Practices from the NGSS (TERC, n.d.). However, some of the SEP’s play a 

more prominent role in the Inquiry Project curriculum than others. Therefore, rather than 

assessing all SEP’s, this study will be limited to only one: Engaging in Argument from 

Evidence. Throughout the Inquiry Project curriculum, students conduct investigations 

and use the ensuing data to look at patterns in the weight and volume of objects. Using 

their observations as evidence, students learn about the relationship between material, 

weight, and volume through reasoning (TERC, 2011).  

Again, the Inquiry Project incorporates elements of all seven Crosscutting 

Concepts listed in the NGSS (TERC). This project, however, will assess only one: Scale, 

Proportion, and Quantity. According to the NGSS, in grades 3-5 “Students recognize 
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natural objects and observable phenomena exist from the very small to the immensely 

large. They use standard units to measure and describe physical quantities such as weight, 

time, temperature, and volume.” (NGSS Appendix G, p. 7) This Crosscutting Concept is 

a significant component of the Inquiry Project curriculum; as part of the prescribed 

activities, students learn how to measure the weight and volume of objects, represent 

relative weight and relative volume, explore the relationship between weight and volume, 

gain a rudimentary understanding of density, and use weight as evidence of conservation 

of matter. All of these activities require an understanding of size, weight, and volume, 

their respective measurements, and a sense of relative quantity.  

The goals of the aforementioned Inquiry Project assessment are to a) obtain pre- 

and post- measures of student understanding for use in evaluating the impact of the 

curriculum and professional development, and b) provide items suitable for classroom 

assessment for teacher use at the end of the curricular unit. To accomplish both of these 

goals, items were inspired by the classroom activities contained in the Inquiry Project 

curriculum, and the concepts and practices therein. Items specifically target the 

benchmark levels of skill and understanding associated with the beginning and end of the 

4th grade curricular sequence.  

Assessment development approach 

The project’s assessment development process is grounded in the construct 

modeling approach (Wilson, 2005; Kennedy & Wilson, 2007; Wilson, 2009; Brown & 

Wilson, 2011; Wilson, 2012), a model for assessment development based on four 

building blocks, or “cornerstones” (Brown & Wilson, 2011). These building blocks are 

(1) a clearly-defined construct, (2) items that require a demonstration of the construct, (3) 
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an outcome space, in which classes of responses are given scores according to how well 

they reflect proficiency in performing the task set forth by the item, and (4) a 

measurement model, which allows for summarization and interpretation of the 

information obtained from scored responses in relation to the underlying construct 

(Wilson, 2005). These four building blocks are often encountered sequentially in 

practice; however, the blocks are theoretically linked such that any particular stage in the 

process must be considered in terms of its impact on all remaining building blocks as 

well.  

The process of assessment development involves an assumption that a student’s 

response to an item is an indicator of her understanding of the underlying target 

construct, along with other relevant factors (e.g., general intelligence and literacy) and 

construct-irrelevant factors (e.g., test anxiety and test-taking strategies). The response(s) 

can then be used to make inferences about the degree to which the respondents 

understand the underlying construct. These inferences are affected by an underlying 

theory about how student understanding of the construct develops, and by the subsequent 

scoring and modeling decisions based on this theory (Wilson, 2005). This process is 

iterative, such that the results from several trials of the item(s) with many respondents 

provide empirical information about the nature of the underlying construct, in addition to 

information about the items and the respondents’ understanding. This may lead to 

subsequent revisions of the construct theory, items, outcome space, and measurement 

model, creating a cycle in which an instrument is iteratively modified and refined as each 

of the four building blocks are brought into stronger alignment with one another (Brown 
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& Wilson, 2011; Wilson, 2005). Next, each of the four building blocks is discussed in 

turn. 

Construct. A construct is difficult to define. According to Stenner, Smith, & 

Burdick (1983), constructs are “the means by which science orders observations.” (p. 3). 

Anastasi (1986) called constructs “theoretical concepts of varying degrees of abstraction 

and generalizability which facilitate the understanding of empirical data.” (p. 4-5). Kane 

(2006) defined constructs as “aspects or components of the postulated mechanisms or 

relationships” that account for observed phenomena (p. 42). In more basic terms, Wilson 

(2005) said that a construct is “an idea or a concept that is the theoretical object of our 

interest in the respondent.” (p. 6). The common thread among all of these definitions is 

that constructs are intangible entities, but that our understanding of them must be 

facilitated by tangible observations. As assessment developers, our goal is to generate the 

observations that facilitate an evaluation of an individual’s embodiment of the underlying 

construct. By examining the degree to which these observations conform to expected 

patterns, we can also contribute to general knowledge about the underlying construct.  

To utilize a particular construct as the object of inference in assessment, it must 

be operationalized by putting forward some hypothesis about the relationship between the 

construct and one or more observable attributes (Kane, 2006). This hypothesis is inherent 

in the act of measurement: “The simple fact that numbers are assigned to observations in 

a systematic manner implies some hypothesis about what is being measured.” (Stenner, 

Smith, & Burdick, 1983, pg. 3). However, an explicit statement of the construct theory 

helps to make clearer the ensuing inferences about respondents. Although this may seem 

intuitively obvious, the definition of the construct (i.e., specification of the construct 
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theory) is often taken for granted in the process of instrument development, with the 

brunt of development effort focused instead on creating, scoring, and scaling the items 

(Brown & Wilson, 2011).  

The simplest operationalization of a construct is a unidimensional continuum with 

two extremes, such that the construct varies “from high to low, small to large, positive to 

negative, or strong to weak.” (Wilson, 2005, p. 6).  The definition of such a construct is 

captured in a progress variable, also referred to as a construct map (Wilson, 2005; 

Kennedy & Wilson, 2007; Wilson, 2009; Brown & Wilson, 2011; Wilson, 2012). A 

progress variable is a sequence of ordered qualitative descriptions, implying a continuum. 

Descriptive attributes hypothesized to correspond with less of the construct are captured 

at the bottom of the continuum, and those attributes hypothesized to correspond with 

more of the construct are captured at the top of the continuum. Levels of the construct are 

descriptive characteristics based on observations of some phenomenon in the real world. 

In the case of educational assessment, progress variables should be based on previous 

research about the construct and done in concert with domain experts, curriculum experts, 

teachers, and assessment developers (Wilson, 2005; 2012). That being said, the construct 

definition should not be considered as set in stone, as it will be reconsidered iteratively 

based on the empirical results of the assessment process (Brown & Wilson, 2011).  

In educational measurement, the use of a progress variable to represent successive 

levels of mastery in relation to a construct implies that learning is a progression; that 

more sophisticated understanding develops over time, and that learning should be 

assessed in a way that allows for students to fall in the stages in-between a beginning and 

advanced understanding, instead of just comparing their work product(s) to a single 
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threshold of performance (Wilson, 2012). Progress variables are the building blocks of 

learning progressions, which are extended descriptions of the hypothetical development 

of concepts and skills over time within a particular domain of study (Wilson, 2009). The 

level of detail captured in a progress variable may vary, but generally it falls somewhere 

between the conciseness of state-level standards or frameworks and the detail of a 

particular curricular sequence (Wilson & Draney, 2004). Consequently, they function as 

convenient tools for developing assessments.  

Some constructs are too complex to be operationalized in a single progress 

variable. For instance, some constructs have multiple dimensions or aspects, such as 

science learning as defined in the Next Generation Science Standards (NGSS Lead 

States, 2013). These constructs may be described by using a separate progress variable 

for each dimension (Wilson, 2005; Wilson, 2009; Wilson, 2012). This is the strategy 

utilized by this project, where the science knowledge supported by the Inquiry Project 

curriculum is divided among three progress variables for assessment: Structure and 

Properties of Matter; Scale, Proportion, and Quantity; and Engaging in Argument from 

Evidence.  

Items design. In simplest terms, an item is an opportunity for a respondent to 

demonstrate their level of proficiency with respect to the construct of interest (Wilson, 

2005). It may be as straightforward as a question asking for recall of facts, or as complex 

as a realistic situation that requires the coordination of multiple relevant and irrelevant 

pieces of information to perform a task. The fundamental characteristic of an item is that 

it elicits a response that contains evidence related to a student’s mastery of an aspect of 

the construct. However, no single item will provide all of the necessary information about 
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a respondent (or about the construct). Furthermore, more items provide more information, 

which increases the precision with which respondents can be classified in relation to the 

to the construct. Therefore, multiple items are included on an instrument. The items 

design is a description of the set of items that is used to collect observations about a 

construct (Wilson, 2005).  

Wilson (2005) describes the construct component and descriptive components of 

the items design. The construct component refers to the explicit link between each item 

and the construct map by specifying exactly which level(s) of the construct map are 

targeted by a particular item, as well as a justification explaining why the item will elicit 

a response that provides information about these level(s). This link is essential to the 

items design, as it provides the rationale for using each item to measure the construct. 

Descriptive components involve the non-construct related considerations of the items 

design, including whether the items will require self-report or performance, the response 

format, the specific context used to elicit the observation, the level of scaffolding in the 

item prompt, and many others. By necessity, some design components will be selected 

somewhat arbitrarily. The point of the items design, however, is to reduce the amount of 

arbitrariness as much as possible by making design specifications early in the 

development process.  

The most oft talked-about design component is item format. Items may range 

from the completely open-ended – like observations, in which respondents may not even 

know that they are being observed – to the completely fixed – like multiple-choice or 

Likert-type questions. There are many types in between, including essays and oral or 

written short-response items. Wilson (2005) recommends that item development begin 
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with more open-ended formats before fixed-response variants are attempted, as this 

allows the designer to get a sense for the range of possible responses that appear when 

respondents are completely unrestricted. Then, decisions may be made about whether and 

how to constrain the responses.  

Finally, the items’ functionality should be investigated as part of the design 

process. This will help to both improve the items themselves and contribute to the 

validation of the resulting construct-based interpretations. The best way to examine the 

items’ functionality is to examine the response processes utilized by the respondents as 

they encounter an item. This can be done via cognitive interview, a process in which an 

examiner asks the respondent to provide details about their thought processes either 

during their response or immediately after responding to an item (Wilson, 2005). The 

designer can then compare the respondent’s reported mental processes to those processes 

specified in the construct component of the items design to verify the strength of the link 

between construct and item.  

Outcome space. The outcome space describes the characteristics of a response 

that may be considered indicators of a particular level of mastery put forth in the 

construct theory. In practice, the outcome space is usually a rubric or scoring guide 

containing descriptions of the qualitative categories used to evaluate responses. It should 

consist of well-defined categories that clearly relate back to the theorized definition of the 

construct, with descriptions that are detailed enough to be meaningful and example 

responses where possible. These categories may be item-specific or may generally apply 

to all items measuring a construct under the given theory (Siegel, Nagle, & Barter, 2004). 

The number of categories should be large enough to account for all possible variations of 
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a response, but small enough that distinctions between categories reflect meaningful 

differences in responses (Wilson, 2005). One potential method for defining the categories 

of the outcome space is phenomenography (Masters & Wilson, 1997), in which responses 

are initially examined and qualitatively grouped, and category definitions and group 

membership criteria are iteratively revised by jointly examining the construct map and 

the responses. Another option is to use existing general categorization schemes (e.g., the 

SOLO taxonomy, Biggs & Collis, 1982) which may be adapted to suit a particular 

construct. 

Scoring is the process of assigning values to each category of responses, such that 

higher values indicate that a response exhibits more of the construct and lower values 

indicate that a response exhibits less of a construct. Scoring may be pre-determined 

during item development, in the case of fixed-response items. However, if open-ended 

items are scored by raters, training procedures, including techniques like assessment 

moderation (Roberts, Wilson, & Draney, 1997), help to ensure that raters understand the 

scoring categories in terms of the construct and that scores are applied consistently across 

raters. The degree of convergence among raters (inter-rater reliability) is an indicator of 

how well the outcome space is defined.  

Measurement model. The measurement model is the means by which scores are 

aggregated and related back to the hypothesized progression of the construct. The 

measurement model provides information about the respondent’s overall placement on a 

particular construct, and may be used to guide decisions based on responses. Usually a 

mathematical or statistical model is used, with popular examples of measurement models 
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given by classical true score theory (CTT), factor analysis, item response theory models 

(IRT), and latent class models (Wilson, 2005).  

In this study, IRT models, specifically, the Rasch family of item response models 

(Rasch, 1960; 1980) will be used as the measurement model. Item response theory 

models are probabilistic, meaning that rather than predicting the frequency of occurrence 

of a particular response category, the model predicts the probability of observing the 

response category. Item response theory models are useful because they provide 

information about both the items comprising a particular instrument and the respondents 

who responded to the items. In Rasch measurement, the Wright map is a visual 

representation of item and person information. Estimates of item difficulty and person 

ability are placed on a single common continuum, allowing for inferences about the 

construct based on information derived from their item responses. Thus, the measurement 

model brings the cycle of assessment full-circle, as a respondent’s performance is 

summarized and interpreted in reference to the underlying construct (Brown & Wilson, 

2011).  

Prior Inquiry Project assessment development  

Construct. Prior to the work described in this dissertation, progress variables 

were developed for three assessment dimensions: Structure of Matter; Scale, Proportion, 

and Quantity; and Engaging in Argument from Evidence. These progress variables were 

largely based on three NGSS learning progressions of the same name (NGSS Lead States, 

2013).  

The Structure and Properties of Matter progress variable (Figure 1.2) was largely 

informed by the learning progression underlying the Inquiry Project curriculum (Smith, 
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Wiser, Anderson, & Krajcik, 2006; Wiser, Smith, & Doubler, 2012), in addition to the 

NGSS progression. Although the Structure of Matter construct is presented as one 

continuous variable, it is decomposed into several different component concepts. These 

concepts evolve as the student’s understanding strengthens. At the lowest level of the 

Structure of Matter progress variable, students’ understanding of matter and material is 

limited to what they can easily perceive: size is “bigness” and weight is felt by heft. They 

can recognize certain materials by properties like color, smell, and taste. They are also 

able to recognize that the amount of material changes only when things are added or 

removed, but this does not necessarily correspond to weight or volume. At level 2, their 

understanding grows and they come to understand that tiny objects have weight8 and take 

up space, even if it may be difficult to perceive. They start to link weight and amount of 

material, and they begin to recognize the different properties of solid, liquid, and granular 

materials. At level 3, they recognize the concept of volume as the amount of space take-

up. As their understanding of weight and volume becomes more sophisticated, they begin 

to understand that different materials may be heavier or lighter than others, and develop a 

basic understanding of the relationship between the weight and volume of materials. At 

level 4, the relationship between weight and volume is formalized in the concept of 

density. They begin to grapple with ideas of weight and volume of imperceptible 

materials like gases. The idea of material properties begins to evolve and become a 

beginning understanding of the properties of chemical substances. Finally, these 

component concepts are finally subsumed into a larger understanding of the concept of  

                                                           
8 Distinction between weight and mass does not develop until higher levels.  
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Figure 1.2. Structure and Properties of Matter progress variable.  
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1 

Matter 

Matter has mass, weight and occupies space. Gaseous materials (air, water vapor) 
are recognized as matter. Solids, liquids, and gases are forms of matter; some 
materials can exist in all three forms (e.g., water). Beginning particulate model of 
matter: understands matter is made up of smaller particles of different substances. 

Substance 
Substances are defined by properties (e.g., boiling points, melting points) and are 
invariant across phase change. Different substances composed of different particles. 

Mass Mass is a measure of the amount of matter.   

Weight 

Gases and other invisible pieces of matter have weight. Weight is proportional to 
mass (in a given gravitational field). Weight is invariant during phase change 
(freezing, melting, evaporating, condensation). Weight invariance can be used as 
evidence for conservation of matter. 

Volume 
Distinguishes corpuscular volume from amount of space occupied by object. The 
latter is not conserved during phase change. Gases are much less dense than solids or 
liquids, and are compressible. 

Density 
Now understood more formally as a relationship between mass and volume. The 
same material can have different densities in different states. 

Material 
Integrates weight, volume, heaviness for size in compositional model of materials. 
Knows any solid, liquid, or granular sample, however small, has weight and volume. 

Amount of 
material 

More strongly links weight and volume with amount of material.  Thinks tiny pieces 
weigh something and take up space because they are something. 

Weight Knows tiny things have weight; weight is invariant across crushing and dissolving. 

Volume 
Differentiates volume from area and understands volume of solid objects and liquids 
is invariant with reshaping. Understands water displacement depends upon volume 
of submerged object.  

Heaviness 
for size 

Solid and liquid materials are (more or less) heavy for size. Differentiates heavy 
objects from heavy materials qualitatively. 

 
Material 

Understands that objects are constituted of materials, not just constructed from them, 
and can apply this compositional model to solid, granular and liquid materials. 
Different materials have different properties, and these properties make different 
materials suitable for different purposes. Recognizes that solids, powders and liquids 
have deep commonalities: they can be seen, touched, and felt, and are composed of 
little pieces of a given material.  

Amount of 
material 

Has initial links between weight and amount of material in some contexts. 
Understands amount of material remains invariant with crushing and dissolving. 

Weight 
Weight is more than just heft – it is an objective quantity that is related to amount of 
material. It is Invariant across reshaping (but not crushing).  

Size/ 
Occupied 

space 
Understands even tiny things take up space.   

Material 

Knows the names of some liquids and solid materials and associates materials with 
some intensive properties (color, smell, taste) and properties associated with state 
(e.g., hardness, runniness). Knows solid objects are “made of materials” but thinks 
of “made of” as “constructed from” rather than “constituted of.”  Lacks 
compositional model. 

Amount of 
material 

Has initial concept of amount of material as a quantity that remains invariant when 
object changes appearance with reshaping, because nothing is added/removed. 

Weight 
Has perceptually based concept of weight centered on heft. Has crude 
generalizations linking weight and balance scale, and weight and size, but not 
amount of material. Weight varies when an object is physically rearranged. 

Size/ 
Occupied 

space 

Has a general sense of how "big" an object is (judged perceptually), but no specific 
concept of volume as 3D measure of amount of space occupied by object. Knows 
that two solid objects cannot occupy the same space at the same time. 
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matter as anything that has weight and occupies space. Matter is made of tiny pieces of 

different materials/substances.  

The Scale, Proportion, and Quantity progress variable (Figure 1.3) was also 

inspired by the Inquiry Project curriculum (Smith, Wiser, Anderson, & Krajcik, 2006; 

Wiser, Smith, & of relative measures using addition, subtraction, and estimated 

proportional relationships. At the highest level of this progress variable, students have 

mastered methods of quantitative measurement for weight and volume, and can engage in 

more complex mathematical reasoning with these measurements (including precise 

proportional reasoning using multiplication and division).  

The Engaging in Argument from Evidence progress variable (Figure 1.4) was 

informed by recent work on scientific explanation (Gotwals, Songer, & Bullard, 2012) 

and argumentation (Berland & McNeill, 2010; Osborne, et al., 2016). This progress 

variable is much simpler than the other two dimensions, and describes the student’s 

developing ability to support statements with appropriate evidence and reasoning. At the 

lowest level of the construct, students are unable to articulate claims, much less support 

them. Beyond that, students may articulate claims but provide no evidence, or evidence 

that is not relevant to their claim. As students begin to support their claims, it is unlikely 

that they will jump to fully formed arguments with complete evidence and reasoning. 

Therefore, the middle level of the construct recognizes that students may successfully 

demonstrate some support for a claim, but fail to provide both components of a well-

supported argument. After students learn to support arguments with relevant evidence 

and sound reasoning, they may also learn to use these components to refute opposing 

arguments – this is the highest level of the construct. 



34 
 

4 

Use addition and subtraction to mathematically reason about volume (e.g., infer volume from 
change in water level, use water displacement to measure the volume of solid, liquid, and 
granular materials). 
Uses multiplication and division to mathematically reason using measurements (e.g., infer the 
weight and volume of proportionally smaller/lighter or larger/heavier objects made of the 
same material.) 
Quantifies and compares object characteristics based on proportional relationships (e.g., 
calculates "heaviness for size" (or density) as a ratio of an object's mass and volume using 
standard units). 

3 

Uses addition and subtraction to mathematically reason about weight (e.g., infer the weight of 
liquids in a container). 
Understands measuring instruments vary in precision (e.g., some scales more sensitive than 
others). 
Understands the structure of 3D arrays, and uses centimeter cubes to measure volume by 
comparison. 
Has generalized knowledge of fractions (there are an infinite number of fractions between 
any two integers); number and measure  line is a dense, and quantities form a continuum 
Beginning understanding of measured characteristics that involve proportional relationships 
(i.e., uses relative scales to describe speed and density when distance/weight or time/volume 
is held constant.) 

2 

Knows how to measure weight with balance scale, length with rulers, and area with tiles 

Understands measures using scales, rulers are more reliable than senses. 

Understands that measures are more precise than senses. 

Can use measures to evaluate relative scale (for weight, length, area). 

Understands the structure of 2D arrays, and can use centimeter cubes to measure area. 

Has knowledge of a few special fractions (1/2, 1/4); number and measure line is spotty. 

1 

Believes the senses tell the truth. (Weight and size are assessed holistically and perceptually.)  
Places more reliance on senses than inferences and relations in judging quantities. 
Thinks of weight and size categorically (it’s big, heavy or small, light) rather than as 
quantities; at best they use crude relative scales (e.g., bigger and smaller; heavier and lighter; 
hotter and colder; faster and slower) to describe objects (with few gradations). 

Only familiar with counting numbers (no fractions). 

 

Figure 1.3. Scale, Proportion, and Quantity progress variable. 

 

All three progress variables were iteratively examined by content experts and 

revised prior to beginning the item development work described in this dissertation  

Items Design. Two specific characteristics of multidimensional items design 

(multidimensional scaffolding and response format) are a major topic of exploration for 

the research. However, assessment tasks and contexts were drawn from preceding work 

on student understanding of matter. Specifically, item development drew on two existing  
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5 

Student makes a claim that answers a question or problem and supports that claim with BOTH 
evidence AND explanation linking the claim/evidence to scientific knowledge, and also rebuts 
alternative claims with justification (i.e., explaining why evidence/reasoning is incorrect) 

4 

Student makes a claim that answers a question or problem and supports that claim with BOTH 
evidence AND explanation linking the claim/evidence to scientific knowledge.  

May also rebut alternative claims without justification (i.e., doesn't explain why 
evidence/reasoning is incorrect or restates their own argument). 

3 

Student makes a claim that answers a question or problem and supports that claim with EITHER 
relevant evidence OR reasoning based on scientific knowledge. 

May also rebut alternative claims without justification (i.e., doesn't explain why 
evidence/reasoning is incorrect or restates their own argument). 

2 

Student makes a claim that answers a question or problem. 

May also provide irrelevant evidence (i.e., evidence that does not support their claim) or weak 
evidence (e.g., authority, personal experience). 

1        
Student doesn't make a claim, or makes a claim that is not relevant to the question or problem at 
hand. 

 
Figure 1.4. Engaging in Argument from Evidence progress variable.  

 

sources: item prototypes for assessing student understanding of matter (Smith, Wiser, 

Anderson, and Krajcik, 2006), and a sequence of hands-on assessment activities 

previously used in interviews with elementary students (Smith, 2009). Items covered an 

appropriate range of content topics and hypothesized difficulty, in line with the Inquiry 

Project curriculum and the assessment progress variables.  

Significance of the study 

The potential impact of this project is multi-faceted. The most immediate 

significance of the study relates to its role in developing a tool to evaluate student 

learning associated with the Inquiry Project curriculum. Although the Inquiry Project 

includes several suggestions for formative assessment embedded throughout the 

curriculum, it lacks a formal summative assessment (TERC, 2011). A summative 
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assessment for the Inquiry Project benefits classroom teachers who implement the 

curriculum by reducing the burden on teachers to generate their own evaluation of 

student understanding. When paired with a baseline measure, summative assessment also 

provides evaluative information about the impact of the curriculum on student 

understanding and contribute to measuring the effects of further intervention efforts 

associated with the curriculum.  Evaluation of educational research provides information 

about the effectiveness of a particular method or intervention at accomplishing its stated 

goal, which ultimately supports the improvement of educational outcomes.   

On a higher level, the work conducted for this dissertation contributes to the 

literature that addresses measurement practices for multidimensional constructs; in 

particular, three-dimensional science learning as described by the Next Generation 

Science Standards. Specifically, this work addresses the feasibility of multidimensional 

scaffolding and the selected-response item format for multidimensional science 

assessment through an examination of validity evidence based on student response 

processes. This evidence produces information that may also apply to the assessment of 

other core ideas, practices, and crosscutting concepts from the NGSS, or other non-NGSS 

multidimensional achievement constructs.  

This study will also contribute to measurement literature related to modelling and 

reporting of student achievement on multidimensional assessments – specifically, NGSS-

aligned science assessments. It explores whether multidimensional ability estimates based 

on the theoretically multidimensional NGSS structure are suitable for reporting science 

achievement, or whether a single estimate of overall science ability would provide an 

equally informative but more concise description of individual proficiency. Evaluation of 
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an assessment’s dimensionality is a form of validity evidence based on the instrument’s 

internal structure, and this type of validity evidence reflects back on the hypothesized 

progression of the construct (Wilson, 2005). In this case, the instrument’s internal 

structure provides information about the extent to which the three-dimensional 

framework for science learning presented in the NRC Framework and the NGSS is 

empirically justified in this particular application.  

Finally, student performance data provides some insight into the assessment’s 

construct validity – the extent to which the constructs measured by the assessment 

correspond to the three constructs defined earlier in this chapter (Structure of Matter; 

Scale, Proportion, and Quantity; and Engaging in Argument from Evidence). Student 

performance provides evidence in support of or opposition to the construct definitions 

proposed in the three assessment progress variables, although the evidence may vary 

according to other factors in the students’ educational background (e.g., group 

membership or instructional experiences). Thus, results inform the body of literature 

related to children’s cognitive development of matter-related concepts, measurement, and 

argumentation.  
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Chapter 2: Literature Review 
 

 This literature review has two main parts. In the first, I provide general 

background on the topics addressed in the three research questions proposed for this 

dissertation: multidimensional scaffolding, response format, and scoring/reporting 

measurement data from multidimensional constructs. In all background sections, there is 

a specific focus on the topic as it relates to science assessment. Next, I describe several 

recent science assessments, with a particular focus on how test developers have 

approached the challenge of integrating content and practice in reference to the research 

questions.  

Item scaffolding 

Vocabulary. When the term scaffolding was first used by Wood, Bruner, and 

Ross (1976), it referred to a personal interaction between a one-on-one tutor and a child. 

They described the type of help provided by the tutor as engaging the child, directing the 

child to more manageable subtasks, keeping the child on task, and modeling the 

appropriate action. The term was later associated with Vygotsky’s (1978) concept of the 

zone of proximal development, which describes the difference between a student’s 

independent performance and their performance as aided by knowledgeable others. 

Overall, the initial discussion of scaffolding focuses on its role as an instructional tool in 

the service of student learning. One of the essential components of scaffolding is fading, 

(Pea, 2004) meaning that support gradually becomes unnecessary because the student has 

learned to complete the task unaided. Since the relationship between assessment and 
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student learning is less straightforward, it is unclear whether assessment supports align 

with the original conception of scaffolding.  

 Whether or not the proposed range of assessment supports9 constitutes 

“scaffolding” as originally defined is up for debate. The proposed assessment supports 

share many similarities with the concept of scaffolding in its original formulation. Their 

main purpose is to provide structure for students as they complete a complex task. To 

achieve this, the item structure decomposes the task into smaller pieces, thereby reducing 

the degrees of freedom and focusing students to the most critical features of the task – all 

of which have been recognized as scaffolding strategies (Quintana, et al., 2004; Wood, et 

al., 1976). Furthermore, Quintana et al. (2004) note that students often have difficulties 

remembering to articulate their thought processes, and that scaffolding serves as a useful 

reminder to make their thinking transparent. In particular, scientific practices like 

explanation and argumentation require many pieces, and that scaffolding may help to 

guide students through this process (Quintana, et al., 2004). The proposed supports also 

serve this function, cuing students to make their reasoning explicit. On the surface, the 

described assessment supports seem to share many similarities with scaffolding.  

 In other regards, the use of scaffolding for assessment causes some divergence 

from the traditional conception of scaffolding as a support for learning. First, summative 

assessment is not instruction, and although the idealized role of summative assessment is 

to inform and improve instruction, any impact of summative assessment supports on 

student learning is several steps removed. Assessment supports do not only enable 

student performance, but also support complex inferences about three-dimensional ability 

                                                           
9 See the section entitled “Item Design” in Chapter 3 for a detailed description of the proposed assessment 
supports.  
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based on student responses. This is an assessment-specific purpose, which does not align 

with the instructional focus of the original conception of scaffolding (Wood et al., 1976; 

Pea, 2004). Next, scaffolding is meant to be tailored to the students’ abilities, supporting 

them where their understanding is lacking and fading or adapting as the student grows 

(Wood et al., 1976). On the other hand, standardization is often prioritized in assessment 

because it is an efficient way to directly compare student performance.  

Pea (2004) argues that such supports are not scaffolding at all, but fall into a 

separate category called distributed intelligence, yet this term is not quite right either. 

Distributed intelligence describes tools that consistently enable some aspect of human 

performance by offloading some of the task burden onto an external artifact (e.g., 

calculators, computer software, and other tools that direct and simplify a task). However, 

assessment supports are not intended to enable higher levels of student performance, but 

only serve to enable clearer communication of the student’s existing capability.  

 The application of the concept of scaffolding to assessment is tenuous at best, yet 

researchers and assessment developers have still adopted the term, using it to refer to 

item design components that enable task completion. As described in the following 

section, Songer and Gotwals (2012) applied the term to describe additional prompts that 

cue students to attend to relevant scientific concepts and components of scientific 

explanations, and the use of a selected response format to aid with explanation. They 

concluded that different levels of support are useful for gathering information about 

students of varying ability levels. By including items with varying levels of support 

within a single assessment, they were able to accomplish some degree of fading. Students 

who need more support would be able to accomplish the highly scaffolded items while 
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struggling with the less supportive items, and highly skilled students could still 

demonstrate their capability on less scaffolded items. The main difference between this 

type of scaffold-fading and instructional fading is that all assessment items are 

administered concurrently, rather than being gradually faded over time.10  

 The Science Assessment Item Collaborative (WestEd & CCSSO, 2015a; 2015b; 

2015c) recently adopted the term scaffolding, as well, using it to describe the structure of 

prototypical multidimensional assessment items aligned with the NGSS. Scaffolding is 

described both as a feature that enables student performance on complex items and a 

communication tool: 

 

Scaffolding within and across assessment item clusters11 helps guide students 

through a series of progressively more challenging interrelated questions, to better 

provide evidence of the knowledge and skills of students across a wide range of 

ability and understanding. (WestEd and CCSSO, 2015b, p. ii) 

 

It is clear that the application of scaffolding in assessment, as demonstrated by 

both Songer and Gotwals (2012) and the Science Assessment Item Collaborative, 

diverges from the convention of scaffolding in instruction. Yet, both sources somehow 

demonstrate a shared understanding of scaffolding in assessment as a tool to enable 

                                                           
10 Of course, assessment supports can be faded over time, but the current study design (a cross-sectional 
study of 4th and 5th graders) does not provide an appropriate context for exploration of this question. 
11 The term item cluster refers to a sequence of items that have been grouped together by a common context 
and scaffolding. The term is somewhat recognizable in assessment literature (e.g., Wainer & Kiely, 1987; 
Ferrara, Huynh, & Baghi, 1997), but discussion mainly focuses on psychometric concerns about 
conditional independence that arise when items share a common context. There is virtually no discussion 
about the impact of item clusters relative to single items, with regard to student response processes.  
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student attention and communication within complex assessment tasks. Therefore, it 

seems that Pea’s (2004) criticism of usage of the term scaffolding outside of fading 

instructional supports falls on deaf ears among assessment developers.  

Usage of scaffolding in formative and summative science assessment. Many 

researchers have explored the use of scaffolding in science learning and assessment as a 

tool to guide and strengthen student proficiency on a single dimension of student 

learning, but very few have evaluated the utility of scaffolding for multidimensional 

responses. Songer and Gotwals (2012) fall into this very small group based on research 

from their BioKIDS assessment (see pg 66 for more on BioKIDS). Building on previous 

work (Gotwals, 2006; Gotwals & Songer, 2010) they used four different types of items 

with various levels of scaffolding to assess students’ ability to construct scientific 

explanations related to biology/ecology content. They used content scaffolds, explanation 

scaffolds, and a combination of both. They describe the “minimal” category of items as 

selected-response items containing both content and explanation scaffolds. These items 

provided students with evidence and asked students to select the claim best supported by 

the evidence. In open-ended items, students were provided with a scenario and asked to 

provide a scientific explanation for an observation. Content scaffolds took the form of 

hints that focused the students’ attention on relevant features of the stimulus and/or 

reminded them of relevant science concepts. Explanation scaffolds split the task into 

three separate prompts that separately addressed the key components of a scientific 

explanation: claim, evidence, and reasoning. There were three variations of open-ended 

items: Intermediate I, which contained both content and explanation scaffolds; 
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Intermediate II, which contained explanation scaffolds only; and Complex, which 

contained no scaffolds.  

They evaluated the effectiveness of each item type by examining the item 

information function, an IRT statistic that describes the inverse of the standard error for 

students of differing abilities. Items with smaller standard errors have larger information 

function values, meaning that they provide more precise information about student 

ability. They found that different levels of scaffolding were more effective at providing 

information, depending on the age of the students tested. At fourth and fifth grade, 

Complex items (no content or explanation scaffolding) were difficult for students, and 

did not provide as much information as Intermediate items (open-ended items with 

explanation scaffolding and content scaffolding). Minimal items (selected-response items 

with both content and explanation scaffolds) provided less information, at both grade 

levels. They hypothesize that this might be attributed to the amount of reading required 

by a highly scaffolded item. In sixth grade, however, the different scaffolding types fell 

into a pattern that corresponded with student ability, such that Minimal items provided 

more information about low-ability students, Intermediate items provided more 

information about average-ability students, Complex items provided more information 

about high-ability students.  

In a later study (Gotwals & Songer, 2013) with an assessment focused on 

scientific explanation only, they again found that items with more scaffolding tended to 

be less difficult. To further examine this finding, they broke the explanation down into its 

component parts: claim, evidence, and reasoning. They found that the claim was the 

easiest part of an explanation, and scaffolded claims were not significantly more difficult 
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than non-scaffolded claims. Reasoning was the most difficult part of the explanation, and 

again, scaffolded reasoning was not significantly more difficult than non-scaffolded 

reasoning. However, evidence differed greatly in difficulty depending on whether the 

response was scaffolded or not. Scaffolded evidence was significantly easier than non-

scaffolded evidence.  

Based on the results of both studies, the authors suggested that scaffolding is most 

useful when students are faced with complex or unfamiliar tasks that lie just outside of 

their range of performance. In the case of multidimensional items, the integration of 3 

dimensions of science learning into a single assessment or learning environment is a 

complex and unfamiliar requirement, especially for younger students. Therefore, these 

studies suggest that scaffolding may be necessary to guide students into explicitly 

attending to the three dimensions as part of their responses. The amount of scaffolding 

included in each item should be taken into consideration, as it may affect the item’s 

ability to distinguish between students of high or low ability on one or more dimensions. 

Elsewhere in science education research, researchers evaluated the use of 

scaffolds as tools to help students construct explanations or engage in argumentation, 

without explicitly considering the other content-related dimensions of science learning. 

Kang, Thompson, and Windschitl (2014) looked at high school teachers’ use of 

scaffolding in science assessments. They identified five types of scaffolds: contextualized 

phenomena, rubrics, checklists, sentence frames, and drawings. After controlling for 

teacher and classroom characteristics using multilevel modeling, they found that three 

forms of scaffolding (contextualized phenomena, checklist, and rubric) were related to a 

higher quality (i.e., depth) of explanation from the students, but particularly 



45 
 

contextualized phenomena (i.e., making the elements of a scenario more familiar to the 

student). When multiple scaffolding techniques were used in conjunction, the scaffolding 

had a greater impact when contextualized phenomena was one of the techniques used. 

Chin and Teou (2009) used concept cartoons and scaffolding during formative 

assessment with 5th and 6th grade students in Singapore. They found that scaffolding 

students to make a claim about which character they agreed with and support their claim 

with reasoning required students to make their ideas explicit, where previously their ideas 

may not have been clearly articulated. This led to productive discussions between 

students and critical evaluation of other students’ ideas. Again, these findings support the 

notion that scaffolding may support the production of high quality answers when students 

are presented with a complex or difficult task.  

Item format 

In simplest terms, items are generally described as having two types: selected-

response and constructed-response (also known as open response or supply items) 

(Russell & Airasian, 2012). Selected response items do not require the examinee to 

provide any information of their own, but only to choose from one of the options given. 

The classic examples of this item type are multiple choice, true-false, and matching 

items. Open response items, on the other hand, require the examinee to provide additional 

information. The additional information may be as minimal as a word or number, or as 

large as an essay. 

In recent years, researchers have begun to produce more elaborate taxonomies 

which account for nuance in the selected/constructed response dichotomy. Wilson (2005) 

lists a number of item characteristics, and the number that are predetermined before test 
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administration defines the item type and the level of constraint. For example, multiple-

choice items require that all characteristics are predetermined before administration, 

including the response choices. Participant observations, on the other hand, do not require 

any preliminary consideration – not even necessarily the construct of interest. There are 

many gradations of fixation in between these two extremes. Scalise and Gifford (2006) 

list 7 different categories of items, from the fully selected (e.g., true/false and standard 

multiple choice) to the fully constructed (e.g., performance, portfolio). The five in-

between categories are referred to as intermediate constraint items, and range from 

multiple choice with multiple answers to fault correction to short-answer and sentence 

completions to traditional essays. Obviously, the traditional dichotomy between selected-

response and open-response items is not as straightforward as originally thought. 

Martinez (1999) notes that there is considerable variety among “constructed-response” 

items, with some items in this category requiring only simple recall, but others requiring 

more complex constructions. 

The use of selected-response items in assessment, specifically multiple-choice 

items, is hotly debated. Critics of multiple-choice assessment question the alignment 

between the cognitive processes elicited by a multiple-choice item and the cognitive 

processes underlying the intended assessment domain (Gorin, 2006; Resnick & Resnick, 

1996; Pellegrino, Wilson, Koenig, & Beatty, 2014). For example, Stanger-Hall (2012) 

found that anticipation of a multiple-choice item format was associated with lower-level 

cognitive engagement with study materials and a subsequent deficit in performance when 

a constructed-response item format was used in a university-level introductory biology 

course. This finding suggests that multiple-choice items elicit lower-level cognitive 
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engagement than their constructed-response counterparts and sheds some light on the 

unintended consequences of using a multiple-choice item format for assessment, 

especially when students have information about the test format beforehand. Many 

researchers counter-argue that multiple-choice items can assess more cognitively 

demanding skills if considerable effort is dedicated to the item writing process (Braun & 

Mislevy, 2005; Martinez, 1999; Pellegrino, Chudowsky, & Glaser, 2001). Nonetheless, it 

remains obvious that some skills fall outside the realm of multiple-choice, namely, those 

which require the generation of an original response (Martinez, 1999). This leads to 

skepticism that some aspects of science learning may be suitable for multiple-choice 

assessment, as scientific practice often involves generating arguments and justifications 

for claims, building models, and planning investigations – skills which inherently require 

creation. Furthermore, although multiple-choice items may viably assess complex skills, 

there is ostensibly a limit to the amount of complexity that multiple-choice items can 

handle. The use of multiple-choice items to assess multiple integrated dimensions may 

push past the limit of that viability.  

Many researchers have explored this issue further, and have demonstrated 

shortcomings of multiple-choice items for assessing science practices. For example, Berg 

and Smith (1994) evaluated multiple-choice items about construction and analysis of 

graphical models by comparing results to near-identical constructed-response versions. 

They also conducted cognitive interviews with junior-high and high school students. 

They found disparities between the administration formats, such that students generally 

demonstrated higher levels of ability on constructed-response items than the supposedly 

easier multiple-choice items.  Overall, they argue that multiple-choice items do not 
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provide a valid indicator of student understanding of graphs. Lee, Liu, & Linn (2011) 

compared multiple-choice items and “explanation items” which required students to 

explain or justify their response to a previous multiple-choice item. They found that the 

mean discrimination of the explanation items was higher than the multiple-choice items, 

and the explanation items captured a wider range of student ability than multiple-choice 

items. Additionally, explanation items were more sensitive to instructional intervention 

than multiple-choice items. They previously found (Liu, Lee, & Linn, 2011) that 

multiple-choice items were easier than constructed-response explanation items. All of 

these findings support an argument that constructed-response and multiple-choice items 

elicit different cognitive processes, and that the cognitive processes associated with 

constructed-response items are better suited for measurement of scientific practices. 

Despite this, many researchers and educators have successfully used multiple-

choice items in science assessment. The most successful examples of multiple-choice 

items innovate the format, conscientiously developing misconception-based distractors 

based on an underlying model of student understanding (Hestenes, Wells, & 

Swackhamer, 1992; Briggs, Alonzo, Schwab & Wilson, 2006; Liu, Lee, & Linn, 2011). 

The Force Concept Inventory is an early example of such an assessment. It assesses 

student understanding of Newtonian mechanics, and employs non-Newtonian 

misconceptions as distractors. The Inventory has been widely used with both high school 

and college students, and is generally regarded as a useful, reliable assessment of physics 

understanding (Hestenes, Wells, & Swackhamer, 1992). Briggs et al. (2006) took the idea 

of misconception-based distractors a step further by associating each distractor with a 

different level of student understanding. They found that these “ordered multiple-choice” 
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items were associated with higher levels of test reliability than traditional multiple-choice 

items. In both cases, deliberately crafted distractors lead to higher quality diagnostic 

information about student understanding. Liu, Lee, & Linn (2011) employed 

misconception-based distractors and used a two-tiered item format to create “explanation 

multiple choice” items. After responding to a multiple-choice item, students were asked 

to justify their initial choice by choosing an explanation from a list. Explanation multiple-

choice items were easier than a constructed-response follow-up, which might indicate 

that they measure a different, slightly easier construct than explanation generation. 

However, the explanation multiple-choice format offers some advantages: it removes 

some of the ambiguity underlying student responses to traditional multiple-choice items, 

and provides an efficient alternative to constructed-response explanation items. In all, it 

seems that the use of multiple-choice items for assessment of science learning, 

particularly science practice, is a viable practice with many promising directions for 

improvement.  

Scoring and reporting multidimensional constructs 

 A multidimensional construct is a latent domain that can be deconstructed into 

more than one subdomain. In theory, any construct can be endlessly divided into 

subcomponents until they no longer have any practical implication, so the real art is in 

being able to define multidimensional constructs that are empirically supported by 

assessment data and that are also substantively meaningful (Briggs & Wilson, 2003). 

Although a unidimensional definition of a construct is the default starting point for most 

measurement instruments (Wright & Masters, 1982), many educational assessment and 
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survey instruments have utilized a multidimensional framework to provide a more 

nuanced picture of student performance.  

 For example, the SAT assesses educational aptitude in three areas: Critical 

Reading, Writing, and Mathematics (The College Board, 2014c). Although performance 

on these three scales is often aggregated and reported as a single metric of performance, 

the overall score is built upon the three subdomains, each of which is measured by a set 

of content-specific items. Similarly, the ACT reports an overall measure of educational 

achievement derived from four subdomains: English, Mathematics, Reading, and Science 

(ACT, 2016). In each case, the separation between dimensions is obvious and extreme – 

both assessment programs refer to the sets of mutually exclusive items measuring the 

subdomains as “tests” in their own right.  

 Multidimensional assessment can also be found within a single educational 

domain (e.g., reading, mathematics, or science). For example, the 2015 Trends in 

International Mathematics and Science Study (TIMSS) reports four subdomains of 

Mathematics achievement at the 8th grade: Number, Algebra, Geometry, and Data and 

Chance. These dimensions are part of the larger construct of Mathematics, but they are 

mutually exclusive content areas that are measured by unique assessment items (Gronmo, 

Lindquist, Arora, & Mullis, 2013). The 2015 PARCC English Language Arts assessment 

reports scores for Reading and Writing, in addition to the overall ELA score. These 

subdomains are further subdivided to describe performance on Literary and Informational 

reading tasks (PARCC, 2015). Taken together with the examples in the preceding 

paragraph, these are only a few of the occasions where multidimensional constructs are 

used in educational assessment. These cases exemplify the default approach to the 
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assessment of multidimensional educational constructs. Here, the item pool is split 

among the dimensions, such that information about each dimension is measured by a 

unique set of items.  

 Most large-scale science assessments have a similar structure. Items are divided 

among science content domains (biology, physics, etc.) such that the dimensions are 

measured completely separately (e.g., TIMSS 2015, Jones, Wheeler, & Centurino, 2013). 

This approach is found among smaller scale instruments, as well – for example the 

NOSI-E measures five dimensions of the Nature of Science with five non-overlapping 

sets of items (Peoples, 2012). Altogether, this approach (Adams, Wilson, & Wang, 1997) 

rests upon the assumption that the measured dimensions are separable – an assumption 

that is called into question for the Next Generation Science Standards, where content, 

practice, and crosscutting concepts are explicitly described as integrated dimensions of 

science.  

A common method for incorporating multiple assessment dimensions within 

items is what Briggs & Wilson (2003) describe as “a cross-referencing of sub-

dimensions.” For example, the 2009 NAEP framework describes standards for both 

content and science practices, and both dimensions are incorporated by crossing content 

statements with practice statements to create performance expectations, which are used as 

a starting point for item development (National Assessment Governing Board, 2007). 

Assessment items are then classified according to a science content domain – Physical 

Science, Life Science, or Earth and Space Science – and one of four science practices: 

Identifying Science Principles, Using Science Principles, Using Scientific Inquiry, or 

Using Technological Design (National Assessment Governing Board, 2010). Every item 
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can be mapped back to one content statement and one practice statement. Thus, items are 

divided among subdimensions of content and practice while also integrating the 

overarching dimensions of content and practice. This basically amounts to using all items 

on one scale for content and concurrently using all items again on another scale for 

practice. Several other large-scale science assessments also use this method to integrate 

multiple dimensions within items, including PISA 2015 (OECD, 2013).  

Generally, assessments that utilize this strategy evaluate student responses by 

assigning a single overall science score to each response. This is the chosen scoring 

method for both the NAEP 2009/2011 and PISA 2012 assessments (National Assessment 

Governing Board, 2009; National Assessment Governing Board, 2011; OECD, 2012a). 

Thus, these assessments do not distinguish student ability on separate domains at the item 

level. However, reporting decisions about multiple domains differ from assessment to 

assessment. PISA 2006, which was the last PISA assessment focusing mainly on science, 

reported separate three subscores for each of two domains of science literacy: content and 

competency (OECD, 2008). In 2011, NAEP reported separate three subscores for science 

content only.  

On large-scale assessments that utilize a concurrent between-item 

multidimensional approach such as NAEP and PISA, every item is included in the 

estimation of both a practice (or competency, or process, etc.) subscore and a content 

subscore, although the scoring process itself does not differentiate between the domains. 

The subscale scores therefore rest upon the assumption that a single item score can 

capture both content and practice (or competency, or process, etc.) without differentiating 
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between them. The role of the overarching dimensional structure, which divides science 

into content and practice (or competency, or process, etc.), is left unexplored.  

Furthermore, science subscores from a concurrent between-item multidimensional 

approach are not always empirically justified by assessment data. For instance, Schwab 

(2007) attempted several multidimensional analyses of science data from PISA 2003. 

Along the lines of PISA’s own analysis, she tried three different multidimensional 

models in accordance with the definition of science literacy in the PISA framework. In 

the first, items were divided into content dimensions (Physics, Biology, Earth Science); 

in the second they were divided among process dimensions (interpreting, understanding, 

and describing), and in the third they were divided among situation dimensions (earth and 

environment, life and health, and technology). Each time, the multidimensional model fit 

the data better than a unidimensional model in which all items were grouped together. 

However, the correlation between dimensions was so high (> 0.85) in each case that she 

ultimately concluded that a unidimensional model for overall science literacy was more 

appropriate.  

Examples of assessments that measure science content and practice 

 Before the publication of the three-dimensional NRC Framework (Committee on 

a Conceptual Framework for New K-12 Science Education Standards, 2011) and Next 

Generation Science Standards (NGSS Lead States, 2013), many science learning 

documents and assessment frameworks began to emphasize the importance of science 

practices (or science inquiry12) in addition to science content (e.g., AAAS, 1993; 

                                                           
12 As mentioned in Ch. 1, science practice refers to a set of skills (NGSS Lead States, 2013), whereas 
inquiry emphasizes ways of knowing (National Science Teachers Association, 2004). Here, inquiry and 
practices are used synonymously.  



54 
 

Massachusetts Department of Elementary and Secondary Education, 2006; National 

Assessment Governing Board, 2010). Since then, many science assessment programs 

have begun incorporating science practices as an essential component of assessments that 

traditionally only focused on content. However, definition of the relationship between 

content and practice, types of items, and the way that performance is reported differs 

from assessment to assessment. A few specific approaches are described below. These 

approaches vary widely in intended scope, assessment environment, and purpose 

(formative or summative). Altogether, they paint a picture in which both tradition and 

innovation have a large influence on science assessment practices.  

The 2009 National Assessment of Educational Progress (NAEP). 

 Multidimensional scaffolding. The current NAEP framework (National 

Assessment Governing Board, 2007), which was the basis for every NAEP science 

assessment since 2009, includes both content and science practices. Assessment items are 

classified according to a science content domain – Physical Science, Life Science, or 

Earth and Space Science – and one of four science practices: Identifying Science 

Principles, Using Science Principles, Using Scientific Inquiry, or Using Technological 

Design (National Assessment Governing Board, 2010). Every paper-and-pencil item can 

be mapped back to one content statement and one practice statement, however, the item 

prompts themselves do not separate content and practice within the assessment task. 

Thus, the assessment development and data collection processes provide no relevant 

information about the utility of scaffolding for multidimensional assessment items.  

Response format. The 2009 NAEP science assessment, for the most part, utilized 

basic item types that are typical of other similar large-scale paper-and-pencil assessment 
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programs: multiple-choice, and short or extended constructed-response items. On the 

main paper-and-pencil assessment, about 50% of student response time was devoted to 

multiple-choice items, with the remaining 50% devoted to constructed-response items 

(National Assessment Governing Board, 2007). The constructed-response format does 

have several variations (short and long response, predict/observe/explain, and concept 

mapping items), and they sometimes used item clusters that contained both multiple-

choice and constructed-response items. However, for the most part these items were 

typical of traditional paper-and-pencil assessment formats. The major exceptions to this 

are hands-on performance tasks (HOTs), which provide students with lab equipment and 

materials and ask students to use them to solve a problem or answer a question, and 

interactive computer tasks (ICTs), which may ask students to search for information or 

conduct a simulated investigation in the context of a scientific problem (National Center 

for Education Statistics, 2012). These tasks were included because they are able to more 

clearly capture student ability to engage in scientific practice than short-answer and 

multiple-choice items (Fu, Raizen, & Shavelson, 2009). The hands-on performance tasks 

were administered to only a small subset of the students included in the national sample 

(National Assessment Governing Board, 2016; National Center for Education Statistics, 

2011).  

For the most part, NAEP relies on content experts to verify that assessment items 

measure the intended content and practice standards. In addition, a sample of NAEP 

items underwent classroom tryouts and cognitive labs prior to administration. Classroom 

tryouts allowed teachers and students to give feedback and make suggestions for item 

improvement. Cognitive labs investigated students’ thought processes while completing 
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the items, and specifically focused on “the extent to which the science practices and 

cognitive processes (cognitive demands) evoked by the items are the ones intended by the 

performance expectation.” (National Assessment Governing Board, 2007, p. 206) Note 

that they place a special emphasis on validating practices and cognitive demands, but not 

content. Furthermore, resource constraints allowed for only a sample of items to be 

subjected to cognitive labs, and priority was given to the innovative item types (hands-on 

performance tasks, interactive computer tasks, and concept maps) over constructed 

response and multiple-choice items. This means that relevant evidence about students’ 

cognitive processes was rarely available for simple constructed-response and selected-

response tasks, and when these were examined the focus was on only one of the two 

dimensions that the item purportedly assessed (practice).  

Scoring and reporting. Items on the paper-and-pencil assessment were given a 

single score. Two-parameter, three-parameter, and generalized partial credit IRT models 

were used to estimate student ability on three content scales: Earth science, Physical 

science, and Life science (National Assessment Governing Board, 2009). Each of the 

content scales was assumed to be unidimensional and estimated separately. An estimate 

of overall science ability was calculated as a weighted average of the three content scores 

(National Assessment Governing Board, 2011). Although all items were classified 

according to both content and practice specifications and framework developers 

recommended reporting subscales for both content and practice (Fu, Raizen, & 

Shavelson, 2009), only content subscales were estimated and reported (National Center 

for Education Statistics, 2009). No reason was provided for this decision. HOTs and ICTs 

are not included in the scaling of the paper-and-pencil items due to unnamed technical 
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and practical reasons (Fu, Raizen, & Shavelson, 2009), but NAEP does provide special 

reports about HOT and ICT items (National Center for Education Statistics, 2012). 

Student performance on these items is summarized according to the percentage of 

students responding in each score category. Individual student performance on the HOT 

and ICT items was reported by taking the percentage of score points earned out of points 

attempted. Overall, the 2009 NAEP assessment results distinguish between content and 

practice qualitatively on occasion, and empirically not at all.  

Programme for International Student Assessment (PISA) 2015. 

Multidimensional scaffolding. In 2015, PISA measured a construct called 

“science literacy” which was defined by three areas: knowledge, competency, and 

system, each of which were subdivided into three subscales (resulting in 9 subscales 

total) (OECD, 2017). The competencies are three specific aspects of science practice: 

“explaining phenomena scientifically,” “evaluate and design scientific enquiry,” and 

“interpret data and evidence scientifically.” Types of knowledge include content 

knowledge, procedural knowledge, and epistemic knowledge. The systems are the 

content domains of “Physical,” “Living,” and “Earth and Space.” The competencies, 

types of scientific knowledge, and systems each provide three potential categorization 

schemes for defining scientific literacy as a three-dimensional construct subsumed by 

overarching categories of “competencies,” “types of knowledge,” and “systems,” which 

themselves operate as higher-order dimensions of scientific literacy.  

Assessment items were explicitly classified as belonging to one competency, one 

type of knowledge, and one system (OECD, 2017). Similar to NAEP (above), this results 

in a structure where the lower-order dimensions (i.e., the three categories of 
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competencies, types of knowledge, and systems) are assessed separately during 

assessment, while the higher-order dimensions (“competency,” “type of knowledge,” and 

“system”) are integrated. Thus, content knowledge and procedural knowledge were never 

assessed together, for example, although content knowledge and designing scientific 

inquiry (a close relative of procedural knowledge) may be integrated in a single 

assessment task. Alignment between assessment items and the purported 

competency/type of knowledge assessed is verified through expert review (OECD, 

2012a).  

The item prompts themselves do not distinguish between the competency, type of 

knowledge, and system dimensions within the assessment task, and this conflation of 

dimensions may potentially obfuscate the intended constructs. Indeed, secondary analysis 

and review of previously administered PISA items has revealed discrepancies between 

the intended and actual constructs, notably, that the type of knowledge assessed is often 

hard to classify (Lau, 2009), that more than one type of knowledge may be assessed by a 

single item (Lau, 2009), that assessed and intended competencies may differ (Le Hebel, 

Montpied, & Tiberghien, 2014), and that some items purportedly assessing content may 

not actually require knowledge about content at all (Schwab, 2007).  

Response format. The 2015 PISA science assessment was computer-based, and 

contained standard and interactive items (PISA, 2015). The standard items contained text 

passages, diagrams, and tables – stimulus materials that would easily be found on a 

paper-and-pencil exam – while interactive scenarios contained animations and 

simulations which allowed the student to actively interact with the stimulus. Regardless 

of whether the item stimulus was standard or interactive, student responses were 
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collected using the same formats: simple multiple-choice, complex multiple-choice (a 

series of yes/no items, multiple-response, fill-in-the-blank with options, and “drag and 

drop” ordering items), and constructed response. These three item types are roughly 

evenly distributed (OECD, 2012a), meaning that about 2/3 of the science items on PISA 

2015 use some variation of a selected-response format. Although it is never explicitly 

stated, the heavy reliance on the selected-response format presumably serves to maximize 

the number of items on the assessment without increasing student testing time.  

Scoring and reporting. On the PISA 2015 assessments, items were given a single 

score that ostensibly reflected a student’s proficiency with the type of knowledge, 

competency, and system assessed. Scores on individual items were used to calibrate a 

unidimensional 2PL IRT model (OECD, 2017). Performance on the overall science scale 

is the major focus of the PISA science report, but PISA also reported data related to 

specific competencies, types of knowledge, and systems (OECD, 2017). These subscale 

scores were generated by recalibrating the model 3 times, each time examining the three 

subscales associated with only one of the higher-order dimensions (OECD, 2017). This 

had to be done because the IRT model only allows each item to be part of one subscale at 

a time. Since each item was assigned a classification on each of the three higher-order 

dimensions, the model had to be calibrated 3 separate times to generate plausible values 

on each subscale. A subscale average was computed, reflecting a country’s relative 

performance on the subset of items classified as a “physical systems” item or an 

“explaining phenomena scientifically” item, for example.  
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Advanced Placement (AP) Biology, Chemistry, and Physics 2014-2015. 

Multidimensional scaffolding. The AP science exam frameworks for chemistry, 

physics, and biology place a strong emphasis on the incorporation of inquiry and content 

(The College Board, 2014a; 2014b; 2015). The exam frameworks devote space to 

describing the content learning targets and 7 science practices separately, as well as 

presenting a set of learning objectives that incorporate both content and practice. The 

frameworks do not specify how the measurement of content and inquiry targets will be 

distributed across items, but all items are intended to demonstrate both content 

knowledge and practice – “Questions on the AP Biology Exam will require a 

combination of specific knowledge from the concept outline as well as its application 

through the science practices.” (The College Board, 2015, p. 127). The combination of 

content and practice within an item is verified by expert review. However, content and 

practice are not distinguished within an assessment task.   

Response format. The AP science exams are paper-and-pencil tests that utilize 

very traditional item formats – multiple-choice and constructed-response of varying 

lengths. For example, half of the current AP Biology exam is comprised of multiple-

choice items and “grid-ins” (The College Board, 2015), which are essentially short 

constructed-response items that require a calculation. The multiple-choice items are rich, 

scenario-based items that require more than just memorization of content, and they may 

be linked together into item clusters. The remainder of the test uses long and short 

constructed-response items. The constructed-response items emphasize practice in the 

context of content, and often a long response item will require the use of more than one 

practice. The breakdown of item formats used in the AP Chemistry and AP Physics 
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exams is not identical, but very similar (The College Board, 2014a; 2014b). On the 

surface, these items are very high quality. The items explicitly incorporate science 

practices and content knowledge, are situated in realistic and engaging contexts, and ask 

students to utilize complex reasoning. However, the rationale behind the AP’s design 

decisions is rather unclear. Despite the shift towards incorporating content and practice, 

no information is available about any effort to investigate the elicitation of content and 

practice-related cognitive processes associated with their items. Therefore, it is difficult 

to say for sure whether the College Board has succeeded at utilizing traditional paper-

and-pencil item formats to assess complex, multidimensional constructs.  

Scoring and reporting. Individual AP science items are given a single score that 

captures student proficiency with science content and practice simultaneously (The 

College Board, 2015). Neither multiple-choice nor open-response scoring criteria 

differentiate between the role of content knowledge and practice in an item response. 

Principles of Classical Test Theory are used to summarize student performance across 

items, and cut scores are developed to categorize students according to the overall level 

of proficiency demonstrated (Reshetar, 2012). AP exam scores are reported on a single 

scale from 1-5, with a score of 5 the highest level of proficiency and a score of 1 

representing low proficiency (The College Board, 2014a, 2014b, 2015). This score 

provides information about both student content knowledge and student ability to engage 

in science practices, but relative ability on each dimension remains a mystery.  

AP teachers are provided with a more detailed report, which provides information 

about multiple-choice performance across the content-related “Big Idea” subscales, 

calculated by summarizing information across items classified as measuring a particular 
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“Big Idea” (Reshetar, 2012). Teachers receive no information about their student’s 

multiple-choice performance relative to the science practices. The teacher report also 

includes more detailed information about student performance on the individual criteria 

evaluated by the open-response scoring rubrics, but these criteria still do not provide 

information that distinguishes content knowledge from science practice.  

Science Education for Public Understanding Program (SEPUP). The 

assessment system for the Issues, Evidence, and You middle school curriculum created by 

the Science Education for Public Understanding Program (SEPUP) was developed as part 

of the BEAR Assessment System (BAS) at UC Berkeley. The assessment system was 

based on a set of 5 interrelated variables: a science concept, two processes (designing and 

conducting investigations; evidence and tradeoffs), and two scientific skills 

(communicating scientific information; group interaction) (Roberts, Wilson, & Draney, 

1997).  

Multidimensional scaffolding. A single assessment item might measure a 

student’s ability on one or more of the related variables targeted by the curriculum, but 

this was frequently done by using a single assessment prompt (Siegel, Nagle, & Barter, 

2004). Therefore, a single student response was sometimes used to provide information 

about more than one dimension, without separating the dimensions within the task. The 

assessment also included multiple items linked together as part of a larger multi-

component item, which essentially provides some degree of scaffolding (Siegel, Nagle, & 

Barter, 2004). The assessment developers did not address any differences that arose from 

assessing multiple dimensions with a single item compared to a multi-component item.  



63 
 

Response format. Several different item types are used, including multiple-choice 

(Briggs, Alonzo, Schwab, & Wilson, 2006) and open-response. Multi-component items 

utilized either or both response formats by pairing open-ended items, or by pairing a 

multiple-choice item with an open-ended item (Siegel, Nagle, & Barter, 2004). Multiple 

choice items were linked to only one dimension of the learning domain, but some 

constructed-response items provided information about three different dimensions 

simultaneously.  

Scoring and reporting. Assessment items linked with multiple dimensions were 

given scores using a multidimensional scoring rubric, meaning that a single response 

produced multiple scores (Roberts, Wilson, & Draney, 1997). These scores were then 

used to estimate student abilities on each dimension using a multidimensional Rasch IRT 

model (Briggs & Wilson, 2003), which was shown to fit the data better than a 

unidimensional model. Multidimensional Rasch models provide information about 

student progression along the assessment dimensions in a way that provides distinct 

information about student ability on each dimension, but also acknowledges the 

relatedness of the assessment dimensions. 

SimScientist. The SimScientist simulation (Quellmalz, Timms, Silberglitt, & 

Buckley, 2012) measures students’ understanding of science content and practice in 

physical, life, and earth science domains. Six science practices are defined: use of science 

principles, prediction, observation, description, investigation, and explanation. Content 

and practice are considered separately as related dimensions, and each is defined by a 

progress variable with three levels of sophistication. The simulation contains several 

embedded assessments that provide formative information for teachers, as well as 
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“benchmark” assessments that are intended to provide summative information at critical 

transition points between units. 

Multidimensional scaffolding. Each item and “observable event” (record of 

student activity in the simulation) was associated with at least one content or inquiry 

target. Because the items within a simulation all share the same context, each simulation 

acts as one large item with separate components related to content, practice, or both 

content and practice.  

To ensure that items adequately elicited the intended content and practice targets, 

they underwent expert review, comparison to the 2009 NAEP framework and AAAS 

benchmarks, and cognitive interviews with students (Quellmalz, et al., 2012). During the 

cognitive interviews, they kept track of the number of times that students accessed 

relevant content and inquiry targets while completing a particular task, thus verifying that 

the tasks elicited the intended cognitive processes.  

Results from the simulation-based assessment were compared with a paper-and-

pencil assessment which used more traditional stand-alone items to measure both content 

and practice; however, their analysis focused on the empirical relationship between 

content and practice and did not explore how the difference in item structure might have 

affected performance. Therefore, the effect of the simulation’s multi-component structure 

on student performance remains unclear.  

Response format. SimScientist is a simulation-based assessment system, meaning 

that it is administered via computer and involves interactive components. Students can 

watch simulations and, in some cases, control simulations of real-life scenarios that allow 

the demonstration of scientific concepts. Assessment items include adapted paper-and-
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pencil item types (e.g., multiple-choice, constructed-response), technology enhanced 

items (e.g., drawing arrows between components of a system), and informal “observable 

events” (tracked interactions with the simulation, e.g., variables manipulated, values 

assigned to variables, number of trials run). Student proficiency on content and inquiry 

targets was estimated using multiple methods at multiple points in time.  

Scoring and reporting. Within the software itself, embedded assessment tasks 

were auto-scored according to a 3-point rubric which classified student performance as 

either “needs help,” “progressing,” or “on track.” Teachers’ reports included using the 

frequency of student appearance in each rubric category across all content and inquiry 

targets (Quellmalz & Silberglitt, 2012), allowing them to target instruction to address the 

specific concepts or science practices needed by a particular student. For the benchmark 

assessments, a Bayes Net was used to produce separate summative proficiency reports for 

both content and inquiry (Quellmalz, et al., 2012). Each student was classified on an 

overall 4-point proficiency scale for each content and inquiry category. To further 

examine the technical quality of the items, a between-item 2-dimensionsal (i.e., content 

and inquiry) IRT model was also fitted to student data from the benchmark assessment 

(Quellmalz, et al., 2012). Both the Bayes Net and IRT measurement models provide 

information about student performance on content and inquiry targets as separate 

dimensions, but both approaches also acknowledge and account for the relationship 

between student content knowledge and inquiry skills. In the IRT analysis, both 

dimensions had high reliability, and the discrimination between science content and 

practice was better (i.e., correlations between dimensions were lower) than a paper-and-

pencil test of content knowledge and inquiry skills that was administered concurrently 
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(Quellmalz, et al., 2012). This suggests that a multidimensional analysis was appropriate 

for the simulation data.  

BioKIDS. 

Multidimensional scaffolding. The BioKIDS program at the University of 

Michigan has twin goals of improving middle school students’ understanding of science 

concepts related to biodiversity and ecology, and teaching students how to construct 

scientific explanations. Biodiversity and scientific explanation are considered two 

separate, but related constructs, and each are described in a separate learning progression 

(Songer, Kelcey, & Gotwals, 2009; Gotwals & Songer, 2006a, Gotwals, 2006; Gotwals, 

Songer, & Bullard, 2012). At the conclusion of the curriculum, summative assessment 

tasks are administered. All items measure both constructs. Items were created with the 

aid of a content-reasoning matrix, in which progressively more complex science concepts 

are crossed with more sophisticated types of explanation (Gotwals, 2006; Gotwals & 

Songer, 2006a; Gotwals & Songer, 2006b; Gotwals & Songer, 2010). Each item inhabits 

a cell in the matrix, indicating the relative demand of content and practice for that item 

(e.g., low-content/high-reasoning or moderate-content/moderate-reasoning). Some items 

measured a third construct, analyzing and interpreting data, in place of constructing a 

scientific explanation. A similar content-reasoning matrix was used to design the data 

analysis items (Gotwals, 2006).  

Student response processes were examined via think-aloud interviews with 

students, in which student responses were coded to reflect whether they referred to 

content knowledge, or used cognitive processes associated with constructing an 

explanation analyzing data (Gotwals, 2006; Gotwals & Songer, 2013). Nearly all items 
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elicited exactly the dimensions that were anticipated, and those that didn’t were revised 

or removed.  

As described in the previous review of scaffolding literature, items sometimes 

included content and explanation scaffolds, which provided clues about relevant content 

information and reminded students about the necessary components of a scientific 

explanation (e.g., Songer & Gotwals, 2012). Items with very high amounts of scaffolding 

(minimal items) and very low amounts of scaffolding (complex items) utilized only a 

single item prompt to gather assessment data on both dimensions. Items with an 

intermediate amount of scaffolding used separate prompts to remind students of the 

components of a scientific explanation. By comparing various levels of scaffolding, the 

authors found that the utility of the scaffolding varied depending on the ability level of 

the student, and that items with an intermediate level of scaffolding were generally the 

most informative across the board.  

Response format. Assessment tasks were administered via paper-and-pencil, and 

asked students to select the appropriate response from a set of alternatives (multiple-

choice), fill in the blank with a correct term or claim, or construct a scientific explanation 

based on a description of an event or a pattern of data. Selected-response and fill-in-the-

blank items were found to be more informative for lower ability students, while open-

ended items were generally more informative for students of average and high ability. 

This was true for both the scientific content and explanation dimensions, depending on 

the amount of scaffolding (Songer & Gotwals, 2012).  

Scoring and reporting. The BioKIDS strategy for scoring items and subsequently 

summarizing student performance has varied over time. In some iterations of analysis, 
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items have received multiple scores for content, scientific explanation, and data analysis, 

and been fitted to a within-item two- or three-dimensional Rasch model (Gotwals, 2006; 

Gotwals & Songer, 2006a; Gotwals & Songer, 2010). Other times, the researchers prefer 

to score and report student performance on a unidimensional scale that merges content 

and explanation, citing factor analysis that justifies a unidimensional construct (Songer & 

Gotwals, 2012; Songer, Kelcey, & Gotwals, 2009; Gotwals & Songer, 2013; Gotwals & 

Songer, 2006b; Gotwals, Songer, & Bullard, 2012).  The former strategy allows for 

separate appraisal of students’ content knowledge and inquiry skills, while the latter 

presumes that content and inquiry cannot be separated in the context of their assessment 

items.  

Examples of assessments that measure NGSS core ideas, practices, and crosscutting 

concepts.  

Since the Next Generation Science Standards (NGSS) were released in 2013, a 

small number of projects have begun to develop assessments of science learning using 

the 3-dimensional structure prescribed therein.  Two such efforts are described below. As 

both of the described projects are still in development, limited information is available 

about the methods that will be used to score and report student performance. However, 

the description of the constructs and items for assessment provide valuable information 

about the probable direction of future NGSS-aligned assessments.  

Next Generation Science Assessment. Next Generation Science Assessment is a 

collaborative project among several assessment companies and universities with the goal 

of developing technology-enhanced assessment tasks aligned with the Next Generation 

Science Standards. The project specifically focuses on formative assessment for middle 
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school physical science and life science. They define the construct underlying the 

integration of core ideas, practices, and crosscutting concepts as “knowledge-in-use”: the 

application of content knowledge in the context of disciplinary practice (DeBarger, et al., 

2014). NGSS performance standards are broken down into smaller units called “learning 

performances,” which form the basis for an assessment task. Learning performances are 

linked to all three assessment dimensions; however, a particular assessment task appears 

to be predominantly associated with only one NGSS dimension and implicitly linked to 

the remaining two dimensions (McElhaney, et al., 2015). 

Multidimensional scaffolding. Many example items include multiple components 

– several constructed-response or multiple-choice items following the same stimulus 

material. These items appear to separate content and practice-specific skills into separate 

prompts (McElhaney, et al., 2015). For example, one middle-school science item presents 

the student with a table of data listing several unidentified substances and their properties. 

Students are asked to identify which two substances might be the same (content), and 

then provide an argument to support their choice (practice). As stated previously, 

however, each assessment task is predominantly linked with only one NGSS dimension. 

Thus, the purpose of using multiple components in an assessment task is unclear.  

Response format. According to the stated goals of the program, some assessment 

tasks will involve interactive components (e.g., simulations, videos), however, an 

examination of currently available assessment items and curricular units reveals that they 

all use traditional paper-and-pencil item formats (constructed-response, multiple-choice), 

often in combination, i.e., a multiple-choice item with a constructed-response follow-up 

(see http://ngss-assessment.portal.concord.org/).  
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Since the project is still in development, the nature, motivation, and justification 

for some design decisions (e.g., the choice to use multiple-component items) is unclear. 

In particular, the alignment between the three NGSS dimensions and the item tasks 

remains ambiguous. It is unclear whether the items’ underlying construct is an 

amalgamation of the three NGSS dimensions, one primary NGSS dimension with 

influence from the secondary dimensions, or if student responses will yield specific 

information about each dimension individually. Whatever the intended alignment, student 

responses need to be examined to ensure that the items reflect the construct.    

Scoring and reporting. A description of the scoring process is not widely 

available because the tasks are still in an early stage of development. However, one 

scoring rubric for a task measuring the NGSS crosscutting concept “patterns” describes 6 

possible levels of performance. The “patterns” task rubric explicitly emphasizes 

performance on the NGSS crosscutting concept, but it incorporates elements of the other 

two dimensions (core ideas and science practice) (McElhaney, et al., 2015). The task 

developers justify the use of a single rubric by emphasizing the importance of integrating, 

rather than separating, the three dimensions of science learning. They argue:  

 

The Framework and NGSS emphasize that CCCs, DCIs, and practices are 

necessarily and tightly intertwined. In authentic science, these dimensions do not 

occur in isolation of one another. As such, instruction and assessment need to 

integrate, rather than isolate, the three performance dimensions. A critically 

important quality of our rubric approach is that, despite foregrounding the CCCs, 
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it acknowledges and preserves the rich connections that occur across the CCCs, 

DCIs, and practices. (p. 9)  

 

It is unclear whether or not they intend for scores produced by their integrated rubrics to 

be aggregated as an indicator of overall “integrated” science learning, or if scores 

resulting from different rubrics will be grouped together according to the “foregrounded” 

dimension. The latter tactic would provide dimensional estimates that manage to 

simultaneously reflect the integration and distinction of the three dimensions, whereas the 

former reflects integration only and is more similar to the stance generally taken by large-

scale science assessment systems. 

NGSS Sample Classroom Assessment Tasks.  

Multidimensional scaffolding. The NGSS released a set of sample classroom 

assessment tasks that draw on the NGSS and the Common Core State Standards for 

Mathematics (NGSS Lead States, 2014). These are lengthy, multi-component 

performance tasks designed to take up multiple class periods. Each task is linked to one 

or more performance expectations, with extensive descriptions justifying the use of 

individual task components to assess specific parts of the performance expectations, 

explaining which parts of the task comprise evidence of a particular standard, and 

describing how the three dimensions are integrated in the task. Within a task, an 

individual component requires the integration of multiple NGSS dimensions. This 

suggests that the components serve to break the task into manageable parts rather than to 

distinguish between NGSS dimensions within a task. The relationship between each 

task/task component and NGSS performance expectations/dimensions is clearly outlined. 
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However, these tasks are far too time-consuming for summative assessment – a single 

component often requires at least an entire class period for completion.  

Response format. All classroom assessment tasks are open-ended, and each 

component of the items requires an extended response.  

Scoring and reporting. Scoring rubrics for the NGSS sample assessment items 

are forthcoming, and will suggest scores for individual task components that describe 

levels of student performance as below basic, basic, proficient, and advanced. It is 

unclear how the suggested scoring rubrics account for the integration of three core ideas, 

practices, and crosscutting concepts in the assessment tasks. 

Science Assessment Item Collaborative. The Science Assessment Item 

Collaborative (SAIC) is a joint effort between WestEd and the Council of Chief State 

School Officers, and includes an assessment framework, item specifications, and 

prototypes to guide development of summative assessment items for the NGSS. The item 

specifications and prototypes emphasize the item cluster, a group of items sharing a 

common context and performance expectation(s) as the main unit of assessment – their 

realization of the “multicomponent” item format suggested by Pellegrino, et al. (2014). 

Their effort is very closely aligned to the NGSS; each item cluster is mapped to a specific 

performance expectation(s), each item/item part is mapped to at least two of the NGSS 

dimensions, and each is linked to specific evidence statements from the NGSS (WestEd 

& CCSSO, 2015a; 2015b; 2015c).  

 Multidimensional scaffolding. In the SAIC item prototypes, scaffolding is used 

to link items together into clusters, and to splitting items into multiple parts (WestEd & 

CCSSO, 2015b). The SAIC Assessment Framework explicitly describes scaffolding as a 



73 
 

strategy to “guide students through a series of progressively more challenging interrelated 

questions to elicit evidence of what students know and are able to do.” (WestEd & 

CCSSO, 2015a, p. 30) Within an item cluster, each item is aligned with at least two of the 

three NGSS dimensions. Scaffolding, therefore, is not a strategy to manage an item 

cluster’s multidimensionality, but to enhance the items’ accessibility to students. 

 Response format. The SAIC items utilize a combination of multiple-choice (and 

multiple-select), constructed-response, and various technology-enhanced item formats 

(e.g., drag-and-drop, drop-down menus, and graph modification items). Many different 

formats are used within an item cluster, and sometimes multiple formats are used within a 

single item. The item specifications guidelines include very detailed descriptions of the 

benefits and drawbacks of several different item formats, but do not include any 

discussion of multidimensionality (WestEd & CCSSO, 2015c).  

 Scoring and reporting. At this point in time, SAIC items are only prototypes, so 

there are no formal plans for scoring and reporting student responses. Some of the 

individual items contain notes about scoring information. According to these notes, each 

“item” within an item cluster receives a single score, despite the mapping of at least two 

NGSS dimensions to each “item” (WestEd & CCSSO, 2015b). This suggests that the 

item writers envision a unidimensional scoring method and measurement model.  

Summary  

Multidimensional scaffolding. Traditionally, multidimensional constructs have 

been measured by using separate, unconnected assessment tasks for each dimension (e.g., 

College Board, 2014c; ACT, 2016; Peoples, 2012; Gronmo, et al., 2013). In science, 

however, this approach seems unsuitable for the way that NGSS dimensionality is 
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defined as a set of integrated constructs. In response, many science assessment programs 

have opted to integrate content and practice within a single assessment task. The NAEP 

paper-and-pencil test, for example, classifies items according to one of three content 

domains and one of four science practices (National Assessment Governing Board, 

2007). PISA items, similarly, assess one of three “competencies,” one of three 

“knowledge types,” and one of three “systems” simultaneously (OECD, 2012a; 2012b; 

2015; 2017). AP science exam design emphasizes that every item incorporates content 

“Big Ideas” with practice in every item (The College Board, 2014a; 2014b; 2015). 

Although these strategies acknowledge the importance of both content and practice in the 

domain of science, specific information about student proficiency on the separate 

dimensions is unavailable. 

One recommendation for providing unique information about student proficiency 

on multiple integrated dimensions of science learning is to use multi-component items 

(Pellegrino, et al., 2014). Some of the science assessments described here already use 

some form of a multi-component task design, usually by grouping together multiple 

selected-response or short-answer items (e.g., The College Board, 2015; Quellmalz, et al., 

2012; Songer & Gotwals, 2012; McElhaney, et al., 2015). Such a design strategy seems 

like an intuitive way to integrate multiple dimensions into a single assessment task; 

however, in most cases the multi-component item structure did not directly map to the 

underlying dimensional structure as recommended in Pellegrino, et al (2014). Without the 

separation of dimensions among item prompts, it is unclear how multi-component items 

are able to enhance the multidimensional aspect of NGSS assessment.  
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Response format. It is evident that measuring multidimensional science 

proficiency elicits a range of strategies from assessment developers, especially in the way 

that the relationship between the constructs is defined and subsequently reported. 

However, there are many commonalities among these assessments; most notably, to a 

large extent they rely on traditional item types (multiple-choice/selected-response, 

constructed-response). Even the simulation-based assessments and computer-based tasks 

utilized multiple-choice or short constructed-response items to supplement informal data 

about student behavior within the simulation (Quellmalz, et al., 2012; OECD, 2015). 

These common item types, which have typically been used to assess a single competency, 

are now being extended to assessment of multiple competencies. In most cases it is 

unclear whether this design decision is justifiable, as assessment systems rarely make 

note of investigating the cognitive processes that are actually elicited by their items. On 

the whole, there is limited evidence to support the use of traditional item types to measure 

multidimensional constructs.  

Scoring and reporting. The current status quo in science assessment is that 

student performance is scored and reported on one overall science scale, and content and 

practice are assumed to contribute equally to every student’s performance (National 

Center for Education Statistics, 2009; Reshetar; 2012).  This implies that the dimensions 

are indistinguishable from each other. While content and practice certainly influence each 

other throughout the learning process, conflating the two dimensions obfuscates the 

unique contribution of both content and practice to science learning. Information about 
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science content, practice, and crosscutting concepts, separately, may be valuable for 

science teachers, curriculum developers, researchers, and policymakers.  

 Some science assessments have assessed content and practice using integrated 

tasks, while still managing to retain the distinction between the 2 constructs. These tend 

to be smaller-scale assessments intended for classroom use. The BioKIDS project 

accomplished this by scoring student responses according to their content understanding 

and the quality of their scientific explanations. Even so, they report student data 

inconsistently, sometimes distinguishing between content and explanation (Gotwals, 

2006; Gotwals & Songer, 2006a; Gotwals & Songer, 2010), and sometimes merging the 

two constructs together on a single metric of student performance (Songer & Gotwals, 

2012; Songer, Kelcey, & Gotwals, 2009; Gotwals & Songer, 2013; Gotwals & Songer, 

2006b; Gotwals, Songer, & Bullard, 2012). The SEPUP assessments (Roberts, Wilson, & 

Draney, 1997) also distinguish between content and practice by defining separate scoring 

categories for the content-related and practice-related elements of each assessment task. 

The SimScientist program (Quellmalz, et al., 2012) also administers integrated 

simulation-based tasks and reports information about students’ content and practice 

separately. These three assessment projects share in common that they are focused on 

particular content domains and practices, rather than seeking to provide an overall 

assessment of student performance in science. The SEPUP assessment system and 

SimScientists also make an especially targeted effort towards making scores interpretable 

and useful for teachers so that they may target instruction in the dimensions where it is 

most needed. Based on these observations, it appears that distinguishable information 



77 
 

about content and practice is easier to obtain when the assessment domain is limited in 

scope.  

Conclusion 

This literature review has made it apparent that assessing multidimensional 

science constructs has long been a challenge for assessment developers. Many different 

strategies have been used to assess multidimensional science constructs, including 

different sources of information (e.g., simulation process data, assessment items), the size 

of the task (e.g., large multi-component task, single items, groups of related items), and 

response formats (selected-response, constructed-response). In addition, different scoring 

and reporting strategies have been used, with the result that some assessment results 

emphasize students’ overall science proficiency while others reflect specific abilities 

related to smaller components of science proficiency. 

Despite the apparent multitude of strategies for assessing science learning, there is 

little research supporting any particular item design decision (e.g., amount of scaffolding, 

response format) over another, especially when it comes to multidimensional constructs. 

Furthermore, investigation of the relationship between the assessment dimensions will 

provide information about the appropriateness of differentiating between student abilities 

on sub-dimensions of science performance. Such research is essential to ensure that 

interpretation of student assessment results is valid – a primary concern for assessment 

developers (American Educational Research Association, 1999).  
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Chapter 3: Methodology 

The purpose of this dissertation is to explore the appropriateness of different item 

characteristics, scoring rubrics, and measurement models for a science assessment 

aligned with the three-dimensional Next Generation Science Standards. It will 

accomplish this by answering the specific research questions:  

1. To what extent does multidimensional scaffolding affect the quality of 

information gained from students’ responses to multidimensional assessment 

items? 

a. Does the impact of scaffolding vary for students of different abilities?  

2. In the assessment of students’ argumentation ability, does the use of a selected-

response item format affect the extent to which the enacted construct reflects the 

intended construct? 

3. To what extent do unidimensional and multidimensional scoring and modelling 

approaches affect the empirical relationships among the assessment items, and 

what does this imply about the relationships between the 3 dimensions of science 

learning? 

4. How well does student performance reflect the hypothesized definitions of the 

underlying constructs and their relationships?  

The rest of the chapter describes the path for exploring these research questions, 

including a) an overview of the data collection, b) the items design, c) background 

information about the qualitative and quantitative methods used for data collection and 

analysis, d) data collection procedures, e) the item revision process, f) scoring, and g) 

specific qualitative and quantitative procedures used to analyze the data.  
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Overview 

 To answer the research questions, information about the utility of 

multidimensional scaffolding (RQ 1) and selected-response formats (RQ 2) for 

multidimensional science assessment, and information about the empirical relationship 

between the three NGSS dimensions of science learning (RQ 3) was collected throughout 

the development process for an elementary science assessment. To investigate research 

questions 1 and 2, two rounds of cognitive interviews were conducted with 67 4th grade 

students from a public school district in the Boston metro area. The students responded to 

a small number of items and then reported about their experiences. Student responses and 

commentary about the items were qualitatively examined to see whether the amount of 

multidimensional scaffolding and/or response format had an impact on student response 

processes.  

To investigate research questions 3 and 4, a pilot test was conducted with 369 

4th,5th, and 6th grade students from school districts in the surrounding region. Student 

responses were scored according to two alternative rubrics – a holistic rubric and a 

multidimensional (analytic) rubric – and a psychometric analysis was conducted. Results 

provide information about the internal structure of the assessment in general, and more 

specifically about the impact of scoring decisions on the assessment’s internal structure 

(RQ 3). Results also provide information about whether students’ understanding of 

concepts related to matter, measurement, and argumentation align with the hypothesized 

construct definitions, and whether students’ grade level and curriculum exposure are 

related to student understanding (RQ4). Data from the pilot test also allowed for 

empirical comparisons of different item variants (RQ 1 and RQ 2).  
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Throughout the research and development process, items were iteratively revised 

in accordance with research findings. 

Items design 

 Research question 1 frames an investigation of item scaffolding in 

multidimensional assessment. In line with this research question, assessment items were 

manipulated so that three alternative versions of each item were created, all stemming 

from the same content and context but with the amount of multidimensional scaffolding13 

used in each assessment task varying slightly in each manipulation. The three variations 

are called single-prompt explicit multidimensional, multiple-prompt explicit 

multidimensional, and single-prompt implicit multidimensional items. A single-prompt 

explicit multidimensional version of an item contains the item stimulus (i.e., a text or 

visual description of the scenario under consideration) followed by a single response 

prompt. Although there is only one prompt, it explicitly asks students to attend to all 

three dimensions of science learning. The multiple-prompt explicit multidimensional 

version of the item has the same stimulus (i.e., identical content and setup of the 

assessment task), but the prompt is separated into multiple parts, with each sub-prompt 

intended to elicit a student response reflecting only one dimension at a time. Finally, the 

single-prompt implicit unidimensional version of an item is set within the same context 

as the single-prompt explicit multidimensional and multiple-prompt explicit 

multidimensional versions of the item, but with a single task that draws upon all three 

dimensions of science learning without explicitly asking students to attend to all three 

dimensions. The creation of explicit and implicit versions of an item allows for 

                                                           
13 A definition of multidimensional scaffolding, and justification for use of the term scaffolding in 
assessment can be found in Chapter 2.  



81 
 

comparison of performance when students are faced with the same task embedded among 

different amounts of task scaffolding (single-prompt explicit multidimensional vs. 

multiple-prompt explicit multidimensional items vs. single-prompt implicit 

multidimensional items). Maintaining identical content and task context across the 

different versions of an item ensures that differences in item content and task are not 

confounded with differences in the amount of multidimensional scaffolding, so that 

variation in student performance is attributable solely to variation in the amount of 

scaffolding. An example item with three alternative versions, each with a different 

amount of multidimensional scaffolding, can be found in Figure 3.1.  

 Research question 2 poses an examination of selected-response and open-ended 

item response formats and their effect on student response processes. To address this 

question, two of the three scaffolding variations (multiple-prompt explicit 

multidimensional and single-prompt implicit multidimensional) were modified to include 

selected response components. These selected-response variations underwent a second 

round of cognitive interviews.  

Data Collection and Analysis Methods 

The purpose of research questions 1 and 2 is to determine how different item 

characteristics (i.e., multidimensional scaffolding and response format) affect the 

alignment between the intended and actual construct of multidimensional science 

assessment items. This is an essential part of an instrument’s validity (Pellegrino, 

Chudowsky, & Glaser, 2001), and therefore is an important topic of research. 

Researchers have successfully used a wide variety of methods to uncover the 

construct accessed by respondents to an assessment item, usually by examining responses 
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Variation 1      Variation 2      Variation 3 

Figure 3.1. Three variations of an item with different amounts of multidimensional scaffolding. Variation 1 is a single-prompt explicit 
multidimensional item. In this item, a single prompt captures information about all three dimensions: Structure of Matter, Engaging in 
Argument from Evidence, and Scale, Proportion, and Quantity. Variation 2 is a multiple-prompt explicit multidimensional item. In 
this item, the first prompt captures information about the Structure of Matter dimension, the second prompt captures information about 
the Scale, Proportion, and Quantity dimension, and the final prompt captures information about Engaging in Argument from 
Evidence. Variation 3 is a single-prompt implicit multidimensional item. In this item, the prompt captures information about only one 
dimension: Structure of Matter. 
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and response processes. The most commonly used methods include cognitive interviews, 

observation of response time, and eye-tracking (American Educational Research 

Association, 1999; Wilson, 2005; Gorin, 2006). Statistical methods may also be used to 

link particular item features (e.g., response format, reading demand, etc.) to indicators of 

the enacted construct (e.g., item difficulty estimates) using an approach called item 

difficulty modeling (Gorin, 2006). Experimental designs can be used to examine the 

causal impact of item features on the enacted construct by creating multiple versions of 

an item, manipulating one or more of the item’s features (format, language, context, etc.), 

and examining changes in observable characteristics of the responses (usually parameter 

estimates, but also response time) (Enright, Morley, & Sheehan, 2002; Gorin, 2005; Katz 

& Lautenschlager, 2001).  

This study compared several variations of elementary science assessment items by 

using cognitive interviews to investigate differences between the intended and the 

enacted construct via direct comparisons of the rich data gleaned from student reports. 

Cognitive interview data was collected about three variations of multidimensional 

scaffolding (single-prompt explicit multidimensional, multiple-prompt explicit 

multidimensional, and single-prompt implicit multidimensional) and two response format 

variations (selected-response and constructed-response). Results provide information 

about the item types’ relative appropriateness for use in measuring three-dimensional 

science learning.  

The purpose of research question 3 is to investigate the assessment’s internal 

structure. Internal structure is another critical source of validity evidence, as it confirms 

whether the items conform to the assumed structure of the construct (American 
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Educational Research Association, 1999). The structure of the construct has implications 

for the interpretation and statistical summarization of student responses, and is a 

particularly important consideration for NGSS assessment because the proposed 

assessment framework explicitly outlines three sub-domains of science learning (NGSS 

Lead States, 2013; Committee on a Conceptual Framework for the New K-12 Science 

Education Standards, 2011). The NGSS definition of the construct thus implies that 

student performance should be reported and interpreted with respect to all three sub-

domains. According to the AERA Standards for Educational and Psychological Testing 

(1999), “when interpretation of subscores…is suggested, the rationale and relevant 

evidence in support of such interpretation should be provided.” (p. 20). This study 

produces evidence for the interpretability of core idea, practice, and crosscutting concept 

subscores by establishing the dimensional structure and subsequent technical quality of 

the resulting assessment dimensions.  

There are several common ways to establish or confirm the internal structure of 

assessment data. Under the principles of classical test theory, factor analysis can be used 

to reveal the number of factors (or underlying latent groupings of items) by examining 

the patterns of covariance among a group of items (e.g., Stone, Ye, Zhu, & Lane, 2010). 

Alternatively, software packages like DIMTEST (Stout, 1987), DETECT (Zhang & 

Stout, 1999), and NOHARM (Fraser & McDonald, 2003) each utilize a specific method 

and statistic to test competing dimensionality structures. In this study, the Rasch family 

of item response theory (IRT) models will be used to explore the internal structure of an 

NGSS-aligned science assessment by comparing the fit of unidimensional and 

multidimensional models (Adams, Wilson, & Wang, 1997).  
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Cognitive interviewing. Cognitive interviewing has its roots in cognitive 

psychology, where it originated as a way to investigate the cognitive processes 

underlying behavior (Ericsson & Simon, 1993). The field of psychology is fraught with 

debate about the believability of a person’s subjective report of their own cognitive state 

(Nisbett & Wilson, 1977; Verplanck, 1962), but if we operate under the assumption that 

subject’s verbal reports can be trusted– a viable assumption (Ericsson & Simon, 1993) – 

then the cognitive interview can be used as a tool to investigate a great variety of research 

problems. One application of cognitive interviewing techniques is in the field of 

measurement, where it can be used to improve the quality of survey instruments (Willis, 

1999; Beatty & Willis, 2007; Drennan, 2003; Knafl, et al., 2007; Ryan, Slater, & 

Culbertson, 2012). In educational measurement, in particular, the cognitive interview has 

been used with great success to support the development and validation of knowledge 

and attitudinal assessments (Almond et al., 2009; Demisone & Le Floch, 2004; Howell, 

Phelps, Croft, Kirui, & Gitomer, 2013).  

Originally, cognitive interviewing was dominated by a single technique: the 

think-aloud. In a think aloud interview, participants are prompted to recount their 

complete thought process as they encounter and respond to an item (Ericsson & Simon, 

1993). The role of the interviewer is to facilitate the examinee’s verbal report without 

directing it – after instructing the interview participant about how to think aloud, the 

interviewer remains unobtrusive, at most offering a reminder for the participant to 

continue verbalizing their thoughts (Beatty & Willis, 2007). The advantages of this 

method are several: the interviewer’s minimal role provides little opportunity to introduce 

bias, the method is simple enough that interviewers do not need to be extensively trained, 
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the open-ended nature of the method leads to a possibility of unanticipated information 

from the interviewee, and the interviewee’s verbalization occurs concurrently as they 

experience the item which makes their stream of consciousness a more “pure” data 

source than a retroactive report (Willis, 1999; Beatty & Willis, 2007). However, there are 

some drawbacks to the think-aloud method, most notably that participants often find it 

difficult to provide the level of detail that is most useful for researchers, the interview 

subject is in control and thus might divert their attention to processes that are irrelevant or 

not useful, and that the extra effort of verbalizing might constrain or enhance the amount 

of cognitive processing experienced by the interviewee (Willis, 1999; Beatty & Willis, 

2007).  

Other cognitive interviewing methods have emerged and become widespread, 

including various types of probing and even unique tactics like role-play (Willis, 1999; 

Van Someran, Barnard, & Sandberg, 1994). Probing differs from the think-aloud in that 

the interviewer has greater control of the structure and content of the interview, and can 

interject questions about the interviewee’s comprehension, confidence, and response 

strategies, respond to observed student behaviors, clarify the participants’ meaning, or 

other specific issues of interest (Willis, 1999). Although this provides information that is 

much more relevant to the researcher’s specific concerns, it potentially introduces 

additional elements of bias and artificiality into the interview by interrupting the flow or 

redirecting the content of the interviewee’s thoughts. Thus, an important consideration 

when developing interview probes is specificity: probes should be broad enough that they 

do not direct the interviewee towards a particular answer, but specific enough that they 

produce information that is of interest to the interviewer (Willis, 1999; Beatty & Willis, 
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2007). Probes may be scripted, or developed prior to the interview and standardized, or 

spontaneous. Scripted probes allow for better comparability between respondents, but 

spontaneous probes may potentially provide richer information or unearth unanticipated 

issues (Willis, 1999; Beatty & Willis, 2007). Beatty and Willis (2007) suggest that both 

types of probes may sometimes be appropriate during a single interview. Additionally, 

probes may occur concurrently as the student encounters the item or retrospectively, after 

all items have been encountered. Concurrent probes may be more desirable because they 

request information that may still be easily accessible in short term memory, whereas 

retrospective probes may result in generalization or inference about a series of 

experiences (Ericsson & Simon, 1993). However, some research suggests that 

retrospective probing may elicit more statements about the chosen response, which may 

be of interest depending on the specific research question (Kuusela & Paul, 2000; 

Howell, et al., 2013).  

Cognitive interviews result in a record of examinee statements about their 

experiences and opinions related to an assessment item, rather than numerical data. 

Therefore, cognitive interview data is commonly analyzed by qualitative coding of 

examinee statements (Almond et al., 2009; Howell et al., 2013). Howell, et al. (2013) 

developed a coding scheme centered around specific research questions related to the 

respondent’s reasoning and opinion on the realism of items. The examinees’ responses to 

each probe were coded according to a number of different criteria. The coding categories 

corresponded to the potential anticipated content of the response. The resulting codes 

were then summarized using descriptive statistics. Development of a coding scheme with 

different criteria and categories of anticipated responses is recommended before the 



88 
 

interviews are conducted, and is especially useful when a standardized interview protocol 

is used (Almond et al., 2009). Inductive categorization, the use of categories that emerge 

from the data rather than an a priori categorization scheme, may also be useful to account 

for unanticipated issues and/or responses to spontaneous probes (Rossman & Rallis, 

2012).  

In this study, the cognitive interviews utilized probing rather than think-aloud 

techniques (Beatty & Willis, 2007; Ericsson & Simon, 1993) because probing provides 

more structure and direction for verbal feedback, which is recommended when the 

interview sample has poor metacognitive or verbal skills (Almond et al., 2009) – a 

plausible concern for the sample of 4th grade students. The interview protocol contained a 

series of standardized questions related to the research questions and other anticipated 

issues of concern. Students were asked how they understood the task required by each 

response prompt, to explain the rationale for their given response, and potentially about 

the meaning of specific terms included in their response. Spontaneous probes were also 

used when warranted to clarify a participant’s response or reaction to an item. A set of 

standardized prompts ensured that each child was given the opportunity to provide 

information about all of the criteria that were used to evaluate the different item 

characteristics, and spontaneous probing brought attention to unanticipated issues.  

The Rasch family of item response models. Item response theory (IRT) models 

are probabilistic models that represent the probability of an item response as a function of 

the respondents’ underlying ability and the items’ characteristics (e.g., difficulty, 

discrimination, and guessing) (de Ayala, 2009), and are seen as useful tools for 

educational measurement. The Rasch family of models is a subset of IRT models that 
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mainly focus on only one item characteristic: difficulty. Rasch estimates of item 

difficulty and person ability are on an equal interval scale, meaning that an equal 

difference between any pairs of estimates has the same meaning with regard to the 

underlying construct, no matter where the estimates fall on the overall scale (Boone & 

Scantlebury, 2006). Rasch estimates are also considered to be sample and test 

independent: item and person ability estimates are stable regardless of the particular items 

on the test or characteristics of the respondents, within limits (Boone & Scantlebury, 

2006). This is vastly different from classical test theory, where “harder” and “easier” tests 

do not provide comparable estimates for students, and estimates of an item or test’s 

difficulty depend on the relative ability of the sample (Lord, 1980). The Rasch family of 

models are particularly useful because of their strong inherent link to a carefully defined 

construct (Wilson, 2005). Values of person estimates reflect the amount of examinees’ 

ability related to the underlying construct. Similarly, item estimates indicate which tasks 

require examinees to demonstrate more or less ability on the underlying construct. Item 

and person estimates can be placed on a scale, with their relative position providing 

empirical information about the progression of ability and behavior related to the 

underlying latent construct. The Wright map is a visualization of this information, with 

person and item estimates located on opposite sides of a vertical continuum, which 

represents the underlying construct (Wilson, 2005). Item and person estimates are 

arranged vertically from least to greatest, so that estimates at the bottom of the figure 

represent students with less sophisticated understandings and easier items. The estimates 

at the top of the figure represent more sophisticated understandings and difficult items. In 
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addition, Rasch models can accommodate complex constructs that include multiple 

dimensions of a latent ability (Adams, Wilson, & Wang, 1997).  

 The basic Rasch model gives the probability of a dichotomous score (e.g., correct 

or incorrect) as a function of the difference between the respondent’s ability and the 

item’s difficulty (Rasch, 1960; 1980). The model takes the statistical form:  

𝑃(𝑋௡௜ = 1|𝜃௡, 𝛿௜) =
exp (𝜃௡ − 𝛿௜)

1 + exp (𝜃௡ − 𝛿௜)
 

where 𝑋௡௜ is the score of a response given by person n with ability 𝜃௡ on item i with 

difficulty parameter 𝛿௜. According to the model, large positive differences between 

person ability 𝜃௡ and item difficulty 𝛿௜ (i.e., relatively easy items and/or relatively able 

examinees) correspond to a high probability of a correct response. The converse is true 

when the difference between 𝜃௡ and 𝛿௜  is negative (i.e., relatively low ability examinees 

and/or relatively difficult items). When an item’s difficulty matches a person’s ability 

(i.e., 𝜃௡ = 𝛿௜), the probability of a correct response is 50% ቀ
ୣ୶୮(଴)

ଵାୣ୶୮(଴)
=

ଵ

ଶ
ቁ.  

The model can be extended to include scores that reflect intermediate levels of 

correctness. This is called the Partial Credit Model (Masters, 1982), and takes the 

following form.   

𝑃(𝑋௡௜ = 𝑥௜|𝜃௡, 𝛿௜௞) =
exp ∑ (𝜃௡ − 𝛿௜௞)

௫೔
௞ୀ଴

∑ exp [∑ (𝜃௡ − 𝛿௜௞)௝
௞ୀ଴ ]

௠೔

௝ୀ଴

 

Here 𝛿௜௞ is the difficulty parameter associated with step k of m possible steps for item i. 

A “step” refers to the increase in item difficulty associated with increasing partial credit 

scores. (For model identification, ∑ (𝜃௡ − 𝛿௜௞)଴
௞ୀ଴ ≡ 0.) As in the dichotomous model, 

greater “ability” corresponds to a higher probability of achieving a larger score on an 

item (i.e., surpassing more steps).  
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Multidimensional constructs. Dichotomous and polytomous Rasch models have 

been used extensively in the assessment of educational achievement (Boone & 

Scantlebury, 2005; Wilson & Sloane, 2000), and in surveys of student attitude/affect 

(Boone, Townsend, & Staver, 2010; Martin & Mullis, 2012). These forms of the model 

assume that only one latent construct (e.g., “mathematics ability”, or “self-efficacy”) 

influences responses, an assumption commonly referred to as unidimensionality (Rasch, 

1960; 1980; Ludlow, et al., 2014). All item responses are considered probabilistic 

manifestations of this latent ability. Consequently, items are placed on a single scale. 

However, in certain situations multiple related abilities might contribute to a response, 

either directly or indirectly. For example, using the framework for science learning 

employed by the NGSS, a student’s conceptual understanding of a topic (core idea) 

might reinforce their interpretation of data in an assessment activity measuring a science 

practice. Or, an assessment task might require the student to construct a scientific 

argument that requires both conceptual knowledge (core idea) and the interpretation of a 

mathematical model (practice). In these cases, the use of a unidimensional model is a 

“theoretical impurity”, presenting an overly simplified view of student performance and 

conflating the relationships among multiple latent abilities (Adams, Wilson, & Wang, 

1997, p. 11). Furthermore, the influence of additional unaccounted-for constructs can 

negatively impact the technical quality of scale estimates. If multiple dimensions underlie 

a set of assessment items, and the correlation between dimensions is not high, then the 

use of a unidimensional model can bias the item and person estimates (Folk & Green, 

1989; Ackerman, 1992).   
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The MRCMLM. Another extension of the Rasch model, the Multidimensional 

Random Coefficients Multinomial Logit Model (Adams, Wilson, & Wang, 1997) allows 

for violations of unidimensionality by including multiple latent variables to explain 

student responses. In this case, the student ability parameter (𝜃௡) and item difficulty 

parameter (𝛿௜) from the unidimensional Rasch model are expanded to vectors to include 

additional latent abilities that may also influence item responses.  

𝑃(𝑋௜௞ = 1, 𝑨, 𝐁, 𝜉|𝛉) =
𝑒𝐛೔ೖ𝛉ା𝐚೔ೖ

ᇲ క

∑ 𝑒𝐛೔ೖ𝛉ା𝐚೔ೖ
ᇲ క௄೔

௞ୀଵ

 

In this formulation, the student ability parameter 𝜃௡ becomes a column vector with D 

rows corresponding to the number of dimensions represented in the model. The item and 

step parameters are in vector 𝜉. The scoring matrix B assigns values (scores) and 

dimensions to particular item responses, and the design matrix A assigns parameters to 

items and response categories. (The scoring and design matrices are not model 

parameters, but are critical for model specification because they map items and scores to 

dimensions.) Thus, student responses to each item are directly or indirectly explained by 

multiple latent variables. Determining the probability of a correct response (or a specific 

category response in a partial credit item) is no longer as straightforward as the difference 

between ability and difficulty, but now is dependent on multiple ability parameters and 

the relationships between them, in addition to the differences between the ability 

parameters and item difficulty parameters. Thus, two examinees with the same ability 𝜃௡ଵ 

on dimension 1 may have different response probabilities on an item measuring 

dimension 1 if they have different abilities on the other, related dimensions.  

Although multidimensional Rasch models are not as commonly used in 

educational research as unidimensional variations of the Rasch model, the MRCMLM 
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has been successfully used on assessments covering multiple related topics or skills 

(Briggs & Wilson, 2003; Liu, Wilson, & Paek, 2008; Paek, Peres, & Wilson, 2009). In 

addition to mitigating the theoretical and technical drawbacks associated with using a 

unidimensional analysis when assessment data has a more complex underlying structure, 

the MRCMLM also provides valuable refined information about the examinees’ specific 

patterns of strength and weakness (Briggs & Wilson, 2003; Liu, Wilson, & Paek, 2008), 

provides unattenuated estimates of the correlation between dimensions (Briggs & Wilson, 

2003), and produces ability estimates that have high utility as subscores (Dwyer, 

Broughton, Yao, Steffen, & Lewis, 2006).   

ConQuest software (Adams, Wu, & Wilson, 2015), version 4, was used to 

estimate the MRCMLM. A marginal maximum likelihood (MML) estimation method 

was used. In contrast to a joint maximum likelihood (JML) estimation method, in which 

the person and item parameters are estimated concurrently, MML estimation means that 

the item parameters are estimated first under an assumed normal population distribution 

of ability (de Ayala, 2009). If the examinee population is non-normal, then estimates may 

not be representative of their true values; however, in general MML estimation produces 

parameter estimates with less bias than JML estimation, especially for tests with a small 

number of items.  

NGSS assessment dimensionality. To determine the dimensionality of an NGSS-

aligned science assessment, student response data from two alternative scoring rubrics 

was analyzed using unidimensional and multidimensional Rasch models. Model-data fit 

was compared across the proposed scoring rubrics and dimensional structures. 

Presumably, the best-fitting model is the one most consistent with the internal structure of 
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the assessment; therefore, results of this analysis tell us about the relationships among the 

three specific aspects of science learning assessed (Structure of Matter; Engaging in 

Argument from Evidence; and Scale, Proportion, and Quantity), and the effect that 

scoring decisions have on this relationship. The accuracy of the comparison of different 

dimensional structures based on model fit is high (> 95%) for sample sizes larger than 

100, even when the correlations between dimensions are large (> 0.75) (Harrell & Wolfe, 

2009). In the present study, the overall sample size is N = 369, and the sample sizes for 

individual items range from N = 92 to N = 310. Therefore, it is likely that model 

comparisons will provide an accurate identification of the most appropriate dimensional 

structure.  

The unidimensional and multidimensional frameworks imply different theoretical 

structures for the underlying construct. Under a unidimensional interpretation, student 

responses on assessment tasks related to a core idea, practice, and crosscutting concept 

may be explained by the same underlying latent trait (e.g., overall science ability). This 

means that items measuring all three aspects of science learning can be analyzed together 

on a single scale without misrepresentation or loss of information related to additional 

explanatory latent variables. A unidimensional analysis is the most parsimonious, and 

thus is the most desirable when supported by the data. If the data do not support the 

unidimensionality assumption, then item and person parameter estimates will be biased 

(Folk & Green, 1989).  

A multidimensional approach, on the other hand, implies that the measured core 

idea, practice, and crosscutting concept are not explained by the same underlying latent 

trait, but are actually separate, related constructs, each of which directly or indirectly 
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contributes to student performance on science assessment tasks. A multidimensional 

Rasch scale can be estimated consecutively or simultaneously. Using a consecutive 

approach (Davey & Hirsch, 1991), multiple subscales are acknowledged, but the 

subscales are assumed to be uncorrelated and parameters for each dimension are 

estimated separately. If simultaneous estimation is used, the multidimensional Rasch 

model both accounts for and utilizes covariation between multiple dimensions when 

producing person and item estimates (Briggs & Wilson, 2003). In this study, 

simultaneous estimation will be used, as it reduces the error in person estimates when 

dimensions are correlated, compared to a consecutive approach (Adams, Wilson, & 

Wang, 1997).  

The NRC framework and the NGSS specify three dimensions which correspond 

to distinct entities, with clear and distinguishable definitions and separate sets of learning 

progressions, but they also describe a vision for science education where 

“students…actively engage in scientific and engineering practices and apply crosscutting 

concepts to deepen their understanding of the core ideas in these fields.” (Committee on a 

Conceptual Framework for New K-12 Science Standards, 2011, p. 9).  Thus, although 

they are defined separately, the three dimensions of science learning “must be woven 

together.” (p. 29). This description implies that the writers of the NRC framework and the 

NGSS conceived of a multidimensional relationship among core ideas, science and 

engineering practices, and crosscutting concepts, such that the three dimensions are 

separate but related entities. This implication is further supported by language employed 

in the standards themselves, which explicitly refer to three dimensional learning (NGSS 

Lead States, 2013), and this language is repeated in many subsequent publications (e.g., 
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Pellegrino, et al., 2014). Therefore, the use of a multidimensional measurement model is 

supported by the description of the structure of the NRC framework and NGSS. This 

study investigates whether this three-dimensional structure is also empirically supported 

by the results of an elementary science assessment about matter.  

Data collection procedures 

Cognitive interviews – 1st round. 

 Sample. To investigate the effect of multidimensional scaffolding on student 

response processes, 30 items underwent a cognitive interview process with 26 fourth-

grade students from a suburb of Boston. Students were volunteers from 4 elementary 

classrooms in 2 elementary schools, and were recruited by their classroom teacher. All 

cognitive interview participants were current or previous participants in the fourth-grade 

Inquiry Project curriculum.  

 The school district was chosen for participation in this study because of their 

affiliation with a larger NSF-funded project14 at TERC, which this research supported. 

During the 2015-2016 academic year, 8.2% of students were classified as economically 

disadvantaged, compared to 27.4% of students statewide. The district outperformed the 

overall Massachusetts proficiency rate for all subjects and grade levels on the 2015 state 

assessments (Massachusetts Department of Elementary and Secondary Education, 2016). 

Therefore, it is unlikely that the students who participated in this study are representative 

of the broader population of elementary students in the United States.  

                                                           
14 That project, VideoReView, is the collaborative work of TERC, intuVision, Boston College, and Boston 
area teachers and supported by funding from the National Science Foundation, grant #1415898. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the authors 
and do not necessarily reflect the views of the National Science Foundation. 
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Items. In order to minimize the amount of time required from each student, the 

students encountered only 5 items throughout the course of an interview. Items were 

distributed across students such that each of the 30 items was used in at least 4 student 

interviews. Each student encountered at least one item from all of the possible 

multidimensional scaffolding variations (i.e., at least one single-prompt explicit 

multidimensional item, one multiple-prompt explicit multidimensional item, and one 

single-prompt implicit multidimensional item). Furthermore, students encountered a 

maximum of one version of an item from a particular task context to maintain 

independence of observations and eliminate the possibility of a learning effect. Item 

presentation was counterbalanced across students so that the same item content and/or 

multidimensional scaffolding variation did not consistently lead or conclude an interview 

session.  

Procedure. Cognitive interviews took place during the students’ regular class 

time. Interviews were conducted individually in a quiet location proximal to the students’ 

classroom. Each student encountered one item at a time. First, the student was given the 

opportunity to silently read an item and provide a written response. Students were asked 

to notify the researcher when they finished responding. After they completed their 

response, the verbal interview began. The interview protocol can be found in Appendix 

A. The researcher asked the student a series of standardized questions about their 

understanding of the assessment task, the language of the item, and the reasoning 

underlying their response. If a student’s verbal or written response was at any point 

unclear or surprising, the researcher followed up with additional, unscripted questions 

asking the student to elaborate. Once the student finished the verbal interview for an item, 
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they were given the next item and asked to silently read and provide a written response. 

The written and verbal portions of the interview proceeded iteratively until all 5 items 

had been administered. This took about 30-40 minutes per student.  

 The researcher recorded the amount of time required by the student to complete 

each item, from when the student first began reading to when they signaled that they had 

completed their written response. Student verbal responses were recorded with an audio 

recorder on the researcher’s mobile phone. Audio files were initially saved to the phone’s 

internal storage, then moved to a secure server and deleted from the phone. Student 

written responses to the assessment items were also collected for analysis and destroyed 

after being scanned to a secure server.  

Cognitive interviews – round 2. 

 Sample. To investigate the effect of response format on student response 

processes, 28 additional items underwent a cognitive interview process with 37 additional 

fourth-grade students. Students were volunteers from 3 elementary classrooms in 3 

elementary schools in the same school district, and were recruited by their classroom 

teacher. One of the schools that participated in Round 1 of the cognitive interviews also 

participated in Round 2, but the sample of students participating in the first and second 

rounds of cognitive interviews did not overlap. Again, all participants were current or 

previous participants in the fourth-grade Inquiry Project curriculum.  

 Items. Twenty-eight items were tested. The items were distributed across students 

as in the first round, such that students encountered a variety of levels of 

multidimensional scaffolding and response format in different item contexts, and the 

order of presentation was counterbalanced across students. The items used in this round 
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included a subset of the 30 items used in the previous round of cognitive interviews 

(revised based on student feedback), and corresponding selected-response versions of 

these items. During the cognitive interviews, students who saw the selected-response 

variation of a multiple-prompt multidimensional item were asked to complete an open-

ended argument prompt followed by a selected-response version of the same prompt. 

Students who saw the selected-response variation of a single-prompt implicit 

multidimensional item were asked to complete an open-ended version of the prompt 

followed by a selected-response version of the same prompt, and then another prompt 

which explicitly cued the student to provide a written argument. The final prompt was 

only administered if the student did not provide a written argument as part of the first 

open-ended prompt. For both selected-response item variations, students were not 

allowed to go back and change an answer once they saw the response options, and any 

attempt or desire to change a previous answer was recorded.  By asking students to 

complete both open-ended and selected-response versions of the same prompts, a direct 

comparison between the response formats was enabled.  

 Procedure. The cognitive interview procedure was largely identical to the 

procedure used in the first round of cognitive interviews. The interview questions focused 

on additional issues of concern, including some related to the response formats (e.g. why 

they picked one answer over the others, whether they understand any new words/phrases, 

or the meaning of distractors).  

Item revision and selection for pilot test. Items underwent revision at two stages 

in the research and development process. After the first round of cognitive interviews, 

interviews were transcribed and coded to reflect areas of misunderstanding or 
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confusion15. Subsequently, the items were revised to address any issues that were 

uncovered. For example, where student responses indicated that vocabulary was difficult 

to understand, item language was changed to clarify confusing terms or phrases. In 

extreme cases, tasks that did not provoke productive student responses were replaced or 

heavily revised. At this point, an additional selected-response version of each item was 

created for examination in the second round of cognitive interviews.  

Items underwent another round of revisions based on the results of the second 

round of cognitive interviews. This resulted in further changes to item language, revision 

of confusing or misinterpreted tasks, and replacement of item tasks that did not elicit 

informative responses. These revisions are important to the test development process: an 

iterative process of item development and revision improves the overall quality of all 

items, and ultimately leads to better test validity. 

Finally, student verbal and written responses from the first and second round of 

cognitive interviews informed the number and type of item variants included on the pilot 

test. Based on student responses to the cognitive labs, it was clear that items with explicit 

scaffolding resulted in more complete, evaluable student responses16. Therefore, the 

single-prompt implicit multidimensional item variant was excluded from the pilot test. A 

subset of the remaining item scenario and variant combinations were chosen for the pilot 

test, including some multiple-prompt explicit multidimensional items and some single-

prompt explicit multidimensional items, as well as some open response and some 

selected-response variants.   

                                                           
15 For more details on the coding and transcription process, see the Analysis Methods for research question 
1.  
16 For more details, see results of the first round of cognitive interviews in Chapter 3. 
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After item revisions were complete, one additional item scenario was created to 

fill in a perceived gap in the remaining items’ content coverage. Two versions of this 

scenario (items 9A and 9B) were included in the pilot test, even though these items did 

not go through the cognitive interview process described above.  

Pilot test.  

 Instrument. After the items were revised based on student feedback from the 

cognitive interviews, 11 item scenarios remained. Each scenario was used as the basis for 

1-2 item variants, resulting in 20 items. There were three types of item variants: open-

ended multiple-prompt explicit multidimensional items, selected-response multiple-

prompt explicit multidimensional items, and open-ended single-prompt explicit 

multidimensional items. Four scenarios were used as a common basis to compare 

response format, by holding the scaffolding level constant (multiple-prompt explicit 

multidimensional) and varying the response format (constructed-response or selected-

response). Five scenarios were used as a common basis to compare scaffolding levels, by 

holding the response format constant (constructed-response) and varying the amount of 

multidimensional scaffolding (multiple-prompt explicit multidimensional or single-

prompt explicit multidimensional). See Appendix F for all 20 item variations used in the 

pilot test. The 20 items were distributed across 5 test forms, with each test form 

containing 9-10 multidimensional items. It was estimated that most 4th grade students 

should be able to complete 9-10 items within a 45-minute class period, and teacher 

reports confirmed this, although in most classrooms a few students were given extra time 

to complete the test. Each test form included items with different amounts of scaffolding 

and different response formats, to facilitate the direct comparison of item function across 



102 
 

item variants. Two items (items 10 and 11) were held constant and included on all 5 test 

forms as linking items. Linking the test forms enabled the direct comparison of item 

variations from a common scenario. Separate variations of the remaining items were 

administered on different test forms, so that psychometric indicators of item function 

could be directly compared between pairs of items that share identical content/task 

context but with different response formats or amounts of multidimensional scaffolding.  

A matrix sampling approach was used to construct the test forms (Mislevy, 

Beaton, Kaplan, & Sheehan, 1992). Matrix sampling enhances the analysis of item and 

student performance by ensuring that all items can be scaled concurrently, regardless of 

whether they were taken by the same students. Each test form shared some items with 

each of the other test forms, including two items which were included on all forms. By 

using the common items as anchors, item and person estimates from multiple forms were 

concurrently calibrated on the same scale so that they are directly comparable. Although 

this method provides less precise estimates of student ability than an assessment where 

all students take the same test form, it allowed for the inclusion of a greater number of 

items on the pilot test. The distribution of scenarios and item variations across test forms 

can be found in Figure 3.2.  

Sample. The pilot test was administered to a sample of 369 fourth, fifth, and sixth 

grade students from public schools in Massachusetts and Vermont. According to 

Linacre’s recommendations for stable item calibration (1994), to obtain an item estimate 

with a 95% confidence interval within +/- ½ logit, sample size for each item should fall 

somewhere between 64 and 144 students. Because there were 5 evenly distributed test 

forms, each item was seen by ~148 students, which exceeds Linacre’s recommendation.  
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Information about sample composition with regard to grade level, school district, 

and matter-related educational experiences can be found in Table 3.1. Recruiting students 

with a variety of ages and previous matter-related educational experiences was a priority, 

as it provides information about the range of student performance at varying levels of 

knowledge/ability.  

Teachers were recruited for the sample by a state or district science administrator. 

As a small incentive for participation in the pilot test, teachers received feedback on their 

students’ performance and the research findings. Individual student responses were not 

identified to teachers, but instead the feedback focused on student performance in the 

aggregate.  

Procedure. The final test forms were administered to students during the time 

normally reserved for their science class. Teachers were asked to rotate all 5 test forms in 

their classrooms. Classroom teachers were responsible for test administration, and 

students were given at least one full class period (approximately 45 minutes) to answer 

all questions. Tests were administered in a paper-and-pencil format, and students were 

asked to respond directly on the test form. For any students who failed to complete all 

items within a single class period, the provision of extra time was at the discretion of the 

teacher. Teachers were asked to make a note of any issues encountered during test 

administration, including unusual disruptions, student questions about test items, extra 

time, and any other relevant concerns.  

Background characteristics. At the classroom level, information was collected 

about grade level, and whether the class has participated in the Inquiry Project  
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Scenario Item 
Item Variation Test Form 
1 2 3 1 2 3 4 5 

1 

1A X   X X    
1B   X   X  X 

2 

2A X   X X    
2B  X    X  X 

3 

3A X    X   X 

3B   X X   X  

4 

4A X    X   X 

4B  X  X   X  

5 

5A X   X  X   
5B  X   X  X  

6 

6A X   X  X   
6B   X  X  X  

7 

7A X     X X  
7B   X X    X 

8 

8A X     X X  
8B   X X    X 

9 

9A X      X X 

9B  X   X X   
10 10 X   X X X X X 

11 11 X   X X X X X 
Total Number of 
Items 20 11 4 5 10 9 9 9 9 

Figure 3.2. Distribution of item scenarios and variations across test forms. Item 
variations 1, 2, and 3 refer to open-ended multiple-prompt explicit multidimensional, 
selected-response multiple prompt explicit multidimensional, and open-ended single-
prompt explicit multidimensional, respectively.  
 

Table 3.1.  

Sample Composition  
Grade Level Massachusetts Vermont 
Grade 4 129 14 
Grade 5 93 119 
Grade 6 -  14 
   
Matter-related education   
3rd grade Inquiry Project 129 - 
3rd and 4th grade Inquiry Project 93 - 
No Inquiry Project - 147 
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curriculum. In order to protect the students’ identities, no individual demographic 

information was collected.  

Pilot Test Scoring. Students’ responses on all items were scored with two 

different rubrics. The first rubric was a multidimensional analytic rubric. An analytic 

rubric separates the evaluation criteria into distinct factors, and each factor is evaluated 

separately (Moskal, 2000). In this case, the “factors” were the assessment dimensions – 

Structure and Properties of Matter; Scale, Proportion, and Quantity; and Engaging in 

Argument from Evidence (see Chapter 1). The rubrics for each dimension provided a 

guide for matching student responses to the defined “levels” of the progress variables, 

and for assigning a corresponding numerical score. Each item was assigned three scores, 

one for each assessment dimension. To strengthen content validity, the analytic rubrics 

were independently reviewed by a curriculum expert before they were implemented. An 

example multidimensional scoring rubric is found in Figure 3.3.  

The second scoring rubric was a holistic rubric, which categorized student 

performance based on the overall science ability demonstrated by the response. Under the 

holistic scoring rubric, all components of a multidimensional response were scored 

together as a single aggregate. The holistic rubric contained a single set of descriptors, 

which integrate the specific criteria from the multidimensional analytic rubrics. Under the 

holistic rubric, a high score was assigned to student responses that demonstrate accurate 
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Figure 3.3. An example student response and scoring based on the 
multidimensional/analytic rubric. 
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scientific ideas, sound measurement principles, and valid arguments. A low score was 

assigned to student responses that demonstrate inaccurate scientific ideas, poor 

understanding of measurement, and invalid or nonexistent arguments. Mid-range scores 

were assigned to student responses that demonstrate some combination of high and low-

quality responses, with regard to the three assessment dimensions. Thus, the holistic 

rubrics account for response characteristics associated with the three underlying 

dimensions, but do not differentiate between the dimensions in scoring. Two curriculum 

experts offered input on scoring categories for the holistic rubric. An example holistic 

scoring rubric is found in Figure 3.4.  

Seven raters participated in scoring student responses to the pilot test items. To 

gain familiarity with the scoring rubrics, all raters participated in a training exercise in 

which they jointly examined several written responses until they reached a consensus 

about the appropriate score(s) for each response. Next, raters separately examined 

another set of student responses, continuing until they reached agreement on 2 or more 

consecutive responses. The raters were then released to score pilot test responses 

independently. All responses were scored by at least one rater, and approximately half of 

responses were scored by an additional rater to facilitate an examination of interrater 

reliability. All student responses were scored with the multidimensional rubric first, and 

then the holistic rubric. Scores for all rubrics, students, items (including all item variants), 

and raters were collected in a single dataset.
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Figure 3.4. An example student response and scoring based on the holistic rubric. 
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Analysis Methods 

Research question 1: To what extent does multidimensional scaffolding affect 

the quality of information gained from students’ responses to multidimensional 

assessment items? Research question 1 examines the viability of items with varying 

amounts of multidimensional scaffolding for gathering information related to multiple 

dimensions of science learning. Analysis of the research question prioritizes the 

following evaluative criteria as crucial pieces of evidence in support of multidimensional 

scaffolding: 

a. To what extent do students understand the intended task? 

b. To what extent do student responses address all of the intended 

dimensions? 

c. How does response time vary across items with different amounts of 

multidimensional scaffolding, if at all? 

d. How well can the items be reliably scored? 

e. How do items with different amounts of multidimensional scaffolding 

vary in difficulty (as estimated using the Rasch model)? 

f. How well do items with different amounts of multidimensional 

scaffolding fit the Rasch model? 

Each of these criteria is addressed separately, below. 

Student understanding of the task. In order for assessment items to elicit 

information on multiple dimensions of science learning, it is critical that students are first 

able to understand the tasks required of them, especially when the tasks are complex and 

multifaceted (i.e., single-prompt and multiple-prompt explicit multidimensional items). 



110 
 

Therefore, the interview recordings were transcribed and perused for evidence of task 

understanding. Student comments indicative of misunderstanding or confusion about the 

assessment task were flagged and recorded. The different issues were grouped together 

by similarity and summarized, resulting in emergent qualitative categories describing 11 

different sources of student confusion. This sort of descriptive coding procedure has been 

used previously to analyze cognitive interview data from other assessments (e.g., Howell, 

et al., 2013). After coding was completed, the number of students in each category was 

summarized and compared across individual items and aggregated to look at the 

distribution of task understanding across groups of items with differing amounts of 

multidimensional scaffolding. Although the sample size for each item is small (N as low 

as 4, in some cases), this information was cautiously interpreted as evidence of the 

relationship between the amount of multidimensional scaffolding and student 

understanding of the intended task. 

Students address all relevant dimensions. In order to classify a student response 

as exhibiting proficiency on multiple assessment dimensions, the item must elicit student 

responses that provide information relevant to all dimensions. Using a qualitative coding 

procedure, students’ written responses to the cognitive interview items were analyzed to 

determine whether a student’s responses refer to any or all of the dimensions intended by 

the item prompt. For each item, the author identified whether or not each student’s 

response provided sufficient information to accurately evaluate their proficiency on the 

Disciplinary Core Idea, Science and Engineering Practice, and/or Crosscutting Concept 

elicited by the item stimulus. In addition to providing information about how well the 

item functions, this exercise also informed preliminary rubric development for pilot test 
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scoring. The percentage of students providing responses that demonstrate some level of 

proficiency on each of the three dimensions were summarized for all tasks, and 

aggregated across groups of items with differing amounts of multidimensional 

scaffolding. Again, sample size for each item is small, but these summaries provide 

information to support inferences about the utility of multidimensional scaffolding to 

gather information relevant to multiple dimensions.  

Pilot test data was also examined to determine how frequently students addressed 

each of the three dimensions for each of the different item scaffolding variations. When 

the multidimensional scoring rubric was used, raters were given the option to assign a 

score of “Missing on [Dimension]” to a particular item and dimension. For multiple-

prompt items, this occurred when a student left one or more dimensional sub-prompts 

blank, but provided an answer to at least one of the sub-prompts within an item context. 

For single-prompt items, this occurred when a student provided a response that did not 

provide any information about their ability on one or more of the assessment dimensions. 

Raters were instructed to mark a response as “Blank on All Dimensions” if the student 

did not respond to any part of the prompt/sub-prompts. “Missing on [Dimension]” and 

“Blank on All Dimensions” responses were counted, and the percentage of both types of 

missing responses was aggregated and compared across all multiple-prompt and single-

prompt items.  

Response time. Time requirements are an important consideration for any 

assessment, as children’s instructional time is valuable and lengthy assessments may 

fatigue or overburden them. Comparing the length of time for completion across items 

facilitates test construction that considers the costs and benefits associated with 
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lengthening the students’ testing burden. Based on recorded observations from the 

cognitive interviews, average response time was calculated for each item and summarized 

across groups of items with differing amounts of multidimensional scaffolding. Due to 

the small sample size of students encountering each cognitive interview item, statistical 

comparison of response time (e.g., t-tests) are likely to lack the power necessary to 

observe differences between different classes of items. Therefore, average response time 

for different groups of items were compared holistically and cautiously interpreted.  

Scoring reliability. Scoring reliability is essential for valid interpretations of 

assessment performance. Whenever subjective judgment is involved in scoring there is 

the potential for measurement error. Information about interrater reliability provides an 

indication of how much measurement error is introduced during the scoring process 

(AERA, 1999). Examining the scoring reliability of items with different levels of 

multidimensional scaffolding provides crucial evidence to support the choice of reliable 

item types in the final instrument. After pilot administration and scoring, each item’s 

interrater reliability was assessed by calculating the intraclass correlation coefficient 

(ICC; Shrout & Fleiss, 1979). The specific form of the ICC used was what Shrout and 

Fleiss refer to as ICC(2,1) (p. 423), which is the reliability of a single rating estimated 

from a two-way random-effects analysis of variance. This statistic is appropriate when 

each observation is rated by the same k raters, who are assumed to be a sample from a 

larger population of possible raters. The ICC ranges from 0 to 1 and indicates the degree 

of similarity among ratings, with high values signifying that interrater reliability is good. 

The ICC was examined for each individual item, and items with a high proportion of 

unique variance (ICC<~0.7) were flagged for review.  
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Since the ICC is a correlation coefficient, the distribution of the sample 

correlation coefficients will always be non-normal (Fisher, 1915). Therefore, all ICC’s 

were transformed to a normal distribution using Fisher’s Z-transformation in order to 

compute the average ICC for all items within a multidimensional scaffolding or response 

format group.  

Item difficulty. Pilot test data were also used to examine differences in item 

difficulty among items with differing levels of multidimensional scaffolding. Student 

performance data for all 64 items (20 item contexts with 3-4 dimensional sub-prompts 

per item context) was scaled using ConQuest 4 (Adams, Wu, & Wilson, 2015). Marginal 

maximum likelihood estimation was used to generate item difficulty estimates and fit 

statistics. Wright maps were used to visually compare the distribution of item thresholds 

for a) multiple-prompt explicit multidimensional and single-prompt explicit 

multidimensional versions of the same items, and b) selected-response and open response 

versions of the same items, and patterns in the relative difficulty of different item variants 

were observed.  

Item fit. Pilot test data was also used to examine item fit across each group of 

items with differing levels of multidimensional scaffolding. Item fit is a measure of how 

well the overall pattern of item responses conforms to the requirements of the Rasch 

model. In particular, item fit statistics provide an indicator of the size of the item 

residuals (deviations between observed and expected responses). For this analysis, 

weighted mean square (MNSQ) statistics generated by ConQuest 4 (Adams, Wu, & 

Wilson, 2015) were examined as indicators of item fit. The impact of individual outliers 

is attenuated in the weighted mean square, so it was used in place of the unweighted 
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statistic. Items with consistently large residuals generate a large weighted mean square 

statistic, indicating that actual student responses deviated significantly from expected. 

Items with consistently small residuals generate a small weighted mean square statistic, 

indicating that actual student responses conformed to the expected responses. In general, 

weighted mean square values between 0.75 and 1.33 are considered acceptable. A t-

statistic is also generated, which indicates how likely it is to observe a given weighted 

mean square statistic, based on a normal distribution. The weighted mean square and t-

statistics were examined in conjunction, and items with both a) weighted mean square 

values falling outside the range of 0.75 to 1.33, and b) t-statistics with absolute values 

larger than 1.96 (i.e. mean square with less than a 5% chance of observation) were 

flagged. The frequency of flagged items examined across groups of items with differing 

levels of multidimensional scaffolding, informing a holistic evaluation of relative item fit 

for each group.  

Research question 1a: Does the impact of scaffolding and/or response format 

vary for students of different abilities? Research question 1a examines the effect of 

assessment scaffolding and response format on student performance for students of 

differing abilities. Analysis of the research question examines the following evaluative 

criterion: 
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a. How do student response rates to the scaffolding variations differ for 

students of different abilities?  

b. How do differences in interrater reliability on the item variations relate to 

student ability?  

c. How do differences in item estimates between the item variations relate to 

student ability level? 

d. How do differences in item fit on the item variations relate to student 

ability? 

This criterion is addressed, below:  

 Difference in missing responses for students of varying abilities. The sample of 

students was divided into three groups based on ability – high, medium, and low – as 

measured by the WLE estimates generated by ConQuest. Within each of these ability 

groups, the percentage of responses classified as “Missing on [Dimension]” and “Blank 

on All Dimensions” was calculated for each assessment dimension and scaffolding 

variation. This was done by counting the total number of responses scored as “Missing on 

[Dimension]” or “Blank on All Dimensions” on a particular item and dimension, 

summing across all item variants of the same type (i.e., all multiple-prompt items and all 

single-prompt items), and dividing by the number of possible responses to all items of 

that type (calculated based on the number of students who saw each item according to the 

assignment of test forms). Then, the percentage of missing responses was compared 

across low, medium, and high ability students on single-prompt and multiple-prompt 

items. The difference between a subgroup’s response rate to single-prompt and multiple-
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prompt items were attributed to the difference in amount of scaffolding, and variations in 

this difference were examined across the different ability groups. 

 Differences in interrater reliability among low, medium, and high ability 

students. The same ability subgroups were used as those in the previous analysis. In those 

subgroups, only a subset of responses were double scored. Based on these responses, the 

intraclass correlation coefficient (ICC) was calculated for each item. ICC’s were 

transformed via Fisher’s z-transformation, and then averaged across each item variation 

(single-prompt, multiple-prompt, constructed-response, and selected-response). These 

averages were compared across item variations and subgroups.  

 Differences in item difficulty across low, medium, and high ability students. 

Each of the ability subgroups were reanalyzed with a multidimensional Rasch model. 

This resulted in a separate item/threshold estimate for each ability group. As in the 

previous analysis, differences in item difficulty among item variations with different 

levels of scaffolding and response formats were assessed by examining trends in item 

difficulty on an item map. Differences in item difficulty between variations were 

examined, and these differences were then compared to see whether they held constant 

across ability groups.  

 Differences in item fit across low, medium, and high ability students. Based on 

the results of the subgroup Rasch analysis, item fit was examined again to determine 

whether any patterns in misfit were related to student ability. Average fit statistics 
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(weighted mean square and T-statistics) were computed for each item variation and 

subgroup.  

Research question 2: To what extent do item response formats affect the 

quality of information gained from students’ responses to multidimensional 

assessment items? Research question 2 deals with the efficacy of selected-response and 

open-response item formats for gathering information related to multiple dimensions of 

science learning. Analysis of the research question prioritizes the following evaluative 

criteria as crucial pieces of evidence in support of each item response format: 

a. To what extent do students understand the intended task? 

b. How does response time vary across the response formats? 

c. How well can the items be reliably scored? 

d. How do selected-response and constructed-response items differ in 

difficulty (as estimated using the Rasch model)? 

e. How well do selected-response and constructed-response items fit the 

Rasch model? 

Each of these criteria is addressed separately, below. 

Student understanding of the task. Student understanding of the task was 

measured during the second round of cognitive interviews, this time with a focus on 

uncovering differences in task understanding that arose when a selected-response format 

was utilized. Qualitative codes were applied to the interview transcripts and subsequently 

categorized and summarized, as in the analysis for Research Question 1, except with a 

focus on examining differences across response formats.  
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Response time. Response time was also used to provide information about the 

temporal burden associated with each response format. As in the analysis for research 

question 1, average response time was calculated for each item and summarized across 

each response format.  

Scoring reliability. After the pilot test was administered, student responses were 

scored. All responses were scored by raters, including responses to selected-response 

items. The intraclass correlation coefficient (ICC) was calculated as a measure of scoring 

reliability for all assessment items. The ICC was averaged across all selected-response 

and open response items via Fisher’s Z-transformation, and scoring reliability was 

compared. As the scoring reliability of an open-ended item decreases, selected-response 

alternatives become more attractive options to maintain an instrument’s reliability.  

Item difficulty. Pilot test data was also used to examine differences in item 

difficulty among selected-response and open-response item formats. Identical to the item 

difficulty analysis for Research Question 1, item difficulty estimates were compared by 

visually examining the placement of matching thresholds from selected-response and 

open-response versions of an item on a Wright map, and looking for patterns in item 

difficulty among the two variants. As above, item difficulty was also examined across 

subgroups of students with low, medium, and high ability.  

Item fit. Pilot test data was also used to examine item fit across each of the item 

response formats. As in the analysis for Research Question 1, weighted mean square and 

the associated t-statistic from the model output provided by ConQuest 4 (Adams, Wu, & 

Wilson, 2015) were examined as indicators of item fit. As above, fit was examined again 

across subgroups of students with low, medium, and high ability.  
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Research question 3: To what extent do unidimensional and 

multidimensional scoring and modelling approaches affect the empirical 

relationships among the 3 dimensions of science learning (assuming that such 

relationships exist)? Research question 3 deals with selecting the appropriate scoring 

method and psychometric model to produce estimates of student performance. The Next 

Generation Science Standards (NGSS Lead States, 2013), on which instrument 

development was based, have an explicit three-dimensional structure. The construct 

definition therefore implies that student performance should be scored and scaled 

multidimensionally. This assumption was tested by comparing three different scoring 

rubric/ measurement model combinations: 1) a multidimensional scoring rubric combined 

with a multidimensional measurement model; 2) a multidimensional scoring rubric 

combined with a unidimensional measurement model; and 3) a holistic (unidimensional) 

scoring rubric combined with a unidimensional measurement model. The resulting model 

fit statistics provide information about the underlying structure of an NGSS-based 

elementary science assessment, and consequently, the most appropriate way to score and 

interpret student responses.  

Prior to examining the dimensionality of the multidimensional and holistic 

datasets, several different model variations were compared in order to find the most 

parsimonious baseline model that fit all item parameters, step parameters, and rater 

effects. Each of the three dimensional subtests was initially analyzed as its own scale. 

Different raters scored each item, meaning that comparisons between items that utilized 

different scaffolding and response formats may have been compounded by rater effects. 

In particular, the Argument items were affected by low interrater reliability. In order to 
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make comparisons among the different scaffolding and response format variations, a 

multifaceted model was employed to account for differences in raters’ application of the 

Argumentation rubric. The Matter and Scale, Proportion, and Quantity dimensions tended 

to have much higher interrater reliability; therefore, a multifaceted approach was not 

necessary on these subtests. ConQuest 4 software (Adams, Wu, & Wilson, 2015) was 

used to estimate all models. ConQuest uses the MRCMLM (Adams, Wilson, & Wang, 

1997) to concurrently scale both dichotomous and polytomous items on one or more 

assessment dimensions. ConQuest was also used to model rater effects using multifaceted 

models.  

To evaluate dimensionality, scores from the multidimensional scoring rubric were 

scaled twice: (1) a unidimensional scale representing students’ overall science learning, 

(2) a between-item multidimensional analysis of three NGSS-aligned subscales as related 

dimensions, in which student performance on one dimension contributes information to 

the estimation of their ability on the other dimensions. Scores from the holistic scoring 

rubric were scaled once under a unidimensional model. Person parameter estimates were 

subsequently generated using both weighted maximum likelihood (WLE) (Warm, 1989) 

and Bayesian expected a posteriori (EAP) estimation procedures. In multidimensional 

IRT models, WLE’s have been shown to display less bias than maximum likelihood 

person ability estimates (MLE’s) and EAP estimates, although EAP estimates are also 

associated with smaller standard errors (Wang, 2015). Therefore, both WLE’s and EAP’s 

were examined at various stages in the analysis.  

For each model, ConQuest computed parameter estimates, standard errors, and fit 

statistics for both item difficulty and person ability, as well as dimensional means, 



121 
 

variances, and covariances (Adams, Wu, & Wilson, 2015). All of these indicators were 

used to provide evidence supporting the underlying structure of the instrument.  

Although the main purpose of Research Question 3 is to examine the underlying 

structure of the assessment and its relationship with scoring decisions, the analysis takes 

into account several indicators of technical quality of the item and person estimates, in 

addition to a dimensional analysis of the overall instrument. This is because the quality of 

the items and the interpretations derived from student responses are a critical component 

of any further argument about the instrument’s internal structure (Chapelle, Enright, & 

Jamieson, 2010; Peoples, 2012). Structural validity evidence about the instrument as a 

whole is irrelevant if the function of individual items and/or interpretability of person 

estimates is poor. Thus, analysis of Research Question 3 prioritizes the following 

evaluative criteria as crucial pieces of evidence about the instrument’s structural validity: 

a. Which model demonstrates best fit, according to the deviance statistics 

reported by ConQuest 4 software?  

b. How well do the items fit the scale(s) under each model? 

c. What are the correlations between ability estimates from the NGSS’s 3 

dimensions of science learning?  

d. How well do student ability estimates fit each model? 

e. How do the covariances between the NGSS dimensions of science 

learning vary for students of different ability levels? 

f. How do the reliability estimates vary for each scale and subscale? 

g. How precise are item difficulty estimates under each model? 

h. How precise are person ability estimates under each model? 
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Model fit. Using the multidimensional scoring rubric, the unidimensional model is 

nested within the multidimensional model. This means that the difference in each 

model’s deviance statistic (G2) can be referred to a Chi-squared distribution with the 

appropriate degrees of freedom (Adams, Wilson, & Wang, 1997). The degrees of 

freedom used to calculate the Chi-squared critical value is based on the difference in the 

number of parameters in each model, and a statistic larger than the critical value indicates 

a significant difference in model fit. A smaller deviance statistic indicates better model-

data fit; therefore, if the difference between two models’ deviance statistics is statistically 

significant, we can conclude that the model with the smaller deviance statistic fits the 

data better. Overall model fit is an indicator of the degree to which the assumptions of the 

hypothesized psychometric model hold up for a particular set of test data, and thus 

provides information about the overall appropriateness of a unidimensional or 

multidimensional interpretation of student responses.  

Note that model fit can only be directly compared for models based on the same 

dataset. Thus, the fitted model based on data from the holistic (unidimensional) scoring 

rubric could not be directly compared to either of the other models by comparing the 

difference in model deviances (G2) to the Chi-squared distribution.  

An overall assessment of model fit was based on triangulation of the evidence 

provided by all of the previous analyses. 

Item fit. Item fit was examined across the three hypothesized models. As in the 

analyses for Research Questions 2 and 3, weighted mean square fit statistics and their 

associated t-statistics were examined as indicators of item fit. Whereas the previous 

analyses focused on comparing item fit across different groups of items with different 
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features, this analysis focuses on the overall fit of all items within each of the 

hypothesized models.  

Correlation between NGSS dimensions. Correlations between latent dimensions 

are estimated directly during estimation of the multidimensional model (Adams, Wilson, 

& Wang, 1997). Multidimensional correlations are more accurate than dimensional 

correlations from a joint unidimensional analysis, because the joint unidimensional 

correlations are attenuated by measurement error (Adams, Wilson, & Wang, 1997; Briggs 

& Wilson, 2003). A moderate correlation between dimensions improves the precision of 

the person and item estimates; however, a high correlation implies that the dimensions 

may not be distinct after all (Adams, Wilson, & Wang, 1997). Therefore, correlations 

between the three latent dimensions of the NGSS, as reported by ConQuest 4, were 

examined. The sizes of the correlations serve as evidence of the appropriateness of a 

unidimensional or multidimensional interpretation of assessment data. Furthermore, 

correlations were also examined among subgroups of low, medium, and high ability 

students to see whether the strength of the relationships between dimensions varied 

depending on student ability.  

Person fit. Similar to item fit, person fit statistics were also reported for each case 

estimate (or in the case of the multidimensional model, set of case estimates). Person fit 

was examined across the three hypothesized models. Mean square statistics were 

examined, and cases with values less than 0.7 or more than 1.3 were flagged as misfitting 

(Wright & Linacre, 1994), and the numbers of misfitting cases were compared across all 

three models.  
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Heteroscedasticity/homoscedasticity of covariances between dimensions. One 

more analysis was conducted to explore the nature of the relationship between the model 

dimensions; specifically, whether it is homoscedastic or heteroscedastic. Previously, 

student ability estimates from multidimensional assessments have been shown to have 

heteroscedastic interactions (Brown, Castle, & Chappe, 2014). Heteroscedasticity implies 

that the relationship among dimensions differs at different levels of each construct; for 

example, that the relationship among the dimensions is stronger among students with 

lower ability estimates on the three dimensions and weaker among students with higher 

ability estimates. Heteroscedasticity indicates a potential discrepancy between the 

intended construct and the actual construct being measured, and thus may affect the 

validity of interpretation of student estimates. To examine this issue, two-dimensional 

scatterplots were generated to plot estimated student abilities with respect to pairs of 

dimensions. These scatterplots were examined for evidence of heteroscedasticity, which 

is often indicated by differences in the amount of variation at different points along the 

trend line.  

Reliability. Reliability statistics provide a concise summary of the amount of error 

in the estimates produced by a test (Wilson, 2005). Theoretically, reliability measures 

how consistently the instrument classifies examinees (Russell & Airasian, 2012). 

Instruments with high reliability consistently provide a similar measure or score for an 

individual every time they encounter the instrument.  

The separation reliability coefficient is a measure of internal consistency that was 

used to evaluate scale reliability. The separation reliability coefficient is  

𝑟 =
𝑉𝑎𝑟(𝜃)

𝑉𝑎𝑟(𝜃෠)
, 
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where 𝑉𝑎𝑟(𝜃) is the variation in examinees’ locations explained by the model, and 

𝑉𝑎𝑟(𝜃෠) is the total observed variation in examinees’ estimated locations (Wilson, 2005). 

The difference between 𝑉𝑎𝑟(𝜃) and 𝑉𝑎𝑟(𝜃෠) is the amount of variance attributable to 

error. High values of the separation reliability coefficient (greater than ~0.80) indicate 

that the amount of error variance in student ability estimates is low.  

Reliability tends to decrease as the number of items contributing to a scale 

decreases; therefore, it is usual for the reliability of multidimensional subscales to be 

lower than the reliability of a unidimensional scale (Briggs & Wilson, 2003). ConQuest 

produces separation reliability estimates computed from both the WLE and EAP person 

ability estimates. Although WLE estimates are less biased than Bayesian estimates 

(Warm, 1989), the EAP estimates tend to be more precise estimates of student ability 

(Wang, 2015) and thus will likely have a higher reliability. The WLE and EAP separation 

reliability coefficients were compared across both models to investigate the decrement in 

reliability associated with separating science learning into three NGSS-aligned subscales. 

The size of the difference between WLE and EAP reliability was also taken into account 

when making recommendations on the most appropriate person ability statistic for the 

final model. Finally, scale reliability was also evaluated across subgroups of low, 

medium, and high ability students to see whether there was any relationship between 

student ability and scale reliability.  

Precision of item difficulty estimates. An item difficulty statistic is only an 

estimate, meaning that there is some uncertainty about the true item location. The degree 

of uncertainty is captured in the standard error of measurement (Wilson, 2005). The size 

of the standard error is an indicator of how accurately the item is able to place examinees 
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on the scale. In fact, the inverse of the standard error is a statistic referred to as the item 

information function, signifying that it is an indicator of the amount of information that 

an item contributes to an examinee’s score (de Ayala, 2009). In this analysis, the standard 

errors of the item difficulty estimates were examined across each of the modeling 

approaches in order to evaluate the extent to which the scoring rubric and model 

dimensionality affect the standard errors.  

 Precision of person ability estimates. Standard errors of the person ability 

estimates were examined across all models. In the multidimensional model, the subscales 

have fewer items than when all items are placed on a unidimensional scale. Tests with 

smaller numbers of items tend to have larger errors (Briggs & Wilson, 2003). Although 

information about the relationship between the dimensions should partially mitigate this 

phenomenon, there remains some concern about the amount of error in the 

multidimensional person estimates compared to that in the unidimensional person 

estimates. Therefore, WLE and EAP ability estimates from all models were examined in 

order to investigate the extent of the increase in error of the multidimensional estimates 

relative to the unidimensional estimates.  

Research question 4: How well does the assessment function in its intended 

purpose of measuring student proficiency on the construct(s) defined by the Inquiry 

Project curriculum? Research question 4 addresses some remaining validity 

considerations, including the alignment between item estimates and the three 

hypothesized underlying constructs, the functioning of individual items as measured by 

fit statistics, alignment between items and student ability, DIF, and differences in student 
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performance based on grade level and Inquiry Project participation. The following 

criteria provide information about these aspects of assessment validity: 

a. What is the range of item difficulty estimates under each model? 

b. What is the range of person ability estimates under each model?  

c. To what extent does the order of item difficulty estimates align with the 

hypothesized ordering of levels in the construct map? 

d. How well do assessment items fit the item response model?  

e. How precise are student ability estimates on each dimension? 

f. Does item difficulty vary for students in different subgroups? Specifically, 

are there differences in item difficulties depending on grade level or 

whether students participated in the Inquiry Project curriculum?  

g. How are Inquiry Project participation and grade level related to student 

performance? 

Each of these criteria is addressed separately, below. 

Range of item difficulty estimates. Item difficulty estimates and person ability 

estimates were evaluated concurrently for each model with a Wright map. The range of 

item difficulty estimates indicates whether an assessment provides reliable estimates of 

ability at all levels of the construct. Items are most informative for an examinee when 

their locations are in the neighborhood of the examinee’s ability (Wilson, 2005). 

Therefore, to adequately measure the full range of examinees there should be a number of 

items located in each region of the scale. A wide range of item difficulty estimates offers 

additional benefits for measurement, including the ability to capture growth over time. 

Furthermore, the visual map of item difficulty estimates can be compared with the 



128 
 

predicted order of item difficulty based on the theory set forth in the construct maps, 

allowing researchers to verify the theorized construct (Wilson, 2005).  

This analysis focuses in particular on the effect of separating the dimensions when 

a multidimensional scoring rubric is used. One obvious consequence of defining a 

measurement model with different subscales is that the number of items on each scale is 

only a fraction of the total number of items. A substantial decrease in number of items 

may lead to exposure of gaps on the individual subscales. Ideally, the range and 

distribution of item estimates on each subscale is preserved when the dimensions are 

separated; however, this was not anticipated. Evaluation of item difficulty compared the 

range of item difficulty estimates under the unidimensional model with the ranges of item 

difficulty under the multidimensional model, to evaluate whether the latter model lost 

sensitivity at the extremes of the measurement scales.  

Range of person ability estimates. Weighted likelihood estimates (WLE’s; 

Warm, 1989) were used to assess the range of person abilities. Person ability estimates 

were examined alongside the item difficulty estimates using a Wright map. It is important 

to examine the range of person location estimates because the amount of variation in 

person ability estimates has implications for both a) the items’ functionality, and b) the 

structure of the underlying construct. A substantial range of person estimates indicates 

both that the items are successfully differentiating among students of differing abilities 

and that examinees demonstrate variability on the underlying construct. (A small range of 

person estimates may indicate a failure in either or both the items design and the 

definition of the construct.) In the case of subscale measurement, a substantial range of 

person ability estimates indicates that the subscales are worth measuring individually, as 
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opposed to being collapsed into an overall science scale. Therefore, the ranges of person 

ability estimates were compared across modeling approaches.  

Order of item difficulty estimates. Each of the three sub-constructs has been 

operationalized as a progress variable, or a construct map similar to a learning 

progression. The construct map is a hypothesis; it is a best guess based on previous 

research and knowledge about how children progress in developing the knowledge and 

skills that fall under the domain of the construct. One way to evaluate the validity of the 

hypothesized construct is to determine whether the results of the assessment match the 

anticipated results based on the hypothesis. Since each assessment item was written to 

differentiate between two or more levels of each progress variable, the anticipated order 

of item difficulties is easy to infer from the progress variables (see Chapter 1). For each 

dimension, the Wright map was examined, anticipated and actual orders were compared, 

and discrepancies were noted and interpreted in terms of the definition of the underlying 

construct.  

 Item misfit. Item misfit was also examined as part of Research Questions 1 and 2, 

to examine whether there might be patterns in item fit that reflect item characteristics like 

scaffolding and/or response format. Here, it will be examined again, this time as an 

indicator of the functionality of individual items. Item fit, measured by weighted mean 

squares and their associated t-statistics, indicates the extent to which student responses 

conform to what is expected, based on item difficulty and person ability estimates from 

the item response model. When students perform unpredictably, items have large fit 

statistics (MNSQ > 1.33, T > 1.96), and when student responses are highly predictable, 

items have small fit statistics (MNSQ < 0.75, T < -1.96). In each case, the pattern of 
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responses may be caused by item-specific features that influence the way students 

interact with the item. Any flagged items were closely examined to look for item features 

that may unintentionally interfere with measurement of the intended construct.   

Precision of person ability estimates. Like the item difficulty estimates, person 

ability estimates also have associated standard errors of measurement. The standard error 

captures the uncertainty of the estimate, and its size tells us about the amount of 

uncertainty in each estimate. Examinees with ability estimates near the population mean 

(i.e., nearer the location of a majority of items) tend to have smaller standard errors than 

examinees at the ends of the ability range (Wilson, 2005). The standard error is a useful 

indicator of test quality because it provides information about how well the assessment is 

able to pinpoint a student’s particular level of ability relative to other students. Standard 

errors of student ability estimates were examined to see whether there any areas (i.e., a 

particular dimension or region of a dimensional subscale) where precision could be 

improved.  

Differential item functioning (DIF). DIF refers to the existence of one or more 

factors, besides person ability and item difficulty, which contribute systematically to the 

probability of examinee responses. In this analysis, two grouping variables – grade level 

and completion of the Inquiry Project curriculum – were examined for evidence of DIF.  

ConQuest 4 (Adams, Wu, & Wilson, 2015) examines DIF by adding the grouping 

variables as additional parameters in the item response model (Adams & Wu, 2010). For 

dichotomous grouping variables, the resulting model contains estimates for each item 

separately for each subgroup. Then the difference between estimates can be compared 

and evaluated for significance, based on the standard error of the estimates. If there is a 
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significant difference between the subgroup estimates for an item, this is evidence of 

DIF. An overall group mean is also reported, which is separate from the DIF analysis, but 

demonstrates whether there is a significant difference between each subgroup’s 

performance on the overall assessment.  

For polytomous grouping variables, two alternative item response models are 

generated – one that accounts for the subgroup identity, and one that does not account for 

subgroup identity. If the model that accounts for subgroup identity has a significantly 

better overall fit to the data than the model that does not account for subgroup identity (as 

measured by the difference in model deviance statistics referred to a Chi-square 

distribution), then this is interpreted as evidence of DIF.  

 Inquiry Project participation and grade level. Box plots were created to visually 

compare the variance in student ability estimates within classrooms that participated in 

the pilot test. This analysis focused specifically on looking for differences in within-

classroom variance among the following subgroups: a) Inquiry Project and non-Inquiry 

Project classrooms, and b) 4th and 5th grade classrooms. The average variance was 

computed for each of these 4 subgroups and 3 assessment dimensions, with class size 

used to weight the influence of each variance estimate on the average  

In this analysis, students in the same classroom share similarities, meaning that 

classroom within-group variance may be underestimated. To account for this possibility, 

an unconditional multilevel model was employed to generate corrected estimates of 

within-group variance for each subgroup. These corrected estimates were compared via 

an F-test, using the corrected degrees of freedom provided by HLM software (Scientific 

Software International, 2017). The ICC, which indicates the proportion of variance in the 
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outcome that is attributable to classroom membership, was also examined for each 

subgroup and outcome variable.   

This analysis provides information about whether Inquiry Project curriculum 

participation and grade level affect variability in student performance, while taking into 

account the variance shared between students in the same classrooms.   
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Chapter 4: Results 
 

Results of the data analysis procedure outlined in Chapter 3 are presented here, 

organized by research question and sub-question. Research questions 1 and 2 utilized 

many of the same criteria to examine multidimensional scaffolding and response format, 

and therefore results are reported together. 

Research questions 1 & 2: To what extent do multidimensional scaffolding and 

response format affect the quality of information gained from students’ responses to 

multidimensional assessment items? 

Student understanding of the task. Student understanding of the task was 

investigated through the analysis of transcripts from both rounds of cognitive interviews. 

Each cognitive interview was recorded and transcribed. Transcripts were reviewed, and 

any sources of student confusion were identified and categorized. A student’s response to 

a single item could receive multiple codes if they expressed multiple sources of 

confusion. 

Multidimensional scaffolding. Three different types of items were created by 

varying the amount of scaffolding. These three variations comprised: multiple-prompt 

explicit multidimensional items, single-prompt explicit multidimensional items, and 

single-prompt implicit multidimensional items17. Ten different item contexts, or 

scenarios, were utilized, and three item variations were created for each of these ten 

contexts, resulting in a starting set of 30 items. An example of the three item variations 

can be found in Figure 3.1.  

                                                           
17 See Chapter 3 for a detailed description of the multidimensional scaffolding variations.  
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These 30 items were tested with 26 students during Round 1 of the cognitive 

interview process, such that 4-5 students saw each item. After reviewing the transcripts 

from all of the Round 1 cognitive interviews, 11 sources of misunderstanding were 

identified (Figure 4.1).  

 The distribution of the 11 sources of misunderstanding was examined across the 3 

types of items for each item context individually and in the aggregate. A table describing 

the frequency of all 11 issues within each item context can be found in Appendix B. At 

the item context level, the presence or absence of certain issues varied widely. For 

example, “unfamiliarity with task context” was only observed for one of the item 

contexts: an item which asked students to compare the weights of an equal amount of 

coffee beans and ground coffee. Not all students were familiar with coffee beverages. 

Students appeared to be comfortable with the task context of all other items. On the other 

hand, “misunderstanding or misinterpretation of critical piece of task” was present for 7 

out of 10 item contexts, suggesting that this was a much more common issue for students.  

 

Sources of Misunderstanding – Multidimensional Scaffolding 
1. Misunderstanding or misinterpretation of critical piece of 

task 
2. Overlooks critical piece of information 
3. Unfamiliarity with task context 
4. Unfamiliarity with item vocabulary (non-scientific) 
5. Unfamiliarity with measurement unit 
6. Unfamiliarity with measurement tool 
7. Unfamiliarity with measurement calculation 
8. Misunderstanding of key concepts 
9. Misunderstanding of visuals 
10. Confused by item layout 
11. Provides correct answer despite avoiding intended task 

Figure 4.1. Eleven observed sources of student confusion during cognitive interviews 
with multidimensional scaffolding item variations. 
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Several of the 11 sources of misunderstanding were unlikely to be influenced by 

the amount of scaffolding present in the items due to the nature of the issue; for instance, 

a misunderstanding of a key concept is caused by the student’s proficiency with an item’s 

underlying topic and is not likely to be affected by the amount of item scaffolding. 

Scaffolding affects the rate at which information about the task is presented to the 

student, and certain issues are more likely to be affected by this than others. An issue like 

“overlooks a critical piece of information” may be exacerbated when students are 

presented with a large amount of information about the task at once, as they are in the 

single-prompt multidimensional version of the item. This analysis focuses mainly on only 

three of the issues of misunderstanding, which are the most likely to be affected by the 

amount of scaffolding present in the item: “overlooks a critical piece of information”; 

“confused by item layout”; and “misunderstanding or misinterpretation of critical piece 

of task.” 

 The frequencies of these 3 sources of misunderstanding across all task contexts 

can be found in Table 4.1. For example, the first row describes the number of 

observations of “Misunderstanding or misinterpretation of critical piece of task” across 

the three scaffolding variations for all items: 23% of students misunderstood or 

misinterpreted some critical aspect of the task when a multiple-prompt version of the 

item was used, 26% of students did so with a single-prompt multidimensional version of 

the item, and 25% did so with a unidimensional version of the item. This category was 

assigned when a student indicated confusion about the nature of a task, or performed a 

different task than intended. For example, on the item “Carol’s butter” (see Appendix F), 

the intended task asked students to determine the weight of a sample of butter after it had  
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Table 4.1. 

Frequency of Sources of Misunderstanding Affected by Scaffolding 

 

Multiple-prompt 
multidimensional 

Single-prompt 
multidimensional  Unidimensional 

Issue Count Percentage Count Percentage Count Percentage 

Misunderstanding or 
misinterpretation of 
critical piece of task 10 23.26% 11 25.58% 11 25.00% 

Overlooks a critical 
piece of information 1 2.33% 5 11.63% 1 2.27% 
Confused by item 
layout 1 2.33% 2 4.65% 3 6.82% 
Total number of items 
viewed by students 
during Round 1* 43 100.00% 43 100.00% 44 100.00% 

*Indicates the total number of times that any student encountered an item in each 
multidimensional scaffolding category. For example, in the multiple-prompt category, 26 
students each saw at least one multiple-prompt item, and some saw more than one. This 
led to a total of 43 instances of students encountering multiple-prompt items.  
 
 
been melted. However, many students indicated confusion about whether or not they 

were supposed to account for the weight of the container holding the melted butter, which 

interfered with their ability to demonstrate their reasoning about the weight measurement.  

Although there are differences in the frequency of certain issues for different 

levels of multidimensional scaffolding, these differences are hard to interpret because of 

the small number of students who responded to each item. Therefore, differences between 

items with different amounts of multidimensional scaffolding may be attributable to 

differences among the students who saw each item, and should be interpreted cautiously.  

Overall, there was not a difference in the frequency of student misunderstanding 

or misinterpretation of critical pieces of the task among the different levels of 

multidimensional scaffolding. Students were more likely to overlook a critical piece of 

information when they encountered a single-prompt multidimensional item (12% of the 
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time) than they were for either of the other two scaffolding levels. Students were not 

likely to be confused by item layout in any of the three scaffolding categories.  

Response format. Three new types of items were created by varying both 

scaffolding and response format. These three variations included: constructed-response 

multiple-prompt items (same as the multiple-prompt multidimensional item from Round 

1, but revised), selected-response multiple-prompt explicit multidimensional items, and 

selected-response single-prompt implicit multidimensional items. An example of the two 

new item variations can be found in Figure 4.2. The same ten item contexts were utilized. 

Two of the item contexts did not include a constructed-response multiple-prompt item 

variation in Round 2, as there were no changes to the items after Round 1 and therefore 

no reason to seek input from additional students. This left 28 items, which were then 

tested with 37 students during Round 2 of the cognitive interview process such that 5-8 

students saw each item. 

After reviewing the transcripts from all of the Round 2 cognitive interviews for 

evidence of student understanding of the tasks, 16 sources of misunderstanding were 

identified. These included 10 of the same sources from the Round 1 cognitive interviews 

and 6 additional sources of misunderstanding (Figure 4.3).  

 The distribution of the 16 sources of misunderstanding was examined across the 3 

types of items for each item context individually and in the aggregate. A table describing 

the frequency of all 16 issues within each item context can be found in Appendix B. At 

the item context level,  the presence or absence of certain issues varied widely. For 

example, “large/small scale makes problem difficult to think about” was observed in only 

two of the item contexts which required mathematical reasoning with small fractions. On 
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Figure 4.2. Selected-response item variations. The top panel shows a selected-response multiple-prompt explicit multidimensional 
item, and the bottom panel shows a selected-response single-prompt implicit multidimensional item. 
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Sources of Misunderstanding – Response Format 
1. Misunderstanding or misinterpretation of critical piece of 

task 
2. Overlooks critical piece of information 
3. Unfamiliarity with task context 
4. Unfamiliarity with item vocabulary (non-scientific) 
5. Unfamiliarity with measurement unit 
6. Unfamiliarity with measurement calculation 
7. Misunderstanding of key concepts 
8. Misunderstanding of visuals 
9. Confused by item layout 
10. Provides correct answer despite avoiding intended task 
11. Answer options don’t reflect student understanding 
12. Overwhelmed by amount of information/answer choices 
13. Alternative explanation based on extraneous factor 
14. Answer options lead student to rethink answer 
15. Large/small scale makes problem difficult to think about 
16. Misunderstanding of answer options 

Figure 4.3. Sixteen observed sources of student confusion during cognitive interviews 
with response format item variations. 

 

the other hand, “misunderstanding or misinterpretation of critical piece of task” was 

present for all 10 of the item contexts, suggesting that this was a much more common 

issue for students.  

As in Round 1, several of the 16 sources of misunderstanding were unlikely to be 

influenced by either scaffolding or response format due to the nature of the issue. This 

analysis focuses mainly on five issues that were likely to be affected by response format: 

“answer options don’t reflect student understanding”; “overwhelmed by amount of 

information and/or answer choices”; provide ‘correct’ answer despite avoiding intended 

task”; “answer options lead student to rethink answer”; and “misunderstanding of answer 

options.” In addition, the three sources of misunderstanding identified as likely to be 

affected by scaffolding from Round 1 were reexamined with the Round 2 data 
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(“overlooks a critical piece of information”; “confused by item layout”; and 

“misunderstanding or misinterpretation of critical piece of task”). 

The aggregated frequencies of the 5 sources of misunderstanding likely to be affected by 

response format can be found in Table 4.2. Again, differences in the frequency of certain 

issues for different response formats are hard to interpret because of the small number of 

students who responded to each item. Therefore, differences between items with different 

response formats may be attributable to differences among the students who saw each 

item, and should be interpreted cautiously.  

 
Table 4.2.  
 
Frequency of Sources of Misunderstanding Affected by Response Format 

 

Constructed 
response/Multiple 

prompt explicit 
multidimensional 

Selected 
response/Multiple 

prompt explicit 
multidimensional 

Selected 
response/Single 
prompt implicit 

multidimensional 
Issue Count Percentage Count Percentage Count Percentage 
Answer options don't 
reflect student 
understanding 0 0.00% 8 11.43% 13 22.03% 
Overwhelmed by 
amount of information 
and/or answer choices 1 2.13% 6 8.57% 4 6.78% 
Provide "correct" 
answer despite 
avoiding intended task 9 19.15% 11 15.71% 10 16.95% 
Answer options lead 
student to rethink 
answer 0 0.00% 9 12.86% 9 15.25% 

Misunderstanding of 
answer options 0 0.00% 2 2.86% 1 1.69% 
Total number of items 
viewed by students 
during Round 2* 47 100.00% 70 100.00% 59 100.00% 

*Indicates the total number of times that any student encountered an item in each 
category. For example, in the constructed-response category, 37 students each saw at 
least one constructed-response item, and some saw more than one. This led to a total of 
47 instances of students encountering constructed-response items.  
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Students mentioned that the answer options didn’t reflect their understanding 

twice as frequently with a selected-response, single-prompt implicit multidimensional 

item, compared to a selected-response, multiple-prompt explicit multidimensional item. 

The issue would be impossible to occur with a constructed-response version of an item. 

Students mentioned feeling overwhelmed by the amount of information presented in the 

problem, including the number of answer options, more frequently when they used the 

selected-response multiple-prompt explicit multidimensional or selected-response single 

prompt implicit multidimensional item variations. Students were able to arrive at a 

“correct” answer by test-taking strategies, misunderstanding, or some other construct-

irrelevant factor fairly equally across all item variations. Students reported rethinking an 

original answer upon seeing the answer options 13% and 15% of the time when a 

selected-response format was used. This would be impossible to observe with a 

constructed-response item.  Finally, students infrequently misunderstood or 

misinterpreted the answer options, but this was not a problem with the constructed-

response format.  

The frequencies of the 3 sources of misunderstanding that are likely to be affected 

by scaffolding can be found in Table 4.3, for Round 2. Students misunderstood or 

misinterpreted the task more frequently on the selected-response versions of the task than 

on the constructed-response version. This may have been due to the selected-response 

version of the argument question, which allowed students to select more than one 

response. Many students asked for clarification about how to answer the argument 

question with a selected-response format. This was not the case for the constructed-

response version of the argument. Students overlooked a critical piece of information 
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when all item formats were used, with no clear pattern of response format and/or 

scaffolding being related to this issue. As in Round 1, very few students expressed 

confusion about the item layout during this round of cognitive interviews.  

Some students expressed a preference for one response format over another. Note 

that the sample of students who expressed a preference is nonrandom - most students 

were not asked to outright state a preference, so only students who spontaneously stated a 

preference or who displayed a behavior that prompted the researcher to ask them about  

 

Table 4.3.   

Frequency of Sources of Misunderstanding Affected by Scaffolding: Round 2 

 

Constructed 
response/Multiple 

prompt explicit 
multidimensional 

Selected 
response/Multiple 

prompt explicit 
multidimensional 

Selected 
response/Single 
prompt implicit 

multidimensional 
Issue Count Percentage Count Percentage Count Percentage 
Misunderstanding 
or misinterpretation 
of critical piece of 
task 8 17.02% 21 30.00% 15 25.42% 
Overlooks a critical 
piece of 
information 5 10.64% 3 4.29% 5 8.47% 
Confused by item 
layout 2 4.26% 0 0.00% 0 0.00% 
Total number of 
items viewed by 
students during 
Round 2* 47 100.00% 70 100.00% 59 100.00% 

*Indicates the total number of times that any student encountered an item in each 
category. For example, in the constructed-response category, 37 students each saw at 
least one constructed-response item, and some saw more than one. This led to a total of 
47 instances of students encountering constructed-response items.  
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their preference gave this information. Nevertheless, more students expressed a 

preference for the selected-response versions of the items (N=15) than for the 

constructed-response versions of the items (N=7).  

 Students who saw selected-response versions of the items were sometimes asked 

to complete an open-ended prompt before completing a selected-response version of the 

same prompt. For selected-response multiple-prompt explicit multidimensional versions 

of the items, students were asked to compose a written argument before they were asked 

to complete the selected-response version of the same prompt. For selected-response 

single-prompt implicit multidimensional versions of the items, students were asked to 

compose a written response before they completed the selected-response version of the 

same prompt. 

The selected-response format seemed to influence student interactions with the 

item. As noted above, 13% and 15% of students were led to rethink their written answer 

after seeing the response options in the selected-response versions of the items. To further 

examine the role of response format in student response processes, their written and 

chosen responses were examined to establish the degree of concordance between 

responses that utilize different formats. Written responses and selected-responses were 

compared, and each pair was assigned 1 of 5 possible codes reflecting the degree to 

which the selected-responses matched the written response. These codes were: Match-

plus, indicating that the selected-responses contained additional evidence and/or 

reasoning not present in the written response; Match, indicating that the selected-

responses closely or exactly matched the written response; Match-minus, indicating that 

the written response contained additional evidence and/or reasoning not present in the 
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selected responses; No Match, indicating that the core reasoning in the written and 

selected-responses was different or contradictory; and No Written Response, indicating 

that no comparison was possible because the student chose selected-response options 

without providing a written response. The frequency of each match code can be found in 

Table 4.4.  

 Most commonly, students stuck with their original written argument even after 

they were presented with response options (77% and 82% of responses for selected-

response multiple-prompt explicit multidimensional and selected-response single-prompt 

implicit multidimensionalitems, respectively). Many students provided additional 

evidence and/or reasoning on their selected-response arguments, when compared to their 

original written arguments (49% and 14% of responses). It was less common for students 

to change their argument upon seeing the response options (11% and 14% of responses).  

 
Table 4.4.   

Frequency of Matches Between Written and Selected-Response Arguments. 

 

Selected response/ 
Multiple prompt explicit 

multidimensional 

Selected response/ 
Single prompt implicit 

multidimensional 
Match code Frequency Percentage Frequency Percentage 
Match-plus 34 48.57% 8 13.56% 
Match 17 24.29% 31 52.54% 
Match-minus 3 4.29% 9 15.25% 
No Match 8 11.43% 8 13.56% 
No Written Response 8 11.43% 3 5.08% 
Total Number of 
Responses* 70 100.00% 59 100.00% 

*Indicates the total number of times that any student encountered an item in each 
category. For example, in the selected-response/multiple-prompt category, 37 students 
each saw at least one constructed-response item, and many saw more than one. This led 
to a total of 70 instances of students encountering selected-response/multiple-prompt 
items.  
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Some students declined to provide a written argument, but selected one or more response 

options on the selected-response version of the prompt.  

 In the selected-response version of a multiple-prompt multidimensional item, a 

written argument and selected-response argument were directly compared. For selected-

response single-prompt implicit multidimensional versions of the items, if students’ 

initial written answer did not include an argument, they were also asked to provide a 

written argument in support of their answer. Many students provided additional evidence 

or reasoning in their selected-response that was not present in their written arguments 

(49% of responses). Sometimes, additional selected-response evidence or reasoning did 

not support or was not relevant to their written argument. All written and selected-

response arguments were examined, and the number of pieces of relevant-supporting 

evidence, irrelevant/unsupportive evidence, and reasoning were tabulated for each 

argument. The average frequency of reasoning and relevant-supporting evidence of 

written and selected-response arguments is found in Table 4.5. The cell values refer to the 

average amount of evidence and reasoning found in students’ responses across the 

various item structures and response formats. For example, row 1 indicates that students 

provided 2.41 pieces of evidence, on average, to selected-response arguments, and 1.44-

1.52 pieces of evidence, on average, in written arguments.    

On average, students provided more evidence in selected-response arguments than 

written arguments, including more relevant-supporting evidence and more 

irrelevant/unsupportive evidence. Students also provided more reasoning in selected-

response arguments. This is unsurprising, given that selected-response arguments allowed  
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Table 4.5.  

 
Average Number of Pieces of Reasoning and Relevant-Supporting Evidence in Written 
and Selected-Response Arguments.18 

 
Multiple prompt explicit 

multidimensional 

Single prompt 
implicit 

multidimensional 

Argument Component 

Selected-
response 

Argument (SE) 
Written 

Argument (SE) 
Written 

Argument (SE) 
Evidence 2.41 (0.28) 1.52 (0.15) 1.44 (0.16) 
Relevant-supporting evidence 1.75 (0.20 1.24 (0.15) 1.31 (0.15) 
Irrelevant-unsupporting 
evidence 0.65 (0.15) 0.27 (0.06) 0.16 (0.06) 
Reasoning 1.62 (0.14) 0.84 (0.12) 0.97 (0.09) 

   

students to choose among several potential pieces of evidence and reasoning, rather than 

evidence and reasoning from scratch as in the written arguments. 

Number of dimensions addressed in student response. Student responses from 

the cognitive interviews and pilot tests were examined to compare the number of 

dimensions addressed in response to items with varying levels of multidimensional 

scaffolding and response formats.  

Cognitive interviews. After the Round 1 cognitive interviews, student’s written 

responses were examined to determine whether or not responses provided information 

about their understanding of the three assessment dimensions: Structure and Properties of 

Matter; Scale, Proportion, and Quantity, and Engaging in Argument from Evidence 

(NGSS Lead States, 2013). The written responses were classified as either providing or 

                                                           
18 Note that the total number of observations comes from 10 item scenarios and 37 students. For each 
argument component, the average includes multiple observations from the same student on different items, 
and multiple observations from the same item with different students. This means that the observations are 
not independent. The standard errors have not been corrected to account for this dependence. The averages 
in this table should be interpreted cautiously. 
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not providing information relevant to assigning a score on these three dimensions. The 

number of dimensions addressed was counted for each response. If a student did not 

provide a written response, this was interpreted as addressing zero of the three assessment 

dimensions. (Students provided a written response in most cases – in 118 of 130 student 

responses. The 12 remaining item responses were distributed roughly equally across the 

three item variations.) The average number of dimensions addressed in responses across 

the three multidimensional scaffolding item variations is presented in Table 4.6.  

Students addressed the highest number of dimensions, on average, when 

presented with multiple-prompt explicit multidimensional items and the fewest number of 

dimensions, on average, when presented with single-prompt implicit multidimensional 

items. To explore this pattern further, each dimension was examined individually. The  

 
Table 4.6.  

 
Average Number of Dimensions Addressed in Student Responses19 

  
Average number of 

dimensions addressed 
Number of 

observations 
Standard 

error 
Multiple-prompt explicit 
multidimensional 2.65 43 0.12 
Single-prompt explicit 
multidimensional 2.07 43 0.15 
Single-prompt implicit 
multidimensional 1.57 44 0.12 

 
Table 4.7.  
 

Percentage of Written Responses Addressing Each Dimension 

                                                           
19 Note that the total number of observations of each item variation comes from only 10 item scenarios and 
26 students. For each of the item variations, the average number of dimensions addressed in a written 
response includes multiple observations from the same student on different items, and multiple 
observations from the same item with different students. This means that the observations are not 
independent. The standard errors have not been corrected to account for this dependence. The averages in 
this table should be interpreted cautiously. 



148 
 

 

Structure and 
Properties of 

Matter 

Scale, Proportion, 
and Quantity 

Engaging in 
Argument 

from Evidence 

Multiple-prompt explicit 
multidimensional 93.02% 81.40% 91.70% 
Single-prompt explicit 
multidimensional 83.72% 48.84% 69.77% 
Single-prompt implicit 
multidimensional 81.82% 31.82% 38.64% 

 
 
percentage of responses within each item variation that addressed Structure and 

Properties of Matter; Scale, Proportion, and Quantity; and Engaging in Argument from 

Evidence can be found in Table 4.7.  

Overall, students were more likely to address the Disciplinary Core Idea – 

Structure and Properties of Matter – in their responses than any other dimension. This 

was consistent across the three item variations. Students were most likely to address each 

of the three dimensions with the multiple-prompt explicit multidimensional item, 

followed by the single-prompt explicit multidimensional item, and least likely to address 

each dimension when presented with single-prompt implicit multidimensional items.  

 In particular, the Scale, Proportion, and Quantity dimension was most likely to be 

neglected when the single-prompt formats were utilized. This pattern might be manifest 

due to the nature of these assessment tasks; the Structure and Properties of Matter subtask 

tended to be the most salient focus of the item scenarios, whereas the Scale, Proportion, 

and Quantity subtask tended to be an intermediate step towards completing the Structure 

and Properties of Matter subtask. The Engaging in Argument from Evidence subtask was 

the written justification for the student’s response to the other two subtasks. When a 

single-prompt format was used, it was difficult to write assessment items in such a way 
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that avoided highlighting some of the dimensions and sidelining others, which affects the 

observed relationship between the dimensions. Even though the three dimensions are 

treated as conceptually independent entities, they are dependent in the single-prompt 

assessment context. This may account for the observed pattern, in which the Scale, 

Proportion, and Quantity dimension is addressed only 32% and 49% of the time in the 

single-prompt implicit and explicit multidimensional cases, respectively. The multiple-

prompt format seems to somewhat mitigate student inattention to the Scale, Proportion, 

and Quantity dimension, and in fact all three dimensions see increases from the single-

prompt explicit multidimensional format to the multiple-prompt format.  

 Also note that the Engaging in Argument from Evidence dimension was explicitly 

cued in the single-prompt explicit multidimensional versions of the items. In these 

versions of the items, the second part of the response stem asks students to provide an 

argument including evidence and reasoning. This statement may be considered a second 

prompt within the single-prompt format, although students were only provided with one 

response space (whereas the multiple-prompt format provided them with a separate 

response space for each dimension). This may explain why the Engaging in Argument 

Dimension tends to have a higher response rate when the single-prompt explicit structure 

is used, compared to the single-prompt implicit structure. The Scale, Proportion, and 

Quantity dimension is not explicitly cued in either single-prompt structure, which may 

explain why it is the most neglected dimension among both single-prompt item 

variations.  

Assessment pilot. The number of dimensions addressed by students was examined 

again with the pilot data, this time by looking at the frequency of missing data among 



150 
 

students’ scored responses. Tables 4.8, 4.9, and 4.10 display the amount of missing data 

from the assessment pilot, broken apart by item type (amount of multidimensional 

scaffolding and response format) and dimension (Scale, Proportion and Quantity, 

Structure and Properties of Matter, and Engaging in Argument from Evidence). 

Responses were scored as “Blank on All Dimensions” if the student did not provide any 

response to the entire item context. For a single-prompt item, this occurred when the 

response area was completely blank. For a multiple-prompt item, this occurred when the 

response areas for each of the individual sub-prompts were all completely blank. 

Responses were scored as “Missing on [Dimension]” if the student provided a response 

that addressed part, but not all of the item context. For a single-prompt item, this occurred 

when a student provided a response, but did not address all of the assessment dimensions. 

For example, a student could provide an argument defending their understanding of the 

matter concept from the item, neglecting the Scale, Proportion, and Quantity aspect of the 

item context. In this case, the student would receive a score of “Missing on Scale, 

Proportion, and Quantity Dimension” and would receive the appropriate score for the 

remaining two dimensions according to the rubric. For a multiple-prompt item, this 

occurred when a student responded to at least one, but not all of the item’s dimensional 

sub-prompts. The blank sub-prompts received a score of “Missing on [Dimension]” and 

sub-prompts with responses were rated according to the scoring rubric.
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Table 4.8.  
 
Frequency of Missing and Blank Data on the Scale, Proportion, and Quantity Dimension 

 Multiple-prompt Single-prompt 
Constructed-

response Selected-response 
N Percentage N Percentage N Percentage N Percentage 

Blank on All Dimensions 72 9.90% 129 17.11% 9 6.08% 10 6.49% 
Partially Blank/Missing on SPQ Dimension  54 7.43% 134 17.77% 1 0.68% 1 0.65% 
Scored 601 82.67% 498 65.12% 138 93.24% 143 92.86% 
Total 727 100.00% 754 100.00% 148 100.00% 154 100.00% 

 
 

Table 4.9.  

Frequency of Missing and Blank Data on the Structure and Properties of Matter Dimension 

 Multiple-prompt Single-prompt 
Constructed-

response Selected-response 
N Percentage N Percentage N Percentage N Percentage 

Blank on All Dimensions 72 9.90% 129 17.11% 9 6.08% 10 6.49% 
Partially Blank/Missing on Matter Dimension  34 4.68% 93 12.33% 12 8.11% 4 2.60% 
Scored 621 85.42% 539 70.56% 127 85.81% 140 90.91% 
Total 727 100.00% 753 100.00% 148 100.00% 154 100.00% 
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Table 4.10.  
 
Frequency of Missing and Blank Data on the Engaging in Argument from Evidence Dimension 

 Multiple-prompt Single-prompt 
Constructed-

response Selected-response 
N Percentage N Percentage N Percentage N Percentage 

Blank on All Dimensions 72 9.90% 129 17.11% 61 10.25% 62 10.65% 
Partially Blank/Missing on Argument Dimension 65 8.94% 51 6.76% 56 9.41% 16 2.75% 
Scored 590 81.16% 574 76.13% 478 80.34% 504 86.60% 
Total 727 100.00% 753 100.00% 595 100.00% 582 100.00% 
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On the Scale, Proportion, and Quantity dimension, more missing responses were 

observed on single-prompt versions of the items than on multiple-prompt versions of the 

items. Cumulatively, the gain of information on multiple-prompt versions of the items 

was substantial; about 20% more student responses addressed the Scale, Proportion, and 

Quantity dimension when a multiple-prompt format was used. Many more responses 

were classified as missing when a single-prompt version of the item was used, compared 

to the multiple-prompt version.  

 A chi-squared test of independence was conducted to examine the association 

between the number of prompts (single or multiple) and a student’s response status 

(Blank on All Dimensions, Missing on Scale, Proportion, and Quantity Dimension, or 

scoreable). Results of the chi-squared test are not interpreted in terms of significance, as 

the data come from a non-random sample of items and students, and there is no larger 

population of inference; however, the results are presented as guidelines to indicate the 

presence of potentially interesting patterns. There was an association between the number 

of prompts and a student’s response status (χ2 = 50.46, df = 2)20. Standardized residuals 

reveal that there are more missing responses (of both types) than expected when the 

single-prompt format is used, and fewer missing responses than expected when the 

multiple-prompt format is used.  

 There was no observed association between response format (constructed- or 

selected-response) and student response status (χ2 = 0.022, df = 2).  

 
 
 

                                                           
20 Note that each cell in the table contains aggregated data from various items and students, and data from 
the same student may be present in more than one cell, thus violating the assumption that observations are 
independent. Results should be interpreted cautiously. 
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 On the Structure and Properties of Matter dimension, more missing responses (of 

both types) were observed on single-prompt versions of the items than on multiple-

prompt versions of the items. Although the loss of information was not as large as on the 

Scale, Proportion, and Quantity dimension, the differences are still striking. About 15% 

more students provided scoreable information about the Structure and Properties of 

Matter dimension when a multiple-prompt version of the item was used, compared to the 

single-prompt version. Many more responses were classified as missing when a single-

prompt version of the item was used, compared to the multiple-prompt version.  

A chi-squared test of independence revealed an association between the number 

of prompts (single or multiple) and a student’s response status (Blank on All Dimensions, 

Missing on Structure and Properties of Matter Dimension, or scoreable) (χ2 = 24.32, df = 

2)21. Again, these results are presented as guidelines and not as indicators of significance. 

Standardized residuals reveal that there are more responses that were classified as Blank 

on All Dimensions than expected when the single-prompt format is used, and fewer 

responses that were classified as Blank on All Dimensions than expected when the 

multiple-prompt format is used.  

 Based on the percentages in Table 4.9, students were slightly more likely to 

provide scoreable information on selected-response version of the items than constructed-

response versions of the items, with a difference of about 5% between the two response 

                                                           
21 Note that each cell in the table contains aggregated data from various items and students, and data from 
the same student may be present in more than one cell, thus violating the assumption that observations are 
independent. Results should be interpreted cautiously. 
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formats.22 A chi-square test of independence reveals no association between response 

status and response format (χ2 = 4.57, df = 2). 

On the Engaging in Argument from Evidence dimension, Table 4.10 shows that 

differences between multiple-prompt and single-prompt versions of the items were small. 

On multiple-prompt versions of the items, slightly more responses were classified as 

Missing on the Engaging in Argument from Evidence Dimension than on single-prompt 

versions of the items. The direction of the difference is notable, because it is opposite of 

the difference observed on the other two dimensions.  

A chi-squared test of independence revealed an association between the number 

of prompts (single or multiple) and a student’s response status (Blank on All Dimensions, 

Missing on the Engaging in Argument from Evidence Dimension, or scoreable) (χ2 = 

17.587, df = 2) 23. Again, these results are presented as guidelines and not as indicators of 

significance. Standardized residuals reveal that there are more responses classified as 

Blank on All Dimensions than expected when the single-prompt format is used, and 

fewer responses were classified as Blank on All Dimensions than expected when the 

multiple-prompt format is used. Note that the difference in the expected and observed 

frequencies of responses scored as Missing on the Engaging in Argument from Evidence 

Dimension is small; in this case, the number of prompts does not seem to affect the 

likelihood that students will address the argument dimension, given that they provide any 

response at all. This may be due to the fact that single-prompt items tended to emphasize 

                                                           
22 Note that the total sample size for this comparison is small, given that only one item directly compared 
response formats on the Structure and Properties of Matter dimension. 
23 Note that each cell in the table contains aggregated data from various items and students, and data from 
the same student may be present in more than one cell, thus violating the assumption that observations are 
independent. Results should be interpreted cautiously. 
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the Engaging in Argument from Evidence dimension by explicitly cuing students to 

provide their evidence and reasoning. 

The difference between constructed-response and selected-response items was a 

bit larger – from the table, there is a roughly 7% increase in responses classified as 

Missing on the Engaging in Argument from Evidence Dimension on constructed-

response items compared to selected-response items. An exploratory Chi-squared test 

revealed an association (χ2 = 22.703, df = 2) 24 between response format and student 

response status, although this result is intended for guidance rather than for interpretation 

of statistical significance.  

 Overall, it appears that the number of response prompts has a relationship with the 

frequency of responses classified as Missing on [Dimension] and Blank on All 

Dimensions, such that there are more of both types of missing responses on single-

prompt versions of the items. The constructed-response format also seems to be related to 

the frequency of both types of missing responses on the Engaging in Argument from 

Evidence dimension.  

Impact of Multidimensional Scaffolding on Students of Different Abilities. Student 

response data for the assessment pilot included 64 items from three dimensions (22 Scale, 

Proportion, and Quantity items; 20 Structure and Properties of Matter items; and 22 

Engaging in Argument from Evidence items). Student response data was scaled using 

ConQuest 4 (Adams, Wu, & Wilson, 2015). Marginal maximum likelihood estimation 

was used to generate item difficulty estimates and fit statistics for each dimension, and 

                                                           
24 Note that each cell in the table contains aggregated data from various items and students, and data from 
the same student may be present in more than one cell, thus violating the assumption that observations are 
independent. Results should be interpreted cautiously. 
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WLE person ability estimates for all three dimensions. Based on WLE person ability 

estimates, the sample was divided into three approximately equal subgroups of high, 

medium, and low ability students on each dimension. Within each subgroup, the extent of 

missing data was examined again. The percentage of missing data was calculated by 

counting the number of responses scored as Missing on [Dimension] across all items of a 

particular type (i.e., all single-prompt items, or all multiple-prompt items) and dividing 

by the total number of items of that type that were administered across all students.  

As previously noted, responses scored as “Missing on [Dimension]” were more frequent 

when the single-prompt item format was used, with the exception of the Engaging in 

Argument from Evidence dimension, where the reverse pattern is observed. This pattern 

is observed across students of all ability levels. Furthermore, lower ability students 

tended to have more responses scored as “Missing on [Dimension]” than high ability 

students, especially when a single-prompt format was used. The gap between the 

multiple-prompt and single-prompt formats is largest among low ability students. This 

gap is still present among medium and high ability students, but it is smaller in size 

(Figure 4.4).  On the Engaging in Argument from Evidence dimension, the direction of 

the difference was reversed, and the size of the gap was smaller among all ability groups. 

 

Table 4.11.  
 
Percentage of Responses Scored as Missing on [Dimension] 

  
Scale, Proportion, 

and Quantity 
Structure and 

Properties of Matter 
Engaging in Argument 

from Evidence 

Subgroup 
Multiple-
prompt 

Single-
prompt 

Multiple-
prompt 

Single-
prompt 

Multiple-
prompt 

Single-
prompt 

Low ability 8.70% 23.02% 3.63% 16.00% 10.89% 6.15% 
Medium ability 9.47% 15.00% 4.15% 5.98% 7.85% 2.06% 
High ability 7.38% 12.24% 2.63% 5.26% 4.41% 2.66% 



158 
 

 

 

 

 

 

 

 

 

Figure 4.4. Percentage of responses scored as “Missing on [Dimension].”   

 

 

 

 

 

 

 

 
 
Figure 4.5. Percentage of responses scored as “Blank on All Dimensions.”  
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These findings suggest that the effect of scaffolding largely depends on student 

ability. Low-ability students are particularly impacted by the amount of scaffolding in an 

assessment item, and are more likely to provide an answer that includes evidence of their 

ability on all dimensions when scaffolding is present. On the Engaging in Argument from 

Evidence dimension, however, the pattern is obscured. The nature of a single-prompt 

item encourages an extended response by explicitly emphasizing that students should 

provide extended reasoning about their thinking. In this case, the multiple-prompt format 

does not provide extra emphasis and structure for the Engaging in Argument from 

Evidence dimension in the same way that it does for the other two dimensions, which 

may explain why the difference between the multidimensional scaffolding variations is 

smaller on this dimension.  

The differences between single and multiple prompt items were even more 

extensive among those responses scored as Blank on All Dimensions (Table 4.12). On 

the Scale, Proportion, and Quantity and Structure and Properties of Matter dimensions, 

low ability students are the most likely to provide a response that is Blank on All 

Dimensions (e.g., forego a response altogether), regardless of item format. Yet across all 

ability levels, students tend to provide more responses that are classified as Blank on All 

Dimensions to single-prompt items, and the gap between single-prompt and multiple-

prompt items decreases as student ability increases, on both dimensions – a striking 

finding that is discussed further in Chapter 5. However, the gap is still present even 

among high ability students.  
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Table 4.12.  
 
Percentage of Responses Scored as Blank on All Dimensions 

  
Scale, Proportion, 

and Quantity 
Structure and 

Properties of Matter 
Engaging in Argument 

from Evidence 

Subgroup 
Multiple-
prompt 

Single-
prompt 

Multiple-
prompt 

Single-
prompt 

Multiple-
prompt 

Single-
prompt 

Low ability 24.35% 49.43% 17.74% 43.20% 25.00% 31.56% 
Medium ability 17.70% 34.17% 10.79% 24.79% 16.53% 19.34% 
High ability 12.70% 24.49% 11.40% 19.17% 11.01% 19.77% 

  

On the Engaging in Argument from Evidence dimension, the overall gap between 

single and multiple prompt items is much smaller (Figure 4.5), potentially because of the 

nature of single-prompt items described in the previous pages.  

Response time. During both rounds of the cognitive interviews, response time 

was recorded and aggregated for each multidimensional scaffolding and response format 

variation. Although all students were asked to read and complete each item in full before 

beginning their interview, some students ignored this request and asked the researcher for 

clarification about the item as they were still responding. Response times for these 

students are skewed, as they include time spent in conversation with the researcher in 

addition to time spent answering the questions. These response times were removed from 

the dataset. In addition, some students were unable to produce a written response at all, 

and no measure of response time is available for these cases. 

Multidimensional scaffolding. The average response time was calculated with the 

remaining responses (80% of all possible responses, total N = 130), and a summary can 

be found in Table 4.13.25  

                                                           
25 Note that the total number of observations comes from 10 item scenarios and 26 students. For each 
scaffolding variation, the average includes multiple observations from the same student on different items, 
and multiple observations from the same item with different students. This means that the observations are 
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Table 4.13.   
 
Average Response Time for Multidimensional Scaffolding Item Variations 

Multidimensional scaffolding variation 
Average response 

time 
Standard 

error N 
Multiple-prompt explicit multidimensional 3:19 0:17 36 
Single-prompt explicit multidimensional 2:22 0:17 32 
Single-prompt implicit multidimensional 1:32 0:10 36 

 

 Response time increased monotonically with the amount of item scaffolding. 

Single-prompt implicit multidimensional items tended to be completed more quickly, 

averaging just a minute and a half from start to finish. Multiple-prompt explicit 

multidimensional items took the longest time to complete – more than twice the amount 

of time as a single-prompt implicit multidimensional item, on average. Single-prompt 

explicit multidimensional items, which required only a single response but cued students 

to attend to all 3 dimensions of the assessment, split the difference between the other 

scaffolding variations.  

It is possible that these averages underestimate the true amount of time that it 

would take for students to answer the items, because missing data mainly occurred when 

students were confused about some aspect of the task, and elected to ask the researcher 

instead of continuing. These students would likely have taken more time to wrestle with 

their confusion in a real testing environment. Their absence from the dataset may bias the 

computed averages.  

Response format. During Round 2 of the cognitive interviews, response time was 

recorded and aggregated for each item variation. In the case of selected-response 

                                                           
not independent. The standard errors have not been corrected to account for this dependence. The averages 
in this table should be interpreted cautiously. 
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variations, students were given both selected-response and constructed-response versions 

of some prompts. This was done to enable direct comparisons between student responses 

under each format. For these items, the various item components were given to students 

separately and sequentially, such that students were always asked to complete a 

constructed-response version of an item prompt before answering the selected-response 

version. This ensured that their exposure to distractors did not affect comparisons 

between responses to selected- and constructed-response prompts. On the selected-

response versions of multiple-prompt explicit multidimensional items, students were first 

given the selected-response Structure and Properties of Matter and Scale, Proportion, and 

Quantity prompts, and a constructed-response Engaging in Argument from Evidence 

prompt. Upon completion of these prompts, students were given the selected-response 

version of the Engaging in Argument from Evidence prompt. On the selected-response 

versions of the single-prompt implicit multidimensional items, students were first given a 

single-prompt constructed response prompt, followed by a selected-response prompt, and 

finally a constructed-response argument prompt (only administered if their initial 

response did not address the Engaging in Argument from Evidence dimension). Response 

time was recorded for the written and selected-response components of the item 

separately. Again, cases were removed from the dataset when the student interrupted or 

gave no written response. The average response time was calculated with the remaining 

responses, and a summary can be found in Table 4.14. 
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Table 4.14.  
 
Average Response Time for Response Format Variations.26,27  

Response format variation Item component 

Average 
response 

time 
Standard 

error N 
Constructed-response/ 
Multiple-prompt explicit 
multidimensional 

Whole item 3:05 0:12 47 

Selected-response/ 
Multiple-prompt explicit 
multidimensional 

Cumulative SPQ, matter, 
and constructed-response 
argument prompts 

3:00 0:11 68 

Constructed-response 
argument only 

1:17 0:04 100 

Selected-response 
argument only 

0:54 0:05 59 

Selected-response/ 
Single-prompt implicit 
multidimensional 

Constructed-
response/Single-prompt 
implicit multidimensional 

1:33 0:10 79 

Selected-response/Single-
prompt implicit 
multidimensional 

0:27 0:03 49 

Constructed-response 
argument only 

1:16 0:07 56 

 
 

Replacing the Structure and Properties of Matter and Scale, Proportion, and 

Quantity prompts with selected-response versions of the same prompt did not 

substantially affect response time; it took students only 5 seconds less, on average, to 

respond to a multiple-prompt explicit multidimensional item where only the argument 

required a constructed-response. The response time for selected-response and 

constructed-response arguments differed by about 23 seconds, on average, with the 

                                                           
26 Sample sizes are larger than the total number of responses for each variation because four items required 
multiple explanations. Response time for each explanation was used as a separate observation in the 
dataset. 
27 Note that the total number of observations comes from 10 item scenarios and 37 students. For each 
response format variation, the average includes multiple observations from the same student on different 
items, and multiple observations from the same item with different students. This means that the 
observations are not independent. The standard errors have not been corrected to account for this 
dependence. The averages in this table should be interpreted cautiously. 
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constructed-response version of that prompt requiring more response time. It is difficult 

to compare the response times of single-prompt implicit multidimensional items with 

different response formats, because reading time is included in the average time for the 

constructed-response version, but not the selected-response version. Therefore, the best 

information about response time comes from comparing the constructed-response and 

selected-response versions of the multiple-prompt multidimensional items, and suggests 

that students take 28 seconds less per item, on average, to respond to selected-response 

prompts about all three dimensions.  

Interrater reliability.  After the pilot test, interrater reliability was examined by 

calculating an intraclass correlation coefficient (ICC) from a two-way random-effects 

analysis of variance. Both “consistency” and “absolute” measures were calculated for 

each score. Consistency measures take into account the covariance in a group of ratings, 

even when the raters do not reach complete agreement, whereas absolute measures 

account for only absolute agreement between raters.  

ICC’s were calculated for each item based on the scores from both the holistic and 

multidimensional rubric.  See Appendix C for ICC’s of all items for both rubrics. Table 

4.19 contains information about the average ICC’s for each item variation, computed 

from raters’ scores using the multidimensional rubric. Table 4.20 contains information 

about the average ICC’s for each item variation, computed from raters’ scores using the 

holistic rubric. Consistency measures are used in both tables. ICC’s were averaged by 

first using Fisher’s Z transformation, averaging the resulting z-scores, and then reverse-

transforming back to ICC’s.  
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Table 4.15.  
 
Average ICC’s for Ratings for Each Item Variation Using a Multidimensional Rubric 

Item variation SPQ  Matter Argument 
Constructed-response multiple-
prompt explicit multidimensional 0.99 0.99 0.61 
Constructed-response single-
prompt explicit multidimensional 0.90 0.99 0.52 
Selected-response multiple-
prompt explicit multidimensional 0.99 0.99 0.73 

 
 
Table 4.16.  
 
Average ICC’s for Ratings for Each Item Variation Using a Holistic Rubric 

Item variation ICC 

Constructed-response multiple-prompt explicit multidimensional 0.75 

Constructed-response single-prompt explicit multidimensional 0.83 

Selected-response multiple-prompt explicit multidimensional 0.72 
 
 

Multidimensional scaffolding. Note from Table 4.15 that interrater reliability 

tended to be very high for multiple-prompt items on the Scale, Proportion, and Quantity 

and Structure and Properties of Matter dimensions. When this structure was used, student 

responses to the Scale, Proportion, and Quantity and Structure and Properties of Matter 

dimensional sub-prompts tended to be brief and straightforward; consequently, the 

scoring rubrics were also straightforward, and the raters seemed to distinguish between 

the scoring categories with ease. Interrater reliability was high on the Structure and 

Properties of Matter dimension, regardless of item structure or response format. Raters 

seemed to make distinctions about students’ understanding of the matter concepts with 

ease.  

When using the multidimensional rubric, interrater reliability tends to be higher 

for multiple-prompt items than for single-prompt items, when response format is held 
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constant. This difference in reliability is observed on two of the three dimensions:  Scale, 

Proportion, and Quantity and Engaging in Argument from Evidence. There is no 

observable difference in interrater reliability among the item variations on the Structure 

and Properties of Matter dimension; all variations have very high interrater reliability on 

this dimension. When using the holistic rubric (Table 4.16), interrater reliability is higher 

for single-prompt items than for multiple-prompt items. This is the reverse of the 

observed pattern under the analytic/multidimensional rubric, and suggests that interrater 

reliability varies depending on an interaction between scaffolding and rubric structure. 

Response format. For the multidimensional rubric, there was no difference in the 

average interrater reliability of constructed-response and selected-response items from 

the Scale, Proportion, and Quantity and Matter dimensions. In the argument scoring 

category, selected-response items demonstrated higher rates of interrater reliability, on 

average, when the amount of multidimensional scaffolding is held constant. For the 

holistic rubric, the average interrater reliability of selected-response items was slightly 

lower than that of constructed-response items, when the amount of multidimensional 

scaffolding is held constant.  

Variation in interrater reliability for students of different abilities. As in the 

missing data analysis, the multidimensional dataset was split into three approximately 

equal groups based on WLE person ability estimates. Due to the split, the sample size of 

double-scored responses decreased substantially, ranging from 10 to 40 depending on the 

item. Thus, the resulting reliability estimates may not be representative of their true 

values in the population. Intraclass correlation coefficients (ICC’s) were used as the 

primary indicator of interrater reliability for each item. ICC’s were transformed via 
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Fisher’s z-transformation, and then combined to indicate average reliability for 4 item 

variations (single- and multiple-prompt; constructed- and selected-response) among low, 

medium, and high ability students. Due to the small sample sizes and few items in each 

variation, statistical significance tests were not performed on ICC’s. Furthermore, the 

Scale, Proportion, and Quantity, and Structure and Properties of Matter dimensions were 

not included in this analysis, due to having demonstrated robust interrater reliability 

estimates in the overall analysis. 

 Looking at patterns in reliability among students of different ability, reliability 

tended to be highest among medium ability students (Table 4.17), and lower among the 

low and high ability groups. When data is limited to the subset of 5 item scenarios with 

single- and multiple-prompt item variations, this pattern holds across both scaffolding 

variations (Figure 4.6). The middle scoring categories may be easier for raters to apply 

consistently, or the middle scoring categories may become “default” when student 

responses are difficult to categorize according to the rubric. When data is limited to the 

subset of 4 item scenarios with constructed- and selected-response format variations  

 

Table 4.17.  

Average ICC’s (Consistency Measure) for Ratings Among Student Ability Groups for All 
Items, Argument Dimension. 

  ICC 
Low 0.48 
Medium 0.55 
High 0.38 
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Figure 4.6. Average ICC’s for Multidimensional Scaffolding Item Variants for Low, 
Medium, and High Ability Students, Argument Dimension.  

 

 

Figure 4.7. Average ICC’s for Ratings for Response Format Item Variants for Low, 
Medium, and High Ability Students, Argument Dimension.  
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(Figure 4.7), there was some fluctuation in interrater reliability depending on response 

format. Interrater reliability tended to be more stable across ability groups when a 

selected-response format was used, whereas the ICC fluctuated in size across ability 

groups when a constructed-response format was used. The items in Figures 4.6 and 4.7 

are mutually exclusive subsets of items, however, the constructed-response arguments in 

Figure 4.7 are very similar in structure and format to the multiple-prompt items in Figure 

4.6 (albeit with different content). Yet the pattern of ICC’s across ability groups is 

considerably different for the multiple-prompt items in Figure 4.6 compared to the 

constructed-response items in Figure 4.7. This may be due to chance variation in 

reliability estimates due to small sample size, or item-specific variations. Regardless, 

there seems to be substantial variation among ability groups in the single- prompt, 

multiple-prompt, and constructed-response items, but less variation in the ICC among 

selected-response items. This suggests that the selected-response rubrics may have been 

easier to consistently apply at all scoring categories. The constructed-response rubrics 

(including single-and multiple-prompt items) may have been harder to apply, and 

differences in applying particular scoring categories may have been affected by item or 

rater specific factors. 

Missing data and interrater reliability. When the multidimensional scoring rubric 

was used, raters were given the option to assign a score of Missing on [Dimension] to a 

particular item and dimension. For multiple-prompt items, this occurred when a student 

left one or more dimensional sub-prompts blank, but provided an answer to at least one of 

the sub-prompts within an item context. For single-prompt items, this occurred when a 

student provided a response that did not provide any information about their ability on 
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one or more of the assessment dimensions. Raters were instructed to mark a response as 

Blank on All Dimensions if the student did not respond to any part of the prompt/sub-

prompts. Thus, raters’ scores involved a series of judgments: first whether the student 

response contained information relevant to the dimension being scored, and second, 

assigning a score (if enough evidence existed). Discrepancies between raters may arise 

from either of these two judgments.  

 The intraclass correlations reported previously do not take into account any 

discrepancies between raters on whether or not a student’s response is Missing on 

[Dimension]. This is because this classification is a categorical value, and therefore 

cannot be summarized with the numerical codes used for scoring. However, raters’ 

judgments about whether or not a student’s response was present or missing was an 

additional source of discrepancies among raters. Across all items and all students in the 

final dataset, about 5% of student responses were coded as “Missing on [Dimension].” 

Among the subset of responses that were scored by 2 raters28, 64% of those responses 

were not scored as “Missing on [Dimension]” by both raters. This indicates that judgment 

of whether or not enough evidence exists to assign a score is a difficult one. Since single-

prompt items displayed a larger frequency of “Missing on [Dimension]” responses (see 

Tables 4.8 through 4.10 starting on page 151), discrepancies in this judgment are 

especially likely to further weaken the interrater reliability of these items. Multiple-

prompt and selected-response items exhibited less missing data and are therefore less 

likely to be affected.  

                                                           
28 A subset of responses were double-scored to check interrater reliability, and student responses without 
missing information were prioritized for inclusion in the interrater sample. Therefore, the number of 
discrepancies observed in the interrater sample due to missing data may not be representative of the extent 
of discrepancies among all responses.  
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Reconciling rater unreliability. Of the 64 items (22 Engaging in Argument from 

Evidence items, 20 Structure and Properties of Matter items, and 22 Scale, Proportion, 

and Quantity items) that were administered during the pilot test, several items 

demonstrated low interrater reliability29. Based on the dataset from the multidimensional 

rubric, 28 of the 64 items had ICC’s lower than 0.85, including all 22 Engaging in 

Argument from Evidence items, 2 Structure and Properties of Matter items, and 4 Scale, 

Proportion, and Quantity items. Low interrater reliability was a concern because it 

indicated that raters may have faced difficulty in interpreting and applying the scoring 

rubric. This was especially apparent for the Engaging in Argument from Evidence 

dimension, as all 22 items were characterized by low interrater reliability regardless of 

response format. The two affected Structure and Properties of Matter items and four 

Scale, Proportion, and Quantity items were some of the most difficult on the assessment, 

and assessed complex, hard-to measure skills. It seems likely that the task complexity 

may have played a role in raters’ difficulty with the scoring process, in addition to items’ 

scoring rubrics.  

 There are several approaches for reconciling rater discrepancies, including taking 

the mean of rater scores, soliciting a third rater or expert rater to determine the 

appropriate score, or asking the original raters to discuss and reach a consensus (Penny & 

Johnson, 2011). Furthermore, there are psychometric models that allow for separation 

and examination of the different factors (facets) that influence item performance, 

including rater effects and item difficulty; these are called multifaceted models (Myford 

& Wolfe, 2003).  

                                                           
29 ICC’s for each item using both the holistic and multidimensional rubrics are found in Appendix C. 
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 Rater discrepancies on the 22 Engaging in Argument from Evidence items were 

frequent and widespread across all items. Due to limited resources, it was not feasible to 

employ reconciliation methods that involved additional raters or discussion between the 

original raters. Therefore, a multifaceted Rasch model was utilized to account for 

differences between raters. The multifaceted Rasch model extends the partial credit 

model (Chapter 3, page 81) by adding a new term 𝐶௥ which is added to the item and step 

difficulty term 𝛿௜௞. Thus, the probability of a student’s response becomes a function of 

ability 𝜃௡, rater severity, and item/step difficulty (Linacre, 1989).  

𝑃(𝑋௡௜ = 𝑥௜|𝜃௡, 𝛿௜௞) =
exp ∑ (𝜃௡ − 𝛿௜௞ − 𝐶௥)

௫೔
௞ୀ଴

∑ exp [∑ (𝜃௡ − 𝛿௜௞ − 𝐶௥)௝
௞ୀ଴ ]

௠೔

௝ୀ଴

 

Using a multifaceted model, rater effects are estimated independently from the item and 

step difficulty estimates. All estimates are measured on the same scale, enabling 

comparisons between the various facets (Myford & Wolfe, 2003). Most importantly, the 

confounding effect of rater discrepancies is separated from the item estimates, meaning 

that the item difficulty estimates are more validly attributable to the items alone.  

On the Structure and Properties of Matter and Scale, Proportion, and Quantity 

dimensions, only a few items demonstrated low interrater reliability. Items with lower 

interrater reliability tended to measure the same difficult skill: integration of concepts and 

computations related to proportions and material properties. Because of the inherent 

difficulty of this concept for upper elementary grades, some students demonstrated 

nuanced partial understandings that were difficult to score. Therefore, an expert rater was 

selected to provide the final judgment for all of these item responses30.  

                                                           
30 The expert rater in question was the author of this dissertation.  
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Before examining the dimensionality of students’ scored responses, a baseline 

model was established for each dimension. On the Structure and Properties of Matter and 

Scale, Proportion, and Quantity dimensions, a partial credit model was fitted to each set 

of items. On the Argumentation dimension, the baseline model was established after 

comparing the fit of several multifaceted rating scale and partial credit models, including 

many variations with different rater effects and interactions. These models included 1) a 

rater model, which included parameters indicating the relative harshness/leniency of the 7 

raters; 2) a rater by item interaction model, which included extra parameters to account 

for variation in the raters’ behavior specific to a particular item; and 3) a model including 

rater by item and rater by item by step interactions, in which extra parameters were 

included to account for differences in how the raters assigned polytomous categories on 

particular items. Model fit was evaluated by comparing the difference in the deviance 

statistic (G2) of hierarchical models to a Chi-squared distribution (Adams, Wilson, & 

Wang, 1997) (Table 4.18).  All comparisons between hierarchical models were 

significant, indicating that a) in every case, the partial credit model fit the data 

significantly better than the rating scale model, and b) the greater the number of rater 

terms and interactions in the model, the better the fit. The best fitting model was the most 

complex model: a partial credit model including rater effects, rater by item interactions, 

and rater by item by step interactions. This model, which was used as the baseline model 

for the Engaging in Argument from Evidence items in the subsequent dimensionality 

analysis, predicts the log odds of a student’s response to an item as a linear combination 

of the overall item difficulty, the difficulty associated with moving from response 

category k to response category k + 1 for a particular item, the harshness or leniency of  
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Table 4.18.  
 
Comparison of Multifaceted Argument Models with Different Rater Effects and 
Interactions 
Rating Scale Models: 

 

Deviance 
(G2) 

Number of 
parameters 

item + step (simple rating scale model) 9180.94 24 
item + step + rater  9065.49 30 
item + step + rater + item x rater 8954.27 46 
item + step + rater + rater x step 8964.20 42 
item + step + rater + item x rater + rater x step 8848.59 58 
      
Partial Credit Models: 

 
Deviance 
(G2) 

Number of 
parameters 

item + item x step (simple partial credit model) 8926.48 66 
item + rater + item x step 8796.69 72 
item + rater + item x step + item x rater 8694.98 88 
item + rater + item x step + item x rater +  
item x step x rater 8526.96 132 

 

the particular rater who scored the response, the interaction between a particular item and 

rater, and the interaction between a particular rater, item, and the difficulty of moving 

from response category k to response category k + 1 on that item.  

Item difficulty. Student performance data for all 64 items was scaled using 

ConQuest 4 (Adams, Wu, & Wilson, 2015). Marginal maximum likelihood estimation 

was used to generate item difficulty estimates and fit statistics for each dimension, and to 

estimate dimensional variances and covariances based on a multidimensional model. Item 

difficulty estimates and fit statistics for all items may be found in Appendix D, and the 

items themselves can be found in Appendix F.  

Multidimensional scaffolding. Figures 4.8, 4.9, and 4.10 contain Wright maps for 

each assessment dimension, based on estimates from the multidimensional model. Wright 
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maps are a visual representation of estimated item difficulty and person ability. Easier 

items and lower achieving persons are located at the lower end of the figure, and harder 

items and higher achieving persons are located at the top. The Wright maps in Figures 

4.8, 4.9, and 4.10 contains 5 pairs of items. Each pair shares a common task context, but 

one item (ITEM A) utilized a multiple-prompt format and the other (ITEM B) utilized a 

single-prompt format.  

 On the Scale, Proportion, and Quantity dimension, the direction of the differences 

in difficulty between multiple- and single-prompt items was not consistent for all item 

pairs. The multiple-prompt version of the item was easier for 2 of the 4 pairs of items 

(CAROL, ANA), and the single-prompt version of the item was easier for 2 of the 4 pairs 

(ROMITA, SUGAR). There doesn’t appear to be any systematic advantage to using a 

multiple-prompt format, compared to a single-prompt.  

 On the Structure and Properties of Matter dimension, a pattern emerges. On 

average, single-prompt item thresholds are easier than their corresponding multiple-

prompt item thresholds. This trend holds across all item pairs - for 4 of the 5 item pairs 

(ANA, SUGAR, CAROL, and BOX), the single-prompt version of the item is easier than 

the multiple-prompt version. For the remaining item (ROMITA), the items have roughly 

equivalent difficulty estimates.  Thus, the single-prompt item format tends to be easier 

than the multiple-prompt format on this dimension. The single-prompt format may allow 

students to provide a response that emphasizes the strengths of their understanding and 

deemphasizes their weaknesses. Splitting the item into multiple responses may make it 

more difficult by forcing students to directly address misconceptions they may have 

masked in a single response. In addition, the single prompt format may encourage a halo  
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------------------------------------------------------------------------------------------------ 
                                              |                                                | 
   4                                          |                                                | 
                                          XXXX|                                                | 
                                              |                                                | 
                                              |                                                | 
                                              |                                                | 
                                              |                                                | 
                                              |                                                | 
   3                                          |                                                | 
                                              |                                                | 
                                              |                                                | 
                                              |                                                | 
                                          XXXX|                                                | 
                                              |                                                | 
                                              |                                                | 
   2                                          |                                                | 
                                           XXX|                                                | 
                               XXXXXXXXXXXXXXX|                                     SUGAR A2.2 | 
                                         XXXXX|                                                | 
                                         XXXXX|                                     SUGAR A2.1 | 
                                        XXXXXX|                                                | 
                                   XXXXXXXXXXX|                                                | 
   1                                    XXXXXX|                                                | 
                                       XXXXXXX|                                                | 
                                         XXXXX|                          SUGAR A1.2            | 
                                 XXXXXXXXXXXXX|                                     SUGAR B2.2 | 
                             XXXXXXXXXXXXXXXXX|                                                | 
                            XXXXXXXXXXXXXXXXXX|                          SUGAR A1.1            | 
                                        XXXXXX|                          SUGAR B1.2 SUGAR B2.1 | 
   0   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                                | 
                                     XXXXXXXXX|                                                | 
                             XXXXXXXXXXXXXXXXX|                                                | 
                              XXXXXXXXXXXXXXXX|                  CAROL B                       | 
                             XXXXXXXXXXXXXXXXX|ANA B                                           | 
                              XXXXXXXXXXXXXXXX|                                                | 
                                   XXXXXXXXXXX|                                                | 
                                    XXXXXXXXXX|       ROMITA A           SUGAR B1.1            | 
  -1                                 XXXXXXXXX|                                                | 
                             XXXXXXXXXXXXXXXXX|                                                | 
                                     XXXXXXXXX|ANA A                                           | 
                                           XXX|                                                | 
                                           XXX|       ROMITA B                                 | 
                                          XXXX|                                                | 
                                         XXXXX|                                                | 
  -2                                        XX|                  CAROL A                       | 
                                             X|                                                | 
                                           XXX|                                                | 
                                             X|                                                | 
                                             X|                                                | 
                                            XX|                                                | 
                                             X|                                                | 
  -3                                        XX|                                                | 
                                             X|                                                | 
                                             X|                                                | 
                                             X|                                                | 
                                              |                                                | 
                                              |                                                | 
                                             X|                                                | 
  -4                                          |                                                | 
                                            XX|                                                | 
================================================================================================ 

Figure 4.8. Item difficulty comparison of different multidimensional scaffolding 
variations on the Scale, Proportion, and Quantity dimension. Version A items have a 
multiple-prompt format, while Version B items have a single-prompt format. 31  
                                                           
31 Only 4 items are included in the Scale, Proportion, and Quantity Wright map for multidimensional 
scaffolding. One of the items, labeled BOX in the Matter and Argument Wright maps, was scored 
differently on the Scale, Proportion, and Quantity dimension, depending on whether it had multiple-
prompts or a single-prompt. Therefore, the item difficulty estimates for the two variants are not directly 
comparable on this dimension.  
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---------------------------------------------------------------------------------------------- 
                                             |                                               | 
   4                                         |                                               | 
                                             |                                               | 
                                             |                                               | 
                                           XX|                                               | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
   3                                         |                                               | 
                                             |                                               | 
                                          XXX|                                               | 
                                            X|                             BOX A.2           | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
   2                                         |                                               | 
                                       XXXXXX|                                               | 
                                           XX|                             BOX B.2           | 
                                            X|                                               | 
                                          XXX|                                               | 
                                          XXX|                                               | 
                                         XXXX|                                               | 
   1                                  XXXXXXX|                                               | 
                                    XXXXXXXXX|                                               | 
                                 XXXXXXXXXXXX|                                               | 
                       XXXXXXXXXXXXXXXXXXXXXX|                                               | 
                      XXXXXXXXXXXXXXXXXXXXXXX|                   CAROL A.2 BOX A.1           | 
                            XXXXXXXXXXXXXXXXX|                   CAROL A.1                   | 
                     XXXXXXXXXXXXXXXXXXXXXXXX|                                               | 
   0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                   CAROL B.2         SUGAR A.2 | 
                            XXXXXXXXXXXXXXXXX|        ROMITA A.2 CAROL B.1         SUGAR A.1 | 
                        XXXXXXXXXXXXXXXXXXXXX|        ROMITA B.2                             | 
                      XXXXXXXXXXXXXXXXXXXXXXX|ANA A.2 ROMITA A.1           BOX B.1           | 
                                   XXXXXXXXXX|ANA A.1 ROMITA B.1                             | 
                            XXXXXXXXXXXXXXXXX|                                               | 
                             XXXXXXXXXXXXXXXX|                                               | 
                             XXXXXXXXXXXXXXXX|                                               | 
  -1                                  XXXXXXX|ANA B.2                              SUGAR B.2 | 
                                     XXXXXXXX|ANA B.1                              SUGAR B.1 | 
                                          XXX|                                               | 
                                          XXX|                                               | 
                                          XXX|                                               | 
                                           XX|                                               | 
                                           XX|                                               | 
  -2                                      XXX|                                               | 
                                             |                                               | 
                                            X|                                               | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
  -3                                        X|                                               | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
                                             |                                               | 
============================================================================================== 

Figure 4.9. Item difficulty comparison of different multidimensional scaffolding 
variations on the Structure and Properties of Matter dimension. Version A items have a 
multiple-prompt format, while Version B items have a single-prompt format. 

 
-------------------------------------------------------------------------------------------------------- 
                                         |                                                             | 
   4                                     |                                                             | 
                                         |                                                             | 
                                         |                                                             | 
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                                         |                                                             | 
                                         |                                                             | 
                                        X|                                                             | 
                                         |                                                             | 
   3                                    X|                                                             | 
                                      XXX|                                                             | 
                                        X|                                                             | 
                                        X|                                                             | 
                                        X|                                                             | 
                                        X|                                                             | 
                                        X|                                                             | 
   2                                     |                                                  SUGAR A2.3 | 
                                       XX|                                                             | 
                                      XXX|                                                             | 
                                      XXX|                                                             | 
                                     XXXX|                                                             | 
                                  XXXXXXX|                              BOX A.3                        | 
                                    XXXXX|                                                             | 
   1                      XXXXXXXXXXXXXXX|                                                             | 
                               XXXXXXXXXX|ANA A.3                                                      | 
                           XXXXXXXXXXXXXX|ANA B.3            CAROL B.3                                 | 
                             XXXXXXXXXXXX|        ROMITA B.3                                SUGAR B2.3 | 
                         XXXXXXXXXXXXXXXX|                                                             | 
                               XXXXXXXXXX|                                       SUGAR A1.3            | 
                        XXXXXXXXXXXXXXXXX|        ROMITA A.3 CAROL A.3   BOX B.3                       | 
   0         XXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                                             | 
                  XXXXXXXXXXXXXXXXXXXXXXX|                                       SUGAR B1.3            | 
               XXXXXXXXXXXXXXXXXXXXXXXXXX|                                                             | 
                      XXXXXXXXXXXXXXXXXXX|                                                             | 
                         XXXXXXXXXXXXXXXX|                                                  SUGAR B2.2 | 
                          XXXXXXXXXXXXXXX|                                                             | 
                        XXXXXXXXXXXXXXXXX|                                                             | 
                        XXXXXXXXXXXXXXXXX|                                                             | 
  -1                           XXXXXXXXXX|                                       SUGAR B1.2            | 
                                    XXXXX|        ROMITA B.2                                SUGAR B2.1 | 
                                     XXXX|        ROMITA A.2                                SUGAR A2.2 | 
                               XXXXXXXXXX|ANA B.2            CAROL B.2   BOX B.2 SUGAR A1.2            | 
                                      XXX|                   CAROL A.2                                 | 
                                        X|ANA A.2                                SUGAR B1.1            | 
                                       XX|ANA B.1 ROMITA A.1             BOX B.1                       | 
  -2                                  XXX|                               BOX A.2                       | 
                                        X|ANA A.1            CAROL B.1                                 | 
                                         |        ROMITA B.1                                           | 
                                         |                                                             | 
                                         |                   CAROL A.1           SUGAR A1.1            | 
                                         |                               BOX A.1                       | 
                                         |                                                             | 
  -3                                     |                                                             | 
                                         |                                                             | 
                                         |                                                             | 
                                         |                                                             | 
                                         |                                                  SUGAR A2.1 | 
                                         |                                                             | 
                                         |                                                             | 
  -4                                     |                                                             | 
                                         |                                                             | 
======================================================================================================
== 

Figure 4.10. Item difficulty comparison of different multidimensional scaffolding 
variations on the Engaging in Argument from Evidence dimension. Version A items have 
a multiple-prompt format, while Version B items have a single-prompt format. 
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effect among raters. A longer discussion of these possible reasons for the observed 

difference in item difficulty can be found in Chapter 5.  

On the Engaging in Argument from Evidence dimension, there is a slight 

tendency for single-prompt thresholds to cluster near the center of the scale distribution 

while the multiple-prompt thresholds have a larger range. This results in a pattern unique 

to the Engaging in Argument from Evidence dimension where multiple-prompt items 

tend to be easier than single-prompt items at the lower scoring categories and harder than 

single-prompt items at the higher scoring categories. There are many factors which may 

contribute to this pattern, including rater conflation of the dimensions (a halo effect), 

differences in student behavior to single prompt and multiple prompt items, or chance. 

These possibilities are discussed in more depth in Chapter 5.  

Response format. There were 4 pairs of items that utilized both response format 

variations. All 8 items used a multiple-prompt format, but one item from each pair 

utilized a selected-response format and the other utilized a constructed-response format. 

Of these 4 pairs, 3 of them varied the response format for the Argument prompt only – an 

identical response format was used for the Scale, Proportion, and Quantity, and Matter 

prompts (usually selected-response, but sometimes a mixed response format). Only one 

item (KEVIN) varied the response format on all three prompts. Therefore, Wright maps 

were only examined for the Engaging in Argument from Evidence dimension (Figure 

4.11).  

At the lower thresholds, there is no clear pattern in item difficulty among 

selected-response and constructed-response argument items. In some cases (i.e., KEVIN, 

NATE), the selected-response threshold is easier than the corresponding constructed- 
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----------------------------------------------------------------------------------- 
                                         |                                        | 
   4                                     |                                        | 
                                         |                                        | 
                                         |                                        | 
                                         |                                        | 
                                         |                                        | 
                                        X|                                        | 
                                         |                                        | 
   3                                    X|                                        | 
                                      XXX|                                        | 
                                        X|                                        | 
                                        X|                                        | 
                                        X|                                        | 
                                        X|                                        | 
                                        X|                                        | 
   2                                     |                                        | 
                                       XX|                                        | 
                                      XXX|                                        | 
                                      XXX|                                        | 
                                     XXXX|                                        | 
                                  XXXXXXX|                                        | 
                                    XXXXX|                   BRASS A.3            | 
   1                      XXXXXXXXXXXXXXX|BETH A.3                                | 
                               XXXXXXXXXX|                             NATE A.3   | 
                           XXXXXXXXXXXXXX|         KEVIN A.3                      | 
                             XXXXXXXXXXXX|                                        | 
                         XXXXXXXXXXXXXXXX|                                        | 
                               XXXXXXXXXX|BETH B.3                                | 
                        XXXXXXXXXXXXXXXXX|                   BRASS B.3            | 
   0         XXXXXXXXXXXXXXXXXXXXXXXXXXXX|                             NATE B.3   | 
                  XXXXXXXXXXXXXXXXXXXXXXX|         KEVIN B.3                      | 
               XXXXXXXXXXXXXXXXXXXXXXXXXX|                                        | 
                      XXXXXXXXXXXXXXXXXXX|                                        | 
                         XXXXXXXXXXXXXXXX|                                        | 
                          XXXXXXXXXXXXXXX|                                        | 
                        XXXXXXXXXXXXXXXXX|BETH A.2                                | 
                        XXXXXXXXXXXXXXXXX|                                        | 
  -1                           XXXXXXXXXX|                                        | 
                                    XXXXX|                                        | 
                                     XXXX|                                        | 
                               XXXXXXXXXX|                                        | 
                                      XXX|                                        | 
                                        X|BETH B.2                                | 
                                       XX|         KEVIN A.2 BRASS A.2 NATE A.2   | 
  -2                                  XXX|                   BRASS B.2            | 
                                        X|                                        | 
                                         |         KEVIN B.2                      | 
                                         |         KEVIN A.1 BRASS B.1            | 
                                         |BETH B.1                                | 
                                         |                             NATE B.2   | 
                                         |                             NATE A.1   | 
  -3                                     |BETH A.1                                | 
                                         |                   BRASS A.1 NATE B.1   | 
                                         |         KEVIN B.1                      | 
                                         |                                        | 
                                         |                                        | 
                                         |                                        | 
                                         |                                        | 
  -4                                     |                                        | 
                                         |                                        | 
=================================================================================== 

Figure 4.11. Item difficulty comparison of different response format variations on the 
Engaging in Argument from Evidence dimension. Version A items have a constructed-
response format, while Version B items have a selected-response format. 
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response threshold. In other cases (i.e., BETH, BRASS), the constructed-response 

threshold is easier. However, at the third threshold, the multiple-choice threshold is 

systematically easier than the constructed- response threshold, across all items. When it 

comes to providing the most sophisticated arguments, which include both evidence and 

reasoning, it appears that the multiple-choice format offers students an advantage. At the 

lower thresholds, no advantage is apparent based on item format. Furthermore, there is no 

disadvantage associated with the multiple-choice format at the lower levels, suggesting 

that the increased reading load required by multiple-choice items does not seem to pose a 

barrier to entry for students. This finding contradicts conventional wisdom about the 

selected-response format, where distracters are generally seen as a potential source of 

construct-irrelevant variance due to additional reading comprehension demands when 

compared to constructed-response items. The observed pattern casts doubt on these 

assumptions, although the role of sample characteristics (e.g., reading proficiency, 

English language proficiency) cannot be ruled out as a potential explanation.   

Differences in item difficulty associated with multidimensional scaffolding 

among students of different abilities. When the analysis was repeated with three 

subgroups defined by student ability on each of the assessment dimensions, some results 

held while others became muddled. Analysis focused on the differences between item 

variations, and whether the size and direction of these differences vary with students of 

different abilities. The item difficulty estimates here were calculated based on small 

sample sizes (often smaller than N=30), and are not suitable for precise comparisons; 

however, they are presented here for descriptive purposes. As a rough guideline, a 
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difference larger than 0.5 logits is often considered substantial enough to merit 

examination in subgroup analyses (Agustin, 2006).  

On the Scale, Proportion, and Quantity dimension, the size and direction of 

differences between item variations is largely consistent across all ability groups. As in 

the overall analysis, there is no clear pattern in the differences between single-prompt and 

multiple-prompt items.  

 

 

Figure 4.12. Item difficulty maps for multiple-prompt and single-prompt items on the 
Scale, Proportion, and Quantity dimension when students are split into subgroups based 
on ability. Item variants with identical context but different types of scaffolding (i.e., 
single-prompt, multiple-prompt) are presented in pairs along the X-axis. MP indicates the 
multiple-prompt version, and SP indicates the single-prompt version. The Y-axis 
indicates item difficulty, in logits. Points on the lower end of the scale indicate easier 
items/thresholds, and points near the top indicate more difficult items/thresholds.  
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Figure 4.13. Item difficulty maps for multiple-prompt and single-prompt items on the 
Structure and Properties of Matter dimension when students are split into subgroups 
based on ability. Item variants with identical context but different types of scaffolding 
(i.e., single-prompt, multiple-prompt) are presented in pairs along the X-axis. MP 
indicates the multiple-prompt version, and SP indicates the single-prompt version. The 
Y-axis indicates item difficulty, in logits. Points on the lower end of the scale indicate 
easier items/thresholds, and points near the top indicate more difficult items/thresholds.  

 

On the Structure and Properties of Matter dimension, the overall pattern that 

single-prompt items tend to be easier than multiple-prompt items holds across all ability 

groups. The one exception to this pattern is item 3, which also deviated in the overall 

analysis.   

On the Engaging in Argument from Evidence dimension, patterns in item 

difficulty appear to be fairly constant across all 3 ability groups. The lower two 

thresholds are sometimes easier when the single-prompt format is used, and often the 

difficulty is very similar across the two item variations. But the top threshold is 
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systematically easier when the single-prompt format is used, and this holds across all 

ability groups.  

The previously observed overall pattern that single-prompt thresholds tend to be 

clustered is inconsistent, and in some cases reverses once the dataset is split into the three 

ability groups. Without a clear pattern, it’s difficult to speculate about why differences in 

difficulty between multiple-prompt and single-prompt items may occur.  

 

 

Figure 4.14. Item difficulty maps for multiple-prompt and single-prompt items on the 
Engaging in Argument from Evidence dimension when students are split into subgroups 
based on ability. Item variants with identical context but different types of scaffolding 
(i.e., single-prompt, multiple-prompt) are presented in pairs along the X-axis. MP 
indicates the multiple-prompt version, and SP indicates the single-prompt version. The 
Y-axis indicates item difficulty, in logits. Points on the lower end of the scale indicate 
easier items/thresholds, and points near the top indicate more difficult items/thresholds.  
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Figure 4.15. Item difficulty maps for constructed-response and selected-response items 
on the Engaging in Argument from Evidence dimension when students are split into 
subgroups based on ability. Item variants with identical context but different types of 
scaffolding (i.e., single-prompt, multiple-prompt) are presented in pairs along the X-axis. 
CR indicates the constructed-response version, and SR indicates the selected-response 
version. The Y-axis indicates item difficulty, in logits. Points on the lower end of the 
scale indicate easier items/thresholds, and points near the top indicate more difficult 
items/thresholds.  

 

Differences in item difficulty associated with response format among students 

of different abilities. On the Engaging in Argument from Evidence dimension, the 

selected-response top thresholds are easier than constructed-response across all ability 

groups. This mirrors the pattern observed with the overall group, and reinforces the 

hypothesis that the selected-response format changes the nature of the task.  

There is still no discernible pattern of difficulty in the bottom thresholds for 

selected-response or constructed-response items, again suggesting that reading load does 

not pose as big of a barrier as commonly supposed.  
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Item misfit. All 64 items (22 Scale, Proportion, and Quantity items, 20 Structure 

and Properties of Matter items, and 22 Engaging in Argument from Evidence items) were 

examined for misfit using a weighted mean square statistic. Marginal maximum 

likelihood estimation was used to generate item difficulty estimates and fit statistics for 

each dimension. The weighted mean square is an indicator of the degree to which student 

responses to an item conform to the expected responses. The weighted mean square 

statistic comes with an associated t-statistic. Large values of the weighted mean square 

(greater than 1.33), or t-values greater than 1.96 were flagged as indicators of misfit, 

indicating that students’ responses did not conform to the model. Small values of the 

weighted mean square (less than 0.75), or t-values less than -1.96 may indicate that 

students’ responses conform to the model to a higher degree than anticipated. Item 

difficulty estimates and fit statistics for all items may be found in Appendix D. 

 On the Scale, Proportion, and Quantity dimension, no items were flagged as 

misfitting based on the listed criteria. There is no indication that response format or 

multidimensional scaffolding either improve or detract from an item’s fit to the model on 

this dimension.  

 On the Structure and Properties of Matter dimension, two items were flagged as 

having high positive misfit. For one of these (BRASS A), the source of item misfit is 

unclear. This item utilized both a multiple-prompt structure and a selected-response 

format, but its comparison item (BRASS B) utilized the same structure and response 

format for the particular sub-prompt that was flagged. Both items had similar fit statistics 

(BRASS A weighted MNSQ = 1.15, t=1.6; BRASS B weighted MNSQ = 1.21, t=2.2), 

although only BRASS B was greater than the stated threshold.  The cause of any potential 
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misfit is likely attributable to a common element of the two items, and may or may not 

involve the response format. 

 The second item flagged on the Structure and Properties of Matter dimension was 

KEVIN A, an open-ended multiple prompt item, which was flagged as having significant 

positive misfit (weighted MNSQ = 1.25, t = 2.30). Its selected-response counterpart 

(KEVIN B) fit the model well (MNSQ = 1.09, t = 1). This suggests that the difference in 

response format is a potential source for misfit. The item asked students to calculate the 

weight of several coffee beans by subtracting the weight of the container holding the 

beans. Then, students were asked to predict how much the container of coffee would 

weigh after the beans were ground into powder. According to rater reports, many 

students’ responses indicated that they were unsure of whether to account for the weight 

of the container when making their prediction, and many provided responses that 

describe the weight of the coffee without the container. In the selected-response version 

of the item, the response options mitigated this dilemma, since all options were relative to 

the initial weight of the container and beans (e.g., "A little bit more than X grams", "A 

little bit less than X grams", "X grams", etc.). In this case, it appears that the selected-

response options made the task clearer for students and likely improved the item's fit.  

 On the Engaging in Argument from Evidence dimension, 12 of the 22 items were 

flagged as misfitting based on t-statistics higher than 1.96. Focusing on only the subset of 

items that have multidimensional scaffolding variations, there is no clear relationship 

between multidimensional scaffolding and misfit. Of four pairs of item variations, two of 

the multiple-prompt variations were flagged for misfit, while the corresponding single-
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prompt variations fit well, and two of the remaining single-prompt variations were 

flagged for misfit, while their corresponding multiple-prompt variations fit well.  

Looking at the selected-response variations on the Engaging in Argument from 

Evidence dimension, a pattern emerges. In two cases, the selected-response version of the 

item was flagged for misfit, while the constructed-response version of the same item was 

not. For the remaining two item pairs, both selected-response and constructed-response 

variations were flagged for misfit. In all four pairs, the value of the selected-response 

mean square was higher than the corresponding value of the constructed-response mean 

square. It appears that the selected-response format may be related to higher incidence of 

misfit when used to assess student proficiency with argumentation. This is likely because 

the selected-response format allows some students to engage in different response 

processes; i.e., some students may be forming an argument and then selecting the 

response(s) that best capture their original argument, while others may evaluate and 

select response options without first forming an argument of their own. The latter 

response process is unique to the selected-response variation, as students must form their 

own arguments without response options on the constructed-response version. This 

additional potential response process may also be responsible for an observed difference 

in difficulty between the selected- and constructed-response variations: at the highest 

thresholds, providing a complete scientific argument based on both evidence and 

reasoning was more difficult when a constructed-response format was used. Other factors 

that may influence the observed misfit include the high reading load in selected-response 

arguments, variable student interpretation of the response options, raters’ differential 

application of the Engaging in Argument from Evidence scoring rubric with selected-
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response items, or item-specific factors. Further discussion of these factors may be found 

in Chapter 5.  

Variation in the extent of item misfit for students of different abilities.  The 

dataset was again split into 3 ability groups, and the three subgroups were examined for 

patterns in misfitting items. The Scale, Proportion, and Quantity and Structure and 

Properties of Matter dimensions did not demonstrate any misfitting items at any ability 

level. As before, the extent of misfit is substantial on the Engaging in Argument from 

Evidence dimension for both overall item parameter estimates and step parameter 

estimates. Group means for low, medium, and high ability students were compared across 

item variations (Table 4.19). Differences between group means were not evaluated for 

statistical significance, as the data come from a non-random sample of items and 

students, and there is no larger population of inference; however, patterns in average item 

misfit are interpreted descriptively. Selected-response items tended to have more extreme 

fit statistics than constructed-response items, across all ability groups. This indicates 

more unpredictable responses when a selected-response format was used, and supports 

the pattern observed in the overall dataset. There are no clear patterns in average misfit  

 

Table 4.19.  

Average Misfit T-statistics for Multiple- and Single-Prompt, Selected- and Constructed-
Response Argument Items Across Low, Medium, and High Ability Groups 

 Low Ability Medium Ability High Ability 
Constructed-response 1.05 0.72 1.2 
Selected-response 2.01* 2.33* 1.66 
Multiple-prompt 0.59 1.40 0.84 
Single-prompt 0.91 1.49 1.03 

*Indicates an average misfit T-statistic outside the acceptable range from -1.96 to 1.96. 
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among the ability groups, when selected-response and constructed-response items are 

compared. 

When multiple-prompt and single-prompt items are compared, medium ability 

students tended to have more extreme misfit statistics than low ability students. This 

indicated that students whose abilities were close to the mean tended to have more 

unpredictable responses on the group of single- and multiple-prompt items included in 

this analysis, while high and low ability students were more likely to conform to 

expectation. This suggests that very weak and very strong students tend to interact with 

the items more predictably, perhaps as a result of their extreme ability. Multiple-prompt 

items tended to have slightly better fit than single-prompt items across all ability groups; 

however, the size of the difference is small and fluctuates across ability groups.  
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Research question 3: To what extent do unidimensional and multidimensional 

scoring and modelling approaches affect the relationships among the 3 dimensions 

of science learning (assuming that such relationships exist)? 

 The NGSS proposes a three-dimensional model of science learning. To examine 

whether the assessment aligned with the NGSS’s theoretical structure, and to examine the 

impact of the scoring rubric and psychometric model on the assessment’s dimensionality, 

three models were compared:  

1. Model 1: A unidimensional Rasch model, combined with a multidimensional 

(a.k.a. analytic) scoring rubric, 

2. Model 2: A three dimensional Rasch model, where the dimensions are defined in 

accordance with the NGSS, combined with a multidimensional (a.k.a. analytic) 

scoring rubric, and 

3. Model 3: A unidimensional Rasch model, combined with a holistic scoring rubric.  

Several psychometric criteria are examined for each of the three models:  

Model deviance. Deviance statistics for the unidimensional and multidimensional 

models from the analytic dataset can be found in Table 4.20. These models are 

hierarchical models, and therefore the difference in model deviance can be directly 

compared to a Chi-squared distribution (Adams, Wilson, & Wang, 1997). Note that the 

holistic model is also included in this table, although it cannot be directly compared to the 

other two models since it comes from a different set of scores and many fewer items. The 

difference between the unidimensional and multidimensional model was statistically 

significant (χ2 difference = 109.76, df = 5, p < 0.01). The multidimensional model 

demonstrates significantly better fit to the data than the unidimensional model.  
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Table 4.20.  
 
Model Deviance from the Unidimensional and Multidimensional Models  
 Deviance (G2) Number of Parameters 
Analytic Unidimensional 16460.50 204 
Analytic Multidimensional 16370.48 209 
Holistic Unidimensional 9516.79 121 

 
 

Item fit. Item fit statistics illustrate the differences in overall model deviance in 

finer detail. All item estimates and fit statistics can be found in Appendix D. Using the 

multidimensional dataset, there were a total of 64 items. Of the 22 Engaging in Argument 

from Evidence items, 14 were flagged as misfitting when a unidimensional model was 

employed and the multidimensional dataset was used, compared to 11 items flagged 

when a multidimensional model was employed. All of the Scale, Proportion, and 

Quantity items fit the scale well under both models. Two Structure and Properties of 

Matter items demonstrated significant positive misfit, and this occurred with both the 

unidimensional and the multidimensional model. The Argument items fit the scale 

slightly better under the multidimensional model; this explains why the multidimensional 

model demonstrated significantly better overall fit compared to the unidimensional 

model. 

When a holistic rubric was used (in conjunction with a unidimensional model), 15 

of the 20 items were flagged as misfitting. Overall, it appears that a multidimensional 

model paired with a multidimensional rubric provides the best item fit, and a 

unidimensional model paired with a holistic rubric provides the worst item fit.  

Correlation between dimensions. Correlations between the three dimensions, 

estimated from the multidimensional model, are found in Table 4.21. Correlations are 

fairly high, ranging from about 0.7 to 0.9. The strongest correlation is between the Scale, 
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Proportion, and Quantity and Structure and Properties of Matter dimensions at 0.89. 

These correlations are quite high, indicating a strong degree of concordance between the 

dimensional person estimates. This somewhat contrasts the model deviance results from 

Table 4.20; although the difference between models is statistically significant, the 

correlations suggest that the distinction between dimensions is not significant in a 

practical sense. In general, an ability estimate’s relative ranking on one dimension 

implies a similar relative ranking on another dimension. Keep in mind, however, that all 

items shared a narrow content area, which may inflate the interdimensional correlations. 

Depending on the quality of other psychometric indicators (such as reliability), it may be 

justifiable to sacrifice some nuance in interpretation in exchange for more robust 

statistical characteristics of the model.  

The Engaging in Argument from Evidence dimension demonstrated the lowest 

correlation with the other two dimensions, and it shows the largest improvement in item 

fit with the multidimensional structure (above). This dimension seems to be the most 

different from the others, such that multidimensional structure will provide the greatest 

amount of additional nuance in the interpretation of student estimates.  

To examine variation in student performance across dimensions, 

multidimensional WLE estimates were converted to z-scores and compared across 

dimensions. Based on these z-scores, about 50% of respondents have ability estimates on 

one of the dimensions that differ from estimates on at least one other dimension by a 

standard deviation or more. The largest number of discrepancies occur between the Scale, 

Proportion, and Quantity and Engaging in Argument from Evidence dimensions (31% of  

students). The remaining dimensional pairs each had about 25% of students with 
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Table 4.21.  
 
Correlations Between the Three Dimensions: Scale, Proportion, and Quantity; Structure 
and Properties of Matter; and Engaging in Argument from Evidence 
 Structure and 

Properties of Matter 
Engaging in Argument 
from Evidence 

Scale, Proportion, and Quantity 0.89 0.73 
Structure and Properties of Matter -- 0.80 

 
 

discrepant estimates. The scatterplots in Figure 4.16 further illustrate these discrepancies. 

The Scale, Proportion, and Quantity vs. Engaging in Argument from Evidence scatterplot 

has the largest amount of variation around the trend line, with 20% of variation in 

students’ argumentation estimate predicted by their Scale, Proportion, and Quantity 

Estimate. The remaining dimensional pairs also demonstrate some variation around the 

trend line, to a lesser degree. Although the relationships between subscale ability 

estimates are strong, inconsistencies in student performance across dimensions are 

widespread. Multidimensional ability estimates would provide some useful information 

to tease apart student performance in these cases.  

 The relationship between ability estimates on the Scale, Proportion, and Quantity 

and Structure and Properties of Matter dimensions, in particular, is very strong. To test 

whether these dimensions might be better represented by a collapsed scale, a two-

dimensional model was fitted. Engaging in Argument from Evidence was left as a 

separate dimension, but all remaining items were scaled together. Overall model deviance 

was 16388.21, with 206 estimated parameters. A chi-squared test revealed that the 

original three-dimensional model fit the data significantly better than the collapsed two-

dimensional model (χ2 difference = 17.73, df = 3, p < 0.01). However, the two-

dimensional model had significantly better fit than the unidimensional model (χ2  
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Figure 4.16. Relationship between WLE person estimates for each pair of dimensions.  
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difference = 72.30, df = 2, p < 0.01), and the difference in deviance between the 

unidimensional and two-dimensional models is much larger than the difference between 

the two- and three-dimensional models. Thus, the separation of the Engaging in 

Argument from Evidence dimension has the largest impact on model fit. The impact of 

establishing separate dimensions for Scale, Proportion, and Quantity, and Structure and 

Properties of Matter is much smaller.  

Person fit. Person fit statistics were reported with the WLE person estimates. 

ConQuest produces mean square statistic for person fit. Cases with values outside of the 

range 0.70 through 1.30 were flagged as misfitting, and the percentage of misfitting 

persons was compared across the three models (Table 4.22). Values lower than 0.70 

overfit the model, indicating that the student’s responses are more predictable than the 

model expects, while values higher than 1.30 indicate that the student’s responses are less 

predictable than the model expects (Wright & Linacre, 1994).  

The unidimensional model with holistic data was the worst fitting, with the 

greatest frequency of both overfitting and underfitting persons. The unidimensional 

model with the multidimensional/analytic dataset had the lowest amount of total misfit. 

However, the multidimensional model had the lowest number of students with mean 

squares above 1.30, indicating that the multidimensional model was able to explain more 

 

Table 4.22.  
 
Percentage of Misfitting Persons 
 Total Misfit <0.70 >1.30 

Analytic Unidimensional 31.98% 23.31% 10.03% 
Analytic Multidimensional 41.46% 36.31% 5.42% 
Holistic Unidimensional 55.28% 41.73% 13.82% 
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response variation among students who were considered ‘less predictable’ in the 

unidimensional model. These ‘less predictable’ students are likely students with 

dissimilar performance on separate dimensions. In addition to providing more nuanced 

information about these students’ performance, the three-dimensional model also 

improves the fit of their ability estimates.  

Heteroscedasticity/homoscedasticity of covariance between dimensions. 

Scatterplots were created to represent the relationships between each pair of dimensions, 

based on WLE ability estimates from the multidimensional model (Figure 4.16). The 

relationship between each pair of dimensions appears to be mostly homoscedastic. There 

are hints that the covariance may increase at the low and high ends of each scale, but the 

sparseness of data in those regions of the plots makes it difficult to tell whether this is a 

meaningful pattern or an illusion.  For the most part, the assumption of homoscedasticity 

seems tenable, meaning that the estimates of covariance/ correlation between the three 

dimensions may be reasonably assumed to be unbiased and estimates from the 

multidimensional model are valid.  

Variation in the correlation between dimensions for students of different 

abilities. The dataset was divided into low, medium, and high ability students and the 

analysis was rerun on each subgroup. The ability groupings and subsequent analysis were 

repeated for each dimension (i.e., once with ability groups based on ability estimates 

from the Scale, Proportion, and Quantity dimension, then with ability groups based on the 

Structure and Properties of Matter dimension, and finally with ability groups based on the 

Engaging in Argument from Evidence dimension)32. Depending on the dimension used as  

                                                           
32 These smaller subgroup analyses had smaller sample sizes, and therefore all estimates may not be as 
stable as in the overall analysis.  
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Table 4.23.  

Correlations Among Dimensional Ability Estimates Among High, Medium, and Low 
Ability Students on Each Dimensions 

  

Groups divided 
by ability on 

SPQ dimension 

Groups divided 
by ability on 

Matter dimension 

Groups divided 
by ability on 

Argument 
dimension 

  SPQ Matter SPQ Matter SPQ Matter 

Low 
Matter 0.51 -- 0.90 -- 0.64 -- 
Argument -0.24 0.64 0.05 -0.29 -0.03 0.53 

Medium 
Matter 0.25 -- 0.12 -- 0.72 -- 
Argument -0.54 0.63 -0.03 0.94 0.21 0.55 

High Matter 0.74 -- 0.89 -- 0.99 -- 
Argument 0.93 0.86 0.77 0.94 0.68 0.61 

 
 
the basis for grouping by ability, the patterns in correlations among dimensions vary 

widely (Table 4.23). This contradicts the observed homoscedasticity of the previous 

scatterplots and suggests that the relationship among the three dimensions is, in fact, non-

uniform for students of different abilities. Looking at each pair of dimensions separately 

reveals some interesting patterns. For the Scale, Proportion, and Quantity, and Engaging 

in Argument from Evidence dimensions, the correlation between these estimates is weak, 

or even negative among students with low or medium ability, no matter which dimension 

is used to define the ability groups. However, among high ability students, the 

relationship between these dimensions is positive and strong. Looking at the correlations 

between Scale, Proportion, and Quantity, and Structure and Properties of Matter 

estimates, the relationship tends to be stronger among the low and high ability groups, but 

is weaker among students of medium ability. The relationship between Structure and 

Properties of Matter and Engaging in Argument from Evidence is the most stable. Across 

all ability groups, the correlations are moderate to high, ranging from 0.52 to 0.94. This 
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holds regardless of which dimension is used to define the groups, except for the low 

ability group when the matter dimension is used to define the ability groups: in this case, 

there is a negative correlation between the two sets of estimates. Among students will 

low ability on the Matter dimension, the relationship between these dimensions may be 

weak; however, the relationship remains strong among all other students. Overall, the 

general trend is that strong correlations between dimensions are apparent among students 

with high ability, but correlations tend to fluctuate or weaken among students with ability 

classified as “low” or “medium.” Potential explanations for this pattern are discussed in 

Chapter 5.  

Reliability. Scale reliabilities for all models are presented in Table 4.24. When a 

1-dimensional model is used to scale student responses that were scored with a 

multidimensional rubric, both WLE and EAP/PV reliabilities are high. When the data is 

scaled multidimensionally, both WLE and EAP reliability estimates decrease relative to 

the unidimensional model. The decrement in reliability was much sharper for the WLE 

person separation estimate. In the most extreme case, WLE reliability on the Scale, 

Proportion, and Quantity dimension is only 0.38, compared to a reliability of 0.82 when  

 

Table 4.24.  
 
EAP and WLE Person-Separation Reliability for Unidimensional Scales and 
Multidimensional Subscales with Holistic and Analytic Data 
 WLE person 

separation reliability 
EAP/PV 
reliability 

Holistic scoring, 1-dimensional scale 0.79 0.85 
Analytic scoring, 1-dimensional scale 0.82 0.86 
Analytic scoring, 3 subscales   
     Scale, Proportion, and Quantity 0.38 0.74 
     Structure and Properties of Matter 0.58 0.79 
     Engaging in Argument from Evidence 0.70 0.78 
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the items are scaled unidimensionally – a gap of 0.44. EAP reliability also decreases, but 

the decrement is much smaller (the largest drop is 0.13 on Scale, Proportion, and 

Quantity). This finding is consistent with other studies, which have found that WLE 

estimates tend to have lower reliability than EAP estimates (Wang, 2015).  

When a holistic scoring rubric and unidimensional model are used, scale 

reliability is only slightly lower than a unidimensional model with an analytic scoring 

rubric, and higher than the reliability of individual subscales under the multidimensional 

approach. This is somewhat surprising, given that the unidimensional/holistic model has 

many fewer item thresholds than the unidimensional/analytic model, yet the decrement in 

reliability is fairly small. In fact, the unidimensional/holistic model has a similar number 

of thresholds to the Engaging in Argument from Evidence subscale, yet the 

unidimensional/holistic model has a clear advantage in reliability. Although the 

multidimensional/analytic rubric provides three times the observations (in the form of 

scores), the corresponding increase in reliability is very small. 

Precision of model parameter estimates. When the multidimensional dataset is 

used, standard errors of the item, rater, and step parameters, and applicable interaction 

parameters are very similar across the unidimensional and multidimensional models. The 

multidimensional model has slightly smaller standard errors across the board, but the 

differences are negligible. Therefore, neither model demonstrates a strong advantage with 

regard to the precision of parameter estimates.  

When the holistic dataset is used, standard errors of the parameter estimates are  

similar in size to those when the multidimensional dataset is used. Regardless of the 

chosen model/scoring rubric, the precision of item location estimates is similar.   
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Precision of person ability estimates. EAP and WLE person ability estimates 

from the unidimensional model tended to have smaller standard errors of measurement 

than EAP and WLE estimates from the subscales of the multidimensional model (Figures 

4.17 and 4.18). The size of the errors varied by subscale. Scale, Proportion, and Quantity 

standard errors tended to be much larger (average EAP SEM = 0.52; WLE = 0.92), while 

the Structure and Properties of Matter (average EAP SEM = 0.34; WLE = 0.53) and 

Engaging in Argument from Evidence errors (average EAP SEM = 0.37; WLE = 0.49) 

were a bit smaller. This difference is in line with expectation, as scales with a smaller 

number of items tend to have a larger standard error of measurement (Briggs & Wilson, 

2003). The unidimensional scale had the largest number of item thresholds/score points 

and the lowest standard errors (average EAP SEM = 0.28; WLE = 0.32). Of the three 

subscales, the Scale, Proportion, and Quantity dimension had the smallest number of 

items and the highest standard errors. This indicates that EAP and WLE person estimates 

from the unidimensional scale are more precise than the corresponding estimates from the 

multidimensional subscales. The loss in precision from the multidimensional estimates is 

most extreme on the Scale, Proportion, and Quantity dimension.  

When the holistic scoring rubric was used in conjunction with a unidimensional 

Rasch model, the average EAP standard error was 0.34 and the average WLE standard 

error was 0.40. Unlike in the reliability analysis, the unidimensional model/ 

multidimensional dataset combination holds a clear advantage over the holistic dataset. 

The difference between the two models is probably due at least in part to the larger 

number of items in the multidimensional dataset. However, it should be noted that the 

holistic model standard errors are similar in size to those from the Structure and 
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 Figure 4.17. Scatterplots of EAP 
estimates and standard errors for all scales.  
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 Figure 4.18. Scatterplots of WLE estimates and standard errors for all scales.  
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Properties of Matter and Engaging in Argument from Evidence subscales, which have a 

similar number of items (except for WLE standard errors, which are higher among the 

subscales). Therefore, it appears that the individual subscale estimates are similar in 

precision to the holistic estimates (i.e., provide just as much information, measured by the 

information function which is the inverse of the standard error), even though they 

ostensibly evaluate only one aspect of the student’s responses where the holistic estimates 

evaluate the entire response. In terms of information, the multidimensional rubric is better 

than the holistic rubric when a unidimensional model structure is used. Arguably, the 

multidimensional rubric is better than the holistic rubric, even when a multidimensional 

model structure is used, since it provides information with a similar level of precision, but 

about multiple subscales.  

Research question 4: How well does student performance data reflect the 

hypothesized underlying construct framework?  

Item difficulty estimates. Depending on the chosen dimensionality structure, 

there are differences in the concordance of the range of person ability estimates and item 

difficulty estimates. Ideally, the distribution of item difficulty will mirror the distribution 

of person ability because items are most informative when they are close in difficulty to 

the examinee’s ability. When a unidimensional model is used, the distribution of person 

ability and item difficulty estimates appears close to ideal. The distribution of person 

ability is approximately normal, with most of the examinees falling near the scale average 

of zero (Figure 4.19). The distribution of item difficulty estimates mirrors the person 

ability distribution. The majority of item thresholds fall near the scale average, with 

ample numbers of thresholds extending to the upper and lower extremes.  
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When the items and person ability estimates are separated into three related scales 

from a multidimensional model, the concordance between item difficulty and person 

ability lessens somewhat, indicating that the unidimensional structure actually masks 

some gaps in item coverage, which are revealed when the items are separated into 

subscales. These gaps are particularly prevalent on the Structure and Properties of Matter 

and Engaging in Argument from Evidence Dimensions (Figure 4.20). The Scale, 

Proportion, and Quantity scale items are appropriately distributed along the scale, except 

for a gap at the bottom of the scale below -2.50 logits. The Structure and Properties of 

Matter dimension had a condensed range of item difficulty estimates. Most of the item 

thresholds are clustered near the middle of the scale, with only two thresholds larger than 

0.7 logits and none lower than -1.10 logits. Many students demonstrated ability lower 

than the Matter items were able to measure well, and there were very few items that 

targeted students with high ability. Finally, on the Engaging in Argument from Evidence 

dimension, most of the item thresholds clustered near the bottom of the scale, lower than 

most students’ estimated ability. There were fewer thresholds aligned with the bulk of the 

ability distribution, and very few thresholds above 1 logit, near the higher-ability 

students.   

Without examining the separate subscale distributions, it would appear that items 

are well-matched to student performance on the overall construct, when in actuality there 

are few items able to differentiate between degrees of sophistication in students’ 

understanding of fundamental matter concepts or argumentation ability at the high and 

low ends of the scale. The multidimensional model thus provides important feedback for  

  



206 
 

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
3                                  XXXX|                                                                              S_BOX A.3                                                         | 
                                       |                                                                                                                                                | 
                                       |                                                                                                                                                | 
                                       |                                                                                                                                                | 
                                      X|                                                                              M_BOX A.2                                                         | 
                                       |                                                                              S_BOX B.1                                                         | 
                                      X|                                                                                                                                                | 
                                       |                                                                                                                                                | 
                                      X|                                                                                                                                                | 
                                      X|                                                                                                                                                | 
 2                                     |                                                                                                      A_SUGAR 2_A.3                             | 
                                    XXX|                                                                                                                                                | 
                                      X|                                                                                                                                                | 
                                   XXXX|                                                                              M_BOX B.2                                                         | 
                                   XXXX|                                                                                                                                                | 
                                   XXXX|                                                                                                      S_SUGAR 2_A                               | 
                                 XXXXXX|                                                                                                                                                | 
                                 XXXXXX|                                                                                                                                                | 
                             XXXXXXXXXX|                                                                              A_BOX A.3                                                         | 
                                      X|                                                  A_BRASS A.3                                         S_SUGAR 2_A                               | 
 1                      XXXXXXXXXXXXXXX|          A_BETH A.3                                                                                                                            | 
                  XXXXXXXXXXXXXXXXXXXXX|A_ANA A.3                                                                                                                                       | 
                 XXXXXXXXXXXXXXXXXXXXXX|                                                                                                                                                | 
                        XXXXXXXXXXXXXXX|A_ANA B.3                             A_KEVIN A.3               A_CAROL B.3             S_SUGAR 1_A                 A_NATE A.3                  | 
                              XXXXXXXXX|                                      M_KEVIN A.2                                                     A_SUGAR 2_B.3            A_WATER.3        | 
                             XXXXXXXXXX|          M_BETH A.2   A_ROMITA B.3   M_KEVIN A.1                             M_BOX A.1               S_SUGAR 2_B                               | 
      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|          M_BETH B.2                                            M_CAROL A.2                                                              A_KEN.3| 
            XXXXXXXXXXXXXXXXXXXXXXXXXXX|          A_BETH B.3                                            M_CAROL A.1             S_SUGAR 1_B                                             | 
   XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|                                      M_KEVIN B.2 A_BRASS B.3   M_CAROL B.2   A_BOX B.3 A_SUGAR 1_A.3                                           | 
 0 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|          S_BETH B.2   A_ROMITA A.3   M_KEVIN B.1 M_BRASS B.2   A_CAROL A.3             M_SUGAR A     S_SUGAR 2_B   A_NATE B.3                  | 
            XXXXXXXXXXXXXXXXXXXXXXXXXXX|          M_BETH A/B.1 M_ROMITA A/B.2             M_BRASS B.1   M_CAROL B.1             S_SUGAR 1_A                 M_NATE A.1 M_WATER.2        | 
                     XXXXXXXXXXXXXXXXXX|          S_BETH A.2                  A_KEVIN B.3 M_BRASS A.2                           M_SUGAR A                   S_NATE A                    | 
               XXXXXXXXXXXXXXXXXXXXXXXX|                                                                              M_BOX B.1 A_SUGAR 1_B.3                          S_WATER.2        | 
  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|M_ANA A.2              M_ROMITA A/B.1             M_BRASS A.1   S_CAROL B     S_BOX A.2                                        M_WATER.1 M_KEN.2| 
            XXXXXXXXXXXXXXXXXXXXXXXXXXX|S_ANA B                                                                                                             S_NATE B             M_KEN.1| 
                     XXXXXXXXXXXXXXXXXX|M_ANA A.1                                                                                             A_SUGAR 2_B.2 M_NATE A.1                  | 
                     XXXXXXXXXXXXXXXXXX|          S_BETH B.1                                                                                                                            | 
                  XXXXXXXXXXXXXXXXXXXXX|          A_BETH A.2                                                                    S_SUGAR 1_B                 M_NATE B.2                  | 
                        XXXXXXXXXXXXXXX|          S_BETH A.1   S_ROMITA A                                                       M_SUGAR B                   M_NATE B.1                  | 
-1          XXXXXXXXXXXXXXXXXXXXXXXXXXX|M_ANA B.2              A_ROMITA A.2                                           S_BOX A.1 A_SUGAR 1_B.2                          A_WATER.2        | 
                             XXXXXXXXXX|S_ANA A                A_ROMITA B.2                                                     M_SUGAR B                                        S_KEN  | 
                                 XXXXXX|M_ANA B.1                                                                                             A_SUGAR 2_B.1                             | 
                                      X|A_ANA B.2                                                                                             A_SUGAR 2_A.2                             | 
                                    XXX|                       S_ROMITA B                               A_CAROL A/B.2 A_BOX B.2 A_SUGAR 1_A.2                                           | 
                                      X|                                      S_KEVIN A/B                                                                                               | 
                           XXXXXXXXXXXX|          A_BETH B.2                                                                    A_SUGAR 1_B.1                                    A_KEN.2| 
                                      X|A_ANA A.2                                                                                                                                       | 
                                      X|A_ANA B.1              A_ROMITA A.1   A_KEVIN A.2 S_BRASS B     S_CAROL A     A_BOX B.1                             A_NATE A.2                  | 
                                      X|                                                  A_BRASS A/B.2               A_BOX A.2                                                         | 
-2                                     |A_ANA A.1                                                                                                                      A_WATER.1        | 
                                      X|                                                                A_CAROL B.1                                                    S_WATER.2 A_KEN.1| 
                                       |                       A_ROMITA B.1   A_KEVIN B.2                                                                                               | 
                                       |                                      A_KEVIN A.1 S_BRASS A                                                                                     | 
                                       |          A_BETH B.1                              A_BRASS B.1   A_CAROL A.1                                                                     | 
                                       |                                                                              A_BOX A.1 A_SUGAR 1_A.1                                           | 
                                    XXX|                                                                                                                    A_NATE B.2                  | 
                                       |                                                                                                                                                | 
                                       |                                                                                                                    A_NATE A.1                  | 
                                 XXXXXX|          A_BETH A.1                                                                                                                            | 
-3                                  XXX|                                                                                                                    A_NATE B.1                  | 
                                       |                                                  A_BRASS A.1                                                                                   | 
                                       |                                      A_KEVIN B.1                                                                                               | 
                                       |                                                                                                                                                | 
                                       |                                                                                                      A_SUGAR 2_A.1                             | 
========================================================================================================================================================================================= 

Figure 4.19. Wright Map from the unidimensional model and multidimensional scoring rubric
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Figure 4.20. Distribution of items (right sub-panel) and persons (left sub-panel) for the three assessment subdimensions: Scale, 
Proportion, and Quantity, Structure and Properties of Matter, and Engaging in Argument from Evidence, respectively, from left to 
right.
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assessment of multiple related constructs, providing suggestions for areas for 

improvement of item coverage that would not be evident under a unidimensional model.   

Person ability estimates. When the multidimensional dataset is used in 

conjunction with a unidimensional model, the distribution of person ability is 

approximately normal and ranges from about -3 logits to +3 logits (Figure 4.19).  

Splitting the scale into three sub-dimensions has varying effects, depending on the 

specific subscale (Figure 4.20). On the Scale, Proportion, and Quantity dimension the 

person ability distribution is flattened, with student estimates distributed across a broader 

logit range. This suggests that the dimension measures a sub-construct with significant, 

measurable variability, and may be worth separating from the other dimensions. The 

Structure and Properties of Matter and Engaging in Argument from Evidence 

distributions both have larger peaks and shorter tails than the Scale, Proportion, and 

Quantity dimension. The Engaging in Argument from Evidence distribution, in 

particular, has an almost nonexistent lower tail, with no student estimates below -2 logits. 

These gaps in the student ability distribution may reflect poor construct definition and/or 

item design; in particular, that the items do not differentiate well between students who 

fall in those ranges of the subscale ability distribution.  

Order of item difficulty estimates. In Figures 4.21 and 4.22, each item is placed 

on the dimensional subscales in its hypothesized location according to the relative 

difficulty of the concept(s) assessed by that item, determined by the hypothesized 

construct definition presented in Chapter 1.  The text of all assessment items can be found 

in Appendix F.  
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4 
Weight is invariant during phase change (freezing, melting, evaporating, 
condensation) (CAROL).  

3 

Integrates weight, volume, and heaviness for size in compositional model of 
materials (ROMITA, BRASS, BOX).  
Knows any solid, liquid, or granular sample, however small, has weight and volume 
(SUGAR, WATER). 
Knows tiny things have weight, and weight is invariant across crushing and 
dissolving (KEVIN). 
Differentiates volume from area and understands volume of solid objects and liquids 
is invariant with reshaping (NATE).  
Understands water displacement depends upon volume of submerged object 
(BETH). 

1 
Has initial concept of amount of material as a quantity that remains invariant when 
object changes appearance with reshaping, because nothing is added/removed. 
(ANA, KEN) 

Figure 4.21. Hypothesized location of items: Structure and Properties of Matter 
dimension. Items are listed next to the relevant concept. All items within a particular 
level are hypothesized to have roughly the same difficulty. Note that non-assessed 
concepts were not included in this figure. For a complete list of all concepts included in 
the Structure and Properties of Matter construct, please see Chapter 1. 
 

On the Engaging in Argument from Evidence dimension, there is no hypothesized 

progression of items, but instead a hypothesized progression of scoring categories. It is 

hypothesized that it will be easier to provide a claim without evidence or with weak 

evidence/poor reasoning (Threshold 1) across all items, and most difficult to provide an 

argument that includes both evidence and reasoning (Threshold 3) across all items.  

Structure and Properties of Matter. Figure 4.23 shows the observed difficulties 

for all items on the Structure and Properties of Matter scale. Nearly all scale items were 

hypothesized to have similar difficulty, as they all measured concepts contained in Level 

3 of the construct map. In line with this prediction, the range of item estimates was fairly 

compressed, with most items falling between -1 and +1 logits. The three items that were 

hypothesized to be the easiest did fall near the bottom of the scale. However, the two 

items that were hypothesized to be the hardest ended up near the middle of the scale. 

These two items (CAROL A and CAROL B) assess whether students recognize that  
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4 

Use addition and subtraction to mathematically reason about volume (e.g., infer 
volume from the change in water level (NATE), use water displacement to measure 
the volume of solid, liquid, and granular materials (BETH)).  
Uses multiplication and division to mathematically reason using measurements (e.g., 
infer the weight and volume of proportionally smaller/lighter or larger/heavier 
objects made of the same material.) (BOX A.3, BOX B, WATER.2, SUGAR 1.2, 
SUGAR 2.2) 

3 

Uses addition and subtraction to mathematically reason about weight (e.g., infer the 
weight of liquids in a container). (KEVIN, CAROL) 
Understands the structure of 3D arrays, and can use centimeter cubes to measure 
volume by comparison. (KEN, ANA) 
Has generalized knowledge of fractions (there are an infinite number of fractions 
between any two integers); number and measure  line is a dense, and quantities form 
a continuum (SUGAR 1.1, SUGAR 2.1) 
Beginning understanding of measured characteristics that involve proportional 
relationships (i.e., can use relative scales to describe speed and density when 
distance/weight or time/volume is held constant.) (BOX A.2) 

2 

Knows how to measure weight with balance scale, length with rulers, and area with 
tiles. (BRASS) 
Understands measures using scales, rulers are more reliable than senses. (ROMITA) 
Understands the structure of 2D arrays, and can use centimeter cubes to measure 
area. 
Has knowledge of a few special fractions (1/2, 1/4); number and measure line is 
spotty. (WATER.1) 

 Can use measures to evaluate relative scale (for weight, length, area). (BOX A.1) 
Figure 4.22. Hypothesized location of items: Scale, Proportion, and Quantity dimension. 
Items are listed next to the relevant concept. All items within a particular level are 
hypothesized to have roughly the same difficulty. Note that non-assessed concepts were 
not included in this figure. For a complete list of all concepts included in the Scale, 
Proportion, and Quantity construct, please see Chapter 1. 
 

weight of a material remains the same after melting. Because this concept involves a 

phase change, it was hypothesized to be more difficult than two similar items (KEVIN A 

and KEVIN B) which tested whether students recognized that weight was invariant when 

a solid material was crushed. In fact, it was no more difficult. Recognizing the invariance 

of weight during a phase change may not be as difficult as previously thought.  
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Figure 4.23. Actual distribution of item difficulty on the Structure and Properties of Matter dimension. The three panels highlight the 
locations of the hypothesized high, medium, and low difficulty items, respectively, from left to right.  
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Figure 4.24. Actual distribution of item difficulty on the Scale, Proportion, and Quantity dimension. The three panels highlight the 
locations of the hypothesized high, medium, and low difficulty thresholds, respectively, from left to right.  
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Figure 4.25. Actual distribution of item difficulty on the Engaging in Argument from Evidence dimension. The three panels highlight 
the locations of the hypothesized high, medium, and low difficulty thresholds, respectively, from left to right.  
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Other discrepancies from the hypothesized order included BOX A and BOX B, 

the most difficult items on the assessment. These two items assessed whether or not 

students could integrate information about volume and weight to make a judgment about 

whether two objects could be constituted of a common material. This concept was shared 

with four other items on the assessment, ROMITA A and B, and BRASS A and B, all of 

which were substantially easier than BOX A and BOX B despite measuring the same 

concept. The difference is that ROMITA and BRASS both kept one of the two factors 

(weight or volume) constant, while the objects in BOX had different weights and 

different volumes. It appears that integrating weight and volume to make judgments 

about materials may be easier or more difficult depending on the number of varying 

parameters that students have to consider.  

Finally, it must be noted that differences in item scaffolding may have affected 

the difficulty estimates of certain items, affecting the distribution of item difficulty.  

Scale, Proportion, and Quantity. Figure 4.24 shows the observed difficulties for 

all items on the Scale, Proportion, and Quantity scale. On a broader level, it seems that 

the hypothesized distribution of item difficulties mostly holds up. All of the items 

measuring Level 4 SPQ concepts tend to be located near the top of the scale, items 

measuring Level 3 concepts tend to be located mid-scale, and items measuring Level 2 

concepts tend to be located near the bottom. There are some inconsistencies between the 

hypothesized and actual locations. For example, some of the lowest SUGAR thresholds 

appear near the top of the scale, despite being hypothesized to be mid-scale items. Others, 

like BETH and NATE which were hypothesized to be more difficult, appeared closer to 

the middle of the scale. These discrepancies have two potential explanations. One is that 
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item scaffolding affected the observed distribution of item difficulty, but the previous 

analysis of the association between scaffolding and item difficulty did not provide clear 

evidence in support of this explanation. The other potential explanation is that differences 

in the item tasks contributed to the dispersion of item difficulty estimates. For example, 

of the items measuring Level 4 concepts, the two easiest items required students to 

calculate changes in volume using subtraction. The most difficult items asked students to 

use division and proportions. Perhaps the increasing complexity of the mathematical 

calculation required for the task is a bigger contributor to task difficulty than was 

reflected in the hypothesized progression. Although the hypothesized construct map was 

largely supported by the actual distribution of item difficulty, a few discrepancies suggest 

areas for potential revision of the construct definition.  

Engaging in Argument from Evidence. Figure 4.25 shows the observed 

difficulties for all items on the Engaging in Argument from Evidence scale. The 

thresholds are clearly separated into three regions. For the most part, the group of first 

thresholds falls below the group of second thresholds, which falls below the group of 

third thresholds. There is some overlap between the ranges of threshold groups 1 and 2, 

and the distance between the first and second thresholds for a particular item tend to be 

smaller than the distance between the second and third thresholds for that item. This 

means that the leap from presenting a weak argument to presenting an argument based on 

one valid component (either evidence or reasoning) seems less difficult than the leap to 

presenting an argument based on two valid components (both evidence and reasoning). 

Within each threshold, there are a range of difficulties, suggesting that there are some 
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item-specific factors that cause variation in the difficulty of reaching each threshold. 

Overall, the observed item difficulties support the hypothesized construct definition.  

Item fit. For reference, all items included in the pilot assessment can be found in 

Appendix F. The mean square statistic provides an indication of how well individual 

items contribute to overall model fit by looking at differences between expected student 

performance (based on item difficulty and student ability) and observed student 

performance. Of the 64 scale items, 14 items were flagged as having significant misfit. 

One of these (KEVIN A) was explored in detail in an earlier section; it is likely that the 

open-ended response format led to confusion since an alternate version of the item with a 

selected-response format fit the model well. For the remaining 13 flagged items, item 

wording and content were examined to make a judgment about whether or not the items 

are appropriate for continued use in assessment.  

BRASS A (Figure 4.26) was flagged as misfitting on the Structure and Properties 

of Matter dimension, and its counterpart (BRASS B) demonstrated similar misfit 

statistics despite falling just below the threshold for flagging. Based on examination of 

the item, there is no obvious violation of best testing practices. The wording and images 

are clear, content-specific terms are defined, and all information needed to answer the 

question is provided in the stimulus material. It is possible that the distracters are the 

source of misfit; the third and fourth answer options, in particular, reflect popular 

misconceptions, and they may be attractive distracters. However, students’ selection of 

these answers reflect an important gap in their understanding, and an item should not be 

removed from assessment just for having an attractive distracter, so long as correct and 

incorrect answers are valid indicators of the student’s proficiency with the underlying  
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Figure 4.26. The Structure and Properties of Matter sub-prompt of BRASS A, an item 
flagged for misfit. 
 

concept. With no clear source of information about the item’s failings, curriculum and 

content experts should be consulted before making a decision about retaining the item.   

 On the Engaging in Argument from Evidence dimension, a majority of items (12 

of 22) were flagged as misfitting. Previous analysis (RQ 3) focused on the impact of 

scaffolding and response format, and demonstrated that selected-response arguments tend 

to have larger fit statistics than constructed-response items. However, it is worth noting 

that several constructed-response items were also flagged as misfitting, indicating that 
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response format is not the only source of misfit. In the previous analysis for research 

question 1 and 2, low interrater reliability was observed on the Engaging in Argument 

from Evidence dimension. Problems in the argument rubric might also lead to misfit, as 

well as unreliability. The raters’ judgments, if based on extraneous factors unrelated to 

students’ underlying ability, would be more difficult to predict, therefore leading to larger 

discrepancies between the expected and observed responses and inflating item fit 

statistics. Reexamination and revision of the scoring rubrics and construct definition for 

the Engaging in Argument from Evidence dimension are necessary; until then, item fit 

statistics reveal more about the overall quality of the Engaging in Argument from 

Evidence scale than about problems with individual items.    

Standard error of person ability estimates. On the unidimensional scale, and 

the Structure and Properties of Matter and Scale, Proportion, and Quantity subscales, 

standard errors tended to be higher for examinees at the extreme ends of the scale, as 

expected (Wilson, 2005) (see Figures 4.17 and 4.18). On the Engaging in Argument from 

Evidence subscale, this pattern was muted, suggesting that the students’ locations are not 

related to the amount of error in their ability estimates. This is likely because of the large 

number of items at the bottom of the Engaging in Argument from Evidence subscale. 

Because there were so many items, there was more information available about low-

performing Engaging in Argument from Evidence students, mitigating the typical 

increase in standard error for students at the extreme ends of the scale.  

Differential Item Functioning. DIF was examined by fitting a facet model with 

ConQuest Version 4 (Adams, Wu, & Wilson, 2015).  The subgroup characteristic of 
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interest was added as an additional predictor in the item response model, and differences 

in item difficulty between different subgroups were directly compared.  

Grade level. Output from the DIF analysis for grade and Inquiry Project 

participation may be found in Appendix E. On the Structure and Properties of Matter 

dimension, there is a 0.23 logit difference in ability for students in the 4th and 5th grade, 

such that 5th graders tend to have better performance, on average. This difference is of 

moderate size: almost a third of a standard deviation of the Structure and Properties of 

Matter dimension (subscale variance was 0.59). This difference does not indicate DIF, 

but only confirms the intuitive prediction that 5th graders would perform better than 4th 

graders on the test.  

Based on the overall item difficulty parameters, 18 of the 20 items do not 

demonstrate a significant difference in item difficulty between grades. There are two 

items where the difference between difficulty estimates for 4th and 5th grades are 

statistically significantly different: item 5B and item 9A. Item 5B was easier for 4th 

graders and item 9A was easier for 5th graders. For both of these items, an alternate 

version of the item was also tested with an identical matter prompt in both framing and 

response format. In both cases, the alternate version did not demonstrate DIF, suggesting 

that the differences observed here may be due to chance.   

Furthermore, there does not appear to be any difference in the step structure for 

4th and 5th graders, as the difference in model deviance between a model with a step 

structure that varies for 4th and 5th grades and a model with an invariant step structure 

across grades is not statistically significant (χ2 difference = 22.48, df = 20, p = 0.32).  
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On the Scale, Proportion, and Quantity dimension, there is a 0.24 logit difference 

in ability for students in the 4th and 5th grade, such that 5th graders tend to have better 

performance, on average. This difference is of moderate size: about a quarter of a 

standard deviation of the Scale, Proportion, and Quantity dimension (subscale variance 

was 1.11). This difference does not indicate DIF, but again confirms that 5th graders 

performed better than 4th graders on this dimension.  

Based on the overall item difficulty parameters, there are two items where the 

difference between difficulty estimates for 4th and 5th grades are statistically significantly 

different: item 2A and item 7B. Item 2A was easier for 4th graders. For this item, an 

alternate version was tested with an identical Scale, Proportion, and Quantity prompt in 

both framing and response format, and the alternate version did not demonstrate DIF. 

This suggests that the difference observed here may be due to chance. Item 7B was easier 

for 5th graders, and the difference between grade estimates was 1.83 logits. If all items 

demonstrated a difference of that magnitude between grades, it would shift the student 

distribution by about 1.75 standard deviations – a very large amount. In this case, an 

alternate version of the item used a different prompt and response format, so this item 

may provide a legitimate source of DIF. The simplest explanation is that the item targets 

a learned concept; item 7B asks students to consider whether several objects of various 

weights and volumes may be made of the same material. This is a very difficult item, 

which requires an understanding of both density and proportionality in order to respond 

correctly. If students have not been exposed to one or both of the concepts, it may make 

the item more difficult. The Inquiry Project curriculum introduces the idea of density, or 

“heaviness for size”, in the 4th grade, and fractions/proportions are often introduced in 
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mathematics classes around the same time. The pilot test was administered at the 

beginning of the school year, meaning that 4th grade students in the sample may not have 

been exposed to these concepts yet. This may have affected their ability to respond to the 

item, and would explain the observed difference in difficulty.  

Finally, there does not appear to be any difference in the step structure for 4th and 

5th graders, as the difference in model deviance between a model with a step structure 

that varies for 4th and 5th grades and a model with an invariant step structure across 

grades is not statistically significant (χ2 difference = 7.75, df = 30, p = 0.99).  

 On the Engaging in Argument from Evidence dimension, there is a 0.30 logit 

difference in ability for students in the 4th and 5th grade, such that 5th graders tend to have 

better performance, on average. This difference is statistically significant and of moderate 

size: almost two-fifths of a standard deviation of the Engaging in Argument from 

Evidence dimension (subscale variance was previously reported at 0.67). This difference 

does not indicate DIF, but only confirms that 5th graders had better performance than 4th 

graders on this dimension.  

Based on the overall item difficulty parameters, there are six items where the 

difference between difficulty estimates for 4th and 5th grades are statistically significantly 

different. Items 3B, 4B, and 5B are easier for 4th grade students, whereas items 6B, 10, 

and 11 are more difficult for 4th grade students on the Argument dimension. It is unclear 

why these items demonstrate this pattern. The observed DIF may have something to do 

with response format; 2 of the 3 items that were easier for 4th graders employed a 

multiple choice format, whereas all 3 of the items that were easier for 5th graders 

employed an open response format. However, several other items utilized these response 
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formats but were not flagged for DIF, leaving the exact source of the observed DIF 

unclear. Furthermore, given that there are unresolved issues with the Engaging in 

Argument from Evidence scale, namely, the lack of interrater reliability, it makes sense to 

reexamine DIF once the noise in scoring has been reduced.  

There does not appear to be any difference in the step structure for 4th and 5th 

graders, as the difference in model deviance between a model with a step structure that 

varies for 4th and 5th grades and a model with an invariant step structure across grades is 

not statistically significant for α = 0.05 (χ2 difference = 57.98, df = 44, p = 0.08).  

Inquiry Project participation. On the Structure and Properties of Matter 

dimension, there is a 0.03 logit difference in average ability between students who 

participated in the Inquiry Project and students who did not. This difference is very small, 

and is not statistically significant. However, the composition of the two groups was not 

equal – the Inquiry Project group included many more 4th graders than the non-Inquiry 

group, and the Inquiry and non-Inquiry samples came from different regions with 

different socioeconomic characteristics. Student background characteristics (e.g., 

socioeconomic status, previous performance in science) were not accounted for in this 

comparison.  

When the Inquiry and non-Inquiry samples are limited to 5th grade students only, 

there is a 0.31 difference, with Inquiry Project 5th graders performing better than non-

Inquiry 5th graders. This difference is of moderate size: about two-fifths of a standard 

deviation of the Structure and Properties of Matter dimension (subscale variance was 

previously reported at 0.60). 
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Based on the overall item difficulty parameters from the grade 5 sample, there are 

five items where the difference between difficulty estimates for Inquiry and non-Inquiry 

students are statistically significantly: items 1A and 1B, 8A, 10, and 11. Items 1A, 1B, 

and 11 all assessed whether students recognized that a 3D object retained its volume after 

being rearranged, and all were more difficult for students who had taken the Inquiry 

Project curriculum. One potential explanation for this surprising finding is a failure of 

curriculum implementation, which is discussed further in Chapter 5. On the other hand, 

items 8A and 10 both assessed whether students recognized that very tiny objects have 

both weight and volume, and both items were easier for students who had taken the 

Inquiry Project curriculum. This finding is in line with the expectation that curriculum 

participation would offer students an advantage on items that assess curriculum-specific 

concepts.  

There does not appear to be any difference in the step structure for Inquiry and 

non-Inquiry students, as the difference in model deviance between a model with a step 

structure that varies for Inquiry and non-Inquiry students and a model with an invariant 

step structure across curricula is not statistically significant (χ2 difference = 9.94, df = 20, 

p = 0.99).  

 On the Scale, Proportion, and Quantity dimension, there is a 0.20 logit difference 

in ability for students who participated in the Inquiry Project and students who did not, 

such that students who took the Inquiry Project curriculum performed better than 

students who did not. This difference is present despite the unequal sample composition; 

the Inquiry Project group was younger, on average, but still demonstrated higher 

performance on the Scale, Proportion, and Quantity dimension. This difference is 
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statistically significant and of moderate size: about a fifth of a standard deviation of the 

Scale, Proportion, and Quantity dimension (subscale variance was previously reported at 

1.11). When the analysis is limited to only 5th grade students in each group, the gap 

between the groups increases substantially to 0.79 logits, or 75% of the scale’s standard 

deviation. This difference is statistically significant. Again, Inquiry Project students 

found the items easier overall than non-Inquiry students.  

Based on the overall item difficulty parameters from the grade 5 sample, there are 

two items where the difference between difficulty estimates for Inquiry and non-Inquiry 

students are statistically significantly different: item 4B and item 10. Both items were 

easier for Inquiry Project students. Item 4B asks students to calculate the weight of an 

object by subtracting the weight of its container. Item 10 asks students to calculate the 

weight of a single drop of water, given the weight of 20 drops. Both of these skills are 

covered during the Inquiry Project curriculum, therefore the most likely explanation for 

the difference in performance is that the curriculum introduced concepts that allowed 

students to perform better on these items. However, there may be other explanations for 

the gap in item difficulty, such as other contextual factors that varied along with 

curriculum participation (i.e., state of residence).  

Finally, there does not appear to be any difference in the step structure for Inquiry 

and non-Inquiry students, as the difference in model deviance between a model with a 

step structure that varies based on curriculum and a model with an invariant step structure 

across curricula is not statistically significant (χ2 difference = 12.36, df = 9, p = 0.20).  

 On the Engaging in Argument from Evidence dimension, there is a 0.232 logit 

difference in ability for students who participated in the Inquiry Project and students who 
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did not, such that students who took the Inquiry Project curriculum performed better than 

students who did not. This difference is present despite the unequal sample composition; 

the Inquiry Project group was younger, on average, but still demonstrated higher 

performance on the Engaging in Argument from Evidence dimension. This difference is 

statistically significant and of moderate size: about a third of a standard deviation of the 

Engaging in Argument from Evidence dimension (subscale variance was 0.67). When the 

analysis is limited to only 5th grade students in each group, the gap between the groups 

increases slightly to 0.456 logits, or just over half of the scale’s standard deviation. This 

difference is also statistically significant. Again, Inquiry Project students found the items 

easier than non-Inquiry students.  

Based on the overall item difficulty parameters from the Grade 5 sample, there are 

four items where the difference between difficulty estimates for Inquiry and non-Inquiry 

students are statistically significantly different: item 4B, 6B, 8B, and 9B. Of these, only 

8B is easier for Inquiry students; the remainder are more difficult. Items 4B and 9B both 

ask the students to create an argument by selecting from among given response options. 

Items 6B and 8B are open-ended single-prompt arguments, in which students are asked to 

combine all dimensions of their response as part of a single argument. The four item 

scenarios do not share a common concept. Overall, there does not seem to be a pattern 

related to response format or a shared concept that might explain the difference in 

performance on these items, so the source of the DIF remains unclear. Given that there 

are unresolved issues with the Engaging in Argument from Evidence scale, namely, the 

lack of interrater reliability, it makes sense to reexamine for patterns in DIF among these 

items once the noise in scoring has been reduced.  
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Figure 4.27. Student ability boxplots, grouped by classroom, for the Scale, Proportion, 
and Quantity dimension. Classrooms 1-10 were Inquiry Project participants, while 
classrooms 11-18 were not. Classrooms 4, 9, 10, 12, and 14-18 are 5th grade classrooms, 
classrooms 1-3 and 5-8 are 4th grade classrooms, and classrooms 11 and 13 are mixed 
classrooms.  

   
Finally, there does not appear to be any difference in the step structure for Inquiry 

and non-Inquiry students, as the difference in model deviance between a model with a  

step structure that varies based on curriculum and a model with an invariant step structure 

across curricula is not statistically significant (χ2 difference = 48.62, df = 44, p = 0.29).  

Relationship between Inquiry Project curriculum participation, grade level 

and student performance. Within-classroom variation was examined across four 

subgroups: Inquiry Project participants, Inquiry Project non-participants, Grade 4 

students, and Grade 5 students.  

Scale, Proportion, and Quantity dimension.  

Within-classroom variation among Inquiry Project and non-Inquiry students. 

Figure 4.27 contains boxplots of student ability estimates, grouped by classroom 
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membership. There were 18 classrooms in the pilot sample. The composition of the 

Inquiry and non-Inquiry samples are dissimilar, because there are many more 4th grade 

students in the Inquiry sample than the non-Inquiry sample. When the analysis is limited 

to 5th graders, 11 classrooms remain. There are still some visible differences in variability 

between classrooms, but overall differences are reduced (Figure 4.28).  

 Furthermore, if classroom variance estimates are compared (Figure 4.29), it 

appears that fifth-grade Inquiry Project classrooms tended to have very similar variance 

in comparison to more diverse classroom variance estimates among the non-Inquiry 

classrooms. Note the unequal number of classrooms between groups, which may limit 

comparisons.  

 Average ability on the Scale, Proportion, and Quantity dimension was higher in 

Inquiry Project classrooms (fifth-grade Inquiry Project mean = 0.36 logits, fifth-grade 

non-Inquiry mean = -0.26 logits, t = 3.71, df = 206)33.  

 Within-classroom variation among fourth- and fifth-grade students. Refer to 

Figure 4.30 for a visual representation of within-classroom variability among all 

classrooms. The vast majority of 4th grade students were Inquiry Project participants, 

which made the composition of the 4th and 5th grade samples unequal. Therefore, the 

analysis was limited to Inquiry Project classrooms to compare variability within 

classrooms of different grade levels (Figure 4.30).  

Differences in within-classroom variability still remain after the analysis is 

constrained to Inquiry Project participants, but these differences do not appear to be 

                                                           
33 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
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associated with grade level. For example, classrooms 6 and 8, which have the largest and 

smallest interquartile ranges, respectively, are both 4th grade classrooms.  

 

 
Figure 4.28. Student ability boxplots, grouped by fifth-grade classroom, for the Scale, 
Proportion, and Quantity dimension. Classrooms 4, 9, and 10 were Inquiry Project 
participants, while classrooms 11-18 were not. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.29. Histograms of within-classroom variance in student ability for the Scale, 
Proportion, and Quantity dimension. Variance estimates for Inquiry Project classrooms 
are clustered between 1.0 and 1.50, while variance estimates among non-Inquiry 
classrooms range from 0.0 to 3.0.  
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Figure 4.30. Student ability boxplots, grouped by Inquiry Project classroom, for the 
Scale, Proportion, and Quantity dimension. Classrooms 4, 9, and 10 were fifth-grade 
classes, while the remaining class rooms were fourth-graders. 

 

   

 
 

 

 

 

 

Figure 4.31. Histograms of within-classroom variance in student ability for the Scale, 
Proportion, and Quantity dimension. Variance estimates for 5th grade classrooms are 
clustered between 1.00 and 1.25, while variance estimates among 4th grade classrooms 
range from 0.50 to 1.75.  

 

 If classroom variance estimates are compared (Figure 4.31), it appears that fifth-

grade classrooms tended to have very similar variance in comparison to more diverse 
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classroom variance estimates among the fourth-grade classrooms. Note the unequal 

number of classrooms between groups, which may limit comparisons.  

Average ability on the Scale, Proportion, and Quantity dimension was higher 

among grade 5 students (fifth-grade Inquiry Project mean = 0.36 logits, fourth-grade 

Inquiry Project mean = -0.19 logits, t = -3.47, df = 216)34.  

Structure and Properties of Matter. 

Within-classroom variation among Inquiry Project and non-Inquiry students. 

Visually, a similar pattern emerges for the Structure and Properties of Matter dimension. 

When examining all classrooms, there does appear to be some variation in the amount of 

within-group variability. Classrooms 6 and 15 have the smallest interquartile range of the 

18 groups, about half of a logit, where classrooms 12 and 13, for example, have much 

larger spreads (Figure 4.32). When the analysis is limited to 5th graders, 11 classrooms 

remain. There are still some visible differences in variability between classrooms, note 

especially classrooms 11 and 12, which have very different ranges in student 

performance (Figure 4.33).  

 Again, histograms (Figure 4.34) revealed that Inquiry Project classrooms tended 

to have more similar variance, while non-Inquiry classrooms had much more diversity in 

variance. Overall, there are no consistent trends in the amount of variance in Inquiry 

Project classrooms and non-Inquiry classrooms. 

 

                                                           
34 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
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Figure 4.32. Student ability boxplots, grouped by classroom, for the Structure and 
Properties of Matter dimension. Classrooms 1-10 were Inquiry Project participants, while 
classrooms 11-18 were not. Classrooms 4, 9, 10, 12, and 14-18 are 5th grade classrooms, 
classrooms 1-3 and 5-8 are 4th grade classrooms, and classrooms 11 and 13 are mixed 
classrooms. 

 

 

 
Figure 4.33. Student ability boxplots, grouped by fifth-grade classroom, for the Structure 
and Properties of Matter dimension. Classrooms 4, 9, and 10 were Inquiry Project 
participants, while classrooms 11-18 were not. 
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Figure 4.34. Histograms of within-classroom variance in student ability for the Structure 
and Properties of Matter dimension. Variance estimates for non-Inquiry classrooms range 
from 0.00 to 1.24, while Inquiry Project classrooms fall between 0.50 and 1.25.  

 

 

 

 
Figure 4.35. Student ability boxplots, grouped by Inquiry Project classroom, for the 
Structure and Properties of Matter dimension. Classrooms 4, 9, and 10 were fifth-grade 
classes, while the remaining class rooms were fourth-graders. 
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Average ability on the Structure and Properties of Matter dimension was higher in 

Inquiry Project classrooms (fifth-grade Inquiry Project mean = 0.24 logits, fifth-grade 

non-Inquiry mean = -0.06 logits, t = 2.55, df = 206)35.  

Within-classroom variation among fourth- and fifth-grade students. Refer to 

Figure 4.32 for a visual representation of within-classroom variability among all 

classrooms. To compare differences between fourth- and fifth-grade classrooms, the 

analysis was again limited to Inquiry Project classrooms (Figure 4.35). Differences in 

within-classroom variability largely disappear after the analysis is constrained to Inquiry 

Project participants, with many classrooms appearing to have very similar distributions 

of student ability.  

If classroom variance estimates are compared (Figure 4.36), it appears that fifth-

grade classrooms tended to have more similar variances in comparison to more diverse 

classroom variance estimates of the fourth-grade classrooms. Note the unequal number of 

classrooms between groups, which may limit comparisons.  

Average ability on the Scale, Proportion, and Quantity dimension was higher 

among grade 5 students (fifth-grade Inquiry Project mean = 0.24 logits, fourth-grade 

Inquiry Project mean = -0.13 logits, t = -3.06, df = 216)36.  

Engaging in Argument from Evidence. 

Within-classroom variation among Inquiry Project and non-Inquiry students. On 

the Engaging in Argument from Evidence dimension, variance within classrooms appears 

to be somewhat more uniform than the variances in the other two dimensions. There are  

                                                           
35 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
36 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
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Figure 4.36. Histograms of within-classroom variance in student ability for the Structure 
and Properties of Matter dimension. Variance estimates for 5th grade classrooms are 
clustered between 0.50 and 1.13, while variance estimates among 4th grade classrooms 
range from 0.25 to 1.25.  
 
 
 
 

 
Figure 4.37. Student ability boxplots, grouped by classroom, for the Engaging in 
Argument from Evidence dimension. Classrooms 1-10 were Inquiry Project participants, 
while classrooms 11-18 were not. Classrooms 4, 9, 10, 12, and 14-18 are 5th grade 
classrooms, classrooms 1-3 and 5-8 are 4th grade classrooms, and classrooms 11 and 13 
are mixed classrooms. 
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discrepancies between some classrooms (e.g., the ranges of classrooms 4 and 5 are quite 

different), but for the most part, the interquartile ranges are similar across classrooms 

(Figure 4.37). When the analysis is limited to 5th graders, differences in within-classroom 

variability become more pronounced (Figure 4.38). In particular, the 3 Inquiry Project 

classrooms (classrooms 4, 9, and 10) tend to demonstrate larger variance in student 

performance than the remaining non-Inquiry classrooms.  

Again, histograms (Figure 4.39) revealed that Inquiry Project classrooms tended 

to have more similar variances in comparison to those non-Inquiry classrooms. Average 

ability on the Engaging in Argument from Evidence dimension was higher in Inquiry  

 

 

Figure 4.38. Student ability boxplots, grouped by fifth-grade classroom, for the Engaging 
in Argument from Evidence dimension. Classrooms 4, 9, and 10 were Inquiry Project 
participants, while classrooms 11-18 were not. 
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Project classrooms (fifth-grade Inquiry Project mean = 0.30 logits, fifth-grade non-

Inquiry mean = -0.20 logits, t = 3.89, df = 206)37. 

 Within-classroom variation among fourth- and fifth-grade students. Refer to 

Figure 4.37 for a visual representation of within-classroom variability among all 

classrooms. Again, the analysis was limited to Inquiry Project classrooms to examine 

differences between grade levels (Figure 4.40). Differences in within-classroom 

variability still remain after the analysis is constrained to Inquiry Project participants, but 

these differences do not appear to be associated with grade level. The interquartile range 

of grade 4 classrooms appears to vary as much as the interquartile range of grade 5 

classrooms.   

If classroom variance estimates are compared (Figure 4.41), it appears that fifth-

grade classrooms tended to have more similar variances relative to the more diverse 

classroom variance estimates of fourth-grade classrooms. Note the unequal number of 

classrooms between groups, which may limit comparisons.  

Average ability on the Scale, Proportion, and Quantity dimension was higher 

among grade 5 students (fifth-grade Inquiry Project mean = 0.30 logits, fourth-grade 

Inquiry Project mean = -0.04 logits, t = -2.52, df = 216)38.  

 

                                                           
37 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
38 Note that this result does not account for similarities among students in the same classroom, therefore, 
the standard error may be underestimated.  
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Figure 4.39. Histograms of within-classroom variance in student ability for the Engaging 
in Argument from Evidence dimension. Variance estimates for Inquiry Project 
classrooms are clustered between 0.75 and 1.25, while variance estimates among non-
Inquiry classrooms range from 0 to 1.  

 
 

 
Figure 4.40. Student ability boxplots, grouped by Inquiry Project classroom, for the 
Engaging in Argument from Evidence dimension. Classrooms 4, 9, and 10 were fifth-
grade classes, while the remaining class rooms were fourth-graders. 
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Figure 4.41. Histograms of within-classroom variance in student ability for the Structure 
and Properties of Matter dimension. Variance estimates for 5th grade classrooms are 
clustered between 0.75 and 1.13, while variance estimates among 4th grade classrooms 
range from 0.40 to 1.60.  

 

HLM analysis. The previous analyses examined whether two group 

characteristics – participation in the Inquiry Project curriculum, and grade level – were 

associated with within-classroom variability in student performance on each of the three 

assessment dimensions. However, these analyses did not account for similarities among 

students who share a teacher. Because individual students within a classroom share a 

common context for learning, the amount of within-classroom variance may be 

underestimated.  Therefore, a hierarchical linear model was employed to reexamine the 

amount of variance shared among students in a classroom.  

 Three unconditional level-1 models were generated with student ability estimates 

on the three assessment dimensions as the outcome variables. The unconditional model 

contains no individual or group predictors of student achievement, but simply allows the 

intercept to vary randomly based on classroom membership. This allows for partitioning 

of variance into within-group and between-group sources and the calculation of the ICC, 
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or the percentage of variance in the outcome that is attributable to classroom 

membership.  

 Within-group and between-group variance estimates, calculated by HLM, are 

presented for each of the following subgroups: 4th grade Inquiry Project students, 5th 

grade Inquiry Project students, and 5th grade non-Inquiry Project students (Table 4.25).  

 To directly compare the within-group variance of independent groups, an F-test 

was employed, with the degrees of freedom adjusted to account for the loss of 

information caused by students sharing a common context. Results for the F-test are 

presented in Table 4.26.  

 

Table 4.25.  
 
Variance Estimates from Unconditional Multilevel Models 

  

Variance 
between 
groups 

Variance 
within 
groups 

Total 
variance 

Intraclass 
correlation 

coefficient (ICC) 
Scale, Proportion, and Quantity (WLE estimate) 
Inquiry Project G5 0.07 1.15 1.22 0.06 
Inquiry Project G4 0.12 1.33 1.45 0.08 
non-Inquiry Project G5 0.08 1.58 1.65 0.05 

  
Structure and Properties of Matter (WLE estimate) 
Inquiry Project G5 0.18 0.75 0.93 0.19 
Inquiry Project G4 0.03 0.68 0.71 0.05 
non-Inquiry Project G5 0.00 0.65 0.65 0.00 

  
Engaging in Argument from Evidence (WLE estimate) 
Inquiry Project G5 0.06 1.05 1.11 0.05 
Inquiry Project G4 0.05 0.80 0.85 0.06 
non-Inquiry Project G5 0.12 0.54 0.66 0.18 
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Table 4.26. 
 
Results of F-test Comparing Within-Classroom Variances Between Subgroups 
Scale, Proportion, and Quantity (WLE estimate) 
Within-group variance df Within-group variance df 

F p-value Inquiry Project G5 Inquiry Project G4 
1.15 86 1.33 120 0.87 0.48 

Inquiry Project G4 non-Inquiry Project G5     
1.33 120 1.58 109 0.84 0.36 

Inquiry Project G5 non-Inquiry Project G5     
1.15 86 1.58 109 0.73 0.13 

  
Structure and Properties of Matter (WLE estimate) 
Within-group variance df Within-group variance df 

F p-value Inquiry Project G5 Inquiry Project G4 
0.75 86 0.68 120 1.10 0.62 

Inquiry Project G4 non-Inquiry Project G5     
0.68 120 0.65 109 1.05 0.80 

Inquiry Project G5 non-Inquiry Project G5     
0.75 86 0.65 109 1.16 0.47 

  
Engaging in Argument from Evidence (WLE estimate) 
Within-group variance df Within-group variance df 

F p-value Inquiry Project G5 Inquiry Project G4 
1.05 86 0.80 120 1.31 0.17 

Inquiry Project G4 non-Inquiry Project G5     
0.80 120 0.54 109 1.48 0.04 

Inquiry Project G5 non-Inquiry Project G5     
1.05 86 0.54 109 1.94 0.00 

 
 

On the Scale, Proportion, and Quantity dimension, within-classroom variance is 

lowest among Grade 5 students who took the Inquiry Project curriculum, and highest 

among Grade 5 students who did not take the Inquiry Project curriculum. However, none 

of these differences are statistically significant, suggesting that curriculum exposure and 

grade level do not affect the amount of variability in student performance within a 

classroom. This aligns with the previous finding based on the uncorrected variance 
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estimates. Additionally, the ICC for all groups is below 0.10, suggesting that there is not 

much difference in performance attributable to classroom membership.  

 On the Structure and Properties of Matter dimension, within-classroom variance 

is lowest among Grade 5 students who did not take the Inquiry Project curriculum, and 

highest among Grade 5 students who took the Inquiry Project curriculum. However, none 

of these differences are statistically significant, suggesting that classroom exposure and 

grade level do not affect the amount of variability in student performance within a 

classroom. This aligns with the previous finding based on the uncorrected variance 

estimates. Among Grade 5 students in the Inquiry Project curriculum, the ICC is much 

higher than the other two groups; 19% of variation is student performance is attributable 

to classroom membership. Differences between classrooms are not present at all in the 

non-Inquiry Project sample, and to a much lesser extent among Grade 4 Inquiry Project 

students. 

 On the Engaging in Argument from Evidence dimension, within classroom 

variance is highest among Grade 5 Inquiry Project students, and lowest among Grade 5 

non-Inquiry Project students. Differences between these two groups are statistically 

significant, suggesting that there is significantly more variability in Grade 5 classrooms 

where student took the Inquiry Project curriculum, compared to Grade 5 classrooms 

where students did not participate in the curriculum. The difference between Grade 4 

Inquiry Project students and Grade 5 non-Inquiry Project students is also statistically 

significant. Again, Inquiry Project classrooms demonstrated more within-class variability 

than those that did not participate in the curriculum. The difference between the Grade 4 

and Grade 5 Inquiry Project groups was not statistically significant. These findings align 
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with the previously reporting findings based on uncorrected variance estimates, and 

suggest that classrooms who participate in the Inquiry Project curriculum have a larger 

range of student performance within classrooms on the Engaging in Argument from 

Evidence dimension than classrooms who do not participate in the curriculum. Student 

performance in both Inquiry Project groups is higher than the non-Inquiry Project group, 

on average (G5 Inquiry Project mean = 0.30, G4 Inquiry Project mean = -0.04, G5 non-

Inquiry Project mean = -0.20). Finally, the ICC is much higher among non-Inquiry 

Project classrooms than among Inquiry Project classrooms; 18% of variability in student 

performance is attributable to classroom membership. Differences between classrooms 

account for a much smaller percentage of variability in student performance among 

students who participated in the Inquiry Project curriculum.  
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Chapter 5: Conclusion 
 

 With the introduction of the Next Generation Science Standards (NGSS Lead 

States, 2013) as the preeminent framework for K-12 science education, there is a need for 

assessment to support and guide implementation of the new multidimensional standards 

in classrooms. Multidimensional assessment is a particular challenge for assessment 

developers, especially in the area of science, where assessment has usually focused on 

content to the exclusion of practice (Pellegrino, 2013). There are several aspects to this 

challenge, including multidimensional task design (Gorin & Mislevy, 2013), and the 

identification of appropriate psychometric methods to locate student ability on multiple 

related constructs (Pellegrino, et al., 2014).  

The purpose of the study was to explore item design and psychometric 

considerations for multidimensional science assessment in the context of an elementary 

assessment of the 4th grade Inquiry Project curriculum (TERC, 2011). The study 

examined 3 factors that might affect the validity and interpretation of the resulting 

estimates of multidimensional student performance: item design (scaffolding and 

response format), scoring, and psychometric modeling of student performance data. The 

study also examined some general indicators of assessment quality and validity, and 

provided some small insight into the effectiveness of the Inquiry Project curriculum. The 

following chapter includes a summary of the primary research findings, implications for 

multidimensional assessment, study limitations, and directions for future research.   
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Summary of findings  

Research question 1: Multidimensional scaffolding – what is its effect on 

student responses?  

Scaffolding helps students attend to critical pieces of assessment tasks. Students 

tended to overlook critical pieces of information more frequently when less scaffolding 

was used.39 Specifically, they were more likely to overlook information when a single-

prompt explicit multidimensional item format was used. For a single-prompt implicit 

multidimensional task, the stimulus information and task prompt draws on many 

dimensions of science learning, but only presents the student with one question/task. It 

seems likely that the density of questions/information in single-prompt multidimensional 

items was overwhelming for novice science learners, making it more likely that they 

would overlook something important. On the other hand, multiple-prompt explicit 

multidimensional present information to students in a more controlled way. This 

hypothesis is supported by observations from the students. For example, one student was 

so overwhelmed by the lengthy prompt in a single-prompt unidimensional item that he 

scaffolded the task himself by numbering each part of the task and addressing each piece 

separately, in order to avoid accidentally overlooking part of the task.  

There does not appear to be a relationship between the amount of 

multidimensional scaffolding and student understanding of the nature of the subtasks. 

There were no clear changes in the frequency with which students expressed difficulty 

                                                           
39 It must be noted that overlooking a critical piece of information was observed only 7 times during the 
first round of cognitive interviews, making it difficult to draw definitive conclusions about the effect of 
scaffolding on the likelihood of observing this issue. However, this is a plausible mechanism for affecting 
students’ experience with the items, and one which should be monitored as other characteristics of student 
performance are examined. 
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understanding a subtask or confusion about the item layout, depending on how much 

scaffolding was used. Overall, this suggests that the amount of scaffolding may not affect 

student understanding of the nature of the task, or at least that it may not affect their 

understanding in a way that the student is able to perceive and express verbally.  

Scaffolding is associated with more thorough, informative responses. Item 

variations with more scaffolding produce student responses that are more informative 

about their understanding of science. Data from both the cognitive labs and the pilot tests 

demonstrated that students’ responses addressed more of the assessment dimensions, on 

average, when they responded to items with more scaffolding. As the amount of 

scaffolding decreased, the students’ answers tended to provide less information about the 

students’ science ability across all three dimensions. Furthermore, students were more 

likely to provide information relevant to all three dimensions when presented with a 

multiple-prompt item. This difference was most notable on the Scale, Proportion, and 

Quantity, and Structure and Properties of Matter; when a single-prompt item was used, 

students were more likely to give missing responses. Students were more likely to 

provide explicit documentation of their reasoning about measurement and matter-related 

concepts when they were explicitly and separately prompted to do so.  

The Engaging in Argument from Evidence dimension was less affected by the 

amount of item scaffolding. This finding may reflect the nature of a single-prompt item, 

which naturally lends itself to an extended response with reasoning. The multiple-prompt 

format does not provide as much extra emphasis and structure for argumentation, as it 

does for the other content-based dimensions. This may explain why no difference is 

observed due to scaffolding. 
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 One of the most striking findings was that students were more likely to leave 

single-prompt items entirely blank than multiple-prompt items. The addition of 

scaffolding appears to make items more accessible to students, above and beyond 

directing them to attend to all dimensions. On the surface, students may find open-ended 

items with large response spaces to be intimidating. Thus, students are more likely to 

bypass single-prompt items altogether, compared to multiple-prompt items where the 

response space is broken up into several pieces. The use of multiple-prompt items 

appears to increase the total amount of information gathered from each student in two 

ways: by reducing the entry barrier for providing any response, and by reinforcing 

student attention and response to each dimension separately.  

Credible inferences based on assessment results are dependent on the amount of 

relevant evidence generated – a claim is made about a student based on their responses 

(Messick, 1988; Mislevy, 2007) – and without sufficient relevant evidence, the inference 

lacks validity. Finding ways to increase the amount and quality of evidence is thus a high 

priority for assessment developers. It appears that scaffolding is an effective way to 

increase the amount of evidence provided by the student, especially when faced with 

complex multidimensional tasks.  

Scaffolding is most helpful for lower-ability students. The association between 

scaffolding and missing responses varied depending on student ability. The difference in 

the extent of missing responses between single-prompt and multiple-prompt items was 

much larger among students with low estimated ability than among students with high 

estimated ability. This was particularly true on the Scale, Proportion, and Quantity and 

Structure and Properties of Matter dimensions. It is likely that the additional scaffolding 
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provided in the multiple-prompt item format affects response rates by making the item 

accessible to a larger number of students. For lower ability students, the single-prompt 

items were more difficult to access, and student responses were less likely to address all 

of the assessment dimensions. These students were much more likely to provide a 

relevant response with multidimensional scaffolding. Higher ability students found the 

single-prompt items more accessible, and the addition of multidimensional scaffolding 

did not provide as much of a “bump” as it did for the lower-ability students. This finding 

is in line with other research demonstrating that assessment scaffolding is more beneficial 

to students with lower ability (Gotwals & Songer, 2013). 

There were sizeable differences in the number of blank responses between single-

prompt and multiple-prompt items among all ability groups (low, medium, and high) 

when ability is grouped based on the Scale, Proportion, and Quantity and Structure and 

Properties of Matter dimensions. This suggests that whatever feature of the single-prompt 

format that inhibits its accessibility affects all students, regardless of their underlying 

ability.  

The relationship between student ability and the effect of scaffolding was less 

clear on the Engaging in Argument from Evidence dimension. Again, the nature of a 

single-prompt item lends itself to argumentation, which may lessen the impact of extra 

scaffolding, even among low ability students.  

Scaffolding requires more response time. Items with more multidimensional 

scaffolding tend to require more response time from students, on average. Since items 

with more multidimensional scaffolding tended to collect more information relevant to all 

three assessment dimensions, this finding is unsurprising. Classroom time is valuable, 
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however, and the benefit of collecting more thorough information about student science 

understanding should be weighed against the drawback of increasing the amount of time 

students spend on the assessment.  

Alignment between the item structure and scoring rubric is essential. Greater 

amounts of multidimensional scaffolding were associated with higher average interrater 

reliability when a multidimensional scoring rubric was used, but the opposite pattern was 

observed when a holistic rubric was used. When the interrater reliability of item 

variations with different amounts of scaffolding were directly compared, the results were 

less clear, but tended to follow the same pattern. When items were designed to elicit 

separate, explicit evidence of student understanding for each dimension, it was easier for 

raters to agree upon scores when the rubric assigned separate multidimensional scores to 

each piece of student evidence. On the other hand, when the item structure required 

students to integrate their understanding into a single extended response, it was easier for 

raters to agree upon scores when the rubric assigned a single holistic score to the 

response. This suggests that deliberate alignment between the item structure and the 

structure of the scoring rubric facilitates greater ease of scoring, which is reflected in the 

extent of agreement between raters. This further reinforces the notion that all parts of the 

assessment process (construct, items, rubrics, and measurement models) should be 

engineered together, aligned with each other and with the common purpose of the 

assessment (Brown & Wilson, 2011), even to the extent that an item’s response structure 

is reflected in its scoring rubric.  

The relationship between item difficulty and amount of scaffolding varies by 

dimension. There was no clear association between scaffolding and difficulty among 
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Scale, Proportion, and Quantity items. This finding held for the overall group, and for a 

subgroup analysis in which item difficulties were calculated separately for low, medium, 

and high ability students. Sometimes single-prompt items were easier, and sometimes 

multiple-prompt items were easier. If there is a scaffolding effect, it does not seem to be 

consistent. It is possible that scaffolding’s effect varies depending on the specific item 

content. For instance, one of the item variations (ROMITA) asks students to make a 

judgment about the weight of two objects, and then use that judgment to speculate about 

whether or not they might be made of the same material. In the multiple-prompt version 

of the item, students are asked to state precisely which item (if any) is heavier. In the 

single-prompt version they are only asked to make a judgment about the objects’ 

material, presumably by drawing on information about the items’ weight. Because the 

multiple-prompt item specifically asks for students to make an assertion about the weight 

of the objects, it may call out a misconception that weight can be measured by making 

judgments based on what can be felt with the senses. This misconception can be masked 

by other aspects of the student’s response in the single-prompt version of the item, 

thereby making it more likely that a rater will misjudge the student’s understanding of 

weight measurement when scoring the single-prompt variation. The Scale, Proportion, 

and Quantity component of the multiple-prompt version of ROMITA was more difficult 

than the single-prompt version, lending credence to this explanation. However, this 

pattern was not observed consistently – possibly because the remaining items included 

more straightforward measurement opportunities, or because item difficulty was related 

to other confounding factors or due to chance.  
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 On the Structure and Properties of Matter dimension, single-prompt items tend to 

be easier than multiple-prompt items, and this pattern held for students of all abilities. 

There are two different explanations for this difference, and it is likely that both 

explanations play a role. One is that – like the Scale, Proportion, and Quantity 

explanation presented above – splitting the item into multiple, targeted prompts forces 

students to grapple with certain aspects of the task that they may have otherwise avoided 

or brushed over. For example, SUGAR, when split up into multiple prompts, specifically 

asked students to consider whether a grain of sugar weighs anything at all, in addition to 

asking them to calculate the weight. The single-prompt version prompted the weight 

calculation only, which highlighted the Scale, Proportion, and Quantity dimension. It was 

assumed that any student misconceptions about whether or not a grain of sugar has any 

weight would manifest in their answer as a response of “zero” or some other indication 

that a single grain has no weight. Likewise, it was assumed that students who correctly 

performed the measurement calculation also understood the matter concept. This 

assumption may not be tenable, especially since the single-prompt formulation 

emphasizes the measurement task; this version of the item may enable students to neglect 

the overall consideration of whether weight is even present. Similarly, another item 

(ANA) asks students to consider the weight of clay before and after it has been shaped 

into a ball. In the multiple-prompt version, students are specifically prompted to consider 

whether the weight is the same or different, while the single-prompt version simply asks 

them to provide the weight of the clay ball and support with evidence – again, 

highlighting the measurement aspect of the question and leaving the matter aspect 

implicit. The multiple-prompt version of BOX forces students to consider pairs of items 
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based on size, weight, and density before asking which might be made of the same 

material, whereas the single-prompt item only requires them to make a judgment about 

which blocks might be made of the same material. When combined into a single prompt, 

students may focus on only one main aspect of the item, since there is only one response 

space. In these items, the measurement task is the most salient aspect of the single-

prompt item. Splitting the item forces students to address the dimensions separately, 

which forces them to confront and address misconceptions that they may have brushed 

over in their response to a single prompt.  

 Alternatively, the single-prompt format may make raters more susceptible to a 

halo effect, in which they brush over ambiguities in student responses by assuming that 

the student’s understanding on one dimension is in line with their performance on the 

other two dimensions. It seems reasonable to expect that raters may have difficulty taking 

notice of students’ weaknesses when their responses confound several related skills, any 

of which may be stronger or weaker than the others for a particular student. For example, 

a student’s response to the single-prompt version of SUGAR may reflect a student’s 

proficiency with the concept of proportionality. Because the student demonstrates 

proficiency with one of the skills assessed, it may lead the rater to presume that the 

student also has proficiency with other skills – in this case, they may assume that the 

student recognizes the weight of a grain of sugar. However, this is not necessarily a valid 

assumption. If this assumption is left unchecked across many students, it may artificially 

shift the difficulty estimates for the single-prompt versions of the items.  

On the Engaging in Argument from Evidence dimension, there is no clear 

relationship between item difficulty and response format. The overall item estimates 
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based on the full dataset suggest that multiple-prompt item thresholds may have a larger 

range of difficulty than the single-prompt thresholds. However, this pattern is not upheld 

among smaller subgroups of low, medium, and high ability students. The subgroup 

analysis suggests that the lower thresholds tend to be more difficult for low ability 

students when the single-prompt format is used, compared to the multiple-prompt format. 

Among medium and high ability students, this gap disappears. Providing even a weak 

argument is more difficult for low ability students when a single-prompt format is used, 

suggesting that low-ability students struggle more with issues of access when compared 

to their higher ability counterparts. Otherwise, the pattern of item difficulty on the 

Engaging in Argument from Evidence dimension is muddled and difficult to interpret, 

indicating that scaffolding is probably not responsible for any observed differences.  

Multidimensional scaffolding is not associated with item fit. Item fit statistics 

did not reveal any patterns related to the amount of scaffolding used in an item. This may 

have been due to the small number of items, or the fact that most items fit the model well.  

Overall conclusions about scaffolding. Scaffolding offers several clear 

advantages for the assessment of multidimensional constructs. Scaffolding helps direct 

student attention to critical features of the assessment task. This results in student 

responses that contain better evidence of student ability than items without scaffolding. 

Scaffolding enables lower-ability students to access assessment tasks that they may have 

otherwise ignored, thus providing higher quality diagnostic information about these 

students’ particular weaknesses, which is useful in supporting instruction. Scaffolding 

may also benefit raters, who are better able to make judgments about student ability when 

scaffolding helps structure responses so that they are explicitly aligned with scoring 
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criteria. Overall, scaffolding seems to greatly enhance assessment validity by providing 

raters with more, higher quality evidence of student performance, in a format that is 

easier for raters to digest and evaluate.  

 There are some drawbacks. Highly scaffolded items require more testing time 

from students, a factor that must be weighed against the additional information that they 

provide. But more importantly, the NGSS present the three dimensions of science 

learning as components of an integrated understanding of science. Scaffolding, it can be 

argued, forces a degree of separation between these dimensions; by splitting the item into 

separate prompts, students are able to focus on each dimension in isolation. Single-

prompt items are more authentic, in that they require students to actively integrate their 

relevant knowledge/skills from these dimensions on their own. Furthermore, when 

students address the three dimensions in a scaffolded item, we cannot be sure this is 

because the student naturally conceives of multiple dimensions that reinforce each other. 

The single-prompt item may be informative in its own right; the missing aspects of a 

response are evidence of students’ failure to integrate, which is a weakness in their 

understanding of the nature of science. Scaffolded items may provide better evidence of 

student performance on the three dimensions individually, but when it comes to 

representation of science as an integrated multidimensional construct, some validity 

concerns remain.  

Research question 2: Response format – what is its effect on student 

responses?  

The selected-response format was more likely to introduce construct-irrelevant 

variance and confusion. There appears to be a difference in student understanding of the 
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intended task, depending on whether they interact with a constructed-response or a 

selected-response version of an item. Students were far more likely to express confusion 

about how to complete a task when they were given a selected-response version of the 

task. This is largely due the argument subtask. For a selected-response argument, students 

were given a list of potential pieces of evidence and reasoning, and asked to select those 

that best explained their answer. Students frequently asked for clarification about how to 

perform the selected-response version of this task. Many said that they had never seen a 

question like that before. Some students asked for clarification about how to respond to 

the question, and how many answer options they were allowed to choose. A few students 

missed the point of the question, and simply selected all responses that were true, based 

on the scenario, rather than only the subset of answer options that supported their answer. 

Therefore, it seems that without previous exposure or test preparation, the selected-

response items, and the selected-response arguments in particular, are prone to student 

misinterpretation.  

 Similarly, there were some differences between the intended and enacted 

construct, depending on response format. When faced with a selected-response item, 

students were likely to complain that the answer options didn’t reflect their 

understanding. These students ended up choosing the answer options that were closest to 

their understanding, but were not perfect representations of their mental model. This 

creates some distance between the item’s intended construct and the enacted construct. 

To avoid this problem, more response options can be offered to reflect a greater variety in 

student understanding. However, there were several items with a large number of 

possible responses, with the intent of meeting this purpose. Selected-response versions of 
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the argument subtask, in particular, contained lengthy reading intensive response options, 

and often 10 or more – more than twice the standard number. Students expressed dislike 

for these items, as they were overwhelmed by the large amount of text/information. 

Regarding the appropriate number of response options, the set of constraints makes it 

difficult to find an optimal solution, begging the question of whether the selected-

response format is appropriate for such complex multidimensional items.   

Many students express a preference for the selected-response format. It must be 

noted that the majority of students stated a preference for the selected-response versions 

of the items over the constructed-response versions, despite any complaints or 

misunderstandings they may have exhibited with the format. When asked why they 

preferred the selected-response versions of the items, students usually stated that the 

answer options provided a good starting point for thinking about the items, and helped 

them to articulate their reasoning in ways that they might not have been able to express 

otherwise. Several students reported that the answer options led them to reconsider their 

answer, usually by suggesting compelling alternative reasoning. This suggests that the 

answer options may provide a form of additional scaffolding that is helpful for students 

who are on the cusp of understanding, consistent with an understanding of scaffolding as 

an aid for students who are within the zone of proximal development (Vygotsky, 1978).  

Response options influence the content of student answers. The selected-

response format affected the response given by the students. When students were asked to 

write an argument and then select pieces of evidence and reasoning in a selected-response 

argument, they supplemented their written responses with additional evidence and 

reasoning about half of the time. A few students completely changed their answers after 
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seeing the response options (11% and 14% of the time, depending on the specific item 

variation). Finally, some students chose not to provide a written response, but were able 

to choose from among the response options. Based on these observations and the number 

of students who verbally admitted to rethinking responses after seeing response options, 

it appears that response options may influence the way students think about a question, 

sometimes leading them to different or more detailed conclusions than they would have 

reached otherwise.  

 When given a selected-response version of an argument, students tended to 

choose a greater amount of evidence and reasoning than was reflected in their written 

arguments. In particular, they tended to choose a greater amount of both relevant-

supporting evidence and irrelevant/unsupportive evidence than they provided in their 

written responses. This can be triangulated by observations from the cognitive interviews; 

some students responded to the selected-response version of the argument by selecting all 

of the response options that they observed to be true based on the item scenario, including 

evidence that was true but tangential to their argument. In general, the selected-response 

format provided potential ideas for the students, and some students seemed to view their 

task as considering, and deciding whether to accept or reject them. On the other hand, the 

constructed-response versions of the items required students to generate their own ideas, 

a task which students tended to consider more difficult.  

 It is worth noting that students provided more information on selected-response 

versions of the items: more evidence and reasoning, and more answers overall. Some 

researchers have considered the selected-response item format as an additional type of 

scaffolding (Songer & Gotwals, 2012). The response options may have provided a point 
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of access for students who were confused by the task or unsure of how to answer a 

question, thus providing a form of scaffolding that enabled them to provide an answer 

where they otherwise couldn’t. This is supported by data from the assessment pilot, 

where more “Missing on Engaging in Argument from Evidence” responses were 

observed when a constructed-response format was used, compared to a single-prompt 

format. From an assessment standpoint, the selected-response format may allow students 

to provide evidence of their understanding where there would otherwise be no evidence 

at all. This benefit must be weighed against the warping of the intended construct that 

occurs when students are allowed to consider ideas, rather than generate them.  

Students were more likely to provide arguments on selected-response items. 

Response format did not appear to play as large of a role in eliciting relevant information 

about the three dimensions as multidimensional scaffolding. However, the use of a 

selected-response format increased students’ likelihood of providing a response that 

included an argument compared to a constructed-response format.  Creation of an 

argument from scratch is an effortful task, and the selected-response format removes 

much of that effort by providing response options. Reducing the effort required seemed to 

increase the likelihood of actually observing a response. However, it should be noted that 

selecting an appropriate argument from given options is a vastly different task than 

constructing an argument from scratch. The information gained by changing the response 

format may not outweigh the threat to validity posed by offering response options.  

A selected-response format was associated with shorter response times. The 

selected-response item format was associated with shorter response times, on average, 

but the significance of the decrement is questionable: selected-response items averaged 
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only 28 fewer seconds of response time per item. Compared to the total average response 

time of ~3 minutes per item, selected response items decrease the response time by about 

17%. Over multiple items, the differences in response time accumulate, suggesting that 

students would likely be able to complete more selected-response items than constructed-

response items in a typical testing session.  Thus, the decrease in response time associated 

with selected-response items could allow for a somewhat more reliable test that collected 

more information about student understanding. However, this consideration should be 

weighed against the effects of the selected-response item format on the intended 

construct.  

The selected-response format was associated with more reliable scoring of 

arguments. The selected-response format was associated with higher interrater reliability 

for the argument dimension only, when a multidimensional scoring rubric was used. This 

finding held across all student ability subgroups. After scoring, many raters reported that 

the argument dimension was the most difficult to score, due to its complicated partial 

credit rubric and the wide range of student responses. The selected-response format 

allowed for a clearer rubric. Because students were limited to the given answer options, 

the scoring rubric was able to specify particular scores for different combinations of 

chosen responses, thereby providing extra clarity that was not possible in the constructed-

response argument rubric. Therefore, it seems that the selected-response format facilitates 

clearer scoring rubrics by constraining student responses to a smaller number of possible 

variations which can be clearly specified.  

 The selected-response format did not have much impact on interrater reliability 

when a holistic rubric was used. It is unclear why – perhaps because the extra scaffolding 
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provided by the answer option was not compatible with the unstructured nature of a 

holistic rubric, or because the two non-argument dimensions produced a kind of “halo 

effect” whereby raters did not have to consider the more complex argument response as 

deeply as for the multidimensional rubric, thus cushioning their scores. Regardless, it 

seems that the selected-response format has the greatest impact on scoring reliability 

when the scoring rubric was specific and complex.  

It was easier for students to generate arguments based on both evidence and 

reasoning when a selected-response format was used. On the Engaging in Argument 

from Evidence dimension, the highest item thresholds denote the point at which students 

move from generating arguments based on either evidence or reasoning, to arguments 

based on both evidence and reasoning. These highest thresholds tended to be easier to 

cross when a selected-response format was used. This suggests that the selected-response 

format may have changed the nature of the task in a way that made it substantially easier.  

For tasks in which the student is asked to supply a scientific argument, a selected-

response format may alter the intended construct by providing more support and 

suggestions. The creation of an argument is a complex practice, but the selected-response 

format provides a bit of extra scaffolding by providing answer options for students to 

consider. The answer options give students a framework for constructing an argument, as 

well as indicating potential sources of evidence and reasoning. The construct assessed by 

a selected-response argument item (i.e., ability to select from among several pieces of 

given evidence and reasoning) is substantially different from the construct assessed in a 

constructed-response item (i.e., ability to generate an original argument, drawing on the 
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student’s own understanding as a basis for evidence and reasoning). This is a major 

concern with regard to assessment validity.  

The selected-response format can improve or diminish item fit, depending on 

the task. In one case on the Structure and Properties of Matter dimension, the use of a 

selected-response format seemed to mitigate an issue that caused the open-ended version 

of the same item to have poor fit. Selected-response items provide extra scaffolding for 

students, which may help to narrow the scope of the task for students who are confused. 

In the item in question, unclear phrasing led to some confusion from the students. The 

response options mitigated the confusion, providing clarity that allowed students to give 

answers that better reflected their understanding and resulting in better item fit.   

 However, the selected-response format was associated with poor item fit on the 

Engaging and Argument from Evidence dimension. This finding was constant across all 

ability subgroups. The selected-response format added some additional challenges and 

supports to the students’ testing experience. Compared to constructed-response argument 

items, the selected-response options required more reading from students. On the other 

hand, the response options also introduced evidence and reasoning that the students may 

not have otherwise considered. Both of these factors may have influenced students’ 

responses in an atypical manner. When it comes to scientific argumentation, response 

options may change the way that students interact with the task, thereby increasing the 

amount of unpredictable variation in students’ responses.  

Reading load did not appear to impact item difficulty of selected-response 

argument items. Across all ability groups, there was no relationship between the 

difficulty of the lowest threshold values and response format, suggesting that the 
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increased reading load required by multiple-choice items does not disadvantage low 

ability students by providing an additional barrier to access. This finding contradicts 

conventional wisdom, which posits that selected-response items require extra reading 

comprehension which introduces construct-irrelevant variance. However, no information 

was available about the sample’s overall socioeconomic status or English language 

proficiency, which may interact with reading demand.  

Overall conclusions about response format. The selected-response format has 

some advantages but many more drawbacks, especially with regard to the Engaging in 

Argument from Evidence dimension. Many students report that they prefer the selected-

response format because it helps them frame their response. Items that utilized a selected-

response format required lesser response times, on average. Shorter response times allow 

more items to be administered within a testing period, and increases test reliability. A 

selected-response format may facilitate student access to more complex tasks, as students 

were more likely to provide any response to selected-response arguments than 

constructed-response arguments.  Selected-response items limit the range of potential 

student responses, therefore allowing for easier, more reliable scoring. Response options 

provide a suggested response structure that may clarify the intended task, thereby 

increasing item fit. Contrary to expectation, the higher reading load of selected-response 

items did not cause a disadvantage to low-performing students.  

 However, the selected-response format also produced some threats to validity. 

The selected-response format seemed to add a certain form of construct-irrelevant 

variance relative to the constructed-response format, in that they introduce content in 

some student responses that may not have otherwise occurred. Despite expressing a 
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general preference for the selected-response format, students also reported being unsure 

of how to respond to selected-response items, especially on the Engaging in Argument 

from Evidence dimension – perhaps as a consequence of the amount and length of 

response options to argument items. To increase student comfort with the selected-

response argument task, it is advisable that students be exposed to the format before 

encountering it on a test, perhaps as part of their classroom instruction. Furthermore, 

there is considerable evidence that the selected-response format resulted in a meaningful 

change to the nature of the argument task. Some students reported that the response 

options led them to rethink their answers. Students sometimes provided more detailed 

answers, or completely different answers when a selected-response format was used, 

compared to a constructed-response format. Providing arguments based on both evidence 

and reasoning was systematically easier when a selected-response format was used, based 

on a comparison of item difficulty estimates. These findings suggest that selected-

response argument items may be measuring students’ ability to recognize 

relevant/supporting evidence and/or reasoning, instead of the related, but more complex 

task of producing scientific arguments grounded in evidence and reasoning.  

 Overall, the selected-response format has different advantages and drawbacks for 

the assessment of scientific argumentation. In an assessment context, the choice of 

response format should be based on the inferences that assessment users want to make 

about students, considering how the different response formats might affect the strength 

of those inferences.  
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Research question 3: How do unidimensional and multidimensional scoring 

and modeling affect the empirical relationships among the 3 dimensions?  

Model fit improves significantly with the multidimensional model. A direct 

comparison of model deviance statistics between the unidimensional and 

multidimensional approaches (both with a multidimensional/analytic scoring rubric) 

demonstrated that a multidimensional structure resulted in significantly better model fit 

than a unidimensional model structure. This indicates that a multidimensional structure 

better explains variation in students’ responses to the assessment items than a 

unidimensional structure. This is also reflected in item fit statistics, which tended to 

improve under the multidimensional model – especially on the Engaging in Argument 

from Evidence dimension.  

There are moderate-high correlations between dimensions. Based on the 

multidimensional model, the correlations between the 3 dimensions ranged from 0.73 to 

0.89 – moderate to very strong correlations. The highest correlation was between the 

Scale, Proportion, and Quantity and Structure and Properties of Matter dimensions. This 

high correlation suggests that differentiation between the two dimensions may not be 

explaining any unique variance in student performance. The Engaging in Argument from 

Evidence dimension has somewhat lower correlations with the other two dimensions 

(0.73-0.80), suggesting that the Engaging in Argument from Evidence dimension is 

capturing some unique variation in student performance. A two-dimensional model 

where these two dimensions were collapsed fit the data significantly better than a 

unidimensional model, however, the three-dimensional model still demonstrated 

significantly better fit. However, the difference in deviance between the one- and two-
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dimensional models was much larger than the difference between the two- and three-

dimensional models, suggesting that specification of a separate Engaging in Argument 

from Evidence dimension has a much larger impact on model fit than the separation of 

Scale, Proportion, and Quantity and Structure and Properties of Matter. This may be due 

to the nature of these particular content areas, as the matter and measurement concepts 

tend to be heavily dependent on content-specific knowledge, while Engaging in 

Argument from Evidence is a more general skill. 

The high correlation between dimensions may be bolstered by the fact that all test 

items are in the same narrow content area: matter, specifically, the matter concepts taught 

in Grade 4 of the Inquiry Project curriculum. If the crosscutting concept and science 

practice were tested in the context of other disciplinary core ideas, the correlation may 

not be so high. 

 An examination of disparities in WLE student ability estimates from the three-

dimensional model demonstrates that about half of students have ability estimates that 

differ by a standard deviation or more on at least two dimensions, based on information 

from the current assessment. For these many students, the multidimensional estimates 

provide more detailed diagnostic information than would be gained from a 

unidimensional estimate. For example, teachers may utilize very different approaches for 

a student with a high Engaging in Argument from Evidence estimate, but a low Structure 

and Properties of Matter estimate compared to a student with moderate performance on 

both dimensions. The multidimensional ability estimates provide teachers with enough 

information to address students’ diverse needs.  
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The relationship between dimensions fluctuates with ability. A subgroup 

analysis reveals that the relationship between dimensions may not be homoscedastic; 

specifically, the relationship between each pair of dimensions appears to be stronger 

among high-ability students than low-ability students. This indicates that the relationship 

between dimensions may be more complex than the overall correlations imply. When a 

student’s mental model is sophisticated, their understanding of various matter and 

measurement concepts may coalesce, whereas a student’s understanding may be more 

fragmented at lower levels. Once students have acquired some concepts, it may be easier 

for them to acquire other related concepts, strengthening the relationship between 

dimensions. For example, students who have a solid understanding of proportionality will 

be better equipped to pick up concepts about material density. Similarly, students who are 

familiar with evidence-based arguments may be better able to draw conclusions from 

data, thus enabling their acquisition of other concepts. On the other hand, students with 

partial or incomplete understanding may not experience the same benefits in acquisition 

of related concepts.  

The heteroscedastic relationship between dimensions has implications for 

teaching and learning. It implies that students rely on already-acquired concepts as a 

foundation on which to build a more sophisticated understanding. Skills from one 

dimension should be referenced and utilized in the learning of the others, especially as 

students begin to master some of the concepts in a learning progression. This mirrors the 

NGSS emphasis that the three dimensions of science should be constantly integrated in 

teaching and learning.  
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Unidimensional reliability is higher than subscale reliability. Reliability is 

related to both the standard error of measurement and the number of items on a scale; 

therefore, it is not surprising to observe that both WLE and EAP reliability were higher 

when a unidimensional model was used to scale the data. Based on the EAP reliability 

estimate, reliability for the multidimensional subscales was slightly lower than 

unidimensional reliability (a drop of 0.07 to 0.12). However, based on the WLE 

reliability estimate, the drop in reliability was much more severe, especially on the 

Structure and Properties of Matter (difference in WLE reliability = 0.21) and Scale, 

Proportion, and Quantity dimensions (difference in WLE reliability = 0.40).  

 Multidimensional EAP person estimates take into account the relationship 

between dimensions, so these estimates tend to be more precise. Consequently, reliability 

estimates based on EAP estimates tend to be higher. On the other hand, multidimensional 

WLE estimates do not take the relationship between dimensions into account. They are 

unbiased estimates, but much more error-prone, and they lead to lower reliability 

estimates. It is therefore expected that WLE reliability will suffer more under the 

multidimensional approach, but the size of the decrement is shocking.  The gap between 

EAP and WLE reliability indicates that it may be necessary to account for the correlation 

between dimensions in order to maintain adequate scale reliability under the 

multidimensional approach, a major concern when assessment is used for high-stakes 

decision making (like promotion, teacher accountability, or funding decisions). WLE 

estimates would certainly not be suitable for such purposes. On the other hand, EAP 

estimates, which reflect the high degree of correlation between dimensions, may not 

provide as much nuanced information as WLE estimates, which might be more 
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appropriate for lower-stakes decision making, like instructional adjustments for 

classrooms or individual students.  

 Due to the reliance of EAP estimates on the correlation between dimensions, EAP 

reliability also tends to fluctuate substantially depending on the strength of the 

relationship between dimensions in different sub-samples. Among low-ability students, 

the correlation between dimensions was much lower, and EAP reliability suffered. 

Among high-ability students, the correlations were stronger and reliability was greater. 

This illustrates how the nature of the relationship between dimensions is a critical 

consideration in a multidimensional assessment context, as it massively influences the 

quality and interpretability of assessment outcomes. When the relationship between 

dimensions is non-constant, the EAP estimates may overcorrect individual estimates to 

reflect the aggregate relationship between dimensions, inflating the reliability coefficient.   

When a holistic rubric was used, both WLE and EAP reliability estimates from a 

unidimensional model were slightly lower than the multidimensional rubric (WLE 

reliability decreased by 0.03 from 0.82 under the multidimensional rubric to 0.79 under 

the holistic rubric, and EAP reliability decreased by 0.01 from 0.85 under the 

multidimensional rubric to 0.86 under the holistic rubric). The holistic model had a much 

smaller number of item thresholds, compared to the analytic models, and fewer items are 

generally associated with lower reliability. However in this case, the decrement in 

reliability is very small, suggesting that both models provide similar amounts of 

information despite the large discrepancy in number of item thresholds. This suggests 

that the additional score thresholds in the analytic models may not actually be adding 

precision to the ensuing measurements of student ability. This is a strong argument in 
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support of holistic rubrics, which tend to be easier for assessment developers to write and 

for raters to use; if they also provide estimates of student ability with just as much 

precision, it may not be worth going to the extra trouble to create more nuanced scoring 

rubrics.   

Multidimensional person ability estimates have better fit for students with 

dissimilar performance on the separate dimensions. The multidimensional model had 

fewer students who underfit the model, meaning that there were fewer students whose 

responses were less predictable than the model assumed. This makes sense: assuming that 

multiple dimensions exist, students who have disparate performance on the different 

dimensions would have poor fit if a unidimensional model is used. A multidimensional 

model allows for discrepancies in student performance across the dimensions, leading to 

better person fit.  

Multidimensional person ability estimates are less precise than unidimensional 

person ability estimates, but similar to holistic ability estimates. Person ability estimates 

from the unidimensional model tended to have smaller standard errors than 

multidimensional estimates, when the multidimensional rubric was used. On the Scale, 

Proportion, and Quantity dimension, especially, subscale estimates had much more 

uncertainty than the corresponding unidimensional estimates. The unidimensional model 

outdoes the multidimensional model when it comes to precise estimation of student 

ability. Unidimensional estimates tended to be more precise than the subscale estimates, 

when a multidimensional/analytic rubric was used. The size of person error is related to 

the number of items on a scale, so it follows that the smaller subscales would have larger 

errors than a larger unidimensional scale. Consequently, the Scale, Proportion, and 
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Quantity dimension, which had the smallest number of scale points, also had the largest 

standard error of measurement. The Structure and Properties of Matter and Engaging in 

Argument dimensions had a greater number of thresholds, and consequently they also 

had smaller increases in standard error of measurement relative to the unidimensional 

model.  

 Person estimates from the holistic rubric/unidimensional model had larger 

standard errors than the unidimensional estimates from the multidimensional model. 

Again, there were a smaller number of scale points when the holistic rubric was used, so 

the increase in error from the multidimensional rubric is expected. Standard error of 

person estimates were similar to the subscale person estimates, on average, when 

compared to scales with a similar number of thresholds (i.e., the Structure and Properties 

of Matter and Engaging in Argument from Evidence dimensions). The information 

functions (which are the inverse of square of the conditional standard errors) are therefore 

also similar. Even though the dimensional subscores focus on smaller aspects of the 

response, they still provide a similar amount of information as the holistic scores, which 

ostensibly contain a broader reflection of student performance.  

Overall conclusions about dimensionality. It is impossible to say that one model 

structure or rubric categorization scheme is generally better or worse than another. 

Instead, each model has its own benefits and drawbacks, and depending on the intended 

use for student estimates a different model may be appropriate.  

When the holistic rubric is used, reliability is satisfactory, and there is a good 

match between the distributions of item difficulty and person ability. Person fit and item 

fit are poor. A holistic rubric may not describe variations in student responses as well as 
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an analytic rubric. Raters may have difficulty implementing with fidelity a rubric based 

on broad categorizations of student responses, and this may lead to unpredictable patterns 

in scoring. These observations, combined with considerations about the broader violation 

of construct validity when multifaceted items are scored with a one-faceted holistic 

rubric, imply that the holistic scoring approach may not be appropriate.  

When a multidimensional/analytic rubric is used to score student responses, the 

unidimensional model distributes item coverage evenly across a single scale. The 

unidimensional model also results in the most reliable scale, as it has the largest number 

of items. The correlation between dimensions is fairly high, lending credence to a 

unidimensional structure. However, additional evidence suggests that a three-dimensional 

structure does a better job of describing variation in student performance. Many students 

have large variations in performance across the dimensions. Furthermore, the 

multidimensional model results in slightly better item fit on the argument dimension, 

better person fit for students with disparate performance on the separate dimensions, and 

multidimensional model fit is significantly better than the unidimensional model. If 

model fit and nuanced information about student performance on each dimension are 

valued for the intended uses of test results, then the multidimensional model affords some 

advantages over the unidimensional model. Furthermore, the high dimensional 

correlations are based on the current assessment, which is limited to a single disciplinary 

core idea. Correlations may lessen when crosscutting concepts and science practices are 

assessed in the context of multiple disciplinary core ideas. If students’ dimensional ability 

estimates diverge, multidimensional estimates would be even more informative.  
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 The multidimensional model also exposes some large gaps in item coverage, 

suggesting areas of weakness that may have flown under the radar with a unidimensional 

model. On the Structure and Properties of Matter dimension, all thresholds are 

compressed in the center of the scale. The Engaging in Argument from Evidence 

thresholds are skewed towards the bottom of the scale. These gaps may lead to imprecise 

placement of those students with corresponding ability levels. Inserting new items that 

fill these gaps will improve measurement precision, regardless of the chosen dimensional 

structure.  

The multidimensional model also results in subscale person estimates that have 

less precision than a unidimensional model, but similar to estimates based on a holistic 

rubric. Subscale reliability is lower than unidimensional reliability for both the holistic 

and multidimensional/analytic rubrics, especially when WLE person estimates are used to 

calculate the reliability estimate. This is not surprising, given that the subscales have a 

reduced number of items, relative to the unidimensional scale, but it should be taken into 

consideration, especially if reliability and precise estimation of person ability are high 

priorities of assessment. Using EAP person estimates instead of WLE person estimates 

mitigates the decrement in both the size of standard errors of measurement and in 

subscale reliability; however, EAP estimates should not be used if bias in person 

estimates is a concern. If high precision in student estimates is needed to, for example, 

evaluate whether a student has reached a certain threshold of performance based on a 

single cut point, then the combination of a unidimensional model with a 

multidimensional rubric seems best suited to this task. On the other hand, subscale 

estimates are most useful in instructional settings, where high reliability is not as critical.  
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  Finally, it should be noted that subgroup analysis demonstrated that the 

relationship between dimensions may not be constant across students of all abilities. 

Further research should be done to tease apart the relationship among the three NGSS 

constructs studied here: Structure and Properties of Matter, Scale, Proportion, and 

Quantity, and Engaging in Argument from Evidence, as well as the relationships between 

these constructs and other related science constructs. Gaining more information about the 

relationships between dimensions in many contexts and content areas will contribute to 

continued improvement in the understanding of science as a multidimensional construct, 

which will further lead to new strategies for teaching and learning science and better 

measurement of science at every age.  

Research question 4: Instrument Validity  

Gaps in item difficulty are masked when a unidimensional model is used. On 

the Structure and Properties of Matter and Engaging in Argument from Evidence 

dimensions, item thresholds did not span the entire dimensional subscale, leaving entire 

segments of the scale without adequate item coverage. On the Structure and Properties of 

Matter dimension, only the middle of the scale contained adequate item coverage. On the 

Engaging in Argument from Evidence dimension most of the item thresholds fell near or 

below the scale mean, revealing an upper region of the scale that was only sparsely 

populated with items. This exposes the need for more items to fill in the gaps on the 

Structure and Properties of Matter and Engaging in Argument from Evidence dimensions. 

The Scale, Proportion, and Quantity scale had adequate item coverage across the entire 

scale range. When a unidimensional model was used, there were no visible gaps in 
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coverage, masking the failure of the item pool to adequately measure the entire range of 

student abilities on specific subdomains.   

Discrepancies between hypothesized and observed item difficulty distributions 

suggest areas for revision of the construct definition. On the Structure and Properties of 

Matter dimension, it was easier than anticipated for students to recognize weight 

invariance in the presence of a phase change. This suggests that once students understand 

the basic principle of conservation of weight, the leap from physical to chemical changes 

may not present as great an obstacle as previously anticipated.  

 Furthermore, it was much harder for students to make overall judgments about 

whether objects could be made of the same material when both the weight and the 

volume were different, compared to items where either the weight or the volume was 

held constant. This is a factor that should be accounted for in the construct map. The item 

in question also ties in topics from the Scale, Proportion, and Quantity construct, like 

proportionality. This concept may conflate the two constructs such that they are 

dependent upon each other, which may have increased item difficulty.  

 On the Scale, Proportion, and Quantity dimension, items that required 

multiplication and division tended to be more difficult than items that involved addition 

and subtraction. The complexity of the mathematical calculation seems to be an 

important factor, perhaps an auxiliary construct that should be recognized and included as 

part of the operational definition for this dimension.  

 Otherwise, the anticipated order of item difficulty largely aligned with the 

observed estimates. The three sub-constructs appear to be well-defined, and the items 

seem to be a valid representation of those constructs. Some small revisions to the 
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construct maps may improve the alignment between hypothesized and observed item 

difficulty.  

Gaps in item coverage should be filled. If a multidimensional approach is utilized 

in the future, effort should be made to fill in the gaps on the Structure and Properties of 

Matter and Engaging in Argument from Evidence scales, both of which display large 

gaps in item difficulty. On the Structure and Properties of Matter dimension, most item 

thresholds are clustered near the center of the scale. Since all scale items were based on 

concepts from one year (grade 4) of the Inquiry Project Curriculum, it makes sense that 

the concepts measured by the items would have similar difficulty. To increase the range 

of item thresholds, concepts from the earlier and later grades could be added. If done in 

conjunction with the assessment of higher and lower-grade concepts from the Inquiry 

Project, this would also enable the construction of a vertical scale, in which items from 

the third, fourth, and fifth grade curriculum could be placed on a common scale and 

student growth could be measured across grades.  

On the Engaging in Argument from Evidence dimension, most item thresholds are 

clustered near the bottom of the scale. This leaves the upper regions open, without 

adequate items to measure students with higher ability on this dimension. This also 

affects the standard error of person estimates on the argument dimension, resulting in 

higher error rates near the mean of the person distribution than are usually observed. The 

definition of the Engaging in Argument from Evidence construct may need to be revised 

so that it better describes above-average student performance, and the items/rubrics 

rewritten to capture variation at the high end of the scale.  
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Item fit statistics suggest items that could be replaced or improved. Some item fit 

issues are likely related to response format (see KEVIN), however, there are some 

additional items with a high degree of misfit. These items should be examined by content 

and curriculum experts to ensure that student responses are not influenced by construct 

irrelevant factors. It would also be useful to look at patterns in individual student 

residuals, as they may provide more detailed information about the types of responses 

that tended to result in misfit. Based on findings, these items should be considered as 

candidates for revision or replacement. 

It is likely that rater effects have contributed to some poor fit on the Engaging in 

Argument dimension. As stated in previous sections, revisiting the scoring rubric for this 

dimension is a high priority to improve scoring reliability. It may also help improve the 

poor item fit.   

Item performance gaps between Inquiry Project students and non-Inquiry 

students suggest strengths and shortcomings of the Inquiry Project curriculum. A DIF 

analysis revealed that fifth grade Inquiry Project students performed unexpectedly poorly 

on items assessing the invariance of volume of solid objects when reshaped, when 

compared to non-Inquiry students of similar ability; however, Inquiry students did better 

than their equal-ability non-Inquiry counterparts on items assessing whether tiny objects 

have weight and volume. Both concepts are covered extensively in the Inquiry Project 

curriculum, and the pattern suggests that participation in the Inquiry Project curriculum 

may affect the way that students interact with these items. For items 8A and 10, which 

assess the weight and volume of tiny objects, the curriculum may have improved student 

performance. However, the curriculum may have detracted from student performance on 
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items 1A, 1B, and 11, which ask students to answer whether the volume of a rectangular 

solid changes after being rearranged. This concept is discussed in the Inquiry Project 

curriculum at length; in fact, an entire lesson is devoted to a near-exact scenario as that in 

items 1A/1B, yet Inquiry Project students are performing worse than their non-Inquiry 

counterparts on this item. The item should be re-examined, to make sure that the 

language is consistent with the way it was taught in the curriculum, and the curriculum 

should be reexamined to make sure that the lessons are productive for students and not 

unintentionally reinforcing misconceptions. 

No other clear patterns in DIF emerge. Although DIF is observed on a few more 

items when student performance is examined by grade and by curriculum participation, 

there are no clear item or subgroup characteristics that may account for differential 

performance. It is possible that in these cases, DIF was observed by chance due to small 

subgroup sample sizes40 or unreliability in scoring41, or that it was caused by some other 

factor unknown to the researcher. These limitations should be addressed in the future. 

Inquiry Project students score higher than non-Inquiry Project students on all 

three dimensions. Average student performance is higher among Inquiry Project students 

on all three dimensions. The most likely explanation for this pattern is that curriculum 

participation gave students an advantage on the assessment. Given that the assessment 

was written to align with the Inquiry Project curriculum, it makes sense that curriculum 

participants should have an advantage over students who did not participate in the 

curriculum. However, there are other background factors that were associated with 

                                                           
40 Sample sizes ranged from N=17 to N=197, depending on subgroup classification and test form exposure, 
with category frequencies as low as N=1. 
41 This was especially concerning on the Engaging in Argument from Evidence dimension. For a discussion 
of scoring reliability, see Chapter 4, pg 155.  
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Inquiry Project participation, including location (district and state). Therefore, it is 

possible that average differences in student performance are due, at least in part, to 

systematic differences in these other factors. Further research should use matched 

comparison groups of Inquiry Project and non-Inquiry students to control these potential 

confounding explanatory variables and better isolate the effect of the curriculum.  

Fifth-grade students score higher than fourth-grade students on all three 

dimensions. Among students who participated in the Inquiry Project curriculum, 5th 

grade students had higher average performance across all three dimensions than did 4th 

grade students. The difference between grades ranged from about 20% to 40% of a 

standard deviation, depending on the subscale. This finding conforms with the 

expectation that students will be better able to demonstrate understanding of the concepts 

covered in the assessment after an additional year of exposure to the curriculum. 

Furthermore, since the assessment was designed to cover concepts taught in the 4th grade, 

it is plausible that performance will be higher among students who completed the 4th 

grade curriculum (in this study, the 4th grade students had not yet completed the 4th grade 

curriculum).   

Within-classroom variability is larger among Inquiry Project students on the 

Engaging in Argument from Evidence dimension. Regardless of grade level, within-

classroom variability of student performance on the Engaging in Argument from 

Evidence dimension tended to be larger in classrooms that participated in the Inquiry 

Project curriculum, compared to classrooms that did not participate. This suggests that 

student understanding of Engaging in Argument from Evidence becomes more spread out 

after classrooms participated in the curriculum. One potential explanation for this finding 
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is that the Inquiry Project curriculum successfully enhances student proficiency with 

scientific argumentation, but has more impact on students who already have a high 

ability. This would create more separation between the highest and lowest ability 

students, increasing within-classroom variability among curriculum participants. Were 

this the case, more work should be done to attend to lower-ability students in Inquiry 

Project classrooms, so that they may enjoy the same benefits in learning as their high-

ability classmates. Again, this finding is limited by the presence of other factors that were 

associated with Inquiry Project participation, including location (district and state). To 

eliminate the influence of confounding local variables, further research should examine 

within-classroom variability among matched comparison groups of Inquiry Project and 

non-Inquiry students.  

There are no differences in within-classroom variability among Inquiry Project 

and non-Inquiry Project participants on the remaining two dimensions, or between grade 

5 and grade 4 classrooms on any dimension. This suggest that student understanding of 

the Scale, Proportion, and Quantity and Structure and Properties of Matter dimensions 

does not become more uniform with age or exposure to the curriculum.  

Between-classroom variability is high among Grade 5 Inquiry Project 

classrooms on the Structure and Properties of Matter dimension. Among Grade 5 

students who participated in the Inquiry Project curriculum, 19% of variability in student 

performance on the Structure and Properties of Matter dimension is attributable to 

classroom membership. This finding suggests that student performance may have been 

affected by differences in how individual teachers taught the curriculum, or other 

classroom-specific factors. Among 4th grade Inquiry Project participants and 5th grade 
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non-Inquiry participants, a much smaller percentage of between-classroom variability 

was observed, suggesting that these groups’ performances were not as affected by 

classroom-specific factors.  

Between-classroom variability is high among Grade 5 non-Inquiry Project 

classrooms on the Engaging in Argument from Evidence dimension. Among Grade 5 

students who did not participate in the Inquiry Project curriculum, 18% of variability in 

student performance on the Engaging in Argument from Evidence dimension is 

attributable to classroom membership, suggesting that differences in teaching among 

different classrooms/schools may have affected student performance. Teaching and 

learning about scientific argumentation is much more uniform among classrooms that 

participate in the Inquiry Project curriculum, compared to classrooms that do not 

participate. The presence of an inquiry-based curriculum may even out imbalances in 

individual teachers’ focus on scientific argumentation, accounting for the low amount of 

between-classroom variability among Inquiry Project classrooms. However, this finding 

could again be attributable to other local factors, as location was confounded with Inquiry 

Project participation in the study design.  

Overall conclusions. Assessment results suggest some small discrepancies 

between observed patterns of student performance and the hypothesized progression of 

student understanding based on the Inquiry Project curriculum, but overall the results 

align with the underlying structure of the curriculum. There are two potential areas for 

improvement to the Inquiry Project curriculum, most notably, that Inquiry Project 

students seem to struggle with volume invariance of solid objects when reshaped. This 
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suggests that instruction related to this concept may be inadvertently introducing a 

misconception.  

As anticipated, Inquiry Project students and 5th grade students tended to 

demonstrate better understanding of the assessed concepts. This was true of all three 

assessment dimensions. However, local factors may confound the comparison of Inquiry 

Project and non-Inquiry performance, so the difference cannot be attributed solely to 

Inquiry Project participation. Future studies should use matched comparison groups to 

eliminate confounding background variables and isolate the effect of the Inquiry Project 

curriculum on student understanding.  

On the Engaging in Argument from Evidence dimension, there appears to be 

more variability in student performance within Inquiry Project classrooms than within 

non-Inquiry classrooms. Student performance is higher, on average, in Inquiry Project 

classrooms compared to non-Inquiry classrooms, by about a third of a standard deviation. 

If these differences are attributable to the curriculum, it suggests that the curriculum may 

help students who already have above average skill in scientific argumentation more than 

low-ability students, increasing the range of student performance within each classroom. 

If this is the case, future work should explore best practices for teaching scientific 

argumentation to low-ability students.  

Additionally, there exist larger differences between classrooms in some 

subgroups, depending on the particular assessment dimension. The grade 5 Inquiry 

Project sample demonstrated substantively larger between-group variability than non-

Inquiry students on the Structure and Properties of Matter dimension (17.5% of 

variability exists between grade 5 Inquiry Project classrooms, compared to less than 4% 
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of variability between non-Inquiry classrooms), and the grade 5 non-Inquiry Project 

students demonstrated substantively larger between-group variability on the Engaging in 

Argument from Evidence dimension (11.8% of variability exists between grade 5 non-

Inquiry classrooms, compared to less than 6% of variability between Inquiry Project 

classrooms). In both cases, school or teacher differences may affect student performance. 

Implications 

The implications for the findings of this study depend on the intended usage of 

assessment results. Therefore, three separate groups of users will be considered, and 

varying implications presented for each:  

1. Teachers, and other school and district science support staff, who gather 

information about student understanding to influence instructional decision-

making. 

2. State and district policymakers, who gather student performance data for 

monitoring and accountability purposes. 

3. Researchers and evaluators, who gather evidence of student understanding to look 

for growth associated with a particular curriculum or educational intervention.  

Implications for teachers and science support staff. When it comes to item 

structure, it is clear that assessment scaffolding enriches the amount and quality of 

evaluable evidence provided by students on complex assessment tasks, especially among 

lower ability students. Scaffolding, therefore, should be a valuable tool for teachers who 

are trying to collect information about multidimensional student ability. However, it may 

also be useful for teachers to augment scaffolded tasks with a few broader, open-ended 

tasks without scaffolding, as these can be an indicator of how well students see the bigger 
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picture and are able to manage and organize their understanding of the dimensions in a 

cohesive way.  

With regard to response format, the findings showed that multiple-choice 

response options tend to introduce reasoning that students may not have otherwise 

considered. This was especially true in the domain of scientific argumentation. However, 

students seemed to enjoy the selected-response items, and some students suggested that 

the response options could be used as a basis for constructing a written argument. 

Perhaps selected-response arguments could be a useful instructional tool and supporting 

guide for students who are still mastering the concepts and learning how to construct a 

scientific argument.  

When it comes to scoring and scaling, deliberation about whether or not 

dimensional subscores are distinct enough may not be practically useful to classroom 

teachers. For teachers, tracking student performance is a way to monitor and guide 

instruction. Since the NGSS emphasizes multidimensional science instruction, tracking 

students’ progression on all aspects of science is important. Multidimensional/analytic 

scoring rubrics are a useful tool to help teachers meet this goal, as they provide important 

structure to gather information about student understanding on all relevant aspects of the 

instructional content. Multidimensional rubrics also facilitate more information about 

students’ failure to provide a response that addresses all relevant dimensions, an 

important indicator that students struggle to attend to and organize responses that reflect 

multiple dimensions of understanding. 

Implications for state and district policymakers. For monitoring and 

accountability purposes, high-quality, reliable information is of paramount importance. 
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Scaffolding affords more thorough information about multidimensional student 

understanding, and therefore seems a prudent choice for item design, especially for 

students in lower grades (i.e., those with lower abilities and those who struggle to 

integrate multiple aspects of learning/instruction into a complex response). However, 

assessment design has a large impact on the direction of instruction, and inclusion of 

more open-ended tasks in small amounts or at higher grade levels may be a necessary to 

encourage some instructional focus on “the big picture,” i.e., developing students’ ability 

to draw together knowledge/skills from different dimensions in a cohesive manner.  

The multiple-choice response format is useful for large-scale assessment because 

it allows for a large number of items to be administered in a shorter timeframe, and is less 

costly to score. This makes multiple-choice items very desirable for assessment. 

However, the findings here suggest that the multiple-choice format may not be suitable 

for all dimensions of science learning; in particular, the Engaging in Argument from 

Evidence dimension was not well-represented by multiple-choice items. The selected-

response format seemed to change the nature of the task by prompting students to 

consider new ideas that may not have otherwise, and by encouraging students to select 

multiple responses, they may have been encouraged to choose what seemed true based on 

the assessment prompt, rather than what was the best supporting evidence/reasoning. This 

indicates a discrepancy between the intended and enacted construct. Altogether, a 

selected-response format may be an efficient and valid format for assessing some 

dimensions, but its utility for measuring science practices (in particular, scientific 

argumentation) is questionable.  
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With the exception of the argumentation dimension, multidimensional (analytic) 

scoring tended to have higher interrater reliability than holistic scoring, especially when 

used to evaluate student responses to highly scaffolded items. Depending on the extent of 

usage of the selected-response format in subtasks, multidimensional scoring may also 

lend itself to a higher degree of automated scoring, while holistic scores require rater 

judgment. Therefore, with the paramount consideration of reliability and cost, 

multidimensional scoring seems to be the obvious choice, with the caveat that scoring of 

scientific practices (e.g., argumentation) should be considered carefully, as rater 

judgments appear to be very difficult on this dimension.  

In the context of the current example, the utility of multidimensional subscores as 

information for monitoring and accountability is highly suspect. Accountability estimates 

like teacher value-added or student growth percentiles carry high stakes, and 

measurement error affects the quality of these estimates (National Research Council, 

2011). Therefore, error in measurement should be minimized and reliability maximized. 

When WLE person estimates are used, subscale reliability is insufficient for high stakes 

decisions about teachers, students, or schools. When EAP person estimates are used, most 

of the nuance in student performance across dimensions is absorbed by the high 

correlation between dimensions, rendering the subscale estimates largely uninformative. 

Based on the current study, a unidimensional scale is far more reliable, with only a small 

loss of information about student performance. However, it should be noted that the 

current study took place in a very narrow content domain, and that correlations between 

dimensions may have been strengthened because of this. It is unlikely that an assessment 

with such a small scope would be used for large-scale monitoring and accountability; 
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therefore, results may not generalize to real world situations. More research should be 

done to establish the correlation between dimensions on assessments with broader 

content domains.  

Implications for researchers and evaluators. To examine the impact of the 

Inquiry Project curriculum and other similar educational interventions, it is important that 

assessment reflects the core objectives of the curriculum. In this case, since the 

curriculum incorporated elements of several NGSS dimensions, a multidimensional 

assessment was necessary in order to reflect the content of the curriculum. Item 

scaffolding was useful tool in support of multidimensional assessment, as it aided in 

gathering more, higher quality evidence about student understanding linked back to the 

curriculum. Scaffolding may be useful in other research contexts where gathering 

information about student understanding of complex or multidimensional constructs is a 

goal.   

With regard to response format, the appropriateness of constructed- or selected-

response depends on the construct being measured for change. In this case, constructed-

response items more authentically captured student argumentation ability. It is possible 

that the constructed-response format would also be more appropriate for other practices 

like Constructing Explanations, in which originality is an important aspect of the 

construct. For more content-related constructs, a multiple-choice format may be 

appropriate.  

When researchers and evaluators look for changes in student learning, 

measurement error is a major concern. Unreliable assessment data adds noise to the 

estimation of the effect of an intervention. Based on the lack of reliability of the 
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multidimensional subscales, a unidimensional scale will probably provide more precise 

estimates of overall change in student understanding. However, if the 

curriculum/intervention’s purpose is to effect multidimensional change, then a 

unidimensional estimate will not provide sufficient information about the intervention 

effect. In the current study, differences between groups in student performance on the 

Scale, Proportion, and Quantity, Structure and Properties of Matter, and Engaging in 

Argument from Evidence dimensions were observed, even though the individual 

subscales had low reliability estimates. In similar studies, concerns about measurement 

error should be weighed against the need for valid representation of the construct(s) of 

interest.  

Limitations 

This study was limited to only one combination of NGSS constructs. The NGSS 

describe hundreds of other combinations in performance expectations, which involve the 

integration of at least one Disciplinary Core Idea, Crosscutting Concept, and Science and 

Engineering Practice. Thus, results may not generalize to other NGSS constructs, or 

multidimensional constructs.  

This study was limited to 4th and 5th graders, so findings may not be generalizable 

to students of other ages. In particular, this study showed that the effect of scaffolding 

varied depending on student ability, suggesting that results may vary for a sample of 

more or less proficient students. Scaffolding had the smallest effect on high ability 

students, so it may be true that the effect of scaffolding may become less pronounced as 

students develop a more sophisticated understanding of science concepts. Additionally, 

the strength of the relationship among the three assessment constructs may vary at 
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different ages. In elementary grades, inquiry is a natural way that students learn about the 

world, so the relationship between content and practice may be stronger than it is at older 

grades.  

When drawing comparisons among different scaffolding variations and response 

formats, the analysis was limited by the small number of potential item comparisons; 

there were only four response format pairs, and five scaffolding pairs, which made it 

difficult to make generalizable statements about the impact of response format and 

scaffolding on item fit, difficulty, interrater reliability and other psychometric criteria.  

Differences in rater judgment limited the extent to which comparisons could be 

made between argument prompts with different response formats and levels of 

scaffolding. Although a rater model was employed to account for differences between 

raters on this dimension, raters and items were not fully crossed, leaving substantial room 

for uncertainty in the estimates of rater effects. Consequently, comparisons drawn 

between items and scores on the Engaging in Argument from Evidence dimension may 

not capture the true effect of those item variations and may not be generalizable to all 

raters.  

Finally, the study design limited the extent to which comparisons could be made 

between Inquiry and non-Inquiry students due to the presence of confounding contextual 

factors, so the isolated impact of the curriculum on student understanding remains to be 

seen.  

Directions for future work 

Based on the findings of this study, there is room for improvement in some 

features of the assessment. Analysis revealed that there were gaps in the Structure and 



288 
 

Properties of Matter subscale, such that there were few items with above and below 

average difficulty. This resulted in less precise measurement for high and low ability 

students. Additional items should be added to fill in these gaps, perhaps by including 

material from the 3rd and 5th grade Inquiry Project curriculum. This would have the added 

benefit of facilitating vertical scaling for any future assessment of 3rd and 5th grade 

Inquiry Project concepts.  

Additionally, the interrater reliability analysis revealed substantial shortcomings 

of the Engaging in Argument from Evidence scoring rubric. Sources of rater 

discrepancies should be examined, by engaging in a qualitative exploration of any 

common features of responses that were given discrepant scores, and/or by consultation 

with raters to get their firsthand account of their experiences using the rubric.  

To get a better sense of the effect of the Inquiry Project curriculum on student 

understanding, future research should use matched comparison groups to isolate the 

effect of the curriculum while accounting for other background factors that may be 

related to student performance. Additional data should be collected on other factors of 

interest (i.e., student gender, race, and SES), to provide insight on the curriculum’s 

effectiveness among different subgroups.  

Further research should also examine the impact of raters on the generalizability 

of scores on constructs that require complex judgment (such as scientific argumentation). 

This analysis was limited by the use of a nested design; further research should use a 

more robust fully crossed design to draw stronger conclusions about rater effects, and 

work towards creating rubrics/scoring guides that minimize rater effects. For future work 

with multidimensional scoring, it may be useful to examine rater cognition through 
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interviews and cognitive labs, to determine whether the presence of multiple dimensions 

creates a “halo effect”, prompting raters to make unfounded judgments of student 

performance. If this effect exists, it would be interesting to determine whether or not the 

effect can be mitigated by features of the rubric or item/response structure.   

Research should be extended to students of different ages, especially when it 

comes to a) the effect of scaffolding on student responses, and b) the relationship 

between different dimensions of science learning. This study produced tentative evidence 

that the relationship between dimensions appears to lessen at the highest levels of student 

ability, which suggests that the relationships among the three dimension may not be as 

strong for older students.  

Difference in the strengths of the relationships may impact the choice of scaling 

and reporting approach for students of different ages. As for scaffolding, it may be 

possible to get a greater amount of evaluable information about the understanding of 

older students with less prompting. Once students develop more sophisticated 

understanding of science concepts, fading the scaffolding would allow for more face 

validity in the assessment of an integrated multidimensional construct.  

Finally, the work done here should be replicated among additional NGSS 

constructs. The NGSS performance expectations provide a multitude of other examples 

of settings in which the three dimensions can be combined for a particular topic and 

grade level, and these can be used as the basis for additional assessments. Some effects 

may vary depending on the specific combination of NGSS topics, including the effects of 

item structure and response format, and the relationships among dimensions.   
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Appendix A.  

Cognitive interview protocol. 

 
Introduction: 
 
I’m trying to write good test questions that students can understand, and I want your 
opinion to help me make these questions better. I am going to ask you to solve some test 
problems for me and then tell me about whether you understood the questions, what you 
thought about while you were solving the problems, and what was confusing for you. I’m 
not interested in whether you are right or wrong – I am just interested in what you think 
about the questions. Your answers won’t be graded.  
 
What you say is really important, so I am going to run this tape recorder to make sure I 
don’t forget anything. 
 
Do you have any questions? 
 
First item: 
 
Here is a test question. Read it quietly to yourself and write down your answer. Take as 
much time as you need and let me know when you are finished. 
 
(Once the student indicates completion) 
 
What did you think this question was asking you to do? (Repeat for multiple prompts, if 
applicable.) 
 
Can you tell me what you were thinking about when you answered this question? (Repeat 
for multiple prompts, if applicable.) 
 
Why did you pick that answer option? 
 
Can you point to any words you didn’t understand? 
 
Can you point to any pictures that you didn’t understand? 
 
Was there anything else that was confusing about this question? 
 
Other questions may be asked, based on specific observations: 
 
Why did you choose not to respond to this question/part? 
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Why did you draw/write on this image? 
Probes about their responses:  
 
What do you mean by <insert word or phrase used in response>?  
 
Other spontaneous probes may be utilized, depending on specific observations. 
Spontaneous probes may only ask about student understanding of the questions, 
interaction with item elements, their thought processes while answering, and their 
responses. Probes will not evaluate student comprehension of the tested material or 
anything else unrelated to the test item.  
 
Repeat until 5 items are completed.  
 
Conclusion: 
 
Ok, we’re finished. Nice job. Thank you so much for helping me out today! 
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Appendix B 

Frequency of all Sources of Student Confusion During Cognitive Interviews  

Table B.1 

Round 1: Frequency of All Sources of Student Confusion 

 

Multiple-prompt 
explicit 

multidimensional 

Single-prompt 
explicit 

multidimensional  

Single-prompt 
implicit 

multidimensional 
Issue Count Percentage Count Percentage Count Percentage 
Misunderstanding 
or misinterpretation 
of critical piece of 
task 10 23% 11 26% 11 25% 
Overlooks a critical 
piece of 
information 1 2% 5 12% 1 2% 
Unfamiliarity with 
task context 1 2% 2 5% 1 2% 
Misunderstanding 
of visuals 8 19% 7 16% 3 7% 
Unfamiliarity with 
item vocabulary 
(non-scientific) 3 7% 3 7% 2 5% 

Unfamiliarity with 
measurement unit 7 16% 7 16% 6 14% 

Unfamiliarity with 
measurement tool 5 12% 2 5% 7 16% 
Confused by item 
layout 1 2% 2 5% 3 7% 

Misunderstanding 
of key concepts 12 28% 4 9% 4 9% 
Unfamiliarity with 
measurement 
calculation 6 14% 3 7% 5 11% 
Provides "correct" 
answer by avoiding 
intended task 0 0% 2 5% 0 0% 
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Table B.2 

Round 2: Frequency of All Sources of Student Confusion 

  

Constructed 
response/ Multiple 

prompt 

Selected response/ 
Multiple prompt 

Selected response/ 
Single prompt 

Issue Count Percentage Count Percentage Count Percentage 

Misunderstanding or 
misinterpretation of 
critical piece of task 8 17.02% 21 30.00% 15 25.42% 

Unfamiliar and/or 
misunderstanding of 
key concept 9 19.15% 20 28.57% 3 5.08% 
Unfamiliarity with item 
vocabulary (non-
scientific) 2 4.26% 0 0.00% 0 0.00% 
Unfamiliarity with 
measurement 
calculation 8 17.02% 7 10.00% 4 6.78% 

Unfamiliarity with 
measurement unit 2 4.26% 3 4.29% 7 11.86% 
Misunderstanding of 
visuals 5 10.64% 7 10.00% 3 5.08% 
Answer options don't 
reflect student 
understanding 0 0.00% 8 11.43% 13 22.03% 

Overwhelmed by 
amount of information 
and/or answer choices 1 2.13% 6 8.57% 4 6.78% 
Alternative explanation 
based on extraneous 
factor 4 8.51% 4 5.71% 4 6.78% 
Provide "correct" 
answer by avoiding 
intended task 9 19.15% 11 15.71% 10 16.95% 
Expresses preference 
for selected response 
argument 0 0.00% 13 18.57% 2 3.39% 

Expresses preference 
for written argument 1 2.13% 5 7.14% 1 1.69% 
Answer options lead 
student to rethink 
answer 0 0.00% 9 12.86% 9 15.25% 
Confused by item 
layout 2 4.26% 0 0.00% 0 0.00% 
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Constructed 
response/ Multiple 

prompt 
Selected response/ 
Multiple prompt 

Selected response/ 
Single prompt 

Issue Count Percentage Count Percentage Count Percentage 
Large/small scale 
makes problem difficult 
to think about 1 2.13% 0 0.00% 4 6.78% 

Misunderstanding of 
answer options 0 0.00% 2 2.86% 1 1.69% 

Overlooks a critical 
piece of information 5 10.64% 3 4.29% 5 8.47% 
Unfamiliarity with task 
context 3 6.38% 3 4.29% 2 3.39% 
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Appendix C 
 

Interrater Reliability for All Items Under Both Rubrics, Measured by Intraclass 
Correlation Coefficients (Consistency Measure) 

Table C.1 

Interrater Reliability Based on the Multidimensional Rubric 

Item ICC - SPQ ICC - Matter ICC - Argument 

1A - Ana's block of clay 0.999 0.965 0.601 
1B - Ana's block of clay 0.933 0.999 0.654 
2A - Beth's rock – 1  0.981 0.999 0.5 
2A - Beth's rock – 2   0.969  

2B - Beth's rock – 1 0.957 0.999 0.744 
2B - Beth's rock – 2   0.999  

3A - Romita's cylinders 0.999 0.999 0.511 
3B - Romita's cylinders  0.936 0.306 
4A - Kevin's coffee 0.999 0.972 0.694 
4B - Kevin's coffee 0.999 0.945 0.668 
5A - Brass and aluminum – 1  0.999 0.999 0.637 
5A - Brass and aluminum – 2  0.999   

5B - Brass and aluminum – 1  0.956 0.896 0.586 
5B - Brass and aluminum – 2  0.917   

6A - Carol's butter 0.999 0.999 0.458 
6B - Carol's butter 0.86 0.999 0.215 
7A - Box of blocks – 1  0.999 0.999 0.411 
7A - Box of blocks – 2 0.999   

7A - Box of blocks – 3  0.963   

7B - Box of blocks 0.946 0.742 0.593 
8A - Grain of sugar – 1  0.929 0.999 0.581 
8A - Grain of sugar – 2  0.732 0.999 0.469 
8B - Grain of sugar – 1  0.878 0.903 0.655 
8B - Grain of sugar – 2  0.822 0.999 0.58 
9A - Nate's can of soda 0.971 0.999 0.669 
9B - Nate's can of soda 0.379 0.999 0.844 
10 - Drops of water – 1  0.999 0.999 0.775 
10 - Drops of water – 2  0.969 0.999 0.786 
11 - Ken's cubes 0.942 0.999 0.673 
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Table C.2 

Interrater Reliability Based on the Holistic Rubric 

Item ICC 
1A - Ana's block of clay 0.804 
1B - Ana's block of clay 0.91 
2A - Beth's rock 0.753 
2B - Beth's rock 0.657 
3A - Romita's cylinders 0.746 
3B - Romita's cylinders 0.771 
4A - Kevin's coffee 0.734 
4B - Kevin's coffee 0.714 
5A - Brass and aluminum 0.749 
5B - Brass and aluminum 0.757 
6A - Carol's butter 0.741 
6B - Carol's butter 0.798 
7A - Box of blocks 0.735 
7B - Box of blocks 0.873 
8A - Grain of sugar 0.526 
8B - Grain of sugar 0.735 
9A - Nate's can of soda 0.648 
9B - Nate's can of soda 0.724 
10 - Drops of water 0.749 
11 - Ken's cubes 0.851 
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Appendix D 
 

Item Difficulty Estimates and Fit Statistics for All Items and Models 

Table D.1 

Parameter Estimates and Fit: Unidimensional Model, Multidimensional Rubric 

Parameter 
Parameter 
estimate 

Standard 
error 

Unweight-
ed Mean 
Square 

Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 

Interval T 
Argument item1 -0.87 0.23 1.42 ( 0.73, 1.27) 2.8 1.57 ( 0.67, 1.33) 2.9 
Argument item2 -0.69 0.16 1.19 ( 0.71, 1.29) 1.3 1.34 ( 0.68, 1.32) 1.9 
Argument item3 -0.85 0.24 1.14 ( 0.75, 1.25) 1.0 1.13 ( 0.74, 1.26) 1.0 
Argument item4 -1.19 0.23 1.60 ( 0.74, 1.26) 3.9 1.75 ( 0.71, 1.29) 4.2 
Argument item5 -0.85 0.19 1.18 ( 0.76, 1.24) 1.5 1.29 ( 0.73, 1.27) 2.0 
Argument item6 -0.85 0.18 1.23 ( 0.75, 1.25) 1.7 1.17 ( 0.75, 1.25) 1.3 
Argument item7 -1.10 0.20 1.11 ( 0.75, 1.25) 0.9 1.30 ( 0.71, 1.29) 1.9 
Argument item8 -1.78 0.24 1.36 ( 0.77, 1.23) 2.8 1.47 ( 0.73, 1.27) 3.0 
Argument item9 -1.20 0.27 1.36 ( 0.74, 1.26) 2.5 1.42 ( 0.71, 1.29) 2.5 
Argument item10 -1.24 0.20 1.39 ( 0.76, 1.24) 2.9 1.56 ( 0.72, 1.28) 3.4 
Argument item11 -1.16 0.25 1.73 ( 0.74, 1.26) 4.6 1.25 ( 0.66, 1.34) 1.4 
Argument item12 -0.86 0.25 1.00 ( 0.75, 1.25) 0.0 1.04 ( 0.71, 1.29) 0.3 
Argument item13 -0.98 0.20 1.12 ( 0.75, 1.25) 0.9 1.25 ( 0.69, 1.31) 1.5 
Argument item14 -0.93 0.16 1.48 ( 0.76, 1.24) 3.4 1.44 ( 0.75, 1.25) 3.0 
Argument item15A -1.18 0.21 1.10 ( 0.75, 1.25) 0.8 1.33 ( 0.69, 1.31) 1.9 
Argument item15B -0.87 0.27 1.14 ( 0.74, 1.26) 1.1 1.37 ( 0.70, 1.30) 2.2 
Argument item16A -0.84 0.14 1.33 ( 0.74, 1.26) 2.3 1.29 ( 0.73, 1.27) 2.0 
Argument item16B -0.29 0.13 1.50 ( 0.73, 1.27) 3.2 1.48 ( 0.73, 1.27) 3.1 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Argument item17 -1.23 0.27 1.05 ( 0.76, 1.24) 0.4 1.39 ( 0.71, 1.29) 2.4 
Argument item18 -1.79 0.27 1.47 ( 0.74, 1.26) 3.2 1.53 ( 0.70, 1.30) 3.0 
Argument item19 -0.74 0.14 1.18 ( 0.84, 1.16) 2.1 1.37 ( 0.81, 1.19) 3.4 
Argument item20 -1.03 0.16 1.00 ( 0.84, 1.16) 0.0 1.32 ( 0.79, 1.21) 2.7 
Argument rater1 0.00 0.16 1.08 ( 0.85, 1.15) 1.0 1.07 ( 0.83, 1.17) 0.8 
Argument rater2 -0.37 0.13 1.05 ( 0.85, 1.15) 0.6 1.07 ( 0.83, 1.17) 0.8 
Argument rater3 -0.36 0.15 1.15 ( 0.85, 1.15) 2.0 1.21 ( 0.83, 1.17) 2.3 
Argument rater4 0.21 0.09 1.28 ( 0.85, 1.15) 3.5 1.37 ( 0.84, 1.16) 4.1 
Argument rater5 0.29 0.15 1.11 ( 0.85, 1.15) 1.4 1.04 ( 0.84, 1.16) 0.5 
Argument rater6 0.17 0.11 0.94 ( 0.85, 1.15) -0.8 0.95 ( 0.83, 1.17) -0.6 
Argument item1 x step0to1 0.26 0.57 1.34 ( 0.73, 1.27) 2.3 1.49 ( 0.78, 1.22) 3.9 
Argument item1 x step1to2 -2.03 0.48 1.32 ( 0.73, 1.27) 2.2 1.45 ( 0.79, 1.21) 3.8 
Argument item2 x step0to1 0.10 0.34 1.24 ( 0.71, 1.29) 1.5 1.30 ( 0.77, 1.23) 2.4 
Argument item2 x step1to2 -1.48 0.32 1.39 ( 0.71, 1.29) 2.4 1.44 ( 0.79, 1.21) 3.6 
Argument item3 x step0to1 -1.85 0.45 1.14 ( 0.75, 1.25) 1.1 1.21 ( 0.78, 1.22) 1.8 
Argument item3 x step1to2 0.15 0.29 1.11 ( 0.75, 1.25) 0.9 1.16 ( 0.82, 1.18) 1.7 
Argument item4 x step0to1 -0.68 0.46 1.53 ( 0.74, 1.26) 3.5 1.65 ( 0.80, 1.20) 5.4 
Argument item4 x step1to2 -0.76 0.34 1.47 ( 0.74, 1.26) 3.2 1.57 ( 0.81, 1.19) 5.1 
Argument item5 x step0to1 -0.35 0.39 0.92 ( 0.76, 1.24) -0.6 0.99 ( 0.81, 1.19) -0.1 
Argument item5 x step1to2 -0.38 0.33 0.79 ( 0.76, 1.24) -1.8 0.95 ( 0.79, 1.21) -0.5 
Argument item6 x step0to1 -0.93 0.30 1.23 ( 0.75, 1.25) 1.8 1.28 ( 0.80, 1.20) 2.5 
Argument item6 x step1to2 -0.31 0.25 1.14 ( 0.75, 1.25) 1.1 1.19 ( 0.82, 1.18) 2.0 
Argument item7 x step0to1 -0.37 0.45 1.23 ( 0.75, 1.25) 1.7 1.33 ( 0.80, 1.20) 2.9 
Argument item7 x step1to2 -1.40 0.38 1.18 ( 0.75, 1.25) 1.4 1.26 ( 0.82, 1.18) 2.6 
Argument item8 x step0to1 -0.91 0.48 1.43 ( 0.77, 1.23) 3.2 1.53 ( 0.82, 1.18) 5.0 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Argument item8 x step1to2 -0.67 0.34 1.39 ( 0.77, 1.23) 3.0 1.50 ( 0.83, 1.17) 5.0 
Argument item9 x step0to1 -1.51 0.54 1.11 ( 0.74, 1.26) 0.9 1.15 ( 0.78, 1.22) 1.3 
Argument item9 x step1to2 -0.82 0.36 1.10 ( 0.74, 1.26) 0.8 1.14 ( 0.80, 1.20) 1.3 
Argument item10 x step0to1 -0.27 0.39 1.15 ( 0.76, 1.24) 1.2 1.20 ( 0.82, 1.18) 2.0 
Argument item10 x step1to2 -1.19 0.32 1.20 ( 0.76, 1.24) 1.6 1.28 ( 0.83, 1.17) 3.0 
Argument item11 x step0to1 -0.77 0.50 1.01 ( 0.74, 1.26) 0.1 1.26 ( 0.77, 1.23) 2.0 
Argument item11 x step1to2 -0.39 0.37 1.00 ( 0.74, 1.26) 0.0 1.34 ( 0.76, 1.24) 2.6 
Argument item12 x step0to1 -0.59 0.64 0.71 ( 0.75, 1.25) -2.6 0.96 ( 0.72, 1.28) -0.3 
Argument item12 x step1to2 -0.93 0.56 0.93 ( 0.75, 1.25) -0.5 0.94 ( 0.82, 1.18) -0.7 
Argument item13 x step0to1 -0.82 0.44 0.89 ( 0.75, 1.25) -0.8 1.17 ( 0.73, 1.27) 1.2 
Argument item13 x step1to2 -1.43 0.36 1.12 ( 0.75, 1.25) 0.9 1.20 ( 0.80, 1.20) 1.9 
Argument item14 x step0to1 0.12 0.36 1.14 ( 0.76, 1.24) 1.1 1.20 ( 0.82, 1.18) 2.1 
Argument item14 x step1to2 -1.18 0.32 1.11 ( 0.76, 1.24) 0.9 1.22 ( 0.81, 1.19) 2.2 
Argument item15A x step0to1 -0.96 0.41 1.21 ( 0.75, 1.25) 1.6 1.44 ( 0.77, 1.23) 3.3 
Argument item15A x step1to2 -0.32 0.33 1.15 ( 0.75, 1.25) 1.2 1.23 ( 0.79, 1.21) 2.0 
Argument item15B x step0to1 -2.36 0.51 1.03 ( 0.74, 1.26) 0.2 1.34 ( 0.66, 1.34) 1.9 
Argument item15B x step1to2 -0.48 0.32 1.07 ( 0.74, 1.26) 0.6 1.17 ( 0.77, 1.23) 1.5 
Argument item16A x step0to1 -0.05 0.31 1.25 ( 0.74, 1.26) 1.8 1.32 ( 0.81, 1.19) 2.9 
Argument item16A x step1to2 -0.36 0.29 1.18 ( 0.74, 1.26) 1.3 1.24 ( 0.79, 1.21) 2.1 
Argument item16B x step0to1 -0.05 0.26 1.18 ( 0.73, 1.27) 1.3 1.19 ( 0.80, 1.20) 1.8 
Argument item16B x step1to2 -0.67 0.26 1.02 ( 0.73, 1.27) 0.2 1.03 ( 0.78, 1.22) 0.3 
Argument item17 x step0to1 -1.02 0.56 1.05 ( 0.76, 1.24) 0.4 1.29 ( 0.78, 1.22) 2.4 
Argument item17 x step1to2 -0.95 0.39 1.05 ( 0.76, 1.24) 0.5 1.25 ( 0.79, 1.21) 2.3 
Argument item18 x step0to1 -0.13 0.66 1.56 ( 0.74, 1.26) 3.7 1.69 ( 0.80, 1.20) 5.7 
Argument item18 x step1to2 -1.71 0.52 1.50 ( 0.74, 1.26) 3.4 1.62 ( 0.81, 1.19) 5.3 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Argument item19 x step0to1 -0.75 0.27 1.18 ( 0.84, 1.16) 2.1 1.31 ( 0.86, 1.14) 3.8 
Argument item19 x step1to2 -0.44 0.24 1.16 ( 0.84, 1.16) 1.9 1.24 ( 0.89, 1.11) 4.0 
Argument item20 x step0to1 -0.06 0.34 0.99 ( 0.84, 1.16) 0.0 1.08 ( 0.89, 1.11) 1.4 
Argument item20 x step1to2 -1.39 0.29 0.95 ( 0.84, 1.16) -0.6 1.02 ( 0.89, 1.11) 0.4 
Argument item1 x rater1 0.15 0.17 0.67 ( 0.85, 1.15) -5.0 0.67 ( 0.82, 1.18) -4.0 
Argument item3 x rater2 0.00 0.18 0.69 ( 0.85, 1.15) -4.6 0.65 ( 0.82, 1.18) -4.2 
Argument item7 x rater1 0.09 0.15 0.69 ( 0.85, 1.15) -4.5 0.62 ( 0.79, 1.21) -4.1 
Argument item8 x rater4 0.04 0.17 0.66 ( 0.83, 1.17) -4.3 0.64 ( 0.80, 1.20) -4.0 
Argument item9 x rater2 -0.04 0.22 0.62 ( 0.80, 1.20) -4.3 0.60 ( 0.78, 1.22) -4.2 
Argument item10 x rater6 0.14 0.13 0.84 ( 0.80, 1.20) -1.7 0.84 ( 0.78, 1.22) -1.5 
Argument item11 x rater2 0.13 0.19 0.73 ( 0.85, 1.15) -4.0 0.72 ( 0.80, 1.20) -3.0 
Argument item12 x rater2 -0.34 0.16 0.79 ( 0.84, 1.16) -2.8 0.73 ( 0.82, 1.18) -3.3 
Argument item13 x rater1 0.05 0.15 0.81 ( 0.85, 1.15) -2.6 0.77 ( 0.82, 1.18) -2.7 
Argument item14 x rater4 -0.17 0.12 0.73 ( 0.80, 1.20) -2.8 0.64 ( 0.77, 1.23) -3.5 
Argument item15A x rater3 0.17 0.16 0.68 ( 0.85, 1.15) -4.5 0.68 ( 0.79, 1.21) -3.4 
Argument item15B x rater3 0.10 0.21 0.66 ( 0.85, 1.15) -4.8 0.66 ( 0.80, 1.20) -3.7 
Argument item16A x rater4 0.32 0.11 0.36 ( 0.74, 1.26) -6.5 0.30 ( 0.73, 1.27) -7.1 
Argument item17 x rater1 -0.29 0.20 0.66 ( 0.85, 1.15) -5.1 0.65 ( 0.81, 1.19) -4.2 
Argument item18 x rater4 -0.17 0.18 0.83 ( 0.84, 1.16) -2.2 0.72 ( 0.82, 1.18) -3.3 
Argument item19 x rater2 0.16 0.12 0.71 ( 0.84, 1.16) -4.0 0.64 ( 0.80, 1.20) -4.1 
Argument item1 x step0to1 x rater1 0.15 0.57 0.66 ( 0.73, 1.27) -2.9 0.65 ( 0.78, 1.22) -3.6 
Argument item1 x step1to2 x rater1 -0.26 0.48 0.70 ( 0.73, 1.27) -2.4 0.69 ( 0.79, 1.21) -3.2 
Argument item2 x step0to1 x rater5 -0.09 0.34 0.69 ( 0.71, 1.29) -2.3 0.69 ( 0.77, 1.23) -3.0 
Argument item2 x step1to2 x rater5 0.20 0.32 0.60 ( 0.71, 1.29) -3.1 0.56 ( 0.79, 1.21) -4.8 
Argument item3 x step0to1 x rater2 0.00 0.45 0.73 ( 0.75, 1.25) -2.3 0.66 ( 0.78, 1.22) -3.5 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Argument item3 x step1to2 x rater2 -0.08 0.29 0.81 ( 0.75, 1.25) -1.6 0.78 ( 0.82, 1.18) -2.5 
Argument item4 x step0to1 x rater2 -0.62 0.46 0.56 ( 0.74, 1.26) -4.0 0.41 ( 0.80, 1.20) -7.5 
Argument item4 x step1to2 x rater2 0.22 0.34 0.55 ( 0.74, 1.26) -4.1 0.44 ( 0.81, 1.19) -7.4 
Argument item5 x step0to1 x rater1 -0.35 0.39 0.87 ( 0.76, 1.24) -1.0 0.91 ( 0.81, 1.19) -0.9 
Argument item5 x step1to2 x rater1 0.62 0.33 0.82 ( 0.76, 1.24) -1.5 0.98 ( 0.79, 1.21) -0.2 
Argument item6 x step0to1 x rater6 0.77 0.30 0.87 ( 0.75, 1.25) -1.1 0.80 ( 0.80, 1.20) -2.1 
Argument item6 x step1to2 x rater6 -0.69 0.25 0.83 ( 0.75, 1.25) -1.4 0.80 ( 0.82, 1.18) -2.3 
Argument item7 x step0to1 x rater1 -0.35 0.45 0.67 ( 0.75, 1.25) -2.9 0.64 ( 0.80, 1.20) -4.0 
Argument item7 x step1to2 x rater1 0.39 0.38 0.72 ( 0.75, 1.25) -2.4 0.69 ( 0.82, 1.18) -3.8 
Argument item8 x step0to1 x rater4 -0.23 0.48 0.68 ( 0.77, 1.23) -3.0 0.53 ( 0.82, 1.18) -6.2 
Argument item8 x step1to2 x rater4 0.12 0.34 0.65 ( 0.77, 1.23) -3.3 0.51 ( 0.83, 1.17) -7.0 
Argument item9 x step0to1 x rater2 0.62 0.54 0.77 ( 0.74, 1.26) -1.8 0.76 ( 0.78, 1.22) -2.3 
Argument item9 x step1to2 x rater2 -0.20 0.36 0.83 ( 0.74, 1.26) -1.3 0.81 ( 0.80, 1.20) -2.0 
Argument item10 x step0to1 x rater6 0.45 0.39 0.81 ( 0.76, 1.24) -1.7 0.75 ( 0.82, 1.18) -2.9 
Argument item10 x step1to2 x rater6 -0.48 0.32 0.72 ( 0.76, 1.24) -2.5 0.67 ( 0.83, 1.17) -4.2 
Argument item11 x step0to1 x rater2 -0.59 0.50 0.54 ( 0.74, 1.26) -4.1 0.61 ( 0.77, 1.23) -3.8 
Argument item11 x step1to2 x rater2 -0.17 0.37 0.46 ( 0.74, 1.26) -5.1 0.57 ( 0.76, 1.24) -4.2 
Argument item12 x step0to1 x rater2 1.45 0.64 0.72 ( 0.75, 1.25) -2.5 0.97 ( 0.72, 1.28) -0.2 
Argument item12 x step1to2 x rater2 -0.57 0.56 1.00 ( 0.75, 1.25) 0.1 1.02 ( 0.82, 1.18) 0.2 
Argument item13 x step0to1 x rater1 0.76 0.44 0.71 ( 0.75, 1.25) -2.5 0.86 ( 0.73, 1.27) -1.0 
Argument item13 x step1to2 x rater1 -0.43 0.36 0.85 ( 0.75, 1.25) -1.2 0.84 ( 0.80, 1.20) -1.6 
Argument item14 x step0to1 x rater4 -0.07 0.35 0.82 ( 0.76, 1.24) -1.5 0.79 ( 0.82, 1.18) -2.3 
Argument item14 x step1to2 x rater4 -0.55 0.32 0.77 ( 0.76, 1.24) -2.0 0.80 ( 0.81, 1.19) -2.2 
Argument item15A x step0to1 x rater3 0.42 0.41 0.61 ( 0.75, 1.25) -3.5 0.63 ( 0.77, 1.23) -3.5 
Argument item15A x step1to2 x rater3 0.65 0.33 0.81 ( 0.75, 1.25) -1.6 0.80 ( 0.79, 1.21) -2.0 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Argument item15B x step0to1 x rater3 0.40 0.51 0.57 ( 0.74, 1.26) -3.8 0.78 ( 0.66, 1.34) -1.3 
Argument item15B x step1to2 x rater3 0.44 0.32 0.79 ( 0.74, 1.26) -1.6 0.81 ( 0.77, 1.23) -1.7 
Argument item16A x step0to1 x rater4 0.83 0.31 0.68 ( 0.74, 1.26) -2.7 0.60 ( 0.81, 1.19) -4.7 
Argument item16A x step1to2 x rater4 -1.17 0.29 0.80 ( 0.74, 1.26) -1.6 0.78 ( 0.79, 1.21) -2.2 
Argument item16B x step0to1 x rater4 0.47 0.26 0.90 ( 0.73, 1.27) -0.7 0.85 ( 0.80, 1.20) -1.5 
Argument item16B x step1to2 x rater4 -0.70 0.26 0.99 ( 0.73, 1.27) 0.0 1.03 ( 0.78, 1.22) 0.3 
Argument item17 x step0to1 x rater1 0.02 0.56 0.62 ( 0.76, 1.24) -3.6 0.67 ( 0.78, 1.22) -3.3 
Argument item17 x step1to2 x rater1 0.66 0.39 0.64 ( 0.76, 1.24) -3.3 0.70 ( 0.79, 1.21) -3.2 
Argument item18 x step0to1 x rater4 -0.02 0.66 0.53 ( 0.74, 1.26) -4.3 0.39 ( 0.80, 1.20) -8.0 
Argument item18 x step1to2 x rater4 0.20 0.52 0.56 ( 0.74, 1.26) -4.0 0.43 ( 0.81, 1.19) -7.4 
Argument item19 x step0to1 x rater2 0.25 0.27 0.87 ( 0.84, 1.16) -1.7 0.77 ( 0.86, 1.14) -3.3 
Argument item19 x step1to2 x rater2 0.53 0.24 0.87 ( 0.84, 1.16) -1.6 0.81 ( 0.89, 1.11) -3.7 
Argument item20 x step0to1 x rater3 0.71 0.33 0.83 ( 0.84, 1.16) -2.2 0.83 ( 0.89, 1.11) -3.2 
Argument item20 x step1to2 x rater3 -0.41 0.29 0.88 ( 0.84, 1.16) -1.6 0.89 ( 0.89, 1.11) -2.0 
SPQ item1 -1.07 0.21 1.05 ( 0.76, 1.24) 0.4 1.01 ( 0.81, 1.19) 0.1 
SPQ item2 -0.45 0.23 1.01 ( 0.72, 1.28) 0.1 0.98 ( 0.84, 1.16) -0.3 
SPQ item3 -0.46 0.13 1.08 ( 0.76, 1.24) 0.7 1.07 ( 0.81, 1.19) 0.8 
SPQ item4 -0.25 0.13 1.06 ( 0.74, 1.26) 0.5 1.07 ( 0.80, 1.20) 0.7 
SPQ item5 -0.71 0.20 1.00 ( 0.76, 1.24) 0.0 1.01 ( 0.85, 1.15) 0.1 
SPQ item6 -1.38 0.28 1.16 ( 0.70, 1.30) 1.0 1.03 ( 0.70, 1.30) 0.3 
SPQ item7 -1.41 0.23 0.93 ( 0.76, 1.24) -0.5 0.99 ( 0.75, 1.25) 0.0 
SPQ item8 -1.45 0.22 0.80 ( 0.77, 1.23) -1.8 0.91 ( 0.78, 1.22) -0.8 
SPQ item9 -2.26 0.29 0.98 ( 0.75, 1.25) -0.1 0.99 ( 0.59, 1.41) 0.0 
SPQ item10 -1.77 0.24 1.02 ( 0.77, 1.23) 0.2 1.00 ( 0.71, 1.29) 0.0 
SPQ item11 -1.78 0.25 0.82 ( 0.75, 1.25) -1.5 0.93 ( 0.70, 1.30) -0.4 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

SPQ item12 -0.40 0.23 0.91 ( 0.71, 1.29) -0.5 0.95 ( 0.86, 1.14) -0.6 
SPQ item13 0.64 0.17 0.93 ( 0.76, 1.24) -0.6 0.92 ( 0.81, 1.19) -0.8 
SPQ item14 2.59 0.31 0.70 ( 0.76, 1.25) -2.7 0.94 ( 0.54, 1.46) -0.2 
SPQ item15A 0.43 0.16 0.90 ( 0.68, 1.32) -0.6 0.95 ( 0.76, 1.24) -0.4 
SPQ item15B 1.35 0.19 0.74 ( 0.70, 1.30) -1.8 0.86 ( 0.60, 1.40) -0.6 
SPQ item16A -0.16 0.15 0.75 ( 0.71, 1.29) -1.8 0.78 ( 0.78, 1.22) -2.0 
SPQ item16B 0.37 0.14 0.81 ( 0.70, 1.30) -1.2 0.88 ( 0.79, 1.21) -1.2 
SPQ item17 -0.16 0.19 0.90 ( 0.76, 1.24) -0.8 0.92 ( 0.89, 1.11) -1.6 
SPQ item18 -0.42 0.21 1.09 ( 0.74, 1.26) 0.7 1.06 ( 0.87, 1.13) 0.9 
SPQ item19 -1.13 0.12 0.89 ( 0.84, 1.16) -1.4 0.92 ( 0.85, 1.15) -1.1 
SPQ item20 -1.02 0.14 0.89 ( 0.84, 1.16) -1.4 0.94 ( 0.88, 1.12) -1.1 
SPQ item3 x step 0to1 0.41 0.22 0.87 ( 0.76, 1.24) -1.0 0.96 ( 0.75, 1.25) -0.3 
SPQ item4 x step0to1 0.61 0.25 0.99 ( 0.74, 1.26) 0.0 1.00 ( 0.69, 1.31) 0.0 
SPQ item13 x step0to1 -0.61 0.28 0.92 ( 0.76, 1.24) -0.6 0.95 ( 0.81, 1.19) -0.5 
SPQ item13 x step1to2 -1.77 0.29 1.00 ( 0.76, 1.24) 0.0 0.99 ( 0.88, 1.12) -0.1 
SPQ item15A x step0to1 0.77 0.32 1.15 ( 0.68, 1.32) 1.0 1.05 ( 0.58, 1.42) 0.3 
SPQ item15B x step0to1 1.12 0.42 0.85 ( 0.70, 1.30) -1.0 0.98 ( 0.37, 1.63) 0.0 
SPQ item16A x step0to1 -0.03 0.24 0.97 ( 0.71, 1.29) -0.1 0.98 ( 0.81, 1.19) -0.1 
SPQ item16B x step0to1 0.91 0.31 0.96 ( 0.70, 1.30) -0.2 0.99 ( 0.57, 1.43) 0.0 
SPQ item19 x step0to1 -0.74 0.15 0.89 ( 0.84, 1.16) -1.4 0.92 ( 0.93, 1.07) -2.2 
Matter item1 -0.43 0.13 1.06 ( 0.74, 1.26) 0.5 1.07 ( 0.80, 1.20) 0.7 
Matter item2 -0.97 0.20 0.98 ( 0.69, 1.31) -0.1 1.07 ( 0.56, 1.44) 0.4 
Matter item3 0.32 0.13 0.99 ( 0.74, 1.26) -0.1 1.01 ( 0.80, 1.20) 0.1 
Matter item4 0.31 0.13 1.06 ( 0.73, 1.27) 0.5 1.08 ( 0.81, 1.19) 0.8 
Matter item5 -0.22 0.12 0.88 ( 0.76, 1.24) -1.0 0.96 ( 0.82, 1.18) -0.4 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Matter item6 -0.22 0.12 0.85 ( 0.75, 1.25) -1.2 0.90 ( 0.83, 1.17) -1.2 
Matter item7 0.57 0.12 1.39 ( 0.75, 1.25) 2.8 1.30 ( 0.80, 1.20) 2.8 
Matter item8 0.20 0.11 1.15 ( 0.77, 1.23) 1.2 1.14 ( 0.83, 1.17) 1.5 
Matter item9 -0.22 0.12 1.19 ( 0.75, 1.25) 1.5 1.15 ( 0.82, 1.18) 1.6 
Matter item10 -0.01 0.11 1.17 ( 0.76, 1.24) 1.4 1.18 ( 0.84, 1.16) 2.1 
Matter item11 0.34 0.12 1.26 ( 0.75, 1.25) 1.9 1.17 ( 0.80, 1.20) 1.6 
Matter item12 0.01 0.12 1.08 ( 0.74, 1.26) 0.6 1.07 ( 0.84, 1.16) 0.8 
Matter item13 1.61 0.25 0.86 ( 0.76, 1.24) -1.1 0.91 ( 0.75, 1.25) -0.7 
Matter item14 0.75 0.16 0.98 ( 0.76, 1.24) -0.1 0.97 ( 0.80, 1.20) -0.2 
Matter item15 -0.03 0.12 1.09 ( 0.74, 1.26) 0.7 1.03 ( 0.82, 1.18) 0.3 
Matter item16 -0.95 0.19 0.85 ( 0.69, 1.31) -1.0 1.01 ( 0.59, 1.41) 0.1 
Matter item17 0.25 0.26 0.99 ( 0.76, 1.24) -0.1 0.97 ( 0.83, 1.17) -0.3 
Matter item18 -0.84 0.14 0.82 ( 0.74, 1.26) -1.4 0.94 ( 0.74, 1.26) -0.4 
Matter item19 -0.20 0.08 0.96 ( 0.85, 1.15) -0.5 0.98 ( 0.89, 1.11) -0.4 
Matter item20 -0.45 0.08 1.12 ( 0.84, 1.16) 1.5 1.06 ( 0.88, 1.12) 0.9 
Matter item1 step0to1 1.65 0.37 1.17 ( 0.74, 1.26) 1.3 1.02 ( 0.38, 1.62) 0.2 
Matter item2 step0to1 2.37 0.73 1.16 ( 0.69, 1.31) 1.0 1.00 ( 0.00, 2.32) 0.2 
Matter item3 step0to1 0.78 0.26 1.03 ( 0.74, 1.26) 0.3 1.01 ( 0.65, 1.35) 0.1 
Matter item4 step0to1 1.20 0.31 1.04 ( 0.73, 1.27) 0.3 1.01 ( 0.53, 1.47) 0.1 
Matter item5 step0to1 1.04 0.26 0.94 ( 0.76, 1.24) -0.4 0.99 ( 0.62, 1.38) 0.0 
Matter item6 step0to1 1.28 0.29 0.90 ( 0.75, 1.25) -0.7 0.98 ( 0.55, 1.45) 0.0 
Matter item7 step0to1 2.50 0.51 1.06 ( 0.75, 1.25) 0.5 1.00 ( 0.07, 1.93) 0.2 
Matter item8 step0to1 2.41 0.46 1.23 ( 0.77, 1.23) 1.9 1.01 ( 0.17, 1.83) 0.2 
Matter item9 step0to1 1.24 0.29 1.00 ( 0.75, 1.25) 0.0 1.00 ( 0.55, 1.45) 0.1 
Matter item10 step0to1 4.04 1.00 0.91 ( 0.76, 1.24) -0.7 1.00 ( 0.00, 2.94) 0.3 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

Matter item11 step0to1 2.73 0.59 0.87 ( 0.75, 1.25) -1.0 1.00 ( 0.00, 2.09) 0.2 
Matter item 12 step0to1 3.89 1.00 0.89 ( 0.74, 1.26) -0.9 1.00 ( 0.00, 2.93) 0.3 
Matter item13 step0to1 -0.94 0.28 0.95 ( 0.76, 1.24) -0.4 0.98 ( 0.85, 1.15) -0.2 
Matter item14 step0to1 -0.89 0.19 0.96 ( 0.76, 1.24) -0.3 0.97 ( 0.94, 1.06) -1.1 
Matter item15 step0to1 2.23 0.46 1.18 ( 0.74, 1.26) 1.4 1.01 ( 0.18, 1.82) 0.2 
Matter item16 step0to1 1.70 0.53 0.65 ( 0.69, 1.31) -2.5 0.96 ( 0.11, 1.89) 0.1 
Matter item17 step0to1 -1.07 0.44 0.98 ( 0.76, 1.24) -0.1 0.98 ( 0.86, 1.14) -0.3 
Matter item18 step0to1 2.55 0.59 0.84 ( 0.74, 1.26) -1.2 1.00 ( 0.00, 2.08) 0.2 
Matter item19 step0to1 1.26 0.18 1.03 ( 0.85, 1.15) 0.4 1.00 ( 0.72, 1.28) 0.1 
Matter item20 step0to1 2.59 0.34 1.07 ( 0.84, 1.16) 0.9 1.00 ( 0.38, 1.62) 0.1 
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Table D.2 

Parameter Estimates and Fit: Multidimensional Model, Multidimensional Rubric 

Parameter 
Parameter 
estimate 

Standard 
error 

Unweight-
ed Mean 
Square 

Confidence 
Interval T 

Weight-
ed Mean 
Square 

Confidence 
Interval T 

Argument item1 -0.90 0.24 1.46 ( 0.73, 1.27) 3.0 1.60 ( 0.67, 1.33) 3.1 

Argument item2 -0.73 0.16 1.20 ( 0.71, 1.29) 1.3 1.33 ( 0.68, 1.32) 1.9 

Argument item3 -0.87 0.24 1.22 ( 0.75, 1.25) 1.7 1.21 ( 0.74, 1.26) 1.5 

Argument item4 -1.21 0.23 1.50 ( 0.74, 1.26) 3.3 1.60 ( 0.71, 1.29) 3.5 

Argument item5 -0.89 0.20 1.27 ( 0.76, 1.24) 2.1 1.32 ( 0.73, 1.27) 2.2 

Argument item6 -0.88 0.19 1.22 ( 0.75, 1.25) 1.7 1.14 ( 0.75, 1.25) 1.1 

Argument item7 -1.13 0.21 1.11 ( 0.75, 1.25) 0.8 1.30 ( 0.71, 1.29) 1.9 

Argument item8 -1.84 0.25 1.39 ( 0.77, 1.23) 2.9 1.48 ( 0.73, 1.27) 3.1 

Argument item9 -1.24 0.27 1.39 ( 0.74, 1.26) 2.6 1.46 ( 0.71, 1.29) 2.8 

Argument item10 -1.31 0.21 1.38 ( 0.76, 1.24) 2.9 1.51 ( 0.72, 1.28) 3.1 

Argument item11 -1.20 0.25 1.72 ( 0.74, 1.26) 4.5 1.29 ( 0.66, 1.34) 1.6 

Argument item12 -0.90 0.26 1.03 ( 0.75, 1.25) 0.3 1.09 ( 0.72, 1.28) 0.7 

Argument item13 -1.02 0.20 1.14 ( 0.75, 1.25) 1.1 1.28 ( 0.70, 1.30) 1.7 

Argument item14 -0.96 0.17 1.40 ( 0.76, 1.24) 2.9 1.36 ( 0.75, 1.25) 2.5 

Argument item15A -1.21 0.21 1.03 ( 0.75, 1.25) 0.2 1.19 ( 0.70, 1.30) 1.2 

Argument item15B -0.89 0.28 1.03 ( 0.74, 1.26) 0.3 1.23 ( 0.70, 1.30) 1.4 

Argument item16A -0.87 0.15 1.12 ( 0.74, 1.26) 1.0 1.10 ( 0.73, 1.27) 0.7 

Argument item16B -0.31 0.13 1.40 ( 0.73, 1.27) 2.6 1.41 ( 0.73, 1.27) 2.7 

Argument item17 -1.22 0.27 1.00 ( 0.76, 1.24) 0.1 1.32 ( 0.71, 1.29) 2.0 

Argument item18 -1.88 0.28 1.49 ( 0.74, 1.26) 3.3 1.57 ( 0.70, 1.30) 3.2 

Argument item19 -0.80 0.14 1.13 ( 0.84, 1.16) 1.6 1.32 ( 0.81, 1.19) 3.0 

Argument item20 -1.09 0.16 1.00 ( 0.84, 1.16) 0.0 1.28 ( 0.79, 1.21) 2.4 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Argument rater1 -0.02 0.16 1.10 ( 0.85, 1.15) 1.3 1.11 ( 0.82, 1.18) 1.2 

Argument rater2 -0.39 0.13 1.05 ( 0.85, 1.15) 0.7 1.08 ( 0.83, 1.17) 1.0 

Argument rater3 -0.38 0.15 1.12 ( 0.85, 1.15) 1.5 1.19 ( 0.82, 1.18) 2.1 

Argument rater4 0.22 0.09 1.13 ( 0.85, 1.15) 1.7 1.20 ( 0.84, 1.16) 2.3 

Argument rater5 0.30 0.15 1.10 ( 0.85, 1.15) 1.3 1.01 ( 0.84, 1.16) 0.1 

Argument rater6 0.20 0.12 0.93 ( 0.85, 1.15) -0.8 0.94 ( 0.82, 1.18) -0.6 

Argument item1 x step0to1 0.19 0.57 1.32 ( 0.73, 1.27) 2.2 1.47 ( 0.78, 1.22) 3.7 

Argument item1 x step1to2 -2.04 0.48 1.30 ( 0.73, 1.27) 2.1 1.43 ( 0.79, 1.21) 3.6 

Argument item2 x step0to1 0.03 0.34 1.22 ( 0.71, 1.29) 1.4 1.29 ( 0.77, 1.23) 2.3 

Argument item2 x step1to2 -1.48 0.32 1.39 ( 0.71, 1.29) 2.4 1.45 ( 0.79, 1.21) 3.7 

Argument item3 x step0to1 -1.91 0.45 1.22 ( 0.75, 1.25) 1.7 1.25 ( 0.78, 1.22) 2.1 

Argument item3 x step1to2 0.14 0.30 1.14 ( 0.75, 1.25) 1.1 1.17 ( 0.82, 1.18) 1.8 

Argument item4 x step0to1 -0.72 0.46 1.54 ( 0.74, 1.26) 3.6 1.65 ( 0.80, 1.20) 5.2 

Argument item4 x step1to2 -0.76 0.34 1.47 ( 0.74, 1.26) 3.2 1.57 ( 0.81, 1.19) 5.0 

Argument item5 x step0to1 -0.40 0.39 0.95 ( 0.76, 1.24) -0.4 1.00 ( 0.81, 1.19) 0.0 

Argument item5 x step1to2 -0.39 0.33 0.79 ( 0.76, 1.24) -1.8 0.94 ( 0.79, 1.21) -0.5 

Argument item6 x step0to1 -0.97 0.30 1.24 ( 0.75, 1.25) 1.8 1.29 ( 0.80, 1.20) 2.6 

Argument item6 x step1to2 -0.32 0.25 1.16 ( 0.75, 1.25) 1.3 1.21 ( 0.82, 1.18) 2.2 

Argument item7 x step0to1 -0.44 0.46 1.19 ( 0.75, 1.25) 1.4 1.28 ( 0.79, 1.21) 2.5 

Argument item7 x step1to2 -1.40 0.38 1.16 ( 0.75, 1.25) 1.3 1.24 ( 0.81, 1.19) 2.3 

Argument item8 x step0to1 -0.95 0.48 1.46 ( 0.77, 1.23) 3.4 1.54 ( 0.82, 1.18) 4.9 

Argument item8 x step1to2 -0.67 0.34 1.39 ( 0.77, 1.23) 3.0 1.49 ( 0.83, 1.17) 4.9 

Argument item9 x step0to1 -1.59 0.54 1.13 ( 0.74, 1.26) 1.0 1.16 ( 0.77, 1.23) 1.4 

Argument item9 x step1to2 -0.82 0.36 1.08 ( 0.74, 1.26) 0.6 1.13 ( 0.80, 1.20) 1.2 

Argument item10 x step0to1 -0.32 0.39 1.17 ( 0.76, 1.24) 1.4 1.22 ( 0.81, 1.19) 2.2 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Argument item10 x step1to2 -1.20 0.32 1.23 ( 0.76, 1.24) 1.8 1.31 ( 0.83, 1.17) 3.3 

Argument item11 x step0to1 -0.85 0.50 1.03 ( 0.74, 1.26) 0.3 1.27 ( 0.77, 1.23) 2.2 

Argument item11 x step1to2 -0.40 0.37 1.02 ( 0.74, 1.26) 0.2 1.35 ( 0.76, 1.24) 2.7 

Argument item12 x step0to1 -0.67 0.65 0.70 ( 0.75, 1.25) -2.7 0.94 ( 0.72, 1.28) -0.4 

Argument item12 x step1to2 -0.93 0.56 0.94 ( 0.75, 1.25) -0.4 0.94 ( 0.82, 1.18) -0.6 

Argument item13 x step0to1 -0.89 0.44 0.95 ( 0.75, 1.25) -0.3 1.20 ( 0.73, 1.27) 1.4 

Argument item13 x step1to2 -1.43 0.37 1.12 ( 0.75, 1.25) 0.9 1.21 ( 0.80, 1.20) 1.9 

Argument item14 x step0to1 0.07 0.36 1.14 ( 0.76, 1.24) 1.1 1.21 ( 0.81, 1.19) 2.2 

Argument item14 x step1to2 -1.19 0.32 1.10 ( 0.76, 1.24) 0.8 1.23 ( 0.81, 1.19) 2.2 

Argument item15A x step0to1 -1.02 0.41 1.17 ( 0.75, 1.25) 1.3 1.37 ( 0.76, 1.24) 2.8 

Argument item15A x step1to2 -0.33 0.33 1.13 ( 0.75, 1.25) 1.1 1.20 ( 0.79, 1.21) 1.8 

Argument item15B x step0to1 -2.44 0.52 0.98 ( 0.74, 1.26) -0.1 1.26 ( 0.66, 1.34) 1.4 

Argument item15B x step1to2 -0.48 0.32 1.04 ( 0.74, 1.26) 0.4 1.15 ( 0.77, 1.23) 1.3 

Argument item16A x step0to1 -0.09 0.31 1.22 ( 0.74, 1.26) 1.6 1.29 ( 0.81, 1.19) 2.7 

Argument item16A x step1to2 -0.37 0.29 1.14 ( 0.74, 1.26) 1.1 1.21 ( 0.79, 1.21) 1.9 

Argument item16B x step0to1 -0.10 0.26 1.15 ( 0.73, 1.27) 1.1 1.15 ( 0.80, 1.20) 1.4 

Argument item16B x step1to2 -0.68 0.26 1.01 ( 0.73, 1.27) 0.1 1.03 ( 0.78, 1.22) 0.3 

Argument item17 x step0to1 -1.07 0.56 1.03 ( 0.76, 1.24) 0.3 1.26 ( 0.78, 1.22) 2.1 

Argument item17 x step1to2 -0.96 0.39 1.04 ( 0.76, 1.24) 0.4 1.24 ( 0.79, 1.21) 2.2 

Argument item18 x step0to1 -0.20 0.67 1.59 ( 0.74, 1.26) 3.9 1.70 ( 0.80, 1.20) 5.6 

Argument item18 x step1to2 -1.72 0.53 1.51 ( 0.74, 1.26) 3.4 1.62 ( 0.80, 1.20) 5.2 

Argument item19 x step0to1 -0.84 0.27 1.15 ( 0.84, 1.16) 1.7 1.28 ( 0.85, 1.15) 3.5 

Argument item19 x step1to2 -0.45 0.24 1.14 ( 0.84, 1.16) 1.6 1.22 ( 0.89, 1.11) 3.6 

Argument item20 x step0to1 -0.14 0.34 1.03 ( 0.84, 1.16) 0.4 1.11 ( 0.88, 1.12) 1.8 

Argument item20 x step1to2 -1.39 0.29 0.99 ( 0.84, 1.16) -0.2 1.05 ( 0.89, 1.11) 0.8 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Argument item1 x rater1 0.15 0.17 0.70 ( 0.85, 1.15) -4.5 0.69 ( 0.81, 1.19) -3.7 

Argument item3 x rater2 0.00 0.19 0.72 ( 0.85, 1.15) -4.2 0.66 ( 0.82, 1.18) -4.1 

Argument item7 x rater1 0.11 0.15 0.73 ( 0.85, 1.15) -3.8 0.65 ( 0.79, 1.21) -3.8 

Argument item8 x rater4 0.04 0.17 0.66 ( 0.83, 1.17) -4.3 0.64 ( 0.80, 1.20) -3.9 

Argument item9 x rater2 -0.05 0.22 0.61 ( 0.80, 1.20) -4.5 0.60 ( 0.78, 1.22) -4.2 

Argument item10 x rater6 0.14 0.13 0.85 ( 0.80, 1.20) -1.5 0.84 ( 0.78, 1.22) -1.5 

Argument item11 x rater2 0.14 0.19 0.73 ( 0.85, 1.15) -3.8 0.73 ( 0.80, 1.20) -2.9 

Argument item12 x rater2 -0.36 0.17 0.80 ( 0.84, 1.16) -2.7 0.73 ( 0.82, 1.18) -3.2 

Argument item13 x rater1 0.04 0.15 0.87 ( 0.85, 1.15) -1.7 0.82 ( 0.82, 1.18) -2.0 

Argument item14 x rater4 -0.17 0.12 0.73 ( 0.80, 1.20) -2.9 0.62 ( 0.77, 1.23) -3.7 

Argument item15A x rater3 0.17 0.16 0.73 ( 0.85, 1.15) -3.8 0.71 ( 0.79, 1.21) -3.0 

Argument item15B x rater3 0.11 0.22 0.70 ( 0.85, 1.15) -4.2 0.67 ( 0.80, 1.20) -3.6 

Argument item16A x rater4 0.32 0.11 0.37 ( 0.74, 1.26) -6.4 0.31 ( 0.72, 1.28) -6.8 

Argument item17 x rater1 -0.29 0.20 0.69 ( 0.85, 1.15) -4.5 0.67 ( 0.81, 1.19) -3.9 

Argument item18 x rater4 -0.16 0.19 0.84 ( 0.84, 1.16) -2.1 0.73 ( 0.81, 1.19) -3.1 

Argument item19 x rater2 0.14 0.13 0.72 ( 0.84, 1.16) -3.9 0.65 ( 0.80, 1.20) -4.0 

Argument item1 x step0to1 x rater1 0.15 0.57 0.67 ( 0.73, 1.27) -2.8 0.65 ( 0.78, 1.22) -3.5 

Argument item1 x step1to2 x rater1 -0.25 0.48 0.70 ( 0.73, 1.27) -2.4 0.70 ( 0.79, 1.21) -3.1 

Argument item2 x step0to1 x rater5 -0.09 0.34 0.68 ( 0.71, 1.29) -2.4 0.68 ( 0.77, 1.23) -3.1 

Argument item2 x step1to2 x rater5 0.20 0.32 0.59 ( 0.71, 1.29) -3.3 0.56 ( 0.79, 1.21) -4.9 

Argument item3 x step0to1 x rater2 0.00 0.45 0.79 ( 0.75, 1.25) -1.7 0.69 ( 0.78, 1.22) -3.0 

Argument item3 x step1to2 x rater2 -0.08 0.29 0.83 ( 0.75, 1.25) -1.4 0.80 ( 0.82, 1.18) -2.3 

Argument item4 x step0to1 x rater2 -0.64 0.46 0.58 ( 0.74, 1.26) -3.7 0.42 ( 0.80, 1.20) -7.2 

Argument item4 x step1to2 x rater2 0.22 0.34 0.57 ( 0.74, 1.26) -3.9 0.45 ( 0.81, 1.19) -7.2 

Argument item5 x step0to1 x rater1 -0.36 0.38 0.91 ( 0.76, 1.24) -0.7 0.94 ( 0.81, 1.19) -0.6 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Argument item5 x step1to2 x rater1 0.62 0.33 0.83 ( 0.76, 1.24) -1.4 1.00 ( 0.79, 1.21) 0.0 

Argument item6 x step0to1 x rater6 0.77 0.30 0.86 ( 0.75, 1.25) -1.2 0.79 ( 0.80, 1.20) -2.1 

Argument item6 x step1to2 x rater6 -0.69 0.25 0.84 ( 0.75, 1.25) -1.3 0.81 ( 0.82, 1.18) -2.2 

Argument item7 x step0to1 x rater1 -0.35 0.45 0.67 ( 0.75, 1.25) -2.9 0.64 ( 0.79, 1.21) -3.8 

Argument item7 x step1to2 x rater1 0.39 0.38 0.72 ( 0.75, 1.25) -2.3 0.69 ( 0.81, 1.19) -3.7 

Argument item8 x step0to1 x rater4 -0.22 0.48 0.71 ( 0.77, 1.23) -2.7 0.55 ( 0.82, 1.18) -5.7 

Argument item8 x step1to2 x rater4 0.13 0.34 0.66 ( 0.77, 1.23) -3.2 0.52 ( 0.83, 1.17) -6.7 

Argument item9 x step0to1 x rater2 0.62 0.54 0.78 ( 0.74, 1.26) -1.8 0.77 ( 0.77, 1.23) -2.2 

Argument item9 x step1to2 x rater2 -0.21 0.36 0.82 ( 0.74, 1.26) -1.4 0.81 ( 0.80, 1.20) -2.0 

Argument item10 x step0to1 x rater6 0.45 0.39 0.82 ( 0.76, 1.24) -1.6 0.76 ( 0.81, 1.19) -2.7 

Argument item10 x step1to2 x rater6 -0.48 0.32 0.74 ( 0.76, 1.24) -2.3 0.68 ( 0.83, 1.17) -4.0 

Argument item11 x step0to1 x rater2 -0.61 0.50 0.57 ( 0.74, 1.26) -3.8 0.64 ( 0.77, 1.23) -3.4 

Argument item11 x step1to2 x rater2 -0.17 0.37 0.48 ( 0.74, 1.26) -4.8 0.59 ( 0.76, 1.24) -4.0 

Argument item12 x step0to1 x rater2 1.43 0.65 0.72 ( 0.75, 1.25) -2.4 0.98 ( 0.72, 1.28) -0.1 

Argument item12 x step1to2 x rater2 -0.56 0.56 1.01 ( 0.75, 1.25) 0.1 1.04 ( 0.82, 1.18) 0.4 

Argument item13 x step0to1 x rater1 0.75 0.44 0.74 ( 0.75, 1.25) -2.3 0.87 ( 0.73, 1.27) -1.0 

Argument item13 x step1to2 x rater1 -0.44 0.36 0.84 ( 0.75, 1.25) -1.3 0.83 ( 0.80, 1.20) -1.7 

Argument item14 x step0to1 x rater4 -0.08 0.35 0.82 ( 0.76, 1.24) -1.5 0.80 ( 0.81, 1.19) -2.3 

Argument item14 x step1to2 x rater4 -0.55 0.32 0.76 ( 0.76, 1.24) -2.0 0.81 ( 0.81, 1.19) -2.0 

Argument item15A x step0to1 x rater3 0.42 0.41 0.63 ( 0.75, 1.25) -3.3 0.65 ( 0.76, 1.24) -3.3 

Argument item15A x step1to2 x rater3 0.65 0.32 0.81 ( 0.75, 1.25) -1.5 0.80 ( 0.79, 1.21) -2.0 

Argument item15B x step0to1 x rater3 0.40 0.51 0.51 ( 0.74, 1.26) -4.5 0.73 ( 0.66, 1.34) -1.7 

Argument item15B x step1to2 x rater3 0.44 0.32 0.78 ( 0.74, 1.26) -1.7 0.80 ( 0.77, 1.23) -1.8 

Argument item16A x step0to1 x rater4 0.82 0.31 0.67 ( 0.74, 1.26) -2.8 0.60 ( 0.81, 1.19) -4.7 

Argument item16A x step1to2 x rater4 -1.17 0.29 0.80 ( 0.74, 1.26) -1.6 0.78 ( 0.79, 1.21) -2.2 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Argument item16B x step0to1 x rater4 0.45 0.26 0.89 ( 0.73, 1.27) -0.8 0.84 ( 0.80, 1.20) -1.6 

Argument item16B x step1to2 x rater4 -0.70 0.26 1.00 ( 0.73, 1.27) 0.0 1.05 ( 0.78, 1.22) 0.4 

Argument item17 x step0to1 x rater1 0.02 0.56 0.62 ( 0.76, 1.24) -3.5 0.68 ( 0.78, 1.22) -3.2 

Argument item17 x step1to2 x rater1 0.66 0.39 0.64 ( 0.76, 1.24) -3.3 0.70 ( 0.79, 1.21) -3.2 

Argument item18 x step0to1 x rater4 -0.02 0.67 0.56 ( 0.74, 1.26) -4.0 0.40 ( 0.80, 1.20) -7.6 

Argument item18 x step1to2 x rater4 0.20 0.53 0.59 ( 0.74, 1.26) -3.7 0.45 ( 0.80, 1.20) -7.0 

Argument item19 x step0to1 x rater2 0.22 0.27 0.85 ( 0.84, 1.16) -1.9 0.76 ( 0.85, 1.15) -3.5 

Argument item19 x step1to2 x rater2 0.53 0.24 0.87 ( 0.84, 1.16) -1.6 0.80 ( 0.89, 1.11) -3.8 

Argument item20 x step0to1 x rater3 0.73 0.33 0.87 ( 0.84, 1.16) -1.7 0.85 ( 0.88, 1.12) -2.6 

Argument item20 x step1to2 x rater3 -0.41 0.29 0.92 ( 0.84, 1.16) -1.1 0.92 ( 0.89, 1.11) -1.4 

SPQ item1 -1.17 0.23 1.34 ( 0.76, 1.24) 2.5 1.08 ( 0.80, 1.20) 0.8 

SPQ item2 -0.44 0.24 1.06 ( 0.72, 1.28) 0.5 1.00 ( 0.82, 1.18) 0.0 

SPQ item3 -0.56 0.15 1.20 ( 0.76, 1.24) 1.6 1.09 ( 0.79, 1.21) 0.8 

SPQ item4 -0.27 0.15 1.34 ( 0.74, 1.26) 2.3 1.14 ( 0.78, 1.22) 1.3 

SPQ item5 -0.79 0.21 1.13 ( 0.76, 1.24) 1.1 1.10 ( 0.83, 1.17) 1.1 

SPQ item6 -1.49 0.30 1.46 ( 0.70, 1.30) 2.7 1.08 ( 0.69, 1.31) 0.5 

SPQ item7 -1.54 0.24 1.00 ( 0.76, 1.24) 0.0 1.02 ( 0.74, 1.26) 0.2 

SPQ item8 -1.59 0.23 0.77 ( 0.77, 1.23) -2.1 0.91 ( 0.77, 1.23) -0.8 

SPQ item9 -2.40 0.31 1.01 ( 0.75, 1.25) 0.2 1.06 ( 0.59, 1.41) 0.4 

SPQ item10 -1.91 0.26 1.15 ( 0.77, 1.23) 1.2 1.00 ( 0.70, 1.30) 0.0 

SPQ item11 -1.90 0.27 0.87 ( 0.75, 1.25) -1.0 0.97 ( 0.69, 1.31) -0.1 

SPQ item12 -0.42 0.25 0.88 ( 0.71, 1.29) -0.8 0.94 ( 0.83, 1.17) -0.7 

SPQ item13 0.73 0.19 0.93 ( 0.76, 1.24) -0.6 0.93 ( 0.78, 1.22) -0.6 

SPQ item14 2.78 0.33 0.65 ( 0.76, 1.25) -3.2 0.92 ( 0.56, 1.44) -0.3 

SPQ item15A 0.55 0.18 1.05 ( 0.68, 1.32) 0.3 1.11 ( 0.72, 1.28) 0.7 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

SPQ item15B 1.66 0.23 0.73 ( 0.70, 1.30) -1.9 0.87 ( 0.58, 1.42) -0.6 

SPQ item16A -0.19 0.18 0.80 ( 0.71, 1.29) -1.4 0.86 ( 0.75, 1.25) -1.1 

SPQ item16B 0.43 0.17 0.72 ( 0.70, 1.30) -2.0 0.84 ( 0.74, 1.26) -1.3 

SPQ item17 -0.19 0.21 0.98 ( 0.76, 1.24) -0.1 0.96 ( 0.86, 1.14) -0.6 

SPQ item18 -0.41 0.22 1.05 ( 0.74, 1.26) 0.4 1.04 ( 0.85, 1.15) 0.5 

SPQ item19 -1.14 0.12 0.88 ( 0.84, 1.16) -1.5 0.91 ( 0.85, 1.15) -1.2 

SPQ item20 -1.02 0.14 0.87 ( 0.84, 1.16) -1.6 0.93 ( 0.88, 1.12) -1.3 

SPQ item3 x step 0to1 0.26 0.23 0.83 ( 0.76, 1.24) -1.4 0.94 ( 0.76, 1.24) -0.4 

SPQ item4 x step0to1 0.47 0.25 0.98 ( 0.74, 1.26) -0.1 0.99 ( 0.70, 1.30) 0.0 

SPQ item13 x step0to1 -0.89 0.30 0.91 ( 0.76, 1.24) -0.7 0.94 ( 0.78, 1.22) -0.6 

SPQ item13 x step1to2 -1.79 0.29 0.94 ( 0.76, 1.24) -0.4 0.98 ( 0.85, 1.15) -0.2 

SPQ item15A x step0to1 0.62 0.32 1.18 ( 0.68, 1.32) 1.1 1.06 ( 0.59, 1.41) 0.3 

SPQ item15B x step0to1 0.95 0.42 0.81 ( 0.70, 1.30) -1.3 0.96 ( 0.38, 1.62) 0.0 

SPQ item16A x step0to1 -0.18 0.24 0.96 ( 0.71, 1.29) -0.2 0.99 ( 0.81, 1.19) -0.1 

SPQ item16B x step0to1 0.77 0.32 0.92 ( 0.70, 1.30) -0.5 0.98 ( 0.57, 1.43) 0.0 

SPQ item19 x step0to1 -0.76 0.15 0.88 ( 0.84, 1.16) -1.5 0.91 ( 0.93, 1.07) -2.4 

Matter item1 -0.43 0.13 1.11 ( 0.74, 1.26) 0.9 1.04 ( 0.80, 1.20) 0.4 

Matter item2 -0.99 0.20 0.92 ( 0.69, 1.31) -0.5 1.02 ( 0.56, 1.44) 0.1 

Matter item3 0.34 0.13 0.91 ( 0.74, 1.26) -0.6 0.97 ( 0.80, 1.20) -0.3 

Matter item4 0.32 0.13 1.08 ( 0.73, 1.27) 0.6 1.09 ( 0.81, 1.19) 0.9 

Matter item5 -0.22 0.12 0.84 ( 0.76, 1.24) -1.4 0.94 ( 0.82, 1.18) -0.7 

Matter item6 -0.22 0.12 0.87 ( 0.75, 1.25) -1.0 0.94 ( 0.83, 1.17) -0.7 

Matter item7 0.58 0.12 1.48 ( 0.75, 1.25) 3.4 1.33 ( 0.80, 1.20) 3.0 

Matter item8 0.21 0.11 1.12 ( 0.77, 1.23) 1.0 1.10 ( 0.82, 1.18) 1.1 

Matter item9 -0.21 0.12 1.21 ( 0.75, 1.25) 1.6 1.16 ( 0.82, 1.18) 1.7 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Matter item10 0.00 0.11 1.26 ( 0.76, 1.24) 2.0 1.20 ( 0.84, 1.16) 2.3 

Matter item11 0.35 0.12 1.15 ( 0.75, 1.25) 1.1 1.15 ( 0.79, 1.21) 1.4 

Matter item12 0.02 0.12 1.00 ( 0.74, 1.26) 0.0 1.04 ( 0.83, 1.17) 0.5 

Matter item13 1.64 0.25 0.86 ( 0.76, 1.24) -1.2 0.91 ( 0.75, 1.25) -0.7 

Matter item14 0.75 0.16 0.99 ( 0.76, 1.24) 0.0 0.97 ( 0.80, 1.20) -0.2 

Matter item15 -0.02 0.12 1.03 ( 0.74, 1.26) 0.3 1.02 ( 0.82, 1.18) 0.2 

Matter item16 -0.97 0.19 0.67 ( 0.69, 1.31) -2.4 0.97 ( 0.58, 1.42) -0.1 

Matter item17 0.21 0.26 1.07 ( 0.76, 1.24) 0.6 0.98 ( 0.83, 1.17) -0.2 

Matter item18 -0.84 0.14 0.70 ( 0.74, 1.26) -2.5 0.89 ( 0.74, 1.26) -0.8 

Matter item19 -0.20 0.08 0.90 ( 0.85, 1.15) -1.3 0.94 ( 0.89, 1.11) -1.1 

Matter item20 -0.45 0.08 1.06 ( 0.84, 1.16) 0.8 1.02 ( 0.88, 1.12) 0.3 

Matter item1 step0to1 1.64 0.37 1.12 ( 0.74, 1.26) 0.9 1.02 ( 0.39, 1.61) 0.2 

Matter item2 step0to1 2.36 0.73 1.08 ( 0.69, 1.31) 0.5 0.99 ( 0.00, 2.31) 0.2 

Matter item3 step0to1 0.77 0.26 0.98 ( 0.74, 1.26) -0.1 1.00 ( 0.66, 1.34) 0.1 

Matter item4 step0to1 1.19 0.31 1.05 ( 0.73, 1.27) 0.4 1.00 ( 0.54, 1.46) 0.1 

Matter item5 step0to1 1.02 0.26 0.92 ( 0.76, 1.24) -0.7 0.98 ( 0.62, 1.38) 0.0 

Matter item6 step0to1 1.26 0.29 0.91 ( 0.75, 1.25) -0.7 0.99 ( 0.55, 1.45) 0.0 

Matter item7 step0to1 2.49 0.51 1.02 ( 0.75, 1.25) 0.2 1.01 ( 0.07, 1.93) 0.2 

Matter item8 step0to1 2.39 0.46 1.42 ( 0.77, 1.23) 3.2 1.02 ( 0.17, 1.83) 0.2 

Matter item9 step0to1 1.22 0.29 0.99 ( 0.75, 1.25) 0.0 1.00 ( 0.55, 1.45) 0.1 

Matter item10 step0to1 4.03 1.00 0.87 ( 0.76, 1.24) -1.1 1.00 ( 0.00, 2.93) 0.3 

Matter item11 step0to1 2.72 0.59 0.86 ( 0.75, 1.25) -1.1 1.00 ( 0.00, 2.09) 0.2 

Matter item 12 step0to1 3.88 1.01 1.06 ( 0.74, 1.26) 0.5 1.00 ( 0.00, 2.93) 0.3 

Matter item13 step0to1 -0.96 0.28 0.95 ( 0.76, 1.24) -0.4 0.99 ( 0.85, 1.15) -0.1 

Matter item14 step0to1 -0.91 0.19 0.95 ( 0.76, 1.24) -0.4 0.96 ( 0.94, 1.06) -1.3 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweight-
ed Mean 

Square 
Confidence 
Interval T 

Weight-
ed Mean 

Square 
Confidence 
Interval T 

Matter item15 step0to1 2.22 0.46 1.25 ( 0.74, 1.26) 1.8 1.01 ( 0.19, 1.81) 0.2 

Matter item16 step0to1 1.68 0.53 0.72 ( 0.69, 1.31) -1.9 0.98 ( 0.10, 1.90) 0.1 

Matter item17 step0to1 -1.03 0.44 1.06 ( 0.76, 1.24) 0.5 0.99 ( 0.86, 1.14) -0.1 

Matter item18 step0to1 2.55 0.59 0.88 ( 0.74, 1.26) -0.9 0.99 ( 0.00, 2.08) 0.2 

Matter item19 step0to1 1.25 0.18 1.01 ( 0.85, 1.15) 0.1 1.00 ( 0.72, 1.28) 0.0 

Matter item20 step0to1 2.58 0.34 1.10 ( 0.84, 1.16) 1.3 1.00 ( 0.38, 1.62) 0.1 
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Table D.3 

Parameter Estimates and Fit: Unidimensional Model, Holistic Rubric 

Parameter 
Parameter 
estimate 

Standard 
error 

Unweighted 
Mean 
Square 

Confidence 
Interval T 

Weighted 
Mean 
Square 

Confidence 
Interval T 

item1 -0.65 0.15 1.49 ( 0.76, 1.24) 3.5 1.49 ( 0.77, 1.23) 3.7 
item2 -0.25 0.11 1.59 ( 0.74, 1.26) 3.8 1.62 ( 0.73, 1.27) 3.9 
item3 -0.44 0.14 1.33 ( 0.76, 1.24) 2.4 1.45 ( 0.77, 1.23) 3.4 
item4 -0.14 0.12 1.43 ( 0.74, 1.26) 2.9 1.49 ( 0.75, 1.25) 3.3 
item5 -0.12 0.11 1.23 ( 0.76, 1.24) 1.8 1.38 ( 0.76, 1.24) 2.8 
item6 -0.37 0.12 1.26 ( 0.76, 1.24) 2.0 1.29 ( 0.76, 1.24) 2.2 
item7 -0.72 0.11 1.71 ( 0.77, 1.23) 5.0 1.59 ( 0.74, 1.26) 3.8 
item8 -0.34 0.10 1.12 ( 0.77, 1.23) 1.0 1.21 ( 0.76, 1.24) 1.6 
item9 -0.94 0.17 1.51 ( 0.75, 1.25) 3.5 1.65 ( 0.76, 1.24) 4.5 
item10 -0.96 0.20 1.54 ( 0.77, 1.23) 3.9 1.69 ( 0.77, 1.23) 5.0 
item11 -0.30 0.12 1.28 ( 0.75, 1.25) 2.1 1.32 ( 0.77, 1.23) 2.4 
item12 -0.07 0.11 1.41 ( 0.76, 1.24) 3.0 1.55 ( 0.76, 1.24) 3.9 
item13 1.42 0.17 1.35 ( 0.76, 1.24) 2.6 1.57 ( 0.56, 1.44) 2.2 
item14 1.04 0.13 1.28 ( 0.77, 1.23) 2.2 1.56 ( 0.65, 1.35) 2.7 
item15 0.57 0.15 0.99 ( 0.75, 1.25) 0.0 1.08 ( 0.72, 1.28) 0.6 
item16 -0.02 0.12 1.32 ( 0.73, 1.27) 2.2 1.26 ( 0.74, 1.26) 1.9 
item17 -0.76 0.13 1.12 ( 0.76, 1.24) 1.0 1.21 ( 0.75, 1.25) 1.6 
item18 -0.97 0.14 1.05 ( 0.74, 1.26) 0.4 1.14 ( 0.72, 1.28) 1.0 
item19 -0.34 0.09 1.20 ( 0.85, 1.15) 2.5 1.29 ( 0.85, 1.15) 3.6 
item20 -0.90 0.16 1.34 ( 0.84, 1.16) 3.9 1.40 ( 0.83, 1.17) 4.2 
rater2 -0.04 0.09 0.89 ( 0.85, 1.15) -1.5 0.92 ( 0.85, 1.15) -1.1 
rater4 0.06 0.07 0.81 ( 0.86, 1.14) -2.7 0.82 ( 0.85, 1.15) -2.5 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweighted 
Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

rater5 0.34 0.05 1.05 ( 0.86, 1.14) 0.7 1.10 ( 0.85, 1.15) 1.2 
rater6 -0.46 0.08 0.78 ( 0.86, 1.14) -3.2 0.79 ( 0.85, 1.15) -2.9 
item1 x step0to1 0.10 0.34 1.11 ( 0.76, 1.24) 0.9 1.13 ( 0.79, 1.21) 1.2 
item1 x step1to2 -0.24 0.30 1.27 ( 0.76, 1.24) 2.1 1.36 ( 0.75, 1.25) 2.6 
item2 x step0to1 0.80 0.29 1.42 ( 0.74, 1.26) 2.9 1.49 ( 0.79, 1.21) 4.0 
item2 x step1to2 -0.81 0.31 1.58 ( 0.74, 1.26) 3.8 1.58 ( 0.75, 1.25) 3.9 
item3 x step0to1 -1.03 0.24 1.15 ( 0.76, 1.24) 1.2 1.22 ( 0.82, 1.18) 2.2 
item3 x step1to2 0.34 0.22 1.17 ( 0.76, 1.24) 1.3 1.19 ( 0.78, 1.22) 1.6 
item4 x step0to1 -0.75 0.21 1.13 ( 0.74, 1.26) 1.0 1.16 ( 0.81, 1.19) 1.5 
item4 x step1to2 -0.09 0.23 0.86 ( 0.74, 1.26) -1.1 0.78 ( 0.80, 1.20) -2.3 
item5 x step0to1 -0.78 0.20 1.19 ( 0.76, 1.24) 1.6 1.22 ( 0.82, 1.18) 2.3 
item5 x step1to2 0.22 0.21 1.22 ( 0.76, 1.24) 1.8 1.27 ( 0.79, 1.21) 2.3 
item6 x step0to1 -0.69 0.23 1.11 ( 0.76, 1.24) 0.9 1.09 ( 0.81, 1.19) 1.0 
item6 x step1to2 0.20 0.23 1.08 ( 0.76, 1.24) 0.6 1.07 ( 0.77, 1.23) 0.6 
item7 x step0to1 1.35 0.53 1.22 ( 0.77, 1.23) 1.8 1.16 ( 0.80, 1.20) 1.6 
item7 x step1to2 -1.21 0.54 1.10 ( 0.77, 1.23) 0.8 1.17 ( 0.76, 1.24) 1.3 
item8 x step0to1 1.59 0.52 1.12 ( 0.77, 1.23) 1.0 1.15 ( 0.83, 1.17) 1.6 
item8 x step1to2 -1.87 0.54 1.08 ( 0.77, 1.23) 0.7 1.15 ( 0.82, 1.18) 1.7 
item9 x step0to1 -1.81 0.33 1.14 ( 0.75, 1.25) 1.1 1.22 ( 0.79, 1.21) 1.9 
item9 x step1to2 0.95 0.26 1.08 ( 0.75, 1.25) 0.7 1.13 ( 0.79, 1.21) 1.2 
item10 x step0to1 -2.16 0.40 1.26 ( 0.77, 1.23) 2.0 1.29 ( 0.78, 1.22) 2.4 
item10 x step1to2 1.02 0.27 0.82 ( 0.77, 1.23) -1.6 0.78 ( 0.80, 1.20) -2.3 
item11 x step0to1 -0.06 0.25 1.14 ( 0.75, 1.25) 1.1 1.23 ( 0.80, 1.20) 2.2 
item11 x step1to2 -0.67 0.26 1.22 ( 0.75, 1.25) 1.7 1.38 ( 0.78, 1.22) 3.1 
item12 x step0to1 2.21 0.57 1.28 ( 0.76, 1.24) 2.1 1.41 ( 0.80, 1.20) 3.6 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweighted 
Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

item12 x step1to2 -2.74 0.58 1.24 ( 0.76, 1.24) 1.8 1.37 ( 0.79, 1.21) 3.1 
item13 x step0to1 0.80 0.34 1.10 ( 0.76, 1.24) 0.8 1.26 ( 0.69, 1.31) 1.6 
item13 x step1to2 0.19 0.57 0.55 ( 0.76, 1.24) -4.3 0.95 ( 0.18, 1.82) 0.0 
item14 x step0to1 0.92 0.27 1.22 ( 0.77, 1.23) 1.8 1.27 ( 0.72, 1.28) 1.8 
item14 x step1to2 0.87 0.61 1.16 ( 0.77, 1.23) 1.3 1.01 ( 0.25, 1.75) 0.1 
item15 x step0to1 -1.73 0.22 0.93 ( 0.75, 1.25) -0.5 1.08 ( 0.74, 1.26) 0.6 
item15 x step1to2 0.69 0.26 1.07 ( 0.75, 1.25) 0.6 1.18 ( 0.78, 1.22) 1.5 
item16 x step0to1 -0.88 0.21 1.24 ( 0.73, 1.27) 1.7 1.27 ( 0.79, 1.21) 2.3 
item16 x step1to2 0.16 0.22 1.21 ( 0.73, 1.27) 1.5 1.25 ( 0.79, 1.21) 2.2 
item17 x step0to1 -0.75 0.28 1.07 ( 0.76, 1.24) 0.6 1.15 ( 0.80, 1.20) 1.4 
item17 x step1to2 -0.33 0.26 1.02 ( 0.76, 1.24) 0.2 1.07 ( 0.83, 1.17) 0.8 
item18 x step0to1 -0.68 0.30 1.15 ( 0.74, 1.26) 1.1 1.21 ( 0.79, 1.21) 1.8 
item18 x step1to2 -0.49 0.27 1.08 ( 0.74, 1.26) 0.6 1.10 ( 0.81, 1.19) 1.0 
item19 x step0to1 -0.48 0.17 1.12 ( 0.85, 1.15) 1.5 1.15 ( 0.90, 1.10) 2.9 
item19 x step1to2 0.07 0.19 1.03 ( 0.85, 1.15) 0.5 1.10 ( 0.86, 1.14) 1.4 
item20 x step0to1 0.62 0.27 1.12 ( 0.84, 1.16) 1.5 1.21 ( 0.88, 1.12) 3.3 
item20 x step1to2 -0.55 0.28 1.15 ( 0.84, 1.16) 1.9 1.25 ( 0.86, 1.14) 3.4 
item2 x rater5 -0.21 0.08 0.71 ( 0.83, 1.17) -3.5 0.46 ( 0.82, 1.18) -7.5 
item3 x rater2 0.28 0.09 0.69 ( 0.80, 1.20) -3.4 0.58 ( 0.78, 1.22) -4.4 
item 4 x rater2 -0.25 0.08 0.64 ( 0.83, 1.17) -4.7 0.58 ( 0.80, 1.20) -4.9 
item5xrater6 0.00 0.09 0.66 ( 0.83, 1.17) -4.4 0.54 ( 0.83, 1.17) -6.4 
item6xrater6 -0.05 0.10 0.69 ( 0.80, 1.20) -3.3 0.59 ( 0.79, 1.21) -4.4 
item7 x rater4 -0.14 0.08 0.88 ( 0.85, 1.15) -1.7 0.62 ( 0.82, 1.18) -4.8 
item8 x rater4 -0.23 0.08 0.75 ( 0.85, 1.15) -3.5 0.61 ( 0.82, 1.18) -5.0 
item10 x rater6 -0.11 0.17 0.70 ( 0.83, 1.17) -3.8 0.56 ( 0.83, 1.17) -6.2 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweighted 
Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

item12 x rater2 -0.03 0.08 0.76 ( 0.83, 1.17) -2.9 0.67 ( 0.83, 1.17) -4.3 
item13 x rater4 0.13 0.13 0.73 ( 0.85, 1.15) -3.9 0.60 ( 0.83, 1.17) -5.5 
item14 x rater4 0.17 0.09 0.78 ( 0.85, 1.15) -3.2 0.58 ( 0.83, 1.17) -5.8 
item15 x rater4 0.22 0.11 0.85 ( 0.85, 1.15) -2.0 0.78 ( 0.83, 1.17) -2.8 
item16 x rater4 -0.20 0.11 1.07 ( 0.85, 1.15) 0.9 1.16 ( 0.84, 1.16) 1.9 
item17 x rater4 -0.09 0.10 0.76 ( 0.85, 1.15) -3.4 0.68 ( 0.84, 1.16) -4.4 
item18 x rater4 0.12 0.11 0.92 ( 0.85, 1.15) -1.1 0.68 ( 0.83, 1.17) -4.1 
item19 x rater5 -0.05 0.07 0.80 ( 0.85, 1.15) -2.8 0.68 ( 0.84, 1.16) -4.2 
item1 x step0to1 x rater5 1.18 0.33 0.84 ( 0.76, 1.24) -1.3 0.75 ( 0.79, 1.21) -2.6 
item1 x step1to2 x rater5 -0.82 0.30 0.70 ( 0.76, 1.24) -2.8 0.62 ( 0.75, 1.25) -3.5 
item2 x step0to1 x rater5 0.12 0.29 0.61 ( 0.74, 1.26) -3.4 0.51 ( 0.79, 1.21) -5.5 
item2 x step1to2 x rater5 -0.08 0.31 0.65 ( 0.74, 1.26) -3.0 0.43 ( 0.75, 1.25) -5.8 
item3 x step0to1 x rater2 0.40 0.24 0.71 ( 0.76, 1.24) -2.6 0.65 ( 0.82, 1.18) -4.3 
item3 x step1to2 x rater2 -0.22 0.22 0.95 ( 0.76, 1.24) -0.4 0.85 ( 0.78, 1.22) -1.4 
item4 x step0to1 x rater2 0.53 0.21 0.86 ( 0.74, 1.26) -1.0 0.83 ( 0.81, 1.19) -1.8 
item4 x step1to2 x rater2 -0.67 0.23 1.22 ( 0.74, 1.26) 1.6 1.24 ( 0.80, 1.20) 2.2 
item5 x step0to1 x rater6 -0.44 0.20 0.82 ( 0.76, 1.24) -1.5 0.77 ( 0.82, 1.18) -2.7 
item5 x step1to2 x rater6 0.26 0.21 0.80 ( 0.76, 1.24) -1.8 0.75 ( 0.79, 1.21) -2.5 
item6 x step0to1 x rater6 -0.63 0.23 0.92 ( 0.76, 1.24) -0.6 0.85 ( 0.81, 1.19) -1.6 
item6 x step1to2 x rater6 0.74 0.23 0.94 ( 0.76, 1.24) -0.4 0.89 ( 0.77, 1.23) -0.9 
item7 x step0to1 x rater4 -1.46 0.53 0.95 ( 0.77, 1.23) -0.4 0.89 ( 0.80, 1.20) -1.1 
item7 x step1to2 x rater4 1.18 0.54 0.77 ( 0.77, 1.23) -2.1 0.80 ( 0.76, 1.24) -1.7 
item8 x step0to1 x rater4 -1.51 0.52 0.80 ( 0.77, 1.23) -1.8 0.74 ( 0.83, 1.17) -3.2 
item8 x step1to2 x rater4 0.92 0.54 0.79 ( 0.77, 1.23) -1.9 0.76 ( 0.82, 1.18) -2.8 
item9 x step0to1 x rater6 0.26 0.33 0.82 ( 0.75, 1.25) -1.5 0.77 ( 0.79, 1.21) -2.3 
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Parameter 
Parameter 

estimate 
Standard 

error 

Unweighted 
Mean 

Square 
Confidence 
Interval T 

Weighted 
Mean 

Square 
Confidence 
Interval T 

item9 x step1to2 x rater6 0.12 0.26 0.86 ( 0.75, 1.25) -1.1 0.85 ( 0.79, 1.21) -1.4 
item10 x step0to1 x rater6 0.15 0.39 0.86 ( 0.77, 1.23) -1.2 0.77 ( 0.78, 1.22) -2.2 
item10 x step1to2 x rater6 0.15 0.27 1.14 ( 0.77, 1.23) 1.1 1.19 ( 0.80, 1.20) 1.8 
item11 x step0to1 x rater2 -1.14 0.25 0.73 ( 0.75, 1.25) -2.3 0.67 ( 0.80, 1.20) -3.6 
item11 x step1to2 x rater2 0.53 0.26 0.70 ( 0.75, 1.25) -2.6 0.58 ( 0.78, 1.22) -4.4 
item12 x step0to1 x rater2 0.09 0.57 0.70 ( 0.76, 1.24) -2.6 0.62 ( 0.80, 1.20) -4.3 
item12 x step1to2 x rater2 -0.43 0.58 0.71 ( 0.76, 1.24) -2.5 0.63 ( 0.79, 1.21) -3.9 
item13 x step0to1 x rater4 -0.73 0.34 0.61 ( 0.76, 1.24) -3.7 0.70 ( 0.69, 1.31) -2.1 
item13 x step1to2 x rater4 1.15 0.57 0.60 ( 0.76, 1.24) -3.8 1.12 ( 0.18, 1.82) 0.4 
item14 x step0to1 x rater4 -0.58 0.27 0.75 ( 0.77, 1.23) -2.3 0.71 ( 0.72, 1.28) -2.2 
item14 x step1to2 x rater4 -0.10 0.61 1.17 ( 0.77, 1.23) 1.4 1.04 ( 0.25, 1.75) 0.2 
item15 x step0to1 x rater4 1.14 0.21 0.78 ( 0.75, 1.25) -1.9 0.82 ( 0.74, 1.26) -1.4 
item15 x step1to2 x rater4 -0.05 0.26 0.78 ( 0.75, 1.25) -1.9 0.74 ( 0.78, 1.22) -2.5 
item16 x step0to1 x rater4 0.11 0.21 0.70 ( 0.73, 1.27) -2.4 0.63 ( 0.79, 1.21) -4.0 
item16 x step1to2 x rater4 0.49 0.22 0.74 ( 0.73, 1.27) -2.0 0.73 ( 0.79, 1.21) -2.7 
item17 x step0to1 x rater4 0.88 0.28 0.77 ( 0.76, 1.24) -2.0 0.75 ( 0.80, 1.20) -2.6 
item17 x step1to2 x rater4 -0.33 0.26 0.87 ( 0.76, 1.24) -1.1 0.86 ( 0.83, 1.17) -1.6 
item18 x step0to1 x rater4 0.89 0.30 0.80 ( 0.74, 1.26) -1.6 0.77 ( 0.79, 1.21) -2.3 
item18 x step1to2 x rater4 -0.34 0.27 0.87 ( 0.74, 1.26) -1.0 0.86 ( 0.81, 1.19) -1.5 
item19 x step0to1 x rater5 0.18 0.16 0.99 ( 0.85, 1.15) -0.1 0.95 ( 0.90, 1.10) -1.0 
item19 x step1to2 x rater5 -0.16 0.19 0.88 ( 0.85, 1.15) -1.6 0.90 ( 0.86, 1.14) -1.4 
item20 x step0to1 x rater4 0.72 0.27 0.89 ( 0.84, 1.16) -1.4 0.80 ( 0.88, 1.12) -3.4 
item20 x step1to2 x rater4 -0.85 0.28 0.88 ( 0.84, 1.16) -1.5 0.76 ( 0.86, 1.14) -3.7 
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Appendix E 
 

Results of DIF Analysis 

Table E.1 

Parameter Estimates by Grade Level – Structure and Properties of Matter 

Item Grade Estimate 
Standard 

error 
1   1A - Ana's .. -- -0.348 0.118 
2   1B - Ana's .. -- -1.079 0.189 
3   2A - Beth's.. -- 0.454 0.122 
4   2B - Beth's.. -- 0.261 0.117 
5   3A - Romita.. -- -0.151 0.110 
6   3B - Romita.. -- -0.191 0.110 
7   4A - Kevin'.. -- 0.508 0.110 
8   4B - Kevin'.. -- 0.275 0.102 
9   5A - Brass .. -- -0.159 0.111 
10  5B - Brass .. -- 0.003 0.101 
11  6A - Carol'.. -- 0.349 0.112 
12  6B - Carol'.. -- 0.109 0.111 
13  7A - Box of.. -- 1.640 0.170 
14  7B - Box of.. -- 0.832 0.145 
15  8A - Grain .. -- -0.011 0.109 
16  8B - Grain .. -- -0.867 0.179 
17  9A - Nate's.. -- -0.220 0.114 
18  9B - Nate's.. -- -0.774 0.127 
19  10 - Drops .. -- -0.125 0.069 
20  11 - Ken's .. -- -0.379 0.070 
-- 4 0.116ᶧ 0.024 
-- 5 -0.116*ᶧ 0.024 
1   1A - Ana's 1 4 0.054 0.118 
2   1B - Ana's 1 4 -0.136 0.189 
3   2A - Beth's1 4 0.134 0.122 
4   2B - Beth's1 4 -0.078 0.117 
5   3A - Romita1 4 0.057 0.110 
6   3B - Romita1 4 -0.103 0.110 
7   4A - Kevin'1 4 -0.063 0.110 
8   4B - Kevin'1 4 0.085 0.102 
9   5A - Brass 1 4 0.038 0.111 
10  5B - Brass 1 4 -0.263ᶧ  0.101 



334 
 

Item Grade Estimate 
Standard 

error 
11  6A - Carol'1 4 -0.163 0.112 
12  6B - Carol'1 4 0.166 0.111 
13  7A - Box of1 4 -0.213 0.170 
14  7B - Box of1 4 0.112 0.145 
15  8A - Grain 1 4 -0.162 0.109 
16  8B - Grain 1 4 0.100 0.179 
17  9A - Nate's1 4 0.246ᶧ  0.114 
18  9B - Nate's1 4 -0.092 0.127 
19  10 - Drops 1 4 0.065 0.069 
20  11 - Ken's 1 4 0.019 0.070 
1   1A - Ana's 2 5 -0.054* 0.118 
2   1B - Ana's 2 5 0.136* 0.189 
3   2A - Beth's2 5 -0.134* 0.122 
4   2B - Beth's2 5 0.078* 0.117 
5   3A - Romita2 5 -0.057* 0.110 
6   3B - Romita2 5 0.103* 0.110 
7   4A - Kevin'2 5 0.063* 0.110 
8   4B - Kevin'2 5 -0.085* 0.102 
9   5A - Brass 2 5 -0.038* 0.111 
10  5B - Brass 2 5 0.263*ᶧ  0.101 
11  6A - Carol'2 5 0.163* 0.112 
12  6B - Carol'2 5 -0.166* 0.111 
13  7A - Box of2 5 0.213* 0.170 
14  7B - Box of2 5 -0.112* 0.145 
15  8A - Grain 2 5 0.162* 0.109 
16  8B - Grain 2 5 -0.100* 0.179 
17  9A - Nate's2 5 -0.246*ᶧ  0.114 
18  9B - Nate's2 5 0.092* 0.127 
19  10 - Drops 2 5 -0.065* 0.069 
20  11 - Ken's 2 5 -0.019* 0.070 
* Indicates that parameter is constrained 

ᶧ Indicates that difference between Grade 4 and Grade 5 
parameters is statistically significant.  
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Table E.2 

Parameter Estimates by Grade Level – Scale, Proportion, and Quantity  
Item Grade Estimate Standard error 
1   1A - Ana's .. -- -1.085 0.216 
2   1B - Ana's .. -- -0.475 0.233 
3   2A - Beth's.. -- -0.559 0.130 
4   2B - Beth's.. -- -0.303 0.135 
5   3A - Romita.. -- -0.789 0.204 
6   3B - Romita.. -- -1.458 0.293 
7   4A - Kevin'.. -- -1.538 0.236 
8   4B - Kevin'.. -- -1.484 0.220 
9   5A - Brass .. -- -2.290 0.301 
10  5B - Brass .. -- -1.951 0.249 
11  6A - Carol'.. -- -1.803 0.258 
12  6B - Carol'.. -- -0.351 0.241 
13  7A - Box of.. -- 0.839 0.121 
14  7B - Box of.. -- 3.294 0.351 
15  8A.1 - Grai.. -- 0.585 0.163 
16  8A.2 - Grai.. -- 1.769 0.206 
17  8B.1 - Grai.. -- -0.179 0.161 
18  8B.2 - Grai.. -- 0.280 0.153 
19  9A - Nate's.. -- -0.184 0.199 
20  9B - Nate's.. -- -0.389 0.214 
21  10 - Drops .. -- -1.206 0.105 
22  11 - Ken's .. -- -1.053 0.139 
-- 4 0.116ᶧ 0.038 
-- 5 -0.116*ᶧ 0.038 
1   1A - Ana's 1 4 0.257 0.216 
2   1B - Ana's 1 4 -0.095 0.233 
3   2A - Beth's1 4 -0.287ᶧ 0.130 
4   2B - Beth's1 4 -0.059 0.135 
5   3A - Romita1 4 -0.233 0.204 
6   3B - Romita1 4 0.262 0.293 
7   4A - Kevin'1 4 0.165 0.236 
8   4B - Kevin'1 4 0.080 0.220 
9   5A - Brass 1 4 0.389 0.301 
10  5B - Brass 1 4 -0.236 0.249 
11  6A - Carol'1 4 0.298 0.258 
12  6B - Carol'1 4 -0.105 0.241 
13  7A - Box of1 4 -0.234 0.121 
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Item Grade Estimate Standard error 
14  7B - Box of1 4 0.915ᶧ 0.351 
15  8A.1 - Grai1 4 -0.078 0.163 
16  8A.2 - Grai1 4 0.291 0.206 
17  8B.1 - Grai1 4 0.148 0.161 
18  8B.2 - Grai1 4 -0.078 0.153 
19  9A - Nate's1 4 -0.148 0.199 
20  9B - Nate's1 4 -0.058 0.214 
21  10 - Drops 1 4 0.203 0.105 
22  11 - Ken's 1 4 0.040 0.139 
1   1A - Ana's 2 5 -0.257* 0.216 
2   1B - Ana's 2 5 0.095* 0.233 
3   2A - Beth's2 5 0.287*ᶧ 0.130 
4   2B - Beth's2 5 0.059* 0.135 
5   3A - Romita2 5 0.233* 0.204 
6   3B - Romita2 5 -0.262* 0.293 
7   4A - Kevin'2 5 -0.165* 0.236 
8   4B - Kevin'2 5 -0.080* 0.220 
9   5A - Brass 2 5 -0.389* 0.301 
10  5B - Brass 2 5 0.236* 0.249 
11  6A - Carol'2 5 -0.298* 0.258 
12  6B - Carol'2 5 0.105* 0.241 
13  7A - Box of2 5 0.234* 0.121 
14  7B - Box of2 5 -0.915*ᶧ 0.351 
15  8A.1 - Grai2 5 0.078* 0.163 
16  8A.2 - Grai2 5 -0.291* 0.206 
17  8B.1 - Grai2 5 -0.148* 0.161 
18  8B.2 - Grai2 5 0.078* 0.153 
19  9A - Nate's2 5 0.148* 0.199 
20  9B - Nate's2 5 0.058* 0.214 
21  10 - Drops 2 5 -0.203* 0.105 
22  11 - Ken's 2 5 -0.040* 0.139 

* Indicates that parameter is constrained. 

ᶧ Indicates that difference between Grade 4 and Grade 5 
parameters is statistically significant.  
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Table E.3 

Parameter Estimates by Grade Level – Engaging in Argument from Evidence 
Item Grade Estimate Standard error 
1   1A - Ana's .. -- -0.022 0.122 
2   1B - Ana's .. -- -0.022 0.108 
3   2A - Beth's.. -- 0.133 0.109 
4   2B - Beth's.. -- 0.092 0.112 
5   3A - Romita.. -- -0.163 0.096 
6   3B - Romita.. -- -0.405 0.097 
7   4A - Kevin'.. -- -0.096 0.118 
8   4B - Kevin'.. -- -0.235 0.105 
9   5A - Brass .. -- 0.010 0.119 
10  5B - Brass .. -- -0.220 0.103 
11  6A - Carol'.. -- -0.056 0.115 
12  6B - Carol'.. -- 0.253 0.108 
13  7A - Box of.. -- -0.168 0.126 
14  7B - Box of.. -- -0.053 0.091 
15  8A.1 - Grai.. -- -0.145 0.109 
16  8A.2 - Grai.. -- 0.000 0.132 
17  8B.1 - Grai.. -- 0.031 0.089 
18  8B.2 - Grai.. -- 0.173 0.092 
19  9A - Nate's.. -- 0.091 0.122 
20  9B - Nate's.. -- -0.086 0.118 
21  10 - Drops .. -- 0.274 0.080 
22  11 - Ken's .. -- 0.272 0.083 
-- 4 0.022* 0.122 
-- 5 0.022* 0.108 
1   1A - Ana's 1 4 -0.133* 0.109 
2   1B - Ana's 1 4 -0.092* 0.112 
3   2A - Beth's1 4 0.163* 0.096 
4   2B - Beth's1 4 0.405* 0.097 
5   3A - Romita1 4 0.096* 0.118 
6   3B - Romita1 4 0.235* 0.105 
7   4A - Kevin'1 4 -0.010* 0.119 
8   4B - Kevin'1 4 0.220* 0.103 
9   5A - Brass 1 4 0.056* 0.115 
10  5B - Brass 1 4 -0.253* 0.108 
11  6A - Carol'1 4 0.168* 0.126 
12  6B - Carol'1 4 0.053* 0.091 
13  7A - Box of1 4 0.145* 0.109 
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Item Grade Estimate Standard error 
14  7B - Box of1 4 -0.000* 0.132 
15  8A.1 - Grai1 4 -0.031* 0.089 
16  8A.2 - Grai1 4 -0.173* 0.092 
17  8B.1 - Grai1 4 -0.091* 0.122 
18  8B.2 - Grai1 4 0.086* 0.118 
19  9A - Nate's1 4 -0.274* 0.080 
20  9B - Nate's1 4 -0.272* 0.083 
21  10 - Drops 1 4 -0.022 0.122 
22  11 - Ken's 1 4 -0.022 0.108 
1   1A - Ana's 2 5 0.133 0.109 
2   1B - Ana's 2 5 0.092 0.112 
3   2A - Beth's2 5 -0.163 0.096 
4   2B - Beth's2 5 -0.405 0.097 
5   3A - Romita2 5 -0.096 0.118 
6   3B - Romita2 5 -0.235 0.105 
7   4A - Kevin'2 5 0.010 0.119 
8   4B - Kevin'2 5 -0.220 0.103 
9   5A - Brass 2 5 -0.056 0.115 
10  5B - Brass 2 5 0.253 0.108 
11  6A - Carol'2 5 -0.168 0.126 
12  6B - Carol'2 5 -0.053 0.091 
13  7A - Box of2 5 -0.145 0.109 
14  7B - Box of2 5 0.000 0.132 
15  8A.1 - Grai2 5 0.031 0.089 
16  8A.2 - Grai2 5 0.173 0.092 
17  8B.1 - Grai2 5 0.091 0.122 
18  8B.2 - Grai2 5 -0.086 0.118 
19  9A - Nate's2 5 0.274 0.080 
20  9B - Nate's2 5 0.272 0.083 
21  10 - Drops 2 5 0.022* 0.122 
22  11 - Ken's 2 5 0.022* 0.108 
* Indicates that parameter is constrained 

ᶧ Indicates that difference between Grade 4 and Grade 5 
parameters is statistically significant.  

 

  



339 
 

Table E.4 

Parameter Estimates by Inquiry Project Participation (5th Grade Students Only) – 
Structure and Properties of Matter 
Item Curriculum Estimate Standard error 
1   1A - Ana's .. -- -0.491 0.164 
2   1B - Ana's .. -- -1.221 0.244 
3   2A - Beth's.. -- 0.195 0.161 
4   2B - Beth's.. -- 0.216 0.157 
5   3A - Romita.. -- -0.352 0.146 
6   3B - Romita.. -- -0.239 0.141 
7   4A - Kevin'.. -- 0.497 0.141 
8   4B - Kevin'.. -- 0.097 0.128 
9   5A - Brass .. -- -0.303 0.145 
10  5B - Brass .. -- 0.120 0.138 
11  6A - Carol'.. -- 0.397 0.153 
12  6B - Carol'.. -- -0.197 0.145 
13  7A - Box of.. -- 1.755 0.232 
14  7B - Box of.. -- 0.663 0.182 
15  8A - Grain .. -- -0.055 0.161 
16  8B - Grain .. -- -1.101 0.227 
17  9A - Nate's.. -- -0.589 0.155 
18  9B - Nate's.. -- -0.826 0.181 
19  10 - Drops .. -- -0.465 0.096 
20  11 - Ken's .. -- -0.514 0.095 
-- IP -0.145ᶧ 0.033 
-- non-IP 0.145*ᶧ 0.033 
1   1A - Ana's 1 IP 0.433ᶧ  0.164 
2   1B - Ana's 1 IP 0.711ᶧ  0.244 
3   2A - Beth's1 IP -0.158 0.161 
4   2B - Beth's1 IP -0.085 0.157 
5   3A - Romita1 IP -0.168 0.146 
6   3B - Romita1 IP -0.025 0.141 
7   4A - Kevin'1 IP 0.153 0.141 
8   4B - Kevin'1 IP 0.179 0.128 
9   5A - Brass 1 IP 0.234 0.145 
10  5B - Brass 1 IP -0.209 0.138 
11  6A - Carol'1 IP 0.006 0.153 
12  6B - Carol'1 IP -0.086 0.145 
13  7A - Box of1 IP -0.038 0.232 
14  7B - Box of1 IP 0.299 0.182 
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Item Grade Estimate Standard error 
15  8A - Grain 1 IP -0.574ᶧ  0.161 
16  8B - Grain 1 IP 0.207 0.227 
17  9A - Nate's1 IP 0.163 0.155 
18  9B - Nate's1 IP 0.246 0.181 
19  10 - Drops 1 IP -0.460ᶧ  0.096 
20  11 - Ken's 1 IP 0.234ᶧ  0.095 
1   1A - Ana's 2 non-IP -0.433* 0.164 
2   1B - Ana's 2 non-IP -0.711* 0.244 
3   2A - Beth's2 non-IP 0.158* 0.161 
4   2B - Beth's2 non-IP 0.085* 0.157 
5   3A - Romita2 non-IP 0.168* 0.146 
6   3B - Romita2 non-IP 0.025* 0.141 
7   4A - Kevin'2 non-IP -0.153* 0.141 
8   4B - Kevin'2 non-IP -0.179* 0.128 
9   5A - Brass 2 non-IP -0.234* 0.145 
10  5B - Brass 2 non-IP 0.209* 0.138 
11  6A - Carol'2 non-IP -0.006* 0.153 
12  6B - Carol'2 non-IP 0.086* 0.145 
13  7A - Box of2 non-IP 0.038* 0.232 
14  7B - Box of2 non-IP -0.299* 0.182 
15  8A - Grain 2 non-IP 0.574* 0.161 
16  8B - Grain 2 non-IP -0.207* 0.227 
17  9A - Nate's2 non-IP -0.163* 0.155 
18  9B - Nate's2 non-IP -0.246* 0.181 
19  10 - Drops 2 non-IP 0.460* 0.096 
20  11 - Ken's 2 non-IP -0.234* 0.095 
* Indicates that parameter is constrained  
ᶧ Indicates that difference between Inquiry Project and non-
Inquiry parameters is statistically significant.  
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Table E.5 

Parameter Estimates by Inquiry Project Participation (5th Grade Students Only) – Scale, 
Proportion, and Quantity 
Item Curriculum Estimate Standard error 
1   1A - Ana's .. -- -1.491 0.292 
2   1B - Ana's .. -- -0.533 0.306 
3   2A - Beth's.. -- -0.454 0.168 
4   2B - Beth's.. -- -0.374 0.18 
5   3A - Romita.. -- -0.689 0.262 
6   3B - Romita.. -- -1.896 0.427 
7   4A - Kevin'.. -- -2.021 0.334 
8   4B - Kevin'.. -- -2.218 0.307 
9   5A - Brass .. -- -2.819 0.446 
10  5B - Brass .. -- -1.988 0.323 
11  6A - Carol'.. -- -2.723 0.399 
12  6B - Carol'.. -- -0.482 0.321 
13  7A - Box of.. -- 0.877 0.164 
14  7B - Box of.. -- 2.327 0.376 
15  8A.1 - Grai.. -- 0.596 0.224 
16  8A.2 - Grai.. -- 1.421 0.255 
17  8B.1 - Grai.. -- -0.497 0.214 
18  8B.2 - Grai.. -- 0.252 0.186 
19  9A - Nate's.. -- -0.151 0.259 
20  9B - Nate's.. -- -0.472 0.291 
21  10 - Drops .. -- -1.872 0.145 
22  11 - Ken's .. -- -1.224 0.187 
-- IP -0.394ᶧ 0.050 
-- non-IP 0.394*ᶧ 0.050 
1   1A - Ana's 1 IP 0.234 0.292 
2   1B - Ana's 1 IP 0.129 0.306 
3   2A - Beth's1 IP -0.016 0.168 
4   2B - Beth's1 IP 0.184 0.180 
5   3A - Romita1 IP 0.236 0.262 
6   3B - Romita1 IP 0.824 0.427 
7   4A - Kevin'1 IP -0.399 0.334 
8   4B - Kevin'1 IP -0.790ᶧ 0.307 
9   5A - Brass 1 IP 0.522 0.446 
10  5B - Brass 1 IP -0.164 0.323 
11  6A - Carol'1 IP -0.768 0.399 
12  6B - Carol'1 IP -0.210 0.321 
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Item Grade Estimate Standard error 
13  7A - Box of1 IP 0.021 0.164 
14  7B - Box of1 IP 0.613 0.376 
15  8A.1 - Grai1 IP 0.020 0.224 
16  8A.2 - Grai1 IP -0.061 0.255 
17  8B.1 - Grai1 IP -0.206 0.214 
18  8B.2 - Grai1 IP 0.232 0.186 
19  9A - Nate's1 IP 0.351 0.259 
20  9B - Nate's1 IP 0.256 0.291 
21  10 - Drops 1 IP -0.373ᶧ 0.145 
22  11 - Ken's 1 IP 0.274 0.187 
1   1A - Ana's 2 non-IP -0.234* 0.292 
2   1B - Ana's 2 non-IP -0.129* 0.306 
3   2A - Beth's2 non-IP 0.016* 0.168 
4   2B - Beth's2 non-IP -0.184* 0.180 
5   3A - Romita2 non-IP -0.236* 0.262 
6   3B - Romita2 non-IP -0.824* 0.427 
7   4A - Kevin'2 non-IP 0.399* 0.334 
8   4B - Kevin'2 non-IP 0.790*ᶧ 0.307 
9   5A - Brass 2 non-IP -0.522* 0.446 
10  5B - Brass 2 non-IP 0.164* 0.323 
11  6A - Carol'2 non-IP 0.768* 0.399 
12  6B - Carol'2 non-IP 0.210* 0.321 
13  7A - Box of2 non-IP -0.021* 0.164 
14  7B - Box of2 non-IP -0.613* 0.376 
15  8A.1 - Grai2 non-IP -0.020* 0.224 
16  8A.2 - Grai2 non-IP 0.061* 0.255 
17  8B.1 - Grai2 non-IP 0.206* 0.214 
18  8B.2 - Grai2 non-IP -0.232* 0.186 
19  9A - Nate's2 non-IP -0.351* 0.259 
20  9B - Nate's2 non-IP -0.256* 0.291 
21  10 - Drops 2 non-IP 0.373*ᶧ 0.145 
22  11 - Ken's 2 non-IP -0.274* 0.187 
* Indicates that parameter is constrained 

ᶧ Indicates that difference between Inquiry Project and non-
Inquiry parameters is statistically significant.  
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Table E.6 

Parameter Estimates by Inquiry Project Participation (5th Grade Students Only) – 
Engaging in Argument from Evidence 
Item Curriculum Estimate Standard error 
1   1A - Ana's .. -- -1.150 0.168 
2   1B - Ana's .. -- -0.583 0.145 
3   2A - Beth's.. -- -1.247 0.142 
4   2B - Beth's.. -- -1.338 0.160 
5   3A - Romita.. -- -0.764 0.121 
6   3B - Romita.. -- -0.657 0.125 
7   4A - Kevin'.. -- -1.003 0.152 
8   4B - Kevin'.. -- -1.049 0.141 
9   5A - Brass .. -- -0.946 0.169 
10  5B - Brass .. -- -0.800 0.135 
11  6A - Carol'.. -- -1.511 0.147 
12  6B - Carol'.. -- -1.068 0.139 
13  7A - Box of.. -- -0.772 0.170 
14  7B - Box of.. -- -0.680 0.113 
15  8A.1 - Grai.. -- -0.954 0.143 
16  8A.2 - Grai.. -- -0.699 0.162 
17  8B.1 - Grai.. -- -0.630 0.118 
18  8B.2 - Grai.. -- -0.210 0.110 
19  9A - Nate's.. -- -0.150 0.170 
20  9B - Nate's.. -- -1.117 0.167 
21  10 - Drops .. -- -1.164 0.112 
22  11 - Ken's .. -- -1.427 0.114 
-- IP -0.165ᶧ 0.029 
-- non-IP 0.165*ᶧ 0.029 
1   1A - Ana's 1 IP 0.106 0.168 
2   1B - Ana's 1 IP -0.246 0.145 
3   2A - Beth's1 IP -0.006 0.142 
4   2B - Beth's1 IP -0.310 0.160 
5   3A - Romita1 IP -0.026 0.121 
6   3B - Romita1 IP -0.427ᶧ 0.125 
7   4A - Kevin'1 IP -0.101 0.152 
8   4B - Kevin'1 IP 0.214 0.141 
9   5A - Brass 1 IP 0.058 0.169 
10  5B - Brass 1 IP -0.005 0.135 
11  6A - Carol'1 IP -0.075 0.147 
12  6B - Carol'1 IP 0.355ᶧ 0.139 
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Item Grade Estimate Standard error 
13  7A - Box of1 IP -0.082 0.170 
14  7B - Box of1 IP -0.089 0.113 
15  8A.1 - Grai1 IP -0.053 0.143 
16  8A.2 - Grai1 IP 0.124 0.162 
17  8B.1 - Grai1 IP -0.354ᶧ 0.118 
18  8B.2 - Grai1 IP -0.160 0.110 
19  9A - Nate's1 IP 1.011ᶧ 0.170 
20  9B - Nate's1 IP 0.097 0.167 
21  10 - Drops 1 IP 0.089 0.112 
22  11 - Ken's 1 IP 0.198 0.114 
1   1A - Ana's 2 non-IP -0.106* 0.168 
2   1B - Ana's 2 non-IP 0.246* 0.145 
3   2A - Beth's2 non-IP 0.006* 0.142 
4   2B - Beth's2 non-IP 0.310* 0.160 
5   3A - Romita2 non-IP 0.026* 0.121 
6   3B - Romita2 non-IP 0.427*ᶧ 0.125 
7   4A - Kevin'2 non-IP 0.101* 0.152 
8   4B - Kevin'2 non-IP -0.214* 0.141 
9   5A - Brass 2 non-IP -0.058* 0.169 
10  5B - Brass 2 non-IP 0.005* 0.135 
11  6A - Carol'2 non-IP 0.075* 0.147 
12  6B - Carol'2 non-IP -0.355*ᶧ 0.139 
13  7A - Box of2 non-IP 0.082* 0.170 
14  7B - Box of2 non-IP 0.089* 0.113 
15  8A.1 - Grai2 non-IP 0.053* 0.143 
16  8A.2 - Grai2 non-IP -0.124* 0.162 
17  8B.1 - Grai2 non-IP 0.354*ᶧ 0.118 
18  8B.2 - Grai2 non-IP 0.160* 0.110 
19  9A - Nate's2 non-IP -1.011*ᶧ 0.170 
20  9B - Nate's2 non-IP -0.097* 0.167 
21  10 - Drops 2 non-IP -0.089* 0.112 
22  11 - Ken's 2 non-IP -0.198* 0.114 
* Indicates that parameter is constrained 

ᶧ Indicates that difference between Grade 4 and Grade 5 
parameters is statistically significant.  
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Scale 1 Scale 2 

On Scale 1, cylinders 1 and 2 have the 
same volume.  

 

On Scale 2, cylinders 3 and 4 have 
different volumes.  

 

Appendix F 
 

Pilot Assessment Items 

Brass and Aluminum A – Constructed Response Argument 

There are four cylinders on two balance scales. They are made of two different materials. Two 
cylinders are made of a material called brass. Two cylinders are made of a material called 
aluminum. 

 

 

 

 
 

1a) What can you tell about the weight of cylinders 1 and 2?  

 Cylinder 1 weighs more.  

 Cylinder 2 weighs more.  

 The cylinders weigh the same amount.  

 You cannot tell which one weighs more.  

1b) What can you tell about the weight of cylinders 3 and 4?  

 Cylinder 3 weighs more.  

 Cylinder 4 weighs more.  

 The cylinders weigh the same amount.  

 You cannot tell which one weighs more.  

  

3 

1 

 

2 3 

 4 

 

Volume: The amount of space 
that something takes up 
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A very small piece of brass is the exact same size and shape as another very small piece of 
aluminum.  
 
 
 
2a) What can you tell about the weight of these small pieces of brass and aluminum?  

 The brass piece will weigh more.  

 The aluminum piece will weigh more.  

 They will both weigh the same tiny bit.  

 They will both weigh nothing at all. 

 You cannot tell anything about their weight.  
 

2b) How can you tell? Make an argument. Give your evidence and reasoning. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

  

Brass Aluminum 
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Scale 1 Scale 2 

On Scale 1, cylinders 1 and 2 have the 
same volume.  

 

On Scale 2, cylinders 3 and 4 have 
different volumes.  

 

Brass and Aluminum B – Selected Response Argument 

There are four cylinders on two balance scales. They are made of two different materials. Two 
cylinders are made of a material called brass. Two cylinders are made of a material called 
aluminum. 

 

 

 

 
 

1a) What can you tell about the weight of cylinders 1 and 2?  

 Cylinder 1 weighs more.  

 Cylinder 2 weighs more.  

 The cylinders weigh the same amount.  

 You cannot tell which one weighs more.  

1b) What can you tell about the weight of cylinders 3 and 4?  

 Cylinder 3 weighs more.  

 Cylinder 4 weighs more.  

 The cylinders weigh the same amount.  

 You cannot tell which one weighs more.  

  

3 

1 

 

2 3 

 4 

 

Volume: The amount of space 
that something takes up 
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A very small piece of brass is the exact same size and shape as another very small piece of 
aluminum.  
 
 
 
2a) What can you tell about the weight of these small pieces of brass and aluminum?  

 The brass piece will weigh more.  

 The aluminum piece will weigh more.  

 They will both weigh the same tiny bit.  

 They will both weigh nothing at all. 

 You cannot tell anything about their weight.  
 

2b) How can you tell? Make an argument. Give your evidence and reasoning. You can pick 
more than one answer.  

 I can tell because the new pieces are the same size and shape.  

 I can tell because the new pieces are both very small.  

 I can tell because of the weight of equal volumes of brass and aluminum on Scale 1.  

 I can tell because of the weight of different volumes of brass and aluminum on Scale 2.  

 I cannot tell because the pieces are different sizes than the pieces on Scale 1 and 2.  

 Very small things will weigh only a tiny bit.  

 Very small things do not weigh anything.  

 Objects that are the same size should always weigh the same.  

 A piece made of brass will always be heavier than a piece made of aluminum when the 
two pieces are the same size and shape.  

 A piece made of aluminum will always be heavier than a piece made of brass when the 
two pieces are the same size and shape.  

 I do not think there is enough evidence. The evidence I need is: 
_______________________________________________________________ 

 I had some other reason: _________________________________________________ 

  

Brass Aluminum 
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Measuring coffee A – Constructed-response (all prompts) 

Coffee starts out in the form of beans.  
 

 

 

The beans must be crushed into powder before they can be used to make drinks. This is what 
coffee looks like after the beans have been crushed into powder. 

 

 
 
 
 

Kevin has an empty paper bag. He weighs it on a scale. 

 

 

 

 

 

 

 

 
Then he fills the bag with beans and weighs it again.   

 
 
 
 

 

 

 

 
 
 
 
 

1) How much do just the beans weigh? 

 

_______________________________ grams 

  

452 g 

a coffee bean 

2 g 
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Kevin uses a machine to crush the beans. He is very careful not to lose any pieces of the powder. 

 

 

 

 

 

 

 

 

 

2a) How much do you think the bag of powder weighs? 

 

_______________________________ grams 

 

2b) Why do you think so? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

  

_?_ g 
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Measuring coffee B – Selected-response (all prompts) 

Coffee starts out in the form of beans.  
 

 

 

 

The beans must be crushed into powder before they can be used to make drinks. This is what 
coffee looks like after the beans have been crushed into powder. 

 
 
 
 

Kevin has an empty paper bag. He weighs it on a scale. 

 

 

 

 

 

 

 

Then he fills the bag with beans and weighs it again.   

 
 
 
 

 

 

 

 

1) How much do just the beans weigh? 

 450 grams 

 452 grams 

 454 grams 

 You cannot tell how much they weigh 

  

452 g 

a coffee bean 

2 g 
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Kevin uses a machine to crush the beans. He is very careful not to lose any pieces of the powder. 

 

 

 

 

 

 

 

 
 
2a) How much do you think the bag of powder weighs? 

 Much less than 452 grams 

 A little less than 452 grams 

 452 grams 

 A little more than 452 grams 

 Much more than 452 grams 

 

2b) Why do you think so? Make an argument. Give your evidence and reasoning. You can 
choose more than one answer.  

 The coffee changed its form from beans to powder. 

 Kevin didn’t add or lose any coffee.  

 The powder will take up less space in the bag than the beans.  

 The coffee changed form, so the weight will change.  

 The amount of coffee stayed the same, so the weight will stay the same.  

 The amount of space the coffee takes up changed, so the weight will change.  

 I do not think there is enough evidence. The evidence I need is: 
________________________________________________________________________ 

 I had some other reason: ___________________________________________________ 

  

_?_ g 
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Beth’s rock A – Constructed-response argument 

Beth has a rock.  

 

She has a measuring cup. She pours some water into the measuring cup. Then she puts the rock in 
the measuring cup of water.  

 

 

 

 

 

 

 

 

 

 

 

 
1a) From the pictures, can you tell what the volume of the rock is?  

 Yes, the volume of the rock is __________________________. 

 No. What other information do you need? _____________________________ 

 
1b) Why or why not? Make an argument. Give your evidence and reasoning. 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

 

  

5 cc 

10 cc 

15 cc 

20 cc 

25 cc 

30 cc 

5 cc 

10 cc 

15 cc 

20 cc 

25 cc 

30 cc 

Picture A 
shows what 
the measuring 
cup looks like 
before she puts 
the rock into it.  

Picture A  Picture B  

Picture B 
shows what 
happens after 
she puts the 
rock into the 
measuring cup. 

Volume:  
The amount of 
space that 
something takes up 
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2a) From the pictures, can you tell what the weight of the rock is?  

 Yes, the weight of the rock is __________________________. 

 No. What other information do you need? _______________________________ 

 

2b) Why or why not? Make an argument. Give your evidence and reasoning. 

______________________________________________________________________________

______________________________________________________________________________

___________________________________________________________________________ 

_____________________________________________________________________________ 
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Beth’s rock B – Selected-response argument 

Beth has a rock.  

 

She has a measuring cup. She pours some water into the measuring cup. Then she puts the rock in 
the measuring cup of water.  

 

 

 

 

 

 

 

 

 

 

 

 
1a) From the pictures, can you tell what the volume of the rock is?  

 Yes, the volume of the rock is __________________________. 

 No. What other information do you need? _____________________________ 

  

5 cc 

10 cc 

15 cc 

20 cc 

25 cc 

30 cc 

5 cc 

10 cc 

15 cc 

20 cc 

25 cc 

30 cc 

Picture A 
shows what 
the measuring 
cup looks like 
before she puts 
the rock into it.  

Picture A  Picture B  

Picture B 
shows what 
happens after 
she puts the 
rock into the 
measuring cup. 

Volume:  
The amount of 
space that 
something takes up 
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1b) Why or why not? Make an argument. Give your evidence and reasoning. You can pick 
more than one answer.  

 I can tell because the water level went up.  

 I can tell because of the way the rock looks.  

 The amount that the water level rises depends on the rock’s volume.   

 The amount that the water level rises depends on the rock’s weight.   

 You can tell how much space something takes up by looking at it.  

 I don’t think there is any evidence of the rock’s volume in the picture.  
The evidence I need is: 
_____________________________________________________ 

 I had some other reason: ___________________________________________________ 

 
 

2a) From the pictures, can you tell what the weight of the rock is?  

 Yes, the weight of the rock is __________________________. 

 No. What other information do you need? _____________________________ 

 

2b) Why or why not? Make an argument. Give your evidence and reasoning. You can pick 
more than one answer. 

 I can tell because of the amount that the water level rose.  

 I can tell because of the way the rock looks.  

 The amount that the water level rises depends on the rock’s weight.   

 The amount that the water level rises depends on the rock’s volume.   

 You can tell how much space something takes up by looking at it.  

 I don’t think there is any evidence of the rock’s volume in the picture.  
The evidence I need is: 
_____________________________________________________ 

 I had some other reason: ___________________________________________________ 
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300 cc 

400 cc 

200 cc 

100 cc 

500 cc 

Cans of soda A – Constructed-response argument 

Nate pours two cans of soda into two glasses.  

 

 

 

 

 

 

 

 

 

He pours all of the soda from one glass into a shallow bowl. He pours the other glass into a tall 
measuring cup.   

 

 

 

 

 

   

 

 

 

1a) Is the volume of soda in the bowl and the measuring cup the same, or different?  

 Same. 

 Different. 

  

Volume:  
The amount of space 
that something takes up 
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300 cc 

400 cc 

200 cc 

100 cc 

500 cc 

1b) Why do you think so? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

___________________________________________________________________________ 

_____________________________________________________________________________ 

 

Nate pours some soda out of the measuring cup.  

 

 

 

 

 

 

 

 

 

 

2) Does the volume of soda in the measuring cup change?  

 Yes. What is the volume of the soda that Nate poured out? _______________________ 

 No. Why not? ____________________________________________________________ 
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300 cc 

400 cc 

200 cc 

100 cc 

500 cc 

Cans of soda B – Selected-response argument 

Nate pours two cans of soda into two glasses.  

 

 

 

 

 

 

 

 

 

He pours all of the soda from one glass into a shallow bowl. He pours the other glass into a tall 
measuring cup.   

 

 

 

 

 

   

 

 

 

1a) Is the volume of soda in the bowl and the measuring cup the same, or different?  

 Same. 

 Different. 

  

Volume:  
The amount of space 
that something takes up 
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300 cc 

400 cc 

200 cc 

100 cc 

500 cc 

1b) Why do you think so? Make an argument. Give your evidence and reasoning. You can 
pick more than one answer.  

 The containers are different. 

 The height of the soda is different.   

 Nate poured the same amount of soda into each container.  

 The soda takes up a different amount of space in the containers.  

 The containers take up different amounts of space on the table.  

 The same amount of soda will take up the same amount of space.  

 I had some other reason: ____________________________________________ 
 

Nate pours some soda out of the measuring cup and into the sink.  

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
2) Does the volume of soda in the measuring cup change? 

 Yes. How much did it change? 
_______________________________________________ 

 No. Why not? ____________________________________________________________ 

 

  



361 
 

Carol’s butter A – Multiple-prompt 

Carol puts a chunk of cold butter into a small bowl. The empty bowl weighs 5 grams. 

 

  
 

 
 

The bowl with the cold butter weighs 7 grams. 

 
 

 
 
 
 
 

1) How much does the chunk of cold butter weigh? 

 

________________________ grams 

She heats the cold butter until it melts. The butter becomes liquid. None of the butter burns or 
evaporates.  

2a) How much do you think the melted butter weighs?  

 

 

 

 

________________________ grams  

 

2b) How do you know? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

_____________________________________________________________________________ 

  

5 g 
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Carol’s butter B – Single-prompt 

Carol puts a chunk of cold butter into a small bowl. The empty bowl weighs 5 grams. 

 

  
 

 
 
 

The bowl with the cold butter weighs 7 grams. 

 
 
 

 
 
 
 

 

She heats the cold butter until it melts. The butter becomes liquid. None of the butter burns or 
evaporates.   

 

 

 

 

 

How much do you think just the melted butter weighs? How do you know? Make an 
argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________ 

  

5 g 

? g 



363 
 

Ana’s block of clay A – Multiple-prompt 

Ana has a block of clay. The block of clay is marked so that it can be divided into smaller pieces. 
Each smaller piece is 1 cubic centimeter.  

                  
  

 
 

     
    1 cubic centimeter 
 

1) What is the volume of the 
block of clay?  

 

___________________________________________________________________ 

 

Ana takes the block of clay and molds it into a ball. She is careful not to get any air inside of the 
ball of clay.  

 

 

 

 

 

 

 

2a) What is the volume of the ball of clay?  

 

___________________________________________________________________ 

 

2b) Why do you think so? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

________________________________________________________________________________________________ 

  

Volume:  
The amount of space 
that something takes up 
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Ana’s block of clay B – Single-prompt 

Ana has a block of clay. The block of clay is marked so that it can be divided into smaller pieces. 
Each smaller piece is 1 cubic centimeter.   

          1 cubic centimeter 
  

Ana takes the block of clay and molds it into a ball. She is careful not to get any air inside of the 
ball of clay.  

 
 

 

 

 

 

 

 

1) What is the volume of the ball of clay? Why do you think so? Make an argument. Give 
your evidence and reasoning.  

________________________________________________________ 

________________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

 

  

Volume:  
The amount of space 
that something takes up 
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Four blocks A – Multiple-prompt 

Here are four blocks. All of the blocks are solid, with no air inside of them. The chart shows the 
weight and volume of each block.  

 

    

Weight 
(grams) 

5 g 15 g 10 g 10 g 

Volume (cubic 
centimeters) 

 5 cc  10 cc  10 cc   5 cc 

 

1) Which block takes up the most space? (You can pick more than one block if there is a 
tie.) 

 

______________________________________________________________ 
 
 

2) Which block is heaviest? (You can pick more than one block if there is a tie.) 
 
______________________________________________________________ 
 

3) Which blocks are heaviest for their sizes?  
 

______________________________________________________________ 
 

4a) Do you think any of the blocks could be made of the same material?  

 Yes. Which ones? _____________________________________ 

 No, none of the blocks could be made of the same material.  
 

4b) Why do you think so? Make an argument. Give your evidence and reasoning.  
 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

 

 

Volume: The amount of space 
that something takes up 
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Four blocks B – Single-prompt 

Here are four blocks. All of the blocks are solid, with no air inside of them. The chart shows the 
weight and volume of each block.  

 

    

Weight 
(grams) 

5 g 15 g 10 g 10 g 

Volume (cubic 
centimeters) 

 5 cc  10 cc  10 cc 5 cc 

 

1) Do you think any of the blocks could be made of the same material? Why or why not? 
Make an argument. Give your evidence and reasoning.  

 

_____________________________________________________ 

_____________________________________________________ 

_____________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

  

Volume: The amount of space 
that something takes up 

Material: Glass, sand, and 
different types of wood 
and metal are examples 
of different materials 
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Romita’s cylinders A – Multiple-prompt 

Romita holds two cylinders. They are both completely solid. The tall cylinder has a larger volume 
than the short cylinder.  

 

 

 

 

 

 

 
 

 

She says “The short cylinder feels heavier than the tall cylinder.” 

Romita puts both cylinders onto a scale. The scale balances perfectly.  
 

 

 
 
 
 
 
 
 
 

 

1) Can you tell if one of the cylinders is heavier than the other?   

 The tall cylinder is heavier.  

 The short cylinder is heavier.  

 They weigh the same.  

 You cannot tell which cylinder is heavier.  

 

 

 

 

  

Volume:  
The amount of space 
that something takes up 
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2a) Could the cylinders be made of the same kind of material? 

 Yes 

 No 

 

2b) How can you tell? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

  

Material: Glass, sand, and 
different types of wood 
and metal are examples 
of different materials 
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Romita’s cylinders B – Single-prompt 

Romita holds two cylinders. They are both completely solid. The tall cylinder has a larger volume 
than the short cylinder.  

 

 

 

 

 

 

 

 
 

She says “The short cylinder feels heavier than the tall cylinder.” 

Romita puts both cylinders onto a scale. The scale balances perfectly.  
 

 
 
 
 
 
 
 

 

1) Could the cylinders be made of the same kind of material? How can you tell? Make an 
argument. Give your evidence and reasoning.  

_____________________________________________________ 

_____________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

  

Material: Glass, sand, and 
different types of wood 
and metal are examples 
of different materials 

Volume:  
The amount of space 
that something takes up 
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Grain of sugar A – Multiple-prompt 

1 cubic centimeter of sugar weighs 2 grams and contains 2000 grains of sugar.  

 

1a) Does 1 grain of sugar weigh anything?  

 Yes. How much does a grain of sugar weigh? ____________ 

 No. About many grains of sugar would you need for it to weigh something? __________ 
 

1b) Why do you think so? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

 

2a) Does 1 grain of sugar take up any space? 

 Yes. What is the volume of a grain of sugar? ____________ 

 No. About how many grains of sugar would you need for it to take up space? _________ 

2b) Why do you think so? Make an argument. Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

Volume:  
The amount of space 
that something takes up 
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Grain of sugar B – Single-prompt 

1 cubic centimeter of sugar weighs 2 grams and contains 2000 grains of sugar.  

 

 

 
How much does 1 grain of sugar weigh? Why do you think so? Make an argument. Give 
your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

___________________________________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________

___________________________________________________________________________ 

_____________________________________________________________________________ 

What is the volume of a grain of sugar? Why do you think so? Make an argument. Give 
your evidence and reasoning.  

_________________________________________________________ 

_________________________________________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

______________________________________________________________________________ 

  

Volume:  
The amount of 
space that 
something takes up 
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0 1 

grams 

A B C D E F G 

2 

Water drops (This is the only variation given to students) 

20 drops of water weigh 1 gram.  

1a) Will 10 drops of water weigh anything?  

 Yes.  

 No.  

1b) Circle the letter that marks the weight of 10 drops of water on the number line.  

 

 

 

 
 
 
2a) Does 1 drop of water weigh anything?  

 Yes 

 No 

2b) Circle the letter that marks the weight of 1 drop of water on the number line.  

 

 

 

 

 

3) Why did you choose your answers? Make an argument. Give your evidence and 
reasoning.   

______________________________________________________________________________

____________________________________________________________________________ 

______________________________________________________________________________

____________________________________________________________________________ 

 

 

0 1 

grams 

A B C D E F G 

2 
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Block made of small cubes (This is the only variation given to students) 

Ken uses some small cubes to make a big block.  Each small cube is 1 cubic centimeter.  

                    1 cubic centimeter                                                                

 

What is the volume of the big block?  
 

_______________________________________________________________ 

 

Ken moves the small cubes around to make a longer block.  

 

 

 

 

Is the volume of the longer block the same as the first block, or different?  

 Same 

 Different 
 

Why do you think so? Give your evidence and reasoning.  

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________ 

Volume:  
The amount of space 
that something takes up 
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