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Abstract

Classification and simulation of quantum phases are one of main themes in condensed
matter physics. Quantum phases can be distinguished by their symmetrical and
topological properties. The interplay between symmetry and topology in condensed
matter physics often leads to exotic quantum phases and rich phase diagrams. Famous
examples include quantum Hall phases, spin liquids and topological insulators.

In this thesis, I present our works toward a more systematically understanding
of symmetric topological quantum phases in bosonic systems. In the absence of
global symmetries, gapped quantum phases are characterized by topological orders.
Topological orders in 2+1D are well studied, while a systematically understanding
of topological orders in 3+1D is still lacking. By studying a family of exact solvable
models, we find at least some topological orders in 3+1D can be distinguished by
braiding phases of loop excitations.

In the presence of both global symmetries and topological orders, the interplay
between them leads to new phases termed as symmetry enriched topological (SET)
phases. We develop a framework to classify a large class of SET phases using tensor
networks. For each tensor class, we can write down generic variational wavefunctions.
We apply our method to study gapped spin liquids on the kagome lattice, which can
be viewed as SET phases of on-site symmetries as well as lattice symmetries.

In the absence of topological order, symmetry could protect different topolog-
ical phases, which are often referred to as symmetry protected topological (SPT)
phases. We present systematic constructions of tensor network wavefunctions for
bosonic symmetry protected topological (SPT) phases respecting both onsite and
spatial symmetries.
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Chapter 1

Introduction and overview

1.1 Overview of quantum phases

Condensed matter physics studies phases of matter and phase transitions. The most

familiar phases are solids and liquids, which can be well understood by classical

physics. More exotic phases includes superfluids, superconductors and magnetism.

In this thesis, we are interested in quantum phases, i.e. phases in zero temperature.

Quantum phases are classified into two categories: gapped phases and gapless

phases. Examples for gapless phases include superfluids, with phonons as gapless

excitations and Fermi liquids, with massless fermionic quasiparticles as low-energy

excitations. In this thesis, we will focus on another category: gapped quantum phases.

Traditionally, it was believed that phases of matter are classified by their symmetry

properties. Landau’s symmetry-breaking theory provide a deep insight into quantum

phases and phase transitions. Different phases are characterized by different symme-

tries. Landau’s symmetry-breaking theory can describe lots of phases, such as crystal

phases, ferromagnetic and anti-ferromagnetic phases, superfluid phases, etc., and also

phase transitions between them.

In the last few decades, it was realized that there are phases beyond the frame-

work of Landau-Ginzburg symmetry breaking. The most famous examples are quan-

tum Hall fluids[133]. Different quantum Hall states all share the same symmetry –

charge conservation 𝑈(1) symmetry. However, different Hall states support different
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kinds of (fractional) excitations, which indicates that they are distinguished by new

kinds of orders beyond symmetry-breaking. A relatively new examples are topological

insulators[59, 110]. Topological insulators have the same symmetry as trivial band

insulators, but they host gapless edge states when put on an open boundary system.

These nontrivial edge states are also protected by a new kind of order.

So, how do we get systematic understanding of these new phases? What is the

measurement signature for these exotic phases? Is there any way to simulate these

phases numerically?

In this thesis, we will stress these questions and explore exotic phases by using

exact solvable models and tensor networks. While the first method provides us clear

physical understanding for the phases, tensor networks not only provide analytical

understanding for these phases, but also give generic variational wavefunctions, which

are very useful in numerics.

1.2 Symmetry, topology and quantum phases

In the following, we will mainly focus on gapped quantum phases. And we consider

the case where ground states shares the same symmetry as local Hamiltonian, i.e.

there is no spontaneously symmetry breaking.

It turns out that, symmetry, topology and the interplay between them lead to

many exotic phenomena beyond transitional condensed matter physics. In the fol-

lowing, I will briefly introduce some exotic quantum phases due to nontrivial topology

and symmetry.

Let us first consider the simplest case, where a local Hamiltonian has no global

symmetry. In this case, different gapped quantum phases are only distinguished by

their topological properties. In other words, they have different topological orders[154,

150]. One famous example is Kitaev’s toric code model[81]. In that case, the low

energy dynamics is described by 𝑍2 gauge theory. There are four types of elementary

excitations: topologically trivial excitations, 𝑍2 charges 𝑒, 𝑍2 fluxes 𝑚 and dyons 𝜀

which are bound states of 𝑒 and 𝑚. These excitations are called anyons, due to their
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nontrivial statistics. In the toric code example, 𝑒 and 𝑚 are mutual semions and 𝜀 is

self-fermion.

Topological orders in 2+1D are well studied. They are classified by tensor categories[82].

Ground states of a topological ordered state are degenerate if one put the system on

a closed manifold. Low-energy excitations are anyons, whose properties, including

fusion rules and braiding statistics, are determined by the topological order. How-

ever, theory of topological orders in 3+1D was lacking in the past. It is natural

to ask, what are measurement signatures for topological orders in 3+1D? Is there

any mathematical tools to classify topological order in 3+1D? We try to give a par-

tial answer of these question in Chapter 2. We find that, for topological orders in

3+1D, nontrivial excitations include particles as well as loops. In order to charac-

terize topological orders, it is necessary to include braiding statistics involving three

loops[145, 75, 148, 72, 144]. As a single loop travelling in spacetime forms a world-

sheet, the three loop braiding process forms a nontrivial “linked” 2D manifold built

up by three world sheets in spacetime. Nontrivial links are characterized by quanti-

ties named as triple linking numbers. One can extract Berry phases associated with

the three loop braiding process by modular transformations of ground state mani-

folds. We provide exact solvable models in 3+1D, and show explicitly that different

topological orders can be distinguished by three loop braiding Berry phase.

Now, let us add global symmetry, and consider the interplay between symmetry

and topology. As an example, let us consider the famous Laughlin’s 𝜈 = 1/3 fractional

quantum Hall liquid (FQHL)[85], which is topological ordered with three-fold ground

state degeneracy on torus and anyonic quasiparticle excitations in the bulk. In the

physical realization of the Laughlin FQHL in 2DEG, there is also a global symmetry:

the U(1) charge conservation for electrons. One can imagine what would happen if

the U(1) charge conservation was absent, for instance, if a small electronic pairing was

introduced via proximity effect. Because the topological order is robust towards arbi-

trary perturbation, the threefold ground state degeneracy and the anyonic statistics

of quasiparticles would still be present.

Is the U(1) global symmetry unimportant for the FQHL physics then? Obviously,
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this is not the case. In fact, this U(1) symmetry allows one to find two striking exper-

imental signatures of Laughlin’s state: the quantized Hall conductance 𝜎𝑥𝑦 = 𝑒2/3ℎ,

and the 𝑒* = 𝑒/3 fractional charge carried by quasiparticles. The second signature

is very interesting: the quasiparticles of a topologically ordered phase can carry a

fraction of the quantum number of the fundamental degrees of freedom (electrons

here) in the quantum system. Such phenomena are often referred to as “symmetry

fractionalization”. This phenomena only occur when the system has topological or-

der. The 𝑒* = 𝑒/3 charge of quasiparticles is a remarkable demonstration of how the

global symmetry can “act” on the topological order in a non-trivial fashion.

Another collection of fascinating quantum phases is the quantum spin liquid

(QSL). Quantum spin liquids are often defined to be featureless Mott insulator phases,

namely phases that respect full lattice symmetry as well as the spin rotational symme-

try, with a half-integer spin per unit cell. Based on the Hastings’ generalization[60] of

Lieb-Schultz-Mattis theorem[89] in higher dimensions, we know that gapped quantum

spin liquids in two and higher spatial dimensions must host non-trivial ground state

degeneracies on torus. But because there is no symmetry-breaking-induced ground

state degeneracy, this indicates that the gapped QSLs are topologically ordered. Re-

cently, there are signature of QSL both by numerics[162, 73] and experimental[58, 46]

on kagome lattice.

How can one classify/understand QSL phases? Is the topological order enough to

determine the nature of this QSL phase? The answer is negative. For example, it turns

out that there are more than one QSL phase on the kagome lattice even for a given 𝑍2

topological order[147, 93]. Their distinctions are protected by the global symmetries.

Roughly speaking, the way that the global symmetries act on the topological order

are different for different phases. These phenomena have been called “symmetry

enriched topological phases” or “symmetry enriched topological order”. When the

global symmetries are absent, all these phases are no longer distinguishable and are

adiabatically connected to one another. But when the global symmetries are present,

one necessarily encounters phase transitions while going from one phase to another.

Now, let us consider gapped quantum phases with only global symmetry, and
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assume there is no topological order. Namely, the bulk excitations are all trivial. It

turns out that different symmetric quantum phases are classified by a new kind of

orders named as symmetry protected topological (SPT) orders. The most famous

examples are topological insulators. Consider a electronic system in 3+1D, with

global charge conservation symmetry 𝑈(1) and time reversal symmetry 𝑍𝒯
2 , there are

two different gapped phases: trivial insulators and topological insulators. It is hard

to distinguish them from their bulk properties. However, if one puts these two phases

on manifold with open boundaries, topological insulators have nontrivial boundary

states with a single Dirac cone, while trivial insulators will always support trivial

boundary states. Notice, the single Dirac cone state is nontrivial in the sense that it

can never exist in a purely 2D system with symmetry 𝑈(1)o 𝑍𝒯
2 .

There are also SPT phases in bosonic (spin) systems. Unlike fermionic SPT phases,

which usually have free fermion realization, bosonic SPT always require strong in-

teraction, due to the fact that free bosons will always condense. As an example,

we consider spin-1 Haldane phase, which is a one dimensional bosonic SPT phase

protected by spin rotation symmetry 𝑆𝑂(3). If one puts Haldane phase on an open

chain, although the phase is gapped in the bulk, there are gapless spin-1/2 modes on

boundaries.

Bosonic SPT phases are generalized to higher dimensions in Ref. [21, 20]. They

find these SPT phases are (partially) classified by group cohomology 𝐻𝑑+1(𝑆𝐺,𝑈(1)),

where 𝑑 is the spatial dimension 𝑆𝐺 is the on-site global symmetry.

In condensed matter system, lattice symmetries, such translation and rotation,

are usually very important. One may ask, are there any SPT phases protected by

lattice symmetries? In fact, it is shown in Ref. [23, 118, 108], in 1+1D, there are

nontrivial SPT phases protected by reflection symmetries. However, are there higher

dimensional generalizations of lattice symmetry SPT phases? Can one develop a

systematic way to classify SPT phases protected by both on-site symmetries and

lattice symmetries? Further, in order to perform numerical simulations, is there any

way to write down generic variational wavefunctions for a given SPT phases? We will

try to answer the above questions in Chapter 4
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1.3 Entanglement and tensor networks

Entanglement is one of the most exotic feature in the quantum world. Entanglement

is a special kind of correlation between quantum objects. The most famous entangled

state is called Einstein-Podolsky-Rosen (EPR) pair[41]. The state can be viewed

simply as a spin singlet state formed by two spin-1/2’s

|𝜓⟩ = 1√
2
(| ↑↓⟩ − | ↓↑⟩) (1.1)

if we measure the spins of the two particles separately, we will find that the first one

can point in any direction in space and the second one will always take the opposite

direction. This provides the simplest example of entangled states in quantum systems.

There are a lot of ways to measure “how much” entanglement is contained in

a particular state. The most used one is the entanglement entropy defined for pure

states. In a bipartite system with two components 𝐴 and 𝐵, the entanglement entropy

between these two subsystems are

𝑆𝐴 = −Tr(𝜌𝐴 ln 𝜌𝐴), where 𝜌𝐴 = Tr𝐵|𝜓⟩⟨𝜓| (1.2)

where Tr𝐵 is the partial trace over states only in subsystem 𝐵. We can exchange

𝐴 with 𝐵 in the above formula and the resulting entanglement entropy would be

the same. Entanglement entropy provides a simple description of entanglement in

bipartite pure states. Another useful quantity to characterize entanglement is called

entanglement spectrum. We define entanglement Hamiltonian as following:

𝜌𝐴 = e−𝐻𝐴 (1.3)

And the spectrum of 𝐻𝐴 is called entanglement spectrum. Entanglement spectrum

provides more sophisticated information about entanglement.

So, why does entanglement useful for quantum phases? How do we characterize

quantum entanglement in many-body system?
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For the first question, it turns out many quantum phases can be characterized by

their entanglement properties. In fact, in modern condensed matter physics, entangle-

ment patterns serve as defining features for many exotic quantum phases. For gapped

quantum phases, the most important entanglement feature is called area law[160, 42].

If one bipartite the system into two parts 𝐴 and 𝐵, the entanglement entropy between

𝐴 and 𝐵 is proportional to the length of the boundary 𝐿𝐴:

𝑆𝐴 = 𝛼𝐿𝐴 + . . . (1.4)

For example, in one dimension, boundaries are two points. So, entanglement entropy

for 1D quantum phases is a constant independent of the size of subsystem 𝐴.

For topological ordered state in 2D, there is a negative constant correction for the

entanglement entropy

𝑆𝐴 = 𝛼𝐿𝐴 − 𝛾 (1.5)

𝛾, named as topological entanglement entropy, only depends on types of topological

orders. 𝛾 can be measured by numerics, which is a sharp measurement quantity for

topological ordered states.

Entanglement entropy is not able to distinguish different SPT phases. However,

it turns out that many SPT phases can be diagnosed by entanglement spectrum[47].

Sometimes, entanglement spectrum are more useful than nontrivial boundary states.

For instance, there are one nontrivial SPT phases protected by reflection symmetry

in 1D spin system. This phase has no nontrivial edge state, since edges always break

reflection symmetry. The nontrivial measurement quantity is in fact the entangle-

ment spectrum. Consider an infinite system, For nontrivial reflection SPT phase, the

entanglement spectrum are two-fold degeneracy, while for trivial phase, there is no

such degeneracy in entanglement spectrum.

From the previous discussion, we see that entanglement are very useful to char-

acterize quantum phases. Is there an efficient representation of quantum states with

nontrivial many-body entanglement? It turns out that tensor networks[45, 137, 138,
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105, 140, 139] are a perfect tool to write down many-body entangled state. In one

dimensional, it is proven that the gapped bosonic quantum phases can be classified

by Matrix Product States (MPS). In 2D, Projected Entangled Pairs States(PEPS)

have a built-in area law for the entanglement entropy, so become a perfect tool to

describe gapped ground states. We will give a detailed review of the tensor network

formalism in Chapter 3.

We should mention here, that tensor networks are not only useful tools to study

strongly correlated systems, but also serve as powerful numerical methods. For ex-

ample, DMRG[156], which achieve great success in simulating 1D system, can be

expressed elegantly using MPS language. In two dimension, various PEPS algorithm

serves as efficient variational methods for strongly coupled spin systems as well as

interaction fermionic systems.
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Chapter 2

General modular transformation in

3+1D topologically ordered phases

2.1 Introduction

Topologically ordered quantum phases of matter in 2+1D have been intriguing since

their discovery decades ago (see [152] and references therein), due to exotic properties

such as fractionalized quasiparticles with anyonic quantum braiding statistics.[150,

154] Early on it was realized that in such phases the topological degeneracy of the

ground state on the torus corresponds to the number of types of particle excitations

(superselection sectors).[155] Furthermore, it was shown that the matrix of Berry’s

phases experienced by the ground states under the modular transformations of the

torus, the 𝑆 and 𝑇 transformations (Fig. 2-1a), are directly related to the quantum

statistics of the quasiparticles.[150] In fact, to date the most fundamental conjecture

remains that the matrices of 𝑆, 𝑇 contain complete information about a topological

order.[150] Therefore one can view the modular 𝑆, 𝑇 matrices as the “non-local order

parameters” in a topologically ordered phase.[4]

However, in three spatial dimensions some fundamental questions are yet com-

pletely unresolved: Is there a physical way to characterize different topological orders

in 3+1D? Can braiding of excitations help us in the characterization? Clearly the

problem is much more complex, since in 3d there are generically both point-like and
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a)

b)

Figure 2-1: 𝑆 (left) and 𝑇 (right) transformations on the (a) Two-torus and (b)
Three-torus, which are defined by periodic boundary conditions.

loop-like excitations, and their geometric interplay is rich. If some type of braid-

ing can help us characterize the topological order in 3+1D, what is the topological

property of that braiding process that is relevant?

Motivated by the fundamental role of modular transformations of the torus in

2+1D systems, our approach to these questions is based on considering the analogous

transformations on the three-torus (e.g., a cube with periodic boundary conditions).

The modular transformations 𝑆, 𝑇 on the torus generate the group 𝑆𝐿(2, 𝑍), which

represents the different classes of continuous transformations on the torus.1 In 3+1D

quantum states, the analogue is the three-torus, which also has just two associated

transformations 𝑆, 𝑇 , generators of 𝑆𝐿(3, 𝑍) group,[132, 101] namely a 120∘ rotation

through a diagonal of the periodic cube and a shear, respectively (Fig. 2-1b). Very

recently it has been conjectured that exactly these kinds of transformations can be

used to characterize topological order in any dimension.[101]

One way to study topologically ordered states is using the exactly solvable models

of discrete gauge theories introduced by Dijkgraaf and Witten (DW).[39, 3] Although

these theories in 2+1D do not provide an exhaustive classification of all possible topo-

1More precisely, 𝑆𝐿(2, 𝑍) is the mapping class group of the two-torus, i.e., the group of isotopy-
classes of automorphisms of the torus. The mapping class group is formed by Dehn twists of the
torus.
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logical orders,2 they describe a physically interesting set of states. Most importantly

for this work, such cohomological gauge theories with gauge group 𝐺 are naturally

defined in any spatial dimension, allowing us to study 3+1D topological orders. They

also host both point-like and loop-like excitations, namely gauge charges and flux-

loops, respectively. For simplicity, we restrict to the case of Abelian groups 𝐺, and

then additionally to cases where loops have only Abelian braiding.

In this chapter, we will calculate the matrix elements of the three-torus 𝑆, 𝑇

transformations in cohomological gauge theory, and relate them to the braiding of

excitations. Most strikingly, we will argue that the 𝑆 matrix elements relate to cer-

tain braiding processes involving three loops simultaneously. This is surprising since

there is a simple, seemingly fundamental, braiding process of two loops, where one

loop traces out a torus enclosing the other loop, which is relevant in other physical

contexts.[2, 102] We then show that this specific three-loop braiding process is char-

acterized by a non-trivial topological invariant, the triple linking number,[16] of the

worldsheets of three loops in the 3+1D spacetime. This therefore is the appropri-

ate generalization of situation in 2+1D spacetime, where braiding of particles occurs

when particle worldlines, forming closed loops, are non-trivially linked.[154] The triple

linking number (TLN) can be seen as a generalization of topological linking number of

loops in three dimensions to topological linking of closed surfaces in four dimensions.

Recently, the connection between modular transformations on the ground state

manifold in 2+1D and the statistics of quasiparticles was further exposed by the

introduction of minimum entropy states (MES), a special choice of basis in ground

state manifold.[170] The MES can be seen as eigenstates of topological operators

describing tunneling of particles across some direction in the periodic system, and

their overlaps simply give the matrix elements of modular transformations.[170] This

is related to the fact that anyon braiding in 2+1D is mathematically expressed through

the non-trivial algebra of the particle tunneling operators.[154] We will show that in

3+1D topological order, the non-trivial matrix elements of the 𝑆, 𝑇 transformations

2Discrete gauge theories can only describe non-chiral states having quasiparticles with integer
quantum dimension. Also, some distinct phases can differ by a physically irrelevant relabeling of
quasiparticles.
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in the MES basis are due to a non-trivial algebra of topological operators which

involve membranes; a membrane represents the tunneling of a loop across two periodic

directions in the three-torus, and truly involves the three dimensional nature of the

system.

This chapter is organized as follows. In Section 2.2, we define the exactly solv-

able models in 3+1D, which are classified by cohomology group and can be viewed

as extension of Dijkgraaf-Witten theory to 3+1D. In the following section, we put

these models on three-torus, and get the ground state manifolds. Particularly, we

find a MES basis, which is useful for interpretation. Further, we construct mem-

brane operators defined as operators mapping between MES. We work out modular

transformations on MES basis in Section. We find modular transformations to be

directly related to braiding statistics of flux-loops and particles. We show this by

both geometric and algebraic methods. In the last Section we solve these models for

some illuminating examples.

2.2 Cohomological gauge theory in 3+1D

In this section, we define the cohomological gauge theory for a general manifold in

3+1D, based on the Dijkgraaf-Witten (DW) topological invariant. The theory is

topological and defined by a discrete gauge group 𝐺. However, there are distinct

topologically ordered states for a fixed 𝐺, and in 3+1D they are classified by the

fourth cohomology group of 𝐺 with coefficients in 𝑈(1), namely 𝐻4(𝐺,𝑈(1)). In

Section 2.7 we give a brief review of cohomology concepts relevant for the rest of the

paper, while referring the reader to, e.g., Refs.[21, 97], for more details.

In this paper we will work in 3+1D, and therefore the theory will be defined using

the 4-cocycle (sometimes we call it simply cocycle) 𝜔, for which the cocycle condition

becomes:

𝜔(𝑔2, 𝑔3, 𝑔4, 𝑔5) · 𝜔(𝑔1, 𝑔2 · 𝑔3, 𝑔4, 𝑔5) · 𝜔(𝑔1, 𝑔2, 𝑔3, 𝑔4 · 𝑔5) (2.1)

=𝜔(𝑔1 · 𝑔2, 𝑔3, 𝑔4, 𝑔5) · 𝜔(𝑔1, 𝑔2, 𝑔3 · 𝑔4, 𝑔5) · 𝜔(𝑔1, 𝑔2, 𝑔3, 𝑔4),
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Figure 2-2: The 4-cocycle 𝜔 assigns a 𝑈(1) complex number 𝜔𝜀(𝑔54, 𝑔43, 𝑔32, 𝑔21)
to a 4-simplex, where 𝜀 is the chirality of the 4-simplex, defined as 𝜀 =
sgn[det(1⃗2, 2⃗3, 3⃗4, 4⃗5)]. The dashed lines represent that the vertex 5 has a different
coordinate in the fourth dimension (time) with respect to the other vertices.

where 𝜔 ∈ 𝐻4(𝐺,𝑈(1)), and 𝑔𝑖 ∈ 𝐺. In this paper, we will use the “canonical”

4-cocycle, meaning that 𝜔(𝑔1, 𝑔2, 𝑔3, 𝑔4) = 1 if any of 𝑔1, 𝑔2, 𝑔3, 𝑔4 is equal to 1 (the

identity element of group 𝐺).

The gauge theory is now defined by using 𝜔 to construct topological invariants of

a 4D manifold. For a given 4D manifold 𝑀 without boundary, one can triangulate

it using a finite number of 4-simplices. The vertices of this triangulation are then

ordered arbitrarily, and the ordering is represented by assigning arrows going from

the lower to the higher ordered vertex on each edge, Fig. 2-2. Let us denote a 4-

simplex of the triangulation, together with the ordering of its vertices, by 𝜎𝐼 , where

𝐼 = 1, 2, . . . , 𝑆 labels 4-simplices and 𝑆 is the total number of 4-simplices in 𝑀 .

Next, one defines a coloring 𝜙 of all the edges in the triangulation, by assigning group

element to them. Let us denote the group element assigned to the bond connecting

vertices 𝑗 and 𝑖 as 𝑔𝑖𝑗, following the ordering from 𝑗 to 𝑖: 𝑗 → 𝑖; we then automatically

assign 𝑔𝑗𝑖 = 𝑔−1
𝑖𝑗 . In addition, the three assigned group elements for any given face

must satisfy the constraint 𝑔𝑖𝑗 · 𝑔𝑗𝑘 · 𝑔𝑘𝑖 = 1, and 𝑖, 𝑗, 𝑘 are the three vertices of the

face. This constraint is the “zero-flux rule”.
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With these definitions, one can assign a 𝑈(1) phase to every 4-simplex by com-

puting 𝜔𝜀(𝑔54, 𝑔43, 𝑔32, 𝑔21), where 𝜀 = sgn[det(1⃗2, 2⃗3, 3⃗4, 4⃗5))] determines the chirality

of the simplex, as shown in Fig. 2-2.3 For a given coloring 𝜙 and simplex 𝜎𝐼 , we

label this 𝑈(1) phase as 𝑊 (𝜎𝐼 , 𝜙)
𝜀(𝜎𝐼). Finally, one can compute the product of all 𝑊

for the simplices:
∏︀𝑆

𝐼=1𝑊 (𝜎𝐼 , 𝜙)
𝜖(𝜎𝐼). For a given coloring 𝜙, we will have one such

product. The key result[39] is that the complex number

𝑍𝑀 =
1

|𝐺|𝑉
∑︁
𝜙∈ all

possible
colorings

𝑆∏︁
𝐼=1

𝑊 (𝜎𝐼 , 𝜙)
𝜖(𝜎𝐼), (2.2)

where |𝐺| is the number of elements in group 𝐺, and 𝑉 is the number of vertices

in the triangulation, is a topological invariant of the manifold 𝑀 . More precisely,

𝑍𝑀 does not depend on the triangulation and the ordering of vertices (while different

colorings are already summed over), owing to the cocycle condition in Eq. (2.1). One

can further show that equivalent cocycles (i.e., cocycles differing by a coboundary)

give the same value of 𝑍𝑀 .[39]

The topological invariant 𝑍𝑀 is exactly the partition function of the cohomological

gauge theory, which is a topological quantum field theory for discrete gauge group 𝐺

in 3+1D. It is the higher dimensional version of the DW theory[39, ?], and it only

depends on inequivalent elements in 𝐻4(𝐺,𝑈(1)).

2.2.1 Exactly solvable models

We define our exactly solvable models in 3+1D as Hamiltonian versions of the coho-

mological gauge theory. We consider space triangulated using a tetrahedron lattice

with oriented edges (bonds), where these orientations are compatible with some or-

dering of lattice sites, and assign an element 𝑔𝑖𝑗 ∈ 𝐺 to each oriented edge 𝑗 → 𝑖,

according to the above discussion.

An arbitrary quantum state in the Hilbert space ℋ of our model is then labeled

3The 4D coordinate system (𝑥, 𝑦, 𝑧, 𝑤) itself has a chirality, analogously to the handedness of a
3d coordinate system, and if it changes, the 𝜀 also changes sign.
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by |𝑎⟩ = |{𝑔𝑖𝑗}⟩. The building block for the Hamiltonian is the operator 𝐵̂𝑠
𝑝 labeled

by a group element 𝑠 ∈ 𝐺, and a “plaquette” 𝑝 containing all 4-simplices (tetrahedra)

that share the vertex 𝑖. The plaquette operator acts on group elements on the edges

that share 𝑖. To define its action, we introduce an additional edge rising into the

fourth dimension, connecting 𝑖 to an auxiliary vertex 𝑖′. To edge 𝑖→ 𝑖′ we assign the

element 𝑠 ∈ 𝐺. The group elements are changed as

𝑔𝑖𝑗 → 𝑠 · 𝑔𝑖𝑗 (2.3)

𝑔𝑘𝑖 → 𝑔𝑘𝑖 · 𝑠−1,

and these new values are represented on auxiliary edges 𝑖′ → 𝑗 and 𝑘 → 𝑖′. Fur-

ther, the non-zero matrix elements of 𝐵̂𝑠
𝑝, namely 𝐵𝑠

𝑝 = ⟨f(𝑠)|𝐵̂𝑠
𝑝|i⟩, are assigned the

following quantum amplitude

𝐵𝑠
𝑝 ≡

6∏︁
𝐼=1

𝑊 (𝜎𝐼 , 𝜙)
𝜀(𝜎𝐼), (2.4)

where the 4-simplices 𝜎𝐼 are built by triangulating the 4D volume formed by the

tetrahedra in the plaquette 𝑝 and the auxiliary edges.

It is important to note that the zero-flux rule is by construction satisfied on all

faces (triangles) of 4-simplices, if it is satisfied in the tetrahedra of 𝑝, and this must

be imposed for the 𝐵𝑠
𝑝 to be well-defined. We can then define the plaquette operators

𝐵̂𝑝 as having matrix elements

𝐵𝑝 =
1

|𝐺|
∑︁
𝑠∈𝐺

𝐵𝑠
𝑝. (2.5)

The 𝐵̂𝑝 are projectors, which can be easily checked using the cocycle property to

show ⟨f|𝐵̂𝑠
𝑝𝐵̂

𝑠′
𝑝 |i⟩ = 𝐵𝑠·𝑠′

𝑝 , which then implies ⟨f|𝐵̂𝑝𝐵̂𝑝|i = 𝐵𝑝⟩. Similarly, it can be

shown that the plaquette operators commute, [𝐵𝑝, 𝐵𝑝′ ] = 0, ∀𝑝, 𝑝′.

Let us also introduce the operator 𝑄𝑡, which projects flux in a triangle 𝑡 to zero,
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i.e., it enforces the zero-flux rule. Then the Hamiltonian takes the form

𝐻 = −
∑︁
𝑡

𝑄𝑡 −
∑︁
𝑝

𝐵̂𝑝

∏︁
𝑡∈𝑝

𝑄𝑡, (2.6)

where the label 𝑡 ∈ 𝑝 enumerates all the triangles making up the plaquette 𝑝. As

mentioned above, the factor
∏︀

𝑡∈𝑝𝑄𝑡 is actually crucial to ensure that 𝐻 is well-

defined. Further, it is easy to see that plaquette operator term 𝐵̂𝑝

∏︀
𝑡∈𝑝𝑄𝑡 actually

commutes with the projectors 𝑄𝑡′ . Since all the terms in 𝐻 commute with each other,

the model is exactly solvable.

Let us briefly mention the connection of the Hamiltonian formulation to the

gauge theory, which is exhibited in the ground state manifold. Since all the terms

in 𝐻 are projectors, the ground state manifold is the image of the projector 𝑃 =∏︀
𝑝 𝐵̂𝑝

∏︀
𝑡∈𝑝𝑄𝑡. On the other hand, 𝑃 is exactly the projector defining the cohomo-

logical gauge theory on the 4D manifold having two copies of our spatial manifold 𝑀

as boundaries (see Ref.[97] for details). The ground state sector of 𝐻, to which 𝑃

projects with eigenvalue 1, is also the ground state sector of the cohomological gauge

theory[39] defined on 𝑀 .

2.2.2 Geometrical reduction of 4-cocycles

In this section we present some cohomology equations for reducing the 4-cocycle to

lower order cocycles, and explain their geometric meaning. These equations crucially

simplify all following calculations. From now on, we will focus on Abelian groups 𝐺

for convenience.

First, let us consider a triangulated 4D manifold in Fig.2-3, with the shown color-

ing. (Note that some edges needed for full 4D triangulation are omitted, but coloring

and ordering are fully defined.) The 𝑈(1) phase calculated from all the 4-simplices

spanning this 4D volume, with the 4-cocycle 𝜔 given, equals 𝛽𝜀
𝑠(𝑐, 𝑏, 𝑎), with:

𝛽𝑠(𝑐, 𝑏, 𝑎) =
𝜔(𝑠, 𝑐, 𝑏, 𝑎) · 𝜔(𝑐, 𝑏, 𝑠, 𝑎)
𝜔(𝑐, 𝑠, 𝑏, 𝑎) · 𝜔(𝑐, 𝑏, 𝑎, 𝑠)

, (2.7)
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Figure 2-3: Geometric meaning of 3-cocycle 𝛽𝑠(𝑐, 𝑏, 𝑎) corresponds to evolution (along
fourth dimension) of tetrahedron [1234] to [1′2′3′4′].

Figure 2-4: Evolution from a triangle to a 4D manifold. Phase associated with this
colored manifold is 𝛾𝜀𝑎,𝑏(𝑐, 𝑑), where 𝜀 = sgn[det(𝑑, 𝑐⃗, 𝑏⃗, 𝑎⃗))]. This phase can also
be written as 𝛾𝜀′𝑏,𝑎(𝑐, 𝑑), where 𝜀′ = sgn[det(𝑑, 𝑐⃗, 𝑎⃗, 𝑏⃗)] = −𝜀. So, we conclude that
𝛾𝑎,𝑏(𝑐, 𝑑) = 𝛾−1

𝑏,𝑎 (𝑐, 𝑑).
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Figure 2-5: The simplest triangulation of three-torus has a single vertex and three
independent edges. Periodic boundary conditions are imposed on the cube.

and 𝜀 = sgn[det(⃗𝑎, 𝑏⃗, 𝑐⃗, 𝑠⃗)]. Using the 4-cocycle condition for 𝜔, it is straightforward

to show that 𝛽𝑠 is a 3-cocycle. This shows that lifting all vertices of a tetrahedron

produces a quantum phase which is only a 3-cocycle, for any given 𝜔.

Another quantity that appears naturally from a cubic geometry is 𝛾𝑎,𝑏, whose

geometric meaning is shown in Fig. 2-4. It is defined from the 3-cocycle 𝛽𝑎 as:

𝛾𝑎,𝑏(𝑐, 𝑑) =
𝛽𝑎(𝑏, 𝑐, 𝑑)𝛽𝑎(𝑐, 𝑑, 𝑏)

𝛽𝑎(𝑐, 𝑏, 𝑑)
. (2.8)

It is straightforward to show that 𝛿𝛾𝑎,𝑏(𝑐, 𝑑, 𝑒) = 1, namely, 𝛾𝑎,𝑏 is a 2-cocycle (see

Section 2.7). Further, from Eq.(2.7) and Eq.(2.8), one can show that 𝛾𝑎,𝑏(𝑐, 𝑑) =

𝛾−1
𝑏,𝑎 (𝑐, 𝑑). This equality follows also from the geometry in Fig. 2-4.

2.3 Ground state on three-torus and membrane op-

erators

2.3.1 Exact models on three-torus

We now put our model, Eq. (2.6), on the three-torus in 3+1D. It is important to

note that the exactly solvable model has correlation length zero. Therefore, we can
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consider the simplest triangulation of a three-torus shown in Fig.2-5. All eight cube

vertices are identical due to periodic boundary conditions. It is triangulated by six

tetrahedrons. There are three independent edges, which are assigned group elements

𝑎, 𝑏, 𝑐 ∈ 𝐺, with 𝐺 a finite group. Edges with the same direction share the same

group element value. The corresponding quantum state is labeled by |𝑎, 𝑏, 𝑐⟩. We

also require 𝐺 to be Abelian for simplicity.

Since there is only one vertex, we denote the plaquette operator 𝐵̂𝑝 simply as 𝐵̂,

which equals 1
|𝐺|

∑︀
𝑠∈𝐺𝐵

𝑠. The action of 𝐵𝑠 on state |𝑎, 𝑏, 𝑐⟩ is

𝐵𝑠|𝑎, 𝑏, 𝑐⟩ = 𝛾𝑎,𝑠(𝑏, 𝑐)

𝛾𝑎,𝑠(𝑐, 𝑏)
|𝑎, 𝑏, 𝑐⟩. (2.9)

=
𝛾𝑎,𝑏(𝑐, 𝑠)

𝛾𝑎,𝑏(𝑠, 𝑐)
|𝑎, 𝑏, 𝑐⟩.

We can directly write down the above result due to the observation that the 4D graph

we obtain by acting with 𝐵𝑠 is in fact made out of two copies of Fig. 2-4. Notice that

the 𝑈(1) phase obtained by action of 𝐵𝑠 is a fully antisymmetric function of 𝑎, 𝑏, 𝑐, 𝑠,

as can be seen both geometrically and algebraically.

2.3.2 MES as ground state basis

Let us first briefly review topological order in 2+1D. It is partially characterized

by ground state degeneracy on torus.[154] One can understand this degeneracy by

applying Wilson loop operators of distinct topological excitations winding around

one of non-contractible loops on the torus. From this point of view, one can see that

GSD equals the number of distinct topological superselection sectors.

Non-chiral topological order is fully determined by braiding statistics and topo-

logical spin of its topological excitations.[155] Remarkably, one can read the informa-

tion about excitations from ground state by using modular transformations[150, 170],

namely, by considering the 𝒮, 𝒯 matrices of the 𝑆, 𝑇 transformation in the ground

state manifold. Dimension of 𝒮, 𝒯 equals the number of topological sectors. In a

proper ground state basis, we can obtain the “canonical form” of 𝒮, 𝒯 matrices, for
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which the entries of 𝒮 matrix are the braiding statistics and the diagonal elements of

𝒯 are the topological spins of quasiparticles. Ground state basis for canonical 𝒮, 𝒯

matrices is formed by minimal entropy state (MES).[170]

We can extend these concepts to 3+1D. However, there is a major difference in this

case: Topological excitations can be flux loops in 3+1D. Without loss of generality,

we only consider the MES in 𝑧 direction.

Inspired by the case of 2+1D cohomological gauge theories discussed in Ref.[66],

we have found the MES in 𝑧 direction as

|𝑎, 𝑏, 𝜆⟩ = 1√︀
|𝐺|

∑︁
𝑐∈𝐺

𝜒̃𝑎,𝑏
𝜆 (𝑐)|𝑎, 𝑏, 𝑐⟩, (2.10)

where 𝜒̃𝑎,𝑏
𝜆 is a one-dimensional projective representation. Here, 𝜆 labels different

projective representations of the group 𝐺, and the 2-cocycle 𝛾 from Eq. (2.8) plays

the role of factor-system of these projective representations:

𝜒̃𝑎,𝑏
𝜆 (𝑐1)𝜒̃

𝑎,𝑏
𝜆 (𝑐2) = 𝛾𝑎,𝑏(𝑐1, 𝑐2)𝜒̃

𝑎,𝑏
𝜆 (𝑐1𝑐2). (2.11)

We will only consider the case of Abelian (one-dimensional) projective representations

𝜒𝑎,𝑏 in this paper. This assumption implies that the 2-cocycle 𝛾𝑎,𝑏 is a 2-coboundary.

We believe this is related to the physical assumption of Abelian statistics of loops.

Firstly, we verify that this state is indeed in the ground state manifold. Acting

with projection operator 𝐵̂ on the state, we get

𝐵̂|𝑎, 𝑏, 𝜆⟩ = 1√︀
|𝐺|3

∑︁
𝑐∈𝐺

𝜒̃𝑎,𝑏
𝜆 (𝑐)

∑︁
𝑠∈𝐺

𝐵𝑠|𝑎, 𝑏, 𝑐⟩ (2.12)

=
1√︀
|𝐺|3

∑︁
𝑐

𝜒̃𝑎,𝑏
𝜆 (𝑐) · 𝛾𝑎,𝑏(𝑐, 𝑠)

𝛾𝑎,𝑏(𝑠, 𝑐)
|𝑎, 𝑏, 𝑐⟩

=
1√︀
|𝐺|

∑︁
𝑐

𝜒̃𝑎,𝑏
𝜆 (𝑐)|𝑎, 𝑏, 𝑐⟩

= |𝑎, 𝑏, 𝜆⟩,

where the second row uses Eq.(2.9), and in the third row we used 𝛾𝑎,𝑏(𝑐, 𝑠) = 𝛾𝑎,𝑏(𝑠, 𝑐)

20



Figure 2-6: Evolution from single vertex to two vertices.

which follows from the above mentioned assumptions.

Next, we prove that this state is indeed an MES in 𝑧 direction. Let us retriangulate

the three-torus, so that it has two unit-cells in 𝑧 direction. The ground state defined

on this two unit-cell system can be evolved from that in one unit-cell, as shown in

Fig. 2-6:

|𝑎, 𝑏, 𝜆⟩ = 1√︀
|𝐺|

∑︁
𝑐∈𝐺

𝜒̃𝑎,𝑏
𝜆 (𝑐)|𝑎, 𝑏, 𝑐⟩ (2.13)

=
1√︀
|𝐺|

∑︁
𝑐1,𝑐2∈𝐺

𝜒̃𝑎,𝑏
𝜆 (𝑐2 · 𝑐1)𝛾𝑎,𝑏(𝑐2, 𝑐1)|𝑎, 𝑏, 𝑐1, 𝑐2⟩

=
1√︀
|𝐺|

∑︁
𝑐1

𝜒̃𝑎,𝑏
𝜆 (𝑐1)

∑︁
𝑐2

𝜒̃𝑎,𝑏
𝜆 (𝑐2)|𝑎, 𝑏, 𝑐1, 𝑐2⟩.

As seen from the above, |𝑎, 𝑏, 𝜆⟩ defined on two unit-cells can be written as a direct

product state. So, entanglement entropy of this state in 𝑧 direction is zero, which

must be minimum. We therefore conclude that this state is indeed an MES in 𝑧
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Figure 2-7: The action of membrane operators.

direction.

Similarly, it is easy to write down the MES in 𝑥 and 𝑦 directions:

|𝜇, 𝑏, 𝑐⟩ = 1√︀
|𝐺|

∑︁
𝑎∈𝐺

𝜒̃𝑏,𝑐
𝜇 (𝑎)|𝑎, 𝑏, 𝑐⟩, (2.14)

|𝑎, 𝜈, 𝑐⟩ = 1√︀
|𝐺|

∑︁
𝑏∈𝐺

𝜒̃𝑐,𝑎
𝜈 (𝑏)|𝑎, 𝑏, 𝑐⟩, (2.15)

whose properties can be derived in the same way as above.

2.3.3 Membrane operator

Although we constructed the MES in 3+1D, the physical picture is still unclear.

Recall that in 2+1D all MES can be obtained from inserting ribbon operators (Wilson

loop operators) into “trivial” MES, which corresponds to topological trivial sector. In

the following we will show that membrane operators are the relevant operators for

such a procedure in 3+1D.

Let us start with the MES in 𝑧 direction, |𝑎, 𝑏, 𝜆⟩. Characteristically in discrete

gauge theory, we can interpret a group element as a label of flux-loop (or label of a

membrane, which is the analogue of Dirac string in 3+1D), while a group represen-

tation labels a particle.[3] Then |𝑎, 𝑏, 𝜆⟩ can be viewed as state with membrane 𝑎 in

𝑦𝑧 plane and membrane 𝑏 in 𝑧𝑥 plane, as well as string 𝜆 (world-line of particle) in 𝑧
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direction. So, it is natural to define trivial MES as

|𝑒, 𝑒,1⟩ = 1√︀
|𝐺|

∑︁
𝑐∈𝐺

|𝑒, 𝑒, 𝑐⟩, (2.16)

where 𝑒 ∈ 𝐺 is identity element. Here 1 means the trivial linear representation.

The central question becomes: What are the operators that send one MES to an-

other? It is natural to assume that these operators correspond to membrane insertion

in 𝑦𝑧 and 𝑧𝑥 plane, as well as string insertion in 𝑧 direction. Besides, we expect that

a string in 𝑥(𝑦) direction can measure a membrane in 𝑦𝑧(𝑥𝑧) plane while membrane

in 𝑥𝑦 plane will measure strings in 𝑧 direction.

Following this intuition, we define membrane insertion operators in 𝑦𝑧, 𝑧𝑥, 𝑥𝑦

planes, respectively, as shown in Fig. 2-7:

𝐹 𝑢
𝑏′,𝑐′ |𝑎, 𝑏, 𝑐⟩ = 𝛿𝑏𝑏′𝛿𝑐𝑐′ · 𝛾−1

𝑏,𝑐 (𝑢, 𝑎)|𝑢𝑎, 𝑏, 𝑐⟩, (2.17)

𝐺𝑣
𝑐′,𝑎′ |𝑎, 𝑏, 𝑐⟩ = 𝛿𝑐𝑐′𝛿𝑎𝑎′ · 𝛾−1

𝑐,𝑎 (𝑣, 𝑏)|𝑎, 𝑣𝑏, 𝑐⟩,

𝐻𝑤
𝑎′,𝑏′ |𝑎, 𝑏, 𝑐⟩ = 𝛿𝑎𝑎′𝛿𝑏𝑏′ · 𝛾−1

𝑎,𝑏 (𝑤, 𝑐)|𝑎, 𝑏, 𝑤𝑐⟩,

where 𝑢, 𝑣, 𝑤 label the spatial planes of the membranes. Further, we can define

𝐹
(𝑧)
𝑢,𝜆 =

∑︁
𝑏,𝑐∈𝐺

𝜒̃𝑢,𝑏
𝜆 (𝑐)𝐹 𝑢

𝑏,𝑐, (2.18)

𝐺
(𝑧)
𝑣,𝜆 =

∑︁
𝑐,𝑎∈𝐺

𝜒̃𝑎,𝑣
𝜆 (𝑐)𝐺𝑣

𝑐,𝑎,

where we interpret 𝐹 (𝑧)
𝑢,𝜆 as inserting membrane 𝑢 (in 𝑦𝑧 plane) and string 𝜒̃𝑢,𝑏

𝜆 in 𝑧

direction, and interpret 𝐺(𝑧)
𝑣,𝜆 as inserting membrane 𝑣 (in 𝑧𝑥 plane) and string 𝜒̃𝑎,𝑣

𝜆 in

𝑧 direction. To confirm this, we act with these operators on state |𝑒, 𝑒,1⟩, getting

𝐹
(𝑧)
𝑢,𝜆|𝑒, 𝑒,1⟩ = |𝑢, 𝑒, 𝜆⟩ (2.19)

𝐺
(𝑧)
𝑣,𝜆|𝑒, 𝑒,1⟩ = |𝑒, 𝑣, 𝜆⟩.
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It is not hard to obtain the “fusion rule” of membranes and strings, namely

𝐹
(𝑧)
𝑢1,𝜆1

𝐹
(𝑧)
𝑢2,𝜆2

= 𝐹
(𝑧)
𝑢1𝑢2,𝜆3

, (2.20)

𝐺
(𝑧)
𝑣1,𝜆1

𝐺
(𝑧)
𝑣2,𝜆2

= 𝐺
(𝑧)
𝑣1𝑣2,𝜆3

,

and

𝐹
(𝑧)
𝑢,𝜆1

𝐺
(𝑧)
𝑣,𝜆2

|𝑎, 𝑏, 𝜆⟩ = |𝑢𝑎, 𝑣𝑏, 𝜆3⟩ (2.21)

𝐺
(𝑧)
𝑣,𝜆1

𝐹
(𝑧)
𝑢,𝜆2

|𝑎, 𝑏, 𝜆⟩ = |𝑢𝑎, 𝑣𝑏, 𝜆3⟩,

by using the properties of the 2-cocycle 𝛾. Namely, assume 𝜒̃𝑎,𝑏
𝜇 is a projective repre-

sentation with factor system 𝛾𝑎,𝑏,

𝜒̃𝑎,𝑏
𝜇 (𝑐1) · 𝜒̃𝑎,𝑏

𝜇 (𝑐2) = 𝛾𝑎,𝑏(𝑐1, 𝑐2) · 𝜒̃𝑎,𝑏
𝜇 (𝑐1 · 𝑐2). (2.22)

Then it follows that

𝜒̃𝑎,𝑏1
𝜇1

(𝑐)𝜒̃𝑎,𝑏2
𝜇2
𝛾𝑎,𝑐(𝑏1, 𝑏2) = 𝜒̃𝑎,𝑏1𝑏2

𝜇3
(𝑐) (2.23)

𝜒̃𝑎1,𝑏
𝜇1

(𝑐)𝜒̃𝑎2,𝑏
𝜇2
𝛾𝑐,𝑏(𝑎1, 𝑎2) = 𝜒̃𝑎1𝑎2,𝑏

𝜇3
(𝑐)

Similarly to the above derivations, we can define

𝐻(𝑥)
𝑤,𝜇 =

∑︁
𝑎,𝑏

𝜒̃𝑏,𝑤
𝜇 (𝑎)𝐻𝑤

𝑎,𝑏, (2.24)

𝐻(𝑦)
𝑤,𝜇 =

∑︁
𝑎,𝑏

𝜒̃𝑤,𝑎
𝜈 (𝑏)𝐻𝑤

𝑎,𝑏,

where 𝐻(𝑥)(𝐻(𝑦)) creates membrane in 𝑥𝑦 plane and string in 𝑥(𝑦) direction. Acting
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with these operators on MES in 𝑧 direction, we get

𝐻(𝑥)
𝑤,𝜇|𝑎, 𝑏, 𝜆⟩ =

𝜒̃𝑏,𝑤
𝜇 (𝑎)

𝜒̃𝑎,𝑏
𝜆 (𝑤)

|𝑎, 𝑏, 𝜆⟩, (2.25)

𝐻(𝑦)
𝑤,𝜈 |𝑎, 𝑏, 𝜆⟩ =

𝜒̃𝑤,𝑎
𝜈 (𝑏)

𝜒̃𝑎,𝑏
𝜆 (𝑤)

|𝑎, 𝑏, 𝜆⟩.

It is then natural to interpret 𝐻(𝑥)(𝐻(𝑦)) as operator that measures strings in 𝑧

direction and membrane in 𝑦𝑧(𝑧𝑥) plane.

We will also write down the remaining two operators that send MES to MES for

later convenience:

𝐹 (𝑦)
𝑢,𝜈 =

∑︁
𝑏,𝑐

𝜒̃𝑐,𝑢
𝜈 (𝑏)𝐹 𝑢

𝑏,𝑐, (2.26)

𝐺(𝑥)
𝑣,𝜇 =

∑︁
𝑐,𝑎

𝜒̃𝑣,𝑐
𝜇 (𝑎)𝐺𝑣

𝑐,𝑎.

2.4 Topological observables and their physical inter-

pretation

2.4.1 𝒮 and 𝒯 matrices from modular transformations

In this section, we will calculate the Berry phase of ground states obtained during

modular transformations. The derivation is largely a higher dimensional generaliza-

tion of 2+1D case in Ref.[66].

In real space, we can write the modular transformations, Fig. 2-1b, as

𝒮 =

⎛⎜⎜⎜⎝
0 0 1

1 0 0

0 1 0

⎞⎟⎟⎟⎠ , 𝒯 31 =

⎛⎜⎜⎜⎝
1 0 0

0 1 0

1 0 1

⎞⎟⎟⎟⎠ . (2.27)

The question is what is the action of 𝒮 and 𝒯 on our exact models? We follow the

strategy of Ref.[66], but generalize it to 3+1D. We consider a 𝑇 3× [0, 1] manifold (𝑇 3

is three-torus), and put the initial ground state at 𝑇 3×0, final state at 𝑇 3×1. Then we
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carefully triangulate the 4D manifold 𝑇 3× [0, 1] and compute the quantum amplitude

from the initial to the final state. After lengthy but straightforward calculations, we

find:

𝑆|𝑎, 𝑏, 𝑐⟩ = |𝑏, 𝑐, 𝑎⟩ (2.28)

𝑇 31|𝑎, 𝑏, 𝑐⟩ = 𝛽−1
𝑏 (𝑎, 𝑎−1𝑐, 𝑎)|𝑎, 𝑏, 𝑎−1𝑐⟩.

Now we act by 𝑇 31 on MES in 𝑧 direction:

𝑇 31|𝑎, 𝑏, 𝜆⟩ = 1√︀
|𝐺|

∑︁
𝑐

𝜒̃𝑎,𝑏
𝜆 (𝑐)𝛽−1

𝑏 (𝑎, 𝑎−1, 𝑎)|𝑎, 𝑏, 𝑎−1𝑐⟩ (2.29)

= 𝜒̃𝑎,𝑏
𝜆 (𝑎)|𝑎, 𝑏, 𝜆⟩.

We can see that |𝑎, 𝑏, 𝜆⟩ is indeed an eigenstate of 𝒯 matrix.

We can also get 𝒮 matrix element in 𝑧-direction MES basis:

⟨𝑎′, 𝑏′, 𝜆′|𝑆|𝑎, 𝑏, 𝜆⟩ (2.30)

=
1

|𝐺|
∑︁
𝑐,𝑐′

𝜒̃𝑎,𝑏
𝜆 (𝑐)

𝜒̃𝑎′,𝑏′

𝜆′ (𝑐′)
⟨𝑎′, 𝑏′, 𝑐′|𝑏, 𝑐, 𝑎⟩

=
1

|𝐺|
𝜒̃𝑎,𝑏
𝜆 (𝑏′)

𝜒̃𝑎′,𝑏′

𝜆′ (𝑎)
· 𝛿𝑎′𝑏.

Taking into account our assumption that 𝛾𝑎,𝑏 is a 2-coboundary, the projective rep-

resentation 𝜒̃ can be rewritten as 𝜒̃𝑎𝑏
𝜇 (𝑔) = 𝜀𝑎𝑏(𝑔) · 𝜒𝜇(𝑔), where 𝜒𝜇(𝑔) is an ordinary

linear representation of 𝐺, and 𝜀𝑎𝑏 is a 1-cocycle for which 𝛾𝑎,𝑏 = 𝛿𝜀𝑎𝑏 (see Section 2.7).

Then we get a factorized form:

⟨𝑎′, 𝑏′, 𝜆′|𝑆|𝑎, 𝑏, 𝜆⟩ = 1

|𝐺|
𝜒𝑎,𝑏
𝜆 (𝑏′)

𝜒𝑎′,𝑏′

𝜆′ (𝑎)
· 𝜀𝑎𝑏(𝑏

′)

𝜀𝑎′𝑏′(𝑎)
· 𝛿𝑎′𝑏. (2.31)

While the physical meaning of this element is not so clear for general case, it

is instructive to see the simple case where 𝑎′ = 𝑏 = 𝑒. Then the 1-cocycle part

of Eq.(2.31) is trivial and only 𝜒𝜆(𝑏
′)/𝜒𝜆′(𝑎) is left. We can interpret this phase
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Figure 2-8: A positive triple point (left) and a negative triple point (right), where we
denote the orientations of sheets by their normals.

as Aharonov-Bohm phase of particles going around a flux loop in three dimensions,

namely, particle 𝜆 sees flux loop 𝑏′ and particle 𝜆′ sees flux loop 𝑎. In the following,

we will show how the most general form of 𝒮 matrix element, including the 1-cocycle

contribution, can be interpreted as statistics of flux loops as well as particles.

2.4.2 Braiding statistics and 𝒮 matrix

In this section, we will show that the membrane operator algebra gives 𝒮 matrix

elements. We will then interpret the membrane expression as a process involving a

triple linking of worldsheets in 3+1D. Finally, we will identify such a process having

certain triple linking as a particular braiding process of loops.

Before continuing, we briefly summarize the triple linking number (TLN) invari-

ant.

Introduction to triple linking number

The triple linking number 𝑇 𝑙𝑘𝑖𝑗𝑘(𝐹 ) of oriented (two-dimensional) surface 𝐹 smoothly

embedded in four dimensions was defined in Ref.[16] as an analogue of the linking

number of classical links. The indices 𝑖, 𝑗, 𝑘 label three components of the surface 𝐹 .

In our case, they label the three flux-loop worldsheets in 3+1D.
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𝑇 𝑙𝑘𝑖𝑗𝑘(𝐹 ) is an integer topological invariant.[17] It can be non-zero only if the

components 𝑖, 𝑗, 𝑘 are distinct, and the 𝑇 𝑙𝑘 obey the relations

𝑇 𝑙𝑘123(𝐹 ) + 𝑇 𝑙𝑘231(𝐹 ) + 𝑇 𝑙𝑘312(𝐹 ) = 0, (2.32)

𝑇 𝑙𝑘123(𝐹 ) + 𝑇 𝑙𝑘321(𝐹 ) = 0,

and are therefore fully determined by two integers. [17] Concretely, we choose:

𝑎 ≡ 𝑇 𝑙𝑘123(𝐹 ) (2.33)

𝑏 ≡ 𝑇 𝑙𝑘132(𝐹 ),

which implies 𝑇 𝑙𝑘321(𝐹 ) = −𝑎, 𝑇 𝑙𝑘231(𝐹 ) = −𝑏, 𝑇 𝑙𝑘213(𝐹 ) = 𝑎−𝑏, 𝑇 𝑙𝑘312(𝐹 ) = 𝑏−𝑎.

There are different ways to calculate the TLN.[17] We describe the one that is most

convenient for the braiding problem: One projects the surface 𝐹 from 3+1D onto a

three-dimensional slice using an arbitrary projection direction, and looks for triple-

points, namely, points in the projected manifold where all three projected components

intersect. For each triple point 𝑠 one checks the stacking order of surface components

along the projection vector, and assigns the label of top component to 𝑖𝑠, the middle

to 𝑗𝑠, and the bottom to 𝑘𝑠. Finally, the sign 𝜖𝑠 is calculated as the handedness of the

three 𝑖𝑠, 𝑗𝑠, 𝑘𝑠 surface normals at the point 𝑠, see Fig. 2-8. Having this information,

𝑇 𝑙𝑘𝑖𝑗𝑘(𝐹 ) equals the sum of 𝜖𝑠 over the points 𝑠 for which 𝑖𝑠 = 𝑖, 𝑗𝑠 = 𝑗, 𝑘𝑠 = 𝑘. If no

triple point contributes to a certain choice 𝑖𝑗𝑘, then 𝑇 𝑙𝑘𝑖𝑗𝑘 = 0, and this has to be

consistent with other values of 𝑖′𝑗′𝑘′ according to relations Eq. (2.32).

The number of triple points and the stacking order of components both depend

on the chosen projection vector in 3+1D, however the resulting TLN is topologically

invariant.
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Figure 2-9: Movie for process 𝐻−1𝐺−1𝐹−1𝐺𝐹𝐻. The worldsheets in this process
share the same topological properties as the three-flux-loop braiding process in Fig. 2-
11.

Figure 2-10: Projection of the membrane process movie to three-dimensional space
at 𝑡 = −∞. Lines show the pairwise intersections of projected worldsheets. Black
lines: for 𝐹 and 𝐻 worldsheets; Blue: for 𝐹 and 𝐺; Red: for 𝐺 and 𝐻. Although
there are eight triple points here, the triple linking is still the same as for the three-
flux-loop braiding process, Fig. 2-12. The directions 𝑡1,2,3 show the time ordering of
contributions to projection from worldsheets 𝐻,𝐹,𝐺, so clarify to which 𝑇 𝑙𝑘𝑖𝑗𝑘 some
triple point contributes (see after Eq. (2.33)). For example, at point 𝑎, direction of 𝑡1,
𝑡2, 𝑡3 shows that worldsheet projection at this point comes from: 𝐻−1 rather than 𝐻,
𝐹 rather than 𝐹−1, 𝐺 rather than 𝐺−1, respectively. Therefore point 𝑎 contributes
to 𝑇 𝑙𝑘132.
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Braiding statistics from membrane operator algebra

The algebra of membrane operators follows from their definition:

𝐺(𝑥)
𝑣,𝜇𝐹

(𝑦)
𝑢,𝜈 |𝑎, 𝑏, 𝑐⟩ =

𝜒̃𝑐,𝑢
𝜈 (𝑏)𝜒̃𝑣,𝑐

𝜇 (𝑢𝑎)

𝛾𝑏,𝑐(𝑢, 𝑎)𝛾𝑐,𝑢𝑎(𝑣, 𝑏)
|𝑢𝑎, 𝑣𝑏, 𝑐⟩, (2.34)

𝐹 (𝑦)
𝑢,𝜈𝐺

(𝑥)
𝑣,𝜇|𝑎, 𝑏, 𝑐⟩ =

𝜒̃𝑣,𝑐
𝜇 (𝑎)𝜒̃𝑐,𝑢

𝜈 (𝑣𝑏)

𝛾𝑐,𝑎(𝑣, 𝑏)𝛾𝑣𝑏,𝑐(𝑢, 𝑎)
|𝑢𝑎, 𝑣𝑏, 𝑐⟩.

One may ask is it possible to capture a braiding process through membrane op-

erators, similarly to the 2+1D case of particle tunneling operators capturing their

braiding.[154] The answer is yes. Actually, Fig. 2-9 depicts this process as a sequence

of time events, using membrane operators defined above.

The quantum amplitude related to the “movie” in Fig. 2-9 can be expressed as

⟨𝐻−1𝐺−1𝐹−1𝐺𝐹𝐻⟩, where the expectation value is obtained in state |𝑒, 𝑒, 𝑒⟩. Here

we assign 𝐻 = 𝐻𝑤
𝑒,𝑒, 𝐺 = 𝐺

(𝑥)
𝑣,𝜇 and 𝐹 = 𝐹

(𝑦)
𝑢,𝜈 for simplicity. Using Eq.(2.34), it is

straightforward to get

⟨𝐻−1𝐺−1𝐹−1𝐺𝐹𝐻⟩ =
𝜒̃𝑣,𝑤
𝜇 (𝑢)

𝜒̃𝑤,𝑢
𝜈 (𝑣)

. (2.35)

We can see that the quantum amplitude equals 𝒮 matrix element ⟨𝑤, 𝑢, 𝜈|𝑆|𝑣, 𝑤, 𝜇⟩

up to factor |𝐺|!

A key question now becomes: What is a robust physical characterization of the

process captured by the non-trivial membrane operator algebra? The answer is that

in this process worldsheets of loops, which are represented by membrane operators,

have a non-trivial TLN. First, we denote the worldsheet components 𝐻,𝐹,𝐺 as 1, 2, 3,

respectively. To calculate the value of TLN, we project the 4D “movie” onto the three-

dimensional slice at time 𝑡 = −∞, and find eight triple intersection points of the

projected worldsheets, Fig. 2-10. For simplicity of presentation, we offset the spatial

position of inserted operator and its inverse, i.e., the membrane is moved slightly

between the time of its appearance and disappearance. We checked that this does

not influence the result. A straightforward calculation from each triple point gives:

𝑏 : 𝑇 𝑙𝑘123 = 1, 𝑎, 𝑒, 𝑓 : 𝑇 𝑙𝑘132 = 1, 𝑑 : 𝑇 𝑙𝑘231 = −1, 𝑐, 𝑔, ℎ : 𝑇 𝑙𝑘321 = −1. The
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Figure 2-11: Movies for three-flux-loop braiding. This process has nontrivial triple
linking number of three worldsheets. Firstly, loop 1 (black) is created and grows
(the black anti-loop is irrelevant and omitted here). Then loop 2 (blue) emerges,
encircling loop 1 halfway. Then loop 3 (red) completely encircles loop 2. After this,
loop 2 finishes the route around loop 1. Finally, loop 1 shrinks.

obtained values of 𝑇 𝑙𝑘𝑖𝑗𝑘 are consistent (Eq. (2.32)).

The membrane expression is therefore characterized by 𝑎 = 1, 𝑏 = 1, see Eq. (2.33).

Braiding process for flux loop

The membrane operators can in some sense be seen as representing an instantaneous

event of creating a loop and expanding it until it shrinks in the periodic system.

However, this kind of worldsheet evolution can be smoothly deformed to represent a

more physically clear process. We therefore make a movie of three-flux-loop braiding

process that gives exactly the same nontrivial triple linking number as the membrane

process, as shown in Fig. 2-11. By projecting this braiding movie, we get Fig. 2-12,
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Figure 2-12: (color online) Movie in Fig. 2-11 projected to three-dimensional space
at 𝑡 = −∞. Triple points are marked 𝑎, 𝑏, 𝑐, 𝑑. Lines show the pairwise intersections
of the projected worldsheet components. Black lines: intersection of projected 1 and
2 worldsheet components; Blue lines: for 2 and 3; Red lines: 1 and 3. The projected
component 1 in this figure takes the form of the sphere; 2 and 3 take the form of tori
(not shown). The directions 𝑡1,2 show the time ordering of contributions to projection
from worldsheets 1, 2, so clarify to which 𝑇 𝑙𝑘𝑖𝑗𝑘 some triple point contributes (see
after Eq. (2.33)). For example, at point 𝑏, 𝑡1, 𝑡2 show that projection of 2 at this point
comes from earlier time than 1 (3 is always between them), contributing to 𝑇 𝑙𝑘132.
This process has same triple linking number as the one in Fig. 2-10.
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in which it is straightforward to measure the TLN: Triple point 𝑎 gives Tlk123 = 1,

triple point 𝑏 gives Tlk132 = 1, triple point 𝑐 gives Tlk231 = −1 and triple point 𝑑

gives Tlk321 = −1. Again, the obtained values of 𝑇 𝑙𝑘𝑖𝑗𝑘 are consistent (Eq. (2.32)).

It follows that the three-flux-loop braiding is characterized by 𝑎 = 1, 𝑏 = 1 (using

Eq. (2.33)), which exactly matches the membrane calculation result.

2.5 Examples

Here we will present the example of 𝐺 = 𝑍2×𝑍2 cohomological gauge theories. Since

𝐻4(𝐺,𝑈(1)) = 𝑍2 × 𝑍2, they can represent different topological orders. This will

show how the loop statistics can distinguish different topological orders.

It is convenient to label group 𝐺 elements 𝑎 as (𝑎1, 𝑎2), where 𝑎𝑖 ∈ {0, 1}. Group

multiplication rule 𝑎 ·𝑏 is defined as (⟨𝑎1+𝑏1⟩, ⟨𝑎2+𝑏2⟩), where we introduce notation

⟨𝑥⟩ ≡ 𝑥mod 2.

Since the cohomology group is𝐻4(𝑍2×𝑍2, 𝑈(1)) ∼= 𝑍2×𝑍2, it can be parametrized

by 4-cocycles

{𝜔𝑖𝑗|𝑖, 𝑗 = 0, 1}, (2.36)

with multiplication rule

𝜔𝑖𝑗(𝑎, 𝑏, 𝑐, 𝑑) · 𝜔𝑖′𝑗′(𝑎, 𝑏, 𝑐, 𝑑) = 𝜔⟨𝑖+𝑖′⟩⟨𝑗+𝑗′⟩(𝑎, 𝑏, 𝑐, 𝑑). (2.37)

The explicit form of these 4-cocycles is[26]

𝜔00(𝑎, 𝑏, 𝑐, 𝑑) = 1, (2.38)

𝜔01(𝑎, 𝑏, 𝑐, 𝑑) = exp[
𝑖𝜋

2
𝑎1𝑏2(𝑐2 + 𝑑2 − ⟨𝑐2 + 𝑑2⟩)],

𝜔10(𝑎, 𝑏, 𝑐, 𝑑) = exp[
𝑖𝜋

2
𝑎2𝑏1(𝑐1 + 𝑑1 − ⟨𝑐1 + 𝑑1⟩)],

𝜔11(𝑎, 𝑏, 𝑐, 𝑑) = 𝜔01(𝑎, 𝑏, 𝑐, 𝑑) · 𝜔10(𝑎, 𝑏, 𝑐, 𝑑).
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It is straightforward to check that these 𝜔 indeed satisfy the 4-cocycle condition.

One can now work out the induced 3-cocycle 𝛽𝑎 and 2-cocycle 𝛾𝑎,𝑏 using their

definitions in Eq.(2.7) and Eq.(2.8). For induced 3-cocycle, we get

𝛽00,𝑎(𝑏, 𝑐, 𝑑) = 1, (2.39)

𝛽01,𝑎(𝑏, 𝑐, 𝑑) = exp[
𝑖𝜋

2
(𝑎1𝑏2 − 𝑎2𝑏1)(𝑐2 + 𝑑2 − ⟨𝑐2 + 𝑑2⟩)],

𝛽10,𝑎(𝑏, 𝑐, 𝑑) = exp[
𝑖𝜋

2
(𝑎2𝑏1 − 𝑎1𝑏2)(𝑐1 + 𝑑1 − ⟨𝑐1 + 𝑑1⟩)],

𝛽11,𝑎(𝑏, 𝑐, 𝑑) = 𝛽01,𝑎(𝑏, 𝑐, 𝑑)𝛽10,𝑎(𝑏, 𝑐, 𝑑).

It follows that the 3-cocycle 𝛽𝑎 can be expressed as

𝛽𝑎(𝑏, 𝑐, 𝑑) = exp

[︂
𝑖𝜋

2
𝑃 𝑎
𝑖𝑗𝑏𝑖(𝑐𝑗 + 𝑑𝑗 − ⟨𝑐𝑗 + 𝑑𝑗⟩)

]︂
, (2.40)

where 𝑃 𝑎
𝑖𝑗 is some integer matrix. According to Ref.[37], then the induced 2-cocycle

must be a coboundary 𝛾𝑎𝑏(𝑐, 𝑑) = 𝛿 𝜀𝑎,𝑏(𝑐, 𝑑), where

𝜀𝑎𝑏(𝑐) = exp

(︂
𝑖𝜋

2
𝑃 𝑎
𝑖𝑗𝑏𝑖𝑐𝑗

)︂
. (2.41)

Altogether, for inequivalent 4-cocycles we get the induced 2-cocycle as

𝜀00,𝑎𝑏(𝑐) = 1, (2.42)

𝜀01,𝑎𝑏(𝑐) = exp[
𝑖𝜋

2
(𝑎1𝑏2𝑐2 − 𝑎2𝑏1𝑐2)],

𝜀10,𝑎𝑏(𝑐) = exp[
𝑖𝜋

2
(𝑎2𝑏1𝑐1 − 𝑎1𝑏2𝑐1)],

𝜀11,𝑎𝑏(𝑐) = 𝜀01,𝑎𝑏(𝑐) · 𝜀10,𝑎𝑏(𝑐).

Now, we are ready to calculate statistics of loops and particles. We will focus on

|𝐺| · ⟨𝑤, 𝑢, 𝜈|𝑆|𝑣, 𝑤, 𝜇⟩ =
𝜒̃𝑣𝑤
𝜇 (𝑢)

𝜒̃𝑤𝑢
𝜈 (𝑣)

(2.43)

=
𝜒𝜇(𝑢)

𝜒𝜈(𝑣)
· 𝜀𝑣𝑤(𝑢)
𝜀𝑤𝑢(𝑣)

.
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In the second equality, we have defined

𝜒̃𝑣𝑤
𝜇 (𝑢) = 𝜀𝑣𝑤(𝑢) · 𝜒𝜇(𝑢), (2.44)

𝜒̃𝑤𝑢
𝜈 (𝑣) = 𝜀𝑤𝑢(𝑣) · 𝜒𝜈(𝑣).

where 𝜒𝜇(𝜒𝜈) is one-dimensional linear representation of 𝑍2 × 𝑍2. One can easily

check the above definition of 𝜒̃𝜇 and 𝜒̃𝜈 is consistent, due to 𝛾𝑎,𝑏 being a 2-coboundary.

Labeling 𝜇 = (𝜇1, 𝜇2) as 𝑍2 × 𝑍2 group element,

𝜒𝜇(𝑢) = 𝑒𝑖𝜋(𝜇1𝑢1+𝜇2𝑢2) = 𝑒𝑖𝜋𝜇⃗·𝑢⃗. (2.45)

First, let us consider the case 𝑤 = (0, 0). In this case, only the 𝜒𝜆 factors are

non-trivial in second line of Eq. (2.43), which is interpreted as contribution from

Aharonov-Bohm phase of braiding particles around flux-loops. In this case, the phase

factor equals 𝑒𝑖𝜋(𝜇⃗·𝑢⃗−𝜈⃗·𝑣⃗), which is independent of choice of cocycle. Namely, statistics

between particles and loops cannot distinguish different phases.

Then, we turn to the general case. We get an additional phase factor 𝑠𝑙 beyond

𝑒𝑖𝜋(𝜇⃗·𝑢⃗−𝜈⃗·𝑣⃗), and the 𝑠𝑙 factor comes from 𝜀 in Eq. (2.43). In other words, it is present

even when 𝜇 = 𝜈 = 0, i.e., 𝜒 representations are trivial, so there are no charged

particles. Therefore, 𝑠𝑙 represents statistics of flux-loops. We list 𝑠𝑙 obtained from

different 4-cocycles as follows

∙ 𝜔00: 𝑠𝑙 = 1.

∙ 𝜔01: 𝑠𝑙 = 𝑒
𝑖𝜋
2
[𝑢1𝑣2+𝑢2𝑣1]𝑤2−2𝑢2𝑣2𝑤1 .

∙ 𝜔10: 𝑠𝑙 = 𝑒
𝑖𝜋
2
[(𝑢1𝑣2+𝑢2𝑣1)𝑤1−2𝑢1𝑣1𝑤2].

∙ 𝜔11: 𝑠𝑙 = 𝑒
𝑖𝜋
2
[(𝑢1𝑣2+𝑢2𝑣1)(𝑤1+𝑤2)−2𝑢1𝑣1𝑤2−2𝑢2𝑣2𝑤1].

We can see that flux-loop braiding can indeed distinguish different topological orders

in 3+1D, recalling here that the membrane operator expression is identified with a

particular type of three-flux-loop braiding. In particular, according to previous section
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we can identify the flux-loops (blue, red, black) in Fig. 2-11 with fluxes (𝑢, 𝑣, 𝑤) here,

and there are no charges present.

Now, we turn to 𝒯 matrix element 𝜒̃𝑢,𝑣
𝜆 (𝑢) = ⟨𝑢, 𝑣, 𝜆|𝑇 31|𝑢, 𝑣, 𝜆⟩. In the same way

as above, we get

∙ 𝜔00: 𝜒̃𝑢,𝑣
𝜆 (𝑢) = 𝑒𝑖𝜋𝜆⃗·𝑢⃗.

∙ 𝜔01: 𝜒̃𝑢,𝑣
𝜆 (𝑢) = 𝑒𝑖𝜋𝜆⃗·𝑢⃗𝑒

𝑖𝜋
2
(𝑢1𝑣2𝑢2−𝑢2𝑣1𝑢2).

∙ 𝜔10: 𝜒̃𝑢,𝑣
𝜆 (𝑢) = 𝑒𝑖𝜋𝜆⃗·𝑢⃗𝑒

𝑖𝜋
2
(𝑢2𝑣1𝑢1−𝑢1𝑣2𝑢1).

∙ 𝜔11: 𝜒̃𝑢,𝑣
𝜆 (𝑢) = 𝑒𝑖𝜋𝜆⃗·𝑢⃗𝑒

𝑖𝜋
2
(𝑢1𝑣2+𝑢2𝑣1)(𝑢1−𝑢2).

While the 𝑒𝑖𝜋𝜆⃗·𝑢⃗ can be interpreted as AB phase of particles going around loop, the

remaining part also encodes information about loop statistics. While we do not have

a proof at this time, we believe that this phase is related to the ribbon nature of flux

loop, or in other words to a thickness of the membrane.

2.6 Discussion and conclusions

One of our main results is the construction of MES states on the three-torus for the

3+1D cohomological gauge theory, which can be trivially generalized to arbitrary

number of unit-cells. The 𝑆, 𝑇 transformation matrices take a simple form in this

basis.

We discussed that the 𝑆-matrix elements are directly related to the braiding of loop

excitations. The 𝑇 -matrix elements, which are diagonal in the MES basis, correspond

to the generalization of topological spin for loop excitations. Here physically the loop

excitations are generally expected to be ribbon excitations with two different loop-

edges. We expect that the geometrical interpretation of the 𝑇 -matrix elements is

related to the braiding involving different loop-edges.

Although we use exactly solvable models and 3+1D topological quantum field

theories to compute their 𝑆, 𝑇 matrices, these 3+1D 𝑆, 𝑇 matrices are in principle
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measurable quantities in practical model Hamiltonians. In particular, given a topo-

logically ordered phase in 3+1D with its topologically degenerate ground sector on

three-torus 𝑇 3, one can firstly find a MES basis, similarly to the algorithms pro-

posed in 2+1D.[170] For instance, for the 𝑆-matrix element between two MES |Ξ𝑖⟩

and |Ξ𝑗⟩: 𝑆𝑖𝑗, one can perform the following thought numerical measurement. Be-

cause the topological properties do not depend of local geometry, we can assume that

these ground states live on a cube with periodic boundary conditions. Then one can

consider the state rotated by 120∘ along the (111) direction of the cube: 𝑅120∘ |Ξ𝑖⟩.

Because 𝑅120∘ |Ξ𝑖⟩ and |Ξ𝑗⟩ belong to the same topological phase, in the absence of

symmetry there should exist a Hamiltonian path 𝐻(𝜏) (𝜏 ∈ [0, 1]) such that |Ξ𝑗⟩(|Ξ𝑗⟩)

are the ground state of 𝐻(0)(𝐻(1)), and the ground state sectors of 𝐻(𝜏) are adia-

batically connected. One can then define a projection operator 𝑃𝜏 into the ground

state sector of 𝐻(𝜏) for any given 𝜏 . The many-body quantum amplitude related

to the adiabatic time-evolution process of the 𝑆-transformation can be computed as

⟨Ξ𝑗|𝑃𝑁−1/𝑁 · ... ·𝑃2/𝑁 ·𝑃1/𝑁𝑅120∘|Ξ𝑖⟩ as 𝑁 → ∞. This computation is a realization of

the topological quantum field theory time-evolution.

We expect that this quantum amplitude is related to the 𝑆-matrix elements 𝑠𝑖𝑗

at most by an overall ambiguity 𝑈(1) phase 𝑒𝑖𝜃, which is due to the non-universal

local physics in the time-evolution, and a phase 𝑒𝑖𝜑𝑖−𝑖𝜑𝑗 which is due to the gauge

choice of |Ξ𝑖⟩,|Ξ𝑗⟩. Even with these ambiguities, such measurements can still be used

to extract useful information about the 𝑆, 𝑇 matrices which potentially could fully

determine them.

Recently, there has been a lot of progress in relating topologically ordered phases

to symmetry protected topological (SPT) and symmetry enriched topological (SET)

phases, for example by partially or completely ungauging the gauge group 𝐺, i.e., by

transformations between global and local symmetries.[86, 97, 19, 55, 166, 27, 68, 169,

161] We therefore expect that our work will be useful in characterization of SPT and

SET phases too.

Finally, let us consider a trivial but ubiquitous example of 𝐺 = 𝑍2. In this case,

𝐻4(𝐺,𝑈(1)) = 𝑍1, so the cocycle can be set to identity map. The braiding phase
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𝜒̃𝑣𝑤
𝜇 (𝑢)/𝜒̃𝑤𝑢

𝜈 (𝑣) reduces to a linear representation 𝜒𝜇(𝑢)/𝜒𝜈(𝑣), where group elements

𝑢, 𝑣 = 0, 1, and 𝜇, 𝜈 = 0, 1 label the representations of 𝑍2:

𝜒𝜇(𝑢) = 𝑒𝑖𝜋𝜇𝑢. (2.46)

The braiding phase therefore equals 𝑒𝑖𝜋(𝜇𝑢−𝜈𝑣). There is no contribution from flux-

loop braiding, since the 1-cocycle factors in Eq. (2.31) are trivial. In summary, the

modular 𝑆 transformation for common 𝑍2 gauge theory in 3+1D tells us that particles

see a flux-loop as a 𝜋-flux, and the flux-loops themselves have trivial braiding.

Using the MES basis and Eq. (2.29), (2.30), we directly obtain the 𝒮 and 𝒯

matrices of 3+1D 𝑍2 theory in their canonical form:

𝒮 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 1 1 0 0

1 1 0 0 −1 −1 0 0

1 −1 0 0 1 −1 0 0

1 −1 0 0 −1 1 0 0

0 0 1 1 0 0 1 1

0 0 1 1 0 0 −1 −1

0 0 1 −1 0 0 1 −1

0 0 1 −1 0 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝒯 31 = Diag(1, 1, 1, 1, 1,−1, 1,−1),

where the MES basis |𝑎, 𝑏, 𝜆⟩, with 𝑎, 𝑏, 𝜆 ∈ {0, 1}, is here naturally ordered according

to binary numbers with digits 𝑎𝑏𝜆. These matrices are consistent with the 𝒮 and 𝒯

matrices derived for the same theory in Ref.[101].

2.7 Supplementary material for the cohomology group

We begin with a brief introduction to group cohomology. In this paper, we will not

present the most general definition of group cohomology.

For a finite group 𝐺, and an abelian group 𝑀 (𝑀 does not need to be finite or
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discrete), one can consider an arbitrary function that maps n elements of 𝐺 to an ele-

ment in 𝑀 ; 𝜔 : 𝐺𝑛 →𝑀 or equivalently 𝜔(𝑔1, 𝑔2, ..., 𝑔𝑛) ∈𝑀 , ∀𝑔1, 𝑔2, ...𝑔𝑛 ∈ 𝐺. Such

a group function is called an n-cochain. The set of all n-cochains, which is denoted

as 𝐶𝑛(𝐺,𝑀), forms an abelian group in the usual sense: (𝜔1 · 𝜔2)(𝑔1, 𝑔2, ..., 𝑔𝑛) =

𝜔1(𝑔1, 𝑔2, ..., 𝑔𝑛) · 𝜔2(𝑔1, 𝑔2, ..., 𝑔𝑛), in which the identity n-cochain is a group function

whose value is always the identity in 𝑀 .

One can define a mapping 𝛿 from 𝐶𝑛(𝐺,𝑀) to 𝐶𝑛+1(𝐺,𝑀): ∀𝜔 ∈ 𝐶𝑛(𝐺,𝑀),

define 𝛿𝜔 ∈ 𝐶𝑛+1(𝐺,𝑀) as

𝛿𝜔(𝑔1, ..., 𝑔𝑛+1) = 𝜔(𝑔2, ..., 𝑔𝑛+1) · 𝜔(−1)𝑛+1

(𝑔1, ..., 𝑔𝑛)

×
𝑛∏︁

𝑖=1

𝜔(−1)𝑖(𝑔1, .., 𝑔𝑖−1, 𝑔𝑖 · 𝑔𝑖+1, 𝑔𝑖+1, .., 𝑔𝑛+1). (2.47)

It is easy to show that the mapping 𝛿 is nilpotent: 𝛿2𝜔 = 1 (here 1 denotes the

identity (n+2)-cochain). In addition, for two n-cochains 𝜔1, 𝜔2, obviously 𝛿 satisfies

𝛿(𝜔1 · 𝜔2) = (𝛿𝜔1) · (𝛿𝜔2).

An n-cochain 𝜔(𝑔1, ...𝑔𝑛) is called an n-cocyle if and only if it satisfies the condition:

𝛿𝜔 = 1, where 1 is the identity element in 𝐶𝑛+1(𝐺,𝑀). When this condition is

satisfied, we also say that 𝜔(𝑔1, ...𝑔𝑛) is an n-cocycle of group 𝐺 with coefficients in

𝑀 . The set of all n-cocycles, denoted by 𝑍𝑛(𝐺,𝑀), forms a subgroup of 𝐶𝑛(𝐺,𝑀).

Not all different cocyles are inequivalent. Below we define an equivalence relation

in 𝑍𝑛(𝐺,𝑀). Because 𝛿 is nilpotent, for any (n-1)-cochain 𝑐(𝑔1, ..., 𝑔𝑛−1), we can

find the n-cocyle 𝛿𝑐. And if an n-cocyle 𝑏 can be represented as 𝑏 = 𝛿𝑐, for some

𝑐 ∈ 𝐶𝑛−1(𝐺,𝑀), 𝑏 is called an n-coboundary. The set of all n-coboundaries, denoted

by 𝐵𝑛(𝐺,𝑀), forms a subgroup of 𝑍𝑛(𝐺,𝑀). Two n-cocycles 𝜔1, 𝜔2 are equivalent

(denoted by 𝜔1 ∼ 𝜔2) if and only if they differ by an n-coboundary: 𝜔1 = 𝜔2 ·𝑏, where

𝑏 ∈ 𝐵𝑛(𝐺,𝑀).

The n-th cohomology group of group 𝐺 with coefficients in 𝑀 , 𝐻𝑛(𝐺,𝑀), is

formed by the equivalence classes in 𝑍𝑛(𝐵,𝑀). More precisely: 𝐻𝑛(𝐺,𝑀) = 𝑍𝑛(𝐺,𝑀)/𝐵𝑛(𝐺,𝑀).

In this paper we will make a lot of use of 4-cocycles 𝜔. We will always choose them

to be in “canonical” form, which means that 𝜔(𝑔1, 𝑔2, 𝑔3, 𝑔4) = 1 if any of 𝑔1, 𝑔2, 𝑔3, 𝑔4
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is equal to 1 (the identity element of group 𝐺). For any of the inequivalent cocy-

cles mentioned above, it is always possible to choose a gauge such that 𝜔 becomes

canonical [21].
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Chapter 3

Symmetry enriched topological

phases and tensor network states

3.1 Introduction

In this chapter and next chapter, we develop a generic framework to write down

general variational wavefunctions for a large class of symmetric topological phases

using tensor network methods. In this chapter, we will mainly focus on symmetry

enriched topological phases (SET phases). And in the next chapter, we will consider

symmetry protected topological phases for both on-site symmetries as well as lattice

symmetries.

In physical systems, one needs to consider both global symmetries and topological

orders. In particular, it is very important to understand the interplay between global

symmetries and the topological order. Here, we attempt to build a partial but sys-

tematic understanding of gapped quantum phases with both global symmetries and

topological orders, which have been termed as SET phases. In particular, we will

focus on cases with toric code type topological orders (conventional discrete gauge

theory) in 2+1D. And we will consider symmetries include both on-site symmetries

and lattice symmetries. We focus on a particular type of tensor networks: Projected

Entangled Pairs states (PEPS). We find, in the presence of topological orders and

global symmetries, PEPS states are grouped to different classes, which are related,
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but not limited to different SET types. For each class, we can write down general

variational wavefunctions, which are very useful for numerical simulations.

This chapter is organized as follows. In Sec.3.2, we introduce some basics of PEPS.

In particular, We discuss gauge redundancy as well as the implementation of symme-

tries in PEPS. We introduce a special kind of gauge transformation named as invariant

gauge group (𝐼𝐺𝐺). In phases with no symmetry breaking, 𝐼𝐺𝐺 leads to low-energy

gauge dynamics. Further, for fractional filled systems, there are minimal required non-

trivial 𝐼𝐺𝐺s for any symmetric PEPS under our basic assumption. This phenomenon

is consistent with the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem[61, 103, 90]. In

Sec.3.3, we classify symmetric PEPS according to their distinct short-range physics,

which is characterized by algebraic data Θ’s, 𝜒’s and 𝜂’s. Relations of the data 𝜒’s

and 𝜂’s to second cohomology are discussed.

As a main example, we give the classification result for symmetric PEPS on the

kagome lattice with a half-integer spin per site and 𝐼𝐺𝐺 = 𝑍2, and obtain the con-

straints on the sub-Hilbert spaces for local tensors for each given class. The detailed

calculation is presented in Ref.[76]. We give the physical interpretation of the al-

gebraic data in Section 3.4. Particularly, we construct fractionalized symmetry op-

erators to explicitly show that 𝜂’s are describing the symmetry fractionalization of

spinons in the 𝑍2 QSL member phase. Detectable signatures of the data Θ’s, 𝜒’s and

𝜂’s are discussed. In Sec.4.5 we consider generalizations and limitations of our study,

comment on relations with previous works, and conclude.

3.2 Symmetry, Gauge and PEPS

In this section, we give a brief introduction to PEPS. As we will see later, even for the

same many-body wavefunction, PEPS representations are not unique, and different

representations are connected by gauge transformations. Further, we will study the

implementation of symmetry on PEPS as well as the gauge dynamics in the PEPS

language. Particularly, for certain systems, gauge structures will naturally emerge.
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3.2.1 Introduction to PEPS

Projected Entangled Pair States (PEPS) is a type of tensor networks (TN). The basic

ingredients of TN are “legs”, and every leg is associated with a Hilbert space, as seen in

Fig.(3-1a). In the following, we will use “leg” to denote the associated Hilbert space.

As shown in Fig(3-1b), tensors formed by several legs simply describe quantum states

living in the tensor product of these legs,

𝑇 𝑎𝑏𝑐... ∈ V𝑎 ⊗ V𝑏 ⊗ V𝑐 ⊗ . . . (3.1)

where V𝑖 labels Hilbert space associated with leg 𝑖. If two legs are the bra space and

the ket space of the same set of quantum states, they are named as dual space to

each other. New tensors can be obtained by contracting states in dual spaces, or by

tracing out states in dual spaces, as shown in Fig.(3-1c).

A TN representation of many-body wavefunction can be viewed as a large tensor,

which is obtained by contracting small building block tensors. Thus, a TN is formed

by uncontracted legs (physical legs) and contracted legs (virtual legs). From another

point of view, we can also treat a TN as a combination of a linear map from the

virtual Hilbert space (the tensor product of all virtual legs) to the physical Hilbert

space, together with an “input” virtual state.

Let us construct a PEPS on a two dimensional lattice. We first put tensors at both

sites and bonds, named as site tensors (𝑇 s) and bond tensors (𝐵b) respectively, see

Fig.(3-1b). Every site tensor can be viewed as a linear map from several virtual legs

to one physical leg, while a bond tensor, which is in fact a matrix, labels a quantum

state (bond state) in the tensor product space of two virtual legs. Thus, as shown

in Fig.(3-1d), by contracting virtual legs of site tensors with bond tensors, we get a

PEPS as a combination of a linear map from the virtual Hilbert space to the physical

Hilbert space together with an input virtual state, where the map is given by the

tensor product of all site tensors and the input state is the tensor product of all bond
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(a) (b)

(c) (d)

Figure 3-1: (a): The leg 𝑎 is associated with the Hilbert space V𝑎. (b): The site tensor
(left) and the bond tensor (right) label quantum states on Hilbert spaces of tensor
products of corresponding legs. (c): A new tensor can be obtained by contraction of
the leg 𝑏 on 𝑇 𝑠 and the leg 𝑎′ on𝐵𝑏, which can be expressed as (𝑇 𝑠)𝑘𝑎𝑏𝑐𝑑(𝐵𝑏)𝑎′𝑏′𝛿𝑏𝑎′ . Note
that we require leg 𝑏 and leg 𝑎′ to be dual spaces. (d): The whole PEPS wavefunction
is obtained by contracting all virtual legs of site tensors and bond tensors.

states. We can express the PEPS representation of the wavefunction as

|𝜓⟩ =
∑︁
{𝑘s}

tTr
(︀
(𝑇 1)𝑘1 ...(𝑇𝑁s)𝑘𝑁s𝐵1...𝐵𝑁b

)︀
|𝑘1 . . . 𝑘𝑁s⟩, (3.2)

where 1, 2, . . . 𝑁s(𝑁b) label sites (bonds), while 𝑘s is the physical index. tTr means

tensor trace, namely, contraction of all virtual legs.

We define that a bond tensor (matrix) is a maximal entangled state, iff singular

values of this matrix all equal some nonzero constant. By multiplying some constant,

we can simply set singular values of maximal entangled states to be 1. When per-

forming numerical simulations, it is more convenient to use maximal entangled bond

states, or even set bond tensors to be identity matrices. As we will see later, by using

the gauge redundancy of PEPS, it is always possible to do so.

In the following, we will assume that all virtual legs label Hilbert spaces with the

same dimension 𝐷, while a physical leg is associated with a 𝑑−dimensional Hilbert

space.
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3.2.2 Gauge transformation on PEPS

The representation of a many-body wavefunction on PEPS is far from unique. Par-

ticularly, as shown in Fig.(3-2), we are always allowed to multiply 𝑊 and 𝑊−1 to

two connected virtual legs respectively. This action will change the connected small

tensors while leaving the contracted tensor invariant,

(𝑇 s)𝑘𝑎𝑏𝑐𝑑𝛿𝑏𝑎′(𝐵b)𝑎′𝑏′ = [(𝑇 s)𝑘𝑎𝑏𝑐𝑑𝑊𝑏𝑙]𝛿𝑙𝑙′ [(𝑊
−1)𝑙′𝑎′(𝐵b)𝑎′𝑏′ ] (3.3)

Every contracted pair of virtual legs will contribute a gauge redundancy GL(𝐷,C).

All such gauge transformations form a group [GL(𝐷,C)]2𝑁𝑏 which we call the gauge

transformation group of the PEPS (𝑁𝑏 is the number of bond tensors in the TN).

The meaning of the gauge transformation can be understood as a change of basis on

virtual legs.

From another point of view, in general, for two PEPS whose tensors differ at most

by gauge transformations defined above together with overall U(1) phase factors,

as shown in Fig.(3-2), the two PEPS must describe the same physical state (up

a U(1) phase). In principal, these overall U(1) phase factors can occur in gauge

transformations on both site tensors and bond tensors. But it is straightforward to

redefine the gauge transformations such that the phase factors only appear on site

tensors. Mathematically, two PEPS denoted by {̃︀𝑇 s, ̃︀𝐵b} and {𝑇 s, 𝐵b} respectively

describe the same physical state if there exist gauge transformations {𝑊 (s, 𝑖)} and

U(1) phase factors {ei𝜃(s)} (s labels a site and 𝑖 labels a virtual leg on the site.), such

that

(𝑇 s)𝑘𝛼𝛽... = ei𝜃(s) · [𝑊 (s, 1)]𝛼𝛼′ [𝑊 (s, 2)]𝛽𝛽′ . . . (̃︀𝑇 s)𝑘𝛼′𝛽′...

(𝐵b)𝛼𝛽 = [𝑊 (b, 1)]𝛼𝛼′ [𝑊 (b, 2)]𝛽𝛽′( ̃︀𝐵b)𝛼′𝛽′ .

(3.4)

Here 𝑊 (b, 𝑗) represents a gauge transformation on the leg 𝑗 of the bond tensor 𝐵b,

and if a site leg (s, 𝑖) and a bond leg (b, 𝑗) are connected, then 𝑊 (s, 𝑖) = [𝑊 (b, 𝑗)−1]t.
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Figure 3-2: Two PEPS describe the same quantum state, iff they are differ by gauge
transformation together with U(1) phase factor. The origin of the gauge transforma-
tion is that we can multiply identity matrix I = 𝑊 ·𝑊−1 between connected legs,
which changes site tensors and bond tensors, but leave the whole wavefunction invari-
ant. We can also view TN on the left as PEPS transformed by symmetry operation.
Thus, this figure also express the condition for PEPS wavefunction to be symmetric.

(The superscript-𝑡 stands for the matrix transpose.)

3.2.3 Symmetric PEPS

The purpose of this section is to introduce a generic way to implement both on-site

symmetries[104, 171, 123, 124, 8, 149, 125] and lattice space group symmetries[104]

on PEPS. We firstly discuss the finite size symmetric quantum state that can be

represented by a single PEPS; i.e., such a state would form a one-dimensional repre-

sentation of the symmetry group. Then we define the symmetric PEPS on an infinite

lattice, which is the main object to be (partially) classified in the current study.

On-site unitary symmetries

The action of a global on-site unitary symmetry 𝑆 on a finite size PEPS wavefunction

is defined as

𝑆|𝜓⟩ = | ̃︀𝜓⟩ =∑︁
{𝑘s}

tTr
(︀
(𝑇 1)𝑘1 . . . (𝑇𝑁s)𝑘𝑁s𝐵1 . . . 𝐵𝑁b

)︀
𝑈𝑆 ⊗ 𝑈𝑆 . . . |𝑘1𝑘2 . . . 𝑘𝑁s⟩, (3.5)
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𝑈𝑆 is the representation of 𝑆 on Hilbert space of physical leg. These local actions of

an on-site symmetry give a new TN, with site tensors ̃︀𝑇 s and bond tensors ̃︀𝐵b defined

as,

̃︀𝑇 s = 𝑆 ∘ 𝑇 s =
∑︁
𝑙

(𝑈𝑆)𝑘𝑙(𝑇
s)𝑙

̃︀𝐵b = 𝑆 ∘𝐵b = 𝐵b (3.6)

We focus on those PEPS that are invariant under the global symmetry up to an overall

U(1) phase factor. Following the discussion in the previous section, we consider the

PEPS |𝜓⟩ that differs from the transformed PEPS | ̃︀𝜓⟩ only by gauge transformations

together with overall phase factors, as shown in Fig.(3-2):

𝑇 s = Θ𝑆𝑊𝑆𝑆 ∘ 𝑇 s

𝐵b = 𝑊𝑆𝑆 ∘𝐵b (3.7)

Here, gauge transformation 𝑊𝑆 and phase factor Θ𝑆 associated with symmetry 𝑆 is

defined as

Θ𝑆 ∘ 𝑇 s = ei𝜃𝑆(s)(𝑇 s)𝑘𝛼𝛽𝛾𝛿

𝑊𝑆 ∘ 𝑇 s = [𝑊𝑆(s, 1)]𝛼𝛼′ [𝑊𝑆(s, 2)]𝛽𝛽′ . . . (𝑇 s)𝑘𝛼′𝛽′...

𝑊𝑆 ∘𝐵b = [𝑊𝑆(b, 1)]𝛼𝛼′ [𝑊𝑆(b, 2)]𝛽𝛽′(𝐵b)𝛼′𝛽′ .

(3.8)

According to the definition of a gauge transformation, if site virtual leg (s, 𝑖) and bond

leg (b, 𝑗) are connected, then 𝑊𝑆(s, 𝑖) = [𝑊𝑆(b, 𝑗)
−1]t. Further, we always choose 𝑊𝑆

such that only site tensors transform with extra U(1) phase factors. Note that so far

we do not require matrices on the leg (s, 𝑖) 𝑊𝑆(s, 𝑖) to form a representation of the

on-site symmetry group when 𝑆 is tuned. We will come back to this shortly.
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Time reversal symmetry

The representation of the global time reversal symmetry 𝒯 on a many-body wave-

function is 𝑈𝒯 ⊗ 𝑈𝒯 . . . 𝐾, where 𝐾 denotes the complex conjugation and 𝑈𝒯 is a

unitary matrix acting on local physical Hilbert space. Its action on PEPS is defined

as

𝒯 |𝜓⟩ =
∑︁
{𝑘s}

tTr
(︀
(𝑇 1)𝑘1 . . . (𝑇𝑁s)𝑘𝑁s𝐵1 . . . 𝐵𝑁b

)︀*
𝑈𝒯 ⊗ 𝑈𝒯 . . . |𝑘1𝑘2 . . . 𝑘𝑁s⟩, (3.9)

Namely, the local actions on a single site or a bond tensor read

̃︀𝑇 s = 𝒯 ∘ 𝑇 s =
∑︁
𝑙

(𝑈𝒯 )𝑘𝑙(𝑇
s)*𝑙

̃︀𝐵b = 𝒯 ∘𝐵b = 𝐵*
b (3.10)

We consider the PEPS that is symmetric under 𝒯 . Similar to the previous discussion,

we consider a PEPS satisfying:

𝑇 s = Θ𝒯𝑊𝒯 𝒯 ∘ 𝑇 s

𝐵b = 𝑊𝒯 𝒯 ∘𝐵b

(3.11)

where 𝑊𝒯 belongs to the gauge transformation group of the PEPS.

Lattice symmetry

The definition of a lattice space group symmetry 𝑅 on PEPS is

̃︀𝑇 s = 𝑅 ∘ (𝑇 s)𝑘 ≡
∑︁
𝛼𝛽...

(𝑇𝑅−1(s))𝑘𝑅−1(𝛼𝛽... )

̃︀𝐵b = 𝑅 ∘𝐵b ≡
∑︁
𝛼𝛽

(𝐵𝑅−1(b))𝑅−1(𝛼𝛽) (3.12)
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The action of 𝑅 on site and bond tensor follows the natural definition of lattice

symmetries. For instance, for a square lattice, after a translation along the right

direction by one lattice spacing, the transformed site tensor at a given position equals

the original site tensor on the left neighboring site. Note that the symmetry 𝑅 not

only acts on site and bond indices; it may also act nontrivially on virtual legs. For

example, the 90∘ rotation of a site tensor on the square lattice permute the four virtual

legs. Again, we consider those PEPS symmetric under 𝑅 satisfying the following

conditions:

𝑇 s = Θ𝑅𝑊𝑅𝑅 ∘ 𝑇 s

𝐵b = 𝑊𝑅𝑅 ∘𝐵b

(3.13)

where 𝑊𝑅 belongs to the gauge transformation group of the PEPS.

Symmetric PEPS on infinite lattices

Space groups of lattices are usually defined for infinite lattices. This is because for a

finite size sample, the lattice symmetry group is a finite group whose group structure

is non-generic. In this chapter, we will focus on PEPS on infinite lattices satisfying

Eq.(3.7,3.11,3.13) under symmetry transformations. And we define such PEPS as

symmetric PEPS on infinite lattices, or simply as symmetric PEPS. They form the

main object to be (partially) classified in the current investigation.

A natural question that arises at this point is: are symmetric PEPS defined above

general enough to capture ground states of quantum phases? Let us limit our discus-

sion within those quantum phases whose entanglement entropies do not violate the

boundary law so that in principle they may be represented as PEPS.

Basically, we expect that the symmetric PEPS on infinite lattices defined above

are capable to capture all non-symmetry-breaking liquid phases. After putting on fi-

nite lattices and performing a scaling with respect to both the bond dimension 𝐷 and

lattice sizes, we expect the symmetric PEPS are also capable to capture the neighbor-
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ing ordered phases of the liquid phases. Here by “neighboring” (or “in the vicinity

below), we mean that the symmetry breaking in these phases is only sharply defined

in the thermodynamic limit (namely, in the long-range physics). Note that we do not

have a proof supporting the statement above. Nevertheless we are not aware of any

counterexamples, so at least it is a reasonable conjecture.1.

Sometimes one is forced to use more than one PEPS to represent ground state

quantum wavefunctions. For instance, in a quantum spin system with 𝑆𝑈(2) spin

rotation symmetry, this happens for the ferromagnetic phase, whose ground states

form a large spin representation. However, such ferromagnetic phases are not in the

vicinity of any non-symmetry-breaking liquid phases.

3.2.4 Invariant gauge group and gauge structure

Among the gauge transformations, there is a special subgroup which we call the

invariant gauge group (𝐼𝐺𝐺). Note that generally a gauge transformation will leave

the physical wavefunction invariant while transforming the site tensors and bond

tensors nontrivially in a PEPS. However, by definition, the action of 𝐼𝐺𝐺 elements

on PEPS even leaves all site tensors invariant up to overall U(1) phases and all

bond tensors completely invariant2. So 𝐼𝐺𝐺 can be viewed as the “symmetry” of the

building block tensors with actions only on virtual legs3. In the following, we will see

that 𝐼𝐺𝐺 is directly related to gauge dynamics[29, 127, 117, 127, 63]. We will also

give examples where nontrivial 𝐼𝐺𝐺’s emerge naturally in fractional filled systems

under a basic assumption.

Note that the collection of all gauge transformations that leave all site tensors
1On the other hand, this conjecture may be due to our current lack of understanding. For example,

we are not aware how to construct a fully gapped (i.e., with correlators fall off exponentially) bosonic
integer quantum hall liquid using a symmetric PEPS with a finite bond dimension 𝐷. But there is
no known principle forbidding such a construction.

2One could consider a gauge transformation leaving both site tensors and bond tensors up to
overall U(1) phases. However one can always straightforwardly redefine the gauge transformation
so that the bond tensors are completely invariant.

3𝐼𝐺𝐺 is closely related to the concept of 𝐺-injectivity proposed in Ref.[104], which is used to
characterize topological order of toric code type with gauge symmetry 𝐺 in PEPS. Further, 𝐺-
injectivity is generalized to twisted 𝐺-injectivity as well as MPO injectivity, which can characterize
more exotic topological order[11, 14] or even topological order with chiral edge states[143, 164].
However, these phases are beyond the scope of the current 𝐼𝐺𝐺 framework in our chapter
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invariant up to overall U(1) phases and bond tensors completely invariant forms an

infinite group, which we denote as 𝐼𝐺𝐺. These gauge transformations satisfy Eq.(3.4)

with ̃︀𝑇 s = 𝑇 s, ̃︀𝐵b = 𝐵b. Namely, a gauge transformation {𝑊 (s, 𝑖)} is in the 𝐼𝐺𝐺 of

a PEPS formed by {𝑇 s, 𝐵b} iff it satisfies:

(𝑇 s)𝑘𝛼𝛽... = ei𝜃(s) · [𝑊 (s, 1)]𝛼𝛼′ [𝑊 (s, 2)]𝛽𝛽′ . . . (𝑇 s)𝑘𝛼′𝛽′...

(𝐵b)𝛼𝛽 = [𝑊 (b, 1)]𝛼𝛼′ [𝑊 (b, 2)]𝛽𝛽′(𝐵b)𝛼′𝛽′ ,

(3.14)

for certain U(1) phase factors {ei𝜃(s)}. Here 𝑊 (b, 𝑗) represents a gauge transformation

on the leg 𝑗 of the bond tensor 𝐵b, and if a site leg (s, 𝑖) and a bond leg (b, 𝑗) are

connected, then 𝑊 (s, 𝑖) = [𝑊 (b, 𝑗)−1]t.

Clearly, if certain gauge transformation {𝑊 (s, 𝑖)} belongs to 𝐼𝐺𝐺, then one can

straightforwardly multiply U(1) phases 𝜒(s, 𝑖) to the 𝑊 (s, 𝑖)-matrices: {𝑊 (s, 𝑖)} →

{̃︁𝑊 (s, 𝑖) = 𝜒(s, 𝑖)𝑊 (s, 𝑖)} and obtain another element in 𝐼𝐺𝐺, if 𝜒(s, 𝑖) = 𝜒*(s′, 𝑖′)

when (s, 𝑖) and (s′, 𝑖′) are the two virtual legs connected by one bond tensor. If we

view the U(1) phase factors {𝜒(s, 𝑖)} leaving the bond tensors completely invariant

as a special kind of gauge transformations, they form an infinite abelian subgroup in

the center of 𝐼𝐺𝐺, which we denote as the 𝜒− 𝑔𝑟𝑜𝑢𝑝, since they commute with any

gauge transformations.

In general one should work with the infinite group 𝐼𝐺𝐺. In this chapter, for

simplicity, we define 𝐼𝐺𝐺 as the quotient group:

𝐼𝐺𝐺 ≡ 𝐼𝐺𝐺

𝜒− 𝑔𝑟𝑜𝑢𝑝
. (3.15)

In addition, we will mainly focus on the cases in which 𝐼𝐺𝐺 is a simple finite abelian

group 𝑍𝑛. In this situation, it is straightforward to show that 𝐼𝐺𝐺 = 𝐼𝐺𝐺×𝜒−𝑔𝑟𝑜𝑢𝑝,

indicating 𝐼𝐺𝐺 is just a simpler way to express 𝐼𝐺𝐺. This also means that we could

equally view 𝐼𝐺𝐺 as a 𝑍𝑛 subgroup of 𝐼𝐺𝐺. In particular, there exist a generator

𝑔 ∈ 𝐼𝐺𝐺, but 𝑔 ̸∈ 𝜒 − 𝑔𝑟𝑜𝑢𝑝 and 𝑔 satisfies 𝑔𝑛 = I where I is the identity gauge
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transformation — the do-nothing gauge transformation.

Note that if 𝐼𝐺𝐺 is a more complicated group, since the center extension with

respect to 𝜒− 𝑔𝑟𝑜𝑢𝑝 can be nontrivial, it is possible that 𝐼𝐺𝐺 ̸= 𝐼𝐺𝐺× 𝜒− 𝑔𝑟𝑜𝑢𝑝.

In this situation it is better to directly work with 𝐼𝐺𝐺.

𝐼𝐺𝐺 and gauge dynamics

Here we will discuss the physical meaning of 𝐼𝐺𝐺. We use 𝐼𝐺𝐺 = 𝑍2 as an example.

The following discussion can be easily generalized to other 𝐼𝐺𝐺 groups.

First, let us clarify the action of 𝑍2 𝐼𝐺𝐺 on PEPS. Every virtual leg accommodates

a representation of 𝑍2 = {I, 𝑔}. Note that we do not require representations on

different legs to be the same. However, we require two connected legs accommodate

representations dual to each other, so that applying the 𝑔 actions on connected legs

is just a special gauge transformation. The nontrivial 𝑍2 𝐼𝐺𝐺 element is an action

of 𝑔 on all virtual legs. Following the definition of 𝐼𝐺𝐺, all site tensors are invariant

up to ±1 and all bond tensors are completely invariant under this action, as shown

in Fig.(3-3a). Further, it is straightforward to derive that any patch cut from PEPS

is invariant up to ±1 under the 𝑔 actions on boundary virtual legs, as shown in

Fig.(3-3b).

The physical meaning of 𝐼𝐺𝐺 is related to the gauge dynamics. To see this, let

us first review the 𝑍2 gauge theory. There are two phases in the 𝑍2 gauge theory:

the deconfined phase and the confined phase. In the deconfined phase, the 𝑍2 gauge

theory describes 𝑍2 topological order (toric code). The low-energy excitations include

four types of quasiparticles: the trivial particle 1, the chargon 𝑒, the fluxon 𝑚 and

the bound state of chargon and fluxon 𝑓 = 𝑒𝑚. 𝑒,𝑚 and 𝑓 can only be created in

pairs. Each particle is its own anti-particle, 𝑒2 = 𝑚2 = 𝑓 2 = 1. 𝑒,𝑚 are bosons while

𝑓 is a fermion. The braiding statistics of the three nontrivial particles are mutually

fermionic. In the confined phase, topologically nontrivial quasiparticles are confined.

To see the connection between 𝐼𝐺𝐺 and the gauge theory, let us create nontrivial

excitations on PEPS with 𝑍2 𝐼𝐺𝐺. We can define 𝑒 particles living on sites while

𝑚 particles living on plaquettes. As shown in Fig.(3-3c), to create two 𝑚 particles
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in neighboring plaquettes, we simply multiply the nontrivial 𝑍2 element 𝑔 on one of

two contracted virtual legs shared by the two plaquettes. The insertion of 𝑔 only on

one side of contracted legs is not a gauge transformation, and in general will change

the wavefunction. One can also create a pair of 𝑚 particles spatially separated from

each other by applying the single-sided 𝑔-actions over a string of bonds. The fluxons

are located at the end of the string. Note that although the positions of fluxons are

physical, the position of the string connecting them are not physical since one can

perform 𝑍2 gauge transformations on site tensors to move the string around while

leaving the physical wavefunction invariant.

Now, let us turn to 𝑒 particles. Let us first define 𝑍2 even/odd tensors. The action

of 𝑔 on boundary virtual legs of a tensor generally gives a phase factor ±1. If the

phase factor is +1/−1, we call it 𝑍2 even/odd. The 𝑍2 parities of tensors depend on

the representations of 𝑔 on virtual legs. If we do not worry about the lattice symmetry

for the moment, for a 𝑍2 even/odd tensor, we can simply redefine 𝑔 on one virtual

leg by −1, thus this tensor becomes 𝑍2 odd/even. So we can assume all tensors are

𝑍2 even for the remaining discussion in this subsection. Creating an 𝑒 particle on a

single site corresponds to changing the site tensor from 𝑍2 even to 𝑍2 odd, as seen in

Fig.(3-3d). To detect the number of chargons on a patch of PEPS, we simply apply 𝑔

on all boundary virtual legs; namely, we create an 𝑚 loop on the boundary. If there is

an odd number of chargons on that patch, this patch tensor should be 𝑍2 odd and the

𝑔 action on the boundary picks up a −1, see Fig.(3-3e). This −1 can be understood

as the Berry phase from braiding 𝑒 and 𝑚. One can easily convince oneself that an

odd number of chargons cannot be created on a closed manifold.

If 𝐼𝐺𝐺 = 𝑍2 PEPS describe deconfined phases, then separating topological quasi-

particles is expected to cost zero tension. Consequently one can insert 𝑚 loops wrap-

ping around torus holes to construct the four-fold degenerate ground states on a torus.

However if 𝐼𝐺𝐺 = 𝑍2 PEPS describe confined phases, which we expect to be possible

after a scaling with both bond dimension 𝐷 and system sizes, this is no longer true.

As a final remark, there turns out to be two distinct types of 𝑍2 gauge theo-

ries: the toric code theory and the double-semion theory[39, 81, 88]. They have

53



(a)

(e)

(b)

(c)
(d)

Figure 3-3: (a): Site tensor and bond tensor are both invariant under 𝑍2 action on
all virtual legs of tensors. (b): Tensors obtained by contracting 𝑍2 invariant tensors
are also 𝑍2 invariant. (c): Acting 𝑔 on one virtual leg of single bond tensor creates
two fluxons (𝑚) in plaquettes sharing the bond. (d): 𝑍2 odd tensor indicates there
sitting a chargon. (e): By applying 𝑔 (or creating fluxon loop) on the boundary of a
region, we are able to determine chargon number is even or odd inside this region.

distinct topological orders; e.g., the topological spins (the exchange statistics phases)

of quasiparticles are [1, 1, 1,−1] ([1, 1, 𝑖,−𝑖]) for the [1, 𝑒,𝑚, 𝑒𝑚] particles in a toric

code (double-semion) topological order. We emphasize that the 𝐼𝐺𝐺 = 𝑍2 PEPS

discussed here, when describing a deconfined phase, hosts the toric code topological

order. The simplest way to see this is to realize the self braiding statistics phases of

both the 𝑒 and the 𝑚 in the 𝐼𝐺𝐺 = 𝑍2 PEPS are trivial, so they cannot be semions.

Indeed, when moving an 𝑒 chargon around a loop by a sequence of hopping, one

realizes the Berry’s phase is independent of whether there are other 𝑒 chargons inside

the loop. Similarly, when moving an 𝑚 fluxon around a loop (giving rise to an 𝑚

loop), the topological Berry’s phase is simply ±1 depending on the 𝑍2 parity of the

PEPS patch inside the loop, independent of whether there are other 𝑚 fluxons inside

the loop.
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Natural emergence of nontrivial 𝐼𝐺𝐺

We will show that, under a basic assumption, the symmetric PEPS for certain quan-

tum systems must have nontrivial 𝐼𝐺𝐺’s. This basic assumption is that the 𝑊 ma-

trices on every virtual leg form (generally reducible) representations or projective rep-

resentations for the on-site symmetries (see Eq.3.7,3.11). Under this assumption, the

nontrivial 𝐼𝐺𝐺 in certain systems is a natural consequence of the global symmetry,

even in the absence of specific Hamiltonians.

Consider a spin-1
2

system on a square lattice; i.e., the physical leg on every site

tensor is a 2-dimensional spin-1
2

Hilbert space. For this system, we will show a

symmetric PEPS under the basic assumption must feature an 𝐼𝐺𝐺 containing a 𝑍2

subgroup. Since 𝑆𝑈(2) spin rotation group has no projective representations, the

basic assumption ensures that every virtual leg must form a representation of 𝑆𝑈(2),

which generally is a direct sum of a number of half-integer spin representations and

a number of integer spin representations. Eq.(3.7) now has the following simple

interpretation: the site tensors are spin singlets formed by the virtual spins and the

physical spin-1
2
, and the bond tensors are spin singlets formed the virtual spins only.

Now we can consider the particular 2𝜋 𝑆𝑈(2) rotation, and denote the corre-

sponding 𝑊 (𝑠, 𝑖) matrix on a virtual leg (𝑠, 𝑖) as J(𝑠, 𝑖), which is simply a direct

sum of the minus identity transformation in the half-integer spin subspace and the

identity transformation in the integer spin subspace. Next, consider the combina-

tion of transformations {J(𝑠, 𝑖)} acting on the virtual legs only — this is a particular

gauge transformation. Since the physical spin-1
2

only picks up an overall −1 in the

2𝜋 𝑆𝑈(2) rotation, and the bond tensors are spin singlets, we know that the gauge

transformation {J(𝑠, 𝑖)} is an element in 𝐼𝐺𝐺.

To see this system featuring a nontrivial 𝐼𝐺𝐺, we only need to show 𝐼𝐺𝐺 ̸=

𝜒− 𝑔𝑟𝑜𝑢𝑝. We will demonstrate that the gauge transformation {J(𝑠, 𝑖)} /∈ 𝜒− 𝑔𝑟𝑜𝑢𝑝.

To do this, we impose the 𝐶4 rotational symmetry and the translation symmetry of

the square lattice. Note that {J(𝑠, 𝑖)} ∈ 𝜒− 𝑔𝑟𝑜𝑢𝑝 if and only if for every virtual leg,

the dimension of either the half-integer spin subspace or the integer spin subspace
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vanishes. However, this cannot be true. The site tensor is a spin singlet, which

requires the virtual legs to combine into a spin-1
2

so that it can further combine

with the physical spin-1
2

to form a singlet. Therefore, if {J(𝑠, 𝑖)} ∈ 𝜒 − 𝑔𝑟𝑜𝑢𝑝, on a

single site tensor, we must have an odd number of virtual legs which contain purely

half-integer spins while the remaining virtual legs contain purely integer spins. This

explicitly breaks the 𝐶4 rotational symmetry.

Consequently, there is at least one element J ≡ {J(𝑠, 𝑖)} in 𝐼𝐺𝐺 but not in

𝜒− 𝑔𝑟𝑜𝑢𝑝, and J2 = 𝑒. This tells us that 𝐼𝐺𝐺 at least contains a 𝑍2 subgroup {I, J}.

The above argument can be easily generalized to other symmetries, such as the

time reversal symmetry. For the time reversal symmetry, consider a system with

one Kramer doublet on every physical leg. To form a Kramer singlet PEPS, one

must combine an odd number of Kramer doublets on virtual legs of every site tensor.

However, for site tensors on a square lattice, there are even number (four) of virtual

legs per site, and the 𝐶4 symmetry dictates that the transformation 𝒯 2 on virtual

legs only gives a nontrivial element of the 𝐼𝐺𝐺 which is at least 𝑍2.

We point out that translational symmetry itself is enough for the above argument

and one does not necessarily consider 𝐶4. This is because translational symmetry

relates the left (down) virtual leg with the right (up) virtual leg connected to the

same site tensor via the fact that the virtual legs connected by a bond need to form a

spin singlet (or a Kramer singlet). What is really important for the above argument

is the existence of a half-integer spin (or a Kramer doublet) per unit cell. One way

to see this is to consider a honeycomb lattice with spin-1
2

per site, i.e., two spin-
1
2
’s per unit cell. In this case, every site has three virtual legs and it is possible to

construct symmetric PEPS wavefunctions with purely half-integer spins on virtual

legs, in which case the 2𝜋 spin rotation on the virtual legs only becomes an element

in the 𝜒− 𝑔𝑟𝑜𝑢𝑝.

Next, let us consider a system with fractional filled hard core bosons and see how

a nontrivial 𝐼𝐺𝐺 naturally emerges. As an exercise, we can simply translate the

previous discussions on spin-1
2

systems into 1
2
-filled hard-core boson systems on the

square lattice. The physical leg for the hard-core bosons is two dimensional Hilbert
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space with basis labeled as |0⟩ and |1⟩. When mapped to a spin-1
2

system, |0⟩(|1⟩)

is identified as the down spin (up spin). The U(1) charge transformation for the

hard-core boson system can be written as exp[i𝜃(𝑆𝑖
𝑧 +

1
2
)] using the spin operator on

the leg-𝑖. Note that spin-0 is identified as charge-1
2
, a projective representation of the

charge U(1). Since a bond tensor is a spin singlet formed by two virtual spins in the

spin language, the representation of U(1) group in the hard-core boson language on

a bond tensor is

[ei𝜃(𝑆
𝑎
𝑧+

1
2
) · ei𝜃(𝑆𝑏

𝑧+
1
2
)]* = e−i𝜃 (3.16)

where the complex conjugation comes from the fact that bond virtual legs transform

as conjugate representation of site virtual legs, and we have used 𝑆𝑎
𝑧 + 𝑆𝑏

𝑧 = 0 for the

two virtual legs 𝑎 and 𝑏. So, every bond tensor carries charge −1.

Further, since the site tensor is also a spin singlet, we require
∑︀5

𝑖=0 𝑆
𝑖
𝑧 = 0,

where 𝑖 = 0 labels the physical leg and other 𝑖 ̸= 0 label virtual legs. Therefore the

representation of U(1) symmetry on a site tensor reads

4∏︁
𝑖=0

ei𝜃(𝑆
𝑖
𝑧+

1
2
) = ei

5
2
𝜃 (3.17)

Namely, every site tensor carries charge-5
2
. Consequently each unit cell carries charge-

1
2
.

Note that in this exercise, the bond tensor transform nontrivially under U(1), so

the virtual leg transformation 𝑊 = ei𝜃(𝑆𝑧+
1
2
) does not satisfy Eq.(3.7) in our definition

of symmetric PEPS. But one could easily redefine the virtual leg transformation 𝑊 ’s

so that the charge carried by the bond is absorbed to a neighboring site, and Eq.(3.7)

is satisfied using the redefined 𝑊 ’s.

The essential results from previous discussions on the spin-1
2

systems can now be

translated as following statement: the virtual leg hosts both integer charges and half

integer charges of U(1), so 2𝜋 rotation of U(1) symmetry on all virtual legs gives the

nontrivial 𝑍2 𝐼𝐺𝐺.
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In the following, on the square lattice, we provide a general argument that a

nontrivial minimal required 𝐼𝐺𝐺 emerges for a symmetric PEPS with fractional-

filled bosons under our basic assumption. Further, this minimal required 𝐼𝐺𝐺 is

given by the 2𝜋 rotation of the U(1) symmetry on the virtual legs only.

Firstly, we have the physical legs carrying integer charges. And if the tensor

network is symmetric under the U(1) symmetry, for site tensors and bond tensors, we

can rewrite Eq.(3.7) as

𝑊𝑆𝑆 ∘ 𝑇 s = Θ𝑆𝑇
s

𝑊𝑆𝑆 ∘𝐵b = Θ𝑆𝐵b (3.18)

where symmetry operation 𝑆 can be any U(1) group element. Note that we put Θ𝑆

operation on bond tensors as well to pick up the possible phase factors. As mentioned

before, this phase factor on the bond can always be tuned away by redefining 𝑊𝑆.

But for the moment, let us keep it since we want to include the previous exercise.

We can view the left side as the U(1) action on a site/bond tensor. Under the basic

assumption, the above equation indicates every site/bond tensor carries a fixed U(1)

charge, which can be a fractional charge. In the presence of the lattice symmetry,

we expect all virtual legs of site tensors share the same U(1) reducible projective

representation. (Virtual legs of bond tensors have the conjugate representation). Our

plan is to assume the 2𝜋 rotation of U(1) symmetry is trivial (only a phase factor) on

the virtual leg, and then demonstrate a contradiction. This assumption dictates that

the irreducible charges carried by a virtual leg can only differ by integer numbers.

Namely, the basis for virtual legs of site tensors can be written as

{|𝑥⟩, |𝑥+ 𝑛1⟩, |𝑥+ 𝑛2⟩, . . . } (3.19)

where 𝑥 can be any fractional number and 𝑛𝑖 are integers. Under symmetry operation
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𝑈𝜃, state |𝑥+ 𝑖⟩ transform as

𝑈𝜃|𝑥+ 𝑛𝑖⟩ = ei𝜃(𝑥+𝑛𝑖)|𝑥+ 𝑛𝑖⟩ (3.20)

So, 2𝜋 rotation on any state of the above Hilbert space will give the same phase factor

ei𝑥𝜃. Similarly, the basis for bond legs are

{| − 𝑥⟩, | − 𝑥− 𝑛1⟩, | − 𝑥− 𝑛2⟩, . . . } (3.21)

Recall that a single tensor should carry a fixed charge. Consequently a bond tensor

should carry charge −2𝑥 − 𝑛𝑏, where 𝑛𝑏 is some integer. And a site tensor should

carry charge 4𝑥 + 𝑛𝑠. Since the physical leg only carries integer charges, 𝑛𝑠 should

also be an integer. We then conclude that, for a single unit cell, the charge should be

𝑛𝑠 − 𝑛𝑏, which must be an integer. This contradicts with the fact that the system is

at a fractional filling. Therefore to construct a symmetric PEPS at a fractional filling

under our basic assumption, the 2𝜋 rotation of U(1) symmetry must be nontrivial on

all virtual legs, and the nontrivial 𝐼𝐺𝐺 naturally emerges.

We discussed the naturally emerged 𝐼𝐺𝐺 in certain quantum systems. It is pos-

sible for the ground state symmetric PEPS to have a larger 𝐼𝐺𝐺 which contains the

naturally emerged 𝐼𝐺𝐺 as a subgroup. We call the naturally emerged 𝐼𝐺𝐺 as the

minimal required 𝐼𝐺𝐺. A larger 𝐼𝐺𝐺 than the minimal required 𝐼𝐺𝐺 has important

implications in both conceptual understandings and numerical simulations. We will

come back to this point in Sec.(3.3) and Sec.(4.5).

The minimal required 𝐼𝐺𝐺’s in systems at fractional fillings are consistent with

the Hastings-Oshikawa-Lieb-Schultz-Mattis (HOLSM) theorem. Consider a 2+1D

system with an odd number of spin-1
2

per unit cell, the HOLSM theorem states that

it is impossible to have a featureless trivial insulator. In other words, the ground state

must either be gapless, break the spin rotation or the lattice translation symmetry,

or be topological ordered with a ground state degeneracy.

In our formalism, a half-integer spin per site on the square lattice (and similarly on

the kagome lattice) enforces a minimal 𝑍2 𝐼𝐺𝐺, consistent with the HOLSM theorem.
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For instance, if 𝐼𝐺𝐺 = 𝑍2, the system could be in either a deconfined phase with a

toric code topological order, or a confined phase. But the confined phase corresponds

to either 𝑒 or 𝑚 condensation, which leads to spin rotation or lattice translation

symmetry breaking.

For a honeycomb lattice spin-1
2

system, there are two spin-1
2

per unit cell and

the HOLSM theorem does not apply. As mentioned above, symmetric PEPS on

the honeycomb with a trivial 𝐼𝐺𝐺 can be constructed, which is consistent with the

possible trivial symmetric insulator phase in this system as pointed out in [80, 79].

3.2.5 An example

Here, we will give a simple PEPS with 𝐼𝐺𝐺 = 𝑍2 defined on the kagome lattice.

In particular, we will write the PEPS description for a nearest neighboring (NN)

resonating valence bond (RVB) state that preserves all lattice symmetry. The lattice

symmetry generators for kagome lattice are shown in Fig.(3-4).

As shown in Ref.[163], there are four different kinds of symmetric NN RVB states

defined on kagome lattice with spin-1
2

per site. Also, by solving projective symmetry

group (PSG) equations for the Schwinger-boson mean field ansatz on the kagome

lattice, one finds eight distinct PSG classes. And four of them can be realized by

NN pairing terms[147]. One can check that the four NN RVB states are exactly

representative states for these four PSG classes. Here, we will focus on one particular

PSG class, named as 𝑄1 = 𝑄2 state in Ref.[115, 147]. This particular PSG class

is a promising candidate phase[93, 129, 92] for the 𝑍2 spin liquid reported in recent

DMRG simulations[162, 38, 73]. Here, we will explicitly write down this NN RVB

state in the PEPS language.

In fact, this state has already been studied extensively in PEPS[119, 107]. Here,

we will slightly modify the construction. Every physical leg is a spin-1
2

and virtual

leg accommodates spin representation 0⊕ 1
2
, with basis {|0⟩, | ↑⟩, | ↓⟩}. Bond tensors
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are spin singlets, which can be written as a matrix in this basis,

𝐵b =

⎛⎜⎜⎜⎝
1 0 0

0 0 −i

0 i 0

⎞⎟⎟⎟⎠ (3.22)

where the direction of bond tensor is shown in Fig.(3-4c). A bond tensor with the

inverse direction is transpose of the above matrix. Tensors for different sites are equal

to each other, and can be written as,

𝑇 s =| ↑⟩ ⊗ (| ↓ 000⟩+ |0 ↓ 00⟩ − i|00 ↓ 0⟩ − i|000 ↓⟩)−

| ↓⟩ ⊗ (| ↑ 000⟩+ |0 ↑ 00⟩ − i|00 ↑ 0⟩ − i|000 ↑⟩) (3.23)

where the order of site virtual legs is given in Fig.(3-4b). We can view site tensors as

superposition of singlets formed by one physical leg and one of the four virtual legs,

while the coefficient of singlets need to be carefully chosen to make PEPS symmetric

under lattice symmetries. One can verify the state defined above is consistent with

the PEPS representation of NN RVB given in Ref.[107] up to a gauge transformation.

As discussed before, the 𝑍2 𝐼𝐺𝐺 here is generated by the 2𝜋 spin rotation of all

virtual legs. Since all tensors are spin-singlet, they are invariant under this operation

up to −1 factors on the site tensors. This NN RVB PEPS belongs to one of the crude

classes proposed in this chapter. Roughly speaking, according to global symmetry, we

can find the generic sub-Hilbert space that the building block tensors must live within

for each given crude class, which vastly generalize the one-dimensional sub-Hilbert

space defined as in Eq.(3.23).

3.3 Algorithm for Symmetric PEPS

For a given quantum model with certain given symmetry groups, we propose a general

simulation scheme to study its phase diagram as follows:

1. One classifies symmetric PEPS according to their short-range physics. More
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(a) (b)

(c)

Figure 3-4: (a): kagome lattice and the elements of its symmetry group. 𝑎⃗1,2 are
the translation unit vectors, 𝐶6 denotes 𝜋/3 rotation around honeycomb center and
𝜎 represents mirror reflection along the dashed red line. (b): Site tensor and bond
tensor for kagome lattice in one unit cell. Virtual legs of site tensors are labeled as
(𝑥, 𝑦, 𝑠, 𝑖), where (𝑥, 𝑦) denotes the position of unit cell, 𝑠 = 𝑢, 𝑣, 𝑤 is the sublattice
index and 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑 specifies one of four legs. (c): One possible orientation of
kagome lattice. Particularly, for NN RVB state, the orientation of bonds denotes the
direction of spin singlets.

62



precisely, crude classes are distinguished by ways of implementing symmetries

on virtual legs.

2. For each class, by enforcing symmetry transformation rules, one finds constraint

Hilbert spaces for the building block tensors in the PEPS representation.

3. One performs the energy density minimization for every class in the constrained

Hilbert space, and determines the class which gives the lowest energy density.

The quantum phase of the model will be a member phase of this crude class.

This finishes the short-range part of the simulation task.

4. At last, one could try to completely determine the quantum phase diagram by

studying the long-range physics, e.g., by measuring correlation functions for

the symmetric PEPS with the minimal energy density. With a careful scaling

analysis, together with the sharp information on the long-range physics obtained

from the short-range physics, possible long range symmetry breaking orders may

be identified.

As the main example, we will demonstrate this simulation scheme for a half-integer

spin system on the kagome lattice. We will start with classifying and constructing

generic symmetric PEPS with 𝐼𝐺𝐺 = 𝑍2 that preserve the full lattice symmetry as

well as the spin rotation and the time reversal symmetries. As we will show shortly,

the condition 𝐼𝐺𝐺 = 𝑍2 actually dictates that the virtual legs form (projective)

representations of on-site symmetries. Therefore when we consider 𝐼𝐺𝐺 = 𝑍2 sym-

metric PEPS, we already made our basic assumption in an implicit way. In addition,

although we focus on the minimal required 𝐼𝐺𝐺 under our basic assumption, the

discussions can also be easily generalized to symmetric PEPS with a larger 𝐼𝐺𝐺.

3.3.1 General framework for classification

From now on we assume 𝐼𝐺𝐺 = 𝐼𝐺𝐺× 𝜒− 𝑔𝑟𝑜𝑢𝑝, which is always true if 𝐼𝐺𝐺 is a

simple finite abelian group 𝑍𝑛.
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Consider the gauge transformation associated with a symmetry 𝑅: 𝑊𝑅, and the

corresponding phase on site tensors: Θ𝑅. We have 𝑇 s = Θ𝑅𝑊𝑅𝑅 ∘ 𝑇 s and 𝐵b =

𝑊𝑅 ∘ 𝐵b, as shown in Sec.3.2.3. However, since both site tensors and bond tensors

are invariant under the 𝐼𝐺𝐺 action (up to phases for site tensors), we conclude that

tensors are also invariant under a new symmetry operation defined as 𝑊 ′
𝑅 ≡ 𝜂𝑅𝑊𝑅

and Θ′
𝑅 ≡ 𝜇𝑅Θ𝑅,

𝑇 s = Θ′
𝑅𝑊

′
𝑅𝑅 ∘ 𝑇 s

𝐵b = 𝑊 ′
𝑅𝑅 ∘𝐵b, (3.24)

where 𝜂𝑅 ∈ 𝐼𝐺𝐺 and 𝜇𝑅 ≡ {𝜇𝑅(s)} is a set of phase factors on site tensors associated

with 𝜂𝑅, such that 𝜇𝑅𝜂𝑅 ∘ 𝑇 𝑠 = 𝑇 𝑠. For instance, for a half-integer spin system

described by PEPS with 𝐼𝐺𝐺 = {I, J}, if 𝜂𝑅 = J corresponds to the 2𝜋 𝑆𝑈(2)

rotation on the virtual legs, then 𝜇𝑅(𝑠) = −1 for all sites.

Similarly one could modify 𝑊𝑅 and Θ𝑅 with any element in the 𝜒 − 𝑔𝑟𝑜𝑢𝑝, i.e.,

bond dependent phase factors {𝜀𝑅(s, 𝑖)} as:

𝑊𝑅(s/b, 𝑖) → 𝜀𝑅(s/b, 𝑖)𝑊𝑅(s/b, 𝑖)

Θ𝑅(s) →
∏︁
𝑖

𝜀*𝑅(s, 𝑖)Θ𝑅(s), (3.25)

where we have 𝜀𝑅(s, 𝑖) = 𝜀𝑅(b, 𝑗)
* if (s, 𝑖) and (b, 𝑗) are connected. Further, 𝜀𝑅(b, 1) =

𝜀𝑅(b, 2)
* for the two legs of the same bond tensor, as required in the definition of the

𝜒− 𝑔𝑟𝑜𝑢𝑝.

Basically, the symmetry transformation on the virtual legs 𝑊𝑅 is ambiguous since

it can be combined with any element in 𝐼𝐺𝐺. Mathematically, the representation

of 𝑅 on the Hilbert space of PEPS (including both the virtual and physical Hilbert

spaces) form a new group, which is the original symmetry group 𝑆𝐺 extended by the

𝐼𝐺𝐺. This extension is related to the 2-cohomology𝐻2(𝑆𝐺, 𝐼𝐺𝐺) and𝐻2(𝑆𝐺,𝑈(1)).

Particularly, we can view those 𝐼𝐺𝐺 elements as “representations” of the identity

element in the symmetry group on virtual legs.
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Keeping these discussions in mind, let us consider a discrete symmetry group 𝑆𝐺

as an example. 𝑆𝐺 is always defined by a collection of group identities. For instance,

elements 𝑅1, 𝑅2, . . . , 𝑅𝑛 ∈ 𝑆𝐺 satisfy the following relation:

𝑅1𝑅2 . . . 𝑅𝑛 = e (3.26)

Then, acting 𝑅1𝑅2 . . . 𝑅𝑛 on a symmetric PEPS, one obtains a combined transforma-

tion sending every tensor back to the same tensor:

𝑇 s = Θ𝑅1𝑊𝑅1𝑅1Θ𝑅2𝑊𝑅2𝑅2 . . .Θ𝑅𝑛𝑊𝑅𝑛𝑅𝑛 ∘ 𝑇 s

𝐵b = 𝑊𝑅1𝑅1𝑊𝑅2𝑅2 . . .𝑊𝑅𝑛𝑅𝑛 ∘𝐵b (3.27)

By definition, the transformation leaving all tensors invariant (up to phases on site

tensors) can only be an element in 𝐼𝐺𝐺. Explicitly writing down Eq.(3.27) on virtual

legs of site tensors, we conclude that

𝑊𝑅1(s, 𝑖)𝑊𝑅2(𝑅
−1
1 (s, 𝑖)) . . .

𝑊𝑅𝑛(𝑅
−1
𝑛−1 . . . 𝑅

−1
1 (s, 𝑖)) = 𝜂(s, 𝑖)𝜒(s, 𝑖) (3.28)

where 𝜂(s, 𝑖) is the action of 𝜂 ∈ 𝐼𝐺𝐺 on the virtual leg (s, 𝑖). Further, {𝜒(s, 𝑖)} is an

element in the 𝜒−𝑔𝑟𝑜𝑢𝑝. We point out that since 𝑊𝑅(s, 𝑖) = [𝑊−1
𝑅 (b, 𝑗)]t if (s, 𝑖) and

(b, 𝑗) are connected, 𝑊𝑅 on virtual legs of bond tensor gives us no extra equation.

However, phase factors on site tensors will give an extra condition, which reads

Θ𝑅1(s)Θ𝑅2(𝑅
−1
1 (s)) . . .Θ𝑅𝑛(𝑅

−1
𝑛−1 . . . 𝑅

−1
1 (s))

= 𝜇(s)
∏︁
𝑖

𝜒*(s, 𝑖) (3.29)

Here 𝜇*(s) is the phase factor obtained after applying 𝜂 on the s-site tensor.

Our goal is to solve Eq.(3.28) and Eq.(3.29) for all group identities and obtain the

representations of symmetry operation on virtual legs (𝑊𝑅) as well as phase factors

on site tensors (Θ𝑅). Recall that the same physical wavefunction can be represented
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by many PEPS which differ from each other by gauge transformations (note that

these are general gauge transformations which may not be in 𝐼𝐺𝐺.). One should

really solve Eq.(3.28) and Eq.(3.29) up to gauge equivalence.

Under a gauge transformation 𝑉 ≡ {𝑉 (s, 𝑖)} on virtual legs, (𝑇 s)′ ≡ 𝑉 ∘ 𝑇 s and

𝐵′
b ≡ 𝑉 ∘𝐵b satisfy the following conditions:

(𝑇 s)′ = 𝑉Θ𝑅𝑊𝑅𝑅 ∘ 𝑇 s

= (𝑉Θ𝑅𝑉
−1)(𝑉𝑊𝑅𝑅𝑉

−1𝑅−1)𝑅𝑉 ∘ 𝑇 s

= Θ𝑅𝑊
′
𝑅𝑅 ∘ (𝑇 s)′,

(3.30)

and

𝐵′
b = 𝑉𝑊𝑅𝑅 ∘𝐵b

= (𝑉𝑊𝑅𝑅𝑉
−1𝑅−1)𝑅𝑉 ∘𝐵b

= 𝑊 ′
𝑅𝑅𝐵

′
b. (3.31)

Here we use the fact that 𝑉 commutes with Θ𝑅 in the last step of Eq.(3.30). Here,

𝑊 ′
𝑅 ≡ 𝑉𝑊𝑅𝑅𝑉

−1𝑅−1. Writing the above expression explicitly on virtual leg (s, 𝑖),

we get

𝑊𝑅(s, 𝑖) → 𝑉 (s, 𝑖) ·𝑊𝑅(s, 𝑖)𝑉
−1(𝑅−1(s, 𝑖)) (3.32)

while Θ𝑅 is invariant. Particularly, 𝜂 ∈ 𝐼𝐺𝐺 changes as

𝜂(s, 𝑖) → 𝑉 (s, 𝑖) · 𝜂(s, 𝑖)𝑉 −1(s, 𝑖) (3.33)

And phase factors 𝜇 and 𝜒 in Eq.(3.29) are invariant.

Apart from the above gauge transformation, one can change site tensors by phase

factors, which do not affect physical observables. Note that one could also change

bond tensors by phase factors, but such a modification is always equivalent to a gauge
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transformation together with a changing of phase factors on site tensors. Unlike

gauge transformations, a modification of phase factors on site tensors may change

the physical wavefunction up to an overall phase. When site tensors change as 𝑇 s →

Φ ∘ 𝑇 s = Φ(s) · 𝑇 s = ei𝜙(s)𝑇 s, 𝑊𝑅 associated with the symmetry 𝑅 is invariant, but

Θ𝑅 goes to ΦΘ𝑅𝑅Φ
−1𝑅−1. Namely, the phase factor Θ𝑅 ≡ {ei𝜃𝑅(s)} will change as

Θ𝑅(s) → Θ𝑅(s)Φ(s)Φ
*(𝑅−1(s)) (3.34)

Basically, we should solve for the 𝑊𝑅 and Θ𝑅 in Eq.(3.28) and Eq.(3.29) up to two

kinds of equivalences. First, if two sets of 𝑊𝑅 and Θ𝑅 are related by Eq.(3.32) and

Eq.(3.34), they are equivalent and we denote this situation as the gauge equivalence.

The gauge equivalence contains the 𝑉 -ambiguity in Eq.(3.32) and the Φ-ambiguity

in Eq.(3.34).

Second, if two sets of 𝑊𝑅 and Θ𝑅 are different by an 𝐼𝐺𝐺 element, they are also

equivalent and we denote this situation as the group extension equivalence. Sum-

marizing our discussion in Eq.(3.24,3.25), it means that one could modify 𝑊𝑅 and

Θ𝑅 as 𝑊𝑅 → 𝑊 ′
𝑅 = 𝜂𝑅𝜀𝑅𝑊𝑅 and Θ𝑅 → Θ′

𝑅 = 𝜇𝑅𝜀𝑅Θ𝑅, where 𝜂𝑅 ∈ 𝐼𝐺𝐺 and

𝜀𝑅 ∈ 𝜒− 𝑔𝑟𝑜𝑢𝑝 and

𝑊 ′
𝑅(s, 𝑖) = 𝜂𝑅(s, 𝑖)𝜀𝑅(s, 𝑖)𝑊𝑅(s, 𝑖)

Θ′
𝑅(s) = 𝜇𝑅(s)

∏︁
𝑖

𝜀*𝑅(s, 𝑖)Θ(s). (3.35)

Note that to save notation, we define 𝜀𝑅Θ𝑅 as multiplying
∏︀

𝑖 𝜀
*
𝑅(s, 𝑖) on Θ(s). The

group extension equivalence contains an 𝜂-ambiguity and an 𝜀-ambiguity in Eq.(3.35).

Note that different from the gauge equivalence, we have an 𝜂-ambiguity and an 𝜀-

ambiguity for each symmetry element 𝑅.

We will solve Eq.(3.28) and Eq.(3.29) for the whole symmetry group up to both

the gauge equivalence and the group extension equivalence. Eventually we will ob-

tain many classes of PEPS satisfying inequivalent 𝑊𝑅 and Θ𝑅 transformation rules.

Among all combinations of 𝑊𝑅 and Θ𝑅 within the same equivalence class, we can

67



choose a particular representative, and construct explicit forms of 𝑊𝑅 and Θ𝑅 by fix-

ing the 𝜂-ambiguity, the 𝜀-ambiguity, the 𝑉 -ambiguity and the Φ-ambiguity. These

𝑊𝑅 and Θ𝑅 specify the sub-Hilbert spaces for the building block tensors in each class.

We sometimes call the whole procedure of fixing the four ambiguities as gauge fixing.

Practically, we often firstly use the group extension equivalence to simplify Eq.(3.28)

and Eq.(3.29). For instance, one can use the 𝜀-ambiguity to simplify {𝜒(𝑠, 𝑖)} in

Eq.(3.28) and Eq.(3.29): under a transformation𝑊𝑅𝑖
→ 𝜀𝑅𝑖

𝑊𝑅𝑖
, according to Eq.(3.28),

we find

𝜒(s, 𝑖) → 𝜀𝑅1(s, 𝑖) . . . 𝜀𝑅𝑛(𝑅
−1
𝑛−1 . . . 𝑅

−1
1 (s, 𝑖))𝜒(s, 𝑖). (3.36)

Moreover, one can use the 𝜂-ambiguity to simplify the {𝜂(s, 𝑖)} and {𝜇(s)} in Eq.(3.28)

and Eq.(3.29). For example, if some symmetry operation 𝑅 appears only once in the

group identity 𝑅1𝑅2 . . . 𝑅𝑛 = e, one could use the 𝜂-ambiguity for 𝑅 to make sure

{𝜂(s, 𝑖) = I} and {𝜇(s) = 1} for this group condition.

After the group extension equivalence is used, we will use the gauge equivalence

(the 𝑉 -ambiguity and the Φ-ambiguity) to solve for explicit forms of𝑊𝑅 and Θ𝑅. Note

that the group extension equivalence and the gauge equivalence are not completely

independent. For example, after fixing the 𝑉 -ambiguity and the Φ-ambiguity, it is

possible some part of the 𝜀-ambiguity and the 𝜂-ambiguity are also fixed. In the

following we demonstrate this procedure in an example: the half-integer spin systems

on the kagome lattice.

3.3.2 Classification of kagome PEPS

Here, we will classify symmetric kagome PEPS wavefunction with a half-integer spin-

𝑆 per site, which preserves all lattice symmetries, the time reversal symmetry as well

as the spin rotation symmetry. We will only assume 𝐼𝐺𝐺 = 𝑍2 = {I, J} without

specifying the physical meaning of J. Later we will prove that J can always be chosen

to be the 2𝜋 spin rotation on the virtual legs. Let us begin with setting up some

useful facts.
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First, we can use the 𝑉 -ambiguity to diagonalize J(𝑥, 𝑦, 𝑠, 𝑖) for every virtual leg

(𝑥, 𝑦, 𝑠, 𝑖), where (𝑥, 𝑦, 𝑠) labels a site on the lattice by the coordinates of the unit

cell 𝑥, 𝑦 and the sublattice index 𝑠 = 𝑢, 𝑣, 𝑤, and 𝑖 = 𝑎, 𝑏, 𝑐, 𝑑 labels one of the four

virtual legs coming out of the site tensor. (see Fig.3-4 for illustrations) In this gauge,

∀(𝑥, 𝑦, 𝑠, 𝑖), the matrix J(𝑥, 𝑦, 𝑠, 𝑖) is a direct sum of an identity matrix and a minus

identity matrix. Let us denote J(𝑥0, 𝑦0, 𝑠0, 𝑖0) = I𝐷1 ⊕ (−I𝐷2) for some given virtual

leg (𝑥0, 𝑦0, 𝑠0, 𝑖0), where 𝐷1 + 𝐷2 = 𝐷. We will consider the generic case in which

𝐷1 ̸= 𝐷2.

Using the lattice symmetry, it is straightforward to prove that one can always

redefine {J(𝑥, 𝑦, 𝑠, 𝑖)} by multiplying with an element 𝜀 in the 𝜒−𝑔𝑟𝑜𝑢𝑝: 𝜀(𝑥, 𝑦, 𝑠, 𝑖) =

±1 so that J(𝑥, 𝑦, 𝑠, 𝑖) = I𝐷1 ⊕ (−I𝐷2), ∀(𝑥, 𝑦, 𝑠, 𝑖). (Such a modification is allowed in

our definition of 𝐼𝐺𝐺.) For example, consider a particular lattice symmetry operation

𝑅, which could be the 60∘ degree rotation 𝐶6 or the lattice translation 𝑇1 or 𝑇2 of

the kagome lattice (see Section 3.6 for precise definitions), we always have a group

relation 𝑅−1 · e · 𝑅 = e. Using Eq.(3.28) for this group relation and choosing J to

replace the e on the LHS:

𝑊−1
𝑅 (𝑅(𝑥, 𝑦, 𝑠, 𝑖))J(𝑅(𝑥, 𝑦, 𝑠, 𝑖))𝑊𝑅(𝑅(𝑥, 𝑦, 𝑠, 𝑖))

=𝜂(𝑥, 𝑦, 𝑠, 𝑖)𝜒(𝑥, 𝑦, 𝑠, 𝑖). (3.37)

The 𝜂 on the RHS must be J, otherwise we would find J to be an element in

the 𝜒 − 𝑔𝑟𝑜𝑢𝑝, violating 𝐼𝐺𝐺 = 𝑍2. Therefore we know that J(𝑅(𝑥, 𝑦, 𝑠, 𝑖)) and

J(𝑥, 𝑦, 𝑠, 𝑖), which are generally on two different virtual legs, are related by a similar-

ity transformation 𝑊𝑅(𝑅(𝑥, 𝑦, 𝑠, 𝑖)) and an overall phase factor 𝜒(𝑥, 𝑦, 𝑠, 𝑖). But we

are already in a gauge such that J(𝑥, 𝑦, 𝑠, 𝑖) are all diagonal. We then conclude that

J(𝑅(𝑥, 𝑦, 𝑠, 𝑖)) = ±J(𝑥, 𝑦, 𝑠, 𝑖). Since all virtual legs are related by lattice symmetries,

we know J(𝑥, 𝑦, 𝑠, 𝑖) = 𝜀(𝑥, 𝑦, 𝑠, 𝑖)J(𝑥0, 𝑦0, 𝑠0, 𝑖0), where 𝜀(𝑥, 𝑦, 𝑠, 𝑖) = ±1 ∀(𝑥, 𝑦, 𝑠, 𝑖).

Next, we show {𝜀(𝑥, 𝑦, 𝑠, 𝑖)} ∈ 𝜒 − 𝑔𝑟𝑜𝑢𝑝. Namely, if (𝑥, 𝑦, 𝑠, 𝑖) and (𝑥′, 𝑦′, 𝑠′, 𝑖′)

are connected by a bond tensor 𝐵𝑏, then 𝜀(𝑥, 𝑦, 𝑠, 𝑖) = 𝜀(𝑥′, 𝑦′, 𝑠′, 𝑖′). This is because

if 𝜀(𝑥, 𝑦, 𝑠, 𝑖) = −𝜀(𝑥′, 𝑦′, 𝑠′, 𝑖′), then the matrix (𝐵𝑏)𝛼𝛽 satisfying Eq.(3.14) for 𝑊 = J
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would not have a full rank, since 𝐷1 ̸= 𝐷2. This means that some singular value of

(𝐵𝑏) vanishes, dictating an 𝐼𝐺𝐺 larger than 𝑍2. For instance, one can multiply an

arbitrary U(1) phase on the zero singular value eigenstate on one of the two virtual

legs, leaving the bond tensor 𝐵𝑏 invariant.

Therefore {𝜀(𝑥, 𝑦, 𝑠, 𝑖)} ∈ 𝜒 − 𝑔𝑟𝑜𝑢𝑝 and we can always redefine J such that

J(𝑥, 𝑦, 𝑠, 𝑖) = I𝐷1 ⊕ (−I𝐷2), ∀(𝑥, 𝑦, 𝑠, 𝑖). From now on we will work within this gauge

and denote the matrix I𝐷1 ⊕ (−I𝐷2) simply as J.

This allows us to denote the 𝜂(𝑥, 𝑦, 𝑠, 𝑖) transformation in Eq.(3.28) simply as

𝜂 since it is site and virtual leg independent. In addition, according to Eq.(3.33),

the remaining 𝑉 -ambiguity: 𝑉 (𝑥, 𝑦, 𝑠, 𝑖) must commute with J. In other words,

𝑉 (𝑥, 𝑦, 𝑠, 𝑖) are block diagonal with two blocks, and the sizes of blocks are 𝐷1 and 𝐷2

respectively.

Now we can consider an arbitrary symmetry transformation 𝑅, which could be

either a lattice symmetry or an on-site symmetry. Eq.(3.37) still holds for 𝑅 and the

𝜂 on the RHS must be 𝐽 . Consequently we have:

𝑊−1
𝑅 (𝑅(𝑥, 𝑦, 𝑠, 𝑖)) · J ·𝑊𝑅(𝑅(𝑥, 𝑦, 𝑠, 𝑖))

=𝜒(𝑥, 𝑦, 𝑠, 𝑖)J. (3.38)

Squaring this equation leads to 𝜒(𝑥, 𝑦, 𝑠, 𝑖) = ±1. However only the + sign is possible

since otherwise the matrix 𝑊𝑅(𝑅(𝑥, 𝑦, 𝑠, 𝑖)) will not have a full rank, again due to

𝐷1 ̸= 𝐷2. Thus we have proved that 𝑊𝑅(𝑥, 𝑦, 𝑠, 𝑖) commutes with J, ∀(𝑥, 𝑦, 𝑠, 𝑖)

and ∀𝑅. Mathematically, this means that when we extend the symmetry group by

𝐼𝐺𝐺 = 𝐼𝐺𝐺× 𝜒− 𝑔𝑟𝑜𝑢𝑝, 𝐼𝐺𝐺 is in the center of the extended group.

Let us consider the phase factors 𝜇J(𝑥, 𝑦, 𝑠) on site tensors obtained when applying

the nontrivial element J on the virtual legs. This determines whether the site tensor

is 𝑍2 even or 𝑍2 odd. Now we are ready to show that 𝜇J(𝑥, 𝑦, 𝑠) is site independent

in the current gauge. Namely if one site tensor is 𝑍2 even (odd), the same is true

for all site tensors. Consider a lattice symmetry 𝑅 which send a site (𝑥, 𝑦, 𝑠) to the

site (𝑥′, 𝑦′, 𝑠′), Eq.(3.13) states that the two site tensors are related by a possible
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permutation of virtual indices (e.g. induced by a lattice rotation) together with

multiplications of 𝑊𝑅 matrices on the virtual legs as well as a overall phase factor

Θ𝑅(𝑥, 𝑦, 𝑠). Because 𝑊𝑅 matrices all commute with J, it is straightforward to see that

the 𝜇J(𝑥, 𝑦, 𝑠) = 𝜇J(𝑥
′, 𝑦′, 𝑠′). Because all sites are related to each other by lattice

symmetries, 𝜇J(𝑥, 𝑦, 𝑠) are identical for all sites. Thus in the discussion below we will

simply denote the 𝜂 ∈ 𝐼𝐺𝐺 associated phase factors 𝜇(𝑥, 𝑦, 𝑠) in Eq.(3.29) as 𝜇, since

it does not depend on the site.

By applying the condition 𝐼𝐺𝐺 = 𝑍2 to the kagome lattice with the symmetry

group described in Section 3.6, we are able to solve the equations for symmetry

operations, i.e. Eq.(3.28,3.29), by gauge fixing. For the purpose of presentation, here

we only demonstrate the calculation for the translation symmetry, and list the full

results of the classification. The calculation for other symmetries is in paper [76].

Let us consider the translation symmetry group. This group is isomorphic to

𝑍 × 𝑍: the group is defined by its generators 𝑇1, 𝑇2 as well as the relation between

generators,

𝑇−1
2 𝑇−1

1 𝑇2𝑇1 = e (3.39)

As shown in Eq.(3.13), for PEPS symmetric under 𝑇𝑖 (𝑖 = 1, 2), we have

𝑇 (𝑥,𝑦,𝑠) = Θ𝑇𝑖
𝑊𝑇𝑖

𝑇𝑖 ∘ 𝑇 (𝑥,𝑦,𝑠)

𝐵(𝑥𝑦𝑠𝑖|𝑥′𝑦′𝑠′𝑖′) = 𝑊𝑇𝑖
𝑇𝑖 ∘𝐵(𝑥𝑦𝑠𝑖|𝑥′𝑦′𝑠′𝑖′) (3.40)

From the group relation 𝑇−1
2 𝑇−1

1 𝑇2𝑇1 = e, we have

𝑊−1
𝑇2

(𝑇2(𝑥, 𝑦, 𝑠, 𝑖))𝑊
−1
𝑇1

(𝑇1𝑇2(𝑥, 𝑦, 𝑠, 𝑖))𝑊𝑇2(𝑇1𝑇2(𝑥, 𝑦, 𝑠, 𝑖))

𝑊𝑇1(𝑇1(𝑥, 𝑦, 𝑠, 𝑖)) = 𝜂12𝜒12(𝑥, 𝑦, 𝑠, 𝑖) (3.41)
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as well as

Θ*
𝑇2
(𝑇2(𝑥, 𝑦, 𝑠))Θ

*
𝑇1
(𝑇1𝑇2(𝑥, 𝑦, 𝑠))Θ𝑇2(𝑇1𝑇2(𝑥, 𝑦, 𝑠))

Θ𝑇1(𝑇1(𝑥, 𝑦, 𝑠)) = 𝜇12

∏︁
𝑖

𝜒*
12(𝑥, 𝑦, 𝑠, 𝑖) (3.42)

where 𝜂12 ∈ {I, J}, and {𝜒12(𝑥, 𝑦, 𝑠, 𝑖)} ∈ 𝜒− 𝑔𝑟𝑜𝑢𝑝.

Under transformations 𝑊𝑇𝑖
→ 𝜀𝑇𝑖

𝑊𝑇𝑖
and Θ𝑇𝑖

→ 𝜀𝑇𝑖
Θ𝑇𝑖

, we have

𝜒12 → 𝜀*𝑇2
(𝑥, 𝑦 + 1, 𝑠, 𝑖)𝜀*𝑇1

(𝑥+ 1, 𝑦 + 1, 𝑠, 𝑖)·

𝜀𝑇2(𝑥+ 1, 𝑦 + 1, 𝑠, 𝑖)𝜀𝑇1(𝑥+ 1, 𝑦, 𝑠, 𝑖)𝜒12(𝑥, 𝑦, 𝑠, 𝑖) (3.43)

Thus, we are able to set all 𝜒12(𝑥, 𝑦, 𝑠, 𝑖) = 1 via the 𝜀𝑇𝑖
-ambiguity.

According to Eq.(3.32) and Eq.(3.34), by doing a gauge transformation 𝑉 (𝑥, 𝑦, 𝑠, 𝑖)

and multiply phase factors Φ(𝑥, 𝑦, 𝑠):

𝑊𝑇2(𝑥, 𝑦, 𝑠, 𝑖) → 𝑉 (𝑥, 𝑦, 𝑠, 𝑖)𝑊𝑇2(𝑥, 𝑦, 𝑠, 𝑖)𝑉
−1(𝑥, 𝑦 − 1, 𝑠, 𝑖)

Θ𝑇2(𝑥, 𝑦, 𝑠) → Θ𝑇2(𝑥, 𝑦, 𝑠)Φ(𝑥, 𝑦, 𝑠)Φ
*(𝑥, 𝑦 − 1, 𝑠) (3.44)

We are able to set 𝑊𝑇2(𝑥, 𝑦, 𝑠, 𝑖) = I as well as Θ𝑇2(𝑥, 𝑦, 𝑠, 𝑖) = 1. Thus we ob-

tain 𝑇 (𝑥,𝑦,𝑠) = 𝑇 (0,𝑦,𝑠). The remaining 𝑉 -ambiguity preserving the form of 𝑊𝑇2

should satisfy 𝑉 (𝑥, 𝑦, 𝑠, 𝑖) = 𝑉 (𝑥, 0, 𝑠, 𝑖), and the remaining Φ-ambiguity preserv-

ing the form of Θ𝑇2 should satisfy Φ(𝑥, 𝑦, 𝑠) = Φ(𝑥, 0, 𝑠). In addition, any nontrivial

𝜀𝑇2 transformation will change the form of 𝑊𝑇2 = I, so 𝜀𝑇2 is fixed to be 1. To-

gether with the condition 𝜒12(𝑥, 𝑦, 𝑠, 𝑖) = 1, the remaining 𝜀𝑇1-ambiguity satisfies

𝜀𝑇1(𝑥, 𝑦, 𝑠, 𝑖) = 𝜀𝑇1(𝑥, 0, 𝑠, 𝑖).

Similarly, for 𝑇1 transformation, using the remaining 𝑉 -ambiguity and Φ-ambiguity,

we have

𝑊𝑇1(𝑥, 𝑦, 𝑠, 𝑖) → 𝑉 (𝑥, 0, 𝑠, 𝑖)𝑊𝑇1(𝑥, 𝑦, 𝑠, 𝑖)𝑉
−1(𝑥− 1, 0, 𝑠, 𝑖)

Θ𝑇1(𝑥, 𝑦, 𝑠) → Θ𝑇1(𝑥, 𝑦, 𝑠)Φ(𝑥, 0, 𝑠)Φ
*(𝑥− 1, 0, 𝑠) (3.45)
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Thus we can set 𝑊𝑇1(𝑥, 0, 𝑠, 𝑖) = I and Θ𝑇1(𝑥, 0, 𝑠) = 1. To maintain this form of 𝑊𝑇1 ,

we find that there is no remaining 𝜀𝑇1-ambiguity: 𝜀𝑇1 is fixed to be 1. The remaining

𝑉 -ambiguity and Φ-ambiguity satisfy 𝑉 (𝑥, 𝑦, 𝑠, 𝑖) = 𝑉 (𝑠, 𝑖) and Φ(𝑥, 𝑦, 𝑠) = Φ(𝑠);

namely they are only dependent on the sublattice index and the virtual leg index

from a site, but are independent of the unit cell coordinates. Further, in this gauge,

site tensors are translational invariant (but could be sublattice dependent),

𝑇 (𝑥,𝑦,𝑠) = 𝑇 (𝑥,0,𝑠) = 𝑇 𝑠 .
= 𝑇 (0,0,𝑠), 𝑠 = 𝑢, 𝑣, 𝑤 (3.46)

Thus, in the gauge that we choose so far, we can solve Eq.(3.41), and get the

implementation of translation symmetry on PEPS as

𝑊𝑇1(𝑥, 𝑦, 𝑠, 𝑖) = 𝜂𝑦12

𝑊𝑇2(𝑥, 𝑦, 𝑠, 𝑖) = I

Θ𝑇1(𝑥, 𝑦, 𝑠) = 𝜇𝑦
12

Θ𝑇2(𝑥, 𝑦, 𝑠) = 1 (3.47)

So for systems with translational symmetries and 𝐼𝐺𝐺 = 𝑍2, there are at least

two distinct classes of wavefunction. In the context of quantum spin liquids, these

two classes are known as zero flux state and 𝜋 flux state, corresponding to 𝜂12 = I

and 𝜂12 = J respectively. Condensations of spinons in these two spin liquids lead to

different types of magnetic orders[147]. In the above gauge, although all site tensors

related by the translation symmetry share the same form, bond states related by the

translation symmetry are in general different if 𝜂12 is nontrivial.

The calculation for other symmetries is similar as the above procedure. The basic

idea is to keep fixing gauge by the four ambiguities. And when we find certain

algebraic data, such as the 𝜂12 introduced above, that cannot be removed by the

ambiguities, they describe different symmetric PEPS classes. We only list the result

here.

This classification scheme will always lead to three finite sets of algebraic indices
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𝜂’s, 𝜒’s and Θ’s and we will discuss their physical meanings in Sec.3.4. Although in

general systems every set of indices is nonempty, for a half-integer spin system on the

kagome lattice described by PEPS with 𝐼𝐺𝐺 = 𝑍2, we have:

∙ 𝜂12, 𝜂𝐶6 and 𝜂𝜎, where 𝜂 ∈ {I, J}. The corresponding 𝜇12, 𝜇𝐶6 , 𝜇𝜎 are determined

by 𝜂’s.

∙ 𝜒𝜎 and 𝜒𝒯 , where 𝜒 = ±1.

∙ There turns out to be no tunable Θ indices in this example.

So the number of classes equals to 25 = 32. By choosing a gauge, the symmetry

operations on PEPS can be solved as

𝑊𝑇1(𝑥, 𝑦, 𝑠, 𝑖) = 𝜂𝑦12,

𝑊𝑇2(𝑥, 𝑦, 𝑠, 𝑖) = I,

𝑊𝐶6(𝑥, 𝑦, 𝑢, 𝑖) = 𝜂
𝑥𝑦+ 1

2
𝑥(𝑥+1)+𝑥+𝑦

12 𝑤𝐶6(𝑢, 𝑖),

𝑊𝐶6(𝑥, 𝑦, 𝑣, 𝑖) = 𝜂
𝑥𝑦+ 1

2
𝑥(𝑥+1)+𝑥+𝑦

12 ,

𝑊𝐶6(𝑥, 𝑦, 𝑤, 𝑖) = 𝜂
𝑥𝑦+ 1

2
𝑥(𝑥+1)

12 ,

𝑊𝜎(𝑥, 𝑦, 𝑠, 𝑖) = 𝜂𝑥+𝑦+𝑥𝑦
12 𝑤𝜎(𝑠, 𝑖),

𝑊𝒯 (𝑥, 𝑦, 𝑠, 𝑖) = 𝑤𝒯 (𝑠, 𝑖),

𝑊𝜃𝑛⃗(𝑥, 𝑦, 𝑠, 𝑖) =
⨁︁
𝑖

(I𝑛𝑖
⊗ ei𝜃𝑛⃗·𝑆⃗𝑖). (3.48)

In this gauge all 𝑊𝑅 matrices are unitary. The last equation is for the 𝑆𝑈(2) spin

rotation along 𝑛⃗ direction by an angle 𝜃. In addition, in this gauge we choose J =

𝑊2𝜋(𝑥, 𝑦, 𝑠, 𝑖) =
⨁︀

𝑖(I𝑛𝑖
⊗ ei2𝜋𝑛⃗·𝑆⃗𝑖); namely J is the direct sum of I𝐷1 for the integer

spin subspace and −I𝐷2 for the half-integer spin subspace and 𝐷1 +𝐷2 = 𝐷.

For the rotation transformation 𝑤𝐶6(𝑢, 𝑖), we have

𝑤𝐶6(𝑢, 𝑎) = 𝑤𝐶6(𝑢, 𝑐) = I,

𝑤𝐶6(𝑢, 𝑏) = 𝑤𝐶6(𝑢, 𝑑) = 𝜂12𝜂𝐶6 , (3.49)
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For the reflection transformation 𝑤𝜎(𝑠, 𝑖), we have

𝑤𝜎(𝑢, 𝑎) = I, 𝑤𝜎(𝑢, 𝑏) = 𝜒𝜎𝜂12𝜂𝐶6 ,

𝑤𝜎(𝑢, 𝑐) = 𝜒𝜎𝜂12𝜂𝐶6𝜂𝜎, 𝑤𝜎(𝑢, 𝑑) = 𝜂𝜎;

𝑤𝜎(𝑣, 𝑎) = 𝜂12, 𝑤𝜎(𝑣, 𝑏) = 𝜒𝜎𝜂12,

𝑤𝜎(𝑣, 𝑐) = 𝜂𝐶6𝜂𝜎, 𝑤𝜎(𝑣, 𝑑) = 𝜒𝜎𝜂𝐶6𝜂𝜎;

𝑤𝜎(𝑤, 𝑎) = 𝜒𝜎𝜂𝐶6 , 𝑤𝜎(𝑤, 𝑏) = 𝜂𝐶6 ,

𝑤𝜎(𝑤, 𝑐) = 𝜂12𝜂𝜎, 𝑤𝜎(𝑤, 𝑑) = 𝜒𝜎𝜂12𝜂𝜎; (3.50)

And for the time reversal transformation 𝑤𝒯 , we have

𝑤𝒯 (𝑢, 𝑎) = 𝑤𝒯 , 𝑤𝒯 (𝑢, 𝑏) = 𝜂12𝜂𝐶6𝑤𝒯 ,

𝑤𝒯 (𝑢, 𝑐) = 𝜂12𝜂𝐶6𝜂𝜎𝑤𝒯 , 𝑤𝒯 (𝑢, 𝑑) = 𝜂𝜎𝑤𝒯 ;

𝑤𝒯 (𝑣, 𝑎) = 𝜂12𝜂𝐶6𝑤𝒯 , 𝑤𝒯 (𝑣, 𝑏) = 𝑤𝒯 ,

𝑤𝒯 (𝑣, 𝑐) = 𝜂𝜎𝑤𝒯 , 𝑤𝒯 (𝑣, 𝑑) = 𝜂12𝜂𝐶6𝜂𝜎𝑤𝒯 ;

𝑤𝒯 (𝑤, 𝑎) = 𝑤𝒯 , 𝑤𝒯 (𝑤, 𝑏) = 𝜂12𝜂𝐶6𝑤𝒯 ,

𝑤𝒯 (𝑤, 𝑐) = 𝜂12𝜂𝐶6𝜂𝜎𝑤𝒯 , 𝑤𝒯 (𝑤, 𝑑) = 𝜂𝜎𝑤𝒯 ; (3.51)

where

𝑤𝒯 =

⎧⎨⎩
⨁︀

𝑖(I𝑛𝑖
⊗ ei𝜋𝑆

𝑦
𝑖 ) if 𝜒𝒯 = 1⨁︀

𝑖(Ω𝑛𝑖
⊗ ei𝜋𝑆

𝑦
𝑖 ) if 𝜒𝒯 = −1

(3.52)

Here 𝑛𝑖 is dimension of the extra degeneracy associated with spin-𝑆𝑖. Namely, the

total degeneracy for spin-𝑆𝑖 living on one virtual leg equals 𝑛𝑖 × (2𝑆𝑖 + 1). We have

the virtual bond dimension

𝐷 =
∑︁
𝑖

𝑛𝑖(2𝑆𝑖 + 1) (3.53)

And, Ω𝑛𝑖
= i𝜎𝑦 ⊗ I𝑛𝑖/2 is a 𝑛𝑖 dimensional antisymmetric matrix.
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For Θ𝑅’s, we have

Θ𝑇1(𝑥, 𝑦, 𝑠) = 𝜇𝑦
12,

Θ𝑇2(𝑥, 𝑦, 𝑠) = 1,

Θ𝐶6(𝑥, 𝑦, 𝑢) = 𝜇
𝑥𝑦+ 1

2
𝑥(𝑥+1)+𝑥+𝑦

12 Θ𝐶6(𝑢),

Θ𝐶6(𝑥, 𝑦, 𝑣) = 𝜇
𝑥𝑦+ 1

2
𝑥(𝑥+1)+𝑥+𝑦

12 ,

Θ𝐶6(𝑥, 𝑦, 𝑤) = 𝜇
𝑥𝑦+ 1

2
𝑥(𝑥+1)

12 ,

Θ𝜎(𝑥, 𝑦, 𝑠) = 𝜇𝑥+𝑦+𝑥𝑦
12 Θ𝜎(𝑠),

Θ𝒯 (𝑥, 𝑦, 𝑢/𝑤) = 1,

Θ𝒯 (𝑥, 𝑦, 𝑣) = 𝜇12𝜇𝐶6 ,

Θ𝜃𝑛⃗ = 1, (3.54)

where

Θ𝐶6(𝑢) = (𝜇12𝜇𝐶6)
1
2 ;

Θ𝜎(𝑢) = (𝜇𝜎)
1
2 ;

Θ𝜎(𝑣) = 𝜇𝐶6Θ𝐶6(𝑢)Θ𝜎(𝑢);

Θ𝜎(𝑤) = 𝜇𝜎𝜇𝐶6(Θ𝐶6(𝑢)Θ𝜎(𝑢))
−1. (3.55)

Note that in Eq.(3.55) Θ𝐶6(𝑢) and Θ𝜎(𝑢) contain square roots so there appear to

be two possible values of each of them differing by a minus sign, giving rise to Θ-

indices. However, these minus signs can be tuned away using the 𝜂-ambiguities in the

definition of 𝑊𝐶6 and 𝑊𝜎 since every site tensor is 𝑍2 odd. So one could simply fix

an arbitrary choice for the square roots here. This is the reason why there turns out

to be no tunable Θ indices in this example.

Even after all these transformation rules are determined by gauge fixing, we still

have some remaining 𝑉 -ambiguity for each class. (Note that there is no remaining

nontrivial 𝜂,𝜀 and Φ ambiguities.) To preserve the lattice symmetry, the remaining 𝑉 -

ambiguity is independent of sites and legs. To preserve the form of𝑊𝜃𝑛⃗, the remaining
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𝑉 -ambiguity must have the following form:

𝑉 =
⨁︁
𝑖

(̃︀𝑉𝑆𝑖
⊗ I2𝑆𝑖+1), (3.56)

where ̃︀𝑉𝑆𝑖
is a 𝑛𝑖 dimensional matrix. In addition, the time-reversal transformation

𝑊𝒯 further constrains the form of component matrices ̃︀𝑉𝑆𝑖
. When 𝜒𝒯 = 1, one can

show that ̃︀𝑉𝑆𝑖
must be a real matrix. For the purpose of presentation we only consider

𝜒𝒯 = 1 classes here. The 𝜒𝒯 = −1 cases involve quaternion matrices and we leave

the general and detailed discussions in [76].

Next, we are at the stage to construct the constrained sub-Hilbert spaces for

building block tensors for all classes, according to the 𝑊𝑅 transformation rules. The

basic idea is to determine the generic form of a single site/bond tensor using the 𝑊𝑅’s

with 𝑅 leaving the site/bond invariant, and then generate all other site/bond tensors

using all 𝑊𝑅’s. The generic forms of site tensors are straightforwardly determined

in this fashion, with a set of real continuous variational parameters whose number

basically equals the dimension of the constrained site sub-Hilbert space. However, for

bond tensors, we will use the remaining 𝑉 -ambiguity to bring them into canonical

forms which are maximal entangled bond states containing no continuous variational

parameters.

To make sure a bond tensor 𝐵𝑏 to be invariant under the 𝑆𝑈(2) spin rotation, it

must have the following form:

𝐵𝑏 =
𝑀⨁︁
𝑖=1

(︁ ̃︀𝐵𝑆𝑖
𝑏 ⊗𝐾𝑆𝑖

)︁
, (3.57)

where ̃︀𝐵𝑆𝑖
𝑏 is 𝑛𝑖 dimensional matrix, and 𝐾𝑆𝑖

is the fixed (2𝑆𝑖+1) dimensional matrix

representing the spin singlet formed by two spin-𝑆𝑖 on the two virtual legs shared by

𝐵𝑏. For example, we get 𝐾𝑆=0 = 1, 𝐾𝑆= 1
2
= i𝜎𝑦.

As shown in [76], when 𝜒𝒯 = 1 and a given 𝑆𝑖, depending on the four possible

values of 𝜂𝜎 and 𝜒𝜎, the component matrix ̃︀𝐵𝑆𝑖
𝑏 must be a purely real/imaginary

symmetric/antisymmetric matrix. Then we can use the remaining 𝑉 -ambiguity in

77



Eq.(3.56) to simplify ̃︀𝐵𝑆𝑖
𝑏 , because under a ̃︀𝑉𝑆𝑖

transformation, ̃︀𝐵𝑆𝑖
𝑏 transforms as:

̃︀𝐵𝑆𝑖
𝑏 → ̃︀𝑉𝑆𝑖

· ̃︀𝐵𝑆𝑖
𝑏 · ̃︀𝑉 t

𝑆𝑖
(3.58)

Clearly we can use a real orthogonal ̃︀𝑉𝑆𝑖
to diagonalize (block diagonalize) ̃︀𝐵𝑆𝑖

𝑏 if ̃︀𝐵𝑆𝑖
𝑏

is a symmetric (antisymmetric) matrix. After this, the eigenvalues of ̃︀𝐵𝑆𝑖
𝑏 could have

arbitrary norms. But then we can use another real diagonal ̃︀𝑉𝑆𝑖
matrix to normalize

the eigenvalues so that they are only ±1 (if ̃︀𝐵𝑆𝑖
𝑏 is purely real) or ±i (if ̃︀𝐵𝑆𝑖

𝑏 is purely

imaginary).

This procedure fixes 𝐵𝑏 to be maximal entangled states with no continuous vari-

ational parameters. However, the relative number of +1(+i) eigenvalues and −1(−i)

eigenvalues cannot be further tuned away by gauge fixing and will serve as discrete

variational parameters on the bond tensors.

The previous discussions in the subsection are general for any half-integer spin-𝑆.

Below we focus on the case with 𝑆 = 1
2
. For simplicity, we demonstrate the results

for with 𝐷 = 3. The basis of virtual legs of site tensors are {|0⟩, | ↑⟩, | ↓⟩}. Namely,

virtual legs are formed by one spin singlet and one spin doublet. Note that virtual

legs of bond tensors are dual to those of site tensors, so the basis are ⟨0|, ⟨↑ |, ⟨↓ |.

Symmetric PEPS with larger 𝐷 are also conceptually straightforward but technically

involved to obtain, and we leave the general construction in [76]

As discussed in [76], only classes satisfying 𝜂𝜎 = J, 𝜒𝜎 = 1 and 𝜒𝒯 = 1 can be

realized with 𝐷 = 3. So the realizable classes reduce to 22 = 4 with 𝐷 = 3. At such a

small 𝐷, it turns out that each class has only two continuous variational parameters.

(Note that for 𝐷 = 6, i.e. two spin singlet and two spin doublet on the virtual leg,

we find that all the 32 classes can be realized. And each class has 47 continuous

variational parameters.) Following the above procedure we can bring the bond tensor
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on a given bond 𝑏0 into the canonical form:

𝐵𝑏0 =

⎛⎜⎜⎜⎝
±1 0 0

0 0 −i

0 i 0

⎞⎟⎟⎟⎠ (3.59)

All other bond tensors are generated by combination of translation and rotation

symmetries as:

𝐵𝑅(𝑏) = 𝑅−1𝑊𝑅𝑅 ∘𝐵𝑏0 (3.60)

where 𝑅 = 𝑇 𝑛1
1 𝑇 𝑛2

2 𝐶
𝑛𝐶6
6 with 𝑛1, 𝑛2, 𝑛𝐶6 ∈ Z.

One can view a bond tensor as a quantum state living in the Hilbert space formed

by the tensor product of two virtual legs. Namely, we have

𝐵̂𝑏0 = ±⟨0, 0| − i ⟨↑, ↓ |+ i ⟨↓, ↑ | (3.61)

Here we use notation 𝐵̂𝑏0 as the quantum state representation while 𝐵𝑏0 as the matrix

(tensor) representation.

At a given site 𝑠0, the generic form of the site tensor for all classes can be sum-

marized as:

𝑇 𝑠0 ={𝐾̂0 + 𝐾̂12(𝑝1, 𝑝2)}+Θ−1
𝐶6
(𝑢){𝑎↔ 𝑏, 𝑐↔ 𝑑}+Θ−1

𝜎 (𝑢)·

{𝑎↔ 𝑑, 𝑏↔ 𝑐}+ 𝜇12𝜇𝐶6(Θ𝐶6(𝑢)Θ𝜎(𝑢))
−1{𝑎↔ 𝑐, 𝑏↔ 𝑑}

(3.62)

with real continuous parameters 𝑝1, 𝑝2. Here 𝑎, 𝑏, 𝑐, 𝑑 denote virtual leg of sites, as

shown in Fig.(3-4). 𝐾̂0 and 𝐾̂12 denote linear independent spin singlet states, which
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can be expressed as

𝐾̂0 =| ↑⟩ ⊗ | ↓ 000⟩ − | ↓⟩ ⊗ | ↑ 000⟩

𝐾̂12 =𝑝1 · (| ↑⟩ ⊗ |0 ↓↑↓⟩+ | ↓⟩ ⊗ |0 ↑↓↑⟩)+

𝑝2 · (| ↑⟩ ⊗ |0 ↓↓↑⟩+ | ↓⟩ ⊗ |0 ↑↑↓⟩)−

(𝑝1 + 𝑝2) · (| ↑⟩ ⊗ |0 ↑↓↓⟩+ | ↓⟩ ⊗ |0 ↓↑↑⟩), (3.63)

where the first spin lives on the physical leg, while the following four spins live on

virtual legs 𝑎, 𝑏, 𝑐, 𝑑 respectively. Note that we have chosen a particular gauge such

that all site tensors share the same form.

By direct comparison, the NN RVB state (𝑄1 = 𝑄2 state) given in Sec.(3.2.5) is

represented as the PEPS defined in Eq.(3.59) and Eq.(3.62), with 𝑝1 = 𝑝2 = 0 and:

𝜂12 = 𝜂𝐶6 = I, 𝜂𝜎 = J;

𝜒𝜎 = 𝜒𝒯 = 1;

(3.64)

3.4 Physical Interpretation of Classes

We will discuss the physical meanings of different classes, which are labeled by Θ𝑅,

𝜒𝑅 as well as 𝜂𝑅. In this section, we will focus on the non-symmetry-breaking liquid

member phase in each crude class.

3.4.1 Interpretation of Θ𝑅 and 𝜒𝑅

Although it happens to be true that the kagome half-integer spin example has no

tunable Θ𝑅 indices, Θ𝑅 indices do appear in general quantum systems.

In fact, the Θ𝑅 indices and the 𝜒𝑅 indices generally appear even when the 𝐼𝐺𝐺 is

trivial. For instance, we could consider a system on the kagome lattice with no on-site

symmetry (i.e., remove the spin 𝑆𝑈(2) rotation and the time-reversal symmetry in

our main example), and consequently the minimal required 𝐼𝐺𝐺 is trivial. Assuming
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𝐼𝐺𝐺 being trivial in this system, we will not have the 𝜂 indices but still have the 𝜒

indices. The calculation procedure of transformation rules almost remains the same

as before if we simply limit all the 𝜂’s to be identity. Eventually we will arrive at

Eq.(3.55) replacing all the 𝜇𝑅 by +1. Note that there is no 𝜂-ambiguities to tune

away the signs for the square roots as in the half-integer spin case. In this system,

apart from the 𝜒 indices, we do have two tunable Θ indices in the PEPS classification:

Θ𝐶6(𝑢) = ±1 and Θ𝜎(𝑢) = ±1.

Different Θ𝑅 indices can be viewed as different symmetry quantum numbers (for ei-

ther on-site symmetries or space group symmetries) carried by each site tensor. These

quantum numbers of the site tensors, generally speaking, directly contribute to the

quantum numbers of a finite size sample. The physics of Θ𝑅 indices is similar to the

physics of the so-called “fragile Mott insulator” discussed by Yao and Kivelson[165].

And similar indices in one-dimensional matrix product states have been investigated

recently[52]. For instance, in the fragile Mott insulator example[165], a Mott insulator

wavefunction is constructed on the checkerboard lattice which carries nontrivial point

group quantum numbers on the odd-by-odd unit cell lattices. This distinguishes the

fragile Mott insulator from trivial insulators which carries trivial quantum numbers

on the same lattices. And such nontrivial quantum numbers can be traced back to

the quantum numbers carried by the wavefunction on every square cluster on the

checkerboard lattice. If one tries to use a site tensor in PEPS to represent the square

cluster wavefunction, it is clear that this site tensor forms a nontrivial representation

of the point group symmetry.

The physical meaning of 𝜒𝑅 may be more well-known. These are generalizations

of the symmetry fractionalizations in the 2d AKLT model[1]. Let’s firstly briefly

describe the PEPS construction of the 𝑆𝑂(3) symmetric spin-2 AKLT state on the

square lattice. In this construction, each virtual leg forms a spin-1/2 projective rep-

resentation of the 𝑆𝑂(3) symmetry group of the spin-2 system. Each site tensor is

given by the only singlet state formed by the physical spin-2 and the four virtual

spin-1/2’s, and each bond tensor is formed by the only spin singlet formed by the two

spin-1/2’s on the two ends of the bond. Such an AKLT wavefunction can be shown
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to be the unique gapped ground state of the AKLT Hamiltonian on the square lattice

with periodic boundary conditions[53].

However, when the system has an open boundary, one needs to specify a symmetric

boundary condition. But one encounters the following problem: each site tensor on

the boundary has only three virtual spin-1/2’s and it is impossible for form a spin-

singlet with the physical spin-2. Basically each site on the boundary can be viewed as

a half-integer spin — which is a projective representation of the original 𝑆𝑂(3) group.

One sometimes calls this phenomena as the symmetry fractionalization in 2d in the

absence of topological orders. When coupled together along a translational symmetric

edge, the low energy dynamics of the edge states can be effectively described by a

translational symmetric half-integer spin chain, which would give a gapless excitation

spectrum assuming no spontaneous translational symmetry breaking. Clearly, in the

PEPS construction, the origin of such symmetry fractionalization behavior is due to

the fact that projective representations appear in the virtual legs.

For an on-site symmetry 𝑅, this is exactly the physics that 𝜒𝑅 captures. For in-

stance, the 𝜒𝒯 index appearing in the kagome example is really about the projective

representations of the symmetry group 𝑆𝑈(2)×𝒯 on the virtual legs. As mentioned

before, when 𝜒𝒯 = 1, the half-integer (integer) spins on the virtual legs form Kramer

doublet (singlet) under the time-reversal transformation. This is the usual represen-

tation of 𝑆𝑈(2)×𝒯 . However when 𝜒𝒯 = −1, the half-integer (integer) spins on the

virtual legs form Kramer singlet (doublet) under the time-reversal transformation.

This is a nontrivial projective representation of 𝑆𝑈(2)×𝒯 . We expect that 𝜒𝒯 = −1

would give rise to nontrivial signatures in entanglement spectra and physical edge

states.

For a spatial symmetry 𝑅, the physical meaning of 𝜒𝑅 is less obvious. But it’s one-

dimensional analog has been investigated in the context of matrix product states[23,

118, 109, 108]. In our example, the 𝜒𝜎 is capturing similar physics in 2d kagome

lattice, which basically describes how the tensor network forms possible projective

representations of the spatial reflection. We speculate that nontrivial 𝜒𝜎 would give

rise to signatures in entanglement spectra when the partition of the system respects
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the 𝜎 reflection.

In summary, Θ𝑅 is capturing local contributions to symmetry group quantum

numbers, and 𝜒𝑅 is capturing the symmetry fractionalizations not due to topological

orders.

3.4.2 𝜂𝑅 and symmetry fractionalization

Here, we will show that 𝜂’s are directly related to the symmetry fractionalization

of spinon excitations (chargons). To see this, let us firstly introduce the concept

of symmetry fractionalization in the presence of topological orders. We will use the

unitary on-site symmetry as an example. Related discussions can be found in Ref.[98]

and Ref.[44].

Starting from a topologically ordered ground state with a global symmetry group

𝑆𝐺, consider an excited state, having 𝑛−quasiparticles (which do not have to be of

the same type) spatially located at position r1, r2, . . . , r𝑛, far apart from one another.

Let’s denote this state by |𝜓(r1, r2, . . . , r𝑛)⟩. For any symmetry transformation 𝑈(𝑔)

by a group element 𝑔 ∈ 𝑆𝐺, 𝑈(𝑔) will generally transform this state to another state:

𝑈(𝑔) ∘ |𝜓(r1, r2, . . . , r𝑛)⟩ → | ̃︀𝜓(r1, r2, . . . , r𝑛)⟩ (3.65)

One way to describe the symmetry fractionalization on quasiparticles is the following

condition: there exist local operators 𝑈1(𝑔), 𝑈2(𝑔), . . . , 𝑈𝑛(𝑔), such that 𝑈𝑖(𝑔) is a

local operator acting only in a finite region around the spatial position r𝑖, and does

not touch the other quasiparticles; in addition, 𝑈1(𝑔), 𝑈2(𝑔), . . . , 𝑈𝑛(𝑔) satisfy:

𝑈1(𝑔) · 𝑈2(𝑔) · · ·𝑈𝑛(𝑔)|𝜓(r1, r2, . . . , r𝑛)⟩

=𝑈(𝑔)|𝜓(r1, r2, . . . , r𝑛)⟩ = | ̃︀𝜓(r1, r2, . . . , r𝑛)⟩ (3.66)

Note that technically Eq.(3.66) is not a general condition for symmetry fractional-

ization phenomena. For example, let us consider 𝑆𝐺 to be an on-site 𝑈(1) symmetry,

and assume that Eq.(3.66) holds for a wavefunction |𝜓(r1, r2, . . . , r𝑛)⟩. We can then
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just add one extra 𝑈(1) charge outside the regions that 𝑈𝑖(𝑔) (𝑖 = 1, .., 𝑛) act and

obtains a new wavefunction |𝜓(r1, r2, . . . , r𝑛)⟩. It is perfectly fine to imagine the extra

charge as if it already exists in the ground state. Physically the local operators that

transform quasiparticles: 𝑈𝑖(𝑔) for |𝜓⟩ should be exactly the same as before, since |𝜓⟩

and |𝜓⟩ are locally identical around r1, r2, . . . , r𝑛. However, clearly Eq.(3.66) is no

longer true for |𝜓⟩, because the global symmetry 𝑈(𝑔) picks up an extra 𝑈(1) phase

from the added 𝑈(1) charge.

In fact, Eq.(3.66) implicitly assumes that, under a global symmetry transforma-

tion, there is no phase “locally accumulated” in the ground state wavefunction. But,

as demonstrated above, generally there could be such “locally accumulated” phases in

the ground state, and Eq.(3.66) should be modified up to the “locally accumulated”

phases.

How to sharply define such “locally accumulated” phases in general? The answer

to this question is important to provide a general sharp definition of 𝑈𝑖(𝑔). But

to answer this question, one needs a tool capable to diagnose wavefunctions locally,

which is exactly the power of PEPS. For the moment, let us postpone answering this

question in the framework of PEPS, and have some further discussion on symmetry

fractionalizations.

First, fractionalized symmetry transformations are local operators and cannot

change the quasiparticle species (or more precisely, the superselection sector of a

quasiparticle). Thus, we can investigate the transformation rules of each anyon species

individually. However, anyons do not need to form a representation of 𝑆𝐺 due to the

nontrivial fusion rule. For example, in a 𝑍2 topological ordered phase, two chargons

fuse to one trivial particle. We can multiply each chargon in the system by a fixed

element in an 𝐼𝐺𝐺′ = 𝑍2 = {1,−1}. Clearly, the total phase becomes unity, and

physical wavefunction is invariant. Here 𝐼𝐺𝐺′ is the subgroup of U(1) describing the

fusion rule of chargons. Quite generally for a 𝑍𝑛 topological order, 𝐼𝐺𝐺′ = 𝑍𝑛.

A PEPS with 𝐼𝐺𝐺 = 𝑍𝑛 can describe a deconfined phase with a 𝑍𝑛 topological

order. We will only consider this case and we do have 𝐼𝐺𝐺′ = 𝐼𝐺𝐺. So 𝐼𝐺𝐺 tells

us that when we implement the global symmetry transformation on chargons, it is
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perfect fine to have a phase ambiguity, if this phase ambiguity is an element in 𝐼𝐺𝐺.

Consequently, a single quasiparticle could form a projective representation of 𝑆𝐺 with

coefficient in 𝐼𝐺𝐺, which is classified by second cohomology 𝐻2(𝑆𝐺, 𝐼𝐺𝐺).

Now, let us translate the above discussion into the PEPS language. The main

task is to construct the local symmetry transformation operators for a small patch

of PEPS with a nontrivial 𝐼𝐺𝐺. Here we focus on 𝐼𝐺𝐺 = 𝑍2 case. Without loss of

generality, we assume that tensors of the PEPS are all 𝑍2 even. Then we cut a small

patch 𝒜 from the PEPS. We can view the tensor associated with patch 𝒜 as a linear

map from boundary virtual legs to physical legs living in the bulk of the patch, which

is labeled as 𝑇 0
𝒜. Here 0 denotes that there is no quasiparticles inside 𝒜. Namely,

𝑇 0
𝒜 =

∑︁
𝐼,𝑉

(𝑇 0
𝒜)𝐼𝑉 |𝐼⟩⟨𝑉 | (3.67)

where |𝐼⟩ labels ket states of all physical legs inside 𝒜, while ⟨𝑉 | labels bra states of

all boundary virtual legs.

Before studying excitations inside 𝒜, we firstly discuss properties of 𝑇 0
𝒜. As a

tensor, 𝑇 0
𝒜 is 𝑍2 even. Namely, action of the nontrivial 𝑍2 element 𝑔 on the boundary

legs of 𝑇 0
𝒜 leaves the tensor invariant. This property implies that 𝑇 0

𝒜, as a linear map,

can never be injective. To see this, consider an arbitrary boundary state |𝑉 ⟩, we have

𝑇 0
𝒜|𝑉 ⟩ = 𝑇 0

𝒜|𝑔 ∘ 𝑉 ⟩ (3.68)

So, the inverse map of 𝑇 0
𝒜 is not well defined. To have a reasonable definition of the

inverse map, one observes that an arbitrary boundary state |𝑉 ⟩ can be rewritten as

|𝑉 ⟩ = 1

2
(|𝑉 ⟩+ |𝑔 ∘ 𝑉 ⟩) + 1

2
(|𝑉 ⟩ − |𝑔 ∘ 𝑉 ⟩)

= Π𝒰 |𝑉 ⟩+ (1− Π𝒰)|𝑉 ⟩ (3.69)

where 𝒰 is the 𝑍2 even sector of boundary legs. Namely, ∀|𝑉 ⟩ ∈ 𝒰 , we have |𝑔 ∘𝑉 ⟩ =

|𝑉 ⟩. Π𝒰 is a projection operator which projects a boundary state into 𝒰 . Under 𝑇 0
𝒜,
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the second term in the above equation is mapped to zero. For a generic PEPS with

𝐼𝐺𝐺 = 𝑍2, we can further assume that 𝑇 0
𝒜 is injective on the subspace 𝒰 when the

patch 𝒜 is not too small. This is because the dimension of the physical Hilbert space

increases parametrically faster than the dimension of the boundary virtual Hilbert

space as the patch size increases. Such a PEPS is named as a 𝑍2 injective PEPS in

Ref.[117]. Namely, generically one can find a linear map (𝑇 0
𝒜)

−1 from bulk physical

legs to boundary virtual legs, such that

(𝑇 0
𝒜)

−1 · 𝑇 0
𝒜 = Π𝒰 (3.70)

Next, let us study the case with topological excitations inside patch 𝒜. One could

create odd number of chargons near the center of the patch 𝒜 by modifying 𝑇 0
𝒜 to

some 𝑍2 odd tensor 𝑇 𝑒
𝒜. Opposite to the previous case, we have

𝑇 𝑒
𝒜|𝑉 ⟩ = 0, ∀|𝑉 ⟩ ∈ 𝒰 (3.71)

Generically we can further assume 𝑇 𝑒
𝒜 is injective on the 𝑍2 odd sector of boundary

legs. Namely, one can construct (𝑇 𝑒
𝒜)

−1 as linear map from bulk legs to 𝑍2 odd sector

of boundary legs, such that

(𝑇 𝑒
𝒜)

−1 · 𝑇 𝑒
𝒜 = Π𝒰 (3.72)

where Π𝒰 ≡ 1− Π𝒰 .

Similarly, one can construct patch tensors with even number chargons inside the

patch by modifying 𝑇 0
𝒜 to any other 𝑍2 even and 𝑍2 injective tensors. For example,

let us assume 𝑇 1
𝒜 to be such a tensor. Then, one can find it inverse (𝑇 1

𝒜)
−1 on the

subspace 𝒰 , such that (𝑇 1
𝒜)

−1 · 𝑇 1
𝒜 = Π𝒰 .

In the following, we will study the local physical operator acting on small patches

for a symmetry 𝑅. Starting with a PEPS wavefunction |Ψ⟩ with topological excita-

tions inside small patches 𝒜,ℬ, . . . , while the region outside these patches share the

same tensors as the ground state wavefunction |Ψ0⟩. The action of the symmetry 𝑅
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on |Ψ⟩ is obtained by acting 𝑅 on all tensors, which is defined in Eq.(3.6,3.10,3.12).

Since we try to construct local symmetry operators only on patches 𝒜,ℬ, . . . , we can

apply gauge transformations 𝑊𝑅 on all virtual legs in the region outside all small

patches as well as on the boundaries of all small patches, but leave virtual legs inside

small patches untouched. Note that this gauge transformation does not modify the

𝑅-transformed physical wavefunction at all. Because tensors outside small patches

are the same as tensors of ground state, the following relations still hold for them:

𝑇 s = Θ𝑅𝑊𝑅𝑅 ∘ 𝑇 s

𝐵b = 𝑊𝑅𝑅 ∘𝐵b (3.73)

Thus, under the symmetry 𝑅 together with the gauge transformation 𝑊𝑅 defined

above, tensors outside patches will be invariant up to an “locally accumulated” phase∏︀
s∈outside Θ𝑅(s). We emphasize that this actually provides the sharp definition of

the “locally accumulated” phases mentioned earlier in this section. As discussed in the

previous subsection, Θ𝑅(s)’s exactly capture the local phases picked up after applying

a global symmetry transformation. Without the tool of PEPS, it is actually difficult

to sharply define this object.

For tensors inside patches, we have

𝑇𝑅
𝒜 = 𝑊𝑅𝑅 ∘ 𝑇𝒜 (3.74)

Here, 𝑇𝒜 is the linear map associated with patch 𝒜, which is obtained by contraction

of all tensors inside 𝒜 patch. And 𝑊𝑅 in Eq.3.74 is defined to only act on boundary

virtual legs of 𝑇𝒜. Note that 𝑇𝒜 is either 𝑍2 even or 𝑍2 odd, which corresponds to

even number chargons or odd number chargons inside 𝒜. Note that we should always

choose the patch that is large enough so that all quasiparticles exist in the patch

before the transformation keep staying in the patch after the transformation. The

above equation can be viewed as the definition of 𝑇𝑅
𝒜 .

In fact, Eq.(3.74) is a very general result which is applicable even when the con-
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dition of symmetry fractionalizations breaks down. For example, it is possible that

certain symmetry transformation interchanges quasiparticle superselection sectors. In

the PEPS formulation this happens when 𝑇𝑅
𝒜 and 𝑇𝒜 describes distinct quasiparticle

species, and consequently there is no way to use a local physical operator in 𝒜 to

send 𝑇𝒜 to 𝑇𝑅
𝒜 . For the kagome example this would never happen. For example, we

showed that 𝑊𝑅 matrices all commute with the nontrivial 𝐼𝐺𝐺 element 𝑔 = J, and

therefore the parity of the number of chargons would be the same in 𝑇𝑅
𝒜 and 𝑇𝒜.

But in a symmetric PEPS with a larger 𝐼𝐺𝐺 (e.g. 𝐼𝐺𝐺 = 𝑍2 × 𝑍2), we expect that

it is possible that 𝑊𝑅 does not commute with a 𝑔 ∈ 𝐼𝐺𝐺. In this case the 𝑅 may

interchange quasiparticle species.

Below we only consider the situation that 𝑇𝑅
𝒜 and 𝑇𝒜 support the same superse-

lection sector and consequently share the same 𝑍2 parity. This allows us to construct

the fractionalized local physical operator 𝐿̂𝒜
𝑅 for the symmetry 𝑅 acting on patch 𝒜

that realizes Eq.(3.74); namely:

𝐿̂𝒜
𝑅 ∘ 𝑇𝒜 = 𝑊𝑅𝑅 ∘ 𝑇𝒜, (3.75)

at least for those 𝑇𝒜 describing the relevant low energy states. One should keep in

mind that 𝐿𝒜
𝑅 only acts on physical legs, without touching boundary legs; i.e.,

𝐿̂𝒜
𝑅 =

∑︁
𝐼,𝐼′

(𝐿𝒜
𝑅)𝐼,𝐼′|𝐼⟩⟨𝐼 ′|. (3.76)

To obtain the explicit form of this local operator, let us consider a particular

tensor 𝑇 𝑒
𝒜, which supports an odd number of chargons in 𝒜. We have

𝑇 𝑒,𝑅
𝒜 = [𝑇 𝑒,𝑅

𝒜 · (𝑇 𝑒
𝒜)

−1] · 𝑇 𝑒
𝒜 (3.77)

where 𝑇 𝑒,𝑅
𝒜 ≡ 𝑊𝑅𝑅∘𝑇 𝑒

𝒜, and (𝑇 𝑒
𝒜)

−1 is defined in Eq.(3.72). In the above equation we

assume that both 𝑇 𝑒
𝒜 and 𝑇 𝑒,𝑅

𝒜 is 𝑍2 odd as well as injective in the 𝑍2 odd subspace

of boundary legs, which is expected to be generically true. Note that [𝑇 𝑒,𝑅
𝒜 · (𝑇 𝑒

𝒜)
−1]

can be viewed as an operator acting only on physical legs.
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To study the transformation rules for a number of chargon excitations, let us

consider a finite set Λ of tensors: Λ ≡ {𝑇 (𝑖)
𝒜 , 𝑖 = 0, 1, . . . } in the patch 𝒜. These

tensors may describe states with chargon number equal to zero, one, two, etc, and

are injective in the corresponding boundary 𝑍2 sectors respectively. But tensors in

Λ contain no fluxon excitations in 𝒜. (we will study the symmetry fractionalization

of fluxons later in this chapter.) We assume that any symmetry transformation as

shown in Eq.(3.74) transform within the linear space spanned by Λ.

In addition, we assume the tensors in Λ to satisfy (𝑇
(𝑗)
𝒜 )−1 · 𝑇 (𝑖)

𝒜 = 0, ∀𝑖 ̸= 𝑗.

Physically, this can be achieved by choosing Λ so that all tensor states in it can be

sharply distinguished from each other by a set of mutually commuting local physi-

cal measurements. Mathematically these local physical measurements are Hermitian

operators acting near the center of the patch where quasiparticles live. For instance,

these measurements could include a measurement of the locations of chargons by

inserting small fluxon loops. Then {𝑇 (𝑖)
𝒜 } are chosen to be the eigenstates of these

measurements with distinct eigenvalues. Since these measurements are locally near

the center of the patch, the boundary condition (i.e., the virtual boundary state)

will not affect the measurement when the patch is large enough, and the condition

(𝑇
(𝑗)
𝒜 )−1 · 𝑇 (𝑖)

𝒜 = 0, ∀𝑖 ̸= 𝑗 is expected to hold.

We then can construct a local operator to transform states in Λ under a symmetry

𝑅:

𝐿̂𝒜
𝑅 =

∑︁
𝑖

[𝑇
(𝑖),𝑅
𝒜 · (𝑇 (𝑖)

𝒜 )−1] (3.78)

as shown in Fig.(3-5b). One can easily verify, 𝐿̂𝒜
𝑅 defined above indeed satisfies

Eq.(3.75) for all states in Λ. Moreover, such local operators in patches 𝒜,ℬ... satisfy

the symmetry fractionalization condition Eq.(3.66) up to the “locally accumulated”

phase outside these patches
∏︀

s∈outside Θ𝑅(s).

After the local symmetry operator is defined, we are able to study the symmetry

fractionalization of chargons. Consider a relation between symmetry group elements
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(a) (b)

(c)

Figure 3-5: (a): Tensor 𝑇𝒜 and its “generalized inverse” 𝑇−1
𝒜 associated with patch

𝒜. 𝑇𝒜 is obtained by contracting all bond tensors and site tensors inside patch 𝒜.
As a linear map from boundary legs to bulk legs, 𝑇𝒜 is either 𝑍2 even or 𝑍2 odd. (b):
The local 𝑅-symmetry operator on patch 𝒜. {𝑇 (𝑖)

𝒜 } is an orthonormal basis, where
every state in the basis is either 𝑍2 even or 𝑍2 odd. (c): The local symmetry operator
for a series symmetry operations 𝑅1 . . . 𝑅𝑛, where 𝑅1 . . . 𝑅𝑛 = I. If 𝜂𝑅 is nontrivial,
action of this operator on 𝑍2 even or 𝑍2 odd tensor gives different phase factor. This
indicates symmetry fractionalization of chargons.

𝑅1𝑅2 . . . 𝑅𝑛 = e, we can construct a local symmetry operators 𝐿̂𝒜
𝑅1...𝑅𝑛

as

𝐿̂𝒜
𝑅1...𝑅𝑛

≡ 𝐿̂𝒜
𝑅1

· · · 𝐿̂𝒜
𝑅𝑛

(3.79)

By inserting Eq.(3.78) into the above equation, we get

𝐿̂𝒜
𝑅1...𝑅𝑛

=
∑︁
𝑖

[(𝑇
(𝑖),𝑅1...𝑅𝑛

𝒜 ) · (𝑇 (𝑖)
𝒜 )−1] (3.80)

where

𝑇
(𝑖),𝑅1...𝑅𝑛

𝒜 ≡ 𝑊𝑅1𝑅1 . . .𝑊𝑅𝑛𝑅𝑛 ∘ 𝑇 (𝑖)
𝒜

= 𝜒𝑅𝜂𝑅 ∘ 𝑇 (𝑖)
𝒜 (3.81)

Here, the 𝑍2 element 𝜂𝑅 and the phase factor 𝜒𝑅 act on boundary virtual legs, as

shown in Fig.(3-5c). The second line of the above equation is obtained by the following
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fact:

𝜂𝑅(s, 𝑖)𝜒𝑅(s, 𝑖) = 𝑊𝑅1(s, 𝑖) . . .𝑊𝑅𝑛(𝑅
−1
𝑛−1 . . . 𝑅

−1
1 (s, 𝑖)) (3.82)

When 𝜂𝑅 = I, the action of 𝐿̂𝒜
𝑅1...𝑅𝑛

on an arbitrary tensor 𝑇𝒜 ∈ Λ gives the

same phase. When 𝜂𝑅 is the nontrivial 𝑍2 element, a 𝑍2 odd tensor 𝑇 𝑒
𝒜 picks up

an extra −1 comparing to a 𝑍2 even tensor 𝑇 1
𝒜 under the action of 𝐿̂𝒜

𝑅1...𝑅𝑛
. This

is exactly the phenomena for symmetry fractionalization of chargons: for nontrivial

𝜂𝑅, under symmetry 𝑅1 . . . 𝑅𝑛, a single chargon picks up an extra −1 comparing to a

topologically trivial excitations.

Note that 𝜒𝑅 only serves as a global phase, thus does not contribute to the sym-

metry fractionalization of chargons. It appears in Eq.(3.81) even for the ground state

tensor patch. In fact, this result is expected and is consistent with the physical inter-

pretation of 𝜒 discussed in the previous subsection. One way to see this is to repeat

the above analysis only for the ground states of the 1d spin-1 AKLT model on an

open chain, with the patch 𝒜 covering one end of the chain. Here one should instead

consider an injective matrix project state since the 𝐼𝐺𝐺 here is trivial. The appear-

ance of 𝜒 in this example can be simply interpreted as the projective representation

of the edge states in the AKLT model.

3.5 Discussion and Conclusions

In this chapter we attempt to construct generic symmetric ground state wavefunctions

for integer or fractionally filled correlated systems using PEPS, under certain assump-

tions. Here we review the assumptions that we made and discuss the limitations and

generalizations of our results.

Our assumption is that the on-site symmetry is implemented as the simple tensor

product of local representations or projective representations on the virtual legs in

PEPS. For instance, this is the origin of the minimal required 𝑍2 𝐼𝐺𝐺 in the half-

integer spin systems on the kagome lattice.
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This assumption is known to have problems when attempting to describe SPT

phases as well as phases with chiral edge states. For instance, let’s attempt to con-

struct a U(1) charge-conserving Chern insulator using the fermionic version of PEPS

(fPEPS)[7, 35, 84, 106]. Here the exact constructions of free fermion states with a

nonzero Chern number using Gaussian fPEPS[40, 142], in which the virtual legs trans-

form as U(1) representations, are shown to host power law correlation functions in

the real space. It has been pointed by Hastings[62] that for a general U(1) symmetric

PEPS with a bounded bond dimension 𝐷 which is a fully gapped ground state of a

local Hamiltonian, the assumption that the virtual legs transform as U(1) represen-

tations and the assumption that the PEPS carries nonzero Chern number generically

lead to contradictions.

In the next chapter, by relaxing this assumption, we are able to construct all the

cohomological SPT phases using PEPS. In particular, our formulation allows us to

classify SPT phases protected by both on-site and lattice symmetries.

We made a second assumption: we study only those symmetric quantum ground

states that can be represented by a single tensor network on the infinite lattice. This

assumption is made here mainly for technical simplicity rather than fundamental

difficulty. Note that this assumption is weaker than the assumption that the ground

state sector is composed of one-dimensional representations of the symmetry group

on any finite size samples. For instance consider a 𝑍2 QSL studied in this chapter

with a four-fold ground state sector on torus. When considering a finite size torus,

some of them could form multi-dimensional irreducible representations of the space

group.

This assumption could be violated in general model simulations. As a trivial

example we could consider a ferromagnetic state in an 𝑆𝑈(2) symmetric model. In

this case the number of degenerate ground states scale linearly as the number of sites,

which certainly cannot be represented by one or few PEPS.

As a slightly nontrivial example, we refer to the chiral-spin-charge-Chern liquid

(SCCL) in Ref.[74]. The spin dynamics in SCCL is described by a chiral 𝑍2 QSL,

which is a 𝑍2 QSL breaking the time reversal symmetry and has nonzero spin-chirality
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order parameter (e.g., < 𝑆⃗𝑖 · 𝑆⃗𝑗 × 𝑆⃗𝑘 ≯= 0 for three nearby spins 𝑖, 𝑗, 𝑘.). This state

breaks both time-reversal and mirror reflection symmetries, but leaves the combina-

tion of the two respected. In this situation, we found 8 = 4 × 2 ground states on

symmetric torus samples (compatible with the PSG transformations). The factor of

4 is related to the topological degeneracy of 𝑍2 gauge theory. And the extra factor

of 2 is due to the fact that the time reversal, the mirror reflection and the lattice

rotation form nontrivial 2-dimensional irreducible representations. The latter fact

dictates that it is impossible to represent such chiral liquids by a single symmetric

PEPS, in which case the extra factor of 2 degeneracy cannot be captured.

The simple way to proceed is to instead only consider the combination of the time

reversal and the mirror reflection as a symmetry, which allows a description of one of

the two time-reversal images using PEPS. The PEPS description of the other state

can be obtained by the time-reversal transformation.

We now comment on another fact in our construction. In the half-integer spin

systems on the kagome lattice, we show that a spin-singlet symmetric PEPS has

an 𝐼𝐺𝐺 that at least contains a 𝑍2 subgroup. If 𝐼𝐺𝐺 = 𝑍2 for a PEPS, and if

the PEPS is describing a fully gapped QSL, we showed that the topological order is

toric-code-like in Sec.3.2.4. This remains to be true if we construct some 𝑍2 QSL in

the absence of the time-reversal symmetry, using our formulation. However, there

are known constructions[13, 111, 71] of gapped 𝑍2 QSL on the kagome lattice in the

absence of the time-reversal symmetry whose topological order is the same as the one

in the double-semion model, fundamentally different from toric-code.

Interestingly, in a PEPS construction of the double semion QSL[71], in which spin

rotation is still implemented as representations on the virtual legs, the constructed

tensors are actually 𝑍4 invariant. Naively, such a state should have a 16-fold degen-

erate ground state sector on torus, but it was shown that only 4 of them are linearly

independent.

Next we comment on the connection between our work with previous works. For

readers that are familiar with the parton constructions and projective symmetry group

analysis of parton wavefunctions[153, 147, 93], clearly part of our results can be viewed
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as generalizations of these analyses into PEPS wavefunctions. In particular, in the

kagome half-integer spin 𝑆 example presented here, every crude class contains a dis-

tinct 𝑍2 QSL as a member phase. Part of our results can be viewed as a classification

of 𝑍2 QSL on the kagome lattice. Comparing with previous investigations on this

topic specifically for 𝑆 = 1/2, based on parton constructions[147, 93], we find that

our result captures every phase present in the Schwinger-boson construction[147], and

finer than that. Basically the previous PSG analysis of the Schwinger boson construc-

tion is related to the 𝜂-indices and Θ-indices in our formulation, while in this work

𝜒-indices are revealed.

However, comparing with the classification based on the Abrikosov-fermion con-

struction of 𝑍2 QSL on the kagome lattice[93], we find that some of them cannot

be described in our result. Similar observation was made by Ref.[92] when directly

comparing Schwinger-boson and Abrikosov-fermion constructions. We currently do

not have a full understanding of the physics behind this phenomenon. But it is worth

pointing out that the missing Abrikosov-fermion 𝑍2 QSL are all found to be gapless

(at least perturbatively) on the mean-field level[93].

Finally we comment on the hierarchical structure of the crude classes. Sometimes

there are physical reasons to believe that the 𝐼𝐺𝐺 needs to be larger than the minimal

required one in order to correctly capture certain quantum phases. The double semion

PEPS mentioned above may be viewed as such an example.

As one can see from the above discussions, the current work, which is based on the

point of view of diagnosing ground state wavefunctions using symmetric PEPS, brings

up many open questions and needs future investigations to clarify. In addition, the

algorithms proposed here for simulating strongly interacting models need benchmark

tests to have a understanding of its practical performance. Nevertheless we believe

that separating the short-range part of the physics from the long-range part is a

useful idea in investigating quantum phase diagrams of strongly correlated systems.

While generally the long-range part is still a difficult task, we expect that the method

introduced here can be used to provide sharp information for the short-range physics

efficiently.
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3.6 Symmetry group of the kagome lattice

As shown in Fig.(3-4), we label the three lattice sites in each unit cell with sublattice

index {𝑠 = 𝑢, 𝑣, 𝑤}. Further, we specify the virtual index {𝑖 = 𝑎, 𝑏, 𝑐, 𝑑} of a given

site. We choose Bravais unit vector as 𝑎⃗1 = 𝑥̂ and 𝑎⃗2 = 1
2
(𝑥̂ +

√
3𝑦). Thus, we are

able to specify the virtual degrees of freedom of site tensors as (𝑥, 𝑦, 𝑠, 𝑖). The sym-

metry group of such a two-dimensional kagome lattice is generated by the following

operations

𝑇1 : (𝑥, 𝑦, 𝑠, 𝑖) → (𝑥+ 1, 𝑦, 𝑠, 𝑖),

𝑇2 : (𝑥, 𝑦, 𝑠, 𝑖) → (𝑥, 𝑦 + 1, 𝑠, 𝑖),

𝜎 : (𝑥, 𝑦, 𝑢, 𝑖) → (𝑦, 𝑥, 𝑢, 𝑖𝜎1),

(𝑥, 𝑦, 𝑣, 𝑖) → (𝑦, 𝑥, 𝑤, 𝑖𝜎2),

(𝑥, 𝑦, 𝑤, 𝑖) → (𝑦, 𝑥, 𝑣, 𝑖𝜎2),

𝐶6 : (𝑥, 𝑦, 𝑢, 𝑖) → (−𝑦 + 1, 𝑥+ 𝑦 − 1, 𝑣, 𝑖),

(𝑥, 𝑦, 𝑣, 𝑖) → (−𝑦, 𝑥+ 𝑦, 𝑤, 𝑖).

(𝑥, 𝑦, 𝑤, 𝑖) → (−𝑦 + 1, 𝑥+ 𝑦, 𝑢, 𝑖𝐶6).

(3.83)

together with time reversal 𝒯 . Here,

{𝑎𝜎1, 𝑏𝜎1, 𝑐𝜎1, 𝑑𝜎1} = {𝑑, 𝑐, 𝑏, 𝑎}

{𝑎𝜎2, 𝑏𝜎2, 𝑐𝜎2, 𝑑𝜎2} = {𝑐, 𝑑, 𝑎, 𝑏}

{𝑎𝐶6 , 𝑏𝐶6 , 𝑐𝐶6 , 𝑑𝐶6} = {𝑏, 𝑎, 𝑑, 𝑐}

(3.84)

The symmetry group of a kagome lattice is defined by the following algebraic
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relations between its generators:

𝑇−1
2 𝑇−1

1 𝑇2𝑇1 = e,

𝜎−1𝑇−1
1 𝜎𝑇2 = e,

𝜎−1𝑇−1
2 𝜎𝑇1 = e,

𝐶−1
6 𝑇−1

2 𝐶6𝑇1 = e,

𝐶−1
6 𝑇−1

2 𝑇1𝐶6𝑇2 = e,

𝜎−1𝐶6𝜎𝐶6 = e,

𝐶6
6 = 𝜎2 = 𝒯 2 = e,

𝑔−1𝒯 −1𝑔𝒯 = e, ∀𝑔 = 𝑇1,2, 𝜎, 𝐶6

(3.85)

where e stands for the identity element in the symmetry group.

Further, consider system with spin rotation symmetry operator 𝑅𝜃𝑛⃗, which means

spin rotation about axis 𝑛⃗ through angle 𝜃. We mainly consider half-integer spins

(𝑆𝑈(2) symmetry) in this chapter. The spin rotation symmetry commutes with all

lattice symmetries as well as time reversal symmetry:

𝑔−1𝑅−1
𝜃𝑛⃗ 𝑔𝑅𝜃𝑛⃗ = e, ∀𝑔 = 𝑇1,2, 𝜎, 𝐶6, 𝒯

(3.86)
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Chapter 4

Symmetry protected topological

phases and tensor network states

4.1 Introduction

Recently the interplay between symmetry and topology in condensed matter physics

attract considerable interest both theoretically and experimentally. After the dis-

covery of topological insulators[78, 9, 100, 51, 114, 110, 59], it is theoretically rec-

ognized that there exist many new types of symmetric topological states of mat-

ter. In the absence of topological order, symmetry could protect different topolog-

ical phases, which are often referred to as symmetry protected topological (SPT)

phases[118, 24, 48, 108, 20, 25, 32]. In particular, the bosonic SPT phases require

strong interactions to realize.

Previously SPT phases have been theoretically investigated using various different

theoretical frameworks[20, 94, 141]. In particular, a wide range of SPT phases pro-

tected by onsite symmetry groups have been systematically classified and investigated[20],

based on a definition of short-range-entangled quantum phases. These SPT phases

are found to be directly related to the group cohomology theory, which we will refer

to as cohomological SPT phases.

Generally in condensed matter systems spatial symmetries (e.g., lattice space

group) are present. It is known that such symmetries could protect topological
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phases such as the topological crystalline insulators in fermionic systems[33, 50]. In

bosonic systems, analogous but correlation-driven SPT phases protected by spatial

symmetries have been investigated recently, for instance, using topological field the-

ory analysis[34, 167] and dimension reduction techniques[126]. However, so far the

systematic understanding of spatial-symmetry-protected SPT phases is still lacking.

Apart from classification problems, it is certainly very important to understand

whether these SPT phases can be realized in experimental systems. However, al-

though it is known that there exist a vast number of correlation-driven SPT phases

in two and higher spatial dimensions, very few of them are shown to be realized in

more or less simple and realistic quantum models[120].

The challenge here, at least to some extent, is due to the lack of physical guidelines

and suitable numerical methods. In history, the successful discovery of topological

insulators very much benefits from the band-inversion picture[51], which is a very

useful physical guideline. In this sense, it is highly desirable to develop more physical

guidelines for realizing correlation-driven SPT phases.

In addition, in order to search for SPT phases in correlated models, intensive

numerical simulations are inevitable. It is also desirable to develop new numerical

methods suitable for simulating SPT phases. In particular, for realistic models, one

usually has to perform variational simulations based on certain choice of variational

wavefunctions. Can one construct generic wavefunctions for SPT phases that are

suitable for numerical simulations?

In this chapter, we further develop a symmetric tensor-network theoretical frame-

work that is powerful to address the conceptual and practical issues raised above. Let

us firstly describe the results of this chapter. We mainly focus on the bosonic coho-

mological SPT phases. The major new results of this work are two-fold. First, we

identify the interpretation of cohomological SPT phases in a general tensor-network

formulation, which allows us to construct generic tensor-network wavefunctions for

SPT phases protected by onsite symmetries and/or spatial symmetries (see Sec.4.3.2).

Such generic tensor-network wavefunctions are suitable to perform variational numer-

ical simulations in searching for SPT phases in practical model systems. Second, this
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interpretation shows that, for a general symmetry group 𝑆𝐺, which may involve both

onsite symmetries and spatial symmetries, these cohomological SPT phases can be

classified by 𝐻𝑑+1(𝑆𝐺,𝑈(1)). Here the (𝑑+1)-th cohomology group 𝐻𝑑+1(𝑆𝐺,𝑈(1))

are defined such that the time-reversal symmetry and any mirror reflection symme-

tries act on the 𝑈(1) group in the anti-unitary fashion, while other symmetries act

on the 𝑈(1) group in the unitary fashion.

We would like to point out that the cohomological SPT phases classified by

𝐻𝑑+1(𝑆𝐺,𝑈(1)) may or may not host gapless boundary states, related to whether

one can choose a physical edge such that the symmetry protecting the SPT phase

is still preserved along the boundary. For instance, in 2+1D, the inversion sym-

metry (equivalent to 180∘ spatial rotation) generate a 𝑍2 unitary group. Because

𝐻3(𝑍2, 𝑈(1)) = 𝑍2, according to our main result, there is one nontrivial SPT phase

protected by inversion symmetry alone in 2+1D. However, near the edge the inversion

symmetry is always broken and gapless edge states are not expected to present. This

phenomenon is similar to the inversion symmetry protected topological insulators in

weakly interacting fermionic systems, e.g., axion insulators[134].

Previously progresses on analytically understanding SPT phases with onsite sym-

metries based on the tensor-network formulation in 2+1D were made[158]. Comparing

with earlier results, the current construction captures general spatial symmetries and

applies in one, two and three spatial dimensions, and therefore is more general. In

addition, in the current construction, the information of the SPT phases are encoded

in certain local constraints on the building block tensors, i.e., the local tensors are

living inside certain specific sub-Hilbert spaces. Such local constraints can be eas-

ily implemented in practical numerical simulations. We will provide some concrete

examples of such SPT tensor-network wavefunctions in Sec.4.3.5.

There are several by-products that are related to the special cases of the more

general results above. For instance, when 𝑆𝐺 involves translation symmetries in two

and higher spatial dimensions 𝑑, our construction related to 𝐻𝑑+1(𝑆𝐺,𝑈(1)) clearly

demonstrates so-called “weak topological indices”, whose physical origin is related to

lower dimensional SPT phases. As a concrete example, previously we demonstrated
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that there are 4 distinct featureless Mott insulators on the honeycomb lattice at half-

filling[79]. These distinct featureless Mott insulators now can be nicely interpreted as

the consequence of two weak topological indices.

An more important by-product is a generic relation in 2+1D between the SPT

phases and symmetry enriched topological (SET) phases via an anyon condensation

mechanism, which provides new physical guidelines realizing SPT phases. SET phases

are symmetric phases featuring topological order and anyon excitations. The interplay

between symmetry and the topological order gives rise to so-called symmetry enriched

phenomena such as symmetry fractionalization[153, 44, 98, 70, 69, 95, 6, 112, 128, 130].

One can consider an SET phase characterized by a usual abelian discrete gauge

theory, in which gauge charges feature nontrivial symmetry fractionalizations. Such

an SET phase can be quite conventional in the sense that there is no robust gapless

edge states, and can be realized in rather simple model systems[99, 5]. It turns

out that after the gauge fluxes boson-condense and destroy the topological order,

the resulting confined phase must be SPT phase if the condensed gauge fluxes carry

nontrivial quantum numbers and certain Criterion (see Sec.4.2) is satisfied.

This by-product signals that the traditional treatment on confinement-deconfinement

phase transitions[49] may worth being revisited when physical symmetries are imple-

mented. Although the general Criterion on the relation between SPT and SET phases

is obtained using the tensor-network formulation in Sec.4.3.2, a major advantage of

this by-product is that it can be understood using more conventional formulations

which we will discuss below.

4.2 The connection between SET phases and SPT

phases via anyon condensation

In this section we discuss a by-product of our general results obtained in Sec.4.3.2.

Instead of using tensor-network formulation, here we use (topological) field theoretical

languages, which does not require the readers to be familiar with tensor-network for-
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mulations. The discussions in this section suggest that the confinement-deconfinement

phase transitions of gauge theories, e.g. a usual 𝑍2 gauge theory need to be reconsid-

ered when symmetries are present, because different ways to confine the gauge fields

may lead to different SPT phases. For instance, it is well-known that valence bond

solids(VBS) in quantum spin systems can be viewed as the confined phases of gauge

theories. At the end of this section, we discuss the possible realizations of SPT VBS

phases.

Previously a related physical route to realize SPT phases has been discussed[141,

120, 54], which states that condensing vortices in superfluid carrying 𝑈(1) quantum

numbers could lead to SPT phases. The current discussion can be viewed as analogous

phenomena but in the context of topologically ordered phases. In addition, in the

current work, general spatial and onsite symmetries are considered and systematic

results are obtained.

4.2.1 A criterion to generate general cohomological SPT phases

via anyon condensation

The connection between SET phases and SPT phases via anyon condensation can be

quite general. In fact, the original study understanding the so-called 𝐸8 state was

achieved by condensing bosonic anyons coupled with multi-layers of 𝑝+ 𝑖𝑝 topological

superconductors[82]. Later on it was understood that quite systematically, starting

from a fermionic SPT phase, after coupling with a dynamical gauge field and condense

the appropriate bosonic anyon, one could confine the fermionic degrees of freedom

and obtain a bosonic SPT phase[168].

However, in those previous constructions of SPT phases, before anyon condensa-

tion, the SET phases themselves already feature gapless edge states. Indeed, before

coupling to the dynamical gauge fields, the systems are already in fermionic SPT

phases. In this chapter, we study a different type of generic connections between

SET and SPT phases via anyon condensations. Namely, the SET phases themselves

contain no symmetry protected edge states. In fact we will consider particularly sim-
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ple SET phases: the usual discrete abelian gauge theories with certain symmetries.

Here by “usual” we mean that, for instance, for a 𝑍2 gauge theory we only consider

the toric-code type topological order and do not consider the double-semion topo-

logical order. At the superficial level, it is unclear how these simple SET phases are

connected with SPT phases.

We will state a Criterion to obtain cohomological SPT phases via condensing (self-

statistics) bosonic anyons in these simple SET phases. A proof of this Criterion based

on tensor-network construction will be given in Sec.4.3.3. Before providing this tensor-

network based argument, in Sec.4.2.2 we present several examples demonstrating the

application of this criterion using the 𝐾-matrix Chern-Simons effective theories[151].

The topological quasiparticles in a usual 𝑍𝑛 gauge theory include the gauge charges

and the gauge fluxes, both are self-statistics bosonic. They can generate all other

quasiparticles via fusion. Let’s consider a 𝑍𝑛1 × 𝑍𝑛2 × ... × 𝑍𝑛𝑘
finite abelian gauge

theory, in the presence of a symmetry group 𝑆𝐺 that could be a combination of onsite

symmetries and spatial symmetries. In the following discussion, we denote a general

gauge flux as an 𝑚-quasiparticle, and a general gauge charge as an 𝑒-quasiparticle

(they do not have to be unit gauge charge/flux). 𝑆𝐺 can be a combination of onsite

and spatial symmetries. It turns out that 𝑆𝐺 may transform the topological quasi-

particles according to certain projective representations — a phenomenon that has

been called symmetry fractionalization.

It is known that the symmetry fractionalization pattern in the above SET phase

can characterized by the following mathematical expression:

Ω𝑔1Ω𝑔2 = 𝜆(𝑔1, 𝑔2)Ω𝑔1𝑔2 , (4.1)

where 𝑔1, 𝑔2 ∈ 𝑆𝐺, and Ω𝑔 is the symmetry transformation on the quasiparticles,

while 𝜆(𝑔1, 𝑔2) is an abelian quasiparticle in the theory. Physically, it means that the

operation Ω𝑔1Ω𝑔2 on some quasiparticle-𝑎 are different from the operation Ω𝑔1𝑔2 on

quasiparticle-𝑎 by a full braiding phase between quasiparticle-𝑎 and 𝜆(𝑔1, 𝑔2). The
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associative condition of symmetry operations dictates the following fusing relation:

𝜆(𝑔1, 𝑔2)𝜆(𝑔1𝑔2, 𝑔3) = 𝜆(𝑔2, 𝑔3)𝜆(𝑔1, 𝑔2𝑔3). (4.2)

Here we particularly focus on situations in which symmetry operations would not

change anyon types of 𝜆(𝑔1, 𝑔2). Because Ω𝑔 can be redefined by a braiding phase

factor with a quasiparticle 𝑏𝑔, 𝜆(𝑔1, 𝑔2) is well-defined up to a fusion with the quasi-

particle 𝑏𝑔1𝑏𝑔2𝑏−1
𝑔1𝑔2

(inverse means antiparticle.). Mathematically Eq.(4.2) indicates

that 𝜆(𝑔1, 𝑔2) is a 2-cocycle in the second-cohomology group 𝐻2(𝑆𝐺,𝒜), where 𝒜 is

the fusion group of the abelian quasiparticles in the SET phase.

For instance, consider a 𝑍2 gauge theory with an onsite Ising symmetry group

𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 = {𝐼, 𝑔}, in which only the 𝑒-particle features nontrivial symmetry fractional-

ization: although 𝑔2 = 𝐼, when acting on the 𝑒-particle 𝑔(𝑒)2 = −1. The −1 phase

factor here can be interpreted as the braiding phase between the 𝑒 particle with an

𝑚-particle. Consequently this SET phase can be described using the formulation in

Eq.(4.1) by 𝜆(𝑔, 𝑔) = 𝑚, while all other 𝜆’s are trivial.

Starting from the SET phase, our goal is to destroy the topological order completely

by boson-condensing all the 𝑚-particles, while leaving the physical symmetry unbroken.

It is straightforward to show that as long as one of the condensed 𝑚-particles hosts

non-trivial symmetry fractionalization, the 𝑚-condensed phase would spontaneously

break the symmetry. 1 Therefore, in order to be able to preserve the symmetry,

all the 𝑚-particles must have trivial symmetry fractionalization. Namely 𝜆(𝑔1, 𝑔2) in

Eq.(4.1) can be chosen such that all 𝜆(𝑔1, 𝑔2) do not contain 𝑒-quasiparticles, while

they may contain 𝑚-particles and their bound states (meaning that the 𝑒-particles

could have non-trivial symmetry fractionalization).

All the condensed 𝑚-quasiparticles have trivial symmetry fractionalization, but

they may or may not carry non-trivial usual symmetry representations (i.e., usual

quantum numbers). One may worry that condensing bosons carrying non-trivial
1One way to see this is that the nontrivial projective representations can always fuse into nontriv-

ial representations of the identity particle. Consequently one can always construct gauge invariant
order parameters breaking symmetry in the boson condensed phase, if the bosons feature nontrivial
symmetry fractionalization.
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quantum numbers would also break the physical symmetry. However, because the

𝑚-quasiparticles are topological excitations, symmetry breaking does not have to

happen. In fact, as long as the quantum numbers carried by the condensed 𝑚-

quasiparticles are such that the identity quasiparticles generated by fusing them (a

local physical excitation) always carry trivial quantum number, the symmetry is pre-

served even after the 𝑚-condensation.

Consequently, if we try to preserve the symmetry in the 𝑚-condensation, the

quantum numbers carried by condensed 𝑚-particles cannot be arbitrary. First, they

needs to be one-dimensional representations of the symmetry since higher dimensional

representations can always fuse into nontrivial representations for the identity quasi-

particle. Let us denote the one-dimensional representation for an 𝑚-quasiparticle by

𝜒𝑚, and ∀𝑔 ∈ 𝑆𝐺, 𝜒𝑚(𝑔) ∈ 𝑈(1). We have:

𝜒𝑚(𝑔1𝑔2) = 𝜒𝑚(𝑔1) · 𝜒𝑚(𝑔2)
𝑠(𝑔1),∀𝑔1, 𝑔2 ∈ 𝑆𝐺. (4.3)

Here 𝑠(𝑔) = 1 if 𝑔 is a unitary symmetry and 𝑠(𝑔) = −1 if 𝑔 is an anti-unitary

symmetry.

In order to preserve symmetry in the 𝑚-condensate (i.e., all condensed identity

particles carry trivial quantum numbers), we have the following constraint on 𝜒: if

two gauge-flux quasiparticles 𝑚 and 𝑚′ fuse into the quasiparticle 𝑚 ·𝑚′, then the

quantum numbers carried by all the three quasiparticles must satisfy

𝜒𝑚(𝑔) · 𝜒𝑚′(𝑔) = 𝜒𝑚·𝑚′(𝑔), ∀𝑔 ∈ 𝑆𝐺. (4.4)

For example, this condition dictates that 𝜒𝑚(𝑔) ∈ 𝑍𝑛 if 𝑚 is the gauge flux in the 𝑍𝑛

gauge theory.

The question is, what is the symmetric phase after the 𝑚-condensation?

Criterion: The above 𝑚-condensed phase is a cohomological SPT phase char-
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acterized by a 3-cocycle:

𝜔𝜒
𝜆(𝑔1, 𝑔2, 𝑔3) ≡ 𝜒𝜆(𝑔2,𝑔3)(𝑔1) ∈ 𝐻3(𝑆𝐺,𝑈(1)) (4.5)

From Eq.(4.5), in order to realize a nontrivial SPT phase, two ingredients are re-

quired in this anyon-condensation mechanism: (1)the 𝑒-quasiparticles have some non-

trivial symmetry fractionalizations so that 𝜆’s are formed by nontrivial𝑚-quasiparticles;

and (2) the quantum numbers carried by the condensed 𝑚-particles 𝜒 are nontrivial.

We will justify this Criterion using tensor-network formulation in 4.3.2. Here, let us

only show three facts confirming that the Criterion is self-consistent. These facts are

also useful to keep in mind in our discussions on examples.

(i): 𝜔𝜒
𝜆(𝑔1, 𝑔2, 𝑔3) is necessarily a 3-cocycle, which means that it satisfies:

𝜔𝜒
𝜆(𝑔1𝑔2, 𝑔3, 𝑔4) · 𝜔

𝜒
𝜆(𝑔1, 𝑔2, 𝑔3𝑔4)

=𝜔𝜒
𝜆(𝑔2, 𝑔3, 𝑔4)

𝑠(𝑔1) · 𝜔𝜒
𝜆(𝑔1, 𝑔2𝑔3, 𝑔4) · 𝜔

𝜒
𝜆(𝑔1, 𝑔2, 𝑔3). (4.6)

But this 3-cocycle condition directly follows from the fusion rule Eq.(4.2), Eq.(4.3),

and the symmetry-preserving condition Eq.(4.4).

(ii): Choosing equivalent 2-cocycle 𝜆(𝑔1, 𝑔2) in Eq.(4.2) to represent the same

physical symmetry fractionalization would at most modify 𝜔𝜒
𝜆(𝑔1, 𝑔2, 𝑔3) by a 3-coboundary

and thus would not change its equivalence class. This fact is straightforward to show

realizing 𝜆(𝑔1, 𝑔2) in Eq.(4.2) is well defined only up to a 2-coboundary, i.e.:

𝜆(𝑔1, 𝑔2) → 𝜆(𝑔1, 𝑔2) · 𝜖(𝑔1) · 𝜖(𝑔2) · 𝜖−1(𝑔1𝑔2). (4.7)

(iii): The quantum number 𝜒𝑚(𝑔) in Eq.(4.3) is also well-defined up to a 1-

coboundary: 𝜒𝑚(𝑔) → 𝜒𝑚(𝑔)· 𝛼
𝑠(𝑔)
𝑚

𝛼𝑚
, where 𝛼𝑚 like a gauge choice. It is straightforward

to also show that, if this modification of 𝜒𝑚(𝑔) preserve the relation Eq.(4.4), then it

can only induce a change of 𝜔𝜒
𝜆(𝑔1, 𝑔2, 𝑔3) by a 3-coboundary.

Remark-I: Time-reversal symmetry, mirror symmetries and the anti-unitary trans-

formation. The above Criterion need to be used with the following caution in mind.
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The Criterion has a straightforward interpretation when 𝑆𝐺 only involves unitary

symmetries, including usual onsite symmetries, translational/rotational spatial sym-

metries and their combinations. However, the time-reversal 𝒯 and mirror symmetries

𝒫 need to be treated as anti-unitary transformations. Namely, 𝑠(𝑔) = −1 if 𝑔 = 𝒯

or 𝑔 = 𝒫 . And generally if one counts the total number of 𝒯 operation and mirror

symmetry operations in 𝑔, then 𝑠(𝑔) = −1 iff this total number is an odd number.

For instance, the product of two different mirror planes is a rotational symmetry and

should be treated as a unitary transformation.

More precisely, if we consider the creation operator of an 𝑚-particle as 𝑚† ∼ 𝑒𝑖𝜑𝑚 ,

then in order to use the Criterion, we assume that the transformation rules for the

phase variable 𝜑𝑚 as: 𝑔 : 𝜑𝑚 → −𝜑𝑚 + 𝜃𝑔 if 𝑔 = 𝒯 or 𝑔 = 𝒫 , where 𝑒𝑖𝜃𝑔 is a 𝑈(1)

phase. Because 𝒯 involves the complex conjugation while 𝒫 does not, this leads to:

𝒯 : 𝑚† → 𝑒−𝑖𝜃𝒯𝑚†, and 𝒫 : 𝑚† → 𝑒𝑖𝜃𝒫𝑚.

Clearly, with these transformation rules, the 𝒯 quantum number 𝜒𝑚(𝒯 ) carried by

an 𝑚-particle alone is only a gauge choice and is not well-defined. But, for instance,

the combination of the two transformations: 𝒯 · 𝒫 should be treated as a unitary

transformation and its quantum number carried by an 𝑚-particle is well-defined.

These transformation rules can be physically interpreted as follows. In the usual

discrete Abelian gauge theories, the 𝑒-particles and 𝑚-particles are dual variables,

and it is a matter of choice to call which particles as gauge charges(fluxes). However,

if one treats 𝑒’s as particles, then the 𝑚’s need to be treated as vortices. Under

either 𝒯 or 𝒫 , if a particle transforms into a particle (an anti-particle), then its

vortex transforms into an anti-vortex (a vortex). We assign the above transformation

rules for the 𝑚-particles in order for the 𝑒-particles to have well-defined symmetry

fractionalizations. We will come back to this issue with a detailed field-theoretical

discussion shortly in Sec.4.2.2.

Remark-II: Definition of quantum numbers carried by 𝑚-particles. In Eq.(4.3,4.5)

we introduce the quantum numbers carried by an 𝑚-particle 𝜒𝑚(𝑔),∀𝑔 ∈ 𝑆𝐺. We

firstly emphasize the fact that, apart from the antiunitary transformations like 𝒯 ,𝒫 ,

these quantum numbers are numerically measurable for a low energy 𝑚-particle using
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tensor-network algorithms (see Sec.4.3.2 for details). However, it would be useful to

sharply define these quantum numbers in a way that is independent of the tensor-

network formulation. Below we provide such a definition using a symmetry-defect

argument for on-site unitary symmetries only.

The subtleties to define these quantum numbers for a given 𝑚-particle arise from

the fact that an anyon 𝑚 is not a local excitation. To define how an 𝑚-particle trans-

forms under a symmetry 𝑔, one has to find a way to define an local symmetry operator

Ω𝑔 acting on a finite region 𝐴 covering the 𝑚-particle. It has been argued that [6, 18],

for an onsite unitary 𝑔, Ω𝑔 can be interpreted as the following physical transforma-

tion of the wavefunction: (1) creating a pair of symmetry-𝑔 defects; (2) adiabatically

braiding one of the symmetry defect around the 𝑚-particle and finally annihilating

with the other symmetry defect (the path of the moving symmetry defect encloses of

a region 𝐴 covering the 𝑚-particle); (3) applying the symmetry transformation 𝑔 for

the physical degrees of freedom within 𝐴 only. The quantum number carried by the

𝑚-particle is the Berry’s phase accumulated over this process, relative to the Berry’s

phase obtained via the same process in the ground state.

The ambiguity in defining quantum numbers of the 𝑚-particle using the above

symmetry-defect argument can now be understood. The symmetry defects created

in pair may or may not contain other anyons, e.g., an 𝑒-particle, which have non-

trivial braiding statistics with the 𝑚-particle being studied. Different choices of the

symmetry defects used in the above process may lead to different quantum numbers

due to braiding statistics between the 𝑒-particle in the symmetry defects and the

𝑚-particle being studied. Therefore, to well-define the 𝜒𝑚(𝑔) quantum number, one

needs to make a particular choice of the symmetry defects. As will be proved in

Sec.4.3.3 and 4.3.4, it turns out that the quantum numbers 𝜒𝑚(𝑔) in the Criterion

are defined such that the symmetry defects in the above process have trivial symmetry

fractionalizations. We denote this choice of the symmetry defect as the canonical

choice of symmetry defect. The canonical choice of symmetry defects rules out the

possibility that the 𝑔1-symmetry-defects contain extra 𝑒-particles having nontrivial

statistics with 𝜆(𝑔2, 𝑔3) in Eq.(4.5), and thus well-define the 𝜒𝜆(𝑔2,𝑔3)(𝑔1).
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However, for spatial symmetries and the time-reversal symmetry, it is unclear

how to systematically create symmetry defects. For these symmetries, unfortunately

we currently do not know to define the quantum numbers 𝜒𝑚(𝑔)’s independent of

the tensor-network formulation. We will provide the measurable meaning of these

quantum numbers in the tensor-network language in Sec.4.3.4.

4.2.2 Examples: anyon condensation induced SPT phases in

the Chern-Simons 𝐾-matrix formalism

The purpose of this subsection is to demonstrate the application of the Criterion

Eq.(4.5) in some simple examples, within a convenient field-theory description: the

multi-component Chern-Simons theory, or the K-matrix formulation. In particular,

this formulation has been further developed by Lu and Vishwanath to successfully

describe the SPT phases and their gapless edge states[94]. All the SPT phases studied

here can be realized by condensing visons in a usual 𝑍2 gauge theory, which may be

useful to motivate microscopic model realizations of them.

The topological Lagrangian of a general multi-component Chern-Simons theory

is:

ℒ = − 1

4𝜋

∑︁
𝐼,𝐽

𝐾𝐼𝐽𝜖
𝜇𝜈𝜆𝑎𝐼𝜇𝜕𝜈𝑎

𝐽
𝜆 +

∑︁
𝐼

𝑎𝐼𝜇𝑗
𝜇
𝐼 , (4.8)

where 𝑗𝜇𝐼 for 𝐼 = 1, 2, ..𝑁 are the currents of quasiparticles coupling with gauge fields

𝑎𝐼𝜇. For the usual 𝑍2 gauge theory, the𝐾-matrix can be chosen to be: 𝐾𝑍2 =

⎛⎝0 2

2 0

⎞⎠.

Physically, this mutual-Chern-Simons theory can be interpreted as follows. Let

us start from a boson superfluid phase, formed by boson 𝑏, and consider the vortices.

For the purpose of physical arguments below, it is convenient to introduce the boson

number conservation 𝑈(1) symmetry which can be removed later. The well-known

boson-vortex duality states that one can describe the system as:

ℒ = − 1

2𝜅
(𝜖𝜇𝜈𝜆𝜕𝜈𝑎𝜆)

2 − 𝑎𝜇𝑗
𝜇
𝑣 , (4.9)
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where 𝑗𝜇𝑣 is the current of the vortices. We will use Ψ𝑣 to denote the single vortex

operator. The gauge flux of 𝑎𝜇 is the density of the original boson 𝑏: 𝑗𝜇𝑏 = 1
2𝜋
𝜖𝜇𝜈𝜆𝜕𝜈𝑎𝜆.

In the superfluid phase the vortices are gapped and the 𝑈(1) Goldstone mode is

described by the photon mode of 𝑎𝜇 (i.e., the Maxwell-like dynamics in the first term

in Eq.(4.9)).

Now let us consider the vortex condensed phase (i.e., the Mott insulator phase

of the boson 𝑏). One way to describe the vortex condensation is to introduce an

additional gauge field 𝑎𝑣 to describe the vortex current: 𝑗𝜇𝑣 = 1
2𝜋
𝜖𝜇𝜈𝜆𝜕𝜈𝑎

𝑣
𝜆. In order

to have vortex condensation captured, the dynamics of 𝑎𝑣 should be Maxwell-like.

Consequently the vortex condensed phase is described by:

ℒv-cond. =− 1

2𝜅
(𝜖𝜇𝜈𝜆𝜕𝜈𝑎𝜆)

2 − 1

2𝜅𝑣
(𝜖𝜇𝜈𝜆𝜕𝜈𝑎

𝑣
𝜆)

2

− 1

2𝜋
𝜖𝜇𝜈𝜆𝑎𝜇𝜕𝜈𝑎

𝑣
𝜆 (4.10)

If one ignores the higher order Maxwell dynamics, and only focus on the topological

terms, the Chern-Simons description of the vortex condensate is found to have the

form of Eq.(4.8) with 𝐾𝑡𝑟𝑖𝑣. =

⎛⎝0 1

1 0

⎞⎠. The two component gauge fields can be

identified: 𝑎1𝜇 = 𝑎𝜇 and 𝑎2𝜇 = 𝑎𝑣𝜇. Equations of motion tell that the quasiparticle

current 𝑗𝜇1 should be identified with that of 2𝜋-𝑎𝑣𝜇-flux (i.e., vortex Ψ𝑣), and the

quasiparticle current 𝑗𝜇2 is that of the 2𝜋-𝑎𝜇-flux (the original boson 𝑏). As explained in

Ref.[94], these quasiparticles could transform nontrivially under global symmetry, and

many SPT phases can be described by this 𝐾𝑡𝑟𝑖𝑣. effective theory by demonstrating

the existence of symmetry protected gapless edge states.

One can now view a 𝑍2 topologically ordered state described by 𝐾𝑍2 =

⎛⎝0 2

2 0

⎞⎠ as

an intermediate phase between the superfluid phase and the vortex condensed phase.

Instead of directly condensing Ψ𝑣, one could firstly condense the double-vortices Ψ2
𝑣.

Such double-vortex condensate can be again formulated by introducing the double-

vortex current 𝑗𝜇𝑑𝑣 =
1
2𝜋
𝜖𝜇𝜈𝜆𝜕𝜈𝑎

𝑑𝑣
𝜆 carrying two unit 𝑎𝜇 gauge charges (a term −2𝑎𝜇𝑗

𝜇
𝑑𝑣
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in the Lagrangian), and add some Maxwell dynamics for 𝑎𝑑𝑣,

ℒdv-cond. = − 1

𝜋
𝜖𝜇𝜈𝜆𝑎𝜇𝜕𝜈𝑎

𝑑𝑣
𝜆 + ... (4.11)

where ... include Maxwell dynamics for 𝑎𝜇 and 𝑎𝑑𝑣𝜇 . The mutual Chern-Simons term

here is just the 𝐾𝑍2 in the 𝐾-matrix formulations. In such a gauge-charge-2 conden-

sate, the bosonic topological quasiparticles include the unpaired single-vortex: Ψ𝑣, or

the 𝜋-flux of 𝑎𝑑𝑣𝜇 (labelled as quasiparticle-𝑚), and the quantized 𝜋-flux vortex of 𝑎𝜇

(labelled as quasiparticle-𝑒). Note that in this continuum theory, the 𝜋-flux and −𝜋-

flux are microscopically distinct, and we label 𝑒† as the creation operator the 𝜋-flux

of 𝑎𝜇. Consequently 𝑒 is the operator creating the −𝜋-flux. In addition, 𝑒†𝑒† = 𝑏†.

Remark-III: In this formulation, the relation between the symmetry transfor-

mation laws of the quasiparticles 𝑒,𝑚 in the double-vortex condensate and the quasi-

particles Ψ𝑣, 𝑏 the single-vortex condensate is now established: the quantum numbers

carried by Ψ𝑣 is the same as those carried by 𝑚, and the quantum numbers carried

by 𝑏 is twice of those carried by 𝑒. 2

The bulk Chern-Simons effective theory Eq.4.8 is accompanied with an effective

edge theory:

𝑆𝑒𝑑𝑔𝑒 =
∑︁
𝐼,𝐽

∫︁
𝑑𝑡𝑑𝑥

4𝜋
𝐾𝐼𝐽𝜕𝑡𝜑𝐼𝜕𝑥𝜑𝐽 − 𝑉𝐼𝐽𝜕𝑥𝜑𝐼𝜕𝑥𝜑𝐽 + ... (4.12)

where the 𝐾𝐼𝐽 term is the universal Berry’s phase, leading to the Kac-Moody algebra

[𝜕𝑥𝜑𝐼(𝑥), 𝜕𝑦𝜑𝐽(𝑦)] = 2𝜋𝑖𝐾−1
𝐼𝐽 𝜕𝑥𝛿(𝑥 − 𝑦). The 𝑉𝐼𝐽 term is non-universal and depends

on details of the edge, and “...” represents other symmetry allowed terms describing

local dynamics.

The phase variables 𝜑𝐼 ’s in Eq.(4.12) can be interpreted as the phases of quasipar-

ticles: 𝑒𝑖𝜑𝐼 can be identified with the quasiparticle creation operator for the current 𝑗𝜇𝐼
in Eq.(4.8). For example, in the double-vortex condensate, one has𝐾 = 𝐾𝑍2 , 𝜑1 = 𝜑𝑚

2The first half of this statement is in fact implicitly related to our definition of the quantum
numbers carried by the 𝑚-particle as explained in Remark-II. The canonical symmetry defects in
measuring these quantum numbers for onsite unitary symmetries do not contain 𝑒-particles, and
consequently would not be affected by the confinement phase transition.
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and 𝜑2 = 𝜑𝑒, where 𝑚† ∼ 𝑒𝑖𝜑𝑚 , 𝑒† ∼ 𝑒𝑖𝜑𝑒 . On the other hand, in the single-vortex

condensate, we have 𝐾 = 𝐾𝑡𝑟𝑖𝑣., 𝜑1 = 𝜑𝑣 and 𝜑2 = 𝜑𝑏, where Ψ†
𝑣 ∼ 𝑒𝑖𝜑𝑣 , 𝑏† ∼ 𝑒𝑖𝜑𝑏 .

As explained in Ref.[94, 95], in the absence of symmetry, cosine terms describing

local dynamics
∑︀

𝐼 𝐶𝐼 cos(
∑︀

𝐽 𝐾𝐼𝐽𝜑𝐽+𝜒𝐼) are allowed in the “ ...” in Eq.(4.12) (we only

consider bosonic systems). And when these terms are large, often the edge states can

be fully gapped by pinning the phase variables to their classical minima. However,

in the presence of symmetry,the transformation rules of 𝜑𝐼 sometimes dictate that

the edge states can only be gapped out after spontaneously breaking the symmetry.

When this happens for systems without topological order, i.e. 𝐾 = 𝐾𝑡𝑟𝑖𝑣., the bulk

state can be identified as an SPT phase with symmetry protected edge states.

We will apply the Criterion Eq.(4.5) for the symmetry groups (𝑆𝐺) in Table 4.1 in

2+1D. Here 𝜎 is an onsite unitary Ising symmetry, 𝒯 is the time-reversal, 𝒫 is a mirror

𝑆𝐺 𝐻3(𝑆𝐺,𝑈(1))
𝑍𝑜𝑛𝑠𝑖𝑡𝑒

2 ≡ {𝐼, 𝜎} 𝑍2

𝑍𝑇𝑃
2 ≡ {𝐼, 𝒯 · 𝒫} 𝑍2

𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑇

2 ≡ {𝐼, 𝜎} × {𝐼, 𝒯 } 𝑍2
2

𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑃

2 ≡ {𝐼, 𝜎} × {𝐼,𝒫} 𝑍2
2

𝑍𝑇𝑃
2 × 𝑍𝑇

2 ≃ 𝑍𝑃
2 × 𝑍𝑇

2 𝑍2
2

Table 4.1: Five examples of SPT phases studied in this section.

reflection symmetry, and 𝒯 · 𝒫 is their combination. According to the Criterion and

Remark-I, 𝒯 and 𝒫 should be both treated as anti-unitary, but 𝒯 ·𝒫 is unitary. One

can see that although the 𝑆𝐺’s of the former two examples (latter three examples) in

Table 4.1 are physically very different, at the mathematical group theoretical level,

they are identical.

The explicit forms of the inequivalent 3-cocycles can be obtained by direct calcula-

tions. In these simple examples, it turns out that one can always choose the 3-cocycle

𝜔 such that 𝜔(𝑔1, 𝑔2, 𝑔3) = −1 for certain 𝑔1, 𝑔2, 𝑔3, while all other 𝜔(𝑔1, 𝑔2, 𝑔3) = 1.

We list the nontrivial cocycles in Table 4.2,4.3. The trivial cocycle can be chosen

such that 𝜔(𝑔1, 𝑔2, 𝑔3) = 1, ∀𝑔1, 𝑔2, 𝑔3.

Remark-IV: time-reversal and mirror symmetries In order for the 2-component

mutual Chern-Simons theories of either 𝐾𝑡𝑟𝑖𝑣. or 𝐾𝑍2 to be symmetric under 𝒯 or
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cocycle 𝜔 𝜔(𝑔1, 𝑔2, 𝑔3) = −1 iff
𝜔1 𝑔1 = 𝑔2 = 𝑔3 = 𝑢

Table 4.2: 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 = {𝐼, 𝜎} or 𝑆𝐺 = 𝑍𝑇𝑃

2 = {𝐼, 𝒯 ·𝒫}. Denoting 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 /𝑍𝑇𝑃 =

{𝐼, 𝑢}, two inequivalent 3-cocycles 𝜔0(trivial) and 𝜔1 form a 𝑍2 group.

cocycle 𝜔 𝜔(𝑔1, 𝑔2, 𝑔3) = −1 iff
𝜔[1,0] 𝑔1, 𝑔2, 𝑔3 all contain 𝑢
𝜔[0,1] 𝑔1 contains 𝑢 and 𝑔2, 𝑔3 both contain 𝜂.
𝜔[1,1] 𝑔1 contains 𝑢 and 𝑔2, 𝑔3 both contain

either 𝑢 or 𝜂 except for 𝑔2 = 𝑔3 = 𝑢 · 𝜂.

Table 4.3: 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑇

2 , or 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑃

2 , or 𝑆𝐺 = 𝑍𝑇𝑃
2 × 𝑍𝑇

2 . De-
noting 𝑍𝑜𝑛𝑠𝑖𝑡𝑒

2 /𝑍𝑇𝑃 = {𝐼, 𝑢} and 𝑍𝑇
2 /𝑍𝑃

2 = {𝐼, 𝜂}, the four inequivalent 3-cocycles
𝜔[0,0](trivial), 𝜔[1,0], 𝜔[0,1], 𝜔[1,1] form a 𝑍2

2 group. Note that 𝑢 is a unitary transfor-
mation and 𝜂 is an anti-unitary transformation.

𝒫 , it is required that the 𝑎1𝜇 and 𝑎2𝜇 to transform oppositely under these symmetries.

Consequently, denoting the densities of the two types of quasiparticles coupled with

𝑎1𝜇(𝑎2𝜇) as 𝜌1(𝜌2), if one has 𝒯 : 𝜌1 → 𝜌1 (𝒫 : 𝜌1 → 𝜌1), one must also have 𝒯 : 𝜌2 →

−𝜌2 (𝒫 : 𝜌2 → −𝜌2), and vice versa.

For instance, if one requires 𝒫 : 𝑒† → 𝑒𝑖𝛼𝑒𝑒† , then 𝒫 : 𝑚† → 𝑒𝑖𝛼𝑚𝑚, where

𝑒𝑖𝛼𝑒 , 𝑒𝑖𝛼𝑚 are phase factors. After choosing a 𝒫 symmetric edge along the 𝑥-direction,

these leads to the following rules in the effective theory Eq.(4.12): 𝒫 : 𝜑𝑒(𝑡, 𝑥, 𝑦) →

𝜑𝑒(𝑡,−𝑥, 𝑦) +𝛼𝑒;𝜑𝑚(𝑡, 𝑥, 𝑦) → −𝜑𝑚(𝑡,−𝑥, 𝑦) +𝛼𝑚. As discussed in Remark-I, to use

the Criterion, we always require that under either 𝒫 or 𝒯 , 𝜑𝑚 flips sign but 𝜑𝑒 does

not.

All SPT phase examples discussed in this section can be realized via the anyon

condensation Criterion starting from a SET phase with usual 𝑍2 topological order.

Our strategy is two-step. For a given SPT 3-cocycle 𝜔(𝑔1, 𝑔2, 𝑔3), using the Criterion,

we look for the 𝑍2 topologically ordered SET phase with desired symmetry proper-

ties 𝜒𝑚(𝑔1) and 𝜆(𝑔2, 𝑔3). Second, we condense the 𝑚-particle and demonstrate the

resulting phase is indeed an SPT phase by studying its edge effective theory Eq.(4.12).
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𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2

As the simplest example of the Criterion, let us consider the SPT phase corresponds to

the 3-cocycle 𝜔1 for 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 = {𝐼, 𝑔} in Table 4.2. The desired 𝑍2 topologically

ordered SET phase can be easily identified:

𝜒𝜆(𝑔2,𝑔3)(𝑔1) = 𝜔1(𝑔1, 𝑔2, 𝑔3)

⇒ 𝜒𝑚(𝑔) = −1, 𝜆(𝑔, 𝑔) = 𝑚, (4.13)

while all other 𝜒, 𝜆’s are trivial. Namely this is an SET phase in which the gauge

charge 𝑒 features nontrivial symmetry fractionalization: 𝑔(𝑒)2 = −1, and the gauge

flux 𝑚 has no nontrivial symmetry fractionalization but carries a nontrivial Ising

quantum number 𝜒𝑚(𝑔) = −1.

These symmetry transformation properties can be implemented in the 𝐾-matrix

formulation with 𝐾 = 𝐾𝑍2 and 𝑔 : 𝑚† → −𝑚†; 𝑒† → 𝑖 · 𝑒†. In the corresponding edge

theory Eq.(4.12), these lead to:

𝑔 : 𝜑𝑚 → 𝜑𝑚 + 𝜋; 𝜑𝑒 → 𝜑𝑒 + 𝜋/2 (4.14)

In this SET phase, it is perfectly fine to have a gapped edge without breaking

physical symmetry. For example, symmetry allows 𝐶 ·cos(2𝜑𝑚+𝜒𝑚) term in the “ ...”.

When this term is large enough the edge states will be gapped out by pinning 2𝜑𝑚

to a semiclassical minimum, which does not break the physical symmetry. Note that

𝑒𝑖𝜑𝑚 itself is an anyon operator and does not correspond to a local order parameter.

Next, we condense the 𝑚-particles (the remaining single-vortices) to destroy the

topological order without breaking the symmetry. The resulting single-vortex con-

densate is described by 𝐾 = 𝐾𝑡𝑟𝑖𝑣.. According to Remark-III, we have 𝑔 : Φ†
𝑣 →

−Φ†
𝑣; 𝑏

† → −𝑏†. In the corresponding edge theory Eq.(4.12), these lead to:

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋; 𝜑𝑏 → 𝜑𝑏 + 𝜋. (4.15)
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3-cocycle SET bulk SPT edge
𝜔1 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑖 · 𝑒†
𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

Table 4.4: The symmetry properties of the nontrivial SPT phase protected by 𝑆𝐺 =
𝑍𝑜𝑛𝑠𝑖𝑡𝑒

2 = {𝐼, 𝑔}, and the SET phase before the anyon condensation.

This is exactly the symmetry properties of the 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 SPT phase studied in Ref.[94],

where it is shown that it is impossible to gap out the edge states without spontaneously

breaking the 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 symmetry. In Ref.[94], Eq.(4.15) was obtained by systematically

investigating all possible self-consistent transformation rules and searching for sym-

metry protected gapless edge states. But here, with the help of the Criterion and

knowledge of the 3-cocycle 𝜔1, Eq.(4.15) is directly obtained. These results are sum-

marized in Table 4.4.

𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑇

2

There are three nontrivial cohomological SPT phases protected by 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 ×

𝑍𝑇
2 = {𝐼, 𝑔} × {𝐼, 𝒯 }, whose corresponding nontrivial 3-cocycles are listed in Table

4.3. We discuss them separately:

∙𝜔[1,0]: We need 𝜒𝑚(𝑔) = −1 and 𝜆(𝑔, 𝑔) = 𝑚 in the SET phase (all other 𝜆’s are

trivial). After condensing 𝑚-particles gapless edge states are protected by 𝑔 alone, as

already discussed in Eq.(4.15).

∙𝜔[0,1]: We again need an SET phase with 𝜒𝑚(𝑔) = −1, but 𝜆(𝒯 , 𝒯 ) = 𝑚 (all other

𝜆’s are trivial). The latter condition dictates that the 𝑒-particles are Kramer doublets

because they form projective representations under time reversal: 𝒯 (𝑒)2 = −1. The

symmetry transformation rules in the bulk effective theory can be implemented as:

𝑔 : 𝑚† → −𝑚†; 𝑒† → 𝑒†, while 𝒯 : 𝑚† → 𝑚†; 𝑒† → −𝑖 · 𝑒.. In the corresponding edge

theory:

𝑔 :𝜑𝑚 → 𝜑𝑚 + 𝜋; 𝜑𝑒 → 𝜑𝑒,

𝒯 :𝜑𝑚 → −𝜑𝑚; 𝜑𝑒 → 𝜑𝑒 + 𝜋/2. (4.16)
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More precisely, for example, the first rule should be interpreted as 𝜑𝑚(𝑡, 𝑥, 𝑦) →

𝜑𝑚(−𝑡, 𝑥, 𝑦, ) + 𝜋 and we have been ignoring the space-time coordinates to save no-

tations. After condensing 𝑚-particles, the resulting phase is described by 𝐾 = 𝐾𝑡𝑟𝑖𝑣.

with the following symmetry transformations on the edge degrees of freedom:

𝑔 :𝜑𝑣 → 𝜑𝑣 + 𝜋; 𝜑𝑏 → 𝜑𝑏,

𝒯 :𝜑𝑣 → −𝜑𝑣; 𝜑𝑏 → 𝜑𝑏 + 𝜋. (4.17)

Clearly the cosine terms cos(𝜑𝑣 + 𝜒𝑣) and cos(𝜑𝑏 + 𝜒𝑏) are not allowed by symmetry

and gapless edge states are protected. This is indeed the symmetry properties of

another 𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑇

2 SPT phase studied in Ref.[94].

∙𝜔[1,1]: We need an SET phase in which 𝜒𝑚(𝑔) = −1, and both 𝜆(𝑔, 𝑔) =

𝜆(𝒯 , 𝒯 ) = 𝑚 (i.e. both 𝑔(𝑒)2 = 𝒯 (𝑒)2 = −1). In the edge theory of this SET

phase:

𝑔 :𝜑𝑚 → 𝜑𝑚 + 𝜋; 𝜑𝑒 → 𝜑𝑒 + 𝜋/2,

𝒯 :𝜑𝑚 → −𝜑𝑚; 𝜑𝑒 → 𝜑𝑒 + 𝜋/2. (4.18)

After condensing 𝑚-particles, the resulting phase is described by 𝐾 = 𝐾𝑡𝑟𝑖𝑣. with the

following symmetry transformations on the edge degrees of freedom:

𝑔 :𝜑𝑣 → 𝜑𝑣 + 𝜋; 𝜑𝑏 → 𝜑𝑏 + 𝜋,

𝒯 :𝜑𝑣 → −𝜑𝑣; 𝜑𝑏 → 𝜑𝑏 + 𝜋. (4.19)

The edge theory of this SPT phase was also pointed out in Ref.[94]. Again, using

the Criterion, all these SPT phases are directly obtained. The results of this part are

summarized in Table 4.5.
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3-cocycle SET bulk SPT edge
𝜔[1,0] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑖 · 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → 𝑒

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏

𝜔[0,1] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → −𝑖 · 𝑒

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝜔[1,1] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑖 · 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → −𝑖 · 𝑒

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

Table 4.5: The symmetry properties of the three nontrivial SPT phases protected by
𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒

2 × 𝑍𝑇
2 = {𝐼, 𝑔} × {𝐼, 𝒯 }, together with those of the corresponding SET

phases before anyon condensations.

𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒
2 × 𝑍𝑃

2

Again there are three nontrivial cohomological SPT phases as listed in Table 4.3.

Because the analysis is similar to the previous case, we only list the results in Table

4.6. Note that we will choose a 𝒫 symmetric edge along the 𝑥-direction, and will

again ignore the space-time coordinates to save notations: e.g., 𝒫 : 𝜑 → ±𝜑 + 𝛼

really means 𝒫 : 𝜑(𝑡, 𝑥, 𝑦) → ±𝜑(𝑡,−𝑥, 𝑦) + 𝛼. We find that the three nontrivial

SPT phases obtained here are consistent with earlier results in Ref.[167] obtained by

directly studying the symmetry transformations in the 𝐾𝑡𝑟𝑖𝑣 effective theory without

resorting to group cohomology.

𝑆𝐺 = 𝑍𝑇𝑃
2 × 𝑍𝑇

2 ≃ 𝑍𝑃
2 × 𝑍𝑇

2 and 𝑆𝐺 = 𝑍𝑇𝑃
2

As mentioned before, both 𝒯 ,𝒫 send 𝜑𝑚 to −𝜑𝑚 up to phase shifts. These phase

shifts are changing under gauge transformation 𝜑𝑚 → 𝜑𝑚+𝛿 and are not well-defined.

But their combination 𝒯 · 𝒫 should be treated as a unitary transformation sending

𝜑𝑚 to 𝜑𝑚 up to a well-defined phase shift, whose possible values are limited to 0 and

𝜋 since (𝒯 · 𝒫)2 = 𝐼 assuming 𝑚-particles have trivial symmetry fractionalization.
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3-cocycle SET bulk SPT edge
𝜔[1,0] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑖 · 𝑒†

𝒫 : 𝑚† → 𝑚

𝑒† → 𝑒†

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒫 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏

𝜔[0,1] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑒†

𝒫 : 𝑚† → 𝑚

𝑒† → 𝑖 · 𝑒†

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏

𝒫 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝜔[1,1] 𝑔 : 𝑚† → −𝑚†

𝑒† → 𝑖 · 𝑒†

𝒫 : 𝑚† → 𝑚

𝑒† → 𝑖 · 𝑒†

𝑔 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒫 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

Table 4.6: The symmetry properties of the three nontrivial SPT phases protected by
𝑆𝐺 = 𝑍𝑜𝑛𝑠𝑖𝑡𝑒

2 × 𝑍𝑃
2 = {𝐼, 𝑔} × {𝐼,𝒫}, together with those of the corresponding SET

phases before anyon condensations.

Using the anyon condensation mechanism (the Criterion) and the cocycles listed in

Table 4.3 and Table 4.2, one can straightforwardly obtain the three nontrivial SPT

phases protected by 𝑆𝐺 = 𝑍𝑇𝑃
2 × 𝑍𝑇

2 ≃ 𝑍𝑃
2 × 𝑍𝑇

2 and the one nontrivial SPT phase

protected by 𝑆𝐺 = 𝑍𝑇𝑃
2 = {𝐼, 𝒯 · 𝒫}. After choosing a 𝒫 symmetric edge along

the 𝑥-direction, we list the results in Table 4.7 and 4.8. One can easily check that

indeed the cosine terms cos(𝜑𝑣 + 𝜒𝑣) or cos(𝜑𝑏 + 𝜒𝑏) are forbidden by symmetry, and

the symmetry allowed terms like cos(2𝜑𝑣 + 𝜒𝑣) or cos(2𝜑𝑏 + 𝜒𝑏) would spontaneously

break the symmetry after gapping out the edge modes. These SPT phases, to our

knowledge, have not been pointed out before.

4.2.3 Possible realizations — SPT Valence Bond Solids

Valence Bond Solids(VBS) can be realized in quantum spin-1/2 model systems[113,

99, 121, 116]. They spontaneously break the lattice translational symmetry but pre-

serve the spin-rotational symmetry/time-reversal symmetry. The characteristic of a

VBS phase is the long-range bond-bond correlation function. It is quite popular to

visualize these phases as if the neighboring spin-1/2’s form static spin-singlet valence
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3-cocycle SET bulk SPT edge
𝜔[1,0] 𝒫 : 𝑚† → −𝑚

𝑒† → 𝑖 · 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → 𝑒

𝒫 : 𝜑𝑣 → −𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏

𝜔[0,1] 𝒫 : 𝑚† → −𝑚
𝑒† → 𝑖 · 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → −𝑖 · 𝑒

𝒫 : 𝜑𝑣 → −𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

𝜔[1,1] 𝒫 : 𝑚† → −𝑚
𝑒† → 𝑒†

𝒯 : 𝑚† → 𝑚†

𝑒† → −𝑖 · 𝑒

𝒫 : 𝜑𝑣 → −𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏

𝒯 : 𝜑𝑣 → −𝜑𝑣

𝜑𝑏 → 𝜑𝑏 + 𝜋

Table 4.7: The symmetry properties of the three nontrivial SPT phases protected
by 𝑆𝐺 = 𝑍𝑇𝑃

2 × 𝑍𝑇
2 ≃ 𝑍𝑃

2 × 𝑍𝑇
2 = {𝐼,𝒫} × {𝐼, 𝒯 }, together with those of the

corresponding SET phases before anyon condensations.

3-cocycle SET bulk SPT edge
𝜔1 𝒯 · 𝒫 : 𝑚† → −𝑚†

𝑒† → −𝑖 · 𝑒
𝒯 · 𝒫 : 𝜑𝑣 → 𝜑𝑣 + 𝜋

𝜑𝑏 → 𝜑𝑏 + 𝜋

Table 4.8: The symmetry properties of the nontrivial SPT phase protected by 𝑆𝐺 =
𝑍𝑇𝑃

2 , and the SET phase before the anyon condensation.
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bond patterns, which suggests that they may be adiabatically connected to a limit in

which the global wavefunctions are simply direct products of all the valence bonds.

However , from a general point of view, this picture of VBS may be misleading:

the long-range bond-bond correlation function does not imply that the wavefunction

can be always adiabatically connected to a direct product state. Motivated by the

examples studied in Table 4.7, below we propose new types of SPT-VBS phases

protected by a mirror symmetry 𝒫 and the time-reversal symmetry 𝒯 . In fact, it is

even unclear whether these SPT-VBS phases are already realized in existing models

featuring VBS phases.

One could understand a VBS phase in spin models with a half-integer spin per

unit-cell by starting from a 𝑍2 quantum spin liquid(QSL) phase. Quite generally,

in a 𝑍2 QSL, the 𝑒-particles are the Kramer-doublet spinons, and the 𝑚-particles

are the spinless visons. Namely the fact that the 𝑒-particles are Kramer-doublets

basically comes for free. It is well-known that the half-integer spin per unit-cell

would dictate that the visons have nontrivial translational symmetry fractionalization.

Consequently condensing the visons would break translational symmetry but preserve

the spin-rotational symmetry, resulting in a VBS phase. But the VBS phase can be

still symmetric under certain mirror reflection. For instance, the columnar VBS

pattern on the square lattice is symmetric under the mirror reflection around the line

crossing the bond centers along a column. The vison would certainly have trivial

symmetry fractionalization under the 𝒯 and 𝒫 defined here.

Let us particularly pay attention to the two SPT phases characterized by 𝜔[0,1]

and 𝜔[1,1] in Table 4.7. Before the 𝑚-particle condensation, the corresponding two

SET phases both have Kramer-doublet 𝑒-particles, and their difference lies in the

presence/absence of symmetry fractionalization of 𝒫 . In both case, one could realize

the corresponding SPT phases by condensing the 𝑚-particle (vison) which is odd

under the combination 𝒯 · 𝒫 : 𝑚† → −𝑚.

Namely, whether the topological trivial VBS or the SPT-VBS is realized com-

pletely depends on which vison is condensed: the 𝒯 · 𝒫 even vison or the 𝒯 · 𝒫 odd

vison. This is an energetic question and one need to numerically measure this quan-
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tum number for the low energy visons near the condensation. However, as mentioned

before, such measurement is nontrivial to perform and we currently only know how

to do it using tensor-network-based algorithms (see Sec.4.3.3 for details).

Note that although we propose the SPT-VBS phases using the anyon-condensation

mechanism from 𝑍2 QSLs, one does not have to realize the 𝑍2 QSL in spin models in

order to realize the SPT-VBS phases. The anyon-condensation mechanism is simply

one route to ensure that SPT-VBS phase can be obtained. As stable phases, SPT-

VBS phases may be obtained via other routes3, or even first-order phase transitions,

which do not involve QSLs.

4.3 Symmetric tensor-network constructions in 2+1D

In this section, we develop a general formulation to construct/classify 2+1D cohomo-

logical bosonic SPT phases protected by both on-site symmetries as well as spatial

symmetries by Projected Entangled Pair States (PEPS). For each class we provide

generic tensor wavefunctions, which are useful for numerical simulations.

4.3.1 A simple example: 𝑍2 SPT

Before developing a general formulation, we will study a simple example: the SPT

phase protected by onsite 𝑍2 symmetry[25].

Let us first focus on the fixed point wavefunction of the nontrivial 𝑍2 SPT phase.

Here, we follow the convention in Ref.[28]. The system lives on a honeycomb lattice,

where each lattice site contains three qubits, as shown in Fig. 4-1 as three circles. The

six spin 1
2
’s around a plaquette are either all in the |0⟩ state or all in the |1⟩ state,

forming 𝑍2 domains. The fixed point wavefunction for the nontrivial 𝑍2 SPT phase

3for instance, the VBS phase in the context of the easy-plane deconfined criticality is obtained by
condensing magnetic vortices coupling with a 𝑈(1) gauge field. It would be interesting to understand
whether the 𝒯 · 𝒫 quantum number discussed here can be generalized to these vortex-like objects.
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Figure 4-1: The 𝑍2 symmetric wavefunction on the honeycomb lattice. Each site
contains three qubits. The six qubits around each plaquette are all in the same spin
state. The 𝑍2 symmetry flips spins, which acts as 𝜎𝑥.

is

|𝜓⟩ =
∑︁
𝒞

(−1)𝑁𝒞 |𝒞⟩ (4.20)

where 𝒞 denotes 𝑍2 domain configurations and 𝑁𝒞 is the number of domain walls in

𝒞.

The nontrivial SPT state can be represented with tensors given in Fig. 4-2. A

site tensor has six internal (virtual) legs, where each internal leg represents a qubit.

Here, we choose tensors to be the same for both sub-lattices. Notice that a physical

leg and the two inner indices connected to it are always in the same state. So after

contraction, physical legs within one plaquette share the same state. Further, the

extra ±i phase contributes −1 for each domain wall loop. In this way, one can easily

check that the tensor network state indeed represents the wavefunction defined in

Eq.(4.20).

It is instructive to see how the 𝑍2 symmetry acts on local tensors. A local tensor

is not invariant under 𝑔 action, but the transformed tensor differ from the original

one by some gauge transformation on internal legs, labeled as 𝑊𝑔 (𝑊−1
𝑔 ), as shown in
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Figure 4-2: The tensor state representing the nontrivial 𝑍2 SPT wavefunction defined
in Eq.(4.20). An internal leg support two dimensional Hilbert space. Physical states
are labeled by numbers in the circle, while virtual states are labeled by numbers at
the end of internal legs.

Fig. 4-3. For tensors defined on Fig. 4-2), we obtain that

𝑊𝑔 = |11⟩⟨00|+ i|10⟩⟨01|+ i|01⟩⟨10|+ |00⟩⟨11| (4.21)

We point out here, 𝑊𝑔 does not form a 𝑍2 group. Instead, we have

𝑊 2
𝑔 = 𝜎𝑧 ⊗ 𝜎𝑧 (4.22)

So, after applying Ising symmetry twice, we are left with the 𝜎𝑧 action on all internal

legs, and trivial action on all physical legs. Notice, the 𝜎𝑧 action on every internal leg

is a special kind of gauge transformation, which leaves every single tensor invariant,

as indicated by tensor equations on Fig. 4-4(a). This kind of gauge transformations

form a group, named as the invariant gauge group (IGG). IGG is essential for tensor

network constructions of nontrivial phases.

Here, IGG is a 𝑍2 group, since 𝜎2
𝑧 = I. In general, a nontrivial 𝑍2 IGG leads

to the 𝑍2 toric code topological order[127, 117, 76]. However, we claim that the 𝑍2

topological order is killed due to tensor equations in Fig. 4-4. To see this, we first

point out that a site tensor is invariant under single-leg 𝜎𝑧 action on internal legs

of one plaquette. Notice that the single-leg 𝜎𝑧 action anticommutes with 𝑊𝑔, while

122



Figure 4-3: Symmetry conditions for the 𝑍2 symmetric state. Here, 𝑋 is short for 𝜎𝑥,
and 𝑊𝑔 (𝑊−1

𝑔 ) denotes the associated gauge transformation. For the wavefunction
defined in Eq.(4.20), 𝑊𝑔 = |11⟩⟨00|+ i|10⟩⟨01|+ i|01⟩⟨10|+ |00⟩⟨11|.

double-leg 𝜎𝑧 ⊗ 𝜎𝑧 action commutes with 𝑊𝑔:

𝑊𝑔𝜎𝑧 = −𝜎𝑧𝑊𝑔 (4.23)

The physical meaning of the single-leg 𝜎𝑧 action is to create a (topologically-trivial)

𝑍2 symmetry charge excitation. To see this, we first point out that action of 𝑍2

symmetry 𝑔 on a local patch ℛ is naturally defined as acting 𝑔 on physical sites of 𝑅

and 𝑊𝑔 on the boundary virtual legs of 𝑅. If 𝑅 contains one tensor with a single-leg

𝜎𝑧 action, we get an extra minus sign due to Eq.(4.23), which is interpreted as a 𝑍2

symmetry charge inside 𝑅.

The fact that a site tensor is invariant under two single-leg 𝜎𝑧 action indicates

the existence of a particular sub-group of IGG – the “plaquette IGG”, whose elements

only have nontrivial action on internal legs within one plaquette. By multiplying

all nontrivial plaquette IGG elements of all plaquettes, we recover the nontrivial

element of the original 𝑍2 IGG, which is double-leg 𝜎𝑧 action on every internal leg.

The decomposition of IGG element into plaquette IGG elements is essential for the
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Figure 4-4: (a) Gauge transformations which leave local tensors invariant. Here, 𝑍 is
short for 𝜎𝑧. (b) The condensation of visons carrying 𝑍2 symmetry charge.

construction of generic wavefunctions of SPT phases.

As we will see, the toric code topological order is killed due to the presence of the

plaquette IGG. We put the system on a torus. The topological degenerate ground

states are captured by inserting the non-contractible 𝜎𝑧 loops. Since every tensor is

invariant under two single-leg 𝜎𝑧 actions, the wavefunction with non-contractable 𝜎𝑧

loop turns out to be the same as the original wavefunction. So, there is no topological

ground state degeneracy, and the state has no topological order.

The physical reason can be interpreted as vison (𝑚) condensation. A pair of 𝑚-

particles are created at two ends of a double-leg 𝜎𝑧 ⊗ 𝜎𝑧 string. As indicated in Fig.

4-4(b), the creation of a pair of bond states of 𝑍2 symmetry charges and visons leaves

the wavefunction invariant. In other words, these bound states (𝑚-particles carrying

𝑍2 odd quantum number) are condensed, thus killing the topological order.

There remains one question to be answered: what is the SET phase (𝑍2 topolog-

ical order with 𝑍2 symmetry) before condensation? To see this, let us re-examine

Eq.(4.22): two 𝑍2 symmetry defects 𝑊𝑔 fuse to a vison, which means 𝑒 carries frac-

tional 𝑍2 quantum number and 𝑚 has the trivial symmetry fractionalization pattern.

Let us summarise the previous discussion. We start from an SET phase with 𝑍𝑔
2
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topological order, where 𝑒-particles carry fractional 𝑍𝑠
2 quantum number, as indicated

in Eq.(4.22). Eq.(4.23) tells us that the single-leg 𝜎𝑧 action creates nontrivial 𝑍𝑠
2 sym-

metry charge4. The plaquette IGG defined on Fig. 4-4(a) leads to the condensation

of visons carrying nontrivial 𝑍2 charges. In the following, we show that any state sat-

isfying these tensor equations is either a nontrivial 𝑍2 SPT phase, or a spontaneously

symmetry breaking phase in the thermodynamic limit.

One way to see this is to gauge the 𝑍𝑠
2 symmetry. It is known that gauging the

nontrivial 𝑍𝑠
2 SPT phase gives us the double semion topological order[87]. Let us

verify it in the tensor network formulation. As shown in Fig. 4-5, for the gauged 𝑍2

SPT state, physical degrees of freedom live on links. The physical state on the link is

determined by the “difference” of the two internal legs. The 𝑍2 symmetric condition

for 𝑔 and 𝑊𝑔 in Fig. 4-3 becomes a new IGG element, as indicated in Fig. 4-6. Similar

to the ungauged theory, 𝑊𝑔 also satisfies Eq.(4.22) and Eq.(4.23).

According to Eq.(4.22), the gauged tensor state actually holds an 𝑍4 global IGG:

{I,𝑊𝑔, 𝜎𝑧 ⊗ 𝜎𝑧,𝑊𝑔 · (𝜎𝑧 ⊗ 𝜎𝑧)}. 𝑍4 flux, labeled as 𝑚0 (𝑚†
0), are created at ends of

𝑊𝑔 strings. And ends of 𝜎𝑧 ⊗ 𝜎𝑧 strings are double 𝑍4 flux, labeled as 𝑚2
0. To see the

physical meaning of single leg action of 𝜎𝑧, we first note that it is a self boson. And

braiding 𝑚0 around it, one obtain 𝜋 phase according to Eq.(4.23). So, the single leg

action of 𝜎𝑧 corresponds to a double 𝑍4 charge 𝑒20. Due to the existence of nontrivial

plaquette IGG elements, bound states of 𝑚2
0 and 𝑒20 are condensed, as shown in Fig.

4-4(b). And all other particles sharing nontrivial braiding statistics with 𝑚2
0𝑒

2
0 are

confined. Then, the remaining topological order can be determined by the following

table:

4One may wonder whether the local 𝑍𝑠
2 charge of an 𝑚-particle is well defined, since we can always

attach 𝑒 particle to the symmetry defect 𝑊𝑔, which will change the result of local symmetry action
due to the nontrivial braiding phase between 𝑒 and 𝑚. However, if we always require that symmetry
defects have the trivial symmetry fractionalization pattern, quantum numbers of 𝑚-particles are well
defined
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Figure 4-5: Tensors representing the double semion fixed point wavefunction

charge

flux
0 1 2 3

0 I × 𝑏 ×

1 × s × 𝑠

2 𝑏 × I ×

3 × 𝑠 × 𝑠

Here, 𝑠 and 𝑠 are semions and 𝑏 is a self boson. The fusion and braiding rules of the

remaining quasiparticles are the same as the double semion topological order. So, the

condensed phase holds an double semion topological order.

Then, we conclude that the ungauged phase is the nontrivial 𝑍2 SPT. Notice that

𝑏 boson may condense in the long wavelength, thus kill the double semion topological

order. In the ungauged theory, this corresponds to the spontaneously symmetry

breaking phase.

4.3.2 General Framework

Let us summarize what we have learned from the above simple example. To construct

the SPT state on tensor networks, we require that

∙ the tensor network state is symmetric, as shown in Fig. 4-3;

∙ tensors have some nontrivial IGG structure, as shown in Fig. 4-4;
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Figure 4-6: IGG for double semion topological order

∙ the symmetry transformation rules and IGG elements are interplaying with each

other, as given in Eq.(4.22) and Eq.(4.23).

We will follow the above strategy in this part and develop a general framework for SPT

phases on tensor networks. The three cohomology classification naturally emerges

from tensor equations.

Symmetries

Let us first discuss how to impose symmetries on tensor networks[104, 171, 123, 124,

125, 8, 149, 76]. We focus on the case where the state is a 1D representation of

symmetry group 𝑆𝐺:

𝑔 ∘ |Ψ⟩ = ei𝜃𝑔 |Ψ⟩,∀𝑔 ∈ 𝑆𝐺 (4.24)

Here 𝑆𝐺 includes both onsite symmetries as well as lattice symmetries.

Consider a PEPS state formed by site tensors. We assume that for a symmetric

PEPS state, the symmetry transformed tensors and the original tensors are related

by a gauge transformation (up to a 𝑈(1) phase factor):

Θ𝑔𝑊𝑔𝑔 ∘ T = T (4.25)

Here, T represents the tensor states with all internal legs uncontracted. Namely T =
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⨂︀
𝑎 𝑇

𝑎, where 𝑇𝑎 represents a local tensor at site 𝑎. 𝑊𝑔 is a gauge transformation,

which acts on all internal legs of the tensor network:

𝑊𝑔 =
⨂︁
(𝑎,𝑖)

𝑊𝑔(𝑎, 𝑖) (4.26)

where (𝑎, 𝑖) labels a leg of site 𝑎. If leg (𝑎, 𝑢) and (𝑏, 𝑣) are connected, according to the

definition of gauge transformation, 𝑊𝑔(𝑎, 𝑢) ·𝑊 t
𝑔 (𝑏, 𝑣) = I. Θ𝑔 is a tensor-dependent

𝑈(1) phase. In the following, we will focus on systems defined on an infinite lattice,

for which we can always absorb Θ𝑔 to 𝑊𝑔. So, the symmetric condition for a tensor

wavefunction can be expressed as

𝑊𝑔𝑔 ∘ T = T (4.27)

To be more clear, we can write the above equation explicitly as

(𝑊𝑔(𝑎, 𝑢))𝛼𝛼′ .(𝑊𝑔(𝑎, 𝑣))𝛽𝛽′ . . . 𝑔 ∘ (𝑇 𝑎
𝑢𝑣...)

𝑖
𝛼′𝛽′...

=(𝑇 𝑎
𝑢𝑣...)

𝑖
𝛼′𝛽′... (4.28)

where 𝑇𝑎 labels a tensor at site 𝑎, and 𝑢, 𝑣 . . . labels legs of tensor 𝑇 𝑎.

Invariant gauge group

The invariant gauge group (IGG) is a sub-group of gauge transformations, whose

element leaves every tensor – or equivalently the tensor state before contraction (T) –

completely invariant [127, 117, 76]. Notice that a general gauge transformation only

leaves the physical wavefunction invariant, while could transform the site tensors

nontrivially. To make the discussion below clear, we denote any element in IGG

as a global IGG element, since by definition this element is a gauge transformation

involving all virtual legs on the tensor network.

We also introduce a special type of IGG elements – the plaquette IGG element

𝜆𝑝, where 𝜆𝑝 acts nontrivially only on internal legs of plaquette 𝑝, as shown in Fig.
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Figure 4-7: (a) An example of the plaquette IGG element 𝜆𝑝. (b) The plaquette IGG
element formed by complex number 𝜒 and 𝜒−1. This kind of plaquette IGG exists
for any PEPS state. (c) A site tensor lives on the subspace which is invariant under
action of IGGs. Here, 𝑝1, 𝑝2, 𝑝3, 𝑝4 are four neighbouring plaquettes around the tensor
and 𝛼, 𝛽, 𝛾, 𝛿 denote legs of the tensor. The last equation indicates that a global IGG
element is obtained from multiplication of plaquette IGG elements.

4-7(a). The plaquette IGG is a generalization of the single leg action of 𝜎𝑧 in Fig. 4-4.

For any given plaquette 𝑝, the collection of plaquette IGG elements {𝜆𝑝} acting on

𝑝 forms a subgroup of IGG. To construct SPT, we further assume that any global

IGG element can always be decomposed into the product of plaquette IGG elements,

𝜆 =
∏︀

𝑝 𝜆𝑝. Namely, plaquette IGG elements can generate the full IGG.

For SPT tensor wavefunctions, we have assumed that the decomposition from a

global IGG element to the product of plaquette IGG elements always exist. One may

ask whether the decomposition is unique. The answer is no. To see this, we consider

the decomposition of the trivial action I on all internal legs. There is a special kind

of plaquette IGG element: for every plaquette 𝜆𝑙 = 𝜆𝑢 = 𝜆𝑟 = 𝜆𝑑 = 𝜒, where 𝜒

is a complex number, as shown in Fig. 4-7(b). We also label this IGG element as

𝜒𝑝. Then,
∏︀

𝑝 𝜒𝑝 = I. We assume that this is the only way to decompose I. Notice

that the identity
∏︀

𝑝 𝜒𝑝 = I directly leads to the fact that the phase factor 𝜒 in any

129



plaquette is the same. So, for any global IGG element, there is only one global phase

ambiguity to decompose into the plaquette IGG elements 𝜆𝑝 reads

𝜆 =
∏︁
𝑝

𝜆𝑝 =
∏︁
𝑝

𝜒𝑝𝜆𝑝 (4.29)

It turns out that this phase ambiguity is essential to get SPT phases, and naturally

gives 3-cohomology classification.

Cohomology from symmetry equations on PEPS

For group elements 𝑔1, 𝑔2, we have

T = 𝑊𝑔1𝑔1𝑊𝑔2𝑔2 ∘ T = 𝑊𝑔1𝑔2𝑔1𝑔2 ∘ T, (4.30)

Since 𝑊𝑔1𝑔1𝑊𝑔2𝑔2 and 𝑊𝑔1𝑔2𝑔1𝑔2 only differ by a gauge transformation, and they both

leave T invariant. So, they should differ up to an IGG element, which we label as

𝜆(𝑔1, 𝑔2),

𝑊𝑔1𝑔1𝑊𝑔2𝑔2 = 𝜆(𝑔1, 𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2 (4.31)

which generalize Eq.(4.22). According to associativity

(𝑊𝑔1𝑔1𝑊𝑔2𝑔2)𝑊𝑔3𝑔3 = 𝑊𝑔1𝑔1(𝑊𝑔2𝑔2𝑊𝑔3𝑔3) (4.32)

we get

𝜆(𝑔1, 𝑔2)𝜆(𝑔1𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜆(𝑔2, 𝑔3)𝜆(𝑔1, 𝑔2𝑔3) (4.33)

where we define 𝑎𝑏 ≡ 𝑎 · 𝑏 · 𝑎−1. Particularly, for a leg 𝑖, we have

(︀
𝑊𝑔𝑔𝜆

)︀
(𝑖) = 𝑊𝑔(𝑖) · 𝜆𝑠(𝑔)(𝑔−1(𝑖)) · [𝑊𝑔(𝑖)]

−1 (4.34)

where 𝑠(𝑔) is complex conjugate if 𝑔 contains time reversal action.
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One can decompose 𝜆’s into 𝜆𝑝’s, and due to the phase ambiguity Eq.(4.29), 𝜆𝑝’s

satisfy

𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3) =

𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3) (4.35)

where 𝜔𝑝(𝑔1, 𝑔2, 𝑔3) is the phase IGG satisfying I =
∏︀

𝑝 𝜔𝑝(𝑔1, 𝑔2, 𝑔3).

In Section 4.7, we prove 𝜔𝑝 satisfies three cocycle condition:

𝜔𝑝(𝑔1, 𝑔2, 𝑔3)𝜔𝑝(𝑔1, 𝑔2𝑔3, 𝑔4)
𝑔1𝜔𝑝(𝑔2, 𝑔3, 𝑔4)

= 𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)𝜔𝑝(𝑔1, 𝑔2, 𝑔3𝑔4) (4.36)

And 𝜔𝑝 is defined up to a coboundary:

𝜔𝑝(𝑔1, 𝑔2, 𝑔3) ∼ 𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝜒𝑝(𝑔1, 𝑔2)𝜒𝑝(𝑔1𝑔2, 𝑔3)
𝑔1𝜒𝑝(𝑔2, 𝑔3)𝜒𝑝(𝑔1, 𝑔2𝑔3)

(4.37)

The action of 𝑔 on 𝜔𝑝 (𝜒𝑝) follows a very simple rule: for a leg 𝑖, we have (𝑔𝜔𝑝)(𝑖) =

𝜔
𝑠(𝑔)

𝑔−1(𝑝)(𝑔
−1(𝑖)), where 𝑠(𝑔) is complex conjugate if 𝑔 contains time reversal. Then,

consider 𝜔𝑝, we have

∙ For unitary onsite symmetry 𝑔, 𝑔𝜔𝑝 = 𝜔𝑝

∙ For time reversal symmetry 𝒯 , 𝒯𝜔𝑝 = 𝜔*
𝑝

∙ For translation and/or rotation symmetry 𝑇𝑖 and 𝐶𝑖, 𝑇𝑖𝜔𝑝 =
𝐶𝑖𝜔𝑝 = 𝜔𝑝

∙ For reflection symmetry 𝜎, 𝜎𝜔𝑝 = 𝜔−1
𝑝

Methods to construct generic SPT tensor wavefunctions

Now, we have developed a general way to write down tensor equations for SPT phases:

Eq.(4.31),Eq.(4.33) and Eq.(4.35). The next step is to answer the following question:

given a symmetry group 𝑆𝐺 and a cohomology class [𝜔], how do we construct generic
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SPT wavefunctions from tensor equations? This problem actually can be decomposed

to three parts:

1. Figure out the group structure for 𝜆’s, 𝜆𝑝’s and 𝑊𝑔’s to realize the SPT phase.

2. Obtain the representation of the IGG and symmetry on tensor networks.

3. Find subspace of tensors, which are invariant under IGG action on internal legs

as well as symmetry actions on both physical legs and virtual legs.

The second part and the third part are relatively easy to solve, and we give examples

in Sec. 4.3.5. Here, we focus on the first part, and we provide two methods in the

following.

The first way is to start from exact solvable models. If there exists an exact

solvable model realizing some SPT phase, one can construct a fixed point wavefunction

by PEPS. Then, one can extract tensor equations as well as the group structure for

𝜆’s 𝜆𝑝’s and 𝑊𝑔’s. For example, as we show in Sec. 4.3.1, to realize a nontrivial 𝑍𝑠
2

SPT, 𝜆’s form a 𝑍𝑔
2 group. 𝜆𝑝’s form group 𝑍2×𝑈(1) for any plaquette 𝑝. And 𝑊𝑔 is

a projective representation with coefficient in 𝑍2, which anticommutes with nontrivial

𝜆𝑝.

Notice that the group structure for IGG and 𝑊𝑔 does not depend on whether 𝑆𝐺

is onsite or spatial. So, we are also able to figure out IGG and 𝑊𝑔 for spatial SPT

phases. For example, as we will show in Sec. 4.3.5, for the nontrivial inversion SPT

phase, 𝜆’s form a 𝑍𝑔
2 group, which is the same as the case for 𝑍𝑠

2 onsite SPT phase.

The only difference is that for the inversion SPT and 𝑍2 onsite SPT, the IGGs have

distinct representations on internal legs.

For every SPT phase protected by a discrete symmetry group and also some SPT

phases protected by continuous symmetry groups, one can write down exact solvable

models. So one is able to realize those generic SPT wavefunctions by tensors.

The second way is related to a mathematical object named as crossed module

extensions. It is known in mathematical literatures that crossed module extensions

of 𝑆𝐺 by 𝑈(1) are classified by 𝐻3(𝑆𝐺,𝑈(1)). And as we show in Section 4.7, our
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tensor constructions can be viewed as a representation of crossed module extensions.

So, given a crossed module extension, we are able to figure out the group structure

for IGG and 𝑊𝑔’s.

4.3.3 A by-product: the general anyon condensation mecha-

nism for realizing SPT phases

Using the above results, here we prove the Criterion of the anyon condensation mech-

anism. We will start from an SET phase with discrete Abelian topological order and

condense 𝑚-particles to confine the gauge field, and demonstrate the Criterion to re-

alize SPT phases. For the purpose of presentation, we will consider 𝑍𝑁 topologically

ordered SET phases with the symmetry group 𝑆𝐺, but one can straightforwardly gen-

eralize the discussion below for SET phases with any discrete Abelian gauge groups

𝑍𝑁1 × 𝑍𝑁2 ....

In order to represent a regular 𝑍𝑁 topological order in the tensor-network formu-

lation, one needs to introduce a nontrivial global IGG[127, 117, 76], labeled as 𝐻.

In particular, there is a nontrivial global IGG element 𝐽 ∈ 𝐻 satisfying 𝐽𝑁 = I,

and representing the 𝑍𝑁 gauge transformation. Here 𝐽 is nontrivial means that it

is not 𝑈(1)-phase multiplications on the virtual legs. A 𝐽 string is interpreted as a

𝑍𝑁 flux line, while the 𝑍𝑁 gauge flux and its antiparticle are created at two ends of

the 𝐽 string. Besides the nontrivial 𝑍𝑁 IGG, there is always “trivial” IGG 𝑋, whose

elements are loops of phases. So, we start from tensor states with an abelian IGG

𝐻 ×𝑋.

In the presence of symmetry 𝑆𝐺 and IGG 𝐻 ×𝑋, the tensor equations read

𝑊𝑔1𝑔1𝑊𝑔2𝑔2 = 𝜉(𝑔1, 𝑔2)𝜂(𝑔1, 𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2, ∀𝑔1, 𝑔2 ∈ 𝑆𝐺 (4.38)

where 𝜉(𝑔1, 𝑔2) ∈ 𝑋, and 𝜂(𝑔1, 𝑔2) ∈ 𝐻. 𝜉’s and 𝜂’s both satisfy the two-cocycle
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condition:

𝜉(𝑔1, 𝑔2)𝜉(𝑔1𝑔2, 𝑔3) =
𝑔1𝜉(𝑔2, 𝑔3)𝜉(𝑔1, 𝑔2𝑔3)

𝜂(𝑔1, 𝑔2)𝜂(𝑔1𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜂(𝑔2, 𝑔3)𝜂(𝑔1, 𝑔2𝑔3) (4.39)

We point out that 𝜂’s label the symmetry fractionalization pattern of 𝑍𝑁 charges.

How about the symmetry properties for fluxes? To see this, let us study the

symmetry action on 𝑍𝑁 flux line 𝐽 : 𝑊𝑔𝑔𝐽 ∈ 𝐻 × 𝑋. Since we are studying phases

featuring symmetry fractionalizations, we require that the anyon types are invariant

under symmetry action:

𝑊𝑔𝑔𝐽 = 𝜒𝐽(𝑔) · 𝐽 (4.40)

where 𝜒𝐽(𝑔) ∈ 𝑋, and (𝜒𝐽(𝑔))
𝑁 = 1. Further, 𝜒𝐽 : 𝑆𝐺 → 𝑍𝑁 is a representation of

𝑆𝐺, since

𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝐽 = 𝜒𝐽(𝑔1)
𝑔1𝜒𝐽(𝑔2) · 𝐽

= 𝜉(𝑔1,𝑔2)𝜂(𝑔1,𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2𝐽 = 𝜒𝐽(𝑔1𝑔2) · 𝐽 (4.41)

where we use the fact 𝜉(𝑔1, 𝑔2)𝜂(𝑔1, 𝑔2) commute with 𝐽 . So,

𝜒𝐽(𝑔1𝑔2) = 𝜒𝐽(𝑔1)
𝑔1𝜒𝐽(𝑔2) (4.42)

Notice that both time reversal 𝒯 and reflection 𝑃 should be treated as antiunitary

operations.

To proceed, we point out that the building blocks for 𝑋 are plaquette phase IGGs:

𝜒 =
∏︁
𝑝

𝜒𝑝,∀𝜒 ∈ 𝑋 (4.43)

Here 𝜒𝑝 ∈ 𝑋𝑝, where 𝑋𝑝 ⊂ 𝑋 is the plaquette IGG of 𝑝, whose elements are loops of

phases along virtual legs of plaquette 𝑝. As before, the decomposition to plaquette
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phase IGG elements has a single phase ambiguity:

𝜒 =
∏︁
𝑝

𝜒𝑝 =
∏︁
𝑝

𝜖𝑝𝜒𝑝 (4.44)

Here 𝜖𝑝(𝑖) = 𝜖±1, where ±1 pattern follows as Fig. 4-7(b).

Then, according to Eq.(4.42) and Eq.(4.44), we obtain

𝜒𝑝,𝐽(𝑔1)
𝑔1𝜒𝑝,𝐽(𝑔2) = 𝜔𝑝,𝐽(𝑔1, 𝑔2)𝜒𝑝,𝐽(𝑔1𝑔2) (4.45)

where 𝜔𝑝,𝐽(𝑔1, 𝑔2)(𝑖) = 𝜔𝐽(𝑔1, 𝑔2)
±1. Because 𝜒𝐽(𝑔)

𝑁 = 1, clearly phase factors 𝜒𝑝,𝐽(𝑔)

and 𝜔𝑝,𝐽(𝑔1, 𝑔2) can be chosen to be 𝑍𝑁 elements. It is straightforward to check that

𝜔𝑝,𝐽 satisfies the two-cocycle condition:

𝜔𝑝,𝐽(𝑔1, 𝑔2)𝜔𝑝,𝐽(𝑔1𝑔2, 𝑔3) =
𝑔1𝜔𝑝,𝐽(𝑔2, 𝑔3)𝜔𝑝,𝐽(𝑔1, 𝑔2𝑔3) (4.46)

It turns out that 𝜔𝐽(𝑔1, 𝑔2) ∈ 𝑍𝑁 labels the symmetry fractionalization pattern of 𝑍𝑁

fluxes.

For onsite symmetries, we can restrict to one internal leg 𝑖. Then, Eq.(4.45) be-

comes a relation for phase factors. We can always tune 𝜔𝑝,𝐽 to be trivial by redefining

𝜒𝑝,𝐽(𝑔) → 𝜖𝐽(𝑔) · 𝜒𝑝,𝐽(𝑔). In other words, onsite symmetry fractionalization patterns

for fluxes are always trivial for the case IGG equals 𝐻 ×𝑋. Notice, fluxes can carry

fractional spatial symmetry quantum numbers in general.

Now, let us derive the Criterion to obtain SPT phases by condensing fluxes. In

this tensor formulation, we require nontrivial plaquette IGG for every plaquette. And

the plaquette IGG for 𝑝 is labeled as 𝐻𝑝 ×𝑋𝑝.

To kill the topological order, we require the decomposition of 𝐽 as

𝐽 =
∏︁
𝑝

𝐽𝑝 =
∏︁
𝑝

𝜖𝑝𝐽𝑝 (4.47)

where 𝐽𝑝 is a nontrivial plaquette IGG element for plaquette 𝑝. Again, the decom-

position has an 𝑈(1) ambiguity 𝜖𝑝,𝐽 . As shown in Fig. 4-7(d), the bound state of 𝑍𝑁
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fluxes and 𝐽𝑝 is condensed according to the above equation. Notice that there is a

canonical choice for 𝐽𝑝 such that 𝐽𝑁
𝑝 = 𝐼. So we can choose 𝐻𝑝

∼= 𝑍𝑁 , and 𝐻𝑝 ×𝑋𝑝

is an abelian group. Further, as we prove in Section 4.7, elements of plaquette IGG

for different plaquettes commute. Thus, we conclude, the whole IGG is abelian.

To see the symmetry action on 𝐽𝑝, or equivalently, the symmetry quantum number

carried by 𝐽𝑝, we have

𝑊𝑔𝑔𝐽 =
∏︁
𝑝

𝑊𝑔𝑔𝐽𝑝

=𝜒𝐽(𝑔) · 𝐽 =
∏︁
𝑝

𝜒𝑝,𝐽(𝑔)𝐽𝑝 (4.48)

Due to the 𝑈(1) ambiguity, we conclude

𝑊𝑔𝑔𝐽𝑝 = 𝜖𝑝,𝐽(𝑔)𝜒𝑝,𝐽(𝑔)𝐽𝑝 (4.49)

We further have

𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝐽𝑝 = 𝜖𝑝,𝐽(𝑔1)𝜒𝑝,𝐽(𝑔1)
𝑔1𝜖𝑝,𝐽(𝑔2)

𝑔1𝜒𝑝,𝐽(𝑔2) · 𝐽𝑝

= 𝜉(𝑔1,𝑔2)𝜂(𝑔1,𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2𝐽𝑝 = 𝜖𝑝,𝐽(𝑔1𝑔2)𝜒𝑝,𝐽(𝑔1𝑔2) · 𝐽𝑝 (4.50)

where we use the fact that 𝜉𝜂 commutes with 𝐽𝑝. Comparing with Eq.(4.45), we

conclude

𝜔𝑝,𝐽(𝑔1, 𝑔2) =
𝜖𝑝,𝐽(𝑔1𝑔2)

𝜖𝑝,𝐽(𝑔1) 𝑔1𝜖𝑝,𝐽(𝑔2)
(4.51)

is a two-coboundary. Namely, in this tensor formulation, symmetry-preserving flux-

condensation requires fluxes to have no symmetry fractionalization.

In the following, we focus on a simple case:

𝜒𝐽(𝑔) = 1,∀𝑔 ∈ 𝑆𝐺. (4.52)

If instead 𝜒𝐽(𝑔) is nontrivial phase factor for symmetry 𝑔, the quantum number
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carried by the flux will depend on the details of the region of local-symmetry action

as well as the flux string configuration. Although this situation is not violating

basic principles, it is rather unlikely in usual models. In addition, the main purpose

of this section is to derive the Criterion for anyon condensation mechanism, where

we assume the quantum numbers of the flux is independent of the details of local

symmetry action. Consequently, in this section, we do not consider this situation and

focus on the cases given by Eq.(4.52).

We choose a canonical gauge such that 𝐽𝑁
𝑝 = 𝐼, and 𝜂𝑝 = 𝐽𝑚

𝑝 for 𝜂 = 𝐽𝑚, ∀𝑚. In

particular, we have

𝜂𝑝 · 𝜂′𝑝 = (𝜂 · 𝜂′)𝑝 (4.53)

Then, according to Eq.(4.39), we have

𝜂𝑝(𝑔1, 𝑔2)𝜂𝑝(𝑔1𝑔2, 𝑔3) = 𝜂𝑝(𝑔2, 𝑔3)𝜂𝑝(𝑔1, 𝑔2𝑔3) (4.54)

Let us define

𝜔1(𝑔1, 𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜂𝑝(𝑔2, 𝑔3)𝜂𝑝(𝑔1, 𝑔2𝑔3)

𝜂𝑝(𝑔1, 𝑔2)𝜂𝑝(𝑔1𝑔2, 𝑔3)
=

𝑊𝑔1𝑔1𝜂𝑝(𝑔2, 𝑔3)

𝜂𝑝(𝑔2, 𝑔3)
(4.55)

which is the quantum number of condensed fluxes. We also define

𝜔2(𝑔1, 𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜉𝑝(𝑔2, 𝑔3)𝜉𝑝(𝑔1, 𝑔2𝑔3)

𝜉𝑝(𝑔1, 𝑔2)𝜉𝑝(𝑔1𝑔2, 𝑔3)
(4.56)

Following Section 4.7, one can prove 𝜔1 and 𝜔2 are both three-cocycles. And the ob-

tained SPT phase is characterized by [𝜔] = [𝜔1] · [𝜔2], where [·] means equivalent class

up to coboundary. Notice that even before anyon condensation (without nontrivial

plaquette IGG 𝐻𝑝), 𝜔2 is still present – it is “background” SPT index unaffected

by anyon condensation. However, because 𝜔2 is obtained from the algebra of phase

factors (instead of matrices), 𝜔2 can be nontrivial only due to spatial translational

symmetries (i.e. 𝜔2 is only describing a weak SPT indices). The strong SPT indices

137



Figure 4-8: Measurement of the quantum number 𝜒𝑚0(𝑔) carried by an 𝑚-particle for
a local unitary symmetry 𝑔. According to Eq.(4.40,4.52), 𝐽 commute with 𝑊𝑔, so we
conclude that the quantum number is obtained by 𝜒𝑚0(𝑔) · 𝐽𝑝 = 𝑊𝑔𝑔𝐽𝑝.

can only appear due to 𝜔1. So we have proved the Criterion as in Sec. 4.2.

4.3.4 Algorithms to measure anyon quantum numbers

It would be useful to be able to numerically measure the quantum numbers carried by

the low energy 𝑚-particles inside the SET phase near the condensation phase tran-

sition. Such measurements, together with the Criterion, would allow one to predict

the nature of the resulting symmetric phases. Now let us present several “conceptual”

algorithms to measure these quantum numbers. Although these algorithms could

be implemented in the existing tensor-network algorithms[136] to practically mea-

sure these quantum numbers, here our focus is mainly to clarify conceptual issues.

In particular, the quantum numbers introduced in the previous section may appear

somewhat formal, and it would be ideal to explicitly demonstrate their measurable

meanings.

We again focus on ordinary 𝑍𝑁 gauge theories. As discussed before, the two

ends of an open string created by a sequence of 𝐽 operations on the virtual bonds

actually describe an elementary 𝑚-particle (coined 𝑚0) and its anti-particle (coined

𝑚†
0). In order to simulate the low energy excitations within the topological sectors

corresponding to 𝑚0 and 𝑚†
0, one needs to further variationally optimize the tensors

over finite regions (about correlation-length size) near the centers of these 𝑚-particles.

Namely, a low energy excitation state |Ψ𝑒𝑥⟩ hosting 𝑚0 and 𝑚†
0 quasiparticles is

obtained by only modifying these local tensors (coined excited-state-local-tensors)

while leaving all other tensors in the network (coined ground-state-local-tensors) the
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same as the ground state (apart from multiplying a sequence of 𝐽 operations on the

string).

Our basic scheme is to use the symmetry transformation rules on the ground-

state-local-tensors to obtain the symmetry properties of 𝑚0 and 𝑚†
0. Let us start

from discussing the measurement of the quantum number of an onsite unitary sym-

metry 𝑔 ∈ 𝑆𝐺, as shown in Fig.(4-8). For example, let us focus on 𝑚0. The local

action of 𝑔 on 𝑚0 is described by applying 𝑊𝑔 on a loop of virtual legs enclosing 𝑚0

(but not enclosing 𝑚†
0), together with applying the physical transformation 𝑔 on the

physical legs inside the region enclosed by the 𝑊𝑔-loop. Physically, such a tensor-

network operation corresponds to braiding a 𝑔-symmetry-defect (described by the end

point of the 𝑊𝑔-string) around 𝑚0. It turns out that the condition 𝑊𝑔𝑔𝐽 = 𝐽 (i.e.

Eq.(4.40,4.52)) dictates that the 𝑔-symmetry-defect itself has no symmetry fraction-

alization. It also dictates that the 𝑚0 is transformed by this local action back to the

same topological sector.

Now quantum number carried by 𝑚0: 𝜒𝑚0(𝑔) has direct measurable meaning.

After applying the local action of 𝑔 on 𝑚0, one obtains a new physical state |Ψ′
𝑒𝑥⟩,

corresponding to applying symmetry 𝑔 only on 𝑚0 but not on 𝑚†
0. Due to symmetry,

|Ψ′
𝑒𝑥⟩ can at most differ from |Ψ𝑒𝑥⟩ by a phase factor, which is exactly the measurable

meaning of 𝜒𝑚0(𝑔). Note that the variationally determined excited-state-local-tensors

around 𝑚0 only introduces a common global phase ambiguity in the physical state

|Ψ𝑒𝑥⟩ and |Ψ′
𝑒𝑥⟩, and consequently not affecting their relative phase 𝜒𝑚0(𝑔).

Similar discussion can be naturally extended to rotational spatial symmetries,

which can be treated as unitary operations. The only modification is that one needs

to choose the position 𝑚0 to be invariant under the rotations in order to respect these

symmetries.

The more interesting and nontrivial situation is the time-reversal 𝒯 and mirror

reflection 𝒫 . It is straightforward to show that the assumption Eq. (4.40,4.52) leads

to the following transformation rules: 𝒯 : 𝑒 → 𝑒†,𝑚 → 𝑚, and 𝒫 : 𝑒 → 𝑒,𝑚 → 𝑚†.

And the quantum numbers 𝜒𝑚(𝑔) should be treated as an element in 𝐻1(𝑆𝐺,𝑍𝑁) but

with 𝒯 and 𝒫 acting anti-unitarily on 𝑍𝑁 . However, their combination 𝒯 · 𝒫 should
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Figure 4-9: (a) The procedure to create |Ψ𝑒𝑥⟩ which is 𝒯 ·𝒫 invariant. One first creates
a pair of 𝑚0 and 𝑚†

0 from ground state, and then move away from each other. The
global phase of |Ψ𝑒𝑥⟩ by requiring the wavefunction overlap between adjacent states
to be real and positive. (b) |Ψ′

𝑒𝑥⟩ is obtained by gluing between the original left-half
of the tensor-network with the 𝒯 · 𝒫 transformed left-half tensor-network. The 𝒯 · 𝒫
transformed left-half tensor-network is obtained by transforming the physical legs of
the left-half via 𝒯 · 𝒫 , together with applying 𝑊𝒯 𝒯 ·𝑊𝒫 · 𝒯 −1 on all the virtual legs
cut by the mirror line. 𝜒𝑚0(𝒯 · 𝒫) is defined as phase difference between |Ψ𝑒𝑥⟩ and
|Ψ′

𝑒𝑥⟩.
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be treated as unitary and the corresponding quantum number is sharply measurable.

Below we present such an algorithm, which is depicted in Fig. 4-9.

Let us choose the positions of 𝑚0 and 𝑚†
0 to be 𝒫 image of each other. For

example, we will consider the situation that 𝑚0(𝑚†
0) is located in the left(right) half of

the sample, and the mirror is the vertical line. Consequently |Ψ𝑒𝑥⟩ is 𝒯 ·𝒫 symmetric.

Our goal is to measure the quantum number 𝜒𝑚0(𝒯 · 𝒫). This quantity may appear

to be strange because we know that the combination 𝒯 · 𝒫 would send 𝑚0 to 𝑚†
0

— a different quasiparticle. But it turns out that this is exactly what is required to

sharply measure 𝜒𝑚0(𝒯 · 𝒫).

Similar to previous example, our plan is to apply 𝒯 · 𝒫 only on 𝑚0 and obtain a

new excited physical state |Ψ′
𝑒𝑥⟩. But because of the nature of 𝒫 , the |Ψ′

𝑒𝑥⟩ should be

obtained by gluing (i.e. contracting virtual legs) between the original left-half of the

tensor-network with the 𝒯 · 𝒫 transformed left-half tensor-network (which is now on

the right-half). Specifically, the 𝒯 ·𝒫 transformed left-half tensor-network is obtained

by transforming the physical legs of the left-half via 𝒯 · 𝒫 , together with applying

𝑊𝒯 𝒯 ·𝑊𝒫 ·𝒯 −1 on all the virtual legs cut by the mirror line. The procedure to obtain

|Ψ′
𝑒𝑥⟩ is shown in Fig. 4-9(b).

If one naively uses the phase difference between this |Ψ′
𝑒𝑥⟩ and |Ψ𝑒𝑥⟩ to measure

𝜒𝑚0(𝒯 ·𝒫), one will find that it is not well-defined. The reason is that the global phase

factor of |Ψ𝑒𝑥⟩ is not properly chosen yet. In order to sharply measure 𝜒𝑚0(𝒯 ·𝒫), one

needs to fully determine the global phase factor of |Ψ𝑒𝑥⟩ relative to the ground state

in the following sense. In order to construct |Ψ𝑒𝑥⟩, one can imagine to firstly create

a pair of 𝑚0 and 𝑚†
0 near each other, and then further move them away from each

other to a large distance, while maintaining 𝒯 · 𝒫 over the whole process, as shown

in Fig. 4-9(a). This process would create a sequence of states, with ground state as

the first one and |Ψ𝑒𝑥⟩ as the last one. The global phase factor of |Ψ𝑒𝑥⟩ is determined

by requiring the wavefunction overlap between adjacent states in this sequence to be

positive and real.

Because the global phase factor of |Ψ𝑒𝑥⟩ is fixed, the only ambiguity in the tensor-

network construction of |Ψ𝑒𝑥⟩ is a global phase factor 𝑒𝑖𝜃 on the left-half, and 𝑒−𝑖𝜃 on
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the right-half. But this relative phase ambiguity would not affect the phase difference

between this |Ψ′
𝑒𝑥⟩ and |Ψ𝑒𝑥⟩ discussed above. Namely the phase difference between

this |Ψ′
𝑒𝑥⟩ and |Ψ𝑒𝑥⟩ is now sharply measurable, which is nothing but 𝜒𝑚0(𝒯 · 𝒫).

4.3.5 Examples

We present some explicit examples for the 2+1D SPT. Let us consider square lattice

with a 𝑑 = 2 qubit on each site. For simplicity, we will focus on the case where all

tensors are translationally invariant. We label the legs of a site tensor as 𝛼, 𝛽, 𝛾, 𝛿,

and plaquette IGG elements act as 𝜆𝑙, 𝜆𝑢, 𝜆𝑟, 𝜆𝑑, as shown in Fig. 4-7.

SPT phases protected by inversion symmetry

Consider nontrivial SPT phases protected by inversion symmetry ℐ. According to

the discussion in the previous part, the inversion protected SPT phases are classified

by 𝐻2(𝑍ℐ
2 , 𝑈(1)) = 𝑍2. Namely, there is only one nontrivial phase.

We start with a tensor network with 𝑍2 global IGG {I, 𝜆}. Tensor equations for

this nontrivial SPT phase are

𝑊ℐℐ ·𝑊ℐℐ = 𝜆

𝑊ℐℐ𝜆𝑝 = −𝜆𝑝 (4.57)

where 𝜆𝑝 is the plaquette IGG element. For a single leg action, we have

ℐ𝑊ℐ(𝑖) = 𝑊 t
𝐼 (ℐ(𝑖)), 𝑖 = 𝛼, 𝛽, 𝛾, 𝛿

ℐ𝜆𝑗 = 𝜆tℐ(𝑗), 𝑗 = 𝑙, 𝑢, 𝑟, 𝑑 (4.58)

Here, due to translational invariance, we define 𝜆𝑗 , 𝜆𝑝(𝑗), ∀𝑝.

The simplest solution requires internal bond dimension 𝐷 = 6. IGG elements are
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represented as

𝜆 = 𝜎0 ⊕ (−𝜎0 ⊗ 𝜎0)

𝜆𝑙 = 𝜆𝑢 = 𝜎𝑧 ⊕ (𝜎𝑧 ⊗ 𝜎𝑧)

𝜆𝑟 = 𝜆𝑑 = 𝜎𝑧 ⊕ (−𝜎𝑧 ⊗ 𝜎𝑧) (4.59)

and the inversion operation on internal legs is

𝑊ℐ(𝑖) = 𝜎𝑥 ⊕ (𝜎𝑦 ⊗ 𝜎𝑥) (4.60)

Now, let us determine the constraint Hilbert space for the nontrivial SPT phase.

As shown in Fig. 4-7(c), we require that the single tensor lives in the subspace which is

invariant under action of plaquette IGG elements, where the nontrivial plaquette IGG

element in Eq.(4.59). Further, we require the single tensor to be inversion symmetric:

𝑊ℐℐ ∘ 𝑇 𝑎 = 𝑇 𝑎, where 𝑊ℐ is given in Eq.(4.60). Then, by solving these linear

equations, we obtain a 𝐷ℐ = 74 dimensional (complex) Hilbert space. We point out

that the original Hilbert space for a site tensor is 𝑑𝐷4 = 2592 dimensional.

It is also straightforward to check that the only nontrivial cocycle phase is 𝜔(ℐ, ℐ, ℐ) =

−1, which cannot be tuned away.

SPT phases protected by time reversal and reflection symmetries

Now, we study a more interesting example: 2D SPT phases protected by 𝑍𝑃
2 × 𝑍𝒯

2

(reflection and time reversal) symmetry. The four group elements are {I, 𝑃, 𝒯 , 𝑃𝒯 },

where 𝒯 = 𝜎𝑥𝒦 and 𝑃 is the reflection along 𝑦 axis. As we mentioned above, both

𝑃 and 𝒯 should be treated as “anti-unitary” action. Then, 𝑃𝒯 should be treated as

a unitary action. Namely, we have

𝐻3(𝑍𝑃
2 × 𝑍𝒯

2 , 𝑈(1)) = 𝐻3(𝑍2 × 𝑍𝒯
2 , 𝑈(1)) = 𝑍2 × 𝑍2 (4.61)
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The tensor equations for these SPT phases are:

𝑊𝒯 𝒯𝑊𝒯 𝒯 = 𝜆(𝒯 , 𝒯 )

𝑊𝑃𝑃𝑊𝑃𝑃 = 𝜆(𝑃, 𝑃 )

𝑊𝑃𝑃𝑊𝒯 𝒯 = 𝑊𝒯 𝒯𝑊𝑃𝑃

𝑊𝑃𝑃𝑊𝒯 𝒯𝜆𝑝 = −𝜆𝑝 (4.62)

where 𝜆(𝒯 , 𝒯 ), 𝜆(𝑃, 𝑃 ) belongs to the global 𝑍2 IGG. And different choice of 𝜆’s gives

different SPT phases.

By definition, the action of symmetry on 𝑊 ’s and 𝜆’s are

𝒯𝑊𝑅(𝑖) = 𝑊 *
𝑅(𝑖)

𝑃𝑊𝑅(𝛼/𝛾) = 𝑊 t
𝑅(𝛾/𝛼) = (𝑊−1

𝑅 (𝛼/𝛾))t

𝑃𝑊𝑅(𝛽/𝛿) = 𝑊𝑅(𝛽/𝛿) (4.63)

as well as

𝒯𝜆𝑗 = 𝜆*𝑗 ,
𝑃𝜆𝑙/𝑟 = 𝜆−1

𝑟/𝑙,
𝑃𝜆𝑢/𝑑 = (𝜆−1

𝑢/𝑑)
t (4.64)

To realize these SPT phases, we start from 𝐷 = 6 PEPS. Without any constraint,

a single tensor lives in a 𝑑𝐷4 = 2592 dimensional (complex) Hilbert space. IGG

elements are chosen as

𝜆 = 𝜎0 ⊕ (−𝜎0 ⊗ 𝜎0)

𝜆𝑙 = 𝜎𝑧 ⊕ (𝜎𝑧 ⊗ 𝜎𝑧), 𝜆𝑟 = 𝜎𝑧 ⊕ (−𝜎𝑧 ⊗ 𝜎𝑧)

𝜆𝑢 = 𝜎𝑧 ⊕ (𝜎𝑧 ⊗ 𝜎0), 𝜆𝑑 = 𝜎𝑧 ⊕ (−𝜎𝑧 ⊗ 𝜎0) (4.65)

In the following, we discuss each class in 𝑍2 × 𝑍2 separately.

1. 𝜆(𝒯 , 𝒯 ) and 𝜆(𝑃, 𝑃 ) are both trivial. We get a trivial symmetric phase in this

case.

144



2. 𝜆(𝒯 , 𝒯 ) = I, 𝜆(𝑃𝒯 , 𝑃𝒯 ) is nontrivial. Time reversal and reflection symmetries

on internal legs are represented as

𝑊𝒯 (𝑖) = 𝜎𝑥 ⊕ (𝜎𝑥 ⊗ 𝜎0)

𝑊𝑃 (𝛼) = 𝑊𝑃 (𝛽) = 𝜎0 ⊕ (𝜎0 ⊗ i𝜎𝑦)

𝑊𝑃 (𝛾) = 𝑊𝑃 (𝛿) = 𝜎0 ⊕ (𝜎0 ⊗ (−i𝜎𝑦)) (4.66)

The constrained sub-space is an 80 dimensional real Hilbert space.

3. 𝜆(𝑃, 𝑃 ) = I, 𝜆(𝒯 , 𝒯 ) is nontrivial. Time reversal and reflection symmetries are

represented as

𝑊𝒯 (𝛼) = 𝑊𝒯 (𝛽) = 𝜎𝑥 ⊕ (i𝜎𝑦 ⊗ 𝜎0)

𝑊𝒯 (𝛾) = 𝑊𝒯 (𝛿) = 𝜎𝑥 ⊕ (i𝜎𝑦 ⊗ 𝜎0)

𝑊𝑃 (𝑖) = 𝜎0 ⊕ (𝜎0 ⊗ 𝜎𝑥) (4.67)

The constrained sub-space is an 88 dimensional real Hilbert space.

4. 𝜆(𝒯 , 𝒯 ) and 𝜆(𝑃𝒯 , 𝑃𝒯 ) are both nontrivial. Time reversal and reflection sym-

metries are represented as

𝑊𝒯 (𝛼) = 𝑊𝒯 (𝛽) = 𝜎𝑥 ⊕ (i𝜎𝑦 ⊗ 𝜎0)

𝑊𝒯 (𝛾) = 𝑊𝒯 (𝛿) = 𝜎𝑥 ⊕ (−i𝜎𝑦 ⊗ 𝜎0)

𝑊𝑃 (𝛼) = 𝑊𝑃 (𝛽) = 𝜎0 ⊕ (i𝜎0 ⊗ 𝜎𝑦)

𝑊𝑃 (𝛾) = 𝑊𝑃 (𝛿) = 𝜎0 ⊕ (−i𝜎0 ⊗ 𝜎𝑦) (4.68)

The constrained sub-space is an 80 dimensional real Hilbert space.

Weak SPT phases protected by lattice group

In this part, we consider the interplay of translation with point group. It is known

that in the presence of translation, there are more SPT phases, which are named
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Figure 4-10: (a) The honeycomb lattice and generators the lattice symmetry group.
𝑢, 𝑣 labels sites while 𝑎, 𝑏, 𝑐 labels bonds in one unit cell. (b) The IGG element formed
by phases. We require 𝜒𝑎 · 𝜒𝑏 · 𝜒𝑐 = 1.

as weak indices[22]. In Ref.[31], the authors find that weak indices can be elegantly

incorporated into the cohomology formulation by treating translation in the same way

as the on-site symmetry. Weak indices can be explicitly calculated using Künneth

formula. In (2+1)D, assuming the symmetry group 𝑆𝐺 = Z2 ×𝐺, where Z2 denotes

translational symmetry on the plane, the formula reads

𝐻3[Z2 ×𝐺,𝑈(1)] =𝐻3[𝐺,𝑈(1)]× (𝐻2[𝐺,𝑈(1)])2×

𝐻1[𝐺,𝑈(1)] (4.69)

where 𝐻3[𝐺,𝑈(1)] classify the strong indices, (𝐻2[𝐺,𝑈(1)])2 are weak indices capture

(1+1)D SPT phases and 𝐻0[𝐺,𝑈(1)] simply captures different charges in a unit cell.

In our tensor construction of SPT phases, we show that it is indeed natural to

treat lattice symmetry in the same way as on-site symmetry. Not surprising, the

interplay between translation and point group leads to new “weak SPT” phases.

Let us consider a spin system in a honeycomb lattice, as shown in Fig. 4-10.

In Ref.[79], the authors obtain four classes of featureless insulators, which can be

captured by two 𝑍2 indices 𝜒𝐶6 and 𝜒𝜎. The 𝑍2 × 𝑍2 classification can actually

be understood as weak indices, which comes from the interplay between 𝐶6, 𝜎 and

translation 𝑇1, 𝑇2.
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4.4 SPT phases in 3+1D

It is natural to generalize tensor construction of SPT phases to 3+1D. Before going

into this higher dimensions, we would like to mention that in Section 4.6 we go to the

lower dimensions and prove our results on 1+1D SPT.

As the same in 2+1D, the symmetric tensor condition reads

𝑊𝑔𝑔 ∘ T = T (4.70)

where T labels the 3+1D tensor network before contraction, and 𝑊𝑔 is the gauge

transformation associated to symmetry 𝑔.

Then, 𝑊𝑔𝑔 satisfies the group multiplication rules up to an IGG element:

𝑊𝑔1𝑔1𝑊𝑔2𝑔2 = 𝜆(𝑔1, 𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2 (4.71)

Due to associativity, 𝜆(𝑔1, 𝑔2) satisfies the two cocycle condition:

𝜆(𝑔1, 𝑔2)𝜆(𝑔1𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜆(𝑔2, 𝑔3)𝜆(𝑔1, 𝑔2𝑔3) (4.72)

In general, the nontrivial IGG leads to nontrivial topological order in 3+1D. In

order to kill the topological order, we introduce cubic IGG {𝜆𝑐}, where 𝜆𝑐 only acts

nontrivially on the internal legs of cubic 𝑐. We further assume, any IGG element 𝜆

can be decomposed to product of cubic IGG elements:

𝜆 =
∏︁
𝑐

𝜆𝑐 (4.73)

Let us discuss the uniqueness of the above decomposition. We introduce the

plaquette IGG {𝜉𝑝}, which acts nontrivially only on legs belonging to plaquette 𝑝.

Then, we can define a special kind of cubic IGG {𝜂𝑐}, where any 𝜂𝑐 can be decomposed

147



as multiplication of plaquette IGG elements,

𝜂𝑐 =
∏︁
𝑝∈𝑐

𝜉𝑐𝑝 (4.74)

If we further require 𝜉𝑐1𝑝 = (𝜉𝑐2𝑝 )−1 for 𝑝 = 𝑐1 ∩ 𝑐2, then, we get the decomposition of

I as

I =
∏︁
𝑐

𝜂𝑐 (4.75)

In other words, the decomposition of a given IGG element 𝜆 is not unique. We can

always attach such kind of 𝜂𝑐 to get new decomposition. Then, roughly speaking, the

cubic IGG element 𝜆𝑐(𝑔1, 𝑔2) should satisfy a “twist” two cocycle condition, where the

“twist factors” take value in {𝜂𝑐}.

We can further prove 𝜂𝑐(𝑔1, 𝑔2, 𝑔3) satisfies condition similar to three cocycles. We

notice that the decomposition of 𝜂𝑐 to plaquette IGG elements 𝜉𝑝’s is also not unique,

we can always attach some phase factor to 𝜉𝑝 such that the multiplication of 𝜉𝑝 is

invariant. Then, 𝜉𝑝 should satisfy a “twist” three cocycle equation, where the “twist

factor” is labeled as 𝜔𝑝. As shown in Ref.[77], through some tedious calculations, we

prove that 𝜔𝑝 satisfies the four cocycle condition, where time reversal and/or reflection

symmetries are treated as antiunitary.

𝜔𝑝(𝑔1, 𝑔2, 𝑔3, 𝑔4)𝜔𝑝(𝑔1, 𝑔2, 𝑔3𝑔4, 𝑔5)𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4, 𝑔5) =

𝑔1𝜔𝑝(𝑔2, 𝑔3, 𝑔4, 𝑔5)𝜔𝑝(𝑔1, 𝑔2𝑔3, 𝑔4, 𝑔5)𝜔𝑝(𝑔1, 𝑔2, 𝑔3, 𝑔4𝑔5) (4.76)

and 𝜔𝑝 are defined up to coboundary.

𝜔𝑝(𝑔1, 𝑔2, 𝑔3, 𝑔4) ∼

𝜔𝑝(𝑔1, 𝑔2, 𝑔3, 𝑔4)
𝜒𝑝(𝑔1, 𝑔2, 𝑔3) · 𝜒𝑝(𝑔1, 𝑔2𝑔3, 𝑔4) · 𝑔1𝜒𝑝(𝑔2, 𝑔3, 𝑔4)

𝜒𝑝(𝑔1𝑔2, 𝑔3, 𝑔4) · 𝜒𝑝(𝑔1, 𝑔2, 𝑔3𝑔4)
(4.77)
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4.5 Discussion

In summary, by using tensor networks, we develop a general framework to (partially)

classify bosonic SPT phases in any dimension, as well as construct generic tensor

wavefunctions for each class. We find that for a general symmetry group 𝑆𝐺, which

include both on site symmetries as well as lattice symmetries, the cohomological

bosonic SPT phases can be classified by 𝐻𝑑+1(𝑆𝐺,𝑈(1)), where 𝑑 + 1 is the space-

time dimension. Here, time reversal and reflection symmetries should be treated as

antiunitary. An important by-product is a generic relation between SET phases and

SPT phases: SPT phases can be obtained from SET phases by condensing anyons

carrying integer quantum numbers.

This work leaves several interesting future directions. On the conceptual side, it is

known there are bosonic SPT phases beyond group cohomology classification. Famous

examples include time reversal[141, 146, 15] (or reflection[126]) SPT phases in 3+1D,

which has a 𝑍2 × 𝑍2 classification. However, group cohomology only capture a 𝑍2

class: 𝐻4(𝑍𝒯
2 , 𝑈(1)) = 𝐻4(𝑍𝑃

2 , 𝑈(1)) = 𝑍2. The other 𝑍2 is beyond our framework. It

would be interesting to understand whether our framework can be further generalized

to capture this missing index.

It is also interesting to generalize our formulation to construct generic wavefunc-

tions for topological ordered phases as well as SET phases. We first point out that it

is straightforward to “(dynamically) gauge” the on-site unitary discrete symmetries on

tensor networks[57]. Tensor networks invariant under symmetry 𝑔 satisfy the tensor

equation T = 𝑊𝑔𝑔 ∘ T. By gauging symmetry 𝑔, the new tensor equation becomes

T = 𝑊𝑔 ∘ T, where 𝑊𝑔 is interpreted as gauge flux. Namely, for topological phases,

we require additional global IGG elements, which cannot be decomposed into plaque-

tte IGG elements. By gauging onsite unitary symmetries of SPT phases[87], we are

able to write down generic wavefunctions for Dijkgraaf-Witten type[39] of topological

ordered phases. Similarly, some SET phases can be obtained by gauging part of the

symmetries[98, 70, 30, 64].

As shown in Ref.[11, 158], the SPT phases protected by onsite symmetries can also
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be classified by MPO injective PEPS. It would be interesting to see the connection

between these two approaches.

As conjectured in Ref.[91], all topological ordered phases in 2+1D with gapped

boundaries can be realized by exactly solvable models – string-net models, which

have natural PEPS representations[56, 12, 83, 14, 122, 96], and are described by ten-

sor equations involving matrix product operators rather than gauge transformations.

Our formulation is incapable to construct string-net models beyond the cohomological

classes, such as the double Ising theory. Can we generalize our formulation to capture

all string-net models? In addition, it would be interesting to generalize our formula-

tion to fermionic cases using fermionic tensor network[84, 35, 36, 143, 164, 159, 157].

We leave all these questions to future work.

On the practical side, it would be interesting to perform variational numerical

simulations based on the symmetric tensor-network wavefunctions proposed here, and

to test their performance. In particular, efficient gradient-based variational algorithms

on tensor-network wavefunctions have been proposed[135], which are exactly suitable

to carry out these simulations.

4.6 SPT phases in 1+1D

In this part, we rederive the classification of 1D SPT[118, 23, 24, 108] using the

formulation we set in the main text. In particular, it is clear that time reversal and

reflection symmetries act nontrivially on the two cohomology phase.

Consider an infinite MPS state with symmetry 𝑆𝐺, then we can express the

symmetric condition for a local tensor as4-11

T = 𝑊𝑔𝑔 ∘ T (4.78)

where T represents a tensor network before contraction, 𝑔 ∈ 𝑆𝐺 and 𝑊𝑔 is the gauge

transformation associated with 𝑔.

Now, let us identify the IGG element. A single tensor is invariant if we multiply
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Figure 4-11: Symmetries and IGG in matrix product states.

a phase 𝜒 to its left leg and 𝜒* to its right leg. Therefore, we at least have a 𝑈(1)

IGG for a generic MPS. In the following, we will focus on the 𝑈(1) IGG.

Given the symmetry condition as well as the 𝑈(1) IGG, we are able to list the

tensor equation as following:

𝑊𝑔1𝑔1𝑊𝑔2𝑔2 = 𝜔(𝑔1, 𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2 (4.79)

where 𝜔(𝑔1, 𝑔2) is an IGG element, which acts 𝜔(𝑔1, 𝑔2) (𝜔*(𝑔1, 𝑔2)) on the left (right)

leg. Due to associativity condition, we obtain the two cocycle condition for 𝜔 as

𝜔(𝑔1, 𝑔2)𝜔(𝑔1𝑔2, 𝑔3) =
𝑔1𝜔(𝑔2, 𝑔3)𝜔(𝑔1, 𝑔2𝑔3) (4.80)

where 𝑔1𝜔 , 𝑔1 ·𝜔 · 𝑔−1
1 . For onsite unitary 𝑔1, the action is trivial. If 𝑔1 is some anti-

unitary operator, such as time reversal symmetry, 𝑔1𝜔 = 𝜔*. For reflection symmetry

𝜎, it maps the right (left) leg to the left (right) leg, so 𝜎𝜔 = 𝜔*.

Notice, the symmetry operation is defined up to an IGG element. Namely, we

have

T = 𝑊𝑔𝑔 ∘ T = 𝜖(𝑔)𝑊𝑔𝑔 ∘ T (4.81)
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So, the equivalence condition for 𝜔(𝑔1, 𝑔2) is

𝜔 ∼ 𝜔 · 𝜖(𝑔1𝑔2)

𝜖(𝑔1) 𝑔1𝜖(𝑔2)
(4.82)

In other words, 𝜔 is defined up to a coboundary. In summary, the 1D symmetric

phase is classified by 𝐻2[𝑆𝐺,𝑈(1)], where time reversal and reflection symmetries

impose complex conjugation on the 𝑈(1) phase factor.

4.7 The three cohomology classification from tensor

equations in 2+1D

First, we discuss commutation relations between the IGG elements of plaquette 𝑝1

and 𝑝2 for later convenience:

𝜐𝑝1𝑝2 ≡ (𝜆1𝑝1)
−1(𝜆2𝑝2)

−1𝜆1𝑝1𝜆
2
𝑝2

(4.83)

𝜐𝑝1𝑝2 still belongs to IGG according to the definition. Apparently, for the case where

𝑝1 ∩ 𝑝2 = ∅ or they share only a common site, 𝜆1𝑝1 and 𝜆2𝑝2 commute. When 𝑝1 and 𝑝2

share a common edge 𝑣, 𝜐𝑝1𝑝2 can only have nontrivial action on 𝑣. However, there

is no such kind of nontrivial IGG, so 𝜆1𝑝1 and 𝜆2𝑝2 still commute. When 𝑝1 = 𝑝2 ≡ 𝑝,

𝜐𝑝 ≡ 𝜐𝑝1𝑝2 can act nontrivially on legs of 𝑝. So 𝜐𝑝 belongs to IGG of the plaquette 𝑝.

To conclude, we have

(𝜆1𝑝1)
−1(𝜆2𝑝2)

−1𝜆1𝑝1𝜆
2
𝑝2

= 𝜆′𝑝1𝛿𝑝1𝑝2 (4.84)

As shown in the main text, 𝜆’s satisfy the two cocycle relation:

𝜆(𝑔1, 𝑔2)𝜆(𝑔1𝑔2, 𝑔3) =
𝑊𝑔1𝑔1𝜆(𝑔2, 𝑔3)𝜆(𝑔1, 𝑔2𝑔3) (4.85)

152



According to Eq.(4.29) and Eq.(4.84), we can decompose IGG elements as

𝜆(𝑔1, 𝑔2)𝜆(𝑔1𝑔2, 𝑔3) =
∏︁
𝑝

𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3)

𝑊𝑔1𝑔1𝜆(𝑔2, 𝑔3)𝜆(𝑔1, 𝑔2𝑔3) =
∏︁
𝑝

𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3) (4.86)

Further, due to the phase ambiguity in Eq.(4.29), we conclude

𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3) =

𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3) (4.87)

Now, we prove 𝜔𝑝(𝑔, 𝑔
′, 𝑔′′) satisfies the 3-cocycle condition. We implement two

ways to calculate the expression 𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3)𝜆𝑝(𝑔1𝑔2𝑔3, 𝑔4):

𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3)𝜆𝑝(𝑔1𝑔2𝑔3, 𝑔4)

=𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3)𝜆𝑝(𝑔1𝑔2𝑔3, 𝑔4)

=𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜔𝑝(𝑔1, 𝑔2𝑔3, 𝑔4)·

𝑊𝑔1𝑔1𝜆𝑝(𝑔2𝑔3, 𝑔4)𝜆𝑝(𝑔1, 𝑔2𝑔3𝑔4)

=𝜔𝑝(𝑔1, 𝑔2, 𝑔3)𝜔𝑝(𝑔1, 𝑔2𝑔3, 𝑔4)
𝑔1𝜔𝑝(𝑔2, 𝑔3, 𝑔4)·

𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝜆𝑝(𝑔3, 𝑔4)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3𝑔4)𝜆𝑝(𝑔1, 𝑔2𝑔3𝑔4) (4.88)

where we use Eq.(4.87) to obtain the result. Notice that in the last line, we use

the fact that 𝑊𝑔 always commutes with 𝜔𝑝, so 𝑊𝑔𝑔𝜔𝑝 = 𝑔𝜔𝑝. Using another way to
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calculate, we get

𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3)𝜆𝑝(𝑔1𝑔2𝑔3, 𝑔4)

=𝜆𝑝(𝑔1, 𝑔2)𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)
𝑊𝑔1𝑔2𝑔1𝑔2𝜆𝑝(𝑔3, 𝑔4)𝜆𝑝(𝑔1𝑔2, 𝑔3𝑔4)

=𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)
𝜆𝑝(𝑔1,𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2𝜆𝑝(𝑔3, 𝑔4)𝜆𝑝(𝑔1, 𝑔2)·

𝜆𝑝(𝑔1𝑔2, 𝑔3𝑔4)

=𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)𝜔𝑝(𝑔1, 𝑔2, 𝑔3𝑔4)
𝜆𝑝(𝑔1,𝑔2)𝑊𝑔1𝑔2𝑔1𝑔2𝜆𝑝(𝑔3, 𝑔4)·

𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3𝑔4)𝜆(𝑔1, 𝑔2𝑔3𝑔4)

=𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)𝜔𝑝(𝑔1, 𝑔2, 𝑔3𝑔4)
𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝜆𝑝(𝑔3, 𝑔4)·

𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3𝑔4)𝜆(𝑔1, 𝑔2𝑔3𝑔4) (4.89)

Comparing the above results, we conclude 𝜔𝑝 satisfies three cocycle equation:

𝜔𝑝(𝑔1, 𝑔2, 𝑔3)𝜔𝑝(𝑔1, 𝑔2𝑔3, 𝑔4)
𝑔1𝜔𝑝(𝑔2, 𝑔3, 𝑔4)

= 𝜔𝑝(𝑔1𝑔2, 𝑔3, 𝑔4)𝜔𝑝(𝑔1, 𝑔2, 𝑔3𝑔4) (4.90)

The action of 𝑔 on 𝜔𝑝 follows a very simple rule: for a leg 𝑖, we have (𝑔𝜔𝑝)(𝑖) =

𝜔
𝑠(𝑔)

𝑔−1(𝑝)(𝑔
−1(𝑖)), where 𝑠(𝑔) is trivial (complex conjugate) for unitary (anti-unitary)

symmetry.

According to Eq.(4.29). We note that 𝜆𝑝(𝑔, 𝑔′) is defined up to a complex number.

We can define 𝜆′𝑝(𝑔, 𝑔′) = 𝜒𝑝(𝑔, 𝑔
′)𝜆𝑝(𝑔, 𝑔

′). Then, we have

𝜆′𝑝(𝑔1, 𝑔2)𝜆
′
𝑝(𝑔1𝑔2, 𝑔3) =

𝜔′
𝑝(𝑔1, 𝑔2, 𝑔3)

𝑊𝑔1𝑔1𝜆′𝑝(𝑔2, 𝑔3)𝜆
′
𝑝(𝑔1, 𝑔2𝑔3) (4.91)

Thus, we can always tune 𝜔 to be some 𝑈(1) phase factor. In the following, we

will restrict ourselves for the case where 𝜔’s and 𝜒’s are phase factors. Now, let us
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calculate 𝜔′
𝑝(𝑔1, 𝑔2, 𝑔3):

𝜆′𝑝(𝑔1, 𝑔2)𝜆
′
𝑝(𝑔1𝑔2, 𝑔3)

=𝜒𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1, 𝑔2)𝜒𝑝(𝑔1𝑔2, 𝑔3)𝜆𝑝(𝑔1𝑔2, 𝑔3)

=𝜒𝑝(𝑔1, 𝑔2)𝜒𝑝(𝑔1𝑔2, 𝑔3)𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)·

𝜆𝑝(𝑔1, 𝑔2𝑔3)

=
𝜒𝑝(𝑔1, 𝑔2)𝜒𝑝(𝑔1𝑔2, 𝑔3)
𝑔1𝜒𝑝(𝑔2, 𝑔3)𝜒𝑝(𝑔1, 𝑔2𝑔3)

𝜔𝑝(𝑔1, 𝑔2, 𝑔3)
𝑊𝑔1𝑔1𝜆′𝑝(𝑔2, 𝑔3)·

𝜆′𝑝(𝑔1, 𝑔2𝑔3) (4.92)

where we use the fact that 𝑊𝑔𝜒𝑝 = 𝜒𝑝 in the last line. Comparing the above two

equations, we conclude

𝜔′
𝑝(𝑔1, 𝑔2, 𝑔3) = 𝜔𝑝(𝑔1, 𝑔2, 𝑔3)

𝜒𝑝(𝑔1, 𝑔2)𝜒𝑝(𝑔1𝑔2, 𝑔3)
𝑔1𝜒𝑝(𝑔2, 𝑔3)𝜒𝑝(𝑔1, 𝑔2𝑔3)

(4.93)

It is straightforward to check that 𝜔′
𝑝 also satisfies three cocycle condition in Eq.(4.36).

In other words, the 𝜔𝑝 is well defined up 3-coboundary constructed by 2-cochain 𝜒.

So, 𝜔𝑝 are classified by 3-cohomology 𝐻3(𝑆𝐺,𝑈(1)), where the symmetry group 𝑆𝐺

may have nontrivial action on coefficient 𝑈(1).

Notice that the physical wavefunction is invariant under gauge transformation 𝑉

as well as the IGG transformation ̃︁𝑊𝑔 = 𝜖(𝑔)𝑊𝑔, where 𝜖(𝑔) ∈ IGG. If 𝜔𝑝 classify

the PEPS wavefunctions, 𝜔𝑝 should be invariant (up to coboundary) under these two

kinds of transformations.

For any gauge transformation 𝑉 , 𝑊𝑔 → 𝑉𝑊𝑔𝑔𝑉
−1𝑔−1. Then it is straightforward

to prove that 𝜔𝑝 is invariant.

Now, let us consider IGG transformation. For ̃︁𝑊𝑔 = 𝜖(𝑔)𝑊𝑔, we have

̃︁𝑊𝑔1𝑔1̃︁𝑊𝑔2𝑔2 =
̃︀𝜆(𝑔1, 𝑔2)̃︁𝑊𝑔1𝑔2𝑔1𝑔2 (4.94)

where ̃︀𝜆(𝑔1, 𝑔2) = 𝜖(𝑔1)
𝑊𝑔1𝑔1𝜖(𝑔2)𝜆(𝑔1, 𝑔2)𝜖

−1(𝑔1𝑔2).
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Restrict to one plaquette, we calculate

̃︀𝜆𝑝(𝑔1, 𝑔2)̃︀𝜆𝑝(𝑔1𝑔2, 𝑔3)𝜖𝑝(𝑔1𝑔2𝑔3)
=𝜖𝑝(𝑔1)

𝑊𝑔1𝑔1𝜖𝑝(𝑔2)𝜆𝑝(𝑔1, 𝑔2)
𝑊𝑔1𝑔2𝑔1𝑔2𝜖𝑝(𝑔3)𝜆𝑝(𝑔1𝑔2, 𝑔3)

=𝜖𝑝(𝑔1)
𝑊𝑔1𝑔1𝜖𝑝(𝑔2)

𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝜖𝑝(𝑔3)𝜆𝑝(𝑔1, 𝑔2)𝜆𝑝(𝑔1𝑔2, 𝑔3)

(4.95)

where we use Eq.(4.94) several times. In second line, we have used the fact that
𝜆𝑝𝜖𝑝 =

𝜆𝜖𝑝 as well as Eq.(4.31). On the other hand,

̃︁𝑊𝑔1𝑔1̃︀𝜆𝑝(𝑔2, 𝑔3)̃︀𝜆𝑝(𝑔1, 𝑔2𝑔3)𝜖𝑝(𝑔1𝑔2𝑔3)
=𝜖𝑝(𝑔1)𝑊𝑔1𝑔1(𝜖𝑝(𝑔2)

𝑊𝑔2𝑔2𝜖𝑝(𝑔3)𝜆𝑝(𝑔2, 𝑔3)𝜖
−1
𝑝 (𝑔2𝑔3))𝜖𝑝(𝑔1)·

𝑊𝑔1𝑔1𝜖𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3)

=𝜖𝑝(𝑔1)
𝑊𝑔1𝑔1𝜖𝑝(𝑔2)

𝑊𝑔1𝑔1𝑊𝑔2𝑔2𝜖𝑝(𝑔3)
𝑊𝑔1𝑔1𝜆𝑝(𝑔2, 𝑔3)𝜆𝑝(𝑔1, 𝑔2𝑔3)

(4.96)

According to Eq.(4.35), we conclude that

̃︀𝜆𝑝(𝑔1, 𝑔2)̃︀𝜆𝑝(𝑔1𝑔2, 𝑔3) =
𝜔𝑝(𝑔1, 𝑔2, 𝑔3)

̃︁𝑊𝑔1𝑔1̃︀𝜆𝑝(𝑔2, 𝑔3)̃︀𝜆𝑝(𝑔1, 𝑔2𝑔3) (4.97)

So, one obtains the same 3-cocycle for 𝜖𝑝 transformation.

We now make a general remark: our tensor construction for SPT phases in 2+1D

is related to crossed module extension known in the mathematical literature.

Let us first review the SPT phases in 1+1D with symmetry group 𝑆𝐺, which are

classified by different projective representations of 𝑆𝐺, or equivalently, by different

central extensions of 𝑆𝐺:

1 → 𝑈(1) → 𝐸 → 𝑆𝐺→ 1 (4.98)
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In the tensor network construction, the center 𝑈(1) is mapped to the 𝑈(1) phase

IGG, and symmetry actions on all legs of the tensor network 𝑊𝑔𝑔 together with the

𝑈(1) IGG form the extended group 𝐸. So, the construction of 1+1D SPT phases by

MPS can be viewed as a realization of the central extension.

A crossed module extension is an exact sequence:

1 → 𝑈(1) → 𝑁
𝜙−→ 𝐸 → 𝑆𝐺→ 1 (4.99)

with a left action of 𝐸 on 𝑁 , represented by 𝑛 ↦→ 𝑒𝑛, such that 𝜙(𝑛)𝑛′ = 𝑛𝑛′𝑛−1

as well as 𝜙 ( 𝑒𝑛) = 𝑒𝜙(𝑛)𝑒−1, for all 𝑛, 𝑛′ ∈ 𝑁 and 𝑒 ∈ 𝐸. It is well known[65,

67, 131, 10, 43] that the crossed module extensions of 𝑆𝐺 by 𝑈(1) are classified by

𝐻3(𝑆𝐺,𝑈(1)), which is the same object classifies the 2+1D SPT phases protected by

𝑆𝐺. As in the 1+1D case, our construction can be viewed as a realization of a crossed

module extension by tensor networks. Namely, given a crossed module extension

characterized by a three cohomology [𝜔], we can write down tensor equations realize

this crossed module extension and construct generic tensor wavefunctions for the SPT

phase characterized by [𝜔]. This fact also indicates that our tensor constructions are

able to capture all cohomological bosonic SPT phases in 2+1D.

Now, let us describe the procedure to obtain tensor equations from a crossed

module extension. Given a crossed module extension in Eq.(4.99), one can decompose

it to two short exact sequences as following:

1 → 𝑈(1) → 𝑁
𝜑−→𝑀 → 1

1 →𝑀
𝑖−→ 𝐸 → 𝑆𝐺→ 1 (4.100)

where 𝑀 is identified as 𝜑(𝑁), and 𝑖 : 𝑀 →˓ 𝐸 is an inclusion map. Apparently

𝜙 = 𝑖 ∘ 𝜑.

We can write down tensor equations to realize these two short exact sequence. As

shown in Eq.(4.31), symmetry actions on all legs of tensor networks {𝑊𝑔𝑔|∀𝑔 ∈ 𝑆𝐺}

form a projective representation with coefficient in group {𝜆}, which we identify as
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𝑀 . In the anyon condensation context, 𝑀 is the gauge group characterizing the

topological order before condensation. 𝑀 together with {𝑊𝑔𝑔|∀𝑔} form the extended

group 𝐸, which captures the SET physics before anyon condensation. According to

the assumption, ∀𝜆 ∈𝑀 can be decomposed to plaquette IGG elements: 𝜆 =
∏︀

𝑝 𝜆𝑝.

An element 𝑛 ∈ 𝑁 is identified as a set of plaquette IGG elements: 𝑛 = {𝜆𝑝|∀𝑝},

which satisfies
∏︀

𝑝 𝜆𝑝 = 𝜆. Then, 𝑁 =
{︁
{𝜆𝑝|∀𝑝}|

∏︀
𝑝 𝜆𝑝 = 𝜆 ∈𝑀

}︁
. And mapping 𝜑

is defined as

𝜑 : 𝑁 ↦→𝑀,

𝜑(𝑛) =
∏︁
𝑝

𝜆𝑝 (4.101)

It is easy to see that the kernel of 𝜑 forms a 𝑈(1) group:
{︁
{𝜒𝑝|∀𝑝} |

∏︀
𝑝 𝜒𝑝 = 𝐼

}︁
∼=

𝑈(1).

Now, let us consider the action of 𝐸 on 𝑁 . Set 𝑛 = {𝜆𝑝|∀𝑝}, 𝑛′ =
{︀
𝜆′𝑝|∀𝑝

}︀
and

𝑒 = 𝜆(𝑒)𝑊𝑔𝑔 ∈ 𝐸, we define the action as

𝜙(𝑛)𝑛′ ,
{︀

𝜆𝜆′𝑝|∀𝑝
}︀
=

{︀
𝜆𝑝 · 𝜆′𝑝 · 𝜆−1

𝑝 |∀𝑝
}︀
= 𝑛 · 𝑛′ · 𝑛−1

𝜙( 𝑒𝑛) =
∏︁
𝑝

𝜆(𝑒)𝑊𝑔𝑔𝜆𝑝 =
𝜆(𝑒)𝑊𝑔𝑔𝜆 = 𝑒 · 𝜙(𝑛) · 𝑒−1 (4.102)

which indeed satisfies the crossed module condition. In summary, from a crossed

module extension, we are able to construct tensor equations for SPT phases and vice

versa.
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