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ESSAYS ON FUND FAMILIES: TIES AND TRADE OFFS  

by 

HAROLD D. SPILKER III 

Advisor: Ronnie Sadka 

In the first essay of this dissertation, I study the impact that hedge fund manager connections have on 

investment ideas. I find that hedge fund managers who previously worked at the same prior hedge fund 

invest more similarly, hold more overlapping portfolios, and trade and overweight the same stocks 

relative to managers who do not share an employment connection. Overall, these results support 

theoretical prediction that networked managers share ideas that leads to price discovery for commonly 

held stocks. 

The second essay analyzes the role of ETFs in mutual fund families and is joint work with Caitlin 

Dannhauser. We study mutual fund and ETF twins - index funds from the same family that follow the 

same benchmark. We find that mutual fund twins have lower overall tax burdens while ETF twins have 

higher long-term yields and unrealized capital gains, but are compensated with lower expense ratios. 

Fund families benefit because twin offerings generate higher flows than their non-twin peers. These 

results support previous research that mutual fund families use diversification and subsidization to 

benefit the overall family. 

In the third essay, I study the use of latent factors in explaining hedge fund returns. Using an 

alternative latent factor estimator, asymptotic principal components (APC), I find explains more of the 

common variation of hedge fund returns on average and does so with greater efficiency than that found 

in the literature. I also identify an increase in the common variation across hedge fund excess return in 

the time-series via the extracted latent factors. My results suggest an impetus for future researchers to 

employ APC factors when characterizing hedge fund performance. 
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Abstract

Social connections are an important determinant for investment decisions. Using a pro-

prietary dataset of hedge fund manager employment backgrounds, I find that hedge fund

managers who previously worked at the same hedge fund invest more similarly and hold over-

lapping portfolios up to 49% more than managers who do not share an employment connection.

Furthermore, related managers contemporaneously herd more and over-weight the same stocks

versus unconnected managers, providing evidence for the social exchange of investment ideas

within a network. A long/short portfolio of overlapped-connected/unique-unconnected stocks

generates alpha of 4.5% per year and permanently conveys private information to asset prices.

These findings support the “quid-pro-quo” model of Stein (2008) and confirms that shared

employment histories signal increased ex-ante correlations between connected portfolios.
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and Ronnie Sadka (chair)) for their assistance on this article–the first essay in my doctoral dissertation. I am also
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Economic and Risk Analysis. Spilker is from the Carroll School of Management, Boston College, 140 Commonwealth

Avenue, Chestnut Hill, MA 02467; Contact: tray.spilker@bc.edu or www2.bc.edu/tray-spilker.
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“It is not the consciousness of men that determines their being, but, on the contrary,

their social being that determines their consciousness.”

– Karl Marx, A Contribution to the Critique of Political Economy (1859)

Introduction

Given the human condition is an inherently social one, as Marx points out, individuality is di�cult

to divorce from the social fabric from which it is collectively shaped. This sentiment is found in

the English literature as early as the 17th century, when John Donne penned that “No man is an

island entire of itself.”1 In more recent history, the popular press has noted the primacy of social

networks over individual intelligence, coining the common saying – “It’s not what you know; it’s

who you know.”2 Given the recent rise of social networking platforms, the market has ensconced

social valuation in asset prices today. The combined market capitalizations of the three largest

social networking platforms Facebook, Twitter, and Snapchat total $426 billion, or 2.6% of U.S.

GDP, as of this writing.3

The financial literature identifies the economic consequence of social networks as well. Hong,

Kubik, and Stein (2005) are among the first to establish word-of-mouth e↵ects among mutual fund

managers. The authors find that managers working in the same city buy more of the same stocks

when their co-located peers do so. Pool, Sto↵man, and Yonker (2015) find that mutual fund man-

agers who live in the same neighborhood invest in the same stock more often than managers who are

not neighbors. Hochberg, Ljungqvist, and Lu (2007) find more highly networked venture capitalists

outperform lesser-networked competitors by virtue of their superior ability to exit investments prof-

itably. Furthermore, Cohen, Frazzini, and Malloy (2008) show that mutual fund managers generate

outsized returns when trading connected stocks, where the connection is between the manager and

a corporate board member who attended the same university.

In this study, I explore whether connected hedge fund managers – those who used to work

for the same prior hedge fund – invest more similarly relative to managers who worked at di↵ering

1Meditation 17, John Donne, Devotions upon Emergent Occasions XVII,1623
222 September, 1918, New York (NY) Tribune, “U. S. to Act to Oust Ship Work Slackers,” pg. 9, col. 1
3LinkedIn was included in the original version of this paper. The final valuation of LinkedIn was roughly $26

billion prior to its acquisition by Microsoft in December 2016. See: https://www.wsj.com/articles/microsoft-closes-

acquisition-of-linkedin-1481215151
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hedge funds; i.e., unconnected managers. I bring to the literature a proprietary dataset of over

500 hedge fund manager employment histories. These hedge fund managers hail from the largest

networks of hedge fund managers in the industry, thus providing many testable connections for

statistical inference. I obtain quarterly portfolio holdings for each hedge fund using form 13F that

is made available by the U.S. Securities and Exchange Commission (SEC). Unfortunately, 13F

covered securities include only long positions in public equities. Hence, the analysis is confined to

the long side of a hedge fund’s portfolio; a common constraint in the hedge fund literature using

13F data.

In my first test, I use the pair-wise fund-level portfolio overlap measure of Pool et al. (2015)

to measure quarterly portfolio overlap between each pair of hedge fund managers in my sample. I

find portfolio overlap is 29.7% higher among connected hedge fund managers who share a common

employment history. Since my identification relies on 13F disclosures, it follows that estimating

portfolio overlap between managers pursuing strategies that are not well identified through long

equity positions merely adds noise. Hence, when I constrain the test only to long/short equity

hedge funds, portfolio overlap increases to 48.5% among connected managers. This baseline result

shows that network connections are an important determinant for hedge fund manager investment

decisions.

In addition to the social network channel, overlapping portfolios can also obtain from similar

preference sets obtained from working for the same prior hedge fund manager. The manager origin

literature identifies a learning channel that leads to manager fixed-e↵ects. Bertrand and Schoar

(2003) find corporate managers gain valuable portable skills from former workplaces that can be

traced to the manager as they impact corporate actions in subsequent executive roles. Papageorgiou,

Parwada, and Tan (2011) show that hedge fund managers with prior experience at hedge funds

outperform those managers with training at other types of firms. Subsequently, hedge fund managers

of the same background are likely to have learned to follow similar investment approaches.

In e↵ort to disentangle the channels that lead to overlapping portfolios, I construct treat-

ment and control groups to conduct stock-level tests in a di↵erences-in-di↵erences framework. The

treatment group is formed by those managers who previously worked for one of the largest and

most influential hedge funds in the industry’s history; Tiger Management. Hedge fund managers

belonging to this treatment group are known colloquially as “Tiger Cubs” and represent a sizeable

fraction of the industry with over $250 billion in combined assets; roughly 13% of total industry
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assets in 2011 (Mallaby (2011)). I find the treatment group of managers concentrates more portfolio

risk in fewer positions on average, and more actively trade their respective portfolios relative to the

remaining sample of hedge funds.

These two investment decisions – portfolio construction and turnover – are shown to be im-

portant determinants of performance in the literature. Kacperczyk, Sialm, and Zheng (2005) find

that managers who hold concentrated portfolios in industries where they possess informational ad-

vantages outperform more diversified portfolios. Pastor, Stambaugh, and Taylor (Forthcoming)

show that hedge fund managers trade more in the presence of alpha producing trades, thus higher

turnover generates superior excess returns. Hence, I posit that portfolio construction and turnover

decisions are an important determinant in fund performance that arise from adopting techniques of

a formative mentor and is shared across a network of connected hedge fund managers.

I create a control group by matching the treatment group on these learned characteristics

that are observable in form 13F; average number of quarterly holdings, average position weighting,

and turnover. In my first stock-level analysis, I find that connected managers conditionally herd

more into stocks (Wermers (1999)), and over-weight these overlapped stocks by 12.4% relative to

unconnected hedge funds. This finding is incremental to the 13% gain due to the word-of-mouth

e↵ect found by Hong et al. (2005), as I also match on the city where funds are headquartered.

Presumably, connected managers who share valuable investment ideas do so with an expecta-

tion of receiving credible investment leads from their network in the future. Stein (2008) models this

“quid pro quo” behavior among fund managers, whom are in direct competition for fund flows, as

an incentive-compatible equilibrium where the cost of lying in the model is high for the agent who

does so, and where bad ideas never propagate beyond the incipient discussion stage. Supporting

this, I find overlapped positions drive risk-adjusted return di↵erences between the treatment and

control groups. The treatment group derives 25% more of its alpha from commonly held positions

in the network relative to the control group.

Importantly, this confirms information transfer to security prices, which Pool et al. (2015) also

find among shared positions of mutual fund managers who are neighbors. The authors argue the

impact on security prices is not merely endogeneity resulting from shared preference sets leading

to similar trading conclusions as modeled by Froot, Scharfstein, and Stein (1992), but rather is

indicative of valuable information transmitting through a network of neighboring fund managers.

My findings support a similar hypothesis that a social network among hedge fund managers who
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share a common employment history is active and conveying information to security prices. It is

hard to imagine a scenario where overlapped positions persist over the sample as a result of shared

fixed-e↵ects, particularly in the presence of contemporaneous herding and over-weighting behavior.

I buttress the network channel conclusion with results on cumulative average abnormal returns

as used in Coval and Sta↵ord (2007). I show that abnormal returns to stocks held by connected

funds are higher than those held by unconnected funds. More importantly, this di↵erence of 15%

is statistically significant and is not mean reverting, indicating that information transmitted via

connected managers carries private information to asset prices. If the shock were transitory, the

alternative hypothesis of no information – where the network is merely exerting price pressure akin

to a “pump and dump” strategy – would be more likely.

A counterfactual where lesser informed funds within the network follow the holdings data of

fellow funds they deem better informed is possible (Bikhchandani, Hirshleifer, and Welch (1992)).

And hedge fund managers may also follow certain connected members’ investing decisions inten-

tionally to ensure they su↵er no reputational degradation that may result from under-performing

funds in the same network (Scharfstein and Stein (1990)). However, my results on herding behavior

(Wermers (1999)), show that the treatment group conditionally herds more into and out of stocks

relative to the control group. Thus, mimicking behavior within a network is likely a second order

e↵ect, giving primacy to the network channel.

In a contemporaneous paper, Gerritzen, Jackwerth, and Plazzi (2016) use a similar identifica-

tion of prior employment histories to show that connected hedge fund managers have more similar

risk exposures relative to unconnected managers. Thus, our findings are mutually supportive. My

study reaches further, however, to identify how similar risk exposures manifest across connected

managers. As such, I identify that the channel for performance similarities arises not only from

shared investment behaviors via a learning channel,4 but also through shared investment positions

conveyed through a lively social network, which I attempt to disentangle. Furthermore, I show these

connections have an impact on the cross-section of hedge fund returns, drive abnormal performance

within a connected network of funds, and convey information to asset prices.

Lastly, my results contribute to the fund family literature. Brown, Fraser, and Liang (2008)

note that the cost of initial due diligence on a prospective hedge fund manager exceeds $1 million and

4In this study, I use the term ‘learning channel’ to describe the acquisition mechanism that leads to manager

fixed-e↵ects found in Bertrand and Schoar (2003).
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400 man hours. Further, Anson (2006) recommends spending 75 - 100 hours reviewing a hedge fund

manager before investing. Thus, leveraging fund family structures is one avenue to reduce search

related expenses. But, unlike mutual funds, managers who depart a brand name hedge fund often

establish independent funds with no formal ties to their former employer. Several factors are likely

to contribute to this di↵erence. First, the “2+20” incentive structure of the hedge fund industry

leads many portfolio managers within reputable hedge fund firms to strike out independently to

capitalize on the cache of their training. Second, relative to the administrative and financial burden

that would accompany a similar mutual fund launch, these managers face a lower regulatory burden

when establishing a hedge fund management company. Therefore, mutual fund starts typically occur

within families as a larger fund family can more easily handle this burden.

Unfortunately, investors who rely on family a�liation to source new funds face an inher-

ent problem among independent hedge fund managers (Massa (2003), Gervais, Lynch, and Musto

(2005)), as search becomes more costly when fund family a�liation is not readily apparent (Sirri

and Tufano (1998)). However, when marketing their funds, hedge fund managers necessarily dis-

close their roles at prior employers as part of the due diligence process; with an expectation that

their a�liation will o↵er a signal about their skill. Hence, by identifying connections between hedge

fund managers, an informal fund family structure materializes, thereby providing a credible signal

to reduce search costs. Additionally, given my results on connected managers, investors can use

this “family” signal to more e�ciently diversify portfolios of hedge funds by identifying hedge funds

managers ex-ante whose performance is likely to be highly correlated (Elton, Gruber, and Green

(2007)).

This paper is organized as follows. Section 1 discusses construction of the dataset and identifies

the treatment group. Section 2 describes the methodological setting, including the matching process

used to build the control group. Section 3 presents evidence that connected hedge funds have

a higher percentage of overlapping portfolios. I attempt to dissentangle the channels that lead

to overlapped portfolios in Section 4, by analyzing conditional herding tendencies and allocation

decisions to commonly held positions. Section 5 provides evidence that these common positions drive

abnormal returns, suggesting that information flows through a connected network and impacts asset

prices, which I confirm later in the section with asset pricing implications. I conclude in Section 6.
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1 Data and Sample Construction

I utilize a novel proprietary dataset of just over 500 hedge fund manager employment histories

gleaned from the largest institutional investors and investment advisors in the U.S. As such, this

selection of funds may produce di↵erentiated returns and have more onerous lockup provisions

relative to an unbiased sample, as these hedge funds are considered “best of breed” in the industry.5

This list is cross-checked with internet searches and news wires to validate data quality. Reference

sights include LinkedIn, Bloomberg, Insider Monkey, HF Alert, and MarketFolley, among others.

To this dataset, I hand match hedge funds to regulatory filings administered by the SEC, firstly

by matching the name of the fund, then by the first filing date which corresponds most closely to

the fund’s inception date. From this, I obtain quarterly hedge fund portfolio holdings as reported in

form 13F and made available in the Thomson Reuters Institutional Holdings Database (s34 master

file).6 Notably, 13F filings only identify long positions held in a given quarter-end portfolio, which

truncates observations on the short side of a hedge fund’s portfolio. Thus, my analysis is restricted

to observed holdings within the long portfolios of my sample of hedge funds.

As identified in Aragon and Martin (2012), 13F filings contain information at the advisor level

such that for larger asset management firms, holdings based data may incorporate multiple funds

in the fund family, which may include portfolios other than hedge funds. Thus, I screen my sample

to those funds whose line of business consists solely of hedge fund strategies (e.g., I exclude the likes

of Merrill Lynch, GAMCO, etc.). Further, since I am using 13F holdings information to identify

holding patterns across hedge fund networks, I restrict my sample to long/short hedge funds as this

strategy is best identified by the information contained in 13F forms, resulting in 296 hedge funds

in the base sample.

Thomson Reuters uses two date fields. RDATE (reporting date) represents the end of quarter

date for which holdings information is valid, and FDATE, which is a vintage field created by

5Aragon (2007) shows that funds with lockup restrictions earn excess returns of 4-7% relative to funds without

lockup clauses.
6Enacted in 1975, Section 13(f) of the Securities Exchange Act of 1934 requires institutional investment managers

who manage over $100 million to file 13F forms within 45 days after the end of each quarter. These filings contain

information on the fund’s investment holdings at the end of the respective quarter that are defined as 13F securities.

These include public equities, closed-end funds, exchange traded funds (ETFs), certain equity options and warrants,

as well as certain convertible bonds.
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Thomson Reuters to ensure continuity of holdings information when a fund is late in reporting

to the SEC (i.e., RDATE is carried forward). Thomson Reuters notes that a “slight majority” of

RDATEs coincide with the same FDATE for mutual funds found in the s12 master file, but that

RDATE and FDATE are the same in a “large majority” of investment companies in the s34 master

file. None the less, I follow standard practice and use only observations where RDATE is equal to

FDATE to restrict stale data from my sample.7

Among the sample, one hedge fund employer stands out for generating the largest number of

independent long/short hedge funds; Tiger Management. From its launch in 1980 to its e↵ective

closure in 2000,8 Julian Robertson’s Tiger Management generated annualized returns of roughly

19% and grew to $22 billion in assets, which was second only to George Soros’ Quantum fund at

the time. Over its history, Tiger Management spun out myriad portfolio managers who subsequently

established their own competing hedge funds. In sum, I’ve identified some 69 “Tiger Cubs,” who

themselves sired 30 “Grand Cubs” and 4 “Great Grand Cubs,” the sum of which oversee more than

$250 billion in assets, or roughly 13% in total hedge fund assets in 2011(Mallaby (2011)). Due to

the size of the connected funds in this network, I use them as the treatment group in my study.

Unfortunately, only 55 members of the treatment family have a history of 13F filings, which is

further reduced to 46 after limiting the analysis to long/short hedge funds with a U.S. geographic

focus. Lastly, I include only those funds with at least eight quarters worth of holdings of data

resulting in a treatment group of 42 funds. The 13F filing requirement pertains to covered securities

in the U.S., therefore hedge funds who invest mainly outside the U.S. will not be well identified

by 13F holdings. Separating my treatment group from the remaining sample, and filtering the

remaining sample by the above criterion results in 232 funds from which to select a control group.

In sum, the data for this study covers quarterly observations from January, 2000 to December, 2013,

containing 156,494 stock-quarter observations across 274 distinct hedge funds.

7See the Thomson Reuters User Guide found on the Wharton Research Data Service website: https://wrds-

web.wharton.upenn.edu
8Julian Robertson closed the fund to outside capital and returned funds to investors after substantial losses. Tiger

Management remains a family o�ce known for its hedge fund seeding program.
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2 Methodology

Allocation decisions in active fund management explain a large proportion of resultant performance

(Markowitz (1959) and Sharpe (1970)). These decisions are typically embedded in portfolio con-

struction and risk management techniques that govern what proportion of assets a manager allocates

to an investment idea, an industry, net- and gross-market exposures, and hedging strategies, among

others. Portfolio construction, specifically, dictates how much investment risk is concentrated in

any single investment, across any groupings of positions (e.g., the total weightings of the largest

ten investments, or to any single industry), how many total investments are held in the portfolio in

a given cross-section, and upper bounds on weightings for the highest conviction investments. The

discipline of portfolio construction balances the manager’s desire to generate excess returns from

over-weighting her best investment ideas, against putting the firm’s survival at risk if the investment

thesis fails.

To the extent that correlated portfolio construction behavior among connected hedge funds

manifests, a logical channel to explain this phenomena may be shared influence from a formative

mentor. Influence from other channels is unlikely to drive such a critical investment management

decision, particularly as the heterogeneity of management styles does not predict which portfolio

characteristics may follow. Hence, I argue that similarities in portfolio construction characterize a

learned skill shared across connected managers, and thus I construct my control group by matching

on these characteristics.

[Table 1 here]

Table 1 presents summary portfolio characteristics for the treatment group and the remaining

unmatched sample. A discernible di↵erence quickly emerges between the treatment and unmatched

sample. The treatment family holds decidedly fewer positions during an average quarter, 39 versus

the sample’s 95. Further, the average number of positions is remarkably consistent among funds in

the treatment group as shown by the standard deviation of 23 positions, which stands in contrast to

the distribution of average number of holdings for the unmatched sample of 165 positions. Figure

1 shows the distribution of quarterly holdings for both the treatment and unmatched sample. The

treatment group clearly holds fewer positions on average, resulting in more concentrated portfolios

and larger allocations to each holding on average. The di↵erence in weights assigned to the average

position between the two groups is stark; the treatment group allocates 2.5 times more to an average
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position relative to the treatment group, 2.58% vs. 1.05%.9

[Figure 1 here]

Interestingly, the average holding size of investments in their predecessor’s portfolio, Tiger

Management, is smaller. Thus, it would be hard to conclude these funds transported a learned

skill. Julian Robertson ran a much more diversified portfolio with average position size of around

1% of assets.10 Yet, the summary statistics on the long/short treatment group indicate that these

connected managers share a proclivity to run concentrated equity portfolios on the long side. This

concentration of risk, combined with the fact that connected funds show a more narrow dispersion

in average position size, suggests treatment funds employ similar investment techniques which likely

originate from the learning channel.

2.1 Control Group Construction

Following my baseline specification, the remainder of tests in this paper rely on comparing position

weights between the treatment group and a yet to be established control group. I thus attempt

to control for the learning channel mechanism in e↵ort to tease out ongoing social connections by

identifying a matched control group based on similar portfolio construction. I perform a two nearest-

neighbor match (without replacement) firstly on fund start date, then on fund longevity, average

number of quarterly holdings, average position weighting, average turnover, and headquarter loca-

tion. In this setting, a fund’s start date is the first date for which a 13F report exists. Matching on

this measure ensures both the treatment and control groups encountered similar market conditions

at the incipient stage of their respective life cycles. Fund longevity is measured as the di↵erence

from the first 13F filing date to the last, and is used to ensure that I have a similar number of funds

in the matched control group through the time-series. Since the unit of analysis relies on position

level detail and portfolio construction behavior to define characteristics of hedge fund networks, I

match on the average number of securities and average position weighting calculated from a fund’s

respective quarterly 13F filing history. Lastly, matching on location adjusts for the Hong et al.

(2005) finding that fund managers in the same city exhibit word-of-mouth e↵ects by trading the

same stocks in a given quarter when their co-located peers do so.

9Here, I define position weighting as fund j’s dollar allocation to stock i at the end of quarter t, divided by the

sum of all dollar allocations by fund j for that quarter.
10Thanks to Christopher Schwarz (discussant) for identifying this contradiction
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The final panel of Table 1 contains summary information for the matched control group.

As shown, the average number of 39 quarterly holdings is the same across the two groups, which

results in average position weights of 2.6%. Matching on average life results in fund longevity of

32 quarters for each group. Notably, a wedge appears between the long assets invested between

treatment and control groups; $1.56 billion versus $778 million. While it is a common identification

strategy to include portfolio size ( or assets under management, AUM) as a matching criterion

for control group construction, I assert that deviations in AUM between connected managers is

not a learned trait from the perspective of a manager fixed-e↵ect. Just as portfolio management

techniques is to alpha production, asset raising strategies are not guaranteed to result in flows. And

since AUM is an outcome variable where the input is latent (ie., the manager’s marketing strategy),

it would not be appropriate to use as a matching variable in this setting.11 Furthermore, larger

asset flows enjoyed by connected managers in the treatment group likely arise from the variation

that we are attempting to measure. For example, it’s possible that as a result of their known

pedigree–and hence, network connections–higher flows follow. This is an important characteristic

because as assets accrue to the average hedge fund, typically the manager is compelled to reduce

portfolio concentration and increase the average number of securities held in the portfolio. This

suggests that connected managers in the treatment group might be more able to hew to their initial

investment strategies of running more concentrated portfolios.

3 Network Connections and Portfolio Overlap

Do connected hedge funds invest in a more coordinated fashion on average? Further still, do they

invest with more conviction when fund managers of the same ancestry invest similarly? A positive

response to either would indicate a tie between connected funds, but a positive finding for the latter

would suggest that connected funds share investment ideas through an active network.

In this section, I explore the first question in my baseline test; whether connected managers

co-invest more often relative to unconnected managers. I use the PortOverlap measure o↵ered by

Pool et al. (2015) in my main analysis, with the notation adjusted slightly. The authors measure

11Matching on portfolio size reduces the close fit between the treatment and control group in terms of obervable

control variables stemming from portfolio construction strategies.
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portfolio overlap as a pairwise connection between funds j and k during quarter t as

PortOverlapj,k,t =
X

i2Ht

min
�
wi,j,t, wi,k,t

 
. (1)

where wi,j,t is fund j’s portfolio weight in stock i during quarter t, wi,k,t is the same for fund k, and

Ht is the set of all stocks held by funds j and k as reported at the end of quarter t. For example,

if during quarter t fund j has 5% allocated to stock i, and fund k has 10% allocated to the same

stock i, then PortOverlap is equal to 5% for this fund-pair during quarter t. Using this measure as

my dependent variable, I estimate the following specification,

PortOverlapj,k,t = ↵ + �SameNetworkj,k,t + �SameCityj,k,t + �0Controlsj,k,t + "j,k,t, (2)

where, SameNetworkj,k,t is a dummy variable equal to one if fund j and fund k belong to the

same hedge fund network, SameCityj,k,t is a dummy variable that is one if fund j and fund k

are headquartered in the same city, and Controlsj,k,t is a vector of control variables. As controls,

I include (a) a set of dummy variables that are equal to one if funds j and k pursue the same

hedge fund strategy (Activist, Equity Long/Short, Equity Market Neutral, Event Driven, Macro,

and Multi-Strategy); (b) the AUM-based quintiles of funds j and k (AUMQuintAvg); and (c) the

absolute value in the di↵erences between AUM-based quintiles of funds j and k (AUMQuintDi↵ ).12

Table 2 shows estimates and standard errors for various forms of the regression detailed in

equation 3. Given the model is performed in a pairwise fashion, the same fund is present across

myriad pairings, giving rise to a lack of independence across observations. Hence, standard errors

are two-way clustered for each fund in the fund-pair.13. I provide results for this specification in

two panels. The first includes results across all strategies, and the second reports estimates for only

equity long/short funds.

In the first test (Column 1), I estimate whether the finding of Hong et al. (2005)–where

managers exposed to the same media market by operating in the same city–holds among hedge

fund managers. Interestingly, I find that it does not hold in this setting; hedge fund managers

in my sample operating in the same city exhibit no di↵erential propensity to hold overlapping

portfolios. In the second test, I explore whether a manager’s network connections influences their

investment decisions. If so, then the loading on � will be positive,which I find. The significant

12Assets under management (AUM) in this setting are the sum of all long positions disclosed in each fund’s

quarterly 13F filing.
13This follows from Pool et al. (2015)
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coe�cient for SameNetwork of 1.75% implies that on average, connected managers have a 31.6%

higher rate of overlapping portfolios than unconnected managers; moving from the average minimum

portfolio overlap of 5.54% across all funds to 7.29% (= 1.75% + 5.54%). Strategy controls are

included in Column 2 to ensure we account for investment strategies that may endogenously lead

to overlapping investments. For example, hedge fund managers pursuing merger arbitrage (which

is included under the event-driven strategy) will likely invest similarly in reaction to acquisition

announcements regardless of common skill sets nor network a�liation. The same can be said of

convertible arbitrage strategies (also covered by event-driven strategies) that are typically dependent

on new security supply from corporate issuances.

[Table 2 here]

Following the example of Pool et al. (2015), I calculate AUMQuintAvg as the average of fund

size quintiles across funds j and k, which controls for the presumption that increases in fund-pair

sizes results in a higher probability that an overlap can occur. Yet, this average size control cannot

account for subtle di↵erences between the fund-pair sizes. Consider for example two fund-pairs

where in the first, funds j and k are of size quintile 5 and 1, respectively, resulting in an average size

quintile of 3. Meanwhile in the second pairing, funds j and k are both in size quintile 3, resulting in

the same average size quintile of 3. Comparing the average size quintiles in this example juxtaposes

two fund-pairs with the same AUMQuintAvg, making it hard to determine whether a positive

relationship in average AUM size among fund-pairs matters for portfolio overlaps, or whether the

distance between AUM size for funds j and k is important. Hence, AUMQuintDi↵ accounts for

this distance. A negative estimate for � would indicate that as the di↵erence in assets between

funds j and k increases their portfolio overlap would decrease, which is exactly what I find. The

estimate for AUMQuintAvg and AUMQuintDi↵ is 187 bps and -74 bps, respectively. Therefore, on

average portfolio overlap increases by 113 bps ( 32.5% increase) after controlling for size. Notably,

size controls explain almost half of the average portfolio overlap, with the constant coe�cient, ↵

decreasing by 37.2% to 3.48% in the final specification.

In the final specification, I include controls to account for variation in size across and between

fund-pairs. In contrast to Pool et al. (2015) who find a higher overlap among fund-pairs following

the same strategy, I find negative or insignificant loadings for all strategy controls. This finding

suggests that hedge fund managers do indeed have more diversified portfolios within their respective

strategies and relative to mutual funds. However, making cross-sectional inferences for strategies
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that are not well identified by 13F holdings information is problematic. For example, holdings data

for the fixed income strategy is not likely to be informative as a majority of portfolio investments

within this strategy are not covered securities required to be disclosed in 13F filings. Hence, 13F

studies in the hedge fund industry are best suited to explain the long book of equity oriented

strategies such as equity long/short.

Including all controls (Column 3), I find that portfolio overlap is 29.7% among hedge fund

managers whom are connected through the same prior employer. The coe�cient for SameNetwork

1.37% is incremental to the average fund-pair overlap of 4.61% (= 3.48% + 1.87% - 0.74%) whom do

not share this connection, and after adding our control variables. Results for equity long/short funds

is displayed in the second panel of Table 2. Here, I show that these funds have a SameNetwork

estimate of 1.82%, which implies that portfolio overlap among connected long/short managers

increases to 48.5%; from 3.75% (= 2.94% + 1.34% - 0.53%) to 5.57%. This magnitude is surprising

as it implies that almost half of a connected manager’s portfolio is common to portfolios within the

network.

4 Social Influence on Holdings

In this section, I begin disentangling whether overlapping portfolios result from using an investment

strategy learned from a common prior employer, or from idea sharing through connected networks.

Whereas in the baseline specification I found that connected hedge fund manager hold overlapping

portfolios more on average, here, I analyze contemporaneous stock-level activity among connected

funds using the di↵erence-in-di↵erence framework. By controlling for manager fixed-e↵ects such as

portfolio construction and trading techniques that are likely learned from a formative mentor, I can

highlight idea sharing that results from network e↵ects.

4.1 Herding

The literature on herding tests whether excess trading, deemed “herding,” occurs in a particular

stock-quarter relative to expected trading activity when no herding occurs. If connected funds have

more overlapped portfolios on average relative to the control group, then presumably co-investments

accumulate through contemporaneous trading activity. To test whether the funds in my sample

herd, I calculate herding measures for the full hedge fund sample, as well as for the treatment
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and control subgroups using the specification set forth in Lakonishok, Shleifer, and Vishny (1992).

Specifically, the herding measure, HM , as expressed in Wermers (1999) is,

HMi,t = |pi,t � E[pi,t]|� E |pi,t � E[pi,t]| , (3)

where, pi,t is the proportion of funds buying stock i in quarter t scaled by all funds trading during

the quarter. E[pi,t] is the expected proportion of purchases during the quarter, and is proxied

by the proportion of all trades that are purchases over a given quarter. Similarly, the second

term, E |pi,t � E[pi,t]|, serves as an adjustment factor to allow for random variation around the

proportion of buyers when, in expectation, no herding arises in the full sample. The adjustment

factor is calculated with respect to its subgroup (treatment or control groups), and I obtain the

mean herding measure, HM , by averaging across the subgroup of hedge fund managers.

Overall, I find no herding among hedge fund managers in my sample (Table 3). As pointed

out in Lakonishok et al. (1999), this should not necessarily be surprising due to the market’s need

for each buyer to have a seller for clearing. The lack of average herding also holds for the treatment

and control subgroups. However, in order to determine whether ideas are transmitted via a lively

social network, the di↵erence-in-di↵erence comparison of conditional herding between treatment

and control groups is of more interest. That is, we want to compare di↵erences in the buy-herd

measure, BHM , and the the sell-herd measure, SHM . Specifically, BHM is the average of the

herding measure, HM , conditional on pit > E[pit], and conversely, SHM is the conditional average

of HM when pit < E[pit]. These two measures identify the tendency of funds to herd while entering

a trade (buys) or while exiting a trade (sells). Additionally, I also test whether a stronger herd

obtains, calculating HM over instances in which successively more funds trade the stock-quarter

(as suggested by Wermers (1999)).

[Table 3 here]

As summarized in Panel D of Table 3, the treatment group conditionally herds more than

the control group of funds when entering and exiting a trade. For example, when three or more

funds enter (exit) a position, connected managers herd more than unconnected managers by 0.55%

(3.91%). Furthermore, the di↵erences in conditional herding between the two groups increases as

the number of funds herding into or out of the same stock-quarter increases. This is particularly

true for funds entering a position, where the di↵erence in conditional means for BHM increases

monotonically as the number of funds who buy-herd during the stock-quarter increases from 3 to 20

funds. This indicates that on average, conditional herding is more pronounced among the treatment
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group where connected members not only engage in more common trades, but do so in relatively

larger herds.

4.2 Di↵erential Allocation to Overlapped Stocks

To further disentangle whether overlapping portfolios result from using an investment strategy

learned from a shared employer or from sharing investment ideas through the connected network, I

test the hypothesis that over-weighting commonly held positions does not happen randomly. That

is, if fund managers in a connected network consistently herd into and over-weight commonly held

positions, they likely do so in response to di↵erential information. I posit these common investment

ideas are transmitted through a connected network, which not only inform the manager’s decision

about which investment to make, but by how much additional capital to allocation to the position.

To test this hypothesis, I construct a measure for adjusted relative weighting, AdjustedWeight,

to identify the sensitivity to position allocations between the treatment and control groups. Specif-

ically, I measure Adjusted Weight as

AdjustedWeighti,j,t =

 
$Allocationi,j,tPN
i=1 $Allocationi,j,t

!
�
 

MktCapi,j,tPN
i=1MktCapi,j,t

!
, (4)

where the first term represents fund j’s weighting to stock i in quarter t, and the second term

adjusts this raw position weight by the market capitalization of stock i relative to the sum of market

capitalizations of all stocks held in fund j at the end of each quarter t. I impose this adjustment to

account for the increased likelihood that subgroups of funds will likely experience more stock-quarter

overlaps among large capitalization stocks (as noted in Wermers (1999)). Notably, this measure

moves the analysis from the fund-level, as measured in my baseline test, to the stock-level. I do

this in e↵ort to obtain more granularity in the investment decision between connected managers,

and as a robustness test to the asset-weighted portfolio overlap results in the main specification.

To measure stock level weighting sensitivity between the treatment and control groups, I

estimate the following fixed-e↵ects model:

AdjustedWeighti,j,t = ↵ + �Overlapi,j,t + �Treatmentj

+ �(Overlapi,j,t ⇤ Treatmentj) + ⌧t + "i,j,t.
(5)

Here, Overlap is dummy variable equal to one for quarters in which two or more funds of the

respective subgroups hold the same stock-quarter. A positive � on Overlap indicates that hedge
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funds over-weight stock i during quarter t when other funds also hold the same stock. Treatment

is a dummy variable equal to one for connected funds in the treatment network and is zero for all

funds in the control group. Given that I constructed the control group by matching on the average

number of quarterly positions (among other controls), we should expect to see no significance on

this coe�cient. Lastly, I include the interaction e↵ect of being a member of the treatment group

and holding a common stock-quarter, Overlap*Treatment. A significant coe�cient for this regressor,

�, would indicate that members of the same network over-weight positions conditional on whether

other connected members also hold the position, thereby suggesting an active social network among

connected fund managers.

Findings for this test are shown in Table 4, where the last two columns highlights results ad-

justed for common cross-sectional shocks using quarter fixed e↵ects. Focusing on the fully adjusted

model in column 4, I find that conditional on holding the same stock, fund managers allocate 66 bps

more to the position, a 29.5% increase over the average adjusted weight of 2.24% indicated by the

constant term. This suggests that fund managers increase allocations to commonly held positions,

but cannot explain why they act in tandem. For example, its possible that managers find comfort

in numbers and over-weight a commonly held position because other funds also hold the stock. It’s

also possible that fund managers pursuing the same investment style reach independent conclusions

that result in over-weightings on the same stocks. As expected, the coe�cient for the treatment

dummy is not di↵erentiable from zero. This result also indicates that the position adjustment factor

(right hand term of equation 2) is similar between the two groups, suggesting both groups allocate

similar proportions across relative market capitalizations.

[Table 4 here]

The interaction coe�cient, �, of the treatment and overlap dummy variables can help control

for common investment models within the same investment style (equity long/short in this case).

The positive coe�cient on � indicates that conditional on a stock-quarter overlap, connected fund

managers allocate 36 bps more to the position, which is a 12.4% increase in position weight relative

to funds who do not share a similar connection. Having already constructed the control group by

also matching on location, this represents an incremental response to peer allocations among hedge

fund managers who work in the same media market (Hong et al. (2005)).
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5 Asset Pricing Impact from Manager Networks

5.1 Risk-Adjusted Portfolio Returns

Thus far, I have shown that funds of a common ancestry have more correlated holding risk relative

to those funds that do not share a history. So, why do connected funds co-invest at higher rates?

Presumably, they do so in expectation that larger payo↵s will follow. As discussed in the “quid-pro-

quo” model of Stein (2008), the author theorizes that investment ideas will be exchanged among

socially connected fund managers–whom are in direct competition for flows–under the expectation

that investment ideas will be reciprocated in the future. Furthermore, the author posits that only

good investment ideas will make it past the incipient discussion phase, given that socially connected

managers will push back on poor investment ideas received from a trusted peer.

To examine whether performance is di↵erentiatied for overlapped stock-quarter pairs, I com-

pare risk-adjusted returns for the treatment and control groups using a di↵erence-in-di↵erence

framework. As I do not have access to fund returns in my sample, I proxy for monthly returns

using the long only holdings reported in 13F filings. Returns are constructed from aggregating

weighted returns to all stocks held by fund j at the end of quarter t, multiplied by returns to stock

i over the ensuing three months, k = 1, 2, 3; Rj,t+k =
PN

i=1 wi,j,tri,t+k. From this constructed time-

series of returns, I subtract the risk-free rate and use these excess returns as the dependent variable.

Since I construct fund returns from long-only positions, I select my factors from the mutual fund

literature and run fund-level panel-regressions on the three-factor model of Fama and French (1993),

as well as the momentum factor of Carhart (1997) and the liquidity factor of Pástor and Stambaugh

(2003).14

Table 5 shows statistically significant excess monthly returns of roughly 40 basis points for

the treatment and control groups across all specifications, along with strong positive responses to

changes in the market factor. Interestingly, the literature to date has shown no positive excess

returns on hedge fund portfolios constructed from 13F holdings information.15 As noted in the

14Thanks to Ken French and Robert Stambaugh for providing these factors on their respective websites. I do

not use the Fung and Hsieh (2004) four-factor model for hedge fund returns here given that the return series is

constructed from long-only positions and does not exhibit option-like behavior found in hedge fund returns.
15See for example Agarwal, Fos, and Jiang (2013), Brown and Schwarz (2013), Gri�n and Xu (2009), and Aragon

and Martin (2012).
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introduction, this dataset is compiled from proprietary sources whom have access to “best of breed”

hedge fund managers. Hence, the sample likely has an upward bias in performance, for both

treatment and control groups, which is confirmed with statistically significant excess return in

Table 5. 16

[Table 5 here]

5.2 Risk-Adjusted Returns to Overlapped Positions

One inference we can derive from excess returns to treatment group funds is that overlapped po-

sitions convey information to asset prices by way of a network of connected hedge fund managers.

To pin down this conclusion, I explore di↵erences in risk-adjusted returns between overlapped and

non-overlapped–or unique–portions of grouped manager portfolios by dividing the dataset into over-

lapping and non-overlapping stock-quarters for the treatment and control groups.

The results of these tests are shown in Table 6. In Panel A, I find the di↵erence in the

coe�cient for excess returns is larger and more statistically significant for overlapped stocks between

the two groups relative to their overall respective portfolios. In Panel B, non-overlapped positions

contribute little value to the treatment group’s risk-adjusted performance, whereas for the control

group, non-overlapped stocks actually creates negative alpha of -5 basis points a month. Taken

together, overlapped positions drive excess return for both groups, but accounts for 14% more of

the excess return among connected funds (70% versus 56%). Put di↵erently, overlapped positions

drive 25% more of the abnormal return for the treatment group over that of the control group.

This suggests the treatment group may have an informational advantage over the control group

regarding certain investments that permeates through a connected network.

Supporting Pool et al. (2015) and Stein (2008), these results infer a necessary condition that

manager networks are generally active and are conveying information to asset prices. In fact, a

long/short portfolio comprised of a long position in overlapped holdings in connected portfolios

(overlapped-connceted) and a short position in non-overlapped holdings in unconnected portfolios

(unique-unconnected) generates alpha of 4.5% per year.

[Table 6 here]

16Di↵erences in the constant term between treatment and control groups is marginally insignificant at the monthly

level, but decidedly significant at the quarterly and annual horizon.
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5.3 Risk-Adjusted Returns During the 2008 Financial Crisis

On the heals of the global financial crisis of 2008-2009, liquidity risk borne by hedge funds has

witnessed a significant increase in scrutiny. However, as Aragon (2007) points out, funds with more

stringent lockup periods are better able to manage illiquid positions, thereby extracting liquidity

premia for investors. Thus, funds that o↵er longer lockups should be in a better position to manage

redemption pressure during extreme market environments.

As many of the funds in this proprietary sample are not found in the commercial databases, I

cannot confirm whether di↵erential lockup terms arise between the treatment and control groups.

However, given the institutional quality of the funds found in this sample, there is little reason to

suspect sophisticated investors would accept more onerous liquidity terms among two funds who

exhibit similar signals ex-ante. Acceding to such terms, itself, is a signal that a) the investor is

informed about a manager’s distinguishing background, or b) they prefer to leave liquidity manage-

ment decisions to a manager they deem better adept at managing liquidity vis-à-vis the performance

tradeo↵ than they themselves could do. Further, even though a fund may have more stringent lockup

provisions, the manager need not necessarily adhere to them, particularly when “haircut” fees allow

investors to redeem funds prematurely. The ability to maintain full discretion over a portfolio by

adhering to lockups during market down turns, particularly among volumes of early redemption

requests, highlights liquidity management skill even in the presence of lockup terms.

Furthermore, an extreme market shock, particularly a liquidity driven event such as the finan-

cial crisis, provides a unique setting to analyze deviations in manager behavior within a network. To

the extent that investment ideas communicated through a connected network contain no valuable

information, then adverse market conditions provide incentive for connected funds to divest from

commonly held, but non-informative, positions. Widely-held positions in a network makes them

susceptible to liquidity induced drawdowns, particularly for information-lacking positions. Accord-

ingly, the strength of a network can be tested amid an economic shock such as the financial crisis; if

the network is robust, socially communicated investment ideas in overlapped portfolios should not

exhibit liquidity weakness in the cross-section.

To analyze this setting, I employ the same risk-adjusted performance specification used before,

and add indicator variables for each quarter during the crisis (3Q 2008 - 1Q 2009). Whereas the

control group experiences a significant draw-down attributable to the market turmoil of the third
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quarter of 2008 (-2.9% per month during 3Q 2008), the treatment group exhibits no statistically

significant losses attributable to the quarter (Table 7). This result attests to di↵erentiated liquidity

management during the period of largest liquidity shock in the crisis, and is reinforced by di↵erences

in liquidity loadings between the two groups. Similar cross-sectional di↵erences remain when we

progress into the fourth quarter of 2008 and first quarter of 2009; the treatment group continues to

outpace the control group by generating statistically significantly di↵erent excess returns.

[Table 7 here]

Disentangling learning and network channels, Table 8 shows regression results of overlapping

(Panel A) and non-overlapping (Panel B) portfolios between the treatment and control groups.

Across overlapped investments, di↵erence between the groups remains valid in each quarter tested.

For example, during the third quarter of 2008, overlapped positions drive losses for the control

group whereas they remain insignificant for connected managers.

Further, as markets rebounded in late 2008, the treatment group posts returns twice that of

the control group attributable to similar cross-sectional shocks (1.3% vs. 0.6%), and during the

first quarter of 2009, di↵erences remain between overlapped portfolios of the two groups. Results

obtained from non-overlapping portfolio regressions in Panel B confirm those found previously; the

control group generates negative excess returns from unique investments while the treatment group

breaks even. Taken together, these results buttress evidence that overlapped portfolios among

connected funds convey information to asset prices as a result of an active network. Furthermore,

connected fund managers do not deviate from their networked investment ideas during adverse

market conditions.

[Table 8 here]

5.4 Price Discovery Among Connected Funds

Lastly, I compare the timeline of returns to overlapping positions and how networks of fund managers

respond. Following Coval and Sta↵ord (2007), I calculate cumulative average abnormal returns

(CAARs) to overlapping stocks near an event quarter. CAARs are monthly compounded di↵erences

between returns to an event-stock and the equal-weighted average return to stocks held by each

group of funds in the cross-section. I define an event quarter as when five or more funds in the

treatment and control groups, respectively, hold the same stock-quarter pairing, where the event

at time t is measured at the end of the quarter where the overlapping threshold is crossed. I
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calculate CAARs for each event-stock starting 15 months leading up to the event and for the

following 18 months.17 This allows us to see if there are di↵erential returns to overlapped positions

between the treatment and control group. Further, it provides enough horizon to determine whether

cumulative returns fully reverse, which would support a price impact story–aking to a pump-and-

dump strategy–or whether they remain above the prior price point, which would provide evidence

that privately generated information is impounding into asset prices.

[Figure 2 here]

As shown in Figure 2, CAARs for both the treatment (solid blue line) and control groups

(solid red line) increase toward the event at time t, continue to increase through the next quarter,

and begin to reverse in the following quarter. Notably, both groups see a similar trend, however,

di↵erence in CAARs between the two groups is stark; event-stocks in the treatment group achieve

CAARs above 25.3%, whereas those of the control group only reach 9.5%. Furthermore, whereas

CAARs fully reverse and become negative for the control group, they reverse only partially for

the treatment group. This indicates that information propagating through the treatment group

network is not fully transitory, and thus, conveys valuable information to asset prices.

Interestingly, the di↵erence in CAARs between the two groups (solid gray line) highlights

the di↵erential impact the treatment group has on asset prices over the control group. From this,

it is clear that di↵erences in shared portfolio choices between connected and unconnected funds

generates significant abnormal return, which persists long after the event period has passed. If

information communicated through connected funds contained no di↵erential information from that

of unconnected managers, the di↵erence in CAARs should fully reverse to zero.

Figure 2 also shows the average number of funds in each group holding the stock-quarter

surrounding the event. The average number of funds are represented by dashed lines; blue for the

treatment group and red for the control. For both groups of funds, the average number of funds

holding the event stock-quarter increases monotonically towards the event, remains high during

the following quarter, and reverts dramatically in the next quarter. This implies that funds are

buy-herding into event stocks and are able to capture the peak returns to these positions before

subsequently exiting. However, the treatment group appears to do so in a larger grouping leading

up to the event, with a delta of roughly 10% more funds participating in the event-stock for the

17Results hold when the event quarter is tested for various number of funds holding the same stock-quarter and

for di↵ering pre- and post-measurement horizons.
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treatment group. In sum, these results provide corroborating evidence that overlapped holdings

are driven by an exchange of privately generated information as suggested in Pool et al. (2015) and

Stein (2008).

6 Conclusion

Despite the expansive literature on mutual fund families, there has been little attention paid to the

linkages between connected hedge funds traced by a common employment history. Using holdings

information combined with a proprietary dataset of hedge fund manager employment histories, I

show how connected hedge fund managers express correlated investment behavior. Firstly, learned

skills from a formative mentor such as portfolios construction and trading techniques appear with

commonality across portfolios of connected members. Second, connected funds leverage their social

network by holding overlapped portfolios 48.5% more of the time than unconnected fund managers,

suggesting an active network.

I then show how connected managers di↵er their trading and allocation decisions between

uniquely and commonly held investments. My stock-level analyses on conditional herding find that

connected managers buy- and sell-herd more than unconnected managers. Furthermore, they over-

weight overlapped positions 12.4% more. This additional evidence supports the premise that an

active network among connected managers influences investment decisions.

As modeled in the “quid pro quo” framework of Stein (2008), I find that overlapped portfolios

drive risk-adjusted alpha, accounting for 70% of the excess return to the overall portfolio compared

to 56% for the control group; a 25% improvement. This finding buttresses those of Pool et al.

(2015) who find that information transfers from networked hedge fund managers to asset prices.

Further, during periods of extreme market duress when managers have an incentive to deviate from

the herd, I find connected managers maintain conviction in overlapped positions shared among the

network.

Importantly, I show that cumulative average abnormal returns to connected-overlapped stocks

of 15% is permanently conveyed to asset prices (Coval and Sta↵ord (2007)). This suggests that

incentives within networks of hedge fund managers are aligned to generate private information,

which leads to price discovery for commonly held assets in connected portfolios. I calculate that

a long/short portfolio of overlapped-connected/unique-unconnected stocks generates alpha of 4.5%
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annually.

My findings are also relevant to the fund family literature. By identifying commonality in

investment behavior among hedge fund managers connected through a shared employment ancestry,

an informal hedge fund “family” can be identified, thereby reducing costly search for institutional

investors. Furthermore, this identification can assist the institutional investor in diversifying risk

not heretofore noted among a portfolio of connected hedge fund managers; that of commonly held

positions.
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Figure 1:  Distribution of Quarterly Holdings
This figure shows the distribution of average portfolio holdings for each fund found in the treatment group and the
unmatched sample for the period 2000-2013.

0

0.05

0.1

0.15

0.2

0.25

Treatment Group Unmatched Sample

28



Fi
gu

re
 2

:  
M

on
th

ly
 C

um
ul

at
iv

e 
A

ve
ra

ge
 A

bn
or

m
al

 R
et

ur
ns

 (C
A

A
R

s)
 n

ea
r o

ve
rl

ap
pi

ng
 e

ve
nt

s
T

hi
s

fi
gu

re
sh

ow
s

C
A

A
R

s
fo

r
st

oc
ks

he
ld

ac
ro

ss
al

lp
or

tf
ol

io
s

ne
ar

ov
er

la
p

p
in

g
ev

en
ts

.C
A

A
R

is
m

ea
su

re
d

as
m

on
th

ly
re

tu
rn

s
to

st
oc

k
i

in
ex

ce
ss

of
th

e
eq

u
al

-w
ei

gh
te

d
av

er
ag

e
re

tu
rn

of
al

l
st

oc
ks

he
ld

by
m

u
tu

al
fu

nd
s

at
th

e
st

ar
t

of
th

e
m

on
th

,
as

u
se

d
in

C
ov

al
an

d
St

af
fo

rd
(2

00
7)

.
A

n
ov

er
la

p
p

in
g

ev
en

ti
s

d
ef

in
ed

as
fi

ve
or

m
or

e
fu

nd
s

ho
ld

in
g

th
e

sa
m

e
st

oc
k-

qu
ar

te
r,

an
d

is
hi

gh
lig

ht
ed

in
th

e
fi

gu
re

as
th

e
ve

rt
ic

al
lin

e
at

ti
m

e
t

. A
 

si
m

ila
r

fi
gu

re
ob

ta
in

s
w

he
n

th
e

ov
er

la
p

p
in

g
ev

en
ti

s
d

ef
in

ed
w

he
n

as
fe

w
as

tw
o

fu
nd

s
ho

ld
th

e
sa

m
e

st
oc

k-
qu

ar
te

r,
or

m
or

e
th

an
10

fu
nd

s,
an

d
w

he
n

th
e

ti
m

e
in

te
rv

al
is

sh
or

te
ne

d
or

le
ng

th
en

ed
.T

he
d

as
he

d
ve

rt
ic

al
lin

e
in

d
ic

at
es

w
he

n
13

F
ho

ld
in

gs
in

fo
rm

at
io

n
be

co
m

es
p

u
bl

ic
ly

av
ai

la
bl

e
on

av
er

ag
e

(t
+4

5
d

ay
s)

,a
s

m
os

t
fu

nd
m

an
ag

er
s

w
ai

t
u

nt
il

th
e

m
an

d
at

ed
d

is
cl

os
u

re
d

at
e

to
fi

le
13

F
fo

rm
s.

A
cc

or
d

in
gl

y,
in

fo
rm

ai
on

d
is

cl
os

ed
on

d
at

e 
t+

45
 d

ay
s 

co
nt

ai
ns

 h
ol

d
in

gs
 d

at
a 

fo
r 

ea
ch

 fu
nd

 h
el

d
 a

t t
he

 e
nd

 o
f t

he
 p

ri
or

 q
u

ar
te

r t
.

0.
00

1.
00

2.
00

3.
00

4.
00

5.
00

6.
00

-5051015202530

t-15

t-14

t-13

t-12

t-11

t-10

t-9

t-8

t-7

t-6

t-5

t-4

t-3

t-2

t-1

t

t+1

t+2

t+3

t+4

t+5

t+6

t+7

t+8

t+9

t+10

t+11

t+12

t+13

t+14

t+15

t+16

t+17

t+18

Average number of funds holding stock-quarter 

Monthly CAAR (%) 

M
on

th
s f

ro
m

 e
ve

nt
: 5

+ 
fu

nd
s h

ol
d 

st
oc

k-
qu

ar
te

r 

Cu
m

ul
at

iv
e 

Av
er

ag
e 

Ab
no

rm
al

 R
et

ur
n:

 O
ve

rla
pp

ed
 S

to
ck

s 

Tr
ea

tm
en

t G
ro

up
 C

AA
R 

fo
r O

ve
rla

pp
ed

 S
to

ck
s

Co
nt

ro
l G

ro
up

 C
AA

R 
fo

r O
ve

rla
pp

ed
 S

to
ck

s

D
iff

er
en

ce
s 

in
 C

AA
Rs

: (
Tr

ea
tm

en
t -

 C
on

tr
ol

)
Av

g 
N

o.
 o

f T
re

at
m

en
t F

un
ds

 H
ol

di
ng

 S
to

ck
-Q

ua
rt

er

Av
g 

N
o.

 o
f C

on
tr

ol
 F

un
ds

 H
ol

di
ng

 S
to

ck
-Q

ua
rt

er

t+
45

 
da

ys
 

29



Table 1: Summary Statistics

Variable Mean Median Std Mean Median Std Mean Median Std

Number of Funds 232 232 0 42 42 0 84 84 0

Number of Positions 95 42 165 39 34 23 39 34 24

Position Weight (%) 1.05 0.21 2.45 2.58 1.59 3.39 2.57 1.60 3.37

Position Horizon (year) 0.93 0.69 0.99 0.73 0.66 0.38 0.81 0.66 0.64

Top Ten Positions (% of AUM) 58.3 56.3 22.9 64.1 61.8 18.7 63.8 61.1 17.4

Invested Long Assets ($MM) 1,239 349 2,741 1,560 729 2,484 779 318 1,222

Fund Longevity (Qtrs) 30.6 29.0 16.2 32.6 29.0 14.2 32.5 29.0 14.2

Raw Quarterly Return (%) 3.21 3.89 11.52 4.20 4.57 11.55 3.72 4.28 11.62

This table presents summary statistics by sub-group for the quarterly sample period of 2000 to 2013. The treatment group is

comprised of U.S. headquarterd long-short equity hedge funds ran by managers whom were previously employed by Tiger

Management. The unmatched sample includes all U.S. headquartered long-short equity hedge funds in my sample from which

I use to construct the matched control group. The matched control group is composed of the two nearest-neighbors match to the

treatment group after matching on (1) fund start date, (2) fund longevity, (3) average number of positions, (4) average position

weight, and (5) fund headquarter location. 

Treatment GroupUnmatched Sample Control Group
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Table 2: Portfolio Overlap

This table presents the results of the quarterly panel regression

SameNetwork 1.75*** 1.37*** 2.06*** 1.82***

(4.49) (3.38) (4.84) (4.26)

SameCity -0.19 -0.11 0.03 -0.10 -0.17 -0.02

(-0.84) (-0.50) (0.17) (-0.38) (-0.66) (-0.09)

Activist -2.68*** -4.89***

(-4.38) (-6.05)

Equity Long/Short -0.63 -1.30***

(-1.38) (-3.08)

Equity Market Neutral -1.18** -1.66***

(-2.21) (-4.33)

Event Driven -0.86 -1.02**

(-1.36) (-2.04)

Fixed Income -0.68 -0.86*

(-1.16) (-1.69)

Fund of Funds -0.21 0.52

(-0.25) (0.70)

Global Macro 0.30 -0.04

(0.31) (-0.06)

Multi-Strategy 1.05* 0.38

(1.93) (0.82)

AUMQuintAvg 1.87*** 1.34***

(7.77) (5.12)

AUMQuintDiff -0.74*** -0.53***

(-5.77) (-4.89)

Constant 5.39*** 5.54*** 3.48*** 4.99*** 4.91*** 2.94***

(22.85) (12.62) (10.18) (18.25) (17.49) (12.42)

R
2

0.000 0.009 0.077 0.000 0.004 0.053

Observations 1,393,952 1,393,952 1,393,952 708,873 708,873 708,873

All Strategies Equity Long/Short

where PortOverlap j,k,t measures the minimum portfolio overlap between funds j and k during quarter t . 

SameNetwork j,k,t is a dummy variable equal to one if funds j and k belong to the same hedge fund network.

SameCity j,k,t is a dummy variable that is one if funds j and k are headquartered in the same city. Controls j,k,t 

is a vector of control variables that include (a) dummy variables equal to one if funds j and k pursue the

same hedge fund strategy; (b) the average assets under management (AUM) based quintiles of funds j and k 
(AUMQuintAvg ); and (c) the absolute value in the differences between AUM-based quintiles of funds j and

k (AUMQuintDiff ). Standard errors are two-way clustered at the fund level for each fund in the fund-pair

and t-statistics are reported below the coefficients. * indicates significance at the 10% level, ** at the 5% level,

and *** at the 1% level.  

Dependent Variable PortOverlap j,k,t PortOverlap j,k,t

𝑃𝑜𝑟𝑡𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑗,𝑘,𝑡 = 𝛼 + 𝛽𝑆𝑎𝑚𝑒𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑗,𝑘,𝑡 + δ𝑆𝑎𝑚𝑒𝐶𝑖𝑡𝑦𝑗,𝑘,𝑡 + Γ′𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑗,𝑘,𝑡 + 𝜀𝑗,𝑘,𝑡, 
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Table 3: Herding Measure 

Mean Measure ≥3 ≥5 ≥10 ≥15 ≥20

Panel A: Full Sample
HM 0.00% 0.00% 0.00% 0.00% 0.00%

Observations 74,916 41,880 13,179 4,739 1,876

BHM 12.69% 11.42% 9.56% 8.64% 8.38%

Observations 51,204 28,870 9,063 3,241 1,263

SHM 11.24% 9.96% 8.02% 7.07% 6.48%

Observations 23,712 13,010 4,116 1,498 613

BHM - SHM 1.45% 1.46% 1.54% 1.57% 1.90%
Panel B: Treatment Group

HM 0.00% 0.00% 0.00% 0.00%

Observations 3,335 825 127 27

BHM 15.11% 14.27% 11.02% 9.58%

Observations 2,449 597 87 15

SHM 15.60% 12.96% 9.28% 8.77%

Observations 886 228 40 12

BHM - SHM -0.48% 1.31% 1.75% 0.81%

Panel C: Control Group

HM 0.00% 0.00% 0.00%

Observations 2,443 346 8

BHM 14.56% 11.94% 7.12%

Observations 1,640 229 5

SHM 11.69% 10.76% 7.95%

Observations 803 117 4

BHM - SHM 2.87% 1.18% -0.84%

Panel D: Differences in Conditional Means

BHM 0.55*** 2.33*** 3.91*** 9.58***

tstat (2.71) (4.35) (2.20) (6.19)

SHM 3.91*** 2.20*** 1.32 8.77***

tstat (11.22) (3.32) (0.31) (4.75)

Funds Trading Stock-Quarter Pairs

This table presents the results of the herding measure for each of the treatment (Panel B),

matched control (Panel C), and unmatched groups (Panel A). The herding measure comes from

Lakonishok et al. (1992), and is expressed in Wermers (1999) as

where, p i,t is the proportion of funds buying stock i in quarter t relative to all funds trading the

same stock-quarter. E[p i,t ] is subtracted from p i,t to expose herding variation relative to

unperterbed coincident trading that would be expected in a given quarter. The second term,

E|p i,t -E[p i,t ]| , is the adjustment factor to allow for random variation around the proportion of

buyers over the full sample period where, in expectation, no herding arises. Measures reported

are average values. HM represents the average of the herding measure. BHM represents the

average of the conditional buy-side herding measure. SHM represents the average of the

conditional sell-side herding measure. BHM-SHM represents the average spread to a portfolio

of conditional herding measures; buy-side minus sell-side . * indicates significance at the 10%

level, ** at the 5% level, and *** at the 1% level.

𝐻𝑀𝑖,𝑡 = 𝑝𝑖,𝑡 − 𝐸[𝑝𝑖,𝑡] − 𝐸 𝑝𝑖,𝑡 − 𝐸[𝑝𝑖,𝑡]  , 
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Table 4: Adjusted Weight Panel Regressions

This table presents the results of the quarterly panel regression

Dependent Variable

Constant 2.15*** 2.23*** 2.17*** 2.24***

(19.55) (16.78) (19.95) (16.99)

Overlapi,j,t 0.83*** 0.69*** 0.78*** 0.66***

(11.09) (8.87) (10.37) (8.27)

Treatmentj -0.26 -0.21

(-1.10) (-0.90)

Overlapi,t * Treatmentj 0.42** 0.36**

(2.44) (2.14)

R2
0.015 0.016 0.023 0.024

Observations 156,304 156,304 156,304 156,304

Date FE No No Yes Yes

where AdjustedWeight i,j,t is the position weight of stock i in fund j in quarter t, adjusted by relative portfolio

market capitalizations. The adjustment factor is stock i 's market capitalization at the end of quarter t held by

fund j , scaled by the sum of the market capitalizations for each stock held in the fund at the end of the

quarter. Overlap i,j,t is equal to one if two or more funds hold the same stock-quarter pair. Note that

Overlap i,j,t is measured for each group separately. Treatment j is equal to one for all hedge funds in the

treatment group, and zero for all control funds. Newey-West autocorrelation and heteroskedasticity-

consistent standard errors are clustered at the fund-stock pair level and t-statistics are reported below the

coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

AdjustedWeight i,j,t

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝑊𝑒𝑖𝑔ℎ𝑡𝑖,𝑗,𝑡 =   𝛼 + 𝛽𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑖,𝑗,𝑡 + 𝛿𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗 + 𝛾(𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑖,𝑗,𝑡 ∗ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑗) + 𝜏𝑡 + 𝜀𝑖.𝑗,𝑡, 
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Table 5: Risk-Adjusted Performance
This table presents the results of the fund-month panel regression

Alpha 0.44*** 0.45*** 0.43*** 0.36*** 0.38*** 0.32***

(6.54) (6.89) (6.14) (6.98) (7.50) (6.38)

MKT 0.86*** 0.84*** 0.84*** 0.85*** 0.82*** 0.82***

(28.22) (30.32) (30.52) (34.71) (36.03) (35.95)

SMB 0.26*** 0.26*** 0.25*** 0.23*** 0.24*** 0.22***

(4.40) (4.55) (4.20) (6.86) (7.11) (6.66)

HML -0.16** -0.18** -0.16* 0.04 0.02 0.05

(-2.13) (-2.39) (-2.00) (0.78) (0.35) (1.02)

MOM -0.05*** -0.05*** -0.05*** -0.06***

(-2.95) (-3.14) (-5.02) (-6.02)

LIQ 0.05** 0.10***

(2.02) (5.10)

R
2

0.557 0.559 0.561 0.590 0.592 0.598

Observations 4,801 4,801 4,801 8,581 8,581 8,581

where (R j,t - R f,t ) represents the excess return to portfolio j during month t . Monthly portfolio returns are

constructed from all stocks held by fund j at the end of quarter t , multiplied by weighted returns to each

stock over the ensuing three months. Risk adjustment factors include the Fama and French (1993) three-

factor model (MKT , SMB , and HML ), plus the momentum factor of Carhart (1997; MOM ), and the

liquidity factor of Pástor and Stambaugh (2003; LIQ ). MKT represents excess return to the market factor.

SMB is the spread return to a portfolio of small market capitalization stocks minus large capitalization

stocks. HML is the spread return to a portfolio of high book-to-market stocks minus low book-to-market

stocks. MOM is the spread return to a portfolio of stocks with prior positive returns minus stocks with

prior negative returns. LIQ is the factor for cross-sectional permanent liquidity innovations. Differences in

Alphas between the treatment and control group are significantly different from one another at the

quarterly (5% level) and annual (1% level) frequency, but marginally insignificantly different at the

monthly frequency shown here. Standard errors are clustered two-ways by fund and date, with t-statistics

reported below the coefficients. * indicates significance at the 10% level, ** at the 5% level, and *** at the 1%

level.  

Treatment Group Control Group

R j  - R f R j  - R fDependent Variable

(𝑅𝑗,𝑡−𝑅𝑓,𝑡 ) = 𝛼 + 𝛽1𝑀𝐾𝑇𝑡 + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝑀𝑂𝑀𝑡 + 𝛽5𝐿𝐼𝑄𝑡 + 𝜀𝑗,𝑡, 
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Table 6: Overlap vs. Non-Overlap Risk-Adjusted Performance
This table presents the results of the fund-month panel regression

Panel A: Overlap Risk-Adjusted Performance

Dependent Variable
Alpha 0.31*** 0.32*** 0.30*** 0.20*** 0.21*** 0.18***

(5.92) (6.14) (5.76) (7.70) (7.74) (6.72)
MKT 0.54*** 0.53*** 0.53*** 0.39*** 0.39*** 0.39***

(16.99) (16.38) (16.38) (24.34) (24.41) (24.47)
SMB 0.10*** 0.10*** 0.09*** 0.05*** 0.06*** 0.05***

(5.16) (5.35) (5.17) (5.38) (5.43) (4.87)
HML -0.11*** -0.12*** -0.11*** 0.04* 0.04* 0.05***

(-3.68) (-4.02) (-3.65) (1.96) (1.78) (2.88)
MOM -0.02* -0.02** -0.01 -0.01**

(-1.96) (-2.19) (-1.64) (-2.54)
LIQ 0.03** 0.05***

(2.44) (4.16)

R2 0.513 0.514 0.515 0.450 0.450 0.455

Observations 4,730 4,730 4,730 8,364 8,364 8,364
Panel B: Non-Overlap Risk-Adjusted Performance

Dependent Variable
Alpha 0.02 0.03 0.02 -0.05*** -0.05*** -0.05***

(0.54) (0.94) (0.63) (-4.23) (-3.76) (-3.97)
MKT 0.34*** 0.33*** 0.33*** 0.07*** 0.06*** 0.06***

(11.25) (10.77) (10.79) (19.91) (19.47) (19.46)
SMB 0.16*** 0.17*** 0.16*** 0.02*** 0.02*** 0.02***

(3.19) (3.32) (3.15) (3.22) (3.88) (3.85)
HML -0.08 -0.09 -0.09 0.00 -0.00 -0.00

(-1.24) (-1.50) (-1.27) (0.26) (-0.60) (-0.45)
MOM -0.04*** -0.04*** -0.02*** -0.02***

(-3.37) (-3.45) (-3.96) (-4.01)
LIQ 0.02 0.00

(0.81) (1.22)

R2 0.303 0.307 0.307 0.156 0.166 0.166
Observations 4,706 4,706 4,706 5,373 5,373 5,373

Treatment Group Control Group

where (R j,t - R f,t ) represents the excess return to portfolio j during month t . Monthly portfolio returns are constructed from all
stocks held by fund j at the end of quarter t , multiplied by weighted returns to each stock over the ensuing three months. Risk
adjustment factors include the Fama and French (1993) three-factor model (MKT , SMB , and HML ), plus the momentum factor
of Carhart (1997; MOM ), and the liquidity factor of Pástor and Stambaugh (2003; LIQ ). MKT represents excess return to the
market factor. SMB is the spread return to a portfolio of small market capitalization stocks minus large capitalization stocks.
HML is the spread return to a portfolio of high book-to-market stocks minus low book-to-market stocks. MOM is the spread
return to a portfolio of stocks with prior positive returns minus stocks with prior negative returns. LIQ is the factor for cross-
sectional permanent liquidity innovations. Differences in Alphas between the treatment and control group are significantly
different from one another at the quarterly (5% level) and annual (1% level) frequency, but marginally insignificantly different at
the monthly frequency shown here. Standard errors are clustered two-ways by fund and date, with t-statistics reported below
the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

Treatment Group Control Group
R j  - R f R j  - R f

R j  - R f R j  - R f

(𝑅𝑗,𝑡−𝑅𝑓,𝑡 ) = 𝛼 + 𝛽1𝑀𝐾𝑇𝑡 + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝑀𝑂𝑀𝑡 + 𝛽5𝐿𝐼𝑄𝑡 + 𝜀𝑗,𝑡, 
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Table 7: Liquidity Management During the Global Financial Crisis
This table presents the results of the fund-month panel regression

Alpha 0.45*** 0.38*** 0.39*** 0.39*** 0.28*** 0.30***

(6.47) (4.96) (5.33) (8.15) (5.24) (5.79)

MKT 0.83*** 0.85*** 0.84*** 0.80*** 0.83*** 0.83***

(29.93) (32.55) (30.90) (36.11) (37.36) (35.90)

SMB 0.26*** 0.25*** 0.25*** 0.26*** 0.22*** 0.22***

(4.55) (4.04) (4.23) (7.79) (6.48) (6.72)

HML -0.16* -0.15* -0.14* 0.07 0.07 0.07

(-1.93) (-1.74) (-1.68) (1.47) (1.33) (1.31)

MOM -0.06*** -0.05*** -0.04** -0.07*** -0.06*** -0.06***

(-3.20) (-3.10) (-2.46) (-6.92) (-5.95) (-5.05)

LIQ 0.05* 0.07** 0.04 0.09*** 0.11*** 0.09***

(2.00) (2.32) (1.59) (4.76) (5.53) (4.57)

Q3_2008 -0.84 -2.86***

(-1.16) (-6.16)

Q4_2008 1.71*** 1.41***

(2.71) (3.71)

Q1_2009 1.52*** 1.25***

(3.13) (3.57)

R2 0.561 0.562 0.562 0.603 0.599 0.599

Observations 4,801 4,801 4,801 8,581 8,581 8,581

during the global financial crisis of 2008-2009 where (Rj,t- Rf,t) represents the excess return to portfolio j during month t.

Monthly portfolio returns are constructed from all stocks held by fund j at the end of quarter t, multiplied by weighted returns

to each stock over the ensuing three months. Risk adjustment factors include the Fama and French (1993) three-factor model

(MKT , SMB , and HML ), plus the momentum factor of Carhart (1997; MOM ), and the liquidity factor of Pástor and Stambaugh

(2003; LIQ). MKT represents excess return to the market factor. SMB is the spread return to a portfolio of small market

capitalization stocks minus large capitalization stocks. HML is the spread return to a portfolio of high book-to-market stocks

minus low book-to-market stocks. MOM is the spread return to a portfolio of stocks with prior positive returns minus stocks

with prior negative returns. LIQ is the factor for cross-sectional permanent liquidity innovations. Indicators variables Q3_2008-
Q2_2009 are equal to one for each of the respective quarters during the crisis. Standard errors are clustered two-ways by fund

and date, with t-statistics are reported below the coefficients. * indicates significance at the 10% level, ** at the 5% level, and ***

at the 1% level.  

Dependent Variable

Treatment Group Control Group

R j  - R f R j  - R f

(𝑅𝑗,𝑡−𝑅𝑓,𝑡 ) = 𝛼 + 𝛽1𝑀𝐾𝑇𝑡 + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝑀𝑂𝑀𝑡 + 𝛽5𝐿𝐼𝑄𝑡 + 𝛽6𝑄3_2008𝑡 + 𝛽7𝑄4_2008𝑡 + 𝛽8𝑄1_2009𝑡 + 𝜀𝑗 ,t, 
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Table 8: Overlap vs. Non-Overlap Liquidity Management During the Global Financial Crisis

This table presents the results of the fund-month panel regression

Panel A: Overlap Risk-Adjusted Performance

Dependent Variable

Alpha 0.32*** 0.27*** 0.27*** 0.22*** 0.16*** 0.16***

(6.10) (4.98) (5.04) (8.19) (5.80) (5.69)

MKT 0.52*** 0.54*** 0.54*** 0.37*** 0.39*** 0.39***

(16.87) (16.80) (16.46) (25.91) (24.25) (24.59)

SMB 0.10*** 0.09*** 0.10*** 0.07*** 0.05*** 0.05***

(5.72) (5.00) (5.28) (6.44) (4.68) (5.02)

HML -0.10*** -0.10*** -0.09*** 0.07*** 0.06*** 0.07***

(-3.41) (-3.34) (-2.94) (3.65) (3.28) (3.67)

MOM -0.03** -0.02** -0.01 -0.02*** -0.01** -0.01

(-2.35) (-2.13) (-1.21) (-3.50) (-2.50) (-1.04)

LIQ 0.03** 0.04*** 0.02 0.04*** 0.06*** 0.04***

(2.36) (3.61) (1.42) (3.73) (4.40) (3.23)

Q3_2008 -0.64 -1.74***

(-1.58) (-5.87)

Q4_2008 1.29*** 0.61**

(3.51) (2.49)

Q1_2009 1.42*** 1.23***

(5.45) (6.65)

R
2

0.516 0.518 0.518 0.463 0.456 0.459

Observations 4,730 4,730 4,730 8,364 8,364 8,364

Panel B: Non-Overlap Risk-Adjusted Performance

Dependent Variable

Alpha 0.03 0.01 0.02 -0.05*** -0.06*** -0.06***

(0.74) (0.16) (0.51) (-3.75) (-4.21) (-4.28)

MKT 0.32*** 0.33*** 0.33*** 0.06*** 0.06*** 0.06***

(10.28) (11.02) (10.63) (19.44) (19.18) (20.23)

SMB 0.17*** 0.16*** 0.16*** 0.02*** 0.02*** 0.02***

(3.25) (3.06) (3.16) (3.83) (3.82) (3.92)

HML -0.08 -0.08 -0.08 -0.00 -0.00 0.00

(-1.24) (-1.14) (-1.20) (-0.36) (-0.21) (0.02)

MOM -0.04*** -0.04*** -0.04*** -0.02*** -0.02*** -0.02***

(-3.41) (-3.43) (-3.29) (-4.03) (-3.99) (-3.64)

LIQ 0.02 0.02 0.02 0.00 0.00 0.00

(0.82) (0.91) (0.81) (1.14) (1.56) (0.58)

Q3_2008 -0.19 -0.08

(-0.35) (-1.29)

Q4_2008 0.56 0.15

(1.25) (1.58)

Q1_2009 0.12 0.26**

(0.34) (2.57)

R
2

0.307 0.308 0.307 0.167 0.167 0.168

Observations 4,706 4,706 4,706 5,373 5,373 5,373

Treatment Group Control Group

during the global financial crisis of 2008-2009 where (Rj,t- Rf,t) represents the excess return to portfolio j during month t. Monthly portfolio

returns are constructed from all stocks held by fund j at the end of quarter t, multiplied by weighted returns to each stock over the ensuing

three months. Risk adjustment factors include the Fama and French (1993) three-factor model (MKT , SMB , and HML ), plus the

momentum factor of Carhart (1997; MOM ), and the liquidity factor of Pástor and Stambaugh (2003; LIQ). MKT represents excess return

to the market factor. SMB is the spread return to a portfolio of small market capitalization stocks minus large capitalization stocks. HML 
is the spread return to a portfolio of high book-to-market stocks minus low book-to-market stocks. MOM is the spread return to a

portfolio of stocks with prior positive returns minus stocks with prior negative returns. LIQ is the factor for cross-sectional permanent

liquidity innovations. Indicators variables Q3_2008-Q2_2009 are equal to one for each of the respective quarters during the crisis.

Standard errors are clustered two-ways by fund and date, with t-statistics are reported below the coefficients. * indicates significance at

the 10% level, ** at the 5% level, and *** at the 1% level.  

Treatment Group Control Group

R j  - R f R j  - R f

R j  - R f R j  - R f

(𝑅𝑗,𝑡−𝑅𝑓,𝑡 ) = 𝛼 + 𝛽1𝑀𝐾𝑇𝑡 + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝛽4𝑀𝑂𝑀𝑡 + 𝛽5𝐿𝐼𝑄𝑡 + 𝛽6𝑄3_2008𝑡 + 𝛽7𝑄4_2008𝑡 + 𝛽8𝑄1_2009𝑡 + 𝜀𝑗 ,t, 
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Abstract 

Meeting heterogeneous investor needs, mutual fund families now offer ETF versions of their index 

funds. Using a twin based study, we find mutual fund twins and their families benefit from the 

relationship, while the effect is ambiguous for ETF twins. Compared to the average index mutual 

fund, twins have a 23% lower tax burden driven by a 69% lower long-term capital gains yield. 

Unrealized capital gains also decrease by 7%. ETF twin investors face higher long-term capital gains 

yields and unrealized capital gains, but are compensated with lower total expense ratios. Overall, 

the family benefits from higher flows to twins. 
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1. Introduction 

On the supply side of the mutual fund industry two stylized facts exist: (1) the majority of funds 

are organized as Open-End Funds (OEFs) and (2) they operate within a fund family. The prevalence 

of these industry features has emerged despite well-documented limitations to both. For instance, 

Stein (2006) theorizes that the dominance of OEFs, may be socially excessive due to the known 

externalities of trading, brokerage, and operating expenses, and unexpected capital gains imposed 

by short-term traders on other fund investors (Chordia (1996)). Traditional mutual funds organize as 

families to earn rents from economies of scale (Baumol et al. (1989)) and to cater to heterogeneous 

investor needs (Nanda, Narayanan and Warther (2000)). However, by organizing in a family 

structure, manager incentives may be distorted (Gaspar, Massa, and Matos (2006)) as evidenced by 

cross-fund subsidization (Bhattacharya, Lee, and Pool (2013)). Using a twin-based study to 

overcome endogeneity concerns, this paper contributes to the literature by examining an emerging 

trend in the organization of mutual funds: the incorporation of Exchange Traded Funds (ETFs) into 

a fund family. 

The features that distinguish ETFs from their OEF peers helps mitigate the impact of 

externalities on fund investors. ETFs are exchange traded and rely on in-kind creation and 

redemption, such that investors bear their own transaction-induced costs and the fund itself rarely 

has to transact in the underlying. Thus, ETFs generally have higher levels of transparency, greater 

tax efficiencies, and lower management fees (Poterba and Shoven (2002)). These features have 

attracted broad array of investors to the new product, resulting in ETFs underpinning the recent 

trend toward index investing from active management. In fact, ETFs now represent 48% of the $4.23 

trillion indexed funds market that has benefited from net inflows of $1.2 trillion since 2007. Of this, 
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net new cash flows to U.S. domestic equity ETFs are almost double that of index mutual funds.1 In 

light of such demand for ETFs, traditional mutual fund families face intense pressure to offer ETFs 

to retain existing shareholders and to attract new ones. 

Fund families face a conflict. In effort to increase flows to the family, they can introduce ETFs to 

meet investor demand, but they do so at the risk of cannibalizing flows to higher fee OEFs within 

the family.2 Yet, the operational efficiencies of ETFs allow mutual fund families to potentially offset 

tax externalities imposed on traditional fund investors by short-term traders. Using a twin-based 

identification strategy similar to Nohel, Wang, and Zheng (2010), Cici, Gibson, and Moussawi (2010), 

and Evans and Fahlenbrach (2012) we obtain a clean setting to test the implications of the 

proliferation of this alternative fund structure on the traditional mutual fund industry and 

mainstream investors.3 Here, twins are defined as an index mutual fund and ETF in the same fund 

family that follow the same benchmark; essentially, twins are identical funds differentiated only by 

vehicle structure.4 Our goal is to understand why fund families may introduce this share-class 

structure given the conflict it poses, and then consider the implications for mutual fund and ETF 

investors who exhibit differing preferences, with a focus on the tax, expense, and flow implications.  

The tax efficiencies of ETFs stem from their use of a technique known as “in-kind creation and 

redemption,” which are non-taxable events involving the exchange of a unit of ETF shares for a pre-

specified basket of the underlying. 5  These exchanges occur only between the ETF sponsor and its 

Authorized Participants (APs), and enable the ETF to minimize both realized and unrealized capital 
                                                           
1 ICI Factobook 2016 
2 Fidelity infamously resisted offering ETFs until recently. Krouse, Sarah, January 3, 2017, Wall Street Journal. “Fidelity Embraces 
What It Once Avoided: The ETF” 
3 http://www.google.com/patents/US20110258089 
4 The correlation of annual returns for the mutual fund and ETF twins is over 99% 
5 Specifically, Section 852(b)(6) of the US Tax Code relieves registered investment companies (RICs) from Section 311(b), which 
requires a corporation to pay taxes on distributed property, when redemptions are made in shares upon the demand of its 
shareholder. 
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gains distributions. Because mutual fund managers rarely use the in-kind feature (Poterba and 

Shoven (2002)), this leads to a tax externality because the tax burden of mutual fund investors is 

dependent on the behavior of others (Dickson, Shoven, and Sialm (2000)). When a mutual fund 

manager sells shares due to reallocation or to meet redemption requests, the remaining shareholders 

bear the tax burden on the fund’s realized capital gains. The unique structure of twin funds allows 

fund families to capitalize on differences in investor preferences. Fund families that incorporate 

ETFs can exploit the tax efficiencies of ETFs to the benefit of their higher-fee paying mutual funds in 

two ways. First, is through a structure that Vanguard patented making the ETF a separate share 

class of the larger mutual fund.6 As noted by Senior Investment Advisor at Vanguard, Joel Dickson, 

the structure uses the ETF’s in-kind mechanism to get “rid of gains.”7 Second, ETFs and mutual fund 

twins exist as distinct funds within the fund family. In this setting, mutual funds may respond to a 

redemption request by delivering the basket of shares to the ETF in exchange for a creation unit of 

the ETF, typically 50,000 to 100,000 shares. The mutual fund can then sell the ETF shares into the 

market, using the funds from the sale to meet the cash redemption. This strategy is possible because 

the majority of fund sponsors are also APs for their own ETFs.8  

We find that mutual fund families who introduce twin funds are able to exploit the tax efficiency 

of ETFs to lower their current and potential tax distributions. In fact, the use of ETFs by mutual fund 

twins results in a 22.8% reduction in the tax burden, or over $300 billion dollars in tax savings for 

mutual fund investors. Driving this lower tax burden is a 69.4% savings in the long-term capital 

gains distributions relative to the average mutual fund. Future taxable distributions – measured as 

                                                           
6 US Patent Number 2002/0128947 A1, filed March 7, 2001 and published September 12, 2002  
7 https://advisors.vanguard.com/iam/pdf/Efficiency_transcript2.pdf 
8 The cost basis for acquirers of the underlying and ETF shares exchanged is the net asset value (NAV) at market close 
(Forstenhausler (2010), Gastineau (2005)). Therefore, rather than paying taxes on the accumulated share gains of the underlying, the 
mutual fund instead pays taxes on the difference between the NAV and the price at which the ETF is sold in the market. 
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reported 2014 unrealized capital gains scaled by total assets – are 7% lower for mutual fund twins. 

For ETFs, the overall tax burden is unaffected by this arrangement, but investors in ETF twins face 

higher long-term and unrealized capital gains. 

Furthermore, we find that fund families do not fully pass on economies of scale benefits from 

managing two identical pools of assets. While ETF twins have 20% lower expense ratios, the expense 

ratios for mutual funds twins are not significantly different than their non-twin peers. Finally, we 

find that mutual fund and ETF twins generate 50% and 25% greater flows, respectively, than their 

non-twin peers. This suggests that fund families benefit by appealing to investor heterogeneity 

through this form of product diversification. 

Since the introduction of a new investment is not random, we use two identification strategies to 

examine the implications of managing mutual fund and ETF twins. In our first test, we use a fixed 

effects model on the full panel and use Morningstar category fixed effects to account for unobserved 

style based heterogeneity (Bergstresser and Pontiff (2013)). We include year fixed effects to control 

for general market trends and the cyclicality of fund distributions (Sialm and Zhang (2015)). In our 

second specification, we take advantage of the recency of ETFs. Since index mutual funds date back 

to the 1970s and ETFs were only introduced in the early 1990s, there are several mutual funds that 

were in operation prior to the introduction of its ETF twin. We use these mutual funds as our 

treatment group in a difference-in-difference specification. For this test, we use non-twin mutual 

funds matched on Morningstar category and fund size as our control group.  

This paper is contributes to three broad strands of the literature: fund family, tax burden, and 

ETF administration. First, the fund family literature has examined the impact of multiple funds 

operating within a family structure. It is well known that mutual funds benefit from economies of 
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scale from organizing as a family (Baumol et al. (1989), Khorana and Servaes (2012), Khorana and 

Servaes (1999)) and by offering  product differentiation families can appeal to investor heterogeneity 

(Massa (2003)), but limited evidence that families pass the savings on to investors (Freeman and 

Brown (2001)). Despite potential benefits, family relationships may lead managers to act in the best 

interest of the overall family, rather than the individual fund. To date the literature suggests that 

families engage in cross-fund subsidization by favoring high-fee and high performing mutual funds 

(Gaspar, Massa, and Matos (2006)) or providing liquidity to family funds under stress to benefit the 

family as a whole (Bhattacharya, Lee, and Pool (2013)). We add to the fund family literature by 

studying the incorporation of ETFs, a distinct investment vehicle, into mutual fund families. Our 

results identify a new cross-fund subsidization feature found in the OEF-ETF twin structure, while 

showing that offering ETFs does not lead to cannibalization of flows for higher-fee index funds.  

The second strand of related literature is on the influence of taxes. Generally, papers find that 

taxes are an important consideration for mutual fund managers and investors alike. Dickson and 

Shoven (1993) document that capital gains distributions significantly impact after-tax returns, while 

Sialm and Zhang (2015) show that tax-efficient asset management generates superior before- and 

after-tax performance. Bergstresser and Poterba (2002) find that money flows to funds that are able 

to deliver lower tax burdens relative to funds with similar pre-tax returns. Sialm and Starks (2012) 

find that mutual fund managers consider the tax status of their investors when determining 

distributions and holdings. Beyond, realized capital gain, Barclay, Pearson, and Weisbach (1998) 

document empirically and theoretically that unrealized capital gains are an important consideration 
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for fund managers. By offering ETFs, we find that traditional mutual fund families are able to 

mitigate a major externality imposed on tax sensitive investors.9 

Finally, as the assets under management by ETFs have increased, so too has the academic 

community’s interest in the investment vehicle. To date, the majority of studies have examined the 

impact of ETF membership on various characteristics of the underlying. ETFs are shown to decrease 

liquidity (Hamm (2011)), increase volatility (Ben-David, Franzoni, and Moussawi (2014)), and lead to 

greater co-movement (Da and Shive (2013)) for constituent stocks. Dannhauser (2016) shows that 

ETF constituency lower corporate bond yields due to a migration of liquidity traders from the 

underlying market to the basket security. Two recent papers have focused on ETF administration. 

Specifically, Blocher and Whaley (2014) document that ETFs generate significant revenues from 

security lending. In perhaps the most closely related paper to ours, Cheng, Massa, and Zhang (2014) 

investigate the consequences of ETFs affiliated with banks. They find that ETFs leverage information 

from banks’ lending activities, thereby helping the banks’ own mutual funds through cross-trading, 

while supporting the banks’ stock price. Importantly, their study focuses on European ETFs, which 

are synthetically replicated using swaps. 

2. Data and Summary Statistics 

This section summarizes the sources for our data, describes the methodology used to identify 

mutual fund and ETF twins, defines the tax burden, and presents summary statistics. 

 

                                                           
9 Mutual fund family cross-subsidizations (Gaspar, Massa, and Matos (2006) and Bhattacharya, Lee, and Pool (2013) ); side-by-side 
management arrangements (Nohel, Wang, and Zheng (2010), Cici, Gibson, and Moussawi (2010), and Evans and Fahlenbrach 
(2012)). 
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2.1. Data 

Our annual data covers U.S. equity index mutual funds and ETFs over the period 1997 to 2014 

from the CRSP Survivor-Bias-Free U.S. Mutual Fund database. The CRSP database includes mutual 

fund characteristics such as fund returns, assets under management, fund dividends, long-term and 

short-term capital gains distributions, fees, and investment objectives. Since, nearly all ETFs are 

passive investment vehicles, we restrict the sample to include only index funds. In particular, we use 

the index_fund_flag variable of CRSP to retain pure index funds or index-based funds. Since many 

funds contain multiple share classes, we aggregate variables by asset-weighting the individual share 

classes. The only variables that are summed over individual share classes are total assets and total 

2014 unrealized capital gains, which we obtain from Morningstar Direct. We account for the share 

class features of Vanguard that includes an ETF under the same fund as the mutual fund classes. To 

do so, we aggregate at the fund and structure level, resulting in a mutual fund and an ETF 

observation for a single fund. We also exclude fund liquidation years and require that a fund has a 

positive tax burden for at least one year of our sample.10 

We merge the CRSP data with data from Morningstar Direct on fund CUSIP. From the sample of 

CRSP index funds we further refine the data by eliminating all inverse and enhanced funds using 

the Morningstar category and fund name. We find the index followed by the remaining funds from 

three sources. First, we use Morningstar Direct to obtain the benchmarks by matching on CUSIP, 

then by ticker. For the funds with no Morningstar entry, we develop an algorithm to identify 

commonly followed indices using the mutual fund names. For instance, we search fund names for 

keywords, such as, S&P 500, MidCap 400 Value, or Russell 2000 Growth, to identify the benchmarks 

                                                           
10 Results are robust to the inclusion of liquidation years and funds without distributions. 
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S&P 500, S&P MidCap 400 Value Index, and Russell 2000 Growth Index, respectively. Finally, we 

hand collect index benchmark data for approximately 500 funds using prospectuses. We delete any 

funds without an identifiable benchmark. For funds with hand-collected benchmarks, we use the 

Morningstar data to assign a Morningstar category on benchmark.  

Finally, the time series of tax rates on dividend, short-term, and long-term capital gains are 

sourced from the National Bureau of Economic Research (NBER).11 The marginal rates are only 

available up to 2013 as of February 26, 2015. As a consequence, our tax burden tests are run for 1997 

to 2013 despite having information on the distribution yields for 2014. 

2.2. Identification of Mutual Fund and ETF Twins 

A mutual fund and ETF are identified as twins if they are in the same fund family and follow 

the same index. Essentially, twins are the exact same fund with different structures. For the majority 

of management company and index combinations this selection process results in a single mutual 

fund and a single ETF. However, in select cases a fund family may run many mutual funds 

following the same benchmark. For instance, Vanguard has an ETF, and three open-ended funds (an 

index fund, an institutional fund, and a tax-managed fund) that all follow the S&P 500. In these 

instances, we consider all three mutual funds as broad matches. However, in each case of multiples 

we identify the true twin as either the oldest mutual fund, or in the case of Vanguard, the mutual 

fund that contains the ETF as a share class. In total we identify seventy-four twin combinations 

composed of 152 distinct funds. The correlation of mutual fund and ETF twin returns pre and post 

expenses are 99.90% and 99.86%, respectively. Correlations that are essentially one confirm our 

claims that twins are identical funds distinguished only by their structure. Of the seventy-four 

                                                           
11 http://www.nber.org/~taxism 
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twins, forty-eight are administered by Vanguard. While Vanguard is a dominant manager in this 

study, we argue that it is important to understand how this family operates since their assets at the 

end of 2014 were in excess of the entire hedge fund industry.12 Furthermore, we categorize the twins 

based on the timeline of introduction. Thirty-one of the twin fund combinations began as an open-

end mutual fund, with the ETF added to the family at least two years after the mutual fund 

introduction. Eight began as ETFs with the mutual fund following at least two years after. The 

remaining thirty-five twins introduced the ETF and mutual fund in the same year.  

We further restrict the sample to include only funds in the same Morningstar category as the 

twins. We also delete State Street’s S&P 500 funds, so that the SPDR S&P 500 ETF, commonly 

referred to by its ticker, SPY, does not dominate our ETF results. We are left with 8,503 fund-years 

representing 617 ETFs and 437 mutual funds. Over 13% of the sample fund-months are associated 

with a twin arrangement. 

2.3. Tax Burden 

Mutual funds and ETFs are both registered under the Investment Company Act of 1940, making 

them pass through entities. Thus on an annual basis, funds distribute capital gains and dividend 

income to shareholders. If an investment company distributes all of its investment income to its 

shareholders, the company itself will have no tax liability. The distributions are taxable for investors 

who hold the funds in a taxable account. Dickson, Shoven, and Sialm (2000) describe this as an 

externality, since the tax burden of mutual fund investors depends on the behavior of others. Due to 

their liberal use of in-kind rather than cash distributions, ETFs are considered a more tax efficient 

alternative to traditional mutual funds. Traditional mutual funds have the ability to use in-kind 

                                                           
12 http://www.wsj.com/articles/vanguard-sets-record-funds-inflow-1420430643 
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redemption, but rarely if ever utilize the feature. At the fund level, the U.S. Tax Code relieves the 

ETF from any tax consequences related to the distribution of appreciated assets when made in 

response to an investor demand. Since redemptions are met with a tax-free exchange of the basket of 

securities in return for the ETF shares, the fund does not incur capital gains which would need to be 

distributed to investors. In fact, ETF sponsors rarely need to transact in the underlying, thereby 

reducing the potential of incurring taxable capital gains.   

We follow Bergstresser and Poterba (2002) and Sialm (2009) in computing the tax burden (𝑇𝐵𝑓,𝑡) 

for fund, 𝑓, at time, 𝑡. The tax burden is the sum of the marginal investor’s tax liabilities on the 

fund’s distribution yields. Specifically, the tax burden is defined as  

𝑇𝐵𝑓,𝑡 = ( 𝐷𝐼𝑉𝑓,𝑡
𝑁𝐴𝑉𝑓,𝑡−1

∗ 𝑇𝑎𝑥𝑡𝐷𝐼𝑉) + ( 𝐿𝐶𝐺𝑓,𝑡
𝑁𝐴𝑉𝑓,𝑡−1

∗ 𝑇𝑎𝑥𝑡𝐿𝐶𝐺) + ( 𝑆𝐶𝐺𝑓,𝑡
𝑁𝐴𝑉𝑓,𝑡−1

∗ 𝑇𝑎𝑥𝑡𝑆𝐶𝐺) 

= (𝑌𝑓,𝑡
𝐷𝐼𝑉 ∗ 𝑇𝑎𝑥𝑡𝐷𝐼𝑉) + (𝑌𝑓,𝑡

𝐿𝐶𝐺 ∗ 𝑇𝑎𝑥𝑡𝐿𝐶𝐺) + (𝑌𝑓,𝑡
𝑆𝐶𝐺 ∗ 𝑇𝑎𝑥𝑡𝑆𝐶𝐺), 

where 𝑌𝑓,𝑡
𝐷𝐼𝑉, 𝑌𝑓,𝑡

𝐿𝐶𝐺, and 𝑌𝑓,𝑡
𝑆𝐶𝐺 are the fund’s dividend yield, long-term capital gains yield, and short-

term capital gains yield, respectively. 𝑇𝑎𝑥𝑡𝐷𝐼𝑉, 𝑇𝑎𝑥𝑡𝐿𝐶𝐺, and 𝑇𝑎𝑥𝑡𝑆𝐶𝐺 are the tax rates on dividends, and 

long-term and short-term capital gains. Tax rates are computed as the weighted averages of the 

marginal tax rates of investors in different tax brackets, where the weights correspond to the amount 

of declared dividends and capital gains (Feenberg and Coutts (1993)). 

The CRSP mutual fund database provides the level of distributions per share by type. Dividend 

distributions by mutual funds are made net of fund expenses. By definition, short-term gains are for 

investments held by the fund for less than one year. Long-term capital gains are generally on 

positions held for over a year. If the term of the capital gain is not specified, we follow Sialm and 

Starks (2012) and assume it is a long-term distribution. Only taxable dividends are considered, as 

(1) 
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taxes are not charged for untaxed or tax-exempt dividends. The tax burden can be interpreted as the 

portion of the fund’s previous value that an investor pays in taxes.  

We are also interested in the unrealized capital gains disclosed in annual reports. Unrealized 

capital gain, referred to as the tax overhang, is equal to the cumulative price appreciation of the fund 

net of distributions. And in expectation, lower capital gains overhang will reduce future taxable 

fund distributions. We collect 2014 reported unrealized capital gains at the share class level from 

Morningstar Direct. Unfortunately, Morningstar Direct does not retain historical values of this 

variable. Although a time-series would be preferred, since unrealized capital gains is cumulative we 

believe that the results using only 2014 data are valid. Therefore, we compute, 𝑈𝑁𝑅𝑓,2014, as the total 

reported unrealized capital gains in fund f as a percentage of total fund assets. We also considered 

computation of unrealized capital gains burdens computed in the literature by Bergstresser and 

Pontiff (2013), Odean (1998) and Sialm and Starks (2012). However, each of these measures relies on 

an assumption about the accounting method employed by a fund. Generally, they assume “smart” 

tax realization strategies, with the highest-basis shares sold first. This assumption would bias us 

against finding results, as the use of ETFs by mutual funds would raise the possibility of a change in 

strategies. Therefore, we use reported unrealized capital gains. 

2.4. Summary Statistics 

Table 1 presents the summary statistics for our data. Panel A documents the number of mutual 

funds, ETFs, and twins of both types in each year of the study. The first twin arrangement was 

created by the first ETF, SPY, in 1993, which is excluded from our data. In our setting, the first twin 

was introduced in 2000. The number of ETF twins has grown from one in 2000 to 68 in 2014. 
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[Insert Table 1] 

Panel B of table 1 contains the mean value of different characteristics of the funds in our study. 

The panel shows that twins are generally created by larger families and have lower overall expense 

ratios. Mutual fund and ETF twins also have more assets under management and lower tax burdens 

than their non-twin peers. Interestingly, the average unrealized capital gains for mutual fund twins 

is lower than non-twin mutual funds, but for ETF twins it is significantly greater. These summary 

results on the capital gains overhang support the intuition provided by Barclay, Pearson, and 

Weisbach (1998). The lower unrealized capital gains of mutual funds attract new investors, while 

ETF managers bear the higher capital gains overhang as the capital gains are unlikely to be realized. 

3. Empirical Analysis of Mutual Fund and ETF Twins 

In this section we study the implications of a twin relationship for investors. In particular we 

examine the consequences of side-by-side management on the total tax burden, the long-term and 

short-term capital gains yields, the capital gains overhang, the overall expense ratio, the 12b-1 

distribution fees, the management fees, and annual flows. To address endogeneity concerns related 

to the introduction of new investment vehicles, we execute two identification strategies: a fixed 

effects model and a difference-in-difference specification. The following subsections discuss each of 

the methodologies and results in greater detail. 

3.1. Fixed Effects Model 

Our fixed effects model uses both Morningstar category and year fixed effects to account for 

unobserved style related heterogeneity (Bergstresser and Pontiff (2013)), and secular trends over our 

sample period. In this model, we regress one of our dependent variables on three binary variables of 
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interest and covariates specified in the literature. The independent variables that we consider are the 

overall tax burden, 𝑇𝐵𝑓,𝑡, the long-term capital gains yield, 𝑌𝑓,𝑡
𝐿𝐶𝐺, and the short-term capital gains 

yield, 𝑌𝑓,𝑡
𝑆𝐶𝐺. We are also interested in the unrealized capital gains of the fund measured as a 

percentage of total assets, 𝑈𝑁𝑅𝑓,2014. 

Additionally, in our study of fees paid by investors, we consider the overall expense ratio, 

𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑓,𝑡, and its major components, the distribution fee, 12𝑏1𝑓,𝑡, and the management fee, 

𝑀𝑔𝑚𝑡𝑓,𝑡. In particular, we execute the following specification 

𝑌𝑓,𝑠,𝑡 = 𝛼 + 𝛽1𝑀𝐹𝑓 + 𝛽2𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽3𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 +  𝛽4𝑋𝑓,𝑡 + 𝜂𝑠 + 𝜏𝑡 + 𝜀𝑓,𝑠,𝑡, 

where , 𝑌𝑓,𝑠,𝑡, is the value of one of our dependent variables for fund 𝑓 in style 𝑠 in year 𝑡. 𝑀𝐹𝑓 is 

equal to one for a mutual fund and zero for an ETF. This dummy variable accounts for differences 

between the tax distributions, fees, and flows of mutual funds relative to ETFs. 𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 is set to 

one for all years that a mutual fund operates as a twin, and 𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 is set to one for all years that 

an ETF operates as a twin. Both values are zero otherwise. For contemporaneous twins, 𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 

and 𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 are always equal to one. For twins where the mutual fund or ETF existed on its own 

for at least two years, the covariate is equal to zero until the twin is introduced. These two dummy 

variables measure the difference between the outcome variable for twins relative to that of their 

peers of the same investment vehicle. For instance, 𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 shows a differential effect of mutual 

funds operating with a twin relative to that of all stand-alone mutual funds. 𝑋𝑓,𝑡 is the vector of 

controls including the log of fund size, the log of family index assets, and fund age (in years). 𝜂𝑠 is 

the Morningstar category fixed effect. Since many of our twin funds are contemporaneous starts, we 

do not use fund fixed effects. Doing so would exclude the contemporaneous twins from our study 

because there is no variation in their treatment status. 𝜏𝑡 is the year fixed effect. 

(2) 
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3.1.1. Tax Effect Results 

Table 2 presents the results of the tax fixed effects panel regressions. The first column reports 

results without the two twin dummies to first identify whether ETFs are truly more tax efficient as 

frequently claimed by practitioners. For the remaining columns, the dependent variable is overall 

tax burden for columns 2 and 3, the long-term capital gains yield for columns 4 and 5, the short-term 

capital gains yield for columns 6 and 7, and the unrealized capital gains for columns 8 and 9. For 

each of the regression pairs, the latter column includes the covariates discussed above.  

[Insert Table 2] 

In column 1, the coefficient on the mutual fund dummy, 𝑀𝐹, is positive and significant, 

empirically confirming that mutual funds have higher tax burdens than ETFs. The coefficient on 

𝑀𝐹 𝑇𝑤𝑖𝑛 in both columns 2 and 3 is negative and significant, suggesting that mutual funds are able 

to use their ETF twin to lower the tax burdens. After controlling for observables, the coefficient on 

𝐸𝑇𝐹 𝑇𝑤𝑖𝑛 is insignificant, suggesting that the overall tax burden is unaffected by this family 

relationship.  

We examine two of the components of tax burden to determine the driver of the relationship; 

long- and short-term capital gains yield. We do not consider the dividend yield because index funds 

do not have control over the constituents and their dividend policy. Furthermore, dividend 

distributions are made net of expenses. As expected, we find that the lower overall tax burden is 

being driven entirely by a reduction in the long-term capital gains yield for mutual fund twins. Also, 

the results indicate that the arrangement leads to higher long-term capital gains for ETF investors. 
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The short-term capital gains yield of both mutual fund and ETF twins is unaffected by the 

relationship.  

3.1.2.  The Expense Effect 

Having shown above that mutual funds benefit from having an ETF twin, we now examine if 

any economies of scale from managing two identical pools of assets are passed on to investors in the 

form of lower fees. Table 3 shows the findings of our fixed effects panel regressions. As above, 

column 1 excludes the twin dummies to document a general difference in expenses for mutual funds 

and ETFs. Columns 2 and 3 have the total expense ratio as the dependent variable. Columns 4 and 5 

use 12b-1 fees as the left-hand variable. 12b-1 fees are expenses charged directly to the assets of the 

fund for marketing and distribution. Finally, columns 6 and 7 use management fees as the 

dependent variable. The management fee is paid directly to the fund’s advisor, and as claimed by 

Wahal and Wang (2011), is a clean measure of the price of the services provided by the advisor. 

[Insert Table 3] 

Column 1 confirms that ETFs generally have lower expense ratios than their mutual fund peers, 

which supports general market commentary on ETFs relative to mutual funds. The lower expense 

ratio is often attributed to the relative ease of ETF management since the managers themselves rarely 

trade in the underlying markets. Column 2 suggests that investors in mutual fund twins may have 

lower total expense ratios. However, the result is only robust for ETF twins after the inclusion of the 

controls of fund size, family size, and age. In column 3, we find that ETF twins have lower expense 

ratios of 8.6 basis points, which is a 20% decrease for the average ETF. Examining the main 

components of the overall expense ratio in columns 5 and 7, we see that mutual fund twins’ 12b-1 
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fees are higher and management fees are lower than their non-twin mutual fund peers. Conversely, 

ETF twins have statistically higher 12b-1 fees and lower management fees. 

3.1.3. Flows Results 

Next we consider if two identical asset pools in two different vehicles has an impact on the flows 

to the funds. We compute flows following Sirri and Tufano (1998) as, 

𝐹𝑙𝑜𝑤𝑓,𝑡 =  𝑇𝑁𝐴𝑓,𝑡−𝑇𝑁𝐴𝑓,𝑡−1∗(1+𝑅𝑓,𝑡)
𝑇𝑁𝐴𝑓,𝑡−1

 

where 𝑇𝑁𝐴𝑓,𝑡 is the total net assets and 𝑅𝑓,𝑡 is the total return of fund 𝑓 in period 𝑡. We compute flow 

in two ways. First, we compute the average monthly flow in a year. Second, we compute the total 

annual flow. We winsorize both measures at the 1% level to mitigate the impact of outliers. Table 4 

presents the results of the fixed effects regression with our flow measures the dependent variables. 

In Columns 1 through 3, we use the average monthly measure, and in columns 4 through 6, the total 

annual measure. Columns 2 and 5 include the covariates specified in equation (2), while columns 3 

and 6 add the annual lagged flow measure. 

[Insert Table 4] 

The mutual fund and ETF twin dummies are positive and statistically significant regardless of 

the model. These results suggest that fund families are able to generate significant inflows from 

having index twins. Of note, the average annual flows to mutual fund twins are 50% greater than 

that of their non-twin peers. For ETF twins, annual flows are 25% greater. These results suggest that 

fund families are able to drive flows to their more profitable mutual funds using the twin structure. 

These results support the findings from Massa (2003) that product differentiation, which appeals to 

different investor needs, drives fund proliferation and flows. 

(3) 
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3.2. Difference-in-Difference: Mutual Fund First 

To provide additional evidence of the impact of side-by-side management on the tax 

distributions to and expenses paid by investors, we exploit the historical differences between mutual 

funds and ETFs. The first index mutual fund was introduced in 1971 by Wells Fargo Bank, while the 

first ETF was launched more than twenty years later by State Street Global Advisors. The relative 

maturity of mutual funds allows us to conduct a difference-in-difference test as many mutual funds 

have an established record prior to the introduction of their ETF twin. 

In this setting, we use mutual funds that operated for at least two years prior to the introduction 

of their ETF twin as the treatment group. We denote the year that the ETF is introduced as year zero. 

The time frame for these tests is two years before and two years after a twin introduction, excluding 

the introductory year. We exclude year zero to allow for gradual adoption of the ETF by investors 

and learning by the twin mutual fund advisor. We limit observations to only two years on either 

side of treatment for two reasons. First, doing so allows us to increase our sample size. Second, 

limiting the number of periods mitigates concerns related to serial correlation bias from difference-

in-difference studies as discussed in Bertrand, Duflo, and Mullainathan (2004). We develop the 

control sample of mutual funds without a twin by matching on Morningstar category and fund size 

in the year before treatment occurs. Our matching strategy requires the control sample to be in the 

same Morningstar category, and then we use both the two and three nearest neighbors matched on 

fund size. We use two and three nearest matches to balance the trade-off between bias and variance 

associated with nearest neighbor matching. We match with replacement contingent on a control 

having multiple matches not having overlapping pre- and post-periods. Furthermore, treatment 

funds are eligible controls for the years prior to the two pre-periods. Our regressions are as follows: 
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𝑌𝑓,𝑡 = 𝛼𝑓 + 𝜏𝑡 + 𝛽1(𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡) + 𝛽2𝑃𝑜𝑠𝑡𝑓,𝑡 + 𝛽3𝑋𝑓,𝑡 + 𝜀𝑓,𝑡 

𝑌𝑓,𝑡 is one of the dependent variables detailed above.  𝛼𝑓 is a fund fixed effect. In this setting we are 

able to use fund fixed effects since contemporaneous twins are not included. This fixed effect allows 

us to control for a fund’s different characteristics, such as index or family, which would lead to 

different propensities to generate taxable distributions or to adjust expenses. 𝜏𝑡 is the year fixed 

effect. The interaction, 𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡, is the covariate of interest. The coefficient on this variable, 

𝛽1, identifies the effect the ETF introduction had on the twin relative to its matched controls. 𝑋𝑓,𝑡 is 

the vector of controls that vary at the fund-year level: the log of fund size, the log of family size, and 

fund age (in years). 

3.2.1. Tax Effect Results 

In Table 5 we present the results for the difference-in-difference regressions with the tax 

variables as the outcome variables. Panel A presents the results using two nearest neighbors 

matching and Panel B uses the three nearest neighbors. The first and second columns of both panels 

show the results for the overall tax burden, the third and fourth for the long-term capital gains yield, 

and the fifth and sixth for the short-term capital gains yield.  

[Insert Table 5] 

The coefficient on the interaction term, 𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡, is negative and significant for the 

overall tax burden regressions. Figure 1 provides a graphical representation of the effect of the twin 

initiation on the overall tax burden. In this figure we plot the average tax burden for the treatment 

and three nearest neighbors control groups in the four years before and after the introduction of the 

ETF twin, as well as the year of introduction; year zero. The figure confirms the critical assumption 

(4) 
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of common trends prior to treatment and documents the divergence following the introduction. 

Furthermore, it appears that managers did require time to learn how to maximize the new family 

dynamics. 

[Insert Figure 1] 

 The last four columns of Table 5 demonstrate that a reduction in long-term capital gains yields 

is the source of the lower tax burden for mutual funds. In particular, the long-term capital gains 

yield for the treatment funds is 1.95% lower in the two years following the introduction of the ETF 

twin. The short-term capital gains yield is unchanged following treatment. Figure 2 presents a 

graphical representation of the long-term capital gains effect. The plot shows that mutual fund twins 

drive their long-term capital gains distributions to zero following the introduction of their ETF 

twins.  

[Insert Figure 2] 

Overall, these results confirm the findings of the fixed effects regressions; mutual funds are able to 

use the co-existence of a twin ETF to lower the long-term capital gains distributions to investors, 

thus lowering the total fund’s tax burden. 

3.2.2.  The Expense Effect 

We are able to use the difference-in-difference specification to examine whether mutual funds 

adjust their fees following the introduction of the ETF twin. Since, our specification uses two years 

after the treatment event, this allows for the typical mutual fund board, which meets annually, at 

least three opportunities to adjust fees. Table 6 shows the expense results of the difference-in-

difference specification where the dependent variables are expenses. 
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[Insert Table 6] 

In every column the coefficient on the interaction variable of interest is insignificant and nearly 

equal to zero. These findings confirm those of the fixed effects regressions that mutual fund 

investors do not receive any reduction in fees from economies of scale. Specifically, this table shows 

that mutual funds do not have significantly different expense ratios, 12b-1 fees, or management fees 

in the two years following their ETF twin introduction relative to the matched control funds.  

4. Robustness 

In this section we conduct robustness tests related to the tax effects results. We first conduct a 

falsification test of our difference-in-difference specification that rolls treatment back two years. This 

test confirms that the assumption of common trends is satisfied and that the ETF introduction drives 

the lower tax burden. Finally, we run our regressions using capital gains distribution levels rather 

than yields to confirm that returns are not driving our results. 

4.1. Difference-in-Difference Falsification Test 

We perform a falsification test to address concerns of differential pre-treatment trends driving 

the tax results. This test confirms the essential assumption of difference-in-difference identification 

of common pre-treatment trend. We estimate the same model with fund and year fixed effects as in 

Tables 5 and 6, but move the treatment period two years earlier. This test focuses on the differential 

effect of twin versus non-twin mutual funds two years prior to the introductory event. In this test, 

the pre-period is now three and four years prior to the true introduction. The post-period is now the 

year before and the year of introduction. Table 7 reports the results of this falsification test. 

[Insert Table 7] 
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We find that none of the coefficients reported are statistically significant. These results confirm 

that the two groups have common trends in the pre-period examined in the initial difference-in-

difference test. Furthermore, the results validate our intuition that the twin introduction is the main 

driver behind the identified change in taxable distributions. 

4.2. Capital Gain Distribution Levels 

The previous tests relied on yield measures, raising concerns that differences in returns to the 

index funds are contributing to the tests. In the same way that dividend yield is preferred to 

dividend levels, the conversion to yields accounts for the size of a distribution relative to the 

investment. Nevertheless, we address these concerns using the level of capital gains distributions on 

the left-hand side. As discussed in Sialm and Zhang (2015), dividend distributions are made after 

expenses are paid to the fund. This netting not only highlights the importance of standardizing by 

NAV, which is also a net value, but also makes interpretation of the total tax burden and dividend 

levels difficult. Table 8 presents the results of these tests using long-term and short-term 

distributions levels as the dependent variables. 

[Insert Table 8] 

The coefficients on the twin variables confirm the results of those in Table 2. In particular, the 

level of long-term capital gains is statistically higher for mutual fund twins than for non-twin 

mutual funds (16 basis points). For ETF twins there is no difference in the level of distributions. 

5. Conclusion 

As ETFs become an increasingly important investment alternative for institutional and retail 

investors, fund families have been forced to adapt. To retain old investors and attract new investors, 
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many mutual fund families have begun to offer mutual fund and ETF twins. Twins are comprised of 

an ETF and mutual fund in the same family that follow the same index. Essentially, these funds are 

identical pools of assets that differ only in their investment structure.  

We show that inclusion of an ETF as a twin in a mutual fund family has significant implications 

for investors and the family. In particular, mutual fund investors benefit from lower tax burdens, 

long-term capital gains distributions, and unrealized capital gains overhang. For ETF twin investors, 

the overall tax burden is unaffected, but there is some evidence that long-term capital gains 

distributions are greater. We also show that fund families do not fully pass along economies of scale 

from this arrangement, as only ETF twins have lower expense ratios. Finally, we show that twin 

funds experience greater inflows than their non-twin peers, suggesting that this form of product 

differentiation is beneficial to the family as a whole, and is a determinant for fund families to 

introduce products that cater to heterogeneous investor preferences. 
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Figure 1: Overall Tax Burden of a Mutual Fund around the Introduction of an ETF Twin 

Plotted below is the average of the overall tax burden computed following Bergstresser and Poterba 

(2002), Sialm (2009). MF Twins are index mutual funds whose family introduced an ETF fund that 

follows the same benchmark. The control funds are stand-along mutual funds matched on 

Morningstar category and fund size the year prior to the twin introduction. Year 0 is the year of 

introduction. 
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Figure 2: Long-Term Capital Gains of a Mutual Fund around the Introduction of an ETF Twin 

Plotted below is the average of the long-term capital gains yield of a mutual fund, computed as the 
annual long-term capital gains distributions scaled by lagged net asset value. MF Twins are index 
mutual funds whose family introduced an ETF fund that follows the same benchmark. The control 
funds are stand-alone mutual funds matched on Morningstar category and fund size the year prior 
to the twin introduction. Year 0 is the year of introduction. 
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Table 1: Summary Statistics

Panel A: Number of Fund Types Per Year

Year # MF # ETF # Twins #MF Twins # ETF Twins

1997 86 1 0 0 0

1998 101 7 0 0 0

1999 138 8 0 0 0

2000 181 47 3 2 1

2001 201 66 8 5 3

2002 219 72 8 5 3

2003 215 80 10 6 4

2004 218 109 39 20 19

2005 207 145 46 24 22

2006 211 222 66 34 32

2007 227 292 77 40 37

2008 285 359 89 48 41

2009 280 386 90 48 42

2010 297 443 116 60 56

2011 319 508 141 75 66

2012 314 546 142 76 66

2013 309 523 147 81 66

2014 319 562 151 83 68

Total 4,127 4,376 1,133 607 526

Panel B: Characteristics of the Average Fund by Type

Overall MF MF Twin ETF ETF Twin

1929 2534 7873 1359 3221

199717 137128 688198 258529 734772

6.89 9.06 9.31 4.85 4.95

0.47 0.54 0.34 0.42 0.18

0.04 0.08 0.06 0.00 0.02

0.23 0.16 0.17 0.29 0.13

0.52 0.60 0.48 0.45 0.39

1.48 1.24 1.54 1.70 1.57

0.59 1.18 0.18 0.03 0.01

0.18 0.33 0.26 0.04 0.00

11.53 22.69 16.18 6.71 13.05

3.40 2.86 4.14 3.91 4.42

Annual Flows (%) 32.91 26.24 37.92 39.46 53.36

Avg Monthly Flows (%)

Management Fee (%)

Tax Burden (%)

Dividend Yield

LCG Yield (%)

SCG Yield (%)

Unrealized Gains (%)

12b-1 Fees (%)

Summary statistics by investment vehicle type and by twin status for index funds for the annual sample period of
1997 to 2014. Twins are mutual funds and ETFs that operate in the same fund family and follow the same index.
Panel A presents the number of observations of mutual funds, ETFs, and twin funds by year. Twin funds are
further broken down into mutual fund and ETF twins. Panel B presents the mean of observable summary
startistics for the different categories. Fund Size is the dollar of assets in millions for all share classes of the fund.

Family Size is the total index assets under management by the fund family. Age, Expense Ratio ,12b-1 Fee , 

Management Fee ,Tax Burden , Dividend Yield , Long-Term Capital Gains (LCG) Yield , and Short-Term Capital Gains

(SCG) Yield are all the asset-weighted values for all share classes of a fund. Unrealized Gains is the total 2014
reported unrealized capital gains of all share classes of a fund scaled by total fund assets.

Fund Size

Family Size

Age

Expense Ratio (%)
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Dependent Variable: Tax Burden Tax Burden Tax Burden LCG LCG SCG SCG UNR UNR

(1) (2) (3) (4) (5) (6) (7) (8) (9)

MF 0.131*** 0.244*** 0.174*** 1.380*** 0.991*** 0.403*** 0.460*** 14.748*** 12.150***

4.44 7.74 4.73 12.92 7.97 5.83 5.36 8.95 8.36

MF Twin -0.186*** -0.136** -1.152*** -0.821*** -0.176 -0.144 -6.365*** -6.996***

-4.29 -2.57 -9.58 -5.35 -1.46 -1.03 -3.61 -3.74

ETF Twin -0.042* -0.023 -0.001 0.189** -0.068* -0.036 5.136*** 4.286***

-1.75 -0.84 -0.01 2.16 -1.69 -0.85 4.20 3.37

Fund Size 0.011** 0.011* -0.030 -0.015 -0.452

2.01 1.92 -1.35 -1.60 -1.41

Family Size -0.020*** -0.014** -0.072*** -0.008 0.449*

-4.11 -2.44 -3.18 -0.81 1.79

Age (Years) 0.009*** 0.009*** 0.052*** -0.015*** 0.766***

2.82 2.67 3.30 -2.98 3.93

Constant 1.021*** 0.859*** 0.949*** 1.577*** 2.460*** 0.197** 0.320** 7.280*** -1.017

7.11 6.59 6.35 2.59 3.48 2.03 2.50 11.97 -0.39

Year FE Y Y Y Y Y Y Y N N

Morningstar Category FE Y Y Y Y Y Y Y Y Y

R-sqr 0.174 0.169 0.176 0.169 0.182 0.059 0.066 0.396 0.440

Obs 7,622 7,622 7,622 8,503 8,503 8,503 8,503 805 805

Table 2: Tax Fixed Effects Panel Regressions
This table presents the results of the annual fixed effects panel regression

where Tax f,s,t is one of four tax measures for fund f in Morningstar Category s in year t . The measures include total Tax Burden , long-term capital gains

yield, LCG, short-term capital gains yield, SCG, and the unrealized capital gains as a percentage of total assets, UNR . Tests with Tax Burden use data

from 1997-2013, for LCG and SCG from 1997-2014, and UNR is only available for 2014. MF is equal to one if a fund is a mutual fund. Twins are mutual

funds and ETFs in the same fund family that follow the same index. MF Twin is equal to one for the years in which a mutual fund has an ETF twin and

zero otherwise. ETF Twin is equal to one when an ETF has a mutual fund twin and zero otherwise. X i,t includes covariates that change at the style and

year level and include Fund Size f,t the log of total portfolio assets, Family Size f,t the log of total fund family assets, and the age in years of a fund. Age f,t . ηs 

is a Morningstar Category fixed effect and τt is a year fixed effect. Standard errors are clustered at the fund level and t-statistics are reported below the

coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝑇𝑎𝑥𝑓,𝑠,𝑡 = 𝛼 + 𝛽1𝑀𝐹𝑓 + 𝛽2𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽3𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽4𝑋𝑓,𝑡 + η𝑠 + τ𝑡 + 𝜀𝑓,𝑠,𝑡 
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Dependent Variable: Exp. Ratio Exp. Ratio Exp. Ratio 12b1 Fees 12b1 Fees Mgmt Exp Mgmt Exp

(1) (2) (3) (4) (5) (6) (7)

MF 0.088*** 0.273*** 0.085** 0.084*** 0.055*** -0.014 -0.006

2.75 6.12 2.15 9.18 5.82 -0.38 -0.13

MF Twin -0.317*** -0.017 -0.023* 0.025* -0.084** -0.131***

-5.46 -0.31 -1.70 1.75 -2.19 -2.70

ETF Twin -0.230*** -0.086*** 0.017*** 0.038*** -0.157*** -0.192***

-10.73 -3.65 4.31 6.02 -8.11 -7.36

Fund Size -0.037*** -0.036*** -0.004* 0.026**

-6.91 -6.63 -1.95 2.09

Family Size -0.060*** -0.057*** -0.010*** 0.004

-14.88 -12.73 -5.61 0.68

Age (Years) 0.004* 0.003 0.000 0.002

1.74 1.47 0.08 0.55

Constant 1.097*** 0.298*** 1.079*** -0.039*** 0.079*** 0.174*** -0.019

20.57 7.03 17.42 -3.16 3.39 3.18 -0.15

Year FE Y Y Y Y Y Y Y

Morningstar Category FE Y Y Y Y Y Y Y

R-sqr 0.411 0.230 0.414 0.167 0.214 0.375 0.381
Obs 7,211 7,211 7,211 7,212 7,212 7,103 7,103

Table 3: Expense Fixed Effects Panel Regressions
This table presents the results of the annual fixed effects panel regression

where Expense f,s,t is one of three tax measures for fund f in Morningstar Category s in year t . The measures include Exp. 
Ratio, the year-end expense ratio, 12b1 Fees , the fund's 12b1 fee, and MgmtExp , a fund's year-end management expense. MF 
is equal to one if a fund is a mutual fund. Twins are mutual funds and ETFs in the same fund family that follow the same
index. MF Twin is equal to one for the years in which a mutual fund has an ETF twin and zero otherwise. ETF Twin is
equal to one when an ETF has a mutual fund twin and zero otherwise. X f,t includes covariates that change at the style and
year level and include Fund Size f,t the log of total portfolio assets, and Family Size f,t the log of total fund family assets. ηs is a
Morningstar Category fixed effect and τt is a year fixed effect. Standard errors are clustered at the fund level and t-statistics
are reported below the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑓,𝑠,𝑡 = 𝛼 + 𝛽1𝑀𝐹𝑓 + 𝛽2𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽3𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 +  𝛽4𝑋𝑓,𝑡 + η𝑠 + τ𝑡 + 𝜀𝑓,𝑠,𝑡 
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Dependent Variable: Avg. Monthly Avg. Monthly Avg. Monthly Annual Annual Annual

(1) (2) (3) (4) (5) (6)

MF -1.369*** -0.212 -0.011 -18.992*** -5.519 -3.896

-4.63 -0.62 -0.05 -8.26 -1.52 -1.48

MF Twin 1.875*** 2.285*** 1.483*** 20.075*** 20.034*** 13.402***

4.15 4.98 4.44 5.54 4.40 4.33

ETF Twin 0.634** 0.844*** 0.581*** 17.058*** 14.254*** 10.748***

2.42 4.08 3.28 5.00 4.60 4.75

Fund Size 0.077 0.036 3.376*** 2.845***

1.33 0.91 5.14 5.40

Family Size -0.191*** -0.115*** -1.358*** -1.194***

-4.86 -3.84 -3.43 -3.40

Age (Years) -0.340*** -0.157*** -3.631*** -1.944***

-7.06 -5.68 -6.23 -4.99

Lagged Flows 0.279*** 0.186***

15.89 11.01

Constant 7.911*** 8.892*** 4.442*** 84.103*** 78.297*** 44.113***

12.17 11.83 8.19 10.61 8.53 5.59

Year FE Y Y Y Y Y Y

Morningstar Category FE Y Y Y Y Y Y

R-sqr 0.093 0.183 0.240 0.109 0.180 0.195
Obs. 8,410 8,410 7,405 7,551 7,551 6,577

Table 4: Flows Effect of Mutual Fund and ETF Twins
This table presents the results of the annual fixed effects panel regression

where Flow f,s,t is one of two flow measures for fund f in Morningstar Category s in year t . The measures includes the average
asset weighted monthly flows of all classes of fund f , Avg. Monthly ,and the value weighted total annual flows of all classes of
fund f , Annual . MF is equal to one if a fund is a mutual fund. Twins are mutual funds and ETFs in the same fund family that
follow the same index. MF Twin is equal to one for the years in which a mutual fund has an ETF twin and zero otherwise.
ETF Twin is equal to one when an ETF has a mutual fund twin and zero otherwise. X includes covariates that change at the
style and year level. Contemporaneous controls include Fund Size f,t the log of total portfolio assets, Family Size f,t the log of
total fund family assets, and Age f,t in years. Flows (Lagged) is the one year lag of the flow measure. ηs is a Morningstar
Category fixed effect and τt is a year fixed effect. Standard errors are clustered at the fund level and t-statistics are reported
below the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝐹𝑙𝑜𝑤𝑓,𝑠,𝑡 = 𝛼 + 𝛽1𝑀𝐹𝑓 + 𝛽2𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽3𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽4𝑋 + η𝑠 + τ𝑡 + 𝜀𝑓,𝑠,𝑡 
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Panel A: Two Nearest Neighbors Match Panel B: Three Nearest Neighbors Match

Dependent Variable: Tax Burden Tax Burden LCG LCG SCG SCG Tax Burden Tax Burden LCG LCG SCG SCG

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

MF Twin * Post -0.498*** -0.467** -2.855*** -2.823*** 0.046 0.141 -0.320* -0.299* -1.966*** -1.948*** 0.055 0.145

-2.80 -2.58 -3.81 -3.68 0.16 0.48 -1.84 -1.68 -2.68 -2.61 0.23 0.60

Post 0.274* 0.286* 1.737*** 1.823*** -0.183 -0.177 0.080 0.078 0.852 0.833 -0.224 -0.209

1.84 1.89 2.75 2.85 -0.74 -0.72 0.62 0.60 1.57 1.53 -1.26 -1.18

Fund Size -0.081 -0.710 0.014 -0.192 -1.090* -0.106

-0.44 -0.91 0.05 -1.30 -1.76 -0.52

Family Size -0.141 -0.392 -0.393 -0.054 -0.031 -0.327*

-0.95 -0.63 -1.63 -0.38 -0.05 -1.70

Age Years -0.095 -0.026 -0.267 -0.015 0.110 -0.083

-0.69 -0.04 -1.18 -0.19 0.35 -0.80

Constant 0.722** 3.053* 1.670 10.662 0.076 4.753* 0.778** 2.680* 1.888 9.516 0.178 4.089**

2.02 1.79 1.11 1.48 0.13 1.71 2.32 1.82 1.34 1.54 0.39 2.04

Year FE Y Y Y Y Y Y Y Y Y Y Y Y

Fund FE Y Y Y Y Y Y Y Y Y Y Y Y

R-sqr 0.558 0.567 0.615 0.622 0.422 0.446 0.555 0.562 0.575 0.586 0.456 0.473

Obs. 156 156 156 156 156 156 208 208 208 208 208 208

Table 5: Mutual Fund Difference-in-Difference Around the Introduction of an ETF Twin

This table presents the results of the annual fixed effects panel regression

where Tax f,t is one of three tax measures for fund f in year t . The measures include total Tax Burden , long-term capital gains yield, LCG, and short-term capital gains yield, SCG .  
MF Twin is equal to one for a mutual fund that existed prior to the introduction of a twin ETF. Post f,t is set to one for the two years following the ETF addition for the mutual fund
twin and its controls and to zero for the two years prior. The year of the ETF launch is excluded. The controls are matched on Morningstar Category and fund size using the new
nearest neighbors in Panel A and the three nearest neighbors in Panel B. X f,t includes covariates that change at the fund and year level and include Fund Size f,t the log of total
portfolio assets, and Family Size f,t the log of total fund family assets. ϑf is a fund fixed effect and τt is a year fixed effect. Standard errors are clustered at the fund level and t-statistics
are reported below the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝑇𝑎𝑥𝑓,𝑡 = 𝛼 + λ(𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡) + 𝛽1𝑃𝑜𝑠𝑡𝑓,𝑡 + 𝛽2𝑋𝑓,𝑡 +  𝜗𝑓 + τ𝑡 + 𝜀𝑖,𝑠,𝑡 
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Panel A: Two Nearest Neighbors Match Panel B: Three Nearest Neighbors Match

Dependent Variable: Exp Ratio Exp Ratio 12b-1 Fees 12b-1 Fees Mgmt Fees Mgmt Fees Exp Ratio Exp Ratio 12b-1 Fees 12b-1 Fees Mgmt Fees Mgmt Fees

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

MF Twin * Post -0.019 -0.010 -0.002 -0.003 0.010 0.010 -0.009 0.004 0.004 0.000 -0.001 0.004

-0.62 -0.33 -0.28 -0.45 0.48 0.49 -0.33 0.14 0.57 0.04 -0.03 0.14

Post 0.017 0.018 0.007 0.007 -0.011 -0.008 0.030 0.024 -0.000 0.001 0.021 0.018

0.65 0.75 1.21 1.16 -0.65 -0.47 1.43 1.17 -0.07 0.16 1.07 0.92

Fund Size -0.069** 0.004 -0.043* -0.077*** 0.010 -0.036

-1.99 0.50 -1.79 -3.26 1.59 -1.62

Family Size -0.039 0.001 -0.006 -0.026 0.005 -0.010

-1.18 0.18 -0.27 -0.85 0.65 -0.36

Age Years 0.068*** 0.004 0.034** 0.024** 0.002 0.015

3.38 0.73 2.38 2.25 0.53 1.46

Constant 0.356*** 0.833** 0.051*** -0.017 0.129*** 0.322 0.362*** 1.053*** 0.053*** -0.080 0.122*** 0.413

6.40 2.02 4.11 -0.17 3.46 1.11 7.32 3.08 4.13 -0.86 2.74 1.28

Year FE Y Y Y Y Y Y Y Y Y Y Y Y

Fund FE Y Y Y Y Y Y Y Y Y Y Y Y

R-sqr 0.950 0.958 0.977 0.977 0.908 0.917 0.942 0.949 0.985 0.985 0.888 0.892

Obs. 132 132 132 132 132 132 176 176 176 176 176 176

Table 6: Mutual Fund Expense Difference-in-Difference Around the Introduction of an ETF Twin

This table presents the results of the annual fixed effects panel regression

where Expense f,t is one of three tax measures for fund f in year t . The measures include Exp. Ratio , the year-end expense ratio, 12b-1 Fees , the fund's 12b1 fee, and MgmtExp , a
fund's year-end management expense. MF Twin is equal to one for a mutual fund that existed prior to the introduction of a twin ETF. Post f,t is set to one for the two years following
the ETF addition for the mutual fund twin and its controls and to zero for the two years prior. The year of the ETF launch is excluded. The controls are matched on Morningstar
Category and fund size using the new nearest neighbors in Panel A and the three nearest neighbors in Panel B. X f,t includes covariates that change at the fund and year level and
include Fund Size f,t the log of total portfolio assets, and Family Size f,t the log of total fund family assets. ϑf is a fund fixed effect and τt is a year fixed effect. Standard errors are
clustered at the fund level and t-statistics are reported below the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑓,𝑡 = 𝛼 + λ(𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡) + 𝛽1𝑃𝑜𝑠𝑡𝑓,𝑡 + 𝛽2𝑋𝑓,𝑡 +  𝜗𝑓 + τ𝑡 + 𝜀𝑖,𝑠,𝑡 
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Panel A: Two Nearest Neighbors Match Panel B: Three Nearest Neighbors Match
Dependent Variable: Tax Burden Tax Burden LCG LCG SCG SCG Tax Burden Tax Burden LCG LCG SCG SCG

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
MF Twin * Post 0.395 0.353 1.565 1.615 0.026 -0.137 0.164 0.116 0.729 0.779 -0.026 -0.144

1.58 1.43 1.34 1.37 0.07 -0.33 0.77 0.53 0.86 0.89 -0.08 -0.45
Post -0.693*** -0.497** -2.440** -2.698** -0.478 -0.340 -0.364** -0.269* -1.293** -1.231** -0.312 -0.224

-3.49 -2.10 -2.64 -2.38 -1.49 -0.87 -2.58 -1.77 -2.31 -2.02 -1.53 -1.00
Fund Size -0.541 0.637 -0.426 -0.287 0.020 -0.354

-1.48 0.36 -0.71 -1.51 0.03 -1.27
Family Size 0.534 -3.180 1.692 0.145 -1.494 0.661

0.84 -1.04 1.60 0.35 -0.89 1.08
Age (Years) 0.393** 1.756* 0.263 0.355* 1.374* 0.332

2.11 1.97 0.85 1.97 1.90 1.26
Constant 1.201*** -2.337 2.207 16.251 0.958 -13.389* 0.896*** 0.045 1.823 8.819 0.658 -4.069

3.19 -0.49 1.26 0.71 1.58 -1.69 2.88 0.02 1.48 0.74 1.46 -0.94
Year FE Y Y Y Y Y Y Y Y Y Y Y Y
Fund FE Y Y Y Y Y Y Y Y Y Y Y Y
R-sqr 0.715 0.751 0.593 0.624 0.604 0.636 0.592 0.619 0.556 0.576 0.506 0.525
Obs. 84 84 84 84 84 84 136 136 136 136 136 136

where Tax f,t is one of three tax measures for fund f in year t . The measures include total Tax Burden , long-term capital gains yield, LCG, and short-term capital gains yield, SCG .  
MF Twin is equal to one for a mutual fund that existed prior to the introduction of a twin ETF. Post f,t is set to one for the two years following treatment. Treatment occurs two years
prior to the ETF addition for the mutual fund twin and its controls and to zero for the two years prior. The year of the hypothetical treatment is excluded. The controls are matched
on Morningstar Category and fund size using the new nearest neighbors in Panel A and the three nearest neighbors in Panel B. X f,t includes covariates that change at the fund and
year level and include Fund Size f,t the log of total portfolio assets, and Family Size f,t the log of total fund family assets. ϑf is a fund fixed effect and τt is a year fixed effect. Standard
errors are clustered at the fund level and t-statistics are reported below the coefficients.  * indicates significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

Table 7: Robustness - Mutual Fund Difference-in-Difference with Treatment Two Years After the Introduction of an ETF Twin
This table presents the results of the annual fixed effects panel regression

𝑇𝑎𝑥𝑓,𝑡 = 𝛼 + λ(𝑀𝐹 𝑇𝑤𝑖𝑛𝑓 ∗ 𝑃𝑜𝑠𝑡𝑓,𝑡) + 𝛽1𝑃𝑜𝑠𝑡𝑓,𝑡 + 𝛽2𝑋𝑓,𝑡 +  𝜗𝑓 + τ𝑡 + 𝜀𝑖,𝑠,𝑡 
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Dependent Variable: LCG Level LCG Level SCG Level SCG Level

MF 0.259*** 0.163*** 0.057*** 0.059***

11.73 5.88 3.99 3.69

MF Twin -0.207*** -0.160*** -0.002 0.005

-6.92 -3.80 -0.08 0.14

ETF Twin -0.013 0.019 -0.031** -0.021

-1.04 1.18 -2.56 -1.56

Fund Size -0.015** -0.008***

-2.33 -3.16

Family Size -0.005 -0.000

-1.25 -0.06

Age (Years) 0.019*** -0.000

3.98 -0.31

Constant 0.289** 0.437*** 0.064*** 0.104***

2.46 3.51 3.23 3.69

Year FE Y Y Y Y

Morningstar Category FE Y Y Y Y

R-sqr 0.116 0.136 0.054 0.058

Obs. 8,503 8,503 8,503 8,503

Table 8: Robustness - Tax Distribution Levels
This table presents the results of the annual fixed effects panel regression

where Tax Level f,s,t is either the total annual level of long-term or short-term capital gains by
fund f in Morningstar Category s in year t . MF is equal to one if a fund is a mutual fund.
Twins are mutual funds and ETFs in the same fund family that follow the same index. MF 
Twin is equal to one for the years in which a mutual fund has an ETF twin and zero
otherwise. ETF Twin is equal to one when an ETF has a mutual fund twin and zero
otherwise. X f,t includes covariates that change at the style and year level and include
Fund Size f,t , the log of total portfolio assets, and Family Size f,t , the log of total fund family
assets. ηs is a Morningstar Category fixed effect and τt is a year fixed effect. Standard errors
are clustered at the fund level and t-statistics are reported below the coefficients. * indicates
significance at the 10% level, ** at the 5% level, and *** at the 1% level.  

𝑇𝑎𝑥 𝐿𝑒𝑣𝑒𝑙𝑓,𝑠,𝑡 = 𝛼 + 𝛽1𝑀𝐹𝑓 + 𝛽2𝑀𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽3𝐸𝑇𝐹 𝑇𝑤𝑖𝑛𝑓,𝑡 + 𝛽4𝑋𝑓,𝑠,𝑡 + 𝜀𝑓,𝑠,𝑡 
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Harold D. Spilker III⇤
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Abstract

Latent factors have been used successfully to characterize hedge fund returns be-

yond the observable asset based factors. Using principal component analysis, Fung

and Hsieh (1997a) extract five latent components of hedge fund returns that explain

up to 43% of the common return variation of hedge funds. Employing the alternative

estimator of Connor and Korajczyk (1986, 1987), I show that asymptotic principal

components (APC) can explain 42% more of the common variation of hedge fund re-

turns on average and over a larger sample period. Further, the hedge fund factor model

of Fung and Hsieh (2004, 2006) achieve larger R̄2s when employing APC extracted fac-

tors as regressors than those obtained from the traditional approach. I also identify

an increase in the common variation across hedge fund excess return in the time-series

via the extracted latent factors. This increase corresponds with a rise in flows to hedge

fund strategies and an attendant crowding e↵ect noted in the literature. My results

suggest an impetus for future researchers to employ APC factors when characterizing

hedge fund performance.

⇤Spilker is from Boston College, Carroll School of Management, Chestnut Hill, Massachusetts, 02467;

e-mail: tray.spilker@bc.edu
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Introduction

The attractiveness of using asset class factor models is the ability to attribute performance of

an investment vehicle (e.g., a mutual or hedge fund) to major asset classes.1 From this, one

can discern an investment “style” of a particular fund manager, as shown in Sharpe (1992),

by regressing fund excess return on many styles or asset classes (styles). In fact, extracting

from the arbitrage pricing theory model (APT) of Ross (1976), even style can be employed

as factors.2 Harlow and Brown (2006) show that some mutual funds exhibit performance

persistence when adjusted for these style exposures, particularly when augmented by asset

class factors in the form of sector exposures.3

The literature has followed the rise of hedge funds in a similar fashion. In their pioneer-

ing paper, Fung and Hsieh (1997a) show that mutual fund styles explain very little of hedge

fund performance on average, which they attribute to the dynamic investment behavior of

hedge funds. Accordingly, the authors augment the Sharpe (1992) style model by identifying

dynamic factors. Using principal components analysis (PCA), they extract five mutually or-

thogonal principal components explaining 43% of the cross sectional return variance. Only

three of these components qualify as dynamic strategies, which the authors identify in their

2001 paper and link to observable prices.4 Combining factors from equity and fixed income

mutual funds, as well as their dynamic strategy factors, Fung and Hsieh (2004) construct a

seven-factor asset based model that explains up to 80% of return variation across funds of

hedge funds (FoFs).5

Using hedge fund factor exposures as identified in Fung and Hsieh (2004), Fung, Hsieh,

Naik, and Ramadorai (2008) analyzed FoFs over the period of 1995-2000 and found a subset

of funds that delivered alpha over longer periods. Jagannathan, Malakhov, and Novikov

(2010) extend the model with a correction for autocorrelation6 and find that only superior

1as noted by Jones (2001)
2see Fama and French (1993) and Carhart (1997)
3see Pstor and Stambaugh (2002)
4Fung and Hsieh (2001) develop factors for three common trend-following strategies
5see Jones and Wermers (2011) for a summary of the mutual fund and hedge fund literatures
6according to Getmansky, Lo, and Makarov (2004)
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funds generated persistent returns over the period of 1996-2005. Correcting for non-normality

of hedge fund returns, Kosowski, Naik, and Teo (2007) find that top-decile hedge funds

outperform bottom-decile funds by 5.8% in the ensuing year.7

The technique of principal components analysis, which Fung and Hsieh (1997a) employ

to identify dynamic strategies, has limitations. In particular, employing principal compo-

nents analysis to extract latent factors relies on a balanced panel such that over longer

horizons, only those hedge funds with commensurate operating lives are analyzed, or con-

versely, a restriction on the time horizon is necessary. Accordingly, I employ the asymptotic

principal components (APC) model of Connor and Korajczyk (1986), which when augmented

by their missing observation technique,8 allows for the inclusion of all return observations in

the analysis (full N , full T ), thus increasing the explanatory power of each factor (Connor

and Korajczyk (1986, 1987) henceforth CK). While Fung and Hsieh (1997a) find the top five

principal components explain 43% of the variation of funds, the replication of these results

eludes researchers given the data source nor the time period employed in the paper are dis-

closed. Using traditional PCA on my available dataset, I replicate the technique of Fung

and Hsieh (1997a; henceforth FH) and show that the top five principal components explain

up to 40% of the common variation between hedge funds using average R̄2 for individual

funds, or 87.5% with an equal-weighted portfolio. Comparatively, I show that employing

APC significantly improves adjusted r-sqaures (R̄2) over the replicated results of Fung and

Hsieh, achieving a fit of 50% and 99%, respectively, when components are extracted accord-

ing to APC theory. Further, applying components extracted using FH to out of sample

returns results in a decrease in average R̄2 of as little as 18% for individual funds, or 55%

for equal-weighted portfolios.

The remainder of the paper is organized as follows. The first section describes the data

employed in the sample, followed in section 2 by a discussion of the theoretical methodology.

Section 3 provides results of the empirical findings of the paper, and I conclude the paper in

section 4.
7their method is a hedge fund extension of Kosowski, Timmermann, Wermers, and White (2006)
8see Connor and Korajczyk (1987)
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1 Data

The data comes from Lipper-TASS for the period 1994:01-2012:12 on all hedge fund strategies

as identified in the dataset. The strategies include Convertible Arbitrage, Dedicated Short

Bias, Emerging Markets, Equity Market Neutral, Event Driven, Fixed Income Arbitrage,

Fund of Funds, Global Macro, Long/Short Equity Hedge, Managed Futures, Multi-Strategy,

and Options Strategy.

While TASS data extends before 1994, the capturing of data from delisted hedge funds

(“dead” funds) began in 1994. Thus, the inclusion of dead funds reduces much of the

survivorship bias that may be present in the “live” funds database.9 Recently, Edelman, Fung

and Hsieh (2013) find that the various motivations for delisting from commercial databases

have o↵set one another over the recent decade; however, the inclusion of dead funds data

is commensurate with the bulk of the literature. The dataset consists of just over 18,400

unique hedge fund vehicles that have at least 24 monthly observations who report net-of-fee

returns (see Table 1). The largest category of hedge fund in the sample are FoFs, with about

6,200 funds, followed by long/short equity hedge (3,885) and multi-strategy funds (2,321).

Incubation bias in hedge fund returns arises when firms “incubate” funds for several

years and decided to report returns to commercial databases such as TASS if the early return

stream is “good enough.” Fung and Hsieh (2002a) show that incubation bias in the TASS

dataset is resolved at the 12 month mark.10 Thus, I remove the first 12 months of each fund’s

return history. Lastly, I remove replicated funds from the data set that are pursuing the

same strategies within a particular management company, and thus, have almost identical

returns. These “replicated” funds are developed by hedge fund management companies to

cater to specific needs of the investor interested in the same strategy (e.g., o↵shore vehicles

for tax exempt entities, or non-US dollar based funds) in e↵ort to garnering flows, and would

9see Brown, Goetzmann, and Park (1997); Ackermann, McEnally, and Ravenscraft (1999); and Malkiel

and Saha (2005)
10Park (1995) showed incubation period of 27 months for MAR CTA database (now Morningstar CISDM);

Brown, Goetzmann, and Park (1997) similarly showed incubation periods of 27 months for CTAs and 15

months for hedge funds in the TASS data set
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lead to erroneous conclusions about cross-sectional correlations if left in the data set. After

removing funds that fit these criteria, we are left with just over 2,500 unique hedge funds

(bottom of table 1).

I also divide the sample between fund of funds (FoFs) and all remaining strategies

in the sample except for FoFs (henceforth, NoFoFs); a delineation shown in the literature.

Fung and Hsieh (1997a) perform PCA analysis on all funds except FoFs (NoFoFs here) and

emerging market funds. In a later paper, Fung and Hsieh (2000a, 2002a) highlight the a↵ects

of the various biases found in the commercially available hedge fund databases and show that

employing FoFs closely mimics returns to actual hedge fund portfolios, which are free from

said biases. Thus, I include both for the purpose of this analysis.

2 Methodology

As noted in Jones (2001), using principal components analysis (PCA, as in FH) is particularly

attractive when analyzing portfolio returns as it requires no specification of the factors ex

ante. Thus, it is an ideal method to test asset pricing models. Following the literature, we

assume hedge fund returns follow a factor structure as in an APT model,

Rn = BnF + en, (1)

where, Rn is an n⇥1 vector of excess returns at time t, Bn is an n⇥k matrix of factor loadings

(sensitivities), F is a k ⇥ T vector of systemic factors, and en is an n ⇥ T matrix of asset

specific residuals. From this factor structure, PCA extracts the k-largest eigenvalues and

corresponding eigenvectors from the covariance matrix of returns, ⌃. Here, the covariance

matrix will be n⇥n, requiring extraordinary computing resources for the decomposition as n

gets large. Further, the PCA method relies on a balanced panel for the extraction, reducing

the number of observations in panels with missing data.

Based on the work of Chamberlin and Rothschild (1983), Connor and Korajczyk (1986)

define Asymptotic Principal Components as the eigenvectors obtained from the k-largest

eigenvalues of the cross-product matrix of returns

⌦n =
⇣ 1
n

⌘
Rn0Rn. (2)
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This T ⇥ T matrix reduces the computational burden of factor reduction, while achieving

consistent estimates of the latent factors. Thus, we are able to estimate latent factors

from large cross-sections whereas under traditional PCA this would be impossible. The

convenience of the CK approach is that it does not rely upon a normal distribution of returns

nor a diagonal covariance matrix, and allows for time-varying factor risk premia. Note that

the full decomposition of the cross-product matrix, ⌦n, which includes unobservable and

error terms, takes the form:

⌦n =
⇣ 1
n

⌘
Rn0Rn = An +Bn +Bn0 + Zn (3)

⌘
⇣ 1
n

⌘
F 0Bn0BnF +

⇣ 1
n

⌘
F 0Bn0en + en0BnF +

⇣ 1
n

⌘
en0en.

However, under the assumption of independence between factors and residuals (CK assump-

tion 7), the Bn and Zn terms are equal to zero, leaving the observable T ⇥ T matrix, ⌦n.

The CK method by itself, however, does not avoid the loss of firm observations resulting

from missing data in the panel. To accommodate for missing data, CK propose an alternative

estimator for ⌦n. In their specification, Connor and Korajczyk (1987) define Rm be them⇥T

matrix of excess returns where missing data are replaced with zeroes. Let Im be an indicator

matrix for which Im is equal to one if Rm is observed, and zero otherwise. If returns in Rm

follow the process in equation (1), then the estimates of the latent factors extracted from

the alternative estimator,

⌦m = (Rm0Rm)/(Im0Im), (4)

are identical to those from equation (2); i.e., ⌦n = ⌦m. Hence, we are able to extract as much

information contained in the returns data, thereby enhancing e�ciency of our estimator.

3 Empirical Tests and Findings

3.1 Latent Factor Regressions

Applying the PCA technique over the whole sample period necessarily drops funds with

missing return data in order to form a balanced panel. Therefore, I create sub-periods

according to Fung and Hsieh (2004) at least through the end of 2002, when the paper’s
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sample period end. Beyond 2002, I exploit shocks in the liquidity factor of Sadka (2006)11 to

identify additional regimes for analysis.12 By reducing the horizon for the analysis, I hope

to extract the maximal common variance across hedge fund returns using the FH method

by reducing the number of excluded funds resulting from the balanced panel requirement.

Using the eigenvectors extracted from the covariance matrix of excess returns as our

vector of factors (via PCA), for both in- and out-of-sample funds, I regress excess returns

of individual funds and an equal-weighted portfolio on the factors as outlined in equation

(1). Specifically, I regress excess returns comprised of the funds from which the factors were

extracted onto the latent factors (in sample), Rn

in

= BnF + en. Then the same regression

is run using funds that have some returns in the dataset for the given time period and

strategy, but were dropped from the PCA technique due to the balanced panel restriction

(out-of-sample), Rn

out

= BnF + en.

Results from these regressions can be found in the left hand pane of Tables 2 and 3 for

FoFs and all other funds (NoFoFs), respectively. Notice that on average, the ability for the

extracted factors to explain out-of-sample excess returns is less than for in-sample returns

(Panels A and B, respectively). For FoFs, the first five principal components explain 42%

(43.2%) of the common variation among funds, whilst the out-of-sample adjusted-R2 falls

to 26.9% (29.6%) for individual (equal-weighted) regressions over the entire sample period

(1994:01-2012:12). For NoFoFs, R̄2s predictably decline to 36.6% (63.1%) and 20.3% (58.8%)

for in- and out-out-sample regressions, respectively.

By construction, FoFs exhibit lower volatility than individual funds, thus we should

expect less common variation from the NoFoF funds. The tables also include the number of

funds included in the PCA factor extraction and subsequent regressions by time period. On

average we are leaving a large percentage of funds out of the decomposition using traditional

PCA, thereby reducing e�ciency of our estimators. For example, over the entire sample

period of 1994-2012, PCA extracts components from only nine funds from a sample of 518

FoFs, and 36 of the remaining 2,061 hedge funds. Thus, when regressing excess returns from

11Thanks to Ronnie Sadka for making the liquidity factors from Sadka (2006) available at his website:

https://www2.bc.edu/˜sadka/
12These regimes are supported by Edelman, Fung, Hsieh, and Naik (2012) through the end of 2010
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the remaining 509 out-of-sample FoFs onto the components extracted from these nine funds,

R̄2s fall to 26.9%; the components have less common variance from which to explain excess

returns.

To further this point, the in- and out-of-sample R̄2s for FoFs during the 2007:07-2009:04

period of 50.2% and 49.7% for the first five components, respectively, shows evidence of

minimal decay in explanatory power for out-of-sample regressions when the in-sample size

is large relative to the out-of-sample size (N=241 versus N=116).

Following the same approach, I run the regressions of equation (1) of excess return on

the factors extracted with the CK alternative asymptotic estimator. This ensures we extract

as much common variance across the excess returns of hedge funds in the sample as possible,

the results of which are displayed in the right hand panes of Tables 2 and 3. Highlighting

the e�ciency of the APC technique, these regressions bear R̄2s from the first five principal

components of 61.3% (94.2%) for individual (equal-weighted) FoFs over the entire sample

period, and 35.2% (90.2%) for NoFoFs. For FoFs, a gain of almost 30% is achieved (61.3%

from 42% in-sample) for individual fund regressions and a doubling is achieved for equal-

weighted portfolios (94.2% from 43.2% in-sample) when employing the CK methodology.

NoFoF APCs (principal components from all other funds other than FoFs) modestly lose

power at the individual fund level (35.2% from 36.6% in-sample), but gain ground on equal-

weighted regressions (90.2% from 63.1% in-sample) from the first five latent components.

Given the CK approach is inclusive of all funds, a more appropriate comparison would

have CK results next to the PCA out-of-sample results. Here, we see even more dramatic

improvements in explanatory power between the two techniques, with a roughly 15-point

gain between NoFoF R̄2s using the first five components as evidence over the entire sample

period.

Relative to PCA, the e�ciency of the CK technique is also on display here. Over the full

sample period, the CK method gains little from the inclusion of principal components beyond

5 (7.5% for FoFs), while the FH method has a larger percentage gain from the inclusion of

more components into the regression (33% for FoFs). Thus, the CK method achieves a

greater explanation of the common variation among hedge funds with fewer latent factors.
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The results also provide some time series implications. By analyzing the various horizon

regimes, we see a notable increase in R̄2s from the first period (1994:01-1998:09) to the most

recent periods on average across fund types (FoF or NoFoFs) and across factor extraction

methods (FH or CK). For example, the R̄2s increase from 18% to 41.8% for the first five

principal components of FH out-of-sample regressions among FoFs between the first and last

period, and similarly, the CK method for the sample period and funds improves from 57%

to 67.5%. These results coincide with a rise in the number of hedge funds and asset flows

into these strategies and suggests that the proliferation of hedge fund vehicles has resulted

in a crowding e↵ect with attendant increases in fund return correlations.13

3.2 Identifying Latent Factors

Clearly, the method of CK is superior to that of PCA in explaining common variation across

hedge fund returns. However, the abstract nature of these components begs for identification.

Fung and Hsieh satisfy this need for linkages to observable prices by identifying market factors

and trading strategies that closely price, and thus convert, returns based factors into asset

based factors. With the inclusion of an emerging market factor in Fung and Hsieh (2006),

the Fung and Hsieh model culminates in eight factors, which is comprised of two equity

factors similar to the first two factors of Fama and French (1993), the S&P 500 minus the

risk free rate (SP-Rf) and the S&P 500 minus the Russell 2000 index (SP-RL); two fixed

income factors consisting of the excess return to ten-year treasuries (TY-Rf) and the return

of Moody’s BAA corporate bonds over ten-year treasuries (BAA-TY); three trend following

factors consisting of excess returns on bonds (PTFSBD-Rf), foreign currencies (PTFSFX-

Rf), and commodities (PTFSCOM-Rf);14 and lastly, a factor for emerging markets, taken

from the International Finance Corporation index (IFC-Rf).15

Before identifying latent factors, I begin with those that can be witnessed; the reported

returns. Table 4 shows R̄2s from regressions of fund excess returns, R
i

, on the observable

13Fung and Hsieh (2007) and Asness, Krail, and Liew (2001) find increasing correlations between hedge

funds and standard market indices.
14as added in Fung and Hsieh (2001)
15Thanks to David Hsieh for providing these factors on his website: http://people.duke.edu/˜dah7/
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hedge fund factors of Fung and Hsieh, as follows:

R
i

= ↵
i

+ �1,i(SP �Rf) + �2,i(SP �RL) + �3,i(TY �Rf) (5)

+ �4,i(BAA� TY ) + �5,i(PTFSBD �Rf) + �6,i(PTFSFX �Rf)

+ �7,i(PTFSCOM �Rf) + �8,i(IFC �Rf) + e
i

.

The top line of each panel shows the R̄2 from a multivariate regression across all 8-

factors, and below, univariate R2s for each factor individually. Relative to Fung and Hsieh,

I achieve an equal-weighted R̄2 of 68.8% during the same horizon in their 2004 paper of

2000:04-2002:12 when projecting FoF excess returns onto the 8-factor model (left side of

Panel B),16 reaching a maximum of 83.1% during the most recent period (2009:05-2012:12),

and an overall fit of 64% for the entire period.17 For individual funds, I obtain a maximum R̄2

during the most recent period of 58.9% and an overall fit of 46.9% for the whole period. On

the right hand side of the table, I show results for regressing NoFoF returns onto the factors.

Notably, while the individual fund results fall almost predictably across the board relative to

FoFs, the equal-weighted NoFoF (EW-NoFoF) results achieve higher R̄2s on average. This

may suggest that FoFs provide some diversification benefit beyond a naive 1/N investment

policy.18 Dissecting this further, we see that over the full sample period, NoFoFs load more

heavily on the equity factors (SP-Rf and SP-RL), including the emerging market equity

strategies (IFC-Rf), while loadings on the fixed income factors decline (TY-Rf and BAA-

TY). This holds for both equal-weighted and individual fund regressions, suggesting our

FoFs sample have a more balanced exposure towards fixed income risk factors and away

from equity factors.

Identification of the principal components (PCs) takes the same approach. Tables 5

and 6 show R2s and associated t-stats from regressing PCs (latent factors) onto the 8-factors

of Fung and Hsieh. Specifically, each PC is projected onto each factor one by one as follows:

16Fung and Hsieh (2004) only used the first 7-factors
17Fung and Hsieh (2004) obtain an R2 of 80% over the period 2000:04-2002:12 using the returns of the

Hedge Fund Research FoF index (HFRFOF) on 7-factors
18see DeMiguel, Garlappi, and Uppal (2007)
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PC
i

= ↵
i

+ �1,i(SP �Rf) + e
i

(6)

PC
i

= ↵
i

+ �2,i(SP �RL) + e
i

...

PC
i

= ↵
i

+ �8,i(IFC �Rf) + e
i

.

Then, the same PC is regressed across all factors (multivariate) to achieve the reported

R̄2 in the last column of each panel according to:

PC
i

= ↵
i

+ �1,i(SP �Rf) + �2,i(SP �RL) + �3,i(TY �Rf) (7)

+ �4,i(BAA� TY ) + �5,i(PTFSBD �Rf) + �6,i(PTFSFX �Rf)

+ �7,i(PTFSCOM �Rf) + �8,i(IFC �Rf) + e
i

.

The left side of the table shows results from the components obtained from the FH

method, and the right side shows those from the CK method. It is quickly evident that the

8-factors explain a great deal more of the variation in extracted components from the CK

method relative to those of the FH method. For example, over the entire sample period, the

R̄2 for the first principal component (PC1) from the CK method reaches 76.4% while PC1

from the FH method only obtains 26.8%. That is, the 8-factors of FH explain three times

more of the first principal component extracted via the CK method than they do for the

first component of FH. This result bolsters the case for the ability of the 8-factor model to

explain hedge fund returns. Further, the t-stats indicate the direction of exposure to each

observed factor. For PC1, we see the component has positive and significant loadings on SP-

Rf, TY-Rf, and IFC-Rf, while loading negatively and significantly on the remaining factors.

This suggests that PC1 - from both extraction methods - could be viewed as a portfolio with

long exposure to the US equity market, US treasuries, and emerging markets, combined with

short exposure to all remaining factors in the model. We see the same outcome on R2s for

the NoFoFs, with an even greater improvement between the two methods.

The orthogonality of the principal components, however, limits our ability to strictly
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identify the components with observable factors. Particularly, as the components as ex-

tracted are only mutually orthogonal to one another and not to the observable factors. The

8-factors of FH themselves are not orthogonal to each other, thus complicating the identifica-

tion exercise. Yet, we can be sure the 8-factor model says much more about the components

extracted via the CK method on average, than the traditional PCA of FH.

4 Conclusion

Fung and Hsieh (1997a) set forth a novel approach to link return based factors to asset

based factors for hedge funds. Using traditional principal component extraction to explain

hedge fund returns has proven beneficial in understanding the return dynamics of hedge

fund strategies. Employing an alternative estimator proposed by Connor and Korajczyk

(1986, 1987) from which to extract latent factors, I have shown leads to e�ciency gains

and greater power when explaining the common variation across hedge fund excess returns.

Further, the latent factors extracted from the asymptotic estimator exhibit a better fit

with the observable hedge fund factors of Fung and Hsieh. Lastly, the latent factors have

corroborated the evidence of increased correlations among observed excess returns in the time

series, suggesting a crowding e↵ect among respective hedge fund strategies and the resultant

decline in returns witnessed in the literature. There remains, however, some explanatory

power of the principal components over the observable factor model, thereby forcing us to

consider their use to augment models restricted solely to observable factors. Accordingly,

future research of comparative hedge fund return characteristics should consider latent factor

extraction via the asymptotic estimator method of CK .
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Table 1: Summary Statistics

N
Avg Excess 
Return Avg Stdev

Avg Excess 
Return Avg Stdev Avg Sharpe

Full Dataset*
All Funds 18412 0.27 3.40 3.27 11.77 0.28

Convertible Arbitrage 308 0.28 2.42 3.45 8.40 0.41
Dedicated Short Bias 56 ‐0.07 6.07 ‐0.88 21.02 ‐0.04
Emerging Markets 1033 0.33 5.47 3.98 18.96 0.21

Equity Market Neutral 693 0.34 3.72 4.10 12.90 0.32
Event Driven 802 0.52 3.06 6.43 10.60 0.61

Fixed Income Arbitrage 473 0.36 2.28 4.44 7.91 0.56
Fund of Funds 6261 ‐0.03 2.48 ‐0.30 8.58 ‐0.04
Global Macro 921 0.40 3.52 4.89 12.20 0.40

Long/Short Equity Hedge 3885 0.45 4.62 5.48 15.99 0.34
Managed Futures 1112 0.21 5.04 2.53 17.45 0.15
Multi‐Strategy 2321 0.52 2.50 6.44 8.65 0.74
Options Strategy 51 0.83 4.09 10.49 14.16 0.74

Other 495 0.56 2.85 6.88 9.88 0.70

Cleaned Sample**
All Funds 2579 0.51 4.08 6.23 14.14 0.44

Convertible Arbitrage 67 0.28 2.47 3.37 8.56 0.39
Dedicated Short Bias 20 ‐0.09 6.55 ‐1.02 22.68 ‐0.04
Emerging Markets 83 0.64 5.50 7.93 19.05 0.42

Equity Market Neutral 136 0.35 2.78 4.34 9.63 0.45
Event Driven 242 0.68 3.34 8.51 11.56 0.74

Fixed Income Arbitrage 69 0.50 2.28 6.10 7.90 0.77
Fund of Funds 518 0.26 2.57 3.20 8.89 0.36
Global Macro 81 0.52 4.63 6.45 16.03 0.40

Long/Short Equity Hedge 900 0.61 5.10 7.53 17.67 0.43
Managed Futures 232 0.43 5.94 5.30 20.58 0.26
Multi‐Strategy 133 0.56 3.05 6.90 10.55 0.65
Options Strategy 7 0.53 3.51 6.61 12.17 0.54

Other 91 0.91 3.60 11.44 12.46 0.92
* Base dataset has been screened for funds with at least 24 months of reported return on a net ‐of‐fee basis

Month Annual

** The cleaned dataset restricts replicative share classes that are typically domiciled off‐shore from their 
respective management company and non‐US dollar based
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