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Chapter 1. Poly(lactic acid) (PLA) is a biodegradable polymer derived from 

renewable resources that has garnered much interest in recent years as an 

environmentally friendly substitute to conventional petroleum-derived engineering 

polymers. PLA has many applications in textiles, packaging, compostable consumables, 

and biomedical devices, as PLA displays excellent biocompatibility. This polymer is 

primarily produced from the ring-opening polymerization of lactide, a cyclic dimer of 

lactic acid. This introductory chapter highlights mechanistic features of this ring-opening 

polymerization reaction as well as metal-based catalysts that have been reported for 

lactide polymerization. In addition, switchable catalysis is an emerging field that has 

gained interest with polymer chemists for the potential of creating original polymer 

compositions and architectures. The utilization of redox-switchable catalysis to control 

lactide polymerization is discussed in this chapter.  

  



 

 

Chapter 2. Bis(imino)pyridine iron bis(alkoxide) complexes have been 

synthesized and utilized in the polymerization of (rac)-lactide. The activities of the 

catalysts were particularly sensitive to the identity of the initiating alkoxide with more 

electron-donating alkoxides resulting in faster polymerization rates. The reaction 

displayed characteristics of a living polymerization with production of polymers that 

exhibited low molecular weight distributions, linear relationships between molecular 

weight and conversion, and polymer growth observed for up to fifteen sequential 

additions of lactide monomer to the polymerization reaction. Mechanistic experiments 

revealed that iron bis(aryloxide) catalysts initiate polymerization with one alkoxide 

ligand, while iron bis(alkylalkoxide) catalysts initiate polymerization with both alkoxide 

ligands.  Oxidation of an iron(II) catalyst precursor lead to a cationic iron(III) 

bis(alkoxide) complex that was completely inactive towards lactide polymerization. 

When redox reactions were carried out during lactide polymerization, catalysis could be 

switched off and turned back on upon oxidation and reduction of the iron catalyst, 

respectively.   In addition, preliminary investigations of copolymerization reactions of 

lactide with ethylene are reported.  

 



 

 

Chapter 3. A cationic iron(III) complex is active for the polymerization of 

various epoxides, whereas the analogous neutral iron(II) complex is inactive. 

Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the 

Fe(III) complex and “switched on” upon in situ oxidation, which is orthogonal to what 

was observed previously for lactide polymerization. Conducting copolymerization 

reactions in the presence of both monomers resulted in block copolymers whose identity 

can be controlled by the oxidation state of the complex: selective lactide polymerization 

was observed in the iron(II) oxidation state and selective epoxide polymerization was 

observed in the iron(III) oxidation state. Evidence for the formation of block copolymers 

was obtained from solubility differences, GPC, and DOSY-NMR studies. 

 

 

  



 

 

Chapter 4. Formally iron(I) bis(imino)pyridine monoalkoxide complexes were 

synthesized through protonolysis of a bis(imino)pyridine iron alkyl species with p-

methoxyphenol or neopentyl alcohol. The resulting complexes were characterized by X-

ray crystallography, 
1
H NMR, EPR, and Mössbauer spectroscopy, and preliminary 

characterization of the electronic structure of these complexes is discussed. These iron 

complexes were found to be highly active catalysts for the polymerization of various 

cyclic esters and carbonates, with the iron mono(neopentoxide) complex being much 

more active and giving more narrow molecular weight distributions than the 

mono(aryloxide) complex. The bis(imino)pyridine iron neopentoxide complex was 

highly active in particular for the polymerization of ε-caprolactone (CL), giving full 

conversion within 10 minutes at room temperature in toluene, making it one of the most 

active iron complexes reported for this transformation ([Fe]:[CL] = 1:2000). Comparison 

of the polymerization activity of these iron mono(alkoxide) complexes with the 

analogous iron(II) bis(alkoxide) complexes is reported. 
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Chapter 1: Introduction 

1.1 Introduction to Poly(lactic acid) and its Applications 

The increasing concern over waste disposal, environmental pollution and the 

depletion of petroleum resources has driven efforts to develop biodegradable alternatives 

to conventional petroleum-based polymers. A leading candidate in this regard is 

poly(lactic acid) (PLA).  Derived from renewable resources such as corn and rice, PLA 

can degrade by hydrolytic cleavage of the ester bonds of the polymer backbone, and 

subsequently break down into water and carbon dioxide.
1 

 In early stages of development, poly(lactic acid) was limited to use in biomedical 

devices due to high cost of production and limited polymer molecular weights.
2,3

 The 

good biocompatibility of PLA makes it suitable for use in a variety of medical 

applications. Poly(lactic acid) medical devices can degrade slowly in the body after they 

fulfill their function, avoiding the need for surgery to remove implants. Many different 

biomedical devices have been formulated from poly(lactic acid), including dissolvable 

sutures, stents, and bone fixation devices. Poly(lactic acid) has also been utilized as a 

drug delivery agent,  and its long degradation time compared to other biodegradable 

polymers makes it ideal for long-term controlled drug release applications.
 2,4

 

In the past two decades, technological developments have allowed for the 

economical production of poly(lactic acid) in high volumes and molecular weights. 

Enabled by these recent advancements, applications of poly(lactic acid) have been 



2 

 

extended to many other fields. PLA fibers have great potential to replace traditional 

petroleum-derived fibers and textiles due to their good dyeability, hydrophilicity, low 

flammability, and weather resistance. PLA has also been widely used in packaging and 

film applications, and for compostable consumables such as bottles, beverage cups, and 

utensils.
2
 Global production capacity of poly(lactic acid) has grown drastically in recent 

years, and is projected to reach over 800,000 tons/year by 2020.
5
 In addition, the global 

demand for poly(lactic acid) is rising rapidly, in part due to increased environmental 

awareness of the public.
2,3

 

However, it should be noted that poly(lactic acid) has some drawbacks that limit 

its use for certain applications; mainly its brittle nature and poor thermal stability. 

Modifications to poly(lactic acid) have been made by adding plasticizers or blending with 

other polymers, but these tend to leach out from PLA during use due to poor 

miscibility.
2,6

 The copolymerization of poly(lactic acid) with other monomers has also 

been utilized as a strategy to alter the physical properties of poly(lactic acid), as well as 

modify its degradation rate.
1,6

 

The most direct synthesis of poly(lactic acid) is from the self-condensation of 

lactic acid in a step growth polymerization reaction (Scheme 1.1a).
1
 However, it is 

difficult to drive these reactions to completion due to the formation of water when a lactic 

acid unit is added to the polymer chain, which can readily react with the lactate ester 

products. This can be overcome by carrying out the self-condensation reactions under 

neat conditions and at elevated temperatures, but typically result in low molecular weight 

polymer with low yields.
7
 In addition, since all of these reactions are step growth 
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polymerizations, they are not suitable for applications that require control over molecular 

weight and molecular weight distributions (such as block copolymerization reactions). 

Scheme 1.1. Methods for the synthesis of poly(lactic acid). 

 

Poly(lactic acid) is primarily produced by the ring-opening polymerization of 

lactide, a cyclic dimer of lactic acid (Scheme 1.1b). Unlike the self-condensation of lactic 

acid, the ring-opening polymerization of lactide is a chain growth polymerization that 

does not liberate an equivalent of water after every insertion. Moreover, the reaction is 

driven towards the polymer from release of ring strain that is inherent to cyclic diesters. 

As a result, high molecular weight poly(lactic acid) is achievable in a controlled fashion. 

1.2 Mechanistic Features of the Ring-Opening Polymerization of 

Lactide 

1.2.1 Coordination-Insertion Mechanism 

Many well-defined transition metal and main group metal catalysts proceed 

through a coordination-insertion mechanism for the ring-opening polymerization of 

lactide.
1
 In this mechanism, coordination of lactide by a Lewis acidic metal (typically a 

metal alkoxide) results in electrophilic activation of the lactide for attack by the 

nucleophilic alkoxide group on the metal (1.1, Figure 1.1). This results in the formation 

of an intermediate that is similar to the tetrahedral intermediate commonly observed in 
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organic chemistry during the interconversion of carboxylic acid derivatives (1.2). Ring 

opening then occurs by collapse of this intermediate to reform an alkoxide that 

incorporates one unit of lactide (1.3). Propagation occurs by subsequent lactide 

coordination and alkoxide insertion until the metal-alkoxide bond is cleaved by a 

termination reaction.  

 

Figure 1.1. Coordination-insertion mechanism for the ring-opening polymerization of 

lactide. 

 

As a consequence of this mechanism, poly(lactic acid) obtains an ester end group 

derived from the initiator. The first experimental evidence for a coordination-insertion 

mechanism for the ring-opening of lactide was reported by Kricheldorf
8
 and nearly 

simultaneously by Dubois and coworkers.
9
 These researchers analyzed polymer end 

groups by 
1
H and 

13
C NMR spectroscopy and utilized polymer characterization by IR 
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spectroscopy to confirm that the lactide ring opens through ester cleavage, and the lactide 

monomer inserts into the metal-alkoxide bond. A feature common to many 

polymerizations that proceed through a coordination-insertion mechanism is excellent 

control over polymer molecular weight. Many catalysts also demonstrate evidence for 

living polymerization or even immortal polymerization, when an excess of alcohol is 

used (see section 1.2.4). 

1.2.2 Activated-Monomer Mechanism 

 

Figure 1.2. Activated monomer mechanism for the ring-opening polymerization of 

lactide. A = Brønsted or Lewis acid. 
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Other than the coordination-insertion mechanism, the most common mechanism 

invoked for lactide polymerization reactions is the activated monomer mechanism 

(Figure 1.2).
10

 This mechanism begins with the electrophilic activation of lactide with 

either a Brønsted acid initiator or a Lewis acidic catalyst. Either way, an oxo-carbenium 

ion intermediate 1.4 is formed that serves as the activated monomer poised for 

nucleophilic attack. At this stage, either the initiator or the growing polymer chain attacks 

this oxo-carbenium ion forming the tetrahedral intermediate 1.5. After proton transfer, 

collapse of this intermediate results in ring opening and incorporation of a lactide unit 

into the growing polymer chain. In additional to traditional Lewis acid and Brønsted acid 

catalysts, the activated monomer mechanisms are also proposed for guanidine type 

organocatalysts where hydrogen bonding to the monomer is thought to be the primary 

source of monomer activation.
11

  

1.2.3 Transesterification Reactions 

 

Figure 1.3. Transesterification reactions compete with chain propagation, and can occur 

intramolecularly or intermolecularly. 
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Side reactions that commonly occur for many lactide polymerization reactions are 

transesterification reactions, which predominate at high conversions and compete with 

chain propagation (Figure 1.3).
1
 These reactions typically arise due to electrophilic 

activation of esters along the polymer chain rather than in the lactide monomer. 

Intramolecular transesterification is often called backbiting, and results in a cyclic 

polymeric species (or lactide, if n=1). Intermolecular transesterification can also occur 

when the end of one polymer chain attacks another polymer chain that has been activated 

by the catalyst. The products from this side reaction are linear polymer chains of different 

lengths. A measurable consequence of these side reactions is polymer compositions with 

broad dispersities and molecular weights that do not coincide with catalyst to monomer 

ratios. 

1.2.4 Living and Immortal Polymerization 

In polymerizations where transesterification events are minimal, there is 

opportunity for the polymerization reaction to demonstrate living behavior.
1, 12

 

Characteristics of a living polymerization include narrow dispersity, a linear correlation 

between conversion and number average molecular weight, and a predictable molecular 

weight that is based on the monomer to catalyst ratio and the conversion of the reaction. 

The living characteristics that many lactide polymerization reactions demonstrate make 

them amenable for sequential addition of monomers, which provides a convenient way to 

synthesize block copolymers when lactide polymerization is combined with the ring-

opening polymerization of other cyclic monomers. 



8 

 

 

Figure 1.4. Immortal polymerization of lactide. More than one growing polymer chain is 

obtainable per metal center if chain transfer (kct) is faster than chain propagation (kp). 

 

In a living polymerization system, for every active catalyst or initiator site there is 

one growing polymer chain. While this feature provides excellent control over polymer 

molecular weight and molecular weight distribution, it limits the number of polymer 

molecules that can be synthesized to the number of catalyst molecules in the reaction. 

However, many lactide polymerization catalysts also demonstrate immortal 

polymerization when carried out with an excess of alcohol initiator. These reactions 

demonstrate molecular weights that are linearly related to the ratio between the initiator 

and monomer rather than the catalyst and monomer. This behavior is made possible 

because the alcohol initiator can undergo chain transfer reactions that liberate a polymer 

chain with an alcohol end group, which can enter the polymerization cycle (Figure 1.4). 
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An important requirement for immortal polymerization is that the rate of chain transfer 

(kct) must be signifcantly faster than the rate of lactide propagation (kp) so as to ensure 

that polymers are produced with narrow dispersities.
13

  

1.3 Catalytic Systems for the Ring-Opening Polymerization of Lactide 

The most common commercially used catalyst for the ring-opening 

polymerization of lactide is tin(II) octanoate (Sn(Oct)2). Although this complex is 

relatively insensitive to environmental factors, such as the presence of oxygen, it requires 

elevated temperatures and neat conditions to give high molecular weight polymer. 

Moreover, toxicity concerns remain with Sn(Oct)2.
14

 Although the compound is approved 

by the U.S. Food and Drug Administration, its toxicity makes it allowable in less than 1% 

by weight in the polymer.
15

 Finally, lactide polymerization catalyzed by Sn(Oct)2 

proceeds without control over polymer tacticity, which is important in affecting polymer 

properties and degradation profiles.
 16

  As a result, there has been significant effort in 

developing catalysts that are more active, more selective, and less toxic than the Sn(Oct)2 

that remains the industry standard. Many of these systems are metal-containing catalysts, 

of which representative and noteworthy examples are highlighted in this section. There 

are also many organic catalysts reported and commonly used for the polymerization of 

lactide that will not be discussed in this chapter.
1
 

1.3.1 Aluminum-Based Complexes 

Dubois and coworkers reported the first controlled synthesis of high molecular 

weight poly(lactic acid) with common and widely available aluminum triisopropoxide 

(Al(O
i
Pr)3).

17
 Although elevated temperatures (70 °C) were required, living 



10 

 

characteristics for the polymerization of (rac)-lactide were observed with evidence for a 

coordination-insertion mechanism. From the molecular weight of the polymer obtained, it 

was determined that each Al(O
i
Pr)3 initiates three poly(lactic acid) chains per metal 

center. Although controlled polymerization was observed, it was limited to Mn < 90 

kg/mol and [lactide]:[Al] < 1600, beyond which transesterification and backbiting 

reactions became significant. These transesterification reactions caused the dispersity to 

increase over time and became more prevalent as the temperature was raised. Use of 

Al(O
i
Pr)3 to initiate lactide polymerization had many advantages compared to Sn(Oct)2 

because it is a living polymerization rather than poorly controlled and had well-defined 

chain-end groups. In addition, poly(lactic acid) obtained from Al(O
i
Pr)3 initiator had 

increased thermal stability compared to poly(lactic acid) initiated by Sn(Oct)2 when 

lactide was polymerized in the bulk. The reason for the difference is that residual 

aluminum decreased transesterification reactions compared to tin. While it is unclear why 

transesterification is slower for aluminum compared to tin, some possible reasons include 

more favorable interaction between the polymeric ester carbonyls and the larger tin ion, 

better freedom for the tin catalyst to activate the esters on the polymer chain due to it not 

being covalently bound to the polymer chain end, and residual octanoic acid in the tin 

catalyst that can serve as a Brønsted acid catalyst for the transesterification reaction.
18

  

Because aluminum alkoxides initiated lactide polymerization with good molecular 

weight control, aluminum alkoxide complexes bearing different ancillary ligands were 

investigated to further alter polymerization characteristics. Wide success was achieved 

with aluminum complexes ligated with salen derivatives (e.g., 1.6, 1.7, 1.8), which 
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resulted in controlled polymerization that occurred with enhanced reaction rates and with 

good stereocontrol depending on the identity of the salen ligand (Figure 1.5).  

 

Figure 1.5. Examples of aluminum initiators for lactide polymerization. 

Following on an initial report from Nomura,
19

 Gibson and coworkers further 

delineated the structural features that salen ligands had on the rate and stereoselectivity of 

 (rac)-lactide polymerization with a systematic investigation with various aluminum 

complexes containing salen ancillary ligands.
20

 In general, lactide polymerization 

activities were enhanced with electron-withdrawing substituents (Cl, Br) installed on the 

phenoxide donor and with a flexible three-carbon linker between the imino donors (1.7); 

whereas lower activities were observed with sterically demanding (
t
Bu) substituents 

installed in the position ortho to oxygen in the phenoxide donor. Regarding 

stereochemistry, increased isoselectivity was observed with a combination of a flexible 

three-carbon linker between imino-nitrogen donors and a large ortho-phenoxy 

substituent.  

A different class of tetradentate aminophenoxide ligands known as salan-type 

ligands were utilized by Gibson and coworkers for lactide polymerization when ligated to 

aluminum (1.8, Figure 1.5).
21

 These aluminum complexes were colorless unlike the 
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highly conjugated salen-type complexes, which could be advantageous for commercial 

production of polymers. When combined with benzyl alcohol as an initiator, complex 1.8 

was found to polymerize (rac)-lactide with living characteristics, and the rate of 

polymerization as well as the resulting microstructure could be altered by changing the 

substituents on the salan ligand. Changes to the phenoxide and amino moieties resulted in 

poly(lactic acid) ranging from highly isotactic to highly heterotactic. For example, when 

the phenoxide ligand was unsubstituted (1.8a), isotactic poly(lactic acid) was observed 

(Pm = 0.79) and with 3,5-dichloro substituted phenoxide ligand (1.8b), heterotactic 

poly(lactic acid) was observed (Pr = 0.96). This is the first time a significant change in 

poly(lactic acid) tacticity was observed by altering remote ligand substituents.  

Although aluminum complexes have been successfully employed for lactide 

polymerization, elevated aluminum concentrations have been linked to Alzheimer’s and 

other neurodegenerative diseases,
22

 which may be problematic for poly(lactic acid) used 

in biomedical applications. Moreover, they are less desirable because most catalysts 

require elevated temperatures to achieve high reaction rates. For these reasons, more 

biocompatible and non-toxic metals have been sought out. 

1.3.2 Zinc-Based Complexes 

Outside of tin and aluminum-based complexes, zinc-based complexes are the 

most common metal-based catalyst employed for the ring opening polymerization of 

lactide.
23

 Zinc(II)-based complexes are attractive due to their low toxicity, high Lewis 

acidity, and high stability. As a result, some of the most active catalysts that have been 

developed are zinc-based complexes.  
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By far the most common zinc-based complexes are those that incorporate mono-

anionic ligands (Figure 1.6). Chisholm and coworkers were among the first to report 

discrete zinc complexes capable of undergoing the ring opening polymerization of lactide 

by showing that four coordinate zinc complexes supported by tris(pyrazolyl)borate 

ligands could be effective catalysts for L-lactide polymerization.
24

 Sterically encumbered 

complexes such as 1.9 led to 90% consumption of L-lactide in 6 days at room 

temperature when [lactide]:[Zn] = 500:1. Molecular weights were well controlled and 

molecular weight distributions were narrow and consistent with a living polymerization 

reaction.  

 

Figure 1.6. Representative zinc complexes used as catalysts for lactide polymerization. 

Another pioneering system discovered by Coates and coworkers were zinc 

complexes supported by β-diketiminate ligands featuring a sterically encumbered 2,6-

1.9 

1.10a, 

1.10b, 

1.10c, 

1.10d, 

1.10e, 
1.11 

1.12 1.13 
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diisopropyl aryl substituents. These ligands support three coordinate zinc(II) alkoxides or 

amides (1.10) that are in equilibrium with dimeric zinc complexes. These coordinatively 

unsaturated complexes proved to be good catalysts for (rac)-lactide polymerization.
25

 

While reaction rates with zinc amide 1.10a were slow, the polymerization of lactide with 

zinc isopropoxide 1.10b was complete in 20 minutes at room temperature at 

[lactide]:[Zn] = 200:1 (Figure 1.6). Although absolute polymer molecular weights were 

higher than theoretical molecular weights based on [lactide]:[Zn] and conversion, 

molecular weights were linearly correlated with molecular weight and dispersities were 

narrow (Mw/Mn = 1.10), consistent with a living polymerization. The higher molecular 

weights than expected can be attributed to slower initiation relative to propagation. 

Further studies revealed that activity for the complex was acutely sensitive to the steric 

environment of the ligand with zinc complexes containing sterically less demanding β-

diketiminate ligands giving significantly slower reaction rates. For example, zinc 

complex 1.10c with a 2,6-diethylaryl substituted β-diketiminate ligand was one order of 

magnitude slower compared to 1.10b. Nevertheless, the relationship between sterics and 

activity are not necessarily linearly correlated as complexes bearing 2,6-dipropylaryl 

substituted β-diketiminate ligands (1.10d) were slower than 1.10c.
26

 Further 

demonstrating the sophisticated relationship between stereoelectronic properties of the 

ligand and the activity of the catalyst was the finding that zinc complexes containing 

unsymmetrically substituted, electron-rich β-diketiminate ligands were more much more 

efficient catalysts. In the presence of zinc complex 1.10e, (rac)-lactide underwent 

complete reaction in three minutes when [lactide]:[Zn] = 100:1, while maintaining 

excellent control over molecular weight and molecular weight distributions (Mw/Mn = 
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1.17).
27

 The authors hypothesized that the increased reactivity for the electron-rich 

ligands were due to greater liability of the alkoxide ligand thereby making it more 

nucleophilic for its addition to lactide.  

Inspired by hydrolytic enzymes, Tollman, Hillmyer, and coworkers have 

developed dimeric zinc complexes containing tridentate diamine phenoxide ligands (1.11, 

Figure 1.6). These complexes were efficient for the polymerization of (rac)-lactide, 

leading to 90% conversion within 30 minutes at room temperature and with 300 

equivalents of lactide relative to zinc.
28

 The reactions demonstrated evidence for living 

polymerization and proceeded with excellent control over polymer molecular weight 

distributions (Mw/Mn = 1.19). The authors carried out some kinetic studies, and favored a 

propagation mechanism that requires both zinc metals but could not rule out a mechanism 

involving one metal.  

Many more mono-anionic ligands have been appended to zinc(II) to form 

complexes capable of undergoing the ring opening polymerization of lactide,
23

 but less 

common are complexes that incorporate neutral ancillary ligands. Two systems have 

emerged as particularly active catalysts. The first are neutral zinc complexes that are 

supported by N-heterocyclic carbene ligands.
29

 The dimeric zinc complex 1.12 (Figure 

1.6) demonstrated excellent activity for the polymerization of (rac)-lactide, resulting in 

98% conversion of 130 equivalents of monomer in 20 minutes at room temperature. The 

reaction resulted in heterotactic-biased polymer that had a different tacticity compared to 

analogous reactions catalyzed by free carbene. Although not conclusive, this outcome 

suggested that the NHC-ligand remains bound to zinc and that the reaction was not 

catalyzed by the free carbene. With the thinking that cationic zinc complexes would be 
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more Lewis acidic and therefore more reactive, Hayes and Wheaton developed cationic 

zinc complexes  that incorporate a bis(phosphinimine) dibenzofuran ligand (Complex 

1.13, Figure 1.6).
30

 These complexes proved to be efficient for the polymerization of 

(rac)-lactide leading to 90% conversion of 200 equivalents of the monomer in 50 

minutes. At these catalyst loadings, the molecular weight of the polymer was predictable 

from [lactide]:[Zn] and conversion and molecular weight distributions were narrow 

(Mw/Mn = 1.15). Molecular weights were lower than expected at lower catalyst loadings, 

which was attributed to chain transfer events that occur from small impurities in the 

monomer. On the other hand, at high catalyst loadings, significant transesterification 

reactions occurred, which led to characteristics inconsistent with a living polymerization 

such as broad dispersities and molecular weights that were not linearly correlated with 

the conversion of the reactions. 

1.3.3 Group 2 Metal-Based Complexes 

Complexes based on group 2 metals of magnesium, calcium, strontium, and 

barium have been extensively investigated for lactide polymerization because they are 

colorless, readily available, inexpensive, and low in toxicity.
31

 Calcium and magnesium 

are biocompatible and essential for life, making them attractive candidates for lactide 

polymerization catalysts for the production of polymers that can be utilized for 

biomedical applications. Chisholm and coworkers reported well-defined magnesium 

complexes with tris(pyrazolyl)borate and tris(indazolyl)borate ligands for the 

polymerization of lactide at room temperature in dichloromethane to give 90% 

conversion in 60 minutes with [lactide]:[Mg] = 500:1. The polymerizations demonstrated 
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good control over molecular weight with linear relationships between molecular weight 

and monomer conversion and dispersities of 1.1-1.25.
24 

 

Magnesium complexes with β-diketiminate ligands have also been successfully 

utilized for lactide polymerization. Complex 1.14 was highly active for (rac)-lactide 

polymerization, giving full conversion within 2 minutes at 20 °C to afford atactic 

poly(lactic acid) with [lactide]:[Mg] = 200:1 (Figure 1.7).
32

 Although the system was 

much more active than the analogous zinc complexes, the dispersities in this system were 

somewhat broad (1.59) and molecular weights were higher compared to the theoretical 

value based on [lactide]:[Mg] and conversion. Fortunately, the addition of 2-propanol 

with catalyst 1.14 also showed high activity and gave more narrow molecular weight 

distributions (1.2-1.35) and molecular weights more closely aligned with expected 

values. A magnesium tetraborohydrate β-diketiminate complex (1.15) afforded over 85% 

conversion of lactide in THF after 5 minutes. This polymerization showed characteristics 

of a living polymerization but back-biting reactions prevailed at higher conversions. The 

analogous calcium tetraborohydrate complex was less active (91% conversion after 90 

min.).
33

 Magnesium compounds with amino-phenolate ligands (1.16) were found to be 

active for the living polymerization of L-lactide.
34

 Full conversion of 50 equiv. L-lactide 

was observed in 15 minutes in toluene at room temperature. Polymers with narrow 

dispersities (1.10-1.12) were obtained and a coordination-insertion mechanism was 

implicated. Magnesium silylamido complexes, such as 1.17 show remarkable activities, 

promoting the polymerization of 10,000 equivalents of (rac)-lactide within 15 minutes at 

room temperature in toluene.
35

 High molecular weight poly(lactic acid) (>100 kg/mol) 
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was attainable with these low catalyst loadings, resulting in polymer with relatively 

narrow dispersities. 

 

Figure 1.7. Examples of magnesium complexes used for lactide polymerization. Ar = 

2,6-diisopropylphenyl. 

 

The first documented example of an immortal polymerization with a magnesium 

catalyst was reported by Carpentier and coworkers, who utilized a bulky 

bis(morphalinomethyl)phenoxy ligand (1.18, Figure 1.7) to demonstrate this mode of 

reactivity.
23

 With the addition of alcohol initiators, this complex demonstrated high 

activity. For example, the addition of 10 equivalents of isopropanol resulted in the 

polymerization of 1000 equivalents of L-lactide within 6 minutes in toluene at 60 °C 

without sacrificing the living characteristics of the polymerization reaction as was evident 

by the low dispersity (1.14).  

Feijen and coworkers were among the first to have developed calcium complexes 

for lactide polymerization. A calcium alkoxide system generated in situ from 

Ca(THF)2(NTMS2)2 and an alcohol proved to be an excellent route to form active 
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catalysts.
36

 With isopropanol as the added alcohol, full conversion of 100 equivalents of 

L-lactide was observed in 35 minutes at room temperature in THF, resulting in 

poly(lactic acid) with a dispersity of 1.05. Due to the success of tris(pyrazolyl)borate and 

β-diketiminate complexes of magnesium for lactide polymerization, Chisholm 

investigated well-defined analogous calcium complexes for lactide polymerization.
37

 

With the calcium β-diketiminate complexes, over 90% conversion of 200 equivalents of 

(rac)-lactide was obtained within 2 hours to afford atactic poly(lactic acid) in THF at 

room temperature; analogous magnesium complexes gave heterotactic poly(lactic acid) 

within 5 minutes. Since calcium is larger than magnesium, these results suggest that the 

β-diketiminate ligand does not provide efficient steric crowding to engender 

stereocontrol. With the bulky tris(pyrazolyl)borate ligands, calcium complexes (1.19, 

Figure 1.8) were found to be highly active for lactide polymerization, with a rapid 

reaction rate (90% conversion within 5 minutes), albeit with broader dispersities (Mw/Mn 

= 1.7). 

Calcium 2,6-di-tert-buyl-4-methylphenoxide complexes (1.20, Figure 1.8) are 

highly active catalysts for the polymerization of L-lactide in toluene at room temperature 

when benzyl alcohol is used as an initiator.
38

 These calcium complexes gave full 

conversion of lactide within a few minutes with narrow dispersities (1.08-1.17). 

Contrasting the β-diketiminate complexes, the calcium complexes afforded faster 

polymerization rates compared to their magnesium counterparts. For example, with 

[lactide]:[1.20]:[BnOH] = 100:0.3:1, 83% conversion was obtained after 1 minute with 

the calcium complex, whereas after 60 minutes, only 15% was observed with the 

magnesium complex. 
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Figure 1.8. Examples of calcium, strontium, and barium complexes used for lactide 

polymerization. 

 

There are fewer examples of lactide polymerization catalysts for the larger group 

2 metals than with magnesium and calcium. This trend is in part due to the difficulty in 

isolating stable heteroleptic complexes of these metals, which possess Schlenk equilibria 

that favor homoleptic complexes. Nevertheless, a handful of examples of strontium and 

barium complexes have demonstrated lactide polymerization activity. Sr(Oi-Pr)(NH2) 

was found to be an effective initiator for L-lactide polymerization at 80 °C in toluene.
39

 

Nearly full monomer conversion was obtained within three hours with dispersities of 

1.57-2.26. The β-diketiminate class of ligands has been successful for strontium-

catalyzed lactide polymerization as well. A cationic strontium β-diketiminate complex 

(1.21, Figure 1.8) was highly active for the immortal ring-opening polymerization of L-

lactide with benzyl alcohol initiator.
40

 In toluene at 30 °C with [lactide]:[Sr]:[BnOH] = 
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1000:1:10, 82% conversion of lactide was observed in 10 minutes, with a dispersity of 

1.19. If the polymerization was carried out to high conversions, the dispersity of the 

polymer broadened, indicating deleterious transesterification reactions. The strontium 

complex was much more active than the calcium analog (66% conversion in three hours), 

which is posited to be due to the high electrophilicity and accessibility of the larger metal 

center. 

A trinuclear barium complex with a bulky amine bis(phenolate) ligand (1.22, 

Figure 1.8) was isolated and showed moderate activity for the polymerization of lactide 

in the melt. With [lactide]:[Ba]= 900:1, 60% conversion was observed after 3.5 hours 

producing polymer with a dispersity of 1.57.
41

 A series of well-defined, cationic barium 

complexes (1.23) were investigated by Sarazin and coworkers, which showed good 

activity for the ring-opening polymerization of L-lactide with various nucleophilic 

additives.
42

 At room temperature in dichloromethane, over 90% conversion was achieved 

in 30 minutes with [lactide]:[Sr] = 1000:1. 

1.3.4 Gallium and Indium-Based Complexes 

Besides aluminum, complexes based on other group 13 metals such as gallium 

and indium have also shown good activity for lactide polymerization. A dialkyl gallium 

N-heterocyclic carbene (NHC) complex (1.24, Figure 1.9) was found to initiate the 

polymerization of L-lactide and (rac)-lactide rapidly at -20 °C in dichloromethane to 

afford 97% conversion in 30 minutes with a dispersity of 1.1 ([lactide]:[Ga] = 50:1).
43
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Figure 1.9. Representative germanium and indium complexes used for lactide 

polymerization. 

 

Compared to gallium, there has been significant effort in the development of 

indium-based catalysts. Mehrkhodavandi and coworkers reported the first example of an 

indium initiator for the living polymerization of (rac)-lactide with a chiral dinuclear 

indium complex (1.25) that afforded good molecular weight control and rapid 

polymerization (>90% conversion in 30 min., [lactide]:[1.25] = 200:1).
44

 Further 

mechanistic studies with this family of chiral dinuclear indium complexes showed that 

the indium complex remains dinuclear during lactide polymerization.
45

  

1.3.5 Group 14-Based Complexes 

Besides the industrial standard lactide polymerization catalyst Sn(Oct)2, many 

simple tin salts
46

 as well as several well-defined tin complexes have been reported for 

lactide polymerization. Tin(II) complexes supported by β-diketiminate, salicylaldiminato 

ligands, and amidinate ligands showed living characteristics for the polymerization of 

(rac)-lactide, albeit with modest activities.
47

 The immortal ring-opening polymerization 

of lactide was reported with tin complexes supported by bulky amino-ether phenolate 
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ligands (1.26, Figure 1.10) with isopropanol as a cocatalyst.
48

 At 60 °C in toluene, over 

80% conversion could be achieved in 90 minutes with good molecular weight control 

(PDI = 1.09, [lactide]:[Sn]:[iPrOH] = 1000:1:10).  

 

Figure 1.10. Examples of group 14-based complexes for lactide polymerization. 

Examples of germanium complexes for lactide polymerizations are quite rare, 

despite germanium’s enhanced electrophilicity with respect to tin and its low toxicity. 

Spirocyclic germanium complexes (1.27, Figure 1.10) were found to initiate L-lactide 

polymerization in chlorobenzene at 120 °C; however, reaction times of several days were 

required to reach 90% conversion.
49

 The first reported single-site germanium alkoxide 

imitator for lactide polymerization is a germanium amine tris(phenolate) complex 

(1.28).
50

 This germanium initiator showed moderate activity for the bulk polymerization 

of (rac)-lactide at 130 °C (85% conversion after 24 hours with [lactide]:[Ge] = 300:1) 

and afforded high selectivities for the formation of heterotactic poly(lactic acid) (Pr = 

0.78-0.82). Germanium(IV) amide complexes (1.29) were highly active for lactide 
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polymerization, giving 96% conversion of lactide in 2 minutes with [LA]:[1.31] = 200:1, 

although with somewhat broad dispersities (1.4-1.9).
51

 Interestingly, Ge(O
i
Pr)4 showed 

no polymerization activity under the same conditions.  

1.3.6 Transition Metal-Based Complexes 

Of the transition metals, only group IV metals, copper, and iron-based complexes 

have been established as catalysts for lactide polymerization. Complexes based on 

manganese,
52 , 53

 cobalt, 
52, 54 , 55  

nickel,
55, 56

 chromium,
57

 tantalum,
58

 silver,
59

 and gold
60

 

exist, but these systems are less studied and require further development for activities and 

selectivities to be on par with the other metal-based complexes for lactide 

polymerization. 

1.3.6.1 Group IV-Based Complexes 

Because of their Lewis acidic properties, titanium complexes have recently drawn 

interest as catalysts for lactide polymerization. The first titanium alkoxide catalyst that 

was reported as an initiator was the tetranuclear titanium alkoxide complex (MeC(CH2-

µ3-O)(CH2-µ-O)2)2Ti4(O
i
Pr)10 that was effective for bulk and solution polymerization of 

(rac)-lactide and L-lactide.
61

 In bulk polymerization conditions at 130 °C, nearly full 

conversion was achieved in 30 minutes, but transesterification reactions led to broad 

dispersities. Carrying out the reactions in toluene at room temperature resulted in better 

control over molecular weight, but required prolonged reaction times. Verkade and 

coworkers investigated a series of titanium alkoxides for lactide polymerization with 

well-defined ligand environments including amine-tris(phenolate) ligands that appeared 
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to operate by a coordination-insertion mechanism (1.30, Figure 1.11).
62

 Nevertheless, the 

complexes were not very active, leading to long reaction times. 

Figure 1.11. Examples of group 4 metal-based complexes for lactide polymerization. 

Bis(arlyoxo) titanium complexes were shown to be active for the controlled 

polymerization of lactide in toluene at 70 °C.
63

 When [Ti2(µ-OEt)2(edbp)2(OEt)2] (1.31) 

(edpb = 2,2’-ethylenebis(4,6-tert-butylphenol) was used as a catalyst, 90% conversion of 

lactide within 2.5 hours was observed with [Ti]:[LA] = 1:100 resulting in polymer with 

excellent control over molecular weight distributions (Mw/Mn = 1.06). Complex 

[Ti(edbp)(O
i
Pr)2] also gave nearly monodisperse poly(lactic acid) with slightly faster 

polymerization rate (98% conversion in 72 minutes). Both polymerization reactions 

demonstrated evidence for a coordination-insertion mechanism. Compared to other 

titanium complexes, titanium diamine-diphenolate complex 1.32 is one of the most active 

catalysts reported for the bulk polymerization of (rac)-lactide. Full conversion was 

achieved in around one minute with [Ti]:[lactide] = 1:300.
64
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Compared to titanium complexes, analogous zirconium and hafnium complexes 

often exhibit superior activities and stereoselectivities. This trend may be due to the 

larger ionic radius of these metals allowing for a more open coordination sphere 

compared to titanium. Additionally, zirconium and hafnium alkoxides may be more 

nucleophilic because these metals are more electropositive than titanium.
65

  

Zirconium and hafnium salen complexes are active for bulk lactide 

polymerization at 140 °C, giving full conversion of 200 equivalents of lactide within an 

hour.
66

 The polymerizations demonstrated living characteristics with narrow dispersities 

of 1.01-1.05 and a linear relationship between molecular weight and monomer 

conversion being observed. Zirconium and hafnium amine tris(phenolate) complexes 

(1.33) showed high reactivity and stereoselectivity for the polymerization of (rac)-lactide 

in the bulk at 130 °C.
67

 With 300 equivalents of lactide, 95% conversion was achieved in 

30 minutes. The polymerization showed living characteristics and showed promise for 

industrial applications where solvent-free conditions are required.  

A bis-aryloxide N-heterocyclic carbene zirconium alkoxide complex (1.34) was 

found to initiate (rac)-lactide polymerization in dichloromethane at room temperature to 

give polymer with narrow dispersity (Mw/Mn = 1.02–1.10) and high stereoselectivity (Pr > 

0.95).
68

 Notably, the polymerization could be performed with commercial (rac)-lactide 

without purification, unlike many other lactide polymerization catalysts. Further 

highlighting the robustness of the zirconium complex is the ability for the catalyst to 

proceed in an immortal fashion. For example, benzyl alcohol added in excess of the 

catalyst resulted in rapid chain transfer so that up to ten polymer chains were grown per 

zirconium center without any detriment to polymer molecular weight distributions. 
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Ligands based on the popular β-diketiminate class of ligands have also been 

utilized to support zirconium for the formation of alkoxide complex 1.35, which resulted 

in a highly active lactide polymerization catalyst.
69

 In THF at room temperature, 95% 

monomer conversion was observed within 5 minutes ([Zr]:[lactide] = 1:300), making it 

one of the most active group 4 complexes reported for lactide polymerization. Despite 

being active, this catalyst suffered from low stability under polymerization conditions, 

which resulted in the formation of bimodal molecular weight distributions. 

Compared to zirconium- and titanium-based complexes, hafnium-based variants 

are less frequently explored. Nevertheless, hafnium dithiodiolate complexes (1.36) are 

particularly notable because they were found to be highly active for polymerization of 

(rac)-lactide in the melt. These complexes led to full consumption of 300 equivalents of 

lactide within one minute and consumption of 3000 equivalents of lactide within 5 

minutes in melt polymerization reactions.
70

 The hafnium-based complexes were 

significantly more active compared to analogous titanium and zirconium complexes. 

1.3.6.2 Copper-Based Complexes 

Only a handful of copper complexes have been studied for lactide polymerization, 

but most of them provide good molecular weight control. On the other hand, many are 

not very active, requiring high temperatures and prolonged reaction times to reach full 

conversion.
55,71

 An exception to this trend has been copper(II) β-diketiminate alkoxide 

complexes (1.37, Figure 1.12), which polymerized (rac)-lactide in dichloromethane at 

room temperature within one minute.
72

 In addition to being active, these polymerization 

reactions demonstrated good control with dispersities of 1.04-1.08 and could achieve 
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molecular weights up to 480 kg/mol. Under immortal conditions, isopropanol acted as a 

chain transfer agent to give narrow dispersity polymer close to expected molecular 

weights. To probe the role that ligand sterics and electronics play, a series of N-alkyl and 

N-aryl Cu(II) diketiminate complexes were studied.
73

 Sterically unencumbered N-alkyl 

ligands allowed for the synthesis of heteroleptic complexes that were highly active for 

lactide polymerization, giving full conversion within a few minutes and dispersities 

below 1.1 even under immortal conditions.  

 

Figure 1.12. Representative copper-based catalyst used for lactide polymerization. 

1.3.6.3 Iron-Based Complexes 

It is often difficult to completely remove residual catalyst from the polymer 

product. Therefore, it would be ideal if the catalyst residue was nontoxic and 

bioresorbable, especially for poly(lactic acid) used for medical and food packaging 

applications. Compared to many other transition metal compounds, iron can be regarded 

as less harmful, making it an attractive catalyst for this process.
74

 Simple iron(III) salts 

such as iron acetate, iron oxides, and iron porphyrins have been shown to polymerize 

lactide in the melt with modest activity.
75

 However, these reactions require prolonged 

reaction times and high temperatures, which can cause racemization of the lactide 
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monomer. Moreover, mechanistic analysis is challenging because the precatalyst 

structure is unknown. 

The groups of Hillymer and Tolman synthesized a discrete ferric alkoxide Fe5(µ5-

O)(OEt)3 for use as a lactide polymerization catalyst.
76

 This complex was active for the 

polymerization of (rac)-lactide in toluene at 70°C, giving 97% conversion of 450 

equivalents of lactide in 21 minutes. The polymerization had living characteristics with 

narrow dispersities (1.17), and molecular weights that agreed with [Fe]:[lactide]. The 

presence of ethoxy-ester end groups by 
1
H NMR gave evidence for a coordination-

insertion mechanism and polymerization of L-lactide produced enantiomerically enriched 

poly(L-lactic acid), showing that racemization of lactide does not occur. The homoleptic 

complex Fe2(OCMe2Ph)6 was also highly active for lactide polymerization but gave 

broader dispersities (1.6).  

In related examples, simple ferric alkoxides Fe(OR)3 (R = Et, Pr, iPr, OBu) were 

found to have modest activity for ring opening polymerization of lactide in the bulk at 

130 °C.
77

 Unlike other simple iron salts, no racemization occurred for the polymerization 

of L-lactide to poly(L-lactic acid). Somewhat broad dispersities were observed (1.6-1.9) 

with larger alkoxide ligands leading to lower molecular weights and higher molecular 

weight distributions. Bis-anionic Fe(II) complexes 1.38a and 1.38b were also found to be 

effective initiators for the polymerization of lactide but unlike the neutral iron(III) 

compounds, the reactions could be carried out at room temperature (Figure 1.13).
78

 

Compound 1.38a gave 81% conversion in 60 min. with [Fe]:[lactide] = 200:1 with good 

molecular weight control. Linear relationship between Mn and conversion and dispersities 

of 1.3 were observed until prolonged reaction times and higher conversions, upon which 
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transesterification reactions caused the molecular weight to decrease and dispersity to 

increase. Addition of an exogenous alcohol (EtOH) resulted in immortal polymerization 

behavior. Addition of carboxylic acid (PhCO2H) slowed the reaction, but simultaneously 

narrowed molecular weight distributions. Compound 1.38b was also active for lactide 

polymerization at room temperature, but suffered from poor molecular weight control and 

reproducibility. 

 

Figure 1.13. Examples of iron-based complexes used for lactide polymerization. 

To make the iron-based complexes more tunable, several groups have 

investigated complexes that contained ancillary ligands. Hillmyer and Tolman have 

synthesized iron(III) amidinate complexes (1.39) that proved to be active catalysts at 

70ºC, polymerizing 1000 equivalents of lactide in 77 minutes. Reactions demonstrated 

good control over molecular weight and molecular weight distributions (Mw/Mn = 

1.29).
79

  Gibson and coworkers reported a three-coordinate iron(II) alkoxide 1.40 with a 

β-diketiminate ligand that was highly active for lactide polymerization at room 

temperature in toluene, giving 94% conversion of 100 equivalents of monomer to atactic 

poly(lactic acid) in 20 minutes at room temperature.
80

 The polymerization was well-

controlled with dispersities of 1.12. A drawback of this system is that at high conversions 

(>95%), broadening of dispersity resulted from transesterification side reactions. 
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1.4 Switchable Polymerization Catalysis 

1.4.1 Overview 

The macroscopic properties of polymeric materials are highly dependent on their 

microstructure, including their architecture, tacticity, and composition. Although there 

are many techniques available to synthesize polymers of many functionalities, switchable 

catalysis is an emerging field in recent years that could provide access to original 

polymer structures. Switchable catalysis involves an external trigger that is able to 

“switch” the activity of a catalyst in situ to control its activity.
81

 

The temporal control provided by switchable catalysts allows for many high-

valued applications such as coatings, thermosets, adhesives, dental resins, and 

photolithography. In order for switchable catalysis to be viable, a catalyst needs to be 

able to switch between active and dormant states quickly and reversibly, show qualities 

of living polymerization in the active state, not compromise the polymerization rate after 

switching, and be tolerable to a wide variety of monomers and functional groups.
81c 

A 

variety of external stimuli have been utilized to control the activity of polymerization 

catalysts, including allosteric control,
82

 redox control,
83 ,87-90,92,93

 chemical control,
84

 

electrochemical control,
85

 and photochemical control.
86

  

1.4.2 Redox-Switchable Polymerization of Lactide 

Because lactide polymerization can be well controlled and show living 

characteristics with metal alkoxide complexes, significant effort has been devoted to 

controlling the activity of lactide polymerization by switchable catalysis. Particularly 

successful in this regard has been the development of redox-controlled polymerization of 
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lactide where the addition of oxidants and reductants results in reversible catalyst 

activation and deactivation.  

 

Figure 1.14. a) First report catalyst system for the redox-controlled polymerization of 

lactide. b) Plot of conversion vs. time for redox-controlled polymerization of lactide with 

1.41. Reprinted with permission from Gregson, C.K.A.; Gibson, V.C.; Long, N.J.; 

Marshall, E.L.; Oxford, P.J.; White, A.J.P. J. Am. Chem. Soc. 2006, 128, 7410-7411. 

Copyright 2006 American Chemical Society. c) Titanium complex 1.42 demonstrates 

more complete redox-switching compared to 1.41.  

The first example of redox-controlled polymerization was reported by Gibson and 

Long in 2006 who utilized titanium complex 1.41, which features a salen ligand 

derivative containing a redox-active ferrocene moiety (Figure 1.14a).
87

 The activity of 

the complex for lactide polymerization is sensitive to the oxidation state of the ferrocene 

moieties of the ligand. The reduced form of the catalyst catalyzed lactide polymerization 

approximately 30 times faster than the oxidized form, allowing for redox-switching 

experiments to be performed in situ with the addition of AgOTf oxidant to switch off the 

1.41 

1.41-ox 
1.42 
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polymerization, and decamethylferrocene reductant to resume the polymerization (Figure 

1.14b). Although the polymerization could not be completely switched off upon 

oxidation of the catalyst, this seminal report inspired subsequent researchers to 

investigate redox-controlled lactide polymerization through the use of complexes with 

appended ferrocene groups. Long et al. investigated this further with the titanium salen 

complex 1.42 (Figure 1.14c) that positions the ferrocenyl moiety closer to the metal 

center showed a much more prominent redox-switch when activated for polymerization 

in the presence of lactide.
88

  

 

Figure 1.15. a) Yttrium and indium complexes used for the redox-switchable 

polymerization of lactide. b) Plot of conversion versus time for the redox-switchable 

polymerization of lactide with 1.43a. Reprinted with permission from Broderick, E.M.; 

Guo, N.; Vogel, C.S.; Xu, C.; Sutter, J.; Miller, J.T.; Meyer, K.; Mehrkhodovandi, P.; 

Diaconescu, P.L. J. Am. Chem. Soc. 2011, 133, 9278-9281. Copyright 2011 American 

Chemical Society. 

The Diaconescu group examined yttrium catalyst 1.43a for redox-controlled 

lactide polymerization utilizing a phosfen ligand in which ferrocene was once again 

incorporated into the ligand backbone (Figure 1.15).
89

 Lactide polymerization remained 

controlled after several oxidations and reductions of the catalyst in situ, with the active 

catalyst in the reduced state and inactive catalyst in the oxidized state. Oxidation of the 

1.43 

M=Y(1.43a),In(1.43b) 
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catalyst resulted in complete deactivation of the lactide polymerization, while subsequent 

catalyst reductions led to full reactivation of the polymerization catalyst. Interestingly, 

when the analogous indium complex was used (1.43b) the catalyst demonstrated the 

opposite reactivity, being active in the oxidized state and inactive in the reduced state. 

 
Figure 1.16. Complexes that undergo redox-switchable lactide polymerization at the 

metal center that is also the site for catalysis. 

 

Besides altering the redox-state of the ligand to control the activity in lactide 

polymerization, there are a few examples where redox-switchable lactide polymerization 

has been observed by altering the redox state of the metal that is also the active site for 

polymerization catalysis (Figure 1.16). Several cerium-based complexes are efficient for 

the redox-switchable polymerization of lactide where the cerium(III) center is active for 

polymerization and its oxidized cerium(IV) form is deactivated for polymerization. 

Diaconescu et al. showed that complex 1.44 underwent oxidation at the cerium center 

rather than the iron center through X-ray absorption near-edge structure and Mössbauer 

spectroscopic studies.
90

 The cerium complex 1.45 without a ferrocene-containing ligand 

was also proficient for the redox-controlled polymerization of lactide, but broader 

dispersities were observed (Mw/Mn = 2.2-2.6) compared to 1.44.
91

 In addition, we have 
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developed a class of iron-based complexes for redox-switchable lactide polymerization 

which will be discussed in the following chapter.  
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Chapter 2: Redox-Switchable Polymerization of Lactide 

Catalyzed by Bis(imino)pyridine Iron Bis(alkoxide) 

Complexes
1
 

2.1 Introduction 

Millions of tons of largely biologically inert polymeric materials are produced and 

disposed of annually.  The growing amount of waste created by this practice has 

generated concern about the environmental impact that results from releasing large 

quantities of slowly degrading materials into the environment.  In response to these 

concerns, recent research efforts have been devoted to the development of biodegradable 

alternatives to the useful engineering polymers used today.  A leading candidate in this 

regard is poly(lactic acid).  Derived from renewable resources such as corn starch, 

poly(lactic acid) (PLA) can degrade by hydrolytic cleavage of the ester bonds of the 

polymer backbone. This property has been exploited for several applications including 

textiles, fibers, packaging, and for a variety of medical materials.
2
 

As discussed in Chapter 1.3, the ring-opening polymerization of lactide is 

typically catalyzed or initiated by Lewis acidic metal alkoxide complexes of tin, zinc, and 

aluminum.   There are also several excellent nucleophilic organocatalysts, specifically 

those that involve N-heterocyclic carbenes.
3
 Compared to several other transition metal 

catalysts, the biocompatibility and low toxicity of iron complexes makes them ideal as 

catalysts for this process, especially when the products are used for food packaging or as 
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degradable devices in the biomedical industry.
4
  Additionally, the redox activity of iron 

complexes is unique compared to other catalysts typically used for lactide 

polymerization.  Considering recent reports demonstrating how lactide polymerization 

can be controlled by the electronic nature of the catalyst (discussed in section 1.4),
5,6,7

 the 

ability to modulate the electronic properties of the catalyst through redox reactions at the 

metal center provides an additional dimension for the design of active and selective 

catalysts.   Despite these advantages, there are only a few reports documenting iron 

catalysts for lactide polymerization (see section 1.3.6.3), none of which address the 

sensitivity of the polymerization reaction to the oxidation state of iron. 

 

Figure 2.1. Iron bis(imino)pyridine complexes have been used as catalysts for a diverse 

range of reactions. 



44 

 

Considering that iron bis(imino)pyridine complexes have the ability to catalyze a 

wide variety of transformations including ethylene polymerization and oligomerization,
8
 

atom transfer radical polymerization,
9
 hydrogenation and hydrosilation of alkenes,

10
 and 

intermolecular [2+2] cycloadditions of alkenes,
11

 we reasoned that they would also be 

good candidates as lactide polymerization catalysts (Figure 2.1). Due to their ability to 

stabilize multiple oxidation states, we also reasoned that bis(imino)pyridine complexes 

would be ideally suited to investigate the sensitivity of lactide polymerization to iron 

oxidation state.  To date, no other transition metal complex containing bis(imino)pyridine 

ligands had ever been used as a catalyst for the ring-opening polymerization of lactide or 

any other cyclic ester. We report the synthesis of iron(II) bis(imino)pyridine alkoxide 

complexes and, for the first time, the application of a transition metal catalyst for lactide 

polymerization that contains this versatile class of ligand.  

Scheme 2.1. Proposed copolymerization of lactide and α-olefins. 

 

Because these complexes have a wide range of reactivity, most notably for the 

polymerization of ethylene, we were also interested in these catalyst systems for the 

potential to synthesize copolymers of poly(lactic acid). Copolymerization of lactide with 
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low-cost α-olefins could provide a novel degradable polyolefin material. By varying the 

comonomer feed, polymer lifetimes could be tuned, with copolymers containing higher 

concentrations of lactide displaying shorter polymer lifetimes (Scheme 2.1). This would 

allow the degradation rate to be adjusted for the desired application of the polymer. In 

addition, this new polymer may gain some beneficial mechanical properties similar to 

polyolefins. Preliminary investigations into the feasibility of these types of 

copolymerization reactions are reported. 

2.2 Synthesis of Bis(imino)pyridine) Iron Bis(alkoxide) Complexes 

The majority of lactide polymerization catalysts are metal alkoxide complexes 

that produce polymer by a coordination-insertion mechanism for the enchainment of 

lactide monomers.  Initiation typically occurs from a metal alkoxide precursor that acts 

simultaneously as a Lewis acid to activate the lactide monomer and as a nucleophile to 

initiate ring opening.  Due to this precedence, we targeted bis(imino)pyridine iron 

bis(alkoxides) as useful precatalysts for lactide polymerization.  We initially envisioned 

that these complexes could be synthesized through salt metathesis reactions between a 

bis(imino) pyridine iron dichloride complex
12

 (2.1) and alkaline or alkaline earth 

alkoxides.  However, these reactions typically lead to loss of the bis(imino)pyridine 

ligand and the formation of bridging alkoxide species (Scheme 2.2a). We also attempted 

to synthesize bis(imino) pyridine iron bis(alkoxide) complexes through ligand 

substitution reactions between the known iron alkoxide complex 2.2
13

 and free 

bis(imino)pyridine ligand (Scheme 2.2b).  To our surprise, 2.2 was found to be largely 
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inert to ligand substitution reactions even after prolonged heating (24 h) at 50 °C in n-

pentane or THF.   

Scheme 2.2. Synthesis of Iron Bis(imino)pyridine alkoxide complexes 

 

Ultimately we discovered that protonolysis reactions of the dialkyl complex 2.3 

with various alcohols allowed for the synthesis of bis(imino)pyridine iron(II) alkoxide 

complexes (2.4) (Scheme 2.2c).  The protonolysis reaction was general for a variety of 

aromatic and aliphatic alcohols producing bis(alkoxide) complexes 2.4 in high yields (86-

96%).  Attempts to crystalize 2.4 were unsuccessful, but some insight into the structure of 

the new complexes could be obtained by following the progress of the protonation 

reactions by 
1
H NMR spectroscopy. Titration of an alcohol such as neopentyl alcohol into 

a C6D6 solution of iron dialkyl 2.3 lead to the clean formation of a new paramagnetic 

complex after two equivalents of alcohol were added (Scheme 2.2). Diagnostic peaks 
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appeared at -174 ppm, -20 ppm, and 60 ppm (shifted from -149 ppm, -17 ppm, and 58 

ppm, respectively).  Concomitant with the appearance of this new species was the 

formation of tetramethylsilane that resulted from the protonolysis reaction (not shown in 

Scheme 2.2).  Integration of the tetramethylsilane relative to the m-pyridine protons of 

the bis(imino)pyridine ligand revealed that two equivalents of tetramethylsilane were 

liberated upon addition of two equivalents of alcohol.  These results suggested that the 

new species was a bis(imino)pyridine iron bis(alkoxide) iron complex 2.4c. Solution 

magnetic moment measurements by means of Evans’ method were in line with a high 

spin iron(II) complex (μeff = 5.2 μB), as expected in analogy to the reported 

bis(imino)pyridine iron dichloride complex. 

 

Figure 2.2. 
1
H NMR spectra from: a) bis(imino)pyridine iron bis(alkyl) 2.3, b) 2.3 + 0.5 

equiv. neopentyl alcohol, c)  2.3 + 1 equiv. neopentyl alcohol, d) 2.3 + 1.5 equiv. 

neopentyl alcohol, e) 2.3 + 2 equiv. neopentyl alcohol (2.4c).  The region of the NMR 

spectra between -10 and 20 ppm is omitted for clarity. 
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Although the protonolysis reaction proceeded cleanly to a new species as 

monitored by NMR spectroscopy, the paramagnetic nature of these complexes make 

NMR analysis difficult.  In addition to NMR data, X-ray crystallography was utilized in 

order to determine unambiguously that an iron(bis) alkoxide complex was formed. 

Crystallization of complex 2.4a from a dichloromethane solution layered with pentane by 

Julia Curley resulted in crystallized material suitable for X-ray diffraction. The complex 

is a five coordinate species with distorted trigonal bipyramidal geometry at the iron 

center where the imine moieties comprise the axial positions of the trigonal bipyramid 

(Figure 2.3). 

 

 

Figure 2.3. X-ray structure of 2.4a with thermal ellipsoids represented at the 50% 

probability level. Hydrogen atoms, solvent (CH2Cl2), and free 4-methoxyphenol are 

omitted for clarity.  
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As we were also interested in the polymerization ability of Fe(III) alkoxide 

complexes, oxidation of the iron(II) alkoxide 2.4a was performed with ferrocenium (Fc) 

hexafluorophosphate (Scheme 2.2c). This reaction proceeded cleanly to give a cationic 

iron(III) species (2.5), which could be crystallized from benzene to give X-ray quality 

crystals.  The molecular structure of this complex appears in Figure 2.4 and is a five 

coordinate iron species that is best described as a distorted trigonal bipyramidal complex, 

with similar geometry to complex 2.4a.  

 

 

Figure 2.4. X-ray structure of 2.5 with thermal ellipsoids represented at the 50% 

probability level. Hydrogen atoms and solvent (benzene) are omitted for clarity. See 

appendix A for further crystallographic data. 
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A comparison of crystal structure bond metrics for the iron(II) and iron(III) 

bis(alkoxide) complexes is shown in Table 2.1. The iron-oxygen and iron-nitrogen bond 

distances are generally shorter for the cationic iron(III) complex 2.5 compared to iron(II) 

complex 2.4a (entries 1-4). The bis(imino)pyridine and phenol ligand bond metrics can 

be examined to determine whether the oxidation event occurred at one of the two 

potentially redox-active ligands or at the metal center. Bond distances for the 

bis(imino)pyridine ligand (entries 5-6) as well as for the p-methoxyphenoxide ligand 

(entries 7-9) are typical for netural ligands
14

  and are not significantly different from the 

bond metrics of the ligands in complex 2.4a, which suggests that oxidation occurred at 

the iron center. This assignment was supported by the magnetic moment of the complex, 

which was measured at 5.9 μB, a typical value for a high spin iron(III) complex. 

Table 2.1. Comparison of selected bond lengths and angles for complexes 2.4a and 2.5. 

 

Entry  Bond Lengths (Å) 

  Complex 2.4a Complex 2.5 

1 Fe-O1 2.006 1.820 

2 Fe-O2 1.894 1.815 

3 Fe-N1 2.091 2.089 

4 Fe-N2 2.295 2.172 

5 N2-C6 1.286 1.283 

6 C5-C6 1.492 1.495 

7 O2-C26 1.345 1.350 

8 C26-C27 1.388 1.385 

9 C27-C28 1.381 1.378 

  Bond Angles (°) 

10 N2-Fe1-N3 146.89 147.05 

11 N2-Fe1-N1 73.32 71.73 
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2.3 Lactide Polymerization with Iron(II) Bis(Imino)Pyridine Iron 

Alkoxide Complexes 

Iron bis(imino)pyridine bis(alkoxide) complexes were next investigated for their 

catalytic activity toward the polymerization of (rac)-lactide.  At a monomer to catalyst 

ratio of 50:1, iron(II) bis(alkoxide) complex 2.4a was active for the polymerization of 

lactide at room temperature, giving 93% conversion of lactide after 3 hours.  The polymer 

obtained from this reaction was analyzed by gel permeation chromatography (GPC), and, 

relative to polystyrene standards, revealed a number average molecular weight (Mn) of 

6.8 kg/mol and a narrow dispersity (Ð) (entry 1,Table 2.2).  For example, when 2.3 (2 

mol%) was treated with 4-methoxyphenol (4 mol%) and exposed to lactide, similar 

results were obtained compared to the preformed catalyst species (cf. entry 1 to entry 2, 

Table 2.2).  This result suggests that the bis(alkoxide) could be successfully formed in 

situ.   

Table 2.2. (rac)-Lactide polymerization catalyzed by iron bis(imino)pyridine 

complexes.
a 

Entry Time 

(h) 

Cat. [LA]:[cat.]: 

[p-OMePh]
b 

Mn 

(kg/mol) 

Ð
 

Conv. 

(%) 

1 3 2.4a 50:1:0 6.8 1.16 93 

2 3 2.3
 50:1:2 6.2 1.18 88 

3 24 2.3 100:1:2 9.6 1.09 62 

4 24 2.3 200:1:2 1.9 1.06 5 

5 24 2.3 50:1:0 15.6 1.45 14 
a
 Reactions were performed in dichloromethane (0.25M) for 3 h at room temperature. 

Conversion was determined by 
1
H NMR with 1,3,5-trimethoxybenzene as an internal 

standard. Molecular weights were determined by GPC relative to polystyrene standards. 
b
 

LA = lactide. 

 

Increasing the monomer to catalyst ratio resulted in polymers with increased 

molecular weights, but at the expense of slower monomer conversion. Efficient reactions 

could still be obtained at a monomer to catalyst ratio of 100:1 (entry 3, Table 2.2), but 
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further increasing the ratio to 200:1 lead to reactions that were too slow to be practical at 

room temperature (entry 4). 

As is common for lactide polymerization reactions, the efficacy of the 

polymerization was sensitive to the identity of the initiating species.
2, 15

 For 

polymerizations catalyzed by the iron bis(alkyl) complex 2.3, high molecular weight 

polymer was obtained but the reaction was sluggish (entry 5, Table 2.2). This result 

could be explained with slower initiation rates and/or lower concentration of the active 

species in the reaction mixture.  

Table 2.3. Lactide Polymerization Catalyzed by 2.3 in the Presence of Various Alcohol 

Initiators.
a 

Entry Initiator Time (h) Mn 

(kg/mol) 

Ð
 

Conv. (%) 

1 

 

3 6.2 1.18 88 

2 24 7.2 1.18 95 

3 
 

24 6.2 1.21 93 

4 
 

24 1.1 1.27 6 

5 
 

24 -- -- 0 

6 

 

2 4.1 1.27 96 

7 24 4.0 1.33 96 

8 

 

24 3.6 1.21 88 

a
 Reactions were performed in dichloromethane  (0.25M) at room temperature with 2 

mol% 2.3 and 4 mol% initiator. Conversion was determined by 
1
H NMR with 1,3,5-

trimethoxybenzene as internal standard. Molecular weight was determined by GPC 

relative to polystyrene standards. The average of three trials is reported.  

 

Because the catalytically active bis(alkoxide) species could be generated in situ, the 

sensitivity of the polymerization to the identity of the initiator for lactide polymerization 
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was investigated (Table 2.3).  These studies revealed that the initiator has a dramatic 

effect on the activity of the polymerization catalyst. Electron-donating phenols were 

found to serve as better initiators (entries 1-3), while electron-withdrawing initiators 

resulted in little to no activity (entries 4-5). Aliphatic alcohols were tolerated in addition 

to phenols (entries 6-8).  In fact, neopentyl alcohol was found to be the most efficient 

initiator of all that were studied (entry 6), although this initiator resulted in significantly 

lower molecular weight polymer. End group analysis of all of the polymers revealed alkyl 

or aryl ester end groups even for polymerizations initiated by neopentyl alcohol where 

formyl end groups may be expected as a result of β-hydride elimination and initiation by 

an iron hydride (Figure 2.5).  

 

Figure 2.5. Proposed mechanism for the initiation of lactide polymerization by an iron 

hydride species. We do not observe these formyl end groups in our polymerization 

reactions, suggesting this process is not occurring. 

 

The finding that a more electron-rich iron center gave faster lactide 

polymerization rates led to the subsequent investigation of Drs. Cesar Manna and Hilan 

Kaplan on the polymerization of lactide with a bis(amidinato)-N-heterocyclic carbene 

iron bis(alkoxide) complex (Figure 2.6).
16

 These complexes afforded the synthesis of 
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high molecular weight poly(lactic acid) with faster reaction rates compared to the 

analogous bis(imino)pyridine complexes in the conditions studied. This is hypothesized 

to be due to the better σ-donating capabilities of the N-heterocyclic carbene moiety 

compared to pyridine.  

 

Figure 2.6. Bis(amidinato)-N-heterocyclic carbene iron bis(alkoxide) complex used as a 

catlyst for lactide polymerization. R = p-OMePh. 

2.4 Mechanistic Studies of Lactide Polymerization 

2.4.1 Living Polymerization Studies 

In order to get a better understanding of the mechanism for the polymerization 

reactions and to help identify the active species, we decided to carry out a time course 

study on the polymerization of lactide.  Treatment of 2.3 (2 mol%) with 4-

methoxyphenol (4 mol%) generated 2.4a as a pre-catalyst, which was subsequently 

exposed to a 0.25 M solution of lactide in dichloromethane.  A plot of the number 

average molecular weight (Mn) versus conversion was linearly correlated, which suggests 

that the polymerization reaction is a living polymerization (Figure 2.7). However, the 

dispersities observed in the reactions, while narrow, are slightly broader than what is 

typically observed for living polymerization. Nevertheless, the linear plots of Mn vs. 

conversion and the narrow dispersities observed for the polymerization demonstrate good 

control over molecular weight and are consistent with little termination or 

transesterification events.  
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Figure 2.7. Number average molecular weight (Mn) versus conversion for lactide 

polymerizations catalyzed by 2.3/4-methoxyphenol. 

  

Extrapolation of the Mn vs. conversion plot to zero conversion did not go through 

the origin (Figure 2.7), which is consistent with several possibilities including: a) small 

amounts of impurity in the lactide that promote chain transfer, b) inefficient initiation of 

the polymerization, or c) significant amounts of polymer backbiting resulting in 

unexpectedly low molecular weight at high monomer conversion.
17

 We can rule out this 

last possibility because little broadening in the dispersity of the polymer was observed at 

high monomer conversion (cf. entries 2 to 1 and 7 to 6, Table 2.3). This observation is 

consistent with minimal transesterification reactions, which are more prevalent at high 

monomer conversions.
2
  This property of the catalyst is particularly noteworthy because 

many lactide polymerization catalysts suffer from competing transesterification reactions 

at high monomer conversions.
18

 It is likely that the bulky 2,6-dimethyl-aryl substituted 
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bis(imino)pyridine ligand restricts access to the transition metal center for extended chain 

ester moieties on the polymer but are accessible to the sterically less encumbered cyclic 

monomer unit.  

The living characteristics of the reaction are further highlighted by the sequential 

addition of lactide to the polymerization, which lead to a linear increase in molecular 

weight for up to fifteen sequential additions (Figure 2.8). High molecular weight 

polymer (>75 kg/mol) could be obtained in this fashion with little loss in molecular 

weight control as is evidenced by the low dispersities of the polymer. 

 

Figure 2.8. Sequential addition of lactide to give polymers with increased molecular 

weight.  

 

To determine whether immortal polymerization reactions could be performed 

with our catalyst system, lactide polymerization was performed with complex 2.3 and an 
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excess concentration of alcohol initiator relative to 2.3 (Table 2.4). As described in 

section 1.2.4, in an immortal polymerization the ultimate polymer molecular weight is 

dictated by the lactide to alcohol initiator ratio. Previously, reactions were carried out 

with two equivalents of the alcohol relative to complex 2.3 in order to form the iron 

bis(alkoxide) species in situ. When polymerization was carried out with five equivalents 

of 4-methoxyphenol or neopentyl alcohol, no significant differences in the PLA 

molecular weights were observed. This suggests that the alcohol initiator does not 

undergo chain transfer reactions, which is unlike most catalyst systems for lactide 

polymerization. When a larger excess of 4-methoxyphenol was added to complex 2.3 (40 

equivalents), no polymerization activity was observed. 

Table 2.4. Attempted immortal polymerization of lactide with complex 2.3 and alcohol 

initiators. 

 

ROH Equiv. Conv. (%) Mn (kg/mol) PDI 

 

2 94 7.6 1.19 

5 96 6.1 1.23 

40 0 -- -- 

 
2 96 3.8 1.44 

5 97 4.4 1.38 
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2.4.2 Identity of the Active Species 

Considering the propensity for iron alkoxides to form multinuclear species with 

expulsion of the bis(imino) pyridine ligand (vide supra), we considered the possibility 

that the bis(imino) pyridine iron alkoxide complexes were precursors to multinuclear iron 

alkoxides that form under the polymerization conditions.  To determine whether the 

bis(imino)pyridine ligand remained coordinated to iron during the polymerization 

reaction, we compared polymerizations initiated by 2.3 and 4-methoxyphenol to those 

initiated by Fe(py)2(CH2SiMe3)2 and 4-methoxyphenol.  We anticipated that if the 

tridentate bis(imino)pyridine ligand in 2.3 was being replaced by alkoxide ligands to 

form multinuclear alkoxide species, a similar phenomenon would occur for the 

substitutionally more labile monodentate pyridine ligands in Fe(py)2(CH2SiMe3)2.  

Consequently, similar reaction rate, polymer molecular weight, and dispersity would be 

observed for both catalyst compositions.   In the event, much slower and less 

reproducible reaction rates were observed for Fe(py)2(CH2SiMe3)2 /4-methoxyphenol 

(kobs = 0.73 x 10
-4

 ± 0.6 x 10
-4

 s
-1

) than with 2.3/4-methoxyphenol (kobs = 1.66 x 10
-4

 ± 

0.08 x 10
-4

  s
-1

) (Figure 2.9).  Additionally, the molecular weight of the polymer for 

reactions catalyzed by Fe(py)2(CH2SiMe3)2/4-methoxyphenol was lower (Mn = 4.9 

kg/mol) compared to 2.3/4-methoxyphenol (Mn = 6.2 kg/mol).  These results demonstrate 

that the catalytically active species in Fe(py)2(CH2SiMe3)2/4-methoxyphenol is different 

compared to 2.3/4-methoxyphenol, and suggests that the bis(imino)pyridine ligand 

remains coordinated to iron during polymerization reactions catalyzed by 2.3 with 

various alcohol initiators. 
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Figure 2.9. Reaction rate comparison between lactide polymerizations catalyzed by 4/4-

methoxyphenol () and Fe(py)2(CH2SiMe3)2/4-methoxyphenol (). 

 

To characterize the identity of the active species further, we addressed the issue of 

whether one or both alkoxide ligands can act as initiators for lactide polymerization.  The 

dramatic effect that the identity of the initiator has on the catalyst activity suggests that 

only one alkoxide is involved in lactide polymerization while the other remains as an 

ancillary ligand for the catalyst.  However, assuming the bis(imino)pyridine remains 

tridentate, this possibility would involve an unusual six-coordinate iron complex 

containing a bis(imino)pyridine ligand. As an alternative explanation, the identity of the 

alkoxide may affect the initiation rate without significantly altering propagation rates.   

To gain insight regarding this issue, we analyzed the molecular weight data that 

resulted from the polymerization reactions. Since the molecular weight of the polymer 
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increases linearly with conversion, a theoretical Mn can be predicted given the conversion 

of the reaction, the monomer to catalyst ratio, and the number of initiating alkoxides.
17 

If 

one alkoxide were initiating the polymerization reaction carried out by 2.3/4-

methoxyphenol, a theoretical Mn of 6.8 kg/mol is expected.  This compares favorably 

with the observed Mn of 7.2 kg/mol and suggests that only one phenol is used as an 

initiator in the polymerization reaction (Figure 2.10).  A similar conclusion can be made 

for lactide polymerizations initiated by 2.3/4-tert-butylphenol.  

 

Figure 2.10. Comparison of experimental and theoretical molecular weights with one 

initiating alkoxide or two initiating alkoxides per iron center. 

 

In a case where two growing polymer chains initiate per metal center, the 

molecular weight of the polymers observed should be lower (half the value compared to 
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one initiating chain per metal center), since the ultimate molecular weight in a living 

polymerization reaction is dictated by the ratio of monomer to active propagation sites. 

The observed Mn for polymerization reactions initiated by 2.3/neopentyl alcohol (4.0 

kg/mol) is much closer to the theoretical Mn predicted by a catalyst that uses two 

initiating alcohols (Mn = 3.5 kg/mol).  Therefore, it appears that for the phenols, one 

initiating alkoxide is used during the polymerization reaction whereas for the aliphatic 

alcohols, both alkoxide ligands are used as initiating species (Figure 2.10).   

 

Figure 2.11. Polymer propagation with a) one polymer chain and one spectator alkoxide 

(R = aryl) and b) two polymer chains per metal center (R = alkyl). 

 

These results can be rationalized by realizing that the identity of the propagating 

species is electronically more similar to neopentyl alcohol as compared to 4-

methoxyphenol.  For example, the pKa for neopentyl alcohol and the alcohol of lactic 

acid is ~16 and 18, respectively, whereas the pKa for p-methoxyphenol is 10.2, which is 

considerably more acidic.  If pKa and nucleophilicity are directly correlated, when a 

lactide monomer coordinates to a catalyst containing neopentoxide and a growing 
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polymer chain, insertions from the neopentoxide ligand occur at about the same rate as 

insertions from the growing polymer chain (pathway b, Figure 2.11).  In contrast, lactide 

insertion for a catalyst containing an aryloxide ligand and a growing polymer chain 

favors insertion from the growing polymer chain because the aryloxide ligand is 

significantly less nucleophilic than the propagating polymer chain (pathway a, Figure 

2.11). 

To assess whether one or two alkoxide ligands are involved in the polymerization 

reaction, we carried out the polymerization of lactide initiated by the chiral secondary 

alcohol (R)-1-phenylethanol.  We reasoned that if both alkoxides were to initiate the 

polymerization of lactide, the propagating species would be similar to the reactions 

carried out with neopentyl alcohol. As such, we predicted that there would be little 

difference in tacticity for the resulting polymer.  However, if one alkoxide remains as an 

ancillary ligand during the polymerization, then a difference in tacticity might be 

observed for the reactions initiated with (R)-1-phenylethanol compared to neopentyl 

alcohol due to different amounts of stereoinduction resulting from enantiomorphic site 

control.
19

  Analysis of the polymer tacticity from polymerizations initiated by both (R)-1-

phenylethanol and neopentyl alcohol were found to produce atactic polymer (Pr = 0.49 

and 0.51) with nearly the same relative concentrations of stereoerrors (Figure 2.12).
20

 

This result provides further support that both alkoxides bound to iron are initiating lactide 

polymerization.   
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Figure 2.12. a) Methine region of the 
1
H-

1
H homodecoupled NMR spectrum of 

poly(lactic acid) initiated by 2.3/(R)-(+)-1-phenylethanol. b) Methine region of the 
1
H-

1
H 

homodecoupled NMR spectrum of poly(lactic acid) initiated by 2.3/neopentyl alcohol. 

 

The low stereoselectivity observed in the polymerization reactions regardless to the 

identity of the initiating alcohol species is noteworthy (Pr = 0.50 when 4-methoxyphenol 

is used as the intiator).  This outcome is to be expected for a catalyst that contains an 

achiral ancillary ligand such as the bis(imino)pyridine ligands when there is minimal 

a) 

b) 
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stereoinduction from chain-end control.  Therefore, under the reaction conditions 

investigated, it appears that the chiral polymer chain end has minimal stereochemical 

influence on subsequent insertions of lactide monomer when bis(imino)pyridine ligands 

are used as ancillary ligands on iron. In addition, polymerization reactions carried out 

with L-lactide showed no epimerization of the lactide and yielded isotactic poly(L-

lactide). The bis(imino)pyridine iron bis(alkoxide) catalyst system is unusual for lactide 

polymerization because there is an option for one or two alkoxide ligands to initiate 

lactide polymerization. Most catalysts consist of an anionic ancillary ligand and one 

alkoxide to initate polymerization.
2
 However, the bis(imino)pyridine is a neutral ligand, 

allowing for the coordination of two anionic alkoxide ligands to iron. Either or both of 

these alkoxide ligands can participate in the ring opening polymerization reaction. 

The ability for one alkoxide ligand to remain ancillary during polymerization was 

successfully exploited for stereocontrol over poly(lactic acid) through the use of silanols 

as initiators by other members of the Byers group. Treatment of complex 2.3 with silanol 

additives as initiators led to the stereoselective polymerization of (meso)-lactide to give 

syndiotactic polymer (Ps = 0.92 when silanol is Et3SiOH) and of (rac)-lactide to afford 

heterotactic polymer (Ps = 0.75 when silanol is MePh2SiOH).
21,22

 Although the catalysts 

and additives are achiral, NMR analysis of the resulting polymer suggested that an 

enantiomorphic site control mechanism was more likely as opposed to a chain end 

control mechanism. This can be rationalized with a mechanism that involves 

desymmetrization of the catalyst so as to yield intermediates that are stereogenic at iron, 

since one siloxide initiates lactide polymerization and the other remains as a spectator 

ligand bound to the iron center (Figure 2.13).   
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Figure 2.13. Stereoselective polymerization of lactide with silanols as initiators with 

complex 2.3. 

 

The ability to have two propagating poly(lactic acid) chains per metal center 

allows for the possibility of telechelic polymerization, or propagating polymerization 

from both chain ends, when a linked diol initiator is utilized. If both alkoxide groups on 

the coordinated diol initiate lactide polymerization, as they should when alkyl alkoxide 

initiators are used, then the resulting polymer would be linked in the center by the diol 

initiator (Scheme 2.3a). During preliminary studies on lactide polymerization catalyzed 

by 2.3 in the presence of various alcohols, 1,4-butanediol was found to be an effective 

initiator for lactide polymerization. Dr. Cesar Manna further showed that many diols 

could act as initiators with precatalyst 2.3 to polymerize lactide. This telechelic 

polymerization strategy could be utilized to form block copolymers of type A-B-A if a 

second monomer feed is introduced into the reaction sequentially (Scheme 2.3b). 

Additionally, this strategy could be used to synthesize cyclic poly(lactic acid) if the two 

chain ends could be linked (Scheme 2.3c).  Dr. Cesar Manna and Dr. Aman Kaur 

investigated routes to cyclize the poly(lactic acid) and preliminary results suggested that 
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cyclic poly(lactic acid) could be synthesized by simply heating the reaction, but 

characterization was complicated by a mixture of linear and cyclic polymers being 

formed in the reaction. 

Scheme 2.3. Telechelic polymerization of lactide with a dialkoxide initiatior. 

 

2.5 Redox-Controlled Lactide Polymerization 

Since we had access to the iron(III) bis(alkoxide) complex 2.5, we decided to 

investigate its competency as a lactide polymerization catalyst.  Previous studies have 

shown the ability to control lactide polymerization by oxidation and reduction reactions 

of ferrocene ligands attached to metals such as titanium,
5
 indium,

6
 or cerium.

7
 The 

activity of the catalyst can be “switched” off and on by reversibly oxidizing or reducing 

the ferrocene ligands.  Less common are examples where lactide polymerization is 

controlled by oxidation and reduction of the metal that is also the active site for 

polymerization, although there are two reports detailing examples of this with cerium as 
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the metal catalyst.
7 

Despite the fact that many iron(II/III) redox processes are accessible 

and reversible,  redox switchable lactide polymerization had never been demonstrated 

previously for an iron catalyst.   In fact, a direct comparison between iron(II) and iron(III) 

lactide polymerization catalysts with the same ancillary ligand set had never been 

performed.  Despite the enhanced Lewis acidity of 2.5 compared to 2.4a, complex 2.5 did 

not show any activity for lactide polymerization after 24 hours at room temperature. This 

result was somewhat expected due to the acute electronic dependence observed for the 

iron(II) complexes where an electron-donating initiator was required for enhanced 

catalytic activity (vide supra). Oxidation of the neutral iron(II) bis(alkoxide) 2.4a to the 

cationic iron(III) bis(alkoxide) 2.5 results in a significantly less electron rich metal center, 

so much so that lactide polymerization is completely thwarted.  The reversibility of the 

redox reactions were demonstrated with stoichiometric reactions followed by 
1
H NMR 

spectroscopy.  Although low signal to noise complicated quantitative electrochemical 

analysis of 2.4a, reversible redox behavior was identifiable in the cyclic voltammogram 

of 2.4a in dichloromethane (Figure 2.14) with 2.4a demonstrating a redox potential of 

approximately -0.71 V relative to Fc/Fc
+
. Later studies carried out by Miao Qi in our 

group showed that this redox event is completely reversible electrochemically in 

dichloromethane. 
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Figure 2.14. Cyclic voltammogram of complex 2.4a. Conditions: 0.005M 

dichloromethane solution of the analyte, 0.1M nBu4NPF6 as supporting electrolyte, 

platinum mesh as working electrode, platinum wire as counter electrode, scan rate of 50 

mV/s. 

 

  Considering the reversibility of the redox reaction and the complete inactivity of 

the iron(III) complex 2.5, we then decided to see if our lactide polymerization catalysts 

could be controlled by changing the oxidation state of the metal center (Figure 2.15). The 

polymerization was performed with complex 2.4a (2 mol%) until 25% conversion had 

been achieved. At this point, ferrocenium hexafluorophosphate (2 mol%) was added to 

the reaction mixture to oxidize the complex to the iron(III) species (2.5) in situ. The 

polymerization was completely shut down and no further conversion or change in 

polymer molecular weight (Figure 2.15) or molecular weight distribution was observed 

until  cobaltocene (CoCp2, 2 mol%) was added to the reaction mixture to reduce the 

complex back to iron(II). At this point, the polymerization resumed with a comparable 

rate to that initially observed for complex 2.4a (kobs = 1.5 x 10
-4 

s
-1

 before addition of 

FcPF6 and 2.2 x 10
-4

 s
-1

 after addition of cobaltacene).  
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Figure 2.15. Polymerization of (rac)-lactide in the presence of 2.4a over time.  At the 

time points labeled 40 min. and 60 min., ferrocenium hexafluorophosphate and 

cobaltocene were added to the reaction to oxidize and reduce the metal center, 

respectively. 

 

The veracity of the redox switching capabilities was further demonstrated by 

performing multiple redox switches without decreasing catalyst activity and with minimal 

impact on the polymer molecular weight distribution (Figure 2.16). These results 

demonstrate the reversible nature of the redox event occurring at the iron center and the 

sensitivity of the lactide polymerization to the oxidation state of the metal center.   
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Figure 2.16. Polymerization of (rac)-lactide in the presence of 2.3/4-methoxyphenol with 

three redox switches of the catalyst. Add the time points t = 40 min., 130 min., and 220 

min., ferrocenium hexafluorophosphate (FcPF6) was added to the reaction mixture to 

oxidize the complex, and at time points t = 100 min., 170 min., and 240 min., cobaltocene 

(CoCp2) was added to the reaction mixture to reduce the complex. Molecular weight data 

is shown for the last redox switch, with dispersities displayed next to each time point. 

Molecular weight was determined by GPC relative to polystyrene standards.  Molecular 

weight data at lower conversion was complicated by the low molecular weight polymer 

obtained. 

 

The bis(imino)pyridine iron catalyst system provides some distinct advantages 

compared to other catalysts that have demonstrated redox switchable polymerization.  

First, catalysis is completely shut down upon oxidation of the iron center to iron(III), 

whereas some redox switchable catalysts demonstrate only a lowering in reaction rate 
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upon catalyst oxidation.
5
  Second, the bis(imino)pyridine ligands are easier to synthesize 

and modify compared to the ferrocene-based ligands that are commonly employed for 

redox switchable polymerization.
5,6,7a

 Finally, among the catalysts where redox switching 

occurs upon oxidation and reduction at the active site of polymerization,
7
 the 

bis(imino)pyridine iron complexes display the most control over molecular weight.  

Whereas the cerium complexes reported by Diaconescu and coworkers demonstrate some 

broadening in molecular weight distribution upon redox switching,
7a

 2.4a resulted in 

polymer with the same molecular weight and molecular weight distribution whether or 

not redox switching was employed.   

2.6 Efforts Toward Copolymerization of Lactide and Ethylene 

The most prominent use of iron bis(imino)pyridine complexes for catalysis is for 

the polymerization of ethylene. These complexes are known to polymerize ethylene with 

high efficiency upon activation with methylaluminoxane (MAO) as a cocatalyst.
8 

The 

iron bis(imino)pyridine dichloride precatalyst is believed to form a cationic iron alkyl 

species upon exposure to MAO, which is the active species for coordination-insertion 

propagation (Scheme 2.4). 

Scheme 2.4. Ethylene polymerization mechanism with precatalyst 2.6. 
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2.6.1 Investigation of Lactide Interaction with Methylaluminoxane (MAO) 

Aluminum alkoxides are known to be active polymerization catalysts for lactide 

(See Chapter 1.3.1). However, use of methylaluminoxane as a catalyst for ring opening 

polymerization of lactide has never been reported. For our envisioned copolymerization, 

a large excess of MAO relative to iron complex is required to activate the iron complex 

toward ethylene polymerization. For this reason, we found it imperative to investigate the 

reactivity of MAO with lactide to determine how the presence of MAO in our system will 

affect lactide polymerization. 

Small amounts of MAO (10 mol%) added to a solution of lactide in toluene 

resulted in no conversion of lactide after several days. However, when an excess of MAO 

was added (5 or 20 equivalents relative to lactide), full conversion of lactide was 

observed by GC (Figure 2.17). No new features were observed in the GC trace after the 

reaction was complete, which suggested that MAO was binding to lactide and formed an 

insoluble adduct undetectable by GC.  

The control experiments were also performed with solid MAO rather than the 

commercial solution (10 wt.% in toluene). The commercial MAO solution contains a 

small amount of trimethyl aluminum, which could lead to detrimental side reactions with 

lactide. MAO solution was placed under vacuum for prolonged periods to remove all 

volatile materials, including trimethyl aluminum. When solid MAO was exposed to a 

solution of lactide in toluene, conversion of lactide was still observed, but occurred at a 

slower rate than with MAO solution (Figure 2.17). 
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Figure 2.17. a) Conversion of lactide vs. time in the presence of 5 equivalents solid 

MAO (♦) or 10 wt.% MAO solution (▲) in toluene. b) Conversion of lactide vs. time in 

the presence of 5 equivalents (♦) or 20 equivalents (●) solid MAO. The reactions were 

monitored at room temperature in toluene. [lactide]/[lactide]0 determined by GC with 

tetradecane as internal standard. 

 

To better understand how MAO interacts with lactide, NMR experiments were 

performed with lactide and varying equivalents of MAO solution in C6D6. When up to 20  

equivalents of MAO are added relative to lactide, no shift is seen in the lactide 

resonances by 
1
H NMR. An interesting observation is that resonances associated with 

MAO are not observed in the 
1
H NMR spectrum. Monitoring lactide concentration with 

a) 

b) 
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ferrocene as an internal standard in the presence of MAO solution showed a decrease in 

lactide concentration over time (Figure 2.18). This result also suggests MAO is binding 

to lactide to form an insoluble species which does not appear by 
1
H NMR.  

 

 

Figure 2.18. Lactide concentration monitored against internal standard ferrocene by 
1
H 

NMR after addition of 5 equivalents MAO solution. 

 

These control experiments were carried out to determine whether lactide reacts 

with aluminum alkyl compounds. The presence of trimethyl aluminum in the MAO 

solution may be contributing to lactide conversion, as less conversion is observed with 

solid MAO. Also, if bulkier aluminum compounds are used, this may sterically block the 

binding of lactide. When monitored by NMR, addition of AlMe3 (1 or 5 equivalents 

relative to lactide) to a solution of lactide in C6D6 resulted in complete conversion of 

lactide to ring-opened products. In the case of Al(iBu)3, no additional resonances were 
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observed in the NMR spectrum upon addition to a C6D6 solution of lactide, suggesting 

the Al(iBu)3 is binding to the lactide to form an insoluble complex.  

2.6.2 Polymerization of Ethylene with Iron Bis(imino)pyridine Complexes 

in the Presence of Lactide 

Although it seemed as though MAO cocatalyst may not be compatible with lactide, 

some preliminary ethylene-lactide polymerization studies were carried out. Early 

transition metal ethylene polymerization catalysts are highly sensitive to oxygen-

containing functionalities, and are not be able to perform ethylene polymerization in the 

presence of polar monomers.
23

 Therefore, it is important to determine whether ethylene 

polymerization with iron bis(imino)pyridine dichloride complex 2.6 can proceed in the 

presence of a polar monomer such as lactide.  

Ethylene polymerization was performed in the presence of lactide to determine 

whether the reaction would be inhibited and whether any lactide would be incorporated 

into the polymer chain.  The control reaction without lactide present gave an activity of 

183 g/mmol·h·bar (Table 2.5, entry 1). When large amounts of lactide (2200 equiv. 

relative to 2.6) were added to the reaction, no polyethylene was observed (Table 2.5, 

entry 2). This could be due to the lactide binding to MAO to form an insoluble complex, 

which was discussed in section 2.6.1. There was an excess of lactide relative to MAO 

(2.2 equiv.) in the reaction, so it is possible that all of the MAO was bound to lactide in 

solution so that the precatalyst was not able to be activated. When smaller amounts of 

lactide (1 equiv. relative to 2.6) were added, the reaction still produced polyethylene, 

although with lower activity (Table 2.5, entry 3). Regardless of the lower activity, the 

ability to polymerize ethylene in the presence of lactide is a promising result. 
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Table 2.5. Ethylene polymerization at 10 bar in the presence of lactide. 

 

Entry Equiv. Lactide 

(relative to 2.6) 

Yield (g) Activity 

(g/mmol·h·bar) 

1 -- 1.1 183 

2 2200 0 0 

3 1 0.4 60 

 

Ethylene polymerization in the presence of lactide was also carried out at 1 atm 

instead of high pressures. In order to obtain a sufficient amount of polymer to 

characterize, the reaction time was increased to 5 hours. To investigate the limit of how 

much added lactide will shut down the reaction, the polymerization was performed with 

varying amounts of lactide (Table 2.6).  

Up to 1000 equivalents lactide (equimolar to MAO) were able to be added 

without shutting down the polymerization. The activity may have decreased slightly, but 

there was no clear trend in activity with increasing amount of lactide added. This could 

be attributed to difficulty in measuring accurate amounts of MAO, since it is purchased 

as a solution that is not homogenous and it is difficult to know the exact structure of this 

poorly defined material. However, it is important to note that lactide does not shut down 

ethylene polymerization at concentrations equal to or less than the amount of MAO in the 

reaction. This shows one of the advantages of iron bis(imino)pyridine catalysts for the 
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copolymerization over early transition metals – they are more versatile and much more 

functional group tolerant. 

Table 2.6. Ethylene polymerization at 1 atm in the presence of lactide. 

 

Entry Equiv. Lactide  

(relative to 2.5) 

Polymer mass (g) Activity 

(g/mmol∙h∙bar) 

1 0 0.387 129 

2 1 0.414 138 

3 10 0.590 197 

4 100
 

0.191 64 

5 500 0.708 236 

6 1000 0.124 41 

 

To determine whether any lactide units inserted into the polyethylene chain, IR 

and NMR spectroscopy were utilized to analyze the polymer products. Although the 

polymerizations performed in the presence of lactide showed slightly different IR spectra 

than pure polyethylene (peaks around 3300 and 1630cm
-1

), they were not consistent with 

the presence of ester peaks, and may have been due to the presence of water. High 

temperature (120°C) NMR in 1,1,2,2-tetrachloroethane-d2 showed only linear 

polyethylene with no presence of polyester signals. 

It has been shown that the identity of the cocatalyst in ethylene polymerization 

can have strong effects on the outcome of polymerization.
24

 Modified MAO (MMAO) is 

the most commonly used activator for ethylene polymerization. Ethylene polymerizations 

with MMAO as the activator were performed in the presence of lactide (Table 2.7). With 
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500 or 1000 equivalents of lactide relative to 2.5, the polymerization was shut down and 

no polyethylene was isolated (entries 1-2). With a smaller amount of lactide (100 equiv.), 

ethylene polymerization proceeded with similar activity as in the absence of lactide (entry 

3). It is likely that MMAO is binding to lactide to form an insoluble adduct, which does 

not allow for proper activation of the iron precatalyst. An experiment was carried out 

where lactide (300 equiv.) was added prior to catalyst activation, and polymerization was 

not deactivated (entry 4). This should be repeated with 500 or 1000 equivalents of lactide 

for a direct comparison to determine whether polymerization shuts down due to the 

insufficient activation of the precatalyst. 

Table 2.7. Ethylene polymerization with MMAO as activator in the presence of lactide. 

 

Entry  [Lactide]:[2.5] Polymer mass (g) Activity 

(g/mmol∙h∙bar) 

1  1000 No polymer isolated 0 

2  500 No polymer isolated 0 

3  100 0.864 289 

4  300
a 

0.354 118 

a
Lactide was added after complex was activated with MMAO. 
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2.6.3 Preliminary Investigations of Transformations Necessary for Lactide-

Ethylene Copolymerization 

Synthesizing a copolymer of lactide and ethylene is challenging as the efficient 

polymerization of each monomer requires orthogonal polymerization mechanisms. To 

crossover from ethylene to lactide polymerization, an iron alkyl species will need to 

insert into lactide (ii, Scheme 2.5). In order to switch from lactide polymerization to 

ethylene polymerization, an iron alkoxide species must insert into a bound olefin (iv). In 

order to copolymerize lactide and ethylene, the interconversion from one polymerization 

mechanism to the other must be feasible.  

Scheme 2.5. Envisioned copolymerization of lactide and ethylene. P = growing 

(co)polymer chain. 

 

 

In order to investigate whether an iron alkoxide can insert into a bound olefin, 

2.3/4-methoxyphenol was investigated as a catalyst system for ethylene polymerization 
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(Table 2.8). Although no polymer was observed in the absence of an activator, 2.3/4-

methoxyphenol was a successful precatalyst for ethylene polymerization in the presence 

of 100 equiv. MAO. Unfortunately, 
1
H NMR spectra of the resulting polymer did not 

show phenol end groups; only alkene end groups were observed. This suggests that 

polymerization was not initiated by an alkoxide. An iron alkyl species was most likely 

formed upon the addition of MAO which initiated the polymerization. 

In order to crossover from ethylene polymerization to lactide polymerization, a 

cationic iron alkyl must insert into lactide. To investigate this crossover reaction, 

2.6/MAO and 2.6/MMAO were utilized as catalysts for lactide polymerization. If lactide 

polymerization occurred, this would show that lactide polymerization can be initiated by 

the cationic alkyl complex formed in situ when precatalyst 2.6 is activated with 

aluminoxanes. 

Table 2.8. Investigation of 2.3/4-methoxyphenol as a catalyst system for ethylene 

polymerization. 

 

 Polymer mass (g) Activity 

(g/mmol∙h∙bar) 

Without MAO -- 0 

With 100 eq. MAO (relative to [2.3]) 0.388 13 

 

During the polymerization reaction, the mixture turned red in color, suggesting the 

cationic iron alkyl species had formed. No poly(lactic acid) was observed after 24 hours 

in toluene at room temperature. These results do not show that lactide polymerization 
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cannot be catalyzed by cationic iron alkyl complexes, but rather that aluminum activators 

are probably not suitable for the copolymerization reaction, which has also been 

suggested by control experiments with lactide and MAO. These copolymerization studies 

should be further investigated in the future with borane activators (such as B(C6F5)3)
25

 as 

alternatives to aluminoxane activators. Also, stoichiometric NMR studies of these 

fundamental crossover transformations necessary for the copolymerization reaction 

should be examined, such as the addition of stoichiometric α-olefins to iron alkoxide 

species. 

2.7 Conclusions 

Synthesis of iron(II) bis(alkoxides) supported by bis(imino)pyridine ligands was 

achieved by treating the bis(alkyl) iron(II) complex 2.3 to a variety of aliphatic and 

aromatic alcohols.  A cationic iron(III) bis(alkoxide) complex 2.5 was also synthesized 

and structurally characterized by oxidation of 2.4a with ferrocenium 

hexafluorophosphate.   

The iron(II) complexes were found to be effective catalysts for the polymerization 

of (rac)-lactide both as the discrete iron(II) bis(alkoxide) species or through in situ 

activation from 2.3 and the appropriate alcohol.  Activity for lactide polymerization was 

found to be sensitive to the identity of the initiating alcohol with electron rich alcohols 

initiating lactide polymerization much more efficiently than the electron poor alcohols.  

Poly(lactic acid) with narrow molecular weight distributions was obtained within a few 

hours at room temperature, and the catalysis demonstrated several hallmarks of a living 

polymerization system such as the linear dependence of Mn on conversion, narrow 
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molecular weight distributions, and linear polymer growth upon sequential addition of 

lactide monomer.  Mechanistic experiments revealed that only one alkoxide ligand serves 

as an initiator for lactide polymerizations initiated by aromatic alcohols whereas both 

alkoxide ligands participate as initiators for catalysts initiated by aliphatic alcohols.   

The iron(III) bis(alkoxide) complex 2.5 was found to be completely inactive for 

lactide polymerization.  However, the lactide polymerization reaction could be 

“switched” on and off by reversibly reducing and oxidizing the metal center, respectively.  

It is our belief that the versatility of this catalyst system is due in large part to the special 

properties of iron complexes supported by bis(imino) pyridine ligands.  While we have 

no evidence for the participation of the known redox activity of the bis(imino) pyridine 

ligands in the polymerization of (rac)-lactide, we believe that the electronic and steric 

flexibility provided by these ancillary ligands will be useful for a variety of 

polymerization and copolymerization reactions. 

Preliminary studies were performed to investigate the feasibility of the 

copolymerization of lactide and α-olefins with bis(imino)pyridine iron complexes. 

Ethylene polymerization catalyzed by 2.6/MAO was able to proceed in the presence of 

lactide of equal or less concentration to that of MAO cocatalyst. The iron bis(alkoxide) 

complex 2.4a (formed in situ) is able to polymerize ethylene upon activation with MAO, 

although 
1
H NMR indicates polymerization was not initiated by an alkoxide, but rather an 

iron alkyl species. Precatalyst 2.6 activated with MAO or MMAO was not active for 

lactide polymerization. These results, along with NMR studies, indicate that aluminum 

activators should not be utilized for a lactide/ethylene copolymerization. MAO and 

MMAO likely bind to lactide, which can cause the precatalyst to not be properly 
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activated. In the future, borane activators should instead be investigated for the 

copolymerization of ethylene and lactide. 

2.8 Experimental 

General Considerations. Unless stated otherwise, all reactions were carried out in 

oven-dried glassware in nitrogen-filled glove box or with standard Schlenk line 

techniques.
26

 Solvents were used after passage through a solvent purification system 

under a blanket of argon and then degassed briefly by exposure to vacuum. Nuclear 

magnetic resonance (NMR) spectra were recorded at ambient temperature on 

spectrometers operating at 500 MHz. The line listing for the NMR spectra are reported 

as: chemical shift in ppm (peak width at half-height in Hz, number of protons, proton 

assignment).  Peak width at half-height is reported for paramagnetic complexes.  NMR 

assignments were made in analogy to assignments made for 2.3.
27

 Infrared (IR) spectra 

were recorded on an attenuated total reflectance infrared spectrometer. Magnetic 

moments were determined by Evans’ method
28

 in THF by means of a procedure 

published by Gibson and coworkers.
29

 High-resolution mass spectra were obtained at the 

Boston College Mass Spectrometry Facility. Gel permeation chromatography (GPC) was 

performed on an Agilent GPC220 in THF at 40°C with three PL gel columns (10μm) in 

series and recorded with a refractive index detector. Molecular weights and molecular 

weight distributions were determined from the signal response of the RI detector relative 

to polystyrene standards. Cyclic voltammetry was carried out with 0.1 M 

tetrabutylammonium hexafluorophosphate as the electrolyte in dichloromethane. The 

sample solution was 0.005 M with respect to the analyte. The working electrode was a 
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platinum mesh, the counter electrode was a platinum wire, and the reference electrode 

was a nonaqueous Ag/Ag
+
/I

−
 electrode. Cyclic voltammograms were measured with scan 

rates of 50 mV s
−1

 and were referenced to Fc/Fc
+
.  (rac)-Lactide was obtained from Purac 

Biomaterials and was recrystallized from ethyl acetate followed by recrystallization from 

toluene and dried in vacuo prior to polymerization. Fe(py)2(CH2TMS)2,
27, 30  

complex 

2.2,
31

 complex 2.3,
27,30

 and complex 2.6
8b 

were synthesized as described previously.  

Synthesis of Fe(PDI)(4-methoxyphenoxide)2, PDI = 2,6-(2,6-Me2-

C6H3N=CMe)2C5H3N (2.4a) At room temperature in a 20 mL vial, a solution of 2.3 

(0.10 g, 0.17 mmol) in n-pentane (5 mL) was added to a slurry of 4-methoxyphenol 

(0.042 g, 0.34 mmol) in n-pentane (5 mL). After stirring at room temperature for one 

hour, the solvent was removed to yield a dark purple powder (0.10 g, 88%). μeff = 5.2 µB 

at 25°C. 
1
H NMR  (C6D6): 50.4 (193, 2H, m-pyr), 22.3 (466, 4H), 13.3 (239, 2H), -19.5 

(200, 2H, p-CHar), -162.4 (502, 6H, CH3CN) ppm. IR(neat): 3361, 2944, 2831, 1645, 

1593, 1509, 1495, 1465, 1439, 1366, 1295, 1224, 1177, 1122, 1098, 1034, 826, 760, 733, 

705, 519 cm
-1

. HRMS (ESI
+
): calc’d for C39H41FeN3O2 671.24465, found 671.24468.  

Synthesis of Fe(PDI)(4-tert-butylphenoxide)2 (2.4b) At room temperature, a 

solution of 2.3 (0.10 g, 0.17 mmol) in n-pentane (5 mL) was added to a slurry of 2-tert-

butylphenol (0.051 g, 0.34 mmol) in n-pentane (5 mL) in a 20 mL vial. After the solution 

was allowed to stir at room temperature for one hour, the solvent was removed and a 

brown powder resulted (0.12g, 96%). μeff = 5.1 µB at 25°C.  
1
H NMR (C6D6): 53.4 (244, 

2H, m-pyr), 50.0 (169, 1H), 23.1 (371, 6H), 13.16 (205, 2H), -19.9 (109, 2H, p-CHar), -

164.2 (85, 6H, CH3CN) ppm. IR(neat): 2951, 1643, 1593, 1502, 1362, 1263, 1204, 1175, 
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1093, 831, 762, 692, 549 cm
-1

. HRMS (ESI
+
): calc’d for C45H53FeN3O2 723.34872, found 

723.34523. 

Synthesis of Fe(PDI)(neopentoxide)2 (2.4c) At room temperature, a solution of 

neopentyl alcohol (0.030 g, 0.34 mmol)  in n-pentane (5 mL) was added slowly to a 

solution of 4 (0.10 g, 0.17 mmol) in n-pentane (5 mL) in a 20 mL vial. After the mixture 

was allowed to stir at room temperature for one hour, the solvent was removed and a 

green powder resulted (0.088 g, 86%). μeff = 5.1 µB at 25°C.   
1
H NMR (C6D6): 60.3 (463, 

2H, m-pyr), 27.8 (287, 6H), 21.4 (342, 4H), 14.4 (680, 4H), 11.98 (233, 18H), -19.7 (158, 

2H, p-CHar), -174.9 (71.3, 6H, CH3CN) ppm.  IR(neat): 2948, 1643, 1592, 1468, 1362, 

1247, 1025, 1061, 1018, 840, 762, 693, 558, 495, 429 cm
-1

. 

Synthesis of [Fe(PDI)(4-methoxyphenoxide)2]
+
PF6

-
 (2.5). In a 20 mL vial, a 

solution of ferrocenium hexafluorophosphate (0.074g, 0.22mmol) in dichloromethane (5 

mL) was added dropwise to a solution of 2.4a (0.15g, 0.22mmol) in dichloromethane (5 

mL). The blue solution was allowed to stir at room temperature for 15 minutes and the 

solvent was removed. The resulting blue powder was washed with n-pentane and dried in 

vacuo (0.15g, 84%).  Crystallization by slow evaporation in benzene afforded crystals 

suitable for X-ray analysis. μeff = 5.9 µB at 25°C. 
1
H NMR (C6D6,): 28.5 (296), 6.6 (16.4), 

6.3 (19.4), 4.1 (280), 3.5 (29.1), 3.1 (9.22), 1.2 (37.0), 0.8 (19.4) ppm. IR(neat): 1630, 

1593, 1509, 1494, 1231, 1178, 1031, 825, 771, 732, 556 cm
-1

. HRMS (ESI
+
): calc’d for 

C39H41FeN3O2 671.24465, found 671.24504. 

Generic procedure for the polymerization of (rac)-lactide with iron 

bis(alkoxide). At room temperature in a glove box, iron bis(alkoxide) complex 2.4a 

(0.0186g, 0.028 mmol) in dichloromethane (3.6 mL) was added to a 20 mL vial 
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containing (rac)-lactide (0.20g, 1.4 mmol) and 1,3,5-trimethoxybenzene (0.020g, 0.12 

mmol) in dichloromethane (2.0 mL). Aliquots were removed periodically from the 

reaction mixture and terminated by exposing them to air. Solvent was removed in vacuo 

and conversion was determined by 
1
H NMR in DMSO-d6 by integrating the methine peak 

of the remaining lactide versus the methoxy peak of the 1,3,5-trimethoxybenzene internal 

standard.  The aliquots were also analyzed by GPC to determine molecular weight and 

molecular weight distribution of the polymers. 

Generic procedure for the polymerization of (rac)-lactide with iron 

bis(alkoxides) formed in situ. A similar procedure was adopted as for the pre-formed 

iron bis(alkoxide) complexes except the bis(alkoxide) complex was formed without 

isolation by exposing iron alkyl complex 2.3 (0.0168 g, 0.028 mmol) to an alcohol 

initiator (0.055 mmol) in dichloromethane (3.6 mL) for five minutes prior to addition to 

lactide.   

Sequential addition of lactide to form higher molecular weight polymers. At 

room temperature in a glove box, iron alkyl complex 2.3 (0.0168g, 0.028 mmol) and 4-

methoxyphenol (0.0068g, 0.055 mmol) in dichloromethane (3.6 mL) were added to a 20 

mL vial containing (rac)-lactide (0.20g, 1.4 mmol) and 1,3,5-trimethoxybenzene (0.020g, 

0.12 mmol) in dichloromethane (2.0 mL). After the initial lactide was consumed, 

additional lactide (0.20g, 1.4 mmol) was added to the reaction mixture. This was repeated 

for a total of 15 additions (21 mmol), with 3-16 hours between additions. Molecular 

weight was determined by GPC relative to polystyrene standards. 

Redox switchable polymerization of lactide. Iron alkyl complex 2.3 (0.0168 g, 

0.028 mmol) and 4-methoxyphenol (0.0068 g, 0.055 mmol) in dichloromethane (3.6 mL) 
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were added to a 20 mL vial containing (rac)-lactide (0.20 g, 1.4 mmol) and 1,3,5-

trimethoxybenzene (0.020 g, 0.12 mmol) in dichloromethane (2.0 mL). After 40 min., 

ferrocenium hexafluorophosphate (0.0093 g, 0.028 mmol) was added to the reaction 

mixture and the color changed from purple-brown to blue. At t = 100 min., cobaltocene 

(0.0053 g, 0.028 mmol) was added and the mixture turned back to purple-brown in color. 

Aliquots were removed periodically from the reaction mixture and terminated by 

exposing them to air. Solvent was removed in vacuo and conversion was determined by 

1
H NMR in DMSO-d6 by integrating the methine peak of the remaining lactide versus the 

methoxy peak of the 1,3,5-trimethoxybenzene internal standard.  The aliquots were also 

analyzed by GPC to determine molecular weight and molecular weight distribution of the 

polymers. 

General procedure for ethylene polymerization at high pressures in the 

presence of lactide. The desired amount of lactide was added to a Fisher-Porter tube 

equipped with a stir bar and dissolved in toluene (25 ml). Methylaluminoxane solution in 

tolune (10 wt.%, 0.40ml, 0.6 mmol) was added. The apparatus was sealed and removed 

from a glove box. The tube was pressurized to 50psi ethylene and vented three times. The 

tube was then pressurized to 145psi ethylene and allowed to stir 1 hour. In a glove box, 

2.6 (0.37mg, 6x10
-4

 mmol) was suspended in toluene (0.6 ml). The Fisher-Porter tube 

was depressurized and kept under positive pressure of N2 while the catalyst solution was 

injected. The reaction was pressurized to 145psi ethylene and the needle valve was left 

open to the ethylene tank. The reaction turned cloudy immediately (unless inhibited by 

lactide) and it was allowed to stir 1 hour at room temperature. The vessel was 

depressurized, exposed to air, and the mixture was poured into stirring MeOH (200 ml) 
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and stirred overnight to precipitate white solid. The polymer was collected by filtration 

and dried in vacuum. 

General procedure for ethylene polymerization at atmospheric pressure in 

the presence of lactide. The desired amount of lactide was added to a polymerization 

flask equipped with a stir bar and dissolved in toluene (25 ml). Methylaluminoxane 

solution in toluene (10 wt.%, 0.40ml, 0.60 mmol) was added. The flask was sealed, fitted 

with a septum on the side arm, and removed from a glove box. It was placed on the 

Schlenk line under 1 atm ethylene and allowed to stir 1 hour. In a glove box, 2.6 (0.37mg, 

6x10
-4

 mmol) was suspended in toluene (0.6 ml), and this mixture was injected through 

the side arm of the polymerization flask. The mixture became cloudy after a few minutes 

(unless inhibited by lactide), and was allowed to stir at room temperature for 5 hours. The 

reaction was then exposed to air and poured into stirring MeOH (200 ml) and stirred 

overnight to precipitate white solid. The polymer was collected by filtration and dried in 

vacuum. 

General Procedure for Lactide Control Experiments with MAO. Lactide 

(0.10g, 0.69mmol) was dissolved in toluene (5mL) and stirred for 1h to dissolve all 

lactide. Tetradecane (0.025g, 0.06mmol) was added to the solution as an internal 

standard. A 0-time aliquot was then removed. To the lactide solution was added the 

aluminum reagent (MAO, AlMe3, or Al(iBu3)). The reaction was monitored by GC to 

determine lactide conversion. The reaction mixtures were then poured into HCl/MeOH 

for 1h and then solvent was removed. 
1
H

  
NMR of the residue was taken in CDCl3. 

  



89 

 

                                                 

References 

1. 1
 Adapted with permission from Biernesser, A.B.; Li, B.; Byers, J.A. J. Am. 

Chem. Soc., 2013, 135, 16553-16560. Copyright 2013 American Chemical 

Society. 

2. 2
 a) Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. J. Macromol. Sci., 

Polym. Rev. 2005, 45, 325-349. b) Dechy-Cabaret, O.; Martin-Vaca, B.; 

Bourissou, D. Chem. Rev. 2004, 104, 6147-6176. c) Dove, A. P. Chem. Commun. 

2008, 6446-6470. 

3. 3
 a) Dove, A. P.; Li, H.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; 

Waymouth, R. M.; Hedrick, J. L. Chem. Commun. 2006, 2881-2883. b) Dove, A. 

P.; Pratt, R. C.; Lohmeijer, B. G. G.; Culkin, D. A.; Hagberg, E. C.; Nyce, G. W.; 

Waymouth, R. M.; Hedrick, J. L. Polymer 2006, 47, 4018-4025.  

4. 4
 Hoppe, J. O.; Agnew Marcelli, M. G.; Tainter, M. L. Am. J. Med. Sci. 1955, 230, 

558-571. 

5. 5
 Gregson, C. K. A.; Gibson, V. C.; Long, N. J.; Marshall, E. L.; Oxford, P. J.; 

White, A. J. P. J. Am. Chem. Soc. 2006, 128, 7410-7411. 

6. 6
 Broderick, E. M.; Guo, N.; Vogel, C. S.; Xu, C.; Sutter, J. r.; Miller, J. T.; 

Meyer, K.; Mehrkhodavandi, P.; Diaconescu, P. L. J. Am. Chem. Soc., 2011, 133, 

9278-9281. 

7. 7
 a) Broderick, E. M.; Guo, N.; Wu, T.; Vogel, C. S.; Xu, C.; Sutter, J.; Miller, J. 

T.; Meyer, K.; Cantat, T.; Diaconescu, P. L. Chem. Commun., 2011, 47, 9897-

9899. b) Sauer, A.; Buffet, J.-C.; Spaniol, T. P.; Nagae, H.; Mashima, K.; Okuda, 

J. ChemCatChem, 2013, 5, 1088-1091. 

8. 8
 a) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 

4049-4050. b) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; 

Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; 

Strömberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 

8728-8740. 

9. 9
 O’Reilly, R.K.; Gibson, V.C.; White, A.J.P.; Williams, D.J. Polyhedron 2004, 

17, 2921-2928. 

10. 10
 a) Trovitch, R. J.; Lobkovsky, E.; Bill, E.; Chirik, P. J. Organometallics 2008, 

27, 1470-1478; Monfette, S.; b) Turner, Z. R.; Semproni, S. P.; Chirik, P. J. J. 

Am. Chem. Soc., 2012, 134, 4561-4564; c) Tondreau, A. M.; Atienza, C. C. H.; 

Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science, 

2012, 335, 567-570. 



90 

 

                                                                                                                                                 

11. 11
 Russell, S. K.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc., 2011, 133, 8858-

8861. 

12. 12
 Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; 

Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.; 

White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728-8740. 

13. 13
 Boyle, T. J.; Ottley, L. A. M.; Apblett, C. A.; Stewart, C. A.; Hoppe, S. M.; 

Hawthorne, K. L.; Rodriguez, M. A. Inorg. Chem., 2011, 50, 6174-6182. 

14. 14
 a) Bart, S. C.; Chlopek, K.; Bill, E.; Bouwkamp, M. W.; Lobkovsky, E.; Neese, 

F.; Wieghardt, K.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13901-13912. b) 

Sokolowski, A.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. Chem. 

Commun. 1996, 1671-1672. 

15. 15
 Zhang, X.; MacDonald, D. A.; Goosen, M. F. A.; McAuley, K. B. J. Polym. 

Sci. A Polym. Chem. 1994, 32, 2965-2970. 

16. 16
 Manna, C.M.; Kaplan, H.Z.; Li, B.; Byers, J.A. Polyhedron 2014, 84, 160-167. 

17. 17
 O'Keefe, B. J.; Breyfogle, L. E.; Hillmyer, M. A.; Tolman, W. B. J. Am. Chem. 

Soc. 2002, 124, 4384-4393. 

18. 18
 McGuinness, D. S.; Marshall, E. L.; Gibson, V. C.; Steed, J. W. J. Polym. Sci. 

A Polym. Chem. 2003, 41, 3798-3803. 

19. 19
 Similar tacticities observed for both polymers does not definitively rule out a 

mechanism involving one alkoxide as an initiator because the secondary alcohol 

could be poor at inducing chirality in the growing polymer chain. 

20. 20
 a) Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. 

B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 3229-3238. b) Kasperczyk, J. E. 

Macromolecules 1995, 28, 3937-3939. c) Kean, R. T.; Hall, E. S.; Kolstad, J. J.; 

Lindgren, T. A.; Doscotch, M. A.; Siepmann, J. I.; Munson, E. J. Macromolecules 

1997, 30, 2422-2428. d) Thakur, K. A. M.; Kean, R. T.; Hall, E. S.; Kolstad, J. J.; 

Munson, E. J. Macromolecules 1998, 31, 1487-1494. 

21. 21
 Ps refers to the probability of syndiotactic enchainment. 

22. 22
 Manna, C.M.; Kaur, A.; Yablon, L.M.; Haeffner, F.; Li, B.; Byers, J.A. J. Am. 

Chem. Soc. 2015, 137, 14232-14235. 

23. 23
 Johnson, L.K.; Mecking, S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267. 

24. 24
 Chen, E.Y.-X; Marks, T.J. Chem. Rev. 2000, 100, 1391. 



91 

 

                                                                                                                                                 

25. 25
 Bouwkamp, M.W.; Lobkovsky, E.; Chirik, P.J.  J. Am. Chem. Soc. 2005, 127, 

9660-9661.  

26. 26
 Burger, B. J.; Bercaw, J. E. New Developments in the Synthesis, Manipulation 

and Characterization of Organometallic Compounds; Wayda, A.L., Darensbourg, 

M.Y., Eds.; American Chemical Society: Washington D.C., 1987. 

27. 27
 Cámpora, J.; Naz, A. M.; Palma, P.; Ã•lvarez, E.; Reyes, M. L. 

Organometallics 2005, 24, 4878-4881. 

28. 28
 a) Evans, D. F. J. Chem. Soc. 1959, 2003-2005. b) Schubert, E. M. J. Chem. 

Educ. 1992, 69, 62. 

29. 29
 Britovsek, G. J. P.; Gibson, V. C.; Spitzmesser, S. K.; Tellmann, K. P.; White, 

A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 2002, 1159-1171. 

 

30. 30
 Fernández, I.; Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Organometallics 

2007, 27, 109-118. 

 

31. 31
 Boyle, T. J.; Ottley, L. A. M.; Apblett, C. A.; Stewart, C. A.; Hoppe, S. M.; 

Hawthorne, K. L.; Rodriguez, M. A. Inorg. Chem., 2011, 50, 6174-6182. 

 

 

 

 

 

 

 

 

 

 



92 

 

 

Chapter 3: Redox-Switchable Copolymerization of Lactide 

and Epoxides Catalyzed by Bis(imino)pyridine Iron(II/III) 

Bis(alkoxide) Complexes
1
 

3.1 Introduction 

Recently, several reports have emerged that describe the ability to reversibly 

activate and deactivate chemical reactions with the addition of exogenous redox reagents, 

which have applications in sequence controlled polymerization reactions, chemical 

sensing, chemotherapy, information storage, and for coatings technologies.
2
 The ability to 

control lactide ring-opening polymerization by oxidizing and reducing catalysts that are 

either supported by redox active ligands
3 , 4  

or that utilize redox-active metals
5 , 6  

as 

catalytically active species has been particularly successful. In Chapter 2, we reported a 

bis(imino)pyridine iron complex (3.1) was described that undergoes lactide 

polymerization in the iron(II) oxidation state but is dormant in the iron(III) oxidation 

state (See Chapter 2.5, Scheme 3.1).
5
 Sequential catalyst oxidation and reduction resulted 

in the ability to deactivate and activate polymerization, respectively, without evidence for 

detrimental side reactions.  

 We hypothesized that the different reactivity of iron(II) and iron(III) complexes 

would be amenable to developing a chemoselective block copolymerization with a 

second monomer that has orthogonal reactivity to lactide. In this way, we could 

synthesize a variety of microstructures from the same monomer feedstock by switching 
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the oxidation state of the catalyst to dictate which monomer polymerizes. We discovered 

that epoxides have such reactivity and utilized the complementary reactivity of epoxides 

and lactide for the synthesis of block copolymers. In these reactions, iron(II) serves as the 

active oxidation state for lactide polymerization, while iron(III) is the active oxidation 

state for epoxide polymerization. This synthetic methodology provides rapid access to 

block copolymers that are promising candidates for drug delivery devices
7  

and as 

biodegradable thermoplastic elastomers.
8
  

 

Scheme 3.1. Orthogonal reactivity of lactide and epoxide monomers. 

3.2 Epoxide Polymerization with Iron(III) Bis(imino)pyridine 

Bis(alkoxide) Complexes  

3.2.1 Epoxide Monomer Scope 

During preliminary investigations, we were pleased to find that while the iron(II) 

alkoxide 3.1 is completely inactive for hexene oxide polymerization, exposing small 
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amounts of the cationic iron(III) alkoxide 3.2 (0.2 mol%) to neat hexene oxide lead to 

polymer with a number average molecular weight of 6.5 kg/mol and a dispersity (Ð) of 

2.0 after 24 hours (Table 3.1, entry 1).  In addition to hexene oxide, iron(III) alkoxide 3.2 

was a good catalyst to polymerize a variety of other epoxide monomers.  

Monosubstituted, 1,2-disubstituted (entry 4), and 1,1-disubstituted epoxides (entry 3) 

were competent substrates for the polymerization reaction although polymerization of 

isoprene oxide led to low yields of low molecular weight polymer (entry 3).  Compared 

to the other monomers examined, styrene oxide demonstrated broader dispersities as a 

consequence of a bimodal molecular weight distribution observed in the GPC trace (entry 

5).  

Table 3.1. Polymerization of epoxides catalyzed by 3.2
a 

 epoxide Mn
b
 Ð  %Yield

c
 

1 
 

6.5 2.0 57 

2
 

 
4.6 1.7 69 

3 
 

1.9 1.7 28 

4 
 

22.1 1.9 36 

5
 

 
12.7/0.7

d 
1.3/1.5 51

 

6
e
 

 

22.6 2.3 81 

a
Neat epoxide with 0.2 mol% 2 for 24 h at 24 °C. 

b 
kg/mol; determined by GPC relative 

to polystyrene standards. 
c
determined by mass. 

d
bimodal distribution.

 e
In PhCl (2.1 M). 

 

Iron(III) alkoxide 3.2 proved to be a particularly active catalyst for the 

polymerization of cyclohexene oxide. Attempted polymerization of this substrate in neat 
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epoxide resulted in a significant exotherm and the rapid formation of a viscous solution 

that could not be stirred. The use of chlorobenzene as a solvent was required to mitigate 

the significant exotherm observed during neat epoxide polymerization reactions (entry 6). 

Importantly, when CHO was treated with the iron(II) complex 3.1, no polymerization 

occurred. 

3.2.2 Redox-Switchable Epoxide Polymerization 

The redox-switchable polymerization of cyclohexene oxide was next 

demonstrated (Figure 3.1). A polymerization reaction in chlorobenzene was allowed to 

proceed to 40% conversion, at which time cobaltocene (Cp2Co) was added to the reaction 

to reduce the complex to the inactive iron(II) state. The conversion of cyclohexene oxide 

stopped upon addition of Cp2Co, and after 40 minutes, the reaction was reinitiated by 

oxidizing the complex with ferrocenium hexafluorophosphate (FcPF6). After oxidation, 

the reaction proceeded at a similar rate (kobs = 1.23 x 10
-4

 s
-1

) as initially observed (kobs = 

2.54 x 10
-4

 s
-1

), which suggested the catalyst was dormant when in the iron(II) oxidation 

state.  

The polymerization reaction did not reach full conversion, but we do not believe 

this to be a detrimental effect of the redox-switching because we have found that ultimate 

conversion of the epoxide is dependent on its concentration. To support this assertion, we 

note that the overall conversion observed in the redox-switching experiment is identical 

to the ultimate conversion obtained from epoxide polymerization catalyzed by 3.2 at the 

same initial concentration of cyclohexene oxide.  
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Figure 3.1. Redox-controlled polymerization of cyclohexene oxide in PhCl (0.91M) with 

complex 3.2 (2 mol%). At the time points labeled 50 and 90 min., cobaltocene and 

ferrocenium hexafluorophosphate were added to the reaction to reduce and oxidize the 

complex, respectively. 

 

Previously reported bond metrics obtained from an X-ray crystal structure of 3.2 

(see Chapter 2.2) suggest that the redox reactions reported here occur at the metal center 

rather than at one of the two potentially redox active ligands.
5 

The ability to control 

epoxide polymerization by oxidizing and reducing the metal center has interesting 

mechanistic implications. We considered whether the epoxide polymerization was 

occurring by a cationic or coordination-insertion mechanism ( In this case, propagation 

directly involves the iron center, and alteration of the oxidation state of the iron center 

could deactivate the polymerization. 

Scheme 3.2). For a cationic polymerization mechanism, a bound epoxide would 

be attacked by a second epoxide monomer to form a cationic epoxonium intermediate 
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that would propagate polymerization.  Since chain propagation does not involve iron but 

rather an epoxonium intermediate, reduction of the iron complex would not alter chain 

propagation rates. Therefore, results obtained thus far are more consistent with a 

coordination insertion mechanism (although a monometallic mechanism is shown, a 

mechanism that involves two iron centers is also possible and has precedence
9
).  In this 

case, propagation directly involves the iron center, and alteration of the oxidation state of 

the iron center could deactivate the polymerization. 

Scheme 3.2. Two common mechanisms proposed for epoxide polymerization. 

 

3.3 Redox-Switchable Diblock Copolymerization of Lactide and 

Cyclohexene Oxide 

 Currently, the epoxide polymerization reactions do not demonstrate 

characteristics of a living polymerization, as somewhat broad dispersities are observed 

and the molecular weight obtained is not in line for theoretical values based on the 

catalyst to monomer ratio. However, the complementary reactivity of cyclohexene oxide 

and lactide made redox-switchable block copolymerization reactions possible. 
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Many optimization experiments were performed for the copolymerization 

reactions due to encountered issues with reproducibility. When the copolymerization 

experiments were performed in dichloromethane, irreproducible reaction rates of the 

epoxide polymerization were observed. Because epoxide polymerization proceeded as 

usual in neat conditions, and was slower than observed previously even when control 

reactions were performed with FcPF6 as the catalyst, it was concluded that the solvent 

was the source of these inconsistencies and may be contaminated. 

The dichloromethane solvent that had been used for the epoxide polymerization 

and copolymerization reactions was degassed solvent from our solvent purification 

system (SPS). Suspecting that our dichloromethane keg may be contaminated, we 

decided to use solvent from another SPS instead; however, similar results were obtained 

(70% conversion after 24 hours compared to previously observed full conversion within 3 

hours). Dichloromethane that was treated with K2CO3 to remove any acid impurities and 

then vacuum transferred, as well as a purchased bottle of sureseal anhydrous 

dichloromethane that did not have to pass through the SPS did not improve the slow 

polymerization rates that were being observed.  

This led us to investigate alternative solvents for the epoxide polymerization and 

copolymerization reactions. Diethyl ether and 1,2-dichloroethane were suitable solvents 

for cyclohexene oxide polymerization, but were not successful for lactide polymerization 

(no conversion was observed). Benzene seemed like a promising choice because both 

lactide and epoxide polymerization could be conducted in this solvent, but cyclohexene 

oxide polymerization was sluggish and would require several days of reaction time.  

Chlorobenzene was promising choice as epoxide polymerization proceeded to 65% 
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conversion within three hours in this solvent. It was also discovered that the rate of 

lactide polymerization is much faster in chlorobenzene than it is in dichloromethane; 

lactide polymerization in the absence of cyclohexene oxide reached over 90% conversion 

in 20 minutes in chlorobenzene, compared to three hours in dichloromethane (Figure 

3.2). 

 

Figure 3.2. Comparison of lactide polymerization conversion vs. time in the presence 

(blue) and absence (red) of cyclohexene oxide (1 equiv. relative to lactide) in PhCl 

(0.17M) at 24°C. 

 

In the presence of one equivalent of cyclohexene oxide, the lactide polymerization 

reached over 90% conversion in 40 minutes (Figure 3.2). The only drawback observed 

with chlorobenzene is that transesterification of poly(lactic acid) became an issue at 

prolonged reaction times (>3h), leading to broader dispersities, but this can be avoided by 

quenching the reactions once full conversion of lactide is reached. 
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However, after performing the polymerization reactions in chlorobenzene for a 

few months and seeing consistent results, the epoxide polymerization rate suddenly 

became much slower. Instead of observing around 70% conversion of the epoxide in 

three hours, less than 50% conversion occurred (sometimes as little as 15%) and did not 

reach full conversion with prolonged reaction times. To determine the source of the 

impurity causing inhibition of the reaction, several reaction conditions were varied. First, 

it was suspected that the complex contained impurities, so new batches of complex were 

synthesized and used for the reaction. In each case, slow polymerization rates were 

observed with only 15-30% epoxide conversion after 3 hours, suggesting that the 

complex was not the source of the impurity.  

Because we previously had issues with the solvent when we were using 

dichloromethane, it seemed likely that the solvent was also the culprit for these slower 

reaction rates. The chlorobenzene in a glove box was degassed again to remove any 

oxygen and passed through alumina to remove any water, and gave improved 

polymerization rates (Table 3.2, 47% after 3h, Entry 2), although reactions were not 

restored to the original rate. Fresh chlorobenzene was purified by washing it with sulfuric 

acid, NaHCO3, and water, dried over K2CO3 and P2O5, and then vacuum transferred. This 

chlorobenzene gave even slower epoxide polymerization rates (entry 3). Storing the 

chlorobenzene over molecular sieves did not have an effect on the reaction rate. 

 

 

 



101 

 

Table 3.2. Epoxide polymerization with various reaction conditions in attempt to achieve 

original reaction rate in chlorobenzene. 

 

Entry Reaction conditions Conv. 

(%) 

1 Original results 68 

2 Re-degassed PhCl passed thru Al2O3 47 

3 Freshly purified, distilled PhCl (washed with H2SO4) 7 

4 Vials washed with DI H2O before drying and brand new stir bar 22 

5 PhCl dried over CaH2 and distilled 45 

6 Anhydrous sureseal PhCl passed through SiO2 60 

 

Suspecting that the reaction vials may be contaminated, we took extra measures to 

rid them of contaminants. Chloride counterions were found to have negative effects on 

the reaction, so it is possible that some chloride salts were present on the reaction vials. 

The vials and pipets were rinsed with deionized water and oven-dried before use. A brand 

new stir bar was also used in case the Teflon stir bars contained detrimental 

contaminants. This did not help the reaction; a 22% conversion of epoxide was observed 

(Table 3.2, Entry 4).  Distilling the chlorobenzene after drying over CaH2 did not 

improve the poly(cyclohexene oxide yield) (Table 3.2, entry 5). Finally, consistent 

results were obtained when the chlorobenzene was passed through SiO2 before use in 

polymerization reactions (Table 3.2, entry 6). Moving forward, all epoxide homo- and 

copolymerization reactions were performed in chlorobenzene that had been passed 

through SiO2. It is still unclear what impurities the SiO2 removed that interfered with the 

epoxide polymerization reactions.  
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Satisfyingly, when a 1:1 mixture of cyclohexene oxide and lactide in 

chlorobenzene (that had been passed through SiO2) at 24 °C was exposed to 3.1, clean 

polymerization of lactide was observed without any incorporation of cyclohexene oxide 

(entry 1, Table 3.3). The chemoselectivity of the reaction was apparent from the absence 

of polyether resonances in the 
1
H NMR spectrum of the polymer (Figure 3.3b). Although 

only PLA was observed when the complex was in the iron(II) oxidation state, oxidation 

of the complex to iron(III) with FcPF6 led to clear evidence for the formation of 

poly(cyclohexene oxide) (PCHO) in the 
1
H NMR spectrum (Figure 3.3c). 

Table 3.3. Redox-controlled diblock copolymerization of (rac)-lactide (L) and 

cyclohexene oxide (CHO) (1:1).  

 

 After step i After step ii and precipitation
a
 

 Mn
b
 Ð % 

CHO
c 

% 

L
c
 

Mn
b
 Ð

 
% 

CHO
c
 

% 

L
c
 

m:n
c 

% 

Copolym.
d 

1 11.9 1.2 0 98 10.2 

(37.5) 

1.5 69 98 7:1 67 

2
e
 11.2 

(12.1) 

1.2 0 98 9.2 

(27.2) 

1.5 89 98 7:1 65 

3
f
 10.0 1.2 0 99 3.5 

(20.1) 

1.4 71 98 5:1 23 

4
g
 4.5 1.3 0 35 1.7 

(27.0) 

2.0 32 36 4:1 68 

a
Isolated by precipitation from acetone and hexanes. 

b 
kg/mol, determined by GPC with 

RI detector relative to polystyrene standards; values in parentheses from LS detector. 
c 

percent conversion determined by 
1
H NMR. 

d
percent copolymer determined from mass of 

isolated copolymer/mass of total polymer. 
e
Epoxide added in second step after oxidant.

 

f
[CHO]:[L] = 5:1 ([CHO] = 0.80M). 

 g
Step i carried out for 15 min.  
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The molecular weight obtained from this reaction after the first step (11.9 kg/mol, 

Table 3.3 entry 1) was identical to the molecular weight of poly(lactic acid) (PLA) in the 

absence of cyclohexene oxide.
10

 However, a slightly slower reaction rate was observed 

for lactide polymerization in the presence of cyclohexene oxide (Figure 3.2), which 

likely arises from competitive binding of cyclohexene oxide and lactide to the iron 

complex.  

 

 

Figure 3.3. Representative 
1
H NMR spectra (CDCl3) of lactide-cyclohexene oxide 

diblock copolymerization (Table 3.3, entry 1) showing a) a 1:1 mixture of lactide and 

cyclohexene oxide for reference b) reaction mixture after step i (t= 1 h) c) reaction 

mixture after step ii (t = 4 h) d) acetone precipitation filtrate containing copolymer e) 

isolated copolymer from hexanes precipitation. 

 

d) 

PLA 

PCHO 

a) 

b) 

c) 

e) 
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Molecular weight analysis of the resulting diblock copolymer after step ii of the 

reaction by gel permeation chromatography (GPC) revealed a broad dispersity (Mw/Mn = 

2.2), which led us to believe the copolymer contained some polyether homopolymer. 

Fortunately, isolation of the copolymer was possible through sequential polymer 

precipitation in acetone and hexanes (see Section 3.4). This procedure resulted in 70% 

yield of copolymer, based on the mass of recovered polymer products (copolymer and 

homopolyether). GPC analysis of the isolated copolymer demonstrated a single peak with 

a dispersity of 1.5, but a decrease in molecular weight was observed from the first to 

second step when analyzed with a refractive index (RI) detector calibrated relative to 

polystyrene standards (entry 1, Table 3.3 and Figure 3.4).  

 

Figure 3.4. Representative GPC traces (RI detector) for lactide-cyclohexene oxide 

copolymerization (Table 3.3, entry 1) after step i (lactide polymerization), step ii 

(epoxide polymerization), and precipitation to isolate the block copolymer. 

 

This result was not surprising considering the significantly different 

hydrodynamic volume expected for the copolymers compared to polystyrene. Therefore, 
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GPC analysis with a light scattering (LS) detector was carried out, which showed 

comparable values with the RI detector for PLA in the first step, but higher molecular 

weight for the copolymer product (Mn = 37.5 kg/mol, Table 3.3 entry 1). These results 

are consistent with the formation of a diblock copolymer.  

Control experiments revealed that the FcPF6 oxidant was also a competent 

catalyst for the polymerization of cyclohexene oxide, although at a much slower rate and 

with lower polymer molecular weights and broader dispersities compared to 3.2 (Table 

3.4).
 
Cobaltocene is inactive for lactide and epoxide polymerization and ferrocene is 

inactive for epoxide polymerization. 

Table 3.4. Comparison of cyclohexene oxide (CHO) polymerization initiated with FcPF6 

and 3.2.
a 

Initiator Conv. CHO (%)
b 

Mn (kg/mol)
c 

Ð
 

FcPF6 25 4.7 3.8 

3.2 53 32.6 1.9 

a
Reactions were performed in PhCl(0.17M) for 3 h at 24°C with 2 mol% FcPF6 or 3.2. 

b
Determined by 

1
H NMR. 

c
Determined by refractive index detector against polystyrene 

standards. 

 

We examined other oxidizing reagents to find a compound that would oxidize 

complex 3.1 but would be unreactive with the cyclohexene oxide monomer. It should be 

noted that these experiments were performed in dichloromethane solvent rather than 

chlorobenzene as these investigations preceded solvent optimization. Silver salts such as 

AgPF6 (E° = 0.65V vs. Fc
+
)
11

 were tested, but we found these copolymerization reactions 

to be even less controlled than with the oxidizing agent FcPF6 and found evidence for 

homopolymerization of epoxides by the silver oxidizing agent (Table 3.5, entry 2). 

Instead, we decided to use oxidizing agents more similar to FcPF6 such as 
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acetylferrocenium salts. Acetylferrocenium tetrafluoroborate (AcFcBF4, E° = 0.27V vs. 

Fc
+
)
11

 showed much slower cyclohexene oxide polymerization rates (entry 3); however, 

the iron(III) complex synthesized with AcFcBF4 as an oxidizing agent did not polymerize 

cyclohexene oxide. Instead, acetylferrocenium PF6 was synthesized, but this oxidizing 

agent was also found to polymerize cyclohexene oxide rapidly (entry 4). This shows that 

the cyclohexene oxide is highly sensitive to the counteranions present in the reaction 

mixture. 

Table 3.5. Cyclohexene oxide polymerization initiated by various oxidants in CH2Cl2. 

Entry Oxidant Time (h) Conversion 

(%) 

Mn (kg/mol) Ð 

1 FcPF6 2.5 88 16.5/0.5
b 

3.70/1.16 

 24 100 8.1/0.4
b 

2.97/1.15 

2 AgPF6 2.5 96 274.9 1.56 

  22 99 180.4 2.46 

3 AcFcBF4
c 2.5 8 4.2/0.7

b 
1.48/1.15 

  24 18 3.8/0.6
 b 

1.51/1.16 

4 AcFcPF6
c 3 94 7.6 4.6 

5 N(p-tolyl)3PF6
c 6 37 2.5 14.2 

a
Cyclohexene oxide polymerizations performed at room temperature in CH2Cl2 with 0.02 

mol% oxidant. 
b
Bimodal distribution. Molecular weight data for each peak is reported. 

c
Reactions performed with 0.2 mol% oxidant. 

 

Triarlyaminium salts were then investigated as oxidizing agents, which were 

hypothesized to be inert towards epoxide polymerization. The compound N(p-tolyl)3PF6 

(E° = 0.40V vs Fc
+
)
11 

was added to complex 3.1 to determine whether it could efficiently 

be oxidized to form 3.2. However, an additional peak in the 
1
H NMR spectrum was 

observed which indicates this oxidation reaction may not proceed cleanly. When a 

control reaction with N(p-tolyl)3 was performed to determine whether it can perform 
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epoxide polymerization, it was also found to also be a competent initiator (Table 3.5, 

entry 5).   

Although an ideal oxidant was not found that can effectively oxidize 3.1 to form 

3.2 in situ and does not react with cyclohexene oxide to initiate homopolymerization, we 

found that by running the reactions in chlorobenzene, the side reaction of cyclohexene 

oxide polymerization by FcPF6 is sufficiently slower than the oxidation reaction. Even if 

a small amount of FcPF6 reacts with the epoxide monomer rather the iron(II) complex, it 

will only produce a small amount of side product and does not account for all of the 

epoxide conversion observed during the reaction. Notably, this side reaction is much 

slower than it is in dichloromethane, which is another advantage of perfoming the 

reactions in this solvent.  

To assess whether the oxidant was interfering with the epoxide polymerization 

reaction, the copolymerization was performed by adding the epoxide monomer after 

oxidation of the iron complex. By carrying out the polymerization in this fashion, FcPF6 

is consumed prior to cyclohexene oxide addition to the reaction. In the event, polymers of 

similar molecular weights and composition to the one-pot reaction were observed (entry 

2, Table 3.3), which demonstrated that epoxide polymerization catalyzed by FcPF6 does 

not interfere with the one pot copolymerization reactions.  These findings imply that 

electron transfer is much faster than monomer enchainment, which is an important factor 

for redox-switchable polymerization that occurs with multiple switches. 

When the copolymerization was carried out with a 5:1 ratio of CHO:L, higher 

incorporation of cyclohexene oxide into the copolymer was observed (entry 3, Table 

3.3), albeit with lower yields of isolated copolymer. To further demonstrate the ability to 



108 

 

switch chemoselectivity upon complex oxidation, the lactide polymerization was carried 

out to partial completion (35%) prior to complex oxidation and subsequent epoxide 

polymerization (entry 4, Table 3.3). As expected, complex oxidation led to epoxide 

polymerization with no further incorporation of lactide.  

After demonstrating an effective switch from lactide to epoxide polymerization 

upon oxidation of the complex from iron(II) to iron(III), the reverse order was then 

investigated. Starting with iron(III) alkoxide complex 3.2, a reaction containing a 1:1 

mixture of the monomers underwent selective polymerization of the epoxide yielding 

exclusively polyether (entry 1, Table 3.6). As observed in lactide polymerizations, 

epoxide polymerization was slower compared to reactions without lactide present, a 

likely consequence of competitive inhibition from lactide. We were pleased to find that 

reduction of the iron(III) complex with CoCp2 led to the rapid consumption of lactide 

without any further conversion of epoxide. 

The chemoselectivity was once again apparent when the reaction was monitored 

by 
1
H NMR spectroscopy. In the first step, only polyether is observed with no PLA 

present (Figure 3.5b). When the complex is reduced in step ii, polylactide appears with 

no further conversion of polyether (Figure 3.5c).  

GPC analysis (RI and LS) after copolymer precipitation revealed one peak that 

increased in molecular weight and decreased in molecular weight distribution when 

CoCp2 was added to the reaction (entry 1, Table 3.6 and Figure 3.6). This observation 

was once again consistent with the production of a block copolymer. The decrease in 

dispersity of the copolymer product may be due to the high percentage of narrow 
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dispersity polylactide in the copolymer product. Precipitation of the copolymer resulted 

in 95% yield of the copolymer with only a small amount of homopolyether collected. 

Table 3.6. Redox-controlled diblock copolymerization of (rac)-lactide (L) and 

cyclohexene oxide (CHO) (1:1).  

 

 After step i After step ii and precipitation
a
 

 Mn
b
 Ð %CHO

c 
%L

c
 Mn

b
 Ð

 
%CHO

c
 %L

c
 m:n

c 
%Copo

lym.
d 

1 1.2 

(22.8) 

1.9 22 0 10.6 

(30.9) 

1.4 22 97 9:1 95 

2
e
 7.4 1.8 42 0 12.5 

(20.5) 

1.4 42 98 9:1 84 

3
f
 1.2 2.0 50 0 5.8 

(34.6) 

1.4 51 99 3:1 53 

4
f,g

 2.2 2.4 21 0 11.6 

(30.1) 

1.4 22 98 3:1 48 

a
Isolated by precipitation from acetone and hexanes. 

b 
kg/mol, determined by GPC with 

RI detector relative to polystyrene standards; values in parentheses from LS detector. 
c 

percent conversion determined by 
1
H NMR. 

d
Percent copolymer determined from mass 

of isolated copolymer/mass of total polymer.
 e

Lactide added in the second step after 

reductant. 
f
[CHO]:[L] = 5:1 ([CHO] = 0.80M). 

 g
Step i carried out for 30 min. 
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Figure 3.5. Representative 
1
H NMR spectra (CDCl3) of cyclohexene oxide-lactide 

diblock copolymerization (Table 3.6, entry 3) showing a) a 1:1 mixture of lactide and 

cyclohexene oxide for reference b) reaction mixture after step i (t= 3 h) c) reaction 

mixture after step ii (t = 4 h) d) acetone precipitation filtrate containing copolymer e) 

isolated copolymer from hexanes precipitation. 

 

As was observed for the iron(II) to iron(III) switch, sequential polymerization of 

epoxide followed by lactide proceeded similarly as the one pot reaction with the only 

significant difference being higher conversion of the epoxide in the first step (entry 2,  

Table 3.6). Compared to the iron(II) to iron(III) switch, significant increases in ether 

content could be achieved by performing the iron(III) to iron(II) switch at higher 

a) 

b) 

c) 

d) 

e) 

PLA 

PCHO 

acetone 
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concentrations of cyclohexene oxide, once again at the expense of lower copolymer 

yields (entry 3, Table 3.6).  

 

 

Figure 3.6. Representative GPC traces (RI detector) for cyclohexene oxide-lactide 

copolymerization (Table 3.6, entry 1) after step i (epoxide polymerization), step ii 

(lactide polymerization), and precipitation to isolate the block copolymer. 

 

Finally, the chemoselectivity of the iron(III) to iron(II) switch was demonstrated 

by carrying out diblock copolymerization reactions at a CHO:L ratio of 5:1 to lower 

conversions prior to complex reduction (entry 4, Table 3.6). As expected, addition of 

CoCp2 led to full lactide conversion without any further epoxide conversion. These 

results demonstrated that the chemoselectivity observed during the iron(II) to iron(III) 

switch was also applicable for the iron(III) to iron(II) switch, which makes it theoretically 

possible to carry out a multiblock copolymerization reaction involving multiple redox 

switches. However, we would like to improve the fidelity of the epoxide polymerization 
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reactions before attempting multiple redox switches to decrease the amount of 

homopolyether side product formed, which would complicate polymer analysis. 

As a result of a collaborative project with Kayla Delle Chiaie, Lauren Yablon, 

Greg Michalowski, and Alex Sudyn, the redox-switching capabilities of these complexes 

were further utilized for redox-triggered crosslinking reactions, where both the lactide 

and epoxide moieties were incorporated into a single monomer 3.3 (Scheme 3.3).
12

 When 

exposed to iron(II) alkoxide 3.1, monomer 3.3 underwent chemoselective ring-opening of 

the cyclic diester to give epoxide-functionalized polyester (3.4). Oxidation of the 

complex with FcPF6 induced polymerization of the epoxide side chains, resulting in 

cross-linked polyester. 

Scheme 3.3. Redox-triggered crosslinking polymerization. 

 

3.4 Evidence for Block Copolymer Formation 

Although the GPC data suggested the formation of copolymers as the major 

product, further experiments were carried out to rule out the possibility that the reactions 

yielded a mixture of homopolymers. Further support for the formation of copolymers was 

obtained from diffusion ordered nuclear magnetic resonance spectroscopy (DOSY-

NMR). DOSY-NMR is an effective method for distinguishing block copolymers from a 

blend of homopolymers because it can separate polymer samples by their diffusion 
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coefficient.
13

 DOSY-NMR spectra of the polymers isolated from the iron(II) to iron(III) 

redox switch displayed a single peak with resonances assigned to the polyester and 

polyether having the same diffusion coefficient (D = 9.5 x 10
-11

  m
2
/s, Figure 3.7a and 

Table 3.7). Likewise, block copolymers formed from the iron(III) to iron(II) redox 

switch also showed signals at a single diffusion coefficient (D = 1.1 x 10
-10

 m
2
/s, Figure 

3.7c and Table 3.7). In contrast, DOSY-NMR spectra of a blend of PLA and PCHO of 

similar molecular weight showed two distinct diffusion coefficients at 1.6 and 1.3 x 10
-10

 

m
2
/s (Figure 3.7b and Table 3.7) that are correlated to resonances assigned to the 

polyester and polyether, respectively. Combined, these data are consistent with the 

formation of block copolymers in both iron(II) to iron(III) and iron(III) to iron(II) redox 

switches.  

Table 3.7. Diffusion coefficients determined by DOSY-NMR for copolymers and blend 

of homopolymers.
a 

Polymer Mn (kg/mol)
b 

Ð
 

[PLA]:[PCHO]
c 

D (10
-10

 m
2
/s) 

PLA 

homopolymer 

21.0 1.10 -- -- 

PCHO 

homopolymer 

19.3 3.09 -- -- 

Mixture of 

homopolymers 

20.9 2.10 79:21 1.59 

1.28 

Lactide-Epoxide 

copolymer 

10.2 1.44 86:14 0.95 

Epoxide-Lactide 

copolymer 

5.8 1.42 77:23 1.06 

a
DOSY-NMR performed in CDCl3. 

b
Determined by refractive index detector referenced 

to polystyrene standards. 
c
Determined by 

1
H NMR. 
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Figure 3.7. DOSY-NMR spectra in CDCl3 of a) lactide-epoxide block copolymer b) 

blend of homopolymers with similar Mn and [PLA]:[PCHO] and c) epoxide-lactide block 

copolymer. 

 

 

 

c) 
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Table 3.8. Separation of a blend of homo-PLA and homo-PCHO by precipitation.
a
 

 

Entry Mn (kg/mol)
b 

Ð [PLA]:[PCHO]
c 

Homo-PLA 7.9 1.14 -- 

Homo-PCHO 14.9 2.21 -- 

Blend 15.8 2.24 1:2 

Acetone Filtrate 8.2 1.09 21:1 

Acetone Precipitate 20.3 2.12 1:60 

Hexanes Filtrate
d n.d. n.d. 1:65 

Hexanes Precipitate 7.4 1.10 58:1 
a
The two homopolymers were dissolved in dichloromethane and precipitated from 

acetone. The material collected from the acetone filtrate was then precipitated from 

hexanes. 
b
Determined by refractive index detector relative to polystyrene standards. 

c
Determined by 

1
H NMR. 

d
Not determined; amount of sample collected was too small for 

reliable GPC measurement. 

 

Additional support for the formation of block copolymers is the observation that 

the copolymer products have different solubility properties than either homopolymer. To 

further demonstrate this, a control experiment was performed with a mixture of the two 

homopolymers to show that they could be separated by the precipitation procedure used 

to isolate copolymer after the reaction. Poly(lactic acid) is soluble in acetone and 

insoluble in hexanes, while poly(cyclohexene oxide) is insoluble in acetone and soluble 

in hexanes. Thus, a blend of the two homopolymers can be separated from one another by 

sequential precipitation in acetone followed by the soluble fraction being further 

precipitated into hexanes: the remaining solid contains poly(lactic acid) with no evidence 
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for poly(cyclohexene oxide) (Table 3.8). In contrast, the same precipitation procedure 

carried out on the product from the copolymerization reactions resulted in polymer 

containing both poly(lactic acid) and poly(cyclohexene oxide) resonances by 
1
H NMR 

spectroscopy. Moreover, further precipitation of the copolymer in hexanes resulted in no 

change in polymer composition, which further suggested that polyester and polyether 

blocks are covalently linked. 

3.5 Conclusions 

Scheme 3.4. Proposed rationalization for chemoselectivity in polymerization reactions. 

 

Cationic iron(III) bis(alkoxide) complex 3.2 was found to be an active catalyst for 

epoxide polymerization, while complexes in the iron(II) oxidation state were completely 

inactive. This trend is opposite to what was observed previously for lactide 

polymerization, allowing for the synthesis of redox-controlled diblock copolymers. To 

rationalize the switch in chemoselectivity, we hypothesize that lactide polymerization 

reactions benefit from nucleophilic activation of the alkoxides that are characteristic of a 

more electron rich iron(II) center, whereas epoxide polymerizations benefit more from 
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electrophilic activation that is more prevalent from the electron deficient iron(III) center 

(Scheme 3.4). While further mechanistic studies are needed to test this hypothesis, this 

report demonstrates for the first time that changes in oxidation state of a catalyst can lead 

to a complete change in the chemoselectivity of a chemical reaction. 

 Previously, the Diaconescu group disclosed that the composition of a polyester 

copolymer could be altered with the redox-controlled block copolymerization of lactide 

and ε-caprolactone (CL).
4
 Despite orthogonal redox control observed in 

homopolymerization reactions with complex 3.5 (Figure 3.8), the corresponding 

copolymerization reactions did not result in completely chemoselective reactions. Similar 

complications do not exist in the present system, thereby leading to formation of block 

copolymers with compositions that mimic sequential polymerization techniques and that 

feature different functional groups for each block (ester and ether). Subsequent to our 

report, Diaconescu and coworkers have also reported a redox-controlled synthesis of 

lactide or β-butyrolactone block copolymers with cyclohexene oxide.
14

 When the ligand 

of complex 3.6 (Figure 3.8) is in the reduced state, the complex is active for the 

polymerization of lactide and β-butyrolactone, and in the oxidized state, is active for the 

polymerization of cyclohexene oxide. They also reported issues with Ferrocenium salt 

oxidants polymerizing cyclohexene oxide, and their ligand polymerized cyclohexene 

oxide in the absence of the zirconium metal. They utilized sequential monomer addition 

to avoid interference from the oxidant and synthesize diblock and ABA triblock 

copolymers. 
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Figure 3.8. Complexes used by the Diaconescu group for redox-controlled 

copolymerization reactions. 

 

If the oxidation could be performed electrochemically rather than from the 

addition of a chemical oxidant, we could avoid side reactions of the oxidant with the 

cyclohexene oxide. The copolymerization of cyclohexene oxide and lactide controlled by 

electrochemical switches is currently under investigation in our laboratory. 

So as to make the redox-switchable copolymerization reactions more amenable to 

the production of multiblock copolymers, current work in the group is directed towards 

improving the fidelity of the epoxide polymerization reaction through mechanistic 

studies. In parallel, rapid redox-switching techniques are being explored along with the 

investigation of alternative monomers.  

3.6 Experimental 

General Considerations. Unless stated otherwise, all reactions were carried out 

in oven-dried glassware in a nitrogen-filled glove box or with standard Schlenk line 

techniques.
15

 Solvents were used after passage through a solvent purification system 

under a blanket of argon and then degassed briefly by exposure to vacuum. Nuclear 

magnetic resonance (NMR) spectra were recorded at ambient temperature on Varian 
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spectrometers operating at 400-600 MHz. Gel permeation chromatography (GPC) was 

performed on an Agilent GPC220 in THF at 40°C with three PL gel columns (10μm) in 

series. Molecular weights and molecular weight distributions were determined from the 

signal response of the RI detector relative to polystyrene standards. Molecular weights 

were also determined with a light scattering detector for selected samples. Polymer 

products were separated with a Beckman Coulter J2-MC Centrifuge with Rotor 17.0 at 

2500 RPM and 10°C for 7.0 minutes. 

Lactide was obtained from Frinton Laboratories and was recrystallized from ethyl 

acetate followed by recrystallization from toluene and dried in vacuo prior to 

polymerization. Cyclohexene oxide was obtained from Sigma Aldrich and was dried over 

CaH2 and distilled prior to polymerization. Chlorobenzene (Extra Dry) was obtained from 

Acros Organics and passed through silica prior to use.  Other methods used to dry 

chlorobenzene led to irreproducible results in epoxide polymerization reactions. 

Complexes 3.1 and 3.2
 
were synthesized as described previously (See Chapter 2.7). 

Generic procedure for the polymerization of epoxides with complex 3.2. In a 

glove box, iron(III) bis(alkoxide) complex 3.2 (0.0163 g, 0.0198 mmol) and epoxide (9.9 

mmol) were added to a seven mL vial. The reaction was allowed to stir 24 hours at room 

temperature. Unreacted epoxide monomer was removed in vacuo and conversion was 

determined from the mass of the recovered polymer product.  The reaction mixture was 

analyzed by GPC (RI) to determine molecular weight and molecular weight distribution 

of the polymers. 

Polymerization of cyclohexene oxide with complex 3.2. In a glove box, iron(III) 

bis(alkoxide) complex 3.2 (0.0163 g, 0.0198 mmol) in chlorobenzene (2.0ml) was added 
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to a seven mL vial containing cyclohexene oxide (1.00g, 10.2 mmol) in chlorobenzene 

(2.0ml). The reaction was allowed to stir 24 hours at room temperature. Unreacted 

epoxide monomer was removed in vacuo and conversion was determined from the mass 

of the recovered polymer product.  The reaction mixture was analyzed by GPC (RI) to 

determine molecular weight and molecular weight distribution of the polymers. 

Redox switchable polymerization of cyclohexene oxide. In a glove box, 

iron(III) bis(alkoxide) complex 3.2 (0.0250 g, 0.0306 mmol) in chlorobenzene (0.8 mL) 

was added to a seven mL vial containing cyclohexene oxide (0.150 g, 1.53 mmol) in 

chlorobenzene (0.7 mL) at room temperature. After 50 min., cobaltocene (0.0058 g, 

0.0306 mmol) was added to the reaction mixture and the color changed from blue to 

brown. At t = 90 min., ferrocenium hexafluorophosphate (0.0101 g, 0.0305 mmol) was 

added and the reaction turned blue-brown in color. Aliquots were removed periodically 

from the reaction mixture and terminated by addition of wet CDCl3 outside of a glove 

box. Conversion was determined by 
1
H NMR from integrating the methine peaks of the 

remaining cyclohexene oxide (3.1ppm) versus the methine peaks of the polyether (3.2-

3.6ppm).  Each aliquot was also analyzed by GPC (RI) to determine molecular weight 

and molecular weight distribution of the polymers. 

Diblock copolymerization of lactide/cyclohexene oxide by an Fe
II
Fe

III
 redox 

switch, one pot. In a glove box, iron(II) bis(alkoxide) complex 3.1 (0.0094 g, 0.014 

mmol) in chlorobenzene (2.0 mL) was added to a seven mL vial containing (rac)-lactide 

(0.10 g, 0.70 mmol) and cyclohexene oxide (0.068 g, 0.70 mmol for 1:1 [CHO]:[L], or 

0.0343 g, 3.50 mmol for 5:1 [CHO]:[L]) in chlorobenzene (2.0 mL) at room temperature. 

After one hour, ferrocenium hexafluorophosphate (0.0050 g, 0.015 mmol) was added to 
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the reaction mixture and the color changed from purple-brown to blue. The reaction was 

allowed to stir for three hours and then was removed from a glove box and quenched with 

wet THF (0.5 ml). The remaining volatiles were removed in vacuo, and the reaction 

mixture was dissolved in a minimal amount of dichloromethane (2 ml) and precipitated 

into stirring acetone (100 mL). After stirring one hour, the turbid mixture was centrifuged 

and poured through a 0.02 µm polypropylene (PP) filter membrane to collect 

homopolyether in the precipitate and copolymer with a small amount of low molecular 

weight homopolyether in the filtrate. After drying in vacuo, the material collected in the 

acetone filtrate was redissolved in minimal dichloromethane (2 ml) and precipitated into 

stirring hexanes (100 mL). After stirring one hour, the mixture was centrifuged and 

poured through a 0.02 µm PP filter membrane to collect the copolymer in the precipitate 

and low molecular weight homopolyether in the filtrate.  

In order to monitor the progress of the reaction, aliquots were removed 

periodically from the reaction mixture and terminated by addition of wet CDCl3. Lactide 

conversion was determined by 
1
H NMR by integrating the methine peaks of the 

remaining lactide (5.0 ppm) versus the methine peaks of polylactide (5.2 ppm). Epoxide 

conversion was determined by mass of the polymer product before precipitation, taking 

into account the theoretical mass of polylactide and lactide. The polymers were analyzed 

by GPC to determine molecular weight and molecular weight distribution after each step 

of the reaction and each precipitation. The ratio of polylactide to polyether 

([PLA]:[PCHO]) of the reaction mixtures were determined by 
1
H NMR by integrating the 

methine polyether peak (3.2-3.6 ppm) versus the methine polylactide peak (5.2 ppm). 

Percent copolymer was determined by copolymer mass/total polymer mass where the 
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“copolymer mass” is the mass of the polymer isolated in the hexanes precipitate and the 

“total polymer mass” is the “copolymer mass” plus any polymeric material isolated from 

the acetone precipitate and hexanes filtrate. Approximately 10% of polymer is lost during 

precipitation and handling of the polymers, so the unpurified polymer mass is not used in 

this calculation. 

Diblock copolymerization of lactide/cyclohexene oxide by an Fe
II
Fe

III
 redox 

switch, sequential monomer addition.  In a glove box, iron(II) bis(alkoxide) complex 

3.1 (0.0094 g, 0.014 mmol) in chlorobenzene (2.0 mL) was added to a seven mL vial 

containing (rac)-lactide (0.10g, 0.70 mmol) in chlorobenzene (2.0 mL) at room 

temperature. After one hour, ferrocenium hexafluorophosphate (0.0050 g, 0.015 mmol) 

was added to the reaction mixture at which point the reaction immediately turned from 

purple-brown to blue.  The reaction was allowed to stir for five minutes to ensure that the 

oxidation reaction occurred prior to addition of the epoxide monomer. Cyclohexene oxide 

(0.068g, 0.70 mmol) was then added to the reaction mixture. The reaction was allowed to 

stir for three hours and was then removed from a glove box and quenched with wet THF 

(0.5ml). Chlorobenzene and unreacted cyclohexene oxide were removed in vacuo. 

Precipitations were performed as described for the one-pot polymerization to isolate 

copolymer products. 

Diblock copolymerization of cyclohexene oxide/lactide by an Fe
III
Fe

II
 redox 

switch, one pot. In a glove box, iron(III) bis(alkoxide) complex 3.2 (0.00113 g, 0.014 

mmol) in chlorobenzene (2.0 mL) was added to a seven mL vial containing (rac)-lactide 

(0.10 g, 0.70 mmol) and cyclohexene oxide (0.068 g, 0.70 mmol for 1:1 [CHO]:[L], or 

0.0343 g, 3.50 mmol for 5:1 [CHO]:[L]) in chlorobenzene (2.0 mL) at room temperature. 
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After three hours, cobaltocene (0.0026 g, 0.014 mmol) was added to the reaction mixture 

and the color changed from blue to brown. The reaction was allowed to stir for one hour 

and then was removed from a glove box and quenched with wet THF (0.5 ml). The 

remaining volatiles were removed in vacuo. The reaction mixture was dissolved in 

minimal dichloromethane (2 ml) and precipitated into stirring acetone (100 mL). After 

stirring one hour, the mixture was centrifuged and poured through a 0.02 µm 

polypropylene (PP) filter membrane to collect homopolyether in the precipitate and 

copolymer with a small amount of low molecular weight homopolyether in the filtrate. 

After drying in vacuo, the material collected in the acetone filtrate was redissolved in 

minimal dichloromethane (2 ml) and precipitated into stirring hexanes (100 mL). After 

stirring one hour, the mixture was centrifuged and poured through a 0.02 µm 

polypropylene (PP) filter membrane to collect the copolymer in the precipitate and low 

molecular weight homopolyether in the filtrate.  

In order to monitor the progress of the reaction, aliquots were removed 

periodically from the reaction mixture and terminated by addition of CDCl3. Lactide 

conversion was determined by 
1
H NMR by integrating the methine peaks of the 

remaining lactide (5.0 ppm) versus the methine peaks of polylactide (5.2 ppm). Epoxide 

conversion was determined by mass of the polymer product before precipitation, taking 

into account the theoretical mass of polylactide and lactide. The polymers were analyzed 

by GPC to determine molecular weight and molecular weight distribution after each step 

of the reaction and each precipitation. The ratio of polylactide to polyether 

([PLA]:[PCHO]) of the reaction mixtures were determined by 
1
H NMR by integrating the 

methine polyether peak (3.2-3.6 ppm) versus the methine polylactide peak (5.2 ppm). 
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Percent copolymer was determined by copolymer mass/total polymer mass where the 

“copolymer mass” is the mass of the polymer isolated from the hexanes precipitation and 

the “total polymer mass” is the “copolymer mass” plus any polymeric material isolated 

from the acetone filtrate and hexanes precipitates.  Approximately 10% of polymer is lost 

during precipitation and handling of the polymers, so the unpurified polymer mass is not 

used in this calculation. 

Diblock copolymerization of cyclohexene oxide/lactide by an Fe
III
Fe

II
 redox 

switch, sequential monomer addition.  In a glove box, iron(III) bis(alkoxide) complex 

3.2 (0.00113 g, 0.014 mmol) in chlorobenzene (2.0 mL) was added to a seven mL vial 

containing cyclohexene oxide (0.068 g, 0.70 mmol) in chlorobenzene (2.0 mL) at room 

temperature. After three hours, cobaltocene (0.0026 g, 0.014 mmol) was added to the 

reaction mixture at which point the reaction immediately turned from blue to brown.  The 

reaction was allowed to stir an additional five minutes to ensure that the reduction 

reaction occurred prior to addition of the lactide monomer. Then (rac)-lactide (0.10 g, 

0.70 mmol) was added to the reaction as a solid. The reaction was allowed to stir for one 

hour and was then removed from a glove box and quenched with wet THF (0.5 ml). The 

remaining volatile materials were removed in vacuo, and precipitations were performed 

as described for the one-pot polymerization to isolate copolymer products. 
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Chapter 4: Exploration of Formally Iron(I) 

Bis(imino)pyridine Mono(alkoxide) Complexes 

4.1 Introduction 

Concern over waste disposal problems and environmental pollution has driven 

efforts to develop biodegradable alternatives to conventional inert polymer materials. A 

promising class of biodegradable materials can be derived from the ring opening 

polymerization of cyclic esters and carbonates, in particular, from the polymerization of 

lactide to form poly(lactic acid).
1
 Although numerous catalysts for this transformation 

have been developed, we became interested in iron-based systems due to the 

biocompatibility and low toxicity of iron,
2
 as well as the versatility and fine control of 

catalyst electronic structure available by oxidation state modulation. While a small 

number of iron complexes have been reported for the polymerization of lactide,
3,4

 far 

fewer have been reported for the polymerization of lactones
3c,d,5

  and cyclic carbonates,
6
 

many of which suffer from low activity and/or broad molecular weight distributions.  

 We previously reported lactide polymerization catalyzed by several 

bis(imino)pyridine iron(II) bis(alkoxide) complexes (4.2, Figure 4.1), and demonstrated 

that the polymerization was sensitive to the oxidation state and electron density of the 

metal center.
4
 Lactide polymerization proceeded more rapidly with electron-rich iron(II) 

complexes as compared to electron-poor analogues.
4,7

 Further, the polymerization was 

completely deactivated when the catalyst was oxidized to the cationic Fe(III) state (4.3). 

Conversely, epoxides displayed complementary reactivity compared to lactide, 

polymerizing only in Fe(III) state and were unreactive towards the Fe(II) complexes 



127 

 

(Figure 4.1).
8
 The complementary reactivity of these two monomers was exploited in 

redox-switchable synthesis of block copolymers and redox-triggered cross-linking of 

polymers.
8,9

 

 
Figure 4.1. Different reactivities of iron bis(imino)pyridine alkoxide complexes in 

different oxidation states and exploitation of complementary reactivity of lactide and 

epoxide polymerization for the synthesis of redox-controlled copolymers. 

 

 Including our system, all reported examples of iron-based initiators for the ring-

opening polymerization of cyclic esters are in the iron(II) and iron(III) oxidation 
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states.
3,4,5,6

 However, iron bis(imino)pyridine complexes are highly versatile catalysts for 

an extensive variety of transformations, due in part to their rich redox chemistry which is 

facilitated by the redox non-innocent bis(imino)pyridine ligands.
10

 Based on our results 

that different oxidation states manifest distinct reactivity towards polymerization and 

breadth of redox chemistry known on the bis(imino)pyridine ligand platform, we turned 

our attention towards exploring additional redox states of these complexes with the 

ultimate goal of extending monomer scope. There are currently not many catalysts that 

can polymerize a wide variety of monomers, which could be valuable for 

copolymerization applications. We hypothesized that an iron(I) bis(imino)pyridine 

alkoxide complex would be a superior catalyst for the ring-opening polymerization of 

cyclic esters (as compared to the ferrous and ferric complexes) due to the increased 

electron density at the iron center, enhancing the nucleophilicity of the alkoxide ligand. 

Specifically, we have undertaken the synthesis of the first examples of 

bis(imino)pyridine-supported formally iron(I) alkoxide complexes (4.1, Figure 4.1),  

characterization of their electronic structure, and initial studies on their behavior in the 

polymerization of a variety of cyclic esters and carbonates.   

Scheme 4.1. Monomers investigated for ring-opening polymerization in this chapter. 
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4.2 Synthesis and Characterization of Bis(imino)pyridine Iron 

Mono(alkoxide) Complexes 

Scheme 4.2. Synthesis of bis(imino)pyridine iron monoalkoxide complexes. 

 

We have previously reported the synthesis of bis(imino)pyridine iron(II) 

bis(alkoxide), complexes by treating bis(imino)pyridine iron(II) bis(alkyl) complex 4.2 

with a variety of alcohols.
4
 We hypothesized that similar treatment of a 

bis(imino)pyridine iron mono(alkyl) would furnish the desired bis(imino)pyridine iron 

mono(alkoxide) complexes. Stepwise reduction of the bis(imino)pyridine iron(II) 

dichloride complex with NaBEt3H and alkylation with LiCH2TMS provided the reported 

bis(imino)pyridine iron(I) mono(alkyl) complex in good yield (Scheme 4.2).
11

 The 

desired bis(imino)pyridine iron monoalkoxide complexes (4.1) were then prepared 

directly by protonolysis of the corresponding bis(imino)pyridine iron monoalkyl complex 

(4.4) with either p-methoxyphenol (4.1a) or neopentyl alcohol (4.1b), Scheme 4.2). In 
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contrast to the dark purple color of the iron(II) bis(alkoxide) complexes, the iron 

mono(alkoxide) complexes are distinct and dark red-brown (Figure 4.2).  

 

 

Figure 4.2. Picture of complex 4.1b in a 0.0035M toluene solution (left) compared to 

complex 4.2b in 0.0035M toluene solution (right). 

 

The stoichiometry of the proteolytic reaction is critical. Addition of excess 4-

methoxyphenol to complex 4.1a instead formed the iron(II) bis(alkoxide) complex 4.2a 

cleanly by 
1
H NMR spectroscopy. Although further investigations are required to 

understand the mechanism, this transformation holds promise for the possibility of an 

Fe(I) to Fe(II) oxidation state trigger for switchable catalysis. 

Because the bis(imino)pyridine ligand is redox non-innocent, characterization of 

these complexes by several techniques is required to understand the electronic structure 

of the complex and gain information about whether this complex is reduced at the iron 

center or better described as an iron(II) center with a reduced bis(imino)pyridine ligand. 

Previously reported studies by the Chirik group describe the bis(imino)pyridine iron 

mono(chloride) as well as bis(imino)pyridine mono(alkyl) complexes as iron(II) centers 

with reduced bis(imino)pyridine ligands.
12
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The electron paramagnetic resonance spectrum of complex 4.1a in a frozen toluene 

solution displayed a rhombic signal (geff = 2.01, 2.06, and 2.36), which suggests the 

complex possesses an S = 
1
/2 spin state and that the singly-occupied molecular orbital 

(SOMO) contains significant metal character at 77 K. (Figure 4.3). Further support for 

the S = 
1
/2 spin state can be derived from the solution magnetic moment of 1.79 μB at 298 

K, which is only slightly higher than the expected spin only value for S= ½ systems (1.73  

μB).  

 
 

Figure 4.3. Frozen-toluene EPR spectrum of complex 4.1a (unpurified) in black showing 

simulated spectrum in red with the parameters given in the text and a Gaussian line 

broadening of 15 Hz.
13

 

 

Zero-field 
57

Fe Mössbauer spectroscopy was utilized to gain further information 

about electronic environment of iron in these complexes. The p-methoxyphenoxide 

complex 4.1a showed a major species (δ: 1.04 
mm

/s, |ΔEQ|: 1.79 
mm

/s) (Figure 4.4, Table 
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4.1, entry 1) with slightly higher isomer shift and smaller quadrupole splitting than that 

observed for the analogous iron(II) complex 4.2a (δ: 0.94 
mm

/s, |ΔEQ|: 2.19 
mm

/s) (entry 2).  

 

Figure 4.4. Zero-field 
57

Mössbauer spectra at 90K for complexes a) 4.1a and b) 4.2a. 

Major species is shown in blue with the addition of an impurity in green to reproduce the 

experimental data. Sum of fit components is shown in red. 

  

Although 4.1b was recrystallized from pentane to give material that appeared pure 

by 
1
H NMR spectroscopy, the Mössbauer spectrum showed a mixture of two species both 

with isomer shifts and quadrupole splittings smaller than that observed for the analogous 

Fe(II) complex (Figure 4.5, Table 4.1, entry 3). Due to the similarity in parameters of the 

two components and simplicity of the 
1
H NMR spectrum, it is likely that the impurity is a 

solvent adduct of 4.1b. Regardless, in both cases the reduction of the complex and 

effective loss of an alkoxide ligand decreases the quadrupole splitting from the 

corresponding Fe(II) species, consistent with the increase in molecular symmetry. 

b) a) 
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Figure 4.5. Zero-field 
57

Mössbauer spectra at 90K for complexes a) 4.1b and b) 4.2b. 

Major species is shown in blue with the addition of an impurity in green to reproduce the 

experimental data. Sum of fit components is shown in red. 

 

Although isomer shift often correlates strongly with oxidation state, these trends 

are manifested only when structural distortion is minimized upon oxidation/reduction of 

the complex, which is not true of the current family of complexes. Specifically, the 

isomer shift is correlated to the s-electron density at the iron center and due to both metal-

ligand covalencey (which directly affect s-electron density) and oxidation state (which 

affects shielding by the 3d-electrons that interpenetrate the 4s subshell of iron). 

Reduction increases the d-count of the iron center and will increase the isomer shift; 

however, removal of a ligand will enhance covalency in the resulting complex, increase 

the Fe s-electron density, and lower the isomer shift.
14

  Although it is common for the 

latter case to outweigh the former, the unambiguous assignment of oxidation states in the 

present complexes is not possible without additional data. 

a) b) 
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Nevertheless, the change in isomer shift upon reduction of 4.2b to 4.1b 

demonstrates an increase in s-electron density at iron, counter to expectations due to its 

lower oxidation state. The isomer shift decrease therefore supports the notion of 

enhanced covalency upon loss of a strongly binding neopentyl(alkoxide) ligand, although 

this effect is less pronounced for the p-MeO(phenoxide) derivative. At present, it is not 

possible to exclude more complex electronic phenomena such as redox non-innocence of 

the bis(imino)pyridine ligand coupled with spin state changes at the metal center.  

We can look at other reports in the literature on the electronic structure of 

formally iron(I) bis(imino)pyridine complexes and how their Mössbauer parameters 

compare to the analogous iron(II) complexes. For bis(imino)pyridine mono(chloride) and 

mono(alkyl) species, the Mössbauer isomer shifts decrease by around 0.1-0.3 mm/s from 

the bis(chloride) and bis(alkyl) species,
12

 which is similar to the observed decrease in the 

isomer shift of complex 4.1b as compared to complex 4.2b. This may suggest that 

complex 4.1b is also best described as an iron(II) center with a reduced 

bis(imino)pyridine ligand. 

Table 4.1. Zero-field 
57

Fe Mössbauer parameters for synthesized iron complexes.
a15 

Entry Complex δ (mm/s) |ΔEQ| (mm/s) 

1 4.1a
b 

1.04
 

1.79 

2 4.2a
b 

0.94
 

2.19 

3 4.1b 0.75 (56%) 0.98 

  0.60 (44%) 1.44 

4 4.2b
b 

0.94 1.71 

a
Spectra obtained in frozen benzene at 90K. 

b
Samples were unpurified material and 

showed minor impurities in the spectra. Major species is reported. 
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To better determine the spin state and oxidation state of these formally Fe(I) 

complexes, additional EPR and Mössbauer data will be collected with cleaner, 

recrystallized products. The Mössbauer spectra of 4.1a showed a minor impurity (9%), 

and the same sample was used for the EPR spectroscopy. Therefore, it is possible that the 

EPR signal observed was for the minor impurity and the signal for the major component 

can only be resolved at lower temperatures.  

For the bis(imino)pyridine iron(I) neopentoxide complex 4.1b, X-ray quality 

crystals were obtained from a concentrated solution in pentane. The solid state molecular 

structure reveals a slightly-distorted square planar iron center, supported by the 

bis(imino)pyridine ligand scaffold, with a single neopentyl alkoxide ligand. 

Unfortunately, the uncertainty in the ligand bond metrics obscure determination of redox 

activity of the bis(imido)pyridine ancillary ligand from an analysis of bond lengths. 

 
 

Figure 4.6. X-ray crystal structure of bis(imino)pyridine iron mono(neopentoxide) 

complex 4.1b with thermal ellipsoids represented at the 50% probability level.
16

 

Hydrogen atoms are omitted for clarity. 
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In addition, computational studies are being carried out by the Cramer group at 

the University of Minnesota to help us better understand the electronic structure of these 

iron complexes.
17

 Geometry optimization of complex 4.1a with functional MO6-L/Def2-

TZVP found good agreement for the high-spin quartet configuration with the bond 

metrics of the crystal structure of complex 4.1b and was more favorable in energy than 

the low-spin configuration by 5.7 kcal/mol. Single point calculations on geometry 

optimized structures of both the high- and low-spin configurations showed that one 

unpaired electron resides on the ligands, so that the complex is best described as an 

iron(II) center. Although the high-spin configuration was found to be lower in energy for 

functional MO6-L, geometry optimizations performed with other functionals including 

OPBE-D, TPSSh-D, and MN-15 favored the low-spin configuration by 2.9-5.9 kcal/mol, 

although the bond distances for all low-spin configurations are much shorter than 

determined in the crystal structure of complex 4.1b. The small energy differences and 

discrepancies observed between functionals may suggest that spin crossover events are 

occurring with these formally iron(I) alkoxide complexes, which will be investigated 

further with SQUID magnetometry.  

4.3 Polymerization Activity of Bis(imino)pyridine Iron Aryloxide 

Complexes Toward Various Cyclic Esters 

4.3.1 Polymerization of Lactide 

The polymerization activity of formally iron(I) complex 4.1a was first 

investigated with lactide. Previously, we had determined that a more electron-donating 

alkoxide ligand resulted in accelerated polymerization rates compared to electron-
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withdrawing alkoxides, and the iron(III) complex was completely inactive for 

polymerization (see Chapter 2). Therefore, we hypothesized a more electron rich iron(I) 

complex would give faster lactide polymerization rates compared to the iron(II) complex.  

 NMR experiments revealed that complex 4.1a decomposed in CH2Cl2; however, 

the complex did remain stable in chlorobenzene. When lactide was exposed to 2 mol% 

4.1a in chlorobenzene, poly(lactic acid) was obtained with narrow dispersities (Mw/Mn = 

1.1) with 86% conversion after 20 minutes (Table 4.2). Molecular weights were higher 

than the theoretical values by a factor of 2.6.  

Table 4.2. Polymerization of lactide (L) with 4.1a and 4.2a in chlorobenzene.
a 

Entry Cat. Cat. 

Loading 

(mol %) 

[L] 

(M) 

Time 

(min.) 

Conv. 

(%) 

Mn 

(kg/mol) 

Ð Mn 

theor.
b 

Mn expt./  

Mn theor. 

1 4.1a 2 0.25 20 86 16.0 1.14 6.2 2.6 

2 4.1a 1 0.43 20 86 25.7 1.16 12.4 2.1 

3 4.1a 0.5 0.86 20 66 32.2 1.14 19.0 1.7 

4 4.2a 2 0.25 20 94 16.1 1.15 6.8 2.4 
a
Reactions were performed in PhCl at room temperature. 

b
(Lactide molecular 

weight)([Fe]:[Lactide])(Conversion). 

 

To determine whether slow initiation rates were causing molecular weights to be 

higher than average, lactide polymerizations were performed with increased 

concentrations of lactide.
7
 Since initiation is first order in lactide, increasing the 

concentration of lactide in the reaction may result in an increased amount of the iron 

catalyst to be activated for polymerization and give molecular weights that are closer to 

theoretical values. When the concentration of lactide was increased in these experiments, 

all other parameters were kept constant, effectively decreasing the catalyst loading. When 

the lactide concentration was increased, the observed molecular weights were in better 

agreement with theoretical values (Table 4.2, entries 2 and 3). This suggests that slow 
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initiation rates are contributing to the higher than expected molecular weights, and that 

molecular weights close to theoretical values may be achieved by increasing the lactide 

concentration further. High molecular weights could also be observed due to an impurity 

in the reaction mixture that deactivates some of the catalyst. When polymerization of 

lactide with the iron(II) complex 4.2a in chlorobenzene was studied, molecular weights 

were also observed to be higher than expected by a factor of 2.5 (entry 4), which may 

also be due to slow initiation, although varied lactide concentrations with this catalyst 

were not studied.  

4.3.2 Polymerization of ε-Caprolactone 

Polycaprolactone is another highly useful biodegradable polymer that can be 

obtained through ring-opening polymerization. Although ε-caprolactone is a similar 

cyclic ester monomer to lactide, iron(II) p-methoxyphenoxide complex 4.2a is 

completely inactive toward ε-caprolactone polymerization at room temperature and only 

shows moderate reactivity at 70°C (Table 4.3, entries 1 and 2). Interestingly, formally 

iron(I) complex 4.1a is active for caprolactone polymerization at room temperature. After 

24 hours, 80% conversion was observed (entry 3), with an induction period of 4 hours, 

suggesting the initiation rate is slow. This is consistent with the broad molecular weight 

distributions observed (Ɖ = 2.22) if small amounts of active catalyst are introduced to the 

reaction over time.  
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Table 4.3. Polymerization of ε-caprolactone with complexes 4.1a and 4.2a
a 

Entry Cat. Temp. 

(°C) 

Time (h) Conv. 

(%) 

Mn 

(kg/mol) 

Ð 

1 4.2a 24 24 0 -- -- 

2 4.2a 70 18 99 22.6 2.14 

3 4.1a 24 24 80 30.6 2.22 

4 4.1a 70 2 99 12.0 6.01 
a
Reactions performed with 2 mol% [Fe] in toluene (0.24M). 

In order to accelerate the rate of the reaction, the polymerization was performed at 

elevated temperature. At 70°C in toluene, full conversion was observed after only two 

hours (Table 4.3, entry 4). An induction period was still observed (20 min.), although it 

was much less significant than at room temperature. Though the reaction proceeded 

rapidly under these conditions, broad and bimodal dispersities were obtained. 

The formally iron(I) complex 4.1a was much more active toward ε-caprolactone 

polymerization than the analogous iron(II) complex 4.2a, but these reactions resulted in 

polymers with quite broad dispersities, likely as a result of slow initiation rates. For these 

reasons, an iron complex with a more nucleophilic alkoxide ligand (4.1b) was examined 

for polymerization activity and is discussed in the following section. 

4.4 Polymerization Activity of Bis(imino)pyridine Iron Neopentoxide 

Complexes Toward Various Cyclic Esters 

4.4.1 Polymerization of Lactide 

The formally iron(I) neopentoxide complex 4.1b was next investigated for lactide 

polymerization. With the iron(II) complexes, neopentyl alcohol was found to give the 

fastest polymerization rates when used as the alkoxide ligand, likely due to the increased 

nucleophilicity of this alkoxide compared to the other ligands studied. Therefore, we 
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hypothesized that 4.1b would be a superior lactide polymerization catalyst due to 

increased electron density at the iron center. Upon exposure of (rac)-lactide to 4.1b, the 

polymerization was 90% converted after 10 minutes with 2 mol% catalyst loading and 

gave molecular weights close to theoretical values with narrow dispersities (Table 4.4). 

Linear correlation was observed for Mn vs. conversion, highlighting the living 

characteristics of the polymerization reaction (Figure 4.7). The catalyst loading could be 

lowered to afford higher molecular weight polymer; however, increased reaction times 

were required to reach high conversions (entries 2 and 3). 

Table 4.4. Polymerization of lactide with complexes 4.1b and 4.2b. 

Entry Cat. Cat. 

Loading 

(mol %) 

Time 

(min.) 

Conv. 

(%) 

Mn 

(kg/mol) 

Mn 

theor. 

(kg/mol) 

Ð 

1 4.1b 2 10 91 9.6 6.6 1.12 

2 4.1b 0.2 90 88 74.1 63.4 1.13 

3 4.1b 0.05 540 84 214.1 242.1 1.18 

4 4.2b 0.2 10 94 94.8 67.7 1.37 
a
Reactions were performed in toluene(0.35M) at room temperature. 

Although this complex is highly active toward lactide polymerization, the 

analogous iron(II) complex 4.2b was found to be more active for lactide polymerization 

in these conditions. With 0.2 mol% catalyst loading, the polymerization was 94% 

converted after 10 minutes with complex 4.2b (Table 4.4, entry 4), whereas with 

complex 4.1b, a reaction time of 90 minutes was required to reach high conversions. 

However, the observed dispersities were broader with complex 4.2b. Because the lactide 

polymerization studies with the bis(imino)pyridine iron phenoxide complexes (4.1a and 

4.2a) were performed in chlorobenzene rather than toluene, comparisons between the 

neopentoxide and phenoxide complexes cannot be made at this time. 
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Figure 4.7. Molecular weight (Mn) vs. conversion for lactide polymerization catalyzed by 

4.1b. 

4.4.2 Polymerization of ε-Caprolactone 

Although formally iron(I) neopentoxide complex 4.1b was found to be less active 

than the analogous iron(II) complex for lactide polymerization, we were interested in 

studying the activity of this complex toward other monomers. Because ε-caprolactone 

polymerizations with complex 4.1a seemed to suffer from slow initiation rates (section 

4.3.2), we hypothesized a more nucleophilic alkoxide complex would result in faster 

initiation rates to give a more active catalyst and polycaprolactone with more narrow 

molecular weight distributions. Neopentyl alkoxide complex 4.1b gratifyingly 

demonstrated rapid activity toward caprolactone polymerization at room temperature, 

with full conversion obtained within 10 minutes even at low catalyst loadings (0.05-2 

mol%) (Table 4.5, entries 1-4). Molecular weights were higher than theoretical values, 
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but increased with a decrease in catalyst loading. When the catalyst loading was dropped 

to 0.01 mol%, only 6% conversion was observed after 24 hrs, which could be due to 

deactivation of the catalyst by adventitious water in the reaction solvent (entry 5). When 

polymerizations were performed with 0.01 mol% catalyst by increasing the monomer 

concentration rather than decreasing the catalyst concentration, the reaction gelled and 

formed high molecular weight polycaprolactone (612.2 kg/mol, entry 6). 

Table 4.5. Polymerization of ε-caprolactone (CL) with complexes 4.1b and 4.2b.
 

 

Entry Cat. Cat. 

Loading 

(mol%) 

[CL] 

(M) 

Time 

(min.) 

Conv. 

(%) 

Mn 

(kg/mol) 

Mn 

theor. 

(kg/mol) 

Ð 

1 4.1b 2 0.34 10 99 24.2 5.7 1.40 

2 4.1b 0.2 0.34 10 99 152.2 57.1 1.40 

3 4.1b 0.1 0.34 10 99 246.2 114.1 1.41 

4 4.1b 0.05 0.34 10 99 390.3 228.3 1.21 

5 4.1b 0.01 0.34 1440 6 191.0 68.5 1.33 

6 4.1b 0.01 1.5 20 99 612.2 1141.4 1.17 

7 4.1b 0.1 0.17 10 99 237.9 114.1 1.23 

8 4.1b 0.4 0.04 10 99 56.1 28.5 1.12 

9 4.1b 0.2 0.04 10 99 129.3 57.1 1.19 

10 4.2b 2 0.34 80 87 33.8 5.7 1.42 

11 4.2b 0.2 0.34 80 89 94.9 57.1 1.33 

12 4.2b 0.05 0.34 90 93 267.7 228.3 1.12 
 

In addition to the fast reaction rates, the molecular weight distributions observed 

were much narrower than with complex 4.1a, which is likely due to the accelerated 

initiation rates. The difference in reactivity for the iron neopentoxide complex compared 

to the p-methoxyphenoxide complex is remarkable; with one catalyst giving rapid 

conversion at room temperature and controlled molecular weight distributions, while the 
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other requires prolonged reaction periods or heating and shows bimodal molecular weight 

distribution. These results show the importance of the identity of the alkoxide ligand, 

which dictates the initiation rate of these polymerizations.  

Although the p-methoxyphenoxide iron(II) complex 4.2a is completely inactive 

for caprolactone polymerization at room temperature, the neopentoxide iron(II) complex 

4.2b is active for this transformation, again showing the importance of the identity of the 

alkoxide ligands for polymerization initiation. With 2 mol% of complex 4.2b, 87% 

conversion of ε-caprolactone was observed after 80 minutes (Table 4.5). Although the 

iron(II) neopentoxide complex is an effective catalyst for this polymerization reaction, 

the iron(I) complex gives more rapid polymerization rates, even at low catalyst loadings.  

Attempts to study the kinetic behavior of the caprolactone polymerization with 

complex 4.1b were made by lowering the concentration of caprolactone monomer in 

solution. However, in all attempts made (Table 4.5, entries 7-9), the reactions proceeded 

with rates that were too rapid to study by conventional means. The earliest time points for 

all caprolactone polymerization reactions were taken at 10 minutes, and it is likely that 

the reactions are complete much earlier. Attempts to study the conversion of the 

polymerization reaction over time by 
1
H NMR by performing the reaction in a J-Young 

tube resulted in no conversion in either toluene-d8 (attempted one time at room 

temperature) or benzene-d6 (attempted twice in frozen solution allowed to thaw) for 

unclear reasons. 
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4.4.3 Polymerization of other Lactones 

Because complex 4.1b was found to be highly active toward caprolactone 

polymerization, it was investigated for the polymerization of other lactone monomers. 

Complex 4.1b was found to react with the highly strained monomer β-butyrolactone, but 

the resulting products were low molecular weight oligomers and the reactions only 

proceeded to around 50% completion. Polymerizations conducted at lower catalyst 

loadings did not result in increased molecular weights. This polymerization must suffer 

from termination events that cause the molecular weights to be lower than expected. 

When polymerization reactions were carried out for longer reaction times (24 h), no 

further conversion was observed. 

Table 4.6. Polymerization of β-butyrolactone (βBL) with complex 4.1b.
a 

 

Entry Cat. Loading 

(mol%) 

Time 

(h) 

Conv. (%) Mn 

(kg/mol) 

Ð 

1 2 1.5 50 1.5 1.07 

2 0.2 1 47 0.7 1.08 
a
Reactions performed at [βBL] = 0.34M. 

 Polymerization of the five-membered ring monomer γ-butyrolactone was 

unsuccessful in THF at room temperature with both complex 4.1b and 4.2b. This 

monomer is notoriously difficult to polymerize as five-membered lactones are 

particularly stable, and ring-opening polymerization is both enthalpically and entropically 

unfavorable.
18

 In the future, polymerization studies with this monomer will be conducted 
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at low temperatures, which has been shown by Chen et al. to successfully overcome the 

unfavorable entropic penalty of this ring-opening polymerization.
19

 

 Complex 4.1b was active for the polymerization of the 6-membered δ-

valerolactone, which has lower ring strain than ε-caprolactone.
20

 When δ-valerolactone 

was exposed to 2 or 0.2 mol% 4.1b, 85% conversion was observed within 10 minutes 

(Table 4.7, entries 1 and 2). Broad molecular weight distributions (Ɖ = 1.83) were 

observed with 2 mol% 4.1b, likely due to transesterification, but were much narrower (Ɖ 

= 1.16 when the catalyst loading was lowered to 0.2 mol%. The observed molecular 

weights were only slightly higher than the theoretical values. When the polymerization 

reactions were carried out for longer times, no further increase in conversion was 

observed, which may be due to a competing depolymerization reaction in equilibrium 

with the forward reaction.  This may also be the case for the other two ester monomers. 

Table 4.7. Polymerization of δ-valerolactone (VL) with complexes 4.1b and 4.2b.
a 

   

Entry Cat. Cat. 

Loading 

(mol%) 

Time 

(min.) 

Conv. 

(%) 

Mn 

(kg/mol) 

Mn 

theor. 

(kg/mol) 

Ð 

1 4.1b 2 10 85 5.9 4.2 1.83 

2 4.1b 0.2 10 83 47.8 41.6 1.16 

3 4.1b 0.05 240 14 10.6 28.0 1.16 

4 4.2b 0.2 90 80 36.4 40.1 1.47 
a
Reactions performed at [VL] = 0.34M. 

 The analogous iron(II) complex 4.2b was also competent for this transformation, 

but was less active than the formally iron(I) complex. At 0.2 mol% catalyst loading, 
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complex 4.2b required 90 minutes to reach 80% conversion, compared to <10 minutes 

for complex 4.1b. 

4.4.4 Polymerization of Cyclic Carbonates 

Because complex 4.1b was highly active toward the polymerization of cyclic ester 

monomers, reactivity toward cyclic carbonates were also investigated. Trimethylene 

carbonate can be derived from biomass and its ring-opening polymerization affords an 

elastomeric biodegradable polymer that is valuable for biomedical and industrial 

applications.
6c

 The exposure of trimethylene carbonate to complex 4.1b resulted in 

immediate formation of a gel precipitate in the toluene solution. 
1
H NMR spectra showed 

full conversion to the polymer; however, broad, bimodal molecular weight distributions 

of the polymer products were observed (Table 4.8, entry 1).  

Table 4.8. Polymerization of trimethylene carbonate (TMC) with complex 4.1b.
 

   

Entry Time (min.) [TMC] (M) Conv. (%) Mn (kg/mol) Ð 

1 10 0.35 100 5.0 6.60 

2 10 0.18 100 2.7 9.45 

3 10 0.07 100 1.6 13.38 
 

We hypothesized that broad dispersities were observed due to the heterogeneity of 

the reaction mixture, which may be due to high substrate concentration. Dilution of the 

reaction mixture by adding more toluene did not improve the observed dispersities and 

still resulted in a gel precipitate, and actually resulted in lower molecular weight products 

with broader molecular weight distributions (Table 4.8, entries 2 and 3). 
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Polymerizations with ethylene carbonate were not successful in toluene solution 

and did not result in any conversion of this monomer. Similar to γ-butyrolactone, this 

monomer is extremely difficult to polymerize as it is a stable compound, and the ring-

opening polymerization is entropically disfavored.
18

 Recently, the first example of 

coordination-insertion ring-opening polymerization of a five-membered cyclic carbonate 

was reported; although a highly strained trans-cyclohexene carbonate monomer was 

utilized.
21

 Perhaps more strained five-membered cyclic carbonate monomers would be 

worth investigating in the future. 

4.5 Copolymerization of cyclic esters with bis(imino)pyridine 

mono(alkoxide) complexes 

Because these formally iron(I) bis(imino)pyridine iron mono(alkoxide) complexes 

were highly active for a variety of polymerization reactions, copolymerizations were next 

investigated with these catalysts. Unlike the iron(II) and iron(III) versions of this catalyst, 

the iron(I) catalyst is reactive toward similar monomers to the iron(II) catalyst, so that 

redox-switchable copolymerizations cannot be performed with an iron(I)/iron(II) redox 

switch or trigger. Nevertheless, the copolymerization of different cyclic esters in one pot 

with the formally iron(I) catalysts can give rise to useful biodegradable polymers. 

First the copolymerization of lactide and ε-caprolactone was studied. When an 

equimolar mixture of lactide and caprolactone was exposed to 4.1a in toluene at room 

temperature, full conversion of lactide was observed with no conversion of caprolactone 

(Table 4.9, entry 1). When the reaction temperature was raised to 70°C, caprolactone 

polymerization did not occur even after prolonged reaction times. When repeated with 
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the iron(II) complex 4.2a, similar results were observed (entry 2). The dispersities of 

PLA formed in these reactions were broad and bimodal. 

This copolymerization reaction was repeated with complex 4.1b which is much 

more active for caprolactone polymerization, (Table 4.9, entry 3). Similar results were 

observed with this complex, but with much more narrow molecular weight distributions. 

Even though the homopolymerization of caprolactone is complete within 10 minutes, 

only poly(lactic acid) was observed after prolonged reaction periods. The species formed 

after lactide inserts into the iron alkoxide catalysts must not be active for the 

polymerization of caprolactone. 

Table 4.9. Attempted copolymerization of lactide (L) and ε-caprolactone (CL) in one 

pot.
a 

 

Entry Cat. Time (h) Temp. 

(°C) 

Conv. L 

(%) 

Conv. 

CL (%) 

Mn 

(kg/mol) 

Ð 

1 4.1a 24 24 99 0 3.6 3.94 

2 4.1a 24 70 99 0 2.7 4.71 

3 4.2a 24 70 99 0 5.8 2.78 

4 4.1b
b 

9 24 95 0 85.0 1.40 
a
Reactions performed in toluene at 2 mol% catalyst loading. [Lactide] = [ε-caprolactone] 

= 0.34M. 
b
Reaction performed with 0.2 mol% catalyst loading. 

 

Copolymerization of caprolactone and lactide was also attempted by sequential 

addition of the two monomers with complex 4.1b (Scheme 4.3). When lactide was added 

to a reaction mixture after caprolactone polymerization had been carried out to 

completion, full conversion of lactide and an increase in molecular weight was observed 

(118.3 to 156.1 kg/mol), suggesting a block copolymer was synthesized. 
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Scheme 4.3. Diblock copolymerization of ε-caprolactone and lactide by sequential 

addition of lactide to caprolactone polymerization. 

 

 

Conversely, when the sequential addition copolymerization is performed with 

lactide followed by caprolactone addition, no conversion of caprolactone is observed 

(Scheme 4.4). The lactide polymerization step was carried out for 6 hours to ensure that 

the lactide polymerization had proceeded to full conversion to rule out the possibility that 

the presence of lactide monomer inhibits the polymerization of caprolactone. This result 

also shows that the active species formed during lactide polymerization is not active for 

the insertion of caprolactone. 

Scheme 4.4. Sequential addition of caprolactone to lactide polymerization catalyzed by 

4.1b. 

 

 When another lactone monomer, δ-valerolactone, was utilized for 

copolymerizations with lactide, similar results were observed. When complex 4.1b 

(0.2mol%) was exposed to an equimolar mixture of lactide and δ-valerolactone were 

allowed to stir for 24 hours, only polymerization of lactide was observed (Mn = 24.3 

kg/mol, Ð = 1.27), with no conversion of δ-valerolactone. 
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 Although the copolymerization of lactone and lactide monomers resulted only in 

the synthesis of PLA, the one-pot copolymerization of two lactone monomers, ε-

caprolactone and δ-valerolactone, resulted in a copolymer that incorporated both 

monomers. When an equimolar mixture of the two monomers was exposed to 0.2 mol% 

4.1b in toluene, both poly(caprolactone) and poly(valerolactone) were observed by 
1
H 

NMR (Table 4.10). Although 4.1b seemed to be more active toward caprolactone than 

valerolactone in homopolymerization experiments indicated by faster reaction rates at 

low catalyst loadings, the two monomers appeared to have similar conversion rates in the 

copolymerization experiment. Although reactivity ratios have not been determined, this 

preliminary data suggests the copolymer structure is somewhat random. Interestingly, δ-

valerolactone reached higher ultimate conversion than was observed in the 

homopolymerization reactions (93% compared to 83%), which suggests the 

depolymerization reaction is not as accessible under the copolymerization conditions. 

Table 4.10. Copolymerization of ε-caprolactone (CL) and δ-valerolactone (VL) with 

complex 4.1b in one pot. 

 

Entry Time (min.) Conv. CL 

(%) 

Conv. VL 

(%) 

1 10 72 81 

2 20 84 89 

3 40 94 93 

 

Although the formally iron(I) complex 4.1b is highly active for the 

polymerization of both lactide and lactone monomers, only lactide polymerization is 
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observed when a mixture of the monomers is simultaneously exposed to the iron 

complex. While the overall polymerization rate for ε-caprolactone homopolymerization is 

faster than that observed for lactide homopolymerization, the lactide polymerization may 

proceed with a faster initiation rate. Caprolactone/lactide copolymerizations often 

manifest preferential lactide insertion resulting in gradient or block copolymers, which 

may be due to the superior coordination ability of lactide.
22

 Once lactide inserts into the 

iron alkoxide bond, the growing polymer chain may chelate to the iron center with an 

adjacent ester functionality, creating a favorable five-membered ring structure as shown 

in Scheme 4.5, left.  

Scheme 4.5. Proposed explanation for the inability to polymerize caprolactone (CL) 

following lactide (L) polymerization. P = growing polymer chain. 

 

 

 

We suggest that lactide polymerization can continue to propagate from this 

species; however, the ε-caprolactone monomer is not able to displace this chelate, bind to 

the iron center, and initiate polymerization. Conversely, the growing poly(lactone) chain 

(derived from ε-caprolactone initiation, Scheme 4.5, right) cannot form a similar chelate 
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structure, leaving the iron center open for coordination by either monomer. In this 

manner, initiation of lactide polymerization is selective for lactide propagation, while 

initiation of caprolactone polymerization allows for either monomer to propagate. This 

selectivity effectively promotes lactide homo-polymerization even from a mixture of 

monomers. A similar explanation could be posited for the inability to polymerize δ-

valerolactone following lactide propagation. 

4.6 Conclusions 

Two formally iron(I) bis(imino)pyridine iron mono(alkoxide) complexes were 

synthesized, characterized, and investigated for polymerization activity in the ring-

opening polymerization of various monomers. Preliminary EPR studies and solution 

magnetometry are suggestive of an S = 
1
/2 spin state, and zero-field 

57
Fe Mössbauer 

spectroscopy is consistent with a more reduced metal center compared to the iron(II) 

analogues. However, definitive determination of the redox state of the iron atom requires 

additional support as current data is not sufficient to exclude the possibility of either a 

neutral bis(imino)pyridine-supported iron(I) complex or an anionic bis(imido)pyridine-

supported iron(II) complex. An X-ray crystal structure of the iron mono(neopentoxide) 

complex was determined; however, the bond metrics could not be utilized for assignment 

of a reduced or neutral bis(imino)pyridine ligand due to high standard deviations of the 

relevant structural metrics. Further EPR and Mössbauer studies with more highly purified 

material, as well as computational modelling will be carried out to help us better 

understand the electronic structure of these iron complexes.  
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The formally iron(I) and iron(II) aryloxide complexes are active for the 

polymerization of lactide with similar reaction rates. However, these complexes showed 

different reactivities toward ε-caprolactone. While the iron(II) complex 4.2a is 

completely inactive for ε-caprolactone polymerization at room temperature, the formally 

iron(I) complex 4.1a showed moderate activity, although with broad molecular weight 

distributions.  

The iron complexes with neopentoxide ligands were generally superior catalysts 

to their aryloxide congeners, due to the more nucleophilic nature of the alkyl alkoxide 

ligand. The formally iron(I) complex 4.1b was found to be one of the most active iron-

based catalysts reported for the polymerization of the lactone monomers ε-caprolactone 

and δ-valerolactone, and afforded accelerated polymerization rates compared to the 

analogous iron(II) complex 4.2b. Complex 4.1b was also investigated for β-butyrolactone 

polymerization, but resulted in low molecular weight oligomers and reactions that did not 

reach full conversion. Polymerization of trimethylene carbonate was also rapid with 

complex 4.1b, although broad bimodal molecular weight distributions were obtained. 

Finally, 4.1b was highly active for the polymerization of lactide, although at a slower rate 

than for the analogous iron(II) complex 4.2b.  

Our initial hypothesis was that the more electron rich iron center of complex 4.1b 

would make it a superior catalyst for lactide polymerization, but perhaps a chelating 

interaction as described in Scheme 4.5 occurs during lactide polymerization. This 

chelation would be stronger with more electron rich complexes due to increased π-

backdonation, making it more difficult to be displaced by an incoming lactide monomer 

and continue chain propagation.  However, the formally iron(I) complexes were found to 
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be superior for the ring-opening polymerization of lactones compared to the iron(II) 

complexes. For lactone polymerization, this type of chelating interaction would not be as 

favorable and therefore, the nucleophilicity of the alkoxide ligand may be the governing 

factor in determining the reaction rate. 

Although the formally iron(I) and iron(II) complexes showed different reaction 

rates toward different substrates, they were both able to polymerize the same classes of 

cyclic ester monomers. This is unlike the cationic iron(III) complex, which is not 

competent for the polymerization of cyclic esters, and has only been found to react with 

epoxides thus far. It is possible that these complexes react toward similar classes of 

monomers because they share an iron(II) oxidation state, but as mentioned above, further 

characterization is required to better understand the electronic nature of the iron 

mono(alkoxide) complexes.  

The attempted copolymerization of lactide with lactone monomers in one reaction 

vessel resulted only in the formation of poly(lactic acid). This is likely due to the 

propensity of lactide to bind to metals compared to lactones, and a possible chelating 

species that may prevent lactone monomers from being able to initiate polymerization. 

Copolymerization of two lactones, ε-caprolactone and δ-valerolactone, in one pot 

resulted in full conversion of both monomers, which polymerized at comparable rates. 

Future investigations will involve γ-butyrolactone and ethylene carbonate 

monomers, which are notoriously challenging to polymerize, as well as other types of 

monomers for ring-opening. Ideally, one of the monomers will show activity only in the 

iron(I) oxidation state and show no activity in the iron(II) oxidation state, which would 
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allow for redox-switching copolymerization techniques to be extended to the iron(I) 

oxidation state. 

Additionally, investigations of a cationic bis(imino)pyridine iron(II) 

mono(alkoxide) complex may help decipher what factors are important for ring opening 

polymerization of epoxides. Preliminary studies indicate the successful synthesis of 4.5 

upon exposure of 4.1a or 4.1b to one equivalent of ferrocenium hexafluorophosphate, 

although further characterization is required (Scheme 4.6). For the epoxide 

polymerization, we hypothesize that a more electrophilic iron center is required to 

activate the epoxide monomer. Studying the activity of 4.5 could provide insight on 

whether the oxidation state of the iron center or the cationic nature of the iron complex 

determines activity toward epoxide polymerization.  

Scheme 4.6. Formally iron(II) bis(imino)pyridine mono(alkoxide) complex. 

 

4.7 Experimental 

General Considerations. Unless stated otherwise, all reactions were carried out in 

oven-dried glassware in a nitrogen-filled glove box or with standard Schlenk line 

techniques.
23

 Solvents were used after passage through a solvent purification system 

under a blanket of argon and then degassed briefly by exposure to vacuum. Nuclear 

magnetic resonance (NMR) spectra were recorded at ambient temperature on Varian 
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spectrometers operating at 400-600 MHz. Magnetic moments were determined by Evans’ 

method
24

 in THF by means of a procedure published by Gibson and coworkers.
25

 Gel 

permeation chromatography (GPC) was performed on an Agilent GPC220 in THF at 

40°C with three PL gel columns (10μm) in series. Molecular weights and molecular 

weight distributions were determined from the signal response of the RI detector relative 

to polystyrene standards. EPR spectra were obtained on a Bruker EleXsys E-500 CW-

EPR spectrometer. Spectra were measured as frozen toluene glasses at a microwave 

power of 0.6325–2 mW. Effective g-values were obtained from spectral simulations of S 

= 
1
/2 systems with the program Easyspin.

26
 Zero-field

 57
Fe Mössbauer spectra were 

measured with a constant acceleration spectrometer (SEE Co, Minneapolis, MN) at 90K. 

Isomer shifts are quoted relative to Fe foil at room temperature. Data was analyzed and 

simulated with Igor Pro 6 software (WaveMetrics, Portland, OR) by means of Lorentzian 

fitting functions.  Samples were prepared by freezing a solution of 20-30 mg compound 

in benzene. 

The monomer (rac)-lactide was recrystallized from ethyl acetate followed by 

recrystallization from toluene and dried in vacuo prior to polymerization. The monomers 

ε-caprolactone, ö-valerolactone, β-butryolactone, and γ-valerolactone were dried over 

CaH2 and distilled prior to polymerization. Trimethylene carbonate and ethylene 

carbonate were dried in vacuo prior to polymerization. Complexes 4.2a, 4.2b, and 4.4
 

were synthesized as described previously.4
,11 

Synthesis of Complex 4.1a. In a glove box, a solution of 4-methoxyphenol 

(0.0249g, 0.201mmol) in Et2O (10ml) was cooled to -40°C and added to a solution of 4.4 

(0.100g, 0.196mmol) in Et2O (5ml) that had also been cooled to -40°C. It was allowed to 
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stir at room temperature for one hour, and the red mixture was filtered through celite and 

solvent was removed from the filtrate to yield a dark red solid (96%). 
1
H NMR (ppm, 

C6D6, broad singlets): 90.3, 16.5, -3.9, -12.9, -24.6, -63.9. 

Synthesis of Complex 4.1b. In a glove box, a solution of neopentyl alcohol 

(0.0220g, 0.250 mmol) in Et2O (2ml) was cooled to -40°C and added to a solution of 4.4 

(0.1301g, 0.2538mmol) in Et2O (6ml) that had also been cooled to -40°C. It was allowed 

to stir at room temperature for 30 minutes, and then solvent was removed from the 

reaction. It was lyophilized in frozen benzene. The mixture was then dissolved in pentane 

and filtered through celite, and the solvent was removed from the filtrate to yield a dark 

red solid (82%). Crystallization in pentane at -40°C afforded crystals suitable for X-ray 

analysis.  
1
H NMR (ppm, C6D6, broad singlets): 67.5, 50.6, -10.0, -15.9, -50.0. 

Polymerization of (rac)-lactide with aryloxide complexes 4.1a and 4.2a. At 

room temperature in a glove box, iron aryloxide complex 4.1a or 4.2a (0.007 mmol) in 

chlorobenzene (0.9 mL) was added to a seven mL vial containing (rac)-lactide (0.050g, 

0.35 mmol) in chlorobenzene (0.5 mL). Aliquots were removed periodically from the 

reaction mixture and terminated by exposing them to air. Solvent was removed in vacuo 

and conversion was determined by 
1
H NMR in CDCl3 by integrating the methine peak of 

the remaining lactide versus the methine peak of poly(lactic acid).  The aliquots were also 

analyzed by GPC to determine molecular weight and molecular weight distribution of the 

polymers. 

Polymerization of ε-caprolactone with aryloxide complexes 4.1a and 4.2a. At 

room temperature in a glove box, iron aryloxide complex 4.1a or 4.2a (0.014 mmol) in 

toluene (1.8 mL) was added to a seven mL vial containing ε-caprolactone (0.080g, 0.70 
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mmol) in toluene (1.0 mL). Aliquots were removed periodically from the reaction 

mixture and terminated by exposing them to air. Solvent was removed in vacuo and 

conversion was determined by 
1
H NMR in CDCl3 by integrating the α-methylene peak of 

the remaining ε-caprolactone versus the α-methylene peak of poly(caprolactone).  The 

aliquots were also analyzed by GPC to determine molecular weight and molecular weight 

distribution of the polymers. 

Polymerization of (rac)-lactide with neopentoxide complexes 4.1b and 4.2b. 

At room temperature in a glove box, the desired amount of iron neopentoxide complex 

4.1b or 4.2b in toluene (1.0 mL) was added to a seven mL vial containing (rac)-lactide 

(0.10 g, 0.7mmol) in toluene (1.0 mL). Aliquots were removed periodically from the 

reaction mixture and terminated by exposing them to air. Solvent was removed in vacuo 

and conversion was determined by 
1
H NMR in CDCl3 by integrating the methine peak of 

the remaining lactide versus the methine peak of poly(lactic acid).  The aliquots were also 

analyzed by GPC to determine molecular weight and molecular weight distribution of the 

polymers. 

Polymerization of ε-caprolactone with neopentoxide complexes 4.1b and 

4.2b. Most polymerization reactions were performed at 0.34M [CL]: At room 

temperature in a glove box, the desired amount of iron neopentoxide complex 4.1a or 

4.2a in toluene (1.0 mL) was added to a seven mL vial containing ε-caprolactone 

(0.080g, 0.70 mmol) in toluene (1.0 mL). Aliquots were removed periodically from the 

reaction mixture and terminated by exposing them to air. Solvent was removed in vacuo 

and conversion was determined by 
1
H NMR in CDCl3 by integrating the α-methylene 

peak of the remaining ε-caprolactone versus the α-methylene peak of poly(caprolactone).  
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The aliquots were also analyzed by GPC to determine molecular weight and molecular 

weight distribution of the polymers. Reactions performed at higher concentrations were 

carried out by increasing the amount of ε-caprolactone added and reactions performed at 

lower concentrations were performed by increasing the amount of toluene added. 

Polymerization of δ-valerolactone with neopentoxide complexes 4.1b and 

4.2b. At room temperature in a glove box, the desired amount of iron neopentoxide 

complex 4.1a or 4.2a in toluene (1.0 mL) was added to a seven mL vial containing ö-

valerolactone (0.070g, 0.70 mmol) in toluene (1.0 mL). Aliquots were removed 

periodically from the reaction mixture and terminated by exposing them to air. Solvent 

was removed in vacuo and conversion was determined by 
1
H NMR in CDCl3 by 

integrating the α-methylene peak of the remaining ö-valerolactone versus the α-

methylene peak of poly(valerolactone).  The aliquots were also analyzed by GPC to 

determine molecular weight and molecular weight distribution of the polymers.  

Polymerization of β-butyrolactone with neopentoxide complexes 4.1b and 

4.2b. At room temperature in a glove box, the desired amount of iron neopentoxide 

complex 4.1a or 4.2a in toluene (1.0 mL) was added to a seven mL vial containing β-

butyrolactone (0.070g, 0.70 mmol) in toluene (1.0 mL). Aliquots were removed 

periodically from the reaction mixture and terminated by exposing them to air. Solvent 

was removed in vacuo and conversion was determined by 
1
H NMR in CDCl3 by 

integrating the α-methylene peak of the remaining β-butyrolactone versus the α-

methylene peak of poly(butyrolactone).  The aliquots were also analyzed by GPC to 

determine molecular weight and molecular weight distribution of the polymers.  
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Attempted polymerization of γ-butyrolactone with neopentoxide complexes 

4.1b and 4.2b. At room temperature in a glove box, the desired amount of iron 

neopentoxide complex 4.1a or 4.2a (0.007mmol) in THF (0.9 mL) was added to a seven 

mL vial containing γ-butyrolactone (0.070g, 0.70 mmol) in THF (1.0 mL). The reaction 

was allowed to stir 24 hours at room temperature. No conversion was observed by 
1
H 

NMR. 

Polymerization of trimethylene carbonate with neopentoxide complex 4.1b. 

At room temperature in a glove box, the desired amount of iron neopentoxide complex 

4.1b in toluene (0.5 mL) was added to a seven mL vial containing trimethylene carbonate 

(0.036g, 0.35 mmol) in toluene (0.5 mL). A gel-like precipitate formed immediately. The 

reaction mixture was allowed to stir for 10 minutes and was quenched by exposing to air. 

Solvent was removed in vacuo and conversion was determined by 
1
H NMR in CDCl3 by 

integrating the α-methylene peak of the remaining β-butyrolactone versus the α-

methylene peak of poly(butyrolactone).  The aliquots were also analyzed by GPC to 

determine molecular weight and molecular weight distribution of the polymers.  

Attempted polymerization of ethylene carbonate with neopentoxide 

complexes 4.1b and 4.2b. At room temperature in a glove box, the desired amount of 

iron neopentoxide complex 4.1b or 4.2b in THF (0.9 mL) was added to a seven mL vial 

containing ethylene carbonate (0.032g, 0.36 mmol) in toluene (0.5 mL). The reaction 

mixture was allowed to stir at room temperature for 24 hours. No conversion was 

observed by 
1
H NMR.  

Attempted copolymerization of lactide and ε-caprolactone in one reaction 

pot. At room temperature in a glove box, the desired amount of iron alkoxide complex 
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4.1a, 4.1b or 4.2a in toluene (1.0 mL) was added to a seven mL vial containing (rac)-

lactide (0.10 g, 0.70mmol) and ε-caprolactone (0.080g, 0.70mmol) in toluene (1.0 mL). 

Aliquots were removed periodically from the reaction mixture and terminated by 

exposing them to air. Solvent was removed in vacuo and conversion of lactide was 

determined by 
1
H NMR in CDCl3 by integrating the methine peak of the remaining 

lactide versus the methine peak of poly(lactic acid). No conversion of ε-caprolactone was 

observed by 
1
H NMR. The aliquots were also analyzed by GPC to determine molecular 

weight and molecular weight distribution of the polymers. 

Attempted copolymerization of lactide and ε-caprolactone by sequential 

lactide-caprolactone addition. At room temperature in a glove box, iron alkoxide 

complex 4.1b (350μL of a 0.0040M solution in toluene, 0.0014mmol) was added to a 

seven mL vial containing (rac)-lactide (0.10 g, 0.7mmol) in toluene (2.0 mL). The 

reaction was allowed to stir at room temperature for six hours, and then ε-caprolactone 

(0.080g, 0.70mmol) was added. Aliquots were removed periodically from the reaction 

mixture and terminated by exposing them to air. Solvent was removed in vacuo and 

conversion of lactide was determined by 
1
H NMR in CDCl3 by integrating the methine 

peak of the remaining lactide versus the methine peak of poly(lactic acid). No conversion 

of ε-caprolactone was observed by 
1
H NMR. The aliquots were also analyzed by GPC to 

determine molecular weight and molecular weight distribution of the polymers. 

Block copolymerization of lactide and ε-caprolactone by sequential 

caprolactone-lactide addition. At room temperature in a glove box, complex 4.1b 

(350μL of a 0.0040M solution in toluene, 0.0014mmol) was added to a seven mL vial 

containing ε-caprolactone (0.080g, 0.7mmol) in toluene (2.0 mL). The reaction was 
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allowed to stir at room temperature for 20 minutes, and then (rac)-lactide (0.10g, 

0.70mmol) was added. Aliquots were removed periodically from the reaction mixture and 

terminated by exposing them to air. Solvent was removed in vacuo and conversion of 

lactide was determined by 
1
H NMR in CDCl3 by integrating the methine peak of the 

remaining lactide versus the methine peak of poly(lactic acid). Conversion of ε-

caprolactone was determined by 
1
H NMR in CDCl3 by integrating the α-methylene peak 

of the remaining ε-caprolactone versus the α-methylene peak of poly(caprolactone). The 

aliquots were also analyzed by GPC to determine molecular weight and molecular weight 

distribution of the polymers. 

Attempted copolymerization of lactide and ö-valerolactone in one reaction 

pot. At room temperature in a glove box, the desired amount of iron alkoxide complex 

complex 4.1b (350μL of a 0.0040M solution in toluene, 0.0014mmol) was added to a 

seven mL vial containing (rac)-lactide (0.10 g, 0.70mmol) and ö-valerolactone (0.080g, 

0.70mmol) in toluene (2.0 mL). Aliquots were removed periodically from the reaction 

mixture and terminated by exposing them to air. Solvent was removed in vacuo and 

conversion of lactide was determined by 
1
H NMR in CDCl3 by integrating the methine 

peak of the remaining lactide versus the methine peak of poly(lactic acid). No conversion 

of ö-valerolactone was observed by 
1
H NMR. The aliquots were also analyzed by GPC to 

determine molecular weight and molecular weight distribution of the polymers. 

Copolymerization of ε-caprolactone and ö-valerolactone in one reaction pot. 

At room temperature in a glove box, the desired amount of iron alkoxide complex 

complex 4.1b (350μL of a 0.0040M solution in toluene, 0.0014mmol) was added to a 

seven mL vial containing ε-caprolactone (0.080 g, 0.70mmol) and ö-valerolactone 
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(0.080g, 0.70mmol) in toluene (2.0 mL). Aliquots were removed periodically from the 

reaction mixture and terminated by exposing them to air. Solvent was removed in vacuo 

and conversions of both monomers were determined by 
1
H NMR in CDCl3 by integrating 

the α-methylene peak of the remaining lactone monomer versus the α-methylene peak of 

poly(lactone). The aliquots were also analyzed by GPC to determine molecular weight 

and molecular weight distribution of the polymers. 
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Appendix A: X-ray Crystal Structure Data 

A.1 X-ray crystal structure data from Chapter 2 

Table A.1. Crystal data and structure refinement for [Fe(PDI)(4-

methoxyphenoxide)2]
+
PF6

- 
(2.5) 

Identification code  C45H47F6FeN3O4P 

Empirical formula  C45H47F6FeN3O4P 

Formula weight  894.67 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P 21/c 

Unit cell dimensions a = 24.1694(15) Å     = 90°. 

 b = 11.6266(9) Å       = 102.859(4)°. 

 c = 15.5172(9) Å       = 90°. 

Volume 4251.1(5) Å3 

Z 4 

Density (calculated) 1.398 Mg/m3 

Absorption coefficient 3.828 mm-1 

F(000) 1860 

Crystal size 0.100 x 0.020 x 0.010 mm3 

Theta range for data collection 1.875 to 67.381°. 

Index ranges -28≤h≤28, -13≤k≤13, -18≤l≤14 

Reflections collected 23734 

Independent reflections 7213 [R(int) = 0.1156] 

Completeness to theta = 67.679° 93.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7532 and 0.4680 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7213 / 168 / 549 

Goodness-of-fit on F2 0.993 

Final R indices [I>2sigma(I)] R1 = 0.0571, wR2 = 0.1250 

R indices (all data) R1 = 0.0970, wR2 = 0.1449 

Largest diff. peak and hole 0.879 and -0.458 e.Å-3 
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Table A.2. Bond lengths [Å] and angles [°] for  [Fe(PDI)(4-methoxyphenoxide)2]
+
PF6

- 

(2.5) 

 

Fe(1)-O(1)  1.816(3) C(7)-H(7C)  0.9800 

Fe(1)-O(2)  1.820(3) C(8)-C(13)  1.386(6) 

Fe(1)-N(1)  2.089(3) C(8)-C(9)  1.398(6) 

Fe(1)-N(2)  2.172(3) C(9)-C(10)  1.394(5) 

Fe(1)-N(3)  2.197(3) C(9)-C(14)  1.500(6) 

O(1)-C(33)  1.348(5) C(10)-C(11)  1.389(7) 

O(2)-C(26)  1.350(5) C(10)-H(10)  0.9500 

O(3)-C(36)  1.380(5) C(11)-C(12)  1.367(7) 

O(3)-C(39)  1.426(5) C(11)-H(11)  0.9500 

O(4)-C(29)  1.390(5) C(12)-C(13)  1.406(6) 

O(4)-C(32)  1.418(6) C(12)-H(12)  0.9500 

N(1)-C(1)  1.339(4) C(13)-C(15)  1.496(7) 

N(1)-C(5)  1.341(5) C(14)-H(14A)  0.9800 
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N(2)-C(16)  1.283(5) C(14)-H(14B)  0.9800 

N(2)-C(18)  1.449(5) C(14)-H(14C)  0.9800 

N(3)-C(6)  1.275(5) C(15)-H(15A)  0.9800 

N(3)-C(8)  1.442(4) C(15)-H(15B)  0.9800 

C(1)-C(2)  1.378(5) C(15)-H(15C)  0.9800 

C(1)-C(16)  1.495(5) C(16)-C(17)  1.493(5) 

C(2)-C(3)  1.378(6) C(17)-H(17A)  0.9800 

C(2)-H(2)  0.9500 C(17)-H(17B)  0.9800 

C(3)-C(4)  1.390(5) C(17)-H(17C)  0.9800 

C(3)-H(3)  0.9500 C(18)-C(19)  1.388(6) 

C(4)-C(5)  1.379(5) C(18)-C(23)  1.390(6) 

C(4)-H(4)  0.9500 C(19)-C(20)  1.385(6) 

C(5)-C(6)  1.487(5) C(19)-C(24)  1.499(6) 

C(6)-C(7)  1.489(5) C(20)-C(21)  1.378(8) 

C(7)-H(7A)  0.9800 C(20)-H(20)  0.9500 

C(7)-H(7B)  0.9800 C(21)-C(22)  1.363(8) 

C(21)-H(21)  0.9500 C(39)-H(39C)  0.9800 

C(22)-C(23)  1.396(6) P(1)-F(6)  1.584(3) 

C(22)-H(22)  0.9500 P(1)-F(3)  1.587(3) 

C(23)-C(25)  1.503(6) P(1)-F(1)  1.593(2) 

C(24)-H(24A)  0.9800 P(1)-F(2)  1.602(2) 

C(24)-H(24B)  0.9800 P(1)-F(4)  1.604(3) 

C(24)-H(24C)  0.9800 P(1)-F(5)  1.606(3) 

C(25)-H(25A)  0.9800 C(1S)-C(6S)  1.379(7) 

C(25)-H(25B)  0.9800 C(1S)-C(2S)  1.383(7) 

C(25)-H(25C)  0.9800 C(1S)-H(1S)  0.9500 

C(26)-C(27)  1.385(6) C(2S)-C(3S)  1.367(7) 

C(26)-C(31)  1.387(6) C(2S)-H(2S)  0.9500 

C(27)-C(28)  1.378(5) C(3S)-C(4S)  1.379(7) 

C(27)-H(27)  0.9500 C(3S)-H(3S)  0.9500 

C(28)-C(29)  1.385(6) C(4S)-C(5S)  1.363(7) 

C(28)-H(28)  0.9500 C(4S)-H(4S)  0.9500 

C(29)-C(30)  1.372(6) C(5S)-C(6S)  1.369(7) 

C(30)-C(31)  1.395(6) C(5S)-H(5S)  0.9500 

C(30)-H(30)  0.9500 C(6S)-H(6S)  0.9500 
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C(31)-H(31)  0.9500  

C(32)-H(32A)  0.9800 O(1)-Fe(1)-O(2) 118.30(13) 

C(32)-H(32B)  0.9800 O(1)-Fe(1)-N(1) 116.09(12) 

C(32)-H(32C)  0.9800 O(2)-Fe(1)-N(1) 125.58(13) 

C(33)-C(38)  1.388(6) O(1)-Fe(1)-N(2) 97.28(12) 

C(33)-C(34)  1.394(5) O(2)-Fe(1)-N(2) 100.77(12) 

C(34)-C(35)  1.386(6) N(1)-Fe(1)-N(2) 73.73(11) 

C(34)-H(34)  0.9500 O(1)-Fe(1)-N(3) 99.38(12) 

C(35)-C(36)  1.391(6) O(2)-Fe(1)-N(3) 96.03(12) 

C(35)-H(35)  0.9500 N(1)-Fe(1)-N(3) 73.43(11) 

C(36)-C(37)  1.383(5) N(2)-Fe(1)-N(3) 147.05(11) 

C(37)-C(38)  1.393(6) C(33)-O(1)-Fe(1) 148.7(3) 

C(37)-H(37)  0.9500 C(26)-O(2)-Fe(1) 144.8(3) 

C(38)-H(38)  0.9500 C(36)-O(3)-C(39) 117.6(3) 

C(39)-H(39A)  0.9800 C(29)-O(4)-C(32) 116.4(3) 

C(39)-H(39B)  0.9800 C(1)-N(1)-C(5) 119.8(3) 

C(1)-N(1)-Fe(1) 120.2(2) C(10)-C(9)-C(8) 117.4(4) 

C(5)-N(1)-Fe(1) 120.0(2) C(10)-C(9)-C(14) 120.6(4) 

C(16)-N(2)-C(18) 120.6(3) C(8)-C(9)-C(14) 121.9(3) 

C(16)-N(2)-Fe(1) 118.2(3) C(11)-C(10)-C(9) 120.4(4) 

C(18)-N(2)-Fe(1) 120.9(2) C(11)-C(10)-H(10) 119.8 

C(6)-N(3)-C(8) 120.8(3) C(9)-C(10)-H(10) 119.8 

C(6)-N(3)-Fe(1) 117.9(2) C(12)-C(11)-C(10) 120.7(4) 

C(8)-N(3)-Fe(1) 121.2(2) C(12)-C(11)-H(11) 119.7 

N(1)-C(1)-C(2) 121.6(3) C(10)-C(11)-H(11) 119.7 

N(1)-C(1)-C(16) 112.8(3) C(11)-C(12)-C(13) 121.2(4) 

C(2)-C(1)-C(16) 125.6(3) C(11)-C(12)-H(12) 119.4 

C(1)-C(2)-C(3) 118.9(3) C(13)-C(12)-H(12) 119.4 

C(1)-C(2)-H(2) 120.6 C(8)-C(13)-C(12) 116.9(4) 

C(3)-C(2)-H(2) 120.6 C(8)-C(13)-C(15) 121.4(4) 

C(2)-C(3)-C(4) 119.6(3) C(12)-C(13)-C(15) 121.5(4) 

C(2)-C(3)-H(3) 120.2 C(9)-C(14)-H(14A) 109.5 

C(4)-C(3)-H(3) 120.2 C(9)-C(14)-H(14B) 109.5 

C(5)-C(4)-C(3) 118.5(3) H(14A)-C(14)-H(14B) 109.5 

C(5)-C(4)-H(4) 120.8 C(9)-C(14)-H(14C) 109.5 
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C(3)-C(4)-H(4) 120.8 H(14A)-C(14)-H(14C) 109.5 

N(1)-C(5)-C(4) 121.6(3) H(14B)-C(14)-H(14C) 109.5 

N(1)-C(5)-C(6) 113.4(3) C(13)-C(15)-H(15A) 109.5 

C(4)-C(5)-C(6) 124.9(3) C(13)-C(15)-H(15B) 109.5 

N(3)-C(6)-C(5) 115.1(3) H(15A)-C(15)-H(15B) 109.5 

N(3)-C(6)-C(7) 126.0(3) C(13)-C(15)-H(15C) 109.5 

C(5)-C(6)-C(7) 118.9(3) H(15A)-C(15)-H(15C) 109.5 

C(6)-C(7)-H(7A) 109.5 H(15B)-C(15)-H(15C) 109.5 

C(6)-C(7)-H(7B) 109.5 N(2)-C(16)-C(17) 125.9(3) 

H(7A)-C(7)-H(7B) 109.5 N(2)-C(16)-C(1) 115.0(3) 

C(6)-C(7)-H(7C) 109.5 C(17)-C(16)-C(1) 119.1(3) 

H(7A)-C(7)-H(7C) 109.5 C(16)-C(17)-H(17A) 109.5 

H(7B)-C(7)-H(7C) 109.5 C(16)-C(17)-H(17B) 109.5 

C(13)-C(8)-C(9) 123.3(4) H(17A)-C(17)-H(17B) 109.5 

C(13)-C(8)-N(3) 119.4(4) C(16)-C(17)-H(17C) 109.5 

C(9)-C(8)-N(3) 117.3(3) H(17A)-C(17)-H(17C) 109.5 

H(17B)-C(17)-H(17C) 109.5 C(28)-C(27)-H(27) 119.7 

C(19)-C(18)-C(23) 123.0(4) C(26)-C(27)-H(27) 119.7 

C(19)-C(18)-N(2) 116.6(3) C(27)-C(28)-C(29) 120.2(4) 

C(23)-C(18)-N(2) 120.3(3) C(27)-C(28)-H(28) 119.9 

C(20)-C(19)-C(18) 117.7(4) C(29)-C(28)-H(28) 119.9 

C(20)-C(19)-C(24) 120.6(4) C(30)-C(29)-C(28) 120.1(4) 

C(18)-C(19)-C(24) 121.6(4) C(30)-C(29)-O(4) 124.8(4) 

C(21)-C(20)-C(19) 120.4(4) C(28)-C(29)-O(4) 115.1(4) 

C(21)-C(20)-H(20) 119.8 C(29)-C(30)-C(31) 119.7(4) 

C(19)-C(20)-H(20) 119.8 C(29)-C(30)-H(30) 120.2 

C(22)-C(21)-C(20) 121.0(4) C(31)-C(30)-H(30) 120.2 

C(22)-C(21)-H(21) 119.5 C(26)-C(31)-C(30) 120.4(4) 

C(20)-C(21)-H(21) 119.5 C(26)-C(31)-H(31) 119.8 

C(21)-C(22)-C(23) 121.0(5) C(30)-C(31)-H(31) 119.8 

C(21)-C(22)-H(22) 119.5 O(4)-C(32)-H(32A) 109.5 

C(23)-C(22)-H(22) 119.5 O(4)-C(32)-H(32B) 109.5 

C(18)-C(23)-C(22) 117.0(4) H(32A)-C(32)-H(32B) 109.5 

C(18)-C(23)-C(25) 122.0(4) O(4)-C(32)-H(32C) 109.5 

C(22)-C(23)-C(25) 121.0(4) H(32A)-C(32)-H(32C) 109.5 
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C(19)-C(24)-H(24A) 109.5 H(32B)-C(32)-H(32C) 109.5 

C(19)-C(24)-H(24B) 109.5 O(1)-C(33)-C(38) 119.1(3) 

H(24A)-C(24)-H(24B) 109.5 O(1)-C(33)-C(34) 121.9(4) 

C(19)-C(24)-H(24C) 109.5 C(38)-C(33)-C(34) 119.0(4) 

H(24A)-C(24)-H(24C) 109.5 C(35)-C(34)-C(33) 120.7(4) 

H(24B)-C(24)-H(24C) 109.5 C(35)-C(34)-H(34) 119.7 

C(23)-C(25)-H(25A) 109.5 C(33)-C(34)-H(34) 119.7 

C(23)-C(25)-H(25B) 109.5 C(34)-C(35)-C(36) 119.5(4) 

H(25A)-C(25)-H(25B) 109.5 C(34)-C(35)-H(35) 120.2 

C(23)-C(25)-H(25C) 109.5 C(36)-C(35)-H(35) 120.2 

H(25A)-C(25)-H(25C) 109.5 O(3)-C(36)-C(37) 115.3(4) 

H(25B)-C(25)-H(25C) 109.5 O(3)-C(36)-C(35) 124.2(3) 

O(2)-C(26)-C(27) 119.3(4) C(37)-C(36)-C(35) 120.5(4) 

O(2)-C(26)-C(31) 121.7(4) C(36)-C(37)-C(38) 119.5(4) 

C(27)-C(26)-C(31) 119.0(4) C(36)-C(37)-H(37) 120.2 

C(28)-C(27)-C(26) 120.5(4) C(38)-C(37)-H(37) 120.2 

C(33)-C(38)-C(37) 120.7(4) C(3S)-C(4S)-H(4S) 119.6 

C(33)-C(38)-H(38) 119.6 C(4S)-C(5S)-C(6S) 119.6(5) 

C(37)-C(38)-H(38) 119.6 C(4S)-C(5S)-H(5S) 120.2 

O(3)-C(39)-H(39A) 109.5 C(6S)-C(5S)-H(5S) 120.2 

O(3)-C(39)-H(39B) 109.5 C(5S)-C(6S)-C(1S) 119.9(4) 

H(39A)-C(39)-H(39B) 109.5 C(5S)-C(6S)-H(6S) 120.0 

O(3)-C(39)-H(39C) 109.5 C(1S)-C(6S)-H(6S) 120.0 

H(39A)-C(39)-H(39C) 109.5  

H(39B)-C(39)-H(39C) 109.5  

F(6)-P(1)-F(3) 90.63(16)  

F(6)-P(1)-F(1) 90.45(15)  

F(3)-P(1)-F(1) 178.34(16)  

F(6)-P(1)-F(2) 90.86(15)  

F(3)-P(1)-F(2) 90.62(15)  

F(1)-P(1)-F(2) 90.63(15)  

F(6)-P(1)-F(4) 90.56(15)  

F(3)-P(1)-F(4) 89.20(15)  

F(1)-P(1)-F(4) 89.53(14)  

F(2)-P(1)-F(4) 178.56(16)  
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F(6)-P(1)-F(5) 179.72(17)  

F(3)-P(1)-F(5) 89.63(15)  

F(1)-P(1)-F(5) 89.29(14)  

F(2)-P(1)-F(5) 89.25(14)  

F(4)-P(1)-F(5) 89.33(14)  

C(6S)-C(1S)-C(2S) 120.5(5)  

C(6S)-C(1S)-H(1S) 119.8  

C(2S)-C(1S)-H(1S) 119.8  

C(3S)-C(2S)-C(1S) 119.0(5)  

C(3S)-C(2S)-H(2S) 120.5  

C(1S)-C(2S)-H(2S) 120.5  

C(2S)-C(3S)-C(4S) 120.1(5)  

C(2S)-C(3S)-H(3S) 119.9  

C(4S)-C(3S)-H(3S) 119.9  

C(5S)-C(4S)-C(3S) 120.8(5)  

C(5S)-C(4S)-H(4S) 119.6  

 

 

 

 

 

 

 

 

 

 

 

 



173 

 

A.2 X-ray crystal structure data from Chapter 4 

Table A.3. Crystal data and structure refinement for Fe(PDI)(neopentoxide)
 
(4.1b) 

Identification code  C30H38FeN3O 

Empirical formula  C30 H38 Fe N3 O 

Formula weight  512.48 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions 
a = 9.6160(6) Å          α= 80.409(4)°. 

 b = 15.1762(8) Å        β= 89.607(4)°. 

 c = 18.9657(11) Å      γ= 89.916(4)°. 

Volume 2729.0(3) Å3 

Z 4 

Density (calculated) 1.247 Mg/m3 

Absorption coefficient 4.624 mm-1 

F(000) 1092 

Crystal size 0.200 x 0.080 x 0.070 mm3 

Theta range for data collection 2.363 to 67.771°. 

Index ranges -11<=h<=11, -18<=k<=18, -21<=l<=22 

Reflections collected 31006 

Independent reflections 9543 [R(int) = 0.0732] 

Completeness to theta = 67.679° 98.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7528 and 0.4940 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9543 / 0 / 650 

Goodness-of-fit on F2 1.230 

Final R indices [I>2sigma(I)] R1 = 0.1087, wR2 = 0.2768 

R indices (all data) R1 = 0.1365, wR2 = 0.3238 

Largest diff. peak and hole 2.156 and -1.485 e.Å-3 
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Table A.4. Bond lengths [Å] and angles [°] for  Fe(PDI)(neopentoxide)
 
(4.1b) 

 

Fe(1)-O(1)  1.842(5) 

Fe(1)-N(2)  1.991(7) 

Fe(1)-N(1)  2.143(7) 

Fe(1)-N(3)  2.147(8) 

O(1)-C(26)  1.411(11) 

N(1)-C(10)  1.309(12) 

N(1)-C(1)  1.428(10) 

N(2)-C(15)  1.356(11) 

N(2)-C(11)  1.378(12) 

N(3)-C(16)  1.326(11) 

N(3)-C(18)  1.439(12) 

C(1)-C(6)  1.395(13) 

C(1)-C(2)  1.398(13) 

C(2)-C(3)  1.387(13) 

C(2)-C(7)  1.512(13) 

C(3)-C(4)  1.397(14) 

C(3)-H(3)  0.9500 

C(4)-C(5)  1.366(14) 

C(13)-C(14)  1.377(13) 

C(13)-H(13)  0.9500 

C(14)-C(15)  1.405(12) 

C(14)-H(14)  0.9500 

C(15)-C(16)  1.459(12) 

C(16)-C(17)  1.473(12) 

C(17)-H(17A)  0.9800 

C(17)-H(17B)  0.9800 

C(17)-H(17C)  0.9800 

C(18)-C(19)  1.394(15) 

C(18)-C(23)  1.401(13) 

C(19)-C(20)  1.371(15) 

C(19)-C(24)  1.487(15) 

C(20)-C(21)  1.415(16) 

C(20)-H(20)  0.9500 

C(21)-C(22)  1.350(18) 

C(21)-H(21)  0.9500 

C(22)-C(23)  1.398(15) 
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C(4)-H(4)  0.9500 

C(5)-C(6)  1.394(13) 

C(5)-H(5)  0.9500 

C(6)-C(8)  1.529(13) 

C(7)-H(7A)  0.9800 

C(7)-H(7B)  0.9800 

C(7)-H(7C)  0.9800 

C(8)-H(8A)  0.9800 

C(8)-H(8B)  0.9800 

C(8)-H(8C)  0.9800 

C(9)-C(10)  1.475(14) 

C(9)-H(9A)  0.9800 

C(9)-H(9B)  0.9800 

C(9)-H(9C)  0.9800 

C(10)-C(11)  1.420(13) 

C(11)-C(12)  1.415(12) 

C(12)-H(12)  0.9500 

C(29)-H(29A)  0.9800 

C(29)-H(29B)  0.9800 

C(29)-H(29C)  0.9800 

C(30)-H(30A)  0.9800 

C(30)-H(30B)  0.9800 

C(30)-H(30C)  0.9800 

Fe(2)-O(2)  1.811(7) 

Fe(2)-N(5)  1.985(7) 

Fe(2)-N(6)  2.144(7) 

Fe(2)-N(4)  2.147(7) 

O(2)-C(56)  1.393(12) 

N(4)-C(40)  1.304(11) 

N(4)-C(31)  1.455(11) 

N(5)-C(45)  1.369(13) 

N(5)-C(41)  1.385(12) 

N(6)-C(46)  1.323(11) 

N(6)-C(48)  1.428(12) 

C(31)-C(36)  1.369(15) 

C(22)-H(22)  0.9500 

C(23)-C(25)  1.493(16) 

C(24)-H(24A)  0.9800 

C(24)-H(24B)  0.9800 

C(24)-H(24C)  0.9800 

C(25)-H(25A)  0.9800 

C(25)-H(25B)  0.9800 

C(25)-H(25C)  0.9800 

C(26)-C(27)  1.526(16) 

C(26)-H(26A)  0.9900 

C(26)-H(26B)  0.9900 

C(27)-C(29)  1.505(13) 

C(27)-C(28)  1.523(13) 

C(27)-C(30)  1.547(13) 

C(28)-H(28A)  0.9800 

C(28)-H(28B)  0.9800 

C(28)-H(28C)  0.9800 

C(39)-H(39A)  0.9800 

C(39)-H(39B)  0.9800 

C(39)-H(39C)  0.9800 

C(40)-C(41)  1.453(13) 

C(41)-C(42)  1.365(12) 

C(42)-C(43)  1.378(15) 

C(42)-H(42)  0.9500 

C(43)-C(44)  1.379(15) 

C(43)-H(43)  0.9500 

C(44)-C(45)  1.393(12) 

C(44)-H(44)  0.9500 

C(45)-C(46)  1.437(13) 

C(46)-C(47)  1.516(13) 

C(47)-H(47A)  0.9800 

C(47)-H(47B)  0.9800 

C(47)-H(47C)  0.9800 

C(48)-C(53)  1.403(13) 

C(48)-C(49)  1.409(13) 
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C(31)-C(32)  1.413(13) 

C(32)-C(33)  1.393(15) 

C(32)-C(37)  1.508(17) 

C(33)-C(34)  1.390(18) 

C(33)-H(33)  0.9500 

C(34)-C(35)  1.359(15) 

C(34)-H(34)  0.9500 

C(35)-C(36)  1.398(16) 

C(35)-H(35)  0.9500 

C(36)-C(38)  1.528(14) 

C(37)-H(37A)  0.9800 

C(37)-H(37B)  0.9800 

C(37)-H(37C)  0.9800 

C(38)-H(38A)  0.9800 

C(38)-H(38B)  0.9800 

C(38)-H(38C)  0.9800 

C(39)-C(40)  1.511(13) 

C(56)-H(56B)  0.9900 

C(57)-C(60)  1.491(17) 

C(57)-C(59)  1.504(18) 

C(57)-C(58)  1.544(16) 

C(58)-H(58A)  0.9800 

C(58)-H(58B)  0.9800 

C(58)-H(58C)  0.9800 

C(59)-H(59A)  0.9800 

C(59)-H(59B)  0.9800 

C(59)-H(59C)  0.9800 

C(60)-H(60A)  0.9800 

C(60)-H(60B)  0.9800 

C(60)-H(60C)  0.9800 

 

O(1)-Fe(1)-N(2) 163.7(3) 

O(1)-Fe(1)-N(1) 107.8(3) 

N(2)-Fe(1)-N(1) 75.3(3) 

O(1)-Fe(1)-N(3) 105.3(3) 

C(49)-C(50)  1.396(13) 

C(49)-C(54)  1.501(13) 

C(50)-C(51)  1.394(15) 

C(50)-H(50)  0.9500 

C(51)-C(52)  1.349(15) 

C(51)-H(51)  0.9500 

C(52)-C(53)  1.399(14) 

C(52)-H(52)  0.9500 

C(53)-C(55)  1.491(14) 

C(54)-H(54A)  0.9800 

C(54)-H(54B)  0.9800 

C(54)-H(54C)  0.9800 

C(55)-H(55A)  0.9800 

C(55)-H(55B)  0.9800 

C(55)-H(55C)  0.9800 

C(56)-C(57)  1.540(12) 

C(56)-H(56A)  0.9900 

C(1)-C(2)-C(7) 120.8(8) 

C(2)-C(3)-C(4) 119.0(9) 

C(2)-C(3)-H(3) 120.5 

C(4)-C(3)-H(3) 120.5 

C(5)-C(4)-C(3) 121.1(8) 

C(5)-C(4)-H(4) 119.4 

C(3)-C(4)-H(4) 119.4 

C(4)-C(5)-C(6) 120.7(9) 

C(4)-C(5)-H(5) 119.6 

C(6)-C(5)-H(5) 119.6 

C(5)-C(6)-C(1) 118.6(9) 

C(5)-C(6)-C(8) 120.7(9) 

C(1)-C(6)-C(8) 120.7(9) 

C(2)-C(7)-H(7A) 109.5 

C(2)-C(7)-H(7B) 109.5 

H(7A)-C(7)-H(7B) 109.5 

C(2)-C(7)-H(7C) 109.5 

H(7A)-C(7)-H(7C) 109.5 
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N(2)-Fe(1)-N(3) 75.6(3) 

N(1)-Fe(1)-N(3) 145.6(3) 

C(26)-O(1)-Fe(1) 131.9(5) 

C(10)-N(1)-C(1) 120.4(8) 

C(10)-N(1)-Fe(1) 115.7(6) 

C(1)-N(1)-Fe(1) 122.2(5) 

C(15)-N(2)-C(11) 119.2(7) 

C(15)-N(2)-Fe(1) 120.2(6) 

C(11)-N(2)-Fe(1) 119.8(6) 

C(16)-N(3)-C(18) 120.0(7) 

C(16)-N(3)-Fe(1) 115.1(6) 

C(18)-N(3)-Fe(1) 124.1(5) 

C(6)-C(1)-C(2) 120.7(8) 

C(6)-C(1)-N(1) 119.5(8) 

C(2)-C(1)-N(1) 119.8(8) 

C(3)-C(2)-C(1) 119.9(8) 

C(3)-C(2)-C(7) 119.2(9) 

N(2)-C(11)-C(10) 113.1(7) 

C(12)-C(11)-C(10) 126.8(9) 

C(13)-C(12)-C(11) 119.4(9) 

C(13)-C(12)-H(12) 120.3 

C(11)-C(12)-H(12) 120.3 

C(14)-C(13)-C(12) 120.3(8) 

C(14)-C(13)-H(13) 119.9 

C(12)-C(13)-H(13) 119.9 

C(13)-C(14)-C(15) 119.1(8) 

C(13)-C(14)-H(14) 120.5 

C(15)-C(14)-H(14) 120.5 

N(2)-C(15)-C(14) 121.5(8) 

N(2)-C(15)-C(16) 113.5(7) 

C(14)-C(15)-C(16) 124.9(8) 

N(3)-C(16)-C(15) 113.4(7) 

N(3)-C(16)-C(17) 125.1(8) 

C(15)-C(16)-C(17) 121.3(7) 

C(16)-C(17)-H(17A) 109.5 

H(7B)-C(7)-H(7C) 109.5 

C(6)-C(8)-H(8A) 109.5 

C(6)-C(8)-H(8B) 109.5 

H(8A)-C(8)-H(8B) 109.5 

C(6)-C(8)-H(8C) 109.5 

H(8A)-C(8)-H(8C) 109.5 

H(8B)-C(8)-H(8C) 109.5 

C(10)-C(9)-H(9A) 109.5 

C(10)-C(9)-H(9B) 109.5 

H(9A)-C(9)-H(9B) 109.5 

C(10)-C(9)-H(9C) 109.5 

H(9A)-C(9)-H(9C) 109.5 

H(9B)-C(9)-H(9C) 109.5 

N(1)-C(10)-C(11) 115.1(8) 

N(1)-C(10)-C(9) 122.6(8) 

C(11)-C(10)-C(9) 122.3(8) 

N(2)-C(11)-C(12) 120.1(9) 

C(21)-C(22)-C(23) 121.2(10) 

C(21)-C(22)-H(22) 119.4 

C(23)-C(22)-H(22) 119.4 

C(22)-C(23)-C(18) 117.2(11) 

C(22)-C(23)-C(25) 120.9(9) 

C(18)-C(23)-C(25) 121.9(9) 

C(19)-C(24)-H(24A) 109.5 

C(19)-C(24)-H(24B) 109.5 

H(24A)-C(24)-H(24B) 109.5 

C(19)-C(24)-H(24C) 109.5 

H(24A)-C(24)-H(24C) 109.5 

H(24B)-C(24)-H(24C) 109.5 

C(23)-C(25)-H(25A) 109.5 

C(23)-C(25)-H(25B) 109.5 

H(25A)-C(25)-H(25B) 109.5 

C(23)-C(25)-H(25C) 109.5 

H(25A)-C(25)-H(25C) 109.5 

H(25B)-C(25)-H(25C) 109.5 
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C(16)-C(17)-H(17B) 109.5 

H(17A)-C(17)-H(17B) 109.5 

C(16)-C(17)-H(17C) 109.5 

H(17A)-C(17)-H(17C) 109.5 

H(17B)-C(17)-H(17C) 109.5 

C(19)-C(18)-C(23) 122.4(9) 

C(19)-C(18)-N(3) 119.3(8) 

C(23)-C(18)-N(3) 118.2(9) 

C(20)-C(19)-C(18) 118.5(10) 

C(20)-C(19)-C(24) 120.8(10) 

C(18)-C(19)-C(24) 120.7(9) 

C(19)-C(20)-C(21) 119.8(11) 

C(19)-C(20)-H(20) 120.1 

C(21)-C(20)-H(20) 120.1 

C(22)-C(21)-C(20) 120.8(10) 

C(22)-C(21)-H(21) 119.6 

C(20)-C(21)-H(21) 119.6 

H(28B)-C(28)-H(28C) 109.5 

C(27)-C(29)-H(29A) 109.5 

C(27)-C(29)-H(29B) 109.5 

H(29A)-C(29)-H(29B) 109.5 

C(27)-C(29)-H(29C) 109.5 

H(29A)-C(29)-H(29C) 109.5 

H(29B)-C(29)-H(29C) 109.5 

C(27)-C(30)-H(30A) 109.5 

C(27)-C(30)-H(30B) 109.5 

H(30A)-C(30)-H(30B) 109.5 

C(27)-C(30)-H(30C) 109.5 

H(30A)-C(30)-H(30C) 109.5 

H(30B)-C(30)-H(30C) 109.5 

O(2)-Fe(2)-N(5) 148.8(3) 

O(2)-Fe(2)-N(6) 106.7(3) 

N(5)-Fe(2)-N(6) 75.8(3) 

O(2)-Fe(2)-N(4) 109.6(3) 

N(5)-Fe(2)-N(4) 75.6(3) 

O(1)-C(26)-C(27) 114.3(8) 

O(1)-C(26)-H(26A) 108.7 

C(27)-C(26)-H(26A) 108.7 

O(1)-C(26)-H(26B) 108.7 

C(27)-C(26)-H(26B) 108.7 

H(26A)-C(26)-H(26B) 107.6 

C(29)-C(27)-C(28) 109.5(8) 

C(29)-C(27)-C(26) 110.0(8) 

C(28)-C(27)-C(26) 111.0(8) 

C(29)-C(27)-C(30) 109.2(8) 

C(28)-C(27)-C(30) 109.0(9) 

C(26)-C(27)-C(30) 108.2(8) 

C(27)-C(28)-H(28A) 109.5 

C(27)-C(28)-H(28B) 109.5 

H(28A)-C(28)-H(28B) 109.5 

C(27)-C(28)-H(28C) 109.5 

H(28A)-C(28)-H(28C) 109.5 

C(34)-C(33)-C(32) 121.6(10) 

C(34)-C(33)-H(33) 119.2 

C(32)-C(33)-H(33) 119.2 

C(35)-C(34)-C(33) 119.1(11) 

C(35)-C(34)-H(34) 120.4 

C(33)-C(34)-H(34) 120.4 

C(34)-C(35)-C(36) 121.7(12) 

C(34)-C(35)-H(35) 119.2 

C(36)-C(35)-H(35) 119.2 

C(31)-C(36)-C(35) 118.8(10) 

C(31)-C(36)-C(38) 121.3(10) 

C(35)-C(36)-C(38) 119.9(10) 

C(32)-C(37)-H(37A) 109.5 

C(32)-C(37)-H(37B) 109.5 

H(37A)-C(37)-H(37B) 109.5 

C(32)-C(37)-H(37C) 109.5 

H(37A)-C(37)-H(37C) 109.5 

H(37B)-C(37)-H(37C) 109.5 
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N(6)-Fe(2)-N(4) 143.5(3) 

C(56)-O(2)-Fe(2) 137.1(7) 

C(40)-N(4)-C(31) 119.3(7) 

C(40)-N(4)-Fe(2) 116.2(6) 

C(31)-N(4)-Fe(2) 123.2(5) 

C(45)-N(5)-C(41) 120.2(8) 

C(45)-N(5)-Fe(2) 119.7(6) 

C(41)-N(5)-Fe(2) 119.8(6) 

C(46)-N(6)-C(48) 119.1(7) 

C(46)-N(6)-Fe(2) 114.6(6) 

C(48)-N(6)-Fe(2) 125.5(6) 

C(36)-C(31)-C(32) 121.5(9) 

C(36)-C(31)-N(4) 120.1(8) 

C(32)-C(31)-N(4) 118.3(9) 

C(33)-C(32)-C(31) 117.3(10) 

C(33)-C(32)-C(37) 122.3(9) 

C(31)-C(32)-C(37) 120.4(9) 

N(5)-C(41)-C(40) 112.9(7) 

C(41)-C(42)-C(43) 120.2(9) 

C(41)-C(42)-H(42) 119.9 

C(43)-C(42)-H(42) 119.9 

C(42)-C(43)-C(44) 120.2(9) 

C(42)-C(43)-H(43) 119.9 

C(44)-C(43)-H(43) 119.9 

C(43)-C(44)-C(45) 119.3(10) 

C(43)-C(44)-H(44) 120.3 

C(45)-C(44)-H(44) 120.3 

N(5)-C(45)-C(44) 119.6(9) 

N(5)-C(45)-C(46) 113.1(7) 

C(44)-C(45)-C(46) 127.2(9) 

N(6)-C(46)-C(45) 115.1(8) 

N(6)-C(46)-C(47) 122.4(8) 

C(45)-C(46)-C(47) 122.5(8) 

C(46)-C(47)-H(47A) 109.5 

C(46)-C(47)-H(47B) 109.5 

C(36)-C(38)-H(38A) 109.5 

C(36)-C(38)-H(38B) 109.5 

H(38A)-C(38)-H(38B) 109.5 

C(36)-C(38)-H(38C) 109.5 

H(38A)-C(38)-H(38C) 109.5 

H(38B)-C(38)-H(38C) 109.5 

C(40)-C(39)-H(39A) 109.5 

C(40)-C(39)-H(39B) 109.5 

H(39A)-C(39)-H(39B) 109.5 

C(40)-C(39)-H(39C) 109.5 

H(39A)-C(39)-H(39C) 109.5 

H(39B)-C(39)-H(39C) 109.5 

N(4)-C(40)-C(41) 114.5(8) 

N(4)-C(40)-C(39) 123.7(8) 

C(41)-C(40)-C(39) 121.9(8) 

C(42)-C(41)-N(5) 119.7(9) 

C(42)-C(41)-C(40) 127.3(8) 

C(51)-C(52)-H(52) 118.9 

C(53)-C(52)-H(52) 118.9 

C(52)-C(53)-C(48) 118.7(9) 

C(52)-C(53)-C(55) 121.4(9) 

C(48)-C(53)-C(55) 119.9(8) 

C(49)-C(54)-H(54A) 109.5 

C(49)-C(54)-H(54B) 109.5 

H(54A)-C(54)-H(54B) 109.5 

C(49)-C(54)-H(54C) 109.5 

H(54A)-C(54)-H(54C) 109.5 

H(54B)-C(54)-H(54C) 109.5 

C(53)-C(55)-H(55A) 109.5 

C(53)-C(55)-H(55B) 109.5 

H(55A)-C(55)-H(55B) 109.5 

C(53)-C(55)-H(55C) 109.5 

H(55A)-C(55)-H(55C) 109.5 

H(55B)-C(55)-H(55C) 109.5 

O(2)-C(56)-C(57) 114.1(9) 
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H(47A)-C(47)-H(47B) 109.5 

C(46)-C(47)-H(47C) 109.5 

H(47A)-C(47)-H(47C) 109.5 

H(47B)-C(47)-H(47C) 109.5 

C(53)-C(48)-C(49) 120.3(8) 

C(53)-C(48)-N(6) 119.8(8) 

C(49)-C(48)-N(6) 119.3(8) 

C(50)-C(49)-C(48) 117.9(9) 

C(50)-C(49)-C(54) 121.9(9) 

C(48)-C(49)-C(54) 120.3(8) 

C(51)-C(50)-C(49) 121.9(10) 

C(51)-C(50)-H(50) 119.1 

C(49)-C(50)-H(50) 119.1 

C(52)-C(51)-C(50) 119.0(9) 

C(52)-C(51)-H(51) 120.5 

C(50)-C(51)-H(51) 120.5 

C(51)-C(52)-C(53) 122.2(10) 

C(57)-C(59)-H(59A) 109.5 

C(57)-C(59)-H(59B) 109.5 

H(59A)-C(59)-H(59B) 109.5 

C(57)-C(59)-H(59C) 109.5 

H(59A)-C(59)-H(59C) 109.5 

H(59B)-C(59)-H(59C) 109.5 

C(57)-C(60)-H(60A) 109.5 

C(57)-C(60)-H(60B) 109.5 

H(60A)-C(60)-H(60B) 109.5 

C(57)-C(60)-H(60C) 109.5 

H(60A)-C(60)-H(60C) 109.5 

H(60B)-C(60)-H(60C) 109.5 

O(2)-C(56)-H(56A) 108.7 

C(57)-C(56)-H(56A) 108.7 

O(2)-C(56)-H(56B) 108.7 

C(57)-C(56)-H(56B) 108.7 

H(56A)-C(56)-H(56B) 107.6 

C(60)-C(57)-C(59) 112.4(12) 

C(60)-C(57)-C(56) 112.6(9) 

C(59)-C(57)-C(56) 108.5(10) 

C(60)-C(57)-C(58) 107.8(11) 

C(59)-C(57)-C(58) 108.7(11) 

C(56)-C(57)-C(58) 106.6(9) 

C(57)-C(58)-H(58A) 109.5 

C(57)-C(58)-H(58B) 109.5 

H(58A)-C(58)-H(58B) 109.5 

C(57)-C(58)-H(58C) 109.5 

H(58A)-C(58)-H(58C) 109.5 

H(58B)-C(58)-H(58C) 109.5 
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Appendix B: NMR and 
57

Fe Mössbauer Spectra 

B.1 NMR Spectra from Chapter 2 

  

Figure B.1. 
1
H NMR spectrum of Fe(PDI)(4-methoxyphenoxide)2 (2.4a) in C6D6 (25°C, 

500 MHz). 
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Figure B.2. 
1
H NMR spectrum of Fe(PDI)(4-t-butylphenoxide)2 (2.4b) in C6D6 (25°C, 

500 MHz). 
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Figure B.3. 
1
H NMR spectrum of Fe(PDI)(neopentoxide)2 (2.4c) in C6D6 (25°C, 500 

MHz). 

 

Figure B.4.. 
1
H NMR spectrum of [Fe(PDI)(4-methoxyphenoxide)2][PF6] (2.5) in C6D6 

(25°C, 500 MHz). 
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Figure B.5. a) 
1
H NMR spectrum (25°C, 500 MHz) of poly(lactic acid) initiated by 

2.3/4-methoxyphenol. b) 
1
H NMR spectrum (25°C, 500 MHz) of poly(lactic acid) 

initiated by 2.3/neopentyl alcohol. 

b) 

a) 
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B.2 NMR Spectra from Chapter 4 

 Figure B.10. 
1
H NMR of Fe(PDI)(4-methoxyphenoxide) (4.1a) in C6D6 (25°C, 500 

MHz). 

 

 

 

 

 

Figure B.11. 
1
H NMR spectrum of Fe(PDI)(neopentoxide) (4.1b) in C6D6 (25°C, 500 

MHz). 
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Appendix C: Additional Polymer Molecular Weight Data 

C.1 Cyclohexene oxide polymerization molecular weight data from 

Chapter 3 

Table C.1. Molecular weight and dispersities over time for redox-switching cyclohexene 

oxide (CHO) polymerization. 

Time (min.) CHO conv. (%) Mn (kg/mol)
a
 Ð

b
 

10 14 17.2 2.41 

20 21 20.0 2.24 

30 25 21.1 2.24 

40 31 20.1 2.18 

50 

(CoCp2 added) 

36 18.9 1.94 

60 38 22.7 2.03 

70 38 27.4 1.72 

80 38 21.4 2.09 

90 

(FcPF6 added) 

38 29.0 1.91 

100 42 28.2 1.70 

110 45 21.9 2.12 

120 47 25.0 1.94 

140 50 22.5 2.04 

a
Molecular weights were determined by GPC relative to polystyrene standards. 

b
PDI = 

Mw/Mn. 
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C.2 Lactide-epoxide copolymerization data from Chapter 3 

Table C.2. Lactide-epoxide copolymerization data with a 1:1 monomer ratio
a
 (Table 3.3, 

entry 1) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 11.9 1.21 -- -- 

After step ii 

(unpurified) 

6.0 2.20 1:1 -- 

Acetone filtrate 8.8 1.77 2:1 96 

Acetone ppt. 8.9 1.74 0:1 4 

Hexanes filtrate 0.7 6.89 1:27 29 

Hexanes ppt. 10.2 1.52 7:1 67 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

 
Figure C.1.  GPC traces for lactide-cyclohexene oxide copolymerization with 

[lactide]:[cyclohexene oxide] = 1:5 (Table 3.3, entry 3) after step i (lactide 

polymerization), step ii (epoxide polymerization), and precipitation to isolate the block 

copolymer. 

 

 



188 

 

Table C.3. Lactide-epoxide copolymerization data with a 5:1 [L]:[CHO] ratio
a
 (Table 

3.3, entry 3) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 10.0 1.17 -- -- 

After step ii 

(unpurified) 

10.3 2.68 1:1 -- 

Acetone filtrate 7.3 2.13 1:2 54 

Acetone ppt. 14.9 2.21 1:23 35 

Hexanes filtrate 5.0 2.50 1:12 58 

Hexanes ppt. 3.5 1.39 5:1 37 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

 

Figure C.2.  GPC traces for lactide-cyclohexene oxide copolymerization with 

[lactide]:[cyclohexene oxide] = 1:1 where lactide polymerization was switched off before 

full conversion was reached (Table 3.3, entry 4) after step i (lactide polymerization), step 

ii (epoxide polymerization), and precipitation to isolate the block copolymer. 
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Table C.4. Lactide-epoxide copolymerization data with a 1:1 monomer ratio where the 

lactide polymerization is switched off before full conversion is reached
a
 (Table 3.3, entry 

4) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 4.5 1.3 -- -- 

After step ii 

(unpurified) 

3.4 1.6 1:2 -- 

Acetone filtrate 1.7 2.1 1:2 81 

Acetone ppt. 1.8 3.6 1:8 2 

Hexanes filtrate 0.8 3.2 1:9 58 

Hexanes ppt. 1.7 2.0 4:1 28 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

 

Figure C.3.  GPC traces for sequential lactide-cyclohexene oxide copolymerization with 

[lactide]:[cyclohexene oxide] = 1:1 (Table 3.3, entry 2) after step i (lactide 

polymerization), step ii (epoxide polymerization), and precipitation to isolate the block 

copolymer. 
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Table C.5. Sequential lactide-epoxide copolymerization data with a 1:1 monomer ratio
a
 

(Table 3.3, entry 2) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 11.2 1.2 -- -- 

After step ii 

(unpurified) 

7.7 1.9 3:1 -- 

Acetone filtrate 8.0 1.7 2:1 86 

Acetone ppt. 8.9 1.6 1:100 2 

Hexanes filtrate 1.2 18.6 1:20 32 

Hexanes ppt. 9.2 1.4 7:1 63 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

Table C.6. Lactide-Epoxide Copolymer molecular weight data by GPC and 
1
H NMR. 

 

 After step i After step ii and precipitation
a
 

Entry Mn  

(GPC-

RI)
b 

Mn  

(GPC-

LS)
c
 

Mn  

(NMR)
d
 

Mn  

(GPC-RI)
b 

Mn  

(GPC-

LS)
c 

Mn  

(NMR)
d 

[PLA]: 

[PCHO]
e
 

1 11.9 n.d. 9.0 11.2 37.5 10.6 7:1 

2
f 11.2 12.1 8.0 9.2 27.2 9.3 7:1 

3
g 10.0 n.d. 8.5 3.5 20.1 9.1 5:1 

4
h 4.5 n.d. n.d. 1.7 27.0 1.3 4:1 

a
Isolated by precipitation from acetone and hexanes. 

b
kg/mol, determined by GPC 

relative to refractive index detector relative to polystyrene standards. 
c
kg/mol, determined 

by GPC with light scattering detector 
d
kg/mol, determined by 

1
H NMR integration ratio 

of methine peaks of polymer and aromatic peaks of 4-methoxyphenoxide end groups 

multiplied by molecular weight of monomer. 
e
Determined by 

1
H NMR. 

f
Epoxide added in 

step ii after FcPF6. 
g
[CHO]:[L] = 5:1 ([CHO] = 0.80M). 

h
Step i carried out for 15 min.  
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C.3 Cyclohexene oxide-lactide copolymerization molecular weight 

data from Chapter 3 

Table C.7. Epoxide-lactide copolymerization data with a 1:1 monomer ratio
a
 (Table 3.6, 

entry 1) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 1.2 1.9 -- -- 

After step ii 

(unpurified) 

9.7 1.4 8:1 -- 

Acetone filtrate 8.9 1.4 8:1 93 

Acetone ppt. n.d.
d 

n.d.
d 

0:1 2 

Hexanes filtrate 1.0 4.1 1:98 4 

Hexanes ppt. 10.6 1.4 9:1 96 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

d
Not 

determined; not enough sample collected to observe a response by GPC. 

 

 

Figure C.4.  GPC traces for cyclohexene oxide-lactide copolymerization with 

[lactide]:[cyclohexene oxide] =  5:1 (Table 3.6, entry 3) after step i (epoxide 

polymerization), step ii (lactide polymerization), and precipitation to isolate the block 

copolymer. 
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Table C.8. Epoxide-lactide copolymerization data with a 5:1 [L]:[CHO] ratio
a
 (Table 

3.6, entry 3) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 1.2 2.0 -- -- 

After step ii 

(unpurified) 

7.1 1.8 1:3 -- 

Acetone filtrate 7.1 1.7 1:1 66 

Acetone ppt. 12.8 1.4 1:99 19 

Hexanes filtrate 8.4 2.0 1:11 31 

Hexanes ppt. 5.8 1.4 3:1 65 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

 

Figure C.5.  GPC traces for cyclohexene oxide-lactide copolymerization with 

[lactide]:[cyclohexene oxide] = 5:1 where epoxide polymerization was switched off 

before full conversion was reached (Table 3.6, entry 4) after step i (epoxide 

polymerization), step ii (lactide polymerization), and precipitation to isolate the block 

copolymer. 
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Table C.9. Epoxide-lactide copolymerization data with a 5:1 [L]:[CHO] ratio where the 

lactide polymerization is switched off before full conversion is reached
a
 (Table 3.6, entry 

4) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 2.2 2.4 -- -- 

After step ii 

(unpurified) 

8.8 1.4 1:3 -- 

Acetone filtrate 7.4 1.5 1:3 96 

Acetone ppt. 9.3 1.5 1:42 2 

Hexanes filtrate 8.0 2.0 1:7 37 

Hexanes ppt. 11.6 1.4 3:1 44 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

 

 

Figure C.6.  GPC traces for sequential cyclohexene oxide-lactide copolymerization with 

[lactide]:[cyclohexene oxide] = 1:1 (Table 3.6, entry 2) after step i (epoxide 

polymerization), step ii (lactide polymerization), and precipitation to isolate the block 

copolymer. 
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Table C.10. Sequential epoxide-lactide copolymerization data with a 1:1 monomer ratio
a
 

(Table 3.6, entry 2) 

Entry Mn 

(kg/mol)
b 

Mw/Mn
 

[PLA]:[PCHO]
c 

Mass recov. 

(%) 

After step i 7.4 1.8 -- -- 

After step ii 

(unpurified) 

12.5 1.4 7:1 -- 

Acetone filtrate 12.3 1.4 7:1 93 

Acetone ppt. 15.2 2.0 1:20 2 

Hexanes filtrate 1.5 4.2 1:14 15 

Hexanes ppt. 11.5 1.3 9:1 85 

a
The reaction mixture was precipitated from acetone to remove homopolyether. The 

material collected from the acetone filtrate was then precipitated from hexanes to isolate 

copolymer and remove some low molecular weight homopolyether. 
b
Determined by 

refractive index detector relative to polystyrene standards. 
c
Determined by 

1
H NMR. 

 

Table C.11. Copolymer molecular weight data by GPC and 
1
H NMR. 

 

 After step i After step ii and precipitation
a
 

Entry Mn  

(GPC-

RI)
b 

Mn  

(GPC-

LS)
c
 

Mn  

(NMR)
d
 

Mn  

(GPC-RI)
b 

Mn  

(GPC-

LS)
c 

Mn  

(NMR)
d 

[PLA]: 

[PCHO]
e
 

1 1.2 22.8 n.d. 10.6 30.9 10.3 9:1 

2
g 7.4 n.d. n.d. 12.5 20.5 13.3 9:1 

3
f 1.2 n.d. n.d. 5.8 34.6 17.9 3:1 

4
f,h 2.2 n.d. n.d. 11.6 30.1 11.5 3:1 

a
Isolated by precipitation from acetone and hexanes. 

b
kg/mol, determined by GPC with 

refractive index detector relative to polystyrene standards. 
c
kg/mol, determined by GPC 

with light scattering detector 
d
kg/mol, determined by 

1
H NMR integration ratio of 

methine peaks of polymer and aromatic peaks of 4-methoxyphenoxide end groups 

multiplied by molecular weight of monomer. 
e
Determined by 

1
H NMR. 

f
[CHO]:[L] = 5:1 

([CHO] = 0.80M). 
g
Lactide added in step ii after CoCp2. 

h
Step i carried out for 30 min. 

 


