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Thesis advisor: Sololom Friedberg

Kazhdan and Patterson constructed generalized theta representations on covers of

general linear groups as multi-residues of the Borel Eisenstein series. For the double

covers, these representations and their (degenerate-type) unique models were used

by Bump and Ginzburg in the Rankin-Selberg constructions of the symmetric square

L-functions for GL(r). In this thesis, we study two other types of models that the

theta representations may support. We first discuss semi-Whittaker models, which

generalize the models used in the work of Bump and Ginzburg. Secondly, we deter-

mine the unipotent orbits attached to theta functions, in the sense of Ginzburg. We

also determine the covers for which these models are unique. We also describe briefly

some applications of these unique models in Rankin-Selberg integrals for covering

groups.
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Chapter 1

Introduction

Since the pioneering work of Shimura on half-integral weight modular forms, non-

linear central extensions of algebraic groups have played a substantial role in number

theory and representation theory. The most well-known examples are the theory

of theta liftings and dual pairs, which lie on the metaplectic double cover of the

symplectic group.

To construct higher theta functions, we need to look at its beautiful connection

with Eisenstein series. One can construct Borel Eisenstein series on the double cover

of SL(2) without any difficulty. As in the non-metaplectic case, this Eisenstein series

possesses meromorphic continuation and has a right-most pole. If the residue is

taken, one obtains, miraculously, a constant multiple of the Jacobi theta function.

This approach was used by Kubota to begin the investigation of generalized theta

functions and Eisenstein series. It was continued by Patterson (who used the cubic

cover of SL(2) to study Kummer’s conjecture on the distribution of cubic Gauss

sums), by Kazhdan and Patterson and many others.

The general subject of metaplectic forms, i.e. automorphic functions on the meta-

plectic group, and the specific examples of higher theta functions and Eisenstein

series, has proved to be highly interesting for its own sake. It also has many applica-

tions towards number theory and the theory of non-metaplectic automorphic forms.

This is not a surprising fact. After all, the nth power reciprocity law, a deep theorem

in arithmetic, underlies the existence of the metaplectic groups.

In this thesis, we focus the representation-theoretic aspects of the theta represen-

tations. In particular, we are interested in models the theta representations might

1



Chapter 1: Introduction 2

support. It is a widely-known and much used fact that the vast majority of irreducible

admissible representations of GL(r) have a unique Whittaker models. This is false

in general and it is the main obstruction one has to deal with. It is an interesting

question to locate the rare “exceptional” representations that do support a unique

Whittaker model. For Kazhdan-Patterson coverings, this is done in [KP84].

Let F be a number field containing a full set of nth roots of unity. Let A be its adele

ring. Let G̃Lr(A) be a metaplectic n-fold cover of the general linear group. Kazhdan-

Patterson [KP84] constructed generalized theta representations Θr on G̃Lr(A) as

multi-residues of the Borel Eisenstein series. The local theta representations were al-

so constructed, as the Langlands quotient of reducible principal series representations.

They showed that (both globally and locally) the generalized theta representations

are generic if and only if n ≥ r; and uniqueness of Whittaker models holds if and

only if n = r or r + 1 (when n = r + 1, the uniqueness property only holds for

certain covers). The theta representations and their unique models have been used

to construct Rankin-Selberg integrals for symmetric powers L-functions for the gen-

eral linear groups; see Shimura [Shi75], Gelbart-Jacquet [GJ78], Patterson-Piatetski-

Shapiro [PPS89], Bump-Ginzburg [BG92], Bump-Ginzburg-Hoffstein [BGH96], and

Takeda [Tak14].

Less is known for theta representations on higher covers and their applications. In

this thesis, we are interested in the theta representations when they are non-generic.

Our goal is to find other models that the theta representations may support. We

also look for special cases when these models are unique – this is a rare phenomenon,

as we indicate above. In the last chapter of this thesis, we give an application of

these unique models in Rankin-Selberg integrals for covering groups. We describe

an example of the doubling constructions for covering groups – this is joint work

with Friedberg, Ginzburg and Kaplan. This construction also sheds light on how to

develop other Rankin-Selberg integrals for covering groups.

1.1 Statements of Main Results

We first introduce a generalization of the Whittaker coefficients, which we call

semi-Whittaker coefficients. Let λ = (r1 · · · rk) be a partition of r. Let Pλ be the

standard parabolic subgroup of GLr whose Levi subgroup M ∼= GLr1×· · ·×GLrk . Let
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Uλ be its unipotent radical. Fix a nontrivial additive character ψ : F\A → C×. Let

ψλ : U(F )\U(A)→ C× be the character such that it acts as ψ on the simple positive

root subgroups contained in M , and acts trivially otherwise. The λ-semi-Whittaker

coefficient of θ ∈ Θr is defined to be∫
U(F )\U(A)

θ(ug)ψλ(u) du.

When the partition is λ = (r), this recovers the usual Whittaker coefficients.

Theorem 1.1.1.

(1) If there is an ri > n, then ∫
U(F )\U(A)

θ(ug)ψλ(u) du

is zero for all choices of data.

(2) If ri ≤ n for all i, then ∫
U(F )\U(A)

θ(ug)ψλ(u) du

is nonzero for some choice of data.

(3) When r = mn, i.e. when the rank is a multiple of the degree, and the partition is

λ = (nm), then global uniqueness of λ-semi-Whittaker models holds.

We remark that the local version of the above theorem is also established (see

Corollary 3.6.5, 3.6.7, and Theorem 3.6.10). Indeed, parts (1) and (3) are proved by

using the local results, and part (2) is proved by using a global argument. We also

remark that when n = 2 and λ = (2k) or (2k1) (depending on the parity of r), such

coefficients and their uniqueness properties were already used in Bump and Ginzburg

[BG92] in their work on symmetric square L-functions for GL(r).

The second type of Fourier coefficients we consider are the Fourier coefficients

associated with unipotent orbits. The unipotent orbits of GLr are parameterized by

the partitions of r via the Jordan decomposition. Given a unipotent orbit O, we

can associate a set of Fourier coefficients; see Section 5 below. Roughly speaking,

starting with a unipotent orbit O, we can define a unipotent subgroup U2(O). Let
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ψU2(O) : U2(O)(F )\U2(O)(A)→ C× be a character which is in general position. The

Fourier coefficient of θ ∈ Θr we want to consider is∫
U2(O)(F )\U2(O)(A)

θ(ug)ψU2(O)(u) du.

When the unipotent orbit is O = (r), this also recovers the usual Whittaker coeffi-

cients. There is a partial ordering on the set of unipotent orbits. Our goal is to find

the maximal unipotent orbit O(Θr) that supports nonzero Fourier coefficients of Θr

(see Definition 5.0.2 below). The main results for the Fourier coefficients associated

with unipotent orbits are summarized as follows (Theorem 5.1.2, 5.2.1, and 5.1.11).

Theorem 1.1.2. (1) Write r = an+ b such that a ∈ Z≥0 and 0 ≤ b < n. Then both

locally and globally O(Θr) = (nab).

(2) Let v be a finite place such that |n|v = 1 and Θr,v is unramified. If r = mn and

O = (nm), then

dim HomU2(O)(Fv)(Θr,v, ψU2(O),v) = 1.

This unique model is valuable and it already finds applications in Rankin-Selberg

integrals for covering groups. In the research announcement by Friedberg, Ginzburg,

Kaplan and the author [CFGK16], the notion of Whittaker-Speh-Shalika represen-

tation was introduced (see Definition 6.1.1). Such representations are irreducible

automorphic representations on G̃Lr(A) and they possess unique functionals. The

Whittaker-Speh-Shalika representations and their unique models are used in the gen-

eralization of the doubling methods to covering groups. The theta representations

are examples of such representations.

Theorem 1.1.3 (Theorem 6.1.2). When r = mn, Θr is a Whittaker-Speh-Shalika

representation of type (n,m).

This unique functional also plays a role in a new-way integral (Euler products

with non-unique models) for covering groups; see Ginzburg [Gin16].

1.2 Ideas of the Proofs

We now describe the ideas of the proofs. The proof of Theorem 1.1.1 is based on an

induction in stages statement. We describe it in the global setup. Such an argument
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was also used in Bump-Friedberg-Ginzburg [BFG03] where they studied the Fourier

coefficients of theta representations on the double covers of odd orthogonal groups.

First of all, we can rewrite the λ-semi-Whittaker coefficients as∫
U(F )\U(A)

θ(ug)ψλ(u) du =

∫
U∩M(F )\U∩M(A)

∫
Uλ(F )\Uλ(A)

θ(vug) dv ψλ(u) du.

The inner integral is actually a constant term of the theta function. To compute

it, we compute the constant term of the Eisenstein series and use the fact that the

multi-residue operator and the constant term operator commute. By the standard

unfolding argument, the constant term of the Eisenstein series is a sum of Eisenstein

series on M̃(A). After applying the multi-residue operator, only one term survives.

This implies that the constant term of a theta function is actually a “theta function”

on M̃(A).

Now we are facing a difficulty which did not appear in [BFG03]. In the double

cover of the odd orthogonal case, the constant terms of theta functions give rise to

a representation on the cover of the Levi subgroup. In that case, different blocks

commute in M̃(A). Thus, one can take theta representations on each block and form

the tensor product. It is shown that the tensor product of theta representations on

each block is the same as the theta representation on M̃(A). We would like to seek

an analogous result for the general linear group. However, in the general linear case,

when we restrict the metaplectic cover to M̃ , the blocks never commute (except when

n = 2). In fact, there is even no natural map between M̃ and G̃Lr1 × · · · × G̃Lrk .

This means that, starting with representations on the G̃Lri , there is no direct way to

construct a representation of M̃ .

To overcome this difficulty, a construction called the metaplectic tensor product

has been introduced (see Section 3.4 and 4.4). The local version is developed in

Mezo [Mez04] and the global version is given in Takeda [Tak16, Takar]. Roughly

speaking, the construction goes as follows (both locally and globally). Let G̃L
(n)

ri

be the subgroup of G̃Lri , consisting of those elements whose determinants are nth

powers. Let M̃ (n) be the subgroup of M̃ consisting of those elements such that the

determinants of all the blocks are nth powers. The G̃L
(n)

ri
’s commute in M̃ , and M̃ (n)

is the direct product of G̃L
(n)

r1
, · · · , G̃L

(n)

rk
with amalgamated µn.

Now start with representations πi on G̃Lri . We first restrict πi to G̃L
(n)

ri
, and pick

an irreducible constituent π
(n)
i . Then we take the tensor product π

(n)
1 ⊗· · ·⊗π

(n)
k . This
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is a representation of M̃ (n). We then use induction to obtain a representation of M̃ .

Extra care must be taken in order to establish the well-definedness and irreducibility

of such constructions.

Theorem 1.2.1 (Rough form). Both locally and globally,

ΘM̃
∼= Θr1⊗̃ · · · ⊗̃Θrk .

The local version is given in Theorem 3.5.2, and the global version is Theorem

4.5.1. Once we have the induction in stages statement, Theorem 1.1.1 can be es-

tablished by carefully analyzing the restriction and induction process. In the local

setup, we give an explicit formula for the dimension of the twisted Jacquet module

JU,ψλ(Θr).

Theorem 1.1.2 is proved in Sections 5.1 and 5.2. The proof consists of two parts.

The first part is to show that any unipotent orbit greater than or not comparable to

(nab) does not support any Fourier coefficients. The second part is to show that (nab)

actually supports a nonzero Fourier coefficient. The idea is to build a relation between

the semi-Whittaker coefficients and the Fourier coefficients associated with unipotent

orbits. Once we know enough information about the semi-Whittaker coefficients, the

unipotent orbit attached to the representation can be determined.

Two tools play crucial roles in the proof. The first one is called root exchange. This

allows us to replace the domain of integration with a slightly different one. The second

one is the Fourier expansion. This allows us to enlarge the domain of integration

if we know certain coefficients vanish (this is usually related to the vanishing of

semi-Whittaker coefficients). When we combine these tools in a systematic way,

vanishing and nonvanishing of Fourier coefficients associated with unipotent orbits can

be related to the results on the semi-Whittaker coefficients. Furthermore, when n and

b have the same parity, we actually establish an identity between these coefficients.

In particular, Theorem 1.1.2 part (2) follows from Theorem 1.1.1 part (3).

1.3 Structure of this thesis

The remainder of this thesis is organized as follows. Section 2.1 introduces no-

tations and defines metaplectic covers of general linear groups. Certain issues such
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as centers and maximal abelian subgroups are also discussed. The local theory of

semi-Whittaker functionals is developed in Chapter 3. We first review the principal

series representations and theta representations of G̃Lr(Fv). In Section 3.2, we give

an explicit description of the restriction of these representations to G̃L
(n)

r (Fv). These

results are used to provide examples of the metaplectic tensor product in Section

3.5. We then carefully analyze the construction and compute the dimensions of some

twisted Jacquet modules in Section 3.6. Chapter 4 is devoted to the global theory.

The nonvanishing part of Theorem 1.1.1 is proved in Theorem 4.6.1. In Chapter 5, we

review the association of Fourier coefficients to a unipotent orbit. The unipotent orbit

attached to the theta representations is determined in Sections 5.1 and 5.2. Section

5.1 introduces the local argument. The relation between semi-Whittaker coefficients

and Fourier coefficients associated with unipotent orbit is established in a series of

lemmas. Section 5.2 describes the corresponding global picture. In the last chapter,

we describe the doubling construction for standard L-function for cubic cover of Sp2.



Chapter 2

Notations and Preliminaries

2.1 Notations

Fix a positive integer n and let

µn(F ) = {x ∈ F : xn = 1}

be the group of nth roots of unity in a field F . In this paper we always assume

|µn(F )| = n. Fix, once and for all, an embedding ε : µn → C×. We always write

µn for µn(F ), if there is no confusion. We often invoke the convention of omitting ε

from the notation. All representations which we consider are representations where

the central µn acts by scalars by the embedding ε . Such representations are called

genuine.

Remark 2.1.1. It is safer for us to assume |µ2n(F )| = 2n since our results rely on

[KP84]. However, as we can see, all the arguments and results are still valid if we

only assume |µn(F )| = n.

If F is a non-Archimedean local field, we denote by o the ring of integers of F .

Let | · |F be the normalized absolute value on F . Let

( , ) = ( , )F,n : F× × F× → µn(F )

be the nth order Hilbert symbol. It is a bilinear form on F× that defines a nonde-

generate bilinear form on F×/F×n and satisfies

(x,−x) = (x, y)(y, x) = 1, x, y ∈ F×.

8



Chapter 2: Notations and Preliminaries 9

When F is a number field, and v is a place of F , we denote by Fv the completion

of F at v. When v is non-Archimedean, we let ov be the ring of integers of Fv.

For GLr, let B = TU be the standard Borel subgroup with unipotent radical U

and maximal torus T . The set Φ = {(i, j) : 1 ≤ i 6= j ≤ r} is identified with the set

of roots of GLr in the usual way. Let Φ+ denote the set of positive roots with respect

to B.

For a partition λ = (r1 · · · rk) of r, let Pλ be the standard parabolic subgroup of

GLr whose Levi part Mλ is GLr1 × · · · ×GLrk embedded diagonally

(g1, · · · , gk) 7→ diag(g1, · · · , gk), gi ∈ GLri ,

and let Uλ denote the unipotent radical of Pλ. We usually write M for Mλ when the

partition is fixed. We usually write m ∈ M by m = diag(g1, · · · , gk) with gi ∈ GLri .

Let Φλ and Φ+
λ denote the set of roots and positive roots contained in Mλ, respectively.

Let W be set of all r×r permutation matrices. The Weyl group of GLr is identified

with W . We also identify W as the group of permutations of {1, 2, · · · , r} via

w = (δi,w(j)).

The action of W on Φ is given by w(i, j) = (w(i), w(j)). For a Levi subgroup Mλ, let

W (Mλ) be the subset of permutation matrices contained in Mλ. The group W (Mλ)

is identified with the Weyl group of Mλ (as sets). Let

wMλ =


Ir1

Ir2
...

Irk

 ∈ W.

The element wMλ sends GLrk × · · · ×GLr1 to Mλ.

For any group G and elements g, h ∈ G, we define gh = ghg−1. For a subgroup

H ⊂ G and a representation π of H, let gπ be the representation of gHg−1 defined

by gπ(h′) = π(g−1h′g) for h′ ∈ gHg−1.

Let F be a local field. Let ψ be a nontrivial additive character on F . In this

paper we need to consider several characters on various subgroups of U . We make

the following convention. For a partition (p1 · · · pk) of n′ ≤ n, let ∆ = {i : 1 ≤ i ≤
n′}\{p1, p1 +p2, · · · , p1 + · · ·+pk}. Let V be a subgroup of U such that V contains all
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the root subgroups associated to α = (i, i+ 1) for i ∈ ∆. Let ψ(p1···pk) : V → C× be a

character such that ψ(p1···pk) acts as ψ on the root subgroups associated to α = (i, i+1)

for i ∈ ∆, and acts trivially otherwise. Thus ψ(r) and ψ(1r) are the usual Whittaker

character and the trivial character on U , respectively. When F is a number field and ψ

is a nontrivial additive character of F\A, these characters can be defined analogously.

2.2 The local metaplectic cover G̃Lr(F )

Let F be a local field of characteristic 0 that contains all the nth roots of unity.

Associated to every 2-cocycle σ : GLr(F ) × GLr(F ) → µn(F ), there is a central

extension G̃Lr(F ) of GLr(F ) by µn satisfying an exact sequence

1→ µn
ι−→ G̃Lr(F )

p−→ GLr(F )→ 1.

We call G̃Lr(F ) a metaplectic n-fold cover of GLr(F ). As a set, we can realize G̃Lr(F )

as

G̃Lr(F ) = GLr(F )× µn = {(g, ζ) : g ∈ GLr(F ), ζ ∈ µn}.

Notice that G̃Lr(F ) is not the F -rational points of an algebraic group, but this no-

tation is standard. We use G̃Lr to denote G̃Lr(F ). This abuse of notation is widely

used in this paper, especially in the local setup. The embedding ι and the projection

p are given by

ι(ζ) = (Ir, ζ) and p(g, ζ) = g

where Ir is the identity element of GLr. The multiplication is defined in terms of σ

as follows,

(g1, ζ1) · (g2, ζ2) = (g1g2, ζ1ζ2σ(g1, g2)).

For any subset X ⊂ GLr, let

X̃ = p−1(X) ⊂ G̃Lr.

We also fix the section s : GLr → G̃Lr of p given by s(g) = (g, 1). Then for

g1, g2 ∈ GLr,

s(g1)s(g2) = (g1g2, σ(g1, g2)).



Chapter 2: Notations and Preliminaries 11

In [KP84], Kazhdan-Patterson provided 2-cocycles σ(c) parameterized by c ∈
Z/nZ that exhaust all cohomology classes. They are related by

σ(c)(g1, g2) = σ(0)(g1, g2)(det g1, det g2)c, g1, g2 ∈ GLr. (2.1)

Here we want to take slightly different 2-cocycles. They are constructed in Banks-

Levy-Sepanski [BLS99] and satisfy a block compatibility property. Let σ(0) = σ
(0)
r ,

and σ(c) = σ
(c)
r be related to σ

(0)
r by Eq. (2.1). Block compatibility means the

following. If r = r1 + · · ·+ rk and gi, g
′
i ∈ GLri for i = 1, · · · , k, then

σ(c)
r (diag(g1, · · · , gk),diag(g′1, · · · , g′k))

=

[
k∏
i=1

σ(c)
ri

(gi, g
′
i)

]
·

[∏
i<j

(det gi, det g′j)
c+1(det gj, det g′i)

c

]
.

Throughout the paper we fix the positive integers r and n and the modulus class

c ∈ Z/nZ and let σ = σ
(c)
r . Note that the restriction of σ to T is given by

σ(t, t′) =

[∏
i<j

(ti, t
′
j)

]
·
∏
i,j

(ti, t
′
j)
c

for t = diag(t1, · · · , tr) and t′ = diag(t′1, · · · , t′r).
The group U splits in G̃Lr. In fact s |U is an embedding of U in G̃Lr ([McN12]

Proposition 4.1). Let K = GLr(o). When |n|F = 1, K also splits in G̃Lr ([McN12]

Theorem 4.2). There is a map κ : K → µn such that g 7→ κ∗(g) = (g, κ(g)) is a group

homomorphism from K to G̃Lr. We denote its image by K∗. We shall fix κ such

that κ∗ is what Kazhdan-Patterson refer to as the canonical lift of K to G̃Lr. It is

characterized by the property that

s|T∩K = κ∗|T∩K , s|W = κ∗|W , and s|U∩K = κ∗|U∩K .

([KP84] Proposition 0.1.3). The topology of G̃Lr as a locally compact group is deter-

mined by this embedding.

2.3 Centers

The following lemma is Takeda [Tak16] Lemma 3.13, which is very useful for us.
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Lemma 2.3.1. Let F be a local field. Then for each g ∈ GLr and a ∈ F×,

σr(g, aIr)σr(aIr, g)−1 = (det(g), ar−1+2cr).

Lemma 2.3.2. Let n1 = gcd(n, 2rc + r − 1), and n2 =
n

n1

. Then the center of G̃Lr

is
ZG̃Lr

={(zIr, ζ) : z2rc+r−1 ∈ F×n}

={(zIr, ζ) : z ∈ F×n2}.

The first part is proved in [KP84] Proposition 0.1.1, and the second part is proved

in Chinta-Offen [CO13] Lemma 1.

The center of T̃ is also determined in [KP84]. Let T̃ n = {(tn, ζ) : t ∈ T}.

Lemma 2.3.3. The center of T̃ is ZG̃Lr
T̃ n.

Let G̃L
(n)

r := {g ∈ G̃Lr : det g ∈ F×n}. We are interested in group since it

controls the representation theory of G̃Lr. Moreover, it plays a role in developing

tensor products and parabolic inductions for metaplectic groups; see Section 3.4. Let

T̃ (n) := G̃L
(n)

r ∩ T̃ . The centers of G̃L
(n)

r and T̃ (n) behave better than the centers of

G̃Lr and T̃ .

Lemma 2.3.4. The center of G̃L
(n)

r is

Z
G̃L

(n)

r

= Z̃ ∩ G̃L
(n)

r ={(aIr, ζ) : ar ∈ F×n}

={(aIr, ζ) : a ∈ F×
n

gcd(n,r)}.

Proof. The first equality is immediate from Lemma 2.3.1. For the second equality,

the proof is exactly the same as in [CO13] Lemma 1.

The proof of the following lemma is also straightforward.

Lemma 2.3.5. The center of T̃ (n) is Z
G̃L

(n)

r

T̃ n.

2.4 Maximal abelian groups

Maximal abelian subgroups of T̃ play important role in the representation theory

of T̃ . Let T̃∗ be a maximal abelian subgroup T̃ . In Section 3.2-3.6, we assume that

T̃ ∩ T̃∗ is a maximal abelian subgroup of T̃ (n), unless otherwise specified.
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We now discuss the construction of maximal abelian subgroups. Given a maximal

isotropic subgroup Ω of the Hilbert symbol, [KP84] Section 0.3 provides a way to

construct maximal abelian subgroups of T̃ under certain assumptions. When |n|F = 1,

F×no× is a maximal isotropic subgroup of the Hilbert symbol. Let

To = {diag(a1, · · · , ar) ∈ T : v(ai) ≡ 0 mod n}.

Then ZG̃Lr
T̃o is called the standard maximal abelian subgroup of T̃ , in the sense of

[KP84] Section I.1. We use T̃ st
∗ to denote this subgroup.

Remark 2.4.1. Notice that T̃ st
∗ ∩ T̃ (n) is usually not a maximal abelian subgroup of

T̃ (n), even for n = 2. When n = 2, c = 0, a “canonical” maximal abelian subgroup

was introduced in Bump-Ginzburg [BG92]. The intersection of their maximal abelian

subgroup and T̃ (n) is a maximal abelian subgroup of T̃ (n).

Let T̃
(n)
o = T̃o ∩ G̃L

(n)

r . The following proposition can be proved by imitating the

argument in [KP84] Section 0.3.

Proposition 2.4.2. The group Z
G̃L

(n)

r

T̃
(n)
o is a maximal abelian subgroup of T̃ (n).

Remark 2.4.3. Our calculation in Section 3.6 relies on the index [T̃ : T̃∗], which is an

invariant of T̃ . This is computed by using the standard maximal abelian subgroup

T̃ st
∗ .

Remark 2.4.4. When |n|F = 1, we give an example of maximal abelian subgroup such

that its intersection with T̃ (n) is Z
G̃L

(n)

r

T̃
(n)
o . Let

Z̃∗ = {(zIr, ζ) ∈ Z̃ : z ∈ o×F×
n

gcd(n,r(2rc+r−1))}

and

T̃ (n′)
o = {a ∈ T̃o : det(a) ∈ F× gcd(n,r)}.

Then Z̃∗Z
G̃L

(n)

r

T̃
(n′)
o = Z̃∗T̃

(n′)
o is a maximal abelian subgroup of T̃ and its intersection

with T̃ (n) is Z
G̃L

(n)

r

T̃
(n)
o .

Remark 2.4.5. When |n|F 6= 1, it is usually difficult to construct maximal abelian

subgroups of T̃ . However, when n | r, this situation is still nice in the following sense.

Let Ω be an isotopic subgroup of the Hilbert symbol. Then by the construction in

[KP84] Section 0.3,

{(diag(t1, · · · , tr), ζ) : ti ∈ Ω, ζ ∈ µn}

is a maximal abelian subgroup of T̃ .
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2.5 The global metaplectic cover G̃Lr(A)

Let F be a number field that contains all the nth roots of unity and A be the ring

of adeles. To construct a metaplectic n-fold cover of G̃Lr(A) of GLr(A), we follow

[Tak16] Section 2.2. The adelic 2-cocycle τr is defined by

τr(g, g
′) =

∏
v

τr,v(gv, g
′
v),

for g, g′ ∈ GLr(A). Here, the local cocycle is obtained from the block-compatible

cocycle, multiplied by a suitable coboundary. It can be shown that there is a section

sr : GLr(F ) → G̃Lr(A) such that GLr(F ) splits in G̃Lr(A). The center ZG̃Lr(A) of

G̃Lr(A) can be easily found by using the local results. As in the local case, we define

G̃L
(n)

r (A); = {g ∈ G̃Lr(A) : det g ∈ A×n}.

2.6 Metaplectic cover of Levi subgroups

Let λ = (r1 · · · rk) be a partition of r. Let M := Mλ be the Levi subgroup of GLr

described in Section 2.1. This section discusses metaplectic covers M̃ , both locally

and globally. The 2-cocycle τr does not satisfy block-compatibility. To get round it,

an equivalent cocycle τM was introduced in [Tak16] Section 3. We use this cocycle to

define M̃ . Notice that the blocks GLri don’t commute with each other. Let R = F if

F is local and R = A is F is global. Define

M̃ (n)(R) = {(g1 · · · gk, ζ) : det gi ∈ R×n}.

Let T be the maximal torus consisting of diagonal matrices. We write Ti =

T ∩GLri , where GLri is embedding in GLr via

g 7→ diag(Ir1 , · · · , g, · · · , Irk).

The torus Ti can be viewed as a maximal torus of GLri . Define T̃ (n) = T̃ ∩ M̃ (n). The

following results are proved in [Tak16] Section 3. We omit the details.

Lemma 2.6.1. The center of M̃(R) is

ZM̃(R) =



a1Ir1

. . .

akIrk

 : ar−1+2cr
i ∈ R×n and a1 ≡ · · · ≡ ak mod R×n.
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Remark 2.6.2. Notice that ZG̃Lr
T̃ n = ZM̃ T̃

n and ZG̃Lr
M̃ (n) = ZM̃M̃

(n).

Lemma 2.6.3. The center of M̃ (n) is

ZM̃(n) =




a1Ir1

. . .

akIrk

 , ζ

 : arii ∈ R×n

 .

Lemma 2.6.4. The center of T̃ (n) is ZM̃(n)T̃ n.

Next, assume F is local. We consider maximal abelian groups of T̃ (n). For 1 ≤
i ≤ k, let T̃

(n)
∗,i be a maximal abelian subgroup of T̃

(n)
i . Let T̃

(n)
∗ be the direct product

of T̃
(n)
∗,1 , · · · , T̃

(n)
∗,k with amalgamated µn. Then T̃

(n)
∗ is a maximal abelian subgroup of

T̃ (n).

Assume |n|F = 1. Let T̃
(n)
o = T̃o ∩ M̃ (n).

Lemma 2.6.5. The group ZM̃(n)T̃
(n)
o is a maximal abelian subgroup of T̃ (n).

Let T̃∗ be a maximal abelian subgroup of T̃ . We again assume T̃∗ ∩ T̃ (n) is a max-

imal abelian subgroup of T̃ (n). When |n|F = 1, the other maximal abelian subgroup

we consider is the standard maximal abelian subgroup T̃ st
∗ .



Chapter 3

Semi-Whittaker Coefficients: Local

Theory

In this section, F is a non-Archimedean local field. Recall that we use G̃Lr to

denote G̃Lr(F ).

3.1 The principal series representations

The principal series representations of G̃Lr were studied in [KP84]. For the gener-

alization to metaplectic covers of the other reductive groups, see McNamara [McN12].

We start with the representation theory of T̃ . In general, T̃ is not abelian, but

it is a two-step nilpotent group. The irreducible genuine representations of T̃ are

parameterized in the following way ([McN12] Theorem 5.1): start with a genuine

character χ on the center of T̃ and extend it to a character χ′ on any maximal

abelian subgroup T̃∗, then the induced representation i(χ′) := indT̃
T̃∗
χ′ is irreducible.

This construction is independent on the choice of T̃∗ and of the extension of characters.

We extend i(χ′) to a representation iB̃(χ′) on B̃ = T̃U by letting U act trivially.

Let δB be the modular quasicharacter of B. Then IndG̃Lr
B̃

iB̃(χ′)δ
1/2
B is the principal se-

ries representation. This representation is denoted by I(χ′), although its isomorphism

class only depends on χ.

There is an alternative way to describe the principal series representations. We

can extend the character χ′ to B̃∗ = T̃∗U , then induce it to G̃Lr. The representation

IndG̃Lr
B̃∗

χ′δ
1/2
B is isomorphic to I(χ′).

16
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The representation I(χ′) is irreducible when χ is in general position. For a positive

root α, there is an embedding iα : SL2 → GLr. Define

χnα(t) = χ

iα(t
t−1

)n
 .

Theorem 3.1.1. Suppose that χnα 6= | · |±1
F for all the positive roots α. Then I(χ′) is

irreducible.

This is proved by the theory of intertwining operators; see [KP84] Corollary I.2.8.

If χnα = | · |F for all the positive simple roots α, we call χ exceptional. In this

case, I(χ′) is reducible, and we are interested in the unique irreducible subquotient

of I(χ′). Recall that the intertwining operator Tw : I(χ′)→ I(wχ′) is defined as

(Twf)(g) =

∫
U(w)

f(w−1ug)du.

where U(w) is the subgroup of U corresponding to roots α > 0 such that w−1α <

0. If this converges for all f ∈ I(χ′) and is non-trivial, then it is a generator of

HomG̃Lr
(I(χ′), I(wχ′)). For general χ, the intertwining operator can be defined via

analytic continuation.

Theorem 3.1.2. Let χ be exceptional. Let

Θ(χ′) = Im(Tw0 : I(χ′)→ I(w0χ′)),

where w0 is the longest element of W . Then

(1) Θ(χ′) is the unique irreducible subrepresentation of I(w0χ′).

(2) Θ(χ′) is the unique irreducible quotient representation of I(χ′).

(3) The Jacquet of Θ(χ′) with respect to U is JU(Θ(χ′)) ∼= indT̃
w0T̃∗w

−1
0

(w0χ′δ
1/2
B ).

This is [KP84] Theorem I.2.9. Θ(χ′) is called exceptional.

The Whittaker models of exceptional representations are studied in [KP84] Section

I.3. These authors have shown the following results.

Proposition 3.1.3. Suppose that |n|F = 1.
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(1) The representation Θ(χ′) has a unique Whittaker model if and only if n = r or

n = r + 1, and 2(c+ 1) ≡ 0 mod n.

(2) The representation Θ(χ′) does not have a Whittaker model if n ≤ r − 1.

(3) The representation Θ(χ′) has a finite number of independent nonzero Whittaker

models if n ≥ r + 1.

Remark 3.1.4. In the above proposition, parts (1) and (3) are also true when |n|F > 1.

This is shown in [KP84] Section II by using global arguments. Part (2) is expected

to be true when |n|F > 1, but this is known only when n = 2; see Kaplan [Kapar]

Theorem 2.6 and Flicker-Kazhdan-Savin [FKS90].

Remark 3.1.5. When r = 1, we take Θ(χ′) to be IndT̃
T̃∗
χ′. This fits into the metaplectic

tensor product perfectly.

3.2 Restrictions

We study the restriction functor ResG̃Lr

G̃L
(n)

r

in this section. We obtain an explicit

description of the restriction of the principal series representations and exceptional

representations from G̃Lr to G̃L
(n)

r . This is useful in Section 3.5 where we give explicit

examples of the metaplectic tensor product.

Notice that G̃L
(n)

r is an open normal subgroup of G̃Lr, and G̃Lr/G̃L
(n)

r
∼= F×/F×n

is finite and abelian. By Gelbart-Knapp [GK82] Lemma 2.1, if I(χ′) is irreducible,

and π is an irreducible constituent of I(χ′)|
G̃L

(n)

r

, then

I(χ′)|
G̃L

(n) =
∑
g

m gπ.

The multiplicities m depend only on I(χ′), and the direct sum is over certain elements

of G̃Lr.

From now on, we assume T̃
(n)
∗ := T̃∗ ∩ T̃ (n) is a maximal abelian subgroup of T̃ (n).

Let B̃∗ = T̃∗U and B̃
(n)
∗ = T̃

(n)
∗ U .

Proposition 3.2.1.

I(χ′)|
G̃L

(n)

r

∼=
⊕

x∈T̃ (n)\T̃ /T̃∗

Ind
G̃L

(n)

r

xB̃
(n)
∗

(xχ′δ
1/2
B )|xB̃(n)

∗
. (3.1)
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Proof. This follows from Bernstein-Zelevinsky [BZ77] Theorem 5.2. We are working

with representations of G̃Lr. Let us choose triples B̃, T̃ , U with trivial character on

U on the induced functor side, and G̃L
(n)

r , G̃L
(n)

r , {1}. with trivial character on {1} on

the Jacquet functor side. The Jacquet functor in this case is the restriction functor.

The resulting functor is glued by functors indexed by the double coset space

G̃L
(n)

r \G̃Lr/B̃. This double coset space is a singleton since T̃ G̃L
(n)

r = G̃Lr. Therefore,

the functor is the composition of the induction functor from T̃ ∩ G̃L
(n)

r to G̃L
(n)

r and

the restriction functor ResT̃
T̃ (n) .

By [GK82] Lemma 2.1, indT̃
T̃∗
χ′|T̃ (n) is a direct sum of irreducible T̃ (n)-representations.

On the other hand, it has a Jordan-Holder series whose composition factors are

indT̃
(n)

xT̃
(n)
∗

xχ′, x ∈ T̃ (n)\T̃ /T̃∗.

Notice that T̃ (n) is also a Heisenberg group and T̃ (n)∩xT̃∗ = x(T̃
(n)
∗ ) is again a maximal

abelian subgroup of T̃ (n). This implies indT̃
(n)

xT̃
(n)
∗

xχ′ is irreducible. Thus,

(indT̃
T̃∗
χ′)|T̃ (n) =

⊕
x∈T̃ (n)\T̃ /T̃∗

indT̃
(n)

xT̃
(n)
∗

xχ′.

Now the proposition follows.

Remark 3.2.2. Notice that Eq. (3.1) depends on the choice of maximal abelian sub-

group. Indeed, when χ is in general position, the condition that T̃∗ ∩ T̃ (n) = T̃
(n)
∗

implies each component is irreducible. Without this condition, we get a similar de-

composition, but the components are reducible.

Next we show that, when χ is in general position, the components in Proposition

3.2.1 are irreducible. Let us write V (χ′) = Ind
G̃L

(n)

r

B̃
(n)
∗

(χ′δ
1/2
B )|

B̃
(n)
∗

. Thus Proposition

3.2.1 becomes

I(χ′)|
G̃L

(n)

r

∼=
⊕

x∈T̃ (n)\T̃ /T̃∗

V (xχ′).

Definition 3.2.3. A character of ZG̃Lr
T̃ n or Z

G̃L
(n)

r

T̃ n is called regular if wχ 6= χ for

all w ∈ W,w 6= I.

Lemma 3.2.4.
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(1) The T̃ (n)-module JU(V (χ′)) has a Jordan-Holder series whose composition factors

are

indT̃
(n)

wT̃
(n)
∗ w−1

(wχ′δ
1/2
B )(w ∈ W ).

(2) If χ is regular, then for any extension χ′, χ′|Z
G̃L

(n)
r

T̃n is regular. Moreover,

JU(V (χ′)) ∼=
⊕
w∈W

indT̃
(n)

wT̃
(n)
∗ w−1

(wχ′δ
1/2
B ).

Proof. The first part follows from [BZ77] Theorem 5.2. For the second part, we only

need to show that χ′|Z
G̃L

(n)
r

T̃n is regular. Indeed, if χ is regular, then for any w ∈ W ,

there exists x ∈ ZG̃Lr
T̃ n such that χ(w−1xw) 6= χ(x). Without loss of generality, we

may assume x ∈ T̃ n. This implies that χ′|Z
G̃L

(n)
r

T̃n is regular, for any extension χ′ of

χ.

Lemma 3.2.5. Let χ1, χ2 be two quasicharacters of Z
G̃L

(n)

r

T̃ n and let χ′1, χ
′
2 be exten-

sions to T̃
(n)
∗ . Suppose χ1 is regular. Then

dim Hom
G̃L

(n)

r

(V (χ′1), V (χ′2)) ≤ 1.

The equality holds if and only if χ2 = wχ1 for some w ∈ W .

Proof. This is an immediate application of Lemma 3.2.4, Frobenuis reciprocity, and

the fact that indT̃
(n)

wT̃
(n)
∗ w−1

(wχ′δ
1/2
B ) is irreducible.

We now restrict the intertwining operator Tw : I(χ′) → I(wχ′) to Eq. (3.1). It

gives

Tw : V (xχ′)→ V (wxχ′).

Proposition 3.2.6. If χnα 6= | · |±1, for all positive roots α, then V (χ′) is irreducible.

Proof. Under the assumption, Tw : I(χ′)→ I(wχ′) is an isomorphism, its restriction

Tw : V (χ′)→ V (wχ′)

is again an isomorphism. Arguing as in [KP84] Corollary I.2.8, we can show that

V (χ′) is irreducible.
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Similarly we can deduce results for exceptional representations.

Theorem 3.2.7. Let χ be exceptional. Let

V0(χ′) = Im(Tw0 : V (χ′)→ V (w0χ′)),

where w0 is the longest elements of W . Then

(1) V0(χ′) is the unique irreducible subrepresentation of V (w0χ′).

(2) V0(χ′) is the unique irreducible quotient representation of V (χ′).

(3) JU(V0(χ′)) ∼= indT̃
(n)

w0T̃
(n)
∗ w−1

0

(w0χ′δ
1/2
B ).

Proof. The map

Tw0 : I(χ′)→ I(w0χ′)

restricts to

Tw0 :
⊕

x∈T̃ (n)\T̃ /T̃∗

V (xχ′)→
⊕

x∈T̃ (n)\T̃ /T̃∗

V (w0xχ′).

This implies that

Θ(χ′)|
G̃L

(n)

r

=
⊕

x∈T̃ (n)\T̃ /T̃∗

V0(xχ′).

We first show part (3). From the exactness of the Jacquet functor, JU(V0(χ′))

is a subrepresentation of both JU(V (χ′)) and JU(Θ(χ′)). Therefore, JU(V0(χ′)) ∼=
indT̃

(n)

w0T̃
(n)
∗ w−1

0

(w0χ′δ
1/2
B ).

The representation Θ(χ′)|
G̃L

(n)

r

is a direct sum of irreducible constituents, which

are conjugate to each other. Thus V0(χ′) is a direct sum of some of these components.

This implies that JU(V0(χ′)) is also a direct sum of the corresponding Jacquet modules

which are conjugate to each other. Thus V0(χ′) is irreducible since JU(V0(χ′)) is

irreducible.

If π is another irreducible quotient representation of V (χ′), then its Jacquet mod-

ule is a quotient of JU(V (χ′)), hence there is a nonzero homomorphism JU(π) →
indT̃

(n)

wT̃
(n)
∗ w−1

(wχ′δ
1/2
B ) for some w ∈ W . By Frobenius reciprocity, there is a nonzero

intertwining map π → V (wχ′). The composition

V (χ′)→ π → V (wχ′)
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is nonzero and it must be a constant multiple of Tw. Therefore, the composition

V (χ′)→ π → V (wχ′)
Twow−1

−−−−→ V (w0χ′)

is Tw0 and its image is V0(χ′). We see that V0(χ′) is a quotient of π, and since π is

irreducible, they must be the same. This proves part (2). Part (1) follows from part

(2) by duality.

As a corollary, we describe the decomposition of Θ(χ′) when restricted to G̃L
(n)

r .

Corollary 3.2.8.

Θ(χ′)|
G̃L

(n)

r

∼=
⊕

x∈T̃ (n)\T̃ /T̃∗

V0(xχ′).

3.3 Principal series of Levi subgroups

Let λ be a partition of r and write M̃ for M̃λ. The principal series representations

and exceptional representations can be similarly defined on M̃ . Recall we may identify

GLri as a subgroup of M via the embedding

gi 7→ diag(Ir1 , · · · , gi, · · · , Irk).

Let Bi be the standard Borel subgroup of GLri and δBi be the modular quasicharacter

of Bi in GLri .

Let χ be a genuine character of ZG̃Lr
T̃ n, extend it to a character χ′ of T̃∗. The gen-

uine representation πT̃ (χ′) := indT̃
T̃∗
χ′ is irreducible. The principal series representa-

tion I(χ′) is the induced representation IndM̃
B̃
πT̃ (χ′)⊗δ1/2

M , where δM = δB1⊗· · ·⊗δBk .
There is an alternative way to describe it as in the general linear case.

The theory of intertwining operators applies just as the general linear case. There-

fore, I(χ′) is irreducible when χ is in general position.

Theorem 3.3.1. Suppose that χnα 6= | · |±1
F for all the positive roots α in M . Then

I(χ′) is irreducible.

If χnα = | · |F for all positive simple roots α in M , we call it exceptional.
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Theorem 3.3.2. Let χ be exceptional. Let

Θ(χ′) = Im(TwM,0 : I(χ′)→ I(wM,0χ′)),

where wM,0 is the longest element of W (M). Then

(1) Θ(χ′) is the unique irreducible subrepresentation of I(wM,0χ′).

(2) Θ(χ′) is the unique irreducible quotient representation of I(χ′).

(3) JU∩M(Θ(χ′)) ∼= indT̃
wM,0T̃∗w

−1
M,0

(wM,0χ′δ
1/2
M ).

We also want to study I(χ′)|Z
G̃Lr

M̃(n) , and Θ(χ′)|Z
G̃Lr

M̃(n) . The arguments in Sec-

tion 3.2 apply in this case without essential change. We only state the results here.

Proposition 3.3.3.

I(χ′)|Z
G̃Lr

M̃(n)
∼=

⊕
x∈Z

G̃Lr
T̃ (n)\T̃ /T̃∗

Ind
Z
G̃Lr

M̃(n)

x(Z
G̃Lr

M̃(n)∩B̃∗)
xχ′δ

1/2
M .

Proposition 3.3.4. If χnα 6= |·|±1 for all positive roots α in M , then Ind
Z
G̃Lr

M̃(n)

x(Z
G̃Lr

M̃(n)∩B̃∗)
xχ′δ

1/2
M

is irreducible.

As in the general linear case, write V (xχ′) = Ind
Z
G̃Lr

M̃(n)

x(Z
G̃Lr

M̃(n)∩B̃∗)
xχ′δ

1/2
M .

Proposition 3.3.5. Let χ be exceptional. Let

V0(χ′) = Im(TwM,0 : V (χ′)→ V (wM,0χ′)),

where wM,0 is the longest elements of W (M). Then

(1) V0(χ′) is the unique irreducible subrepresentation of V (wM,0χ′).

(2) V0(χ′) is the unique irreducible quotient representation of V (χ′).

(3) JU∩M(V0(χ′)) ∼= ind
Z
G̃Lr

T̃ (n)

Z
G̃Lr

wM,0T̃
(n)
∗ w−1

M,0

(wM,0χ′δ
1/2
M ).

Proposition 3.3.6.

Θ(χ′)|Z
G̃Lr

M̃(n)
∼=

⊕
x∈Z

G̃Lr
T̃ (n)\T̃ /T̃∗

V0(xχ′).
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Lastly, let χ′ be an exceptional character for G̃Lr. Let P be the parabolic subgroup

of GLr with Levi subgroup M , and R be its unipotent radical. Let δP be the modular

quasicharacter of GLr with respect to P . Recall we have δM · δP = δGLr and w0 =

wM,0w
M .

Proposition 3.3.7. The character wMχ′ · δ1/2
P is exceptional for M , and

JR(ΘG̃Lr
(χ′)) ∼= ΘM̃(w

M

χ′ · δ1/2
P ).

Proof. The Weyl element wM permutes blocks of M , thus the character wMχ′ · δ1/2
P is

exceptional for M̃ . To prove the isomorphism of twisted Jacquet modules, we apply

JU∩M(−) on both sides. The left-hand side is

JU∩M(JR(ΘG̃Lr
(χ′))) = JU(ΘG̃Lr

(χ′)) ∼= indT̃
w0T̃∗w

−1
0

(w0χ′δ
1/2
GLr

);

while the right-hand side is

JU∩M(ΘM̃(w
M

χ′ · δ1/2
P )) ∼= indwM,0T̃∗w−1

M,0

w0χ′ · δ1/2
P δ

1/2
M
∼= indT̃

w0T̃∗w
−1
0

(w0χ′δ
1/2
GLr

).

This implies that JR(ΘG̃Lr
(χ′)) and ΘM̃(w

M
χ′ · δ1/2

P ) are both irreducible subrepresen-

tations of I(w
M
χ′ · δ1/2

P ). Thus they are isomorphic.

3.4 The metaplectic tensor product

One of the basic constructions in the representation theory of GLr(F ) is parabolic

induction. Let r = r1 + · · · + rk be a partition of r, and let M = GLr1 × · · · ×
GLrk be a Levi subgroup. We start with a list of representations, one for each of

GLr1 , · · · ,GLrn , and then form their tensor product to obtain a representation of M .

However, M̃ is not simply the amalgamated direct product of the various G̃Lri , this

construction cannot be generalized directly to the metaplectic case. Fortunately, we

have a replacement, which is defined in Mezo [Mez04]. We review the construction in

this section. The two-fold cover case was outlined in Bump and Ginzburg [BG92], and

studied in full detail in Kable [Kab01]. For the global setup and further properties

see Takeda [Tak16, Takar].



Chapter 3: Semi-Whittaker Coefficients: Local Theory 25

We observe that any element m ∈ M̃ may be written as a product g1 · · · gk, such

that p(gi) ∈ GLri for 1 ≤ i ≤ k. Recall

M̃ (n) = {m ∈ M̃ : det g1, · · · , det gk ∈ F×n}

and G̃L
(n)

ri
= M̃ (n) ∩ G̃Lri .

Let π1, · · · , πk be irreducible genuine representations of G̃Lr1 , · · · , G̃Lrk , respec-

tively. The construction of the metaplectic tensor product takes several steps.

First of all, for each i, fix an irreducible constituent π
(n)
i of the restriction πi |

G̃L
(n)

ri

of πi to G̃L
(n)

ri
. Then we have

πi|
G̃L

(n)

ri

=
∑
g

mi
g(π

(n)
i ),

where g runs through a finite subset of G̃Lri , mi is a positive multiplicity and g(π
(n)
i ) is

the representation twisted by g. Then we construct the tensor product representation

π
(n)
1 ⊗ · · · ⊗ π

(n)
k

of the group G̃L
(n)

r1
⊗· · ·⊗ G̃L

(n)

rk
. Because the representations π1, · · · , πk are genuine,

this tensor product representation descends to a representation of the group M̃ (n),

i.e. the representation factors through the natural surjection

G̃L
(n)

r1
× · · · × G̃L

(n)

rk
� M̃ (n).

We denote this representation of M̃ (n) by

π(n) := π
(n)
1 ⊗̃ · · · ⊗̃π

(n)
k ,

and call it the metaplectic tensor product of π
(n)
1 , · · · , π(n)

k .

Let ω be a character on the center ZG̃Lr
such that for all (aIr, ζ) ∈ ZG̃L(r) ∩ M̃

(n)

where a ∈ F×, we have

ω(aIr, ζ) = π(n)(aIr, ζ) = ζπ
(n)
1 (aIr1 , 1) · · · π(n)

r (aIrk , 1).

Namely, ω agrees with π(n) on the intersection ZG̃Lr
∩ M̃ (n). We can extend π(n) to

the representation

π(n)
ω := ωπ(n)
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of ZG̃Lr
M̃ (n) by letting ZG̃Lr

act by ω.

The last step is crucial. If we induce π
(n)
ω to M̃ , the resulting representation is

usually reducible. To get an irreducible representation, we extend the representation

π
(n)
ω to a representation ρω of a subgroup H̃ of M̃ so that ρω satisfies Mackey’s

irreducibility criterion and the induced representation

πω := IndM̃
H̃
ρω

is irreducible. It is always possible to find such H̃ and moreover H̃ can be chosen to

be normal. The construction of πω is independent of the choices of π
(n)
i , H̃ and ρω,

and it only depends on ω (see [Mez04] Section 4).

We write

πω = (π1⊗̃ · · · ⊗̃πk)ω

and call it the metaplectic tensor product of π1, · · · , πk with the character ω.

The metaplectic tensor product πω is unique up to twist.

Proposition 3.4.1 ([Mez04] Lemma 5.1). Let

π1, · · · , πk and π′1, · · · , π′k

be genuine representations of G̃Lr1 , · · · , G̃Lrk . They give rise to isomorphic meta-

plectic tensor products with a character ω, i.e.

(π1⊗̃ · · · ⊗̃πk)ω ∼= (π′1⊗̃ · · · ⊗̃π′k)ω

if and only for each i there exists a character ωi of G̃Lri, trivial on G̃L
(n)

ri
, such that

πi ∼= ωi ⊗ π′i.

Remark 3.4.2. Notice that the metaplectic tensor product generally depends on the

choice of ω. If the center ZG̃Lr
is already contained in M̃ (n), we have π

(n)
ω = π(n) and

hence there is no actual choice for ω and the metaplectic tensor product is canonical.

This is the case, for example, when n = 2 or n | r.

A representation of M̃ is always a metaplectic tensor product ([Tak16], Lemma

4.5). Moreover, we have the following useful lemmas.

Lemma 3.4.3 ([Tak16] Lemma 4.6). Let π and π′ be irreducible admissible represen-

tations of M̃ . Then π and π′ are equivalent if and only if π|Z
G̃Lr

M̃(n) and π′|Z
G̃Lr

M̃(n)

have an equivalent constituent.
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Lemma 3.4.4 ([Tak16] Proposition 4.7). We have

IndM̃
Z
G̃Lr

M̃(n)π
(n)
ω = mπω

for some finite multiplicity m, so every constituent of IndM̃
Z
G̃Lr

M̃(n)π
(n)
ω = mπω is iso-

morphic to πω.

Indeed, we can verify that m = [H̃ : ZG̃Lr
M̃ (n)].

Lemma 3.4.5. We have

IndM̃
M̃(n)π

(n) = m

(⊕
ξ

πξ

)

where m is [H̃ : ZG̃Lr
M̃ (n)] and ξ is over the finite set of characters of ZG̃Lr

M̃ (n) that

are trivial on M̃ (n).

Proof. The proof is the same as in [Tak16] Proposition 4.7; see also [Takar] Proposition

3.2.

3.5 Examples

We give some examples of the metaplectic tensor product in this section. The key

ingredient in the proof is Lemma 3.4.3. This allows us to compare irreducible smooth

representations of M̃ by restricting to ZG̃Lr
M̃ (n).

Let χ be a genuine quasicharacter on ZG̃Lr
T̃ n, and ω = χ|Z

G̃Lr
be the central

quasicharacter. For each i, let T̃
(n)
∗,i be a maximal abelian subgroup of T̃

(n)
i . Let

T̃
(n)
∗ be the direct product of T̃

(n)
∗,1 , · · · , T̃

(n)
∗,k with amalgamated µn. Then T̃

(n)
∗ is a

maximal abelian subgroup of T̃ (n). Let T̃∗ be a maximal abelian subgroup of T̃ such

that T̃ ∩ T̃ (n) = T̃
(n)
∗ .

Let χ′ be an extension of χ to T̃∗. We may decompose χ′|
T̃

(n)
∗

as

χ1⊗̃ · · · ⊗̃χk,

where χi is a genuine character on T̃
(n)
∗,i . Let T̃∗,i be a maximal abelian subgroup of

T̃i such that T̃
(n)
i ∩ T̃∗,i = T̃

(n)
∗,i . We still use χi to denote an extension of χi to T̃∗,i

(this extension is not unique). When χ is in general position, so are χi’s. Therefore

the principal series representations I(χ′i) on G̃Lri are irreducible.
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Theorem 3.5.1. Assume that χ is in general position. Then the metaplectic ten-

sor product (I(χ′1)⊗̃ · · · ⊗̃I(χ′k))ω is independent on the choices of χi. Moreover, as

representations of M̃ ,

I(χ′) ∼= (I(χ′1)⊗̃ · · · ⊗̃I(χ′k))ω

This result shows that, for principal series representations, the metaplectic tensor

product can be viewed as an instance of Langlands functoriality on covering groups;

see Gan [Gan16].

Proof. Indeed, the choice of the character χi on T̃∗,i is up to a character of T̃∗,i/T̃
(n)
∗,i .

Thus the resulting principal series representations differ by a character that is trivial

on G̃L
(n)

ri
. By Proposition 3.4.1, the metaplectic tensor products are still in the same

isomorphism class. This proves the well-definedness.

For the second assertion, let us follow the construction of metaplectic tensor prod-

uct. For I(χ′i)|G̃L
(n)

ri

, we choose one irreducible constituent Ind
G̃L

(n)

ri

B̃
(n)
∗,i

χ′iδ
1/2
Bi

. Then as

representations of ZG̃Lr
M̃ (n),

ω(Ind
G̃L

(n)

r1

B̃
(n)
∗,1

χ′1δ
1/2
B1
⊗̃ · · · ⊗̃Ind

G̃L
(n)

rk

B̃
(n)
∗,k

χ′kδ
1/2
Bk

) ∼= ωIndM̃
(n)

B̃
(n)
∗
χ′δ

1/2
M .

This is an irreducible constituent of

(I(χ′1)⊗̃ · · · ⊗̃I(χ′k))ω|Z
G̃Lr

M̃(n) .

On the other hand,

ωIndM̃
(n)

B̃
(n)
∗
χ′δ

1/2
M
∼= Ind

Z
G̃Lr

M̃(n)

Z
G̃Lr

B̃
(n)
∗
χ′δ

1/2
M .

is also an irreducible constituent of I(χ′)|Z
G̃Lr

M̃(n) . By Lemma 3.4.3, we are done.

Next, we turn to exceptional representations. We start with an exceptional char-

acter χ on ZG̃Lr
T̃ n, and form the exceptional representation ΘM̃(χ′) as the irreducible

quotient of IndM̃
B̃∗
χ′δ

1/2
M . The characters χ′is are defined as in the previous case.

Theorem 3.5.2. The metaplectic tensor product (Θ(χ′1)⊗̃ · · · ⊗̃Θ(χ′k))ω is well-defined.

As representations of M̃ ,

ΘM̃(χ′) ∼= (Θ(χ′1)⊗̃ · · · ⊗̃Θ(χ′k))ω.
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Proof. Again, we want to show that both sides have an equivalent irreducible con-

stituent when restricted to ZG̃Lr
M̃ (n). For the left-hand side, we choose V0(χ′|

T̃
(n)
∗

).

This is the unique irreducible subrepresentation of Ind
Z
G̃Lr

M̃(n)

Z
G̃Lr

wM,0B̃
(n)
∗ w−1

M,0

wM,0χ′δ
1/2
M . The

Jacquet module of V0(χ′|
T̃

(n)
∗

) is

JU∩M(V0(χ′|
T̃

(n)
∗

)) ∼= ind
Z
G̃Lr

T̃ (n)

Z
G̃Lr

wM,0T̃
(n)
∗ w−1

M,0

(wM,0χ′δ
1/2
M ).

On the right-hand side, we choose ω(V0(χ′1)⊗̃ · · · ⊗̃V0(χ′k)), whose Jacquet module

is

ω(ind
T̃

(n)
1

wGLr1 ,0
(T̃

(n)
1,∗ )w−1

GLr1 ,0

(wGLr1 ,0χ1δ
1/2
B1

)⊗̃ · · · ⊗̃ind
T̃

(n)
i

wGLrk
,0(T̃

(n)
k,∗ )w−1

GLrk
,0,

(wGLrk
,0χkδ

1/2
Bk

))

∼=ind
Z
G̃Lr

T̃ (n)

Z
G̃Lr

wM,0T̃
(n)
∗ w−1

M,0

(wM,0χ′δ
1/2
M ).

Thus ω(V0(χ′1)⊗̃ · · · ⊗̃V0(χ′k)) can be also realized as the unique irreducible subrepre-

sentation of

Ind
Z
G̃Lr

M̃(n)

Z
G̃Lr

wM,0B̃
(n)
∗ w−1

M,0

wM,0χ′δ
1/2
M .

Therefore, as representations of ZG̃Lr
M̃ (n),

V0(χ′|
T̃

(n)
∗

) ∼= ω(V0(χ′1)⊗̃ · · · ⊗̃V0(χ′k)).

By Lemma 3.4.3, we are done.

Example 3.5.3. Consider the partition (1r). In this case, M̃ is just T̃ and the meta-

plectic tensor product is just the representation theory of T̃ . The exceptional repre-

sentation on G̃L1 is IndG̃L1
A χ′, where A is a maximal abelian subgroup of G̃L1, and χ′

is an extension of χ : F×n → C× to A. Notice that χ as an irreducible constituent of(
IndG̃L1

A χ′
) ∣∣∣

F×n
. Let χ1, · · · , χr be characters of F×n. Thus the metaplectic tensor

product of IndG̃L1
A χ′1, · · · , IndG̃L1

A χ′r is IndT̃
T̃∗

(χ1 ⊗ · · · ⊗ χr)′, where (χ1 ⊗ · · · ⊗ χk)′ is

an extension of χ1 ⊗ · · · ⊗ χk to T̃∗.

3.6 Semi-Whittaker functionals

Fix an nontrivial additive character ψ : F → C×. For a partition λ of r, let

M = Mλ be the corresponding Levi subgroup of GLr. We define a character

ψλ : UM = U ∩M → UM/[UM , UM ]→ C×
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as follows. If α is a positive simple root in UM , then ψλ(xα(a)) = ψ(a). We extend this

character to ψλ : U → C× via the naive projection U → U ∩M . Notice this character

agrees with the character defined in Section 2.1. For a smooth representation (π, V )

of G̃Lr, a linear functional L : V → C is called a λ-semi-Whittaker functional if

L(π(u)v) = ψλ(u)L(v) for all u ∈ U, v ∈ V . When λ is fixed, we simply say semi-

Whittaker functional.

We study semi-Whittaker functionals of exceptional representations. First, we

have the following observation for Whittaker functionals of exceptional representa-

tions on G̃Lr.

Let Θ(χ′) be an exceptional representation of G̃Lr, and ψWh : U → C× such that

ψWh(u) = ψ(
∑r−1

i=1 ui,i+1). Let d = dim JU,ψWh
(Θ(χ′)). If we restrict Θ(χ′) to G̃L

(n)

r ,

we still have d = dim JU,ψWh
(Θ(χ′)|

G̃L
(n)

r

). By the exactness of Jacquet functor and

Corollary 3.2.8,

d =
∑

x∈T̃ (n)\T̃ /T̃∗

dim JU,ψWh
(V0(xχ′))

=
∑

x∈T̃ (n)T̃∗\T̃

dim JU,xψWh
(V0(χ′)).

Therefore, ∑
x∈T̃ (n)\T̃

dim JU,xψWh
(V0(χ′)) = d[T̃ (n)T̃∗ : T̃ (n)] = d[T̃∗ : T̃ (n)

∗ ]

Now let us return to the setup of the metaplectic tensor product. Let

ΘM̃(χ′) ∼= (Θ(χ′1)⊗̃ · · · ⊗̃Θ(χ′k))ω

be an exceptional representation of M̃ . Let di = dim JUGLri
,ψ(ri)

Θ(χ′i). Choose repre-

sentatives for T̃
(n)
i \T̃i, and combine them together, we get a set of representatives of

T̃ (n)\T̃ . Thus,

∑
x∈T̃ (n)\T̃

dim JUM ,xψλ(V0(χ′1)⊗ · · · ⊗ V0(χ′k)) =
k∏
i=1

di[T̃∗,i : T̃
(n)
∗,i ].

Proposition 3.6.1.

dim JUM ,ψλ(ΘM̃(χ′)) =

∏k
i=1 di[T̃∗,i : T̃

(n)
∗,i ]

[H̃ : M̃ (n)]
.
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Proof. Write π(n) = V0(χ′1)⊗ · · · ⊗ V0(χ′k). We have

JUM ,ψλ(IndM̃
M̃(n)π

(n)) ∼=
⊕

x∈M̃(n)\M̃

JUM ,xψλ(π(n)) =
⊕

x∈T̃ (n)\T̃

JUM ,xψλ(π(n)).

By Lemma 3.4.5, the dimension of the left-hand side is [H̃ : M̃ (n)] dim JUM ,ψλ(ΘM̃(χ′)).

The dimension of the right-hand side is
∏k

i=1 di[T̃∗,i : T̃
(n)
∗,i ]. This proves the result.

Now we proceed to simplify this formula. The above formula shows that [H̃ : M̃ (n)]

is an invariant for ΘM̃(χ′). We calculate it by choosing good inducing data. Let π be

an irreducible constituent of ΘM̃(χ′)|Z
G̃Lr

M̃(n) . Recall

ΘM̃(χ′)|Z
G̃Lr

M̃(n) =
⊕

x∈Z
G̃Lr

T̃ (n)\T̃ /T̃∗

xπ =
⊕

x∈T̃ (n)T̃∗\T̃

xπ.

Apply the induction functor IndM̃
Z
G̃Lr

M̃(n) and use Lemma 3.4.4 on the right-hand side.

This gives

IndM̃
Z
G̃Lr

M̃(n)(ΘM̃(χ′)|Z
G̃Lr

M̃(n)) = [T̃ : T̃ (n)T̃∗][H̃ : ZG̃Lr
M̃ (n)]ΘM̃(χ′).

Apply the Jacquet functor JUM (−). This gives

IndT̃
Z
G̃Lr

M̃(n)∩T̃JUM (ΘM̃(χ′)|Z
G̃Lr

M̃(n)) = [T̃ : T̃ (n)T̃∗][H̃ : ZG̃Lr
M̃ (n)]JUM (ΘM̃(χ′)).

Comparing the dimensions and using [T̃ : ZG̃Lr
M̃ (n) ∩ T̃ ] = [M̃ : ZG̃Lr

M̃ (n)] gives

[M̃ : H̃] = [T̃ : T̃ (n)T̃∗].

Thus

[H̃ : M̃ (n)] =
[M̃ : M̃ (n)]

[T̃ : T̃ (n)T̃∗]
=

[T̃ : T̃ (n)]

[T̃ : T̃ (n)T̃∗]

=[T̃ (n)T̃∗ : T̃ (n)] = [T̃∗ : T̃ (n)
∗ ].

Theorem 3.6.2.

dim JUM ,ψλ(ΘM̃(χ′)) =

∏k
i=1[T̃∗,i : T̃

(n)
∗,i ]

[T̃∗ : T̃
(n)
∗ ]

k∏
i=1

di.

Remark 3.6.3. We can see that the same calculation is true for the principal series

representations.
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Let us mention some immediate corollaries.

Corollary 3.6.4. Suppose |n|F = 1. If ri > n, for some i, then

JUM ,ψλ(ΘM̃(χ′)) = 0.

Proof. This is because when ri > n, di = 0.

Corollary 3.6.5. Suppose |n|F = 1. Let Θr(χ
′) be an exceptional representation of

G̃Lr. If ri > n for some i, then JU,ψλ(Θr(χ
′)) = 0. In other words, there is no

semi-Whittaker functional on Θr(χ
′).

Proof. In fact,

JU,ψλ(Θr(χ
′)) = JUM ,ψλ(JR(Θr(χ

′))) = JUM ,ψλ(ΘM̃(w
M

χ′ · δ1/2
P )) = 0.

The following corollaries are true without |n|F = 1.

Corollary 3.6.6. When ri ≤ n for all i, JUM ,ψλ(ΘM̃(χ′)) 6= 0.

Corollary 3.6.7. When ri ≤ n for all i, JU,ψλ(Θr(χ
′)) 6= 0.

Now assume |n|F = 1. Explicit constructions of maximal abelian groups may help

us simplify the formula further. Indeed,

[T̃∗ : T̃ (n)
∗ ] =

[T̃ : T̃
(n)
∗ ]

[T̃ : T̃∗]
=

[T̃ : T̃ (n)][T̃ (n) : T̃
(n)
∗ ]

[T̃ : T̃ st
∗ ]

=
[T̃ : T̃ (n)][T̃ (n) : T̃

(n)
∗ ][T̃ st

∗ : T̃o]

[T̃ : T̃o]
.

Notice that∏k
i=1[T̃i : T̃

(n)
i ]

[T̃ : T̃ (n)]
=

∏k
i=1[T̃

(n)
i : T̃

(n)
∗,i ]

[T̃ (n) : T̃
(n)
∗ ]

=

∏k
i=1[T̃i : T̃o,i]

[T̃ : T̃o]
= 1.

Combining with Theorem 3.6.2, we obtain the following formula.

Theorem 3.6.8. When |n|F = 1,

dim JUM ,ψλ(ΘM̃(χ′)) =

∏k
i=1[T̃ st

∗,i : T̃o,i]

[T̃ st
∗ : T̃o]

k∏
i=1

di.
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When r is a multiple of n, we obtain the following uniqueness result.

Corollary 3.6.9. Assume |n|F = 1. If r = mn, and λ = (nm), then JU,ψλ(Θr(χ
′)) is

one-dimensional.

Proof. Under these assumptions, we have gcd(n, 2rc+r−1) = 1. Therefore ZG̃Lr
⊂ T̃o,

and [T̃ st
∗ : T̃o] = 1. Similarly, ZG̃Ln

⊂ T̃o,i, and [T̃ st
∗,i : T̃o,i] = 1. By Proposition 3.1.3,

di = 1 for all i. Therefore dim JU,ψλ(Θr(χ
′)) = 1.

The uniqueness result also holds when |n|F 6= 1. Indeed, let Ω be a maximal

isotropic subgroup of the Hilbert symbol, then

T̃∗ := {(diag(t1, · · · , tr), ζ) : ti ∈ Ω}

is a maximal abelian subgroup of T̃ , and T̃
(n)
∗ := ZM̃(n) · (T̃∗ ∩ T̃ (n)) is a maximal

abelian subgroup of T̃ (n). Notice ZM̃(n) = Z̃M(n) . Moreover, [T̃∗ : T̃
(n)
∗ ] =

[T̃ : T̃∗]

[T̃ : T̃
(n)
∗ ]

and ∏k
i=1[T̃i : T̃∗,i]

[T̃ : T̃∗]
=

∏k
i=1[T̃i : T̃

(n)
∗,i ]

[T̃ : T̃
(n)
∗ ]

= 1.

Combining this uniform description with Theorem 3.6.2, we are done.

Theorem 3.6.10. Suppose r = mn, and M corresponds to the partition (nm). In

this case, JU,ψλ(Θr(χ
′)) is one-dimensional.

Remark 3.6.11. Recall that the metaplectic cover G̃Lr depends on an implicit choice

of the modulus class c ∈ Z/nZ. Our results are true for all c ∈ Z/nZ. This is clear

for the vanishing result (Corollary 3.6.5) and nonvanishing result (Corollary 3.6.7).

For the uniqueness result, notice that when r = mn, ZG̃Lr
= {znIr : z ∈ F×}. This

fact is independent of c. Thus the proof of Corollary 3.6.9 is independent of c.

Remark 3.6.12. When n = 2, this is [BG92] Proposition 1.3 (i). Indeed, when r = 2k

and the partition is (2k), this follows from Theorem 3.6.10. When n = 2, r = 2k + 1,

and M corresponds to the partition (2k1). In this case, di = 1 for all i and [T̃ st
∗ :

T̃o] = [F× : F×2o×]. Moreover, [T̃ st
∗,i : T̃o,i] = 1 if ri = 2; and = [F× : F×2o×] if ri = 1.

The twisted Jacquet module of ΘM̃(χ′) is again one-dimensional.

Remark 3.6.13. Assume Θ(χ′) has unique semi-Whittaker functional at almost all

primes, a global argument similar to [KP84] Section II should show that Θ(χ′) has

unique semi-Whittaker functional at all primes.



Chapter 4

Semi-Whittaker Coefficients:

Global Theory

4.1 Theta representations

Let n ≥ 2. Let F be a number field containing a full set of nth roots of unity µn,

and let A denote the adeles of F . For r ≥ 2, let G̃Lr(A) denote an n-fold cover of the

general linear group.

We recall the definition of the global theta representations. These representations

were constructed in [KP84] using the residues of Eisenstein series, as follows. Let

B be the standard Borel subgroup of GLr, and T ⊂ B denote the maximal torus

of GLr. Let s be a multi-complex variable, and define the character µs of T (A) by

µs(diag(a1, · · · , ar)) =
∏

i |ai|si . Let Z(T̃ (A)) denote the center of T̃ (A). Let ωs be

a genuine character of Z(T̃ (A)) such that ωs = µs ◦ p on {(tn, 1)|t ∈ T (A)}, where p

is the canonical projection from T̃ (A) to T (A). Choose a maximal abelian subgroup

A of T̃ (A), extend this character to a character of A, and induce it to T̃ (A). Then

extend it trivially to B̃(A) using the canonical projection from B̃(A) to T̃ (A), and

further induce it to the group G̃Lr(A). We abuse the notation slightly and write this

induced representation Ind
G̃Lr(A)

B̃(A)
µsδ

1/2
B . It follows from [KP84] that this construction

is independent of the choice of A and of the extension of characters. Forming the

Eisenstein series E(s, g) attached to this induced representation, it following from

[KP84], that when n(si − si+1) = 1 for 1 ≤ i ≤ r − 1, this Eisenstein series has

a nonzero residue representation. Let Λ be such a pole, and we write the residue

34
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representation as Θr,Λ. The poles where we take the residues are usually clear in the

context, thus sometimes we omit it from the notation. The global theta representation

Θr is the restricted tensor product of the local exceptional representations Θr,v. It is

shown in [KP84] Section II that Θr is generic if and only if r ≤ n.

4.2 Vanishing results

Proposition 4.2.1. Let θ be in the space of Θr. Let λ = (r1 · · · rk) be a partition of

r. If there is an ri > n for some i, then∫
U(F )\U(A)

θ(ug)ψλ(u) du ≡ 0

for all choices of data.

Proof. Let v be a place of F such that Fv is a non-archimedean local field where

|n|v = 1 and Θr is unramified. If ∫
U(F )\U(A)

θ(ug)ψλ(u) du

is nonzero, then the functional

θ 7−→
∫

U(F )\U(A)

θ(ug)ψλ(u) du

induces a nonzero functional on Θr,v which factors through the twisted Jacquet module

for the character ψλ(u) on the group U(Fv). This contradicts the local result.

4.3 Constant terms I

Let λ = (r1 · · · rk) be a partition of r. Let Pλ be the standard parabolic subgroup

of GLr with Levi subgroup Mλ and unipotent radical Uλ.

The goal for this section is to determine the constant term of Θr. We first compute

the constant term of the Eisenstein series along Uλ. This turns out to be a sum

of Eisenstein series on M̃λ(A), over a subset of the Weyl group W . We exchange

the constant term operator and the multi-residue operator, and the constant terms
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actually span a “theta representation” on M̃λ(A). We then review the construction

of the global metaplectic tensor product in Section 4.4, and show that the theta

representation on M̃λ(A) is actually the global metaplectic tensor product of Θri ’s.

Proposition 4.3.1. If θ ∈ Θr, then the constant term

m 7→
∫

Uλ(F )\Uλ(A)

θ(um) du, m ∈ M̃λ(A)

is the residue of an Eisenstein series on M̃λ(A).

If we vary θ ∈ Θr, then the constant terms of θ’s span an irreducible automorphic

representation of M̃λ(A). We denote it by ΘM̃λ
. As in the general linear case, ΘM̃λ

is

the restricted tensor product of local theta representations of M̃λ(Fv).

Proof. Let θ(g) = Ress=ΛE(φ, s, g). We first compute the constant term of the Eisen-

stein series E(φ, s, g) along Pλ. To do this, we introduce the set Wλ which consists of

elements w−1 such that w−1(β) > 0 for any Φ+
λ , and wTw−1 ⊂Mλ. By Moeglin and

Waldspurger [MW95] Proposition 2.1.7(2),

E(φ, s, g)Pλ =
∑

w−1∈Wλ

∑
γ∈(wBw−1∩Mλ)(F )\Mλ(F )

T (w, s)φ(s)(γg)

=
∑

w−1∈Wλ

EM̃λ(T (w, s)φ(s), ws, g)

Let Λ denote the pole of E(φ, s, g) as in Section 4.1. To compute the constant

term of theta function along Pλ, we use the fact that the multi-residue operator

lims→Λ

∏r−1
i=1 (nsi − nsi+1 − 1) and the constant term operator commute. Following

an argument as in the proof of Offen and Sayag [OS08] Lemma 2.4, we deduce that

after applying the multi-residue operator, the only term left is the one corresponding

to wMλ .

We identify the set of simple roots with {(i, i + 1) : 1 ≤ i ≤ r − 1}. Given

w−1 ∈ Wλ, let ∆1(w) = {i : α = (i, i+ 1), w−1(α) < 0}. Notice that by the definition

of Wλ, ∆1(w) is contained in {r1, r1 + r2, · · · }. Then the normalized intertwining

operator

N(w, s) =
∏

i∈∆1(w)

(nsi − nsi+1 − 1)T (w, s)
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is holomorphic at Λ. Notice that the action of w on s is

w(s1, · · · , sr) = (sw−1(1), · · · , sw−1(r)).

Let

∆2(w) = {i : w−1(i+ 1)− w−1(i) = 1}\{r1, r1 + r2, · · · }.

Then the normalized Eisenstein series∏
i∈∆2(w)

(nsi − nsi+1 − 1)EM̃λ(N(w, s)φ(s), ws, g)

is holomorphic at Λ. Thus, the terms corresponding to w−1 survives after taking

multi-residue if and only if

∆1(w) ∪∆2(w) = {1, · · · , r − 1}.

This implies that ∆1(w) = {r1, r1 + r2, · · · } and w permutes blocks of Mλ. The only

possibility is w = wMλ . Thus we have shown the following identity

θ(g)Pλ = Ress=ΛE
M̃λ(T (wMλ , s)φ(s), wMλs, g).

This finishes the proof.

4.4 Global metaplectic tensor product

The global metaplectic tensor product was first given in [Tak16] Section 5, and a

simplified version is given in [Takar]. We briefly review the latter construction here.

Assume (π, Vπ) is an automorphic representation of G, and Vπ is a space of func-

tions or maps on the group G, and π is the representation of G on Vπ defined by right

translation. Let H ⊂ G be a subgroup. Then we define π||H to be the representation

of H realized in the space

Vπ||H := {f |H : f ∈ Vπ}

of restrictions of f ∈ Vπ to H, on which H acts by right translation.

Let πi be a genuine irreducible automorphic unitary representation of G̃Lri(A).

Let Hi = GLri(F )G̃L
(n)

ri
(A), and σi = πi||Hi . Then the restriction πi|Hi is completely

reducible ([Takar], Proposition 3.6). Hence σi is a subrepresentation of πi|Hi .
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Note that Hi is indeed a closed subgroup of G̃Lri(A). By the product formula

for the Hilbert symbol and block-compatibility of the cocycle, we have the natural

surjection

H1 × · · · ×Hk →M(F )M̃ (n)(A).

Then consider the space

Vσ1 ⊗ · · · ⊗ Vσk

as functions on direct product H1 × · · · ×Hk, which gives rise to a representation of

H1 × · · · ×Hk. If ϕi ∈ Vσi for i = 1, · · · , k, we denote this function by

ϕ1 ⊗ · · · ⊗ ϕk,

and denote the space generated by those function by Vσ. These functions can be

viewed as “automorphic forms” on M(F )M̃ (n)(A). The group M(F )M̃ (n)(A) acts

on Vσ by right translation. Denote this representation by σ. This representation is

completely reducible ([Takar] Proposition 3.8).

Fix an irreducible subrepresentation τ of σ. Then the abelian group ZG̃Lr(A)∩M(F )M̃(n)(A)

acts a a character ωτ ([Takar] Lemma 3.12). Choose a “Hecke character” ω on ZG̃Lr(A)

by extending ωτ . Then one can extend τ to a representation τω on ZG̃Lr(A)M(F )M̃ (n)(A).

Consider the smooth induced representaion

Π(τω) := Ind
M̃(A)

Z
G̃Lr(A)

M(F )M̃(n)(A)
τω.

We can view Π(τω) as a subrepresentation of A(M̃), which is the space of automor-

phic forms on M̃(A). Moreover, Π(τω) has an irreducible subrepresentation ([Takar]

Proposition 3.15). Choose such a representation and denote it by πω. Then we call

πω a metaplectic tensor product of π1, · · · , πk with respect to the character ω and

write

πω = (π1⊗̃ · · · ⊗̃πk)ω.

The representation πω has the desired local-global compatibility. Moreover, it is

unique up to equivalence, and depends only on π1, · · · , πk and ω ([Takar] Theorem

3.18).
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4.5 Constant term II

We give the second description of the constant term of the theta function. We

show that the theta representation on M̃λ(A) is in fact the global metaplectic tensor

product of theta representations on G̃Lri(A).

Theorem 4.5.1. If θ ∈ Θr, the constant term

m 7→
∫

Uλ(F )\Uλ(A)

θ(um) du, m ∈ M̃λ(A)

is in the space Θr1⊗̃ · · · ⊗̃Θrk . Indeed,

ΘM̃λ

∼= Θr1⊗̃ · · · ⊗̃Θrk .

Here, the global metaplectic tensor product is with respect to the central character ω

of ΘM̃λ
. The poles that we use to define Θri are specified in the proof.

Proof. Write σi = Θri ||Hi for i = 1, · · · , k. As explained above, the representation

σ1⊗̃ · · · ⊗̃σk descents to a representation σ on M(F )M̃ (n)(A). It suffices to show that

ΘMλ
||M(F )M̃(n)(A) ↪→ σ.

Notice the space σ contains the metaplectic tensor products with respect to all possible

characters ω.

Before we prove this claim we would like to introduce some notations. Let E(s, g)

be the Eisenstein series of G̃Lr(A) and let Λ be the pole to define the theta function.

Let ΛP be defined such that µΛP is the modular quasicharacter of GLk with respect

to Pλ. Write Λ = (Λk, · · · ,Λ1), where Λi is of size ri. Write ΛP = (ΛP,1, · · · ,ΛP,k)

such that ΛP,i is of size ri. Notice that all the entries in ΛP,i are the same.

Let f ∈ ΘMλ
||M(F )M̃(n)(A). This means that f is the restriction of the residue of

an Eisenstein series EM̃λ(s, g) to M(F )M̃ (n)(A). Indeed, if g ∈M(F )M̃ (n)(A), then

f(g) =Ress=wM (Λ)+ΛPE(s, g)

=Ress=wM (Λ)+ΛP

∑
γ∈BM (F )\M(F )

φ(s)(γg)

=Ress=wM (Λ)+ΛP

∑
γ∈B(n)

M (F )\M(n)(F )

φ(s)(γg).
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The last equality follows from the following fact: M (n)(F ) ↪→ M(F ) induces a bijec-

tion B
(n)
M (F )\M (n)(F )↔ B(F )\M(F ).

Without loss of generality, we may assume that φ ∈ Ind
M̃(n)(A)

B̃(n)(A)
µsδ

1/2
M ⊂ Ind

M̃(A)

B̃M (A)
µsδ

1/2
M

and furthermore it is decomposable: φ = φ1⊗̃ · · · ⊗̃φk, where φi ∈ Ind
G̃L

(n)

ri
(A)

B̃
(n)
i (A)

µsiδ
1/2
Bi

.

Write g = diag(g1, · · · , gk) and γ = diag(γ1, · · · , γk). Then we can naturally view

f = f1⊗̃ · · · ⊗̃fk, where

fi(gi) = Ressi=Λi+ΛP,i

∑
γi∈B

(n)
i \GL

(n)
ri

(F )

φsi(γigi).

This means that fi ∈ Θri,Λi+ΛP,i . We are done.

4.6 Global nonvanishing

Now we prove the global nonvanishing results. Let λ be a partition of r. Define the

Levi subgroup M = Mλ as usual. Define the semi-Whittaker functional ψλ as in the

local case. We also write ψλ(u) = ψ1(u1) · · ·ψk(uk) if u = diag(u1, · · · , uk) ∈ U ∩M .

Theorem 4.6.1. If ri ≤ n for all i, then∫
U(F )\U(A)

θ(ug)ψλ(u) du

is nonzero for some choices of θ ∈ Θr and g ∈ G̃Lr(A).

Proof. Notice that∫
U(F )\U(A)

θ(ug)ψλ(u) du =

∫
UM (F )\UM (A)

∫
Uλ(F )\Uλ(A)

θ(vug) dv ψλ(u) du.

By Proposition 4.3.1, it suffices to show that∫
UM (F )\UM (A)

f(ug)ψλ(u) du 6= 0

for some choices of θ ∈ ΘM̃ and g ∈ M̃(A). We now use notations in the proof of

Theorem 4.5.1. Notice that the character ω in Theorem 4.5.1 does not contribute
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anything in this integral. Thus it suffices to show that∫
UM (F )\UM (A)

f(u)(1)ψλ(u) du 6= 0

for some f ∈ Ind
M̃(A)

M(F )M̃(n)(A)
σ. Here f(u) is in σ and we use f(u)(1) to denote its

value at 1. Notice that UM(A) ⊂M(F )M̃ (n)(A). Thus f(u)(1) = f(1)(u).

Without of loss of generality, we can choose f such that f(1) is a simple tensor

f1⊗̃ · · · ⊗̃fk, where fi ∈ σi. Moveover, we can choose fi such that the Whittaker

coefficient of fi is nonzero, i.e.
∫

UGLri
(F )\UGLri

(A)

fi(uigi)ψi(ui) dui 6= 0 for all i. (This

is because when ri ≤ n, Θri is generic.)

Thus, ∫
UM (F )\UM (A)

f(u)(1)ψλ(u) du

=

∫
UM (F )\UM (A)

f(1)(u)ψλ(u) du

=
k∏
i=1

∫
UGLri

(F )\UGLri
(A)

fi(ui)ψi(ui) dui 6= 0.

This proves the theorem.



Chapter 5

Unipotent Orbits and Fourier

Coefficients

For the rest of this paper, we turn to the Fourier coefficients associated with

general unipotent orbits. In this section, we explain how to associate a set of Fourier

coefficients with a unipotent orbit. General references for unipotent orbits are Carter

[Car93] and Collingwood-McGovern [CM93]. For the local version of this association

see [Mœg96, MW87]. For global details see Jiang-Liu [JL13] and Ginzburg [Gin06,

Gin14]. The associated Fourier coefficients are described as integration over certain

unipotent subgroups, and the metaplectic cocycles do not contribute any nontrivial

factors. To simplify notations, we only describe this association in the non-metaplectic

setup.

We work with the global setup. Let F be a number field, and A be its adele ring.

Fix a nontrivial additive character ψ : F\A→ C×. The unipotent orbits of GLr are

parameterized by partitions of r. Let O = (p1 · · · pk) with p1 + · · · + pk = r be a

unipotent orbit. We shall always assume p1 ≥ p2 ≥ · · · ≥ pk > 0. To each pi we

associate the diagonal matrix

diag(tpi−1, tpi−3, · · · , t3−pi , t1−pi).

Combining all such diagonal matrices and arranging them in decreasing order of the

powers, we obtain a one-dimensional torus hO(t). For example, if O = (321), then

hO(t) = diag(t2, t2, 1, 1, 1, t−2, t−2).

42
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The one-dimensional torus hO(t) acts on U by conjugation. Let α be a positive

root and xα(a) be the one-dimensional unipotent subgroup in U corresponding to the

root α. There is a nonnegative integer m such that

hO(t)xα(a)hO(t)−1 = xα(tma). (5.1)

On the subgroups xα(a) which correspond to negative roots α, the torus hO(t) acts

with non-positive powers.

Given a nonnegative integer l, we denote by Ul(O) the subgroup of U generated

by all xα(a) satisfying the Eq. (5.1) with m ≥ l. We are mainly interested in Ul(O)

where l = 1 or l = 2.

Let

M(O) = T · 〈x±α(a) : hO(t)xα(a)hO(t)−1 = xα(a)〉.

The group M(O) acts by conjugation on the abelian group U2(O)/U3(O). If the

ground field is algebraically closed, then under this action of M(O) on the group

U2(O)/U3(O), there is an open orbit. Denote a representative of this orbit by u2. It

follows from the general theory that the connected component of the stabilizer of this

orbit inside M(O) is a reductive group. Denote by Stab0
O this connected component

of the stabilizer of u2.

The group M(O)(F ) acts on the group of all characters of U2(O)(F )\U2(O)(A).

Consider the subset of all characters such that over the algebraic closure, the con-

nected component of the stabilizer inside M(O)(F ) is equal to Stab0
O. We denote

such a character by ψU2(O). Given an automorphic function ϕ(g) on GLr(A) or its

cover, the Fourier coefficient we want to consider is∫
U2(O)(F )\U2(O)(A)

ϕ(ug)ψU2(O)(u) du.

In this way, we associate with each unipotent orbit O a set of Fourier coefficients.

When the partition is O = (r), the Fourier coefficients associated to O are the

Whittaker coefficients.

In order to perform root exchange as in Sections 5.1.1 and 5.2.1 below, we also

work with a slightly different torus. Let

h′O(t) = diag(tp1−1, · · · , t1−p1 , tp2−1, · · · , t1−p2),
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where after the first block of size p1, the exponents of t are of non-increasing order.

These two one-dimensional tori are conjugate by an element in the Weyl group of

GLr. Let V2(O), ψV2(O) be the corresponding unipotent subgroup and character,

respectively.

Let us recall the partial ordering defined on the set of unipotent orbits. Given

O1 = (p1 · · · pk) and O2 = (q1 · · · ql), we say that O1 ≥ O2 if p1 + · · ·+pi ≥ q1 + · · ·+qi
for all 1 ≤ i ≤ l. If O1 is not greater than O2 and O2 is not greater than O1, we say

that O1 and O2 are not comparable.

Definition 5.0.2. Let π be an automorphic representation of G̃Lr(A). Let O(π)

denote the set of unipotent orbits of GLr defined as follows. A unipotent orbit

O ∈ O(π) if π has a nonzero Fourier coefficient which is associated with the unipotent

orbit O, and for all O′ > O, π has no nonzero Fourier coefficient associated with O′.

We already describe this association in the global setup. The corresponding local

picture could be described analogously. We omit the details.

5.1 Unipotent Orbits: Local Results

We return to the local setup in this section. Fix positive integers n, r such that

|n|F = 1. Write r = an + b, where a ∈ Z≥0 and 0 ≤ b < n. Let Θ = Θr be an

exceptional representation on G̃Lr. The unipotent orbit attached to Θ is determined

in this section. The key ingredients are the results on the semi-Whittaker functionals.

We follow closely the approach given in Jiang-Liu [JL13], where they determine the

unipotent orbits attached to the residual spectrum of the general linear groups. Here

we give a local version with necessary modifications.

Theorem 5.1.1. Let O = (p1 · · · pk) be a unipotent orbit of GLr.

(1) If p1 > n, then JU2(O),ψU2(O)
(Θ) = 0 (or equivalently, JV2(O),ψV2(O)

(Θ) = 0).

(2) If O = (nab), then JU2(O),ψU2(O)
(Θ) 6= 0 (or equivalently, JV2(O),ψV2(O)

(Θ) 6= 0).

Notice that any unipotent orbit greater than or not comparable with (nab) must

have p1 > a. Thus we obtain the following result.
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Theorem 5.1.2. Let Θ be an exceptional representation of G̃Lr. Then

O(Θ) = (nab).

The rest of this section is devoted to proving Theorem 5.1.1. This theorem is also

proved in an unpublished work of Gordan Savin by using the Iwahori-Hecke algebras.

5.1.1 A general lemma

We start with a general lemma, which is used repeatedly in this section.

Let G be the rational points of a split algebraic group or a cover of such. Let u be

a maximal nilpotent Lie subalgebra of Lie(G). Let A,C,X and Y be Lie subalgebras

of u, and let A,C,X, Y be the corresponding unipotent subgroups of G. Let ψC be a

nontrivial character of C. We make the following assumptions:

(a) C,X, Y ⊂ A.

(b) X and Y are abelian, normalize C and preserve ψC .

(c) The commutators x−1y−1xy lie in C, for all x ∈ X, y ∈ Y . In particular, Y

normalizes D = CX and X normalizes B = CY .

(d) A = D o Y = B oX.

(e) The set

{x 7→ ψC(x−1y−1xy)|y ∈ Y }

is the group of all characters of X. Moreover, writing x = expE, y = expS, for

E ∈ X, S ∈ Y, we have

ψC(xyx−1y−1) = ψ((E, S))

where ( , ) is a nondegenerate, bilinear pairing between X and Y.

BX = A = DY

B = CY D = CX

C

X Y

Y X
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Lemma 5.1.3. Assume (a)-(e). Let π be a smooth representation of A. Extend

ψC trivially to characters ψB of B and ψD of D. Then we have an isomorphism of

C-modules

JB,ψB(π) ∼= JD,ψD(π).

Moreover,

JC,ψC (π) = 0⇐⇒ JD,ψD(π) = 0⇐⇒ JB,ψB(π) = 0.

Proof. The first isomorphism is proved in Ginzburg-Rallis-Soudry [GRS99] Section

2.2. For the second statement, clearly if JC,ψC (π) = 0, then

JD,ψD(π) = JX(JC,ψC (π)) = 0.

Conversely, suppose JD,ψD(π) = 0 (the other case can be treated similarly). There is

a natural map

T : JC,ψC (π)→ JD,ψD(π) = 0

over D. This induces a map of A-modules

i : JC,ψC (π)→ IndAD(JD,ψD(π)) = 0.

It is shown in [GRS99] that i is injective. Thus JC,ψC (π) = 0.

When X and Y are root subgroups, the above lemma is the local version of the

root exchange in Friedberg-Ginzburg [FGar] Section 2.2 and Ginzburg [Gin15] Section

2.2.2. This is always the case in our application. The above assumptions can always

be verified by the Steinberg relations.

5.1.2 Root exchange

Given a unipotent orbit O = (p1 · · · pk), we define several unipotent subgroups of

U . Let UO be the subgroup of U consisting elements of the form

u =

(
u1 n1

u2

)
,

where u1 ∈ GLp1 is unipotent, n1 ∈ Matp1×(n−p1) with the last row being zero, and

u2 ∈ U2((p2 · · · pk)) ⊂ GLr−p1 . We define a character ψUO : UO → C× as the product
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of the Whittaker character on u1 and ψU2((p2···pk)) on u2. We also define a unipotent

subgroup U ′O of UO by removing all the root subgroups Uα in the n1 part, such that

h′O(t)xα(a)h′O(t)−1 = xα(ta). (5.2)

The character ψU ′O is defined analogously as ψUO .

Remark 5.1.4. If pi’s have the same parity, then UO = U ′O.

Lemma 5.1.5. Let π be a smooth representation of G̃Lr.

(1)

JV2(O),ψV2(O)
(π) ∼= JU ′O,ψU′O

(π).

(2)

JV2(O),ψV2(O)
(π) = 0

if and only if

JUO,ψUO (π) = 0.

(3) If pi’s have the same parity, then

JV2(O),ψV2(O)
(π) ∼= JUO,ψUO (π).

Proof. Part (3) is clear from part (1) and Remark 5.1.4. We first prove part (1). The

strategy is to use the root exchange lemma. Notice that any element of V2(O) has

the following form:

u =

(
u1 q

0 u2

)(
Ip1 0

p In−p1

)
,

where u1 ∈ GLp1 and u2 ∈ U(p2···pk) ⊂ GLn−p1 are unipotent matrices, and p ∈
Matp1×(n−p1) and q ∈ Mat(n−p1)×p1 are certain matrices to be described later. The

character ψV2(O) is the product of Whittaker character on u1 and ψU2((p2···pk)). We use

the simple roots in u1 to move root subgroups contained p to q. The desired twisted

Jacquet module is obtained after we finish this process.

Let us give more details in the case O = (p1p2). The general case follows by the

same argument. There are two cases to consider, depending on the parity of p1 − p2.

Case 1: p1− p2 is even. Notice that in this case part (1) implies part (2) immedi-

ately.
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We can write u ∈ V2(O) as

u =

(
u1 n1

n2 u2

)
.

Here u1 ∈ GLp1 , u2 ∈ GLp2 are unipotent matrices, and

n1 =


a1

b1

c1

 ∈ Matp1×p2 ,

where

a1 ∈ Mat
(
p1−p2

2
)×p2 , b1 ∈ Matp2×p2 is nilpotent, c1 = 0 ∈ Mat

(
p1−p2

2
)×p2 ,

and

n2 =
(

0 b2 c2

)
∈ Matp2×p1

where

0 ∈ Mat
p2×(

p1−p2
2

+1)
, b2 ∈ Matp2×p2 is upper triangular, c2 ∈ Mat

p2×(
p1−p2

2
−1)
.

Now we apply the root exchange lemma. For the first column of b2, the only

nonzero entry corresponds to the root subgroup associated to the (negative) root

(p1 + 1, p1−p2
2

+ 2). We use the simple root (p1−p2
2

+ 1, p1−p2
2

+ 2) in u1. This replaces

the root (p1 + 1, p1−p2
2

+ 2) by the (positive) root (p1−p2
2

+ 1, p1 + 1) in the integration

region. Notice that (p1−p2
2

+ 1, p1 + 1) is exactly the only missing entry in the first

row of b1.

Similarly, the i-th column of b2 has i nonzero entries, corresponding to the roots(
j,
p1 − p2

2
+ i+ 1

)
, j = p1 + 1, · · · , p1 + i.

We use the simple root (p1−p2
2

+ i, p1−p2
2

+ i + 1). By root exchange, these roots are

moved to (
p1 − p2

2
+ i, j

)
, j = p1 + 1, · · · , p1 + i.

These are exactly the missing entries in the i-th row in b1. The c2 part can be handled

similarly. Indeed, using the simple roots in u1, entries in c2 are moved to the first

(p1−p2
2
− 1) rows of c1. Thus, in this case, we have shown that

JV2(O),ψV2(O)
(π) ∼= JU ′O,ψU′O

(π).
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Case 2: p1 − p2 is odd. The proof of part (1) is the same as case 1, with minor

differences. Indeed, u ∈ V2(O) can be written as

u =

(
u1 n1

n2 u2

)
.

Here u1 ∈ GLp1 , u2 ∈ GLp2 are unipotent matrices, and

n1 =


a1

b1

c1

 ∈ Matp1×p2 ,

where

a1 ∈ Mat
(
p1−p2−1

2
)×p2 , b1 ∈ Matp2×p2 is nilpotent, c1 = 0 ∈ Mat

(
p1−p2+1

2
)×p2 ,

and

u2 =
(

0 b2 c2

)
∈ Matp2×p1

where

0 ∈ Mat
p2×(

p1−p2+1
2

)
, b2 ∈ Matp2×p2 is nilpotent, c2 ∈ Mat

p2×(
p1−p2−1

2
)
.

There is no element in the first column of b2, and the first entry of b1 is missing.

For the second column of b2, the only nontrivial entry corresponds to the root (p1 +

1, p1−p2+1
2

+ 2). We use the simple root (p1−p2+1
2

+ 1, p1−p2+1
2

+ 2) to move it to the

positive root (p1−p2+1
2

+ 1, p1 + 1). This is the first entry of the second row of b1. Now

we only miss the second entry in the second row of b1.

Similarly, the (i+ 1)-th column of b2 has i entries, corresponding to the roots

(j,
p1 − p2 + 1

2
+ i+ 1), j = p1 + 1, · · · , p1 + i.

We use the simple root (p1−p2
2

+ i, p1−p2+1
2

+ i+ 1). By root exchange, these roots are

moved to

(
p1 − p2 + 1

2
+ i, j), j = p1 + 1, · · · , p1 + i.

Thus, after this process, we only miss the (i + 1)-th entry in the (i + 1)-th row in

b1. The c2 part can be handled similarly, and the entries in c2 are moved to the first

(p1−p2+1
2
− 1) rows of c1. The missing entries in b1 are the diagonal entries, which are
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exactly the root subgroups that are removed in the definition of U ′O; see Eq. (5.2).

This finishes the proof of part (1).

For part (2), let Y be the subgroup of V2(O) such that u1 = I, u2 = I, n2, a1, c1 =

0, and b1 is diagonal. Then we can verify that Y normalize U ′O and preserve ψUO .

Moreover, U ′OY = UO. By Lemma 5.1.3,

JUO,ψO(π) = 0

if and only if

JU ′O,ψ′O(π) = 0

if and only if

JV2(O),ψV2(O)
(π) = 0.

For the general case, we need to proceed inductively. Notice that if we perform root

exchange on the p3 part using p1, what is done in the previous steps are unchanged.

Therefore, the lemma is true for a general unipotent orbit O.

5.1.3 Vanishing results

Now we prove the vanishing property of the twisted Jacquet modules of Θ attached

to the unipotent orbits either greater than or not comparable with (nab).

Let V1m−1,r−m+1 be the unipotent radical of the parabolic subgroup P1m−1,r−m+1

with Levi part GL
×(m−1)
1 ×GLr−m+1. Let

ψm−1(v) = ψ(v1,2 + · · ·+ vm−1,m),

and

ψ̃m−1(v) = ψ(v1,2 + · · ·+ vm−2,m−1)

be two characters of V1m−1,r−m+1. Notice that (V1m−1,r−m+1, ψm−1) is the same as

(UO, ψUO) where O = (m1r−m).

We consider slightly more general characters. Letm′ ≥ m, and ε = (εm, εm+1, · · · , εm′−1) ∈
Fm′−m. Let

ψm−1,ε(v) = ψ(v1,2 + · · ·+ vm−1,m + εmvm,m+1 + · · ·+ εm′−1vm′−1,m′)

be a character of V1m′−1,r−m′+1.
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Lemma 5.1.6. If m > n, then

JV
1m
′−1,r−m′+1

,ψm−1,ε(Θ) = 0.

In particular,

JV1m−1,r−m+1,ψm−1
(Θ) = 0.

Proof. We prove this by induction on r−m′. When r = m′ ≥ m, the pair (V1r−1,1, ψr−1,ε)

can only be (U, ψλ) where λ is a partition of the form (m′′ · · · ) with some m′′ ≥ m.

The result follows Corollary 3.6.5 since m′′ ≥ m > n.

Now assume the result is true for m′ and we prove it m′− 1 if m′− 1 ≥ m. Define

Rm′−1 to be the subgroup of U such that any element u = (uj,l) ∈ Rm′−1, uj,l = 0,

unless j = m′ − 1. The group Rm′−1 acts on V1m′−2,r−m′+2. For any character ξ of

Rm′−1,

JRm′−1,ξ
(JV

1m
′−2,r−m′+2

,ψm′−2,ε
(Θ)) = 0

by induction. This implies

JV
1m
′−2,r−m′+2

,ψm′−2,ε
(Θ) = 0.

This finishes the proof.

Lemma 5.1.7.

JV1n−1,r−n+1,ψn−1(Θ) ∼= JV1n,r−n,ψ̃n(Θ).

Proof. The group Rn acts on V1n−1,r−n+1. For any nontrivial character ξ of Rn,

JRn,ξ(JV1n−1,r−n+1,ψn−1(Θ)) = 0

by Lemma 5.1.6. Therefore, the action of Rn on JV1n−1,r−n+1,ψn−1(Θ) is trivial, and

JV1n−1,r−n+1,ψn−1(Θ) ∼= JV1n,r−n,ψ̃n(Θ).

Now we are ready to prove Theorem 5.1.1 part (1). Indeed, since p1 > n,

JUO,ψO(Θ) = J∗(JV
1p1−1,r−p1+1

,ψp1−1(Θ)) = 0.

Here ∗ is some unipotent subgroup of V2(O). By Lemma 5.1.4, this implies

JV2(O),ψV2(O)
(Θ) = 0.
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5.1.4 Nonvanishing results

In this subsection, O = (nab). For 1 ≤ i ≤ a, consider V1in−1,r−in+1 and its

characters attached to the partitions (ni) and (ni−1(n + 1)), respectively. We can

prove the following lemma by using the same arguments in Lemma 5.1.6 and 5.1.7.

Lemma 5.1.8.

(1) JV1in,r−in,ψ(ni−1(n+1))
(Θ) = 0.

(2) JV1in−1,r−in+1,ψ(ni)
(Θ) ∼= JV1in,r−in,ψ(ni)

(Θ).

Now we prove the following nonvanishing result (Theorem 5.1.1 part (2)).

Proposition 5.1.9. JV2(O),ψV2(O)
(Θ) 6= 0.

Proof. It suffices to show that JUO,ψUO (Θ) 6= 0. Indeed,

JUO,ψUO (Θ) =JU2((na−1b)),ψU2((n
a−1b))

(JV1n−1,r−n+1,ψ(n)
(Θ))

∼=JU2((na−1b)),ψU2((n
a−1b))

(JV1n,r−n,ψ(n)
(Θ)).

Here, U2((na−1b)) is viewed as a subgroup of U via the embedding u 7→ diag(In, u).

Now we apply root exchange in U2((na−1b)). The root exchange does not change

anything we did in the previous step. Thus,

JU2((na−1b)),ψU2((n
a−1b))

(JV1n,r−n,ψ(n)
(Θ)) 6= 0

if and only if

JU(na−1b),ψU(na−1b)
(JV1n,r−n,ψ(n)

(Θ)) 6= 0.

Here, U(na−1b) is again viewed as a subgroup of U via the same embedding. By Lemma

5.1.8,

JU(na−1b),ψU(na−1b)
(JV1n,r−n,ψ(n)

(Θ))

=JU2((na−2b)),ψU2((n
a−2b))

(JV12n−1,r−2n+1,ψ(n2)
(Θ))

∼=JU2((na−2b)),ψU2((n
a−2b))

(JV12n,r−2n,ψ(n2)
(Θ)).

Here, U2((na−2b)) is viewed as a subgroup of U via u 7→ diag(I2n, u).

Now we repeat this process inductively. This implies that JV2(O),ψV2(O)
(Θ) 6= 0 if

and only if

0 6= JU2((b)),ψU2((b))
(JV1an,r−an,ψ(na)

(Θ)) = JU,ψ((nab))
(Θ).
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The result follows from the nonvanishing results of the semi-Whittaker functionals

(Corollary 3.6.7).

Now suppose that n, b have the same parity. By Lemma 5.1.5 part (3), in all the

steps of the above proof, we actually obtain isomorphisms of twisted Jacquet modules,

instead of “if and only if” statements. This proves the following result.

Proposition 5.1.10. When n and b have the same parity,

JV2(O),ψV2(O)
(Θ) ∼= JU,ψλ(Θ),

where λ is the partition (nab).

When r is a multiple of n, combining with Corollary 3.6.9, we obtain the following

uniqueness result.

Theorem 5.1.11. When r = mn and O = (nm),

dim JV2(O),ψV2(O)
(Θ) = 1.

Remark 5.1.12. We already proved the local results at good primes. At bad primes,

these statements would be valid once we have the corresponding vanishing results of

semi-Whittaker functionals.

This new unique functional in Theorem 3.6.9 is valuable and it already finds

applications in Rankin-Selberg integrals for covering groups. The first – doubling

constructions for covering groups – will be discussed in Section 6.1. This unique

functional also plays a role in a new-way integral (Euler products with non-unique

models) for covering groups; see Ginzburg [Gin16].

5.2 Unipotent Orbits: Global Results

We are back to the global situation in this section. Let Θ = Θr be the global

theta representation on G̃Lr(A), defined in Section 4.1. Let (nab) be the unipotent

orbit of GLr as in Section 5.1.

Theorem 5.2.1. The unipotent orbit attached to Θ is (nab). In other words, O(Θ) =

(nab).

This follows from Proposition 5.2.3 and 5.2.4.
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5.2.1 Root exchange lemma: global version

The following global root exchange lemma is proved in [JL13] Lemma 5.2; see also

Ginzburg-Rallis-Soudry [GRS11] Section 7.1. This is the global version of Lemma

5.1.3.

Let C be an F -subgroup of a maximal unipotent subgroup of GLr, and let ψC

be a nontrivial character of C(F )\C(A). Let X̃, Ỹ be two unipotent F -subgroups,

satisfying the following conditions:

(a) X̃ and Ỹ normalize C;

(b) X̃∩C and Ỹ ∩C are normal in X̃ and Ỹ , respectively; (X̃∩C)\X̃ and (Ỹ ∩C)\Ỹ
are abelian;

(c) X̃(A) and Ỹ (A) preserve ψC ;

(d) ψC is trivial on (X̃ ∩ C)(A) and (Ỹ ∩ C)(A);

(e) [X̃, Ỹ ] ⊂ C;

(f) there is a nondegenerate pairing (X̃ ∩ C)(A) × (Ỹ ∩ C)(A) → C×, given by

(x, y) 7→ ψC([x, y]), which is multiplicative in each coordinate, and identifies

(Ỹ ∩C)(F )\Ỹ (F ) with the dual of X̃(F )(X̃∩C)(A)\X̃(A), and (X̃∩C)(F )\X̃(F )

with the dual of Ỹ (F )(Ỹ ∩ C)(A)\Ỹ (A).

Let B = CỸ and D = CX̃, and extend ψC trivially to characters of B(F )\B(A)

and D(F )\D(A), which are denoted by ψB and ψD, respectively.

Lemma 5.2.2. Assume the quadruple (C,ψC , X̃, Ỹ ) satisfies the above conditions.

Let f be an automorphic form on G̃Lr(A). Then∫
C(F )\C(A)

f(cg)ψ−1
C (c) dc ≡ 0, ∀g ∈ G̃Lr(A),

if and only if ∫
B(F )\B(A)

f(ug)ψ−1
C (u) du ≡ 0, ∀g ∈ G̃Lr(A),

if and only if ∫
D(F )\D(A)

f(ug)ψ−1
C (u) du ≡ 0, ∀g ∈ G̃Lr(A).
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5.2.2 Vanishing results

Proposition 5.2.3. Let θ be in the space of Θr. Let O be a unipotent orbit which is

greater than or not comparable to (nab). Then the integral∫
U2(O)(F )\U2(O)(A)

θ(ug)ψU2(O)(u) du

is zero for all choices of data.

Proof. As in the case of semi-Whittaker coefficients, the global vanishing result follows

from the local vanishing result. Let v be a nonarchimedean place of F such that

|n|v = 1 and Θr is unramified at v. If∫
U2(O)(F )\U2(O)(A)

θ(ug)ψU2(O)(u) du

is nonzero, then the functional

θ 7−→
∫

U2(O)(F )\U2(O)(A)

θ(ug)ψU2(O)(u) du

induces a nonzero functional on Θr,v which factors through the twisted Jacquet module

for the character ψU2(O)(u) on the group U2(O)(Fv). This contradicts the local result.

5.2.3 Nonvanishing results

Proposition 5.2.4. Let θ be in the space of Θr. Let O = (nab). Then the integral∫
U2(O)(F )\U2(O)(A)

θ(ug)ψU2(O)(u) du

is nonzero for some choice of data.

Proof. The proof is analogous to the local case. Once we have the global root ex-

change lemma and global vanishing results, the nonvanishing results follow from the

corresponding nonvanishing results on the semi-Whittaker coefficients. Notice that

the global version of Lemma 5.1.6, 5.1.7 and 5.1.8 can be established by using the

corresponding local results. We omit the details. We remark that a more general

result on relations between these two types of Fourier coefficients can be found in

[Cai16a, GGS16].
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Doubling Constructions for

Covering Groups

In the 1980’s, Piatetski-Shapiro and Rallis [GPSR87] discovered a family of Rankin-

Selberg integrals for the classical groups that did not rely on Whittaker models. This

is the so-called doubling method. In the joint work with Friedberg, Ginzburg and

Kaplan [CFGK17], we give a generalization of the doubling method. We present a

family of integrals representing tensor product L-functions of classical groups with

general linear groups. Our construction is uniform over all classical groups and their

non-linear coverings, and is applicable to all cuspidal representations.

In this chapter, we present some details for the first covering case. That is the

standard L-function for an irreducible genuine cuspidal automorphic representation

on the 3-fold cover of Sp2.

6.1 Whittaker-Speh-Shalika representations

The global integral given in [CFGK16, CFGK17] relies on the following unique

models: matrix coefficients and a degenerate type unique model on general linear

groups. We recall the definition here.

Definition 6.1.1. An irreducible genuine automorphic representation π of G̃Lab(A)

is a Whittaker-Speh-Shalika representation of type (a, b) if:

(1) O(π) = (ab).

56
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(2) For a finite place v, let πv denote the irreducible constituent of π at v. Suppose

that πv is an unramified representation. Then O(πv) = (ab). (That is, the local

analogue of part (1) holds.) Moreover,

dim HomU2((ab))(Fv)(πv, ψU2((ab))) = 1. (6.1)

Thus, when r is a multiple of n, we can rephrase Theorems 5.1.2, 5.1.11 and 5.2.1

as follows.

Theorem 6.1.2. When r = mn, the representation Θ is a Whittaker-Speh-Shalika

representation of type (n,m).

6.2 Global integral

In this section, we give a global integral that represents the standard L-function

for cubic cover of Sp2. All the covers will be cubic covers in this section.

Let π be an irreducible genuine cuspidal automorphic representation on S̃p2(A).

Recall that the dual group of S̃p2(A) is Sp2(C). Thus, we can define the standard

partial L-function LS(s, π) as an Euler product over places outside a finite set of

places S.

Recall that the unipotent orbit attached to the theta representation Θ6 is (32)

and at unramified places, such a model is unique. Consider the Siegel parabolic of

Sp12, and use Θ6 to construct an Eisenstein series E(g, s) on S̃p12(A). We consider

the following integral:∫
Sp2(F )×Sp2(F )\Sp2(A)×Sp2(A)

∫
U0(F )\U0(A)

ϕ1(g1)ϕ2(g2)E(uι(g1, g2), s)ψU0(u) du dg1 dg2.

Here, ϕ1, ϕ2 ∈ π. The unipotent group U0 and character ψU0 are defined as follows.

Given a matrix, let X[i, j] denote its (i, j)-coordinate. The group U0 is the unipotent

radical of the standard parabolic subgroup whose Levi subgroup is GL2×GL2×Sp4.
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In terms of matrices, we write

U0 =


u =



I2 X1 ∗ ∗ ∗
I2 X2 ∗ ∗

I4 ∗ ∗
I2 ∗

I2


∈ Sp12


and

ψU0(u) = ψ(tr(X1) +X2[1, 1] +X2[2, 4]).

The “doubling” map

ι : Sp2 × Sp2 → Sp12

is given by

(g1, g2) 7→



g1

g1

g11 g12

g2

g13 g14

g∗1

g∗1


,

where g1 =

(
g11 g12

g21 g22

)
.

When Re(s)� 0, this integral is absolutely convergent. We plug in the definition

of the Eisenstein series. After unfolding, we can show that the above integral is∫
Sp2(A)

∫
U1(A)

〈ϕ1, π(g)ϕ2〉fW (Θ)(δu0ι(1, g), s)ψU0(u1) du1 dg.

Here the matrix coefficient is given by

〈ϕ1, π(g)ϕ2〉 =

∫
Sp2(F )\Sp2(A)

ϕ1(g1)ϕ2(g1g) dg1,

the element δ is

(
I6

−I6

)
I4

I2 I2

I2

I4

 ,
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and U1 is the subgroup of U0 consisting of elements of the form

I2 ∗ ∗ ∗
I2 ∗ ∗ ∗

I2 ∗ ∗
I2

I2

I2


.

The global integral is Eulerian, thanks to the unique model on Θ6. At unramified

places, the corresponding local integral represents

L(21s− 10, π)

ζ(21s− 7)ζ(42s− 20)ζ(42s− 18)ζ(42s− 16)
,

where ζ(·) is the Dedekind zeta function for F .
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[GJ78] Stephen Gelbart and Hervé Jacquet. A relation between automorphic
representations of GL(2) and GL(3). Ann. Sci. École Norm. Sup. (4),
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