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ABSTRACT:

After the 2007 �nancial crisis, a big attention has been dedicated to credit rat-

ings. Whether ratings are capable to provide the most precise and timely information

is a question that has been tackled from di¤erent angles. The possibility to discipline

credit ratings via a regulatory mechanism, the in�uence that ratings may play on

�rms�corporate governance decisions and the information they deliver in comparison

to other �nancial intermediaries are the main points that this dissertation aims to

address.

The �rst paper compares the behavior of standard or issuer-paid rating agen-

cies, represented by Standard & Poor�s (S&P) to alternative or investor-paid rating

agencies, represented by the Egan-Jones Ratings Company (EJR) after the Dodd-

Frank Act regulation is approved. Results show that both S&P and EJR ratings are

more conservative, stable and, on average, lower after the Dodd-Frank implementa-

tion. However, EJR ratings are higher for �rms that may generate high revenue for

the rater. Additionally, I �nd that, after the regulation, S&P cares more about its



reputation. Exploiting a measure that captures the bond market�s ability to antici-

pate rating downgrades, I show that, after Dodd-Frank, bond market�s anticipation

decreases for S&P but increases for EJR, suggesting that S&P ratings are timelier.

Finally, I study how the bond market responds to rating changes and how �rms per-

ceive ratings in their decision to issue debt in the post-Dodd-Frank period. Results

suggest that both S&P downgrades and upgrades generate a greater bond market re-

sponse. On the contrary, only EJR upgrades have a magni�ed e¤ect on bond market

returns. The greater informativeness of S&P ratings after Dodd-Frank is con�rmed

by the meaningful impact of these ratings on �rm debt issuance.

The second paper (coauthored with Annamaria C. Menichini) studies the rela-

tionship between credit rating changes and CEO turnover beyond �rm performance.

Using an adverse selection model that explicitly incorporates rating change related

turnover, our model predicts that a downgrade triggers turnover, more so the lower

the managerial entrenchment, but that this relation is weaker when the report pro-

vided by the rating agency is more reliable. Our empirical results support these

predictions. We show that downgrades explain forced turnover risk, with the new

CEO chosen outside the �rm that has received the negative credit rating change. In

addition, we �nd that the relation between rating changes and management turnover

is stronger when the degree of managerial entrenchment is low, for �rms characterized

by a high level of investment and for �rms less exposed to rating fees. Finally, we

show that this relation has weakened in the post-2007 crisis period, in coincidence

with the increased reputational concerns of the rating agencies. The results are robust

to endogeneity concerns.



The third paper (coauthored with Thomas J. Chemmanur and Igor Karagod-

sky) focuses on equity analysts, issuer-paid and investor-paid ratings. Equity analysts�

forecasts and ratings assigned by issuer-paid credit rating agencies such as Standard

and Poor�s (S&P) and by investor-paid rating agencies such as Egan and Jones (EJR)

all involve information production about the same underlying set of �rms, even though

equity analysts focus on cash �ows to equity and bond ratings focus on cash �ows to

bonds. Further, the two types of credit rating agencies di¤er in their incentives to

produce and report accurate information signals. Given this setting, we empirically

analyze the timeliness and accuracy of the information signals provided by each of

the above three types of �nancial intermediary to their investor clienteles and the

information �ows between these intermediaries. We �nd that the information signals

produced by EJR are the most timely (on average), and seem to anticipate the infor-

mation signals produced by equity analysts as well as by S&P. We �nd that changes

in leverage are associated with lower EJR ratings but higher equity analysts�recom-

mendations; further, credit rating changes by EJR have the largest impact on �rms�

investment levels. We also document an �investor attention�e¤ect (in the sense of

Merton, 1987) among stock and bond market investors in the sense that changes in

equity analyst recommendations have a higher impact than either EJR or S&P ratings

changes on the excess returns on �rm equity, while EJR rating changes have a higher

impact on bond yield spreads than either S&P ratings changes or changes in equity

analyst recommendations. Finally, we analyze di¤erences in bond ratings assigned to

a given �rm by EJR and S&P, and �nd that these di¤erences are positively related

to the standard proxies for disagreement among stock market investors.
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CHAPTER 1.

DOES THE DODD-FRANK ACT HELP REDUCING THE

CONFLICTS OF INTEREST FACED BY CRAS?

1.1 Introduction

"The main goal of the Dodd-Frank Act (Rule 17g-5) is
to discourage issuers from "shopping" for the highest rating and
to encourage credit rating �rms to issue more accurate ratings".

(The Wall Street Journal - May 14, 2013)

Credit ratings are an important tool for assessing the relative level of credit

risk of a company. More precisely, credit rating agencies provide forward-looking

evaluations on the �rms�creditworthiness, which bene�t both issuers and potential

investors. Credit ratings help issuers gain access to debt. Good credit ratings allow

them to easily borrow from �nancial intermediaries or public markets. However,

credit ratings also help investors understand the �rm�s ability to repay its debts.

Disciplining the rating activity is one of the main concerns of regulators in the

wake of the 2007 �nancial crisis. Credit rating agencies (CRAs) have been blamed for

contributing to the �nancial crisis, and the impetus for this idea is the investment-

grade, "money-safe" ratings they provided to mortgage-backed securities.

The US Attorney General Eric H. Holder Jr. observed:

"ratings were a¤ected by signi�cant con�icts of interest, and Standard and Poor�s (S&P)
was driven by its desire for increased pro�ts and market share to favor the interests of

issuers over investors."1

The con�icts of interest a¤ecting CRAs have their roots mainly on the CRA

1Attorney General Eric H. Holder Jr., The New York Times, Febrary 3, 2015.
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compensation system.2 The main rating agencies operating on the market are, in

fact, paid by the issuers themselves, following a model commonly known as issuer-

paid. Given the poor performance of CRAs during the �nancial crisis and the need to

better organize the rating industry, in July 2010, the Dodd-Frank Wall Street Reform

and Consumer Protection Act (Dodd-Frank Act) was passed. The law had a precise

intention:

"to adopt new requirements for credit rating agencies to enhance governance, protect
against con�icts of interest, increase transparency to improve the quality of credit ratings

and increase credit rating agency accountability".3

The Dodd-Frank Act applies to all the rating agencies that are nationally recog-

nized (NRSROs), independent of the compensation system. However, it is clearly

intended to discipline the main rating agencies (Standard and Poor�s, Moody�s and

Fitch) after their misbehaviour during the �nancial crisis.

The purpose of this paper is to analyze the e¤ects Dodd-Frank had on rating

agencies with di¤erent business models. More precisely, a comparison between the

standard issuer-paid model and the alternative investor-paid model, where investors

demand and pay for ratings, is proposed. This paper is motivated by a large stream of

the literature arguing that, among all "�nancial gatekeepers," credit rating agencies

face the most serious con�icts of interest (Partnoy, 2006). Exploiting the potential

higher con�icts of interest, many papers (e.g. Jiang et al., 2012, Strobl and Xia,

2012, Cornaggia and Cornaggia, 2013) show that the issuer-paid model is slower in

2Pagano and Volpin (2010) argue that the con�icts of interest a¤ecting issuer-paid credit rating
agencies are due to a combination of three factors: the compensation system adopted, the possibility
to sell ancillary services to their clients (like pre-rating assessments and corporate consulting) and
the almost total immunity to civil and criminal liability for malfeasance. (Credit ratings should be
treated as "opinions" and, because of that, are protected by the First Amendment).

3U. S. Securities and Exchange Commission, Press Release, August 27, 2014.
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identifying bad news, less timely and, above all, less accurate when compared to the

alternative investor-paid model.

This paper exploits the Dodd-Frank Act for �ve main reasons. First, I want

to study whether and how the di¤erence in rating levels between the standard rating

agencies, represented by S&P, and the alternative ones, represented by EJR4, changes

after a disciplining law, such as the Dodd-Frank Act. Second, I want to analyze

whether and which rating agency is a¤ected more by the passage of the law in terms

of rating stability. Third, I want to investigate the reputation e¤ect of the regulation

on both rating agencies. In addition, I want to understand whether ratings a¤ect the

�rm tendency to reduce debt issuance when close to a rating change. Lastly, I aim

to investigate the bond market response to rating changes after Dodd-Frank.

The paper is developed by constructing a dataset that includes �rm-, bond-

and stock-speci�c information together with rating data. Ratings from S&P and EJR

are obtained from di¤erent sources. S&P rating data and �rm characteristics are

collected from Compustat North America. EJR rating data are provided directly by

the company. The analysis covers a sample period from 2005 until 2014 to isolate the

e¤ects of the Sarbanes-Oxley Act. Following the approach adopted by the literature,

the Dodd-Frank period goes from the third quarter of 2010 until the last quarter of

2014.

The results illustrate that the Act lowers corporate credit ratings. Using an

ordered logit model, I �nd that the probability of getting lower ratings from S&P

4The Egan and Jones Rating company was founded in 1995 and is wholly investor-supported. It
rates the creditworthiness of more than 2000 high-yield and high-grade U.S. corporate debt issuers.
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is higher after the regulation is passed. The same result is found for EJR. However,

EJR decreases its ratings less, as shown by the rating di¤erence between the two

rating agencies that becomes negative after the passage of Dodd-Frank. The study is

extended to investigate whether the observed path holds for �rms that may be more

likely to generate revenue for credit rating agencies.5 The results show that, before

Dodd-Frank, S&P is more likely to in�ate ratings for these �rms. However, in the

post-Act period, there is no longer a tendency to in�ate ratings from S&P. On the

other side, EJR ratings behave di¤erently. Before Dodd-Frank, EJR does not seem

to rate �rms with a large volume of bonds more generously than �rms with a lower

volume. However, after Dodd-Frank, EJR appears to in�ate ratings for this category

of �rms, suggesting a greater attention toward business development and revenue.

My second test examines rating conservativeness and stability. There is no

signi�cant di¤erence in the behavior adopted by the two rating agencies.6

The third set of results relates to reputation. One way to capture the e¤ect of

the Dodd-Frank Act on CRAs�reputation is via bond market anticipation. As sug-

gested by Zuckerman and Sapsford (2001), crises events and �nancial collapses might

5I use two proxies to capture the �rm�s ability to generate revenue for the credit rating agency.
The �rst is constructed to proxy for bond issue frequency (Covitz and Harrison, 2003; Kraft, 2011).
The intuition for this proxy relies on the idea that �rms issuing many bonds are considered "good
clients" for issuer-paid rating agencies. Given the larger business that these �rms can o¤er to CRAs,
the phenomenon of rating in�ation should be ampli�ed for them. The second proxy (results for
this proxy are not tabulated) is borrowed for Strobl and Xia (2012). Their measure of con�icts of
interest takes into account the maturity of debt and aims to capture the reliance of �rms on credit
rating agencies. Their intuition is that �rms that have a large proportion of their debt in the form
of short-term debt are more subject to the rating agency�s evaluation, as they need to roll over their
debt more often.

6In April 2003, Moody�s released a special comment to provide instructions about how to measure
the performance of corporate bond ratings. In this document, Moody�s tracks several volatility
metrics to measure rating stability. Among these: (1) the frequency of rating changes of three
or more rating notches and (2) the frequency of rating reversals (de�ned as rating actions in the
opposite direction of previous rating actions). These are inverse measures of rating stability.

4



be exacerbated when investors do not get any warning from outside institutions, in-

cluding rating agencies, as seen during the Enron scandal. Consequently, issuing

timely and accurate ratings becomes fundamental for the investors, who might expe-

rience a loss because of the lacking information, and for the institutions themselves,

who might be accused of misbehavior. To verify the importance of reputation for

credit rating agencies, I test whether the bond market can predict rating announce-

ments by comparing the bond spread variation before the rating disclosure to the

bond spread variation afterward. Attention is focused on downgrades, since these

are the rating changes that have a greater impact on investors�wealth. I investigate

how careful rating agencies are in providing information to the market by examining

whether a rating delay occurs for falling angels, de�ned by investment grade �rms

whose credit rating falls to become speculative, and large �rms. The analysis of the

market�s ability to anticipate rating changes is conducted before and after the Act.

Results suggest that market anticipation of S&P rating changes falls drastically after

the Dodd-Frank Act. The opposite pattern is observed for EJR.

If Dodd-Frank disciplines issuer-paid rating agencies and if, consequently, issuer-

paid credit ratings gain greater information content, then we should expect �rms to

react more to these ratings in terms of their decision to increase/decrease debt is-

suance. To test this, I verify whether �rms�debt issuance is a¤ected more by issuer-

paid rating thresholds rather in the post-Dodd-Frank period. Speci�cally, following

the methodology suggested by Kisgen (2006), I study whether debt issuance decreases

more when �rms receive a plus or a minus S&P rating, compared to a plus or a minus

EJR rating. The results suggest that �rms with a minus sign assigned by S&P lower

5



their debt issuance more in the post-Dodd-Frank period than �rms with a plus or a

minus sign from EJR.

The last set of results illustrates the bond market response to rating changes

before and after Dodd-Frank. The results suggest that S&P downgrades and upgrades

are more informative. The bond market reacts more to EJR upgrades. However, the

response to EJR downgrades weakens in the after Dodd-Frank.

Taken together, the results suggest that the two credit rating agencies follow

di¤erent strategies in the post-Dodd-Frank period with S&P being more prudent,

more focused on its reputation and able to exercise a greater impact on the bond

market.

This paper contributes to three main areas of research. First, it contributes to

the growing literature explaining the di¤erences between rating models that di¤er for

the compensation system adopted. Second, the paper helps to the understanding of

factors that may impact the reputation for credit rating agencies. Finally, it enriches

the research that studies the e¤ect of government regulations on ratings. To the best

of my knowledge, this is the �rst paper to study the e¤ect of the Dodd-Frank Act on

multiple rating agencies and, in particular, to focus on how the di¤erence between

issuer-paid and investor-paid rating agencies evolved with a regulatory action. As far

as I am aware, the closest paper is by Dmitrov et al. (2014). However, that paper

makes no comparison between alternative models for the post-Dodd-Frank period.

The rest of the paper is organized as follows. Section 2 presents the institu-

tional background with a brief description of the di¤erences between the two alter-

native models and the reasons that behind the 2010 regulation. Section 3 contains

6



the literature review. Section 4 illustrates the underlying theory and the hypotheses

tested. Section 5 describes the data and provides details about the variable construc-

tion. Section 6 presents the main results. Section 7 concludes.

1.2 CRAs and the Dodd-Frank Act

Before the 2007 crisis, thanks to numerous laws and regulations, credit rat-

ing agencies had a primary and often decisive role in de�ning �rm creditworthiness.

Supporting that role was the decision in January 2001 from the Basel Committee on

Banking Supervision to issue a consultative document on a new Basel Capital Accord

(Basel II). Basel II puts great emphasis on external ratings, including from rating

agencies, to assess credit risks.

Since 2007, credit rating agencies have been widely criticized because of their

generous ratings on mortgage-backed securities and other structured-�nance bonds

that later defaulted. Critics argue that the observed rating errors underscore features

of the rating industry that have weakened rating standards � in particular, the

compensation system in which rating agencies are paid by security issuers rather than

investors. The �nancial crisis induced researchers to consider the best compensation

model to adopt in the rating industry.

At the moment, the rating market is characterized by two business models.

The �rst model is the standard issuer model where the issuer pays the rating

agency for a rating. Many studies have shown that these ratings are more likely to

be in�ated if the issuer is a large or a mature company. These ratings also tend to

7



be in�ated during credit booms, since the fee income is more elevated. In addition,

the standard model is more likely to be a¤ected by rating shopping: issuers shop for

the most positive ratings, causing a decline in the rating standards, as agencies hope

to avoid losing market share by raising rating scores.

The alternative model is the investor model in which there is no direct rela-

tionship between issuers and rating agencies. In this model, investors pay the rating

agency for an evaluation of the �rm they want to invest in.

The weaknesses of the standard model and the role that standard rating agen-

cies had in the �nancial crisis brought about calls to better discipline the rating

industry.

Introduced in the House of Representatives as "The Dodd-Frank Wall Street

Reform and Consumer Protection Act of 2009" by Barney Frank and in the Senate

Banking Committee by Chris Dodd on December 2, 2002, the Dodd-Frank Act was

o¢ cially signed into law by President Barack Obama on July 2010. The 2010 Dodd-

Frank Act incorporates a wide range of provisions to reshape the rating industry:

The most relevant reforms include (1) new authority for the Securities and Exchange

Commission (SEC) to suspend or revoke a rating agency�s registration if warranted or

to penalize individual agency employees for misconduct, (2) public disclosure of the

assumptions and data used to arrive at each rating, (3) rules to strengthen corporate

governance and board independence, (4) use of look-backs when agency employees

leave to join �rms whose ratings they may have in�uenced, (4) creation of an O¢ ce

of Credit Ratings within the SEC to administer regulation and conduct annual ex-

aminations, (5) de�nition of standardized ratings to ensure comparability across rat-

8



ings. The Dodd-Frank Act�s impact on the rating industry was strengthened by the

Franken Amendment (Section 939F) whose main actions aim to "direct the Security

Exchange Commission to conduct a study of the credit rating process for structured

�nance products and the con�icts of interest associated with the issuer-pay and the

subscriber-pay models" and to "consider potential mechanisms for determining fees

together with alternative compensation models".7

Dodd-Frank applies to all the nationally recognized statistical rating organiza-

tions (NRSROs). Among all the credit rating agencies operating in the rating sector,

there are nine NRSRO rating agencies: Standard & Poor�s, Moody�s Investors Ser-

vice, Fitch Ratings, Kroll Bond Rating Agency, A. M. Best, Dominion Bond Rating

Service (DBRS), Japan Credit Rating Agency, Egan-Jones Rating Company (EJR)

and Morningstar. The Egan-Jones Ratings Company is the only NRSRO rating

agency following the investor-paid model.

1.3 Literature Review

This paper relates to three main streams of the literature on CRAs.

First, this paper contributes to the literature that seeks to investigate the

reasons behind rating mistakes and perverse rating outcomes, by conducting a com-

parison between di¤erent business models.

Who pays for a rating matters. Jiang et al. (2012) provide evidence from the

1970s when Moody�s and S&P were using di¤erent compensation systems. In particu-

7"Report to Congress on Assigned Credit Ratings", Security Exchange Commission, December
2012.
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lar, from 1971 until June 1974, S&P used an investor-paid model, while Moody�s used

an issuer-paid model. During this period, Moody�s ratings systematically exceeded

those of S&P. After S&P adopted the issuer-paid model, S&P ratings essentially

matched Moody�s.

The adoption of a speci�c compensation model is likely to a¤ect the probability

of credit rating in�ation. Camanho, Deb and Liu (2012) develop a theoretical model

to analyze the e¤ects of competition on the con�icts of interest arising from the issuer

compensation model.8 Their main �ndings suggest that rating agencies following the

issuer-paid model are more likely to issue in�ated ratings, as issuers can choose among

di¤erent agencies. A similar conclusion is presented in Strobl and Xia (2012). Here,

the authors show that S&P is more likely to provide higher ratings than EJR when

�rms have a higher percentage of short-term debt, when �rms have less concentrated

business relationships with S&P and when �rms have appointed a new leader and thus

are more inclined to change their operational and �nancial strategy. On the contrary,

no evidence for such behavior is found for EJR. Finally, a more direct comparison

between models in the rating industry is o¤ered in a recent paper by Xia (2014).

Consistent with Cornaggia and Cornaggia (2013), Xia �nds that issuer-paid ratings

are slower in re�ecting news to the market and incorporate less information when

compared to investor-paid ratings. Additionally, Xia �nds that issuer-paid rating

agencies bene�ted from the entry of an investor-paid rating agency like EJR, as it

8The disciplining e¤ects of competition on credit rating agencies are studied theoretically by
Mathis et al. (2009), Camanho et al. (2010), Bar-Isaac and Shapiro (2011), Skreta and Veldkamp
(2011), Bolton, Freixas, and Shapiro (2012) and Manso (2013) among others. On the empirical front,
Becker and Milbourn (2011) �nd evidence that the entry of Fitch led to better ratings. The opposite
results are reported by Doherty et al. (2012) in their analysis of entry into insurance market by
A.M. Best.
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brought indirect competition with the issuer-paid raters, revealing the low quality of

existing ratings.

Second, this paper relates to the literature analyzing the reputation concerns

of credit rating agencies. Covitz and Harrison (2003) analyze whether CRAs act

to protect their reputations as delegated monitors. Considering a sample of rating

transactions from 1997 to 2002, they show that CRAs care about their reputation and

issue timely ratings that can hardly be anticipated by the bond market. Mathis et

al. (2009) argue that reputation matters only if a large fraction of CRA income

comes from other sources besides rating products. Becker and Milbourn (2011),

instead, show that CRA reputation depends on competition. Using the Fitch�s market

share as a proxy for increased competition, the authors point out that rating quality

decreased after the entry of Fitch in the rating market.9 Lastly, Bar-Isaac and Shapiro

(2010) highlight the link between CRA reputation and economic fundamentals varying

over the business cycle. Their evidence suggests that CRAs are more likely to issue

inaccurate ratings during booms than during recessions.

Third, this paper aims to contribute to the literature that studies the e¤ects

of government regulations on credit rating agencies. A �rst e¤ort in this direction is

provided by White (2009), who investigates the potential e¤ects associated with the

expanded regulation on credit rating agencies after the optimistic ratings of subprime

residential mortgage-backed securities. White points out that excessive regulation

may raise barriers to entry, rigidify procedures and discourage innovation in gather-

9The result provided by Becker and Milbourn (2011) contradicts the main �ndings of Bae et al.
(2013) and Cheng and Neamtiu (2008).
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ing and assessing bond information. A di¤erent approach is adopted by Kisgen and

Strahan (2010) who examine the impact of ratings regulation on bond yields. Their

analysis, which is conducted exploiting a quasi-natural experiment, the NRSRO desig-

nation received by DBRS in 2003, shows that investors care about the ratings granted

and that they decide to hold bonds only when they are rated investment grade by one

or more NRSROs. A similar study with a greater attention toward the investor-paid

model is that of Bruno et al. (2015). Here the authors show that the information

content of EJR ratings does not change after the NRSRO certi�cation has been as-

signed, with both upgrades and downgrades being equally likely. A similar analysis

is performed by Behr et al. (2014). They analyze the e¤ect of the NRSRO sta-

tus granted in 1975 on the largest rating agencies. They highlight a sort of "rating

entrenchment" for all those rating agencies designated as NRSRO. The designation

resulted in more barriers to entry in the industry, lower incentives to improve credit

quality and, consequently, higher ratings and reduced rating informativeness.

The �rst paper to analyze the e¤ects of the Dodd-Frank Act on credit rating

agencies is by Dimitrov et al. (2014). The aim of this paper is to investigate whether

the passage of the Dodd-Frank had a disciplining e¤ect on CRAs after the 2007

�nancial crisis. The results suggest that, after Dodd-Frank, the accuracy of rating

standards, as measured by the rating levels, the number of false warnings and the

information content of rating changes, declines. As a consequence, they conclude that

the Dodd-Frank regulation had a weak e¤ect on the rating sector.

The purpose of this paper is to take a step further than Dimitrov et al. (2014)

and to better identify the e¤ects of the regulation across di¤erent business models.
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The goal is to investigate whether Dodd-Frank disciplined issuer-paid rating agencies

and how that a¤ected the behavior of a rating agency, like EJR, that bene�ted of a

good reputation in the past.

1.4 Theory and Hypothesis Development

In this section, I brie�y discuss the underlying theory and the hypotheses for

the empirical tests.

The �rst rating agency I examine is Standard and Poor�s. This is a standard

rating agency, paid by issuers and strongly criticized during the 2007 �nancial crisis

for being too lax. The alternative approach, represented by the Egan-Jones Ratings

Company, entails a more active role of the investors, who demand and pay for the

ratings of the �rms. This alternative rating model is widely recognized for being less

exposed to con�icts of interest. Several papers have shown the existence of a gap

between the standard and the alternative model, which translates into more diligence

by the latter. Little has been done to investigate how this gap evolves after the

passage of a disciplining regulation like the Dodd-Frank Act.

The comparison between the issuer-paid model and the investor-paid model is

conducted around several hypotheses.

First, the Dodd-Frank Act may a¤ect rating levels. In the standard business

model, issuing higher ratings is a way for the rating agency to strengthen its re-

lationship with its clients. However, this strategy may hurt the informativeness of
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ratings.10 A bad quality �rm might receive a good grade only because there is a

long-term relationship between the issuer and the rating agency. For this reason, it

becomes interesting to analyze whether Dodd-Frank a¤ects the rating level of the

standard model compared to the alternative one. I expect S&P to issue lower ratings

after the law. The behaviour of EJR needs to be better tested empirically. Di¤erent

outcomes are, in fact, possible. Given the regulatory pressure created by the Dodd-

Frank Act, it might be the case that EJR lowers its ratings as well. However, since

Dodd-Frank mainly aims to discipline the issuer-paid rating agencies, EJR may lower

its ratings but to a lower extent. Another possibility for EJR is to not change the

rating strategy at all. If EJR is con�dent about its ratings and the market recognizes

their informativeness, then EJR should be only marginally a¤ected by Dodd-Frank

in terms of credit rating levels. Put di¤erently, the rationale behind the �rst test is

to understand whether the di¤erence between S&P and EJR rating levels becomes

negative after Dodd-Frank. This is the �rst hypothesis (H1) I test.

Second, as emphasized by Dmitrov et al. (2014), Dodd-Frank may have a

threatening e¤ect on rating agencies. Standard rating agencies may react to the

regulation by issuing more conservative ratings, meaning by assigning more severe

ratings to �rms that are not close to default. Following the same logic, ratings are

expected to be more stable. Stability in ratings is a preferable condition in the rating

industry since it ensures a constant �ow of information to investors. Given the disci-

plining e¤ect of the regulation, I expect S&P to adopt a strategy that compensates

10As stated by Pagano and Volpin (2010): Ratings in�ation and low informativeness may reinforce
each other. To the extent that investors are rational, they will see through CRA�s incentives to in�ate
ratings and therefore will consider them as relatively uninformative".
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its previous negligence. The e¤ect on EJR is uncertain. I expect EJR not to change

its behaviour or, on the limit, to issue more conservative and stable ratings in line

with what is suggested by the Dodd-Frank Act. This is the second hypothesis (H2)

I test here.

Third, disciplining regulations may a¤ect how much rating agencies care about

their reputation. Measuring reputation is not easy and the literature has proposed

several ways. One way to capture the attention of rating agencies toward reputation

is to study whether rating changes can convey information that is not otherwise

available to the market. Using the approach of Covitz and Harrison (2003), reputation

is proxied by the degree of market anticipation11, which has clear implications for the

reputation of rating agencies. I expect rating agencies to be positively a¤ected by the

regulation in terms of reputation. That is, I expect market anticipation to decrease

and, on the limit, to become negative after Dodd-Frank. In addition, I expect to

observe a magni�ed e¤ect for S&P compared to EJR. This is the third hypothesis

(H3) that I test.

My fourth hypothesis relates to how �rms perceive credit ratings after Dodd-

Frank. If S&P ratings become more reliable after Dodd-Frank, �rms should take more

into account S&P credit ratings in their decisions regarding debt issuance. Speci�-

cally, I expect �rms to reduce their debt issuance more after Dodd-Frank when the

rating they receive has a plus or a minus S&P rating. There should be no signi�cant

11The intuition behind bond market anticipation as a proxy for CRA reputation is the following:
if the poor performance of a given �rm is somehow anticipated by the market without relying on
credit ratings, then credit ratings become meaningless, and rating agencies do not properly act as
delegated monitors.
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change in how �rms perceive EJR ratings after Dodd-Frank Act. This is the fourth

hypothesis (H4) I test.

The last hypothesis (H5) to consider is the market perception of rating changes.

If following a downgrade (upgrade), the bond market reacts by strongly decreasing

(or increasing) the average market return, then it means the market believes in the

information content of rating changes. On the other hand, if the market reaction

is weak, the informativeness of credit ratings is reduced. I expect the Dodd-Frank

Act to in�uence the way the bond market responds to rating changes. Speci�cally, I

expect to see a more pronounced market reaction following S&P rating changes. No

signi�cative change, for the reasons explained above, should be observed for EJR.

1.5 Data: Sample Selection and Variable Construction

My paper relies on several datasets.

The S&P long-term credit ratings are obtained from Compustat North Amer-

ica Ratings. All the observations for which there are no rating data are deleted from

the sample. Following the existing literature, I assign numerical values to each rat-

ing on notch basis: AAA=23, AA+=22, AA=21, AA-=20, A+=19, A=18, A-=17,

BBB+=16, BBB=15, BBB-=14, BB+=13, BB=12, BB-=11, B+=10, B=9, B-=8,

CCC+=7, CCC=6, CCC-=5, CC=4, C=3, D=2, SD=1. Since �rm characteristics

are available only quarterly, I construct a quarterly time series for the S&P rating

database. To this end, I average the rating actions happening in the same quarter,

meaning that, if there is more than one rating action in the same quarter, I take the
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average of these ratings based on the above numerical conversion.

The EJR database is obtained directly from the Egan and Jones Ratings Com-

pany. The database contains issuers�names, tickers, rating actions, including new rat-

ing assignments, upgrades and downgrades and related rating dates. This database

is constructed on a time-series basis, where each credit rating with a rating action

is treated as an observation. I thus construct a quarterly time series for the EJR

database, where I assign a rating in the current quarter equal to the rating in the

previous quarter if no rating action has occurred. Since EJR and S&P use the same

rating scale, I use the same numerical conversion adopted for the S&P database. As

before, I delete observations when rating data are not available. The sample period

covered by the EJR dataset goes from 1999 until 2014. I merge the S&P and EJR

databases using the �rm ticker and the year-quarter information.

Issuers� �nancial information and �rm-speci�c characteristics are obtained

from the Compustat database. I consider characteristics that may have an impact on

the rating level. Speci�cally, I consider size, tangibility, market-to-book, pro�tability,

long-term leverage, debt issuance and cash-asset ratio.12 To deal with possible endo-

geneity problems, all variables are lagged one period. All missing values are deleted

from the sample. Additionally, to limit the e¤ects of outliers, all the control variables

are winsorized at the 1% level. The Compustat database is merged to the S&P and

EJR rating database by using the �rm ticker and the year-quarter information.

Finally, the analysis requires the use of bond data. Bond information is gath-

ered from FINRA�s Trade Reporting and Compliance Engine database (TRACE).

12More details about how variables are constructed are provided in the appendix.
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This database contains information about bond prices, returns, yields and years to

maturity. To get bond spreads, I collect the Treasury yields13 from the US Treasury

database, available online. I construct bond spreads for each �rm as the di¤erence

between the bond yield of each security and the Treasury yield with comparable ma-

turity and coupon. I drop observations if the spread is equal or lower than zero or if

there are missing data.14

Figure (1) provides an illustration of the S&P and EJR average credit rating

levels over time, starting from 1999, when the EJR ratings became publicly available.

The �gure shows that the S&P credit ratings are above the EJR credit ratings during

the 2007 �nancial crisis. However, starting from 2010, this trend is reversed. The

analysis in this paper starts in January 2005 to isolate the e¤ect of the Sarbanes-Oxley

Act. The beginning of the post Dodd-Frank period is July 2009.

Figure 1: S&P and EJR rating levels over time

Summary statistics for �rm characteristics and rating data, before and after
13Treasury yields are interpolated by the Treasury from the daily yield curve, which relates the

yield on a security to its maturity based on the closing-market bid yields on actively traded Treasury
securities in the over-the-counter market. The yield values are read from the yield curve at �xed
yearly maturities: 1, 2, 3, 5, 7, 10, 20, 30 years.
14Further details about the construction of the bond-related data are provided later in the empir-

ical section.
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Dodd-Frank, are provided in Table (1.1).

[Insert Table 1.1]

Firm characteristics are almost unchanged after the passage of the Dodd-Frank

Act. The market-to-book and tangibility are slightly lower. Size and long term

leverage are slightly larger. The credit rating di¤erence, de�ned as the di¤erence

between Standard & Poor�s ratings and EJR ratings, is positive before the passage of

Dodd-Frank Act but negative afterward. As shown in the summary statistics table,

the sample covers 790 �rms in the pre-Dodd-Frank period and 699 in the post-Dodd-

Frank period. The total number of observations in the pre-Dodd-Frank period is

9,806. The total number of observations in the post Dodd-Frank period is 7,889.

The distribution of rating changes, upgrades and downgrades, for S&P and

EJR is provided in Table (1.2).

[Insert Table 1.2]

Table (1.2) illustrates how the rating activity evolves with the passage of the

law. It points out that the rating activity has become faster after the regulation is

passed. The number of rating changes substantially increases after 2010, with the

upgrades becoming more frequent, above all for EJR.
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1.6 Empirical Results

1.6.1 Rating Levels

The main purpose of this paper is to analyze how credit rating agencies behave

after Dodd Frank Act. The �rst step (Hypothesis 1 ) is to consider the e¤ect of the

Dodd-Frank law on credit rating levels for Standard and Poor�s and Egan-Jones. The

evidence suggests that rating agencies shifting from the investor model to the issuer

model have issued higher ratings over time (Jiang et al., 2012) and that, under speci�c

circumstances that may enhance the con�icts of interest, issuer-paid agencies provide

higher ratings than investor-paid rating agencies (Strobl and Xia, 2012). However,

we do not know whether this trend persists after a disciplinary regulation, like Dodd-

Frank, has been approved. The intuition suggests that S&P should progressively lower

its ratings in an attempt to be more prudent after Dodd-Frank. On the opposite side,

the result for EJR is an open question. As pointed out in the "Theory and Hypothesis

Development" section, di¤erent scenarios are possible. One possible result could be

EJR issuing lower ratings. However, given that the law was thought to discipline

the standard issuer-paid rating agencies, we should expect a more mitigated e¤ect

on the alternative investor-paid model. Another possibility for EJR is not to change

its strategy because it was already precise and punctual. The last possibility for

EJR is to issue higher ratings in the post-Dodd-Frank period. The law, conceived

for the standard issuer-paid rating agencies, may have weakened the rating standards

for the alternative model. In other words, since the law targets the standard rating

agencies, institutions may pay less attention to monitoring all rating agencies, and
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the investor-paid agencies may, as a result, relax their standards.

I test Hypothesis 1, the e¤ect of the Dodd-Frank law on rating levels and,

consequently, on the rating di¤erence between S&P and EJR, by estimating the fol-

lowing ordered logit model (or ordinary least squares model) where the dependent

variable, the rating level for S&P or EJR, is estimated controlling for speci�c �rm

characteristics and a time trend.

More in detail:

(S&P Rating)it = �+�1 Dodd Frank Act+�2 Xit�1+�3 Recession+�t+�SIC+"it;
(1.1)

(EJR Rating)it = �+�1 Dodd Frank Act+�2 Xit�1+�3 Recession+�t+�SIC+"it;
(1.2)

where the dependent variable in models (1.1) and (1.2) is represented by the

rating scores assigned by S&P and EJR, respectively. Following the methodology used

by Dmitrov et al. (2014), I de�ne Dodd-Frank using a dummy variable that takes

value one starting from July 2010. I include �rm-speci�c variables that may a¤ect

the rating level (size, cash ratio, tangibility, market-to-book ratio, past pro�tability,

past debt issuance ratio, long-term leverage15), a dummy variable that accounts for

the 2007 �nancial crisis and a time trend. Results for the S&P and EJR rating levels

are presented in Table (1.3).

[Insert Table 1.3]

15To account for possible endogeneity issues, all the control variables are lagged one period.
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In Table (1.3), Columns (1) and (2) show results when the dependent variable

is the S&P rating level. Columns (3) and (4) show results when the dependent variable

is the EJR rating level. Columns (1) and (3) present estimates when the model is an

ordinary least square, with a time trend and industry �xed e¤ects. Columns (2) and

(4) present results when the estimated model is an ordered logit, with a time trend

and industry �xed e¤ects. Results are consistent across di¤erent speci�cations.

In the post-Dodd-Frank period, the probability of receiving lower ratings from

S&P is higher. All the controls included in the regression have the predicted signs:

larger and pro�table �rms, that issued large amounts of debt in the past and that are

characterized by important growth opportunities (as proxied by the market-to-book

ratio) are more likely to receive higher ratings. On the contrary, �rms with high

levels of leverage or with higher cash ratios receive lower ratings. Interestingly, the

time trend moves in opposite direction with respect to the coe¢ cient for the post-

Dodd-Frank dummy. The time trend suggests that moving from one quarter to the

other (i.e. increasing t by one unit) yields an e¤ect of � on the outcome variable as

represented by the rating levels of either S&P or EJR. The positive coe¢ cient for the

time trend illustrates that, over time, credit rating levels are increasing. However,

as suggested by the After Dodd-Frank period dummy, in the post-Dodd-Frank period

the probability of getting lower ratings from S&P is lower. Table (1.3), Columns (3)

and (4), shows a similar pattern for EJR. EJR assigns lower ratings in the post-2010

period. The control variables have the expected signs.

To understand who responds more by lowering its credit ratings more, I con-

sider the evolution of the rating di¤erence, de�ned as the cardinal di¤erence between
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the S&P credit rating and EJR credit rating in the post Dodd-Frank period. The

regression I consider is:

(S&P�EJR)it = �+�1 Dodd Frank Act+�2 Xit�1+�3 Recession+�t+�SIC+"it:

(1.3)

In model (1.3), the dependent variable is the cardinal di¤erence between the

S&P and EJR credit ratings. As before I account for �rm-speci�c controls and a time

trend Results are shown in Table (1.4).

[Insert Table 1.4]

In Table 1.4, Columns (1) and (2) describe the evolution of the rating di¤erence

in the post-Dodd-Frank period without �rm controls but with the inclusion of a time

trend. Columns (3) and (4) describe the post-Dodd-Frank rating di¤erence with

�rm-speci�c controls. Columns (1) and (3) consider standard errors clustered by �rm

ticker. Columns (2) and (4) add industry �xed e¤ects.

The results show that the rating di¤erence is declining after Dodd-Frank. To

appreciate the magnitude of the results, note Column (4), where the coe¢ cient on

the After Dodd-Frank period is negative and equal to (-0.263). This means that, in

the post-Dodd-Frank period, S&P issues a rating that is about 0.263 notches lower

than EJR. Similar results are found for the other speci�cations. This implies that

both rating agencies issue lower ratings in the post-regulation period, but S&P is

more reactive and more prudent, as shown by the diminished rating di¤erence.
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One possible concern when estimating the rating di¤erence model (model (3))

is that it does not control for business cycle dynamics. The post-regulation period

happens during the early stage of the recovery following the 2007 crisis. Di¤erent

credit rating agencies may react to the uncertainty of the recovery in di¤erent ways.

Thus it is important to test whether the negative rating di¤erence result still holds

while accounting for variables that vary with the business cycle. To test for business

cycle implications, I augment model (3) by including the log of GDP, past one-year

market returns (using S&P 500 index), S&P 500 index level, perceived �rm pro�tabil-

ity, industry asset turnover and a proxy for quarterly �rm stock market performance.

The inclusion of these variables does not change the observed result for the rating

di¤erence (Column (5) in Table (4)).16

1.6.2 Firms with Con�icts of Interest: High-Fee �rms

In the previous paragraph, I have shown that S&P and EJR are both a¤ected

by Dodd-Frank in terms of rating levels. They both issue lower ratings, but S&P

is more a¤ected and issues lower ratings than EJR. The previous analysis has been

conducted by considering all the �rms available in the sample. What happens if the

sample is restricted to �rms that may generate con�icts of interest with credit rating

agencies? Speci�cally, what will be the result in terms of credit rating levels when the

analysis focuses on �rms that issue a large number of bonds? Firms that issue many

bonds are more likely to pay higher fees to the credit rating agency. These �rms, given

16Additionaly, the results are not driven by sample selection issues. They still hold when focusing
on �rms that exist before and after Dodd-Frank . Speci�clly, almost 96% of the �rms exist before
and after the passage of the Dodd-Frank law.
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the frequent relationship with the credit rating agency, can be interpreted as "good

clients" in the eyes of standard issuer-paid CRAs. If issuer-paid rating agencies are

still a¤ected by con�icts of interest after Dodd-Frank, then we should observe higher

ratings from S&P for these categories of �rms, compared to other �rms, also after the

passage of a disciplining regulation. However, if it is true that the Dodd-Frank Act

has been conceived to reshape the rating industry, then the lower ratings I observe

throughout the entire sample should be observable also for the subset that issues

many bonds. No signi�cant change in rating levels should be expected for EJR.

The idea of using the number of bonds issued by every �rm as a proxy for

potential con�icts of interest is standard in the literature.17 Examples are Covitz and

Harrison (2003), Jiang et al. (2011) and Kraft (2011). To identify �rms that issue a

large number of bonds, I construct a dummy variable, High-Fee, that takes a value

equal to one if the average number of bonds issued by the single �rm is greater than

the average number of bonds issued by the industry sector to which the �rm belongs.

To study how the rating levels for S&P and EJR, as well as the rating di¤erence

between the two credit ratings (S&P � EJR), change after the passage of Dodd-

Frank for �rms issuing a large number of bonds, I consider fully interacted models as

speci�ed below:

17An alternative proxy for con�icts of interest is o¤ered by Jiang et al. (2011). They de�ne a
proxy, called "Low Quality", which takes value one for �rms whose �rm�s operating margin is below
the median operating margin within each year, quarter and S&P credit rating and zero otherwise.
The rationale behind this proxy is the following. Firms with a low operating margin within each
credit rating bin are the ones more likely to bene�t from a higher rating and, consequently, are the
ones more likely to generate con�icts of interest. A high rating would, in fact, allow them to get
closer to the next rating bin, which makes investors believe that the �rm�s creditworthiness is about
to improve. The analysis for the rating level evolution as well as for the rating di¤erence evolution
in the post-Dodd-Frank period for �rms classi�ed as Low Quality is not discussed in the body of
the paper but is presented in the appendix, Table (1.13).
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S&Pit=�+ �1Dodd Frank + �2High-Fee+ �3Dodd Frank �High-Fee+
+�4Xit�1+�5Xit�1�High-Fee+ �t+ �SIC+"it; (1.4)

EJRit=�+ �1Dodd Frank + �2High-Fee+ �3Dodd Frank �High-Fee+
+�4Xit�1+�5Xit�1�High-Fee+ �t+ �SIC+"it; (1.5)

(S&P-EJR)it=�+ �1Dodd Frank + �2High-Fee+ �3Dodd Frank �High-Fee+
+�4Xit�1+�5Xit�1�High-Fee+ �t+ �SIC+"it; (1.6)

Model (1.4) shows the evolution of S&P rating levels across high-fee �rms

and low-fee �rms in the post-Dodd-Frank period. In model (1.4), Dodd Frank Act

measures the S&P rating level in the post-Dodd-Frank period for �rms classi�ed as

having low con�icts of interest, meaning �rms that issue a small number of bonds

compared to the sample mean and, consequently, pay a smaller fee to the credit rating

agency. For �rms that potentially generate high con�icts of interest, the S&P rating

level in the post-Dodd-Frank period is measured by the sum of Dodd Frank Act

and the interaction variable (Dodd Frank Act � High-Fee): Thus the interaction

variable (Dodd Frank Act�High-Fee) indicates whether, after the adoption of the

Dodd-Frank regulation, S&P ratings change more for �rms with a large issuance

of bonds than for other �rms. A positive coe¢ cient for the interaction variable

between Dodd Frank Act and High-Fee would mean that S&P is in�ating ratings

more for �rms that potentially pay higher fees regardless of the disciplining e¤ect of

Dodd-Frank. A coe¢ cient that is not statistically signi�cant should be interpreted as
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S&P behaving similarly in his rating activity for high-fee �rms and low-fee �rms. A

negative coe¢ cient for the interaction variable is a signal of greater prudence by S&P

also in relation to �rms that are larger and issue several bonds. The interpretation

holds for the EJR rating levels (model (1.5)) and the rating di¤erence between S&P

and EJR (model (1.6)). Results are presented in Table (1.5).

[Insert Table 1.5]

Column (1) considers the S&P credit rating level as the dependent variable,

Column (2) the EJR credit rating level and Column (3) the rating di¤erence between

S&P and EJR. Columns (1) and (2) present results from ordered logit models and

Column (3) presents results for an ordinary least squares model. Each model is

estimated by accounting for �rm-speci�c characteristics that may a¤ect ratings, a

time trend and industry �xed e¤ects.

The results suggest that, before Dodd-Frank, the probability of assigning

higher S&P ratings to �rms issuing a large number of bonds is higher (i.e., the prob-

ability of S&P in�ating ratings for �rms able to bring in more revenue is higher). In

contrast, EJR does not seem to assume a particular rating strategy regarding this

category of �rms in the pre-Dodd-Frank period (i.e., it neither in�ates or de�ates

ratings). Combining these results, we observe, in Column (3), that in the pre-Dodd-

Frank period the rating di¤erence is positive and equal to (1.846), which implies that

S&P tends to assign ratings that are 1.846 notches higher than the ratings that are

assigned for the same �rm, in the same period, by EJR.
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The sum of Dodd Frank Act and the interaction variable (Dodd Frank Act�

High-Fee) provides intuition on the CRAs�behaviour after Dodd-Frank when �rms

with a large bond issuance are rated. The results suggest that, while S&P is issu-

ing lower ratings for these categories of �rms (i.e., the rating in�ation phenomenon

disappears post-Dodd-Frank for �rms that provide a high fee to the credit rating

agency), EJR seems to issue higher ratings, generating a rating di¤erence that, as

shown in Column (3), is negative. The di¤erent behaviour is even more clear when

examining the interaction variable (Dodd Frank Act � High-Fee): The interaction

variable illustrates how S&P and EJR rate High-Fee �rms relative to low-fee �rms

in the post-Dodd-Frank period. As shown in Column (1), the interaction variable

(Dodd Frank Act � High-Fee) is no longer statistically signi�cant. Said in other

words, there is no statistically di¤erence between how S&P rates �rms that issue

many bonds versus those that issue only a few. This is no longer true when consid-

ering EJR ratings. Finally, this discrepancy between S&P and EJR ratings becomes

more evident in the Column (3). Here, the interaction variable becomes negative and

signi�cant at the 1% level suggesting that, after the adoption of the Dodd-Frank Act,

S&P reduces its ratings by approximately 0.469 notches in comparison to EJR. While

the coe¢ cient for the interaction variable in Column (1) can be explained in light of

a more accurate and prudent behaviour that induces S&P to treat high-fee �rms and

low-fee �rms equally, the positive and statistically signi�cant coe¢ cient for the EJR

credit ratings is surprising.

The positive coe¢ cient for the interaction variable for EJR could be explained

by considering the particular nature of the �rms considered in these analysis.
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Firms issuing a large number of bonds provide revenue for rating agencies.

From the point of view of issuer-paid agencies, they may want to issue higher ratings

to cement the relationship with such a client. However, �rms that issue many bonds

also generate revenue for investor-paid rating agencies. It is, in fact, likely, that an

investor that receives a good rating on a �rm issuing a large number of bonds will

decide to invest again in this �rm in the near future. It is, then, likely that the

investor will ask updated information about the large issuing �rm from paying again

the investor-paid rating agency. The tendency of EJR to assign higher ratings for

EJR in the post-Dodd-Frank period could be explained in light of the established

reputation gained by EJR after the NRSRO certi�cation and the lower monitoring

exercised by the Dodd-Frank regulation.18

18The positive coe¢ cient for the interaction variable (Dodd Frank Act �High-Fee) when EJR
ratings are studied between high-fee �rms and low-fee �rms is likely to be driven by the behaviour
of the EJR rating company after the NRSRO designation. In order to check if the EJR rating
company cares more about rising revenue after the NRSRO certi�cation I divide the sample in
two sub-samples. First, I consider a sub-sample that goes from January 2005 (the �rst available
date in my data) until July 2010, when the Dodd-Frank regulation was passed. In this way, I
can study EJR credit rating levels before and after the NRSRO certi�cation, received by the EJR
company in December 2007. Second, I consider a sub-sample that goes from December 2007 until
December 2014 (the last available date in my data). In this way, I can study EJR credit rating levels
before and after the Dodd-Frank regulation, passed in July 2009, when the NRSRO certi�cation has
already been received by EJR. Results are provided in Table (1.14) in the Appendix. By using a fully
interacted logit model with respect to High-Fee �rms, I get results suggesting that before the NRSRO
certi�cation, EJR is more prudent towards this category of �rms (i.e. lower probability of assigning
higher ratings for �rms with a large issuance of bonds). The more cautious behavior of EJR towards
these �rms might be explained by considering that �rms with a large bond issuance are often large
�rms, more likely to undertake investments and slower in adapting to changing market conditions.
Firms with a large bond issuance can, thus, be interpreted as riskier �rms, on average. However,
after the certi�cation, neither a rating in�ation phenomenon or a rating de�ation phenomenon is
evident in EJR rating activity. Moreover, in the post NRSRO period, EJR is more likely to issue
higher ratings for high-fee �rms rather than for low-fee �rms (i.e. the interaction variable between
the High-Fee variable and a dummy variable for the post NRSRO period is positive). Although the
statistical signi�cance of this result is limited at the 10% level, it suggests that, after the certi�cation,
the investor-paid rating agency is more worried about generating revenue and, slowly, starts rising
rating levels for �rms that are potentially more able to generate it. When focusing on the post
NRSRO sub-sample, the results suggest that after the passage of the Dodd-Frank regulation, the
rating in�ation phenomenon towards large bond issuing �rms is stronger.
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1.6.3 Rating Coservativeness and Rating Stability

After considering the evolution of rating levels after Dodd-Frank, the next step

of the analysis is to analyze whether there is a threat e¤ect and which credit rating

agency is a¤ected more by the regulation in this sense. The threat e¤ect will be

disentangled in two e¤ects: the conservativeness e¤ect and the stability e¤ect.

To study the "rating conservativeness", I estimate the following logit model:

Warningsit = �+ �1 Dodd Frank Act+ �2 Xit�1 + �3 Recession+ �t+ �SIC + "it;
(1.7)

where the dependent variable, Warnings, is a dummy which takes a value

equal to one if at time (t) the rating assigned is a speculative one but the �rm that

receives the rating does not default within one year.19 The dependent variable is,

then, regressed against a dummy variable for the post-Dodd-Frank period, �rm char-

acteristics, a dummy variable for the 2007 �nancial crisis and a time trend. Results

for S&P ratings and EJR ratings are presented in Table (1.6).

[Insert Table 1.6]

Columns (1) and (2) show results for S&P Warnings. Columns (3) and (4)

show results for EJRWarnings. Table (1.6) presents di¤erent speci�cations. Columns

(1) and (3) show estimates when standard errors have been clustered by �rm ticker,

Columns (2) and (4) consider industry �xed e¤ects.

19This dependent variable might also be interpreted in a di¤erent way. It also captures whether
credit rating agencies are becoming more cautious in the post regulation period.
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After the regulation is passed, the probability of warnings for S&P increases

meaning that the regulation induces S&P to be more cautious and assign a specula-

tive rating although the �rm is not close to default. The coe¢ cients associated with

the controls suggest that there is a correlation between rating levels and probability of

warnings: larger and pro�table �rms, which are more likely to receive higher ratings

are also less likely to receive warnings. On the opposite side, �rms with high levels of

leverage are more likely to receive lower ratings and credit rating warnings. Summa-

rizing the results from Table (1.3) and Table (1.6), it seems that there is an impact of

Dodd-Frank on standard issuer-paid rating agencies, whose evaluations become more

prudent.

Similar results are found when considering the last two columns of Table (1.6).

EJR appears to issue more conservative ratings. As for S&P, the Dodd-Frank Act

has an impact on rating agencies by generating a more prudent attitude.

To investigate the e¤ect on rating stability, I estimate the probability of large

rating changes.20 Credit ratings are expected to change slowly. While unexpected

events may require multi-notch rating adjustments, changes in credit quality will typ-

ically be re�ected in a series of single-notch rating changes spaced out over extended

periods. Accurate and stable ratings should quickly incorporate new information,

20A special comment released by Moody�s in April 2003 states that rating statibility can be proxied
in three di¤erent ways: the frequency of rating actions, the frequency of large rating changes and
the frequency of rating reversals, which refers to the scenario in which a credit rating agency assigns
a rating that is subsequently changed and then con�rmed again. EJR is characterized by a much
larger number of rating changes and rating reversals before and after Dodd-Frank. On the opposite
side, S&P is characterized by a lower number of rating changes and rating reversals before and after
the law. Since there is no observed variation after Dodd-Frank for the two rating agencies, both
in terms of rating changes and in terms of rating reversals, the attention is focused on big rating
changes.
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anticipate changes in credit quality and adapt to new events in a judicious manner.

Large rating changes will thus re�ect information that has not been updated and

promptly transferred to the market. Speci�cally, a rise in the frequency of large rat-

ing changes, de�ned as credit rating changes of three or more notches within one year,

will be interpreted as a signal of rating instability. The speci�cation I use to test for

rating stability is the following:

Big Rating Changeit = �+�1 Dodd Frank Act+�2 Xit�1+�3 Recession+�t+�SIC+"it;
(1.8)

where the dependent variable, Big Rating Change, is a dummy that takes a

value equal to one if, within one year, the rating from either S&P and EJR, changes

of at least three notches. The dependent variable is, then, regressed against a dummy

variable for the post-Dodd-Frank period, �rm characteristics (previously used), a

dummy variable for the 2007 �nancial crisis and a time trend. Results for S&P and

EJR ratings are presented in Table (1.7).

[Insert Table 1.7]

Columns (1) and (2) show results when Big Rating Changes from S&P are

taken into account. Columns (3) and (4) show results for Big Rating Changes from

EJR. Table (1.7) presents di¤erent speci�cations. Columns (1) and (3) show estimates

when standard errors have been clustered by �rm ticker, Columns (2) and (4) consider

industry �xed e¤ects.

The results suggest that both S&P and EJR show a lower probability of big
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rating changes after the passage of Dodd-Frank. The result holds independent of the

speci�cations used.

Taken together, the results illustrate that credit ratings are overall more con-

servative, meaning that CRAs tend to show a more punitive attitude towards issuers,

and they are overall more stable, as credit rating agencies regularly monitor �rms

with the goal of transferring information to the investors.

1.6.4 Placebo Test

One important concern when interpreting the previous tables might be: Is the

observed pattern (in terms of credit rating levels, rating conservativeness and rating

stability) a result of the reputational loss experienced by credit rating agencies after

the 2007 �nancial crisis? Said di¤erently, the greater caution shown by credit rating

agencies after Dodd-Frank might be explained as a reaction to the strong criticism of

the rating industry post-2007. If so, how is it possible to disentangle the reputational

e¤ects, due to the �nancial crisis, from the regulatory e¤ects, due to Dodd-Frank? To

understand whether my results are a response to the reputational damage or rather

a consequence of the Dodd-Frank, a possibility is to run a Placebo Test. This test

examines a period that is comparable, in terms of e¤ects on reputation for the credit

rating sector, to the one in which Dodd-Frank takes place, but is clearly not a¤ected

by any speci�c regulation for that sector.

To perform the placebo test, one alternative is to consider the post-Enron

period. The bankruptcy of Enron Corporation in October 2001 generated massive

critiques of rating agencies. Following Covitz and Harrison (2003), to test whether
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credit rating agencies have reputational concerns following a crisis, it is possible to

analyze credit rating agencies�behaviour in �scal year 2002. This year has few simi-

larities with the post-Dodd-Frank period. First, 2002 is the year following the Enron

crisis, which has cast doubts on rating agencies, similarly to what happened post-2007.

Second, the 2001 Enron default was followed by a period of economic expansion, like

the one experienced after the 2007 �nancial crisis. My placebo test is described below

by the following regressions:

(S&P Rating)it = �+ �1Post-Enron+ �2Xit�1 + �t+ �SIC + "it; (1.9)

(EJR Rating)it = �+ �1Post-Enron+ �2Xit�1 + �t+ �SIC + "it; (1.10)

(S&P -EJR)it = �+ �1Post-Enron+ �2 Xit�1 + �t+ �SIC + "it (1.11)

Warningsit = �+ �1Post-Enron+ �2 Xit�1 + �t+ �SIC + "it (1.12)

Big Rating Changeit = �+ �1Post-Enron+ �2 Xit�1 + �t+ �SIC + "it (1.13)

Equations (1.9) and (1.10) study the rating level behaviour, from either S&P or

EJR, in the post-Enron period. Equation (1.11) investigates how the rating di¤erence

evolves after Enron�s scandal. Equations (1.12) and (1.13) provide intuition for the

rating conservativeness and rating stability. In each one of the equations listed above,

�rm-speci�c controls are taken into account as well as a time trend and industry �xed

e¤ects. Results are provided in Table (1.8).
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[Insert Table 1.8]

Columns (1), (2) and (3) describe the rating levels for S&P, the rating levels

for EJR and the rating di¤erence between the two agencies after the Enron scandal,

respectively. Columns (4) and (5) provide results for S&P and EJRWarnings in the

post-Enron period. Columns (6) and (7) focus on Big Rating Changes.

The results suggest that, after the Enron scandal, credit rating agencies be-

haved di¤erently than after Dodd-Frank. As shown by Columns (1) and (2), in the

period after the Enron scandal, rating in�ation for S&P is still evident as shown by

a Post-Enron dummy that is positive for S&P (i.e., higher probability of getting

higher S&P ratings in the post-Enron period) but negative for EJR (i.e., lower prob-

ability of getting higher EJR ratings in the post-Enron period). Consequently, the

rating di¤erence between S&P and EJR is positive. A closer look at Column (3)

shows that the Post-Enron dummy is positive and equal to (0.367), suggesting that

S&P assigns ratings that are 0.367 notches higher than EJR after Enron�s scandal.

The di¤erent behaviour arises also in the rating conservativeness and rating stability

results. Columns (4) and (6) show that S&P ratings are less conservative and stable.

A di¤erent pattern is found for EJR.

Summing up, the results show that the reputational loss experienced by the

credit rating agencies induced a behavior that was not comparable to the behavior

observed after Dodd-Frank. In the post Enron period, S&P does not adopt a pru-

dent behaviour, either in the form of lower ratings or in the form of more warnings.

Additionally, ratings appear less stable.
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1.6.5 Is the Regulation A¤ecting CRAs�Reputation?

Standard rating agencies, represented by S&P, seem to behave di¤erently from

investor-paid rating agencies, represented by EJR. As shown above, in the post-Dodd-

Frank period S&P issues lower ratings. On the opposite side, EJR seems to be less

a¤ected by Dodd-Frank. A possible explanation might rely on the di¤erent e¤ect that

the act has on the reputation of credit rating agencies. Issuer-paid CRAs su¤ered

more in terms of credibility during the �nancial crisis and might be more interested

in avoiding penalties and protecting their reputation. Such pattern should not be

observed among investor-paid CRAs. To investigate whether CRAs� reputation is

a¤ected by the regulation and, in particular, whether the regulation a¤ects reputation

in di¤erent ways according to the business model chosen by rating agencies, I �rst

study which factors may damage more CRAs in terms of reputation and then I analyze

whether S&P and EJR care more about their reputation in the post Dodd-Frank

period.

1.6.5.a Reputation Hypothesis

Credit rating agencies may act in the interest of issuers or in the interest of

investors.

One mechanism for acting in the interest of issuers is to delay rating down-

grades.Downgrades have important e¤ects on issuers. After receiving a downgrade,

the cost of funding becomes higher, contractual obligations tighter and, more gener-

ally, reputation deteriorates with signi�cative consequences in the relationships with

suppliers. Delaying a downgrade is thus bene�cial to issuers. The bene�ts of delaying
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are proportional to the magnitude of the downgrade and are generally higher if the

costs deriving from the rating change are higher. Costs are magni�ed if a �rm is

downgraded from investment class to speculative class, generating what is commonly

known as falling angel. If such a downgrade occurs, the damage might be serious:

�rms might be constrained in their access to the capital markets, meaning that get-

ting funds will be possible only after providing proof of enough collateral. In addition,

investors might become reluctant to invest in �rms whose quality is deteriorating so

rapidly. The costs deriving from a downgrade action are important for large �rms21,

which are generally old �rms with a well-recognized reputation on the market. In this

circumstance too, delaying a downgrade might be bene�cial.

Delaying a downgrade might bene�t investors as well if they have already

invested in the issuer. A downgrade might, in fact, lower the value of the investor�s

market portfolio.22

However, if delaying a downgrade can help issuers, it can hurt the reputation

of rating agencies. If rating actions are delayed, investors might �nd rating agencies

less useful since they cannot anticipate defaults. Reputation costs for rating agencies,

in the form of negative publicity, are enhanced when multiple agencies operate on the

market. As expected, if there are several agents on the market and one of these is

more timely than the others, the costs in terms of reputation and credibility for all

21Firm size can be proxied by either the log of total assets or the total number of bonds outstanding.
Since it is preferable to have a monthly reputation measure, in this context large �rms are �rms
with a considerable number of bonds issued.
22As noted in a report released by the Congress on Assigned Credit Ratings "As with the issuer-

pay model, the subscriber-pay model also presents certain con�icts of interest. These con�icts result
because subscribers could have an interest in speci�c credit ratings and, consequently, could exert
pressure on credit rating agencies to determine o maintain credit ratings that will result in outcomes
that favor the subscriber".
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those that delay are worsened. Intuitively, reputation costs because of delayed rating

updates become signi�cative when rating changes have an impact on large issuers and

when they are responsible for a change of status � from investment to speculative

class.

From an empirical point of view, the relative delay of credit ratings may be

used to analyze whether �rms care about their reputation. If delays increase for falling

angels or large �rms, then rating agencies are acting without caring much about their

reputation. However, if the delays for falling �rms and larger �rms decrease, then

credit rating agencies are acting to protect their reputation and to provide timely and

precise information to investors (Reputation Hypothesis).

Following Covitz and Harrison (2003), the credit rating delay can be proxied

by the degree to which the bond market anticipates the rating change. This measure

will be used to study the importance of reputation before and after the introduction

of Dodd-Frank. The attention will be focused on downgrades rather than upgrades

since delayed downgrades are the rating changes that most likely a¤ect investors

and, consequently, rating agency reputation. The capability of the bond market to

anticipate rating changes may be a function of several factors, like the magnitude of

the rating change or the total spread change in a well-speci�ed time interval around

the rating change event. For that purpose, I will consider di¤erent variables that may

a¤ect market anticipation.

1.6.5.b Market Anticipation: Variable Construction

Bond market anticipation is proxied by the ratio between the corporate bond
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spread in a well-de�ned window before the rating change and the corporate bond

spread for a longer period that includes the credit rating announcement. More pre-

cisely, the Market Anticipation variable is de�ned as:

Anticipation = 100 � (Prior Period Spread Change) = (Total Period Spread Change)

= 100 � (Spreadt�1 � Spreadt�i) = (Spreadt � Spreadt�i)| {z }
Anticipation Ratio

:

The frequency for the bond market anticipation analysis is monthly23, so the

subscript t refers to the month of the rating announcement, t� 1 refers to the month

prior to the rating change and i refers to the total number of months taken into

account for the event window created around the rating change. If rating agencies

are timely and quickly transfer information on the market, then the anticipation ratio

should be small and, on the limit, close to zero. However, if rating agencies are slow in

identifying credit risk, then the market anticipation ratio should be larger and close to

one. As shown in the formula above, the corporate bond spread for the entire period,

including the rating announcement, generates the Total Period Spread Change.

The methodology used for the construction of the anticipation variable is the

following. I consider corporate bond spreads for a six-month window around S&P

and EJR rating downgrades. I consider only �rms for which I have available data

for the �ve months prior to the rating downgrades. In addition, I assume that each

rating downgrade is not preceded or followed by any rating change from either S&P

23To estimate the monthly market anticipation, I construct a monthly time series for S&P ratings
and EJR ratings following the same methodology explained in the data section.

39



or EJR other than the one occurring at time t:24 The assumption is needed to make

sure that the spread change is attributable to the downgrade action only.

I drop observations if the total period spread change is less than zero or missing,

and I set anticipation between 0 and 100. If anticipation happens to be lower than

zero, then it is replaced with 0. However, if anticipation is greater than 100, then it

is replaced with 100. Finally, I set anticipation equal to its maximum whenever the

total period spread change is negative, equal to or lower than 20 basis points. This

assumption relies on the idea that, if the total period spread change is small enough

and thus the spread before the rating change is very close to the spread at the time

of the rating change, the market is almost fully able to anticipate the rating action

and, as a consequence, anticipation can be set equal to its maximum.

1.6.5.c Main Results

The empirical strategy to study the e¤ect of the Dodd-Frank Act on reputation

for rating agencies is to regress the market anticipation variable on �rm size and a

dummy variable that identi�es falling angels while controlling for variables that might

a¤ect the anticipation measure. I focus �rst on the downgrades issued by S&P.

The basic speci�cation is:

24Let us assume that we are studying the bond market market anticipation following S&P down-
grades in the six-month before the rating announcement. The assumptions needed to make sure
that the market is responding only to the S&P rating action are (1) no other rating change from
S&P in the �ve months period before the rating announcement and (2) no rating change for EJR in
the entire period.
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(S&P Anticipation)it=�+�1Falling Angel Dummyit+�2Large Clientit+�3Xit+�i+�t+�it.

(1.14)

The main variables in the above speci�cation are Falling Angel Dummy and

Large Client. If the sign for �1 or �2 is positive, then it means that the market

can anticipate the rating action and reputation is a concern for S&P. If the sign

is negative, then S&P works properly and the market learns from the information

delivered. Model (11) is estimated before and after the passage of the Dodd-Frank

Act to check whether there is a change in sign or magnitude for the coe¢ cients of

interest. Results are presented in Table (1.9).

[Insert Table 1.9]

Columns (1) and (4) show results when year/quarter �xed e¤ects are taken

into account. Columns (2) and (5) add industry �xed e¤ects. Columns (3) and

(6) consider year/quarter and �rm �xed e¤ects. The �rst three columns refer to the

period before Dodd-Frank. The last three columns refer to the post regulation period.

Following Covitz and Harrison (2003), other than the intentional delay proxies, I

include a variable that provides information on the magnitude of the downgrades

(S&P Rating Change)25, a variable that refers to the years to maturity for each

bond considered in the analysis (Years to Maturity), the squared total-period spread

25SP Magnitude refers to the notch di¤erence before and after the rating change.
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change (Total Period Spread Change) and the rating scores assigned by S&P (S&P

Rating). Results indicate that, in the period preceding the regulation, fallen angels

are, on average, 14 percentage points more anticipated by the bond market than

other downgrades, suggesting that rating agencies are less timely and do not care

too much about their reputation. The coe¢ cient associated to falling angels becomes

negative when the period after the regulation is taken into account. After the third

quarter of 2010, fallen angels are almost 13 percentage points less anticipated than

other downgrades. The sign and magnitude of the results seems to suggest that

S&P ratings are becoming more timely and less predictable. The coe¢ cient for S&P

Rating Change is negative and highly signi�cant independent of the speci�cation used

or the period considered, suggesting that the market does not anticipate downgrades

that are particularly large in magnitude.26 The coe¢ cient for Total Period Spread

Change is negative as expected. Size, Years to Maturity and the S&P Ratings are

not signi�cant.

The basic speci�cation used for EJR rating downgrades is given by:

(EJR Anticipation)it=�+�1Falling Angel Dummyit+�2Large Clientit+�3Xit+�i+�t+�it.

(1.15)

Results are presented in Table (1.10).

[Insert Table 1.10]

26Downgrades that are particularly large in magnitude are often a signal of unstable ratings.
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As previously done, I focus my attention on the delay proxies, controlling for

factors that may in�uence the market anticipation of EJR rating downgrades, and

I distinguish between pre and post-Dodd-Frank period by adopting di¤erent spec-

i�cations. Results indicate that, in the period preceding the regulation, there is a

negative relationship between the delay proxies and the market anticipation variable,

suggesting that the bond market cannot anticipate these ratings and predict down-

grades. However, after Dodd-Frank, this pattern is no longer true. Falling angels are

8 percentage points more anticipated than common downgrades (when year �xed ef-

fects and industry �xed e¤ects are considered). The controls have the expected signs.

As before, the coe¢ cient for large clients is not signi�cant. The magnitude of the

downgrade (EJR Magnitude) is negatively correlated with the market anticipation

measure as well as the Total Period Spread Change.

The results from Table (1.9) and (1.10) highlight a discrepancy between S&P

and EJR in the way they timely report downgrades to the market after the regulation

is passed. S&P becomes more timely by issuing ratings whose information would

otherwise not be available to the market. EJR rating downgrades appear to be

delayed and their information is somehow anticipated by the bond market. Thus the

regulation points out divergent behaviors by the two rating agencies.

1.6.6 Information Content of Rating Changes: Bond Market and Stock Market

Response

In this section, I compare the reaction of investors to S&P and EJR rating

changes before and after the passage of the Dodd-Frank Act. I examine the reaction
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on the bond market. Using bond data is convenient because bond prices are more

a¤ected than stock prices by changes in default probabilities.

The bond market analysis is conducted using the following methodology. An-

nouncement bond returns are calculated for every bond-�rm couple in a three-month

period that includes the month of the rating announcement (date t; event date) the

month before the rating announcement (date t�1) and the month following the rating

announcement (date t+ 1). Announcement bond returns are calculated as:

Rbit =
Pbit � Pbi(t�2)
Pbi(t�2)

;

where Pbit de�nes the price of bond b issued by �rm i at the time of the rating

change (date t) and Pbi(t�2) de�nes the price of the same bond issued 60 days before

the rating change27 (date t � 2). Bond returns are calculated as percentage of the

bond price two months before the rating announcement to weaken the possibility

that the price prior to the rating disclosure has already incorporated part of the bond

response to the rating change. I exclude observations if there is more than one rating

change in the two months prior to the rating announcement. I drop observations if

the rating change at time t is followed by another rating change at time t+ 1.28

Results for S&P and EJR rating changes are presented in Table (1.11).

27When considering the month following the event date, the announcement bond returns are
calculated as:

Rbi(t+1) =
Pbi(t+1) � Pbi(t�2)

Pbi(t�2)

28The logic behind this procedure is to ensure that bond returns are exposed only to single rating
actions.
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[Insert Table 1.11]

Table (1.11) shows the bond market response to S&P and EJR rating changes

before and after Dodd-Frank. The results show a di¤erent pattern before and after

the regulation. Following the Dodd-Frank Act, the average bond return after an S&P

downgrade is higher in absolute value, although the magnitude of the bond market

response is quite small either before or after. Consistently, the average bond return

after an upgrade increases. Speci�cally, the mean return after downgrades is -0.013%

before Dodd-Frank and -0.42% afterward. Results are signi�cant at the 1% level. On

the opposite side, the mean return after upgrades is 0.067% before Dodd-Frank and

0.47% afterward. The di¤erence is signi�cant at the 1% level. Interestingly, the bond

returns following S&P rating changes are not signi�cant before Dodd-Frank, but are

afterward.

Additionally, Table (1.11) shows the bond market response to EJR downgrades

and upgrades before and after Dodd-Frank. Following an EJR downgrade, the bond

market response becomes smaller, with a mean bond return equal to -0.012%, The

di¤erence between the mean return in the pre-Dodd-Frank period and post-Dodd-

Frank period is equal to 1.64% and is signi�cant at the 1% level. I get slightly di¤erent

results when bond returns surrounding EJR upgrades are taken into account. The

bond market response increases from 1.18% to 1.40%, generating an overall increase

of 0.22%, which is signi�cant at the 1% level.

Taken together, the results suggest that the informativiness of credit ratings

after the passage of the act is di¤erent for the two rating agencies. S&P experiences
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a greater bond market reaction following any rating change. On the other side, EJR

downgrades have a weaker e¤ect. EJR upgrades have a more signi�cant impact on

the bond market, but the increase in bond market returns appears to be smaller than

the one observed for S&P upgrades.

1.6.7 Real E¤ects Post-Dodd Frank

One way to analyze the e¤ect of Dodd-Frank on ratings is to consider whether

ratings from S&P or EJR are taken into account by �rms in their debt issuance. To

conduct this analysis, I test whether �rms change their debt issuance more after a

rating from S&P or after one from EJR. The methodology used resembles the one

adopted by Kisgen (2006). The relationship between credit ratings and debt issuance

is highly endogenous and su¤ers of reverse causality. Higher ratings make access to

the capital market easier. However, it is also true that �rms that issue more debt

have greater �nancing possibilities and may be more likely to receive higher ratings.

To address this reverse causality problem, one possibility is to consider credit ratings

with a plus or a minus rating. Firms with a plus or a minus credit rating are those

close to a change in rating. Given that a change in rating is more likely to happen, to

minimize the probability of downgrade (or to maximize the probability of upgrade),

�rms with a plus or a minus rating will reduce their net debt issuance, relative to

their net equity issuance, as a percentage of total assets.

If S&P internalizes the Dodd-Frank regulation and S&P ratings become more

reliable, then �rms should put more weight on S&P ratings when they decide how

much debt to raise. If, as shown in the rating level analysis and in the bond mar-
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ket anticipation analysis, EJR ratings are less timely and more aimed at generating

revenue, then the e¤ects of these ratings on �rms�debt issuance should shrink after

Dodd-Frank.

The model I use to check the e¤ect of ratings on the �rm decision to issue

debt, before and after Dodd-Frank, is described below:

Debt Issuanceit=�+�1S&P
Minus
it�1 +�2S&P

Plus
it�1+�3EJR

Minus
it�1 +�4EJR

Plus
it�1+�5Xit�1+�SIC+�t+"it.

(1.16)

As in Kisgen (2006), the dependent variable is the net issuance of debt.29

S&PMinus
it�1 and S&P Plusit�1 are dummy variables that take a value equal to one if the

S&P rating has a minus or a plus, respectively. EJRMinus
it�1 and EJRPlusit�1 are dummy

variables that take a value equal to one if the EJR rating has a minus or a plus,

respectively. I control for EJR and S&P rating levels. Additionally, I control for

size, pro�tability, cash ratio, market-to-book and tangibility. Industry and year �xed

e¤ects are included. Results are presented in Table (1.12).

[Insert Table 1.12]

Columns (1) and (5) describe the e¤ect on debt issuance of ratings that are

on the boundaries within every S&P rating bin as well as within every EJR rating

29Debt net issuance is de�ned as the di¤erence between the change in debt issuance and the change
in equity issuance. This di¤erence is thus standardized by total current assets. The change in debt
issuance is de�ned as the change in long-term debt issuance minus long-term debt reduction plus
changes in current debt. The change in equity is computed as sale of common and preferred stock
minus purchases of common and preferred stock.
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bin. Columns (2) and (6) add �rm-speci�c controls (lagged one period). Columns (3)

and (7) test for the e¤ects on debt issuance of S&PMinus
it�1 and S&P Plusit�1 taken alone,

with and without controls, respectively. Columns (4) and (8) test for the e¤ects on

debt issuance of EJRMinus
it�1 and EJRPlusit�1 taken alone, with and without controls,

respectively. Columns (1) through (4) consider the pre-Dodd-Frank period. Columns

(5) through (8) consider the post-Dodd-Frank period. The results show a clear pattern

before and after Dodd-Frank. Beforehand, the �rm decision to reduce debt issuance

is not a¤ected by S&P or EJR ratings. However, debt issuance is a¤ected by S&P

ratings after Dodd-Frank, as shown in column (5) through (8). Firms with a minus

S&P rating will issue approximately 2.26% less debt net of equity as a percentage

of total assets than �rms for which no rating change is expected. The magnitude

of the reduction in debt issuance is equal to 1.82% when �rm-speci�c controls are

added. As shown in columns (5), (6) and (8), there is no e¤ect on debt issuance for

�rms with EJR ratings with a plus or a minus. The result is consistent with the idea

that, after Dodd-Frank, S&P ratings are more reliable, more conservative and more

stable. Given the greater attention toward reputation from S&P, �rms internalize the

improvements in S&P ratings by valuing them more.30

30I also use an alternative speci�cation that accounts for plus or minus S&P and EJR ratings
around the speculative threshold (BBB+, BBB-). The reason to focus on the investment threshold
is the signi�cantly lower cost of debt that �rms with a rating above the investment threshold have
compared to �rms below that threshold. Intuitively, the relevance of this threshold should lead to a
more pronounced e¤ect on �rm debt issuance.
Speci�cally, I test for:

Debt Issuanceit = �+ �1S&P
BBB�=BBB+
it�1 + �2EJR

BBB�=BBB+
it�1 + �5Xit�1 + �i + �t + "it:

S&P
BBB�=BBB+
it�1 is a dummy that takes a value equal to one if the S&P rating is either BBB-

or BBB+. EJRBBB�=BBB+it�1 is a dummy variable that takes a value equal to one if the EJR rating
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1.7 Conclusion

The Dodd-Frank Act was conceived to reform the rating industry after the

the �nancial crisis. The aim of the Dodd-Frank law is to reduce the con�icts of

interest a¤ecting the standard model in which rating agencies are paid by debt issuers.

Over time, alternative rating models have been proposed. Among these, researchers

have focused a lot on the investor-paid model where investors become intermediaries

between the rating agencies and the issuers, reducing the above con�icts of interest.

A lot has been done to explain the di¤erences between the two models, but no one

has investigated how the two models behave after a disciplining regulation is passed.

In this paper, I show that the Dodd-Frank Act has a¤ected credit rating agen-

cies following di¤erent compensation systems in di¤erent ways.

The results suggest that the two rating business models adopt di¤erent strate-

gies, with S&P being more prudent and threatened by Dodd-Frank. The results

highlight that the more cautious behaviour adopted by the issuer-paid CRAs persists

in �rms able to generate a revenue (i.e., High-Fee �rms) . Opposite results are found

for the investor-paid CRAs which appear to be more willing to in�ate ratings for �rms

with a greater bond issuance.

Additionally, Dodd-Frank has an e¤ect on CRAs�reputation. Using a market

is either BBB- or BBB+. Firm-speci�c controls, industry �xed e¤ects and year �xed e¤ects are
included. The results (untabulated), illustrate that, before Dodd-Frank, �rms with a BBB- EJR
rating reduce their debt issuance by about 2.69%. The result is signi�cant at the 10% level. However,
after Dodd-Frank, the pattern is di¤erent. EJR ratings a¤ect less the �rm decision to issue debt.
On the opposite side, S&P ratings become more relevant after the Dodd-Frank law. Receiving an
S&P rating that lies around the investment threshold will cause �rms to lower the amount of debt
issued by almost 1.4%. The result is signi�cant at the 10% level.
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measure for the ability to anticipate rating actions, I notice that there is a greater

e¤ort S&P, to provide timely ratings, which can be hardly anticipated by the bond

market. On the contrary, bond market anticipation increases for EJR, meaning that

the information released by EJR can be easily captured by the bond market without

necessarily relying on its ratings. Finally, I check whether the e¤ect of the Dodd-

Frank regulation on the two rating models is di¤erent from the point of view of the

bond market response and the �rm ability to reduce/increase debt issuance following

credit ratings. My results suggest that the impact of S&P rating changes on the

bond market increases after Dodd-Frank. The e¤ect for EJR ratings is ambiguous.

Moreover, S&P ratings have a greater e¤ect on the �rm decision to reduce debt

issuance. EJR ratings have no e¤ect.

This paper represents a �rst attempt to analyze the e¤ect of government regu-

lations on di¤erent business models in the rating industry. It can also be interpreted

as illuminating the necessity of viewing the investor-paid model in a di¤erent way. For

long time, it has been considered the best candidate to replace the standard model.

However, my results suggest that it may be necessary to better investigate its role in

the market, its growing market share and the credibility of its ratings.
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Table 1.3: Rating Levels for S&P and EJR

Ordered Logit Regressions and Ordered Least Squares Regression of S&P rat-
ing levels and EJR rating levels on a dummy for the After Dodd-Frank period,
�rm-speci�c controls and a time trend. Firms that are contemporaneously
rated by S&P and EJR are taken into account. The Before Dodd-Frank period
goes from January 2005 to June 2010. The After Dodd-Frank period incor-
porates all rating actions from July 2010 until December 2014. Firm-speci�c
controls include: Size, Cash Ratio, Tangibility, Market-to-Book Ratio, Prof-
itability, Debt Issuance, Long-Term Leverage and Recession. All �rm controls
are lagged one period. Columns (1) and (2) analyze the evolution of S&P
rating levels after Dodd-Frank. Columns (3) and (4) analyze the evolution of
EJR rating levels after Dodd-Frank. Columns (1) and (3) show results when
the model is an Ordered Least Squares. Columns (2) and (4) show results
when the model estimated is an Ordered Logit. Columns (1) through (4) take
into account industry �xed e¤ects. All the control variables are winsorized at
the 1% level. ***, ** and * denote signi�cance at 1%, 5% and 10% levels,
respectively.

S&P Rating Level EJR Rating Level
(1) (2) (3) (4)

After Dodd-Frank period -0.447*** -0.420*** -0.184*** -0.110**
(0.0459) (0.0442) (0.0540) (0.0438)

Size 1.093*** 1.143*** 0.858*** 0.846***
(0.0132) (0.0151) (0.0155) (0.0142)

Cash Ratio -1.367*** -1.609*** -1.883*** -1.642***
(0.482) (0.463) (0.568) (0.463)

Tangibles 0.282** 0.352*** -0.242* -0.204*
(0.113) (0.108) (0.133) (0.105)

Market/Book 1.529*** 1.584*** 2.013*** 1.933***
(0.0304) (0.0318) (0.0358) (0.0325)

Pro�tability 5.613*** 5.374*** 7.362*** 6.040***
(0.312) (0.300) (0.367) (0.299)

Past Debt Issuance 2.932*** 2.530*** 4.144*** 3.773***
(0.481) (0.458) (0.566) (0.456)

Long Term Leverage -6.983*** -6.751*** -9.982*** -8.749***
(0.126) (0.133) (0.148) (0.137)

Recession -0.114*** -0.114*** -0.357*** -0.287***
(0.0421) (0.0407) (0.0496) (0.0404)

Trend 0.0177*** 0.0144*** 0.0228*** 0.0161***
(0.00198) (0.00189) (0.00233) (0.00190)

N 16799 16799 16799 16799
R2 0.626 - 0.612 -
Pseudo R2 - 0.190 - 0.187
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Table 1.4: Rating Di¤erence between S&P and EJR

Ordered Least Square Regressions of the Rating Di¤erence between S&P and
EJR on a dummy for the After Dodd-Frank period, �rm-speci�c controls and
a time trend. The Before Dodd-Frank period goes from January 2005 to June
2010. The After Dodd-Frank period incorporates all rating actions from July
2010 until December 2014. Firm-speci�c controls include: Size, Cash Ratio,
Tangibility, Market-to-Book Ratio, Pro�tability, Debt Issuance, Long-Term
Leverage and Recession. All �rm controls are lagged one period. Columns (1)
and (2) show the evolution of the rating di¤erence between S&P and EJR after
Dodd-Frank when a time trend is considerend but no �rm-speci�c controls
are added. Columns (3) and (4) show the evolution of the rating di¤erence
between S&P and EJR after Dodd-Frank when a time trend is considerend and
�rm-speci�c controls are added. Column (1) and (3) assume standard errors
clustered by �rm ticker. Column (2) and (4) show estimates with industry
�xed e¤ects. All the control variables are winsorized at the 1% level. ***, **
and * denote signi�cance at 1%, 5% and 10% levels, respectively.

(1) (2) (3) (4)
S&P- EJR S&P- EJR S&P-EJR S&P-EJR

After Dodd- Frank period -0.371*** -0.334*** -0.295** -0.263***
(0.109) (0.0384) (0.118) (0.0418)

Trend 0.00457 0.00292* -0.00185 -0.00503***
(0.00487) (0.00173) (0.00525) (0.00180)

Size 0.154*** 0.235***
(0.0384) (0.0120)

Cash Ratio -0.227 0.517
(0.721) (0.439)

Tangibles -0.195 0.524***
(0.205) (0.103)

Market/Book -0.452*** -0.484***
(0.0798) (0.0277)

Pro�tability -1.683*** -1.749***
(0.476) (0.284)

Past Debt Issuance -1.691*** -1.211***
(0.494) (0.438)

Long Term Leverage 2.916*** 2.999***
(0.342) (0.115)

Recession 0.258*** 0.243***
(0.0593) (0.0383)

N 17695 17695 16799 16799
R2 0.007 0.111 0.096 0.193

Clustered by Firm Ticker S.E. Yes No Yes No
Industry F.E. No Yes No Yes
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Table 1.5: High-Fee �rms - Firms with High Con�icts of Interest

Fully interacted models that describe S&P and EJR rating levels post
Dodd-Frank for �rms classi�ed as High-Fee �rms. Columns (1) and (2)
show results for ordered logit regressions, with the dependent variable
represented by S&P and EJR rating levels, respectively. Column (3)
considers the rating di¤erence between S&P and EJR (S&P-EJR). Each
dependent variable is regressed against a dummy for the post Dodd-
Frank period, a dummy for High-Fee �rms, an interaction term between
the two and �rm speci�c controls. Firm speci�c controls include: Size,
Cash Ratio, Tangibility, Market-to-Book Ratio, Pro�tability, Cash Ra-
tio, S&P and EJR rating levels. All the control variables are winsorized
at the 1% level. ***, ** and * denote signi�cance at 1%, 5% and 10%
levels, respectively. Results for debt issuance, cash ratio, tangibility and
time trend are not reported.

S&P EJR (S&P-EJR)
Post Dodd-Frank -0.610*** -0.265*** -0.337***

(0.0661) (0.0639) (0.0655)

(Post Dodd-Frank)�(High-Fee) 0.0526 0.404*** -0.469***
(0.0803) (0.0789) (0.0800)

(High-Fee) 1.194*** -0.270 1.846***
(0.286) (0.284) (0.289)

Size2 0.0641*** 0.0441*** 0.0290***
(0.00182) (0.00175) (0.00169)

Size2�(High-Fee) -0.00737*** 0.00283 -0.0154***
(0.00209) (0.00207) (0.00205)

Market/Book 1.713*** 2.097*** -0.790***
(0.0715) (0.0692) (0.0668)

(Market/Book)�(High-Fee) 0.364*** 0.376*** 0.184**
(0.0888) (0.0868) (0.0853)

Pro�tability 1.243* 3.124*** -3.114***
(0.676) (0.652) (0.668)

(Pro�tability)�(High-Fee) 4.371*** 3.127*** 2.111**
(0.851) (0.833) (0.850)

Leverage -5.900*** -9.342*** 5.863***
(0.290) (0.284) (0.278)

(Leverage)�(High-Fee) -2.675*** -2.259*** -1.179***
(0.354) (0.342) (0.345)

N 8939 8939 8939
R2 - - 0.252
Pseudo R2 0.209 0.215 -

Time Trend Yes Yes Yes
Industry Fixed E¤ects Yes Yes Yes
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Table 1.6: S&P and EJR Rating Conservativeness

Logit Regressions to test rating conservativeness after Dodd-Frank. The de-
pendent variable is Warnings. Warnings is a dummy that takes a value equal
to one if the rating at time t is speculative but the �rm does not default within
one year. The dependent variable, Warnings, is regressed on a dummy for the
after Dodd-Frank period, �rm-speci�c controls and a time trend. The Before
Dodd-Frank period goes from January 2005 to June 2010. The After Dodd-
Frank period incorporates all rating actions from July 2010 until December
2014. Firm-speci�c controls include: Size, Cash Ratio, Tangibility, Market-to-
Book Ratio, Pro�tability, Debt Issuance, Long-Term Leverage and Recession.
All �rm controls are lagged one period. Columns (1) and (2) consider S&P
Warnings. Columns (3) and (4) consider EJR Warnings. Columns (1) amd
(3) assume standard errors clustered by �rm ticker. Columns (2) and (4) show
estimates with industry �xed e¤ects. ***, ** and * denote signi�cance at 1%,
5% and 10% levels, respectively.

S&P Warnings EJR Warnings
(1) (2) (3) (4)

After Dodd-Frank period 0.419*** 0.399*** 0.336** 0.332***
(0.137) (0.0714) (0.134) (0.0712)

Size -0.946*** -0.986*** -0.729*** -0.632***
(0.0802) (0.0250) (0.0696) (0.0231)

Cash Ratio 1.170 1.723** 1.234 2.247***
(1.058) (0.733) (1.097) (0.766)

Tangibles -1.064*** -0.590*** -1.159*** 0.223
(0.385) (0.175) (0.348) (0.179)

Market/Book -1.075*** -1.350*** -1.639*** -2.097***
(0.154) (0.0575) (0.178) (0.0688)

Pro�tability -2.827*** -3.443*** -3.692*** -4.595***
(0.809) (0.500) (0.780) (0.529)

Past Debt Issuance -2.271*** -2.658*** -4.841*** -4.850***
(0.730) (0.729) (0.749) (0.751)

Long Term Leverage 6.009*** 7.275*** 7.664*** 9.440***
(0.616) (0.211) (0.575) (0.231)

Recession 0.0193 -0.0183 0.152* 0.115*
(0.0703) (0.0664) (0.0796) (0.0668)

Trend -0.0189*** -0.0211*** -0.00969 -0.0138***
(0.00665) (0.00310) (0.00640) (0.00310)

N 16799 16598 16799 16719
Pseudo R2 0.291 0.406 0.305 0.404

Clustered by Firm Ticker S.E. Yes No Yes No
Industry F.E. No Yes No Yes
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Table 1.7: S&P and EJR Rating Stability

Logit Regressions to test rating stability after Dodd-Frank. The dependent variable
is Big Rating Change.Big Rating Change is a dummy that takes a value equal to
one if the rating level, from either S&P or EJR, changes of at least 3 notches in one
year. The dependent variable, Big Rating Change, is regressed on a dummy for the
after Dodd-Frank period, �rm-speci�c controls and a time trend. The Before Dodd-
Frank period goes from January 2005 to June 2010. The After Dodd-Frank period
incorporates all rating actions from July 2010 until December 2014. Firm-speci�c
controls include: Size, Cash Ratio, Tangibility, Market-to-Book Ratio, Pro�tability,
Debt Issuance, Long-Term Leverage and Recession. All �rm controls are lagged
one period. Columns (1) and (2) consider Big Rating Changes for S&P. Columns
(3) and (4) consider Big Rating Changes for EJR. Columns (1) amd (3) assume
standard errors clustered by �rm ticker. Columns (2) and (4) show estimates with
industry �xed e¤ects. ***, ** and * denote signi�cance at 1%, 5% and 10% levels,
respectively.

S&P Big Rating Change EJR Big Rating Change
(1) (2) (3) (4)

After Dodd-Frank period -0.682** -0.765*** -0.267* -0.364***
(0.315) (0.231) (0.152) (0.109)

Size -0.0562 0.0187 -0.0924* -0.00345
(0.0993) (0.0605) (0.0524) (0.0300)

Cash Ratio 5.417** 4.962** 0.260 0.890
(2.497) (2.248) (1.576) (1.049)

Tangibles -0.485 0.950* -0.555** 0.349
(0.426) (0.523) (0.236) (0.256)

Market/Book -0.566** -0.676*** -0.486*** -0.681***
(0.282) (0.183) (0.139) (0.0820)

Pro�tability -3.384 -4.691*** 0.401 0.131
(2.376) (1.577) (0.915) (0.706)

Past Debt Issuance -1.259 -1.016 -2.633** -2.073*
(2.576) (2.176) (1.200) (1.092)

Long Term Leverage 3.009*** 2.331*** 2.370*** 2.551***
(0.855) (0.502) (0.426) (0.253)

Recession 0.313 0.286 0.379*** 0.353***
(0.216) (0.174) (0.112) (0.0896)

Trend 0.0321*** 0.0345*** 0.0246*** 0.0269***
(0.0122) (0.0105) (0.00641) (0.00481)

N 16799 13700 16799 16696
Pseudo R2 0.047 0.110 0.036 0.113

Clustered by Firm Ticker S.E. Yes No Yes No
Industry F.E. No Yes No Yes
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Table 1.11: Bond Market Response to S&P and EJR Credit Rating
Changes

Bond market returns before and after the Dodd-Frank regulation. Bond market
returs are de�ned as:

Rbit =
Pbit � Pbi(t�2)
Pbi(t�2)

;

Pbit de�nes the price of bond b issued by �rm i at the time of the rating change
(t) and Pbi(t�2) de�nes the price of the same bond issued two months prior to the
rating change (t-2). Bond returns are calculated as percentage of the bond price
two months prior to the rating announcement to weaken the possibility that the
price prior to the rating disclosure already incorporates part of the bond market
response. I exclude observations if there are rating changes in the two months prior
to the rating announcement. I drop observations if the rating change at time t is
followed by another rating change at time t+1.

Before Dodd-Frank After Dodd-Frank
Obs. Bond Return (%) Obs. Bond Return (%)

Upgrade S&P 2416 0.067 3212 0.47***

Downgrade S&P 1767 -0.013 3504 -0.42***

Upgrade EJR 8347 1.18*** 15354 1.40***

Downgrade EJR 7821 -1.65*** 7696 -0.012***
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Table 1.13: Low Quality Firms - Firms with High Con�icts of Interest

S&P rating level, EJR rating level and rating di¤erence between S&P and
EJR after Dodd-Frank. Dodd-Frank is a dummy that takes a value equal to
1 starting from July 2010 until December 2014. Low quality is a dummy that
takes value 1 if the �rm�s operating margin is below the median within each
year, quarter and S&P credit rating and zero otherwise. The �rm�s operating
margin is de�ned as the operating income before depreciation divided by total
assets. Firm characteristics include: Cash ratio, Tangibility, Market to Book,
Pro�tability, Debt Issuance and Leverage. A time trend and industry �xed
e¤ects are included in each speci�cation. ***, ** and * denote signi�cance at
1%, 5% and 10% levels, respectively.

(1) (2) (3)
S&P EJR (S&P-EJR)

Dodd-Frank -0.293*** -0.0178 -0.288***
(0.0475) (0.0470) (0.0451)

Low-Quality 0.350*** 0.0649 0.171***
(0.0431) (0.0425) (0.0406)

(Dodd Frank)�(Low-Quality) -0.128** 0.0922* -0.182***
(0.0548) (0.0548) (0.0525)

Size2 0.0620*** 0.0462*** 0.0127***
(0.000822) (0.000775) (0.000652)

N 16799 16799 16799
R2 - - 0.191
Pseudo R2 0.190 0.187 -
Firm Controls Yes Yes Yes
Time Trend Yes Yes Yes
Industry Fixed E¤ects Yes Yes Yes
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Table 1:14: NRSRO and Dodd-Frank
EJR rating levels before and after the NRSRO designation (Jan 2005 - Jul 2010) and
EJR rating levels before and after Dodd-Frank (Dec 2007 - Dec 2014). Columns (1) and
(2) show results for ordered logit models to capture the EJR rating level evolution after
the EJR rating company got the NRSRO designation for �rms de�ned as High-Fee. In
columns (1) and (2) the sample period is restricted from January 2005 until July 2010
(when the Dodd-Frank Act was passed). NRSRO is a dummy that takes a value equal to
1 starting from December 2007, when EJR got the NRSRO designation, until July 2010.
High-Fee is a dummy that takes a value equal to 1 if the average number of bonds issued
by each �rm in the sample, in every year-quarter, is above the average number of �rms
issued by the industry to which the �rm belongs. Firm-speci�c controls, like �rm size
squared, market to book, pro�tability, debt issuance and leverage, are included. All the
�rm controls are lagged one period and interacted by the High-Fee dummy. Columns (3)
and (4) show results for ordered logit models to capture the EJR rating level evolution
after Dodd-Frank for �rms de�ned as High-Fee. In columns (3) and (4) the sample period
is restricted from December 2007 (when the NRSRO designation was assigned to EJR)
until December 2014. Post Dodd Frank is a dummy that takes value equal to 1 starting
from July 2010 until December 2014. In columns (1) - (4) industry �xed e¤ects and a
time trend are included. ***, ** and * denote signi�cance at 1%, 5% and 10% levels,
respectively.

Jan 2005 - Jul 2010 Dec 2007 - Dec 2014
(1) (2) (3) (4)
EJR EJR EJR EJR

NRSRO -0.595*** -0.629***
(0.105) (0.114)

(NRSRO)�(High-Fee) 0.297** 0.289**
(0.132) (0.133)

(High-Fee) -2.012*** -2.012*** -0.215 -0.170
(0.476) (0.476) (0.307) (0.308)

Post Dodd-Frank -0.0775 -0.210***
(0.0713) (0.0781)

(Post Dodd-Frank)�(High-Fee) 0.295*** 0.283***
(0.0944) (0.0944)

Size2 0.0424*** 0.0422*** 0.0469*** 0.0463***
(0.00275) (0.00276) (0.00192) (0.00192)

Size2�(High-Fee) 0.0110*** 0.0110*** 0.00399* 0.00397*
(0.00344) (0.00344) (0.00227) (0.00227)

N 3557 3557 7262 7262
Pseudo R2 0.211 0.211 0.227 0.227
Firm Controls Yes Yes Yes Yes
Time Trend No Yes No Yes
Industry Fixed E¤ects Yes Yes Yes Yes
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CHAPTER 2.
RATING CHANGES AND CEO TURNOVER

Introduction

A large body of research has focused in recent years on the relation between

�rm performance and management turnover, �nding that poor performance is an im-

portant determinant of executive turnover. However, even if important, �rm perfor-

mance is not the sole determinant of management turnaround. As stated by Brickley

(2003),
�while the results are statistically signi�cant, �rm performance continues to explain

very little of the variation in CEO turnover. We will have to consider other less explored
issues to increase our understanding of CEO turnovers and replacements.�

This paper investigates the role of credit rating changes on CEO turnover. In light of

the ongoing discussion about the role played by credit rating agencies in corporate scandals

and in the recent crisis, understanding this relation is of particular interest. Generally

speaking, our purpose is to investigate, both theoretically and empirically, the impact of

credit rating changes on corporate governance decisions, and in particular the sensitivity of

CEO turnover to credit rating changes. To this aim, we construct a theoretical model in

which, within an adverse selection setting, shareholders can ex-post reduce informational

asymmetries by relying on the report of a credit rating agency that collects a signal about

the CEO talent, and thus of the �rm�s prospects. The information provided by the rating

agency is imprecise, but positively correlated with the CEO true characteristics, and triggers

a rating change. In particular, a high signal triggers an upgrade, while a low signal triggers

a downgrade. The outcome realization, along with the rating change, is used to set the

contract terms, namely the CEO�s compensation and the probability of turnover. Within

this setting, we show that one way for the good quality CEO to signal her talent is through
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weak entrenchment. In particular, an executive who is con�dent about her talent is more

willing to accept a turnover in case of downgrade, because she knows that a bad rating is

less likely than it would be if she were not so con�dent. This in turn implies that she is

relatively less entrenched than low quality CEOs. We also �nd that such signalling role of

a weak entrenchment becomes more valuable when the informativeness of the report of the

rating agency decreases, the �rm�s level of investment increases and the rating fees decrease.

In such circumstances the con�dent executive has to o¤er an increased turnover probability

in case of downgrade to separate from the less con�dent one.

Our empirical test aims at understanding whether rating changes, and more

speci�cally downgrades, have an e¤ect on management turnover, and to which extent

this e¤ects depends on the degree of managerial entrenchment. This test is performed

by exploiting CEO-level data and �rm-level data. Following existing literature, we

consult several online resources (Wall Street Journal, Bloomberg Business Journal,

Company Websites, Washington Post, among others) and construct a CEO turnover

database by classifying a turnover as forced if the news on CEO departure mentions

pressures from the board of directors, forced resignation, scandal, reorganization,

demotion, policy or personality disagreement and poor performance.

This database allows us to carry out several tests.

First, we are able to study whether a rating change, be it an upgrade or a

downgrade, has an e¤ect on the probability of CEO turnover. According to the theo-

retical model such a relationship exists, but it only holds for downgrades. This �nding

is con�rmed by our empirical results showing that, while the positive signal coming

from a rating upgrade does not a¤ect the probability of management replacement, the
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negative signal carried by a rating downgrade has a signi�cant impact on the �rm�s

corporate governance.

Second, we try to dig more deeply into the relation between rating changes

and turnover by distinguishing whether the replacement is internal or external. An

internal replacement occurs when the new CEO is chosen inside the company. Con-

versely, an external turnover occurs when the new CEO is chosen outside the company,

most likely within the same industry. We �nd that when, following a negative rating

change, a management turnover occurs, the new CEO is more likely to be chosen

from outside the company. The rationale behind this result is the following. A �rm

that puts a large weight on the downgrade will not only remove the existing CEO,

but will also choose its substitute outside the company�s management so as to send

a strong signal of a change of gear.

Third, we want to test empirically the relation between managerial entrench-

ment and turnover. The theoretical model suggests that high-quality managers, who

believe in their future performance, are more likely to accept contracts with a turnover

as a way to signal their characteristics. Thus, they are less entrenched and the �rms

employing them display a higher pro�tability relative to �rms with more entrenched

CEOs. While this last �nding has been corroborated by several studies (Malatesta

and Walkling, 1988; Berger et al., 1997, among others), the relation between the de-

gree of entrenchment and the probability of turnover has not been explored so far in

the literature. To test whether such a relation exists, we rely on a standard measure

of managerial entrenchment based on the number of anti-takeover provisions. To this

aim, we divide the sample into two subgroups to account for strongly-entrenched �rms
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(�rms where the manager is highly �protected�via a large number of anti-takeover

provisions) and weakly-entrenched �rms (�rms where the manager is weakly protected

because of a low number of anti-takeover provisions). The results highlight that the

link between ratings and turnover is weakened when managers are extremely tied to

their role inside the �rm. In other words, for a manager which is highly entrenched,

it is less likely that a negative rating will translate into an increased probability of

being dismissed from her job.

Fourth, we study the impact of the reliability of the credit rating on turnover

probability. According to the theoretical model, when the information conveyed by

the credit rating agency becomes more reliable, the probability of turnover following

a downgrade increase. We test this prediction by focusing on the post-2007 crisis.

During this period, credit rating agencies have experienced a reputational loss that has

induced more timely and accurate ratings. As a consequence, in the post-crisis period,

the information provided by credit rating agencies has become more reliable than the

information released in the pre-crisis period (Cheng and Neamtiu, 2007). Given the

superior information content of credit ratings, high quality managers have a reduced

need to signal themselves through the threat of replacement. Following this intuition,

we should observe a weaker relation between rating changes and management turnover

in the recent post-crisis period. The results con�rm this hypothesis. Moreover, they

are robust to the inclusion of industry related variables and business-cycle related

controls.

Lastly, we investigate the link between credit rating changes and management

turnover within speci�c �rms. Following the intuition suggested by the theoretical
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model, we study whether a CEO turnover following a rating change for �rms that

invest less than the industry median and for �rms who pay relatively high rating fees,

as proxied by the number of bonds outstanding. The empirical results show that,

within these two groups of �rms, the link that relates credit rating downgrades to

management turnover is weakened.

The paper is organized as follows. Section 1 presents a brief review of the

related literature. Section 2 outlines the theoretical model. Section 3 derives a com-

parative static analysis, followed by some empirical predictions in Section 4. Section 5

provides details about the data used and a full explanation of the variables construc-

tion. Section 6 presents the empirical results. Section 7 conducts an instrumental

variable analysis to deal with the endogeneity problem. Section 8 concludes.

2.1 Related Literature

Management turnover is an important event in a �rm�s life with strong impli-

cations on the �rm�s investment and �nancing decisions. Denis and Sarin (1999) �nd

that CEO turnover causes �rms to be less diversi�ed and smaller, with a subsequent

increase in the cost of debt. On the other hand, Berger et al. (1997) demonstrate that

CEO turnover is associated with substantial increases in leverage and stock perfor-

mance improvements. Adam and Mansi (2009) analyze the impact of CEO turnover

announcements on bondholders wealth, stockholders wealth and overall �rm value,

showing that CEO turnover events, although bene�cial to stockholders, are value de-

creasing to bondholders and, in general, have an insigni�cant impact on �rm value.

However, management turnover is not an isolated episode of a �rm�s life, but is of-
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ten triggered by events related to �rm performance, M&A, or industry or market

performance.

The existence of a negative relation between the likelihood of CEO turnover

and �rm performance is documented, for example, in several studies, which include

Coughlan and Schmidt (1985), Warmer, Watts and Wruck (1988), Weisbach (1988),

Gibbons and Murphy (1990), Murphy and Zimmerman (1993), Blackwell, Brickley

and Weisbach (1994), Kang and Shivdasani (1995). A more recent paper, Jenter

and Lewellen (2014), tries to go deeper in the study of the performance-turnover link

examining two aspects: (1) the persistence of the e¤ects of performance on manager

turnover, and (2) the di¤erent impact of recent performance with respect to past

performance. Their �ndings suggest that the e¤ects of performance on turnover are

as high in the �rst �ve tenure years as in the next �ve with a decline only after

tenure year 10. Further, CEO departures in all tenure years respond strongly to re-

cent performance but are almost insensitive to performance in the more distant past.

Chakraborty et al. (2009) study, both theoretically and empirically, the relation be-

tween incentive compensation and (performance related) CEO turnover, �nding that

steeper incentives go together with higher likelihood of performance related termina-

tion. Thus, a poor performance associated to high-powered incentives signals a low

quality, thereby triggering a turnover. Along a similar line, Chakraborty and Sheikh

(2015) study the relation between option compensation and forced CEO turnover.

Using a sample of 141 forced CEO turnovers between 1993 and 1999, they �nd that

CEOs who receive higher option compensation are more likely to lose their jobs for

poor performance. This e¤ect is weakened for in�uential CEOs (i.e., those with long
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tenures and inside appointments) and for �rms with poor governance structures.

The relation between �rm performance and management turnover has been

analyzed in various countries, as shown in Barucci, Bianchi and Frediani (2006) and

Kato and Long (2006). Barucci, Bianchi and Frediani (2006) study CEO turnover in

the Italian �nancial market for all listed companies during the sample period 1992-

2003. The results show that CEO turnover is higher for poorly performing �rms,

unless the company is controlled by a family member, and that a weak internal

governance, proxied by the board composition and the cash �ow-voting rights wedge,

is associated with a low turnover rate. Kato and Long (2006) get similar results for a

sample of China�s listed �rms from 1998 to 2002. In particular, they �nd that CEO

turnover is inversely related to �rm pro�tability, but that this link is weaker for listed

�rms still controlled by the state.

But �rm performance is only but one possible determinant of CEO turnover.

If it is true that credit ratings are opinions about the �rm probability of default and

higher ratings are associated to better quality �rms, it is also true that credit rating

agencies often revise their evaluations without waiting for a change in �rm perfor-

mance to happen. As a result, in the last decade, many papers have attempted to

explain the turnover event separately from the �rm performance. One attempt is

Lehn and Zhao (2006), who analyze the relation between M&A returns and subse-

quent CEO turnover for 714 �rms that completed acquisitions from 1990 through

1998. They �nd an inverse relation between the value created by M&A activity and

the probability of turnover, meaning that if the CEO completes an acquisition that

creates shareholder value, then it is expected that she will be rewarded with ex-
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tended tenure, for instance. Conversely, if the acquisition destroys shareholder value,

then the CEO will face a higher probability of replacement. Firms that replace their

CEOs after acquisition announcements face highly negative returns relative to �rms

that do not follow this strategy. Consistently with Lehn and Zhao (2006), Jenter and

Kanaan (2014) investigate the factors a¤ecting the management turnover out of the

�rm panorama. Using a hand-collected sample of 3,365 CEO turnovers from 1993

to 2009, they document that CEOs are signi�cantly more likely to lose their job af-

ter bad industry performance and, to a lesser extent, after bad market performance.

In particular, a decline in industry performance from the 90th to the 10th percentile

doubles the probability of turnover.

In common with the literature that studies CEO turnover beyond �rm perfor-

mance, our paper investigates the role of ratings in CEOs��ring decisions. However,

besides the relation with this literature, our paper is also related to various other

strands of the literature.

At a theoretical level, the paper is related to the literature on signaling (Spence,

1973, 1974). Relative to this literature, in our paper it is the weak protection against

managerial turnover that plays the role of signal. Indeed, since a good CEO is less

likely to fail, she bears a lower cost from jeopardizing her job in case of failure than

a bad one, thus making the degree of entrenchment an e¤ective signaling device.

In focusing on the �rm�s �ring decisions, the paper contributes to the litera-

ture on personnel economics. However, this literature has considered �ring decisions

as the result of some negative shock to a �rm or its industry or the result of an in-

dividual proving to be signi�cantly less productive, and has focused on the adverse
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consequences of such decisions on workers. Thus, like most corporate �nance litera-

ture cited above, all this literature considers turnover as performance related and not

as a response to a negative signal, as we do.

By studying the sensitivity of CEO turnover to credit rating changes, our pa-

per contributes also to the growing literature relating credit ratings and corporate

governance decisions. One example is provided by Alali et al. (2012), who show that

improvements in corporate governance standards are positively correlated with im-

provements in credit ratings, with more pronounced e¤ects among small companies.

Kang and Liu (2009) show that rating changes have an e¤ect on CEO equity-based

compensation plans, with downgrades being more e¤ective than upgrades. Their main

�ndings suggest that CEO incentives, measured by pay-performance sensitivities, in-

crease following rating downgrades and decrease following rating upgrades. However,

monetary incentives are not the only dimension of incentives that we should consider.

The threat of being dismissed should induce the CEO to exert a greater e¤ort. Most

important, how much CEOs are willing to take the risk of being replaced can be taken

as evidence of the CEOs�con�dence about future performance and, indirectly, of the

CEOs�quality. Understanding the quality of the management in place becomes ex-

tremely important after negative rating changes which, undoubtfully, have a negative

impact on �rms�reputation.

Lastly, the paper is related to the literature studying the relation between

entrenchment and �rm value (the dynamics of managerial entrenchment). This lit-

erature has shown that managerial entrenchment has adverse e¤ects on management

behavior and incentives and might harm shareholders by weakening the disciplinary
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threat of removal, thereby increasing shirking, empire building and extraction of pri-

vate bene�ts (Manne, 1965). In support of this view, there exists substantial evidence

showing that �rms with strong managerial entrenchment have lower leverage, lower

�rm value and signi�cantly lower pro�tability relative to �rms where managers are

not entrenched (Malatesta and Walkling, 1988; Berger et al., 1997; among others).

Di¤erent measures can be used to capture entrenchment. Gompers et al. (2003)

construct a governance index (G-index, henceforth), based on 24 governance provi-

sions, to proxy for the level of shareholder rights. Bebchuk et al. (2009) construct

an entrenchment index (E-index, henceforth) based on a subset of the measures in

the G-index that matter the most when analyzing corporate governance. Both pa-

pers are based on Investor Responsibility Research Center (IRRC) data, focus mainly

on anti-takeover measures, and �nd that �rms with high shareholder rights (low

entrenchment) are associated with superior performance (higher �rm value, higher

pro�ts, higher sales growth) compared to �rms with relatively many anti-takeover

provisions (high entrenchment). Moreover, the stock returns of �rms with strong

shareholder rights outperforms those of �rms with weak shareholder rights. A more

extensive governance index is provided by Brown and Caylor (2006) using �rm-level

governance information obtained from Institutional Shareholder Services (ISS). Un-

like the other two indices, this index has the advantage of including a broader set

of components of corporate governance than takeover defenses, like progressive prac-

tices (e.g., term limits and mandatory retirement age for directors, board-approved

CEO succession plans), and is signi�cantly positively related to �rm�s valuation, as

measured by Tobin�s Q. Last, some papers (Chakraborty et al., 2009; Chakraborty
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and Sheikh, 2015) demonstrate that performance related CEO turnover is more likely

for weakly entrenched CEOs with high-powered incentives. We take a step further

with respect to the existing literature in describing whether managerial entrenchment

plays any role in the relationship between rating changes and management turnover.

Our research is based on the idea that credit rating changes can provide a

signal about the CEO quality in the labor market and a¤ect her probability of being

replaced. To the best of our knowledge, this is the �rst paper that studies the relation

between ratings and management turnover and the strength of this relation across

entrenched and not entrenched �rms.

2.2 A model with adverse selection

In this section we set up a simple model with unobservable CEO�s character-

istics that explicitly incorporates rating change related turnover.

2.2.1 Model setup and assumptions

Firm shareholders employ a CEO to run a risky project costing I. The project

yields y in case of success and 0 in case of failure. The CEO can be of two types.

A good-type CEO has probability of success equal to pG. A bad-type CEO has

probability of success pB. The NPV of the project if undertaken by a good-type CEO

is V G � pGy � I > 0; while if undertaken by a bad-type CEO is V B � pBy � I > 0:

Assume that pG > pB; so that V G > V B: The CEO has private information about

her type. Assume that the probability of the CEO being a good or a bad type,

respectively, be � and 1 � �; and is common knowledge. Let m � �pG + (1 � �)pB
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denote the CEO�s prior probability of success.

Both the CEO and the shareholders are risk neutral and protected by limited

liability.

Shareholders can reduce informational asymmetries by collecting information

on the quality of the CEO. In particular, upon the good outcome realization, they

can resort to a rating agency (RA, henceforth) to obtain an assessment about the

�rm value at a cost c: This information is imprecise, but positively correlated with

the CEO type. In particular, conditional on the CEO being a good type, the RA gets

a high signal about the �rm value with probability rH ; while it gets a low signal with

probability rL; with rH >
1

2
> rL: Conditional on the CEO being a bad type, the

rating agency gets a high signal about the �rm value with probability qH ; while it gets

a low signal with probability qL; with qL >
1

2
> qH : A signal triggers a rating change.

In particular, a high signal triggers an upgrade (U), while a low signal triggers a

downgrade (D). The outcome realization, along with the rating change, can be used

to set the contract terms, namely the CEO�s wage and the probability of replacement.

In particular, denote with KU the probability that the CEO will be kept in the �rm

upon an upgrade, and with FU the probability that the CEO will be �red still upon

an upgrade. Similarly, denote with KD the probability that the CEO will be kept

in the �rm, and with FD the probability that the CEO will be �red, both upon a

downgrade. Finally, denote with wK the CEO compensation when she is kept in place

and with wF the CEO compensation upon being �red.

Within this setting, we show that a weak protection against managerial turnover

can be used as a signaling device.
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The sequence of events is as follows.

1. Nature chooses the CEO type s 2 fG;Bg, which only the CEO observes.

2. The outcome Y 2 f0; yg is realized and publicly observed.

3. Conditional on a favorable outcome (Y = y), a rating agency is hired to collect

information � 2 fH;Lg about the CEO talent, and thus provide a rating R 2

fU;Dg, at a cost c:

4. Conditional on the rating, payo¤s are distributed and replacement decisions are

taken.

A general game tree is sketched in Figure 1.

N

pG

y
rH FU,wF

U

D

0

rL

KU,wK

FD,wF

KD,wK

1­pG

pB

y
qH FU,wF

U

D

0

qL

KU,wK

FD,wF

KD,wK

1­pB

G (α)

B (1-α)

Fig. 1: The game tree

We �rst calculate the optimal contract under symmetric information when

there is no rating agency. We next introduce asymmetric information and a role for
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the RA in screening types. Then, we show that the information provided by the RA

and the threat of CEO turnover can be used to separate types. So, the threat of

replacement is an extra disciplining device available to the shareholders.

2.2.2 Symmetric information

Under symmetric information, there is no need to resort to a rating agency.

The contract sets type-contingent CEO compensations so as to

max psws; s 2 fG;Bg

subject to the shareholders getting non-negative returns: ps (y � ws) � I: Thus,

wG =
1

pG
(pGy � I) =

V G

pG
; and wB =

1

pB
(pBy � I) =

V B

pB
; with wG > wB: Using ws;

s 2 fG;Bg ; in the objective function, the good-type CEO gets V G; and the bad-type

V B:

The symmetric information outcome however is not robust to asymmetric in-

formation. Indeed, since wG > wB; the bad-type CEO is willing to take the contract

of the good-type CEO. This implies that the shareholders break even on the good-

type but make losses on the bad-type. Anticipating this, the shareholders refuse to

lend since they make losses in expected terms.

Let us then consider a contract that pools the two types of CEOs, in particular

a contract that gives the CEO a compensation w � 0 in case of success and 0 in

case of failure. The shareholders�pro�t for such a contract is therefore on average

m (y � w) � I:

The CEO�s compensation w is set so that shareholders break even across types.
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Thus, wP =
1

m
(my � I) ; with expected return across types

V P = my � I:

We last work out the good CEO expected return under a pooling contract. This

allows us to work out how much the good type looses due to asymmetric information.

Using wP in the good CEO�s expected return pGw gives:

V G-P = V G � (pG � pB) (1� �)
�pG + (1� �) pB

I; (2.1)

where the last term expresses the loss to the good CEO due to asymmetric

information, and thus the cross-subsidisation from the good to the bad type.

In what follows, we will show that it is possible to use weak entrenchment as

a signaling device. In particular, since a good manager is less likely to fail, she bears

a lower cost from jeopardizing her job in case of downgrade than a bad one. Thus, in

order to separate from the bad type and signal her quality, she will then be willing to

take contract terms which do not appeal to bad types (while allowing shareholders

to break even).

2.2.3 Asymmetric information: Signalling through weak entrenchment

One way for the good-type CEO to convey information to investors is to accept

a low protection against managerial turnover.

Suppose that, upon the good outcome realization, a rating agency is asked to

provide a valuation about the �rm. The valuation obtained is positively correlated
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with the true CEO�s quality and triggers a rating change of the �rm. In particular,

if the �rm is managed by a good quality CEO, a high valuation is obtained with

probability rH > 1=2; while a low valuation is obtained with probability rL < 1=2:

Similarly, if the �rm is managed by a bad quality CEO, a high valuation is obtained

with probability qH < 1=2; while a low valuation is obtained with probability qL >

1=2: A high valuation triggers an upgrade (U), while a low valuation triggers an

downgrade (D). The outcome realization, along with the rating change, can then be

used to set the contract terms. In particular, following an upgrade, a probability of

being retained (�red)KU (FU = 1�KU) along with a repayment wK (wF ) conditional

on whether the CEO is retained (�red), is speci�ed. Similarly, following a downgrade,

a probability of being retained (�red) KD (FD = 1 � KD) along with a repayment

wK (wF ) is speci�ed.

We look for a separating equilibrium. The contract terms must then be set so

as to allow the good CEO to credibly signal her type, namely, not appeal to a bad

CEO and allow shareholders to break even when they know they face a good CEO.

Consider thus the problem faced by the good CEO of choosing a probability

of retention (turnover) KU ; KD (FU ; FD) conditional on the rating (U;D), and a

compensation wK(wF ) conditional on being retained (�red) upon the rating (K;F ),

that maximizes her expected payo¤ subject to the shareholders�breaking even on

that CEO (i.e., when the corresponding probability of success is pG), and to the good

CEO�s allocation not being preferred by the bad one to her symmetric information

allocation (that is, to the constraint that the bad CEO obtains no rent over her

symmetric information payo¤) (and to the bad CEO not wanting to o¤er contractual
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terms fwK ; wF ; KU ; KDg). A bad CEO, who in equilibrium is recognized by the

shareholders, must obtain utility V B : she cannot obtain more and she can guarantee

herself V B by demanding her full information reward wB in case of success.

Thus, the shareholders take no risk in �nancing the CEO since at worst she is

a bad type and they still break even. Thus, the maximization programme reads as

follows (programme PRA):

max
wK ;wF ;KU ;KD

pG frH [KUwK + (1�KU)wF ] + rL [KDwK + (1�KD)wF ]g (2.2)

st pG (y � c)� pG frH [KUwK + (1�KU)wF ] + rL [KDwK + (1�KD)wF ]g � I � 0
(2.3)

V B � pB fqH [KUwK + (1�KU)wF ] + qL [KDwK + (1�KD)wF ]g (2.4)

where (2.2) is the good CEO�s expected return, constraint (2.3) is the share-

holders individual rationality condition, ensuring that they break even when recog-

nizing a good CEO, constraint (2.4) is the no-mimicking condition, ensuring that the

bad CEO does not want to mimic the good one, i.e., she prefers the �rst-best contract

designed for her type to the contract terms designed for the good type.

To make the problem interesting and introduce a role for a rating agency, we

introduce the following assumption.

The NPV of the project when managed by a good-type CEO is greater than

the NPV of the project when managed by a bad-type CEO, even when considering
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the expected rating agency�s fees c; i.e.,

V G

pG
� c > V B

pB
:

Moreover, we introduce the following technical assumption to ensure that the

probability of being �red upon a downgrade is bounded in the [0; 1] interval.

rH
V B

pB
> qH

�
V G

pG
� c
�
.

The properties of the optimal contract are described in Proposition ??.

Proposition 1 Under the assumptions of the model, the probability of being

�red upon an upgrade is zero (F �U = 0), while it is strictly positive upon a downgrade

and equal to:

F �D =

1

pG
[pG (y � c)� I]�

1

pB
(pBy � I)

qL
1

pG
[pG (y � c)� I]� rL

1

pB
(pBy � I)

> 0: (2.5)

Moreover, the compensation upon being �red is zero (w�F = 0), while the compensa-

tion upon being retained is:

w�K =
1

�

�
qL
1

pG
[pG (y � c)� I]� rL

1

pB
(pBy � I)

�
> 0; (2.6)

The CEO returns are pG frH + rLK�
Dgw�K = pGy � I � pGc = V G � pGc; lower than

the �rst-best returns V G:

Proof. In the Appendix.

CEO turnover can be explained as a response to imperfect information. It

may serve to reveal information about the quality of CEOs. Low quality CEOs

can be identi�ed because they are not willing to condition their job on the rating
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agency report. High-quality CEOs, instead, have a higher willingness to accept a

replacement upon a low valuation because they know there is a lower probability that

such a valuation will be received from the rating agency. Put di¤erently, signalling

can occur here because it is relatively more costly for a bad CEO to accept a weak

protection against turnover than for a good one. Since qL > rL, it is more likely that

a low valuation will arrive from the rating agency and that she will be �red upon a

downgrade.

The above problem can be represented diagrammatically. To this aim, let

us rewrite the optimization problem in terms of expected returns upon an upgrade,

EU � KUwK +(1�KU)wF ; and expected return upon a downgrade, ED � KDwK +

(1�KD)wF (programme PE):

max
EU ;ED

pG (rHEU + rLED) (2.7)

st
V G

pG
� c � rHEU + rLED (2.8)

V B

pB
� qHEU + qLED: (2.9)

By taking the MRS between EU and ED; we see that the good CEO pro�t

function (2.7) is a straight line with slope:

dED
dEU

jG = �
rH
rL
: (2.10)

From the no-mimicking condition (2.9), we see that the bad CEO pro�t function is lin-

ear and downward sloping with vertical intercept
pBy � I
pBqL

=
V B

pBqL
and slope

dED
dEU

jB =

�qH
qL
:
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Thus, given that rH >
1

2
> rL and qH <

1

2
< qL; the good type CEO will

exhibit a higher MRS (in absolute value) than the bad type CEO, i.e., in the ED-

EU space the isopro�t functions of the good type CEO have higher absolute slopes

than the bad type CEO ones at any given point (moreover the absolute slope of

the good type CEO pro�t function is larger than one, while the absolute slope of

the bad type CEO pro�t function is smaller than one). This means that the good

borrower requires a lower increase in her income in case of failure for a given decrease

in her income in case of success to keep her utility constant, compared with the bad

CEO. Put di¤erently, a high-type CEO is inclined to accept a higher decrease in her

expected return after a low valuation (higher probability of replacement FD, lower

compensation wK) for a given increase in the expected return after a high valuation

(lower probability of replacement FU , higher compensation wK) than CEOs of type

L.

From the individual rationality constraint (2.8), we see that the shareholder�s

pro�t function is linear and downward sloping with vertical intercept
1

rL

�
V G

pG
� c
�
;

and the same slope of the good CEO isopro�t function.

The above program can be represented in the following diagram:

EU

ED

E

NM

E: second­best contractPCG

EH*

ED*

(pBy-I)/pBqL

[pG(y-c)-I]/pGrL
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Fig. 2: The second-best contract

The good type CEO will then choose EU and ED that lies on the highest

possible isopro�t function while satisfying the individual rationality constraint (2.8)

and the no-mimicking condition (2.9). The solution of the programme is then obtained

by taking the intersection of the two constraints and is given by:1

E�U =
1

�

�
(qL � rL) y � qLc+

pGrL � pBqL
pGpB

I

�
; (2.12)

E�D =
1

�

�
(rH � qH) y + qHc�

pGrH � pBqH
pGpB

I

�
: (2.13)

where � � rHqL � rLqH > 0 because of the positive correlation between signal and

type. Notice that E�U = w
�
K and E

�
D = K

�
Dw

�
K :

2.2.4 Existence and uniqueness

The separating allocation is an equilibrium. To see why, consider that the

good type o¤ers two contracts. One specifying the probabilities of turnover condi-

tional on the signal and the compensations conditional on whether turnover occurs,

fF �U ; F �D; w�K ; w�Fg ; and one with no turnover specifying an uncontingent compensa-

tion, f0; 0; wB; wBg ; which coincides with the �rst-best symmetric information con-

tract. Once the shareholders agree to �nance the project, they will break even what-

1Notice that for the problem to have a solution in the positive quadrant the vertical intercept of
the individual rationality constraint must be higher than the vertical intercept of the no-mimicking

constraint, i.e.,
1

rL

�
V G

pG
� c
�
>
1

qL

V B

pB
; which always holds.
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ever the choice of each type of CEO, as the ex-post individual rationality constraints

are satis�ed (by construction of the contracts).

Indeed, the good CEO will choose fF �U ; F �D; w�K ; w�Fg ; as she gets a return

higher than what she obtains by choosing the contract designed for the bad type

(and this contract satis�es the individual rationality). The bad CEO will choose

f0; 0; wB; wBg ; as, by the no-mimicking constraint, she gets a return no less than the

one she would obtain by choosing the contract designed for the good type.

In order to assess whether the separating allocation is unique, we have to

check whether the contract with turnover is preferred by the good type to a pooling

contract. To this aim, let us compare the cost of resorting to a rating agency with

the cross-subsidisation involved in the pooling contract. From the expected return

to a good quality CEO under a pooling contract V G-P (Eq. 2.1), we know that the

cross-subsidisation from the good to the bad type is equal to
(pG � pB) (1� �)
�pG + (1� �) pB

I:

From Proposition 1, we have seen that the cost of resorting to a separating contract

for a good type is instead pGc: Comparing the two and solving for �; we �nd that it

is optimal to use weak entrenchment as a signalling device if the shareholders�belief

that the CEO is good is lower than some threshold, that is, if and only if

� � �� � pB [pG (y � c)� I]� pG (pBy � I)
(pG � pB) (pGc+ I)

:

By Assumption 1, �� > 0; and, for c > 0; it is less than one.

2.3 Comparative static analysis

In order to derive some testable implications, we perform a comparative static
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analysis of turnover probability F �D and CEO compensation conditional on not being

�red wK with respect to investment over revenues I=y and rating fee c: Moreover, we

investigate the role of the informativeness of the signal on the turnover decision.

To investigate the sensitivity of F �D to changes in capital expenditure, we ex-

press the probability of being �red upon a downgrade in terms of a new variable,

capital expenditures over revenues (sales). Thus:

F �D =

1

pG

��
pG �

c

y

�
� I
y

�
� 1

pB

�
pB �

I

y

�
qL
1

pG

��
pG �

c

y

�
� I
y

�
� rL

1

pB

�
pB �

I

y

�
and by taking the derivative with respect to I=y

@F �D

@
�
I
y

� = pGpBy (qLrH � qHrL) f[pG (y � c)� I]� (pBy � I)g
frLpG (pBy � I)� pBqL [(pG (y � c)� I)]g2

;

which is positive by Assumption 1. Moreover, the expected return upon a downgrade

E�D (2.13) is decreasing in I=y :

@E�D

@
�
I
y

� = � pGrH � pBqH
pBpG (qLrH � qHrL)

< 0

while it is unclear the sign of @E�U=@
�
I
y

�
.2

The intuition behind this result is as follows. When investment over total sales

increases, the �rm has less resources to repay shareholders and satisfy the individual

rationality constraint. Moreover, an increase in I=y makes the contract designed for

the good type more attractive for the bad type (i.e., violates the no-mimicking con-

dition). Thus, both the shareholders participation constraint and the no-mimicking

2From (??), this is equal to
@E�U

@
�
I
y

� = pGrL � pBqL
pBpG (qLrH � qHrL)

:
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condition shift downwards. To make up for this lack of resources and restore incen-

tives, the con�dent CEO is willing to accept an lower protection against turnover in

case of downgrade, and thus a lower expected return upon a downgrade.

As regards the rating fees, we �nd that the probability of being �red upon a

downgrade decreases in c :

@F �D
@c

= � pBp
2
G (qLrH � qHrL) (pBy � I)

[pGrL (pBy � I)� pBqL (pG (y � c)� I)]2
< 0:

The expected return upon a downgrade E�D, instead, is increasing in c

@E�D
@c

=
qH

qLrH � qHrL
> 0:

Thus, as c increases, the expected return upon a downgrade increases, while the

expected return upon an upgrade falls,
@E�U
@c

= � qL
qLrH � qHrL

< 0:

Although apparently counterintuitive, the results can be better understood

through a diagrammatic analysis. In particular, from Fig. 2, we see that an increase

in the rating fees a¤ects only the individual rationality constraint, which shifts down-

wards along the no-mimicking condition (Fig. 3). Thus, starting from the initial

optimum in point E; for given ED; an increase in c in the participation constraint

can be compensated by a reduction in EU . However, such reduction makes the con-

tract designed for the good type less attractive for the bad type (it slackens the

no-mimicking condition). This mitigates the signaling role of turnover, making it

possible to increase ED through an increase in KD (i.e., a reduction in the probability

of turnover FD); thus getting to point E 0:

Last, we check how the probability of turnover upon a downgrade F �D varies
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EU

ED

E’

NM

PCG

EU’

ED’

(pBy-I)/pBqL

[pG(y-c’)-I]/pGrL

E

Figure 2..1: Fig. 3: The e¤ect of a change in rating fees

with rH and qL: In particular, we have that:

@F �D
@rH

=

pG (pBy � I)
�
1

pG
[pG (y � c)� I]�

1

pB
(pBy � I)

�
�
1

pB
rL (pBy � I)�

1

pG
qL [pG (y � c)� I]

�2
which is positive, given that the numerator is positive by Assumption 1. Similarly,

@F �D
@qL

= �
[pG (y � c)� I]

�
rH

1

pB
(pBy � I)� qH

1

pG
[pG (y � c)� I]

�
�
1

pB
rL (pBy � I)�

1

pG
qL [pG (y � c)� I]

�2 < 0

which is negative, given that the term in curly brackets in the numerator is positive

under Assumption 2.

In graphical terms, we know that, as rH and qL increase, the participation

constraint of the shareholders dealing with a good type rotate rightwards (clockwise),

while the no-mimicking condition rotates inwards (counterclockwise). This implies

that the intersection between the two functions shifts northwest, i.e., EU decreases

and ED increases. To see this, let us take the derivative of E�U and E
�
D (2.12 and
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2.13) with respect to rH : 3

@E�U
@rH

=
@wK
@rH

< 0;

dE�D
drH

= qH

1

pG
[pG (y � c)� I]�

1

pB
(pBy � I)

(qL � rL)2
> 0;

as argued through the graphical analysis.

Similarly, by taking the derivative of E�U and E
�
D with respect to qL :

dE�U
dqL

=
dwK
dqL

< 0;

dE�D
dqL

= rH

1

pG
[pG (y � c)� I]�

1

pB
(pBy � I)

(qL � rL)2
> 0:

Under maximum informativeness of the signal, rH = qL = 1 and rL = qH = 0: Using

this in (2.12) and (2.13), these become:

E�U = y � c�
1

pG
I =

1

pG
[pG (y � c)� I] =

V G

pG
� c > 0

E�D = y �
1

pB
I =

1

pB
(pBy � I) =

V B

pB
> 0;

K�
D =

pG
pB

pBy � I
pG (y � c)� I

=

V B

pB
V G

pG
� c

< 1; whence, F �D > 0:

Thus, under maximum informativeness of the signal, the individual rationality

constraint becomes vertical and the no-mimicking condition horizontal, with E�U set at

the lowest possible level, equal to
�
V G � pGc

�
=pG; and E�D set at the highest possible

level, equal to V B=pB: However, because rH = qL = 1 and rL = qH = 0; a good

3Recall that rH expresses the probability with which, conditional on the CEO being a good type,
the rating agency gets a high valuation about the �rm value, while qL expresses the probability with
which, conditional on the CEO being a bad type, the rating agency gets a low valuation about the
�rm value. The more informative the signal, the closer to 1 will be such probabilities (and the closer
to zero bill be rL and qH).
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type is never misclassi�ed, i.e., is never erroneously detected as bad. Thus, although

E�D = V
B=pB > 0 and F �D > 0; in equilibrium the good type is never �red (because

the low signal is a zero probability event).

2.4 Empirical predictions

We have shown so far that CEO turnover can be explained as a response to

imperfect information. In particular, the willingness to accept a replacement upon a

downgrade works as a signal of the quality of the CEO. A high quality CEO has a

higher willingness to accept to trade o¤ an increased turnover probability in case of

low signal with a high performance-based reward because she knows there is a lower

probability that such a signal will be received by the rating agency.

Thus, better quality CEOs should display weak entrenchment and obtain

higher compensations. As a consequence, we should observe that �rm pro�tability is

higher when managerial entrenchment is low. Moreover, we should also observe that

both CEO turnover and compensations are higher when managerial entrenchment is

low. So managerial entrenchment is negatively correlated with �rm pro�tability and

managerial turnover.

Existing theoretical literature so far (Shleifer and Vishny, 1989; Zwiebel, 1996;

Novaes and Zingales, 1995; Benmelech, 2006; among others) has described entrench-

ment as actions that managers take, in the form of investment or capital structure

decisions, to keep or secure their position, while hurting shareholders. In our theoreti-

cal model entrenchment is described as the limited willingness to accept a replacement
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that low quality managers have relative to high quality ones. In either case high en-

trenchment translates into low �rm pro�tability and low �rm value.

This leads to the following predictions.

Prediction 1 Firms with weak managerial entrenchment display higher prof-

itability relative to �rms with strong managerial entrenchment.

This has been proved in many empirical papers such as Malatesta andWalkling

(1988) and Berger et al. (1997), among others. According to such papers, �rms in

which the management is strongly entrenched have lower leverage, lower value and

signi�cantly lower pro�tability relative to �rms where the management is weakly

entrenched.

Prediction 2. Firms with strong managerial entrenchment display lower CEO

turnover (relative to �rms with weak managerial entrenchment).

From the comparative static analysis of turnover probability, FD; and CEO

compensation conditional on not being �red, wK , with respect to investment over

sales, I=y; and rating fees c; we have derived the following predictions.

Prediction 3. CEO�s in �rms with high capital expenditure over total sales

show a higher turnover probability relative to CEO�s in �rms with lower capital ex-

penditure over total sales (and thus lower managerial entrenchment).

Thus, the higher the investment over total sales, the higher the CEO will-

ingness to accept �ring upon a downgrade. The intuition behind this result is the

following. An increases in the level of investment over total sales (through either an

increase in I or a decrease in y, or both), tightens both the participation and the no-

mimicking constraints. As a consequence, to make up for the lower resources available
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to repay investors and still get �nanced, and to make sure that the bad CEO has no

incentive to follow, con�dent CEOs must be willing to accept a lower expected return

upon a downgrade, through an increased turnover probability in case of downgrade.

We have also looked at the e¤ect on turnover probability of a change in rating

fees, showing that the higher the rating fees, the lower the CEO willingness to accept

�ring upon a downgrade, i.e., the lower the probability of turnover upon a downgrade.

To grasp the intuition behind this result, consider that when c increases, less resources

are available to repay investors (the participation constraint becomes tighter). As a

consequence, to make up for the lower resources available and still get �nanced, it

is necessary to reduce EU and, possibly, ED; for example through a reduction in

the CEO compensation wK : However, such a reduction slackens the no-mimicking

constraint, which was not a¤ected by the initial increase in c: Thus, the contract

designed for the good type becomes less attractive for the bad type. This implies

that there is room to increase KD; i.e., reduce the probability of turnover FD upon a

downgrade, thereby reducing the signaling role of turnover.

Prediction 4. CEOs in �rms with high rating fees are less likely to be �red

upon a downgrade relative to CEOs in �rms with low rating fees.

We have also analyzed the e¤ect of a change in the informativeness of the signal

on turnover probability and compensation. We have shown that when the informa-

tiveness of the signal increases, the willingness to accept �ring upon a downgrade

falls. The intuition is as follows: The lower the informativeness of the signal, the less

reliable the credit rating to signal the quality of the CEO. As a consequence, in order

to credibly signal their quality, con�dent CEOs must be willing to accept an even

96



lower protection against turnover in case of downgrade . This leads to the following

prediction.

Prediction 5. When the information conveyed by credit rating agency becomes

less reliable, the probability of turnover following a downgrade increases.

2.5 Sample Selection: Data Description

We use three databases in our analysis. Two of them are publicly available:

the Execucomp database o¤ers executive information and compensation data and

the Compustat database provides �nancial and �rm speci�c information. The third

dataset is hand-collected and allows us to make a distinction between forced and

voluntary turnovers.

The Execucomp database provides executive information on a yearly basis.

In particular, it provides data about CEO personal characteristics, such as name,

gender, age, nationality, and data about CEO compensation, such as total compen-

sation, salary, bonus, equity and non-equity incentive plans. We construct a set of

variables that may a¤ect the probability of management turnover. More speci�cally,

we de�ne a variable, CEO tenure, denoting the length of the relation between the

CEO and the company. The variable is constructed by taking the di¤erence between

the current year and the year in which the CEO �rst got her or his position in the

�rm. The correlation between CEO tenure and the probability of turnover can be

either positive or negative. If positive, it is a signal that CEOs are close to retirement

and their probability of being replaced increases. If negative, the length of the CEO
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relation becomes a signal of the �rm�s con�dence towards the CEO. In addition, we

de�ne CEO Age, Compensation, and Salary. CEO compensation and CEO salary

are constructed as the natural log of CEO total compensation and CEO total salary,

respectively. We expect CEO compensation and salary to be negatively correlated to

the probability of turnover, suggesting that CEOs that receive a higher reward are

highly valuable to the �rm and will less likely be replaced. The sign for CEO age is

unpredictable. Weisbach (1988) and Murphy and Zimmerman (1993) �nd a positive

correlation between CEO turnover and CEO age. However, CEO age could also be

negatively correlated with the probability of CEO turnover supporting the idea that

older CEOs are more experienced and, hence, have higher cost of turnover (the cost

of replacement of these employees is generally higher). In addition, we control for the

CEO gender. We construct a dummy variable equal to one if the CEO is a female.

The Execucomp database is merged with the Compustat database, which pro-

vides rating and �rm characteristics.

We delete all the observations for which we do not have rating data. Follow-

ing existing literature, we assign numerical values to S&P�s ratings on notch basis:

AAA=23, AA+=22, AA=21, AA-=20, A+=19, A=18, A-=17, BBB+=16, BBB=15,

BBB-=14, BB+=13, BB=12, BB-=11, B+=10, B=9, B-=8, CCC+=7, CCC=6,

CCC-=5, CC=4, C=3, D=2, SD=1. Ratings below 15 are de�ned as speculative

ratings. Ratings above 15 are de�ned as investment ratings. Since most of the �rm

characteristics are available on a quarterly basis, we average the rating actions hap-

pening in the same quarter, meaning that if there is more than one rating action in

the same year, we take the average of these ratings based on the above numerical
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conversion. Rating changes are de�ned as Upgrades or Downgrades. To de�ne these

rating changes, we construct a one period lag for each rating action and de�ne the

one period rating di¤erence as the di¤erence between the actual rating and the lagged

one. Upgrades are de�ned by a dummy variable equal to one if the one period rat-

ing di¤erence is positive (bigger than zero). Conversely, Downgrades are de�ned by

a dummy variable equal to one if the one period rating di¤erence is negative (lower

than zero). If the one period rating di¤erence is zero, then no rating change happens.

To control for �rm speci�c information that may a¤ect the probability of CEO

turnover, we look at the Compustat Fundamental Annual database. For �rm speci�c

variables, we control for size, total leverage, market to book, pro�tability and tangi-

bility. Firm size (Size), or the natural log of the book value of total assets, is used to

capture economies of scale. Intuitively, we expect the variable Size to be positively

correlated with the probability of CEO turnover, meaning that larger �rms care more

about their credibility and reputation and thus are more willing to change the CEO

in place with a well-organized CEO recruitment process if this is necessary to protect

their image. To get �rm size, we drop observations if total assets are negative or

missing. Firm total leverage (Total Debt Leverage), or the ratio of the book value of

long-term debt to the book value of total assets, is used to control for di¤erences in

the capital structure. We expect leveraged �rms to have lower CEO turnover due to

lower resources available for the recruitment process. We delete observations if the

long-term leverage is missing. Firm growth opportunities are captured by the �rm

market-to-book (Market-to-Book). This variable is constructed as the ratio of the

market value of assets over the book value of assets, where the market value of assets
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is de�ned as the market value of equity (close price multiplied by common shares

outstanding) minus the book value of equity (total assets minus total liabilities plus

deferred taxes and investment tax credit) plus the book value of total assets. We

delete observations if market-to-book is missing, equal or lower than zero. Finally,

we construct Pro�tability and Tangibility. Pro�tability is constructed as the ratio of

operating income before depreciation and total quarterly assets, while tangibility is

expressed as property plant and equipment over quarterly total assets. We restrict

our analysis to non-�nancial �rms.

The rating database and the database containing �rm characteristics are merged

manually by using �rm ticker and �scal year.

The Execucomp database and the Compustat database provide CEOs speci�c

information and �rm speci�c characteristics. However, since they provide no infor-

mation on the reason behind the turnover, we hand-collect data in order to make a

distinction between forced and voluntary turnovers.

In particular, following Farrell andWhidbee (2002), we review the press release

(Wall Street Journal, Bloomberg Business Journal, Company Websites, Washington

Post, among others) and, in line with the de�nition in Parrino (1997), classify the

turnover as forced when the departure mentions pressures from the board of directors,

forced resignation, scandal, reorganization, demotion, policy or personality disagree-

ment and poor performance. Conversely, we classify the turnover as voluntary if the

CEO resigns voluntarily, for personal reasons or to undertake new business activities,

or, if aged above 60, decides to retire. If the reason for CEO departure is reported

as �retirement�but the CEO is below 60 and no additional information is provided,
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again we classify the turnover as forced.4

This hand-collected database allows us to access two types of information.

First, we can construct the exact date in which the turnover event has occurred. This

is important to establish a temporal relationship between rating change and man-

agerial turnover. Second, we can make a distinction between internal and external

turnover. A turnover is internal when the new CEO is chosen inside the company, usu-

ally between the Chief Financial O¢ cer and the Chief Operating O¢ cer. A turnover

is external when the new CEO is chosen outside, usually from related industries. The

distinction between internal and external turnover becomes important to analyze how

�strong�is the e¤ect of the downgrade on corporate governance. Intuitively, a �rm

that is looking outside for a new manager is trying to get the best candidate among

those available.

The total number of forced turnovers we observe in our sample is equal to 130.

Many of these turnovers take place after 2000. The number of voluntary turnovers is

equal to 483 and is stable over time. The maximum number of turnovers (forced or

voluntary) is three for every �rm in our sample. More than half of the �rms in the

sample experience a voluntary turnover. About 15% of the �rms experience a forced

turnover.

The hand-collected database is merged to the Execucomp database and the

Compustat database using �rm ticker, year and quarter. The total number of �rms

4For completeness of exposition, we must mention another de�nition of CEO turnover in the
literature that does not classify it into categories, such as voluntary or forced, internal or external.
It is applied in Mikkelson and Partch (1997) and DeFond and Park (1999) and is simply de�ned as
a change in the identity of the individual who is holding the CEO o¢ ce.
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is 698 for a sample period that goes from 1998 to 2014. Summary statistics about

�rm speci�c variables and CEO speci�c variables are provided in Table 2.1.

[Insert Table 2.1]

As shown in Table 2.1, we consider large �rms with an average rating of BBB-

(14). In our sample, CEOs are on average over 56 years old and have worked for the

same company for about 6 years.

Additional summary statistics are presented in Table 2.2. Here, �rms are

distinguished based on the degree of managerial entrenchment.

[Insert Table 2.2]

Table 2.2 suggests that �rms in which CEOs have a low degree of managerial

entrenchment are larger, more pro�table and with better growth opportunities than

�rms in which CEOs have a high degree of managerial entrenchment. In these �rms,

CEOs receive a larger compensation.

The next section will provide a more detailed description of the estimation

technique used to test the relation between credit rating changes and CEO turnover.

2.6 Estimation

2.6.1 Logit Models

The relation between probability of turnover and rating changes is investigated

using logit models. The �rst speci�cation studies the link between the CEO proba-

102



bility of replacement, upgrades and downgrades. More speci�cally, we estimate the

following model:

Prob(Turnover)cit = �it + �1 � Upgradesit�1 + �2 �Downgradesit�1+

+X 0
ct�1
1 +W

0
it�1
2 + �SIC + �t + "cit: (2.14)

where the dependent variable is the probability of turnover for CEO c employed

at �rm i at time t: The CEO turnover is de�ned as a dummy variable that takes

value one if a turnover has occurred relative to the previous year and it is classi�ed

as forced. Xct is a vector of CEO characteristics (age, compensation, salary, tenure,

gender). Wit includes �rm speci�c controls (Size, Leverage, Pro�tability, Market

to Book, Tangibility). The model is estimated using year-quarter �xed e¤ects and

industry �xed e¤ects. Table 2.3 shows the results.

[Insert Table 2.3]

Column (1) analyzes the relation between CEO turnover and rating changes

when no controls are taken into account. Column (2) considers the combined e¤ect

of time �xed e¤ects and industry �xed e¤ects. Columns (3) and (4) estimate the

relationship by adding �rm and CEO characteristics with and without industry �xed

e¤ects, respectively. Results indicate that, following a downgrade, the probability

of CEO turnover increases. Upgrades have a negative e¤ect on the probability of

CEO turnover. However, this e¤ect is not signi�cant. The result is robust to the

103



inclusion of �rm and CEO speci�c controls. Pro�table �rms with higher rating levels

will experience a lower probability of forced turnover.

2.6.1.a Internal versus External Turnover

Table 2.3 investigates the link between rating changes and management turnover

without making a distinction between whether the new CEO is chosen within the same

�rm that has been downgraded. To further investigate the power of the rating signal

in the turnover decision we distinguish between internal and external turnovers.

Internal turnovers are identi�ed by a dummy variable that takes value one if

the new CEO is chosen within the same �rm that has received the downgrade. We

construct external turnovers in a similar way, i.e., by a dummy variable that takes

value one if the new CEO is chosen outside the �rm that has been downgraded.

The logit models we estimate when we separately consider internal and external

turnovers are given by:

Prob(Internal)cit=�it + �1*Upgradesit�1 + �2*Downgradesit�1+

+X 0
ct�1
1 +W

0
it�1
2 + �SIC + �t + "cit (2.15)

Prob(External)cit=�it+�1*Upgradesit�1+�2*Downgradesit�1+

+X 0
ct�1
1+W

0
it�1
2+�SIC + �t + "cit (2.16)
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Results are presented in Table 2.3 (Columns 5 and 6). The coe¢ cient �1 for

upgrades is always negative but not statistically signi�cant. The result for �2 in

Column 5 suggests that if a downgrade occurs, the CEO in place is more likely to be

replaced with an outsider. The e¤ect of downgrades on internal turnover is weaker

and disappears when industry �xed e¤ects are taken into account. All the controls

have the expected sign.

The results are con�rmed if we divide the sample between small rating changes

(downgrades of at most one notch) and large rating changes (downgrades of two or

more notches). We �nd that forced external turnovers occur following large rating

changes (signi�cant at 10% level), while small rating changes do not seem to have

a signi�cant impact on turnovers.5 Last, internal turnover is not a¤ected by either

large or small rating changes.

2.6.2 Downgrades, Turnover and Entrenchment

In the theoretical model, we have shown that the degree of managerial en-

trenchment works as a signalling device: Under asymmetric information about CEO

characteristics, a good quality CEO is less likely to have a low outcome and is more

willing to accept to be replaced upon a downgrade. Thus, she displays a higher prob-

ability of turnover upon a downgrade and a lower degree of entrenchment relative to

a low quality CEO.

5The reduced level of signi�cance may be due to the large drop in the number of observations
when considering large rating changes. It is nonetheless remarkable that the results, that are highly
signi�cant when considering the entire sample, become not signi�cant when focusing on small rating
changes. It is then likely that the results for the full sample are mainly driven by the large rating
changes.
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At an empirical level, we have seen that downgrades a¤ect the �rm�s decision

to dismiss the current manager. To test whether the degree of entrenchment weakens

the relation between downgrades and CEO turnover, as predicted by the theoretical

model, we should then observe that in �rms with highly entrenched managers the

power of a downgrade is lower than it is in �rms with less entrenched CEOs and,

hence, the threat of removal is not so strong for CEOs in those �rms. To this aim, we

identify the impact that a downgrade has on turnover across �rms with entrenched

and non-entrenched CEOs.

To capture CEO entrenchment, we use two measures widespreadly used in the

literature. The �rst measure comes from Gompers, Ishii and Metrick (2003). Their

entrenchment index (G-index) is broad and based on 24 governance provisions that

the authors show to be negatively correlated with �rm value as measured by Tobin�s

Q and stockholder returns during the 1990 decade. Data on these provisions are

taken from the Institutional Shareholder Service (ISS, formerly RiskMetrics). We are

able to get governance provisions on 536 �rms from 1998 to 2006. The G-index is

constructed as the sum, in a given year and for every speci�c �rm, of all the available

provisions. A deeper look at the data shows that more than half of the �rms have

an average number of corporate provisions between 8 and 11. Only about 3% of the

�rms have more than 15 provisions. An analysis of the number of provisions by year

shows that the G-index is relatively stable with a number of provisions equal to 9 for

every year we observe in our sample.

The second measure is proposed by Bebchuk, Cohen and Ferrell (2008). They

construct an entrenchment index (E-index) focusing on six governance provisions,
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which they reckon to be the ones that matter the most when analyzing the corpo-

rate governance structure. Four of them - classi�ed boards, limits to shareholder

amendments of the bylaws, supermajority requirements for mergers and supermajor-

ity requirements for charter amendments - limit the extent to which a majority of

shareholders can impose its will on management. Two other provisions are salient

measures taken to oppose hostile o¤ers: poison pills and golden parachute arrange-

ments. Our E-index is constructed with data taken from the Institutional Shareholder

Service (ISS , formerly RiskMetrics) and is de�ned as the sum of the above six pro-

visions in every year-�rm combination. Almost 70% of the �rms in our sample have

two or three of the provisions listed in the E-index (on average). Less than 1% of

the �rms have �ve provisions. None of the �rms has all the six provisions. As the

G-index, also the E-index is stable over time. The average number of provisions is

about three.

We divide our sample into two distinct subsamples to distinguish between

entrenched and unentrenched �rms. Firms that are entrenched have a median number

of provisions higher than the sample median. We distinguish entrenched �rms from

unentrenched ones by using either the G-index or the E-index.

Table 2.4, Panel A, shows results when �rms are classi�ed as Strongly En-

trenched or Weakly Entrenched using the E-index.

[Insert Table 2.4]

The relation between forced turnover and downgrades is tested using di¤erent

speci�cations. Columns (1) and (3) include year-quarter �xed e¤ects and industry
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�xed e¤ects, but not �rm and CEO speci�c controls. Columns (2) and (4) add �rm

and CEO speci�c controls. The �rst two columns account for a high degree of man-

agerial entrenchment. The last two columns, instead, for a low degree of managerial

entrenchment. The results show that the e¤ect of downgrades over forced turnover

is weakened when managerial entrenchment is considered. Indeed, the coe¢ cient for

downgrades is not statistically signi�cant in the �rst two columns, which suggests that

the incentive power of downgrades is insu¢ cient to trigger a turnover when CEOs are

strongly protected by governance provisions (i.e., highly entrenched). The result is

not a¤ected by the speci�cation used and all the controls have the predicted sign.

Table 2.4, Panel B, con�rms the previous results using the G-index. As before,

testing for di¤erent speci�cations, the main result highlights that the disciplining

power of downgrades vanishes when highly protected CEOs are taken into account.

One last remark is in order here. Testing for the e¤ects of managerial entrench-

ment allows us to weaken the endogeneity concerns that might arise when studying

the relation between rating downgrades and management turnover. Indeed, we cur-

rently �nd that negative rating changes trigger CEO turnover. However, one might

argue that the relation between rating changes and management turnover is endoge-

nous: CEO removal and rating downgrades are events that are likely to happen in

poor-performing �rms. Those �rms are more exposed to rating downgrades and, at

the same time, more inclined to replace their CEO. This concern is nevertheless mit-

igated when we separate out the sample and analyze separately the relation between

downgrade and turnover across entrenched and unentrenched �rms. Indeed, following

the standard literature on managerial entrenchment (Malatesta and Walkling, 1988;
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Berger et al., 1997), �rms characterized by weak managerial entrenchment are overall

more pro�table than �rms in which managers are highly tied to their position and,

as a consequence, should be less exposed to CEO turnover, not more. Instead, in

line with the predictions of our theoretical model, we �nd that the relation between

rating changes and management turnover is stronger for �rms with less entrenched

CEOs.

2.6.2.a Probit Model with Selection: Rating Changes, Turnover and Entrenchment

The theoretical model suggests that more talented CEOs will signal their qual-

ity by accepting contracts that allow for a managerial turnover following credit rating

downgrades. More talented CEOs are thus less entrenched and more exposed to

turnover. As shown in the previous section, this theoretical prediction can be em-

pirically tested by considering �rms where managers are highly entrenched and �rms

where managers display a low degree of entrenchment. Another possibility to test this

result is to use a probit model with selection (Heckman model). The probit model is

a two-step model. In this speci�c setting, the �rst stage elaborates a model for the

probability of being unentrenched, while the second estimates the relation between

the probability of turnover and rating change by selecting �rms where the CEO is

less entrenched.
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The speci�cation for the �rst stage model is as follows:

Prob(Unentrenched)cit = �+ �1Size+ �2Leverage+ �3Profitability+

+�4CEOTenure+ �5Salary + �6CEOAge+ �SIC + �t + "cit ()

Unentrenched is a dummy variable that takes value one if, consistently with the dis-

cussion in the previous paragraph, the CEO is not entrenched and is not protected

by anti-takeover provisions. We assume that the probability of being unentrenched

depends on �rm size, its level of leverage and pro�tability, as well as some CEO char-

acteristics like tenure, salary and age. Year and industry �xed e¤ects are included.

The second stage of the Heckman model describes the relation between the

probability of managerial turnover and rating changes controlling for �rm and CEO

speci�c characteristics (as speci�ed in Model 8). More intuitively, the adoption of the

probit selection model allows us to study the probability of managerial replacement

following credit rating changes by selecting �rms where the CEO is less entrenched

(i.e., �rms with a lower number of anti-takeover provisions). Results for the Heckman

model are provided in Table 2.5.

[Insert Table 2.5]

Part 1 illustrates the results for a probit selection model where the probability

of CEO turnover following a rating change is estimated without including control vari-

ables. The �rst column shows results for the �rst stage estimation. The coe¢ cients

suggest that managers are less likely to be entrenched in large and pro�table �rms.

In addition, managers that receive a higher salary are less likely to be entrenched.
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Forced shows results for the second stage estimation. As expected, downgrades trig-

ger a higher CEO turnover. Credit rating upgrades lower the probability of CEO

replacement. However, the coe¢ cient for upgrades is not statistically signi�cant.

Similar results obtain when we consider Part 2, where we augment the second stage

regression with control variables. As before, the sign of the coe¢ cients for the �rst

stage regression are as expected. Moreover, downgrades a¤ect CEO turnover while

there is no e¤ect from rating upgrades.

2.6.3 High-investment and low-investment �rms

Prediction (3) states that, in �rms with a high level of capital expenditure over

total sales, managerial turnover following a downgrade is more likely than in �rms

with a low level of capital expenditure over sales. Intuitively, the reason why �rms

with a high level of investment should be more likely to experience a CEO turnover

has to do with the fewer resources available to repay investors. As a consequence, to

make up for the shortage of resources and still get �nanced, con�dent CEOs must be

willing to accept a lower expected return upon a downgrade, through an increased

turnover probability in case of downgrade.

To test this prediction we consider a subset of �rms that are characterized

by a high level of investment. We compute investment as the ratio of quarterly

capital expenditures over quarterly total sales. We divide �rms into two groups:

those with high-investment and those with low-investment. High-investment �rms

are �rms with a median investment above the industry median.6 Low-investment

6Our benchmark for the investment analysis is the industry sector. It might happen that �rms
in speci�c industry sectors have higher levels of investment. In our sample, investment tends to be
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�rms are �rms whose median investment is below the industry median. Results are

provided in Table 2.6.

[Insert Table 2.6]

The �rst two columns refer to low-investment �rms. The last two columns

refer to high-investment �rms. The results illustrate that in �rms characterized by a

high-level of investment, CEO turnover is more likely after a downgrade. The results

are not a¤ected by the speci�cation used. All the controls have the predicted sign.

2.6.4 High-fee and low-fee �rms

Prediction (4) states that, in �rms with high rating fees, the probability of

being replaced following a rating downgrade is lower than in �rms with low rating

fees.

To test this prediction, we need to measure the rating fees paid by the �rm.

Since they are unobservable, we proxy them by considering the �rm�s bonds issuance.

Firms with a large bond issuance, having to resort more often to RAs, have to pay

large rating fees. This may a¤ect the managerial turnover phenomenon through

various possible channels.

First (substitution e¤ect), �rms face a trade-o¤ between various costly deci-

sions. Those with new investment opportunities may issue bonds to �nance them.

The larger the amount of bonds issued, the more often the �rms have to ask for rating

higher for sectors such as Semiconductors, Multi-Utilities, Electric utilities, Oil & Gas Exploration
& Production, Oil & Gas Equipment & Services, Pharmaceuticals, Independent Power Producers &
Energy Traders.
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evaluations, the larger the fees they have to pay relative to �rms issuing a limited

amount of bonds. These �rms might then try to limit other costly decisions, like a

CEO turnover that imposes �ring costs for the old CEO, as well as hiring and training

costs for the replacement. If for the �rm issuing bonds is necessary to carry out its

investment projects, then the costly decision of replacing the CEO, even if needed,

might be postponed, more so for �rms with larger rating fees. In other terms, we

expect the relation between rating downgrades and CEO turnover to be weaker for

�rms with larger bonds issuance, and thus higher rating fees.

Second (con�ict of interests), credit rating agencies working for �rms with

large bonds issuance are more exposed to con�icts of interest.7 Such �rms have

a close relationship with the rating agency, are more likely to pay larger fees and,

consequently, can be thought of as being �good customers� in the eyes of credit

rating agencies. The latter may thus have an incentive to in�ate corporate ratings in

the hope to stop issuers from resorting to alternative rating agencies. The rating fee

paid is thus also a proxy for potential con�icts of interest between rating agencies and

issuers. Given that con�icts of interest are more likely to arise when considering �rms

with a large issuance of bonds, we expect upgrades to be more likely than downgrades

(i.e., rating in�ation more likely) and, consequently, CEO turnover to be less likely

if it is mainly triggered by negative rating changes. As before, we expect to see a

weaker relation between rating downgrades and turnover for �rms that face larger

rating fees (as proxied by the number of bonds issued).

7The idea of using the number of bonds issued by every �rm as a proxy for potential con�icts of
interest for credit rating agencies is standard in the literature. Examples are provided in Covitz and
Harrison (2003), Jiang et al. (2011) and Kraft (2011).
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In order to identify �rms that issue a large number of bonds, we construct a

dummy variable, High-Fee, which takes value one if the median number of bonds

issued by the single �rm is greater than the median number of bonds over the entire

sample.8 Then, we estimate the relation between turnover and rating downgrades by

considering the two sub-samples, the High-Fee �rms and the Low-Fee �rms. Results

are presented in Table 2.7.

[Insert Table 2.7]

Table 2.7 is divided into four columns. Columns (1) and (2) focus on High-Fee

�rms. Columns (3) and (4) consider Low-Fee �rms. Columns (2) and (4) add �rm

controls. Industry and year �xed e¤ects are included. Standard errors are clustered

at the �rm level.

Results are consistent with our prediction. Columns (3) and (4) suggest that

�rms that issue a small amount of bonds are also the ones that are more likely to

experience a CEO turnover following a rating downgrade. Conversely, �rms that issue

a large amount of bonds are less exposed to managerial turnover after downgrades.

The results are robust to the inclusion of �rm controls.

2.6.5 Pre- and Post-2007 Financial Crisis

The theoretical model suggests that when the information conveyed by credit

rating agencies becomes more reliable, the probability of turnover following a down-

grade decreases.

8In our sample, we have information about bond issuance on 434 �rms. Among these, 294 can
be classi�ed as low-fee and 140 as high-fee.
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One way to test this result is to consider how the relation between rating

changes and CEO turnover evolves after the 2007 �nancial crisis. The choice of this

period is justi�ed by the reputational concerns experienced by credit rating agencies

after 2007. Following the crisis, their activity has been more closely scrutinized,

inducing more timely, accurate and informative ratings. Given the higher information

content provided by ratings, we should expect the relation between rating changes

and management turnover to weaken in the post crisis period. The intuition is the

following. If it is true that accepting a contract with higher management turnover is

a device that high-quality managers use to signal their ability and separate out from

the low-quality ones, then the need to signal themselves through weak entrenchment

should be lower when ratings are more reliable.

The approach we follow is to estimate model (2.14) in the pre-crisis period and

in the post-crisis period. According to the NBER dates, the 2007 �nancial crisis has

a stopping point in June 2009. Consequently, we de�ne a dummy for the post-crisis

period that takes value one starting from the third quarter of 2009.

One possible concern that might arise when estimating model (2.14) in the

post-crisis period is that the results might be driven by business cycle dynamics. The

post-crisis period is also the period of the �rm recovery. This implies that when

testing the relation between rating changes and turnover we need to account for the

possibility that the number of CEO turnovers is decreasing because of an improved

�rm quality. To account for business cycle implications, we augment model (2.14)

by including the log of GDP, past one-year market returns (using S&P 500 index),
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S&P 500 index level, perceived �rm pro�tability,9 the quarterly �rm�s stock market

performance and the industry asset turnover.10

Results are presented in Table 2.8.

[Insert Table 2.8]

We test the e¤ect of rating changes on CEO turnover by including year-quarter

�xed e¤ects and industry �xed e¤ects. The table includes results when �rm-speci�c

controls and CEO-speci�c controls are considered. The results highlight that the

relation between rating changes and CEO turnover is weakened in the post-crisis,

suggesting that in this period reputational concerns for RAs have reduced the need

for competent CEOs to rely on weak entrenchment to signal their quality.

2.7 Instrumental Variable Analysis

The tests performed in the previous pages are logit regressions of the CEO

probability of turnover against lagged dummy variables for rating downgrades and

upgrades. Despite lagging variables, endogeneity concerns might arise when studying

the relation between rating changes and management turnover. One issue with this

analysis is that poor performing �rms may drive both the downgrade action and

the CEO turnover. Indeed, poor performing �rms are more likely to default and,

9To constuct the perceived �rm pro�tability, we use the Institutional Brokers�Estimate System
(IBES) Database. This variable is constructed as the analysts�forecasted earnings per share for the
next �scal year divided by the current share price.
10To construct business cycle variables, we need to merge the original dataset, including rating

data and �rm characteristics, with a dataset containing data on market returns and levels for S&P
500 �rms, GDP quarterly data and equity analysts�forecasts.
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consequently, more exposed to rating downgrades. In addition, as a response to the

poor performance, these �rms are more likely to replace their CEO. There exists, thus,

a problem of omitted variables (i.e., �rm pro�tability) that we need to address11. Since

our concern is that the results might be driven by omitted variables, we conduct an

instrumental variable analysis. To this aim, we need to �nd an instrument for rating

downgrades that is �relevant�and �exogenous.�In other words, we need to �nd an

instrument that is correlated with the variable we think is endogenous (i.e., rating

downgrades), but not directly related to our dependent variable (i.e. CEO turnover).

We use a joint instrument.

The �rst instrument is Analyst Coverage, de�ned as the number of equity an-

alysts covering a speci�c �rm. As suggested by Fong et al. (2014), the presence of

a large number of security analysts discipline credit rating agencies. This is because

they mitigate the asymmetric information problem faced by that �rm and, conse-

quently, the optimism-bias in credit ratings. Firms covered by a large number of

equity analysts are thus less likely to receive in�ated ratings from credit rating agen-

cies and, because of the greater monitoring exerted by equity analysts, more likely

to receive downgrades. Following this argument, Analyst Coverage is likely to be

correlated with the credit rating downgrade variable. However, there is no reason

to believe that the number of equity analyst directly a¤ects the probability of CEO

replacement.

11Several factors may drive the relationship between rating downgrades and CEO turnover. News
about restructuring plans (such as takeovers, M&A and �rm split up) may, for instance, have an
a¤ect on both the probability of rating downgrades and CEO replacement. As shown in Healy,
Palupu and Rubak (1990), signi�cant economic improvements are expected after restructuring plans
like mergers. Following this logic, rating downgrades are less likely to happen. However, these events
are also likely to positively a¤ect the probability of CEO turnover.
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The second instrument we use is the Equity Analyst Bias (i.e., equity ana-

lyst pessimism/optimism). Credit ratings incorporate equity analyst forecasts and,

thus, equity analyst recommendations. Consequently, as suggested by Fracassi et al.

(2014), equity analysts pessimism/optimism, as re�ected in equity analyst recom-

mendations and equity analyst forecasts, a¤ect credit ratings and corporate policies.

A �rm that is covered by more pessimistic equity analysts is more likely to receive

lower equity recommendations that might trigger lower credit ratings. Firms that

are covered by more pessimistic equity analysts are, thus, more exposed to credit

rating downgrades. However, equity analyst bias is unlikely to be related to the �rm

probability of replacing the manager.

The �rst stage of the instrumental variable analysis is described as follows:

CRA Downgrade = �+�1Analyst Bias+�2Analyst Coverage+
1Xt�1+�SIC+�t+"it:

The variable we suppose is endogenous, the credit rating downgrade, is regressed

against the two instruments, Analyst Bias and Analyst Coverage and some �rm char-

acteristics. Analyst Bias is a dummy variable that takes value one if in every year

and quarter the �rm is covered mostly by pessimistic equity analysts, that is, by

equity analysts whose recommendation is below the average recommendation. An-

alyst Coverage is de�ned as the number of equity analysts covering a �rm in every

year/quarter. Industry �xed e¤ects and year �xed e¤ects are considered.

Results from the �rst stage regression are presented in Columns (1) and (2) of

Table (2.9).

[Insert Table 2.9]
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Results show that credit rating downgrades are a¤ected by Analyst Bias and

Analyst Coverage. Following the intuition provided above, �rms covered by a large

number of equity analysts are more likely to experience rating downgrades. Similarly,

�rms mostly covered by pessimistic equity analysts are more likely to receive rating

downgrades. All the controls have the expected sign. The �rst stage allows to have

an F-test for the relevance of the instruments. The rule of thumb establishes that

instruments are not weak if the �rst stage F-statistic (H0: coe¢ cients of all instru-

ments =0) is greater than 10. In our case, the �rst stage F-statistic is equal to 16.16

when we include year and industry �xed e¤ects, which implies that our instruments

are relevant and not weak.

Results from the second stage regression are presented in Columns (3) and

(4) of Table (2.9). The results illustrate that, once instrumented for Analyst Bias

and Analyst Coverage, credit rating downgrades signi�cantly a¤ect the probability of

replacing the CEO. Since Columns (3) and (4) are obtained from a linear probability

model, the coe¢ cients reported in Table (2.9) can be interpreted as marginal e¤ects

of rating downgrades on the probability of CEO turnover. As shown in Column (3)

(or Column (4)), following a rating downgrade, a forced CEO turnover is 18.5% likely

to happen. The magnitude of the coe¢ cient estimates are particularly large. The cor-

relation between rating downgrades and management turnover caused by the omitted

variable is the main driving force that biases the coe¢ cient estimates of management

turnover. Once we use the instrument to clean up the correlation between rating

changes and the residuals (the �rm�s unobservable characteristics), the endogeneity

of rating downgrades is removed and the coe¢ cient estimates decrease, i.e., become

119



more negative.

2.8 Concluding remarks

We study the relation between CEO turnover and credit rating changes. Using

a simple adverse selection model that explicitly incorporates rating change related

turnover, our model predicts that a negative credit rating change triggers turnover,

more so the lower the managerial entrenchment and the less informative the report

provided by the credit rating agency. Our empirical results con�rm these predictions.

We show that downgrades explain forced turnover risk and, more in detail, they are

responsible for forced turnovers with the new CEO chosen outside the �rm that has

received the negative credit rating change. In addition, we �nd that the relation

between rating changes and management turnover is stronger when the degree of

managerial entrenchment is low. Finally, we show that the relation weakens for �rms

that issue a large number of bonds, for �rms that invest less and in the post-2007

global �nancial crisis, when the reputational concerns for rating agencies are increased.

In addition, results are robust to an instrumental variable analysis. The need to use

an instrumental variable analysis is justi�ed by the suspect of endogeneity of the

relation between rating changes and CEO turnover: rating downgrades and forced

CEO turnovers are events that are likely to happen contemporaneously for poor-

performing �rms. An instrumental variable analysis is thus needed to account for

omitted variables related to �rm pro�tability.

Our paper o¤ers the opportunity to think about credit ratings from a di¤erent
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perspective.

Credit ratings are a valuable source of information to the bond and stock

markets. Ratings provide information about �rm�s reputation and, as such, a¤ect the

�rm ability to get �nancing and invest. However, ratings are also informative to the

shareholders themselves. If a negative rating change is received, shareholders may

try to restore their image by replacing the CEO in place. This is true independently

of the information content carried on by ratings. Even in the scenario in which

ratings are changing for reasons unrelated to �rm performance, �rms still respond

to negative rating signals by changing their CEO. Firms are thus highly a¤ected by

ratings. Rating changes trigger real e¤ects, in the form of changes in leverage and

investment, but are also able to trigger changes in the corporate governance, in the

form of a higher probability of CEO replacement.

Our analysis has left some issues open. In particular, in our theoretical model

the degree of protection against managerial turnover is only but one aspect of the

CEO contract. Another aspect is the CEO compensation. Clearly, in the model,

a higher managerial turnover is accompanied by higher levels of pay to compensate

managers for the greater risk in their compensation. This is in line with Hermalin

(2005), who �nds that the lower job stability induced by an increased monitoring

intensity of CEOs goes together with an increased level of CEO pay. This view is

broadly consistent with some empirical evidence, but there is no direct evidence that

changes in governance has been the determinant of the rapid rise in CEO pay of the

last 30 years (Frydman and Jenter, 2010). Although this aspect has not been analyzed

in our work, the theoretical analysis may be further developed to deliver predictions
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on the role of monitoring on CEO compensation. We leave the development of this

line of analysis and the empirical veri�cation of the predictions stemming from it to

future research.
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2.9 Appendix Chapter 2

.

The proof proceeds as follows: we �rst prove that both constraints are binding.

Then that wK > wF = 0; then that KU > 0 and KDwK � 0:

1. Both constraints are binding.

To see this, consider programme PE and suppose that the no-mimicking condition

(2.9) is slack. Then, provided that the expected returns are non-decreasing in the

rating outcome, i.e., EU � ED; 12 also the participation constraint (2.8) is slack, given

that, by Assumption 1, the left hand side of the participation constraint is greater

than the left hand side of the no-mimicking condition. It would then be possible to

increase the CEO return by raising both EU and ED, while still satisfying the partic-

ipation constraint.

The individual rationality constraint (2.8) is also binding. If not, it would be possible

from programme PE to raise EU and lower ED so as to keep the no-mimicking condi-

tion binding and increase the CEO return. The variation in ED necessary to satisfy

the no-mimicking condition is

dED = �
qH
qL
dEU : (2.a)

The e¤ect of such variations on the participation constraint is dPC = �rHdEU �

rLdED; which, using (2.a), becomes dPC = �
1

qL
(rHqL � rLqH) dEU : This is strictly

negative, given that coe¢ cient of dEU is the correlation index between signal and

type. The e¤ect on the objective function is identical but with opposite sign.

12We will ex-post check that this is indeed the case.
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2. wK > wF = 0: Suppose not, i.e., suppose wK = wF and suppose in

programme PRA to raise wK and lower wF in such a way to keep the CEO�s pro�t

function and the shareholders participation constraint unchanged:

dwK = �
[rH (1�KU) + rL (1�KD)]

rHKU

dwF : (2.b)

The e¤ect of such variations in the no-mimicking condition is dNM = qHdEU +

qLdED, which, using (2.b), becomes dNM =
1

rH
(rHqL � qHrL) (1�KD) dwF ; which

is strictly negative. This goes on until wF falls to zero and wK > 0:

3. KU = 1; KD � 0; wK > 0:

To show this, we use w�F = 0 in the optimization problem PRA. This becomes:

max pG (rHKU + rLKD)wK (2.c)

pG (y � rHKUwK � rLKDwK � c) = I (2.d)

V B = pB (qHKU + qLKD)wK (2.e)

Suppose KU = KD 2 (0; 1) and suppose to raise KU and lower KD in such a way

to keep the CEO�s pro�t function and the shareholders participation constraint un-

changed:

dKU = �
rL
rH
dKD: (2.f)

The e¤ect of such variations in the no-mimicking condition is dNM = qHdKU +

qLdKD, which, using (2.f), becomes (qLrH � qHrL)
wK
rH
dKD < 0; which is strictly

negative. Thus, 1 > KU > KD > 0:

We next show that KU = 1: Suppose not. Then, it is possible to raise KU and lower
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wK in such a way to keep the CEO�s pro�t function and the shareholders participation

constraint unchanged:

dKU = �
rHKU + rLKD

rHwK
dwK (2.g)

The e¤ect of such variations in the no-mimicking condition is dNM = qHwKdKU +

(qHKU + qLKD) dwK ; which, using (2.g), becomes
pB
rH
KD (rHqL � qHrL) dwK ; which

is negative. Thus, KU = 1:

Solving the binding constraints (2.d) and (2.e):

K�
D =

pGrH (pBy � I)� pBqH [pG (y � c)� I]
pBqL [(pGy � c)� I]� pGrL (pBy � I)

;

w�K =

qL
1

pG
[pG (y � c)� I]� rL

1

pB
(pBy � I)

(rHqL � rLqH)
:

From K�
D we obtain the probability of being replaced upon a downgrade F

�
D (2.5)

reported in Proposition 1. By Assumption 1, F �D is positive. Moreover, by Assumption

2, the denominator is larger than the numerator, which implies that F �D < 1: This

in turn also implies that K�
D < 1: As regards w�K ; this is also positive. Indeed, the

denominator is positive because of the positive correlation between signal and type.

The numerator is also positive by Assumption 1.

UsingK�
U ; K

�
D and w

�
K in the objective function (2.c), the CEO return becomes

[pG (y � c)� I] = V G � pGc:

Last, by comparing the good type CEO compensation contract with replace-

ment with the one obtained by the bad type under a tenured contract, wB =
1

pB
(pBy � I) ;

we see that w�K > wB i¤:

1

pG
[pG (y � c)� I] >

1

pB
(pBy � I)
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which certainly holds under Assumption 1.

Last, we check that the CEO expected return is non-decreasing in the rating

outcome, i.e., E�U � E�D: To show this, recall that E
�
U = K

�
Uw

�
K + (1�K�

U)w
�
F and

ED = K
�
Dw

�
K + (1�K�

D)w
�
F : Using w

�
F = 0; K

�
U = 1, it follows that E

�
U = w

�
K ; and

E�D = K
�
Dw

�
K : Since K

�
D is strictly lower than 1, it follows that E

�
U > E

�
D:
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Table 2.1: Summary statistics

Means, standard deviations, minimums and maximums for speci�c �rm
characteristics for the entire sample. Firm speci�c characteristics in-
clude: Leverage, Size, Tangibility, Market-to-Book Ratio, Pro�tability
and S&P rating levels. CEO speci�c characteristics include: Total com-
pensation, Total bonus, Total salary, Tenure, Age. The sample period
goes from 1998 to 2014. The total number of �rms is 653.
Variable Mean Std. Dev. Min. Max. N

Size 8.849 1.272 5.065 13.649 17214
Leverage 0.301 0.154 0 1.591 17214
Pro�tability 0.09 0.067 -0.58 0.821 17214
Market to Book 1.652 1.026 0.439 29.11 17214
Tangibility 0.378 0.252 0 0.967 17214
S&P 14.671 2.971 1 23 17214
Compensation 8.67 0.873 3.689 13.393 17190
Bonus 6.675 1.167 0 11.251 5895
Salary 6.819 0.414 1.099 8.294 17154
CEO 6.44 6.145 0 43 17186
Age 56.536 6.281 35 87 17214
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Table 2.4: Rating Changes and CEO Turnover - Entrenched versus
Non-Entrenched Fims

Logit regressions to estimate the probability of forced turnover following an S&P rating
change, be it a downgrade or an upgrade, between strongly entrenched and weakly en-
trenched �rms. A CEO turnover is de�ned as forced if the reason behind the departure can
be ascribed to: pressure from the board of directors, forced resignation, scandal, reorgani-
zation, demotion, personality disagreement, poor �rm performance and retirement before
60. A forced turnover is identi�ed by a dummy variable that takes value 1 if the turnover
is forced and 0 if the turnover is voluntary. Panel A shows the analysis when managerial
entrenchment is de�ned following Bebchuck, Cohen and Ferrell (BCF, 2004). Panel B shows
the analysis when managerial entrenchment is de�ned following Gompers, Ishi and Metrick
(GIM, 2003). Columns (1) and (2) refer to �rms classi�ed as strongly entrenched. Strongly
Entrenched �rms are de�ned as those whose median number of anti-takeover provisions, fol-
lowing either BCF (2004) or GIM (2003), is greater than the sample median. Columns (1)
and (2) study the probability of CEO forced turnover following an S&P rating change with
the inclusion of year-quarter �xed e¤ects and industry �xed e¤ects with and without �rm
and CEO-speci�c controls like: Size, Leverage, Market to Book, Tangibility, CEO Tenure,
Total Compensation, Total Salary, CEO Age and CEO Gender. All the control variables
are lagged one period. Columns (3) and (4) repeat the same analysis presented in Columns
(1) and (2) for weakly entrenched �rms. ***, ** and * denote signi�cance at 1%, 5% and
10% levels, respectively. The sample period covered for this analysis goes from 1998 until
2014.

Strongly entrenched Weakly Entrenched
(1) (2) (3) (4)

Forced Forced Forced Forced
Panel A: BCF (2004) index of Entrenchment

Downgrade S&P 0.942 0.576 1.079*** 0.997**
(0.604) (0.619) (0.371) (0.394)

S&P -0.0615 -0.0901 -0.123** -0.173**
(0.0932) (0.129) (0.0510) (0.0711)

N 4063 4040 6360 5881
Panel B: GIM (2003) index of Entrenchment

Downgrade S&P 1.695** 0.520 1.642*** 1.381***
(0.808) (0.845) (0.459) (0.530)

S&P 0.0197 0.235 -0.130** -0.126
(0.111) (0.367) (0.0613) (0.106)

N 1171 1166 1711 1564
Firm-CEO Controls No Yes No Yes
(Year-Quarter) FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Firm Ticker Clustered SE Yes Yes Yes Yes
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Table 2.5: CEO Turnover - Heckman Probit estimation

Heckman Probit estimation in which the probability of being replaced following a credit rating
change, be it a downgrade or an upgrade, is predicted with selection determined on whether
the CEO is weakly entrenched. Part (1) of the table shows the results of a Heckman Probit
model in which the probability of forced turnover (Forced) is regressed against past rating
changes. Weakly entrenched shows the �rst-stage estimation of the Heckman model in which
the probability of being unentrenched, conditioning on a set of explanatory variables (Firm size,
Firm leverage, Firm pro�tability, CEO tenure, CEO salary, CEO age), is estimated by using a
probit model. Part (2) of the table provides the same analysis shown in Part (1) by adding �rm
and CEO-speci�c controls like: Size, Leverage, Pro�tability, CEO Tenure, Total Salary, CEO
Age, Market to Book and Tangibility. ***, ** and * denote signi�cance at 1%, 5% and 10%
levels, respectively. The sample period covered for this analysis goes from 1998 to 2014.

(Part 1) (Part 2)
Weakly entrenched Forced Weakly entrenched Forced

Upgrade S&P -3.980 -4.474
(1131.8) (357.6)

Downgrade S&P 0.512*** 0.500***
(0.139) (0.147)

S&P -0.0394*** -0.0599***
(0.0152) (0.0215)

Size 0.360*** 0.359*** 0.0971*
(0.0122) (0.0122) (0.0511)

Leverage -0.163** -0.161** -0.923**
(0.0794) (0.0794) (0.388)

Pro�tability 0.422** 0.429** -1.815**
(0.168) (0.168) (0.909)

CEO Tenure 0.00147 0.00149 -0.0107
(0.00208) (0.00208) (0.00886)

Salary -0.284*** -0.281*** -0.143***
(0.0353) (0.0353) (0.0517)

CEO Age 0.00814*** 0.00804*** 0.0226***
(0.00198) (0.00198) (0.00861)

N 16758 16758 16758 16758
(Year-Quarter) FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Firm Ticker Clustered SE Yes Yes Yes Yes
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Table 2.6: Rating Changes and CEO Turnover - High Versus Low Investment Firms

Logit regressions to estimate the probability of forced turnover following an
S&P rating change, be it a downgrade or an upgrade, between �rms with
high investment levels and �rms with low investment levels. Investment is
de�ned as the ratio of capital expenditures over quarterly sales. Firms with
high (low) levels of investment are de�ned as those whose median investment
is greater (smaller) than the industry median. A CEO turnover is de�ned as
forced if the reason behind the departure can be ascribed to: pressure from
the board of directors, forced resignation, scandal, reorganization, demotion,
personality disagreement, poor �rm performance and retirement before 60. A
forced turnover is identi�ed by a dummy variable that takes value 1 if the
turnover is forced and 0 if the turnover is voluntary. Columns (1) and (2)
refer to �rms with high levels of investment and study the probability of CEO
forced turnover following an S&P rating change with the inclusion of year-
quarter �xed e¤ects and industry �xed e¤ects, with and without �rm and
CEO-speci�c controls like: Size, Leverage, Market to Book, Tangibility, CEO
Tenure, Total Compensation, Total Salary, CEO Age and CEO Gender. All
the control variables are lagged one period. Columns (3) and (4) replicate
the analysis for �rms with a low investment levels. ***, ** and * denote
signi�cance at 1%, 5% and 10% levels, respectively. The sample period covered
for this analysis goes from 1998 until 2014. Coe¢ cients for CEO Tenure and
Tangibility are not reported.

Low-Investment High-Investment
(1) (2) (3) (4)

Forced Forced Forced Forced
Upgrade S&P -1.017 -0.942 -0.586 -0.437

(1.030) (1.033) (0.710) (0.710)

Downgrade S&P 0.685 0.714 1.350*** 1.067***
(0.420) (0.440) (0.326) (0.360)

S&P -0.109** -0.202*** -0.0598 -0.0537
(0.0493) (0.0631) (0.0465) (0.0582)

Size 0.361** 0.371***
(0.178) (0.128)

Leverage -0.133 -0.158
(1.077) (0.976)

Pro�tability -0.160 -4.576**
(1.347) (2.210)

Market to Book 0.0457 -0.744***
(0.123) (0.282)

Salary 0.00412 -0.0938
(0.0592) (0.0954)

CEO Age 0.0471* 0.0464
(0.0274) (0.0333)

N 6787 6565 10419 9682
(Year-Quarter) FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Firm Ticker Clustered SE Yes Yes Yes Yes
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Table 2.7: Rating Changes and CEO Turnover - High-Fee versus Low-Fee �ms

Logit regressions to estimate the probability of forced turnover following an
S&P rating change, be it a downgrade or an upgrade, between high-fee �rms
and low-fee �rms. A CEO turnover is de�ned as forced if the reason behind
the departure can be ascribed to: pressure from the board of directors, forced
resignation, scandal, reorganization, demotion, personality disagreement, poor
�rm performance and retirement before 60. A forced turnover is identi�ed by
a dummy that takes value 1 if the turnover is forced and 0 if the turnover is
voluntary. Columns (1) and (2) refer to high-fee �rms. High-Fee �rms are
de�ned as whose whose median number of bonds issued is greater than the
sample median. Columns (1) and (2) study the probability of CEO forced
turnover following an S&P rating change with the inclusion of year-quarter
�xed e¤ects and industry �xed e¤ects with and without �rm and CEO-speci�c
controls like: Size, Leverage, Market to Book, Tangibility, CEO Tenure, Total
Compensation, Total Salary, CEO Age and CEO Gender. All the control
variables are lagged one period. Columns (3) and (4) repeat the same analysis
presented in Columns (1) and (2) for low-fee �rms. ***, ** and * denote
signi�cance at 1%, 5% and 10% levels, respectively. The sample period covered
for this analysis goes from 1998 until 2014.

High-Fee Low-Fee
(1) (2) (3) (4)

Forced Forced Forced Forced
Downgrade S&P 0.334 0.179 0.838* 0.951**

(0.658) (0.717) (0.450) (0.469)

S&P -0.201*** -0.277* -0.0771 -0.0751
(0.0755) (0.146) (0.0703) (0.109)

Size -0.0232 0.0395
(0.388) (0.227)

Leverage -5.197 -0.820
(3.772) (2.025)

Pro�tability -4.056 -0.807
(5.374) (5.262)

Market to Book -3.053* -0.737
(1.777) (0.497)

Tangibles 1.909 -0.598
(3.338) (1.920)

Tenure CEO 0.122 -0.0398
(0.0889) (0.0551)

Salary 0.0433 0.0885
(0.182) (0.142)

Age CEO 0.123* 0.104*
(0.0719) (0.0542)

N 1754 1732 2387 2159
(Year-Quarter) FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Firm Ticker Clustered SE Yes Yes Yes Yes
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Table 2.8: Rating Changes and CEO Turnover - Financial Crisis

Logit regressions to estimate the probability of forced turnover following an
S&P rating change, be it a downgrade or an upgrade, before and after the
2007 �nancial crisis. A CEO turnover is de�ned as forced if the reason behind
the departure can be ascribed to: pressure from the board of directors, forced
resignation, scandal, reorganization, demotion, personality disagreement, poor
�rm performance and retirement before 60. A forced turnover is identi�ed
by a dummy variable that takes value 1 if the turnover is forced and 0 if the
turnover is voluntary. Columns (1) and (2) refer to the Pre-Crisis period.
Columns (3) and (4) refer to the Post-Crisis period. The Post-Crisis period is
identi�ed by a dummy that takes a value equal to 1 starting from July 2009.
Columns (1) and (3) study the probability of CEO forced turnover following
S&P rating changes with the inclusion of year-quarter �xed e¤ects and industry
�xed e¤ects. Columns (2) and (4) add �rm and CEO-speci�c controls like:
Size, Leverage, Pro�tability, Market to Book, Tangibility, CEO Tenure, Total
Salary, CEO Age. All the control variables are lagged one period. Business
Cycle variables are included in all the speci�cations. Business Cycle variables
include: S&P 500 market returns, S&P 500 price levels, past stock market
performance, past GDP, industry asset turnover growth. ***, ** and * denote
signi�cance at 1%, 5% and 10% levels, respectively. The sample period covered
for this analysis goes from 1998 until 2014. Coe¢ cients for Tangibility and
Tenure CEO are not reported.

Pre-Crisis Post-Crisis
(1) (2) (3) (4)

Forced Forced Forced Forced
Downgrade S&P 1.254*** 1.045*** 1.111* 0.915

(0.296) (0.309) (0.669) (0.696)

Upgrade S&P -1.040 -0.941 0.134 0.204
(1.015) (1.018) (0.769) (0.784)

S&P -0.0553 -0.104** -0.152** -0.204**
(0.0407) (0.0506) (0.0716) (0.0979)

Size 0.445*** 0.470**
(0.124) (0.225)

Leverage -0.0938 -0.516
(0.995) (1.695)

Pro�tability -2.460** -6.844
(1.248) (4.482)

Market to Book -0.219 -0.314
(0.167) (0.525)

Salary -0.0142 -0.00256
(0.102) (0.0898)

Age CEO 0.0419** 0.0530
(0.0193) (0.0340)

N 12479 12366 3909 3895
Business Cycle Variables Yes Yes Yes Yes
(Year-Quarter) FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Firm Ticker Clustered SE Yes Yes Yes Yes
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CHAPTER 3.
ISSUER VERSUS INVESTOR-PAID RATING AGENCIES, EQUITY
ANALYSTS, AND THE INFORMATION FLOW TO THE STOCK

AND BOND MARKETS

3.1 Introduction

Following the �nancial crisis, credit rating agencies� reputation was under-

mined as they were often criticized for issuing untimely and inaccurate ratings. Crit-

ics argue that the compensation structure of many rating agencies that are paid by

bond issuers generates con�icts of interests that lead raters to in�ate issuers�ratings

scores. Equity analysts, on the other hand, seemed to adjust their forecasts more

quickly with the onset of the �nancial crisis (Sidhu and Tan 2011). This could in

part explain why they did not face similar scrutiny to the credit rating agencies fol-

lowing the �nancial crisis. Equity analysts and credit rating agencies (CRAs) have

the same objective of providing valuations of �rms�performance to investors. How-

ever, while bond raters provide assessment of the bonds�default risk, equity analysts

are concerned with �rms�equity performance, which includes assessments of �rms�

possibility of asset appreciation and dividend payouts.

The literature has investigated the information �ows between equity analysts

and credit rating agencies to better understand which one provides more precise

and timely recommendations. Ederington and Goh (1998) suggest that credit rating

agencies and equity analysts in�uence each others recommendations. Ederington and

Yawitz (1987), on the other hand, show that credit ratings a¤ect equity analysts�

recommendations. They argue that given that credit rating agencies have access to

information that is not available to equity analyst researchers, the analysts have an
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incentive to utilize the unique information available to rating agencies by following

any of their changes. Finally, Fong et al. (2014) show that analyst coverage is likely to

have a disciplining e¤ect on credit rating agencies.1 They argue that the larger is the

number of equity analysts monitoring a �rm, the lower is the asymmetric information

between �rm�s managers and investors. This, in-turn, puts greater the pressure on

credit rating agencies to provide reliable ratings.

While the literature has addressed the information �ows between issuer-paid

rating agencies and equity analysts, the impact of credit ratings issued by CRAs that

are compensated by investors (investor-paid raters) on these information �ows has not

been studied. The investor-paid rating model gained popularity because it alleviates

the con�icts of interests between issuers and the rating agencies. Since the raters

are compensated by investors, they do not face pressure by bond issuers to in�ate

their ratings. Therefore, investor-paid credit ratings are believed to be timelier, more

informative, and accurate in predicting default risk (Jiang et al., 2012, Cornaggia and

Cornaggia, 2013).

In this paper, we evaluate the information content of signals by investor and

issuer paid rating agencies, as well as equity analyst recommendations. Speci�cally, we

investigate whether investor-paid rating agencies provide more informative and timely

ratings than issuer-paid rating agencies and equity analysts. Further, we evaluate how

the bond and stock markets respond to changes in valuations provided by issuer and

investor paid rating agencies, as well as equity analysts. Next, we turn to studying the

impact of bond ratings and analysts�recommendations on �rms�investment decisions.

1Analyst coverage is de�ned as the number of equity analysts monitoring a �rm
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Then, we evaluate how rating agencies and equity analysts respond to �rms�leverage

changes, and whether disagreement between equity analysts about �rm performance

translates into great disagreement in ratings issued by CRAs.

We conduct �ve tests to address the aforementioned empirical questions. First,

we investigate who is the main information driver among the three �nancial gatekeep-

ers (i.e., issuer-paid rating agencies, investor-paid rating agencies and equity analysts).

Speci�cally, we evaluate whether a change in any of these evaluations is able to trigger

changes, of the same sign, in other evaluations. We �nd that investor-paid ratings

impact signals by issuer-paid CRAs and equity analysts. This result is driven in-part

by those investor-paid rating agencies being the �rst to make adjustments to their

signals to re�ect market conditions.

Second, we study the response of the bond and stock markets to issuer-paid

and investor-paid rating changes, as well as to equity analyst recommendation ad-

justments. We �nd that bond investors are more responsive to ratings issued by the

credit rating agencies, while equity investors are more susceptible to recommenda-

tions by equity analysis. These results are consistent with the hypothesis outlined

in Merton (1987) that it is costlier for stock market investors to pay attention to

bond analysts relative to paying attention to stock analyst forecasts. Conversely, it is

costlier for bond market investors to pay attention to stock analysts rather than bond

analysts. Investors in �rms that have a high probability of default, however, respond

more to investor-paid ratings than to signals by equity analysts or issuer-paid rating

agencies.

Third, we investigate how rating agencies and equity analysts respond to
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changes in leverage. The intuition behind this test relies on the di¤erent objectives

of rating agencies and equity analysts. Rating agencies focus on predicting bonds�

default risk, while equity analysts focus on �rms�equity performance. Consistently,

we �nd that increases in leverage lead to lower ratings by CRAs, and more favorable

recommendations by equity analysts due to �rms�additional liquidity resulting from

bond issuance. Speci�cally, investor-paid ratings perceive an increased leverage as an

increase in the probability of default, which leads to lower rating. On the other hand,

equity analysts react positively to an increase in leverage being less concerned about

default and more about liquidity and cash �ow growth.

Fourth, we study how �rms adjust their investment levels following issuer-paid

and investor-paid rating changes as well as equity analyst recommendation adjust-

ments. We �nd that �rms�investment decisions are in-line with changes of ratings

by investor-paid rating agencies. This result is consistent with investor-paid CRAs

being perceived to produce timelier and more reliable signals. Lastly, we investigate

whether disagreement between equity analysts about �rm performance translates into

disagreements in ratings assigned by issuer-paid and investor-paid CRAs. We �nd

that heterogeneity in beliefs among equity analysts is correlated with heterogeneity

in beliefs among bond rating agencies.

The aforementioned tests utilize data on S&P ratings from Compustat (as

representatives of the issuer-paid rating agencies), Egan and Jones ratings obtained

directly from the Egan-Jones Ratings Company (as representatives of the investor-

paid CRAs), and equity analyst recommendations from the Institutional Brokers�

Estimate System (I/B/E/S) database.
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The paper is organized as follows. Section 1 presents an overview of the

literature. Section 2 outlines the hypotheses tested throughout the paper. Section 3

describes the data. Section 4 describes the empirical results. Section 5 concludes.

3.2 Related Literature

Literature has largely studied the capability of �nancial intermediaries to con-

vey information to capital markets. Particular attention has been devoted to the role

of equity analysts and credit rating agencies as well as to their interaction on the

capital markets.

Regarding the role of equity analysts, a big e¤ort has been exerted to study

the real e¤ects of the information they provide. Verrecchia (1996) shows the informa-

tional role of security analysts in increasing �rm value, Womack (1996) illustrates the

capability of equity analysts to increase �rm visibility, Brennan and Subrahmanyan

(1995) and Roulstone (2004) provide evidence of the link between analyst following

and increased liquidity of �rms�securities. The informative power of equity analysts

is often compared to the one of credit rating agencies. Although dealing with dif-

ferent assets and clients, several studies (Beyer et al., 2010; Fong et al., 2014) argue

that sell-side equity analysts and credit rating agencies are competitors. They both

provide information to the market and, although for di¤erent reasons, they both have

an incentive to issue optimistic evaluations. Sell-side equity analysts have a tendency

to assign optimistic stock recommendations to curry favour with the management

(Lin and McNichols, 1998; Ertimur et al., 2011). On the other side, rating agencies
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have largely been accused of biasing their ratings optimistically on corporate debt

(Becker and Milbourn, 2011; Kraft, 2011) and structured �nance projects (Lynch,

2009; Riddiough and Zhu, 2010) to generate business. Which �nancial intermediary,

between equity analysts and credit rating agencies, is able to deliver more timely and

precise information is an open question that the literature has tried to address from

di¤erent angles. Batta and Muslu (2011) compare the company adjusted reported

earnings released by credit rating agencies with those of equity analysts to point out

that, although both informative, adjusted earnings in equity analysts are better in

predicting future earnings and cash-�ows. Following Lui et al. (2007), Lui et al.

(2012) shows that equity changes are timilier and have a larger overall stock price

impact than credit rating changes.

A �rst attempt to establish a direction in the information �ow between bond

rating agencies and stock analysts is provided in Ederington and Goh (1998) which

shows that the Granger causality �ows both ways: bond downgrades are preceded by

declines in actual and forecast earnings and actual earnings, as well as forecasts of

future earnings, tend to fall following downgrades. Other subsequent papers try to

answer the same question by focusing on the advantages that equity analysts have on

rating agencies and vice-versa. Equity analyst recommendations are often thought

to be more objective than the recommendations assigned by other intermediaries

because of the large number of equity analysts that rate the same �rm. Consequently,

�rms covered by many equity analysts are perceived as less opaque and thus riskier.

Exploiting the idea that analyst coverage is a proxy for asymmetric information,

part of the literature �nds that the number of equity analysts monitoring a �rm is
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negatively related to the �rm�s default risk (Cheng and Subramanyan, 2007) and is

likely to reduce the optimistic bias in credit ratings2(Fong et al., 2014). However,

there is also evidence that rating agencies have access to information not available to

equity analysts such as minutes of board meetings, pro�t breakdowns by pro�t and

new product plans (Ederington and Yawitz, 1987). Following Jung et al. (2007), the

informational advantage of credit ratings has increased starting from October 2000,

when the Fair Disclosure Regulation became e¤ective3. The larger information set

available to credit rating agencies should lead to a greater reliance of equity analysts

on rating evaluations.

As far as we are aware, current literature has focused on the interaction be-

tween equity analysts and credit rating agencies without investigating the role played

by the compensation system adopted by those rating agencies. More in detail, previ-

ous works have focused on equity analysts and rating agencies paid by the rated �rms

(issuer-paid rating agencies). An alternative rating model is the one in which rat-

ing agencies get paid by investors (investor-paid rating agencies). The compensation

structure adopted by the latter ensures a reduced exposure to con�icts of interest, a

greater capability of providing timely ratings and hence, an enhanced informativeness

(Jiang et al., 2012; Strobl and Xia, 2012; Cornaggia and Cornaggia, 2013; Xia, 2014).

Althought studies on the performance of the two rating models have always been

2The disciplining e¤ects of competition on credit rating agencies, among credit ratng agencies, are
studied theoretically in Bar-Isaac and Shapiro (2011), Bolton, Freixas, and Shapiro (2012), Camanho
et al. (2010), Manso (2013), Mathis et al. (2009), and Skreta and Veldkamp (2011), among others.
On the empirical front Becker and Milbourn (2011) �nd evidence that the entry of Fitch lead to
better ratings. The opposite results are reported in Doherty et al. (2012) in their analysis of entry
into insurance market by A.M. Best.

3The Fair Disclosure Regulation introduces restrictions on the information that companies can
disclose to analysts. Credit rating agencies are not subject to these limitations.

146



considerable, there is a gap in the literature that needs to be �lled. To our knowl-

edge, no previous paper has aimed to study the reciprocal in�uence of issuer-paid,

investor-paid ratings and equity analyst. Similarly, literature has not compared the

e¤ects of all these recommendations on the bond and stock markets as well as their

e¤ects on corporate investment. We conduct a study on equity analysts and di¤erent

rating models in the following sections.

3.3 Theory and Hypotheses

In this section, we brie�y discuss the underlying theory and develop hypothe-

ses for our empirical tests. The study investigates the idea that while equity analysts

and credit rating agencies have a similar objective of evaluating �rms�quality, they

employ di¤erent approaches to achieve this goal. Speci�cally, credit rating agencies

provide opinions about the �rm�s probability of default. Equity analysts, on the other

hand, issue recommendations that re�ect �rm�s expected stock performance. Further-

more, while Standard & Poor�s (S&P) and equity analysts are compensated by �rms

who they provide ratings for, Egan-Jones (EJR) is compensated by investors. This

suggests that EJR has less incentive to in�ate ratings or be reluctant to downgrade

�rms�ratings.

Since issuer paid rating agencies and equity analysts face pressure to provide

favorable recommendations to �rms that retain their services, we hypothesize that

an investor paid rating agencies such as Egan and Jones (EJR) update their ratings

faster to re�ect the most up-to-date information available for investors. Issuer paid
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rating agencies such as S&P and equity analysis may be particularly slow to update

their ratings when negative information about �rm performance becomes available.

Thus, we test whether EJR rating changes trigger shifts in S&P ratings and equity

analyst recommendations of the same direction (H1).

As previously mentioned, equity analysts provide recommendations about the

�rm�s expected stock performance while the investor and issuer paid rating agencies

provide ratings that re�ect the probability of default on �rms�bonds. Therefore, eq-

uity investors may be more responsive to equity analysts�signals while bond investors

and investors in risky �rms will be inclined to pay particular attention to signals by

rating agencies such as EJR and S&P. Thus, we test whether equity analyst rec-

ommendations have a stronger impact on �rms�equity excess returns compared to

ratings by EJR and S&P (H2). Similarly we test whether EJR and S&P ratings have

a stronger impact �rms�bond spreads compared to equity analyst recommendations

(H3).

To further investigate the stock market response to signals by rating agencies

and equity analysts about �rm quality, we replicate our stock market analysis for

a subset of �rms that are classi�ed to be speculative (i.e., �rms whose ratings are

below the S&P investment grade threshold). This analysis allows us to study which

of the aforementioned signals has the largest impact on the equity performance of

risky �rms (with higher probability of default). Thus, we test whether EJR ratings

have a stronger impact on equity excess returns for �rms with higher probability of

default, in comparison to S&P ratings and equity analyst recommendations (H4).

Moreover, to investigate the bond market response to the outlined signals

148



about �rms quality, we replicate our bond market analysis for �rms that are classi�ed

as speculative and for �rms that are crossing the investment threshold (i.e., �rms that

at time t-1 have a rating from Standard and Poor�s equal to BBB- but are downgraded

to a BB+ rating in the following period). We focus on these �rms to better understand

the reaction of the bond market to credit rating and equity analyst recommendation

changes for poor performing �rms. We expect a magni�ed e¤ect of EJR rating changes

on the bond spread if the analysis is restricted to �rms with a high probability of

default. Thus, we test whether EJR rating changes have a stronger impact on bond

spreads for �rms with higher probability of default, in comparison to S&P ratings

and equity analyst recommendations (H5) and if EJR rating changes have a stronger

impact on bond spreads for �rms that were downgraded below investment grade, in

comparison S&P ratings and equity analyst recommendations (H6).

Credit ratings and equity analyst recommendations a¤ect �rms��nancing op-

portunities. Higher ratings or better equity analyst recommendations translate into

an easier access to capital markets, which, in turn, implies greater investment oppor-

tunities. Consequently, we evaluate whether �rms internalize issuer-paid, investor-

paid and equity analyst recommendation changes and, consequently, utilize these

ratings for their investment decisions. If investor-paid rating agencies have greater

information content, we expect to see a greater increase (decrease) in �rm�s invest-

ment following investor-paid upgrades (downgrades) compared to rating changes by

to issuer-paid agencies such as S&P or changes in equity analyst recommendations.

Thus, we test whether EJR rating changes have a stronger impact on �rm investment

in comparison S&P ratings or equity analyst recommendations (H7).
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Moreover, an increase in �rm�s leverage is likely to lead to lower ratings scores

by the credit rating agencies since it will raise the �rm�s probability of default. At the

same time, an increase in leverage implies that a �rm was able to raise more capital

cost e¤ectively on the bond market, which suggests that it has greater investment

opportunities. Thus, the e¤ect of an increase in leverage on �rm�s expected stock

performance is ambiguous and remains an empirical question. Hence, we test whether

the impact of an increase in leverage has a di¤erential e¤ect on S&P and EJR ratings

as apposed to equity analyst recommendations and evaluate the magnitudes of these

e¤ects (H8).

Finally, we evaluate whether greater disagreement between equity analysts

about recommendations for �rm�s equity performance translates into a greater dis-

agreement between EJR and S&P ratings. The intuition is that equity analysts

disagree in their assessment of equity performance about some �rms more than oth-

ers. This heterogeneity in beliefs about �rm quality can be driven by limited or noisy

of information about �rm performance. Consistently, for some �rms, bond rating

agencies are more likely to disagree in their assessment of default risk. Thus, we test

whether higher disagreement in equity analyst recommendations is associated with a

higher disagreement between EJR and S&P ratings (H9).

Thus, in summary, in this paper we test the hypotheses below:

H1 EJR rating changes trigger shifts in S&P ratings and equity analyst recommen-

dations of the same direction.

H2 Equity analyst recommendations have a stronger impact on �rms�equity excess
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returns compared to ratings by EJR and S&P.

H3 EJR and S&P ratings have a stronger impact �rms�bond spreads compared to

equity analyst recommendations.

H4 EJR ratings have a stronger impact on equity excess returns for �rms with

higher probability of default, in comparison to S&P ratings and equity analyst

recommendations.

H5 EJR rating changes have a stronger impact on bond spreads for �rms with higher

probability of default, in comparison to S&P ratings and equity analyst recom-

mendations.

H6 EJR rating changes have a stronger impact on bond spreads for �rms that were

downgraded below investment grade, in comparison S&P ratings and equity an-

alyst recommendations.

H7 EJR rating changes have a stronger impact on �rm investment in comparison

S&P ratings or equity analyst recommendations.

H8 Increase in leverage has a di¤erential e¤ect on S&P and EJR ratings as apposed

to equity analyst recommendations.

H9 Higher disagreement in equity analyst recommendations is associated with a

higher disagreement between EJR and S&P ratings.
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3.4 Data and Sample Selection

The sample requires the merge of di¤erent databases that provide information

on ratings, equity analysts�recommendations, �rm characteristics and stock returns

details.

The �rst step we follow is to merge the S&P database, the EJR database and

the IBES database.

The S&P long-term credit ratings are obtained from Compustat North Amer-

ica Ratings. All the observations for which there are no rating data are deleted from

the sample. Following existing literature, we assign numerical values to each rat-

ing on notch basis: AAA=23, AA+=22, AA=21, AA-=20, A+=19, A=18, A-=17,

BBB+=16, BBB=15, BBB-=14, BB+=13, BB=12, BB-=11, B+=10, B=9, B-=8,

CCC+=7, CCC=6, CCC-=5, CC=4, C=3, D=2, SD=1. Since �rm characteristics

are available only quarterly, we construct a quarterly time series for the S&P rating

database. To this aim, we average the rating actions happening in the same quarter

meaning that if there are more than one rating action in the same quarter, we take

the average of these ratings based on the above numerical conversion. The original

S&P dataset includes 4,615 �rms for a total number of observations of 143,950 from

1998 until 2014.

The EJR database is obtained directly from the Egan and Jones Rating com-

pany. The database contains issuers�names, tickers, rating actions, including new

rating assignments and related rating dates. This database is constructed on a time

series basis where each credit rating with a rating action is treated as an observation.
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We, thus, construct a quarterly time series for the EJR database where I assign a

rating in the current quarter equal to the rating in the previous quarter if no rating

action has occurred. Since EJR and S&P use the same rating scale, we use the same

numerical conversion adopted for the S&P database. As before, we delete observa-

tions when rating data are not available. The original EJR database includes 2,402

�rms for a total number of observations equal to 58,583 from 1999 until 2014.

We obtain all equity analyst recommendations issued between January 1993

and December 2014 from the I/B/E/S detail �les. Equity analysts use a �ve-tier

rating system. More speci�cally, the I/B/E/S recommendation �le tracks each rec-

ommendation made by each analyst, where recommendations are standardized and

converted to numerical scores where "1" denotes a Strong Buy recommendation, "2"

denotes a Buy recommendation, "3" denotes a Hold recommendation, "4" denotes a

Underperform recommendation and "5" denotes a Sell recommendation. The original

I/B/E/S �le provide recommendations that are analyst speci�c. We average all the

recommendations in a given �rm-year-month to get the average monthly recommenda-

tion for every �rm in our sample. This delivers a sample of analysts recommendations

that covers 1,799 �rms for a total number of observations of 158,511 from 1994 until

2014. This database o¤ers also the opportunity to construct a measure of hetero-

geneity in equity analysts beliefs. The measure, based on the standard deviation

of analysts�recommendations, provides insights on how dispersed is the information

they are able to provide.

The S&P, EJR and I/B/E/S databases are merged by �rm ticker, year and

month. The �nal database of equity analysts�recommendations and ratings contain
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1,150 �rms from 1999 until 2014.

The analysis requires additional data on Moodys�ratings. Moody�s ratings are

collected using the Moody�s website. The rating scale adopted by Moodys is di¤er-

ent from the S&P and EJR�s one. In order to make the comparison across ratings

more manageable, we convert Moodys� ratings using the following numerical con-

version: Aaa=23, Aa1=22, Aa2=21, Aa3=20, A1=19, A2=18, A3=17, Baa1=16,

Baa2=15, Baa3=14, Ba1=13, Ba2=12, Ba3=11, B1=10, B2=9, B3=8, Caa1=7,

Caa2=6, Caa3=5, Ca=4, C=3. We collect ratings for a subset of large �rms (�rms

whose assets are larger than 1 million). We are able to collect Moodys ratings for 286

�rms. The total number of observations for the Moodys �le is 3,652. The Moodys

sample period goes from 2004 to 2014.

The �le containing ratings and equity recommendations is augmented with

�nancial statement and �nancial market data from Compustat and the Center for

Research in Security Prices (CRSP).

Compustat provides �rm speci�c variables. More precisely, by exploiting this

dataset, we construct variables such as Investment, Size, Tangibility, Market-to-Book,

Pro�tability, Long-Term Leverage, Debt Issuance and Cash-Asset ratio. Investment

is de�ned as the ratio of Capital Expenditures over assets. Size is constructed as the

log of quarterly total assets. To construct this variable, we delete observations if total

assets are equal or lower than zero. Tangibility is de�ned as the ratio of property

plant and equipment over total assets. Market-to-Book is constructed as the ratio

of the market value of assets over the book value of assets, where the market value

of assets is de�ned as the market value of equity (close price multiplied by common

154



shares outstanding) minus the book value of equity (total assets minus total liabilities

plus deferred taxes and investment tax credit) plus the book value of total assets. We

delete observations if market-to-book is equal or lower than zero. Pro�tability is

proxied by the Return on Assets, computed as operating income before depreciation

over total assets. The Long-Term Leverage is given by the long-term debt over total

assets. Debt Issuance is constructed as the ratio between the �rst di¤erence of the

�rm total debt and the lagged book value of total assets. Finally, the Cash ratio is

computed as the ratio of cash over total quarterly assets. Missing values for all the

variables cited above are deleted. To limit the e¤ects of outliers, all the variables are

winsorized at the 1% level.

We use CRSP data to get stock information data. The use of this dataset

allows to construct two main variables. First, we can de�ne the stock market excess

return for every �rm in our sample by looking at the di¤erence between the stock

market return and the return on a benchmark, the S&P500 portfolio. Second, the use

of the CRSP database provides the opportunity to construct an additional measure of

heterogeneity in equity analysts beliefs, the monthly turnover. A number of empirical

papers in the �nance literature (among others, Kandel and Pearson, 1995) as well

as in the accounting literature (Bamber, 1987; Bamber, Barron and Stober, 1997)

have used trading activity as a proxy for heterogeneous beliefs among investors. We

construct the monthly turnover variable as the trading volume divided by the number

of shares outstanding. This proxy is also used in Chemmanur, Loutskina and Tian

(2008).

Finally, the analysis requires the use of bond data. Bond information is
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gathered from FINRA�s Trade Reporting and Compliance Engine database (TRACE).

This database contains information about bond prices, returns, yields and years to

maturity. To get bond spreads, we collect the Treasury yields4 from the US Treasury

database, available online. We construct bond spreads for each �rm as the di¤erence

between the bond yield of each security and the Treasury yield with comparable

maturity and coupon. We drop observations if the spread is equal or lower than zero

or if there are missing data.

3.5 Empirical Models and Regression Results

3.5.1 Information Flow between CRAs

A preliminary work by Ederington and Goh (1998) has shown that equity ana-

lysts and credit rating agencies in�uence each other, meaning that actual earnings and

forecasts of future earnings trend to fall following downgrades as well as downgrades

tend to fall after declines in actual and forecast earnings. The analysis conducted

by Ederington and Goh focuses on a time interval that goes from January 1984 until

December 1990, it neglects any di¤erence in the compensation system adopted by

CRAs and, consequently, does not allow to study how the information released by

di¤erent CRAs a¤ect equity analysts and vice-versa.

To study the information �ow between issuer-paid credit rating agencies, in-

vestor paid credit rating agencies and equity analysts we will use a model in which

4Treasury yields are interpolated by the Treasury from the daily yield curve, which relates the
yield on a security to its maturity based on the closing-market bid yields on actively traded Treasury
securities in the over-the-counter market. The yield values are read from the yield curve at �xed
yearly maturities: 1, 2, 3, 5, 7, 10, 20, 30 years.
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S&P or EJR credit rating changes (or equity analyst recommendation changes) are

regressed against past S&P and EJR rating changes as well as past equity analyst

recommendations. The intuition behind this analysis relies on the need to check who

is the main information provider among S&P, EJR and the equity analysts. If the

idea that investor-paid credit rating agencies are more accurate and timely is true,

then we should expect to see other information providers, as represented by the equity

analysts and the issuer-paid credit rating agency S&P, to mimick the information sent

by EJR ratings and to behave accordingly.

The speci�cations we use to test for the information �ow among the three

information providers are provided below:

�IBESi;t=�+ �1�EJRi;t�1+�2�S&P i;t�1+�3�IBESi;t�1+
1�EJRi;t+1+

+
2�S&P i;t+1+�X i;t�1+�SIC+�t+"i;t (3.1)

�EJRi;t=�+ �1�IBESi;t�1+�2�S&P i;t�1+�3�EJRi;t�1+
1�IBESi;t+1+

+
2�S&P i;t+1+�X i;t�1+�SIC+�t+"i;t (3.2)

�S&P i;t=�+ �1�EJRi;t�1+�2�IBESi;t�1+�3�S&P i;t�1+
1�EJRi;t+1+

+
2�IBESi;t+1+�X i;t�1+�SIC+�t+"i;t (3.3)

Model (3.1) studies the e¤ect of past EJR (�EJRi;t�1) and S&P (�S&Pi;t�1) rat-

ing changes on future changes in equity analyst recommendations (�IBESi;t). Model (3.2)

proposes a similar analysis where the e¤ect of past changes in equity analyst recommen-

dations (�IBESi;t�1) and S&P rating changes (�S&Pi;t�1) on future EJR rating changes
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(�EJRi;t) are taken into account. Model (3.3) focuses on S&P rating changes (�S&Pi;t)

and how they are a¤ected by past equity recommendation changes (�IBESi;t�1) and EJR

rating changes (�EJRi;t�1). Additionaly, all the models include lead changes of the main

variables in order to better investigate the direction of the information �ow. Firm speci�c

controls, year and industry �xed e¤ects are included as well.

Results for Model (3.1) are presented in table (3.3). Column (1) shows the

e¤ects of past rating changes, from either S&P or EJR, on subsequent changes in

equity analyst recommendations. Column (2) adds �rm speci�c controls. Column (3)

considers lead values for the main test variables as speci�ed in Column (1). Column

(4) focuses on the e¤ect of the lead variables.

As shown in Columns (1), (2) and (3), past EJR rating changes have an e¤ect

on future equity recommendation changes. More in detail, EJR credit rating changes

induce equity analyst recommendation changes of the same sign. S&P rating changes

play no role on the equity analyst activity. Moreover, current changes in equity

recommendiations do not a¤ect future changes in EJR or S&P. The main message it

is possible to get from Table (3.3) is that analysts change their recommendations only

following EJR changes. Similar analysis is shown in table (3.4) which provides results

for Model (3.2). Here, the dependent variable is represented by current changes in

EJR ratings. Each column of the table has the same interpretation as before. Results

suggest that EJR rating changes are independent of previous changes from either

S&P or the equity analysts. The result persists when controlling for lead values and

�rm speci�c controls. Finally, results for Model (3.3) are presented in table (3.5).

Now, the dependent variable is represented by current changes in S&P ratings. The
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table illustrates that S&P follows all the signals available but it is not able to impact

any of them.

Taken together, the results illustrate that EJR ratings are able to a¤ect both

S&P ratings and equity analyst recommendations. Equity analyst recommendations

a¤ect S&P ratings, but the credit rating changes of the latter have no power in

generating subsequent changes in either EJR ratings or equity recommendations.

3.5.2 Impact of Leverage on Equity Analyst Recommendations and Credit Rating

Changes

Both equity analysts and credit rating agencies provide information about the

state of �rms or indutries. Both equity analysts and credit rating agencies provide this

information based on a research activity that looks at the behaviour of �rms�bonds

and stocks together with other relevant �rm speci�c characteristics. Although the goal

of credit rating agencies and equity analists is similar (i.e. helping investors in the

evaluation of �rms�future prospects), the point of view assumed by equity analysts

and credit rating agencies is di¤erent and translates into di¤erent job descriptions.

Equity analysts elaborate recommendations about the �rm�s equity performance. On

the other side, credit rating agencies are more interested in providing guidelines to

investors about the �rm�s probability of default.

The di¤erent focus of equity analysts and credit rating agencies leads us to in-

vestigate what will be the e¤ect, in terms of equity analyst recommendation changes

and credit rating changes (from either S&P or EJR), of an increase/decrease in lever-

age. Intuitively, a change in leverage should a¤ect di¤erently the way equity analysts
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and credit rating agencies evaluate a �rm. An increase in �rm leverage might be inter-

preted as a way to boost the amount of cash available within the �rm. Consequently,

a higher level of leverage, could be interpreted positively from the point of view of

equity analysts, who are more concerned about securities such as company shares.

However, an increase in leverage can also be interpreted as a signal of the increased

probability of default for the �rm. A higher leverage is a signal of lower probability

of repayment for the investor and, thus, might generate a negative assessment from

credit rating agencies. As usually, we deal with two di¤erent credit rating agencies,

S&P and EJR, that, because of the compensation system adopted, provide ratings

that di¤er for accuracy and timeliness. Given that EJR is an information provider

for investors, less likely to in�ate and, potentially, more focused on the monitoring

activity over companies, we should expect EJR to react more quickly to changes in

leverage than S&P.

To capture the e¤ects of a change in leverage on equity analyst recommenda-

tions and credit ratings we consider the following regression models:

�IBESi;t = �+ ��Leveragei;t�1 + �Xi;t�1 + �SIC + �t + "i;t (3.4)

�EJRi;t = �+ ��Leveragei;t�1 + �Xi;t�1 + �SIC + �t + "i;t (3.5)

�S&Pi;t = �+ ��Leveragei;t�1 + �Xi;t�1 + �SIC + �t + "i;t (3.6)

In the above models, we regress changes in equity analyst recommendations

(�IBESi;t) or changes in credit ratings (�EJRi;t, �S&Pi;t) on past changes in �rm

160



leverage (�Leveragei;t�1) as well as on �rm speci�c characteristics. Year �xed e¤ects

and industry �xed e¤ects are included. Standard errors are clustered at the �rm level.

Results are presented in table 3.6. Column (1) shows the e¤ect of changes in leverage

on subsequent changes in equity analyst recommendations. Column (2) shows the

e¤ect of changes in leverage on future EJR rating changes. Column (3) presents the

e¤ect of past leverage changes on S&P credit rating changes.

The coe¢ cient for �Leveragei;t�1 illustrates how equity analysts and credit

rating agencies perceive changes in leverage. Consistently with the intuition described

above, an increase in leverage generates a greater equity analyst recommendation but

a lower EJR credit rating. Put di¤erently, an increase in the �rm level of leverage

generates an upgrade in equity analyst recommendations and a downgrade in EJR

credit ratings. However, as pointed out in Column (3) of table 3.6, changes in leverage

do not generate any subsequent change in S&P ratings. The insigni�cant coe¢ cient

for �Leveragei;t�1 when the dependent variable is represented by future S&P rating

changes might be explained in light of the slower monitoring activity of S&P. The

results con�rm the idea that a higher �rm leverage is interpreted di¤erently between

credit rating agencies and equity analysts and that, among credit rating agencies,

S&P responds less to �rm changes.

3.5.3 Impact of Rating Changes on Investment

Next, we turn to evaluate the impact of EJR, S&P, and equity analysts up-

grades and downgrades on �rms� investments, de�ned as capital expenditure as a

share of assets. We average the equity analyst recommendations as well as EJR and
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S&P ratings for every �rm-year and merge those with annual �rm characteristics pub-

licly available fromWRDS. The regression model in equation (7) evaluates the impact

of rating changes on investment. The dependent variable (investment) is de�ned as

capital expenditure over assets. Columns (1)-(3) in table 3.7, evaluate the impact

of changes in ratings on investment, separately for EJR, S&P, and equity analysts

recommendations (respectively), while model (4) incorporates all rating changes as

independent variables. Firm controls include leverage, revenue, cash �ow, as well as

rating level controls for IBES, EJR, and S&P, and year and industry �xed e¤ects.

Standard errors are clustered by �rm ticker.

The dummy variables EJRUpgradei;t�1 and EJRDowngradei;t�1 turn on when Egan and

Jones average lagged annual ratings increase or decrease (respectively) by more than

one rating notch. Similarly, S&PUpgradei;t�1 and S&PDowngradei;t�1 turn on when S&P rat-

ings rise or fall (respectively) by more than one notch for �rm i during year t-1.

Consistently, equity analysts recommendations are assigned values from 1 to 5, and

IBESUpgradei;t�1 , IBESDowngradei;t�1 dummy variables refer to lagged decreases or increases

(respectively) of at least one level in the average levels of equity analysts recommen-

dations.5

Investmenti;t=�+ �1EJR
Upgrade
i;t�1 +�2EJR

Downgrade
i;t�1 +�3S&P

Upgrade
i;t�1 +�4S&P

Downgrade
i;t�1 +

+�5IBES
Upgrade
i;t�1 +�6IBES

Downgrade
i;t�1 +
Xi;t�1+�SIC+�t+"i;t (3.7)

5The equity analysts recommendations are classi�ed as follows: strong buy=1, buy=2, hold=3,
sell=4, strong sell=5.
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The regression results in model (1) of table 3.7 suggest that EJR upgrades lead

to an average statistically signi�cant increase of 0.45 percentage points in investment.6

Consistently, EJR downgrades lead to a decrease of 0.62 percentage point in capital

expenditure over assets. This result is consistent with the intuition that investors

respond strongly to EJR rating changes since those �uctuations have substantial

impact on the cost of debt, which in-turn changes the availability of cash �ow for

investment.

Model (2), however, suggests that only a downgrade in S&P ratings has a sta-

tistically signi�cant impact on investment at the 1% level, while the e¤ect of upgrade

in S&P on investment is signi�cant only at the 10% level.7 Similarly, model (3) sug-

gests that only downgrades of equity analysts�recommendations lead to an average

decrease of 0.53 percentage points in capital expenditure as a share of assets. Finally,

in model (4), we include S&P and EJR rating changes as well as changes in equity

analysts�recommendations as independent variables.8 The results suggest that Egan

and Jones upgrades and downgrades lead to statistically signi�cant increases and de-

creases (respectively) in the investment levels. However, only downgrades in S&P

ratings and equity analysts�recommendations have a negative impact on investment

that is statistically signi�cant at 1% level.9 Those �ndings suggest that investors

respond strongly to Egan and Jones rating changes, and only react to downgrades

6Investment is de�ned as capital expenditure over assets.
7S&P downgrade leads to a decrease of 0.74 percentage points in investment, de�ned as capital

expenditure over assets.
8The regression also includes �rm controls such as leverage, revenue, cash �ow, as well as controls

for S&P and EJR rating levels and equity analysts�recommendations.
9The e¤ect of upgrade is only statistically signi�cant at the 10% level in this case
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by equity analysts and S&P. Those �ndings reinforce the intuition that investors

are highly responsive to EJR rating �uctuations since they internalize that it is an

investor-paid rating agency that is accountable only to investors that retain it�s ser-

vices. This is in contrast to S&P, that is subjected to pressure from bond issuers to

in�ate their ratings, or sell-side equity analysts which are incentivized to recommend

equity shares that their employer o¤ers for sale.

3.5.3.a Impact of Upgrade/Downgrade Rating Thresholds on Investment

In addition to evaluating the impact of rating changes on investment, we also

study the e¤ect of ratings being on upgrade or downgrade thresholds on �rm in-

vestment, de�ned as capital expenditure over assets. Similarly to Kisgen (2006), we

de�ne rating downgrade and upgrade thresholds as ratings with minus and plus signs

(respectively). Firms on upgrade or downgrade rating thresholds will incur a distinct

changes in their cost of the debt issuance if their ratings change. Thus to avoid a

downgrade (when rating has a minus sign) or achieve an upgrade (when rating has a

plus sign) �rms will constrain debt issuance, to boost cash �ow to equity holder, and

thereby send a favorable signal to the rating agencies. Therefore, if �rms constrain

debt issuance when their ratings are on the boundaries, they have less free cash �ow

to invest in projects. Consequently, we hypothesize that when �rms�ratings are on

upgrade/downgrade thresholds, they may constrain investment.

We analyze the impact of rating boundaries on investment using the regression

model speci�ed in equation (3.8). The dependent variable (investment) is de�ned as

capital expenditure over assets. EJRMinus
i;t�1 , EJR

Plus
i;t�1 are dummy variables that turn
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on when EJR ratings have negative or positive signs (respectively) next to the letter

of the credit rating. Similarly, S&PMinus
i;t�1 and S&P Plusi;t�1 are dummy variables for

downgrade and upgrade S&P rating boundaries. The regression model also includes

controls for EJR and S&P rating levels as well as equity analysts�recommendations.

Additionally, the model includes �rm controls for revenue, leverage, cash �ow, number

of employees and debt over earnings as well as industry and year �xed e¤ects. Finally,

we cluster the standard errors by �rm ticker.

Investmenti;t=�+ �1EJR
Minus
i;t�1 +�2EJR

Plus
i;t�1+�3S&P

Minus
i;t�1 +�4S&P

Plus
i;t�1+�5EJRi;t�1+

+�6S&P i;t�1+�7IBESi;t�1+
X i;t�1+�SIC+�t+"i;t (3.8)

The regression results are depicted in table 3.8. Models (1),(2) evaluate

the impact of ratings being on upgrade/downgrade boundaries on investment, sep-

arately for EJR and S&P (respectively). Model (3) incorporates coe¢ cients for up-

grade/downgrade rating boundaries for both rating agencies. The results suggest that

investors are highly sensitive to upgrade and downgrade thresholds of ratings issued

by Egan and Jones but not to Standard and Poor�s rating boundaries. Speci�cally,

�rms constrain investment approximately 0.18 percentage points when EJR ratings

have plus or minus signs. However, we �nd no statistical evidence to suggest that

�rms reduce investment when their S&P ratings are on those upgrade/downgrade

boundaries. These results are consistent with the intuition that investors respond

more strongly to EJR than S&P rating thresholds, since unlike Standard & Poor�s,
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Egan and Jones is compensated by investors rather issuers, and therefore is not in-

centivized to in�ate credit ratings in order to appease bond issuers that retain their

services.

3.5.4 Impact of Rating Changes on Excess Returns

In this section, we evaluate the impact of daily changes in Egan and Jones

(EJR) and standard and Poor�s (S&P) credit ratings, as well as changes in the eq-

uity analysts�recommendations on �rms�excess stock returns, de�ned as daily share

returns net of the S&P500 index.

Egan and Jones and standard and Poor�s primary responsibility as credit rating

agencies is to predict default probabilities of �rms�bonds. This implies that credit

rating agencies pay special attention to evaluating the riskiness of �rms with high

probability of default. Thus, investors may �nd credit ratings to be particularly

informative when they consider �rms with median ratings below investment grade,

as those �rms are more likely to default.

Moreover, unlike S&P, EJR (Egan and Jones) is compensated by investors

rather then issuers. Therefore, EJR is not subjected to pressure to in�ate ratings to

appease bond issuers, since is it primarily accountable to investors who pay for the

�rm�s services. Consequently, investors may perceive EJR ratings as more accurate

and thus respond more strongly when EJR rating change, which will result in larger

impact of EJR than S&P changes on excess returns.

Further, equity analysts�job description di¤ers substantially from both EJR

and S&P. They provide recommendations about the �rms�equity performance, rather
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then attempting to predict �rms�default rates, which is the main responsibility of

the credit rating agencies. This implies that investors in �rms that are not likely to

default, may �nd the equity analysts�recommendations about the �rms�performance,

to be more informative. Consequently, we hypothesize that investors in �rms with

low probability of default, may respond more strongly to changes in equity analysts

recommendations rather then to �uctuations in EJR or S&P ratings.

To test our hypothesis, we evaluate the impact of changes in equity analysts�

recommendations (changes in S&P ratings/changes in EJR ratings) on excess equity

returns using the regression model speci�ed in equation 3.9 (3.10/3.11).10 The de-

pendent variable Returni;t � S&P500i;t is the di¤erence between �rms�daily returns

and S&P500 index returns. IBESUpgradei;t�1 and IBESDowngradei;t�1 are dummy variables

that turn on when the average lagged equity analysts recommendations for �rm i

increase or decrease (respectively) by at least one notch. Firm controls include lever-

age, market to book, return on assets, as well as controls for IBES, EJR, S&P rating

levels, and industry and year �xed e¤ects. We also cluster the standard errors by �rm

ticker.

Returni;t�S&P500i;t = �+�1IBES
Downgrade
i;t�1 +�2IBES

Upgrade
i;t�1 +
Xi;t�1+�SIC+�t+"i;t

(3.9)

Returni;t�S&P500i;t = �+�1EJR
Downgrade
i;t�1 +�2EJR

Upgrade
i;t�1 +
Xi;t�1+�SIC+�t+"i;t

(3.10)

10De�ned as Returni;t � S&P500i;t
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Returni;t�S&P500i;t = �+�1S&P
Downgrade
i;t�1 +�2S&P

Upgrade
i;t�1 +
Xi;t�1+�SIC+�t+"i;t

(3.11)

In order to ensure that our assessment of the impact of changes in equity ana-

lysts�recommendations on excess returns are not driven by changes in S&P and EJR

ratings, we construct a time window of 60 days prior and following changes in average

analysts�recommendation where S&P and EJR levels remain constant. We identify

time windows [-60,+60] such that for days [-60,-1] average analysts�recommendations

remain constant, while during [0,+60], the equity analyst recommendations shift at

least one notch upward or downward and remain constant afterwards.

Columns (1) and (2) in Panel A of table 3.9, depict results for the impact

of equity analysts�recommendation changes on excess stock returns while S&P and

EJR ratings remain constant. Similarly columns (3),(4) and (5),(6) refer to the impact

of EJR and S&P changes (respectively) on excess returns while we ensure that we

construct time frames [-60,+60] around changes in EJR and S&P (respectively) such

that the other ratings remain constant. The regression speci�cations in equations

(10) and (11) are similar to equation (3.9), with the exception that we replace dummy

variable for equity analysts�recommendation downgrades and upgrades with dummy

variables for EJR and S&P downgrades and upgrades. Regression results for the

model speci�cation in equation (3.9) are reported in columns (1) and (2) of Panel A

of table 3.9. Similarly, regression results for equations (10) and (11) are reported in

models (3),(4) and (5),(6) in Panel A of table 3.9.

The negative and highly signi�cant coe¢ cient on IBESDowngradei;t�1 in column (2)
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in table 3.9 (Panel A) suggests that downgrades in equity analysts recommendations

yield an average decrease of 16.4 percentage points in equity excess returns. Consis-

tently, the positive and highly signi�cant coe¢ cient on IBESUpgradei;t�1 implies that an

upgrade of equity analysts�recommendations leads to an increase of 16.7 percentage

points in excess returns within days [0,+60] following the change.

However, column (4) in table 3.9 (Panel A) suggests that only an EJR down-

grade (EJRDowngradei;t�1 ) impacts equity excess returns while EJR upgrade (EJRUpgradei;t�1 )

does not have a signi�cant e¤ect. These results are hardly surprising since unlike eq-

uity analysts, credit rating agencies assess the riskiness of �rms�default rates, and

thus are likely to have a smaller impact on returns of well performing �rms in com-

parison to equity analysts. Moreover, column (6) suggests that unlike equity analysts

and Egan and Jones, S&P ratings do not have a signi�cant impact on equity returns.

These results are consistent with the idea that investors respond less to S&P ratings

since they internalize that S&P is subjected to con�icts of interests with bond issuers

that may impact the accuracy of their ratings.

Finally, in Panel B, we preform similar regression analyses as in Panel A, but

we restrict our data sample only to �rms with median S&P ratings below investment

grade. In this instance, only downgrades and upgrades (EJRDowngradei;t�1 ; EJRUpgradei;t�1 )

of EJR have statistically signi�cant impact on equity excess returns. This result

is fully consistent with our intuition that investors respond strongly to EJR rating

changes since EJR is an investor-paid rating agency whose main responsibility is the

predict default risk, and unlike S&P, it is not subjected to pressure from bond issuers

to in�ate its ratings.
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3.5.5 Impact of Equity Analyst Recommendations and Credit Rating Changes on

Bond Market Spread

In the following section, we analyze the e¤ect of equity analyst recommenda-

tions and credit ratings, from either S&P or EJR, on the bond market.

We analyzed the e¤ects of credit ratings and equity analysts on the stock

market. Our results illustrate that equity analyst recommendations and EJR ratings

are the only signals able to a¤ect the stock market, although the e¤ect of EJR ratings

is smaller in magnitude when compared to the equity analyst changes. A re�nement

of the sample to account for poor performing �rms with a higher probability of default

shows that only EJR rating changes a¤ect equity excess returns.

Our goal in this section is to understand if the same pattern is observable for

the bond market. The intuition behind this analysis is similar to the one that has

driven the stock market analysis. We are interested in understanding which signal

is more informative. The greater exposure to con�icts of interests for S&P should

lead to a lower impact on the bond market. Investors discount the informativeness of

S&P ratings because they know that ratings are more likely to be in�ated to please

the issuer. This scenario is di¤erent from the one we should observe for EJR. EJR

ratings, issued for investors, are more transparent, accurate and timely and, as a

consequence, should gather a greater attention (i.e. larger bond market response in

terms of bond spread variation) on the bond market. What will be the e¤ects of

equity analyst recommendation changes on the bond market is an open question that

we will address empirically.

The analysis we perform is based on the following model:
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Log(Spread)i;t= �+ �1EJR
Downgrade
i;t�1 +�2EJR

Upgrade
i;t�1 +
1IBES

Downgrade
i;t�1 +
2IBES

Upgrade
i;t�1 +

+�1S&P
Downgrade
i;t�1 +�2S&P

Upgrade
i;t�1 +�X i;t�1+�SIC+�t+"i;t (3.12)

The dependent variable of the above regression model is represented by the

logarithm of the bond spread. The bond spread is de�ned as the di¤erence between

the security yield and the treasury (T-Bill) yield. Security yields and treausury yields

are matched by maturity and coupons. The logarithm of bond spread is regressed

against EJR rating changes, equity analyst recommendation changes and S&P rating

changes. Firm controls, year �xed e¤ects and industry �xed e¤ects are included.

Results are presented in table (3.10). Table (3.10) is divided in three panels.

Panel (A) considers the entire sample. Panel (B) focuses on a subset of speculative

�rms which are de�ned as �rms whose average rating, from either S&P or EJR,

is below the investment threshold. Panel (C ) considers �rms that at least once in

their life experienced a rating fall from the investment-grade range to the speculative-

grade range. In Table (3.10), Columns (1) and (2) describe the e¤ects of EJR rating

changes on the log(spread), without and with the inclusion of �rm speci�c controls,

respectively. Columns (3) and (4) provide a similar analsysis when the EJR rating

changes are replaced by the equity analyst recommendation changes. Columns (5)

and (6) focus on the S&P changes. Finally, rating and equity analyst changes are

considered together in the last two columns, Column (7) and Column (8).

As shown by Column (8), EJR rating upgrades and downgrades have an e¤ect
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on the bond market. EJR rating upgrades reduce the bond spread by about 3.49

percentage points. EJR rating downgrades increase the bond spread by about 15.3

percentage points. As EJR downgrades, also downgrades in equity analyst recommen-

dations have an e¤ect on the bond market althought the magnitude is reduced (i.e. a

reduction in the recommendation provided by equity analysts delivers an increase in

the bond spread equal to 2.03 percentage points). Interestingly, upgrades from equity

analysts do not seem to be as informative as the downgrades and, consequently, the

coe¢ cient for IBESUp grad ei;t�1 is not signi�cant. As issuer-paid credit rating agencies,

also equity analysts are exposed to con�icts of interests that may compromise the

credibility and the informativiness of corporate equity recommendations. Equity an-

alysts may decide to in�ate equity recommendations to please the management and

protect their job. Given that an incentive to in�ate ratings exists, upgrades are less

reliable than downgrades.

The greater bond market response following EJR rating changes persists even

after considering a subset of �rms that, among the others, are more likely to default

given that the assigned rating, from either S&P or EJR, is below the investment

threshold (Panel (B)). Contrarily to what observed before, when the entire sample is

taken into account, S&P rating downgrades matter. The result is not surprising and

is in line with the idea that credit rating agencies care more about predicting �rm

default. As expected, S&P upgrades have no signi�cant e¤ect on the bond spread

suggesting that the informativiness of S&P upgrades is reduced because of a more

likely rating in�ation phenomenon for this category of rating agencies.

Finally, we categorize �rms in a di¤erent way in Panel (C ). Here, we consider
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�rms that not necessarily are poor-performing �rms. However, these are riskier �rms

that need to be highly monitored given that, already once in their life, had a rating

fall from the investment-range to the speculative one. Results suggest that only EJR

rating changes are informative and a¤ect the bond market.

The results presented in this section illustrate that the information provided

by EJR is overall more informative than the one provided by S&P and the equity

analysts, indipendently of the sample considered.

3.6 Conclusions

This study evaluates the discrepancies in the information content of equity an-

alyst recommendations, and ratings by issuer and investor paid credit rating agencies.

We demonstrate that Egan and Jones, the largest investor-compensated rating agency

in the U.S., issues timelier ratings that impact equity analysts�recommendations and

S&P ratings. This result is consistent with the intuition that being an investor-paid

rating agency, EJR does not face pressure to in�ate ratings or delay downgrades.

Moreover, we show that changes in credit ratings by EJR and S&P have larger

impact on bond yield spreads than equity analyst recommendations. Consistently,

analysts�recommendations have a larger e¤ect on �rms�equity returns. This result

is in-line with the intuition that bond investors rely on bond raters to better predict

default risk, while equity investors rely more on equity analysts to predict overall �rm

performance. Interestingly, however, when �rms have a high probability of default,

even equity investors rely more heavily on the investor-paid rating agency (EJR) as
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a predictor of default risk.

Further, we demonstrate that changes in leverage are associated with lower

EJR (Egan and Jones) ratings but higher equity analyst recommendations. This

result suggests that rating agencies focus on default risk, and thus will evaluate higher

leverage as a negative signal. Equity analysts, on the other hand, focus on overall

�rm performance, and therefore will balance the cost of higher default risk with the

bene�t of greater liquidity resulting from bond issuance.

Finally, we �nd that investor-paid rating agency (EJR) has a larger impact

on �rms� investment decisions than equity analyst recommendations and S&P rat-

ings. This �nding can be driven by the aforementioned result that EJR rating are

timelier than equity analyst recommendation and S&P ratings, or by the fact that

EJR does not face pressure to in�ate ratings to please issuers, and thus can be more

informative for �rms�investment decisions. We conclude by demonstrating that dis-

agreement among equity analyst on their recommendations about �rms�performance

is correlated with greater disagreement between S&P and EJR on �rms�default risks.
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Table 3.1: Firm Characteristics for IBES, S&P, and EJR

The table provides summary statistics for each of the rating agen-
cies IBES, EJR, and S&P. EJR and S&P ratings are assigned
valuers from 1 to 23, where 23 refers to the rating with the lowest
probability of default (AAA). IBES recommendations are assigned
ratings from 1 to 5, where 1 refers to strong buy recommendation
while 5 refers to strong sell recommendation.

(1) (2) (3)
IBES EJR S&P

Sample Period 1993-2014 1999-2014 1998-2014

N Firms 1799 2402 4615

N Observations 158511 58583 143950

Average Rating 2.357 13.977 13.623

Average Years Per Firm 9.18 6.25 12.36
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Table 3.2: Annual Firm Characteristics

The table provides summary statistics for each of the
rating agencies IBES, EJR, and S&P. EJR and S&P
ratings are assigned values from 1 to 23, where 23
refers to the rating with the lowest probability of de-
fault (AAA). IBES recommendations are assigned rat-
ings from 1 to 5, where 1 refers to strong buy recom-
mendation while 5 refers to strong sell recommenda-
tion. Firm characteristics include: investment, cash
ratio, leverage, total assets, liabilities, revenue, ebitda,
operating income. The sample period goes from 1999
until 2014. The total number of �rms is 1150. The
total number of observations is 10,922.

Sample Period 1999-2014

N Firms 1150

N Observations 10,922

Years Per Firm � 9:5

S&P Average Rating 14.53 (�BBB)

EJR Average Rating 14.49 (�BBB-)

IBES Average Rating 2.43 (�Hold)

Investment 5.8%

Cash 6.6%

Leverage 13.9%

Total Assets 4.63B

Liabilities 3.82B

Revenue 1.46B

EBITDA 260M

Operating Income $109M
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Table 3.3: Impact of EJR and S&P Rating Changes on
Equity Analyst Recommendations

The table evaluates the impact of changes in EJR and S&P ratings on
equity analysts�recommendations. The dependent variable �IBESi;t is
de�ned as IBESi;t-IBESi;t�1. In models (1), we regress �IBESi;t on
�EJRi;t�1 and �S&Pi;t�1 as well as lagged rating levels, and year and
industry �xed e¤ects. Model (2) has similar speci�cation to model (1),
but we also incorporate �rm controls such as lagged return on assets, log
of sales, total debt, cash over assets, tangible assets, and lagged changes
in equity analysts�recommendations. Model (3) also incorporates lead
changes in EJR and S&P ratings . ***, ** and * denote signi�cance at
1%, 5% and 10% levels, respectively.

�IBESi;t = IBESi;t-IBESi;t�1
(1) (2) (3) (4)

�EJRi;t�1 -0.0494��� -0.0479��� -0.0479���

(0.0175) (0.0175) (0.0175)

�S&Pi;t�1 -0.0256 -0.0221 -0.0215
(0.0204) (0.0204) (0.0204)

�EJRi;t+1 -0.0260 -0.0267
(0.0176) (0.0176)

�S&Pi;t+1 0.0308 0.0295
(0.0374) (0.0374)

�IBESi;t�1 -0.0681��� -0.0681��� -0.0682���

(0.00552) (0.00552) (0.00552)

ROAi;t�1 -0.0967 -0.0929 -0.0979
(0.0868) (0.0868) (0.0868)

Sizei;t�1 0.00675 0.00664 0.00691
(0.00639) (0.00639) (0.00639)

Debti;t�1 -0.00100� -0.00100� -0.00101�

(0.000568) (0.000568) (0.000568)
Cashi;t�1
Assetsi;t�1

0.0480 0.0485 0.0445

(0.149) (0.149) (0.149)

Tangiblesi;t�1 -0.0204 -0.0203 -0.0202
(0.0426) (0.0426) (0.0426)

N 28946 28946 28946 28946
R2 0.241 0.245 0.245 0.245
Firm Controls No Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
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Table 3.4: Impact of Equity Analysts�and S&P Ratings on
Changes in EJR Ratings

The table evaluates the impact of changes in equity analysts and S&P
ratings on EJR ratings. The dependent variable �EJRi;t is de�ned as
EJRi;t-EJRi;t�1. In models (1), we regress �EJRi;t on �S&Pi;t�1 and
�IBESi;t�1 as well as lagged rating levels, and year and industry �xed
e¤ects. Model (2) has similar speci�cation to model (1), but we also
incorporate �rm controls such as lagged return on assets, log of sales,
total debt, cash over assets, tangible assets, and lagged changes in equity
analysts�recommendations. Model (3) also incorporates lead changes in
IBES and S&P ratings . ***, ** and * denote signi�cance at 1%, 5%
and 10% levels, respectively.

�EJRi;t = EJRi;t-EJRi;t�1
(1) (2) (3) (4)

�IBESi;t�1 0.00137 0.000851 0.000756
(0.00306) (0.00306) (0.00306)

�S&Pi;t�1 0.0128 0.00958 0.00976
(0.0113) (0.0113) (0.0113)

�IBESi;t+1 -0.000839 -0.000863
(0.00291) (0.00291)

�S&Pi;t+1 0.0547��� 0.0547���

(0.0207) (0.0207)

�EJRi;t�1 0.0216�� 0.0212�� 0.0217��

(0.00969) (0.00969) (0.00967)

ROAi;t�1 0.304��� 0.302��� 0.303���

(0.0481) (0.0481) (0.0481)

Sizei;t�1 0.0100��� 0.00987��� 0.00980���

(0.00354) (0.00354) (0.00354)

Debti;t�1 -0.000840��� -0.000833��� -0.000831���

(0.000315) (0.000315) (0.000315)
Cashi;t�1
Assetsi;t�1

0.206�� 0.202�� 0.203��

(0.0827) (0.0827) (0.0827)

Tangiblesi;t�1 0.0107 0.0107 0.0104
(0.0236) (0.0236) (0.0236)

N 28946 28946 28946 28946
R2 0.041 0.043 0.043 0.043
Firm Controls No Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
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Table 3.5: Impact of Equity Analysts�and EJR Ratings on
Changes in S&P Ratings

The table evaluates the impact of changes in equity analysts and EJR
ratings on S&P ratings. The dependent variable �S&Pi;t is de�ned as
S&Pi;t-S&Pi;t�1. In models (1), we regress �S&Pi;t on �EJRi;t�1 and
�IBESi;t�1 as well as lagged rating levels, and year and industry �xed
e¤ects. Model (2) has similar speci�cation to model (1), but we also
incorporate �rm controls such as lagged return on assets, log of sales,
total debt, cash over assets, tangible assets, and lagged changes in equity
analysts�recommendations. Model (3) also incorporates lead changes in
IBES and EJR ratings . ***, ** and * denote signi�cance at 1%, 5%
and 10% levels, respectively.

�S&Pi;t = S&Pi;t-S&Pi;t�1
(1) (2) (3) (4)

�IBESi;t�1 0.00230�� 0.00222�� 0.00219��

(0.000895) (0.000895) (0.000896)

�EJRi;t�1 0.00624�� 0.00633�� 0.00631��

(0.00283) (0.00283) (0.00283)

�IBESi;t+1 -0.000230 -0.000252
(0.000853) (0.000853)

�EJRi;t+1 0.00444 0.00459
(0.00285) (0.00285)

�S&Pi;t�1 -0.00429 -0.00437 -0.00385
(0.00331) (0.00331) (0.00330)

ROAi;t�1 0.0466��� 0.0458��� 0.0473���

(0.0141) (0.0141) (0.0141)

Sizei;t�1 0.00244�� 0.00244�� 0.00240��

(0.00104) (0.00104) (0.00104)

Debti;t�1 -0.0000307 -0.0000298 -0.0000243
(0.0000921) (0.0000921) (0.0000921)

Cashi;t�1
Assetsi;t�1

0.0737��� 0.0733��� 0.0732���

(0.0242) (0.0242) (0.0242)

Tangiblesi;t�1 -0.000936 -0.000956 -0.000819
(0.00691) (0.00691) (0.00691)

N 28946 28946 28946 28946
R2 0.015 0.016 0.016 0.015
Firm Controls No Yes Yes Yes
Year FE Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
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Table 3.6: Impact of Changes in Leverage on Equity Analyst
Recommendations and Credit Rating Changes

The table evaluates the impact of leverage on equity analysts�
recommendations (model 1) and credit ratings (models 2 and
3) in the subsequent quarter. The dependent variable in model
(1) is a change in equity analysts�recommendation �IBESi;t
=IBESi;t-IBESi;t�1. The dependent variables in models (2)
and (3) are �EJRi;t=EJRi;t-EJRi;t�1 and �S&Pi;t=S&Pi;t-
S&Pi;t�1 (respectively). I regress the quarterly changes in
the credit ratings and equity recommendations on lagged
changes in leverage de�ned as �Leveragei;t�1=Leveragei;t�1-
Leveragei;t�2. All regression speci�cations include controls for
lagged leverage, return on assets, net income. cash over assets,
tangible assets, debt, market to book, and sales. I also control
for industry and year �xed e¤ects. Standard error are cluster
by �rm ticker. ***, ** and * denote signi�cance at 1%, 5% and
10% levels, respectively.

(1) (2) (3)
�IBESi;t �EJRi;t �S&Pi;t

�Leveragei;t�1 -0.886�� -0.521�� 0.566
(0.378) (0.256) (0.723)

Leveragei;t�1 0.171�� -0.00799 0.0959
(0.0817) (0.0987) (0.0796)

ROAi;t�1 0.677��� 0.418�� 0.104
(0.220) (0.175) (0.0965)

NetIncomei;t�1 -0.00297 0.0228�� 0.0152�

(0.00970) (0.0114) (0.00773)

CashOverAssetsi;t�1 0.703� 1.628��� 0.203
(0.376) (0.398) (0.165)

Tangiblesi;t�1 0.00712 -0.0427 -0.0946��

(0.0789) (0.0828) (0.0437)

Debti;t�1 0.000739 -0.00222 0.0000543
(0.00110) (0.00164) (0.00131)

MarketToBooki;t�1 -0.0318� 0.0150 0.0283��

(0.0166) (0.0185) (0.0131)

Salesi;t�1 0.0169� -0.00614 -0.0205��

(0.00968) (0.0122) (0.00954)
N 5102 5102 5102
R2 0.023 0.122 0.055
Industry and Year FE Yes Yes Yes
Firm Clustered SE Yes Yes Yes
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Table 3.7: Impact of Rating and Equity Analyst Recommendation
Changes on Corporate Investment

The table evaluates the impact of rating changes on investment. The de-
pendent variable (investment) is de�ned as capital expenditure over assets.
Models (1)-(3) evaluate the impact of changes in ratings on investment sep-
arately for EJR, S&P, and IBES (respectively), while model (4) incorporates
all rating changes as independent variables. Firm controls include leverage,
revenue, cash �ow, as well as rating level coe¢ cients for IBES, EJR, and S&P.
The primary coe¢ cients of interest are on the dummy variables for changes in
the IBES, EJR, and S&P ratings.Standard errors are clustered by �rm ticker.
***, ** and * denote signi�cance at 1%, 5% and 10% levels, respectively.

Investmenti;t=(CapitalExpenditureAssets )i;t
(1) (2) (3) (4)

EJRUpgradei;t�1 0.00454�� 0.00359��

(0.00185) (0.00180)

EJRDowngradei;t�1 -0.00616��� -0.00454���

(0.00146) (0.00157)

S&PUpgradei;t�1 0.00431� 0.00257
(0.00229) (0.00217)

S&PDowngradei;t�1 -0.00743��� -0.00486���

(0.00170) (0.00188)

IBESUpgradei;t�1 0.00252� 0.00168
(0.00132) (0.00131)

IBESDowngradei;t�1 -0.00528��� -0.00434���

(0.00160) (0.00161)

Leveragei;t�1 0.00411 0.00313 0.00221 0.00581
(0.0216) (0.0215) (0.0217) (0.0215)

Revenuei;t�1 0.00127 0.00132 0.00165 0.00123
(0.00200) (0.00199) (0.00199) (0.00200)

Cashi;t�1 -0.0140 -0.0124 -0.0105 -0.0142
(0.0151) (0.0150) (0.0150) (0.0150)

IBESi;t�1 -0.00431��� -0.00443��� -0.00737��� -0.00597���

(0.00115) (0.00116) (0.00156) (0.00158)

S&Pi;t�1 -0.00370��� -0.00311��� -0.00348��� -0.00340���

(0.000788) (0.000787) (0.000771) (0.000823)

EJRi;t�1 0.00338��� 0.00280��� 0.00307��� 0.00310���

(0.000678) (0.000665) (0.000650) (0.000707)
N 8875 8875 8875 8875
R2 0.395 0.395 0.394 0.397
Industry and Year FE Yes Yes Yes Yes
Firm Clustered SE Yes Yes Yes Yes
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Table 3.8: Impact of Upgrade/Downgrade Thresholds on
Corporate Investment

The table evaluates the impact of rating changes on investment. The
dependent variable (investment) is de�ned as capital expenditure over
assets. Models (1)-(3) evaluate the impact of changes in ratings on in-
vestment separately for EJR, S&P, and IBES (respectively), while model
(4) incorporates all rating changes as independent variables. Firm con-
trols include leverage, revenue, cash �ow, as well as rating level coe¢ -
cients for IBES, EJR, and S&P. The primary coe¢ cients of interest are
on the dummy variables for changes in the IBES, EJR, and S&P rat-
ings.Standard errors are clustered by �rm ticker. ***, ** and * denote
signi�cance at 1%, 5% and 10% levels, respectively.

Investmenti;t=(CapitalExpenditureAssets )i;t
(1) (2) (3)

EJRMinus
i;t�1 -0.00183�� -0.00184��

(0.000861) (0.000861)

EJRPlusi;t�1 -0.00183�� -0.00181��

(0.000857) (0.000858)

S&PMinus
i;t�1 0.000870 0.000923

(0.000885) (0.000885)

S&PPlusi;t�1 -0.000474 -0.000382
(0.000890) (0.000891)

Leveragei;t�1 -0.0265��� -0.0258��� -0.0262���

(0.00982) (0.00982) (0.00982)

Revenuei;t�1 -0.00397��� -0.00391��� -0.00397���

(0.00121) (0.00122) (0.00122)

Liabilitiesi;t�1 0.00969 0.00945 0.00955
(0.00649) (0.00649) (0.00649)

Cashi;t�1 0.00670 0.00657 0.00677
(0.00618) (0.00618) (0.00618)

S&Pi;t�1 -0.00107��� -0.00103��� -0.00106���

(0.000254) (0.000254) (0.000254)

EJRi;t�1 0.00162��� 0.00158��� 0.00163���

(0.000222) (0.000221) (0.000222)

N 7022 7022 7022
R2 0.607 0.607 0.607
Industry and Year FE Yes Yes Yes

186



T
ab
le
3.
9:
Im
p
ac
t
of
R
at
in
g
C
h
an
ge
s
on

E
x
ce
ss
R
et
u
rn
s

T
h
e
ta
b
le
ev
al
u
at
es
th
e
im
p
ac
t
of
ra
ti
n
g
ch
an
ge
s
on

ex
ce
ss
eq
u
it
y
re
tu
rn
s.

T
h
e
d
ep
en
d
en
t
va
ri
ab
le
(e
xc
es
s
re
tu
rn
s)
is
d
e�
n
ed

as
R
et
u
rn

i;
t
-S
&
P
50
0 i
;t
.
M
od
el
s
(1
),
(2
)
ev
al
u
at
e
th
e
im
p
ac
t
of
ch
an
ge
s
in
IB
E
S
re
co
m
m
en
d
at
io
n
s
on

eq
u
it
y
ex
ce
ss
re
tu
rn
s.

S
im
il
ar
ly
,
m
od
el
s
(3
),
(4
)
an
d
(5
),
(6
)
ev
al
u
at
e
th
e
im
p
ac
t
of
ch
an
ge
s
in
E
JR

an
d
S
&
P
ra
ti
n
gs
(r
es
p
ec
ti
ve
ly
)
on
eq
u
it
y
ex
ce
ss
re
tu
rn
s.

P
an
el
A
in
cl
u
d
es
d
at
a
fo
r
al
l
�
rm
s
w
h
il
e
P
an
el
B
in
cl
u
d
es
d
at
a
fo
r
�
rm
s
w
it
h
m
ed
ia
n
S
&
P
ra
ti
n
gs
b
el
ow

in
ve
st
m
en
t
gr
ad
e.
M
od
el
s

(1
),
(3
),
(5
)
in
cl
u
d
e
co
nt
ro
ls
fo
r
ra
ti
n
g
le
ve
ls
of
IB
E
S
,
E
JR
,
an
d
S
&
P
.
M
od
el
s
(2
),
(4
),
(6
)
al
so
in
cl
u
d
e
�
rm

co
nt
ro
ls
su
ch
as
le
ve
ra
ge
,

re
tu
rn
on
as
se
ts
,
m
ar
ke
t
to
b
oo
k,
in
ad
d
it
io
n
to
ra
ti
n
g
le
ve
l
co
e¢
ci
en
ts
fo
r
IB
E
S
,
E
JR
,
an
d
S
&
P
.
F
or
ea
ch
re
gr
es
si
on
,
w
e
cr
ea
te
a

ti
m
e
w
in
d
ow

of
[-
60
,+
60
]
d
ay
s
p
ri
or
an
d
fo
ll
ow
in
g
a
ra
ti
n
g
ch
an
ge
s.
T
h
is
ti
m
e
w
in
d
ow

en
su
re
s
th
at
d
u
ri
n
g
th
is
ti
m
e
fr
am
e
on
ly

on
e
of
th
e
ra
ti
n
gs
ch
an
ge
s
w
h
il
e
th
e
ot
h
er
s
re
m
ai
n
ed
co
n
st
an
t.
R
es
u
lt
s
in
th
is
ta
b
le
in
cl
u
d
e
d
at
a
fo
r
al
l
�
rm
s
in
th
e
d
at
a.
S
ta
n
d
ar
d

er
ro
rs
ar
e
cl
u
st
er
ed
by
�
rm

ti
ck
er
.
**
*,
**
an
d
*
d
en
ot
e
si
gn
i�
ca
n
ce
at
1%
,
5%

an
d
10
%
le
ve
ls
,
re
sp
ec
ti
ve
ly
.

P
an
el
A
:
Im
pa
ct
of
R
at
in
g
C
ha
ng
es
on
E
xc
es
s
R
et
ur
n
-
A
ll
F
ir
m
s

D
ep
en
de
nt
V
ar
ia
bl
e:
R
et
u
rn
i;
t-
S
&
P
50
0
i;
t

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

I
B
E
S
D
o
w
n
g
r
a
d
e

i;
t

-0
.0
36
3�
��

-0
.1
64
��

(0
.0
10
6)

(0
.0
70
7)

I
B
E
S
U
p
g
r
a
d
e

i;
t

0.
03
98
��
�

0.
16
7�
�

(0
.0
11
4)

(0
.0
72
4)

E
J
R
D
o
w
n
g
r
a
d
e

i;
t

-0
.0
03
00
��
�

-0
.0
04
11
��
�

(0
.0
00
97
9)

(0
.0
01
38
)

E
J
R
U
p
g
r
a
d
e

i;
t

-0
.0
01
39

-0
.0
00
63
9

(0
.0
01
61
)

(0
.0
02
22
)

S
&
P
D
o
w
n
g
r
a
d
e

i;
t

0.
00
13
0

0.
00
17
4

(0
.0
01
17
)

(0
.0
01
33
)

S
&
P
U
p
g
r
a
d
e

i;
t

-0
.0
01
71

-0
.0
00
85
8

(0
.0
03
34
)

(0
.0
03
00
)

N
13
86

12
65

29
21

28
21

33
10

33
05

R
2

0.
01
5

0.
02
0

0.
01
8

0.
01
7

0.
01
1

0.
01
2

F
ir
m
C
on
tr
ol
s

N
o

Y
es

N
o

Y
es

N
o

Y
es

In
du
st
ry
an
d
Y
ea
r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
ir
m
C
lu
st
er
ed
SE

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

187



P
an
el
B
:
Im
pa
ct
of
R
at
in
g
C
ha
ng
es
on
E
xc
es
s
R
et
ur
n-

F
ir
m
s
w
it
h
M
ed
ia
n
S&
P
R
at
in
g
b
el
ow

In
ve
st
m
en
t
G
ra
de

D
ep
en
de
nt
V
ar
ia
bl
e:
R
et
u
rn
i;
t-
S
&
P
50
0
i;
t

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

I
B
E
S
D
o
w
n
g
r
a
d
e

i;
t

-0
.0
03
28

0.
00
79
1

(0
.0
02
20
)

(0
.0
29
6)

I
B
E
S
U
p
g
r
a
d
e

i;
t

0.
00
41
7

-0
.0
08
53

(0
.0
03
35
)

(0
.0
28
4)

E
J
R
D
o
w
n
g
r
a
d
e

i;
t

-0
.0
04
57
��

-0
.0
15
9�
��

(0
.0
02
06
)

(0
.0
05
28
)

E
J
R
U
p
g
r
a
d
e

i;
t

0.
00
33
0�
�

0.
01
38
��
�

(0
.0
01
45
)

(0
.0
04
76
)

S
&
P
D
o
w
n
g
r
a
d
e

i;
t

0.
00
32
8

0.
00
26
2

(0
.0
02
40
)

(0
.0
02
52
)

S
&
P
U
p
g
r
a
d
e

i;
t

0.
00
02
44

-0
.0
00
35
3

(0
.0
03
64
)

(0
.0
03
61
)

N
50
2

41
9

13
56

13
56

21
12

21
08

R
2

0.
02
3

0.
03
5

0.
02
6

0.
02
8

0.
00
6

0.
00
6

F
ir
m
C
on
tr
ol
s

N
o

Y
es

N
o

Y
es

N
o

Y
es

In
du
st
ry
an
d
Y
ea
r
F
E

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

F
ir
m
C
lu
st
er
ed
SE

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

188



T
ab
le
3.
10
:
B
on
d
M
ar
ke
t
R
es
p
on
se
to
C
re
d
it
R
at
in
g
an
d
R
ec
om

m
en
d
at
io
n
C
h
an
ge
s

P
an
el
s
A
,
B
,
an
d
C
sh
ow

re
su
lt
s
fo
r
O
L
S
re
gr
es
si
on
s
of
L
og
(S
p
re
ad
)
on

ra
ti
n
g
ch
an
ge
s,
u
p
gr
ad
es
an
d
d
ow
n
gr
ad
es
,
fr
om

E
JR

an
d
S
&
P
,
eq
u
it
y
an
al
ys
ts
�
re
co
m
-

m
en
d
at
io
n
s
fr
om

IB
E
S
,�
rm

sp
ec
i�
c
co
nt
ro
ls
an
d
b
on
d
sp
ec
i�
c
co
nt
ro
ls
.
P
an
el
A
in
cl
u
d
es
d
at
a
fo
r
al
l
�
rm
s.
P
an
el
s
B
in
cl
u
d
es
d
at
a
fo
r
�
rm
s
w
it
h
S
&
P
ra
ti
n
gs

b
el
ow

in
ve
st
m
en
t
gr
ad
e,
w
h
il
e
P
an
el
C
in
cl
u
d
es
d
at
a
fo
r
�
rm
s
w
it
h
S
&
P
ra
ti
n
gs
th
at
cr
os
s
th
e
in
ve
st
m
en
t
gr
ad
e.
T
h
e
b
on
d
sp
re
ad

is
d
e�
n
ed
as
th
e
d
i¤
er
en
ce

b
et
w
ee
n
th
e
se
cu
ri
ty
yi
el
d
an
d
th
e
tr
ea
su
ry
yi
el
d
.
S
ec
u
ri
ty
yi
el
d
s
an
d
tr
ea
su
ry
yi
el
d
s
ar
e
m
at
ch
ed
by
m
at
u
ri
ty
an
d
co
u
p
on
s.
F
ir
m
sp
ec
i�
c
co
nt
ro
ls
in
cl
u
d
e:
S
iz
e,

C
as
h
R
at
io
,
T
an
gi
b
il
it
y,
M
ar
ke
t-
to
-B
oo
k
R
at
io
,
P
ro
�
ta
b
il
it
y,
D
eb
t
Is
su
an
ce
,
S
&
P
an
d
E
JR

ra
ti
n
g
le
ve
ls
,
IB
E
S
re
co
m
m
en
d
at
io
n
s.
A
ll
th
e
co
nt
ro
l
va
ri
ab
le
s
ar
e
on
e

p
er
io
d
la
gg
ed
an
d
w
in
so
ri
ze
d
at
th
e
1%

le
ve
l.
R
eg
re
ss
io
n
s
(1
)
an
d
(2
)
sh
ow

th
e
e¤
ec
t
of
E
JR

ra
ti
n
g
ch
an
ge
s
on
th
e
b
on
d
sp
re
ad
.
R
eg
re
ss
io
n
s
(3
)
an
d
(4
)
sh
ow

th
e
e¤
ec
t
of
IB
E
S
eq
u
it
y
re
co
m
m
en
d
at
io
n
s
on
th
e
b
on
d
sp
re
ad
.
R
eg
re
ss
io
n
s
(5
)
an
d
(6
)
sh
ow

th
e
e¤
ec
t
of
S
&
P
ra
ti
n
g
ch
an
ge
s
on
th
e
b
on
d
sp
re
ad
.
R
eg
re
ss
io
n
s

(7
)
an
d
(8
)
sh
ow

th
e
e¤
ec
t
of
al
l
th
e
ra
ti
n
g
ch
an
ge
s
an
d
eq
u
it
y
re
co
m
m
en
d
at
io
n
s
on
th
e
b
on
d
sp
re
ad
.
R
eg
re
ss
io
n
s
(2
),
(4
),
(6
)
an
d
(8
)
ad
d
�
rm

an
d
b
on
d
sp
ec
i�
c

co
nt
ro
ls
.
R
eg
re
ss
io
n
s
(1
)-
(8
)
ac
co
u
nt
fo
r
ye
ar
an
d
in
d
u
st
ry
�
xe
d
e¤
et
s.
T
h
e
re
su
lt
s
re
fe
r
to
th
e
en
ti
re
sa
m
p
le
.
**
*,
**
an
d
*
d
en
ot
e
si
gn
i�
ca
n
ce
at
1%
,
5%

an
d

10
%
le
ve
ls
,
re
sp
ec
ti
ve
ly
.

P
an
el
A
:
A
ll
F
ir
m
s

D
ep
en
de
nt
V
ar
ia
bl
e:
L
og
(S
pr
ea
d)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

E
J
R
U
p
g
r
a
d
e

i;
t

-0
.0
27
0*
**

-0
.0
28
7*
**

-0
.0
32
0*
**

-0
.0
34
9*
**

(0
.0
09
60
)

(0
.0
10
7)

(0
.0
11
3)

(0
.0
12
6)

E
J
R
D
o
w
n
g
r
a
d
e

i;
t

0.
15
0*
*

0.
15
4*
*

0.
15
2*
*

0.
15
3*
*

(0
.0
64
2)

(0
.0
63
1)

(0
.0
77
2)

(0
.0
74
7)

I
B
E
S
U
p
g
r
a
d
e

i;
t

0.
00
48
8

0.
00
73
5

-0
.0
03
00

-0
.0
00
59
8

(0
.0
07
24
)

(0
.0
06
52
)

(0
.0
07
27
)

(0
.0
07
72
)

I
B
E
S
D
o
w
n
g
r
a
d
e

i;
t

0.
01
62

0.
02
19
**
*

0.
01
42

0.
02
03
**

(0
.0
10
1)

(0
.0
08
43
)

(0
.0
09
91
)

(0
.0
08
64
)

S
&
P
U
p
g
r
a
d
e

i;
t

0.
02
53

0.
01
30

0.
02
50

0.
01
18

(0
.0
22
1)

(0
.0
23
7)

(0
.0
24
1)

(0
.0
25
7)

S
&
P
D
o
w
n
g
r
a
d
e

i;
t

0.
06
77
**
*

0.
07
64
**
*

-0
.0
12
9

-0
.0
05
18

(0
.0
15
5)

(0
.0
16
9)

(0
.0
57
0)

(0
.0
51
2)

N
29
97
7

29
97
7

29
97
7

29
97
7

29
97
7

29
97
7

29
97
7

29
97
7

R
2

0.
62
6

0.
64
2

0.
62
2

0.
63
8

0.
62
2

0.
63
8

0.
62
6

0.
64
2

F
ir
m
C
on
tr
ol
s

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

Y
ea
r
an
d
In
du
st
ry
F
E

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

189



P
an
el
B
:
F
ir
m
s
w
it
h
S&
P
R
at
in
gs
B
el
ow

In
ve
st
m
en
t
G
ra
de

D
ep
en
de
nt
V
ar
ia
bl
e:
L
og
(S
pr
ea
d)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

E
J
R
U
p
g
r
a
d
e

i;
t

-0
.0
29
3*

-0
.0
28
6*

-0
.0
28
1

-0
.0
28
4*

(0
.0
16
8)

(0
.0
16
0)

(0
.0
17
2)

(0
.0
16
4)

E
J
R
D
o
w
n
g
r
a
d
e

i;
t

0.
06
83
**
*

0.
07
04
**
*

0.
05
47
**
*

0.
05
47
**
*

(0
.0
21
0)

(0
.0
21
1)

(0
.0
20
7)

(0
.0
20
6)

I
B
E
S
U
p
g
r
a
d
e

i;
t

0.
01
48

0.
01
65

0.
01
21

0.
01
40

(0
.0
13
1)

(0
.0
12
7)

(0
.0
13
0)

(0
.0
12
7)

I
B
E
S
D
o
w
n
g
r
a
d
e

i;
t

0.
00
37
6

0.
01
21

0.
00
24
8

0.
01
11

(0
.0
10
6)

(0
.0
10
1)

(0
.0
10
5)

(0
.0
09
91
)

S
&
P
U
p
g
r
a
d
e

i;
t

-0
.0
27
0

-0
.0
31
8

-0
.0
26
2

-0
.0
32
7

(0
.0
22
1)

(0
.0
21
3)

(0
.0
23
4)

(0
.0
22
8)

S
&
P
D
o
w
n
g
r
a
d
e

i;
t

0.
10
0*
**

0.
10
5*
**

0.
07
70
**
*

0.
08
10
**
*

(0
.0
27
9)

(0
.0
27
3)

(0
.0
27
0)

(0
.0
25
8)

N
83
98

83
98

83
98

83
98

83
98

83
98

83
98

83
98

R
2

0.
62
0

0.
62
9

0.
61
9

0.
62
8

0.
62
0

0.
62
9

0.
62
0

0.
63
0

F
ir
m
C
on
tr
ol
s

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

Y
ea
r
an
d
In
du
st
ry
F
E

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

P
an
el
C
:
F
ir
m
s
w
it
h
S&
P
R
at
in
gs
th
at
C
ro
ss
th
e
In
ve
st
m
en
t
G
ra
de

D
ep
en
de
nt
V
ar
ia
bl
e:
L
og
(S
pr
ea
d)

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

E
J
R
U
p
g
r
a
d
e

i;
t

-0
.0
36
9*
*

-0
.0
30
5*
*

-0
.0
35
7*
*

-0
.0
30
8*
*

(0
.0
15
5)

(0
.0
15
3)

(0
.0
15
7)

(0
.0
15
5)

E
J
R
D
o
w
n
g
r
a
d
e

i;
t

0.
07
09
**
*

0.
07
89
**
*

0.
06
46
**
*

0.
07
22
**
*

(0
.0
18
6)

(0
.0
18
2)

(0
.0
18
3)

(0
.0
17
9)

I
B
E
S
U
p
g
r
a
d
e

i;
t

0.
00
39
0

0.
01
16

0.
00
10
2

0.
00
86
9

(0
.0
12
5)

(0
.0
12
0)

(0
.0
12
4)

(0
.0
11
9)

I
B
E
S
D
o
w
n
g
r
a
d
e

i;
t

0.
00
14
8

0.
01
50

0.
00
05
60

0.
01
38

(0
.0
10
2)

(0
.0
09
86
)

(0
.0
10
4)

(0
.0
09
95
)

S
&
P
U
p
g
r
a
d
e

i;
t

-0
.0
20
6

-0
.0
25
4

-0
.0
15
1

-0
.0
24
3

(0
.0
20
1)

(0
.0
19
1)

(0
.0
21
1)

(0
.0
20
6)

S
&
P
D
o
w
n
g
r
a
d
e

i;
t

0.
06
44
**
*

0.
05
97
**

0.
03
76
*

0.
02
85

(0
.0
23
7)

(0
.0
23
3)

(0
.0
22
4)

(0
.0
22
3)

N
11
53
0

11
53
0

11
53
0

11
53
0

11
53
0

11
53
0

11
53
0

11
53
0

R
2

0.
63
6

0.
65
0

0.
63
5

0.
64
9

0.
63
5

0.
64
9

0.
63
6

0.
65
0

F
ir
m
C
on
tr
ol
s

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

Y
ea
r
an
d
In
du
st
ry
F
E

N
o

Y
es

N
o

Y
es

N
o

Y
es

N
o

Y
es

190


