
Persistent link: http://hdl.handle.net/2345/bc-ir:107590

This work is posted on eScholarship@BC,
Boston College University Libraries.

Boston College Electronic Thesis or Dissertation, 2017

Copyright is held by the author. This work is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0).

THERMAL AND ELECTRICAL
TRANSPORT STUDY ON
THERMOELECTRIC MATERIALS
THROUGH NANOSTRUCTURING AND
MAGNETIC FIELD

Author: Mengliang Yao

http://hdl.handle.net/2345/bc-ir:107590
http://escholarship.bc.edu


THERMAL AND ELECTRICAL 
TRANSPORT STUDY ON 

THERMOELECTRIC MATERIALS 
THROUGH NANOSTRUCTURING AND 

MAGNETIC FIELD 
 
 
 

MENGLIANG YAO 
 
 

 
 

 
 
 

A dissertation 
 

submitted to the Faculty of  
 

the Department of Physics 
 

in partial fulfillment 
 

of the requirements for the degree of 
 

Doctor of Philosophy 
 

 
 

 
 
 
 
 

Boston College 
Morrissey College of Arts and Sciences 

Graduate School 
 
 

June 2017 



 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank 

Substitute this blank page with a publisher’s page if needed. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

July 26th, 2017 
 

© Copyright 2017 MENGLIANG YAO 



 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank 



Abstract 

 

Title: THERMAL AND ELECTRICAL TRANSPORT STUDY ON THERMOELECTRIC 

MATERIALS THROUGH NANOSTRUCTURING AND MAGNETIC FIELD 

Author: Mengliang Yao 

Advisor: Dr. Cyril P. Opeil, S.J. (Chair) 

Committee Members: Dr. Michael J. Naughton, Dr. Krzysztof Kempa, and Dr. Mona 

Zebarjadi 

Thermoelectric (TE) materials are of great interest to contemporary scientists 

because of their ability to directly convert temperature differences into electricity, and are 

regarded as a promising mode of alternative energy. The TE conversion efficiency is 

determined by the Carnot efficiency, 𝜂C and is relevant to a commonly used figure of 

merit 𝑍𝑍 of a material. Improving the value of 𝑍𝑍 is presently a core mission within 

the TE field. In order to advance our understanding of thermoelectric materials and 

improve their efficiency, this dissertation investigates the low-temperature behavior of the 

p-type thermoelectric Cu2Se through chemical doping and nanostructuring. It 



demonstrates a method to separate the electronic and lattice thermal conductivities in 

single crystal Bi2Te3, Cu, Al, Zn, and probes the electrical transport of quasi 2D bismuth 

textured thin films. 

Cu2Se is a good high temperature TE material due to its phonon-liquid 

electron-crystal (PLEC) properties. It shows a discontinuity in transport coefficients and 

𝑍𝑍 around a structural transition. The present work on Cu2Se at low temperatures shows 

that it is a promising p-type TE material in the low temperature regime and investigates 

the Peierls transition and charge-density wave (CDW) response to doping [1]. After 

entering the CDW ground state, an oscillation (wave-like fluctuation) was observed in the 

dc I-V curve near 50 K; this exhibits a periodic negative differential resistivity in an 

applied electric field due to the current. An investigation into the doping effect of Zn, Ni, 

and Te on the CDW ground state shows that Zn and Ni-doped Cu2Se produces an 

increased semiconducting energy gap and electron-phonon coupling constant, while the 

Te doping suppresses the Peierls transition. A similar fluctuating wave-like dc I-V curve 

was observed in Cu1.98Zn0.02Se near 40 K. This oscillatory behavior in the dc I-V curve 

was found to be insensitive to magnetic field but temperature dependent [2]. 

Understanding reducing thermal conductivity in TE materials is an important 



facet of increasing TE efficiency and potential applications. In this dissertation, a 

magnetothermal (MTR) resistance method is used to measure the lattice thermal 

conductivity, 𝜅ph of single crystal Bi2Te3 from 5 to 60 K. A large transverse magnetic 

field is applied to suppress the electronic thermal conduction while measuring thermal 

conductivity and electrical resistivity. The lattice thermal conductivity is then calculated 

by extrapolating the thermal conductivity versus electrical conductivity curve to a zero 

electrical conductivity value. The results show that the measured phonon thermal 

conductivity follows the e𝛥min 𝑇⁄  temperature dependence and the Lorenz ratio 

corresponds to the modified Sommerfeld value in the intermediate temperature range. 

These low-temperature experimental data and analysis on Bi2Te3 are important 

compliments to previous measurements and theoretical calculations at higher 

temperatures, 100 – 300 K. The MTR method on Bi2Te3 provides data necessary for 

first-principles calculations [4]. A parallel study on single crystal Cu, Al and Zn shows 

the applicability of the MTR method for separating 𝜅e and 𝜅ph in metals and indicates 

a significant deviation of the Lorenz ratio between 5 K and 60 K [3]. 

Elemental bismuth is a component of many TE compounds and in this 

dissertation magnetoresistance measurements are used investigate the effect of texturing 



in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing 

such that all grains are oriented with the trigonal axis normal to the film plane is found to 

flow in an isotropic manner. By contrast, bismuth films with no texture such that not all 

grains have the same crystallographic orientation exhibit anisotropic current flow, giving 

rise to preferential current flow pathways in each grain depending on its orientation. 

Textured and non-textured bismuth thin films are examined by measuring their 

angle-dependent magnetoresistance at different temperatures (3 – 300 K) and applied 

magnetic fields (0 – 90 kOe). Experimental evidence shows that the anisotropic 

conduction is due to the large mass anisotropy of bismuth and is confirmed by a parallel 

study on an antimony thin film [5]. 
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Quotations 

 

古今之成大事業、大學問者，必經過三種之境界：「昨夜西風凋碧

樹。獨上高樓，望盡天涯路。①」此第一境也。「衣帶漸寬終不悔，爲

伊消得人憔悴。②」此第二境也。「衆裏尋他千百度，驀然回首，那人

卻在，燈火闌珊處。③」此第三境也。此等語皆非大詞人不能道。然據

以此意解釋諸詞，恐爲晏歐諸公所不許也。 

王國維《人間詞話》廿六 

① 晏殊《蝶戀花》：「檻菊愁煙蘭泣露。羅幕輕寒，燕子雙飛去。明月不諳離恨苦，

斜光到曉穿朱戶。昨夜西風凋碧樹。獨上高樓，望盡天涯路。欲寄彩箋兼尺素，

山長水闊知何處。」 

② 柳永《鳳棲梧》：「佇倚危樓風細細。望極春愁，黯黯生天際。草色煙光殘照裏。

無言誰會憑欄意。擬把疏狂圖一醉，對酒當歌，強樂無味。衣帶漸寬終不悔，

爲伊消得人憔悴。」 

③ 辛棄疾《青玉案》（元夕）：「東風夜放花千樹。更吹落、星如雨。寶馬雕車香滿

路，鳳簫聲動，玉壺光轉，一夜魚龍舞。蛾兒雪柳黃金縷。笑語盈盈暗香去。

衆裏尋他千百度。驀然回首，那人卻在，燈火闌珊處。」 
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Chapter I: Introduction to Thermoelectric Effect 

 

1. Introduction 

The thermoelectric (TE) effect is a direct conversion of temperature differences 

into electric voltage and vice versa. It is usually grouped into three categories of effects: 

the Seebeck effect, the Peltier effect and the Thomson effect. The first thermoelectric 

phenomenon was discovered by Thomas Johann Seebeck in 1821, and later described as 

“thermoelectricity” by Hans Christian Ørsted. Two related effects were discovered later, 

with the Peltier effect discovered by Jean Charles Athanase Peltier from experiments in 

1834, and the Thomson effect discovered by William Thomson (Lord Kelvin) from 

theoretical predictions in 1851. Although these thermoelectric effects were discovered 

nearly 200 years ago, they have renewed researchers’ interests in recent decades for the 

following reasons. 

There is an increasing concern for global warming and an energy crisis 

nowadays. Currently, the majority of energy for human beings comes from fossil fuels, 

hydroelectric power, and nuclear power. Aside from these, there are some other minor 
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clean energy sources which may be promising in the future, but have not developed much 

in the present, such as wind power, solar power, etc. Among the major energy resources, 

fossil fuels have been reported to be exhausted within 100 – 200 years. Meanwhile, 

plenty of greenhouse gases and contaminations are produced when making use of fossil 

fuels, and result in global warming and some relevant problems. Also plenty of the heat is 

wasted and not converted into electricity during the process. Hydroelectric energy is 

clean, but it strongly depends on natural circumstances, where one needs to have a 

suitable natural location first. Nuclear energy, more specifically nuclear fission energy, is 

argued to be dangerous and fatally toxic starting from its birth, especially after the 

emergences of the Chernobyl disaster and the Fukushima Daiichi nuclear disaster, which 

are both marked as level 7, i.e. major accident, in the International Nuclear Event Scale 

(INES). As a result, a clean, sustainable, non-location dependent energy form is needed, 

and thermoelectricity is a good candidate to meet the above demands as long as its 

conversion efficiency is high enough. Besides, thermoelectric material can also make use 

of the tremendous waste heat and convert it back into clean electric power. This makes it 

a very promising energy-saving material to overcome the vast energy gap in the future. 

In this Chapter, the three fundamental thermoelectric principles will be 
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introduced, along with introduction of the thermoelectric performance of a TE unit with 

its optimization, and the transport coefficients with their temperature dependences. 

2. Seebeck Effect 

The Seebeck effect was first observed by Baltic German physicist Thomas 

Johann Seebeck in 1821 [1-4]. He first reported the phenomenon that a compass needle 

would be deflected by a closed loop formed by two dissimilar metals joined in two places, 

with a temperature difference between the joints. First, he incorrectly called it the 

thermomagnetic effect. Later Hans Christian Ørsted recognized the current in the loop 

and changed the name to the thermoelectric effect, as shown in Fig. 1.1. 
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Fig. 1.1: Demonstration of the Seebeck effect, a circuit is formed from two dissimilar materials A 

and B, with different temperatures at two joints; the current is generated in the loop due to the 

thermal emf (electromotive force). Figure is taken from ref. [5]. 
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The Seebeck effect is the direct conversion of heat into electricity at the junction 

of different materials, but the current or the closed loop is not necessary to describe the 

effect. From experiments, people found that the generated thermal emf 𝑉therm  was 

proportional to the temperature difference ∆𝑇 at two junctions: 

𝑉therm = � (𝑆B − 𝑆A)

𝑇2

𝑇1

d𝑇 = 𝑆BA∆𝑇 

(1.1) 

Here, 𝑆A and 𝑆B are the absolute Seebeck coefficients and their difference 𝑆BA is the 

relative Seebeck coefficient of two dissimilar materials A and B. 

As mentioned above, even if there’s only one material but with different 

temperatures at its two ends, there still exists the Seebeck effect. A thermal emf is 

generated from the temperature gradient inside the metal. From a phenomenological 

perspective, the Seebeck effect is very easily understood as follows. In an equilibrium 

state, there is no temperature gradient and thus ∆𝑇 = 0. The free carriers are uniformly 

distributed in the system. However, if there is a temperature gradient, the free carriers 

begin to diffuse from the hot end into the cold end, and a thermal emf is established with 

an inner electric field preventing further diffusion, and forms a new equilibrium state. 

This generated emf 𝑉therm is proportional to the temperature difference ∆𝑇 and the 
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proportionality factor 𝑆 is the absolute Seebeck coefficient of this material. Now the 

Seebeck coefficient 𝑆 becomes an intrinsic property of the single material, where ∆𝑉 is 

the voltage measured from experiments, as shown in Fig. 1.2 (n-type). 

∆𝑉 = 𝑉therm = 𝑆∆𝑇 

(1.2) 
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Fig. 1.2: Illustration of the Seebeck effect of an n-type material. The electrons diffuse from the 

hot end to the cold end and a thermal emf is established. The inner electric field prevents more 

electrons from diffusing and a new equilibrium state is established. The illustration of a p-type 

material is similar. 
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3. Peltier Effect 

The Peltier effect is the second thermoelectric effect, first discovered in 1834 by 

French physicist Jean Charles Athanase Peltier [6], and states that when a current is made 

to flow through a junction between two dissimilar conductors A and B, heat 𝑄 may be 

released (or absorbed) at the junction depending on the direction of the current. The rate 

of heating or cooling, i.e. power 𝑃, is proportional to the current 𝐼 going through the 

junction (from A to B): 

𝑃 ≡ 𝑄̇ = (𝛱A − 𝛱B)𝐼 

(1.3) 

where 𝛱A and 𝛱B are the Peltier coefficients of conductors A and B respectively. 

According to Boltzmann transport theory, the presence of a current leads to the 

generation of a heat flux, because the free carriers not only transport charge but also 

transport heat. The electric current is continuous going through the junction because 

there’s no leak of the current and for a single material its heat flux is proportional to its 

electric current but the ratio is material dependent. Thus, the heat flux will not be 

continuous through the junction if it is only transported along with the electric current. In 

order to prevent the discontinuity of the heat flux, extra released or absorbed heat is 
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needed at the junction, and that is the Peltier effect, as shown in Fig. 1.3. 
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Fig. 1.3: Demonstration of the Peltier effect. The electric current is driven by an external power 

source, the absorption or the liberation of the heat depends on the direction of the current going 

through the junction, i.e. from A to B or from B to A, as indicated by −∆𝑻 at the left joint and 

+∆𝑻 at the right joint. Figure is taken from ref. [5]. 
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4. Thomson Effect 

The third thermoelectric effect, the Thomson effect, was first theoretically 

derived by Lord Kelvin in 1851 [7, 8], describing the heating or cooling of single 

current-carrying material with a temperature gradient. Usually the Seebeck coefficient is 

a function of temperature, so a spatial gradient in temperature can result in a gradient in 

the Seebeck coefficient. If a current is driven through this gradient, then a continuous 

version of the Peltier effect will occur. The power density 𝑝  is described by the 

following formula where 𝚥 is the current density, and the proportional constant 𝜅 is 

called the Thomson coefficient: 

𝑝 = −𝜅𝚥 ⋅ ∇𝑇 

(1.4) 

Similar to the Peltier effect, the absorption or liberation of heat also depends on 

the direction of the current and the thermal gradient, and can be categorized into positive 

or negative Thomson effect. Fig. 4 illustrates the positive Thomson effect. 
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Fig. 1.4: Positive Thomson effect. Heat is evolved when current is passed from hot end to the 

cold end when the current is anti-parallel to the thermal gradient, and vice versa. Figure is 

adopted from ref. [11]. 
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5. Thomson Relations 

In 1854, three years after the discovery of the Thomson effect, William Thomson 

discovered the relationship between the three thermoelectric effects: the Seebeck effect, 

the Peltier effect, and the Thomson effect [9, 10]. Their coefficients were related by the 

following two formulae, called the first Thomson relation (1.6) and the second Thomson 

relation (1.5): 

𝛱 = 𝑇𝑇 

(1.5) 

𝜅 = 𝑇
d𝑆
d𝑇

=
d𝛱
d𝑇

− 𝑆 

(1.6) 

As a result, these three thermoelectric effects are related. In other words, there’s 

only one independent thermoelectric effect, which was chosen to be the Seebeck effect. 

The reason is from the experimental considerations. Among the three effects, aside from 

the Seebeck effect, the other two effects need a steady current going through the material 

to perform the caloric measurements. The heat measurements do not have the same level 

of precision as the voltage measurements of the Seebeck effect, and also need much more 

complicated experimental setups compared with the latter one. 
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6. Figure of Merit 

From the previously introduced three thermoelectric effects, it is naturally 

realized that the temperature differences can be used to produce electricity through the 

Seebeck effect. Meanwhile, a refrigerator can be created just by applying a current 

according to the Peltier effect, as shown in Fig. 1.5 [12-14]. Then, a very important 

question comes out: What is the efficiency of those apparatuses when they are converting 

the heat into electricity and vice versa, or more directly what is the efficiency of 

thermoelectric materials? 
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Fig. 1.5: The diagram on the left is power generation according to the Seebeck effect, while the 

diagram on the right is a refrigerator according to the Peltier effect. Figures are taken from ref. 

[14]. 
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Normally, in order to achieve a higher efficiency, the n-type and p-type 

semiconducting materials are used together as a pair in a setup, and the efficiencies are 

given by the following expressions, where 𝜙 is the coefficient-of-performance (COP) of 

a refrigerator and 𝜂 the TE efficiency of a thermoelectric generator [5]: 

𝜙 =
𝑇c

𝑇h − 𝑇c

√1 + 𝑍𝑍 − 𝑇h
𝑇c

√1 + 𝑍𝑍 + 1
=

(1 − 𝜂C)√1 + 𝑍𝑍 − 1
𝜂C�√1 + 𝑍𝑍 + 1�

 

(1.7) 

𝜂 =
𝑇h − 𝑇c
𝑇h

√1 + 𝑍𝑍 − 1
√1 + 𝑍𝑍 + 𝑇c

𝑇h

=
𝜂C�√1 + 𝑍𝑍 − 1�
√1 + 𝑍𝑍 + 1 − 𝜂C

 

(1.8) 

Here, 𝑇c  and 𝑇h  are the temperatures at the cold and hot reservoirs respectively, 

𝑇 ≡ 𝑇h+𝑇c
2  is the average temperature, 𝜂C ≡ 1 − 𝑇c

𝑇h
 is the Carnot efficiency, and 𝑍𝑍 is 

the dimensionless figure of merit, defined by 

𝑍𝑍 ≡
�𝑆p − 𝑆n�

2𝑇

��𝜅p𝜌p + �𝜅n𝜌n�
2 

(1.9) 

Here, subscripts p and n represent the p-type and n-type leg respectively, and 𝑆, 𝜅, 𝜌 

are the Seebeck coefficient, thermal conductivity and electrical resistivity. 

Correspondingly, the dimensionless figure of merit of single thermoelectric material 𝑧𝑧 
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is defined as 

𝑧𝑧 ≡
𝑆2𝑇
𝜅𝜅

 

(1.10) 

According to thermodynamics, the highest efficiency one could get from an ideal 

heat engine is the Carnot efficiency 𝜂C. As a result, the efficiency from thermoelectric 

generation 𝜂  must be less than 𝜂C , as verified by expression (1.8). Further, the 

efficiency only depends on two quantities: the Carnot efficiency 𝜂C  and the 

dimensionless figure of merit 𝑍𝑍. The Carnot efficiency depends on the process of using 

and is material independent; however, figure of merit 𝑧𝑧 is a pure material dependent 

quantity and is the one really representing the quality of a thermoelectric material. 
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Fig. 1.6: Ratio of the thermoelectric efficiency to the Carnot efficiency, which depends on the 

Carnot efficiency itself and also the material dependent dimensionless figure of merit. The right 

figure is plotted when the Carnot efficiency is 𝟓 𝟖� . 

  

𝑇h = 800 K 

𝑇c = 300 K 

𝜂C = 0.625 
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Fig. 1.6 illustrates the dependence of the thermoelectric generation efficiency 𝜂 

with respect to its two arguments: the Carnot efficiency 𝜂C and the dimensionless figure 

of merit 𝑧𝑧. As we see, 𝜂 monotonously increases with respect to the increase of 𝜂C 

and 𝑧𝑧, and the contribution is mainly from 𝑧𝑧. Thus, to find a good thermoelectric 

material with a large 𝑧𝑧 value is very important. The right figure in Fig. 1.6 shows the 

efficiency curve at a selected Carnot efficiency. When 𝑧𝑧 equals 2, the efficiency 

approaches 35%, while when 𝑧𝑧 comes to 4, the efficiency is near 50%. It is considered 

only when the figure of merit is larger than 4 the thermoelectric materials become 

applicable. Thus, the present-day most promising bulk TE material, single crystal SnSe 

[15], having a 𝑧𝑧 of 2.5, is still far away from real application, if we only consider the 

thermoelectric performance itself. 

7. Electrical Resistivity 

The electrical resistivity describes how strongly a material opposes the flow of 

electric current under an applied electric field. However, in transport theory, it is more 

convenient to use electrical conductivity to set up the theoretical framework, where the 

electrical conductivity tensor 𝜎� is the coefficient relating the vector electric field 𝐸�⃑  to 
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the vector current density 𝚥: 

𝚥 = 𝜎�𝐸�⃑  

(1.11) 

The electrical resistivity tensor 𝜌�  is defined as the matrix inverse of the 

electrical conductivity tensor 𝜎�. Starting from the Boltzmann transport equation in the 

relaxation-time approximation, where 𝜏 is the relaxation time and 𝑣⃑ is the electron 

velocity [16]: 

∂𝑓�𝑟, 𝑘�⃑ , 𝑡�
∂𝑡

+ 𝑣⃑ ⋅ ∇𝑟𝑓�𝑟, 𝑘�⃑ , 𝑡� + 𝐹⃑ ⋅
1
ℏ
∇𝑘�⃑ 𝑓�𝑟,𝑘�⃑ , 𝑡� = −

𝑓�𝑟,𝑘�⃑ , 𝑡� − 𝑓0�𝑘�⃑ �
𝜏�𝑘�⃑ �

 

(1.12) 

Here 𝑓�𝑟,𝑘�⃑ , 𝑡� is the nonequilibrium charge carrier distribution function, while 𝑓0�𝑘�⃑ � 

is its local equilibrium form, i.e. the Fermi distribution 𝑓0�𝑘�⃑ � = 1

exp�𝜖�𝑘
��⃑ �−𝜇
𝑘B𝑇

�+1
. The 

electrical conductivity can be expressed as the sum of contributions from each energy 

band [16]: 

𝜎�(𝜔) = �𝜎�(𝑛)(𝜔)
𝑛

= �𝑒2�
d3𝑘
4π3

𝑣�⃑ 𝑛�𝑘�⃑ �𝑣�⃑ 𝑛�𝑘�⃑ �(−∂𝑓 ∂𝜖⁄ )𝜖=𝜖𝑛�𝑘��⃑ �

�1 𝜏𝑛�𝜖𝑛�𝑘�⃑ ��� �−i𝜔
𝑛

 

(1.13) 

In the free electron model, with the assumption of the same relaxation time 𝜏, 

the electrical conductivity tensor reduces to a scalar with the value of 𝜎 = 𝑛𝑒2𝜏
𝑚∗ , where 𝑛 
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is the band index and 𝑚∗ is the effective mass of the carrier. The result is recovered 

from the Drude model, except the free electron mass is replaced by its effective mass. If 

we define mobility as 𝜇 = 𝑒𝑒
𝑚∗ then we obtain: 

𝜎 = 𝑛𝑛𝑛 

(1.14) 

This is a general expression to estimate the mobility of a simple material from 

electrical resistivity and Hall coefficient measurements. In semiconductors, the formula 

needs to be modified as follows, due to the coexistence of both electrons and holes: 

𝜎 = 𝑒(𝑛e𝜇e + 𝑛h𝜇h) 

(1.15) 

8. Thermal Conductivity 

Similar to the electrical conductivity, the thermal conductivity is defined as the 

coefficient relating the temperature gradient ∇𝑇 to the heat flux 𝑞⃑ 

𝑞⃑ = −𝜅̂∇𝑇 

(1.16) 

In principle, the thermal conductivity 𝜅̂  also behaves as a tensor like the 
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electrical conductivity 𝜎� . However, due to the complexity of thermal transport 

measurements, it is very hard to perform thermal Hall measurements, i.e. measuring 𝜅𝑦𝑦 

or other off-diagonal components. Most thermal transport measurements are performed to 

get 𝜅𝑥𝑥 (or 𝜅𝑦𝑦), so to some extent the thermal conductivity tensor 𝜅̂ reduces to a 

thermal conductivity scalar 𝜅. In the following description in this Chapter, the terms 

“phonon(s)” and “lattice” are interchangeable with one another. 

Unlike electrical conduction, which usually conducts only by electrons in normal 

cases, the thermal conduction always conducts by both electrons and phonons. Indeed, 

there are some cases, for example, the Cooper pair, which exists in the superconducting 

state of superconductors, that only conduct charge but do not conduct heat (or entropy). 

However, as for superconductors themselves, because their lattice still conducts heat no 

matter if it is in or out of the superconducting state, they still have a finite thermal 

conductivity. Therefore, the total thermal conductivity 𝜅𝑡𝑡𝑡 is given as the sum of two 

components by [17]: 

𝜅tot = 𝜅carrier + 𝜅ph 

(1.17) 

where 𝜅ph  is the phonon contribution while 𝜅carrier  is the contributions from free 
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carriers, such as electrons, holes, etc. For semiconductors, both electrons and holes 

contribute to the thermal conductivity and 𝜅carrier is given by [17]: 

𝜅carrier = 𝜅e + 𝜅h +
𝜎e𝜎h
𝜎e + 𝜎h

(𝑆e − 𝑆h)2𝑇 

(1.18) 

where the 3rd term in (1.18) is conventionally called the bipolar contribution, which 

manifests itself at temperatures near or exceeding the energy of the band gap of the 

semiconductor due to thermal excitation. As a result, at low temperatures where thermal 

excitation is tiny, the bipolar effect is negligible. Henceforth, the thermal conductivity is 

focused on the 𝜅e (or 𝜅h) and 𝜅ph parts. 

The derivation of the electronic thermal conductivity 𝜅e (or 𝜅h, which will be 

omitted if there’s no ambiguity) is similar to the derivation (1.12) of electrical 

conductivity 𝜎 where we start from the Boltzmann transport equation in the relaxation 

time approximation, where 𝑣⃑�𝑘�⃑ �, 𝑇, and 𝐸�⃑  are the electron velocity, the absolute 

temperature, and the electric field, respectively [18,19]: 

𝑣⃑�𝑘�⃑ � ⋅ �
∂𝑓�𝑟,𝑘�⃑ , 𝑡�

∂𝑇
∇𝑇 + 𝑒

∂𝑓�𝑟,𝑘�⃑ , 𝑡�
∂𝜖�𝑘�⃑ �

𝐸�⃑ � = −
𝑓�𝑟, 𝑘�⃑ , 𝑡� − 𝑓0�𝑘�⃑ �

𝜏�𝑘�⃑ �
 

(1.19) 

If we define a general integral 𝐾𝑛 as [18] 
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𝐾𝑛 ≡ −
1
3
� 𝑣⃑2�𝑘�⃑ �𝜏�𝑘�⃑ ��𝜖�𝑘�⃑ � − 𝜖F�

𝑛 ∂𝑓0�𝑘�⃑ �
∂𝜖�𝑘�⃑ �

d3𝑘 

(1.20) 

then the electronic thermal conductivity 𝜅e  and electrical conductivity 𝜎  can be 

expressed as 

𝜅e =
1
𝑇
�𝐾2 −

𝐾12

𝐾0
� 

(1.21) 

𝜎 = 𝑒2𝐾0 

(1.22) 

The detailed expressions of (1.21) and (1.22) are different for different electron involved 

scattering processes because they have different relaxation times. 

For phonons, we also start from the Boltzmann transport equation in the 

relaxation-time approximation. However, because phonons are bosons without charge, 

the equation is written as [18,19] 

�𝑣⃑g ⋅ ∇𝑇�
∂𝒩(𝑟, 𝑞⃑, 𝑡)

∂𝑇
= −

𝒩(𝑟, 𝑞⃑, 𝑡) −𝒩0(𝑞⃑)
𝜏(𝑞⃑)  

(1.23) 

where 𝑣⃑g  is the phonon group velocity and 𝒩0(𝑞⃑) = 1

exp�ℏ𝜔(𝑞��⃑ )
𝑘B𝑇

�−1
 is the Bose 

distribution when the phonons are in their equilibrium. The phonon thermal conductivity 
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𝜅ph can be expressed as [18,19] 

𝜅ph =
1
3
�ℏ𝜔(𝑞⃑)𝑣⃑g2𝜏(𝑞⃑)

∂𝒩0(𝑞⃑)
∂𝑇

3𝑞2

2π2
d𝑞 

(1.24) 

Both 𝜅e and 𝜅ph share a similar relationship between thermal conductivity and specific 

heat (heat capacity per unit volume) [16,18,19] 

𝜅 =
1
3
𝑐𝑣𝑣2𝜏 =

1
3
𝑐𝑣𝑣𝑣 

(1.25) 

where 𝑐𝑣 is the specific heat, 𝑣 is the velocity, 𝜏 is the relaxation time, and 𝑙 is the 

mean free path. 

9. Seebeck Coefficient 

Unlike electrical conductivity (𝜎) and thermal conductivity (𝜅), the existence of 

Seebeck effect does not need an electric current 𝚥 or a dissipative energy flux 𝑞⃑′ (the 

prime notation here is a direct quotation from Landau’s vol. 10 ref. [20]). However, the 

Seebeck coefficient 𝑆 is related to 𝜎 (or 𝜌) and 𝜅 through the following transport 

equations [20,21], note that temperature gradient ∇𝑇 is a vector: 

𝐸�⃑ + ∇ �
𝜇
𝑒
� = 𝜌𝚥 + 𝑆∇𝑇 
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(1.26) 

𝑞⃑′ = 𝑆𝑆𝚥 − 𝜅∇𝑇 

(1.27) 

where 𝜇 and 𝑒 are the chemical potential and the electron charge, respectively. 

The Seebeck coefficient can be derived for an isotropic model of a metal under 

the assumption of elastic collisions, which is called Mott’s formula [18,21,22]: 

𝑆 =
π2𝑘B2𝑇

3𝑒
∂ log�𝜎(𝜖)�

∂𝜖
�
𝜖=𝜖F

 

(1.28) 

If we deal with free electrons scattered from impurities, which happens at the residual 

resistance range when temperature becomes sufficiently low, the Seebeck coefficient is 

estimated as follows [22], from which we can see the Seebeck coefficient of metals is 

usually very small and can be neglected: 

𝑆 =
π2𝑘B

3𝑒
𝑘B𝑇
𝜖F

~10−8 × 𝑇 V K⁄ = 10−2 × 𝑇 µV K⁄  

(1.29) 

Eqn. (1.28) can be written in terms of carrier concentration 𝑛 and mobility 𝜇 as [22]: 

𝑆 =
π2𝑘B2𝑇

3𝑒 �
1
𝑛
∂ 𝑛(𝜖)
∂𝜖

+
1
𝜇
∂ 𝜇(𝜖)
∂𝜖 �

𝜖=𝜖F
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(1.30) 

The Seebeck coefficient in the degenerate limit for a single parabolic band can be 

expressed as [22]: 

𝑆 =
𝑘B
𝑒

(𝑟 + 5 2⁄ )𝐹𝑟+3 2⁄ (𝜉)
(𝑟 + 3 2⁄ )𝐹𝑟+1 2⁄ (𝜉) − 𝜉 

(1.31) 

where 𝐹𝑛(𝜉) is the Fermi integral defined by 

𝐹𝑛(𝜉) = �
𝜒𝑛

1 + e𝜒−𝜉
d𝜒

+∞

0

 

(1.32) 

𝑟  and 𝜉 ≡ 𝜖F
𝑘B𝑇�  are the scattering parameter and the reduced Fermi energy, 

respectively. 

Just as in electrical conductivity and thermal conductivity, if there exist two 

types of carriers, the total Seebeck coefficient is the contribution of both carriers, but not 

in a direct sum 

𝑆 =
𝑆e𝜎e + 𝑆h𝜎h
𝜎e + 𝜎h

 

(1.33) 

In discussing thermoelectric quantities and characterization, it is important to 

link them with the underlying physics concepts and thermodynamics. If one considers the 
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dimensionality of the Seebeck coefficient, its unit is V K⁄  (in thermoelectricity µV K⁄  is 

more commonly used), so its dimension (in SI units) is [𝑆] = � voltage
temperature

� = �V
K
� =

L2MT−3I−1

Θ
= L2MT−3I−1Θ−1. We know that the entropy is defined as d𝒮 = δ𝑄

𝑇
 thus its 

dimension is [𝒮] = � heat
temperature

� = � energy
temperature

� = �charge×voltage
temperature

� = L2MT−2Θ−1, as a 

result [𝑆] = �𝒮
𝑄
� where 𝑆, 𝒮, and 𝑄 are the Seebeck coefficient, entropy, and electric 

charge respectively. From this analysis one can see that the most fundamental description 

of the Seebeck coefficient is a consideration of entropy per charge. Thus a large 

thermoelectric effect or Seebeck coefficient quantifies a large entropy per charge carrier 

for the system. 

10. Wiedemann-Franz Law 

The Wiedemann-Franz law, or in short the W-F law, states that the ratio of the 

thermal conductivity 𝜅 to the electrical conductivity 𝜎 of a metal is proportional to the 

absolute temperature 𝑇. Gustav Wiedemann and Rudolph Franz reported that 𝜅 𝜎⁄  has 

approximately the same value for different metals at the same temperature in 1853 [23], 

and Ludvig Lorenz discovered the proportionality of 𝜅 𝜎⁄  with temperature in 1872. The 

proportionality constant is called the Lorenz number 𝐿 and its value for a free electron 
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gas is called the Sommerfeld value of the Lorenz number 𝐿0 and equals [16,18-21] 

𝐿0 =
π2

3 �
𝑘B
𝑒 �

2

= 2.443 × 10−8  V2 K2⁄  

(1.34) 

Note that the Lorenz number has a dimension of 𝑆2. 

Strictly speaking, the thermal conductivity used to extract the Lorenz number is 

the electronic thermal conductivity 𝜅e, but due to the overwhelming electronic transport 

in metals, the above descriptions are still accurate enough without large deviations. 

Besides, every material has its own thermoelectric effect, no matter how large or small. 

As a result, if the thermoelectric term is considered, the real Lorenz number will deviate 

from the Sommerfeld value by a little bit [20] 

𝐿 ≡
𝜅e
𝜎𝜎

= 𝐿0 − 𝑆2 

(1.35) 

Normally the Seebeck coefficient of metals is on the order of several µV K⁄  and 

thus can be omitted safely in (1.35). But for semiconductors, the Seebeck coefficient is 

usually up to several hundred µV K⁄  and needs to be taken into account. The Lorenz 

number also depends on the temperature. It approaches its Sommerfeld value at lowest 

residual resistance temperature range and around or above room temperature range, 
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where electron-impurity scattering and electron-phonon scattering are elastic and become 

dominant, respectively [18]. 

11. Temperature Dependence of Transport Coefficients 

There’s no doubt that all of the transport coefficients 𝜅, 𝜎 and 𝑆 are generally 

temperature dependent, and as a result, the derived figure of merit 𝑧𝑧 = 𝑆2𝑇 𝜅𝜅�  is also 

temperature dependent. In this section, I will briefly organize some contents on their 

temperature behaviors below room temperatures, especially in the low temperature range. 

Electrical conductivity 𝜎 is easier to deal with than thermal conductivity 𝜅, 

since only electrons conduct charge. As a result, people only need to deal with the 

scattering between electrons and other particles or quasi-particles, such as phonons, 

electrons, defects, dislocations, boundaries, etc. However, for thermal conductivity, we 

need to consider both electrons and phonons, i.e. the electronic thermal conductivity 𝜅e 

and phonon thermal conductivity 𝜅ph, separately. 

The Debye temperature 𝛩D ≡
ℏ𝜔max

𝑘B�  is used to characterize the level of the 

temperature, i.e. if 𝑇 ≪ 𝛩D  it is said 𝑇 is in the low temperature range, while if 
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𝑇 ≫ 𝛩D then it is said T is in the high temperature range. For most of the materials, room 

temperature is in the high temperature range. 

When 𝑇 ≫ 𝛩D  the dominant scattering mechanism is the high temperature 

electron-phonon scattering. Phonons with all possible quasi-momenta are excited in the 

crystal up to the maximum value, with the same order of magnitude as the electron Fermi 

momentum, thus enabling us to treat phonon emission or absorption approximately as 

elastic scattering of an electron [20]. When considering 𝜅ph, there are mainly two 

dominant scattering mechanisms: one is the phonon-phonon Umklapp-process at high 

temperatures and 𝜅ph
ph is used to designate the lattice thermal conductivity from this 

mechanism, and the other is the lattice thermal conductivity from the phonon-electron 

scattering designated as 𝜅phe  [18-20]. It is concluded that at this temperature range: 

1. 𝜌~𝑇; 

2. 𝜎 = 1 𝜌� ~ 1
𝑇� ; 

3. 𝜅e~const; 

4. 𝜅ph
ph~ 1

𝑇� ; 

5. 𝜅phe ~const. 

We see that 𝜅e 𝜎� ~𝑇 and satisfies the W-F law. This is because the electron-phonon 



1-32 
 

scattering is elastic. Due to the fact that in metals 𝜅e ≫ 𝜅ph, what we observe at room 

temperature is that most of the metals obey the W-F law. 

In the intermediate temperature range, the mechanism is complicated because of 

lacking the asymptotic power law expressions of the formulae. However, in this 

temperature range, the electron-phonon scattering is still dominant. When temperature 

even goes lower, where 𝑇 ≪ 𝛩D, which is referred to as low temperature range but not 

that ultra-low, the situation becomes simple due to the existence of simple asymptotic 

expressions for electron-phonon scattering again. It is concluded that [18-20]: 

1. 𝜌~𝑇5 (Bloch’s 𝑇5 law); 

2. 𝜎 = 1 𝜌� ~𝑇−5; 

3. 𝜅e~𝑇−2; 

4. 𝜅ph
ph~e𝛥min 𝑇⁄ ; 

5. 𝜅phe ~𝑇2. 

At this temperature range the W-F law no longer holds, as we see from the estimation 

𝜅e 𝜎� ~𝑇3. 

When temperature goes even lower, the electron-phonon collision frequency 

decreases and ultimately the collisions between electrons and impurities become 
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predominant in causing the electrical and thermal resistance in metals, and this is the 

residual resistance range. Also, there may exist the scatterings between electron and 

electron above the residual resistance range. For the thermal conductivity, according to 

(1.25), at the lowest temperature the velocity 𝑣 and mean free path 𝑙 become constants 

and the 𝜅’s behavior purely comes from specific heat 𝑐𝑣. Thus [18-20] 

1. 𝜌s−s~𝑇2 (normal electron-electron scatterings, i.e. s-electron scatterings); 

2. 𝜌s−d~𝑇3 (s-d electron scatterings for transition metals); 

3. 𝜌res~const (“res” stands for “residual”); 

4. 𝜎res = 1
𝜌res� ~const; 

5. 𝜅es−s~ 1
𝑇� ; 

6. 𝜅eres~𝑇; 

7. 𝜅phres~𝑇3. 

Due to the existence of impurities and the fact that the scatterings are elastic, the W-F law 

is recovered, as we see 𝜅e
res

𝜎res� ~𝑇. Combined with the temperature behavior of 

Seebeck coefficient at low temperature eqn. (1.29), we are able to extract that the figure 

of merit always approaches zero at low temperatures, if we assume that 𝜅tot = 𝜅e +

𝜅ph~𝛾𝛾 + 𝛿𝑇3 then 
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lim
𝑇→0

𝑧𝑧~
𝑇2

𝛾 + 𝛿𝑇2
→ 0 

(1.36) 

12. Optimization of Figure of Merit 

From the definition of figure of merit 𝑧𝑧 = 𝑆2𝑇 𝜅𝜅�  we can see that besides it 

being temperature dependent, its value also depends on all three transport coefficients 

[24]: 

1. Large Seebeck coefficient 𝑆 means large open circuit voltage for generators, also 

large Peltier coefficient 𝛱 = 𝑇𝑇 for refrigerators; 

2. Low thermal conductivity 𝜅 means it is easier to maintain temperature gradient for 

generators and reduce heat conducting back to cold side for refrigerators; 

3. High electrical conductivity 𝜎  or low electrical resistivity 𝜌  means low Joule 

heating. 

All of the three factors are important to achieve a high 𝑧𝑧 material. However, 

these three quantities are highly correlated and it is hard to just only tune one factor but 

leave others slightly altered [24]: 

1. Increasing carrier concentration 𝑛 will increase 𝜎 but reduce 𝑆; 
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2. Increasing effective mass will increase 𝑆 but decrease mobility 𝜇 and 𝜎; 

3. Increasing 𝜎 will increase 𝜅e (Wiedemann-Franz Law); 

4. Decreasing 𝜅ph by adding defects will decrease mobility 𝜇 and 𝜎. 

However, generally speaking, all of the transport coefficients are actually 

functions of carrier concentration 𝑛 , as shown in Fig. 1.7 [25,26]. The carrier 

concentration is plotted in log scale, where both 𝜅 and 𝜎 increase with increasing 𝑛, 

but the Seebeck coefficient has the opposite trend. As a result, the figure of merit has a 

maximum in the middle range of the carrier concentration, and it usually locates in the 

range of heavily doped semiconductors. 
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Fig. 1.7: Demonstration of the relations between the transport coefficients and carrier 

concentration for a bulk material. Good thermoelectric materials are typically heavily doped 

semiconductors with a carrier concentration between 1019 and 1021 carriers per cm3. Trends 

shown here were modeled from Bi2Te3. Figure is taken from ref. [25]. 

  



1-37 
 

Starting in the 1950s, people began to search for high 𝑧𝑧 materials until they 

found Bi2Te3 and its alloys with Sb and Se, which have a 𝑧𝑧 value around 1. There were 

very limited improvements on good quality single crystal bulk materials during the 

following several decades [12,26,29,30]. The sudden increase of figure of merit during 

the 1990s was due to the introduction of nanostructures in the bulk, which was first 

indicated by Hicks and Dresselhaus in 1993 [27,28]. Fig. 1.8 shows the improvement 

trajectory of 𝑧𝑧max from 1950s to 2000s. We can see that after 1970, because of a lack 

of new theories, the increase of figure of merit is negligible, until the work of Hicks and 

Dresselhaus. 
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Fig. 1.8: Evolution of the maximum 𝒛𝒛 over time. Materials for thermoelectric cooling are 

shown as blue dots and for thermoelectric power generation as red triangles. The black dashed 

line guides the eye. Figure is taken from ref. [29]. 
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Nowadays, in order to explore high figure of merit material, people basically 

adopt the following approaches [24,26]: 

1. Unusual band structures, such as heavy fermion compounds, which have large 

Seebeck coefficient; 

2. Phonon glass electron crystal (PGEC), such as skutterudites, clathrates, and β-Zn4Sb3, 

which exhibit pretty good electrical conduction and poor phonon thermal conduction 

due to their controlled disorder; 

3. Quantum confined structures, such as 2-D superlattices, 1-D nanowires and 

nanocomposites, which have large Seebeck coefficient and low phonon thermal 

conductivity. 

Nanocomposites, made by mechanical ball milling and hot pressing processes, 

are one of the best and most economic approaches to further improve the thermoelectric 

performance of a good thermoelectric material. From Fig. 1.8 we can see the power of 

nanocomposites. The 𝑧𝑧 value of Bi2Te3 increased from 1 in the single crystal to 1.5 in 

the nanocomposites. The intrinsic reasoning of this improvement comes from two 

aspects: 

1. The mean free path of phonons 𝑙ph  is normally much greater than the one of 
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electrons 𝑙e. At the lowest temperatures, the mean free path of phonons may be on 

the order of millimeters [19], which is the size of some small specimens. When 

introducing the nanostructures, i.e. the nanoscale grains, whose sizes 𝐷  are in 

between of the mean free path of electrons and phonons: 

𝑙e < 𝐷 < 𝑙ph 

(1.37) 

So the phonons will be strongly scattered by the grain boundaries, as shown in Fig. 

1.9, while electrons are slightly affected. As a result 𝜅ph is significantly depressed 

while leaving 𝜅e and 𝜎 altered a little bit and still good enough. 
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Fig. 1.9: Schematic illustration of grain boundary scattering mechanism. Phonon are scattered 

by the boundaries, and phonon thermal conduction is reduced. Figure is taken from author’s 

2014 APS March meeting. 
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2. Due to the nanoscale grains, quantum confinement may also take effect, and increase 

the Seebeck coefficient and tune 𝑆 and 𝜌 independently to increase the power factor. 

Just as mentioned in section 6, figure of merit is material dependent. It is also 

temperature dependent. As a result, the maximum of the 𝑧𝑧 curve determines the 

temperature range in which a thermoelectric material is best suitable. Fig. 1.10 shows a 

representative 𝑧𝑧 plot of different materials from low temperature to high temperature 

[25,26,31]. From the figure we see that the highest figure of merit is from the 

superlattices, due to their quantum confinement. However, it is very hard to assemble 

them into practical usage, because a huge efficiency lost will occur in the conjunction 

part and lower the total figure of merit of the thermoelectric unit to an unpractical level. 

Besides having a high 𝑧𝑧 value, a good thermoelectric material must be in the 

solid state and compositionally stable, or even earth abundant and nontoxic. The original 

application of thermoelectric material is in the deep space project, when the solar cell 

cannot convert enough electricity because far away from the Sun, the combination of 

radioactive heat source and thermoelectric unit is able to supply the spacecraft energy as 

needed for a foreseeable period of time. As a result the solid state and stability must be 

satisfied. However, when taking into account the daily practical use, the nontoxic 
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property cannot be absent. In order to lower the price, the composition from earth 

abundant elements is also needed. All of the above factors determine or guide a 

thermoelectrically efficient, affordable, chemically safe, long lasting bulk and solid state 

thermoelectric material, and as a very promising clean energy saving material. 
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Fig. 1.10: Non-dimensional figure of merit 𝒛𝒛 as a function of temperature for state of the art 

materials. Figure is taken from ref. [31]. 
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13. Thermodynamics and Thermoelectricity 

This section is a brief introduction on the basis of thermodynamics and its 

relevance to the thermoelectricity. The contents are mainly based on chapter 2 of ref. [22], 

as well as partially refered to ref. [32]. 

The thermodynamics is based on the four laws of thermodynamics: 

0. The zeroth law of thermodynamics: If two systems are each in thermal equilibrium 

with a third, they are also in thermal equilibrium with each other. 

𝑇A = 𝑇B
𝑇B = 𝑇C

� ⇒ 𝑇A = 𝑇C 

(1.38) 

1. The first law of thermodynamics: The increase in internal energy of a closed system 

is equal to total of the energy added to the system. It is a version of the law of 

conservation of energy, adapted for thermodynamic systems. 

d𝑈 = δ𝑄 − δ𝑊 + 𝜇d𝑛 

(1.39) 

where d𝑈 is a change in internal system energy, δ𝑊 is work performed by the 

system against external forces, 𝜇 is system chemical potential, and d𝑛 is a change 

in the number of particles in the system. 
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2. The second law of thermodynamics: The total entropy of an isolated system can only 

increase over time. It can remain constant in ideal cases where the system is in a 

steady state (equilibrium) or undergoing a reversible process. 

𝑇d𝒮 ≥ δ𝑄 

(1.40) 

where the equality sign is related to reversible and non-equality sign to irreversible 

processes (i.e. nonequilibrium processes such as heat transfer and electric current 

flow). 𝑇  is absolute temperature and d𝒮  is total differential of state function 

entropy 𝒮. 

3. The third law of thermodynamics: The entropy of a perfect crystal at absolute zero is 

exactly equal to zero. 

𝒮(0) = 0 

(1.41) 

The conclusion of zero entropy is a consequence from quantum mechanics for a 

perfect crystal (residual entropy may still exist at absolute zero temperature, e.g. glass, 

one type of amorphous solids). In classical thermodynamics its value is 

undetermined. 
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A real thermal process is always an irreversible nonequilibrium process; as a 

result nonequilibrium thermodynamics is required for the description of thermoelectricity. 

There are mainly two approaches; one was introduced by Onsager in 1931, based on his 

assumption of minimum energy dissipation, as well as the detailed balance. The other 

was made by Prigozhin in 1947 on the assumption of minimum entropy production, 

which was proved more convenient for the solution of practical tasks than Onsager’s 

approach. Both of their approaches deploy the local equilibrium ansatz, i.e. although the 

whole system is in a nonequilibrium state, it can be split into elementary volumes, which 

are microscopically small to the whole system but macroscopically large to the molecules 

they contain, such that each of them is actually in the equilibrium state individually. 

As a result, besides the law of conservation of energy for volume elements (first 

law of thermodynamics), one still needs the following entropy balance equation: 

𝜌
d𝓈
d𝑡

= −div 𝐽 + 𝜎 

(1.42) 

where 𝓈 is the entropy of volume unit, 𝐽 is entropy flow density expressed in terms of 

heat flow density, diffusion density, and part of stress tensor related to nonequilibrium 

processes (i.e. in terms of elastic stress tensor 𝛱𝛼𝛼), 𝜎 is unit local entropy production 
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per unit time expressed as following by considering the phenomenological equations (i.e. 

the equations relating fluxes with forces by transport coefficients): 

𝜎 = �𝑋𝑖𝐿𝑖𝑖𝑋𝑘
𝑖𝑖

≥ 0 

(1.43) 

where 𝑋⃑  and 𝐿�  are thermodynamic forces and transport (kinetic) coefficients, 

respectively. 

Prigozhin’s theorem states that in steady-state the value of 𝜎 is minimum under 

assigned external conditions preventing from establishment of equilibrium, i.e. in the 

state of thermodynamic equilibrium 𝜎 = 0. 

Combine the first and second law of thermodynamics as well as the local 

equilibrium ansatz the basic equation of thermodynamics for quasi-static processes is 

d𝑈 = 𝑇d𝒮 − δ𝑊 + �𝜇𝑟d𝑛𝑟
𝑟

 

(1.44) 

and Onsager reciprocal relations still hold true for transport coefficients 

𝐿𝑖𝑖�𝐵�⃑ � = 𝐿𝑘𝑘�−𝐵�⃑ � 

(1.45) 

where 𝐵�⃑  is magnetic induction vector. 
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Eqns. (1.26) and (1.27) are the generalized Ohm’s law and Fourier’s law 

respectively by considering the thermoelectric terms, because the Seebeck coefficient 𝑆 

is not a transport coefficient, it does not satisfy the functional form of eqn. (1.45). 

Compared with transport coefficients such as 𝜌 or 𝜅, which directly relates the forces 

with fluxes, the Seebeck coefficient or Peltier coefficient relates one force with another 

flux, i.e. it is a second order effect, thus its value is usually small and cannot be neglected 

safely, such as in the case of metals. 

William Thomson (Lord Kelvin) derived (1.5) and (1.6) based on the use of 

classical thermodynamics of equilibrium reversible processes for isotropic medium, a 

more detailed study on the Thomson relations from thermodynamics of irreversible 

processes by Domenicali, and Samoilovich and Korenblit, shows that the expression of 

the Thomson relations does not change. The reason is that the Seebeck, Peltier, and 

Thomson effects in the isotropic medium can be regarded as “quasi-equilibrium” and 

“quasi-reversible” in the sense that their contribution to local entropy change d𝓈 d𝑡⁄  of 

unit volume is zero. For more information please refer to ref. [22]. 

14. Summary 
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Based on the above introduction, this dissertation is the result of the research on 

the transport properties of thermoelectric materials, including the following questions. 

How do electrons and holes transport heat separately? How does the magnetic field affect 

the heat and charge conductions? How does the nanostructuring benefit the laminar TE 

materials? What are the thermoelectric transport properties of Pd doped UPt3 single 

crystals? 

Chapter 2 will describe the experimental equipment and techniques in our lab; 

Chapter 3 is devoted to the Lorenz number project for single crystal metals and 

semiconductors; Chapter 4 deals with the low temperature p-type laminar TE material 

Cu2Se with different dopants; Chapter 5 focuses on the electric conduction within thin 

bismuth films under applied magnetic field; Appendix B will talk about the experimental 

results of thermoelectric transport for Pd doped UPt3 single crystals. 
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Chapter II: Experimental Techniques and Instruments 

 

1. Introduction 

In this Chapter, I will briefly introduce the experimental techniques used in our 

lab, as well as the ones used in this dissertation, and also the instruments in our lab that 

are equipped to achieve these synthesis and characterizations. As a measurement-oriented 

lab, we do not have enough experience in the synthesis. The instruments dedicated to 

fabrication are not as prevalent or professional as the ones for measurements. In the 

following part, the synthesis instruments and techniques are first introduced, and then 

followed with the measurement instruments and techniques. A flow of Cu2Se hot press 

(HP) nanocomposite fabrication process is presented in the end (it is also used to make 

MoSSe HP nanocomposite samples). 

2. Single Zone Furnaces 

There are two single zone furnaces in our lab, both of which were purchased 

from “MTI Corporation”, as shown in Fig. 2.1. The left one is the horizontal ceramic tube 
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furnace EQ-GSL-1700X, which can safely reach a maximum temperature of 1500 oC, 

and the right one is the compact vertical quartz tube furnace OTF-1200X-S-VT, which 

can safely reach a maximum temperature of 1100 oC. Both of them can be used to grow 

certain simple crystal or realize some chemical reactions within a vacuumed ampoule; 

however, they have different optimized working temperature ranges, so the choice of 

furnace depends on the needed reaction temperature, as well as the gravity. Although it is 

not stated and suggested in the manual, sometimes we lay the vertical quartz tube furnace 

down, as shown in Fig. 2.20, to achieve a horizontal furnace in its optimized temperature 

range. The horizontal ceramic tube furnace should avoid this configuration, as it is 

impossible to hold it up as a vertical furnace, due to its structure. 
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Fig. 2.1: The left one is the horizontal furnace, with a higher maximum temperature limit. The 

right one is the vertical furnace, with a lower maximum temperature limit. They have different 

optimized working temperature ranges. 
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The left figure of Fig. 2.2 shows a vacuumed quartz ampoule, sitting in a 

horizontal alumina boat. The ampoule is vacuumed by a molecular pump to the order of 

10-6 mbar and then sealed by the H2/O2 torch. The right figure of Fig. 2.2 shows three 

different enclosures and cases for the ampoule, which protect the furnaces tube from 

being cracked or damaged by the potential explosion of the ampoule during the chemical 

reactions. Besides synthesizing the desired materials, the furnaces were also used to 

anneal samples for better performance and quality. 
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Fig. 2.2: Quartz ampoule with raw Mo, S, and Se powder mixtures inside, and its three possible 

enclosures: rectangular alumina boat, stainless full safety enclosure, and graphite boat for 

ultra-high temperature usage. 
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3. Arc Melter 

The left figure of Fig. 2.3 shows the arc melting machine “Arc Melt Furnace 

SA-200” from Materials Research Furnaces, Inc. It is used to synthesize some materials 

with high melting temperatures, which cannot be produced in our single zone furnaces. 

By applying the large current, the electric arc is able to heat the raw materials up to 3500 

oC and produce enough thermal energy for the chemical reaction. The reactant is 

normally a first step “raw” material for the subsequent processes, such as the raw 

materials in the single zone furnace or in the ball milling jars. The right figure of Fig 2.3 

shows the reactant from the arc melter, which is a mixture of iron and some other 

elements. 
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Fig. 2.3: Arc melter and the reactant. It is very important to turn on the water cooling of the arc 

melter. 
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4. Ball Mill 

In addition to chemical reactions due to heat (i.e. thermal energy), the 

mechanical collision energy is also able to induce the reaction, especially if you want the 

reactant to be nanocomposites instead of single crystals. Meanwhile, the ball milling 

machine can also be used merely as a milling machine to crash large crystals into fine 

powders, of which the grain size is less than the order of microns. Fig. 2.4 shows the ball 

milling machine “8000D Dual Mixer/Mill” from SPEX SamplePrep LLC. When 

performing the ball milling processes, dual ball milling jars need to be placed in their 

positions to balance the cyclotron forces during the milling process. Different sizes of 

balls can be used in the ball milling jar. Fig. 2.4 shows several stainless steel balls of 

different sizes. 
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Fig. 2.4: 8000D Dual Mixer/Mill ball milling machine and two different ball milling jars. The left 

jar is homemade with an improved aspect when demounting the cap after the ball milling; the 

right one is a commercial jar, which may be difficult to open. A heavy metal brick is deployed on 

top of the ball milling machine to enhance the safety during the operation process. 
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5. X-ray Diffraction 

X-ray diffraction (XRD), or called X-ray crystallography, is a characterization 

technique to identify the crystal structure of a material, in which the crystalline atoms 

cause a beam of incident X-rays to diffract into many specific directions. Normally there 

are two types of XRD measurements: 1-D XRD curve and 2-D XRD pattern, both of 

which convert the 3-D lattice structure information into their own representations. The 

1-D XRD curve is more commonly performed on powders, and from the diffraction angle 

2𝜃 of the diffraction peaks, as well as their intensity (less important than the 2𝜃 angle), 

one is able to identify the composition(s) of the as-measured powders. The 2-D XRD 

pattern is more commonly performed on single crystals. It converts the 3-D information 

into 2-D diffraction patterns, where the symmetry tells the lattice structure and the 

luminance tells the different atom combinations. Fig. 2.5 shows a typical series of 1-D 

XRD curves of Cu2Se taken from this dissertation, which were performed on a Bruker D2 

PHASER from Bruker Corporation. 
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Fig. 2.5: The desktop X-ray diffractometer Bruker D2 PHASER and the XRD curves of 

nanocomposite Cu2Se with different dopants measured on this machine. 
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6. Scanning Electron Microscopy (SEM) 

Scanning electron microscopy is a type of electron microscopy, which explores 

the topography of a material by scanning a beam of focused electrons. Unlike the 

atomic-force microscopy (AFM), SEM demands the surface of the specimen be electron 

conducting. Thus, an insulated specimen needs to be sputtered with a fine layer of 

platinum or gold to ensure the conductance of the surface, while maintaining the 

topography. Fig. 2.6 shows the SEM used in our department “JEOL JSM-6340F Field 

Emission Scanning Electron Microscope” from JEOL USA, Inc. and a typical SEM 

image of the hot pressed (HP) nanocomposite Cu2Se parent compound taken from this 

dissertation, showing a typical grain size of several microns. 
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Fig. 2.6: A commercially available SEM device adjacent to Prof. Graph’s lab and a typical SEM 

image of Cu2Se showing grain sizes on the order of several microns. 
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7. Physical Properties Measurement System (PPMS) 

The “Physical Properties Measurement System”, manufactured by Quantum 

Design, is the core equipment in Opeil’s lab. Essentially, it is a refrigerator plus a magnet, 

which is able to provide a temperature range from 350 K to 2 K and a magnetic field 

from -9 T to +9 T. These two abilities provide us with the ability to perform all kinds of 

property measurements, such as electrical resistivity, Hall coefficient, thermal 

conductivity, Seebeck coefficient, specific heat, etc., through different commercially 

purchased options from Quantum Design. Besides, due to the functionality of a 

refrigerator and a magnet, more precise measurements can be performed with the help of 

other independent but more specific instruments, such as AC bridge (LR-700 from Linear 

Research Inc. or LS-370 from Lake Shore Cryotronics, Inc.) for resistance and Hall 

measurements, AH 2550A Capacitance/Loss Bridge from ANDEEN-HAGERLING, INC. 

for dilatometer and relative susceptibility measurements, SR830 Lock-In Amplifier from 

Stanford Research Systems for point-contact spectroscopy (PCS) measurements, etc. Fig. 

2.7 shows the PPMS and its controllers Model 6000, 7100 and 6500. During daily use, 

sequence files are generated on the desktop PC and then sent into controllers through 

GPIB cables, the controllers then send commands in the sequence file to the PPMS to 
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achieve certain measurements or establish certain circumstances, and return the signals 

back to the desktop and show them on the monitor. Sometimes an extra laptop is used to 

record data with the help of a LabVIEW program, because it cannot be executed 

simultaneously with the MultiVu program on the same PC. 
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Fig. 2.7: The Physical Properties Measurement System (PPMS) and its controllers Model 6000, 

7100 and 6500. The blade hung by the pink wire is used to qualitatively detect the existence of 

the magnetic field. The right figure shows the operation of a dilatometer in the PPMS and the 

data was recorded by the laptop through a LabVIEW program. 
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The left figure of Fig. 2.8 shows the DC pucks and the AC pucks, which 

correspond to the resistivity option and AC transport option of PPMS, respectively. Both 

of them can be used to perform the electrical resistivity and Hall measurements. The right 

figure shows the sample holders used on the rotator probe, which are usually used for 

Hall coefficient measurements where the flip of the field is achieved through rotating the 

sample holder by 180 degrees, as well as used to measure the angle dependent field 

responds of all kinds of physical quantities, such as magnetoresistance, etc. 
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Fig. 2.8: DC pucks, AC pucks, and rotator sample holders, cigarette papers are used to 

electrically isolate the sample from the DC and AC pucks. 
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Fig. 2.9 shows the thermal transport option (TTO) puck and the heat capacity 

puck of PPMS. The TTO puck is used to measure thermal conductivity, Seebeck 

coefficient and electrical resistivity, while the heat capacity puck is used to perform the 

specific heat measurements. Because the air molecules will significantly affect the 

thermal transport at low temperatures, these two pucks need a high vacuum circumstance 

to operate properly. 
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Fig. 2.9: TTO puck and heat capacity puck. The left figure shows the chassis and the right figure 

shows the internal connections of these pucks. 
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As mentioned in the above paragraph, the PPMS can be used as a refrigerator 

and a magnet, to achieve the thermal expansion and differential resistance measurements, 

by using the dilatometer probe and the point contact spectroscopy probe, respectively. Fig. 

2.10 shows the core part of these two probes. When performing the measurements, both 

probes are inserted into the “bottom” of PPMS chamber. A local thermometer (called 

“cernox”) is placed below the sample holder at the bottom of the probes. With the help of 

the cernox a more precise temperature can be recorded during the experiments. 
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Fig. 2.10: The detailed portion of the dilatometer probe and the point contact spectroscopy (PCS) 

probe. 
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8. Sample Cutting 

In order to mount any samples, they must be cut into the desired shape and 

dimensions that correspond to the configuration of the equipment. In our lab, samples are 

mainly cut by the diamond saws. Besides the diamond saws, the conducting materials can 

also be cut by the Electric Discharge Machine (EDM), where the sample is burned at the 

contact point. Fig. 2.11 shows the two different cutting systems. An aluminum rod is held 

in the brass parts of the EDM and is completely cut through by the copper wires. The 

right figure of Fig. 2.11 is a homemade diamond saw which is used to cut quartz tubes at 

a constant spin speed. 
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Fig. 2.11: The Electric Discharge Machining (EDM) system and a homemade diamond saw 

system. A 17-mm quartz tube is placed onto the diamond saw. 
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9. High Temperature Measurement Systems 

The PPMS is used to perform low temperature measurements (usually below 300 

K). The high temperature measurements are performed using two other systems: the 

homemade Kevin’s setup and the commercial power conversion efficiency measuring 

instrument from ULVAC-RIKO, Inc.: Model ZEM-3, as shown in Fig. 2.12. The ZEM-3 

is a commercial measurement system. However, the sample dimensions and shapes are 

restricted, and also the measured data points are limited (especially in the electrical 

resistivity measurements). As a result, the Kevin’s setup was built by a former graduate 

student, Kevin Lucas, in Opeil’s lab to overcome these limitations. Different from the 

ZEM-3, which is a complete measurement system and offers its own measurement ability, 

the Kevin’s setup only supplies a high temperature and hermetically-sealed environment. 

All the measurements are achieved by the AC bridge (electrical resistivity) and 

Nanovoltmeter (Seebeck coefficient). Please refer to ref. [7,18] for more information on 

Kevin’s setup. 
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Fig. 2.12: The ULVAC ZEM-3 and the Kevin’s high temperature setup (refer to Kevin’s 

dissertation ref. [18]) for high temperature electrical resistivity and Seebeck coefficient 

measurements. 
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10. Contact Connections: 4-Probe vs. 2-Probe 

The definition of the electrical resistance is the ratio between the voltage 𝑉 

across the sample and the excitation current 𝐼 through it along the same direction. So in 

daily life, the easiest way to know the resistance of a material is to use the multimeter to 

measure it. This is a standard 2-probe approach, and its principle is illustrated by the 

diagrams of Fig. 2.13. This method is pretty good if the contact resistance 𝑅C is small 

compared with the resistance of the sample 𝑅S. From the right diagram of Fig. 2.13 we 

can see that the real measured resistance also includes the contact resistance. If 𝑅C is 

comparable with or even greater than 𝑅S then the 2-probe method will give an incorrect 

result. 

  



2-28 
 

  

 
Fig. 2.13: The diagram and the principle of the 2-probe method to measure the electrical 

resistance by a multimeter. 
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The 4-probe method is introduced to overcome the contact resistance problem, 

as shown in Fig. 2.14. Although the contact resistance is still there and cannot be totally 

eliminated, with the 4-probe method, we are able to make use of the extremely high 

internal resistance characteristics of the voltmeter 𝑅V, which is usually on the order of 

MΩ (mega-ohm) or GΩ (giga-ohm) or even higher, and much greater than the resistance 

of the specimen 𝑅S. When we look at the right diagram of Fig. 2.14, we notice that the 

current going through the sample 𝐼R is much greater than the one going through the 

voltmeter 𝐼V (because 𝑅V ≫ 𝑅S), as a result 𝐼 ≈ 𝐼R, meanwhile as long as the contact 

resistance 𝑅C is much less than the internal resistance of voltmeter 𝑅V (𝑅V ≫ 𝑅C) then 

the reading of voltmeter is equal to the voltage across the sample, i.e. 𝑉 ≈ 𝑉R. Based on 

the above analysis the reading of the AC resistance bridge, which is always 𝑉 𝐼� ≈

𝑉R
𝐼R� ≡ 𝑅S, the resistance of the sample. With the help of 4-probe method we are able to 

accurately measure the resistance of a specimen, as long as the contact resistance 𝑅C is 

much less than the one of the voltmeter 𝑅V even if it is greater than the resistance of the 

sample 𝑅S. We relax the restriction from 𝑅C ≪ 𝑅S in the 2-probe method to 𝑅C ≪

𝑅V~MΩ (at least) of the 4-probe method. 
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Fig. 2.14: The diagram and the principle of the 4-probe method, the resistance is usually 

measured by the AC bridge. 
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Fig. 2.15: The comparison between 2-probe and 4-probe method measurements. The left one 

shows the result between electrical resistivity of Cu2Se and the right one shows the result 

between thermal conductivity of FeSb2 (from Mani’s dissertation [1]). 
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Fig. 2.15 shows a comparison between 2-probe and 4-probe resistivity 

measurement of the same hot press (HP) nanocomposite Cu2Se parent compound, of 

which the electric contacts are made by silver epoxy. The plot explicitly shows the huge 

difference between the two methods, where the result from the 2-probe method is nearly 

50 times more than the one from the 4-probe method, which means that the silver epoxy 

electric contacts themselves have large enough electrical resistance compared with and 

overwhelm the one of the Cu2Se specimen. As a result, the 2-probe method mainly gives 

the temperature dependent electrical resistivity of the silver epoxy rather than the sample 

we intend. However, from the 2-probe method we know that the resistance of the silver 

epoxy is much less than the internal resistance of the AC bridge. As a result, the readings 

from the 4-probe method are reliable and of course much less than the resistance of the 

silver epoxy, as shown in the left figure of Fig. 2.15. 

The 4-probe technique may not have the same impact on the thermal conduction 

measurements. The right figure of Fig. 2.15 shows the comparison between thermal 

conductivity measurements of FeSb2, and we can see that the difference is negligible, as 

long as the contacts are made properly. The reason may be as follows: the thermal 

resistance of the contacts (usually the silver epoxy contacts) is small compared with the 
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thermal resistance of the sample. Unlike the case in the electrical conduction, the contacts 

do not play an important role in the thermal conduction and the 2-probe thermal 

conductivity measurements are normally acceptable (at least in our lab). 

11. Thin Film Resistivity Measurement System (Van der Pauw Setup) 

Normally, in order to measure the resistance of a specimen, its shape is important. 

It should be long and thin, so that when it is connected using a 4-probe method the 

current flows uniformly through the specimen. The left figure of Fig. 2.16 shows a 

standard 4-probe connection on a nanocomposite hot press Cu2Se sample mounted on a 

DC puck. The shape of the specimen is long and not wide. However, things cannot 

always be constructed as desired. The square shape samples are rare, especially in the thin 

film field, and as a result, a new technique is developed to measure the resistance of a 

two-dimensional (i.e. it is much thinner than it is wide), solid (no holes) material, and the 

electrodes are placed on its perimeter. This method was first propounded by Leo J. Van 

der Pauw in 1958 and as a result called the Van der Pauw method [2,3]. 

The principles and restrictions of the Van der Pauw method are discussed in 

detail in the literature [4,5]. In this section, I simply list several important formulae and 
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introduce the homemade Van der Pauw setup which is used to measure the electrical 

resistivity of thin films with constant thickness in our lab. 
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Fig. 2.16: The left figure shows a standard 4-probe connection from the DC puck channel 2 to 

the HP Cu2Se nanocomposite. Four copper wires are connected to the surface of Cu2Se by silver 

paint. The right figure shows the illustration of a square sample composed by four different 

resistors (1 Ω, 10 Ω, 100 Ω and 1000 Ω) mounted on a DC puck (possibly the same one). 
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The Van der Pauw method is essentially a 4-probe method, and the four contacts 

are designated as 1, 2, 3, 4 in a counter clockwise order as shown in the right figure of 

Fig. 2.16. When using the AC bridge to perform the 4-probe measurements, one is able to 

have different resistance readings for different connection combinations. Let’s define 

𝑅𝑖𝑖,𝑘𝑘 ≡ 𝑉𝑘𝑘 𝐼𝑖𝑖⁄ , 𝑖 ≠ 𝑗 ≠ 𝑘 ≠ 𝑙 as the reading of the AC bridge when voltage probes are 

connected to port 𝑘 and 𝑙 while current probes are connected to port 𝑖 and 𝑗: 

�
𝑅v =

𝑅12,43 + 𝑅34,21 + 𝑅21,34 + 𝑅43,12

4

𝑅h =
𝑅23,14 + 𝑅41,32 + 𝑅32,41 + 𝑅14,23

4

 

(2.1) 

where 𝑅v and 𝑅h represent the average resistance along the vertical and horizontal 

direction respectively. Then the sheet resistance 𝑅s and resistivity 𝜌 is calculated by the 

following formulae: 

e−π𝑅v 𝑅s⁄ + e−π𝑅h 𝑅s⁄ = 1 

(2.2) 

𝜌 = 𝑅s × 𝑡 

(2.3) 

where 𝑡 is the thickness the thin film. 
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Because eight different configurations of 𝑅𝑖𝑖,𝑘𝑘 are needed for the Van der Pauw 

measurements, it is convenient to have an electric device to switch the configurations 

rather than manually do it, and a relay-switch is built for this aim. The left figure of Fig. 

2.16 shows the physical product of this Van der Pauw setup. It includes the following 

parts: 

1. DC puck: sample/thin film should be mounted in channel 2 and connected to the puck 

as shown in Fig. 2.16, the red cable of PPMS is needed. 

2. NI 9403/cDAQ-9171 chassis: used to transport the control signals from the laptop to 

the relay switch through USB port and 24-pin cable. 

3. Van der Pauw box: the electric switch controlling the connection of the sample. Its “vi” 

files have to be written by us because this hardware is homemade. 

4. LR-700 AC bridge: used to measure the resistance in a 4-probe method. 

5. The laptop: controls the configurations and records the results through LabVIEW 

program, which is not shown in Fig. 2.17. 
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Fig. 2.17: Left figure shows the homemade Van der Pauw setup for thin film electrical resistivity 

measurements; right figure shows a preliminary Van der Pauw result of the 4-resistor in Fig. 

2.16 
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A preliminary test of the 4-resistor in Fig. 2.16 is shown in the right figure of Fig. 

2.17 from 250 K to 300 K, the result is not smooth and the program algorithm needs to be 

optimized. For more information on the Van der Pauw setup, please refer to the “Van der 

Pauw Manual” in our lab [6]. 

12. Thin Film Thermal Conduction Measurement System (3ω Setup) 

As opposed to the electrical conduction, which is always conducted by the 

electrons (or holes equivalently, etc.) within the normal temperature range, heat transfer is 

categorized into three fundamental modes: 

1. Conduction: the transfer of heat (internal energy) by microscopic collisions of 

particles and movement of electrons within a body. The physical quantity used to 

characterize this process is the thermal conductivity 𝜅. 𝜅 can be measured by TTO 

of PPMS from low temperature to room temperature. 

2. Convection: the movement of groups of molecules within fluids such as liquids or 

gases, and within rheids. Now that our investigated thermoelectric materials are not 

fluids, thermal convection does not happen in the heat transfer. 

3. Radiation: the emission or transmission of energy in the form of waves or particles 
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through space or through a material medium. In our thermoelectric area, it is limited 

to electromagnetic radiation, i.e. heat. The thermal radiation is negligible at low 

temperatures; however, it increases tremendously when temperature goes up. Above 

room temperature, it becomes as important as thermal conduction. One is not able to 

perform the thermal conductivity measurement using the same technique as in the 

TTO of PPMS, because the heat is not only conducted, but also radiated. 

Due to the coexistence of both thermal conduction and thermal radiation, it is not 

possible to directly measure 𝜅  accurately above room temperature, i.e. both the 

commercial ZEM-3 and Kevin’s setup cannot be used to perform the thermal 

conductivity measurement. As a result people have already developed an indirect 

approach, the laser flash analysis, to measure the thermal diffusivity of a bulk 

thermoelectric material and then derive the thermal conductivity. This method was first 

developed by Parker et al. in 1961 [9-11]. But the laser flash method is not suitable for a 

thin film measurement, because it also counts the contribution from the substrate of the 

film. The 3ω method is an applicable technique used to measure the thermal conductivity 

of thin films, which was first proposed by David G. Cahill in 1990 [12-17]. Its principle 

is listed as following and in Fig. 2.18: 
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1. A gold or platinum heater is sputtered onto the surface of the thin film, where the thin 

film itself is deposited on a substrate. The heater is not only used to heat the film as a 

heat source, but also the resistance of the heater itself is monitored to reveal the 

instant temperature of the heater. 

2. An AC excitation with circular frequency ω is applied through the heater. The Joule 

heating changes with respect to time at a frequency of 2ω (𝑃 = 𝐼2𝑅), i.e. the Joule 

heating has components of 0ω (i.e. a constant) and 2ω. 

3. Due to the Joule heating both the temperature and the resistance of the heater have 

components of 0ω and 2ω. 

4. The AC voltage signal across the heater has components of 1ω and 3ω (𝑉 = 𝐼𝐼). By 

measuring the 3ω component of the AC signal across the heater by the lock-in 

amplifier, one is able to extract the thermal conductivity of the thin film where the 

gold or platinum heater is sputtered. This is the reason why this method is called 3ω 

method, Fig. 2.18 shows how 3ω method works and Fig. 2.19 shows the real setup in 

our lab. For more detailed information on the homemade 3ω setup please refer to the 

“3ω Manual” in our lab [8]. 
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Fig. 2.18: A schematic illustration of the 3ω principle, figure is taken from ref. [15]. Our setup is 

based on (a), (b) is a variant of the standard 3ω method that uses an AC+DC excitation. 
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Fig. 2.19: Schematic illustration of the experimental setup of a 3ω measurement and its 

realization – our homemade 3ω setup. The lock-in amplifier is used as the current source as well 

as the voltmeter. 
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13. Fabrication Processes of Hot Press Nanocomposites 

 
Fig. 2.20: Schematic illustration of the fabrication processes of a hot press (HP) sample from the 

raw materials to the final HP ingot. 
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In this section I will briefly discuss the fabrication process of the as-fabricated 

hot press nanocomposite bulk samples in our lab, e.g. Cu2Se, MoSSe, etc., as shown in 

Fig. 2.20. The diagram illustrates the needed fundamental steps from the raw powders to 

the final hot press (HP) ingot: 

1. Raw powders are mixed together in a glove box, where all chemicals are protected in 

an Ar atmosphere. The raw materials do not necessarily need to be fine powders, i.e. 

chunks or shots can also be used as raw materials for a chemical reaction. This 

depends on what kind of raw materials can we purchase. In this example of Cu2Se or 

MoSSe we start from powders. The mixtures are imported into an ampoule (i.e. 

quartz tube) in the glove box in an Ar atmosphere. After the ampoule is taken out of 

the glove box, it is pumped into a high vacuum with the help of a molecular pump 

and then sealed by a H2/O2 torch. The pumping and sealing must be good enough to 

maintain a high vacuum and low pressure in the ampoule. Otherwise, the ampoule 

may explode when it is heated in the single zone furnace. As a result, when placing 

the ampoule into the stainless steel enclosure, shown in Fig. 2.2, it is a good idea to 

protect the tube of the furnace from being cracked. 

2. The ampoule (with its enclosure) is placed into the furnace. The furnace is 
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programmed to heat and cool according to the chemical reaction conditions from 

literatures. In order to improve the quality of the reactant, the furnace is set to 

perform an annealing process at a temperature around 2
3�  of the melting point of 

the reactant. 

3. Crash the ampoule in the glove box and transfer the reactant into the ball milling jar 

in the Ar atmosphere. Dual ball milling jars are placed together into the ball milling 

machine to balance the cyclotron force. With appropriate ball milling time, we can 

get nanoscale fine powders. For our specimens, we only use the ball mill as a way to 

grind, however, because the mechanical collisions during the ball milling process are 

so strong and frequent that some raw materials are able to directly react in the ball 

milling jars, due to the mechanical energy, instead of the thermal energy in the 

furnace, and one is able to get the nanoscale fine powders from the raw reagents 

entirely in the ball milling process. 

4. As mentioned previously the nanoscale grains are able to significantly scatter 

phonons and reduce the phonon thermal conduction. However, if the sample is not 

solid, its electrical conduction is also altered significantly. The hot press (HP) 

technique is a good approach to compress the powders into a solid ingot in a short 

period of time (less than two minutes) by applying a large current through the 
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powders under extremely high pressure. Due to the Joule heating, the small grains 

are able to grow and stick together and make the ingot solid. Besides, because the 

heating time is short, the grains do not have enough time to grow further and the 

merged ones are still on the order of sub-microns, i.e. through the HP process one is 

able to improve the electrical conduction of the ingot but maintain its poor phonon 

thermal conduction as intended. 

5. Finally, we see the HP ingot as shown in the lower right corner of Fig. 2.20, and the 

thin disk-like specimens are cut by the diamond saw. Further cuts are needed to 

prepare a proper sample for electrical resistivity, thermal conductivity and Hall 

measurements. 
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Chapter III: Experimental Determination of Phonon Thermal 

Conductivity and Lorenz Ratio of Selected Single Crystals 

 

1. Introduction 

The thermal transport process is generally very complicated. However, for many 

materials at low temperatures, their thermal transport can be simplified into two 

categories, which are conducted by different carriers, namely [1,2]: 

1) Electrical thermal conductivity 𝜅e, conducted by electrons or holes (fermions); 

2) Phonon thermal conductivity 𝜅ph , conducted by phonons (bosons). This is 

equivalently called lattice thermal conductivity. 

The total thermal conductivity is the sum of the above two components: 

𝜅tot = 𝜅e + 𝜅ph. The contribution of 𝜅e or 𝜅ph to 𝜅tot is quite different for various 

single crystals and depends highly on their electrical properties. It can be roughly 

summarized as follows: 

1) Metals: 𝜅e ≫ 𝜅ph; 

2) Semimetals: 𝜅e > 𝜅ph; 
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3) Semiconductors: 𝜅e < 𝜅ph; 

4) Insulators: 𝜅e ≪ 𝜅ph. 

If the material is not a single crystal, the defects and grain boundaries in the 

specimen will strongly affect the thermal transport of phonons and reduce 𝜅ph 

significantly [3-5]. However, it is not easy to model non-single crystals, such as 

nanocomposites, from first-principles calculation, so in this Chapter we only explore 

single crystal metals and semiconductors, which could afford first hand data for 

theoretical verification. 

There’s no doubt that 𝜅e and 𝜅ph are coupled together. In the literature, there 

are two main ways to separate them, both of which are based on the extrapolation: 

1) Dilute alloys. This method was mainly used to extrapolate phonon thermal 

conductivity in pure metals back to the environment of zero-impurity content of a 

series of dilute alloys in 1950s [2,6-8]. However, in practice it is a time-consuming 

and laborious approach because in order to apply this method, a series of good quality 

samples need to be prepared. Additionally, this method makes use of the 

Wiedemann-Franz law. As a result, the most reliable results are obtained at low 

temperatures, e.g. at a liquid helium temperature range [2]. 
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2) Magneto-thermo-resistance (MTR) [9,10]. By applying a sufficiently large transverse 

magnetic field to a specimen, the electronic transport is suppressed, which manifests 

in an increasing electrical resistivity 𝜌𝑥𝑥  and a decreasing electronic thermal 

conductivity 𝜅e . However, the phonon contribution 𝜅ph  is not affected by the 

magnetic field by the assumption. When extrapolated to the limit 𝜅e → 0, one is able 

to get the value of 𝜅ph and separate 𝜅ph from 𝜅tot. 

Comparing the above two methods, the MTR method is obviously more 

economic. Additionally, modern labs are now able to supply a large enough magnetic 

field to accurately perform this measurement, with the help of the Physical Properties 

Measurement System (PPMS) from Quantum Design. Throughout this Chapter, the MTR 

method is adopted to separate and determine the value of 𝜅ph. 

2. Several Important Quantities and Formulae 

When using the MTR method, one first needs to know what constitutes a strong 

magnetic field when applying it to a specimen. The deflecting angle 𝛾 of an electron 

away from its original linear motion under the influence of an applied magnetic field 

between two consecutive collisions is a parameter to identify the strength of the field 
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[11]: 

𝛾 ≡ 𝜔c𝜏 = 𝜇𝜇 =
𝜎0𝐵
𝑛𝑛

 

(3.1) 

where 𝜔c is the cyclotron frequency, 𝜏 is the relaxation time, 𝜇 is the mobility, 𝐵 is 

the magnetic induction strength, 𝜎0 is the electrical conductivity in zero field, 𝑛 is the 

carrier concentration, and 𝑒 is the elementary charge. 

In practice, if 𝛾 = 𝜇𝜇~1, then the field is said to be strong [11] and a significant 

suppression of electronic transport should be expected. Here, for convenience, we can 

define a threshold field 𝐵th as the inverse of mobility, i.e. 𝐵th = 1 𝜇� , which is of course 

dependent on the material itself and also the temperature. If 𝐵th at some temperature is 

smaller than the maximum field we can supply, then at that temperature we can see the 

suppression of total thermal conductivity 𝜅tot and an obvious magnetoresistance. For 

our sample, the suppression typically begins at 100 K and becomes significant below 60 

K under our maximum applied 9 T field, which means 𝛾 becomes roughly greater than 

unity at this temperature range. 

Zero-field Lorenz ratio is defined as 

𝐿 ≡
𝜅e
𝜎0𝑇
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(3.2) 

where 𝜅e is the electrical thermal conductivity, 𝜎0 is the electrical conductivity, and 𝑇 

is the absolute temperature, with quantities representing values in the presence of zero 

field. The Lorenz ratio 𝐿 is also an important quantity characterizing transport properties 

of electrons, and is widely used to estimate the electronic contribution 𝜅e to the total 

thermal conductivity 𝜅tot from the electrical resistivity 𝜌𝑥𝑥 measurements [12-15]. Its 

standard value, the Sommerfeld value, 𝐿0 = π2

3
�𝑘B
𝑒
�
2

= 2.443 × 10−8  V2 K2⁄ , is derived 

from the validity of the Wiedemann-Franz law in metals and also by neglecting the 

thermoelectric term [1]. If the thermoelectric term cannot be omitted, the formula is 

modified as [1]: 

𝐿 + 𝑆2 = 𝐿0 

(3.3) 

where 𝑆 is the Seebeck coefficient. For metals, their Seebeck coefficients are normally 

on the order of several µV K⁄ . As a result, the 𝑆2 term can be neglected without any 

issue. However, for semiconductors, due to their large Seebeck coefficients, which are 

normally on the order of 100 µV K⁄ , 𝑆2 is usually the same order of magnitude as 𝐿0 

and must be taken into account. 
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When deriving the Sommerfeld value 𝐿0 there are two basic assumptions [2]: 

1) All scatterings are elastic, including the electron-phonon scatterings at high 

temperature and the impurity or defect scatterings at low temperature; 

2) Both electrical and thermal transports have the same relaxation time. 

For metals, these two assumptions are basically obeyed at low and high 

temperatures, and the Wiedemann-Franz law is established. However, in the intermediate 

temperature range, one or both of them are violated and the Lorenz ratio deviates from 

the Sommerfeld value 𝐿0. By introducing different relaxation times for electrical and 

electronic thermal transports and discarding the electron-phonon Umklapp processes, the 

temperature dependence of dimensionless Lorenz ratio 𝐿� of metals in zero field can be 

described as [2]: 

𝐿� ≡
𝐿
𝐿0

=
𝜅0 − 𝜅ph
𝐿0𝜎0𝑇

=
𝛽 + � 𝑇𝛩D

�
5
𝐽5 �

𝛩D
𝑇 �

𝛽 + � 𝑇𝛩D
�
5
𝐽5 �

𝛩D
𝑇 � �1 + 3𝛼2

π2 �𝛩D𝑇 �
2
− 1

2π2
𝐽7(𝛩D 𝑇⁄ )
𝐽5(𝛩D 𝑇⁄ )�

 

(3.4) 

where 𝛽 describes the purity of the sample, 𝛼 is the ratio between Fermi wave vector 

𝑘F and Debye wave vector 𝑞D, 𝐽𝑛 is defined as: 

𝐽𝑛 �
𝛩
𝑇�

≡ �
𝑥𝑛e𝑥

(e𝑥 − 1)2 d𝑥

𝛩 𝑇⁄

0
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(3.5) 

and 𝛩D is the Debye temperature which can be estimated from the electrical resistivity 

through Bloch’s 𝑇5 law [2,16]: 

𝜌(𝑇) = 𝜌imp + 𝛼el−ph �
𝑇
𝛩R
�
5

𝐽5 �
𝛩R
𝑇 �

 

(3.6) 

where 𝜌imp is the residual resistivity, 𝛼el−ph the electron-phonon coupling constant and 

𝛩R  the resistivity Debye temperature. Although 𝛩D  and 𝛩R  are both called Debye 

temperatures, 𝛩D is more frequently extracted from the heat capacity measurements and 

its value is usually a little different from 𝛩R. 
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Fig. 3.1: Simulation of eqn. (3.4) on different impurity levels, figure is taken from ref. [2]. Here 

𝝆𝟎 𝑨⁄  is 𝜷 in eqn. (3.4) while 𝒌𝐅 𝒒𝐃⁄  is 𝜶 in the formula. 
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Fig. 3.1 shows the simulation of eqn. (3.4) as a function of dimensionless 

temperature 𝑇 𝛩D⁄ . The deviation from Wiedemann-Franz (W-F) law, i.e. 𝐿� deviates 

from unity and is highly sensitive to impurities. If the sample is impurity free and absent 

any structural defects, only inelastic scattering effects are observed and the W-F law does 

not apply. This is observed in Fig. 3.1 where the solid curve goes to zero at 𝐿� and 𝑇 𝛩D⁄ . 

Elastic scattering arising from defects and impurities recovers the W-F law and this is 

illustrated in Fig. 3.1 by the broken lines which indicate various amounts of impurities 

and defects in the sample. 

3. Electrical Conductivity 𝜎𝑥𝑥 

The electrical resistivity and electrical conductivity are defined as the 

coefficients in the transport equations relating the current density 𝚥 with the electric field 

𝐸�⃑  

𝚥 = 𝜎�𝐸�⃑     and    𝐸�⃑ = 𝜌�𝚥 

(3.7) 

𝜎� is the inverse of 𝜌� and vice versa. In a uniform and isotropic material, both 𝜎� and 𝜌� 

are reduced to scalars. However, in general cases, they are tensors and represented by 3×3 



3-10 
 

matrices, such as for single crystals and materials in a strong magnetic field. 

If we choose the applied magnetic field direction as the z-axis, then the 

z-component of 𝜎� or 𝜌� represent the longitudinal magnetoresistance as well as describe 

the coupling between longitudinal and transverse effects. As we know, since the 

transverse effect is normally much more prominent than the longitudinal effect and the 

coupling between them is not significant, the z-component can be neglected and both 

tensors reduce to 2×2 matrices [11]. For single crystals, the matrices can be further 

simplified if they satisfy the following requirements [11]: 

1) The single crystal is cubic and the magnetic field is along one of its high symmetry 

axis; 

2) The single crystal is hexagonal and the magnetic field is along its c-axis. 

(not due to the Onsager reciprocal relations) i.e. the applied magnetic field lies along an 

axis of sufficient symmetry [17] 

�
𝜌𝑥𝑥 = 𝜌𝑦𝑦
𝜌𝑥𝑥 = −𝜌𝑦𝑦    and    �

𝜎𝑥𝑥 = 𝜎𝑦𝑦
𝜎𝑥𝑥 = −𝜎𝑦𝑦 

(3.8) 

and the resistivity and conductivity tensors are represented as 

𝜌� = �
𝜌𝑥𝑥 −𝜌𝑦𝑦
𝜌𝑦𝑦 𝜌𝑥𝑥 �     and    𝜎� = �

𝜎𝑥𝑥 𝜎𝑥𝑥
−𝜎𝑥𝑥 𝜎𝑥𝑥� 



3-11 
 

(3.9) 

The electrical conductivity 𝜎𝑥𝑥 can be derived from normal electrical resistivity 

𝜌𝑥𝑥 and Hall resistivity 𝜌𝑦𝑦 measurements [11,17] 

𝜎𝑥𝑥 =
𝜌𝑥𝑥

𝜌𝑥𝑥2 + 𝜌𝑦𝑦2
 

(3.10) 

All of our samples satisfy the above requirements and these formulae can be applied. 

With this being true, it is easy to find out that 𝜎𝑥𝑥 ≠ 1 𝜌𝑥𝑥⁄ , except in zero field, 

where 𝜌𝑦𝑦 = 0. Through the experiments, we use an AC bridge to measure electrical 

resistivity instead of directly gathering electrical conductivity data. From this choice, a 

natural question emerges: Does the resistivity data objectively represent 𝜌𝑥𝑥 or does it 

simply take the inverse of 𝜎𝑥𝑥, because the AC bridge only measures the voltage across 

the sample when applying a certain amount of excitation? The answer is that it depends 

on the experimental configuration. We know that in resistivity measurements, what we 

can control is the current, i.e. if we choose the current direction as x-axis then 𝑗𝑦 = 0. If 

we explicitly write down (3.7) in our experimental environment 

�𝑗𝑥0� = �
𝜎𝑥𝑥 𝜎𝑥𝑥
−𝜎𝑥𝑥 𝜎𝑥𝑥� �

𝐸𝑥
𝐸𝑦
�     and    �

𝐸𝑥
𝐸𝑦
� = �

𝜌𝑥𝑥 −𝜌𝑦𝑦
𝜌𝑦𝑦 𝜌𝑥𝑥 � �

𝑗𝑥
0� 

(3.11) 
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As long as the AC bridge always outputs its data as the measured voltage divided 

by the excitation, then we can see clearly that the results are the resistivities 𝜌𝑥𝑥 and 

𝜌𝑦𝑦 (precisely speaking the outputs are resistances rather than resistivities). 

As a result, Hall measurements are important in order to get 𝜎𝑥𝑥. However, even 

with the help of the PPMS, it is still very challenging to perform Hall measurements on 

single crystal metals, due to their low resistivity and specimen dimension limit. As a 

result, the following formulae are used to aid in the extraction of 𝜎𝑥𝑥  from 

magnetoresistance measurements: [11] 

𝜌𝑥𝑥
𝜌0

=
�4𝑐π �1 − 2𝛾

π tanh π
2𝛾� + 1

1 + 𝛾2� �
4𝑐
π + 1�

�4𝑐π �1 − 2𝛾
π tanh π

2𝛾� + 1
1 + 𝛾2�

2
+ �8𝛾𝛾π2 �1 − sech π

2𝛾� −
𝛾

1 + 𝛾2�
2 

(3.12) 

𝜎𝑥𝑥 =

4𝑐
π �1 − 2𝛾

π tanh π
2𝛾� + 1

1 + 𝛾2

�4𝑐
π + 1� 𝜌0

 

(3.13) 

where 𝜌0 is the zero field resistivity result, 𝛾 = 𝜇𝜇 is the deflecting angle, and 𝑐 is 

another fitting parameter. For semiconductors there’s no difficulty in performing the Hall 

measurements and (3.10) is applied, which is of course better than (3.13). 
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4. Extrapolation of Phonon Thermal Conductivity 𝜅ph 

When extracting 𝜅ph from 𝜅tot it is important to know the functional form of 

both 𝜅𝑥𝑥(𝐵)  and 𝜎𝑥𝑥(𝐵) , according to isotropic samples in the relaxation-time 

approximation [9,18] we have 

𝜎(𝐵) =
𝜎0

1 + 𝜇d2𝐵2
 

(3.14) 

𝜅tot(𝐵) = 𝜅ph +
𝜅0

1 + 𝜇t2𝐵2
 

(3.15) 

where 𝜎0 and 𝜅0 are the electrical and thermal conductivities in zero field, 𝜇d and 𝜇t 

are drift and thermal mobilities, respectively. Combine (3.14) and (3.15) together: 

𝜅tot(𝜎) = 𝜅ph +
𝜅0 − 𝜅ph

1 + 𝜆2 �𝜎0𝜎 − 1�
 

(3.16) 

where 𝜆 = 𝜇t 𝜇d⁄  is considered as a fitting parameter. If 𝜆 equals unity, 𝜅tot and 𝜎 

are linearly related, which happens at high temperature [9]. However, in general, it is not 

valid. The intercept of (3.16) is the phonon thermal conductivity 𝜅ph, where 𝜎 → 0 

when the applied magnetic field is large enough. The accuracy of the extrapolation 

depends on how close the �𝜎(9T),𝜅tot(9T)� data point is to the intercept, having high 
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mobility in the sample and having sufficient suppression of electronic transport to assure 

the precision of this technique. Throughout the remainder of this Chapter, 𝜅tot and 𝜅𝑥𝑥 

are interchangeable with one another, because thermal conductivity measurements are 

normal measurements rather than Hall measurements and thermal conductivity is always 

measured including both components. 

5. Experimental Details 

As mentioned previously, in order to provide first hand data, which are more 

easily modeled through theoretical calculations, we choose single crystals as our 

specimen candidates to perform the measurements. The materials are chosen from two 

categories, either from commercial purchases or from Prof. Wilson’s lab: 

1) Single crystal metals: 

Cu (100) 99.99% from MTI Co.; 

Al (100) 99.999% from Goodfellow Cambridge Ltd.; 

Zn (001) 99.999% from Goodfellow Cambridge Ltd.; 

2) Single crystal semiconductors: 

Bi2Te3 from Prof. Wilson’s lab; 
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Bi2Se3 from Prof. Wilson’s lab. 

Basically, the experimental configurations are similar for both metals and 

semiconductors. They only differ slightly in final realizations. For metals, due to their 

extremely low resistivity, the contacts are soldered onto their surface. We first sputter 

metallic contacts on the surface of metals and then soldered the electrical contacts onto 

those metallic contacts in order to minimize the contact resistance. We use gold-coated 

copper sticks as the electrical contacts, which are also used in thermal transport 

measurements. 

For semiconductors, because our samples are both bismuth compounds, use of 

silver is prohibited due to its diffusion into bismuth compounds. As a result, silver paint 

is not used directly on the surface of Bi2Te3 or Bi2Se3. For resistivity measurements, we 

first put indium dots on the surface of the bismuth compounds and then press copper 

wires into the indium dots. After this, silver paint is used on the indium dots to create 

good electric contacts. Of course, we were very careful and made sure no silver paint 

dripped onto the sample. For thermal transport measurements, we built several brass 

clamps, which can hold the samples firmly by mechanical force. Gold-coated brass sticks 

are soldered onto these clamps. All contacts are connected in the standard 4-probe way. 
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Samples were cut into typical dimensions of 1×2×10 mm3 (metals) or 1×3.5×10 

mm3 (semiconductors). Thermal conductivity and Seebeck coefficient measurements 

were performed using the thermal transport option (TTO) of the PPMS, in which the 

sample was placed in a transverse orientation, i.e. the magnetic field is perpendicular to 

the heat flow. When performing the experiments, we first fix the field and scan the 

temperature from 60 K to 5 K or in reverse, and then turn to another field. The field range 

is from 0 T to 9 T. A similar sequence is used for the electrical resistivity and Hall 

measurements by the LR-700 AC resistance bridge from Linear Research Inc., except we 

fix the temperature and scan the field. The sample is mounted in the same orientation as 

the one used for the thermal transport option. 

6. Magneto-Transport Measurements of Single Crystal Metals 

Residual resistance ratio (RRR) defined by 𝜌300K 𝜌2K� , and resistivity Debye 

temperature 𝛩R  fitted through (3.6) are summarized in Table 3.1. Our Debye 

temperature 𝛩D from the heat capacity measurements of the same samples confirms the 

consistency with 𝛩R. 
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Table 3.1: Summary of magnetoresistance measurements 

Specimen RRR 𝛩R K⁄  𝛩D K⁄  
Field 

Direction 
Crystal 

Structure 
Al (100) 200 415 395 (100) fcc 
Cu (100) 100 337 323 (100) fcc 
Zn (001) 800 221 233 (001) hex 
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Fig. 3.2 shows the temperature behavior of total thermal conductivity and 

electrical resistivity. As mentioned above, the threshold field decreases when temperature 

goes down mainly due to the decrease of electrical resistivity. When applying the 

maximum field of 9 T, the suppression of electronic transport becomes significant below 

60 K, which also means the threshold field roughly becomes smaller than the field we 

applied. The resistivity of Al and Cu shows the normal temperature behavior at low 

temperature, where both of them enter the residual resistance region, no matter what the 

applied field strength. However, the electrical resistivity of Zn in field is different from 

the ones of Al and Cu, which has a minimum outside of the residual resistance region. 

This “abnormality” is due to the fact that Zn is a compensated metal, which usually has a 

significant magnetoresistance phenomenon at low temperatures [11]. Additionally, as 

long as the thermal conductivity always approaches zero, there is a peak in the 𝜅tot~𝑇 

curve, as shown in Fig. 3.2. However, the magnetic field broadens the peak, and also 

pushes the peak towards the high temperature direction when it is increased. 

  



3-19 
 

0

1

2

3

0 10 20 30 40 50 60
0

1

2

Al (100) Single Crystal

 to
t (1

03  W
/(m

0K
))

 xx
 (1

009
 

0m
)

Temperature (K)

 0 T
 1 T
 3 T
 6 T
 9 T

0 100 200 3000

1

2

 to
t (1

03  W
/(m

0K
))

Temperature (K)

 

Fig. 3.2: Thermal conductivity and electrical resistivity vs. temperature between 5 K and 60 K 

(for Al and Cu) or 40 K (for Zn) in different magnetic fields. The insets illustrate the field effect 

on thermal conductivity for Al and Cu, electrical resistivity for Zn up to room temperature. 
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Fig. 3.2: Thermal conductivity and electrical resistivity vs. temperature between 5 K and 60 K 

(for Al and Cu) or 40 K (for Zn) in different magnetic fields. The insets illustrate the field effect 

on thermal conductivity for Al and Cu, electrical resistivity for Zn up to room temperature. 
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Fig. 3.2: Thermal conductivity and electrical resistivity vs. temperature between 5 K and 60 K 

(for Al and Cu) or 40 K (for Zn) in different magnetic fields. The insets illustrate the field effect 

on thermal conductivity for Al and Cu, electrical resistivity for Zn up to room temperature. 
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Fig. 3.3: Total thermal conductivity is plotted against electrical conductivity at 5 K and 40 K. 

The top left inset in 5 K figure shows the magnetoresistance curve vs. the field along with its fit, 

while the bottom right inset shows the zoomed region at high fields. The two insets in 40 K 

figure show the field behavior of electrical and thermal conductivities along with their fits. 
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Fig. 3.3: Total thermal conductivity is plotted against electrical conductivity at 5 K and 40 K. 

The top left inset in 5 K figure shows the magnetoresistance curve vs. the field along with its fit, 

while the bottom right inset shows the zoomed region at high fields. The two insets in 40 K 

figure show the field behavior of electrical and thermal conductivities along with their fits. 
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Fig. 3.3: Total thermal conductivity is plotted against electrical conductivity at 5 K and 40 K. 

The top left inset in 5 K figure shows the magnetoresistance curve vs. the field along with its fit, 

while the bottom right inset shows the zoomed region at high fields. The two insets in 40 K 

figure show the field behavior of electrical and thermal conductivities along with their fits. 
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Fig. 3.4: Phonon thermal conductivity and dimensionless Lorenz ratio are plotted against 

temperature. The top figure also shows the total thermal conductivity in 9 T field, and the inset 

describes the contributions to the total thermal conductivity from phonons. The inset in the 

bottom figure illustrates the temperature behavior of the electronic thermal conductivity, 

compared with the total thermal conductivity, both in zero field. 
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Fig. 3.4: Phonon thermal conductivity and dimensionless Lorenz ratio are plotted against 

temperature. The top figure also shows the total thermal conductivity in 9 T field, and the inset 

describes the contributions to the total thermal conductivity from phonons. The inset in the 

bottom figure illustrates the temperature behavior of the electronic thermal conductivity, 

compared with the total thermal conductivity, both in zero field. 
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Fig. 3.4: Phonon thermal conductivity and dimensionless Lorenz ratio are plotted against 

temperature. The top figure also shows the total thermal conductivity in 9 T field, and the inset 

describes the contributions to the total thermal conductivity from phonons. The inset in the 

bottom figure illustrates the temperature behavior of the electronic thermal conductivity, 

compared with the total thermal conductivity, both in zero field. 
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In order to extract 𝜅ph from 𝜅tot~𝜎 curves, the temperature needs to be held 

constant, Fig. 3.3 shows two of these extrapolations at 5 K and 40 K for each metal. All 

curves at 40 K have more linear behavior than at 5 K, because the electrical conductivity 

and electronic thermal conductivity have a more similar response to the field at higher 

temperatures [9]. The intercepts of these curves represent the value of 𝜅ph, which is 

assumed to be field independent. The top left insets in 5 K figures demonstrate the fit of 

magnetoresistance according to (3.12), and the top left insets in 40 K figures show the 

derived field dependence of electrical conductivity from the magnetoresistance fit based 

on (3.13), of course, at 40 K. The field dependence of total thermal conductivity is 

directly taken from the measurements, as described by the bottom right insets in 40 K 

figures. The bottom right insets in 5 K figures show a zoomed-in region of 𝜅tot~𝜎 

curves from 5 T to 9 T, and the extrapolations to the intercepts corresponding to the high 

field limit. 

In top figure of Fig. 3.4, both 𝜅ph  and 𝜅tot(9T)  curves are plotted vs. 

temperature, as long as we assumed that 𝜅ph = 𝜅tot(∞). It is not surprising that 𝜅ph 

curve is below the 𝜅tot(9T) curve, and it should always be. The difference between the 

two curves is very tiny at the lowest temperature, which means the classically large 
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magnetic field is reached. When temperature goes up, the 9 T field is not enough to 

suppress the electronic transport so the difference becomes larger. The insets in the top 

figure show the contribution from phonon to the total thermal transport. It is surprising 

that the ratio can go up to 50% for electron dominant metals (discussed further in the next 

section). However, the electronic and total thermal conductivity indeed have a similar 

temperature behavior as shown in the insets of the bottom figure. The dimensionless 

Lorenz ratio, shown in the bottom, deviates from unity when temperature goes up, where 

the transports are dominated by the electron-phonon scatterings. The results reveal that 

the relaxation time for thermal transport processes is shorter than the one for electrical 

processes [2], and are well described by (3.4). 

From (3.4) we actually find out that the purity quantity 𝛽 plays an important 

role in the Wiedemann-Franz law. If the sample is perfectly pure and without defect, then 

there is no impurity and defect scatterings with electrons at residual resistance 

temperature range. As a result, the Wiedemann-Franz law is violated and the Lorenz ratio 

approaches zero [2]. However, if there are impurities and defects, the Wiedemann-Franz 

law is recovered; as a result the 𝐿�~𝑇  curve is concave and has a minimum at 

intermediate temperature range, see Fig. 3.1. Purer the sample, more concave the curve 
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and smaller the minimum value of the Lorenz ratio [2]. If we examine the three 𝐿�~𝑇 

curves of Al, Cu and Zn, the Zn curve has the smallest Lorenz ratio at 40 K and also has 

the highest purity among them, which is indicated by the RRR values. 

7. Discussions of the Results of Single Crystal Metals 

The equations (3.4), (3.12), (3.14), (3.15) excellently describe the dimensionless 

Lorenz ratio, magnetoresistance, electrical conductivity and total thermal conductivity, 

respectively. However, when applying (3.16) to extract the phonon thermal conductivity 

𝜅ph, care needs to be taken, especially when temperature goes up and the high field data 

points move away from the origin of 𝜅tot~𝜎 plots. In such cases, the reliability of the 

extrapolation highly depends on the knowledge of the functional form of 𝜅tot(𝜎). Thus 

𝜅ph at higher temperatures, along with its ratio in the total thermal conductivity, need to 

be assigned with large uncertainties. As a result, the ratio may be overestimated. 

Additionally, the ratio is also very sensitive to the purity of the specimen. The 

impurities and dislocations could significantly decrease the electronic transport, as is the 

situation in alloys, and increase the ratio of phonon contribution. The RRR values of our 

single crystal metals are on the order of 100, which is not high compared with the values 
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found in the literature, where its value can go beyond 1000 with a much larger 

experimental total thermal conductivity up to 10000 W/(m-K) [2,19-21]. Our Zn sample 

has the highest RRR value and its 𝜅ph ratio is also the lowest at low temperatures. 

The temperature behavior of 𝜅ph depends upon the scattering mechanism. At 

low temperatures (𝑇 ≪ 𝛩D), the phonons have a temperature dependence of 𝑇3 due to 

the specific heat and scatter with electrons having a temperature dependence of 𝑇2 

respectively, while at high temperatures (𝑇 ≫ 𝛩D) the Umklapp processes dominate the 

scattering with 𝑇−1 dependence. Thus, there is a peak in the 𝜅ph~𝑇 curve, usually 

around 10% of the Debye temperature [1,2], as shown in Fig. 3.5. 
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Fig. 3.5: Phonon thermal conductivity of Al, Cu and Zn are plotted against temperature in a 

log-log scale. Two dashed lines are the guide lines of different temperature power laws. 
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Fig. 3.6: Electronic thermal conductivity of Al, Cu and Zn are plotted against temperature in a 

log-log scale at low temperature regime (5 K – 60 K) and total thermal conductivity at high 

temperature regime (100 K – 300 K). Two dashed lines in the left figure are the guide lines of 

different temperature power laws, while three dashed lines in the right figure are horizontal 

guide lines (i.e. constant, ~𝑻𝟎) to the experimental data by averaging the data points from 200 

K to 300 K. 
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Fig. 3.6 shows the temperature power law of 𝜅e  at different temperature 

regimes. At low temperatures 𝑇−2  power law corresponds to the electron-electron 

scattering and 𝑇−1 power law corresponds to the residual resistance regime at even 

lower temperatures. We see 𝜅e of Al and Cu follow in between these two power laws, 

while the required low temperature for Zn is much lower than what we can supply. At the 

high temperature regime, our MTR method is not able to separate 𝜅e and 𝜅ph because 

of insufficient magnetic field. In the high temperature regime metals are electron 

dominant such that 𝜅e ≈ 𝜅tot . The right figure in Fig. 3.6 shows the temperature 

dependence of 𝜅tot and we see that approaching to the room temperature all of three 

metals towards a constant thermal conductivity, which is a consequence of the large-angle 

elastic scatterings between electrons and phonons. 

The requirement of high mobility is one of the requirements in this technique, 

which is needed to make the magnetic field achieved in the laboratory (~10 T) able to 

suppress the electronic transport. Also, the sample itself should not have bad electrical 

conduction. Otherwise, the relative change of electrical conduction is too small and all 

the points in the 𝜅tot~𝜎 plot shrink together, which make the extrapolation to 𝜎 = 0 

unreliable. 
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Due to the limitations of large magnetic field realized in the past and the 

materials themselves, very few single crystal metals were explored in transverse field, 

with the phonon thermal conductivity and the Lorenz ratio extracted. Some metals, such 

as Al [20], Cu [7,21-23], Zn [24], Au [20], Ag [20], have established results for the 

Lorenz ratio, found by using 𝜅tot instead of 𝜅e, since the function for estimating 𝜅e 

from 𝜎 was lacking, while 𝜅ph of Cu [6], Ni [8] were extracted with a different method. 

A benefit of measurements on single crystals is that it is possible to have a first-principles 

calculation on the field effect of these transport coefficients, which would be a very nice 

comparison between theory and experiment. 

Further investigation would be to apply this method to semiconductor single 

crystals, such as Bi2Te3, Bi2Se3, etc., in which the phonon contribution is comparable 

with the electronic counterpart, or even dominant. As seen in metals, the Lorenz ratio 

drops quickly in the intermediate temperature range. If the Sommerfeld value is used to 

estimate 𝜅e, then the real electronic thermal conductivity is overestimated with huge 

errors. An improvement to the experiment for semiconductors is that it is much easier to 

make Hall measurement for semiconductor samples than for metal samples with similar 

dimensions. As a result, the electrical conductivity can be directly calculated from 𝜌𝑥𝑥 
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and 𝜌𝑦𝑦, rather than from the fitting in (3.12). After the next section of supplementary 

materials of single crystal metals, we will continue discussing the experiments on 

semiconductors in this Chapter. 

8. Supplementary Materials of Single Crystal Metals 

In order to not interrupt the main stream of discussions on the results of single 

crystal metals, only select data were presented in the previous two sections. Here, in this 

supplementary section, I would like to provide more results on the magneto-transport 

measurements of single crystal metals, so that one can have a more comprehensive 

knowledge of the experiments and results. 

Fig. 3S.1 shows the threshold field 𝐵th ≡ 1 𝜇�  of our copper single crystal, 

where 𝜇 is the mobility. If we compare 1 𝜇� ~𝑇 curve with 𝜌~𝑇 curve, we can find 

that they are actually very similar. The reason is because 1 𝜇� = 𝜌𝜌𝜌 where 𝜌 is the 

electrical resistivity, 𝑛 is the carrier concentration and 𝑒 is the elementary charge. The 

carrier concentration 𝑛 maintains the same order of magnitude throughout the whole 

temperature range. Thus, the electrical resistivity 𝜌 mainly controls the temperature 

behavior of the threshold field. At room temperature, the threshold field is above 300 T, 
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which by far exceeds the largest field we are able to supply. As a result, at room 

temperature range, we cannot observe the suppression as shown in Fig. 3.2. However, 

when the temperature goes down and enters the region where the threshold field is 

comparable to 10 T roughly, we should see a significantly suppressed 𝜅tot(9T) curve 

compared with the 𝜅tot(0T) one. Because Al and Zn are similar electron dominant 

metals to Cu, the shown threshold field analysis of Cu is also suitable for them, i.e. when 

the temperature is below 60 K, we should observe similar suppressions in both 𝜅tot and 

𝜎 for Al and Zn. 
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Fig. 3S.1: The temperature dependent threshold field of Cu (100) single crystal. The right figure 

zooms in the low temperature part, when the temperature goes down to 40 K, the field needed is 

around 5 T, which is within our ability. 
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In order to apply the MTR method, we need to know the behavior of temperature 

dependence and field dependence of 𝜅tot and 𝜌 simultaneously, i.e. we already map the 

measurements into 3-dimentional plots 𝜅tot(𝑇,𝐵) and 𝜌(𝑇,𝐵), and also the derived 

𝜎(𝑇,𝐵). We already know that all of the transport coefficients are tensors, so 𝜎𝑥𝑥 ≠

1 𝜌𝑥𝑥⁄ , but I still calculate 1 𝜌𝑥𝑥�  and call it “pseudo electrical conductivity” and make a 

comparison in the following figures. Although 𝜎𝑥𝑥 ≠ 1 𝜌𝑥𝑥⁄  in general, we need to keep 

in mind that they are identical in zero field, i.e. 𝜎𝑥𝑥(0) = 1 𝜌𝑥𝑥(0)⁄ . So in the following 

𝜎𝑥𝑥~𝑇 and 1 𝜌𝑥𝑥⁄ ~𝑇 plots, their uppermost curves (corresponding to zero field) are 

identical. Fig. 3S.2 contains the plots of Al, Fig. 3S.3 contains the plots for Cu and Fig. 

3S.4 contains the plots for Zn. We can see that the electrical conductivity 𝜎𝑥𝑥  is 

suppressed more than expected (estimation from 1 𝜌𝑥𝑥� ) at low temperatures due to the 

Hall effect. All of the following analyses are based on these data. 

Fig. 3S.5, Fig. 3S.6 and Fig. 3S.7 show the direct extrapolations of 𝜅ph from 

𝜅tot~𝜎 curves for Al, Cu and Zn, respectively. The accuracy of extrapolation depends on 

how close the experimental data points are to the intercept. If we look at the 

extrapolations of Cu above 45 K, the results are not as good as the ones at lower 

temperatures and also the ones of Al and Zn at the same temperatures. The reason is 
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because Cu has a higher carrier concentration compared with the other two and as a result, 

our applied field is unable to suppress the electrons enough. 
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Fig. 3S.2: Transport coefficients 𝜿𝐭𝐭𝐭, 𝝆𝒙𝒙, 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  of Al (100) single crystal. Supplement 

to Fig. 3.2. Note the difference between 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  at high fields. 
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Fig. 3S.3: Transport coefficients 𝜿𝐭𝐭𝐭, 𝝆𝒙𝒙, 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  of Cu (100) single crystal. 

Supplement to Fig. 3.2. Note the difference between 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  at high fields. 
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Fig. 3S.4: Transport coefficients 𝜿𝐭𝐭𝐭, 𝝆𝒙𝒙, 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  of Zn (001) single crystal. 

Supplement to Fig. 3.2. Note the difference between 𝝈𝒙𝒙 and 𝟏 𝝆𝒙𝒙�  at high fields. 
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Fig. 3S.5: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at twelve different 

temperatures of Al (100) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.5: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at twelve different 

temperatures of Al (100) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.6: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at ten different 

temperatures of Cu (100) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.6: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at ten different 

temperatures of Cu (100) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.7: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at eight different 

temperatures of Zn (001) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.7: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at eight different 

temperatures of Zn (001) single crystal. Supplement to Fig. 3.3. 
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Fig. 3S.8: XRD patterns of Al (100), Cu (100), and Zn (001) single crystals, due to the systematic 

absence of the structural factor only (200), (200), and (002) peaks are observed. 
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Fig. 3S.8: XRD patterns of Al (100), Cu (100), and Zn (001) single crystals, due to the systematic 

absence of the structural factor only (200), (200), and (002) peaks are observed. 

Fig. 3S.8 show the XRD patterns of our Al, Cu, and Zn specimen, and clearly 

demonstrate our samples are single crystals. 

9. Magneto-Transport Measurements of Single Crystal Semiconductors 

The magneto-transport measurements of semiconductors are quite different from 

metals in such a case that the suppression of 𝜅tot is not obvious throughout the whole 

temperature range. The reasons may be: 

1) The specimen is phonon dominant. Even if the applied field is large enough and 
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greater than the threshold field, the suppression is not obvious because the portion of 

𝜅e is tiny. 

2) The threshold field is always greater than the maximum field we are able to apply and 

as a result, the suppression is not enough and 𝜅tot behaves inert to the field. 

If it is the first situation, then ball milling the single crystal into nanocomposite is a very 

effective way to tremendously reduce 𝜅ph . With this method, the suppression is 

recovered in the nanocomposite [9]. 

Fig. 3.7 shows the threshold needed for Bi2Te3 and Bi2Se3 single crystals at low 

temperature. Clearly we see that Bi2Te3 single crystal satisfies the criterion and is 

expected to have a much better result than Bi2Se3 single crystal, whose threshold field is 

never reached, even at lowest temperatures we can get. As a result, in the following part 

within this section we only focus on the experiments and results of the Bi2Te3 single 

crystal. 
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Fig. 3.7: The threshold field of Bi2Te3 and Bi2Se3 single crystals. Below 60 K the Bi2Te3 will be 

fully suppressed under the maximum applied field of 9 T due to its low threshold field at this 

temperature range, while Bi2Se3 will not be suppressed enough because its threshold field is 

always higher than what we can apply. 
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Fig. 3.8 shows the temperature behavior of total thermal conductivity and 

electrical resistivity. Due to the low carrier concentration of holes, distinct 

magnetoresistance is observed even at room temperature. However, on the contrary, the 

thermal conductivity is not suppressed much even when the threshold field is much lower 

than the magnetic field applied. The reason is because the thermal transport of Bi2Te3 

single crystal is phonon dominant. Compared with nanocomposites, the single crystals 

have much fewer impurities and defects. 
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Fig. 3.8: Total thermal conductivity 𝜿𝐭𝐭𝐭  and electrical resistivity 𝝆  are plotted against 

temperature between 5 K and 60 K in different magnetic fields. The inset illustrates the 

magnetoresistance up to room temperature, indicating that the criterion is already satisfied at 

room temperature. 
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Fig. 3.9: Total thermal conductivity 𝜿𝒙𝒙 is plotted against electrical conductivity 𝝈𝒙𝒙 at 10 K 

and 60 K respectively. The red fitted curve is calculated according to (3.16), the calculation of 
𝝈𝒙𝒙 is based on 𝝆𝒙𝒙 and 𝝆𝒚𝒚 according to (3.10), rather than from (3.12) and (3.13). 
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Fig. 3.10: Phonon thermal conductivity 𝜿𝐩𝐩  and dimensionless Lorenz ratio 𝑳�  are plotted 

against temperature. 𝟏 − 𝑺𝟐
𝑳𝟎�  is the modified Sommerfeld value according to (3.3), 

considering the thermoelectric term, i.e. the Seebeck effect. The inset in the top figure shows the 

proportion of phonon thermal conductivity to the total thermal conductivity, which always 

maintains a high value. 
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In order to extract 𝜅ph from 𝜅tot~𝜎 curves, the temperature needs to be held 

constant. Fig. 3.9 shows two of these extrapolations at 10 K and 60 K. As shown in the 

literature [9] 𝜅𝑥𝑥 and 𝜎𝑥𝑥 become linearly related at high temperatures because the 

thermal mobility 𝜇t and drift mobility 𝜇d approach the same value. This is verified by 

the 60 K data. However, the situation at 10 K is very different. The intercept from the 

extrapolation corresponds to the pure phonon thermal conductivity 𝜅ph, and in this sense 

we separate the electronic and phonon thermal transport through the magnetic field. 

In the top figure of Fig. 3.10 the phonon thermal conductivity 𝜅ph and total 

thermal conductivity at zero field 𝜅tot(0T) are plotted together. The upper right inset 

shows the proportion of phonon thermal conductivity to the total thermal conductivity. As 

we see for most of the temperatures, the ratio is above 90%, which also means the 

specimen is of good quality with few impurities and defects. The ratio only goes down at 

the lowest temperatures. This trend is also easily understood, since at low temperatures 

𝜅ph~𝑇3  while 𝜅e~𝑇 . As a result, 𝜅ph  drops more quickly than 𝜅e  in the low 

temperature range and its ratio to the total thermal conductivity decreases. 

The dimensionless Lorenz ratio, defined as 𝐿 𝐿0� , is shown in the bottom figure 

of Fig. 3.10. The dark cyan curve is the modified Sommerfeld value according to (3.3) 
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considering the thermoelectric effect, and the surrounding cyan spreading is its error 

bounds due to the uncertainty from the Seebeck coefficient measurements. The upper 

right inset shows the detailed comparison between 20 K and 60 K, and within this 

temperature range, the experiment and the theory corroborate with each other very well. 

The only inconsistency happens at 10 K, with its value going beyond unity tremendously 

(further discussion in the next section). 

10. Discussions of the Results of Single Crystal Semiconductors 

Eqns. (3.3) & (3.16) describe the dimensionless Lorenz ratio 𝐿 𝐿0�  and 𝜅tot~𝜎 

relationship very well. From Fig. 3.10 we see that except at 10 K, the Lorenz ratio is very 

close to its standard Sommerfeld value if the thermoelectric effect is considered, which 

means for Bi2Te3 single crystal, the Wiedemann-Franz law is satisfied. At this 

temperature range, the relaxation time of the thermal process does not deviate from the 

one of electrical process. This may be due to the fact that our Bi2Te3 only have RRR of 30 

and are not pure enough, compared with the values of metal single crystals, which are 

one order of magnitude higher. In the literature, people have already reported that Bi2Te3 

single crystals might have a Lorenz ratio much larger than unity [25-27]. However, those 
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abnormalities are due to the bipolar contributions and the emerging temperature is quite 

different from and much higher than ours. We note that the carrier concentration (Fig. 

3S.13) increases steadily with rising temperature suggesting that there is no bipolar 

contribution in our experimental regime (5 – 60 K). And we estimated the Fermi level to 

be 95 – 125 meV inside the valence band throughout the whole temperature range (5 – 

300 K). One explanation of the huge Lorenz ratio at 10 K is the laminar structure of 

Bi2Te3 single crystal. Normally due to the scattering, the mean free path of the electrons 

is smaller than the layer distance of Bi2Te3 sheets. As a result, the specimen behaves as a 

3-dimensional bulk material. However, as temperature going down, when the mean free 

path of electrons becomes greater than the layer distance, the electrons are restricted to 

the 2-dimensional structure and this transformation may result in a different Lorenz ratio 

from the Wiedemann-Franz law. Consistent with our results a notable violation of the 

Wiedemann-Franz law has been observed by Wakeham et al. [31] for Li0.9Mo6O17 for 

𝑇 < 20 K in the one dimensional case. However, further experimentation is needed to 

confirm this. 

When using (3.16) to extrapolate 𝜅ph, care needs to be taken. Fortunately, for 

our Bi2Te3 samples, the threshold field is already achieved even at room temperature. As 
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a result, the 9 T data point is not far away from the intercept in both the 10 K figure and 

the 60 K figure. This situation guarantees the reliability of the extrapolation. 

The temperature behavior of 𝜅ph depends on the scattering mechanism. In our 

Bi2Te3 single crystals, the thermal transport is dominated by phonons, so we only need to 

consider the phonon-phonon scattering of the Umklapp process at high (𝑇 ≫ 𝛩D) and 

intermediate ( 𝑇~𝛩D ) temperature ranges, with 𝑇−1  and e𝛥min 𝑇⁄  dependences 

respectively [1]. The phonon at low (𝑇 ≪ 𝛩D) temperature range can be described with a 

𝑇3 dependence due to its specific heat. As a result, there must be a peak in the 𝜅ph~𝑇 

curve. Fig. 3.11 shows the 𝜅ph~𝑇 curve in a log-log scale. At low temperatures, the 

curve deviates from the 𝑇3 power law. This is because 5 K is not low enough with 

respect to our Bi2Te3 single crystal. If one has the data from 1 K, then the 𝑇3 law may be 

satisfied. After all, compared with our data of metals, the peak temperature of 𝜅ph of 

Bi2Te3 is much lower. When the temperature goes higher, 𝜅ph begins to follow the 

e𝛥min 𝑇⁄  temperature dependence, as shown in the left figure of Fig. 3.11. 
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Fig. 3.11: Phonon thermal conductivity at low temperature and total thermal conductivity at 

high temperature of Bi2Te3 single crystal is plotted against temperature in a log-log scale. Two 

dashed lines are the guide lines of different temperature dependences in both figures. 
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Right figure of Fig. 3.11 shows the temperature dependence of 𝜅tot at high 

temperature regime. We notice that 𝜅tot begins to tilt up above 250 K, and this is due to 

the contribution from bipolar effect 𝜅bi . Because at high temperature 𝜅e~const , 

𝜅ph~𝑇−1, and 𝜅bi~𝑇 (if other quantities are regarded constants, see eqn. (1.18)), as a 

result the power law dependence of 𝜅tot~𝑇𝛼 should be between -1 and 0 (−1 < 𝛼 < 0) 

when the bipolar contribution is small (100 K – 200 K), and we found that it is around 

-0.69. 

The threshold field plays a key role in the MTR method. If it is not satisfied, i.e. 

the applied field is smaller than the threshold field, and then the suppression is not large 

enough. As a result, a specimen of high mobility is required. Usually this means that the 

RRR of the specimen cannot be small. Compared with the Bi2Te3, which has RRR of 30, 

we also perform the same experiments on Bi2Se3 single crystals that have RRR of only 2. 

As a result, they have very low mobility, only one-tenth of the Bi2Te3 value. Thus, the 

threshold field is never reached even at the lowest temperature we can provide. As a 

result, this Bi2Se3 sample is not a good candidate to apply the MTR method. 

Due to their larger resistance than metals, the Hall measurements are performed 

successfully on semiconductors and the electrical conductivity is calculated through 
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(3.10). Although the electrical resistivity 𝜌𝑥𝑥 always increases when temperature goes 

up no matter the presence of magnetic fields, the electrical conductivity 𝜎𝑥𝑥 does not 

always decrease. Starting from 3 T, 𝜎𝑥𝑥 increases with temperature, which contradicts 

with our usual understanding. As a result, we will observe a crossover in the 𝜎𝑥𝑥~𝐵 

curves in Fig. 3.12. This results from a large Hall resistance in our Bi2Te3 sample and 

indicates that the cyclotron frequency, 𝜔c, of the Landau levels due to the field becomes 

greater than the collision frequency 1 𝜏�  as the crossover emerges. 
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Fig. 3.12: Transverse electrical conductivity is plotted against magnetic field for different 

temperatures. A crossover is observed around 2.75 T. 
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11. Supplementary Materials of Single Crystal Semiconductors 

Similar to the supplementary section on metals, in this part I would like to add 

some supplementary materials for Bi2Te3 and Bi2Se3 measurements. 

For Bi2Te3 single crystals, we are able to perform the Hall measurements. As a 

result, we have a chance to compare 𝜎𝑥𝑥 among 1 𝜌𝑥𝑥� , Pippard’s formula (3.13), or 

(3.10) 𝜌𝑥𝑥
𝜌𝑥𝑥2 +𝜌𝑦𝑦2

 based on the symmetry of the specimen, as shown in Fig. 3S.9. Of course, 

all of these three formulae give the same result at zero field, but they deviate when the 

field begins to increase. At low temperatures, e.g. 5 K, the Pippard’s formula is better 

than 1 𝜌𝑥𝑥� , and at high field limit it approaches the same result as (3.10). However, at 

high temperatures, none of them approaches the same result at a high field limit. 

Pippard’s formula gives the worst results. In the temperature range of 5 K – 60 K that we 

focus on, Pippard’s formula is better than 1 𝜌𝑥𝑥� , where the latter treats the transport 

coefficients as scalars. For metals, lacking the 𝜌𝑦𝑦  data, Pippard’s formula is a 

reasonable way to extract the electrical conductivity 𝜎𝑥𝑥. 
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Fig. 3S.9: Comparison of the determination of 𝝈𝒙𝒙 according to (3.10), (3.13) and 𝟏 𝝆𝒙𝒙⁄  at 5 K 

and 300 K. 
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Fig. 3S.10: Thermoelectric properties of Bi2Te3 single crystal samples from 5 K to 300 K. The 

thermal transport option (TTO) of PPMS is set in the continuous measurements (default) mode. 
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Fig. 3S.10: Thermoelectric properties of Bi2Te3 single crystal samples from 5 K to 300 K. The 

thermal transport option (TTO) of PPMS is set in the continuous measurements (default) mode. 
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From Fig. 3S.10 we can observe the field effect on Seebeck coefficient 𝑆, 

electrical resistivity 𝜌 and the derived figure of merit 𝑍𝑍. However, the distinction in 

thermal conductivity 𝜅 is tiny, as mentioned in previous sections. One thing that needs 

to be noted is that because Bi2Te3 is a phonon dominant thermal transport material, the 

default continuous measurements mode is not accurate enough to show the change. It 

even shows an opposite and wrong field effect on 𝜅 where 𝜅tot(9T) > 𝜅tot(0T) at low 

temperatures. This “abnormity” can be overcome by a more precise single steady-state 

measurements mode of TTO, and the 𝜅tot data in Fig. 3.8 are all gathered in this 

particular mode, where 𝜅tot(9T) < 𝜅tot(0T) correctly. The same situation happened for 

the Bi2Se3 single crystal, as shown in Fig. 3S.11. Generally speaking, our Bi2Te3 single 

crystal has better thermoelectric performance than the Bi2Se3 single crystal. 
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Fig. 3S.11: Thermoelectric properties of Bi2Se3 single crystal samples from 5 K to 300 K. The 

thermal transport option (TTO) of PPMS is set in the continuous measurements (default) mode. 
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Fig. 3S.11: Thermoelectric properties of Bi2Se3 single crystal samples from 5 K to 300 K. The 

thermal transport option (TTO) of PPMS is set in the continuous measurements (default) mode. 
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Generally speaking, both Bi2Te3 and Bi2Se3 single crystals are good 

thermoelectric materials, but in practice the thermoelectric performance of materials 

themselves highly depends on the fabrication techniques, i.e. whether they are single 

crystals, polycrystallines, or nanocomposites [28-30]. Due to different quality of samples, 

our Bi2Te3 sample has a roughly five times better thermoelectric performance (i.e. 𝑍𝑍, 

figure of merit) than Bi2Se3. But as long as both of them are single crystals, total thermal 

conductivity 𝜅tot is considerably large due to their high phonon conduction 𝜅ph and 

thus restricts the value of 𝑍𝑍 if compared with nanocomposite bismuth compounds 

which usually double the value of 𝑍𝑍 [28-30]. 

Fig. 3S.12 and Fig. 3S.13 show the direct extrapolations of 𝜅ph from 𝜅tot~𝜎 

curves for Bi2Te3 and Bi2Se3 single crystals respectively. The results of Bi2Te3 are very 

similar to those of metals, as long as all of them approach high field circumstances. 

However, as shown in Fig. 3.7 Bi2Se3 has never reached the threshold field. As a result, 

there are no data points appearing in the left half of six figures in Fig. 3S.13. Due to the 

fact that we do not know the exact functional form of 𝜅tot(𝜎), if we still choose to apply 

(3.16) to extract 𝜅ph, the uncertainties become unacceptable. 
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Fig. 3S.12: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at ten different 

temperatures of Bi2Te3 (001) single crystal. Supplement to Fig. 3.9. 
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Fig. 3S.12: Extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at ten different 

temperatures of Bi2Te3 (001) single crystal. Supplement to Fig. 3.9. 
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Fig. 3S.13: Linear extrapolations to extract 𝜿𝐩𝐩 (the intercepts) from 𝜿𝐭𝐭𝐭~𝝈 curves at six 

different temperatures of Bi2Se3 (001) single crystal, i.e. 𝝀 in eqn. (3.16) is set to unity manually. 
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Fig. 3S.14: XRD pattern and carrier concentration of our Bi2Te3 single crystal sample. 

Fig. 3S.14 demonstrate that our Bi2Te3 sample is indeed a single crystal with a 

carrier concentration between 7 – 12 1024 m-3 throughout the whole temperature range, 

where it maintains nearly unchanged above 200 K. 
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12. Conclusions 

The phonon thermal conductivity and Lorenz ratio of single crystal metals (Al, 

Cu and Zn) and single crystal Bi2Te3 are extracted from the total thermal conductivity 

through the magnetothermal resistance measurements. The phonon thermal conductivity 

of metals typically has a peak around 𝛩D 10⁄ , while the Lorenz ratio of metals deviates 

from the Sommerfeld value in the intermediate temperature range but is well described 

by (3.4). The phonon thermal conductivity of Bi2Te3 follows the expected temperature 

dependence in the intermediate temperature range. Except for the large value at 10 K, 

which may be due to the lower dimensional structures of Bi2Te3, the Lorenz ratio of 

Bi2Te3 at other temperatures obeys the modified Wiedemann-Franz law (3.3) very well. 

Further investigation is required to compare the experimental results with the theoretical 

calculations from the first-principles. Now that the modeling for single crystals is much 

easier than for nanocomposites, the possibility of comparison between experiment and 

theory is exciting and expected. Our experimental data and analysis on Bi2Te3 is an 

important compliment to previous measurements of Goldsmid [25] and theoretical 

calculations by Hellman et al. [32] at higher temperature 100 – 300 K.  
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Chapter IV: Low Temperature Thermoelectric Properties of 

p-type Copper Selenide with Different Dopants 

 

1. Introduction 

During the past several decades, physicists and engineers have devoted much 

effort to improving the conversion efficiency of thermoelectric (TE) materials, which are 

able to convert industrial waste heat into electricity. These solid-state materials have the 

potential to provide a renewable source of carbon free energy for our future [1,2]. The 

efficiency of the thermoelectric materials is characterized by the dimensionless quantity 

𝑍𝑍 called the figure of merit, defined by 𝑆
2𝑇 𝜌𝜅tot� , where 𝑆, 𝑇, 𝜌 and 𝜅tot  are 

Seebeck coefficient, absolute temperature, electrical resistivity and total thermal 

conductivity, respectively. At low temperatures the total thermal conductivity 𝜅tot can 

be separated into two parts: the carrier (electrons, holes, etc.) part 𝜅e and phonon (or 

lattice) part 𝜅ph. Generally speaking, increasing the Seebeck coefficient and reducing the 

total thermal conductivity are the main methods to improve the value of figure of merit. 

In recent years reducing the phonon thermal conductivity 𝜅ph  through the 

nanostructuring technique has proved to be the easiest and most straightforward approach 
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[3-5]. The crucial point of the nanocomposite method is to introduce grain boundaries at 

the nanoscale whose sizes are larger than the mean free path of electrons but smaller than 

the one of phonons, as a result 𝜅ph would be significantly decreased while leaving other 

quantities unchanged or slightly altered. Besides employing a fabrication technique, the 

intrinsic properties of the material itself are also important in order to ensure a low 

thermal conductivity. For example, skutterudites and clathrates are shown to have 

complex structures with strong phonon scattering centers and have low thermal 

conductivity [6,7]; layered structure materials also are demonstrated to have high 𝑍𝑍 

values due to their high Seebeck coefficient and low thermal conductivity resulting from 

their low dimensionality [8-11]. 

Cu2Se is a layered compound which exhibits a second order structural phase 

transition at 130 oC from low temperature monoclinic α-Cu2Se phase to high temperature 

anti-fluorite cubic β-Cu2Se phase [10,11], and is shown to have a peak in the temperature 

dependent 𝑍𝑍 curve at this transition temperature and can be tuned by iodine doping 

[12]. Cu2Se has been extensively studied for its TE performance at temperatures above 

300 K, which includes the phase transition at ~430 K. This higher temperature regime 

reflects the presence of a phonon-glass electron-crystal (PGEC), considered to be the 
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origin of the high 𝑍𝑍 value determined for this material [21-24]. A charge density wave 

(CDW) is a periodic modulation of the electronic charge density with an accompanying 

lattice structure distortion, which results from the formation of electron-hole pairs at the 

Fermi surface due to the instability of the lattice structure, and is usually induced by a 

perfect nesting on the Fermi surface [19]. α-Cu2Se is said to exhibit a CDW transition 

with Peierls distortion below 125 K according to its local maxima in the electrical 

resistivity measurements in that temperature regime [13-15], and may benefit its 

thermoelectric performance, where the enhancement from the Peierls distortion was 

reported in In4Se3−δ crystals from CDW state [8]. Inspired by the above facts, α-Cu2Se 

could very likely have a low thermal conductivity and a high figure of merit, and could 

be also tuned by different dopants. 

In the situation of singlet superconductors where the BCS theory is applied, the 

electron pair consists of two electrons with opposite spins and results in a Cooper pair 

with zero total spin, zero total momentum and breaks the gauge symmetry. The 

electron-hole pair emergent in CDW consists of one electron and one hole with the same 

spin and results in a pair with zero total spin but a nonzero total momentum, and thus 

breaks the translational symmetry. The pair formation is very similar to the Cooper pair 
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formation in superconductors, as a result the BCS description and estimation are suitable 

here [19,26,27]. The appearance of CDW is considered as a continuous transition, i.e. the 

Peierls transition, due to the re-arrangement of electronic wave functions driven by the 

strong phonon-electron interactions at low temperature. The CDW is usually observed in 

single crystalline materials with layered or chain sub-crystalline structures, such as NbSe3 

[16,28,29], TaS3 [17], K0.3MoO3 [30], (TaSe4)2I [18], KNi2S2 [31] and La1.9Sr0.1CuO4 [32]. 

Due to the appearance of CDW, abnormal temperature dependent electrical resistivity and 

also nonlinear I-V curve beyond the threshold electric field were observed [16-18,28-30]. 

Additionally, the coupling effect between electron and phonon was also confirmed by the 

magnetic susceptibility [33] and heat capacity measurements [34]. However, the ground 

state with charge density wave is quite weak, which could be broken or depinned by an 

electric field [17,18,28-30], a magnetic field [35], or pressure [16]. The CDW transition 

is, therefore, experimentally observed only in high purity thin single crystalline samples 

such as films or whiskers. 

The CDW transition could be smeared out as the materials going from 2D-film 

to 3D-bulk [19], and also as the materials going from single crystals to polycrystals [36]. 

In this Chapter, we reported a new CDW ground state which was observed in Cu2Se in a 
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polycrystalline bulk near 125 K. The coupling strength was interpreted by the 

amplification of the resistivity hump near the transition temperature. The Hall effect 

measurements suggest the Peierls transition starting near 160 K and ending near 90 K. 

After Cu2Se enters a new CDW ground state, a negative differential resistivity is 

observed in the dc I-V curve below the critical electric field near 50 K for the first time. 

It is important to clarify that the method to confirm the presence of a CDW 

phenomenon results from, e.g. STM scanning, where the modulation of charge density in 

space can be revealed directly and this periodic modulation is called charge density wave. 

I have found no literature reports of STM measurements on single crystal α-Cu2Se to 

confirm the presence of a CDW wave at low temperature (~125 K), however, there are 

several electrical measurements on polycrystalline samples and all of them indicate a 

“hump” in the 𝜌~𝑇 curves in the low temperature regime. These papers assert that the 

abnormality in electrical resistivity arises from an underlying CDW [13-15]. Throughout 

this Chapter I adopt the assertion of the previous authors that it is not an unreasonable 

assumption that a CDW arises in α-Cu2Se in the low temperature regime. The reasons for 

accepting this assertion are explained in detail in the following sections: 

1. Non-linear electrical resistivity measurement, the “hump” or the sharper “peak” is an 
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indication of CDW. 

2. The increase of electrical resistivity is due to the (partial) disappearance of Fermi 

surface. 

3. Because of the reduced Fermi surface, the carrier concentration should decrease and 

mobility should change within the transition regime, and these are all confirmed by 

our measurements and calculations. 

4. Isoelectronic element replacing (e.g. Te and Ag doping) will change the band 

structure and break the perfect nesting on the Fermi surface, and kill the CDW 

transition. 

All of the above statements are self-consistent, and by using the concept of CDW we are 

able to explain most of our result, so that’s the reason I use CDW here. In the following 

descriptions in this Chapter, whether indicated explicitly or not, the CDW in our α-Cu2Se 

samples is presumed which is undemonstrated directly from STM. 

Also, besides the above effects, there is a phenomenon called a sliding CDW. 

When a CDW is formed during the transition, it is frozen within the lattice and cannot 

move within the sample, in other words it is pinned in the lattice. However, it can be 

depinned if a large enough electric field is applied, and meanwhile the sample shows a 
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decrease in its electrical resistance. A deflection was observed in the 4-probe dc I-V curve 

measurement as described by G. Grüner when the current is higher than a threshold value 

corresponding to the threshold electric field [19]. This is the motivation behind 

undertaking dc I-V curve measurements for our samples. However, our samples do not 

have a large enough resistance (current is limited in the experiments), therefore the 

threshold field is never reached and no sudden change of slope is observed in the I-V 

curve. 

2. Experimental Details 

The bulk nanocomposite α-Cu2Se samples with different dopants (2% Zn, 10% 

Ni, 10% Te, 10% Ag) were synthesized by mechanical ball milling (BM) and hot pressing 

(HP) at 700 oC. This synthesis technique is similar to our previous work on Cu2Se 

at 𝑇 > 300 K [11,13]. The typical grain size of the as-fabricated sample is on the order 

of 1 – 2 μm, and the samples have typical dimensions of 1 × 3 × 10 mm. An LR-700 AC 

resistivity bridge from Linear Research Inc. was used to perform the electrical resistivity 

and Hall coefficient measurements from 5 to 300 K using a standard 4-probe method. The 

thermal conductivity and Seebeck coefficient were measured by the thermal transport 
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option (TTO) from Quantum Design – PPMS with a 2-probe method. The dc I-V curve of 

the sample is measured by the standard 4-probe method with Keithley 224 current source, 

and Agilent 34410A 6½ Digit multimeter or Keithley 2182A nanovoltmeter. In all 

temperature dependent experiments the temperature is controlled and monitored by a 

Quantum Design PPMS with a sweeping speed of 0.5 K/min. The errors for the 

measurements were calculated from the standard deviation and propagation of errors, and 

were determined to be 4% for thermal conductivity, 5% for Seebeck coefficient, and 11% 

for figure of merit 𝑍𝑍. 

3. Structure and Transport Measurements 

As mentioned previously Cu2Se is a p-type semiconductor and has a structural 

transition at around 130 oC, and the low temperature phase and high temperature phase 

are designated as α-phase (α-Cu2Se) and β-phase (β-Cu2Se) respectively. Similarly Ag2Se 

also performs a structural transition at a near temperature; however, in literatures people 

prefer to designate the low temperature phase as β-phase and the high temperature phase 

as α-phase, which is just opposite to the convention used for Cu2Se [44-46]. Furthermore, 

CuAgSe follows the same convention as Ag2Se [44-46]. Different from Cu2Se, Ag2Se is 
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n-type, as a result the Ag doping is not a good approach to improve the TE efficiency of 

Cu2Se. Meanwhile CuAgSe is also an n-type material; it looks like Ag produces more 

charge of carriers than Cu in the compound but with an opposite sign. Because there’s no 

benefit from the Ag doping, the results of Cu1.9Ag0.1Se are organized as an individual 

section aside from others in this Chapter. 

Fig. 4.1(a) shows the powders XRD pattern of the polycrystalline Cu2Se made 

by ball milling and hot pressing. The XRD measurement was conducted on a Brucker D2 

PHASER system at room temperature with a scanning speed of 10 seconds per/step (step 

size = 0.014°). Rietveld refinement was done in Fullprof suite by using monoclinic 

structure (space group C2/c, No. 15) as the starting structure, which was recently 

proposed by Gulay [37]. The monoclinic α-Cu2Se shows a lamella sub-lattice structure 

along ab-plane, which is similar to its high temperature cubic β-Cu2Se [11]. The 

interesting feature of each lamella is the hexagonal-ring chain made by Cu3Se3, which is 

outlined in stick mode crystalline structure, as shown in the Fig. 4.1(b). However, the 

direction of connected Cu3Se3 chain between two lamellas is different. The 

one-dimensional hexagonal ring chain could generate the electronic density instability 

associated with the electron-phonon coupling effect. Research on the crystal structure of 
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Cu2Se has shown that several crystallographic structures may be present depending on 

the temperature [25]. Our XRD refinement calculation shows a monoclinic structure of 

Cu2Se [13]. 

Fig. 4.1(c) shows the temperature dependent electrical resistivity of a typical 

polycrystalline Cu2Se. Reversible non-linear temperature dependent electrical transport 

properties are observed for the entire “cool down + warm up” temperature cycle. Below 

room temperature, the resistivity initially shows the behavior of a diffusion-controlling 

metal-like behavior, corresponding to a nearly unchanged carrier concentration and 

increasing carrier mobility with temperature as shown in Fig. 4.3. The electrical 

resistivity starts to deviate from such behavior when the temperature goes down to near 

160 K and forms a “hump” in temperature range from 160 K down to 80 K. The similar 

abnormity in dc electrical resistivity was characterized as the appearance of CDW in 

NbSe3, TaS3 and K0.3MoO3 [16-18,28-30]. Additionally, a hysteresis loop in the 

temperature dependent electrical resistivity was observed in the range of 80 – 160 K. 

Conventionally, the sharp peak in the curve of logarithmic derivative of electrical 

resistivity ( ln 𝜌 , or log 𝜌 ) with respect to reciprocal temperature 1 𝑇⁄ , i.e., 

d{log 𝜌(𝑇)} d(1 𝑇⁄ )⁄  versus 𝑇, was used to define the character temperature of the 
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Peierls transition. By applying the same method, we determined the transition 

temperature 𝑇C is 125 K, as shown in the Fig. 4.1(d). Due to the polycrystalline structure, 

the Peierls transition process has a widely expanded temperature range from 160 K to 90 

K.  
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Fig. 4.1: (a) Powder XRD pattern of as-fabricated polycrystalline Cu2Se at room temperature, in 

which the calculated pattern is based on a monoclinic structure C2/c (No. 15). The refine 
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structure (Rp =2.48 %, Rw=3.33 %, Rexp = 0.44 %) shows the Cu2Se has a monoclinic unit cell (a 

= 7.1310 Å, b = 12.3517 Å, c = 27.2880 Å, α = γ = 90o, β = 94.39o). (b) The atomic structure of 

monoclinic Cu2Se in stick mode with hexagonal-ring chain is shown with the atoms, in which the 

green ones are Se atoms, and the blue ones are Cu atoms. (c) Temperature dependent electrical 

resistivity is measured in both the cooling and heating processes. (d) Temperature dependence of 

𝐝{𝐥𝐥𝐥 𝝆(𝑻)} 𝐝(𝟏 𝑻⁄ )⁄  . The inset is the varying Hall carrier concentration in the Peierls 

transition process. (e) Saturated energy gap due to CDW at 0 K as a function of the transition 

temperature for Cu2Se and other CDW materials. (f) Electron-phonon coupling constant as a 

function of the transition temperature for Cu2Se and other CDW materials. The saturated 

energy gap and electron-phonon coupling constants of NbSe3, TaS3, K0.03MoO3, KCP, (TaS4)2I 

were adapted from ref. [19]. 
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According to the mean field theory [19], the elevated electrical resistivity with 

decreasing temperature, follows the activation energy relationship, i.e., 𝜌 ∝ exp(𝛥 𝑘B𝑇⁄ ) 

where the 𝛥 is the effective energy gap due to the CDW. The energy gap could be 

obtained by extracting the slope of the curve of log 𝜌 vs. 1 𝑇⁄ . Fig. 4.1(e) shows the 

numerical calculation of the 𝛥 by using a differential step value δ𝑇 = 1 K, and shows a 

temperature dependent energy gap of 𝛥 = 40.9 − 0.265 𝑇 (meV). We note that the exact 

physical meaning of the temperature dependent 𝛥(𝑇) is not clear. It could be an average 

result of all the grains or domains with and without an open gap. The saturated energy 

gap at zero temperature is estimated to be 40.9 meV by applying the 𝑇 → 0 according to 

the linear relationship. Fig. 4.1(e) compares the saturated energy gap of Cu2Se with other 

reported CDW materials as a function of their Peierls transition temperature. The value of 

𝛥
𝑘B𝑇C�  for all the samples is larger than the theoretical Bardeen-Cooper-Schrieffer 

(BCS) relationship, i.e., 2𝛥 = 3.52 𝑘B𝑇CDWMF , which means that the real observed Peierls 

transition temperature is much lower than the theoretical value based on the mean field 

theory. Furthermore, the electron-phonon coupling constant 𝜆 and the coherent length of 

electron-hole pair 𝜉0 of the CDW ground state could be estimated within the free 

electron model by using the following relationships [19], 

𝛥 = 2𝜖Fe−1 𝜆⁄  
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(4.1) 

𝜉0 =
ℏ𝑣F
π|𝛥| 

(4.2) 

𝜖F =
ℏ2

2𝑚0
(3π2𝑛)2 3⁄  

(4.3) 

𝑣F = �
2𝜖F
𝑚0

�
1 2⁄

 

(4.4) 

where ℏ is the reduced Planck constant, 𝑚0 is the free electron mass, and 𝑛 is the 

carrier concentration at zero temperature. By using the carrier concentration near 90 K, 

i.e., 𝑛 = 1.6 × 1020 cm−3, to Eq. (4.1 – 4.4), we derive the characterized parameters: 

𝜖F = 0.11 eV, 𝑣F = 1.94 × 107 cm s-1, 𝜆 = 0.6, and 𝜉0 = 1 nm. Fig. 4.1(f) shows the 

coupling constant 𝜆 vs. transition temperature of several single crystal compounds from 

literature, e.g. NbSe3, TaS3, K0.3MoO3, KCP, and (TaSe4)2I, as well as, our polycrystalline 

Cu2Se. The coherent length of electron-hole pair 𝜉0 of Cu2Se is one order of magnitude 

less than K0.3MoO3 and (TaSe4)2I, and also 6 times less than NbSe3. The 𝜉0  of 

as-fabricated Cu2Se is much smaller than the grain size of 1 μm, which could explain 

why we are able to observe the CDW in poly-crystalline Cu2Se. We also show the direct 

measurement of a cold pressed sample from the Cu2Se nano-powder. It is found that 
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non-linear electrical resistivity due to CDW is significantly suppressed. A restored CDW 

ground state was seen by annealing the cold pressed sample, which demonstrates the 

behavior of the cold pressed sample as the nano-grains merged into micro-grains. The 

restoration of the “hump” in electrical resistivity is shown in Fig. 4.2. From Fig. 4.5 we 

can see that the cold press sample has a much small grain size than hot press or cold press 

+ anneal samples, thus it has more scatterings during the charge transport and this results 

in a larger electrical resistivity across the (nearly) whole temperature range we studied. 
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Fig. 4.2: The annealed cold press Cu2Se sample shows a partial restoration of nonlinear 

electrical resistivity. The amplitude and the range of the “hump” of the annealed cold press 

sample are both reduced compared with the hot press sample, but the transition temperature 

derived from 𝐝{𝐥𝐥𝐥 𝝆(𝑻)} 𝐝(𝟏 𝑻⁄ )⁄  is close. 
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Fig. 4.3: Temperature dependent Hall carrier concentration (a) and mobility (b), a standard 

4-probe Hall resistance method was performed; measurements were carried out in both +6 T 

and -6 T magnetic fields, in order to eliminate the asymmetric effect from the 2 voltage leads. (c 

– g) I-V curves at different temperatures, in which the regular oscillations only appear at 50 K. 
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Fig. 4.3 shows a greater detail of Hall measurements of Cu2Se, which 

demonstrates several complicated features near the Peierls transition. The Hall carrier 

concentration of Cu2Se, as shown in Fig. 4.3(a), is almost a constant as the temperature 

decreases from room temperature to 160 K, and then gradually decreases from 2.1 × 1020 

cm-3 to 1.6 × 1020 cm-3 as the temperature goes down further from 160 K to around 90 K, 

and finally reaches a stable value below 90 K. The decreasing carrier concentration from 

160 K to 90 K was interpreted as the appearance of the charge density wave, which 

corresponds to the formation of electron-hole pairs in real space and a decrease of the 

area of the Fermi surface in reciprocal space. In addition, in Fig. 4.3(b), the carrier 

mobility also shows three stages in the temperature dependent curve, which is consistent 

with the variation of the carrier concentration. Near room temperature, the temperature 

dependent carrier mobility shows a typical degenerated semiconductor behavior with 

acoustic phonon scattering, i.e., 𝑟 = 0.8 − 1.2 in the relationship of 𝜇 ∝ 𝑇−𝑟 at this 

temperature range. The power index shows a continuous decrease to almost zero when 

temperature goes from 300 K to 160 K, which may be due to the onset of the CDW. 

During the phase transition temperature range from 160 K to 90 K, carrier mobility is 

nearly flat. After entering the CDW ground state, the carrier mobility starts to rise again 

in a more gentle way. The electrical resistivity does not follow the relationship as 
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expected for a normal metal. The temperature dependent carrier concentration and carrier 

mobility divide the temperature range into three regions according to the electronic 

controlling mechanism: diffusive region, mixture region, ballistic-like region. Fig. 4.3(c – 

g) shows the I-V curve at different temperatures from these three temperature regions. In 

the diffusive controlling region, the I-V curve at temperature of 200 K or 160 K shows a 

good linear behavior. Conventionally, a dc I-V curve was used to identify the threshold, 

or the critical electric field, 𝐸C of the CDW [18,19,29]. The I-V curve of materials with 

CDW ground state usually behaves as a linear relationship when the current is small, 

which corresponds to a constant differential resistance d𝑉 d𝐼⁄ . As the applied electric 

field exceeds a threshold, the d𝑉 d𝐼⁄  becomes significantly decreased with the 

continuous increasing applied electric field and enters a nonlinear I-V regime. However, 

we did not observe such a nonlinear I-V curve at 90 K. One of the reasons may be due to 

the high electrical conductance of the Cu2Se sample we measured (~0.02 Ω), so the 

highest electric field that could be applied is limited by the constant current source. 

Currently, the highest electric field is only 3 × 10-5 V cm-1, which is much less than a 

typical 𝐸C of 8.7 × 10-2 V cm-1 for Nb3Se [29] and 1.2 V cm-1 for (TaSe4)2I [18]. We also 

made another thinner Cu2Se sample with a 10 times larger electrical resistance (~0.2 Ω) 

and raised the applied electric field to ~3 × 10-4 V cm-1. However, we still did not observe 
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the decrease in differential electrical resistivity with the increasing applied electric field. 

As we continued to measure the I-V curve at lower temperatures, a wave-like I-V curve 

was observed near 50 K with a period of ~100 μA and amplitude of 2 μV, as shown in Fig. 

4.3(c). A negative differential resistance d𝑉 d𝐼⁄  at each wave was identified. To our best 

knowledge, such regular oscillations in dc I-V curve have not yet been reported in Cu2Se 

or in other materials. 

Fig. 4.4 shows the powder XRD patterns of the nanocomposite Cu2Se with 2% 

Zn, 10% Ni, and 10% Te doped samples along with the parent compound, which were 

made by the same fabrication process. The XRD measurements were performed on the 

same Bruker D2 PHASER system as mentioned previously at room temperature. The 

XRD patterns and subsequent refinements show that the α-Cu2Se exhibits a layered and 

monoclinic structure where the structure maintains unaffected by different dopants. Fig. 

4.5 shows typical SEM images of the Cu2Se hot pressed (HP) compound measured by 

JEOL JSM-6340F Field Emission Scanning Electron Microscope, and the dimensions of 

the grain sizes are on the order of several microns and are comparable with the grain 

dimensions for other doped samples. The typical grain size of cold pressed sample is on 

the order of 100 nm, also shown in Fig. 4.5.  
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Fig. 4.4: Room temperature XRD patterns of as-prepared Cu2Se hot pressed samples with 

different dopants (2% Zn, 10% Ni, and 10% Te) and parent compound; all of them have similar 

patterns (peaks). 
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Fig. 4.5: SEM images of Cu2Se parent compound reveal the typical grain size. (a) Cu2Se HP 

parent compound; (b) 2% Zn doped HP sample; (c) 10% Ni doped HP sample; (d) 5% Te doped 

HP sample, note that in other part of this Chapter it is always 10% Te doped because the 10% 

Te sample is not cracked and is better for transport measurements but it lacks the SEM image. I 
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believe the SEM of 10% Te doped sample will be very similar to the 5% Te doped one; (e) Cu2Se 

CP parent compound, it is obvious its grain size is much smaller than others; (f) Cu2Se CP + 

annealing parent compound, grains merged and their sizes are comparable to HP samples but 

with more vacancies because the annealing happened in the vacuum. 
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Fig. 4.6 shows the transport properties of these Cu2Se samples. In Fig. 4.6(a), the 

electrical resistivity curves of Cu2Se, Cu1.98Zn0.02Se and Cu1.9Ni0.1Se show a significant 

broad maxima around 100 K, which may be attributed to the possible formation of CDW 

[13-15], however the phenomenon is not visible in the Cu2Se0.9Te0.1 sample (further 

discussed in the next section). Compared with the electrical resistivity results of single 

crystals during CDW transitions, nanostructuring broadens the peak and extends the 

phase transition to a wider temperature range [16-18]. The occurrence of a CDW and the 

accompanying Peierls distortion result from the perfect nesting on the Fermi surface and 

the subsequent partial disappearance of the Fermi surface, as a result the carrier 

concentration should have a decrease during the transition, and the scattering mechanism 

will be different from those outside the transition range [19]. Fig. 4.6(c) and Fig. 4.6(e) 

show the temperature dependence of mobility and Hall carrier concentration from the 

Hall measurements. As seen in Fig. 4.6(c), the slope of the curves has a significant 

decrease in the transition range, while maintaining nearly the same character outside of it. 

We conclude that the scattering originates from the same mechanism outside of the 

transition, but is altered by the formation of a CDW during the transition. Fig. 4.6(e) 

further confirms the transition by revealing the decrease of carrier concentration at this 

temperature range. 
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Fig. 4.6(b) and Fig. 4.6(d) show the total thermal conductivity and Seebeck 

coefficient vs. temperature, unlike the broad maxima revealed in the electrical resistivity 

data, there are no similar anomalies observed in thermal conductivity and Seebeck data. 

As reported in the literature, Cu2Se is a p-type electrical conductor with a Cu deficiency 

in the lattice which results in an equivalent concentration of holes [10,14]. The 10% Ni 

doped sample shows evidence of similar hole doping behavior to the Cu deficiency 

because the Ni doping promotes an increased hole concentration due to the number of 

valence electrons available in Ni. By the Ni doping the carrier concentration is increased 

and, as a result, Cu1.9Ni0.1Se has a lower electrical resistivity and higher thermal 

conductivity compared with other samples. While 2% Zn and 10% Te doping more 

behave as scattering centers, thus these two doped samples have higher electrical 

resistivity and lower thermal conductivity. Fig. 4.6(f) and Fig. 4.6(h) show the 

temperature dependence of the power factor and figure of merit (𝑍𝑍), and the best 

thermoelectric performance is from the parent compound, which has a 𝑍𝑍 value of 0.14 

at 200 K. Fig. 4.6(g) shows the comparison between Cu2Se parent compound and p-type 

bismuth antimony single crystal [20], which is a conventional low temperature p-type TE 

material, and we can see that Cu2Se has a better performance at low temperature. 
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Fig. 4.6: Temperature dependent behaviors of thermoelectric transport properties. (a) Electrical 

resistivity. (b) Total thermal conductivity. (c) Mobility plotted in log scale. (d) Seebeck coefficient. 

(e) Hall carrier concentration. (f) Power factor. (g) Comparison of 𝒁𝒁  between Cu2Se 

nanocomposite parent compound and conventional low temperature p-type bismuth antimony 

single crystal. (h) Figure of merit. Except (g) all other figures have the same legend. The bismuth 

antimony data is taken as a comparison from ref. [20]. 
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The good thermoelectric performance of α-Cu2Se is due to its low dimensional 

layered structure combine with a ball milling and hot press fabrication process. This 

results in low thermal conductivity across a wide temperature range 𝑇 < 300 K. Unlike 

the structural transition from α-Cu2Se phase to β-Cu2Se phase, which appears at ~130 oC 

in single crystals, the Peierls distortion manifests as a broad peak in both doped and 

undoped nanocomposite materials and looks like a “weak” phase transition compared 

with the higher temperature structural transition. Evidence of the Peierls distortion comes 

from the collective behavior of the many nanocomposite grains and is influenced by the 

grain size distribution. Our data from thermal conductivity and Seebeck coefficient does 

not show evidence of a Peierls distortion because this is a weak transition, however this is 

not the case for such anomalies observed in the structural transition at higher 

temperatures [12]. 

4. dc I-V Curve Measurements and Doping Effects 

Fig. 4.7 shows more I-V curves of Cu2Se near 50 K measured under different 

conditions. Fig. 4.7(a) shows that the wave-like I-V curve is repeatable, not a one-time 

result, in which the second measurement is conducted several days after the first 
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measurement and with a little shift compared with the first one. In the second 

measurement, shown in Fig. 4.8(a), the I-V curves at four different temperatures of 200 K, 

120 K, 50 K, and 30 K were measured. Only the I-V curve near 50 K shows the notable 

wave-like feature, while the ones measured at 120 K and 200 K only show normal linear 

relationship. It is noted that the I-V curve at 30 K still reveals a weak oscillation as shown 

in the Fig. 4.8(a). In order to confirm our measurement, we prepared another thin sample 

with resistance of 0.2 Ω as shown in Fig. 4.7(b). For the thin sample a narrower 

temperature range was detected. The wave-like I-V curves were observed at the 

temperatures of 50 K, 48 K, and 30 K, but not at 52 K and 90 K. Furthermore, the period 

of the oscillation is increased as the temperature decreases from 50 K to 30 K. It is 

suggested that the regular oscillation is highly sensitive to the temperature. On the other 

hand, the amplitude of the oscillation of the thin sample (0.2 Ω) is smaller than the thick 

one (0.02 Ω), i.e., the differential resistance or resistivity drops below zero for 0.02 Ω 

while it is still positive for 0.2 Ω, which suggested that the phenomena we observed is 

also sample size related. In order to exclude the possibility that the signal we observed 

may have come from the equipment, we have done a similar I-V curve measurement for a 

standard resistor (1 Ω) from 30 K to 200 K, but we did not find any wave-like I-V curves, 

or any noise-like I-V curves, but only perfect linear I-V curves, e.g. at 50 K; more details 
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will be shown in the next supplementary section. 
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Fig. 4.7: Regular oscillations of I-V curves in the CDW ground state of Cu2Se polycrystalline. (a) 

Repeatable wave-like I-V curve of Cu2Se measured at 50 K for the thick sample with resistance 

of ~0.02 Ω, (b) I-V curves at different temperatures for the thin Cu2Se sample with resistance of 

~0.2 Ω, which are artificially shifted by 10 μV for 48 K, 20 μV for 50 K, 30 μV for 52 K, and 40 

μV for 90 K to separate the I-V curves, respectively, (c) weak magnetic field effect on the I-V 

curve of the Cu2Se measured at 50 K for the thick sample with resistance of ~0.02 Ω, (d) effect of 

the applied large current on the I-V curve of the thin Cu2Se sample measured at 50 K. 
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The effect of the magnetic field and the electrical field on the wave-like I-V 

curve was further investigated, as shown in the Fig. 4.7(c – d). Under the magnetic field 

of 9 T, the period and amplitude of the oscillation in the I-V curve is nearly unchanged 

when the current is less than 500 μA. According to the shift shown in Fig. 4.7(a), the 

superposition of the beginning part of two curves in Fig. 4.7(c) is better regarded as a 

coincidence. It seems that the shift cannot be eliminated; the measurements were 

performed on the third sample (0.03 Ω) as shown in Fig. 4.8(b), and the shifts were still 

observed. However, the oscillation period decreases slightly when the current is higher 

than 500 μA. It seems that the electrical field may play a more important role in changing 

the electronic transport behaviors in CDW ground state. We have applied electric field of 

1.5 × 10-4 V cm-1 on the thin sample (0.2 Ω) over 5 hrs. at 50 K, and then re-measured the 

I-V curve. Surprisingly, the wave-like feature in the I-V curve disappeared, as shown in 

Fig. 4.7(d). 
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Fig. 4.8: (a) Second measurement of the I-V curves of the Cu2Se thick sample (~0.02 Ω) with 

artificially shifted by 5 μV for 30 K, 10 μV for 50 K, 15 μV for 120 K, and 20 μV for 200 K to 

separate the I-V curves, respectively. (b) Measurements of I-V curves of the third Cu2Se hot 

press sample (~0.03 Ω) by Keithley 2182A nanovoltmeter. The figure shows an obvious shift 

between the two measured I-V curves of the third Cu2Se sample (~0.03 Ω), however, the 

oscillation period and amplitude are similar. 
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It is well-known that a noise-like fluctuation in the d𝑉 d𝐼⁄  was widely observed 

in the NbSe3, TaS3, and K0.3MoO3 as a result of the collective moving of the CDW when 

the applied electric field is higher than the critical field 𝐸C [17,28,30]. However, the 

applied electrical field in our measurement is far less than the threshold value 𝐸C. The 

oscillation we observed is very regular, rather than an electronic noise. Another 

noticeable phenomenon is the Shapiro steps in the dc I-V curves when an rf-frequency ac 

signal was applied to the samples [15,38-40]. However, these steps can only be observed 

when the ac signal is nonzero due to its interference nature. The Shapiro steps do create a 

fluctuation in the differential resistance d𝑉 d𝐼⁄ , but not a negative d𝑉 d𝐼⁄ . Furthermore, 

the amplitude of the sub-harmonics decreases with an increasing dc electric field. In 

contrast, our measurement is only conducted under stable dc electric field step by step 

with a step current of 5 μA. At each step, a waiting time of 15 sec was set to wait for the 

voltage value becoming stable in our constant current measurement mode. The amplitude 

and period of the wave we observed did not show a notable decay with increasing current. 

Furthermore, a negative differential resistance was observed at each wave peak. One of 

the mechanisms for the wave-like I-V curve could be related to the special periodic 

modulation of the electronic charge density in CDW ground state, and also to the 

formation of electron-hole pairs due to the nesting on the Fermi surface, which may result 
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in a local carrier concentration, or carrier mobility jump as the Fermi energy across the 

gap with rising applied dc electric field. We note that the negative differential resistivity 

phenomenon has been observed in a molecular conductor, in which a ballistic mechanism 

is dominant in the electronic transport [42]. Recently, a negative differential resistivity 

was also reported in a CDW material BaIrO3 single crystal at 4.2 K [43]. However, only 

one peak was observed in Nakano’s I-V curve. The observed negative differential 

resistivity in Cu2Se, which is related to a regular applied electric field, is still unique. We 

believed that the onset of oscillation (wave-like fluctuation) of I-V curve in Cu2Se should 

be a new material-related phenomenon. Although the oscillation looks like real, the 

negative resistance appeared in 1st measurement in Fig. 4.8(b) below 50 μA is better 

regarded as an experimental artifact. 
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Fig. 4.9: Temperature dependent electrical properties of Cu2Se with different dopants: (a) 

electrical resistivity, (b) carrier concentration, (c) I-V curves of sample Cu1.98Zn0.02Se, (d) 

differential resistance d𝑽 d𝑰⁄  of Cu1.98Zn0.02Se at 40 K. The I-V curves in (c) are artificially 

shifted by 3 μV for 35 K, 6 μV for 40 K, 9 μV for 45 K, 12 μV for 50 K, and 15 μV for 55 K to 

separate the I-V curves. 
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Fig. 4.9(a) shows the doping effect on CDW of Cu2Se. The first investigation 

was to add extra Se (which is equal to the Cu deficiency) to increase the hole 

concentration from 2.1 × 1020 cm-3 to 2.5 × 1020 cm-3. A similar “hump” in the electrical 

resistivity was seen throughout the Peierls transition but the temperature was increased 

from 125 K to 138 K. We also note that in an early work on p-type Cu1.7-1.8Se (𝑝 = 3.0 ×

1021 cm-3) the data shows a similar but irreversible “hump” in electrical resistivity near 

180 K [15]. It seems that the increased carrier concentration could influence the transition 

temperature. Recently, a theoretical study suggested that a phase transition due to the 

CDW may exist in Cu2Se near 120 K [15]. Zn has one more valance electron than Cu, 

while Ni has one valance electron less than Cu, both of which will significantly change 

the carrier concentration of the Cu2Se. Both samples with Zn and Ni doping have shown 

notable Peierls transition near 130 K, which is slightly higher than the pure Cu2Se, and 

resulted in a carrier concentration and mobility decrease near the Peierls transition as 

shown in the Fig. 4.9(b). Furthermore, Cu1.98Zn0.02Se has the largest electron-phonon 

coupling constant of 0.65, while Cu1.9Ni0.1Se has the largest saturated energy gap of 61.2 

meV. The way Zn and Ni influencing the CDW is different from the Cu vacancy. Besides 

tuning the electrons, we also partially substituted the Se with Te allowing for increased 

phonon scattering and also breaking the perfect nesting on Fermi surface. No evident 
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Peierls transition was seen in the sample Cu2Se0.9Te0.1. The suppression of propagation 

phonon owing to the alloying effect breaks the electron-phonon coupling, meanwhile the 

substitution of Se by Te in the lattice structure results in the removal of the induced 

subsequent lattice instability. Fig. 4.9(c) shows the I-V curve of the sample Cu1.98Zn0.02Se 

which is conducted over a wide temperature range, and a similar wave-like fluctuation 

was still observed at the temperature below 40 K. It seems that the onset temperature of 

wave-like fluctuation is sensitive to the dopants. The derived wave-like d𝑉 d𝐼⁄  curve of 

Cu1.98Zn0.02Se at 40K, from which we clearly see a negative differential resistance, is 

shown in the Fig. 4.9(d). All the relevant derived parameters are summarized in Table 4.1. 

We still have no idea about the clear picture of this negative differential resistance. 

However, we believed what our observation is a material-related new phenomena, which 

could be a new quantum effect or strong electron-phonon coupling effect in the CDW 

ground state. Such wave-like fluctuation in the I-V curve may provide a new way to 

probe the new electronic transport phenomena of the CDW ground state. 
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Table 4.1: Charge-density wave related Peierls transition temperature 𝑻𝐏, saturated energy gap 

𝑬𝜟, electron-phonon coupling constant 𝝀, and the temperature 𝑻𝐰𝐰𝐰𝐰 observing the wave-like 

fluctuation in the I-V curve. 

Sample 𝑇P/K 𝐸𝛥/meV 𝜆/dimensionless 𝑇wave/K 

Cu2Se 125 40.9 0.54 50 

Cu2Se-Zn 131 54.8 0.65 40 

Cu2Se-Ni 128 61.2 0.63 n.a. 

Cu2Se1.02 138 40.4 0.51 n.a. 

n.a.: not available right now. 
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5. Supplementary Materials for dc I-V Curve Measurements 

Fig. 4S.1 shows a dc I-V curve measurement of a 1-ohm standard resistor at 50 

K, in order to make a comparison between the Cu2Se sample and the resistor. As we see 

the I-V curve of the resistor is a perfect line throughout the whole current range, rather 

than the oscillations shown up in our Cu2Se samples. The voltage does not reach 1000 μV 

when the current is 1000 μA, i.e. the resistance is smaller than 1 Ω, because the resistor 

changes its resistance when temperature goes down. 
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Fig. 4S.1: The I-V curve of the 1 Ω standard resistor at 50 K, and a straight line was observed. It 

behaves in a perfect linear relationship, which makes us conclude that the wave-like fluctuation 

is the effect from the polycrystalline sample, not from the measuring circuit.  



4-43 
 

6. Results of Ag Doped Cu2Se Compound 

As mentioned previously, using Ag as a dopant into Cu2Se is not a good idea, 

because Ag produces electron into the p-type Cu2Se although Ag and Cu are usually 

isoelectronic. This part is a data recording, and presents some results which are not 

suitable in the main text. The structure of CuAgSe is different from Cu2Se and Ag atoms 

do not evenly substitute Cu atoms [44], but here I just simply regard CuAgSe as 50% Ag 

doped Cu2Se. Because Ag does not improve the thermoelectric performance of Cu2Se and 

also Ag is much more expensive than other dopants, we do not deeply investigate the 

properties of Ag doped Cu2Se, Fig. 4.10 shows some transport results of Cu1.9Ag0.1Se we 

got from our experiments. 
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Fig. 4.10: Transport properties of hot pressed (HP) Ag doped Cu2Se nanocomposites, the 

CuAgSe (i.e. 50% doped) polycrystalline data is adapted from ref. [44]. (a) Electrical resistivity; 

(b) Seebeck coefficient; (c) Thermal conductivity; (d) Derived figure of merit; (e) Mobility; and 

(f) Carrier concentration; note that (e) and (f) are plotted in log scale. As usual, the carrier 

concentration data is calculated from the Hall coefficient 𝑹𝐇. 𝑹𝐇 can be either positive (p-type) 

or negative (n-type) according to the type of carriers, however, its absolute value is used to 

derive the concentration and thus lose the information of carrier type. 
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Fig. 4.10: Transport properties of hot pressed (HP) Ag doped Cu2Se nanocomposites, the 

CuAgSe (i.e. 50% doped) polycrystalline data is adapted from ref. [44]. (a) Electrical resistivity; 

(b) Seebeck coefficient; (c) Thermal conductivity; (d) Derived figure of merit; (e) Mobility; and 

(f) Carrier concentration; note that (e) and (f) are plotted in log scale. As usual, the carrier 

concentration data is calculated from the Hall coefficient 𝑹𝐇. 𝑹𝐇 can be either positive (p-type) 

or negative (n-type) according to the type of carriers, however, its absolute value is used to 

derive the concentration and thus lose the information of carrier type. 
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Fig. 4.10: Transport properties of hot pressed (HP) Ag doped Cu2Se nanocomposites, the 

CuAgSe (i.e. 50% doped) polycrystalline data is adapted from ref. [44]. (a) Electrical resistivity; 

(b) Seebeck coefficient; (c) Thermal conductivity; (d) Derived figure of merit; (e) Mobility; and 

(f) Carrier concentration; note that (e) and (f) are plotted in log scale. As usual, the carrier 

concentration data is calculated from the Hall coefficient 𝑹𝐇. 𝑹𝐇 can be either positive (p-type) 

or negative (n-type) according to the type of carriers, however, its absolute value is used to 

derive the concentration and thus lose the information of carrier type. 
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In Fig. 4.10(a) we see that Cu1.9Ag0.1Se has a lower electrical resistivity than 

other samples, this could be explained by its extremely large carrier concentration at low 

temperature. However, when temperature increases the concentration decreases 

significantly and becomes one half of the value of other samples. Normally this would 

indicate a higher electrical resistivity, but from Fig. 4.10(a) Cu1.9Ag0.1Se still has the 

lowest resistivity at room temperature. This “paradox” could be solved by using a 

different model to calculate carrier concentration. 
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Fig. 4.11: An illustration of 4-probe yx-measurement. The sign of voltage across the sample 

depends on the type of carriers, which is different from the 4-probe xx-measurement where the 

voltage is always positive unless the wires are connected incorrectly or the resistance is out of 

range. 
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Fig. 4.11 shows an illustration of a Hall measurement, by measuring the Hall 

resistance 𝑉𝑦 𝐼𝑥⁄  or the Hall resistivity 𝜌𝑦𝑦 if further considering the dimensions of the 

sample; one is able to calculate the Hall coefficient 𝑅H by the definition 

𝑅H =
𝑉𝑦
𝐼𝑥
𝑡
𝐵

=
𝜌𝑦𝑦
𝐵

 

(4.5) 

where 𝑡 is the thickness and 𝐵 is the magnetic field. As a result 𝑅H is always correct 

because it is from the definition. But the derivation of carrier concentration 𝑛 from 𝑅H 

is model-sensitive; we can have different explanations of 𝑅H depending on different 

models we choose. In the simplest case, the Drude model by assuming there only exists 

one type of carrier, one is able to have the commonly accepted result 𝑅H = 1 𝑛𝑛� , and 

this is the formula we use to extract 𝑛 most of time. 

S. Ishiwata et al. used a two-carrier model to interpret their CuAgSe 

polycrystalline results [44], this two-carrier model may satisfy our Cu1.9Ag0.1Se sample 

but we lack enough data to examine it, what we can conclude is that the simple model 

and derived carrier concentration of Cu1.9Ag0.1Se may not be correct. The Hall effect is 

the average effect of both carriers, so it is a subtraction and reduces the concentration 

value. But in the transport process both of them can conduct heat and charge, so their 
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contribution becomes a sum, and this is confirmed by the electrical resistivity and thermal 

conductivity measurements shown in Fig. 4.10(a) and Fig. 4.10(c). 

Another interesting thing to mention is the crossover from p-type to n-type and 

vice versa. As stated previously, Cu2Se is p-type while both Ag2Se and CuAgSe are 

n-type. So there must be a transition from p-type to n-type if we dope Cu2Se with Ag. 

Normally, the sign (or the type) of the majority carriers is determined by Hall 

measurements, and is further confirmed by the Seebeck coefficient. In Fig. 4.10(b) we 

clearly see that CuAgSe has a negative Seebeck coefficient which is consistent with its 

Hall measurements. However, the situation is quite different for Cu1.9Ag0.1Se and it looks 

like Cu1.9Ag0.1Se is around the crossover. 

From Fig. 4.10(b) we can see the trend Cu2Se → Cu1.9Ag0.1Se → CuAgSe, the 

doping of Ag presses the Seebeck curve down and finally changes the sign, but it’s still 

positive for Cu1.9Ag0.1Se, i.e. Cu1.9Ag0.1Se is still p-type if we just consider the sign of the 

Seebeck coefficient. However, our Hall measurements propose a different scenario, as 

shown in Fig. 4.12. 
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Fig. 4.12: Temperature dependent Hall coefficient of Cu1.9Ag0.1Se sample, with no doubt is 

negative and the sample shows electron dominance. 
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Now things become a little complicated. A single measurement cannot uniquely 

determine whether a material is n-type or p-type. Most of time the Hall measurements 

and Seebeck measurements are consistent, but in the crossover regime resulting from the 

fact that the dopant does not improve the original carriers but compensates them, these 

two measurements may contradict with each other (as the example of Cu1.9Ag0.1Se). I 

think the reason may be that different carriers (electrons and holes) have different 

responses to the applied magnetic field and thermal gradient. But Hall measurement is 

more common than Seebeck measurement in the lab because it is not a thermal 

measurement, so it looks like the Hall measurement is the “industrial standard” to 

determine the type of a material in the lab (I guess and it is not confirmed). But due to the 

compensation of these carriers in the transport processes, such kind of materials can 

never be a good thermoelectric material candidate, as shown in Fig. 4.10(d), Cu1.9Ag0.1Se 

has the lowest figure of merit (even lower than CuAgSe [44]), so it is not a problem in 

the thermoelectric area where people are always trying to increase the TE performance. 

Similar to Cu2Se0.9Te0.1, Cu1.9Ag0.1Se also does not show a nonlinear “hump” in 

its electrical resistivity measurement. The explanation is similar, because Se and Te are 

isoelectronic, so do Cu and Ag, the band structure changes significantly and destroy the 
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perfect nesting on the Fermi surface. 

7. Conclusions 

A Peierls transition was identified in polycrystalline Cu2Se near 125 K according 

to the nonlinear electrical resistivity, the carrier concentration and also the carrier 

mobility. The characteristic parameters of the charge density wave in the polycrystalline 

Cu2Se was calculated to show a saturated energy gap 𝛥 of 40.9 meV at zero temperature, 

the electron-phonon coupling constant 𝜆 of 0.6 and the coherent length of electron-hole 

pair of 𝜉0~1 nm. After entering the new CDW ground state below 90 K, a negative 

differential resistivity was identified with a regular oscillation of the I-V curve. The 

regular oscillation in dc I-V curve was not magnetic field sensitive, but temperature and 

sample size sensitive. The wave-like fluctuation is different from the conventional 

electronic noise observed above the threshold field 𝐸C, and also the Shapiro steps with a 

finite applied ac field. Both the Zn and Ni doped Cu2Se show CDW characters with 

increased energy gap and electron-phonon coupling constant. No notable Peierls 

transition was identified from the temperature dependent resistivity and Hall 

measurement in Te doped Cu2Se. This reveals that the transition could be tuned by 
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different dopants. Similar wave-like I-V curve was also seen in the Cu1.98Zn0.02Se near 40 

K, which suggests that the onset of wave-like fluctuation of I-V curve in Cu2Se should be 

a material-related new phenomenon. The best 𝑍𝑍 value of 0.14 at 200 K is achieved 

from the parent compound due to its unique structure and the distinctive fabrication 

processes, which is higher than the performance of the conventional low temperature 

p-type bismuth antimony single crystals. This confirms the potential applications of 

α-Cu2Se as a p-type thermoelectric material in the low temperature field. 
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Chapter V: Induced Electronic Anisotropy in Bismuth Thin Films 

through Angle-Dependent Magnetoresistance Measurements 

 

1. Introduction 

Bismuth (Bi) has recently received renewed interest because it is a key 

ingredient of many thermoelectric materials [1-3], topological insulators [4], and 

valleytronic materials [5]. Bi is a semimetal with a small band overlap of ~38 meV at 

cryogenic temperatures and has highly anisotropic electron effective masses [6,7] of ~200. 

The large band mass anisotropy makes Bi a good material platform for studying very 

heavy and light electrons simultaneously. When alloyed with small concentrations of 

antimony (Sb), a bandgap opens, causing Bi1-xSbx to become an excellent low 

temperature thermoelectric, with its peak figure of merit (𝑍𝑍) occurring near the boiling 

temperature of liquid nitrogen [1]. Therefore, Bi and Bi1-xSbx remain promising 

candidates for cryogenic Peltier coolers. 

While previous studies have focused on bulk single crystalline samples, 

nano-structures offer a route to create higher 𝑍𝑍 materials [8]. Nano-structuring has 
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been shown to be effective in increasing phonon scattering, while having a lesser impact 

on degrading electronic transport [3,9]. As a result, the previous literature on Bi and 

Bi1-xSbx has investigated nanowires [10], thin films [11], nanoporous thin films [12] and 

nanocomposites [3]. Despite numerous studies on nanostructured Bi, there have been few 

works on investigating the effects of crystalline texture and order on electrical and 

thermal conduction. Recently, it was theoretically shown that different band structures 

could be derived from Bi or Bi1-xSbx films grown in different crystal orientations [13]. 

Some of the resulting band structures were highly anisotropic, a desirable property for 

thermoelectrics. Therefore, it is expected that the degree of anisotropic electrical 

conduction in a thin polycrystalline film of Bi will depend on the collective crystalline 

orientation of its grains. 

2. Experimental Details 

Bismuth thin films were evaporated using either thermal evaporation or 

molecular beam epitaxy. In the case of thermal evaporation, films were evaporated at a 

rate of 0.2 Å/s, as monitored by a quartz crystal monitor. Mica substrates were freshly 

cleaved. Amorphous SiO2 on Si substrates were made by dry oxidation of SiO2 and were 
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cleaned using a standard RCA cleaning method to remove any metallic or organic surface 

contaminants. Both the mica and SiO2/Si substrates were heated in high vacuum at 

~120 °C before and during deposition. Film thicknesses were checked using atomic force 

microscopy. Contacts were made using indium dots, which were able to punch through 

the thin native oxide layer on the films. Wires were secured to the indium dots using 

silver paint. We also tried the sapphire substrates which are expensive, but the results 

showed that the Bi film was also non-textured. 

To check the crystallinity of the grains, both transmission electron microscopy 

(TEM) and x-ray diffraction (XRD) measurements were used. Using TEM, we are able to 

resolve the lattice structure in Fig. 5.1(a). The trigonal axis points out of plane, while the 

structures of individual grains are rotated with respect to each other. Through XRD 

measurements, we were able to resolve thickness fringes shown in Fig. 5.1(b), indicative 

that the crystal lattice is preserved from the top to bottom of the film. 
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Fig. 5.1: (a) Planar TEM image of textured Bi film. Most grains are >100 nm. The insets provide 

higher resolution images of two different grains showing that they are rotated with respect to 

each other. (b) XRD spectrum of the trigonal peak (0003) showing side thickness fringes. Other 

peaks come from the substrate. 
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The electronic transport measurements were performed using a rotator option of 

Physical Properties Measurement System (PPMS) from Quantum Design. The sample 

was connected by using a standard 4-probe Van der Pauw method since we were dealing 

with the thin films. When rotating the rotator, the angle 𝜃 used here is the same angle 

used in PPMS, describing the deviation of the sample carrier from the horizon position. 

Because the applied field is vertical (upward positive) so when the angle is zero, the field 

is perpendicular to the film and substrate, shown in Fig. 5.2. 
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Fig. 5.2: The orientation of the experimental setup. The angle used here describes the position of 

the sample carrier holder with respect to the horizon, but the applied magnetic field is always 

vertical and upward positive, as a result 0° means the field is perpendicular to the sample while 

90° means parallel. 
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Due to the existence of the applied magnetic field and the different rotational 

axis, there are basically two different configurations of the Van der Pauw connection, as 

shown in Fig. 5.3. These two configurations are the most important configurations of the 

Van der Pauw method, namely vertical and horizontal configuration respectively. The 

final sheet resistance and electrical resistivity are derived according to the above results 

at different angles. 
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Fig. 5.3: Two different configurations of the Van der Pauw connection. In configuration 1 the 

current is perpendicular to the field only at 0°, while in configuration 2 they are always 

perpendicular with each other, at any angles. 
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3. Structural Characterization 

In this Chapter, we characterize and compare electronic transport in Bi thin films 

with texture (i.e. films having grains with preferential crystalline orientations) versus thin 

films without texture. We control the texture of Bi thin films, deposited using thermal 

evaporation or molecular beam epitaxy, by using different supporting substrates. In this 

study, we primarily focus on films grown on top of crystalline mica (001) or amorphous 

SiO2 substrates. Films were deposited via thermal evaporation at ~1 × 10-8 Torr, at a rate 

of 0.1 – 0.2 Å/s and a substrate temperature of ~120 °C. We monitor the texture and 

crystallinity of the films using X-ray diffraction (XRD) and check the surface roughness 

and grain shape with atomic force microscopy (AFM). The AFM image in Fig. 5.4(a) 

shows that each grain grows into a triangular shape suggesting that the film has texture. 

This is confirmed through the XRD spectrum shown in Fig. 5.4(c), where all of the 

observed peaks correspond to the (0001) direction, indicating growth of a textured 

polycrystalline film where the trigonal axis points out of the plane of the film. From 

transmission electron microscope (TEM) measurements, we measure the grain sizes to be 

~200 – 500 nm, and observe that while all grains are grown normal to their trigonal axes, 

their in-plane grain structures are rotated randomly with respect to each other. Thickness 



5-10 
 

fringes are observed, which confirm that the grains maintain the same preferred trigonal 

crystalline orientation resulting from the growth substrate interface to the top surface of 

the film. In contrast, the AFM image in Fig. 5.4(b) shows that the surface of Bi deposited 

on SiO2 now contains several different shapes in addition to triangular ones. The 

corresponding XRD spectrum in Fig. 5.4(d), exhibits many more peaks than Fig. 5.4(c), 

indicating that the polycrystalline film no longer has a preferred trigonal axis texture, but 

is made up of grains with randomly oriented crystalline directions. In this study we focus 

on thin films with thicknesses (<80 nm) much smaller than the average grain size in order 

to ensure that the longest electron mean free path is in the plane of the film. We also note 

from AFM measurements that the textured samples tend to have a root mean square 

(RMS) intra-grain surface roughness of ~1 nm. By comparison, non-textured samples 

have an RMS intra-grain surface roughness of ~1.5 nm. 
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Fig. 5.4: (a) and (b) Atomic force microscope images of a textured and a non-textured film. The 

grains in the textured film appear primarily as triangles (traced by blue dashed lines) on the 

surface. By contrast, the grains in the non-textured film produce a more diverse collection of 

shapes (traced by red dashed lines) on the sample surface. (c) and (d) X-ray diffraction (XRD) 

spectra of textured and non-textured samples. The textured sample is oriented with its trigonal 

axis normal to the plane of the film. The numerous peaks in the non-textured film XRD spectra 

indicate the presence of many different crystalline orientations. 
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4. Angle-Dependent Electronic Transport Measurements in 

Applied Magnetic Field 

We measure magnetoresistance (MR) from 3 to 300 K in a Quantum Design 

Physical Properties Measurement System (PPMS) cryostat while rotating the films in a 9 

T magnetic field for the two different configurations, shown schematically in Fig. 5.5(a). 

Films were also measured in a Hall bar geometry, but no appreciable difference in these 

measurements were observed relative to those done in the Van der Pauw geometry. In 

what we denote as configuration 1, the current is applied such that as the film is rotated, 

the angle between the current flow direction and the magnetic field changes. In 

configuration 2, the current is applied such that it is always kept perpendicular with 

respect to the magnetic field. In these measurements we rotate samples by 360° with an 

incremental step size of 3°, to ensure that there is no misalignment between the film and 

the magnetic field. The resistance in configuration 1, 𝑅C1, shown in Fig. 5.5(b), reaches a 

minimum when the film is parallel to the field (when the rotator is oriented at 90° and 

270°). At these angles, 𝑅C1 is approximately equal to the zero-field resistance at each 

respective temperature, indicating that there is negligible MR when the current and field 

are aligned. As we tilt the sample, and the angle between the field and the plane of the 
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film increases, the component of the field perpendicular to the film also increases. Thus 

𝑅C1 reaches its maximum value when the field is normal to the plane (i.e. when the 

rotator is at 0° or 180°). Our observation of a large change in MR is consistent with other 

measurements in bulk Bi [14], thin films [15] and nanowires [16]. We note that quantum 

oscillations have not been observed in the present work, because of the polycrystalline 

nature of the films. In configuration 2, the magnitude of the magnetic field normal to the 

current flow remains constant during rotation. Instead, changing the angle between the 

film plane and the magnetic field tunes the degree of contribution between surface and 

grain boundary scattering. When the film is oriented perpendicular to the field, the 

cyclotron orbit is in the plane of the film so that the dominant scattering mechanism is 

grain boundary scattering. When the film is oriented parallel to the field, the carriers are 

pushed towards the surface of the film, thereby increasing surface scattering. Therefore, 

the observed resistance in configuration 2, 𝑅C2, reaches its maximum when the plane of 

the film is parallel to the field, in agreement with expectations. Fig. 5.6 shows the 

compensation between the boundary scattering and surface scattering in the thin film, of 

course the relative size of the grains and the thickness of the film determine the 

contribution to the sheet resistance from the surface scattering.  
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Fig. 5.5: (a) Schematic of the measurement configuration for 𝑹𝐂𝐂  (top-left, current flow 

rotating with the plane of the film) and 𝑹𝐂𝐂 (bottom-left, current flow kept normal to the 

magnetic field). The left-side shows the schematic from a top down view with the dashed line 

indicating the axis of rotation. The right-side image gives the cross-sectional view of the 

measurement setup. (b) 𝑹𝐂𝐂 measured as a function of rotator angle for a 77 nm textured thick 

film in a 9 T field, (c) 𝑹𝐂𝐂 measured as a function of rotator angle for the same film in a 9 T 

field. (d) Extracted resistivity of the film versus rotator angle. Measurements on this film in (b – 

d) were done over a temperature range of 15 to 300 K in 25 K increments for 𝑻 > 𝟐𝟐 𝐊 and in 5 

K increments for 𝑻 < 𝟐𝟐 𝐊. For clarity, we only display results for 𝑻 = 𝟏𝟏,𝟏𝟏𝟏,𝟐𝟐𝟐,𝟑𝟑𝟑 𝐊. 
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Fig. 5.6: Schematic illustration of boundary scattering and surface scattering happened in the 

bismuth thin film when an external magnetic field was applied. The electrons (or holes) are 

driven by the Lorentz force to achieve a cyclotron motion and scatter with the grain boundaries 

in the film or the surface of the film. 
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We use the Van der Pauw method to extract the resistivity, 𝜌, of films using 𝑅C1 

and 𝑅C2, as shown in Fig. 5.5(d). It should be noted that in a quantitative comparison 

between Figs. 5.5(b) and 5.5(c), 𝑅C1 has a much larger angular dependence than 𝑅C2. 

Therefore, the angular dependence of 𝜌 is dictated by 𝑅C1. As a result, plots of 𝜌 

versus 𝜃 very closely resemble Fig. 5.5(b). We plot, in Fig. 5.7(a), the ratio of the 

maximum over the minimum value of resistivity, 𝜌max 𝜌min⁄ , taken from the rotation 

experiment, as a function of temperature for various film thicknesses (3 – 80 nm). At 

room temperature, electron-phonon scattering is the dominant scattering mechanism and 

keeps 𝜌max 𝜌min⁄  small. As the temperature is lowered, 𝜌max 𝜌min⁄  reaches a 

maximum, as electron-phonon scattering is reduced in comparison with other scattering 

mechanisms, such as impurity scattering. We find that samples with a sharper peak in Fig. 

5.7(a), tend to have higher mobility (see discussion below about using eqn. (5.1) to 

extract mobility), indicative of a purer sample. For all the films, below ~80 K, no 

temperature dependence is observed in 𝜌max 𝜌min⁄ . This is the temperature range where 

we will focus the discussion, as it is also the range most relevant to cryogenic Peltier 

coolers. Focusing on the low temperature regime, we observe that as the thickness of the 

film decreases, 𝜌max 𝜌min⁄  also decreases in a near linear fashion, as seen in Fig. 5.7(b). 

To understand this trend, the resistivity can be broken up into two components : 
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𝜌 = 𝜌i + 𝜌s, where 𝜌i is the "intrinsic" resistivity that may vary with magnetic field 

strength, and 𝜌s is the surface scattering component of resistivity which varies with film 

thickness. As the film thickness decreases, the contribution of surface scattering increases, 

thereby decreasing the values of 𝜌max and 𝜌min. This is evidenced in Fig. 5.7(b) as 

𝜌max 𝜌min⁄  approaches a value of one at very small thicknesses, indicating that 

𝜌max~𝜌min~𝜌s. Even though 𝜌max 𝜌min⁄  decreases, we are still able to observe curves 

that qualitatively look the same as Fig. 5.5(c) for films down to thicknesses of 3 nm. 
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Fig. 5.7: (a) Ratio of the maximum to minimum resistivity extracted from the measurement 

described in Fig. 5.5(d) versus temperature. The ratio is extracted for films of various 

thicknesses over a range from 3 to 80 nm. Below ~80 K 𝝆𝐦𝐦𝐦 𝝆𝐦𝐦𝐦⁄  is invariant to changes in 

temperature. (b) 𝝆𝐦𝐦𝐦 𝝆𝐦𝐦𝐦⁄  at low temperature (𝑻 < 𝟖𝟖 𝐊) versus film thickness. 
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When non-textured films are rotated in a magnetic field, the detected change in 

resistivity is very small compared to the results for the textured films of similar 

thicknesses. Fig. 5.8(a) shows the temperature dependence of 𝜌max 𝜌min⁄  for textured 

films that are 20 and 40 nm thick and for non-textured films that are 25 and 40 nm thick. 

At temperatures above 200 K, the resistivity of our Bi thin films does not depend on 

texture, since phonon scattering, which is isotropic, strongly reduces any anisotropic 

transport. However, we observe a strong deviation in resistivity versus angular orientation 

dependence for textured versus non-textured films at temperatures <200 K. At cryogenic 

temperatures, 𝜌max 𝜌min⁄  of non-textured films is smaller than that of textured films. 

First we discuss the possibility that different scattering mechanisms are 

responsible for the observed texture dependent trend. While, the non-textured films do 

have slightly smaller grains, we keep the film thicknesses about an order magnitude 

smaller than the grain size in both the textured and non-textured case. In these thin films, 

surface scattering is the main scattering mechanism, given the strong dependence of 

resistivity on film thickness. It is worth noting that the low temperature values of 

𝜌max 𝜌min⁄  for the non-textured 40 nm thick sample are even less than that of the 20 nm 

thick textured sample. Based on Fig. 5.7(b), we would expect the slightly rougher 
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non-textured 40 nm thick film's curve in Fig. 5.8(a) to fall between that of the 40 nm and 

20 nm thick textured films. To more quantitatively compare the transport between 

textured and non-textured films, we extract the mobility as a function of film thickness 

for both types of films in Fig. 5.8(b). To extract the mobility we fit the ordinary 

magnetoresistance 𝑅C1 with the following equation at low field (<0.5 T) where the data 

is well represented by a quadratic equation [17]: 

𝑅C1(𝐵)
𝑅C1(0) = 1 + (𝜇𝜇)2 

(5.1) 
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Fig: 5.8 (a) Comparison of 𝝆𝐦𝐦𝐦 𝝆𝐦𝐦𝐦⁄  versus temperature for textured (solid symbols) and 

non-textured (open symbols) samples. (b) Extracted peak mobility as a function of sample 

thickness for both textured (solid symbols) and non-textured (open symbols) samples. The lack 

of texture does not significantly lower the mobility of these films. (c) Magnetoresistance (MR) as 

a function of magnetic field strength for a sample oriented parallel (||) and perpendicular (⊥) to 

the magnetic field, and measured on a 20 nm textured film. Symbols represent data and lines 

represent the fit using eqn. (5.2). (d) MR versus field strength for a parallel and perpendicular 

oriented 25 nm non-textured film. The inset shows the same plot except for a non-textured Sb 

film of 45 nm thickness. In contrast to Bi, the MR for the perpendicular orientation in a 

non-textured Sb has a much reduced MR. Measurements in (c) and (d) are done in the 

configuration described in Fig. 5.5(a). 
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The fit for a representative data set is shown in Fig. 5.9. This particular data set 

was extracted from angular dependence measurement, like the one displayed in Fig. 

5.5(b) by multiplying the data by cos(𝜃). From Fig. 5.9, it is evident that the fit is 

excellent at fields less than 1 T where the resistance change with magnetic field is well 

described by ordinary magnetoresistance. 
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Fig. 5.9: 𝑹𝐂𝐂 versus magnetic field. Solid line represents data and dashed lines represent fits 

using eqn. (5.1). 
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Using this method, we observe that the mobility, 𝜇  of textured films and 

non-textured films do not differ appreciably, as seen in Fig. 5.8(b). Therefore, it is very 

unlikely that the drop in 𝜌max 𝜌min⁄  for the non-textured samples can come from a 

change in scattering mechanisms. 

Since scattering cannot explain the discrepancy in behavior between textured 

and non-textured samples, we investigated the MR in the films more carefully: we 

monitored 𝑅C1  as we incrementally increased the field. Here, the experiment was 

conducted in two different film orientations, parallel and perpendicular to the field for 

both textured and non-textured samples. For the case of a textured film, shown in Fig. 

5.8(c), when it is oriented perpendicular to the field, we observe the textbook case of an 

increasing resistance as a function of field strength. In agreement with previous 

measurements made on polycrystalline Bi films [18], we observe a much weaker field 

dependence of the resistance when the textured film is oriented parallel to the field. 

However, when we measure the non-textured sample in the same manner, we observe the 

presence of MR in both the perpendicular orientation as well as the parallel orientation, 

as seen in Fig. 5.8(d). The existence of MR for both orientations indicates that current 

flow is anisotropic in the non-textured film, a result of preferential current flow along 
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certain crystallographic orientations. 

To fit the high field dependence of the MR up to 9 T, we use a simplified 

Hikami-Larkin-Nagaoka (HLN) formula [19] in the limit of strong spin-orbit coupling, 

given as 

Δ𝐺(𝐵) = −
𝛼𝑒2

πℎ �𝜓 �
ℏ

4𝑒𝐿𝜙2 𝐵
+

1
2
� − log�

ℏ
4𝑒𝐿𝜙2 𝐵

�� + 𝛽𝐵2 

(5.2) 

where 𝜓 is the digamma function, 𝛼 is a prefactor, 𝐿𝜙 is the phase coherence length, 

and 𝛽 is the quadratic coefficient which accounts for additional scattering terms. We use 

eqn. (5.2) to extract the phase coherence length of both films in both the parallel and 

perpendicular orientations. Fits to data are shown in Fig. 5.8(c) and 5.8(d). For the 

textured sample, the perpendicular orientation gives a phase coherence length of ~11.4 

nm. Interestingly, the parallel orientation exhibits weak localization as the MR slowly 

decreases as a function of field strength, and we are therefore not able to use eqn. (5.2) to 

fit to the data. The extracted phase coherence lengths of the non-textured sample are 

~121.5 and 15.7 nm for the perpendicular and parallel cases, respectively. Again, the 

out-of-plane roughness is not interfering with the in-plane conduction, as shown from the 

fact that the phase coherence length in the textured sample is smaller or close to those 
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extracted from the non-textured sample. Finally, the large difference in 𝐿𝜙  for the 

non-textured samples indicates that the transport in non-textured films is highly 

anisotropic. 

The conductivity of a material depends on the effective mass, density of states, 

and scattering rates. Compared to the anisotropy of the effective mass, the anisotropy that 

could be introduced through scattering mechanisms is small. Therefore, we hypothesize 

that the preferential current flow direction in a crystal grain is dominated by the large 

mass anisotropy in Bi. To test this hypothesis, we compare our results on Bi with the 

same measurements that we performed on Sb thin films (see the inset to Fig. 5.8(d)). 

Unlike Bi, which has a mass anisotropy of ~200, Sb has a mass anisotropy of 6 [6,7]. We 

use Sb as our control material, as opposed to another metal or semiconductor, because 

similar to Bi, Sb has the same rhombohedral lattice structure and is also a semimetal [7]. 

In the inset in Fig. 5.8(d), we observe that the non-textured Sb thin film exhibits a weaker 

MR when it is oriented parallel to the field. Therefore, it seems that the anisotropic 

conduction that we observe is a direct result of the large mass anisotropy of the electron 

effective mass in Bi. 
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5. Conclusions 

In conclusion, we have demonstrated that removing texture from Bi thin films 

can induce anisotropic conduction, giving rise to preferential current flow directions in 

each grain depending on its crystallographic orientation. Our results show that this 

preferential current flow occurs for 𝑇 < 80 K, but not at higher temperatures. At higher 

temperatures, scattering between carriers and phonons destroys these preferential 

pathways, thereby making electrical conduction in textured and non-textured films nearly 

identical. However, for applications operating at low temperature (e.g. cryogenic Peltier 

coolers operating at 77 K or below), mass anisotropy will give rise to texture dependent 

effects on electrical transport, especially in materials that have very large mass anisotropy 

like Bi and Bi1-xSbx. Looking forward, control over the arrangement and alignment of the 

crystalline orientation of individual grains could prove to be technologically important 

since texturing would allow control over current flow within a material with a single 

chemical constituent, without the use of external fields. 
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Chapter VI: Conclusions 

 

1. Overview 

In this section I’m going to quickly sum up the researches have done in the 

previous chapters, and also one of the works not showing in the main text but in the 

appendix. Generally speaking, this dissertation is devoted to the study on thermal and 

electrical transport properties of thermoelectric materials through magnetic field and 

nanostructuring. 

Chapter 1 and Chapter 2 introduced the background of our experimental 

thermoelectric area, including the theory and the experimental details. Of all the 

instruments in our lab, the Physical Properties Measurement System (PPMS) is the most 

important equipment in Opeil’s lab. Not only does the PPMS provide a cryogenic 

temperature circumstance with high precision (within 0.001 K), but also it sets up an 

adjustable steady magnetic field up to 9 T. With the supplied temperature and field, we 

are able to perform all kinds of measurements. 

Chapter 3 focused on the Lorenz number project, which shows how the magnetic 
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field affects the electronic thermal conduction and electric conduction of electrons (or 

holes) in single crystal metals and semiconductors in extenso, while the phononic 

conductions are presumed to be field independent. Our work successfully shows the 

suppression of electron transport under applied a strong magnetic field, and achieves the 

separation of phononic transport from the electronic transport by the field at low 

temperature regime. The Lorenz ratio of single crystal metals show a deviation from the 

standard Sommerfeld value in the intermediate temperature regime, mainly due to the 

inelastic scattering which results in the scattering processes degrading a thermal current 

but not degrading an electric current (Ashcroft & Mermin), and is well described by the 

formula provided there. The phononic thermal conductivity of metals cannot be measured 

directly, however, with the help of successful separation of both thermal conductivities, 

one is able to see the temperature dependence of phonon thermal conductivity of metals, 

and its temperature power laws are well verified by our experiments. The semiconductors 

are quite different from the metals; first of all, a good quality sample with a high mobility 

is required to perform the experiment, and a qualified single crystal Bi2Te3 shows the 

suppression due to the applied field through the whole temperature region, instead of at 

low temperatures. Single crystal semiconductors, because of the limited amount of 

defects and impurities, are actually phonon dominant materials. Their temperature 
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dependent electronic transport properties are still not very clear due to our experimental 

accuracy, i.e. the exact power laws. When dealing with their Lorenz ratio, their 

thermoelectric effect cannot be omitted, i.e. the Seebeck coefficient needs to be counted. 

By considering the Seebeck coefficient along with its experimental error of Bi2Te3 its 

Lorenz ratio is calculated and we find that it is pretty close to the Sommerfeld value, 

although there is deviation and becomes large when temperature rises, it is not significant. 

Due to the study of electronic and phononic transport of single crystal metals and 

semiconductors, we have better understanding of temperature dependent behaviors of 

both transports, which may benefit the thermoelectric performance study in the future. 

Chapter 4 dealt with the thermoelectric study of nanocomposite Cu2Se parent 

compound and with different dopants. Cu2Se is a p-type thermoelectric material no matter 

above room temperature or below room temperature, but with different internal 

mechanism because Cu2Se has different phases at these temperature regimes. From the 

low temperature electrical resistivity study we find that Cu2Se performs a CDW transition 

even in a hot press (HP) nanocomposite, although the transition is broadened significantly. 

Different from the structural transition ~130 °C where all the transport properties show 

discontinuities at the transition temperature, except 𝜌, all other quantities such as 𝜅, 𝑆, 
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and 𝑍𝑍 are smooth around the CDW transition temperature, this shows the CDW 

transition is a weak transition compared to the structural transition. And the CDW 

transition can be eliminated by Te and Ag doping because these dopants destroy the 

perfect nesting on the Fermi surface. The fabrication process is also critical to the 

formation of the CDW transition. By comparing the grain sizes of cold press (CP), CP + 

annealing, and HP samples, we found that the CDW was significantly suppressed by the 

smallest grain sizes of the CP sample, but was recovered by the annealing process in 

which the small grains merged together. Besides, a special oscillation (wave-like 

fluctuation) of the dc I-V curve was observed for Cu2Se parent compound and the sample 

doped with Zn, but the explanation is still not available. From the transport study of 

Cu2Se nanocomposites we found the parent compound has the best TE performance of a 

𝑍𝑍 value ~0.14 at 200 K and higher than the traditional low temperature p-type TE 

material single crystal bismuth antimony. 

Chapter 5 showed our work on the thin films which accommodates the place for 

the Van der Pauw method. Besides from our researches on nanocomposite bulk TE 

materials, thin films are quite different. First of all, their properties are highly sensitive to 

the substrates, and textured film could only be achieved on certain substrate, e.g. the 
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bismuth film on a mica substrate. Secondly, their properties are thickness dependent, 

because for a thin film its thickness is usually on the same order of magnitude or smaller 

than the grain size in the film, thus when performing the angle dependent transport 

measurements in an applied field the results are anisotropic. By comparing the similar 

results of antimony film we conclude that the anisotropic conduction that we observe is a 

direct result of the large mass anisotropy of the electron effective mass in Bi. 

Besides the contexts in the main text, I put our results of U(PdxPt1-x)3 in the 

appendix. Transport properties of pure, 2% and 5% Pd doped single crystal UPt3 samples 

are measured, and results reveal that 2% doping doesn’t affect much of the properties. 

This means the carrier concentrations, the band structures keep nearly unchanged, while 

5% doping displays an intermediate stage of pure UPt3 and UPd3 in electrical resistivity 

and thermal conductivity, but falls out of the trend in Seebeck coefficient, which becomes 

a complete p-type material up to 300 K. In order to understand the strange behavior of 

5% Pd doped UPt3 in Seebeck coefficient, more experiments need to be done either on 

the band structure or the phonon spectrum. 

2. Conclusions 
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In conclusion, two major projects have been successfully and extensively studied 

and discussed throughout this dissertation, from which we have better understanding on 

the thermal and electric conductions in several single crystal metals and semiconductors, 

and on the thermoelectric properties of copper selenide nanocomposite with different 

dopants below room temperature. Three instrument setups were built and aimed for an 

experimental research in the lab, and thus we have the ability to perform electrical 

resistivity and thermal conductivity measurements on thin films from liquid nitrogen 

temperature to several hundred Celsius. Future research can be focused on the organic 

thermoelectric materials, as well as the earth-abundant element TE materials. 



Appendix A: Outlook 

 

In this section I would like to summarize some of my work that is not reflected 

in the previous chapters, either because they’re just some initial work, or they’re not quite 

successful. As the tradition in Opeil’s lab, I built (or assembled) at least one equipment 

(or measuring system), and some of them can be further developed and optimized. 

The point-contact spectroscopy (PCS) setup, as mentioned in Chapter 2, was the 

first setup I tried to build up. There are several kinds of realizations, ours is similar to 

STM, and is called the poor men’s STM. We use the same etched tungsten tip, but the 

distance between the tip and the sample is smaller than STM, as a result the contact 

resistance of PCS is around tens of ohms while STM is usually several thousand ohms. 

Based on this setup design, the most important part is to precisely control the distance, i.e. 

move the tip. We adopt a design using an O-80 screw to move the tip instead of using a 

piezoelectric crystal. Unfortunately it is not precise enough, and during a whole year 

debugging the system and excluding other factors, I believe the rough movement of the 

tip is the core factor preventing me from gathering more meaningful data. The following 

plots in Fig. A.1 are traditional PCS data of a vanadium sample collected by the 
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equipment, and I only succeeded once. 
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Fig. A.1: PCS plots of bias dc voltage versus signal detected by the lock-in. (a) Curves of two 

different contacts at the same temperature; (b) Curves of the same contact at three different 

temperatures. 
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The Van der Pauw setup, also introduced in Chapter 2, but this setup hasn’t been 

used to perform thin film measurements yet. When we performed the Bi thin film 

measurements, I manually changed the configurations from 1 to 2, but the current Van der 

Pauw setup is able to automatically change the configurations by using a homemade relay 

switch which can be controlled and programmed through the laptop by LabVIEW. The 

improved setup has only been tried once and got some results as shown in Fig. 2.17. 

Further optimizations are needed, especially on the coding part. Also, applying this setup 

on a real thin film is necessary, rather than on a virtual 4-resistor in Fig. 2.16. 

The 3ω setup is another system needs to be further developed and tested. I think 

we already finished all preliminary constructions, and it is theoretically correct. The 3ω 

setup is a complimentary part of the Van der Pauw setup, and both of them are used to 

perform measurements on thin films: the 3ω setup is used to measure thermal 

conductivity while the Van der Pauw setup is used to measure electrical resistivity. But 

the 3ω setup is not limited to use on thin films, it is also able to measure the thermal 

conductivity of bulk materials, and our tests of this 3ω setup is to measure the thermal 

conductivity of a glass (Pyrex) substrate at room temperature. Unfortunately, our trails 

were both unsuccessful. It looks like the thickness of the sputtering heater is very tricky, 
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and is reflected in the resistance of the heater. Our heaters have resistances one order of 

magnitude higher than the values in literatures, so that may be the reason of our failure. 

In the future, the first step is to sputter a thinner heater and succeed in measuring the 

thermal conductivity of Pyrex substrate, and then extending this method to real thin films 

is meaningful. 

Besides the instrument-based projects mentioned above, there is another 

unsuccessful MoSSe project which is not mentioned both in the main text and also the 

appendix. MoSSe is one specimen of the MoSxSe2-x, and all of them are semiconductors 

and may have good TE properties according to the theory. M. K. Agarwal et al. were able 

to grow MoSxSe2-x (0 ≤ x ≤ 2) single crystals by the direct vapor transport technique to 

the maximum size of 15 mm by 10 mm by 0.3 mm in 1980’s, and it was very sensitive to 

the furnace. We tried to setup a similar circumstance with our one-zone furnace, but 

finally we were not able to achieve the single crystal, instead we got powders. From XRD, 

shown in Fig. A.2, we believe MoSSe is successfully synthesized, however, these 

powders are thermoelectrically useless because no matter the specimens were CP or HP, 

all of them had huge resistance (kΩ – MΩ). According to the literature their resistivity 

should on the order of several Ω-cm, i.e. the resistance of the as-fabricated sample is tens 
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of ohms. The materials do not have a liquid phase, so it is not possible to melt them and 

form a solid ingot, we tried but we still got powders. So it looks like the fabrication 

process is critical, one must strictly follow the steps shown in the literature to grow the 

crystals, especially providing the needed two-zone furnace. 
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Fig. A.2: (a) XRD patterns of MoSSe powders. There is also one MoSe2 XRD pattern, because 

MoSSe and MoSe2 have the same crystal structure, so their patterns are very similar, only the 

peaks shift a little bit. (b) Temperature gradient in the horizontal one-zone furnace, it was used 

as a two-zone furnace when fabricating MoSSe. 
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Besides the above contents excluded from the main text and the appendix, there 

are still possible improvements to my already finished two projects, i.e. the Lorenz 

project and the Cu2Se project. For the Lorenz project, we have done extensively 

magneto-thermal-resistance measurements on single crystal metals and semiconductors, 

and for these single crystals, it is possible to perform first-principles calculations which is 

very hard for nanocomposites. With the provided experimental results, one is able to find 

out how well the theory coincides with the experiments. For the Cu2Se project, all of our 

samples are nanocomposites, in order to find out the internal physics mechanism the best 

specimen candidate is always single crystals, but due to the low vapor pressure of Se it is 

very hard to grow Cu2Se single crystals. Although for the single crystals, their TE 

performance may not be as good as nanocomposites, it benefits the study on the dc I-V 

curve oscillations and relevant CDW transition, such as Shapiro steps when applying an 

rf-frequency ac signal or sliding CDW through a pulsed electric field. 

Generally speaking, the improvement of TE performance during this decade is 

mainly due to the introduction of nanostructuring into the fabrication processes; however, 

it looks like this approach comes to its limit and is very hard to use this trick to further 

improve the figure of merit. As a result, researches began to consider other categories of 
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materials, such as the organic thermoelectric materials, which became very popular 

recently. Besides, researchers also tried to use earth abundant elements to build 

thermoelectric unit, which could reduce the price of TE devices significantly. In order to 

make TE devices more popular in practice, safe TE materials without toxic elements are 

needed and they are also a direction for the current researchers. 
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Appendix B: Transport in the normal phase of U(Pt1-xPdx)3 

with x = 0%, 2% & 5% 

 

1. Introduction 

UPt3 is the first found heavy-fermion compound superconductor, which has a 

critical temperature of 𝑇C = 0.5 K and an anti-ferromagnetic transition at 𝑇N = 5 K 

[1,2]. The specific heat data above transition temperature 𝑇C, which could be fit by the 

law 𝐶𝑣 = 𝛾𝛾 + 𝛽𝑇3 + 𝛿𝑇3log �𝑇 𝑇SF� �, show a pretty large 𝛾 = 440 mJ
K2 mol�  U and 

a strong spin-fluctuation phenomena from the logarithmic term in the normal Fermi 

liquid state [1,3,4]. People have already done a lot of transport measurements on the 

normal state of UPt3, however, very few results were reported on Pd doped UPt3, which 

were found to have a crossover from anomalous to conventional antiferromagnetism at a 

certain doping level [5]. In this short paper, we report our transport results on high quality 

single crystal U(Pt1-xPdx)3 with different doping of 0%, 2% and 5% from 5 K to 300 K. 

We compare our pure UPt3 data with Framse et al.’s data [6], and they’re in good 

accordance, especially the Seebeck results, while ours has lower electrical and thermal 

conductivities. The UPd3 data are adopted from Zaplinski et al.’s work [7]. 
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2. Transport Properties 

The traditional dimensions of 3 single crystals are 1 mm by 2 mm by 8 mm, and 

all of the transport properties are measured along the a-axis. Samples are soldered on 2 

pieces of gold plated copper disks, and measured by the Physical Properties Measurement 

System (PPMS) from Quantum Design (QD) using a thermal transport option (TTO) with 

a 2-probe method. We also performed transverse measurements in 9 T field, but very few 

distinctions could be observed, so only zero field results are reported here. 

Fig. B.1 shows the electrical resistivity data of different doping. Basically, all Pd 

doped UPt3 samples behave similar to pure UPt3 single crystals, but high Pd doping 

significantly decreases the resistivity, as UPd3 itself has a lower resistivity than UPt3. We 

also notice that although U(Pt1-xPdx)3 is a heavy-fermion compound, however, the 

resistivity nonlinearly and monotonically decreases as temperature decreases but without 

a common peak observed in a lot of other heavy-fermion compounds. This is a feature 

due to the single-impurity Kondo effect [1]. 
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Fig. B.1: Electrical resistivity vs. temperature. 
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Fig. B.2: Thermal conductivity vs. temperature. 
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Fig. B.2 shows the temperature dependent thermal conductivity of different Pd 

doping, and they also follow the similar trend as electrical resistivity with respect to the 

doping. The single crystal UPd3 has the highest thermal conductivity results while UPt3 is 

at the bottom; 5% and 2% Pd doped UPt3 are in between them. However, although Pd 

and Pt have the same valence electrons, the thermal conductivity data of UPt3 seem to 

have saturation at higher temperatures. The curves raise their heads around 300 K with 

increasing Pd towards to the pure UPd3 end. It is also worth noticing the linear 

temperature dependence of thermal conductivity of these single crystals below 30 K and 

above 200 K. The electronic part of thermal conductivity can be extracted by assuming 

the validity of the Wiedemann-Franz law, i.e. 𝜅 = 𝐿𝐿 𝜌⁄ . Fig. B.3 shows the temperature 

dependence of the dimensionless Lorenz number, which is defined as 𝐿 𝐿0⁄  where 

𝐿0 = 2.443 × 10−8  V2 K2⁄  is the Sommerfeld value. Basically, all of the curves 

approach unity as temperature towards 0, while at higher temperatures the Lorenz 

number increases sharply and comes to a maximum around 𝑇max~24 K for all of them, 

and then slowly go down to some definite value which is different for different doping. In 

strong correlated systems such as heavy-fermion compounds, due to the small electron 

mean free path, phonons can dominate the heat transport and result in a Lorenz number 

several times of the Sommerfeld value 𝐿0 [6]. The lattice thermal conductivity usually 
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has a peak occurring at a temperature about 10% of the Debye temperature 𝛩D [8], and 

results in a peak in the dimensionless Lorenz number 𝐿 𝐿0⁄ . The Debye temperature of 

pure single crystal UPt3 is 217 K deduced from sound velocity measurements [1,9], and 

our peaks at around 24 K are very close to 0.1 𝛩D. Since 𝐿 = 𝐿e�1 + 𝜅ph 𝜅e⁄ � where 

𝐿e = 𝜅e𝜌 𝑇⁄ = 𝐿0 by the Wiedemann-Franz law, the lattice thermal conductivity of 5% 

Pd doped UPt3 is significantly suppressed at 𝑇max while 2% one is little affected. 
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Fig. B.3: The experimentally determined value of dimensionless Lorenz ratio from the 

Wiedemann-Franz law. 
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Fig. B.4: Seebeck coefficient vs. temperature. 
  



B-9 
 

Seebeck coefficients are measured up to 300 K and shown in Fig. B.4. 

According to the literature, the pure single crystal UPt3 has a pronounced positive peak at 

around 8 K in its Seebeck curve [6], which nearly coincides with the maximum in the 

temperature derivative of the electrical resistivity and is an estimate of the 

spin-fluctuation temperature [10]. Actually in our data we indeed observe a sharp 

increase of the Seebeck coefficient at low temperature; however, our data could not show 

the decrease at lower temperatures due to our equipment limitations. The 2% Pd doped 

sample behaves very similar to the parent compound and looks like to have a peak below 

10 K. Both 0% and 2% Pd doped UPt3 sample change their sign of Seebeck coefficient at 

21 K and 14 K, respectively; and reach nearly constant values of -10.5 μV/K and -11 

μV/K above 100 K, respectively, where their electrical resistivity are going to saturate. 

The 5% doped sample is the most unexpected one, whose Seebeck has a quite strange 

temperature dependent behavior: it is always positive (p-type) rather than changing its 

sign at some certain temperature within our temperature range, and by considering that all 

the Seebeck coefficient goes to zero when the temperature approaches zero, so it is 

unlikely that the Seebeck could change its sign below 10 K and then turn back to zero. 

However, we can still observe a positive but not pronounced peak at 14 K, without a 

monotonic trend above 50 K: the Seebeck coefficient goes to a local minimum at 50 K 
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and then increases its value with a maximum at 180 K and then decreases again without a 

saturation value within 300 K. On the other side, pure UPd3 behaves a quite different 

temperature Seebeck curve, which decreases linearly like a p-type metal and changes sign 

at 100 K, which is much higher than UPt3. To the contrary, 5% Pd doped UPt3 doesn’t fall 

in between pure UPt3 and UPd3, and behaves neither saturated nor linear-like above 100 

K, which could be probably due to a rather complicated replacement of Pt atoms by Pd 

atoms, and with strong interactions between these two sets of atoms, and results in a 

Seebeck differ from both pure parent compounds. Although we can simply regard 5% 

doped sample as a superposition of majority pure UPt3 and minority UPd3, which have 

opposite Seebeck coefficients, however, it seems at all temperature range the p-type 

carriers, or the holes, dominate the contribution to the Seebeck effect. Finally a positive 

Seebeck coefficient is observed, but the detail mechanism is still unclear. 

3. Conclusions 

Transport properties of pure, 2% and 5% Pd doped single crystal UPt3 samples 

are measured, and results reveal that 2% doping doesn’t affect much of the properties, 

which means the carrier concentrations, the band structures remain nearly unchanged, 
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while 5% doping displays an intermediate stage of pure UPt3 and UPd3 in electrical 

resistivity and thermal conductivity, but falls out of the trend in Seebeck coefficient, 

which becomes a complete p-type material up to 300 K. In order to understand the 

strange behavior of 5% Pd doped UPt3 in Seebeck coefficient, more experiments need to 

be done either on the band structure or the phonon spectrum. 
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