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 Despite extensive research in B–N-containing aromatic systems (most notably 1,2-

azaborines) for their potential use in biomedicine and materials science, development of 

their oxygen counterparts, 1,2-oxaborines, remains underdeveloped. Presented herein is a 

straightforward route to access 1,2-oxaborines via a ring-closing metathesis strategy. 

Attempts to utilize the 1,2-oxaborine as a 1,3-diene in the Diels–Alder cycloaddition for 

potential application as a 4C + 1O synthon are also presented. Lastly, investigations 

regarding the aromaticity of the B–O heterocycles is probed using computations and 

isothermal reaction calorimetry.
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INTRODUCTION 

 
 The concept of isosterism was first introduced by Langmuir in 1919.1 By this 

definition, molecules possessing the same number and arrangement of electrons were 

considered “isosteric”. Furthermore, he declared isosteres with the same overall charge as 

isoelectronic. Nitrous oxide and carbon dioxide serve as a classic pair that is both isosteric 

and isoelectronic. Each molecule, comprised of a total of three atoms, has twenty-two 

electrons and an overall neutral charge. As observed by Langmuir, these similar electronic 

and structural features gave rise to markedly similar physical properties (Table 1.1).2  

 

 
 
 
 
 
 
 
 

By analogy, ammonia-borane serves as an isostere of ethane. However, despite 

their identical electron count, ammonia-borane is a solid under standard conditions, 

exhibits a dipole moment of 5.2 D, and has a bond dissociation energy of 27.2 kcal/mol.3,4  

1 Langmuir, I. J. Am. Chem. Soc. 1919, 41, 1543–1559. 
2 Bradlow, H. L.; Vanderwerf, C. A.; Kleinberg, J. Chem. Ed. 1947, 24, 433–435.  
3 Thorne, L. R.; Suenram, R. D.; Lovas, F. J. J. Chem Phys. 1983, 78, 167–171. 
4 Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955–12962. 
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In stark contrast, ethane is a gas under standard conditions, exhibits no effective 

dipole moment, and has a bond dissociation energy of 90.1 kcal/mol.5,6 These differences 

in physical properties also hold true for the isosteric and isostructural ethene and 

aminoborane pair as well. Under standard conditions, aminoborane largely exists in 

polymeric/oligomeric form. It has a net dipole moment of 1.844 D and has a bond 

dissociation energy of 139.7 kcal/mol.4,7 As is the case with ethane, ethene is a gas under 

standard conditions, possesses no effective dipole moment, and has a bond dissociation 

energy of 174. 1 kcal/mol.5,6 The unique physical and chemical properties imparted by 

replacement of a C–C bond with the complementary B–N bond, namely CC/BN isosterism, 

has resulted in a thrust of research geared toward the potential application of these 

heteroaromatic molecules in biomedicine and materials science.8,9 

 

 

 

 

 

 

 

 

 

5 Pritchard, R. H.; Kern, C. W. J. Am. Chem. Soc. 1969, 91, 1631–1635. 
6 Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255–263. 
7 Sugie, M.; Takeo, H.; Matsumura, C. Chem. Phys. Lett. 1979, 64, 573–575. 
8 Baker, S. J.; Tomsho, S. W.; Benkovic, S. J. J. Chem. Soc. Rev. 2011, 40, 4279–4285. 
9 Hudson, Z. M.; Wang, S. Dalton Trans. 2011, 40, 7805–7816. 
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1.0  CHAPTER 1 

1.1 FIRST REPORTS OF CC/BN ISOSTERISM 

Alfred Stock reported the synthesis of the first CC/BN isosteric arene, borazine 

(B3N3H6), in 1926.10 Though commonly referred to as the “inorganic benzene”, borazine 

possesses significantly less aromatic character relative to its organic counterpart.11 This 

reduced aromaticity is presumed to be a result of the large electronegativity difference 

between boron and nitrogen, with much of the electron density localized on nitrogen, rather 

than delocalized around the ring.12 Subsequent approaches utilizing CC/BN isosterism 

have generally involved the replacement of a singular C–C bond with a B–N unit.  

The organic/inorganic 

hybrid 1,2-azaborine 1.1 evaded 

isolation until 2009 when Liu 

and co-workers devised an 

innovative “protection/deprotection” strategy to access and characterize the molecule.13  

Shortly after, the Liu group reported the synthesis and isolation of the first 1,3- 

 

10 Stock, A.; Pohland, E. Ber. Dtsch. Chem. Ges. 1926, 59, 2210–2215. 
11 (a) Hohnstedt, L. F.; Schaeffer, G. W. Advances in Chemistry 1961, 32, 232–240. (b) 
Chiavarino, B.; Crestoni, M. E.; Di Mariso, A.; Fornarini, S.; Rosi, M. J. Am. Chem. Soc. 
1999, 121, 11204–11210. (c) Kiran, B.; Phukan, A. K.; Jemmis, E. D. Inorg. Chem. 2001, 
40, 3615–3618. (d) Madura, I.; Krygowski, T. M.; Cyrański, M. K. Tetrahedron 1998, 54, 
14913–14918. 
12 Lisovenko, A. S.; Timoshkin, A. Y. Inorg. Chem. 2010, 49, 10357–10369. 
13 Marwitz, A. J. V.; Matus, M. H. Zakharov, L. N.; Dixon, D. A.; Liu, S.-Y. Angew. Chem. 
Int. Ed. 2009, 48, 973–977. 
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azaborine 1.2.14 That same year, Braunschweig and co-workers provided a route to access 

the simplest known 1,4-azaborine 1.3 via cyclotrimerization of acetylene with 

iminoborane, tBuN≡BtBu, in the presence of a dimeric Rh(I) complex.15 Theoretical 

studies completed on each of the three B–N constitutional isomers suggest the 1,2-

azaborine is the most thermodynamically stable, and the 1,3-azaborine the least stable.16 

However, the 1,3-azaborine possesses the greatest aromaticity, followed by the 1,2-, and 

1,4-azaborine, the difference between the 1,2- and the 1,4-azaborine being relatively 

small.16  

 

 

 

 

 

 

 

 

 

 

14 Xu, S.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2011, 113, 20152–20155. 
15 Braunschweig, H.; Damme, A.; Jimenez-Halla, J. O. C.; Pfaffinger, B.; Radacki, K.; 
Wolf, J. Angew. Chem. Int. Ed. 2012, 51, 10034–10037. 
16 (a) Kranz, M.; Clark, T. J. Org. Chem. 1992, 57, 5492–5500. (b) Xu, S.; Mikulas, T. C.; 
Zakharov, L. N.; Dixon, D. A.; Liu, S.-Y. Angew. Chem. Int. Ed. 2013, 52, 7527–7531. (c) 
Matus, M. H.; Liu, S.-Y.; Dixon, D. A. J. Phys. Chem. A. 2010, 114, 2644–2654. (d) 
Baranac-Stojanovic, M. Chem. Eur. J. 2014, 20, 16558–16565. 
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1.2 PIONEERING STUDIES IN AZABORINE CHEMISTRY 

In 1958, Dewar and co-workers reported the synthesis of a novel class of B–N-

containing compounds, 9,10-azaboraphenanthrenes.17 These isostructural and isoelectronic 

analogues of phenanthrene, whereby the C–C double bond between C9 and C10 was 

replaced with a B–N unit, represented the first neutral, aromatic B–N-containing 

compounds, save for borazine. Preparation of the 9,10-azaboraphenanthrene commenced 

by heating 2-aminobiphenyl in the presence of boron trichloride to generate the 

intermediate 2-biphenylaminoboron dichloride (Scheme 1.1). Upon heating with 

aluminum chloride, the aromatic compound was generated. The ultraviolet spectra of the 

hydroxyl derivative 1.4 of the 9,10-azaboraphenanthrene shows a bathochromic shift 

relative to the all-carbon counterpart, phenanthrene. The marked differences in the spectra 

suggest the compounds behave as aromatic analogues of phenanthrene rather than cyclic 

boron amides.17  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17 Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 0, 3073–3076. 
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Following this seminal report, in 1962 Dewar et al. described the synthesis of the 

first monocyclic 1,2-azaborine via a desulfurization strategy (Scheme 1.2).18 Condensation 

of 1.5 with dichlorophenylborane gave 2-carbomethoxy-5,6-diphenyl-5,4-

borazarobenzothiophene 1.6. Reduction using Raney nickel afforded the 3,6-disubstituted 

1,2-azaborine 1.7. The recalcitrant nature of 1.7 to acidic and basic solutions suggested 

considerable stability, even after prolonged periods. Shortly after Dewar’s landmark 

synthesis, White reported the isolation of the B-Ph-1,2-azaborine. Using a more general 

approach, White and co-workers envisioned accessing the azaborine core via a 

dehydrogenation of the cyclic 1,2-azaboracyclohexane 1.9.19 1.9 was prepared by reaction 

of 3-butenylamine with 1.8. The authors propose formation of the ring by initial generation 

of a tertiary amine adduct of phenylborane. These adducts have previously been shown to 

be competent intermediates in hydroboration reactions.20 The dehydrogenation was then 

facilitated by Pd/C to generate 1.10. Again, the resistance of the 1,2-azaborine to oxidation 

and solvolysis was attributed to the aromatic stabilization gained following 

dehydrogenation. 

 

18 Dewar, M. J. S.; Marr, P. A. J. Am. Chem. Soc. 1962, 84, 3782. 
19 White, D. G. J. Am Chem. Soc. 1963, 85, 3634–3636. 
20Ashby, E. C. J. Am. Chem. Soc. 1959, 81, 4791–4795. 
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1.3 ADVANCES IN AZABORINE SYNTHESIS 

 

 Despite the pioneering work completed by Dewar and White on both polycyclic 

and monocyclic 1,2-azaborines, progress in the field was hampered by the lack of a 

straightforward and modular synthesis to access the heteraromatic core. A new approach 

was reported by Ashe and co-workers leveraging the ruthenium-based olefin metathesis 

catalyst recently developed by Grubbs.21,22 In this vein, allyltributyltin was treated with 

boron trichloride to generate the allylboron dichloride in situ (Scheme 1.3). Addition of 

ethyl allylamine generated the diene moiety necessary for the key transformation and 

subsequent addition of phenyllithium was used to convert 1.11 to the less electrophilic 

species 1.12. The six-membered ring was then generated using Grubbs’ first generation 

catalyst and oxidized to the 1,2-azaborine using DDQ. 

 

 

 

21 Ashe, A. J.; Fang, X. Org. Lett. 2000, 2, 2089–2091. 
22 (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem. Int. Ed. Engl. 
1995, 34, 2039–2041. (b) Schwab, P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996, 
118, 100–110. 
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 Shortly thereafter, the Ashe group presented another method to access 1,2-

azaborines from the five-membered azaborole 1.13 which could be prepared using an 

analogous ring-closing approach (Scheme 1.4).23 Upon deprotonation, the azaborolide 

could undergo carbene insertion to generate the ring expanded 1,2-azaborine. 

 

 Contributions by the Liu group towards the general synthesis of 1,2-azaborines 

included a route that carried a versatile B-Cl moiety throughout the ring-closing and 

oxidation protocols (Scheme 1.5).13 Once the aromatic molecule was generated, the boron 

substituent could be easily exchanged by treatment with an array of nucleophiles. The 

presence of the silyl protecting group on the nitrogen aided in the isolation of the parent 

1,2-azaborine 1.1 by the Liu group in 2009, albeit in low yield.13 Due to subsequent 

difficulties removing the silyl group, Liu et al. sought to develop a protecting group-free 

synthesis of the nitrogen heterocycles.24 

 
 
 
 
 
 
 
 
 
 
 
23 Ashe, A. J.; Fang, X.; Fang, X.; Kampf, J. W. Organometallics 2001, 20, 5413–5418. 
24 Abbey, E. R.; Lamm, A. N.; Baggett, A. W.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. 
Soc. 2013, 135 (34), 12908–12913. 
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Utilizing the method outlined in Scheme 1.6, allylboron dichloride was generated 

in situ by treatment of the potassium allyltrifluoroborate salt with TMSCl. Following 

generation of the allylborane, addition of two equivalents of allylamine furnished triene 

1.14. Ring-closing metathesis of 1.14 with Schrock’s Mo catalyst afforded 1.15, which 

upon exchange and oxidation delivered the B–OBu-1,2-azaborine. From this versatile 

synthon, several 1,2-azaborine derivatives could be isolated through routine 

transformations. 
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1.4 ELABORATION OF THE AZABORINE CORE 

1.4.1 Functionalization Reactions of 1,2-Azaborines 

Despite the methods described above to access the 1,2-azaborine core, 

investigations into their functionalization and subsequent reactivity were not thoroughly 

explored until 2007. In this regard, Ashe and co-workers disclosed various 

functionalization reactions of the B-Ph-N-Et-1,2-azaborine via electrophilic substitution 

reactions.25 Simple acid-catalyzed proton–deuterium isotope exchange using a 1:3 w/w 

mixture of trifluoroacetic acid-d1 and acetic acid-d4 provided the C3-deuterated heterocycle 

(Scheme 1.7). After prolonged reaction times in the acidic mixture, however, generation 

of phenylboroxine was observed. 

 

 

 

 

 

 

 

 

 

 

 

25 Pan, J.; Kampf, J. K.; Ashe, A. J. Org. Lett. 2007, 9, 679–681. 
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Consistent with the sufficiently nucleophilic character at the C3-position, facile 

bromination was also observed.13,25 Ashe et al. subsequently showed that conversion of the 

bromide to the nitrile could be achieved by addition of CuCN in DMF at 130 °C. Similarly, 

the 3-hydroxy-1,2-azaborine could be generated first by reaction of 1.16 with iodine 

monochloride followed by quenching in the presence of Na2S2O3 (Scheme 1.7). 

Substitution was also observed at the 5-position of the 1,2-azaborine (Scheme 1.8). 

Upon treatment of 1.16 with acetic anhydride and SnCl4, the acetylated product was 

isolated, however, the production of a number of byproducts resulted in a poor yield. In 

this same manner, the aminated product 1.17 was generated by addition of 1.16 to the 

iminium chloride. The results of the Ashe group experimentally confirmed the findings of 

previously completed MO calculations which revealed significant electron-density at the 

C3- and C5-positions.26 

 

 

 

 

 

 

 

 

 

 

26 (a) Kranz, M.; Clark, T. J. Org. Chem. 1992, 57, 5492–5500. (b) Kar, T.; Elmore, D. E.; 
Scheiner, S. J. Mol. Struct. 1997, 392, 65–74. 
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Shortly after the publication by 

the Ashe group, the Liu group presented 

a general method to synthesize B-

substituted 1,2-azaborines through 

nucleophilic exchange.27 Using 1.18 as a 

precursor, alkyl-, vinyl-, aryl-, and 

alkynyl-substituted azaborines were 

isolated after treatment with the 

corresponding organolithium or Grignard 

reagent. Furthermore, heteroatom-based 

nucleophiles could be used to synthesize several unprecedented products including those 

generated from nucleophiles shown in entries 5 and 6 (Table 1.2). 

Later, in 2013 the Liu group described methods for the rhodium-catalyzed boron 

arylation of 1,2-azaborines.28 Though arylation was previously described using 

nucleophilic substitution at boron (vide supra), the scope was limited to functional groups 

that were compatible with the organolithium and organomagnesium reagents. Seeking to 

address this limitation, a rhodium-catalyzed cross-coupling reaction of B-Cl-1,2-

azaborines and arylstannanes was developed (Scheme 1.9).  

 

 

 

27 Marwitz, A. J. V.; Abbey, E. R.; Jenkins, J. T.; Zakharov, L. N.; Liu, S.-Y.  Org. Lett. 
2007, 9, 4905–4908. 
28 Rudebusch, G. E.; Zakharov, L. N; Liu, S.-Y. Angew. Chem. Int. Ed. 2013, 52, 9316–
9319. 
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With chlorobis(ethylene)rhodium(I) dimer identified as the optimal catalyst and 

BIPHEP as the optimal supporting ligand, the scope of the arylation protocol was explored. 

Electron-donating and electron-withdrawing groups at the para-position were well 

tolerated, however, the electron-deficient pentafluorostannane 1.27 gave low yields of 

product. Arylstannanes 1.28 and 1.29 bearing electrophilic moieties incompatible with the 

previously described method could be isolated in 41% and 66% yield, respectively. 

In attempts to further develop methods for the functionalization of the 4-, 5-, and 

6-positions of the 1,2-azaborine backbone, it was envisioned by the Liu group that 

installation of chelating groups at the 6-position would present the opportunity to 

synthesize BN-containing bidentate ligands. As such, Ir-catalyzed C–H borylation of 1,2-

azaborines was investigated due to the success of this reaction for other nitrogen-containing 
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heterocycles. Using a 1:2 ratio of [Ir(COD)(OMe)]2 and dtbpy, borylation was 

regioselective for the 6-position of the parent 1,2-azaborine 1.1 (Scheme 1.10).29 

 

1.4.2 Applications of 1,2-Azaborines in Organic Synthesis 

Beyond their synthesis and functionalization, the chemistry of monocyclic 1,2-

azaborines is limited. Prior work conducted by the Liu group, namely isothermal reaction 

calorimetry, revealed the resonance stabilization energy of 1,2-azaborines to be 

approximately 17 kcal/mol.30 Though essentially half that of benzene (RSE ~32 kcal/mol), 

this result is on par with other heteroaromatic compounds including pyrrole (RSE ~21 

kcal/mol), thiophene (RSE ~20 kcal/mol), and furan (RSE ~15 kcal/mol).31,32 The 

participation of these heterocycles in various [4+2] cycloaddition reactions served as the 

impetus for exploring the competency of the 1,2-azaborine as a 1,3-diene in the Diels–

Alder reaction. As such, it was envisioned by Liu and co-workers that the 1,2-azaborine 

motif could potentially serve as a 4C + 1N synthon in organic synthesis.33 

29 Baggett, A. W.; Vasiliu, M.; Li, B..; Dixon, D. A.; Liu, S.-Y.  J. Am. Chem. Soc. 2015, 
137, 5536–5541. 
30 Campbell, P. G.; Abbey, E. R.; Neiner, D.; Grant, D. J.; Dixon, D. A.; Liu, S.-Y.  J. Am. 
Chem. Soc. 2010, 132, 18048–18050. 
31 The RSE values are predicted computationally using the following exchange reaction 
(benzene as an example): C6H6 + C6H10 → 2C6H8  
32 Burford, R. J.; Li, B.; Vasiliu, M.; Dixon, D. A.; Liu, S.-Y. Angew. Chem. Int. Ed. 2015, 
54, 7823–7827. 
33 (a) Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 1997, 62, 5252–5253. (b) Janey, J. M.; 
Iwama, T.; Kozmin, S. A.; Rawal, V. H. J. Org. Chem. 2000, 65, 9059–9068. 
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This would ultimately narrow the gap within the literature regarding the reactivity 

of 1,2-azaborines, and impressively, result in the generation of functionally complex allylic 

amines.  

 

 

 

Reaction of B-Me-N-TBS-1,2-azaborine with maleic anhydride at 110 °C 

proceeded to completion, but required extended reaction times. As such, a number of Lewis 

acids were screened with AlCl3 proving optimal.  

 With established conditions, a survey of substituent effects revealed the importance 

of the N–TBS substituent for Diels–Alder reactivity. Furthermore, the boron substituent 

was found to exert significant influence as well. Both methyl and isopropoxy substituents 

on boron were effective for the cyclization, while the N-TBS-B-Ph-1,2-azaborine was 

intermediate in reactivity, delivering the endo diastereomer in 62% yield. The sp-

hybridized B-alkynyl and B-H-substituted 1,2-azaborines furnished only trace amounts of 

the cycloaddition product. These results reveal that the observed Diels–Alder reactivity 

directly correlates with the aromaticity of the heterocycle; the more aromatic the molecule, 

the lower the thermodynamic driving force for the cycloaddition to occur.  

When probing the dienophile scope, high diastereoselectivity was achieved for (Z)-

dienophiles. However, (E)-dienophiles gave approximately 1:1 mixtures of diastereomers 

(Table 1.3). When dimethylmaleate and dimethylfumurate were utilized, full conversion 

to the cycloadduct was not achieved, despite altering the reaction parameters. This 

observation suggested the possibility of a reversible reaction.34 To probe this hypothesis, 



 16 

methyl acrylate was used as a less electron-deficient dienophile. Under the reaction 

conditions, cycloaddition of 1.30 with methyl acrylate delivered two diasteromeric 

products, endo-1.31 and exo-1.31. Addition of one equivalent on N-Methylmaleimide 

resulted in complete conversion to the cycloadduct, further supporting the claims of a 

reversible reaction (Scheme 1.12). 

 

 
34 (a) Hirsch, A. K. H.; Reutenauer, P.; Le Moignan, M.; Ulrich, S.; Boul, P. J.; 
Harrowfield, J. M.; Jarowski, P. D.; Lehn, J.-M. Chem. Eur. J. 2014, 20, 1073–1080. (b) 
Kotha, S.; Banerjee, S. RSC Adv. 2013, 3, 7642–7666. 
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Determination of the equilibrium constants for the formation of each diastereomer 

allowed for the subsequent determination of the free energy (ΔG) for the formation for 

each diastereomer as well as the reaction enthalpy (ΔH) and entropy (ΔS). Analysis of the 

reaction parameters revealed a larger driving force for the formation of the endo 

diastereomer and a larger driving force for cycloadduct formation for the B-Me-1,2-

azaborine relative to the B-alkynyl substituted 1,2-azaborine 1.32. 

This work completed by the Liu group represents the first use of 1,2-azaborines as 

intermediates in organic synthesis, and paves the way for exploring additional reactivity of 

these BN-containing heterocycles, and related compounds. 
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2.0  CHAPTER 2 

 

2.1 INITIAL METHODS FOR THE SYNTHESIS OF 1,2-                                      

OXABORINES 

 The first benzofused oxaborine was serendipitously discovered by Nazy and co-

workers upon heating mildly basic solutions of 2,2’-tolandiboronic acid, 2.1.35 Elemental 

analysis revealed the byproduct was an isomer of 2.1 and neutralization indicated the 

presence of one remaining boronic acid group. The formation of 2.2 was further 

corroborated by the appearance of a sharp band in the C=C region of the IR spectrum.  

 

 

  

 

Following the report by Nazy, Dewar and co-workers described the synthesis of 

9,10-boroxarophenanthrene, a heteroaromatic derivative of phenanthrene.36 Treatment of 

2-phenylphenol with boron trichloride delivered the dichlorophenoxyborane intermediate 

and subsequent addition of AlCl3 at 60 °C afforded 2.3. The spectra of the hydroxyl 

derivative of 2.3 bears close resemblance to those of the previously synthesized 9,10-

azaboraphenanthrenes, which the authors imply is a consequence of the considerable 

35 Letsinger, R. L.; Nazy, J. R.  J. Am. Chem. Soc. 1959, 81, 3013–3017. 
36 Dewar, M. J. S.; Dietz, R. Tetrahedron Lett. 1959, 1, 21–23. 
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 aromatic character. Additionally, the reluctance of 10-hydroxy-10,9-

boroxarophenanthrene to undergo hydrolysis of the C–B bond and oxidation was attributed 

to significant π-delocalization. 

 

 

 

 

 

 

 The first monocyclic 1,2-oxaborine 2.4 was inadvertently generated upon 

condensation of acetophenone and diethylboryl pivalate by Köster et al.37 However, after 

isolation of the monocyclic 1,2-oxaborine 2.4, synthesis of boron- and oxygen-containing 

aromatic systems was largely limited to fused-ring derivatives of naphthalene and 

phenanthrene. In this vein, Dolle and co-workers synthesized various analogues of the 10-

hydroxy-10,9-boroxarophenanthrenes previously reported by Dewar.38 A similar strategy 

was employed to access these derivatives involving demethylation of 2-methoxybiaryls by 

boron tribromide. In the absence of a methyl substituent at the 3’ position, the authors 

observe conversion to the phenol upon hydrolysis. In contrast, the presence of a methyl 

group in the 3’ position provides access to the title compound 2.6 following intramolecular 

electrophilic aromatic substitution, rearomatization, and hydrolysis. In addition to 

accessing these motifs through demethylation of 2-methoxybiaryls, Dolle et al. streamlined 

 
 
37 Köster, R.; Pourzal, A.-A. Synthesis 1973, 11, 674–676. 
38 Zhou, Q. J.; Worm, K.; Dolle, R. E. J. Org. Chem. 2004, 69, 5147–5149. 
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the conditions developed by Dewar to synthesize 10-hydroxy-10,9-boroxarophenanthrenes 

from 2-hydroxybiphenyls bearing varying substitution patterns.  

 

 Interestingly, Dolle and co-workers also sought to utilize the boroxarene 2.7 as a 

synthetic intermediate. Oxidation of 2.7 gave the dihydroxy compound 2.8, while Suzuki 

cross-coupling allowed for the isolation of triaryl product 2.9. Lastly, through the 

intermediacy of 2.7, the benzofused lactone 2.10 could be synthesized by palladium-

catalyzed carbonylation.  
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2.2 ADVANCEMENTS IN OXABORINE SYNTHESES 

 
 
 

 

 

 

 

 In 2007, the Ashe group implemented a route, previously developed by their lab for 

the synthesis of 1,2-azaborines, in order to access minimally substituted 1,2-oxaborines in 

a straightforward manner.39 Synthesis of the oxaborolide intermediate 2.12 was achieved 

by transmetallation of the oxastannole with dichlorophenylborane. Deprotonation of the 2-

substituted-2,5-dihydro-1,2-oxaborole 2.11 generated the oxaborolide. Once the 

oxoborolide was obtained, the 1,2-oxaborine was formed via a carbenoid ring-expansion 

mediated by CH2Cl2 and KHMDS. Use of deuterated solvent resulted in complete 

deuterium incorporation at the 3-position, consistent with the proposed in situ generation 

of chlorocarbene followed by insertion adjacent to boron, and loss of chloride.39 

2.2.1 Reactivity Investigations of 1,2-Oxaborines Enabled by the Ashe Synthesis 

 The synthesis of the B-Ph-1,2-oxaborine by the Ashe group provided important  

 

39 Ashe, A. J.; Fang, X. D.; Fang, X. G.; Kampf, J. W. Organometallics 2001, 20, 5413–
5418. 
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insights regarding the aromaticity of the small molecule. The 1H, 11B, and 13C NMR spectra 

of the 1,2-oxaborine were found to display chemical shifts similar to those of the 

complementary 1,2-azaborine, previously established to possess classical aromatic 

properties.25 Additionally, complexation of the B-Ph-1,2-oxaborine with 

Cr(CO)3(CH3CN)3 revealed exclusive binding of the phenyl substituent with the metal 

center, as opposed to the heteroaromatic core.40 This observation is in contrast to the 1,2-

azaborine case in which the heteroaromatic core coordinates with the chromium center. It 

should, however, be noted that upon heating the phenyl-coordinated 1,2-azaborine 

complex is generated. Comparison of the endocyclic and exocyclic B–C bond lengths of 

the B-Ph-1,2-oxaborine metal complex, 1.481(8) Å and 1.567(7) Å, respectively, are 

consistent with electron delocalization within the ring. Lastly, the Ashe group utilized the 

1,2-oxaborine as a 1,3-diene in the Diels–Alder reaction with DMAD, giving 

phenylboronic anhydride 2.13 and dimethyl phthalate 2.14. Compound 2.13 was similarly 

generated upon treatment of 2.15 with trifluoroacetic acid. Despite the aromatic properties 

of the 1,2-oxaborine, the observed reactivity is distinct from that previously established 

with the 1,2-azaborine. 

 
 
 
 
 
 
 
 
 
 
 
 
 
40 Pan, J.; Kampf, J. W.; Ashe, A. J. Organometallics. 2007, 26, 1563–1564. 
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2.2.2 Martin and Co-Workers’ Route to Oxaborines 

  

 

 

 

A subsequent report by the Martin group presented another route to access 1,2-

oxaborines, and provided further insight into the aromatic nature of this class of 

heterocycles.41 The pentaphenyl-1,2-oxaborine 2.16 was prepared via 

oxygen-atom insertion into the pentaphenyl borole with N-

methylmorpholine-N-oxide. The tetracoordinate boron intermediate 

2.17 gave rise to a sharp peak at 6.4 ppm by 11B NMR, but full  

 

41 Yruegas, S.; Patterson, D. C.; Martin, C. D. Chem. Commun. 2016, 52, 6658–6661. 
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conversion to a broad singlet at 38.4 ppm, signaling generation of 2.16, was achieved after 

30 minutes. The isolation of the B-biphenyl-1,2-oxaborine confirmed the endocyclic 

carbon bonds lie between single and double bonds, with slightly more diene-like character 

than that reported for 1,2-azaborines. 

 Nucleus-independent chemical shifts were completed on the pentaphenyl-1,2-

oxaborine as well as the biphenyl derivative to computationally gauge the aromaticity of 

the heterocycles relative to other aromatic molecules. The values suggest that the parent 

1,2-oxaborine is slightly less aromatic than the parent 1,2-azaborine. Both heteroaromatic 

rings have reduced aromaticity relative to benzene. Introduction of a phenyl substituent at 

the boron center further resulted in a reduction in the aromaticity of the 1,2-oxaborine. This 

trend holds true for the phenyl-substituted derivatives, synthesized by Martin and co-

workers. 

2.2.3 Yorimitsu’s Nickel-Catalyzed Boron-Insertion of Benzofurans 

 

 
 
 

 A later report by Yorimitsu et al. describes the nickel-catalyzed boron insertion into 

the C–O bond of benzofurans for the preparation of benzofused oxaborine analogues.42 The 

success of the reaction hinged on the use of an N-heterocyclic carbene ligand, IPr, and  

 

42 Saito, H.; Otsuka, S.; Nogi, K.; Yorimitsu, H. J. Am. Chem. Soc. 2016, 138, 15315–
15318. 
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B2(pin)2 as the diboron reagent.43 With optimal conditions established, a variety of 

substituted benzofurans were transformed into the heteroaromatic naphthalene derivatives. 

Notably, substrates containing methoxy, ester, and fluoro substituents at the 5-position, 

groups potentially reactive under nickel catalysis, proceeded smoothly to afford the desired 

product. π-extended systems could also be accessed using the developed route.  

 The authors propose the active IPrNi(0) species I is generated by reduction of the 

Ni(II) precatalyst by B2(pin)2. Oxidative addition into the C–O bond of the benzofuran  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

43Matsubara, K.; Ueno, K.; Shibata. Y. Organometallics, 2006, 25, 3422–3427. 
44 (a) Wenkert, E.; Michelotti, L. E.; Swindell, C. S. J. Am. Chem. Soc. 1979, 101, 2246–
2247. (b) Cornella, J.; Martin, R. Org. Lett. 2013, 15, 6298–6301. (c) Tobisu, M.; Takahira, 
T.; Morioka, T.; Chatani, N. J. Am. Chem. Soc. 2016, 138, 6711–6714. (d) Guo, L.; 
Leindecker, M.; Hsiso, C.-C.; Baumann, C.; Rueping, M. Chem. Commun. 2015, 51, 1937–
1940. 
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affords the Ni(II) intermediate II, which undergoes metalate formation to generate III and 

migratory insertion into boron.44 Lastly, reductive elimination of III followed by 

intramolecular B–O bond formation furnishes IV. Upon work-up, the spirocyclic borate 

IV is transformed into the cyclic boronic ester. To demonstrate the utility of 2.18 and its 

derivatives, these borates were used as synthetic intermediates in a variety of 

transformations ranging from carbonylation to iodination, as illustrated in Scheme 

2.10.38,45 Attempts by the authors to complete boron insertion into dibenzofuran, 2-

benzylfuran, and 2,3-dihydrofuran using the established protocol were met with no success. 

As such, facile access to monocyclic 1,2-oxaborines must be achieved through alternative 

methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45Brown, H. C.; Hamaoka, T. Ravindran, N. J. Am. Chem. Soc. 1973, 95, 5786–5788. 
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2.3 LIU GROUP EFFORTS TOWARDS THE ISOLATION AND 

STUDY OF MONOCYCLIC 1,2-OXABORINES 

Initial attempts to synthesize the 1,2-oxaborine core by our group relied on a cross 

metathesis strategy between 3-butenal 1,1-diethylacetal and pinacol vinylboronate 

followed by deprotection and intramolecular cyclization. However, isolation of the 1,2-

oxaborine was not achieved through this route. 

 In an effort to rapidly gain access to 1,2-oxaborine derivatives for reactivity studies, 

I pursued a ring-closing metathesis route analogous to that developed by Ashe for the 

synthesis of 1,2-azaborines (Scheme 2.11). Initial attempts utilized a 

diisopropylamino(vinyl)borane intermediate synthesized by the transmetallation of boron 

trichloride with tributyl(vinyl)tin and subsequent addition of diisopropylamine. 

Nucleophilic addition of the homoallylic alkoxide to the borane furnished the diene. Ring-

closing metathesis of 2.20 with Grubbs first generation catalyst provided the B–O six-

membered ring 2.21. Oxidation attempts of the diisopropylamino-substituted heterocycle 

2.21 were unsuccessful. However, exchange of the boron substituent with 1-butanol to 

produce 2.22 facilitated the subsequent dehydrogenation to the 1,2-oxaborine.  
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 Despite observing conversion to product, the oxidation required long reaction times 

and consistently proved low-yielding. In an effort to circumvent the production of the 

saturated B–O six-membered ring, various hydrogen acceptors were analyzed including 

cyclohexene, norbornadiene, tert-butylethylene, and trans-stilbene. In the case of 

cyclohexene and norbornadiene, the 1,2-oxaborine proved to be a superior hydrogen 

acceptor than the additives; the saturated B–O six-membered ring was observed by 1H 

NMR with the alkene resonances of the additives still persisting. Once trans-Stilbene was 

identified as the optimum additive, various catalysts were screened for the dehydrogenation 

(Table 2.1). As was observed with 1,2-azaborines, Pd/C was found to be the most efficient 

catalyst for the dehydrogenation delivering the 1,2-oxaborine in 48.2% NMR yield. 

 

 

 

 

 

 

 

 

Later efforts were directed at accessing the 1,2-oxaborine via the allylic ether 2.27, 

in an attempt to provide sufficient material for reactivity studies (Scheme 2.12). A strategy 

similar to the ring-closing metathesis one described above was utilized, using triallylborane 

as the allyl source.46 Comproportionation with BCl3 generated the allyl boron dichloride in 

situ, which upon successive treatment with diisopropylamine and triethylamine, generated 
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the diisopropylamino allylborane 2.24. Addition of the lithium allylalkoxide followed by 

ring-closing metathesis and substituent exchange, furnished the six-membered ring 2.27. It 

was posited that this olefin isomer could be more efficiently oxidized to the 1,2-oxaborine, 

as intermediate 2.27 would be less thermodynamically stable than 2.22. The aromatic 

heterocycle was isolated in 39 % yield. Although the isolation of 2.23 appears to be more 

facile using this route, under the reaction conditions, isomerization to the B-vinyl isomer 

was observed in combination with the fully reduced B–O six-membered ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 (a) Bubnov, Y. N.; Tsyban, A. V.; Mikhailov, B. M. Izv. Akad. Mauk. SSR, Ser. Khim. 
1967, 472. (b) Bubnov, Y. N.; Bogdanov, V. S.; Mikhailov, B. M.. Zh. Obsh. Khim. 1968, 
38, 260. 
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2.3.1 Diels–Alder Cycloaddition of 1,2-Oxaborines 

Following the isolation of the B-OBu-1,2-oxaborine, its competency as a 1,3-diene 

in the Diels–Alder cycloaddition was probed in an effort to generate stereochemically 

complex cyclohexene derivatives (Scheme 2.13).47 Complementary Diels–Alder reactivity 

has been observed with 1,2-azaborines, however, use of less electron-deficient substrates, 

such as methyl acrylate, results in a reversible reaction.32 Density Functional Theory 

calculations completed in collaboration with the Dixon group at the University of Alabama 

indicate the reaction of a B-OiPr-1,2-oxaborine with methyl acrylate and maleic anhydride 

is a thermodynamically downhill process (Table 2.2 and Table 2.3). Bearing this in mind, 

the B-OBu-1,2-oxaborine was chosen as a model substrate for the cycloaddition reaction.  

 

 

 

 

 

 

 

 

 

 

 

47 (a) Bertozzi, F.; Olsson, R.; Frejd, T. Org. Lett. 2000, 2, 1283–1286. (b) Sudo, Y.; 
Shirasaki, S. H.; Nishida, A. J. Am. Chem. Soc. 2008, 130, 12588–12589. 
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Attempts to conduct the reaction thermally using maleic anhydride and methyl 

acrylate were met with little success. Conducting the reaction at room temperature resulted 

in no conversion of starting material. As the temperature was increased, consumption of 

starting material was observed, with formation of a broad peak at δ 18.9 

by 11B NMR. Analysis of the reaction mixture revealed no formation of 

the desired cycloadduct, but rather generation of what was presumed to be the B-OBu 

boroxine 2.28. The B–Ph-1,2-oxaborine was also assessed as a diene in the [4 +2] 
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cycloaddition reaction. Nonetheless, as before, a broad peak was observed by 11B NMR 

using both maleic anhydride and methyl acrylate as dienophiles.   

In an effort to prevent the deleterious retro-Diels–Alder process, we envisioned 

conducting the cycloaddition under more mild reaction conditions. In this vein, we sought 

to utilize Lewis acids to promote the reaction at room temperature (Table 2.4).48 Screening 

several Lewis acids in the reaction between the 1,2-oxaborine and maleic anhydride, 

instead promoted the undesired reactivity. In addition to the boroxine, the reaction mixture 

was largely comprised of unreacted starting material.  

 

 

 

 

 

 

 

To unambiguously confirm the formation of boroxine, the B–Ph derivative, 

synthesized via Grignard addition to the B–OBu-1,2-oxaborine, was subjected to the AlCl3-

catalyzed conditions for 15 h. Upon conclusion of the 15 h, a 1H NMR was acquired before 

spiking the reaction mixture with independently prepared B–Ph boroxine, 2.28.  Analysis 

of the reaction mixture by 1H NMR immediately following the addition of 2.28 revealed a  

 

48 (a) Bednarski, M.; Danishefsky, S. J.  Am. Chem. Soc. 1983, 105, 3716–3717. (b) 
Thamapipol, S.; Bernardinelli, G.; Besnard, C.; Kundig, E. P. Org. Lett. 2010, 12, 5604–
5607. (c) Yakelis, N. A.; Roush, W. R. Org. Lett. 2001, 3, 957–960. (d) Twin, H.; Batey, 
R. A. Org. Lett. 2004, 6, 4913–4916. 
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notable increase in a characteristic downfield peak at 8.22 ppm.   As reported by Ashe and 

co-workers, the boroxine could be generated by the initial Diels–Alder cycloaddition 

between the 1,2-oxaborine and dienophile, followed by a rapid retro-Diels–Alder 

process.40 Subsequent trimerization of the oxyborane provides the boroxine 2.28. Peaks 

consistent with the generation of the diene were observed, however, significant 

decomposition prevented the unambiguous detecharacterization. 

2.4 PROGRESS TOWARDS THE RESONANCE 

STABILIZATION ENERGY DETERMINATION OF 1,2-

OXABORINES 

To better understand the observed reactivity of the 1,2-oxaborines, we sought to 

quantify their aromaticity through the determination of the resonance stabilization energy. 

Since the isolation of benzene in the early 1800s, energetic, geometric, and magnetic 

properties have been developed to quantitatively determine the aromaticity of small  

49 (a) Sondheimer, F. Pure Appl. Chem. 1963, 68, 209–218. (b) Slayden, S. W.; Liebman, J. F. 
Chem. Rev. 2001, 101, 1541–1566. (c) Cyrański, M. K. Chem. Rev. 2005, 105, 3773–3811. 
50 (a) Dewar, M. J. S. Tetrahedron Suppl. 1966, 8, 75. (b) Krygowski, T. M.; Cyrański, M. K. 
Chem. Rev. 2001, 101, 1385–1419. 
51 (a) Elvidge, J. A.; Jackman, L. M. J. Chem. Soc. 1961, 0, 859–866. (b) Chen, Z.; Wannere, 
C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. v. R. Chem. Rev. 2005, 105, 3842–3888. (c) 
Mitchell, R. H. Chem. Rev. 2001, 101, 1301–1315. (d) Gomes, J. A.; Mallion, R. B. Chem. 
Rev. 2001, 101, 1421–1449. 
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molecules.49,50,51 One such method involves comparing the heat of hydrogenation of an 

aromatic molecule with the heats of hydrogenation of suitable, non-aromatic reference 

compounds. In doing so, the resonance stabilization energy, a marker of aromaticity, can 

be deduced. This method was first utilized by Kistiakowsky and co-workers to elucidate 

the RSE of benzene as 36 kcal/mol.52 Similarly, the Liu group determined the RSE of 1,2-

azaborines by comparing the heat of hydrogenation of aromatic molecule 2.29 with the 

corresponding B(vinyl) 2.30 and N(vinyl) 2.31 olefin isomers using isothermal reaction 

calorimetry (Figure 2.2).30  

 

 

Given the restrictions of the calorimeter, predominantly the lack of stirring 

capabilities, various homogeneous catalysts were screened for the hydrogenation of the B–

OBu-1,2-oxaborine (Table 2.5). Entries 1-3 showed modest conversion to the saturated 

six-membered ring by 1H NMR. On the other hand, use of Crabtree’s catalyst exclusively 

generated 2.32. Given the results obtained with [(COD)Ir(py)(PCy3)]PF6, other cationic 

metal complexes were examined, but all provided inferior results under the screening 

conditions. Several catalysts provided improved conversion to the B–O six-membered ring 

at higher pressures of H2, namely Wilkinson’s catalyst, however, complete hydrogenation 

was not observed at 15 bar after 5.5 hours. Use of coordinating solvents such as methanol 

provided reduced conversion presumably due to occupation of the catalyst’s open 

coordination sites, rendering the oxidative addition of hydrogen kinetically slow.53  

52 Kistiakowsky, G. B.; Ruhoff, J. R.; Smith, H. A. Vaughan, W. E. J. Am. Chem. Soc. 
1936, 58, 146–153. 
53Crabtree, R. Acc. Chem. Res. 1979, 12, 331–337. 
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Subsequent evaluation of the catalyst loading revealed 1.25 mol % to be optimum for 

hydrogenation of the B–OBu-1,2-oxaborine within one hour. At lower catalyst loadings, 

complete hydrogenation was not observed after one hour, and importantly, the heat-flow 

measurements acquired on the calorimeter plateaued. 

 

To complete the series of olefin isomers necessary for the hydrogenation studies, 

potential routes to access the enol ether six-membered ring 2.39 were investigated. It was 

postulated that a similar ring-closing metathesis reaction could be utilized.54 Once 2.36 was 

generated, hydrogenation to the alkane using Pd/BaSO4 and elimination was predicted to 

generate the desired olefin (Scheme 2.15).55 It was presumed that the presence of a halogen 

β to the oxygen atom of the B–O six-membered ring would facilitate the elimination upon 

deprotonation α to oxygen.56  

54 Gatti, M.; Drinkel, E.; Wu, L.; Pusterla, I.; Gaggia, F.; Dorta, R. J. Am. Chem. Soc. 2010, 
132, 15179–15181. 
 55Cowell, D. B.; Davis, A. K.; Mathieson, D. W.; Nicklin, P. D. J. Chem. Soc. Perkin 
Trans. 1 1974, 0, 1505–1513. 
56 Smith III, A. B.; Fukui, M.; Vaccaro, H. A.; Empfield, J. R. J. Am. Chem. Soc. 1991, 
113, 2071–2092.  
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Work conducted in the groups of Weinreb and Dorta revealed use of the 

commercially available Grubbs 2nd generation catalyst allows for the formation of cyclic 

alkenyl halides from the requisite diene precursors.54,57 In particular, efforts by Dorta et al. 

revealed substitution of the alkenyl halide moiety is essential to prevent catalyst 

degradation.58 As a result, trans-Cinnamaldehyde was selected to generate the bromo-

substituted allylic alcohol. Bromination to generate 2.33 was facile, as was the reduction 

to generate 2.34. Despite screening a number of conditions to generate the diene 2.35, full 

conversion was not observed. Furthermore, attempts to isolate 2.35 returned only the 

starting alcohol.  

Given the instability of 2.35 to isolation on small-scale, isomerization of the allylic 

ether 2.27 was explored (Scheme 2.16). In the presence of Ru(H)(Cl)(CO)(PPh3)3 an 

equilibrium mixture of the B(vinyl) and enol ether olefin isomers was acquired. Analysis 

of other metal hydride catalysts provided inferior results.59 

 

 

 

57 Chao, W.; Weinreb, S. M. Org. Lett. 2003, 5, 2505–2507. 
58 Macnaughton, M. L.; Johnson, M. J. A.; Kampf, J. W. J. Am. Chem. Soc. 2007, 129, 
7708–7709. 
59 Abbey, E. R.; Zakharov, L. N.; Liu, S.-Y. J. Am. Chem. Soc. 2008, 130, 7250–7252. 
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With each of the necessary olefin isomers in hand for reaction calorimetry, the 

expected heats of hydrogenation were computed at the G3MP2 level by using the Gaussian 

09 program.60 Comparing the heat of hydrogenation of the aromatic B–OBu-1,2-oxaborine 

to the sum of the O-vinyl and B-vinyl reference compounds, the resonance stabilization 

energy can be estimated using the equation RSE = ΔH2.40 – (ΔH2.41 + ΔH2.42). Utilizing this 

equation and the computationally derived ΔH values, it was found that the RSE of the 1,2-

oxaborine is 9.22 kcal/mol, substantially lower than that of benzene (RSE ~ 36 kcal/mol) 

and the parental 1,2-azaborine 1.1 (RSE ~ 17 kcal/mol).30,50 

 

 

 

 

 

 

2.5 CONCLUSIONS 

Building off prior work by the Ashe and Liu groups, a modular synthesis to deliver 

the B–OBu-1,2-oxaborine was developed. Investigations into the reactivity of 1,2-

oxaborines as 1,3-dienes within the Diels–Alder reaction reveal that although they readily 

undergo the [4+2] cycloaddition, the retro-Diels–Alder reaction is particularly facile, 

preventing isolation of the desired cycloadduct. The propensity for these B–O heterocycles 

to engage in [4+2] cycloadditions is further supported by the computationally-determined 
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RSE. The RSE of 1,2-oxaborines, approximately 9.22 kcal/mol, suggests these molecules 

are “diene-like”, rather than considerably aromatic molecules. The experimental RSE 

remains to be determined via isothermal reaction calorimetry, however, methods to access 

the necessary reference compounds 2.39 and 2.22 have been developed. Additionally, 

Crabtree’s catalyst has been identified as the optimal hydrogenation catalyst for the 

calorimetry measurements. 
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A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, 
G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, 
M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; 
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, 
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S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; 
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A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, 
V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, 
O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 
2009. 
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3.0  EXPERIMENTAL 

Unless otherwise stated, reactions were conducted in oven-dried glassware under 

an atmosphere of nitrogen or using a glove box. THF, Et2O, CH2Cl2, toluene, benzene, and 

pentane were purified by passing through a neutral alumina column under argon. All 

reagents were purchased from commercial vendors and used as received unless otherwise 

noted. Diisopropylamine was dried over CaH2 and distilled before use. 

 1H NMR spectra were recorded on a Varian Gemini-500 (500 MHz) or Varian 

Gemini-600 (600 MHz) spectrometer. Chemical shifts are reported in ppm and reported 

relative to deuterated solvent signals (C6D6: 7.16 ppm). Data are reported as follows: 

chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, dd = doublet of doublets, ddd 

= doublet of doublet of doublets, dq = doublet of quartets, t = triplet, tt = triplet of triplets, 

tdd = triplet of doublet of doublets, ddt = doublet of doublet of triplets, q = quartet, p = 

pentet, m = multiplet, br = broad), integration and coupling constants (Hz). 11B NMR 

spectra were recorded on a Varian Unity/Inova 500 spectrometer (160 MHz) or Varian 

Unity/Inova 600 (192 MHz) spectrometer at ambient temperature. 11B NMR chemical 

shifts are externally referenced BF3•Et2O (δ 0). 13C NMR spectra were recorded on a 

Varian Unity/Inova 500 (125 MHz) or Unity/Inova 600 (150 MHz) spectrometer with 

complete proton decoupling. High-resolution mass spectroscopy data were obtained at the 

Boston College mass spectrometry facility on a JEOL AccuTOF instrument (JEOL USA, 

Peabody, MA), equipped with a DART ion source (IonSense, Inc., Danvers, MA) in 

positive ion mode. 
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Experimental calorimetry measurements were acquired using a Setaram C80 Calvet 

calorimeter with Setsoft 2000 software. A stock solution of Crabtree’s catalyst was 

prepared in CH2Cl2 (0.002 M). In a nitrogen-filled glove box, the B-O six-membered ring 

(15.0 mg, 0.097 mmol, 1.0 equiv) was weighed in a 4 mL vial before transferring to the 

sample cell (Hastelloy, approx. 5 mL capacity) using CH2Cl2 (0.87 mL). To the sample 

cell was then added the catalyst solution (0.6 mL) via syringe before sealing, and removing 

from the glove box. Both cells were then loaded into the Setaram C80 calorimeter and a 

H2 inlet was connected to the sample cell. The sample and reference cells were then 

equilibrated at 28 °C for approximately 2.5 hrs, or until zero heat-flow was visualized. 

Once equilibrated, data collection was initiated and the sample cell was purged with H2 

before charging with 20 psi of H2. All valves were then closed and left closed for the 

remainder of the experiment. Data collection was allowed to proceed until the heat-flow 

reached zero, or stabilized near zero. The sample cell was then transferred to the glove box, 

and a crude NMR was acquired to ensure complete hydrogenation. Using the Setaram 

software, SetSoft 2000, integration of the graph of heat-flow vs. time gave the 

corresponding enthalpy of hydrogenation. 

Computational Details 

Molecules were initially optimized with B3LYP exchange-correlation functional at the 

density functional theory level and the DGDZVP2 basis set with Gaussian 09 program 

system. These coordinates were then used as input to the composite G3MP2 calculations. 

The B3LYP/DGDZVP2 optimized coordinated are given below. 

Optimized Cartesian Coordinates (B3LYP-DGDZVP2) 

B-OMe vinyl 
C          1.834681    1.051470    0.069715 
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C         0.573808    1.427771   -0.219371 
C         1.174543   -1.311082   -0.328602 
C          2.144871   -0.387482    0.385626 
H         2.654453    1.768953    0.112830 
H          0.355315    2.472300   -0.426858 
H          1.316617   -2.351569   -0.025621 
H         3.166194   -0.644120    0.080495 
H          2.089930   -0.556801    1.469750 
H         1.332518   -1.241191   -1.411871 
O         -0.194872   -0.985804   -0.043490 
B         -0.536416    0.347151   -0.102349 
C         -2.830844   -0.320289    0.160495 
H         -3.804171    0.170699    0.164967 
H         -2.781387   -1.035754   -0.663204 
H         -2.686422   -0.857552    1.100730 
O         -1.848044    0.707923    0.006409 
 
B-OMe enol ether 
C       -1.929134   -0.872704    0.352299 
C        -0.647530   -1.364988   -0.335213 
C        -1.105247    1.417104   -0.124052 
C        -2.137363    0.587975    0.065678 
H        -2.799992   -1.449979    0.024049 
C        -0.831234   -1.427752   -1.416869 
H        -1.202760    2.477720   -0.329617 
H        -3.138234    1.006798    0.028140 
O         0.223131    1.027401   -0.059372 
B         0.514692   -0.329231   -0.114759 
C         2.826646    0.287229    0.160545 
H         3.778441   -0.238226    0.235477 
H         2.844702    0.963408   -0.696661 
H         2.654256    0.870732    1.067137 
O         1.813963   -0.713464   -0.001413 
H        -1.854365   -1.027259    1.438136 
H        -0.365255   -2.368483   -0.005259 
 
B-OMe cyclohexane 
C         1.922856    0.909486   -0.278656 
C         0.537436    1.467447    0.058539 
C         1.088370   -1.446750   -0.161621 
C         2.094633   -0.451776    0.387447 
H         2.023820    0.785771   -1.364729 
H         0.268252    2.311342   -0.585452 
H         1.136043   -2.397772    0.377092 
H         3.101995   -0.855200    0.228492 
O        -0.270690   -0.993732   -0.063243 
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B        -0.570518    0.345146   -0.005930 
C        -2.886992   -0.316285    0.022082 
H        -3.854596    0.185466    0.051048 
H        -2.813691   -0.922266   -0.883755 
H        -2.787060   -0.972243    0.889967 
O        -1.888500    0.707173    0.036320 
H         1.299029   -1.649709   -1.218926 
H         1.952614   -0.353483    1.470945 
H         2.719871    1.594225    0.031955 
H         0.542007    1.867882    1.081638 
 
B-OMe 1,2-oxaborine 
C         1.396205    1.357055   -0.000283 
C         0.038636    1.195685   -0.000185 
C         1.760988   -1.028121    0.000060 
C         2.276184    0.225774   -0.000158 
H         1.842916    2.350871   -0.000458 
H        -0.587238    2.084263   -0.000286 
H         2.357815   -1.934772    0.000166 
H         3.353324    0.349339   -0.000236 
B        -0.497668   -0.235156    0.000063 
O         0.435838   -1.277313    0.000170 
C        -2.842350    0.296752    0.000111 
H        -3.783941   -0.252878    0.000244 
H        -2.799163    0.930443    0.891203 
H        -2.799258    0.930176   -0.891175 
O        -1.795100   -0.668254    0.000200 
 
 

1-chloro-N,N-diisopropyl-1-vinylboranamine 2.19  

 The procedure for the preparation of the vinylborane 2.19 was a slight 

modification of a literature procedure.21 A 500 mL round-bottom flask was charged with a 

1.0 M solution of BCl3 in hexanes (85.5 mL, 85.5 mmol, 1.0 equiv) and a magnetic stir bar 

under an atmosphere of N2. Simultaneously, in a nitrogen-filled glovebox, to a 250 mL 

oven-dried round-bottom flask was added tributyl(vinyl)stannane (25.0 mL, 85.5 mmol, 

1.0 equiv) and anhydrous pentane (100 mL). The flask was then capped with septa, 

removed from glovebox, and immediately placed under N2. The BCl3 solution was cooled 

to -78 °C before the dropwise addition of the tin solution. The reaction mixture was allowed 



 44 

to stir at -78 °C for 3 h after which time diisopropylamine (12.0 mL, 85.5 mmol, 1.0 equiv) 

and triethylamine (11.9 mL, 85.5 mmol, 1.0 equiv) were added sequentially. The reaction 

mixture was then allowed to warm to room temperature over course of 18 h. The reaction 

mixture was transferred to a glovebox where solids were removed via filtration before 

removing solvent under reduced pressure. The crude product was purified via vacuum 

distillation (60 °C, 100 mTorr) to afford a clear, colorless oil (9.37 g, 63%). 

1H NMR (600 MHz, C6D6) δ 6.46 - 6.33 (m, 2H), δ 5.92 (dd, J = 12.6, 4.8 Hz, 1H), δ 4.04 

(br, 1H), δ 3.38 (br, 1H), δ 1.09 - 1.04 (m, 6H), δ 0.96 (d, J = 7.0 Hz, 6H) 

11B NMR (600 MHz, C6D6) δ 34.5 

13C NMR (125 MHz, C6D6) δ 135.4, 49.1, 47.9, 23.9, 22.5 

HRMS (DART+) m/z calc’d for C8H17BClN [M + H]+ : 174.1221; found 174.1224. 

 

1-(but-3-en-1-yloxy)-N,N-diisopropyl-1-vinylboranamine 2.20  

To an oven-dried 100 mL round-bottom equipped with a stir bar was 

added vinylborane 2.19 (9.37 g, 54.02 mmol, 1.0 equiv) and anhydrous THF (3.5 mL) in a 

nitrogen-filled glovebox. A separate 100 mL oven-dried round-bottom flask was charged 

with 3-Buten-1-ol (4.65 mL, 54.02 mmol, 1.0 equiv) and anhydrous THF (20.0 mL). Both 

flasks were capped with septa, removed from glovebox, and immediately placed under N2. 

The flask containing the alcohol solution was then cooled to -78 °C before the slow addition 

of nBuLi (21.61 mL, 54.02 mmol, 1.0 equiv). Once addition was complete, the solution 

was allowed to warm to room temperature over course of 1 h.  The homoallyl alkoxide 

solution was then transferred to the vinylborane solution at -78 °C. Following addition, the 

reaction mixture was gradually warmed to RT over a period of 3 h. The reaction mixture 
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was transferred to a glovebox where solids were removed via filtration before removing 

solvent under reduced pressure. The crude product was purified via vacuum distillation (45 

°C, 190 mTorr) to afford a clear, colorless oil (9.77 g, 86.5 %). 

1H NMR (600 MHz, C6D6) δ 6.05 (dd, J = 20.5, 15.0 Hz, 1H), δ 5.84 (ddt, J = 17.1, 10.2, 

6.8 Hz, 1H), δ 5.69 (dd, J = 15.2 Hz, 3.9 Hz, 1H), δ 5.46 (dd, J = 20.4, 3.9 Hz, 1H), δ 5.10 

– 5.00 (m, 2H), δ 3.79 (t, J = 6.6 Hz, 2H), δ 3.18 – 3.13 (m, 1H), 2.28 – 2.21 (m, 2H), δ 

1.40 (br, 6H), δ 1.04 – 0.97 (br, 6H) 

11B NMR (192 MHz, C6D6) δ 30.19 

13C NMR (150 MHz, C6D6) δ 136. 46, 127.24, 116.74, 65.36, 48.47, 44.32, 37.56, 24.34, 

22.78 

HRMS (DART+) m/z calc’d for C12H24BNO [M + H]+ : 210.2029; found 210.2033. 

 

N,N-diisopropyl-5,6-dihydro-2H-1,2-oxaborinin-2-amine 2.21 

In a nitrogen-filled glovebox, an oven-dried 500 mL round-bottom flask 

was charged with Grubbs first generation catalyst (0.77 g, 0.93 mmol, 0.02 equiv), 

anhydrous CH2Cl2 (234 mL), and a magnetic stir bar. Diene 2.20 (9.77 g, 46.72, 1.0 equiv) 

was then added via pipette and reaction mixture was allowed to stir for 10 min before 

capping flask with septa, removing from glovebox, and immediately placing under N2. 

Reaction mixture was stirred at 23 °C for 18 h after which time, volatiles were removed 

under reduced pressure. The crude product was purified via vacuum distillation (35 °C, 

120 mTorr) to afford a clear, colorless oil (6.98 g, 82.5%). 
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1H NMR (500 MHz, C6D6) δ 6.61 (dt, J = 12.6, 4.2 Hz, 1H), δ 6.04 (dt, J = 12.4, 1.8 Hz, 

1H), δ 3.86 (t, J = 6.8 Hz, 2H), δ 3.59 (h, J = 6.8 Hz, 2H), δ 1.90 (tdd, J = 6.0, 4.1, 1.7 Hz, 

2H), δ 1.33 (d, J = 6.8 Hz, 6H), δ 1.08 (d, J = 6.8 Hz, 6H) 

11B NMR (160 MHz, C6D6) δ 27.41 

13C NMR (150 MHZ, C6D6) δ 145.98, 126.56, 62.61, 46.32, 44.46, 29.55, 23.90, 23.83 

HRMS (DART+) m/z calc’d for C10H20BNO [M + H]+ : 182.1716; found 182.1715. 

 

2-butoxy-5,6-dihydro-2H-1,2-oxaborinine 2.22 

An oven-dried 50 mL round-bottom flask equipped with a stir bar was 

charged with B–N(iPr)2 six-membered ring 2.21 (6.98 g, 38.54 mmol, 1.0 equiv) and 

anhydrous CH2Cl2 (15.4 mL). 1-butanol (3.88 mL, 42.39 mmol, 1.1 equiv) was then added 

via syringe. The reaction mixture was then stirred at 23 °C for 17 h. Volatiles were removed 

under reduced pressure and the crude product was purified by fractional distillation (36 °C, 

120 mTorr) to deliver the desired product as a clear, colorless oil (4.91 g, 82.7%). 

1H NMR (500 MHz, C6D6) δ 6.58 (dt, J = 12.0, 3.7 Hz, 1H), δ 5.89 (dt, J = 12.0, 1.7 Hz, 

1H), δ 4.01 (t, J = 6.6 Hz, 2H), δ 3.79 (t, J = 6.3 Hz, 2H), δ 1.79 (tdd, J = 6.2, 4.0, 1.7 Hz, 

2H), δ 1.56 (ddt, J = 8.9, 7.9, 6.4 Hz, 2H), δ 1.41 – 1.28 (m, 2H), δ 0.84 (t, J = 7.4 Hz, 3H) 

11B NMR (160 MHz, C6D6) δ 26.08 

13C NMR (125 MHz, C6D6) δ 149.82, 125.05, 63.64, 62.80, 34.45, 29.44, 19.82, 14.36 

HRMS (DART+) m/z calc’d for C8H15BO2H [M + H]+ : 155.1243; found 155.1246.  

 

1-allyl-1-chloro-N,N-diisopropylboranamine 2.24 
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To an oven-dried 1.0 L round-bottom flask equipped with a stir bar was added 

triallylborane (6.70 g, 50.0 mmol, 1.0 equiv) and anhydrous CH2Cl2 (250 mL). The solution 

was then cooled to -78 °C before the dropwise addition of boron trichloride (100.0 mL, 

100.0 mmol, 2.0 equiv) via cannula. The reaction was allowed to stir for 4 hrs at -78 °C 

before the sequential addition of diisopropylamine (21.02 mL, 150.0 mmol, 3.0 equiv) and 

triethylamine (20.91 mL, 150.0 mmol, 3.0 equiv). Following the addition, the reaction was 

gradually warmed to room temperature over course of 18 hrs, after which it was filtered 

over a bed of Celite with repeated CH2Cl2 rinsings. Volatiles were removed under reduced 

pressure and the crude product was purified via distillation (65 °C, 100 mTorr) to give a 

clear, colorless oil (23.33 g, 82.9%). 

1H NMR (400 MHz, C6D6) δ 6.09 (m, 1H), δ 5.15 – 4.99 (m, 2H), δ 3.49 – 3.79 (br, 1H), 

δ 3.41 – 3.31 (br, 1H), δ 2.08 (d, J = 7.3 Hz, 2H), δ 1.18 – 1.05 (br, 6H), δ 0.90 (d, J = 6.9 

Hz, 6H) 

11B NMR (128 MHz, C6D6) δ 37.73 

13C NMR (100 MHz, C6D6) δ 136.18, 115.11, 48.41, 29.66 – 29.79, 23.18 – 22.80 

HRMS (DART+) m/z calc’d for C9H19BClN [M + H]+ : 188.1377; found 188.1383. 

 

1-allyl-1-(allyloxy)-N,N-diisopropylboranamine 2.25 

To an oven-dried 500 mL round-bottom flask equipped with stir bar was 

added allylborane 2.24 (23.40 g, 124.79 mmol, 1.0 equiv) and THF (40 mL). A separate 

100 mL oven-dried round-bottom flask was charged with allyl alcohol (8.49 mL, 124. 79 

mmol, 1.0 equiv) and THF (43 mL) before cooling to -78 °C. Once cooled, nBuLi (11.34 

mL, 124.79 mmol, 1.0 equiv) was slowly added and reaction was allowed to gradually 
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warm to room temperature over course of 40 min. Upon completion of 40 min, contents of 

the 100 mL round-bottom flask were transferred to the allylborane solution at -78 °C. The 

reaction was then allowed to warm to room temperature over course of 16 hrs after which 

time it was filtered using repeated pentane rinsings. Volatiles were removed under reduced 

pressure before purifying the crude product by vacuum distillation (48 °C, 80 mTorr) to 

afford a clear, colorless oil (23.53 g, 90.2%). 

1H NMR (500 MHz, C6D6) δ 5.96 – 5.78 (m, 2H), δ 5.32 (dq, J = 17.1, 2.0 Hz, 1H), δ 5.10 

– 4.96 (m, 2H), δ 4.26 (dt, J = 4.1, 1.9 Hz, 2H), δ 3.62 (br, 1H), δ 3.15 (br, 1H), δ 1.72 (dt, 

J = 7.0, 1.8 Hz, 2H), δ 1.39 (br, 1H), δ 1.00 (br, 1H). 

11B NMR (MHz, C6D6) δ 31.52 

13C NMR (MHz, C6D6) δ 137.93, 136.66, 114.98, 114.25, 65.70, 47.85, 44.47, 24.32, 

22.77, 20.77 

HRMS (DART+) m/z calc’d for C12H24BNO [M + H]+ : 210.2029; found 210.2023. 
 
 

N,N-diisopropyl-3,6-dihydro-2H-1,2-oxaborinin-2-amine 2.26 

An oven-dried 500 mL round-bottom flask was charged with Grubbs first 

generation catalyst (1.85 g, 2.25 mmol, 0.02 equiv), CH2Cl2 (250.0 mL), and a stir bar. 

Diene 2.25 (23.53 g, 112.51 mmol, 1.0 equiv) was then added via pipette and vial was 

rinsed with CH2Cl2 (31.0 mL) to ensure complete transfer. Reaction mixture was allowed 

to stir for 16 hrs, after which time volatiles were removed under reduced pressure. The 

crude product was then purified by vacuum distillation to afford a clear, colorless oil (18.52 

g, 90.9%). 
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1H NMR (600 MHz, C6D6) δ 5.83 (dt, J = 10.3, 3.5 Hz, 1H), δ 5.46 (dt, J = 10.1, 2.5 Hz, 

1H), δ 4.39 (pen, J = 3.2 Hz, 2H), δ 3.30 (br, 1H), δ 3.20 (br, 1H), δ 1.38 (d, J = 6.8 Hz, 

6H), δ 0.95 (d, J = 6.8 Hz, 6H). 

11B NMR (192 MHz, C6D6) δ 30.98. 

13C NMR (126 MHZ, C6D6) δ 126.72, 125.61, 63.79, 49.97, 44.13, 24.34, 22.71, 12.14. 

HRMS (DART+) m/z calc’d for C10H20BNO [M + H]+ : 182.1716; found 182.1710. 

 

2-butoxy-3,6-dihydro-2H-1,2-oxaborinine 2.27 

An oven-dried 250 mL round-bottom flask containing a stir bar was charged 

with B-N(iPr)2 six-membered ring 2.26 (18.03 g, 99.59 mmol, 1.0 equiv) and CH2Cl2 (40.0 

mL). To the solution was then added 1-butanol (10.02 mL, 109.55 mmol, 1.1 equiv). 

Following addition of alcohol, reaction mixture was allowed to stir at RT for 17 hrs after 

which time the volatiles were removed under reduced pressure. The crude product was 

purified by fractional distillation (30 °C, 110 mTorr) to afford a clear, colorless oil (11.75 

g, 76.6%) 

1H NMR (500 MHz, C6D6) δ 5.73 – 5.65 (m, 1H), δ 5.28 (dq, J = 10.1, 2.4 Hz, 1H), δ 4.33 

(tt, J = 4.1, 2.4 Hz, 2H), δ 3.94 (t, J = 6.6 Hz, 2H), δ 1.53 (dq, J = 8.4, 6.7 Hz, 2H), δ 1.41 

(br, 2H), δ 1.34 (sextet, J = 7.4 Hz, 2H), δ 0.85 (t, J = 7.4 Hz, 3H). 

11B NMR (160 MHz, C6D6) δ 30.05. 

13C NMR (126 MHz, C6D6) δ 126.00 – 125. 84, 65.59, 62.71, 34.44, 19.86, 14.37, 11.65 - 

10.93. 

HRMS (DART+) m/z calc’d for C8H15BO2 [M + H]+ : 155.1243; found 155.1239. 
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2-butoxy-2H-1,2-oxaborine 2.23 

To an oven-dried 150 mL pressure vessel containing a stir bar was added 10 

wt % Pd/C (0.35 g, 3.25 mmol, 0.20 equiv), trans-Stilbene (14.63 g, 81.15 mmol, 5.0 

equiv), B-OBu six-membered ring 2.27 (2.50 g, 16.23 mmol, 1.0 equiv), and toluene (33.0 

mL). The pressure vessel was then sealed and placed in a pre-heated 150 °C oil bath. Once 

11B NMR indicated full conversion, reaction mixture was filtered over a pad of Celite with 

repeated pentane rinsings. Volatiles were removed under reduced pressure and crude 

product was purified by distillation (65 °C, 400 mTorr) to afford a clear, colorless oil (953 

mg, 38.6%). 

1H NMR (MHz, C6D6) δ 7.02 (br, 1H), δ 6.85 (d, J = 5.1 Hz, 1H), δ 6.21 (dt, J = 11.7, 1.2 

Hz, 1H), δ 5.57 (ddd, J = 6.2, 5.1, 1.3 Hz, 1H), δ 3.94 (t, J = 6.6 Hz, 2H), δ 1.63 – 1.43 (m, 

2H), δ 1.45 – 1.16 (m, 2H), δ 0.82 (t, J = 7.3 Hz, 3H) 

11B NMR (MHz, C6D6) δ 27.8 
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