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The results in this dissertation are on the intersection behavior of certain spe-

cial cycles on GSpin(n, 2) Shimura varieties for n ≥ 1. In particular, we will

determine when the intersection of the special cycles defined by a collection of

special endomorphisms consists of isolated points in terms of the fundamental

matrix of this collection. These generalize the corresponding results in the lower

dimensional cases proved by Kudla and Rapoport.
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1 Introduction

Illustrated by the works of Gross-Zagier [6], Hirzebruch-Zagier [7], Gross-Keating

[5] and Kudla-Millson [16], there are relations between certain arithmetic cycles

on Shimura varieties and Fourier coefficients of modular forms and special values

of L-functions. Motivated by these results Kudla formulated a program [15, 14]

generalizing such relations between specific classes of arithmetic cycles on Shimura

varieties and derivatives of incoherent Siegel-Eisenstein series at their central point

and Rankin-Selberg L-functions.

Special cases of these relations have been proved. In [20] Kudla-Rapoport-

Yang prove these relations for the intersections of cycles of CM points on Shimura

curves and Siegel Eisenstein series of genus 2 and weight 3/2. Here Shimura curve

can be viewed as a GSpin Shimura variety of signature (1, 2) and the CM points

can be viewed as arising from embeddings GSpin(0, 2) → GSpin(1, 2). Similarly,

in [17] Kudla and Rapoport study the triple intersections of cycles on a GSpin(2, 2)

Shimura variety arising from embeddings GSpin(1, 2) → GSpin(2, 2), and relate

the intersection multiplicities at isolated points to the Fourier coefficients of Siegel

Eisenstein series of genus 3. In [18], the same authors study the intersections

of cycles on GSpin(3, 2) Shimura variety arising from embeddings GSpin(2, 2) →

GSpin(3, 2), and relate the intersection numbers at the isolated points to a Siegel

Eisenstein series of genus 4. Finally more recent work of Kudla and Rapoport

[12, 13], considers the n-fold intersections of divisors on GU(n − 1, 1) Shimura

varieties arising from embeddings GU(n− 2, 1)→ GU(n− 1, 1) and relating these

intersections to Fourier coefficients of Eisenstein series on U(n, n).

The Shimura varieties in all the works mentioned above have ‘nice’ moduli in-

terpretations, meaning they can be given as moduli spaces of abelian varieties with

extra structures such as, endomorphism, polarization and level structures. The

GU(n − 1, 1) Shimura varieties are of PEL type and in the cases of GSpin(2, 2)

and GSpin(3, 2), there are exceptional isomorphisms which can be used to iden-

tify the Shimura varieties with Hilbert-Blumenthal surfaces and Siegel threefolds,
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respectively. Other than exceptional cases, for general n this interpretation of the

GSpin(n, 2) Shimura varieties as moduli spaces of abelian varieties breaks down.

One of the main advantages of having a ‘nice’ moduli interpretation is that in these

cases the integral models of the Shimura varieties are well understood [11]. An-

other advantage of having a PEL Shimura variety is that the local analogue of the

Shimura variety as a formal moduli space of p-divisible groups, the Rapoport-Zink

spaces, is well understood [23]. The relation between local and global situations

is given by the uniformization of the supersingular locus by the Rapoport-Zink

space. For general n the integral model of the Shimura variety is constructed sep-

arately by Kisin [10] and Vasiu [26]. The Rapoport-Zink space for these Shimura

varieties are constructed separately by Howard-Pappas [8] and Kim [9]. We will

briefly recall these constructions in the following sections. Now we will describe

the content of this thesis in more detail.

In chapter 2 we will recall the basic definitions and facts on formal schemes,

p-divisible groups and moduli spaces of p-divisible groups, Rapoport-Zink spaces.

In chapter 3, we start with summarizing the results of [10] on the integral

model of the Shimura varieties of Hodge type. Then we will define the GSpin

Shimura variety. Let (V,Q) be a quadratic space over Q of signature (n − 2, 2)

with n ≥ 3. The Spinor similitude group G = GSpin(V ) is a reductive group over

Q. Let D be the space of negative definite oriented 2-planes in VR. Then the pair

(G,D) is a Shimura datum. Let L ⊂ V be a maximal lattice (i.e. [L,L] ⊂ Z and

is maximal among such lattices) that is self-dual at Z(p). Throughout the prime

p will be assumed to be > 2. Let L(p) = LZ(p)
and G(p) = GSpin(L(p)). Then G is

the generic fiber of G(p). We denote both groups by G. Set K = KpK
p ⊂ G(Af )

where Kp = G(Zp) ⊂ G(Qp) and Kp ⊂ G(Ap
f ) is a sufficently small compact

open subgroup. Thus Kp is hyperspecial. We get an associated Shimura variety

with canonical model M over Q. The Shimura variety M is of Hodge type and

in [10] Kisin shows that there is a smooth integral model M = M(p) over Z(p).
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By construction of M(p), the Kuga-Satake abelian scheme over M extends to a

polarized abelian scheme A→M(p).

Now I will explain the notion of special endomorphisms, see [21, 1] for details.

Let H(p) = C(L(p)) viewed as a Z(p)-representation of G via left multiplication.

Associated to H(p), there is a Z(p)-local system HB on M(C). Similarly there is

a Z(p)-local system VB on M(C) associated to L(p). These induce vector bundles

with filtrations HdR and VdR on M(C) and these descend over the canonical model

M . The Q`-local systems HB⊗Q` and VB⊗Q` over M(C) have descends over M .

Similarly the Zp-local systems HB ⊗ Zp and VB ⊗ Zp on M(C) descend over M .

The sheaves H`,V` for ` 6= p and HdR,VdR extend over the integral modelM(p).

Finally associated to the Z(p)-representations of G, there are F -crystals Hcris and

Vcris over the special fiberMFp . The sheaves H? recovers the relative cohomology

of the universal abelian scheme A over M(p).

The action of L(p) on H(p) by left multiplication induces embeddings on coho-

mological realizations

V• ⊂ EndC(L)(H•)

where • = B, `, dR, cris. The sheaves H• have interpretations in terms of the

cohomology of the Kuga-Satake abelian scheme: B for Betti homology, dR for

first relative de Rham homology, ` for first relative etale homology and cris for

the first relative crystalline homology of A. Now for any M(p)-scheme S, an

endomorphism f ∈ End(AS)(p) is called special if all of its homological realizations

lie in the image of the above embedding. Write V (AS) ⊂ End(AS)(p) for the space

of special endomorphisms. If s is a geometric point of M(p) valued in a field

of characteristic p, then x ∈ End(As)(p) is special if and only if the crystalline

realization xcris lies in Vcris,s. For each x ∈ V (AS) we have x ◦ x = Q(x) · idAS for

some Q(x) ∈ Z(p). The map x 7→ Q(x) is a positive definite Z(p)-valued quadratic

form on V (AS). For details of this definition see chapter 3.2.

For m ∈ Q, define the special cycle Z(m)→M(p) as the stack overM(p) with
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functor of points

Z(m)(S) = {x ∈ V (AS) : Q(x) = m, }

for any scheme S →M(p). The special cycle is empty unless m ∈ Z(p) and positive.

Similarly for T ∈ Symk(Z(p)) with det(T ) 6= 0, the special cycle Z(T ) →M(p) is

defined as the stack over M(p) with functor of points

Z(T )(S) = {(x1, . . . , xk) ∈ V (AS)k : Q(x) = T ηp ◦ xi ◦ (ηp)−1 ∈ L⊗ Ẑ(p)}.

for each M(p)-scheme S. Here ηp : V p(AS)
∼−→ C(Ap

f ) is the Kp-level structure

induced from the level structure on the universal abelian scheme over the Siegel

Shimura variety Ag.

Similar to the results of [17, 18], we proved the following

Theorem 1.1. If k = n−1 and T is nonsingular positive definite, then the special

cycle Z(T ) lies over the supersingular locus in the special fiberMFp. In particular,

the generic fiber of Z(T ) is empty.

This suggests that we can use the uniformization of the supersingular locus

via the Rapoport-Zink space constructed by Howard-Pappas [8], in order to re-

late these special cycles to the local cycles that will be defined on the associated

Rapoport-Zink space.

In chapter 4, we define the special cycles on the Rapoport-Zink space and

prove our main results on their dimensions. Let RZ be the Rapoport-Zink space

associated to a supersingular point in the GSpin Shimura variety. Let k = Fp,

W = W (k) be the Witt vectors and K = W [1/p]. The space of special quasi-

endomorphisms is a Qp-quadratic space V ′ of the same dimension and determinant

as VQp but different Hasse invariant. We have V ′ ⊂ End(X0)Q where X0 is the base

point which is used to define the Rapoport-Zink space. The vertex lattices are

certain Zp-lattices Λ ⊂ V ′. In [8], these lattices parametrize certain closed formal

subschemes RZΛ of the Rapoport-Zink space RZ. For a special endomorphism

j ∈ V ′ we define the special cycle Z(j) associated to j to be the closed formal
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subscheme of RZ consisting of all points (X, ρ) such that

ρ ◦ j ◦ ρ−1 ∈ End(X).

If (j1, . . . , jn−1) ∈ (V ′)n−1 then Z(J) is defined similarly, where J is the Zp-span

in V ′ of the endomorphisms {j1, . . . , jn−1}. Here Z(J) is the intersection of the

cycles Z(j1), . . . , Z(jn−1). The fundamental matrix is defined as T = Q(J) ∈

Symn−1(Zp). By the structure of the quadratic space V ′, the rank of the reduc-

tion of T modulo p can not be n − 1, see Proposition 4.4. Our main results

are determining the dimension of the intersection Z(J)red in terms of this matrix

T where Z(J)red is the underlying reduced scheme of Z(J). The key observation

proving these results is writing these special cycles as a union of closed formal sub-

schemes RZΛ which are well understood by [8]. We will always assume that Z(J)

is nonempty. Our results depends on parity of n and the determinant det(VQp)

and there are three cases. The reason for these different cases is that in each

of these cases the dimension of the irreducible components of the Rapoport-Zink

space is different. Throughout all the determinants of quadratic spaces are taken

to be modulo squares.

Theorem 1.2. Let n be even and det(VQp) 6= (−1)n/2. Let m = rank(T̄ ) and

dT = det(T̄ /Rad(T̄ )) where T̄ is reduction of T modulo p. Then

(i) If m = 0, then Z(J)red is n−2
2

dimensional.

(ii) If m is n− 2 or n− 3, then Z(J)red is 0-dimensional.

(iii) Suppose 1 ≤ m ≤ n− 4. Then

(a) If m is odd, then dimZ(J)red = n−m−3
2

(b) If m is even, then

dimZ(J)red =


n−m−2

2
if dT = (−1)m/2

n−m−2
2
− 1 if dT 6= (−1)m/2
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In particular, when m = n− 4 we have

dimZ(J)red =


1 if dT = (−1)n/2

0 if dT 6= (−1)n/2

This gives us explicit conditions on the fundamental matrix T so that Z(J)red is

zero dimensional.

In the other cases, similar to the above theorem, we have

Theorem 1.3. Let n be even and det(VQp) = (−1)n/2. Let m = rank(T̄ ) and

dT = det(T̄ /Rad(T̄ )) where T̄ is reduction of T modulo p. Then

(i) If m = 0, then Z(J)red is n−4
2

dimensional.

(ii) If m is n− 2 or n− 3, then Z(J)red is 0 dimensional.

(iii) Suppose 1 ≤ m ≤ n− 4. Then

(a) If m is odd, then dimZ(J)red = n−m−1
2
− 1.

(b) If m is even, then

dimZ(J)red =


n−m−2

2
if dT 6= (−1)m/2

n−m−2
2
− 1 if dT = (−1)m/2

These two theorems cover the cases when n is even. For odd n, we have the

following theorem

Theorem 1.4. Let n be odd and m = rank(T̄ ). Let dT = det(T̄ /Rad(T̄ )). Then

(i) If m = 0, then Z(J)red is n−3
2

dimensional.

(ii) If m is n− 2 or n− 3, then Z(J)red is 0 dimensional.

(iii) Suppose 1 ≤ m ≤ n− 4. Then

(a) If m is even, then dimZ(J)red = n−m−3
2

.
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(b) If m is odd, then

dimZ(J)red =


n−m−2

2
if dT 6= ε(−1)

m+4−n
2

n−m−2
2
− 1 otherwise

where ε ∈ {±1} is the modulo p square class of det(VQp).

The above results tell us exactly when the special cycles Z(J) are 0-dimensional

generalizing the results [17, Theorem 6.1] and [18, Corollary 5.15]. The above

theorems form a crucial part of a general program mentioned in the introduction.

The main goal of this program for GSpin Shimura varieties is to obtain a relation

between the degrees of the special cycles and Fourier coefficients of Eisenstein

series. As noted before our results tell us explicitly when the intersection of special

cycles consists of isolated points which provides a step towards this goal.

Furthermore the above results completely determine the degenerate intersec-

tions where the dimension of the intersection is not zero. One can try to follow the

program mentioned above for the degenerate intersections. In this case the inter-

section multiplicities are defined by using derived tensor products. For signature

(2, 2) case, this is done by Terstiege [25]. They generalize the results in [17] to

the case where the intersection of special cycles are one dimensional. The above

theorems show that for general n these degenerate intersections can be higher

dimensional.

7



2 Moduli spaces of p-divisible groups

2.1 Formal Schemes

In this section we briefly recall some preliminary facts about formal schemes. The

references for formal schemes are [4, 2].

Schemes are locally ringed spaces which are locally affine. We will define formal

schemes similarly to be locally ringed spaces built from ‘affine pieces’. In order to

define what these ‘affine pieces’ are, we need the notion of adic rings.

A ring R with a topology is called a topological ring if the multiplication and

addition defined by continuous maps. Given any ring R and an ideal a ⊂ R, we

can consider the topology defined by the ideals an, n ∈ N viewed as a basis of

neighborhoods of 0 ∈ R. Hence in this topology U ⊂ R is open if every element

x ∈ U is contained in an open subset of R contained in U , i.e. there exists n such

that x + an ⊂ U for some n. This topology on R is called a-adic topology and

the ideal a is called an ideal of definition. An adic ring R is a topological ring R

whose topology is a-adic topology for some ideal a ⊂ R.

Given an adic ring R with an ideal of definition a. Then the separated com-

pletion R̂ of R is defined as

R̂ = lim←−R/a
n

We say that R is complete with respect to the a-adic topology if the canonical

map

R→ lim←−R/a
n

is an isomorphism. If a is a finitely generated ideal, then the topology on R̂ is the

same as aR̂-adic topology.

Let A be a complete and separated adic ring with an ideal of definition a ⊂ A.

Define Spf A to be the set of open prime ideals of A. If p ⊂ A is an open prime

ideal, then by definition of the a-adic topology, an ⊂ p for some n and since p is
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prime, we have a ⊂ p. This shows that as a set Spf A is identified with the closed

subset Spec A/a ⊂ Spec A. This does not depend on the choice of an ideal of

definition. Thus Spf A admits the Zariski topology induced from Spec A. Now

we will describe a sheaf of topological rings on Spf A. For any f ∈ A, define an

open subset D(f) of Spf A as,

D(f) = {p ∈ Spf A : f /∈ p}

in other words, viewing f as a function on Spf A, D(f) is the locus on which

f does not vanish. Note that D(f) is the intersection of the basic open subset

of Spec A defined by f and Spf A, hence it is open with respect to the induced

topology. Consider the presheaf O

O(D(f)) = lim←−(A/an[f−1])

The presheafO is in fact a sheaf with respect to the basis consisting of open subsets

of the form D(f) ⊂ Spf A. Now let U ⊂ Spf A be an arbitrary Zariski open subset

and consider an open cover U = ∪iD(fi) by basic open subsets. Consider for each

n the exact sequence

OSpec A/an(U)→
∏
i

A/an[f−1
i ]⇒

∏
i,j

A/an[(fifj)
−1]

and take the projective limit over n to get an exact sequence

O(U)→
∏
i

lim←−(A/an[f−1
i ])⇒

∏
i,j

lim←−(A/an[(fifj)
−1])

Hence O is defined as lim←−OSpec A/an . Thus we have defined a sheaf of topological

rings O on Spf A. This also shows that as a locally topologically ringed space,

Spf A is the direct limit

lim−→ Spec A/an = (lim−→ Spec A/an, lim←−OSpec A/an)
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Definition 2.1. Let A be an adic ring with an ideal of definition a. Then the

locally ringed space (X,OX) = (Spf A,O) is called an affine formal scheme.

Remark 2.2. Consider an open subset D(f) ⊂ Spf A. Since the completion

lim←−(A/an[f−1]) is not necessarily an adic ring, there is a problem with viewing

the locally ringed space (U,O|U) as the affine formal scheme Spf lim←−(A/an[f−1]).

We can overcome this issue by considering admissible rings in place of adic rings.

This problem does not occur if A has an ideal of definition which is finitely gen-

erated.

Definition 2.3. A locally topologically ringed space (X,OX) is called a formal

scheme if for each point x ∈ X there is an open neighborhood U of x such that

(U,OX |U) is isomorphic to an affine formal scheme Spf A.

The most important example of formal schemes is the formal completion of a

scheme along a closed subscheme. Now we will explain this. Let X be a scheme

and Y ⊂ X be a closed subscheme with ideal sheaf I ⊂ OX . Each OX/In restricts

to a sheaf on Y and hence we can consider the projective limit lim←−OX/I
n on Y .

This makes (Y, lim←−OX/I
n) into a formal scheme (X̂)/Y called formal completion

of X along Y . Locally it looks as follows: Let X = Spec A and assume that Y is

defined by an ideal a ⊂ A. Then

(Y, lim←−OX/I
n) = Spf (lim←−A/a

n) = Spf Â

Example 2.4. Let X be a scheme. Take Y = X. Then (X̂)/Y = X and so the

category of schemes is a full subcategory of the category of formal schemes.

Example 2.5. Let Y = x ∈ X be a closed point. Then (X̂)/Y is the one point

space {x} with the structure sheaf ÔX,x, or with the above notation Spf ÔX,x.

Intiutively, this is the point x together with all the ‘differential data’ at x.

Example 2.6. As a special case of the previous example, let X = Spec Z and take

x = (p) ∈ X. Then (X̂)/Y is Spf Zp.
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Now we will define the notion of the underlying reduced scheme of a formal

scheme. First consider an formal affine scheme Spf A for an adic ring A with an

ideal of definition a. Then the ideal of topologically nilpotent elements A◦◦ is

simply
√
a and the scheme Spec A/A◦◦ is a reduced scheme. In general, if X is a

formal scheme, define the ideal sheaf Ired ⊂ OX as follows: for afiine open formal

subscheme Spf A ⊂ X,

Ired(Spf A) = A◦◦

Then the locally ringed space (X,OX/Ired) is a reduced scheme denoted as Xred.

There is a natural morphism Xred → X. The association X 7→ Xred is functorial:

if f : X → Y is a morphism of formal schemes, then there is an induced morphism

f red : Xred → Y red.

Example 2.7. Let X be a scheme and Y be an reduced closed subscheme. Let us

denote (X̂/Y ) by X . Then X red = Y . For each n ≥ 1, consider the scheme

Xn = (X ,OX/(Ired)n)

and so Xn is an infinitesimal thickening of X red = Y and set X0 = X red = Y .

Then X = lim−→Xn in the category of locally topologically ringed spaces. This way

X can be viewed as Y together with the infinitesimal thickenings of Y .
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2.2 p-divisible groups

In this section we will briefly recall the definition and basic properties of p-divisible

groups. References for these are [3, 24, 22]

We will define p-divisible groups as directed systems of locally free group

schemes. The appropriate category they live in is the category of fppf sheaves

of groups. Fix a prime number p and let S be a scheme. All schemes over S will

be identified with the corresponding fppf sheaf. By S-group we will mean an fppf

sheaf of groups on the site Sch(S).

Definition 2.8. A p-divisible group over S is an S-group X satisfying

1. The morphism p : X → X is an epimorphism, i.e. X is p-divisible

2. X = lim−→X(n), where X(n) = ker(pn : X → X), i.e. X is p-power torsion

3. Each X(n) is a finite locally free group scheme over S.

If S = Spec R for some commutative ring, then a locally free group scheme of

rank m over S is of the form Spec A for some locally free algebra A of rank m

over R.

There is an equivalent definition given by Tate.

Definition 2.9. A p-divisible group over S is an inductive system {Xn} of finite

locally free group schemes over S satisfying

1. For each n, we have the following exact sequence

0→ Xn → Xn+1
pn−→ Xn+1

2. There is a locally constant function h on S such that the rank of Xn is pnh.

The function h is called the height of X.

Given a p-divisible group {Xn} as in Tate’s definition, inductive limit X =

lim−→Xn defines a p-divisible group as in definition 2.8.
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The morphisms between p-divisible groups are simply morphisms of fppf sheaves.

In terms of Tate’s definition, a morphism f : X → Y is given by a compatible

family f = {fn : Xn → Yn}.

Given a finite locally free group schemeG over S, we have a Cartier dual defined

as the group schemeG∨ over S, representing the functorG∨(T ) = HomT (GT ,GmT ).

Now given a p-divisible group Xn, the morphisms p : Xn+1 → Xn induces dual

morphisms p∨ : X∨n → X∨n+1 and these morphisms yield an inductive system {X∨n }

which defines a p-divisible group X∨ called the Cartier dual of X. Thus G 7→ G∨

gives a duality in the category of p-divisible groups.

Examples 2.10. (1) Consider the constant group schemes Gn = 1
pn
Z/Z. Then

G = lim−→Gn = Qp/Zp is a p-divisible group of height 1.

(2) Consider Gnµpn = Gm[pn]. Then G = lim−→Gn = µp∞ is a p-divisible group

of height 1.

(3) Let A/S be an abelian scheme of relative dimension g and Gn = A[pn].

Then Gn is a finite group scheme of order p2gn and

G = lim−→Gn = A[p∞]

is a p-divisible group of height 2g.

A morphism of p-divisible groups is called an isogeny if it is an epimorphism

with finite kernel. A quasi-isogeny ρ : G → G′ of p-divisible groups is defined to

be a global section of the Zariski sheaf HomS(G,G′)⊗ZQ such that, Zariski locally

pnρ is an isogeny for some n. Denote the set of quasi-isogenies over S between

G and G′ by QisgS(G,G′). There is the following rigidity property. Let S be a

scheme on which p is locally nilpotent and S ′ ⊂ S be a closed subscheme defined

by a locally nilpotent ideal sheaf. Then the natural map obtained by pullbacks

QisgS(G,G′)→ QisgS′(G,G
′) (2.2.1)

is bijective. We will refer this as the ’rigidity property’. We will need the following
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result later.

Proposition 2.11. [23, Proposition 2.9] Let f : G → G′ be a quasi-isogeny of

p-divisible groups over a scheme S. Then the functor F : Sch/S → Sets defined

as

F (T ) = {ϕ : T → S | ϕ∗f is an isogeny}

is represented by a closed subscheme of S.

2.3 Rapoport-Zink Spaces

In this section we will briefly recall the definitions and facts on Rapoport-Zink

spaces following [23].

Fix a prime p. Let k = Fp and W = W (k) be the Witt ring over k. Let K0 be

the fraction field of W and σ be the Frobenius automorphism on W which also

induces a Frobenius on K0. Let O be a complete DVR of mixed characteristic

(0, p) and NilpO be the category of locally noetherian schemes S over O such that

p is locally nilpotent. Define S = S ×Spec O Spec O/pO.

Let X0 be a fixed p-divisible group over k and consider the moduli problem

RZ(X0) on NilpW assigning to each S ∈ NilpW , the pairs (X, ρ) where

• X is a p-divisible group over S,

• ρ : X0 ×k S → X ×S S is a quasi-isogeny.

Two pairs (X, ρ) and (X ′, ρ′) over S are identified if the quasi-isogeny ρ ◦ ρ′−1 :

X ′ ×S S → X ×S S lifts to an isomorphism X ′ → X.

Theorem 2.12. [23, Theorem 2.16] The functor M is represented by a locally

formally of finite type formal scheme over Spf W

An alternative definition of the above moduli problem can be given as follows:

First by Grothendieck-Messing theory the deformation functor Def(X0/W ) is for-

mally smooth and so one can choose a lift X̃0 of X0 over W . And by rigidity a
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quasi-isogeny of the form ρ : X0×kS = X̃0S×SS → X×SS lifts to a quasi-isogeny

ρ̃ : X̃0S → X. Thus an S-point of M can be given by (X, ρ̃)

• X is a p-divisible group over S,

• ρ̃ : X̃0S → X is a quasi-isogeny.

Similarly, if X0 has a principal polarization λ0 : X0
∼−→ X∨0 , consider the moduli

problem RZ(X0, λ0) on NilpW assigning to each S, isomorphism classes of triples

(X,λ, ρ) where

• X is a p-divisible group over S,

• λ : X
∼−→ X∨ is a principal polarization,

• ρ̃ : X̃0S → X is a quasi-isogeny such that, Zariski locally on S, ρ∨◦λ◦ρ = cλ0

where c ∈ Q×p , i.e. ρ respects polarizations up to a scalar.

By [23], this functor is representable by a locally formally of finite type for-

mal scheme over Spf W . Forgetting the polarization gives a closed embedding

RZ(X0, λ0)→ RZ(X0).

Examples 2.13. (1) Let X0 be a p-divisible group over k of dimension 1 and height

h. Assume that the isocrystal of X0 is isoclinic of slope 1/h. Then

RZ(X0) '
⊔
n∈Z

Spf W [[T1, . . . , Th−1]]

For a proof of this, see [23, Proposition 3.79].

(2) Now consider the case X0 = µnp∞ × (Qp/Zp)n then

RZ(X0) '
⊔

(GLn(Qp)/GLn(Zp))2

Spf W [[T11, . . . , Tnn]]

For a proof of this, see [23, Proposition 3.81].
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3 Special Cycles on GSpin Shimura varieties

3.1 Hodge Type Shimura Varieties

In this section we will give a review of the Shimura varieties of Hodge type following

[10].

Fix a Q-vector space V equipped with a symplectic form ψ : V × V → Q.

Let G = GSp(V, ψ) be the group of symplectic similitudes. Let S± be the Siegel

double space defined as the set of maps h : S→ GR satisfying

• The C× action on VR induced by R-points of h gives a Hodge structure

VC
∼−→ V −1,0 ⊕ V 0,−1

• The pairing (u, v) 7→ ψ(u, h(i)v) is positive or negative definite on VR.

The pair (G,S±) is a Shimura datum with reflex field Q. We will assume that

there exists a Z-lattice VZ ⊂ V such that VZ(p)
self dual with respect to ψ. Thus

G admits a reductive model over Z(p), which we will denote by G again. Let

U = UpU
p ⊂ G(Af ) be a compact open subgroup such that Up = G(Zp) is

hyperspecial and Up ⊂ G(Ap
f ) is sufficiently small. Now we will describe the

integral model over Z(p) of the Shimura variety ShU(G,S±). Given a Z(p)-scheme

S and an abelian scheme A over S, define an etale local system on S as

T p(A) = lim←−
p.n

A[n]

and set V p(A) = T p(A)⊗Q. Now consider the category of abelian schemes over S

up to prime to p isogeny. The objects of this category are abelian schemes over S

and the morphisms between two objects A and B are HomS(A,B)⊗Z(p). A weak

polarization on A is an equivalence class of prime to p isogenies λ : A
∼−→ A∨ such

that cλ is a polarization for some c ∈ Z×(p). Fix a pair (A, λ), an abelian scheme

over S up to prime to p isogeny and a weak polarization λ on A. Then a Up-level
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structure on A is defined as a glocal section

ηp ∈ Γ(S, Isom(V ⊗ Ap
f , V

p(A))/Up)

where Isom(V ⊗ Ap
f , V

p(A))/Up is the etale sheaf on S consisting of Up-orbits of

isomorphisms

V ⊗ Ap
f

∼−→ V p(A)

mapping the symplectic pairing ψ to a (Ap
f )
× multiple of the symplectic pairing

induced by λ. Now consider the functor on Sch/Z(p) which assigns to each S the

set of triples (A, λ, ηp) up to isomorphism. This functor is representable by a

smooth scheme Ag,U over Z(p) such that

Ag,U ⊗Z(p)
Q ∼−→ ShU(G,S±)

Now let (G,X) be a Shimura data together with an embedding (G,X) →

(GSp(V, ψ), S±). Such (G,X) is called Hodge type Shimura datum. For simplicity

we will assume that the reflex field of (G,X) is Q. Let U = UpU
p ⊂ G(Af ) and

U ′ = U ′pU
′p ⊂ GSp(Af ) be compact open subgroups such that Up = G(Zp),

U ′p ∩ G(Qp) = Up and Up ⊂ U ′p. The embedding of Shimura data induces a map

of the corresponding canonical models over Q,

ι : ShU(G,X)→ ShU ′(GSp, S±)

By the above discussion there is a universal abelian scheme A → ShU ′(GSp, S±)

which induces an abelian scheme f : A → ShU(G,X).

In [10, Proposition 1.3.2], Kisin proves that there is a finite collection of tensors

(sα) ∈ V ⊗Z(p)
cutting out G ⊂ GL(VZ(p)

). Let HB be the first Betti cohomology of

AC → ShU(G,X)an
C viewed as a Z(p)-local system. The tensors (sα) induces tensors

suniv
α,B ∈ H⊗B. Let HdR be the first relative de Rham cohomology of A→ ShU(G,X)

and HdR,C be the pullback to ShU(G,X)C, these are filtered vector bundles on M
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and M(C), respectively. Let HApf = V p(A). Then the tensors suniv
α,B induce, via

de Rham comparison isomorphism, de Rham tensors suniv
α,dR ∈ H⊗dR,C, which then

descend to de Rham tensors suniv
α,dR ∈ H⊗dR. The tensors suniv

α,B also induce etale

tensors suniv,p
α,et ∈ H⊗Apf

. For a suitable choice of U ′ ⊂ GSp(Ap
f ), the integral model

M of the Shimura variety ShU(G,X) is defined in [10] as the normalization of the

closure of ShU(G,X) in Ag,U ′ :

ShU(G,X)→ ShU(G,X)− → Ag,U ′

One of the main results of [10] shows that this integral model is smooth. By

construction the universal abelian scheme over A → Ag,U ′ induces an abelian

scheme A → M. The relative de Rham cohomology of A, gives an extension of

HdR to M and the tensors suniv
α,dR extend over the integral model. Similarly the

sheaf Vp(A) on ShU(G,X) extends to a sheaf V p(A) overM and the tensors suniv,p
α,et

extend to the integral model. There are also crystalline tensors defined as follows:

Let f̂ : Â → M̂ be the completion along the special fiber. There is a natural

isomorphism

H1
dR(Â/M̂) ' (R1f̂cris,∗OÂ/Zp)M̂

where the righthand side is the restriction to the Zariski site. Let Hcris is the first

relative crystalline cohomology of AFp over MFp . Hence Hcris = R1f̂cris,∗OÂ/Zp =

D(Xuniv) where Xuniv is the p-divisible group of Â and D(Xuniv) is the Dieudonne

crystal of Xuniv. Via the above isomorphism, the de Rham tensors suniv
α,dR induce

tensors suniv
α ∈ D(Xuniv)⊗. The point is that the universal object A over the

integral model comes equipped with de Rham, etale and crystalline tensors and

these tensors are compatible with respect to comparison isomorphisms.
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3.2 GSpin Shimura Variety

Let (V,Q) be a quadratic space over Q of signature (n − 2, 2) with n ≥ 3. Let

C(V ) be the Clifford algebra of (V,Q) with its Z/2-grading

C(V ) = C+(V )⊕ C−(V )

The Spinor similitude group G = GSpin(V ) is a reductive group over Q defined

as

G(R) = {g ∈ C+(VR)× : gVRg
−1 = VR}

for any Q-algebra R. Hence G acts on V by conjugation. Let D be the space of

negative definite oriented 2-planes in VR. We have an identification

D = {z ∈ VC : [z, z] = 0, [z, z̄] < 0}/C× ⊂ P(VC)

as follows: Given z = u+ iv ∈ D, SpanR{u, v} ⊂ VR is a negative definite 2-plane.

We may assume u, v ∈ VR are orthogonal and Q(u) = Q(v) = −1. Then we get

R-algebra maps

C ∼−→ C+(SpanR{u, v})→ C+(VR)

given by i 7→ uv. This map restricts to an injection

hz : C× → G(R)

which is induced from a morphism of algebraic groups hz : S → GR, where

S = ResC/R(Gm). Thus z 7→ hz realizes D as a G(R)-conjugacy class of ho-

momorphisms in Hom(S, GR) and the pair (G,D) is a Shimura datum with reflex

field Q.

Let L(p) ⊂ V be a self-dual Z(p) lattice and G(p) = GSpin(L(p)). Then G is the

generic fiber of G(p). We denote both groups by G. We will also fix a Z-lattice

L such that LZ(p)
= L(p). Set K = KpK

p ⊂ G(Af ) where Kp = G(Zp) ⊂ G(Qp)
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and Kp ⊂ G(Ap
f ) is a sufficently small compact open subgroup and we assume

that L ⊗ Ẑ is K stable. Thus Kp is hyperspecial. Associated to (G,D) we get a

Shimura variety M over Q whose complex points are

MK(C) = G(Z(p)) \ D ×G(Ap
f )/K

p

see [21, 3.2]. Given a Z(p)-representation N of G. There is a Z(p) local system NB

on MK(C) defined as

G(Z(p)) \N ×D ×G(Ap
f )/K

p

Let NdR,M(C) = NB ⊗ OM(C). This is a vector bundle over M(C) which comes

with a natural filtration F •NdR,M(C) such that at any point (z, g), the filtration

on the fiber NdR,M(C),(z,g) is induced by hz : S→ GR.

The above construction can be applied to the Z(p) representations L(p) and

H = C(L(p)) of G. In this way, one gets Z(p)-local systems and vector bundles

with filtrations

(HB,HdR,M(C)) and (VB,VdR,M(C))

on the complex fiber M(C). Now we will explain how these objects can be re-

alized as cohomologies of the ‘universal’ object over the canonical model M of

the Shimura variety obtained via the Hodge embedding. One can choose an el-

ement δ ∈ C+(L(p))
× such that δ∗ = −δ and consider the symplectic pairing ψδ

on C(L(p)) defined as ψδ(x1, x2) = Trd(x1δx
∗
2), see [21, Lemma 3.6]. We have a

faithful representation

G→ GSp(C(L(p)), ψδ)

which induces a morphism of Shimura data from (G,D) to the Siegel Shimura

datum determined by (C(L(p)), ψδ)

(G,D)→ (GSp((C(L(p)), ψδ)), S
±). (3.2.1)
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Let K ′ ⊂ GSp(Af ) be a compact open subgroup such that K ⊂ K ′. This induces

a morphism of Shimura varieties

M → ShK′(GSp, S±).

which is defined over Q. Pulling back the universal object yields an abelian scheme

A→M which is called the Kuga-Satake abelian scheme. The fiber of this over a

point [(z, g)] ∈M(C) is the abelian variety up to prime to-p-isogeny A[(z,g)] whose

Betti homology is

H1(A[(z,g)],Z(p)) = g · C(L(p)) ⊂ C(V )

with Hodge structure is given by hz. The symplectic form ψδ induces a polarization

λ on A[(z,g)]. The relative degree 1 Betti cohomology of AM(C) over M(C) with

coefficients in Z(p) is identified with HB as Z(p)-local systems over M(C). Hence

at a point [(z, g)], the fiber HB,[(z,g)] ' g · C(L(p)).

Similarly the relative degree 1 de Rham cohomology of AM(C) over M(C) is

identified with HdR,M(C). Moreover the relative degree 1 de Rham cohomology of

A over M gives a descend of HdR,M(C) to a vector bundle HdR,M over M equipped

with a filtration.

Let H` be the relative degree 1 etale cohomology of A over M with coefficients

on Q`. By the comparison of etale cohomology with singular cohomology, the

restriction of H` to M(C) can be identified with HB ⊗ Q`. Similarly, define

V`,M(C) = VB ⊗Q` as a Q` local system over M(C) then there is a descend V` to

a Q`-local system over M .

Let Hp be the relative degree 1 cohomology of A over M with coefficients

in Zp. Then the restriction Hp,M(C) is identified with HB ⊗ Zp. Similarly, let

Vp,M(C) = VB ⊗ Zp a Zp-local system over M(C). There is a descend Vp of

Vp,M(C) over M .

Let HApf be the relative degree 1 etale cohomology of A over M with coefficients
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in Ap
f . This decends to M as a Ap

f -local system HB ⊗ Ap
f over M(C). Similar to

before VB ⊗ Ap
f over M(C) has a descend to VApf over M .

The universal abelian scheme A → M has a polarization λ and a K ′p-level

structure ηp : HApf
∼−→ H ⊗ Ap

f induced by the universal object (A, λ, ηp) over the

integral model SK′(GSp, S±) of the Siegel Shimura variety. Then [21, Proposition

3.14] is showing that there is a canonical such Kp-level structure ηp : HApf
∼−→

H ⊗ Ap
f on A that maps VApf onto L(p) ⊗ Ap

f .

The G-equivariant action of V on H by left multiplication induces an embed-

ding of homological realizations

V• ⊂ End(H•)

where • = B, `, dR.

In the previous section we described the integral models of Shimura varieties

of Hodge type. By the Hodge embedding (3.2.1), M is of Hodge type and so

it has a smooth integral model M(p) over Z(p), for details see [10, 21]. Recall

that by construction of M(p), the Kuga-Satake abelian scheme (A, λ, ηp) over

SK′(GSp, S±) induces an abelian scheme (A, λ, ηp) over M(p). This gives exten-

sions of the sheaves H`, HApf ,V`,VApf extends over the integral model M(p). By

[21, Prop 3.7], HdR and VdR also extend to filtered vector bundles over M(p).

By [1, Prop 4.2.5], there is a canonical functor N 7→ Ncris from the algebraic

Z(p)-representations of G(p) to F -crystals over M(p),Fp which recovers Hcris, the

first relative crystalline cohomology of AFp overM(p),Fp , when applied to H(p). Let

x ∈M(p)(k) be a point in characteristic p. Then there is a natural isomorphism

Hcris,x
∼−→ H ⊗W

and an isometry Vcris,x
∼−→ L(p) ⊗W . And we get a canonical embedding Vcris ⊂
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End(Hcris). We have described the embeddings

V• ⊂ End(H•) (3.2.2)

where • = B, `, dR, cris. Using these embeddings one can define the notion of a

special endomorphism.

Definition 3.1. For any M -scheme S, an endomorphism f ∈ End(AS)(p) is called

`-special if its `-adic realization f` lies in the image of the embedding V` →

End(H`), and it is called p-special if it induces an endomorphism in the image of

Vp → End(Hp).

The definition of `-specialness works for any M(p)-scheme S.

Definition 3.2. For a characteristic p point in the special fiber x : Spec k →

M(p),Fp , an endomorphism f ∈ End(Ax)(p) is called p-special if the crystalline

realization fcris lies in the image of Vcris,x → End(Hcris,x). For a scheme S →M(p)

on which p is locally nilpotent, an endomorphism f ∈ End(AS)(p) is called p-special

if at every k-valued point x→ S, the endomorphism fx ∈ End(Ax)(p) is p-special.

For a general scheme S →M(p), an endomorphism f ∈ End(AS)(p) is p-special if

the restrictions to S ⊗Q and S ⊗ Fp are p-special.

In fact an endomorphism f ∈ End(AS)(p) is `-special (resp. p-special) if in

every connected component of S there is a geometric point x in S such that fx is

`-special (resp. p-special). For all these see [21].

Definition 3.3. For a given S → M(p), an endomorphism f ∈ End(AS)(p) is

called special if it is ` special for every prime `.

In fact [21, Corollary 5.21] shows that for S → M(p), an endomorphism

f ∈ End(AS)(p) is special if it is p-special. In particular for a geometric point

x ∈ M(p)(k) valued in a perfect field of characteristic p, an endomorphism f ∈

End(As)(p) is special if and only if fcris lies in Vcris.
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Using the comparisons between different cohomological relatizations, one can

see that if an endomorphism f ∈ End(AS)(p) is special, then the Betti realization

over SC lies in the image of VB under the embedding (3.2.2) and the de Rham

realization lies in the image of VdR.

Write V (AS) ⊂ End(AS)(p) for the space of special endomorphisms. If s is

a geometric point valued in a field of characteristic p, then x ∈ EndC(L)(As) is

special if and only if the crystalline realization xcris lies in Vcris,s.

Let S → M(p). The polarization λ on the Kuga-Satake abelian scheme A

induces the Rosati involution on V (AS) and V (AS) is point-wise fixed by this

involution. For each x ∈ V (AS) we have

x ◦ x = Q(x) · idAS

for some Q(x) ∈ Z(p). The map x 7→ Q(x) is a positive definite Z(p)-quadratic

form on V (AS), see [21, Lemma 5.12].

3.3 Special Cycles

Using the special cycles defined in the previous section, we will define the special

cycles on the Shimura variety.

Recall we have the fixed Z-lattice in L(p). This gives a K-stable compact

open subset L̂(p) = L ⊗ Ẑ(p) ⊂ V (Ap
f ) where V = LQ. Recall also that for any

M(p)-scheme S, the fiber AS comes equipped with a Kp-level structure

ηp : HApf
∼−→ H ⊗ Ap

f

which is mapping VApf onto V ⊗Ap
f . Given a special endomorphism f ∈ V (AS) ⊂

End(AS)(p), then by definition of specialness, the induced endomorphism of HApf

via f lies in VAf and so via ηp, the endomorphism ηp ◦ f ◦ (ηp)−1 of H ⊗ Ap
f

lies in V ⊗ Ap
f . Hence it makes sense as an integrality condition to ask for this

endomorphism to lie in L̂(p).
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Definition 3.4. Given T ∈ Symk(Q) with det(T ) 6= 0, the special cycle Z(T )→

M(p) is defined as the stack over M(p) with functor of points

Z(T )(S) = {(x1, . . . , xk) ∈ V (AS)k : Q(x) = T, ηp ◦ xi ◦ (ηp)−1 ∈ L⊗ Ẑ(p)}

for an M(p)-scheme S.

Remark 3.5. The definition of the special cycle in [19, 17, 18] depends on a choice

of a compact open K-stable subset ω ∈ V (Ap
f ). Here we are making a similar

choice L̂(p) = L ⊗ Ẑ(p) ⊂ V (Ap
f ). In [1, Chapter 4], the definition of the special

cycle depends on a choice of µ ∈ L∨/L. There is a subspace Vµ(AS) ⊂ V (AS)

defined by integrality conditions on `-adic realizations. Definition 3.4 corresponds

to the choice µ = 0.

The natural map Z(T ) → M(p) is finite and unramified [1]. Let Z(T ) =

Z(T )×Spec Z(p)
Spec Q be the generic fiber. Then we have

Proposition 3.6. Z(T ) is empty unless k ≤ n − 2 and T is positive definite in

Symk(Z(p)).

Proof. Suppose Z(T ) 6= ∅ and let ξ ∈ Z(T )(C). Let [(z, g)] be the image of ξ

under Z(T )(C)→M(C). Then by construction we have an isomorphism

µ : H1(A[(z,g)],Q)
∼−→ C(V )

with the complex structure given by jz. The Betti realizations of xi lie in gL(p)

via the identifications HB,ξ
∼−→ gC(L(p)) and VB,ξ

∼−→ gL(p), hence Q(x) = T ∈

Symk(Z(p)). Since each xi commutes with jz, by definition of the action of V on

H, we have xi ∈ z⊥. Now z⊥ is a positive (n− 2)-hyperplane in VR, so k ≤ n− 2

since otherwise we would have det(T ) = 0. Finally since the quadratic form on

V (Aξ) is positive definite, T is positive definite.

If k ≥ n − 1, then the generic fiber Z(T ) is empty and so in this case the

image of Z(T ) lies over the special fiber of M(p). Fix d1, . . . , dn−1 ∈ Z(p) which
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are positive. And let

Z = Z(d1)×M(p)
. . .×M(p)

Z(dn−1)

be the fiber product of corresponding special cycles. For a point ξ ∈ Z, we have

a matrix

Tξ = Q(j1, . . . , jn−1) ∈ Symn−1(Z(p))

where (j1, . . . , jn−1) is the (n − 1)-tuple of special endomorphisms attached to ξ.

The function ξ 7→ Tξ is locally constant so we can define ZT to be the union of

connected components of Z where the matrix Tξ = T . Then

Z =
∐
T

ZT =
∐

diag(T )=(d1,...,dn−1)

Z(T )

Let ξ ∈ Z = Z(d1) ×M(p)
. . . ×M(p)

Z(dn−1) where di ∈ Z(p) and positive. Then

by Proposition 3.6, ξ lies in the special fiber of Z. In fact next proposition shows

that it lies in the supersingular locus.

Proposition 3.7. Z(T ) lies in the supersingular locus.

Proof. Let ξ ∈ Z(T )(Fp) and x1, . . . , xn−1 ∈ V (Aξ) be special endomorphisms

determined by ξ. Assume that Aξ is not supersingular. Let W = W (Fp) and

K = Frac(W ). Associated to ξ, there is a bξ ∈ G(K) such that the Frobenius on

the Dieudonne module of ξ which is isomorphic to D⊗W is given by F = bξ ◦ σ,

where σ is the Frobenius on K. Here D = Hom(C(Z(p)),Z(p)). The element bξ

also induces an isocrystal structure (VK ,Φ = bξ ◦ σ). By [8, Lemma 4.2.4], since ξ

is not supersingular, VK is not isoclinic of slope 0. Let r 6= 0 be a slope of VK and

write r = m/n. Then the slope r isotypic component of VK is

V r
K = V p−mΦn

K ⊗E K

where E = Kσn = Qpn and V p−mΦn

K = {x ∈ VK : Φnx = pmx}. Let x, y ∈ V p−mΦn

K .
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Then under the induced quadratic form on VK , we have (x, y)σ
n

= (x, y) and so

(x, y) = (x, y)σ
n

= (Φnx,Φny) = p2m(x, y)

which shows that (x, y) = 0. Now let x ∈ V p−mΦn

K . Then similarly (x, z) = 0

for any z in the slope 0 isotypical component. Now since VK is a nondegenerate

quadratic space, there exists y ∈ V p−uΦv

K with (x, y) 6= 0 and s = u/v 6= 0. Then

similar computation as above shows that s = −r which shows that the slopes of

VK come in pairs r,−r, i.e. if r is a slope then −r is also a slope. Hence the

dimension of the slope 0 component of VK , which is equal to V Φ
K ⊗Qp K, drop

by at least two and so dimQp V
Φ
K ≤ n − 2. The crystalline realizations xi,cris of

xi, lie in Vcris,ξ
∼−→ L(p) ⊗ W and in particular lie in Vcris,ξ ⊗ K

∼−→ VK . Since

xi,cris commute with the Frobenius F on the Dieudonne module, they are fixed

by Φ. Hence xi,cris ∈ V Φ
K . This is a contradiction since there are n − 1 special

endomorphisms on Aξ.
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4 Special Cycles on the Rapoport-Zink Space

4.1 Rapoport-Zink Space

In this section we will describe the structure of the Rapoport-Zink spaces of Hodge

type and in particular we will concentrate on the case of GSpin groups following

[8]. A construction of these Rapoport-Zink spaces using different techniques is

also given by Kim [9].

Let k = Fp. We will use the same notation as in section 3.2, so let L(p) be a Z(p)-

quadratic space and C(L(p)) be its Clifford algebra. Also let LZp = L(p)⊗Zp. Recall

that we have a smooth integral modelM =M(p) over Z(p) for the GSpin Shimura

variety M . Associated to a point x0 ∈M(p)(k) and let X0 be the p-divisible group

of the corresponding abelian variety. Then there is a local unramified Shimura-

Hodge datum (G, b, µ, C) = (GZp , bx0 , µx0 , C(LZp)), where

• µx0 : GmW → GW is a cocharacter, up to G(W )-conjugacy, such that the

Hodge filtration Fil1(X0) ⊂ D(X0)(k) ' H1
dR(Ax0) is induced by µx0 :

Gmk → GW ⊗W k,

• bx0 ∈ G(K) up to G(W )−σ-conjugation, such that bx0 ∈ G(W )µσx0(p)G(W )

and the Frobenius of the contravariant Dieudonne module D(X0)(W ) is of

the form F = bx0 ◦ (id⊗ σ) after choosing an isomorphism

β0 : D ⊗Zp W
∼−→ D(X0)(W )

where D = Hom(C,Zp) with contragradient action of G.

Define the algebraic group Jb over Qp as

Jb(R) = {g ∈ G(R⊗Qp K) : gbσ(g)−1 = b}

for any Qp-algebra R.
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Associated to the datum (G, b, µ, C) there exists a formal scheme RZG over

Spf W formally smooth, locally of finite type satisfying the following

• It is a formal closed subscheme of the usual Rapoport-Zink formal scheme

RZ(X0) over Spf W from section 2.3. Recall that RZ(X0) represents the

functor associating to any S ∈ NilpW the isomorphism classes of pairs (X, ρ)

where X is a p-divisible group over S and ρ : X0×k S 99K X×S S̄ is a quasi-

isogeny.

• There is a bijection

RZG(k)
∼−→ XG,b,µσ(k)

where XG,b,µσ(k) is the affine Deligne-Lusztig set

{g ∈ G(K) : g−1bσ(g) ∈ G(W )µσ(p)G(W )}/G(W )

• If x0 is supersingular, or equivalently that b is basic, then there is an iso-

morphism of formal schemes

Θ : I(Q) \ RZG ×G(Ap
f )/K

p ∼−→ (M̂W )/Mb (4.1.1)

where (M̂W )/Mb is the completion of MW along the basic locus of the

special fiber and I is a reductive group over Q with

I(Q`) =


Jb(Qp) if ` = p

G(Q`) if ` 6= p

The description of the moduli interpretation of RZG(k) is given as follows:

There is a finite list of tensors sα in C⊗ such that

G(R) = {g ∈ GL(C ⊗Zp R) : g · (sα ⊗ 1) = (sα ⊗ 1) ∀α}
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for any Zp-algebra R. We have a canonical isomorphism C⊗ = D⊗. Hence we

obtain tensors sα⊗ 1 in D⊗⊗ZpW which induces, via the above identification β0,

tensors

tα,0 = sα ⊗ 1 ∈ D⊗W = D(X0)(W )⊗

Now RZG(k) is given by triples (X, ρ, (tα)) where

• X is a p-divisible group over k

• (tα) ⊂ D(X)(W )⊗ is a collection of tensors Frobenius invariant in D(X)(W )⊗[1/p]

• ρ : X0 99K X is a quasi-isogeny identifying tα with tα,0

satisfying some extra properties [8, Definition 2.3.3]. The group Jb(Qp) acts on

RZG(k) on the left by

g · (X, ρ, (tα)) = (X, ρ ◦ g−1, (tα)) (4.1.2)

For a given local unramified Shimura-Hodge datum (G, b, µ, C), there is a unique,

up to isomorphism, p-divisible group X0 = X0(G, b, µ, C) over k with contravariant

Dieudonne module D(X0)(W ) = DW and Frobenius F = b ◦ σ where the Hodge

filtration V Dk ⊂ Dk = D(X0)(k) is induced by a conjugate of the reduction

µk : Gmk → Gk of µ mod p.

Let x0 ∈ M(p)(k) be supersingular and let (GZp , b, µ, CZp) be the correspond-

ing unramified local Shimura-Hodge datum. Let RZ = RZG be the associated

formal scheme over W described as above. In [8], Howard-Pappas give an explicit

description of the underlying reduced locally finite type k-scheme RZred. Now we

will summarize this description.

We will work locally so by abusing the notation, we denote the self-dual Zp-

quadratic space LZp by V and GZp = GSpin(V ) by G. Consider the quadratic

space VK over K = W [1/p] with the natural action GK → SO(VK). The oper-

ator Φ = b ◦ σ turns VK into an isocrystal of slope 0, [8, Lemma 4.2.4] and the

subspace of Φ-invariant vectors V Φ
K is a Qp-quadratic space of the same dimen-
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sion and determinant as VQp but with Hasse invariant ε(V Φ
K ) = −ε(VQp). Recall

D = HomZp(C(V ),Zp) is the contragradient representation. Then there is an

isomorphism

C(V )op ⊗Z(V ) C(V )
∼−→ EndZ(V )(D)

defined by ((c1 ⊗ c2)d)(x) = d(c1xc2) where Z(V ) ⊂ C(V ) is the center. The

inclusion V ⊂ C(V )op gives an embedding

V ⊂ EndZp(D)

and the action of v ∈ V on D is given by (vd)(x) = d(vx). The relation with the

G-action on D is given by g ◦ v ◦ g−1 = g • v for any g ∈ G(Zp), where g • v is the

action of G on V via conjugation. The above embedding induces VK ⊂ EndK(DK)

and so

V Φ
K ⊂ EndF (DK)

where F = b◦σ. Since DK is the isocrystal for X0, we have V Φ
K ⊂ End(X0)Q where

X0 is the p-divisible group associated to x0. The Qp-subspace V Φ
K is the space of

special quasi-endomorphisms of X0. The relation with the definition of special

endomorphisms given in the previous section is as follows: Recall the integral

modelM(p) of the Shimura variety and consider a k-point s ∈M(p)(k) =MFp(k).

Then by the construction in section 2, we have

H1
cris(As/W ) = Hcris,s

which is an F -crystal over W under Fs : σ∗Hcris,s → Hcris,s induced by the Frobe-

nius onAs. This further induces via conjugation an F -isocrystal (Hcris,s[1/p]
⊗(1,1),Φs).

By [21, Proposition 4.7], H ⊗Z(p)
W ' Hcris,s and Vcris,s ⊂ H

⊗(1,1)
cris,s , as a self dual

quadratic space over W , is isometric to V ⊗Z(p)
W . And so Vcris,s ⊗W K ' VK ↪→

EndK(Hcris,s[1/p]).

The Rapoport-Zink formal scheme RZ = RZG is a closed formal subscheme
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of RZ(X0, λ0) where λ0 is a polarization on X0 induced by the perfect symplectic

form ψδ on C(V ), see section 3.2. Hence by restricting the universal object via

RZ ↪→ RZ(X0, λ0) we get a pair (X, ρ), where X is a p-divisible group over RZ

and

ρ : X0 ×Spf (k) RZ 99K X ×RZ RZ

is a quasi-isogeny. It respects the polarizations λ and λ0 up to scaling so we have

ρ∗λ = ρ∨ ◦ λ ◦ ρ = c(ρ)−1λ0

for some c(ρ) ∈ Q×p . For each ` ∈ Z define RZ(`) to be the open and closed formal

subscheme on which ordp(c(ρ)) = `. Then we have

RZ =
⊔
`∈Z

RZ(`)

The Qp points of the algebraic group Jb = GSpin(V Φ
K ) is

Jb(Qp) = {g ∈ G(K) : gb = bσ(g)}

and so via G(K) → GL(DK), we have Jb(Qp) ⊂ End(X0)×Q. This gives an action

on RZ defined as in 4.1.2. For every g ∈ Jb(Qp) we get an isomorphism

g : RZ(`) → RZ(`+ordpηb(g))

Consider the action of the subgroup pZ ⊂ Jb(Qp). As ηb(p) = p2, we have

pZ \ RZ
∼−→ RZ(0) t RZ(1)

Since the spinor similitude ηb : Jb(Qp) → Q×p is surjective, all RZ(`) are (non-

canonically) isomorphic.
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Now we will describe the linear algebraic data which will be used to give a

description of RZ. For details see [8, Section 5].

A vertex lattice is a Zp-lattice Λ ⊂ V Φ
K such that pΛ ⊂ Λ∨ ⊂ Λ. The quadratic

form pQ on V Φ
K induces a quadratic form on the Fp-vector space Ω0 = Λ/Λ∨. The

type of Λ is defined as tΛ = dim Ω0. It is even and 2 ≤ tΛ ≤ tmax where

tmax =


n− 2 if n is even and det(VQp) = (−1)n/2

n− 1 if n is odd

n if n is even and det(VQp) 6= (−1)n/2

A special lattice L ⊂ VK is defined to be a self-dual W -lattice such that

(L+ Φ(L))/L
∼−→ W/pW

For every special lattice L ⊂ VK , there is a minimal vertex lattice Λ = Λ(L) ⊂ V Φ
K

with

Λ∨W ⊂ L ⊂ ΛW

and Λ∨ = LΦ = {x ∈ L : Φ(x) = x}, see [8, Proposition 5.2.2].

Consider the smooth projective k-variety SΛ

SΛ(k) = {Lagrangians L ⊂ Ω0 ⊗ k : dim(L+ Φ(L)) = tΛ/2 + 1}

where Φ = id⊗σ. The k-variety SΛ = S+
Λ tS

−
Λ has two connected components that

are non-canonically isomorphic, and smooth of dimension (tΛ/2) − 1 and SΛ(k)

parametrizes certain special lattices:

SΛ(k)
∼−→ {special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW}

The reduced k-scheme RZred underlying the formal W -scheme can be expressed

as a union of closed subschemes RZred
Λ indexed by vertex lattices and each RZred

Λ
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is related to SΛ. For a vertex lattice Λ ⊂ V Φ
K , let RZΛ ⊂ RZ be the closed formal

subscheme defined by the condition

ρ ◦ Λ∨ ◦ ρ−1 ⊂ End(X)

The closedness follows from 2.11. Set RZ
(`)
Λ = RZ(`) ∩ RZΛ. Then we have

pZ \ RZΛ ' RZ
(0)
Λ t RZ

(1)
Λ

By [8, Prop 6.1.2], the reduced k-scheme underlying RZ
(`)
Λ is projective. Now

we explain the relation between RZΛ and the special lattices. Given y ∈ RZ(k),

via the universal quasi-isogeny, we obtain a quasi-isogeny ρy : X0 → Xy which

induces an isomorphism of isocrystals

D(Xy)(W )[1/p]
∼−→ D(X0)(W )[1/p] = DK

and in this way, the Dieudonne module My = D(Xy)(W ) of Xy can be viewed as

a W -lattice in DK . The Hodge filtration Fil1Xy ⊂ D(Xy)(k) = My/pMy induces a

submodule M1,y ⊂ My. So associated to y ∈ RZ(k) we have W -lattices M1,y ⊂

My ⊂ DK . Recall the inclusion VK ⊂ EndK(DK). Define the following W -lattices

in VK

Ly = {x ∈ VK : xM1,y ⊂M1,y}

L]y = {x ∈ VK : xMy ⊂My}

L]]y = {x ∈ VK : xM1,y ⊂My}

In [8], Howard-Pappas prove that for every y ∈ RZ(k), the lattice Ly is special

and satisfies

Φ(Ly) = L]y and Ly + L]y = L]]y
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and y 7→ Ly induces the following bijections

pZ \ RZ(k)
∼−→ {special lattices L ⊂ VK}

pZ \ RZΛ(k)
∼−→ {special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW}

As a corollary of these bijections, there is a decomposition of RZ(k),

RZ(k) =
⋃
Λ

RZΛ(k)

where the union is over vertex lattices with tΛ = tmax. We also have for any two

vertex lattices Λ1 and Λ2

RZΛ1(k) ∩ RZΛ2(k) =


RZΛ1∩Λ2(k) if Λ1 ∩ Λ2 is a vertex lattice

∅ otherwise

(4.1.3)

By the above discussion, it follows that

pZ \ RZΛ(k)
∼−→ {special lattices L ⊂ VK : Λ∨W ⊂ L ⊂ ΛW}

∼−→ SΛ(k)

The relation is stronger than this, there is a unique isomorphism of k-schemes

pZ \ RZred
Λ

∼−→ SΛ

inducing the above bijection on k-points [8, Theorem 6.3.1]. As a corollary of this,

the reduced scheme RZ
(`),red
Λ is connected and nonempty, and is isomorphic to S±Λ ,

[8, Corollary 6.3.2]. The next theorem gives the explicit description of RZred.

Theorem 4.1. [8, Theorem 6.4.1] The k-schemes RZ(`),red are connected and the

subschemes RZ
(`),red
Λ are projective and smooth of dimension (tΛ/2)−1. The closed

subschemes RZ
(`),red
Λ as Λ runs over the vertex lattices of type tmax, are the irre-
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ducible components of RZ(`),red. In particular, we have

dim(RZred) =
1

2


n− 2 if n is even and det(VQp) = (−1)n/2

n− 1 if n is odd

n if n is even and det(VQp) 6= (−1)n/2
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4.2 Special Cycles

In this section, we will define special cycles on the Rapoport-Zink space associated

to a supersingular point of the Shimura variety and determine the intersection

behavior of these cycles, in particular determine when this intersection consists of

isolated points.

Recall the Qp-quadratic space V Φ
K of special quasi-endomorphisms. Under the

inclusion VK ↪→ EndK(DK) the space V Φ
K embeds into End(X0)Q. The elements

of V Φ
K are called special quasi-endomorphisms of X0. Let j ∈ V Φ

K be a special

quasi-endomorphism. The special cycle Z(j) associated to j is defined to be the

closed formal subscheme of RZ consisting of all points (X, ρ) such that

ρ ◦ j ◦ ρ−1 ∈ End(X).

The fact that this defines a closed formal subscheme follows from Proposition

2.11. Let y ∈ Z(j)(k). Then j induces an endomorphism of M1
y and so j ∈ LΦ

y =

Ly ∩ V Φ
K . By definition of RZΛ, if y ∈ RZΛ(k), then Λ∨ ⊂ LΦ

y ⊂ Λ. Similarly, by

construction, if j ∈ Λ∨, then RZΛ(k) ⊂ Z(j)(k). Let j ∈ V Φ
K and Λ ⊂ V Φ

K be a

vertex lattice.

Suppose y ∈ RZΛ(k) ∩ Z(j)(k). Then j ∈ LΦ
y ⊂ Λ. By the previous section,

LΦ
y = Λ(Ly)

∨ for some vertex lattice Λ(Ly) and Λ(Ly) ⊂ Λ. Hence if j ∈ Λ(Ly)
∨ =

LΦ
y , and so RZΛ(Ly) ⊂ Z(j). Let y ∈ Z(j)(k), then j2 = Q(j) is an endomorphism

of the Dieudonne module My and so Q(j) ∈ Zp. This shows that if Q(j) /∈ Zp,

then Z(j)(k) = ∅.

The following proposition gives a description of the special cycle Z(j) in terms

of the pieces RZΛ used in the description of the supersingular locus.

Proposition 4.2. Given j ∈ V Φ
K , we have

Z(j)red =
⋃
j∈Λ∨

RZred
Λ
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Proof. By construction, if j ∈ Λ∨, then RZΛ ⊂ Z(j). Hence
⋃
j∈Λ∨ RZΛ ⊂ Z(j).

For the other inclusion let y ∈ Z(j)(k). If Ly is the corresponding special lattice,

we have

Λ(Ly)
∨
W ⊂ Ly ⊂ Λ(Ly)W

where Λ(Ly) is minimal with this property. By the previous section Λ(Ly)
∨ =

LΦ
y . The description of RZΛ(Ly)(k) in terms of special lattices implies that y ∈

RZΛ(Ly)(k). Since j preserves the Hodge filtration M1
y , by definition of Ly, we also

have j ∈ LΦ
y = Λ(Ly)

∨, thus for every y ∈ Z(j)(k), we have a vertex lattice Λ(Ly)

such that j ∈ Λ(Ly)
∨. This shows that the k-rational points of the reduced schemes

Z(j)red and
⋃
j∈Λ∨ RZred

Λ are the same. Recall the formal scheme RZ is locally

formally of finite type. From this it is easy to see that the union
⋃
j∈Λ∨ RZ

(`),red
Λ is

closed in RZred which implies that
⋃
j∈Λ∨ RZred

Λ is also closed in RZred. This shows

the equality in the proposition.

Recall the disjoint union

RZ =
⊔
`∈Z

RZ(`)

with each RZ(`) is connected, open and closed formal subscheme. Then for a vertex

lattice Λ ⊂ V Φ
K

RZred
Λ =

⊔
`∈Z

RZ
(`),red
Λ

and so by the above proposition

Z(j)red =
⋃
j∈Λ∨

⊔
`∈Z

RZ
(`),red
Λ

where RZ
(`),red
Λ for different ` are isomorphic and they are smooth projective of

dimension (tΛ/2)− 1. Hence the dimension of Z(j)red is determined by the pieces

RZ
(`),red
Λ that appears in the above union.

If (j1, . . . , jn−1) ∈ (V Φ
K )n−1, then Z(j1, . . . , jn−1) is defined similarly and it only

depends on the Zp-span J of j1, . . . , jn−1. Hence we will denote it by Z(J). It is
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the intersection of the cycles Z(j1), . . . , Z(jn−1). If y ∈ Z(J)(k), then J ⊂ LΦ
y and

so J ⊂ Λ(Ly)
∨. Hence Q(J) ∈ Symk(Zp). We also have

Z(J)red =
⋃
J⊂Λ∨

RZred
Λ

This follows from (4.1.3).

By Proposition 3.7, we know that if T ∈ Symn−1(Z(p)) is positive definite, then

the special cycle Z(T ) lies in the supersingular locus. Hence from now on, we fix

an (n − 1)-tuple of special quasi-endomorphisms j1, . . . , jn−1 ∈ V Φ
K and assume

that Z(J) 6= ∅. Let T = Q(J) ∈ Symn−1(Zp). In the rest of this section we will

determine the dimension of Z(J)red in terms of T .

The main idea will be the following: Let y ∈ Z(J)(k), then y ∈ RZΛ(k) for

some vertex lattice Λ such that J ⊂ Λ∨. This shows that for all vertex lattices

Λ0 ⊂ Λ of type 2, we have J ⊂ Λ∨0 and so RZΛ0 ⊂ Z(J). Hence for each point of

the cycle Z(J), the pieces RZΛ containing that point pass through RZΛ0 ⊂ Z(J)

for all vertex lattices Λ0 ⊂ Λ of type 2. Thus in order to determine the pieces

RZred
Λ that appears in the above union, it is enough to consider the points of

RZΛ0 ⊂ Z(J) for type 2 vertex lattices Λ0 and find the pieces RZΛ with J ⊂ Λ∨

that contains RZΛ0 .

Since we are assuming Z(J) is nonempty, by the above paragraph there is

a vertex lattice Λ0 of type 2 such that RZΛ0 ⊂ Z(J). Then J ⊂ Λ∨0 and J̄ =

J/(pΛ0 ∩ J) ⊂ Λ∨0 /pΛ0 is a subspace. The Fp-vector space Λ∨0 /pΛ0 is an (n− 2)-

dimensional nondegenerate quadratic space with the quadratic form is given by

Q mod p. The reduction modulo p of T is the matrix of the Fp-quadratic space

J/pJ .

Lemma 4.3. The nondegenerate parts of the Fp-quadratic spaces J/pJ and J̄ are

isomorphic.
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Proof. Consider the following exact sequence

0→ (pΛ0 ∩ J)/pJ → J/pJ → J̄ → 0

and observe that (pΛ0∩J)/pJ ⊂ Rad(J/pJ). We have the following decomposition

J/pJ = Rad(J/pJ)⊕W = (pΛ0 ∩ J)/pJ ⊕ U ⊕W

where W is nondegenerate and Rad(J/pJ) = (pΛ0 ∩ J)/pJ ⊕ U . Hence we have

J̄ ' U ⊕W and Rad(J̄) ' U . This implies that

J̄/Rad(J̄) ' (J/pJ)/Rad(J/pJ) ' W

Thus modulo radicals the two quadratic spaces J/pJ and J̄ are isomorphic to W

and so have the same matrix.

By the above lemma, we have

rank(T̄ ) = dimFp((J/pJ)/Rad(J/pJ)) = dimFp(J̄/Rad(J̄)).

The following proposition shows that rank(T̄ ) can not be n− 1.

Proposition 4.4. If j1, . . . , jn−1 ∈ V Φ
K such that (jr, js) = T , then rank(T̄ ) 6=

n− 1.

Proof. Assume that rank(T̄ ) = n−1. Then we may assume T is diagonal with unit

entries. Now J is a subset of a maximal lattice in V Φ
K , say J⊕〈v〉 as an orthogonal

sum. If Q(v) ∈ Z×p then J⊕〈v〉 would be a self-dual lattice contradicting the Hasse

invariant of V Φ
K . If ordp(Q(v)) = 1, then ordp(detV Φ

K ) would be odd, contradiction.

Finally if ordp(Q(v)) = 2, then J ⊕ 〈1
p
v〉 is a lattice contained in its dual and

containing the maximal lattice J ⊕ 〈v〉, contradicting the maximality of J ⊕ 〈v〉.

This finishes the proof of the proposition.
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In the rest of this section we will determine the dimension of Z(J) in terms of

Rank(T̄ ) and the determinant of T̄ modulo its radical. We will need the following

lemmas.

Lemma 4.5. Let Λ0 ⊂ V Φ
K be a vertex lattice of type 2. Then for any k ≤ n−2

2
we

have a bijection

{vertex lattices Λ ⊃ Λ0 of type 2k+2} ↔
{totally isotropic subspaces of

Λ∨0 /pΛ0 of dimension k

}
.

which is defined by Λ 7→ pΛ/pΛ0.

Proof. We will write the inverse. The quadratic space Λ∨0 /pΛ0 is n−2 dimensional.

Let `/pΛ0 ⊂ Λ∨0 /pΛ0 be a k-dimensional totally isotropic subspace. Hence pΛ0 ⊂

` ⊂ Λ∨0 . Since (`, `) ⊂ pZp, we have (p−1`, `) ⊂ Zp and so p−1` ⊂ `∨. We have the

following inclusions

pΛ0 ↪→
k
` ↪→
n−k−2

Λ∨0 ↪→
2

Λ0 ↪→
k
p−1` ↪→

n−2k−2
`∨

As pΛ0 ⊂ `, we have `∨ ⊂ p−1Λ∨0 . We also have p−1Λ0 ⊂ p−2`, and so

p−1` ↪→
n−2k−2

`∨ ↪→
k
p−1Λ∨0 ↪→

2
p−1Λ0 ↪→

k
p−2`

Now set Λ = p−1` and so Λ ⊂ p−1Λ∨ ⊂ p−1Λ which shows that Λ is a vertex

lattice of type 2k + 2.

Lemma 4.6. Let Λ0 ⊂ V Φ
K be a vertex lattice of type 2. Let `/pΛ0 ⊂ Λ∨0 /pΛ0 be a

k-dimensional subspace with Rad(`/pΛ0) is m-dimensional. Then ` ⊂ Λ∨ for some

vertex lattice of type 2m+ 2.

Proof. For m = 0, take Λ = Λ0. Suppose m ≥ 1. Then Rad(`/pΛ0) is a totally

isotropic subspace of Λ∨0 /pΛ0 of dimension m. Hence by Lemma 4.5, Rad(`/pΛ0) =

pΛ/pΛ0 for some vertex lattice Λ ⊃ Λ0 of type 2m+2. Now we have (pΛ, `) ⊂ pZp

and so (Λ, `) ⊂ Zp which means ` ⊂ Λ∨.
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Depending on the parity of n and the det(VQp) we have three cases for tmax.

Now we will consider each case separately.

4.2.1 The case n even

In this case we have

tmax =


n− 2 if det(VQp) = (−1)n/2

n if det(VQp) 6= (−1)n/2

We start with the case tmax = n, i.e. det(VQp) 6= (−1)n/2. Then the irreducible

components of RZ(`),red are n−2
2

dimensional. Given full chain of vertex lattices

Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk where Λ0 is of type 2 and Λk is of type n. Then

pΛ0 ↪→
1
. . . ↪→

1
pΛk = Λ∨k ↪→

1
. . . ↪→

1
Λ∨1 ↪→

1
Λ∨0 ↪→

2
Λ0 ↪→

1
Λ1 ↪→

1
. . . ↪→

1
Λk

and k = n−2
2

. Now Λ∨0 /pΛ0 is a (n − 2)-dimensional nondegenerate Fp-quadratic

space and since pΛk/pΛ0 is n−2
2

-dimensional totally isotropic subspace

Λ∨0 /pΛ0 ' Hk

where H denotes the hyperbolic plane. In fact, Λ∨i /pΛi ' Hk−i.

By the proof of [8, Proposition 5.1.2],

Λk = SpanZp{e1, f1, . . . , er, fr} ⊕ Z

where (ZQp , Q) ' (Qp2 , cxx̄) for c ∈ Q×p /Nm(Q×p2) and ordp(c) is odd and

(ei, ej) = 0, (fi.fj) = 0, (ei, fj) = p−1δi,j.

Hence we can assume ordp(c) = 1. Then det(ZQp) = −u for the unique nonsquare
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unit u ∈ Z×p \ Z×,2p where Qp2 ' Qp(
√
u). Thus we have

det(VQp) = (−1)k+1u

Let j1, . . . .jn−1 ∈ V Φ
K be special endomorphisms such that T ∈ Symn−1(Zp). As-

sume that Z(J) 6= ∅. Hence RZΛ0 ⊂ Z(J) for some vertex lattice Λ0 of type 2 and

so J ⊂ Λ∨0 and define as before J̄ = J/(pΛ0 ∩ J) which is a subspace of Λ∨0 /pΛ

and so

0 ≤ dimFp(J̄/Rad(J̄)) = rank(T̄ ) ≤ n− 2

Lemma 4.7. Let W be a nondegenerate quadratic space of dimension n and V be

a subspace with dimV = ` and dim Rad(V ) = m. Then `+m ≤ n.

Proof. The Witt decomposition for V is V = U ⊕ Rad(V ) and U is a (` − m)-

dimensional nondegenerate subspace of W . Hence

W = U ⊕ U⊥

where dimU⊥ = n− `+m. Now Rad(V ) ⊂ U⊥ is m-dimensional totally isotropic

subspace of U⊥ and since U⊥ is nondegenerate, 2m ≤ n− `+m which proves the

lemma.

Proposition 4.8. Z(J)red is n−2
2

dimensional if and only if rank(T̄ ) = 0, i.e. p|T .

Proof. Assume that p|T . Then either J̄ = 0 or J̄ = Rad(J̄) and dim J̄ ≥ 1. In

the first case, we have J ⊂ pΛ0 and so J ⊂ Λ∨k for all Λk ⊃ Λ0 of type n. In the

second case, by Lemma 4.5, J̄ = pΛ/pΛ0 for some vertex lattice Λ ⊃ Λ0 of type

≥ 4 and so J ⊂ pΛ. Hence J ⊂ Λ∨k for any vertex lattice Λk ⊃ Λ of type n. Thus

in either case Z(J) is n−2
2

-dimensional.

Conversely assume that Z(J)red is n−2
2

-dimensional. Hence J ⊂ Λ∨k for some

vertex lattice Λk ⊃ Λ0 of type n. Proposition follows from Λ∨k = pΛk.

Proposition 4.9. If rank(T̄ ) is n− 2 or n− 3, then Z(J)red is 0-dimensional.
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Proof. First suppose rank(T̄ ) = n−2. Since J̄ ⊂ Λ∨0 /pΛ0 and dim Λ∨0 /pΛ0 = n−2,

we have J̄ = Λ∨0 /pΛ0. Now if J ⊂ Λ∨ for some vertex lattice Λ ⊃ Λ0 of type tΛ ≥ 4,

then J̄ ⊂ Λ∨/pΛ0 but dim Λ∨/pΛ0 < dim Λ∨0 /pΛ0 and so J * Λ∨ for any Λ ⊃ Λ0

of type ≥ 4. This shows that in the union

Z(J)red =
⋃
J⊂Λ∨

RZred
Λ

RZred
Λ with tΛ ≥ 4 do not appear. Thus Z(J)red is 0-dimensional.

Now suppose rank(T̄ ) = n − 3. Since Λ∨0 /pΛ0 is nondegenerate, J̄ 6= Λ∨0 /pΛ0.

Hence dim J̄ = n−3 and Rad(J̄) = 0. Assume that J ⊂ Λ∨1 for some vertex lattice

Λ1 ⊃ Λ0 of type 4. Then J̄ ⊂ Λ∨1 /pΛ0 and in fact we have J̄ = Λ∨1 /pΛ0 since both

have the same dimension. But Rad(Λ∨1 /pΛ0) = pΛ1/pΛ0, contradiction. Hence

J * Λ∨1 for any vertex lattice Λ1 of type 4, and so Z(J)red is 0-dimensional.

The remaining possibilities are 1 ≤ rank(T̄ ) ≤ n − 4 and now we will cover

these cases.

Proposition 4.10. Let m = rank(T̄ ) and suppose 1 ≤ m ≤ n − 4. Let dT =

det(T̄ /Rad(T̄ )). Then

(a) If m is odd, then dimZ(J)red = n−m−3
2

(b) If m is even, then

dimZ(J)red =


n−m−2

2
if dT = (−1)m/2

n−m−2
2
− 1 if dT 6= (−1)m/2

Proof. Recall that m = dimFp(J̄/Rad(J̄)) and J̄ ⊂ Λ∨0 /pΛ0. Let dim Rad(J̄) = `

and so dim J̄ = m+ `. By Lemma 4.7, we have 2`+m ≤ n− 2 and so

` ≤ n− 2−m
2
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Hence 0 ≤ ` ≤ bn−2−m
2
c. Consider the Witt decomposition for J̄ ,

J̄ = Rad(J̄)⊕W

where W is an m-dimensional nondegenerate subspace of Λ∨0 /pΛ0. Hence we have

an orthogonal decomposition

Λ∨0 /pΛ0 = W ⊕W⊥

where dimW⊥ = n − 2 −m. Note that Rad(J̄) is a totally isotropic subspace of

W⊥.

Now assume that m is odd and so n − 2 −m is odd. Since any Fp-quadratic

space of dimension ≥ 3 is isotropic, W⊥ contains a totally isotropic subspace U

of dimension n−3−m
2

. We may assume that Rad(J̄) ⊂ U . Then J̄ ⊂ W ⊕ U ⊂

Λ∨0 /pΛ0 with Rad(W ⊕ U) = U . Hence, by Lemma 4.6, W ⊕ U ⊂ Λ∨/pΛ0 for

some vertex lattice Λ ⊃ Λ0 of type n − m − 1. This shows that dimZ(J)red is

at least n−m−1
2
− 1 = n−m−3

2
. If J ⊂ Λ′∨ for a vertex lattice Λ′ ⊃ Λ of type

tΛ′ = tΛ + 2 = n − m + 1, then J̄ ⊂ Λ′∨/pΛ0 and dim Λ′∨/pΛ0 = n+m−3
2

and

Rad(Λ′∨/pΛ0) = pΛ′/pΛ0. Since dim pΛ′/pΛ0 = n−m−1
2

, we have

Λ′∨/pΛ0 = (pΛ′/pΛ0)⊕ V ′

where V ′ is the nondegenerate part with dimV ′ = m − 1. But our assumption

on J̄ ⊂ Λ′∨/pΛ0 implies that W is an m-dimensional nondegenerate subspace of

Λ′∨/pΛ0, contradiction. This shows that dimZ(J)red = n−m−3
2

.

Now assume that m is even and so n−2−m is even. Since dimW⊥ = n−2−m,

W⊥ contains a totally isotropic subspace U of dimension at least n−m−2
2
− 1 and

it contains a totally isotropic subspace of dimension n−m−2
2

if and only if

detW⊥ = (−1)
n−m−2

2
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in which case W⊥ ' Hn−m−2
2 . Hence, if we let U to be a maximal totally isotropic

subspace of W⊥, then

dimU =


n−m−2

2
if detW⊥ = (−1)

n−m−2
2

n−m−2
2
− 1 otherwise

As before, since Rad(J̄) ⊂ W⊥ is totally isotropic, we may assume Rad(J̄) ⊂ U .

Hence J̄ ⊂ W ⊕ U ⊂ Λ∨0 /pΛ0 and Rad(W ⊕ U) = U . Now by Lemma 4.6,

U ⊕W ⊂ Λ∨/pΛ0 for some vertex lattice Λ of type tΛ = 2 dimU + 2.

Let’s first assume that detW⊥ = (−1)
n−m−2

2 so that tΛ = n −m. If J ⊂ Λ′∨

for some vertex lattice Λ′ ⊃ Λ of type tΛ′ = tΛ + 2 = n−m+ 2, then J̄ ⊂ Λ′∨/pΛ0

and

Λ′∨/pΛ0 = Rad(Λ′∨/pΛ0)⊕ V ′ = (pΛ′/pΛ0)⊕ V ′

where V ′ is nondegenerate subspace with dimV ′ = m−2 since dim pΛ′/pΛ0 = n−m
2

.

But W is an m-dimensional nondegenerate subspace of Λ′∨/pΛ0, contradiction.

Thus dimZ(J)red = n−m−2
2

.

Secondly, assume that detW⊥ 6= (−1)
n−m−2

2 so tΛ = n−m− 2. If J ⊂ Λ′∨ for

some vertex lattice Λ′ ⊃ Λ of type tΛ′ = tΛ + 2 = n−m, then J̄ ⊂ Λ′∨/pΛ0 and

Λ′∨/pΛ0 = Rad(Λ′∨/pΛ0)⊕ V ′ = (pΛ′/pΛ0)⊕ V ′

where V ′ is nondegenerate subspace with dimV ′ = m since dim pΛ′/pΛ0 = n−m−2
2

.

Then W is an m-dimensional nondegenerate subspace of Λ′∨/pΛ0 and since V ′ '

Λ′∨/pΛ′, we have

detW = det((Λ′∨/pΛ0)/Rad(Λ′∨/pΛ0)) = detV ′ = det Λ′∨/pΛ′ = (−1)
m
2

and so detW⊥ = (−1)
n−m−2

2 , contradicting our assumption. Thus dimZ(J)red =

n−m−2
2
− 1. This finishes the proof.
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To summurize the above results, we have

Theorem 4.11. Let n be even and det(VQp) 6= (−1)n/2. Let m = rank(T̄ ) and

dT = det(T̄ /Rad(T̄ )). Then

(i) Z(J)red is n−2
2

dimensional if and only if rank(T̄ ) = 0, i.e. p|T .

(ii) If rank(T̄ ) is n− 2 or n− 3, then Z(J)red is 0-dimensional.

(iii) Suppose 1 ≤ m ≤ n− 4.

(a) If m is odd, then dimZ(J)red = n−m−3
2

(b) If m is even, then

dimZ(J)red =


n−m−2

2
if dT = (−1)m/2

n−m−2
2
− 1 if dT 6= (−1)m/2

In particular, when m = n− 4 we have

dimZ(J)red =


1 if dT = (−1)n/2

0 if dT 6= (−1)n/2

and note that dT 6= (−1)n/2 if and only if dT = detVQp mod p.

Remark 4.12. When n = 4, the above theorem implies that if Z(J) is nonempty,

then it is 0-dimensional if and only if p - T . Compare this result with [17, Theorem

6.1].

Now we will consider the case when detVQp = (−1)n/2 which implies tmax =

n − 2. The irreducible components of RZ(`),red are n−4
2

-dimensional. Given a full

chain of vertex lattices Λ0 ⊂ . . . ⊂ Λk where tΛ0 = 2 and tΛk = n− 2, we have

pΛ0 ↪→
1
. . . ↪→

1
pΛk ↪→

2
Λ∨k ↪→

1
. . . ↪→

1
Λ∨1 ↪→

1
Λ∨0 ↪→

2
Λ0 ↪→

1
Λ1 ↪→

1
. . . ↪→

1
Λk
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and k = n−4
2

. Now Λ∨0 /pΛ0 is an (n− 2) dimensional nondegenerate Fp-quadratic

space. By [8, Proposition 5.1.2], we have

Λk = SpanZp{e1, f1, . . . , ek, fk} ⊕ Z

where (ZQp , Q) ' (B,Nrd) is 4-dimensional anisotropic quadratic space with B

is a quaternion division algebra over Qp. Then Λ∨k/pΛk ' Z∨/pZ and a simple

calculation shows that det Λ∨k/pΛk = −ū where u ∈ Z×p \ Z×,2p is the unique

nonsquare unit. This shows that Λ∨k/pΛk is anisotropic. Now consider the subspace

Λ∨k/pΛ0 ⊂ Λ∨0 /pΛ0. We have Rad(Λ∨k/pΛ0) = pΛk/pΛ0 so we can write

Λ∨k/pΛ0 ' pΛk/pΛ0 ⊕W

where W is the nondegenerate part. Consider the exact sequence of quadratic

spaces

0→ pΛk/pΛ0 → Λ∨k/pΛ0 → Λ∨k/pΛk → 0

and choose a splitting so that W ' Λ∨k/pΛk as quadratic spaces. Hence W is

2-dimensional anisotropic subspace and we have Λ∨0 /pΛ0 = W ⊕W⊥ and pΛk/pΛ0

is an n−4
2

-dimensional totally isotropic subspace of the (n − 4)-dimensional non-

degenerate subspace W⊥. Thus W⊥ ' Hk and so

Λ∨0 /pΛ0 ' Hk ⊕ Λ∨k/pΛk.

Similarly, we have

Λ∨i /pΛi ' Hk−i ⊕ Λ∨k/pΛk

As before let J = SpanZp{j1, . . . , jn−1} ⊂ V Φ
K and assume Z(J) 6= ∅. Let Λ0

be a vertex lattice of type 2 such that RZΛ0 ⊂ Z(J), i.e. J ⊂ Λ∨0 . Recall that

J̄ = J/(pΛ0 ∩ J) ⊂ Λ∨0 /pΛ0 and dimFp(J̄/Rad(J̄)) = rank(T̄ ). The dimension of

the special cycle Z(J)red in this case is described by the next theorem.
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Theorem 4.13. Let n be even and det(VQp) = (−1)n/2. Let m = rank(T̄ ) and

dT = det(T̄ /Rad(T̄ )). Then

(i) If m = 0, then Z(J)red is n−4
2

dimensional.

(ii) If m is n− 2 or n− 3, then Z(J)red is 0 dimensional.

(iii) Suppose 1 ≤ m ≤ n− 4. Then

(a) If m is odd, then dimZ(J)red = n−m−1
2
− 1.

(b) If m is even, then

dimZ(J)red =


n−m−2

2
if dT 6= (−1)m/2

n−m−2
2
− 1 if dT = (−1)m/2

Proof. The proofs of (i) and (ii) are identical to the proofs of the Propositions 4.8

and 4.9. So we will only prove (iii). Let dim Rad(J̄) = ` and so dim J̄ = m + `.

Hence

` ≤ bn− 2−m
2

c.

Consider the Witt decomposition for J̄ ,

J̄ = Rad(J̄)⊕W

where W is an m-dimensional nondegenerate subsoace of Λ∨0 /pΛ0. Then we have

an orthogonal decomposition

Λ∨0 /pΛ0 = W ⊕W⊥

where W⊥ is (n − 2 − m)-dimensional nondegenerate subspace and note that

Rad(J̄) is a totally isotropic subspace of W⊥.

Now assume that m is odd and so n − 2 − m is odd. Then W⊥ contains a

maximal totally isotropic subspace U of dimension n−3−m
2

that contains Rad(J̄).
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Then J̄ ⊂ W ⊕ U ⊂ Λ∨0 /pΛ0 with Rad(W ⊕ U) = U . By Lemma 4.6, W ⊕ U ⊂

Λ∨/pΛ0 for some vertex lattice Λ ⊃ Λ0 of type n −m − 1. If J ⊂ Λ′∨ for some

vertex lattice Λ′ ⊃ Λ of type tΛ′ = tΛ + 2 = n − m + 1, then J̄ ⊂ Λ′∨/pΛ0 and

since Rad(Λ′∨/pΛ0) = pΛ′/pΛ0,

Λ′∨/pΛ0 = (pΛ′/pΛ0)⊕ V ′

where V ′ is the nondegenerate part which has dimension m− 1. This contradicts

with the fact that W is an m-dimensional nondegenerate subspace of Λ′∨/pΛ0.

Thus J * Λ′∨ and dimZ(J)red = n−m−1
2
− 1.

Now assume that m is even and so n − 2 − m is even. Now the (n − 2 −

m)-dimensional nondegenerate space W⊥ contains a totally isotropic subspace

of dimension at least n−2−m
2
− 1 and it contains a totally isotropic subspace of

dimension n−2−m
2

if and only if

detW⊥ = (−1)
n−2−m

2 ⇔ detW = (−1)m/2ū⇔ detW 6= (−1)m/2

where u is the unique nonsquare unit in Z×p . Here we used the fact that det Λ∨0 /pΛ0 =

(−1)k+1ū. Let U be a maximal totally isotropic subspace of W⊥. Then

dimU =


n−m−2

2
if detW⊥ = (−1)

n−m−2
2

n−m−2
2
− 1 otherwise

This is why we have different conditions on the determinant in Theorem 4.11 and

4.13. The rest of the proof is the same as the proof of Proposition 4.10.

4.2.2 The case n odd

In this case tmax = n − 1 and so the dimension of the irreducible components of

RZ(`),red are n−3
2

-dimensional. Given a full chain of vertex lattices Λ0 ⊂ . . . ⊂ Λk
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where Λ0 is of type 2 and Λk is of type n− 1, we have

pΛ0 ↪→
1
. . . ↪→

1
pΛk ↪→

1
Λ∨k ↪→

1
. . . ↪→

1
Λ∨1 ↪→

1
Λ∨0 ↪→

2
Λ0 ↪→

1
Λ1 ↪→

1
. . . ↪→

1
Λk

and k = n−3
2

and as before Λ∨0 /pΛ0 is an (n − 2) dimensional nondegenerate Fp-

quadratic space with quadratic form Q mod p. Similar to the case where n is

even and tmax = n− 2, we have

Λ∨0 /pΛ0 ' Hk ⊕ Λ∨k/pΛk

and in fact Λ∨i /pΛi ' Hk−i ⊕ Λ∨k/pΛk. As before, for a vertex lattice of maximal

type we have

Λk = SpanZp{e1, f1, . . . , ek, fk} ⊕ Z

where (ZQp , Q) ' (Q3
p, c(−ux2

1 − px2
2 + upx2

3)) for c ∈ Q×p /Q×,2p with ordpc is even

and u ∈ Z×p \Z×,2p . So we can take c = 1 or c = u. It follows that detZQp = c and

so det(VQp) = det(V Φ
K ) = (−1)kc. We also have, Λ∨k/pΛk ' Z∨/pZ, hence

det Λ∨k/pΛk = detZ∨/pZ = −ūc̄

and

det Λ∨i /pΛi = (−1)k−i+1ūc̄.

Assume that Z(J) 6= ∅ and so RZΛ0 ⊂ Z(J) for some vertex lattice Λ0 of type 2. As

before let J̄ = J/pΛ0 ∩ J ⊂ Λ∨0 /pΛ0 and recall that dimFp(J̄/Rad(J̄)) = rank(T̄ ).

Thus we have 0 ≤ rank(T̄ ) ≤ n− 2.

Proposition 4.14. If rank(T̄ ) = 0, then dimZ(J)red = n−3
2

.

Proof. We have J̄ = Rad(J̄) and so J̄ is totally isotropic subspace of Λ∨0 /pΛ0 of

dimension m = dim J̄ . Hence by Lemma 4.5, we have J̄ = pΛ/pΛ0 for some vertex

lattice Λ ⊃ Λ0 of type tΛ = 2m+ 2. Thus J ⊂ pΛ ⊂ Λ∨k for some vertex lattice Λk

of maximal type. This shows that at least one irreducible component of RZ(`),red
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passing through the point RZ
(`),red
Λ0

lies in Z(J)red and so dimZ(J)red = n−3
2

.

Proposition 4.15. If rank(T̄ ) = n− 2 or n− 3, then Z(J)red is 0-dimensional.

Proof. Similar to Proposition 4.9.

Theorem 4.16. Let m = rank(T̄ ) and suppose 1 ≤ m ≤ n − 4. Let dT =

det(T̄ /Rad(T̄ )). Then

(a) If m is even, then dimZ(J)red = n−m−3
2

.

(b) If m is odd, then

dimZ(J)red =


n−m−2

2
if dT 6= ε(−1)

m+4−n
2

n−m−2
2
− 1 otherwise

where ε ∈ {±1} is the modulo p square class of det(VQp).

Proof. Let dim Rad(J̄) = `. Then dim J̄ = `+m and by Lemma 4.7, ` ≤ n−2−m
2

.

Consider the Witt decomposition of J̄ ,

J̄ = Rad(J̄)⊕W

where W is an m-dimensional nondegenerate subspace of Λ∨0 /pΛ0. Hence we have

an orthogonal decomposition

Λ∨0 /pΛ0 = W ⊕W⊥

and dimW⊥ = n − 2 − m. Also Rad(J̄) is a totally isotropic subspace of W⊥.

Considering the cases m is even and m is odd separately and noting that dT =

(−1)(m+1)/2ūc̄ if and only if dT 6= (−1)
m+4−n

2 detVQp mod p the result follows

similar to Proposition 4.10.

52



In particular, when m = n− 4, by Theorem 4.16 we have

dimZ(J)red =


1 if dT 6= ε

0 otherwise

Remark 4.17. For n = 5 we are in the case of signature (3, 2) which is studied in

[18]. In their paper Kudla-Rapoport start with an indefinite quaternion algebra

B with discriminant D(B) and define

V = {x ∈ C : x′ = x and tr(x) = 0}

where C = M2(B), x 7→ x′ = txι and ι is the main involution of B. Then V is a

quadratic space of signature (3, 2). By definition of V it follows that detV = 1.

By the above theorem, we have

dimZ(J)red =


1 if dT 6= ε

0 otherwise

Thus the condition for the cycle to be 0-dimensional can be stated as T represents

1, which is the condition in [18, Theorem 5.11].
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