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Abstract
Identification of functional RNA structures in sequence data

by Shermin Pei

Advisor: Dr. Michelle Meyer

Structured RNAs have many biological functions ranging from catalysis of chemical re-

actions to gene regulation. Many of these homologous structured RNAs display most

of their conservation at the secondary or tertiary structure level. As a result, strategies

for natural structured RNA discovery rely heavily on identification of sequences shar-

ing a common stable secondary structure. However, correctly identifying the functional

elements of the structure continues to be challenging. In addition to studying natural

RNAs, we improve our ability to distinguish functional elements by studying sequences

derived from in vitro selection experiments to select structured RNAs that bind specific

proteins. In this thesis, we seek to improve methods for distinguishing functional RNA

structures from arbitrarily predicted structures in sequencing data. To do so, we de-

veloped novel algorithms that prioritize the structural properties of the RNA that are

under selection. In order to identify natural structured ncRNAs, we bring concepts from

evolutionary biology to bear on the de novo RNA discovery process. Since there is selec-

tive pressure to maintain the structure, we apply molecular evolution concepts such as

neutrality to identify functional RNA structures. We hypothesize that alignments corre-

sponding to structured RNAs should consist of neutral sequences. During the course of

this work, we developed a novel measure of neutrality, the structure ensemble neutral-

ity (SEN), which calculates neutrality by averaging the magnitude of structure retained

over all single point mutations to a given sequence. In order to analyze in vitro selection

data for RNA-protein binding motifs, we developed a novel framework that identifies en-

riched substructures in the sequence pool. Our method accounts for both sequence and

structure components by abstracting the overall secondary structure into smaller sub-

structures composed of a single base-pair stack. Unlike many current tools, our algorithm

is designed to deal with the large data sets coming from high-throughput sequencing. In

conclusion, our algorithms have similar performance to existing programs. However, un-

like previous methods, our algorithms are designed to leverage the evolutionary selective

pressures in order to emphasize functional structure conservation.

http://www.bc.edu/schools/cas/biology/facadmin/meyer.html
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Chapter 1

Introduction

RNA has long been the forgotten middle child of the central dogma of biology — DNA

makes RNA makes protein. RNA for a time was relegated to only messenger RNA

(mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), which are all exclusively

involved in the protein biosynthesis process. However, in the past two decades, there

has been a resurgence in the interest in RNA as a gene regulatory mechanism. Non-

coding RNAs (ncRNA) do not encode a protein product. Instead, they have roles in

both bacterial and eukaryotic gene regulation, localization, translational efficiency and

metabolite sensing [1–5]. Changes to RNA structure have been implicated as causes

for human genetic diseases [6]. In terms of regulatory mechanisms, the ncRNAs can be

broadly separated into two categories: cis and trans-acting. Cis-acting RNAs work by

forming a secondary structure that transriptionally or translationally regulates nearby

genes, usually on the same transcript. For example, in Bacillus subtillis, the guanine

riboswitch will repress expression of the xpt-pbuX operon in the presence of guanine via

the formation of a rho-independent intrinsic terminator stem [7]. On the other hand,

trans-acting RNAs such as small RNAs (sRNA) [8] and micro RNA (miRNA) [9] are

encoded on separate transcripts and use sequence specificity to regulate gene expression.

In bacteria, cis-acting structured ncRNAs regulate gene expression via ligand binding.

While gene regulation is essential, not all bacteria use the same regulatory mecha-

nisms. These cis-regulatory structures have widely variable distributions across the
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Chapter 1 Introduction

bacterial phylogenetic tree. Interestingly, some such RNA structures are widely dis-

tributed throughout the phylogenetic tree to many bacterial phyla but more often they

are narrowly distributed and specific to a single phyla [10]. Particularly interesting is

that highly conserved genes that are shared by many phyla can be regulated by distinct

RNA structures in different species. The narrow distribution and distinct structure make

identification and discovery a significant problem.

1.1 RNA structure discovery

Unlike protein sequences, which are readily identified in genomic sequences, RNAs with

homologous functions may be difficult to identify in genomic sequences due to a lack

of well defined start and stop signals and poor primary sequence identity [11, 12].

Rather, the biological function of structured RNAs often depends on a well-defined three-

dimensional shape that is largely determined by interactions between discrete and stable

secondary structure elements [13–15]. These structural constraints lead to covarying

mutations, a conservation pattern characterized by the maintenance of base-pairing in-

teractions involved in RNA secondary structure [16, 17]. These features are exploited

to identify homologous sequences of previously characterized structured RNAs and to

discover new putative RNAs [18]. However, this process is often further complicated

by the potential for multiple biologically functional conformations [19], and cases where

only a portion of a larger RNA structure is required for biological function. For exam-

ple, RNAse P is a ribozyme involved in the maturation of small noncoding RNAs whose

phylogentically conserved core is functional in isolation, although with significantly de-

creased activity [20, 21]. Despite these challenges, several computational tools have been

developed both for RNA homology searching and de novo structured RNA identification

[18, 22].

Predicting RNA secondary structure is a fundamental component to building multiple se-

quence alignments of RNA, RNA homology searches, RNA de novo discovery, and is the

basis for RNA evolutionary models. Folding algorithms fall into two camps: maximiza-

tion of the structural stability using the Turner thermodynamic energy model based on

2



Chapter 1 Introduction

A) Stem B) Loop C) Bulge D) Interior
 loop

E) Multiloop

Figure 1.1: RNA secondary structure elements. RNA secondary structure is
classified into five main categories. A) Stem is formed from a set of base-paired
nucleotides. B) Unpaired nucleotides enclosed by a base-pair form a loop. C) Bulges
refer to unpaired nucleotides in a stem without a corresponding base in the opposite
strand. D) Interior loops are unpaired nucleotides in a stem with corresponding bases
in the opposite strand. E) Multiloops are structures composed of multiple stems
enclosed by a closing base-pair that is not part of any interior stems.

measurements [23–25], and probabilistic models using parameters derived from statisti-

cal learning of known RNAs [26]. The structure predicted for a sequence and subsequent

alignment of sequences will vary depending on the type of folding algorithm used. In

order to provide some understanding of the structure discovery process, the rest of this

section is structured to provide background of the basic ideas in de novo identification

including: RNA folding, construction of RNA structure alignments, identification of

RNA structures using machine learning techniques, and probabilistic models. For the

remainder of this thesis, I will refer to “secondary structure” simply as “structure.”

1.1.1 Computational prediction

Sequence dictates structure; therefore, the sequence and structure are commonly repre-

sented together as a pair. Secondary structure prediction is crucial to RNA discovery

because conservation of the same or similar structure in multiple organisms suggests

functional importance. An RNA sequence is composed of standard bases b = {A, C,

G, U}. Just like in DNA, RNA nucleotides also base pair with each other following

Watson-Crick rules with the addition of the G-U wobble pair. The base-pairing interac-

tion allows RNA to fold into secondary structure, which is composed of elements such

as stems, loops, bulges, interior loops and multiloops (Figure 1.1). Stems are formed

3



Chapter 1 Introduction

when adjacent base-pairs are stacked on top of each other, which can be interrupted by

unpaired bases in bulges and interior loops. Loops are at least three unpaired nucleotides

closed by a base-pair. Multiloops are formed when multiple distinct stems are enclosed

by a closing stem. Let a sequence S with structure T of length L be represented as a

set S = {s1, s2, ..., sL|si ∈ b} and T = {t1, t2, ..., tL|ti ∈ {(, ., )}}. The base-pairs are a

set of all (i, j) pairs such that si base-pairs with sj . Here, the structure T is represented

in dot-bracket notation, which denotes unpaired positions as “.” and paired positions

as “(” and “)”, where the opening and closing parenthesis are base-paired to each other.

For example, given a sequence “GGGGAAAACCCC”, the G’s would pair with C’s and

the resulting structure in dot-bracket notation is “((((....))))”. Other alternative repre-

sentations include arcs, trees, and coarse grained. Each of the various representations

provides an intuitive visualization for various aspects of the structure: arcs for subopti-

mal structures, trees for nested structure, and coarse grained for abstracting structures.

To provide some basic insight into how RNA folding algorithms work, I introduce the

Nussinov-Jacobson algorithm, which is one of the earliest structure prediction algorithms

[27, 28]. Despite the sophistication of modern folding algorithms, the recursions in Nussi-

nov’s folding algorithm are still applicable because the computation is fundamentally an

optimization problem (equation 1.1). The primary assumption of the Nussinov algorithm

is that the most stable structure has the most base-pairs; therefore, Nussinov wanted

to identify the structure that maximizes the number of valid base-pairs. The number of

base-pairs on the (i, j) interval can be counted using a weight function that assigns 1 to

any valid base-pair and 0 otherwise (Equation 1.2). In the base case, we only have to

consider the interval containing the smallest physically possible loop such that j− i > 3.

The recursive function works by reducing the problem to only consider the possible struc-

tures within the interval (i, j). This recursion is conceptually important because finding

the best structure on the interval (1,L) is algorithmically identical to finding the best

structure on the interval (i, i + 4), the smallest possible loop. Within each interval, 4

possible cases are structurally possible: i is unpaired, j is unpaired, i and j base-pair to

each other, or the interval contains two stems, referred to as a bifurcation (Figure 1.2).
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A B C D
i j i j

i jk

k+1

i+1 j j-1i j-1i+1

Figure 1.2: Nussinov recursion cases There are four possible cases to consider in
the Nussinov algorithm. A) i is unpaired. B) j is unpaired. C) (i, j) base-pair to
each other. D) Bifurcation.

γ(i, j) = max



γ(i+ 1, j) i is unpaired

γ(i, j − 1) j is unpaired

γ(i+ 1, j − 1) + w(i, j) i and j are paired

maxi<k<j [γ(i, k) + γ(k + 1, j)] bifurcation

(1.1)

where the matrix is initialized such that γ(i, i) = γ(i, i− 1) = 0 and

w(i, j) =


1 If (i, j) base-pair and j − i > 3

0 Otherwise
(1.2)

Maximizing base-pairs for the interval (1, L) results in a structure with the most base-

pairs. The recursion has implicit base-pairing rules such that given a base-pair (i, j),

the following must be true: i < j, and there may be no crossing structures such that

given two base-pairs {(i, j), (k, l)|i < k < j < l}. These rules in particular make the

folding problem computationally tractable and allow the use of dynamic programming

to optimally compute valid structures and find the one with the highest score. However,

instead of counting all base-pairs as equal, accuracy may be improved by changing the

weight function to add 3 points for a G-C (3 hydrogen bonds), and 2 points for A-U and

G-U pairs (2 hydrogen bonds).

Modern structure prediction algorithms improved accuracy by minimizing the Gibb’s free
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Chapter 1 Introduction

energy (∆G), rather than counting base-pairs [29]. The structure with the lowest free

energy is referred to as the minimum free energy (MFE) structure. The Nussinov algo-

rithm uses a dynamic programming method to optimally solve RNA secondary structure.

Zuker and Stiegler improved prediction accuracy by employing a similar dynamic pro-

gramming method to minimize free energy [30]. The current thermodynamic parameters

are derived by the Turner nearest-neighbor energy model, which contains experimentally

derived free energies and models the base-pair as a stacking interaction [24]. Minimizing

free energy maximizes thermodynamic stability. Since 1986, a major improvement to the

model was in determining free energy parameters corresponding to the loop entropies.

Additional stability contributions encompassed by the model include adjacent base-pairs,

loops, various types of interior loops, multiloops, dangles, and coaxial stacking [25].

While the nearest-neighbor energy model greatly improved prediction accuracy compared

to base-pair maximization, there are some limitations to the algorithm. First, programs

implementing these algorithms (RNAfold [31], Mfold/UnaFold [32, 33], RNAstructure

[34]) cannot predict pseudoknotted structures because base-pairs must be nested and

cannot cross [30]. This constraint on crossing structures exists because it turns the

structure prediction into a much more complicated problem with a higher computational

complexity [35]. These programs return the MFE and corresponding structure, which

is not always the biologically relevant structure [36]. Additionally, the accuracy of pre-

dicted structure is limited by the accuracy of measured parameters, which in turn is

limited by the experimental conditions of the RNAs used to measure thermodynamic

parameters [37]. For short RNAs (< 700 nt), the current thermodynamic model cor-

rectly predicts approximately 73% of base-pairs [25]. Currently, in order to help conform

predicted structure to experimentally derived structures, the thermodynamic energy pa-

rameters have been optimized using known RNA structures [38, 39]. However, there is

also diminishing returns for each new parameter added [40].

6
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1.1.2 The structure ensemble

Partition function

RNA structures are not static, and they are likely to fluctuate through many different

low energy conformations both in vitro and in vivo [36]. The MFE structure is sim-

ply one of many different possible structures, which is not always representative of all

possible structure conformations. Therefore, predicting alternative structures provides

more insight into the RNA folding landscape. Not every structure is equally likely to

appear. The probability of the RNA taking a specific structure can be described using

the Boltzmann distribution, which is commonly used in statistical mechanics to describe

the probability of a system being in a particular state. Thus by representing each struc-

ture as a state, the probability of each structure is proportional to its thermodynamic

stability, represented as

Ps =
e
−∆Gs
RT

Z
(1.3)

The denominator (Z) is known as the partition function and represents all possible struc-

tures in the structure ensemble

Z =
∑
j∈S

e
−∆Gj
RT (1.4)

In both equations (1.3) and (1.4), R is the ideal gas constant and T is the temperature

in Kelvin. However, determining the partition function though enumeration becomes

impossible for even sequences of moderate length as the number of possible structures

grows exponentially with length [23]. In order to calculate the partition function, Mc-

Caskill made the key observation that structure energies are additive. This observation

implies that they are multiplicative in the partition function [41]. Thus, this algorithm

is an optimal calculation of the partition function in O(n3) time.

The partition function allows us to calculate structure properties while simultaneously

considering many different suboptimal structures. Due to the sheer number of structures,

the individual probability of any particular structure can be vanishingly small. The MFE

structure is only one of many structure configurations. Instead of only representing the
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MFE structure, the structure configuration can be represented as base-pair probabili-

ties, or the percent of structures containing a particular base-pair [42]. Using base-pair

probabilities improves on structure prediction accuracy [37, 43–45]. The ensemble is ef-

ficiently calculated during McCaskill’s recursions, which have been implemented in the

ViennaRNA folding package [31].

Suboptimal structures

The RNA structure ensemble represents all possible structures that a given sequence can

fold into. Within the ensemble, there are multiple stable structures, referred to as sub-

optimal structures. Often, the biologically relevant structure is a suboptimal structure

near the MFE [46]. Since the relevant structure is likely to be a stable structure within

ensemble, instead of considering the full ensemble, we are only concerned with conforma-

tional changes to the low energy structures. Using the Boltzmann distribution, these low

energy structures can be sampled from the secondary structure ensemble proportional

to the structure stability.

Centroid structures

Instead of considering the ensemble as a set of structures, the ensemble can be represented

as a single average structure. The centroid structure is defined as the structure that

minimizes the base-pair distance between it and all other ensemble structures. This

structure represents an average structure thus removing unlikely base-pairs only found

in the MFE structure. Programs such as Sfold [36] and centroidfold [47] estimate the

centroid structure using the Boltzmann weighted ensemble. Centroid structures may

be more accurate than MFE structures because they contain more of the base-pairs

predicted by comparative genomic approaches [36, 43].

Within a structure ensemble, there can be alternative stable structures that are composed

of different base-pairs but have similar 3D shape. Thus, the centroid structure may

not adequately represent all structure clusters. RNAshapes merges adjacent base-pairs

into stems thus generalizing the individual base-pairs into an overall shape represented

8
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as stems [48]. Additionally, RNAshapes samples representative structures from each

structure cluster within the ensemble, which can improve structure prediction accuracy.

However, the cluster containing the true structure is rarely known a priori.

1.1.3 Predicting consensus structures from RNA Alignments

Modern RNA structure prediction, homology searches, and de novo ncRNA discovery

center around building a multiple sequence alignment (MSA) of similar sequences. Se-

quence alignment has been a fundamental technique used in comparative genomics and

is the gold standard for discovery in all genomic, proteomic, and ncRNA studies. The

growth of comparative genomics has been fueled by the exponential increase in genomic

data resulting in much more evidence to support findings. In the case of structure predic-

tion, aligning multiple sequences with common evolutionary origin, improves structure

prediction accuracy because of the multiple examples of shared structure [18].

The MSA is generated by systematically aligning sequences in such a way that the maxi-

mum number of matching residues are put into the same column. However, building the

globally optimal alignment is a computationally complex problem that is NP-complete

[49]. Therefore, alignment algorithms must balance speed and accuracy. When only

considering sequence, the scoring function only needs to reflect the magnitude of selec-

tion for a given residue change. Modern algorithms use heuristics for alignment that

calculate locally optimal solutions. Progressive alignment techniques such as ClustalW

[50] work by aligning sequences starting with the most similar sequences. Then the al-

gorithm constantly updates the entire alignment every time a new sequences is added.

Alternatively, instead of relying on scoring matrices and heuristics, alignments can be

built using probabilistic models such as hidden Markov models (HMM), specifically the

profile-HMM. Profile-HMMs are probabilistic models trained on specific sequence pro-

files and are used to generate the most likely set of matches and gaps in the alignment

based on both the sequence position and the probability of transitioning between match

and gap states. The advantage of the HMM over heuristic methods is that it produces

a model in addition to the alignment, thus any new sequences can be aligned without

having to redo the multiple sequence alignment process. Additionally, because of the

9
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consideration of position, the model automatically puts insertion states together leading

to a simple biological interpretation (e.g. highly variable = loop region).

A purely sequence based alignment approach has limited success in aligning RNA se-

quences. RNA sequences can be more difficult to align than DNA or protein sequences

due to the degeneracy of the RNA sequence relative to structure. Since the structure,

not sequence, is conserved, the selective pressure to maintain the structure becomes more

obvious when multiple co-varying mutations occur in stems. These mutations occur such

that the base-pairings are maintained but the original nucleotides change. For example,

let a sequence S contain a A-T base pair at (i, j). If an A -> G mutation followed

by a T -> C mutation occurred, then, in essence, there was an A-T -> G-C base-pair

mutation. The structure remains the same while the new sequence differs from origi-

nal sequence S at two positions. Therefore, in addition to sequence, RNA alignment

algorithms must also account for the thermodynamic stability and structure maintaining

co-varying mutations.

Depending on the degree of sequence conservation, there are multiple approaches to de-

termining a RNA consensus structure from an alignment: align-first, fold-first, or fold

and align simultaneously [51]. In the align-first approach, a sequence aligner, such as

ClustalW, aligns a set of sequences to make an MSA. The advantage of starting with

a sequence alignment is that it can be generated quickly and techniques for sequence

alignment are well understood. Because of the considerable effort invested into sequence

alignment algorithms, a large number of sequences can be aligned quickly. High iden-

tity sequences are likely to be correctly aligned thus yielding higher quality alignments.

Once the sequences are aligned, the MSA consensus structure can be calculated using

RNAalifold [52]. RNAalifold calculates an optimal consensus structure by combining

the Turner energy model with additional parameters that adjust for evolutionary con-

servation and sequence identity. The downside of the align-first approach is that it will

perform significantly worse with < 50%-60% sequence identity [51].

Since structured RNAs have shared structure, the fold-first approach seeks to align the

secondary structure stems to each other. This approach is primarily used in motif detec-

tion. First, each sequence is folded independently. Next, the sequences and structures
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are aligned using the common pairing elements. Programs that can be used for motif

detection include: RNAshapes [48, 53], and RNAsampler [54]. Just as with sequence

alignment, the structure is aligned using different algorithms, depending on the pro-

gram. However, the consensus structure is generated by combining conserved stems that

are compatible with all sequences in the alignment. The advantage of fold first is that

aligning the common secondary structure elements better tolerates low sequence identity

and identifies common shapes.

Simultaneous alignment of both sequence and structure leverages all available informa-

tion and can produce an optimal alignment. The optimal solution is guaranteed by the

Sankoff algorithm [55]. However, the algorithm is very computationally slow, with a

runtime of O(L3N ), where L is the sequence length and N is the number of sequences

being aligned. In the best case scenario, aligning two sequences will take L6 time, which

is prohibitively expensive as each doubling of length increases the run time by a factor

of 26. Because of the algorithmic complexity, almost no programs directly implement

the Sankoff algorithm. To compensate for the algorithmic complexity, programs such

as Dynalign [56, 57], Foldalign [58], PMcomp [59], Stemloc [60], mxscarna [61], and Lo-

cARNA [62] incorporate heuristics and they are limited to aligning a small number of

sequences. Programs built upon LocARNA (LocARNA-P and SPARSE [63, 64]) can

now align many more sequences than their predecessors.

1.1.4 Discovery and post-processing

De novo non-coding RNA (ncRNA) discovery in genomic sequence is largely accom-

plished with computational tools that identify a stable thermodynamic structure that

is maintained across many species [65–68]. While thermodynamic stability alone is not

sufficient to distinguish functional structured RNAs from random genomic sequence [69],

the rapid growth of sequence databases has allowed the use of comparative genomics to

determine whether such putative stable structures are conserved, and to identify the char-

acteristic co-varying mutation pattern of structure conservation within predicted pairing

elements [18]. Potential candidate alignments are post-processed to filter likely candi-

dates. The process starts by choosing a sequence, or a small number of similar sequences
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that fold into a stable structure. A major challenge is that these sequences may or may

not contain a functional RNA structure. Then, machine learning algorithms screen the

sequences for conserved sequence and structure, and finally producing an alignment.

The main challenge to identifying structured RNAs from genomic data is the difficulty

of differentiating false positives from true positives. The genomic sequences often have

a shared lineage. These RNAs are difficult to separate because there is a need for both

multiple homologous RNAs, and shared stable structure. However, other than structured

RNAs, many homologous sequences will be identified from genomic data with a shared

lineage. Filtering on stable structure alone is not enough because many of these sequences

are likely to be predicted to fold into stable structures [69]. The number of false positive

hits is exacerbated when searching larger sequence databases.

In order to reduce the false positive rate, many RNA discovery programs have imple-

mented a machine learning model to act as a post-processing filter. These models are the

result of machine learning algorithms that have been trained to differentiate structured

from unstructured RNAs using positive and negative training examples. The machine

learning algorithms learn to separate positive and negative training data. Once the

model is trained, it can act as a classifier or predictor for any new data, such as an RNA

alignment. The training data must be carefully constructured such that the algorithm

does not over-fit the data, which would cause the resulting model to be biased and only

perform well on the training data.

Training machine learning models requires both positive and negative data. The positive

examples are true structured RNAs, such as those found on the RNA families database

(RFam) [70, 71]. Negative training examples are artificially generated. These negative

data sets are built to mimic true positives by having some but not all qualities. There

is a lot of emphasis placed on negative training examples because of the impact it has

on the final model. For example, base-stacking interactions are major parameters in

the Turner energy model. If random sequence does not account for base composition,

then the model will differentiate training data purely on sequence composition instead

of structure [72–74].
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1.1.5 Probabilistic models

The structure prediction performance of stochastic context free grammars (SCFG) and

thermodynamic energy models are comparable [26, 75]. SCFGs are stochastic context-

free grammars (CFG) that can be trained to fold RNAs by statistically learning common

structure features. A CFG is a set of production rules that can generate a structure from

the inside outwards. For example, all possible dot-bracket structure can be generated

using the grammar

S → •|S • |(S)|S(S) (1.5)

where if i and j base pair, then j−i ≥ 1. An example derivation of the structure (..).((..))

is

S → S(S)→ S•(S)→ (S)•(S)→ (S•)•(S)→ (••)•(S)→ (••)•((S))→ (••)•((S•))→ (••)•((••))

(1.6)

A CFG can be made into an SCFG by assigning probabilities to all productions from a

given production rule such that the probabilities sum to 1. By aligning a trained SCFG

to a given sequence, the optimal alignment represents the most likely structure. An

advantage of using SCFGs is that the grammar produces structures that account for the

nested long-range base-pairing interactions that have been conserved through evolution.

The probabilities are learned, SCFGs must be trained using high quality alignments. A

limitation of using SCFGs is that they cannot fold RNA structures that do not resemble

the training set, whereas algorithms using the thermodynamic energy model can fold any

given input sequence.

SCFGs can be incorporated into increasingly complex models that account for phylo-

genetic distance. By employing phylo-SCFGs, Pfold [76, 77] showed the necessity of

considering phylogenetic information in structure prediction. Combining the thermody-

namic energy model with Pfold, PETfold [78] further reinforced the idea that phyloge-

netic information improves prediction accuracy. By training the phylo-SCFG from Pfold

on different input alignments, EvoFold [79] leveraged an 8-way genome wide alignment

to identify conserved ncRNAs in humans.
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A major application of probabilistic models is in RNA homology searches [26]. Profile

HMMs have been successfully used to identify and align homologous proteins in protein

databases [80]. HMMs are not suitable for RNA homology searches because they only

consider local interactions and cannot deal with the long range interactions of RNA sec-

ondary structure. Instead, RNA structure profiles are modeled using covariance model,

which is the SCFG analogue to the profile-HMM. Infernal [81] is the current state-of-the-

art program for RNA homology searches. As part of the input, Infernal requires a CM

(also produced by Infernal) that has been previously trained on an RNA alignment. The

advantage of using a CM is that it simultaneously aligns sequences and predicts struc-

ture. Additionally, the probabilistic model assigns a likelihood score to each sequence,

which allows ranking hits. Using a CM trained on tRNAs, tRNAscan-SE has been used

to identify tRNAs with high fidelity from genomic data with a low false discovery rate

[82].

1.2 Distance measures

Throughout this work, we will compare sequence, structures and probability distributions

against each other. Distance measures are useful for determining the number of differ-

ences between sequences or structures as well as classifying RNA structures from “other.”

The most common type of data we work with are sequences, which are represented as

strings. In order to compare strings, we use Levenshtein (or string edit) distance or

general string alignment. Levenshtein distance returns the minimal number of changes

to make the two strings identical. The Levenshtein distance is normalized to the length

of the longer sequence so that strings of different lengths can be compared. This distance

metric does not return an alignment, but it is fast, which makes it especially useful for

generating sequence clusters from high-throughput sequencing data. String alignment

has a similar in run time to string edit distance [83]. The main difference is that string

edit distance uses the same penalty for gap open and gap extension. This difference can

result in discontinuous gaps, which is less preferable in sequence alignment.
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Given that structure is crucial to function, many calculations in RNA evolution models

heavily rely on RNA folding and distance measure algorithms. Summarized in a re-

view by Cowperthwaite and Meyers, RNA evolutionary models use changes to secondary

structure are a proxy for the change in fitness [84]; therefore, these models assume there

is a direct correlation between changes to the secondary structure and fitness. Because

there are different structure representations, there are different algorithms for calculating

structure distance. The most common distance metric is the base-pair distance (equa-

tion 1.7). The base-pair distance between two structures T and T’ is calculated as the

number of base-pairs found in one structure but not the other, represented as

base-pair distance(T, T ′) = |T ∪ T ′| − |T ∩ T ′| (1.7)

where the structures T and T’ are the set of base-pairs found in T or T’, respectively. A

drawback of comparing structures with base-pair distance is that it can only be used to

compare structures with the same length sequence. This limitation derives from the fact

that base-pairs are represented as a set of ordered pairs (i.e. an (i,j) pair in a structure

of length 10 is not the same as an (i,j) pair in a structure of length 100).

Representing unordered data as a probability distribution is useful in identifying the

difference between divergent sequences using base frequency. By representing base fre-

quency as a probability distribution, the distance between two sequences can be calcu-

lated using the Kullback-Leibler divergence (KLD). Given two probability distributions

(P and Q) where P is the true distribution and Q is the observed distribution, the KLD

calculates the relative entropy between P and Q. Intuitively, the relative entropy be-

tween P and Q is a measure of “surprise” or information gain from using P beyond the

information of Q. The KLD is calculated as

KLD(P ||Q) =
∑
i

P (i) log
P (i)

Q(i)
(1.8)

An application of KLD, and other information theory metrics, is to elucidate common

short sequence motifs in sequences. These short sequence motifs can be represented as

both probability distributions and pairwise weight matrices [85]. The disadvantage of

using KLD is that the divergence is not symmetric and there is no upper bound on
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the relative entropy, which makes it difficult to determine the distance between multiple

sequences. Therefore, we primarily use Jensen-Shannon divergence (JSD), a modifica-

tion of KLD, to calculate the difference between two probability distributions. JSD is

calculated using KLD

JSD(P ||Q) = 0.5(KLD(P ||M)) + 0.5(KLD(Q||M)) (1.9)

where M is an average of the two distributions calculated as

M = 0.5(P +Q) (1.10)

This distance measure is useful because it is symmetric and bound between 0 and 1. A

symmetric distance measure refers to the fact that the distance between two distributions

P and Q is the same regardless of the order (i.e. JSD(P||Q) = JSD(Q||P)). Since JSD

is a distance measure, 0 indicates the two distributions are the same and 1 indicates

completely different. Being bound between 0 and 1 is useful in machine learning because

features calculated using JSD are readily normalized.

1.3 RNA evolution models

Fitness

Global optima

Local optima

Figure 1.3: The RNA fitness landscape. An extension of the neutral network,
every sequence on the network folds into the same structure. Each point on the fitness
landscape is a sequence (genotype) and any two sequences (a = a1, ..., an and
b = b1, ..., bn) are connected by an edge 1) if they differ by a single nucleotide or 2)
they differ at two nucleotides such that ai 6= bi and aj 6= bj for an (i, j) base pair in
the MFE structure. The height of the peak is proportional to the fitness.
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Non-coding RNA discovery borrows some concepts from the evolutionary biology field.

As previously discussed, RNA folding has been essential to the RNA discovery field

because it focuses on sequences with stable structure. Some RNA folding algorithms

such as evoFold [79], pFold [76, 77], and PETfold [78] rely on phylogenetic relation-

ships between sequences to identify the structure. The key observations derived from

RNA function studies are that there is a direct link between sequence and structure,

and that functionality depends on structure. Therefore, RNA has a direct genotype

(sequence) to phenotype (structure) relationship. Numerous computational models have

been performed in silico using a finite population of RNA molecules replicating with a

set mutation rate [11, 86–89].

The relationship between genotype and phenotype is often represented as a fitness land-

scape, which is an abstract framework for showing the relative fitness advantages and

disadvantages for a set of genotypes [90]. Typically drawn in 3-dimensions, the xy-plane

represents the genotypes as points. For a given genotype, the height corresponds to the

relative fitness (Figure 1.3). In this model, genotypes represent sequences and higher

fitness genotypes are selected for by evolution, thus over time, the population moves

towards higher fitness. These evolutionary steps are the equivalent of moving across the

fitness landscape, which is naturally represented as a network graph known as a mu-

tational landscape. On this graph, each node is a sequence and an edge connects two

sequences (a = a1, ..., an and b = b1, ..., bn) 1) if they differ by a single nucleotide or 2)

they differ at two nucleotides such that ai 6= bi and aj 6= bj for an (i, j) base pair in the

MFE structure. The height of the peak is proportional to the fitness.

1.4 Thesis organization

In this dissertation, I present my work in two parts. In my first project, we utilize

sequence neutrality as a novel feature in an RNA structure classifier. In order to do

so, we developed a novel method for calculating neutrality known as sampled ensemble

neutrality (SEN). SEN improves on existing measures by heavily weighting changes to

the existing structure averaged over the Boltzmann low energy RNA structure ensemble.

We show this measure, compared to existing measures, has a larger dynamic range, and
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increased separation between known structured RNAs and decoy sequence. Furthermore,

RNA classifiers using neutrality alone or in combination with existing features have

high performance. My second project focuses on understanding how evolution derives

distinct RNA structures with analogous function. To do so, we analyze high-throughput

sequencing data from an in vitro selection experiment designed to evolve a random

RNA sequence pool to bind a target protein and identify common motifs that could

be responsible for RNA-protein interactions. Analysis of the selection data show high

sequence and structure diversity. During the course of the analysis, we develop a novel

algorithm to elucidate sequence specific substructures that are enriched in the sequence

pool over time. These two projects combine to show that structure conservation is a

pervasive theme throughout RNA evolution and structure conservation can be exploited

to identify structured RNAs and possibly ligand binding sites within an RNA structure.
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Sampled ensemble neutrality as a

feature to classify potential

structured RNAs1

2.1 Background

Machine learning techniques, specifically support vector machines (SVMs) [66, 68], lever-

age both the thermodynamic stability of structured RNA, and the presence of covarying

mutations as an indicator of conserved structure, to distinguish alignments corresponding

to putative biologically functional structured RNAs from alignments of sequences con-

served for other reasons and non-conserved thermodynamically stable structures. There

are six quantifiable features commonly used by de novo ncRNA prediction approaches

including: the thermodynamic stability of the structures formed by individual sequences,

as measured by the mean of the Z-score of the minimum free energy (MFE) structure of

sequences in a putative alignment [72, 74]. The ability of the alignment sequences to fold

into the common predicted consensus structure is measured by the structure conservation

index [66]. The extent to which sequences are diverse and contain covarying mutations

is measured by the mutual information [16], entropy of base-pairing regions [91], and the
1Adapted from Pei, Shermin, Jon S. Anthony, and Michelle M. Meyer. “Sampled ensemble neutrality

as a feature to classify potential structured RNAs.” BMC Genomics 16.1 (2015): 1.
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mean pairwise sequence identity between alignment sequences. Finally, because more

sequences lead to higher prediction accuracy, the number of sequences in the alignment

is a common feature.

There exists a facile computational link between RNA sequence and secondary structure

due to the considerable efforts toward RNA secondary structure prediction. As a result,

simulation of RNA evolution using structure as a proxy for fitness has been used to

explore a variety of evolutionary ideas [92–94]. These studies have shown that sequences

with the same structure can be represented on a neutral network [11, 95]. In silico

experiments reveal that some structures are mutationally robust because they have large

networks of highly connected sequences [86] allowing them to maintain structure while

tolerating many different mutations. Using in silico methods, mutational robustness has

been demonstrated for naturally occurring RNAs such as pre-miRNAs [96] and virus

genome elements [97], though RNAs without structure (e.g. sRNAs) do not seem to

display this feature [98, 99]. However, these results heavily depend on the structure and

inverse folding algorithm used [100].

Mutational robustness, therefore, should be a feature that can distinguish between ran-

dom putative structures formed by genomic sequence, and biologically relevant ncRNA

structures. Robustness is measured using neutrality, which is calculated as the mean

secondary structure similarity (i.e. normalized base-pair similarity) between a sequence

and those that differ by exactly one point mutation (1-mutant neighbors) [96]. There

are a variety of existing computational methods [101] and programs designed to evaluate

RNA robustness (e.g. RNAmute, RDMAS, RSRE, RNAmutants, SNPfold, RNAsnp, Re-

muRNA, and Rchange) [6, 12, 102–107]. All of these approaches focus on a single input

sequence and the ability of its neighboring mutants to maintain a “wild-type” structure.

RNAmute, RSRE, and RDMAS evaluate the normalized base-pair similarity between an

MFE starting structure and the low energy suboptimal structures generated for mutant

sequences using the Vienna RNA package [102–104]. However, using the MFE struc-

ture as the sole reference limits the accuracy of predicted structure-disrupting mutations

[108]. RNAmutants samples mutant sequences and structures according to their prob-

ability in the structural ensemble to identify sequences that severely disrupt structure,

but fundamentally determines the structural disruption based on the MFE structure of
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the mutant [105]. To improve the accuracy of structure comparisons, SNPfold compares

the structure ensemble of an RNA sequence with that of its mutants using Pearson’s

correlation coefficient (PCC) [6], and RNAsnp uses this measure in combination with

the base-pair distance to evaluate structural similarity and disruption [106]. RemuRNA

measures the effect of a mutation on the entire RNA secondary structure distribution

using relative entropy rather than sampling from the structural ensemble [12]. Alter-

natively, Rchange takes a different approach and reports the expected change in mean

ensemble free energy and thermodynamic entropy of structures [107].

In this work, we propose utilizing sequence neutrality as an SVM feature to classify

potential structured RNAs. To do so, we introduce a new measure of neutrality, the

structural ensemble neutrality (SEN). Similar to previous efforts to assess RNA robust-

ness, this measure considers the thermodynamic ensemble of structures for 1-mutant

neighbors and their difference from a given reference structure. However, rather than

utilize the MFE structure of our initial sequence as the reference structure, we utilize

a structure that is derived from a multiple sequence alignment (MSA) of homologous

RNAs to more accurately reflect the biologically relevant structure [109]. In addition, to

account for the over-prediction of secondary structure elements relative to tertiary struc-

ture interactions necessary for function, our similarity measure prioritizes maintenance of

the existing structure rather than considering all base-pair changes (both newly formed

and broken base-pairs) as equal. We demonstrate that this measure of neutrality suc-

cessfully distinguishes alignments of known bacterial structured regulatory RNAs from

several different types of decoy data including both shuffled alignments and alignments

constructed from intergenic or protein-coding sequence. We extend this finding to evalu-

ate neutrality as a feature for classification of putative ncRNA alignments using an SVM.

This analysis shows that neutrality can correctly classify ncRNA alignments nearly as

well as the combination of existing features implying that the calculation of neutrality

encompasses many of these existing features. Finally, we also show that many RNAs

involved in bacterial regulation are mutationally robust using the structural ensemble

neutrality.
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2.2 Methods

Sequence neutrality

Before calculating neutrality, some common variables must be defined. Let a given input

sequence S, without gaps and of length L, fold into a structure T . The set of sequences

that differ from S by one point mutation are the 1-mutant neighbors

1mut(S) = {1-mutant neighbors} (2.1)

Additionally, the size of the set 1mut(S) is |1mut(S)| = 3L. A single 1-mutant neighbor

of S is represented by S′ such that S′ ∈ 1mut(S). Let the structure ensemble of S′ be

e(S′) = {structure ensemble of S′} (2.2)

The set of all e(S′) created from 1mut(S) is defined

ΓS = {e(S′)|S′ ∈ 1mut(S)} (2.3)

We represent the set containing the MFE structure of the structure ensemble e(S′) as

MFE(e(S′)) = {the MFE structure of e(S′)} (2.4)

which has size = 1.

T ′Nsamp = {sample(N, e(S′))} (2.5)

is created using RNAsubopt which samples N structures with replacement from e(S′)

according to their probability of occurrence [31, 46, 110]. Let the secondary structure be

represented as an L× L adjacency matrix M where an entry

Mi,j =

 1, if position i and j base pair

0, otherwise
(2.6)
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The base-pair probability matrix for all base-pairs i, j in T ′Nsamp is determined by calcu-

lating

BPROB(T ′Nsamp) =
1

|T ′Nsamp|
∑

T ′∈T ′Nsamp

MT ′ (2.7)

where MT ′ is the adjacency matrix M for a sampled structure in T ′Nsamp. Alternatively,

the base-pair probabilities can be explicitly calculated using ‘RNAfold -p’ in the Vienna

RNA folding suite and parsing the resulting postscript file. However, we find this process

to be somewhat slower in aggregate. The centroid structure represents the structure that

has the minimal distance to all other structures in the Boltzmann low energy ensemble

[36]. We approximate this centroid structure by identifying base-pairs that occur in more

than half of the sampled structures and represent the structure in an array CENT where

each element in the array is 1 if BPROB(T ′Nsamp) > 0.5 and 0 otherwise

CENTi,j =

 1, if BPROB(T ′Nsamp)i,j > 0.5

0, otherwise
(2.8)

For some similarity calculations, the secondary structure must be converted to an array

representation. Given structure array V , let Vi be 1, if the ith position of the structure

is a base-pairing character and 0, otherwise.

Neutrality calculations fundamentally rely on two factors: the accuracy of the two struc-

tures being compared (T and MFE(e(S′)) or CENT (T ′Nsamp)), and the similarity cal-

culation used to measure the similarity between these two structures. In this work, we

develop a novel measurement of neutrality, the structural ensemble neutrality (SEN)

and compare it with several existing neutrality measures. These include neutrality as

determined by the programs RNAmute and RemuRNA. To allow direct comparison of

different similarity measures, we implemented the normalized base-pair similarity (bp-

similarity), and the Pearson’s correlation coefficient (PCC). RNAmute takes a sequence

S and reports neutrality. RemuRNA takes an input sequence (S) and calculates the

Kullback-Leibler divergence (KLD) between e(S) and each e(1mut(S)). In our assess-

ment, we take the mean KLD over all 1-mutant neighbors.
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We implement normalized base-pair similarity as

1

|1mut(S)|
∑

S′∈1mut(S)

1− bpdist(T,MFE(e(S′)))

L
(2.9)

where bpdist(T,MFE(e(S′))) is the base-pair distance between the given structure T

and the MFE structure of S′ (MFE(e(S′))) [96]. Structure similarity using PCC is

calculated by

1

|1mut(S)|
∑

S′∈1mut(S)

1 + PCC(V (T ), V (cent(T ′Nsamp)))

2
(2.10)

where PCC(V (T ), V (CENT )) is the Pearson’s correlation coefficient between the struc-

ture vector V (T ) and the centroid structure vector V (CENT ) created from 1000 sampled

structures of e(S′) [108].

Our novel neutrality measure, the structural ensemble neutrality (SEN), leverages two

factors to increase the biological relevance of neutrality measurements. First, we focus on

maintenance of the core RNA structure (i.e. minimal structure for biological function).

Rather than consider all base-pair changes deleterious, only base-pairs in the original

structure T disrupted in T ′ are counted by our measurement. Second, we utilize a

structure derived from comparative genomics as the reference structure T rather than

theMFE(e(S)). This choice reflects understanding in the field that consensus structures

defined from phylogenetic studies are much more likely to be accurate [111]. Structural

ensemble neutrality is calculated by

1

|1mut(S)|
∑

S′∈1mut(S)

1

|T ′Nsamp|
∑

T ′∈T ′Nsamp

|T ∩ T ′|
|T |

(2.11)

T ′ is a suboptimal structure of S′, |T | is the number of base-pairs in T and |T ∩ T ′| is

the number of base-pairs shared by both structures; therefore, |T∩T
′|

|T | , a modification of

Jacard distance, is the fraction of base-pairs in T retained in T ′. To simplify equation

2.11, the similarity measure comparing T to T ′Nsamp is the mean fraction of bases retained

sim(T, T ′Nsamp) =
1

|T ′Nsamp|
∑

T ′∈T ′Nsamp

|T ∩ T ′|
|T |

(2.12)
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Here, |T ′Nsamp| = 1000 because sampling 10000 structures does not significantly improve

the results and sampling 100 structures causes inconsistent results due to small sample

size. To understand the margin of error from 1000 sampled structures, we randomly

selected five alignments (RF01692, RF01826, RF00515, RF01767, RF01693) to calculate

the standard deviation of SEN calculated neutrality. At 95 % confidence, we expect the

margin of error to be 3.1% at worst. The median margin of error was 1.8%. Using a

sample size of 1000, Substituting equation 2.12 into equation 2.11 results in

SEN =
1

|1mut(S)|
∑

S′∈1mut(S)

sim(T, T ′Nsamp) (2.13)

where
|A ∩B| =

∑
0≤i<j≤L

I[(i, j) ∈ A]I[(i, j) ∈ B] (2.14)

and

I[(i, j) ∈ A] =


1 if (i, j) are paired in structure A

0 otherwise
(2.15)

Alignment neutrality calculation

To streamline our process, we created a pipeline to calculate the neutrality of sequences

in an MSA that can accommodate all neutrality measures in a uniform manner. This

pipeline consists of a 3-step workflow and produces a alignment consensus structure T

such that there are no non-canonical base-pairs or open and close base-pairs that are

too close (j − i <≤ 3). Starting with a structure alignment, 1) S and T are created by

selecting a sequence and simultaneously degapping both the sequence and structure. In

addition, structure positions with non-canonical base-pairings (not Watson-Crick or G-U

wobble) are considered single stranded. 2) From S, we calculate 1mut(S) (Equation 2.1)

and ΓS (Equation 2.3). 3) Neutrality is calculated by utilizing the similarity between the

elements of ΓS and T , which are calculated using a specified similarity function: normal-

ized base-pair distance (bp-similarity) (Equation 2.9), Pearson’s correlation coefficient

(PCC) (Equation 2.10), or sampled ensemble neutrality (SEN) (Equation 2.13).
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Test data

The test data sets were constructed using 35 seed alignments of regulatory structured

RNAs found in bacteria (Table 2.2) from the RNA Families database (Rfam) [112]. Reg-

ulatory RNAs in bacteria were chosen due to the large size and diversity of alignments

available, as well as the structural data that verify many of the predicted structures.

Several data sets were constructed by varying how the positive and negative alignments

were generated. Positive alignments were generated by either utilizing all sequences in

the Rfam seed alignment (all), or a randomly chosen subset of 3-6 sequences (subset).

Structural information for these alignments was either derived directly from the RFam

seed alignment (given) or calculated using RNAalifold (predicted) [52] (Table 2.1). For

each positive data set, a corresponding set of negative training alignments were created

using one of three methods: using the program SISSIz to shuffle the alignment columns

while preserving dinucleotide content of the positive alignments (shuffled) [113], gath-

ering 5’-flanking, or 3’-flanking, genomic sequence for each entry in the alignment (5’

and 3’ respectively). To control for sequence versus structure alignment, the 5’ and 3’-

flanking sequences are aligned using ClustalW or Mxscarna [114]. All negative alignment

consensus structures are calculated using RNAalifold [52].

Table 2.1: Summary of data set sources

Data set Sequence Structure Negatives

1 subset predicted shuffled
2 all given 3’,5’,shuffled
3 subset predicted 3’,5’
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Table 2.2: List of cis-regulatory RNAs in Dataset2 and the number of sequences in
each alignment

Rfam ID Name Number of
sequences

Aligned
sequence

length (nt)

RF00050 FMN riboswitch (RFN element) 112 221
RF00057 RyhB RNA 26 71
RF00059 TPP riboswitch (THI element) 86 318
RF00114 Ribosomal S15 leader 62 140
RF00167 Purine riboswitch 106 113
RF00168 Lysine riboswitch 36 274
RF00234 glmS glucosamine-6-phosphate activated

ribozyme
16 236

RF00379 ydaO/yuaA leader 93 335
RF00380 ykoK leader 78 221
RF00442 ykkC-yxkD leader 80 181
RF00504 Glycine riboswitch 40 215
RF00506 Threonine operon leader 17 142
RF00514 Histidine operon leader 22 167
RF00515 PyrR binding site 48 240
RF00522 PreQ1 riboswitch 31 70
RF00555 Ribosomal protein L13 leader 26 107
RF00557 Ribosomal protein L10 leader 84 234
RF00558 Ribosomal protein L20 leader 36 155
RF00559 Ribosomal protein L21 leader 36 151
RF01051 GEMM cis-regulatory element 104 136
RF01055 Moco (molybdenum cofactor) riboswitch 123 255
RF01057 S-adenosyl-L-homocysteine riboswitch 37 172
RF01070 SucA RNA motif 26 102
RF01385 isrA Hfq binding RNA 8 130
RF01402 STnc150 Hfq binding RNA 9 283
RF01482 AdoCbl riboswitch 5 161
RF01510 M. florum riboswitch 2 64
RF01692 Bacteroidete tryptophan peptide leader

RNA
13 168

RF01693 Bacteroidales-1 RNA 7 210
RF01694 Bacteroides-1 RNA 8 96
RF01727 SAM/SAH riboswitch 12 55
RF01767 SMK box translational riboswitch 11 148
RF01769 Enterobacteria greA leader 19 129
RF01793 ffh sRNA 36 62
RF01826 SAM-V riboswitch 3 69

Total 1458
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Impact of alignment quality on SEN

In order to assess the impact of alignment quality on SEN values, we determined the

difference between SEN values obtained using an entire Rfam seed alignment (full align-

ments, positive Dataset2) or subsets of this alignment (subalignments, positive Dataset3).

The delta SEN (SEN of full alignment - SEN of subalignment) is an estimate for the dis-

tance from the “true” SEN value obtained when using a subset of sequences that may

result in a lower quality alignment and structure. To gauge how the delta SEN corre-

sponds to differences between the structure predicted from the subalignment and the

given structure from the Rfam alignment we examined the delta SEN as a function of

two measures of structural difference: the bp-similarity, and the ratio of the number of

base pairs in the full alignment compared to the subalignment.

Positional neutrality

Let S′i be the set of three possible point mutations of S at a given position i.

S′i = {S′ ∈ 1mut(S)|S′contains point mutation at i} (2.16)

Positional neutrality is calculated by averaging equation 2.12 over S′i

SEN(T, T ′Nsamp, i) =
1

|S′i|
∑
S′i

sim(T, T ′Nsamp) (2.17)

Mutational robustness

For a sequence S to be considered mutationally robust, neutrality(S) must be greater

than the mean background neutrality (i.e. inverse folded sequences). Mutational robust-

ness of S is calculated by comparing its neutrality to the mean neutrality of 100 inverse

folded sequences (Equation 2.18).

neutrality(S) >
1

100

100∑
i=1

neutrality(inv)i (2.18)
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For each sequence tested for robustness, RNAinverse [115] was used to generated 10

inverse folded sequences and each of those are used to seed 10 random walks resulting

in a total of 100 inverse folded sequences for each S. Input sequences were omitted if no

inverse folded sequence could be made from its structure.

RNAinverse [115] was used to generate an initial null set of sequences for comparison.

As an alternative, we also used RNAifold [116, 117] to generate inverse folded sequences.

However, the alignment consensus structure is not necessarily the MFE structure, which

often causes RNAifold to fail and return no sequences. Because of this failure-mode,

we did not force the inverse folded sequences to have an MFE structure identical to

the target structure when using RNAinverse. To maintain similar base composition

[96], sequences that approximate solutions of inverse folding were constrained by Jensen-

Shannon divergence (JSD) < 0.01 such that JSD(S||Sinverse) < 0.01. This process

yielded an initial set of background sequences.

To ensure that background sequences generated by RNAinverse [115] are unbiased with

respect to neutrality [118], the inverse folded sequences were used as a seed for a random

walk along neutral sequences [98]. These neutral sequences are defined as sequences that

fold into the target structure. As done by Rodrigo et. al, 4L steps are attempted and a

step will be accepted only if the structure does not change. Any mutation that occurs in

a base-pair will also get a compensatory mutation to restore base pairing. If the random

mutation results in the base being changed to a G, then the compensatory mutation will

be randomly chosen, with equal probability, between a C and U.

Support vector machine

To implement a binary classifier support vector machine (SVM), the LibSVM package

[119] in R was used. The SVM uses the calculated features to classify an input sequence

as either “structured RNA” or “other.” The features used are a standard 6-feature set,

including the Z-score of the MFE, structure conservation index, mean entropy of stems,

mean mutual information of stems, mean pairwise identity and number of sequences [66,

68], and neutrality, which is calculated using the measures described above. Performance

of the SVM is evaluated by using 10x cross-fold validation on a data set and compared by
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calculating the area under the curve (AUC) in receiver operating characteristic (ROC)

curve analysis.

Statistical analysis

All statistical tests were done in the R project for statistical computing. To test the sig-

nificance of the separation of neutrality between structured and unstructured sequence,

we used the Wilcoxon rank sum test, which is a non-parametric test and does not assume

normally distributed data. Individual measures of neutrality were considered indepen-

dently in this analysis.

To test correlation of neutrality using different measures, we first standardized the data

by calculating the mean neutrality of RNA families. If a sequence is predicted to not

fold into a structure then its neutrality cannot be calculated thus it is omitted. Then

the correlation was determined using the Spearman’s rank correlation coefficient.

Logistic regression was carried out using a generalized linear model where neutrality was

used to predict the structure disruption, represented as 0 (no disruption) or 1 (disrup-

tion).

2.3 Results and Discussion

Reference structure and similarity measure impact calculated neutrality

A set of structured RNA alignments derived from Rfam seed alignments (Dataset2, Table

2.1, Table 2.2) was used to validate SEN as a measure of neutrality by comparing its

performance to other measures that are the basis of most programs designed to capture

RNA structural robustness: bp-similarity and PCC. First, bp-similarity performance

was evaluated using both the original method which only takes an input sequence, im-

plemented in RNAmute, and a modified version we implemented, which requires a given

sequence and structure. By comparing these bp-similarity implementations, we examine

the effect of the input structure on neutrality and establish a baseline performance to
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compare SEN with existing methods. In addition, RNAmute can use two different struc-

ture representations to provide either a fine grained view (dot-bracket (db) notation) or

coarse grained view (Shapiro representation) of structure to calculate base-pair distance.

The neutrality RNAmute calculated using the db notation shows a small separation be-

tween structured (median = 0.8454) and unstructured sequences (medians = 5’-Clustal

= 0.7807, 5’-Mxscarna = 0.7855, 3’-Clustal = 0.8069, 3’-Mxscarna = 0.8069, Shuffled =

0.7731) (Figure 2.1A). Using the Shapiro structure as an alternative representation to

calculate neutrality shifted the neutrality lower (structured median = 0.7777, unstruc-

tured medians = 0.6553, 0.6850, 0.6925, 0.6925, 0.6615), but the results remain highly

correlated (ρ = 0.9306) (Table 2.3) with the db structure notation results (Figure 2.1B)

indicating similar performance. However, using our modified version of bp-similarity

that imports the structure from the alignment does incrementally improve separation of

structured RNAs and negative data (0.7654 vs. 0.6293, 0.7229, 0.6692, 0.6692, 0.6618)

compared to RNAmute (Figure 2.1C) demonstrating that using the consensus structure

from the alignment improves the accuracy of the structure. The correlation between us-

ing the MFE structure and a given structure (ρ = 0.565) indicates that using the given

structure may improve the neutrality calculation but does not completely deviate from

existing methods.

To assess alternative similarity measures to bp-similarity, we also compared the perfor-

mance of SEN and PCC over Dataset2. Using PCC to calculate neutrality shows a better

separation between structured (median = 0.2631) and unstructured sequences (medians

= 0.4431, 0.4143, 0.4445, 0.4351, 0.5465) than bp-similarity (Figure 2.1D). While there

is moderate inverse correlation to RNAmute (ρ = -0.608), using PCC shows that nat-

ural sequences have lower neutrality than unstructured sequence. This inverse correla-

tion suggests PCC calculated neutrality is consistently opposite to existing measures.

SEN performance creates the largest degree of separation between structured (median =

0.5991) and unstructured sequences (medians = 0.04368, 0.2625, 0.0791, 0.0789, 0.0215)

(Figure 2.1E) as well as consistent performance to established methods (ρ = 0.608).

We also assessed RemuRNA, a program that compares the structural ensemble of an

RNA sequence and its mutants. RemuRNA returns the KLD between the “wild-type”

structure ensemble compared to the mutant-neighbor ensemble, therefore a low value
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Figure 2.1: SEN calculated neutrality has larger separation between
structured and unstructured sequence. Distribution of neutrality values from
Dataset2 compare the performance of various distance functions (A) RNAmute
dot-bracket representation, (B) RNAmute Shapiro representation, (C) bp-similarity,
(D) Pearson’s Correlation Coefficient (PCC), and (E) Sampled Ensemble Neutrality
(SEN). The 3’ and 5’ flanking region used for negatives are referred to as 3prime and
5prime, respectively. The SEN on the positive test set has a larger separation between
the negatives, compared to other measures. All similarity measures, except PCC,
show unstructured sequence to be low on their respective scales. PCC calculated
neutrality show structured sequences to be less neutral than unstructured sequence.
Lastly, the SEN uses a large dynamic range of values compared to bp-similarity, which
will increase its sensitivity between highly similar structures.

indicates that the mutant secondary structure distribution is not significantly different.

Using RemuRNA, there is no significant difference between the positive sequences in

Dataset2 (structured median = 2.3269) and most decoy sequences (unstructured medians

= 2.244, 2.246, 2.271, 2.271). Shuffled sequences do show a significant loss of neutrality

compared to other data (unstructured median = 2.785) (Table 2.4, Figure 2.2).
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Table 2.3: Spearman’s correlation between distance measures

RNAmute
PCC SEN db Shapiro

bp-similarity -0.221 0.256 0.565 0.501
PCC -0.614 -0.608 -0.595
SEN 0.608 0.651
RNAmute-db 0.930
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Figure 2.2: RemuRNA performance against Dataset2. RemuRNA
distinguishes shuffled data but not other decoy sequences from positive sequences in
Dataset2. Distribution of neutrality values from Dataset2 were compared using
RemuRNA. The 3’ and 5’ flanking region used for negatives are referred to as 3prime
and 5prime, respectively. There is no difference in the positive test set compared to
the 5’ and 3’ negatives. There is a difference between the positive and shuffled
alignments.

All the neutrality measures except RemuRNA we examined are able to distinguish be-

tween structured RNAs and negative sequence datasets with statistical significance (Ta-

ble 2.4). The neutrality of negative sequences is near the bottom of the range for each

measure. In addition, shuffled sequences are particularly easy to distinguish from struc-

tured RNAs using the PCC and the SEN compared with negative data derived from

flanking genomic sequence. This, combined with the fact that RemuRNA is only able
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Table 2.4: Wilcoxon rank sum determined P-values show significant difference
between the neutrality of sequences

3’ Flanking 5’ Flanking
Similarity measure Shuffle ClustalW Mxscarna ClustalW Mxscarna
SEN 0 2.06e-92 2.03e-92 4.99e-33 3.49e-21
Pearson’s CC 0 1.20e-108 1.92e-84 5.07e-28 1.45e-23
bp-similarity 1.14e-285 7.40e-44 7.40e-44 6.12e-19 3.75e-05
RNAmute: dot-bracket
structure

2.72e-107 2.15e-10 2.15e-10 8.19e-08 1.34e-09

RNAmute: Shapiro
structure

4.51e-121 8.07e-16 8.07e-16 2.43e-09 3.45e-10

RemuRNA 4.68e-132 9.99e-01 9.99e-01 9.99e-01 9.99e-01

to distinguish shuffled sequences from structured RNAs, suggests that column shuffled

alignments may not be the most effective way to generate negative data meant to mimic

natural sequences. Aligning 5’ and 3’ flanking negative data based purely on sequence

(ClustalW), or using more sophisticated algorithms that consider potential structure

(Mxscarna), typically does not change the results. However, the 5’-flanking negative

dataset aligned using Mxscarna (5’-Mxscarna) does show significantly higher neutrality

as calculated by SEN. This higher neutrality is caused by a poorly conserved predicted

structure where each structure is composed of a small number of predicted base pairs.

This reduction in the number of base pairs in the reference structure (24.2 versus 10.9

mean base pairs per alignment for positive and 5’-Mxscarna, respectively) artificially

increases SEN calculated neutrality as the potential number of base pairs that may

be broken and considered deleterious is small. Despite this potential drawback in the

SEN calculation, by combining an alignment based reference structure and relaxing the

distance measure to consider only core structure, SEN calculated neutrality better dis-

tinguishes structured RNAs from decoy sequences than existing approaches. In addition,

SEN utilizes a wider dynamic range that may allow it to have higher sensitivity. These

properties are especially important for measurements that may be used as features in

machine learning approaches.
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Impact of alignment quality on SEN

In order to assess the effect of reduced alignment quality on SEN, we compared the

difference between SEN values determined using an entire Rfam seed alignment (full

alignment, Dataset2), and a subset of these sequences (subalignments, Dataset3). We

observe a relatively small difference (delta) on most SEN values between the full and

subalignment of the same ncRNA (Figure 2.3A). One common result of a lower quality

alignment is altered predicted structure. To determine whether altered structure con-

tributed to a large delta SEN, we examined the delta SEN as a function of base-pair

distance between the predicted structure for the subalignment and the given structure

of full alignment and found no strong correlation (Figure 2.3B). Since the structures for

a given pair of full and sub alignments can vary in length, base-pair distance may be an

imperfect comparison. Therefore, we also examined the delta SEN as a function of the

ratio of the number of base pairs in the full alignment compared to the subalignment.

(Figure 2.3C). From this comparison we observe that there are a small number of sub-

alignments that are highly impacted by using subsets of the aligned sequences. Often,

these are alignments that have limited biologically relevant structure in the Rfam seed

alignment, and thus may be especially prone to overprediction of structure in the sub-

alignment. Specifically the STnc150 Hfq binding RNA (RF01402) Rfam full alignment

structure has many fewer base pairs than those predicted for the subalignments.

Overall we find that SEN is robust to changes to the alignment. Most SEN values derived

from lower quality alignments are within 0.2 of the full alignment (Figure 2.3A). The

SEN calculation does not depend on perfect accuracy of the consensus structure and

tolerates minor changes to the number of base pairs present. This result suggests that

even alignments of relatively few sequences can be used to calculate neutrality using SEN

without a large decrease in accuracy.

Neutrality as an SVM feature

Given that most of the neutrality measures we examined exhibited a statistically signif-

icant difference between the structured and unstructured sequence, neutrality should be

35



Chapter 2 Sampled Ensemble Neutrality

0

10

20

30

40

−0.2 0.0 0.2 0.4
Delta SEN

C
ou

nt

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
● ●

●

●

● ●

●

●

●

●

● ●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

−0.25

0.00

0.25

0.50

0 25 50 75 100 125
Bp−distance

D
el

ta
 S

EN

●

●

●

●

●●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●
●
●

●

●

●

●

●
●

●

●

● ●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●

●
●●

●

●

●●
●

●

●

●

● ●●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

● ●

●
●●

●

●

●

●

●
●

●

−0.25

0.00

0.25

0.50

0.5 1.0 1.5
Relative base−pair number 

(full:sub)

D
el

ta
 S

EN

A

B

C

Figure 2.3: Lower alignment quality has small impact on SEN The effect of
alignment quality on SEN. Lower quality alignments simulated by subalignments
derived from Dataset3. The delta refers to (delta = full alignment SEN -
subalignment SEN). A) Poorer quality alignments have a modest effect on SEN. B)
No correlation is observed between the delta SEN and the base-pair distance between
the structures derived from the full and subalignments. C) Large changes in relative
number of base-pairs (full/subalignment) do affect SEN values.
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a highly discriminative feature in an SVM binary classifier. Because of the large sep-

aration between structured and unstructured sequence, the classification performance

of SEN and PCC was predicted to be comparable to each other and higher than bp-

similarity. To test neutrality as a feature, we use neutrality as both an independent clas-

sifier and as part of an existing feature set for comparison with existing 6-feature SVMs

[68]. First, as independent classifiers, neutrality calculated by both the SEN (Dataset2

AUC = 0.87, Dataset3 AUC = 0.903) and PCC (Dataset2 AUC = 0.864, Dataset3 AUC

= 0.900) demonstrate a similar ability to correctly classify structured and unstructured

sequence in all training examples regardless of sequence or structure origin (Table 2.5).

Both of these methods significantly outperform bp-similarity (Dataset2 AUC = 0.735,

Dataset3 AUC = 0.766). This is likely because SEN and PCC are less stringent forms

of comparison than bp-similarity which equally weighs all base-pair changes, additions

and disruptions.

Table 2.5: SVM performance using neutrality as a feature

Data set Feature(s) Area under curve (AUC)
Dataset1 6-feature set 0.918

6-feature set + SEN 0.925
3-feature set 0.927
SEN 0.925

Dataset2 SEN 0.870
PCC 0.864
bp-similarity 0.735

Dataset3 SEN 0.903
PCC 0.900
bp-similarity 0.766

Natural RNA structures do not necessarily require all base-pairs to form a biologically

relevant tertiary structure. It is common to see RNA alignments containing many ho-

mologs that have pairing elements of variable length, or with mismatches within pairing

elements. From biology we know that these differences in structure do not necessarily

affect function. Thus, because PCC only considers effects on the overall structure, and

SEN only considers changes to the core structure they more accurately reflect require-

ments for biological function. Consistent with our previous analysis of delta SEN, SVM

performance with Dataset2 (full alignments) and Dataset3 (subalignments) is compara-

ble.
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Next, to determine whether neutrality could be used as an additional feature to im-

prove classification of putative ncRNA alignments, we added the SEN to the 6-feature

set SVM revealing a marginal improvement with SEN (Dataset1 AUC = 0.925) verse

without (Dataset1 AUC = 0.918). Interestingly the SEN used in isolation as a feature

has equivalent performance (Dataset1 AUC = 0.925). Using the top 3 discriminative

features (Z-score of MFE structure, mean mutual information of stems, and neutrality)

also had comparable performance (Dataset1 AUC = 0.927) to using SEN alone.

Overall, neutrality as an independent classifier was able to separate structured and un-

structured sequences. This finding is based on the similar classification performance

when using either SEN or the currently used 6-feature set (Table 2.5). In fact, using the

most discriminating features (Z-score of the MFE structure, mean mutual information

of stems and SEN) offers comparable performance indicating the remaining features are

redundant. The comparable performance of neutrality with existing feature sets is likely

because current methods capture aspects of neutrality: structural maintenance despite

sequence mutation and thermodynamic stability. The Z-score of MFE structure measures

the thermodynamic stability which is also quantified in neutrality when comparing the

alignment structure to 1-mutant neighbors ensemble of structures. The structure main-

tenance through covarying mutation is measured using the mean mutual information of

stems which neutrality encompasses as the effect of single mutations on the structure.

Using SEN to detect structure disruption

One objective of many neutrality measures is to predict which bases are most disruptive

to structure [6, 12, 106]. To evaluate whether SEN can be used to predict such bases, we

sampled multiple sequences from our training set and interrogated the effect of position

specific mutations on the calculated neutrality. By plotting positional neutrality for the

purine riboswitch (RF00167), we observed that not every position has the same impact

to the sequence neutrality. However, the neutrality predicted by SEN has consistent

performance across multiple sequences drawn from the same alignment. In agreement

with previous observations [107, 120], mutations to bases in structured regions (Figure

2.4) are more likely to be disruptive. In general, there are more disruptive mutations
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Figure 2.4: Structure disruption generally occurs in stem regions. Profile
view of the purine riboswitch (RF00167) showing the mean neutrality at each position
of all mutant neighbors at that position. The structure has been overlaid onto the
graph. Mutations in the stems show larger structure disruption whereas mutations
which occur in the single stranded regions do not significantly affect structure.

occur at the edges of stems. Mutations in the middle of stems appear to create either

bulges or internal loops which have a small effect on the neutrality. Mutations in the loop

regions also had little effect on the structure. We observed that there is a mutation at

position 66 that strongly disrupts the structure. Given the strong impact, this mutation

likely disrupts the formation of the stem.

To assess the accuracy of predicted structure disrupting mutations, we compared our

predictions to experimental data obtained on the purine riboswitch using 2D SHAPE

(Selective 2’-hydroxyl acylation analyzed by primer extension) [121]. Like evaluating

neutrality using 1-mutant neighbors, 2D SHAPE interrogates the changes in RNA struc-

ture when making single mutations to an RNA sequence. To compare our predictions

to the 2D SHAPE data, the reported change in base reactivity was converted to the

expected structure disruption coefficient (eSDC) where eSDC = (1− PCC) ∗
√
L [108].

The top 50% of eSDC values are considered to be “structure disrupting.” Logistic re-

gression using SEN to predict structure disruption indicates that predicting which bases

disrupt structure continues to be very difficult (AUC = 0.55) (Figure 2.5).

Current methods rely on RNA folding algorithms to predict which nucleotides can po-

tentially be structure disrupting. Incorporating the structure ensemble does improve

prediction accuracy [108] but such methods fundamentally still have poor performance.
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Figure 2.5: Ability to predict which base mutations disrupt structure. The
receiver operator characteristic (ROC) curve shows the performance of SEN to
correctly call structure disrupting mutations compared to random guessing (diagonal
line). The line reveals SEN performs better than random.

The similar predictions of both SEN and current methods to detect structure disruption

is likely due to the use of the same thermodynamic model for RNA folding that can-

not fully encompass three-dimensional interactions, which results in similar prediction

accuracy. However, the inability of SEN to make accurate predictions could also be due

the limited data on structure disrupting bases derived from 2D SHAPE. Because a vast

majority of positions have small impacts on structure, it is very difficult to establish the

eSDC threshold at which the structure is disrupted. Furthermore, if the eSDC threshold

is too high, then there is very little data available to build regression or machine learning

models.

SEN detects mutational robustness

Finally, we use SEN to calculate the mutational robustness of positive sequences in our

data sets. Robustness is defined as the ability of a sequence to maintain its structure

despite perturbations to the sequence. The sequence is considered mutationally robust

when its neutrality is greater than the mean background neutrality. Using SEN as a

similarity measure detects 74.9% of the sequences in Dataset2 as being mutationally

robust (Table 2.6). In comparison, using PCC (41.2%) or bp-similarity (40.5%) detected

fewer robust sequences. The background neutrality calculated by PCC and bp-similarity
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Figure 2.6: Mean alignment neutrality organized by similarity measure.
The line represents wildtype sequence neutrality equal to mean background neutrality.
If the wildtype sequence neutrality is higher than the mean background neutrality, the
sequence is considered robust. To reduce the number of points, only the mean
sequence neutrality for an alignment is compared against the average of the mean
background neutrality. Plotting individual sequence neutrality reveals a similar trend
(Figure 2.7). The SEN better detects mutational robustness of these sequences
compared to PCC or bp-similarity.

is relatively high compared to the SEN background neutrality and likely contributes to

the ability of distance measures to detect mutational robustness (Figure 2.6, Figure 2.7).

Using PCC or SEN calculated neutrality have equivalent performance as an SVM fea-

ture. However, using PCC neutrality shows that structured sequences are less neutral

than unstructured sequence. This lower neutrality suggests that many sequences are not

mutationally robust. The PCC calculation involves converting the structure into a bi-

nary vector; therefore, the base pairing information is removed and only the base-pairing

status remains. By removing this information, the PCC potentially has difficulty differ-

entiating similar distributions of 0’s and 1’s which could represent different structures.

Bp-similarity had difficulty detecting mutational robustness in the data, likely due to the

high stringency of the neutrality measure. Thus, existing commonly used measures of

neutrality, normalized base-pair distance and PCC have potentially decreased accuracy

for opposite reasons. The ability of SEN to detect mutational robustness in ncRNA

regulators can likely be attributed to the hybrid nature of the calculation which still

considers individual base pairs but is only concerned with maintaining the core structure

and not with additional base pairs added by in 1-mutant neighbor.
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Figure 2.7: SEN calls more sequences robust than other similarity
measures. The line represents wildtype sequence neutrality equal to mean
background neutrality. If the wildtype sequence neutrality is higher than the mean
background neutrality, the sequence is considered robust. Each point represents a
sequence in the Dataset2 and it is compared against the average of the mean
background neutrality. The SEN better detects mutational robustness of these
sequences compared to PCC or bp-similarity.

Table 2.6: Fraction of robust sequences

Bp-similarity 0.405
PCC 0.412
SEN 0.749

SEN run time

SEN relies on the sampling of suboptimal structures from the ensemble of secondary

structures. The run time is directly proportional to the number of sampled suboptimal

structures and thus slower than traditional methods like bp-similarity. However, the cal-

culation for each sample structure is identical so SEN calculations have been implemented

to run in parallel, which can significantly reduce the run time. Code for calculating SEN

is available at: https://github.com/ship561/sampled-ensemble-neutrality.
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Chapter 2 Sampled Ensemble Neutrality

2.4 Conclusions

In this work, we show that RNA sequence neutrality is an effective feature for machine

learning approaches to classify structured RNAs from various decoy sequences. We find

that the most accurate classification occurs for neutrality measures that consider the

ensemble of possible RNA structures rather than just the minimum free energy structure

(PCC or SEN). Furthermore, neutrality used as the sole classifying feature is nearly as

effective as existing SVMs [66, 68] indicating that current SVM features capture aspects

of mutational robustness.

During the course of this work, we developed a novel measure of RNA sequence neutral-

ity, the structural ensemble neutrality (SEN). The SEN differs from existing measures

of neutrality in that it directly addresses several potential limitations. First, as a refer-

ence structure for neutrality calculation, SEN utilizes a consensus structure determined

from an alignment of putative homologous sequences rather than an MFE structure, in-

creasing the likelihood of utilizing a biologically relevant reference. Second, to assess the

structure of the 1-mutant neighbors SEN considers not a single structure, but samples

from the ensemble of potential low-energy structures. Finally, rather than consider all

deviations from the reference structure equally deleterious, SEN only counts base pairs

that are disrupted in the structure of the mutant sequence. This property renders SEN

relatively robust to incomplete data that often degrades the quality of the predicted

structure. The SEN is highly correlated with existing measures of neutrality (Table 2.3),

but shows improved separation of structured and unstructured sequences in our data

sets compared to these measures (Figure 2.1). While SEN’s underlying model predicts

structure disrupting mutations to occur in stems, this model does not completely explain

experimental data (Figure 2.5) indicating there are other variables such as potential ter-

tiary contacts to consider in such determinations. This result heavily depends on the

similarity measure, accuracy of folding and inverse-folding algorithms. We found that

PCC calculates lower neutrality for structured sequence, yet finds a similar proportion

of sequences to be mutationally robust. SEN calculated neutrality indicates that many

of the regulatory RNA structures in bacteria are mutationally robust (Table 2.6).
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Chapter 3

Recognizing RNA structural motifs

in HT-SELEX data for ribosomal

protein S15 1

3.1 Background

RNA-binding proteins (RBPs) play essential cellular roles that range from co- and post-

transcriptional regulation of mRNA transcripts [122, 123], to stabilization of macro-

molecular complexes such as the ribosome [124]. In this genomic era, the imperative to

utilize primary sequence data to elucidate the relationship between an RBP, its recog-

nition site, and its function, is only growing [125]. Identifying the binding sites for

RBPs is an important task toward unraveling gene regulatory networks [126]. However,

prediction of RBP interaction sites remains a challenge. Much of our understanding

of RNA-protein binding motif identification comes from identifying transcription-factor

binding sites. Following the assumption that RNA-protein interactions occur in single

stranded regions, techniques to identify DNA-protein binding sites have been successfully

applied to some RBPs. Unlike DNA-binding proteins (DBPs), RBPs may recognize fea-

tures of single-stranded RNA, double-stranded RNA, or even three-dimensional tertiary
1Adapted from Pei, Shermin, Betty L. Slinger, and Michelle M. Meyer. “Recognizing RNA structural

motifs in HT-SELEX data for ribosomal protein S15.” BMC Bioinformatics. Submitted
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Selection

Surviving
 species Non-binding species 

in the flow-through

Make cDNA 
and amplfy

Isolate binders

Random sequence
pool

Figure 3.1: SELEX starts with a randomized sequence pool. The sequence pool
undergoes selection to select binders and remove non-binders. The binders are reverse
transcribed and PCR amplified. The cycle of selection and amplification is repeated
until the sequence pool reaches sufficient binding affinity and diversity.

structures [127]. Therefore, RNA structure must be taken into account in assessment of

potential binding-sites.

One method of experimentally identifying the constraints on a DBP or RBP recognition

site is SELEX (Systematic Evolution of Ligands by Exponential Enrichment) [128, 129].

SELEX is an iterative in vitro selection technique that allows researchers to identify

nucleic acids that interact with a target ligand. Starting with a random DNA or RNA

sequence pool, each round in the selection is composed of a series of steps: 1) incubate the

sequence pool with the target ligand, 2) remove non-binders, 3) elute binders, 4) reverse

transcribe and PCR amplify the binders, 5) use binders as template for RNA into the next

round of selection. The assumption is the aptamers will bind with varying affinity. As the

number of rounds increases, those aptamers with the highest affinity will be selected for

and become a larger fraction of the population. The SELEX process can continue for an

indefinite number of rounds; however, over selection can lead to no sequence variation,

and under selection results in a sequence pool that is not enriched with high affinity

binders. Therefore, the number of SELEX rounds must balance binding affinity and

aptamer diversity. Analysis of the sequences resulting from a SELEX experiment can

be used to confirm the specificity of a binding site, or illuminate how RNA structural

plasticity may enable multiple sequences to present a similar three-dimensional motif to

the protein [130].
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Chapter 3 Recognizing RNA structural motifs in HT-SELEX data

With the advent of next-generation sequencing, high-throughput sequencing-SELEX

(HT-SELEX) has become an even more powerful approach to explore RNA-protein

interactions. Sequence variation within the selected population gives insight into im-

portant residues, circumventing the need for laborious follow-up experiments to identify

key regions of the selected sequences. The nucleotide differences between closely related

sequences effectively explore local sequence space [131–135], and highly conserved ar-

eas point toward functionally important positions. Using such patterns of variation and

conservation, information about the critical sequence motifs responsible for binding is

revealed. Furthermore, sequencing intermediate rounds of the selection process allows

ancestral sequences to be determined rather than inferred, and sequences that enrich

over several SELEX rounds are more likely to be high affinity binders [136]. In addition,

due to the high diversity of sequences undergoing selection, multiple possible and distinct

binding motifs or structures can be discovered in a single experiment.

One downside of HT-SELEX approaches is the size and complexity of data that may be

generated, especially from large randomized nucleotide populations. Typically, the RNA

selection process starts with a pool of molecules on the order of 1012 − 1014 sequences,

which can still be dwarfed by the total number of possible sequences (4sequence length).

In the ideal circumstance, over the course of a SELEX experiment, the sequence pool

will converge on a small number of sequences that reflect a shared potential binding

motif. If the entire sequence pool is sequenced, then these features should stand out as

prevalent and enriching sequences within the population. In practice, given the size of

the populations, under-sampling remains a significant hurdle. Thus, often only a sparse

view of the RNA-binding pool is provided [132, 137, 138], potentially obscuring patterns

that might be apparent from more thorough analysis.

Typical analysis of HT-SELEX data involves the identification of the RNA-protein bind-

ing motif. This analysis is distinct from transcription factor identification in that there

can be multiple potential binding motifs and these motifs are likely to have a secondary

structure context [139–141]. Programs found in the MEME suite [142] such as MEME,

GLAM2 [143], and DREME [144] can be applied to the HTS data to identify binding

motifs. MEME and DREME are designed to find contiguous sequence motifs. GLAM2

identifies motifs that can include short-gaps. However, there are a some of drawbacks
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to using these tools. Due to their algorithmic complexity, MEME and GLAM2 are not

equipped to use large magnitudes of sequence data [143, 145]. DREME’s run time scales

linearly with the data set size, but this is still not sufficient to keep pace with larger HTS

data sets. Additionally, these programs ignore any potential secondary structure, which

can hinder their ability to find the putative binding motifs.

To identify sequence-structure motifs, there are programs such as MEMERIS [139], RNA-

context [140, 146], AptaMotif [147], MPBind [148], Graphprot [149], RCK [85], AptaNI

[150], and AptaTrace [151]. MEMERIS specifically identifies motifs found in the loop

regions of the secondary structure, but like MEME, it is not designed for HTS data..

RNAContext and RCK use sequence and structure information to find RNA binding

motifs, but they require a large number of both binder and non-binder motifs in order

to determine the motif enrichment because it is assumed that the binding motif is con-

tiguous and is present in majority of binders and not in the non-binders. MPbind uses

a k-mer approach to identify contiguous binding motifs by identifying prominent sub-

sequences that are enriched between selection rounds. Graphprot leverages secondary

structure to identify binding motifs, but it also requires data on binders and non-binders

alike. AptaMotif is designed to analyze low throughput SELEX data, but it has been

extended in the form of AptaNI, which restricts the motif search to loop regions of the

structure. AptaTrace is a state-of-the-art HT-SELEX motif identification tool that takes

into both sequence and structure to identify binding motifs. Overall, many of these pro-

grams focus on identifying contiguous motifs while using secondary structure to restrict

the search to single stranded regions.

HT-SELEX analysis techniques have been successfully applied to identify short sequence

motifs responsible for RNA-protein interactions [152, 153], typically located in internal

loop regions [154]. While this type of analysis is effective for many RBP binding-motifs,

particularly those that involve recognition of single-stranded regions of RNA, not all

RBPs conform to such recognition patterns [127]. In many cases an RBP may interact

with complex tertiary structure motifs, and some cases with multiple complex structures.

Some RNA binding proteins, such as ADAR or Staufen, specifically recognize double

stranded RNA. These binding proteins target a structure containing 12 or 16 base-pairs,

such as a single stem or co-axially stacked stems [155, 156].
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In Escherichia coli, several ribosomal proteins interact not only with the rRNA, but also

with structured portions of their own transcripts. These interactions allow stoichiometric

production of ribosomal proteins by inhibiting transcription or translation [157]. While

in some cases the mRNA structures are apparent mimics of the rRNA-binding sites, in

other cases similarity is not obvious [158]. In addition, many of the mRNA structures

responsible for this regulation in E. coli are narrowly distributed to only a few bacteria

[159].

Ribosomal protein S15 is a particularly interesting example of ribosomal protein regula-

tion. S15 is a conserved protein across bacterial phyla, and in some bacteria it is auto-

regulated at the translational level [160]. However, species within different bacterial phyla

use distinct mRNA structures to accomplish the same regulatory task [159, 161, 162].

There are at least four distinct mRNA secondary structures that regulate in response

to S15, each constrained to a single bacterial phyla. Each structure likely evolved in-

dependently, thus mRNA interactions with homologous S15 proteins are not necessarily

conserved. In contrast, both the S15 protein and its 16S rRNA binding site are highly

conserved among different lineages of bacteria. While previous work has identified the

critical motifs in the 16S rRNA (a GU/GC within a paired region and a 3-helix junc-

tion) responsible for efficient S15 binding in E. coli and Thermus thermophilus, various

mRNA structures can bind S15 despite containing some but not necessarily all of the 16S

rRNA binding determinants [163–165]. Furthermore, not all homologous S15 proteins

are interchangeable regulators between different bacterial species, indicating some target

specificity [166]. Recently, we identified a set of SELEX derived RNA structures that

bind Geobacillus kaustophillus S15 [167]. The identified RNAs are distinct from known

natural regulators, but several still regulate gene expression in response to S15. Just

as in nature, a high degree of sequence and structure diversity was found in this study,

suggesting that the natural diversity of RNA regulation is not solely due to differences

between S15 protein homologs.

In this work, we analyze the intermediate and final rounds of SELEX against G.

kaustophilus S15 using high-throughput sequencing in order to better understand the

diversity of potential RNA structures that interact with S15. The complex nature of the

S15-binding site is a likely factor contributing to the high sequence diversity observed in

48



Chapter 3 Recognizing RNA structural motifs in HT-SELEX data

our data. To elucidate any sequence-structure motifs, we developed an analysis approach

that simultaneously considers the sequence and structure to identify a discontinuous

double-stranded binding motif. By treating RNA structure as a set of discrete substruc-

tures, we identify enriched structure elements associated with the RNA-S15 binding site.

In particular, we find many potential binding motifs that are significantly enriched over

the course of selection. Combining these motifs and experimentally validated binders,

we build a model to separate specific and non-specific S15 binders. Overall, we find that

S15 heavily relies on the structure for recognition of its target.

3.2 Results

Characterization of selected population

We characterized the reads resulting from sequencing reverse transcribed and amplified

products of SELEX rounds 4, 9, 10, and 11 by examining read lengths, sequence en-

richment, and diversity. There were 32,866,739 total pair-end reads of which 5,584,124

reads were forward strand and passed quality filters (Table 3.1) (See Methods: High-

throughput sequencing). Most of the reads are the expected length of 87 nt (Figure

3.2A). The reads tend to become shorter in rounds 9, 10, and 11 compared to round

4. Additionally, we noticed there was an increase in fragments of approximately 79 nt

length likely due to PCR amplification bias (Table 3.2). These shorter fragments were

likely preferentially amplified during PCR compared to longer fragments. However, such

individuals examined using filter-binding assays do not bind S15 specifically. We found

that ≈2% of sequences from rounds 10 and 11 were enriched during the SELEX process

(Figure 3.2B) indicating the selection is likely enriching for specifically binding sequences.

Finally, there was incredible overall sequence diversity in the sequence pool. 95.33% of

sequences appeared only once (singleton) and of the sequences that appeared more than

once (multiton), 69.5% were seen fewer than 10 times (Figure 3.2C).
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Figure 3.2: A) Distribution of read lengths shows most reads are the expected
length of 87 nt. B) Distribution of sequence enrichment of multiton sequences in
rounds 10 and 11. The enrichment is normalized to the total number of reads in the
round. The red line indicates no enrichment (ratio = 1). C) Most sequences are
singleton sequences.

Table 3.1: Total number reads by round before and after filtering.

Round Unfiltered Filtered

4 10,978,044 4,150,081
9 10,854,647 407,138
10 5,764,497 481,763
11 5,269,551 545,142

Total 32,866,739 5,584,124

Identification of global similarity between clusters

Despite the large number of singleton sequences, there may be a large number of similar

or related sequences (similar primary or secondary structure) present within our data.

Given that one of the hallmarks of homologous structured RNAs is that structure is

often conserved when the sequence is quite variable [18], the high singleton frequency
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Table 3.2: Percentage of rapid amplifier sequences in the SELEX sequence data
separated by round.

Round Percent rapid amplifier (%)
4 1.1
9 73.6
10 23.2
11 30.9

suggests the existence of a recognition motif in a common short sequence, and/or sec-

ondary structure. Due to the number of sequences, identification of common sequence

or structure using pairwise comparisons is computationally prohibitive.

There are readily available programs that cluster based on sequence alone, such as CD-

HIT [168], or cluster based on sequence and structure, such as RNAclust.pl + LocARNA

[62]. Clustering using structure did not work as RNAclust.pl is designed to cluster <

1000 sequences and LocARNA (and its derivatives LocARNA-P [63] and SPARSE [64])

are designed to simultaneously use sequence and structure to create multiple sequence

alignments from homologous sequences, not the large and diverse set of sequences we

obtained through SELEX. While CD-HIT only compares sequences, similar sequences

are likely to fold into similar structure. Therefore, we used CD-HIT, which is a fast and

widely-used program for nucleic acid clustering that utilizes heuristics to significantly

reduce run time.

We established a clustering threshold by calculating the sequence similarity from the

high frequency sequences. Examining the distribution of sequence distance shows a clear

separation at 10%, which is equivalent to 90% similarity (Figure 3.3A). Clusters formed

around the most frequent sequences are distinct, as seen by having lower within-cluster

distance than between-cluster distance. This trend continues to be true for all high

frequency sequences (Figure 3.3B). Because CD-HIT run time increases proportionally

to the number of clusters, we use an 85% clustering threshold. However, to identify any

global structure, we focus on those clusters with > 90% similarity (Figure 3.3C).

Given the observed sequence diversity across our clusters, we also assessed whether any

similar global secondary structures were shared between clusters. Clustering similar
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Table 3.3: Clusters that have a mean structure distance less than the median
intra-cluster distance of 0.0946 were also considered structurally similar.

Cluster1 Cluster1 size Cluster2 Cluster2 size Mean ensemble distance belief
3543 253 21035 294 0.09324413 -1.744
5300 134 3543 253 0.09345742 -2.008
5300 72036 402 0.06441246 -2.698
5300 82519 911 0.05355445 -3.339
12222 209 82519 911 0.08549975 -2.031
72036 402 1290 601 0.08523696 -2.136
72036 21035 294 0.08567548 -1.920
82519 911 1290 601 0.08320683 -2.958
82519 2293 390 0.09279544 -2.823
82519 21035 294 0.08129743 -2.040

sequences together reduces the number of structure prediction operations because a rep-

resentative cluster structure can be quickly determined by sampling and folding a small

number of sequences (See Methods: Intra/inter-cluster ensemble distance). Using this

method, we find that sequence clusters are also effective structure clusters because of the

lower intra-cluster structure distance (median distance of 0.0898, Figure 3.4) compared

to the inter-cluster structure distance (Figure 3.5). Additionally, pairwise comparisons of

the clusters shows higher inter-cluster structure distance indicating there is no globally

similar structure shared by any clusters. While some clusters appear to have similar

structure (Figure 3.5B), upon closer inspection, this similarity is an artifact caused by

comparing a limited number of structures from each cluster (See Method: Calculating

belief for structure distances, Table 3.3, Figure 3.6).
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Figure 3.3: A) Distribution of Levenshtein distance around the top 4 multiton
sequences shows a clear cluster cutoff at distance 0.1. Within the cluster, there is a
decrease in the frequency of sequences further from the center indicating multiton
clusters are valid. B) Heatmap of pairwise edit distance between the 84 multitons
reveals very few multiton sequences can be grouped together (black). Majority of
multitons are unrelated (> 10%) to any other multiton sequence. Values are
symmetrical across the diagonal. C Plot of the CD-HIT clustering data represented as
cluster size vs mean percent identity to cluster seed (diffuseness). In red are the
multiton clusters with more than 100 read counts. In blue are multiton clusters with
more than 100 read counts, that have been experimentally examined (Table 3.12). In
green are sequences experimentally tested that are not derived from the multiton
clusters.
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Figure 3.4: Distribution of intra-cluster ensemble distances by cluster. Box edges
represent the first and third quartiles with the middle being the median. Clusters
with the following criteria were selected: >100 sequences, and >90% mean identity to
the seed. The line represents the median intra-cluster distance at 0.0898. The mean
mean distance was 0.0946.
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Figure 3.5: A) Distribution of inter-cluster ensemble distances from cluster 6062,
which contains the most frequent sequence. Clusters selected for comparison included
clusters with >100 distinct sequences, >90% mean identity to the seed. To get a
distance distribution when comparing clusters to cluster 6062, individual sequences of
the same length from the given cluster and cluster 6062 were compared in an
all-against-all fashion. As a reference, the median intra-cluster distance for cluster
6062 was 0.0898 (black line) and the first-quartile was 0.0536 (red line). B)
Representing all selected cluster pair-wise comparisons distance distributions in a
heatmap shows that on average, clusters differ from other clusters by 0.2. In general,
many of the structures are distinct from those of other cluster structures.
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Figure 3.6: Distribution of belief in the evidence supporting our inter-cluster
ensemble distance. The belief shows how much we believe in the evidence. Because
certain clusters do not have enough pairwise comparisons, the average distance is
somewhat biased to be low. The threshold for believable was set at the beginning of
the left-tail, such that belief ≥ −2.
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Identification of local sequence/structure motifs

Sequence

The high cluster count made it difficult to extract meaningful patterns from the se-

quences. In order to identify any common short sequence motifs, we started with se-

quence based approaches for motif identification because there are a variety of existing

tools (summarized in Table 3.4). Many tools for motif identification are found in the

MEME suite (MEME, GLAM2, DREME). These programs are not designed to process

HTS data, so we reduced the data set by sampling 105 sequences from each of our SELEX

rounds. While MEME is powerful and can identify transcription factor binding sites, in

practice the algorithmic complexity limits the data to < 1000 sequences [145]. GLAM2

is able to identify gapped motifs and tolerates larger data sets, but it does not find any

significant motifs (E-value = 1) in our data (Figure 3.7). We also applied DREME to find

short k-mers (3 ≤ k ≤ 8), and some of the top motifs with more than 104 occurrences

are significant (Table 3.5). They are repeatedly found in multiple samples; however, they

are only found in 1.2%-5% of the total sequence pool.

Figure 3.7: A logo representing the top motif from running GLAM2 over our
sampled data set. This motif is unlikely to be the S15 recognition motif because of
the low conservation of majority of the motif other than the two A’s. Additionally,
this motif is not significant (E-value=1).

Additionally, we applied other state of the art programs for identifying binding motifs in

HT-SELEX data. Due to our lack of non-binder data, we could not use RNA-context or
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Table 3.4: Comparison to existing tools

Software Run Time Motifs identified

MEME N/A N/A
DREME ≈3 hrs top 10
GLAM2 ≈1 week top 10
AptaTrace 3+ weeks N/A
AptaNI N/A N/A
NCM ≈10 hrs N/A

Table 3.5: Top DREME motifs with >104 observations

Motif E-Value Percent sequences containing
motif (%)

YACTGCT 2.4e-2784 1.2
WTAYGGA 5.6e-1525 1.5
WCCRAG 1.3e-515 5.0

Where R = A or G; Y = C or T; W = A or T;

RCK. We applied AptaNI, which searches loop regions for potential motifs, but the pro-

gram did not find a single common motif in a large fraction of our data. We also applied

AptaTrace, which identifies multiple motifs but the program did not finish, possibly due

to the high sequence diversity of our data.

Table 3.6: K-mer (k=5) enrichment of round 11 variable region compared to a
background set (bg).

K-mer ratio enrichment 11 vs bg

AACCA 3.653
AACGA 3.557
ACCGA 3.403
ACCAA 3.302
AACAA 3.274
ACGGA 3.244

K-mer analysis is a common method for motif identification, which works by identifying

enriched short sequences of length k (k-mers). Several programs implement this method

by considering all k-mers (MPBind) or those restricted to loop regions (Aptacluster).

MPBind compares sequences from different SELEX rounds with the expectation that

short motifs increasing in frequency are being selected for [169]. We calculate k-mer

enrichment of round 11 relative to a uniform probability background set because the
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potential motifs may be well represented by SELEX round 4. We found that k-mers of

length 5 are enriched compared to the background set (Table 3.6). Using the enriched k-

mers (ACCGA, ACGGA, AACGA, AACCA, ACCAA), we created a regular expression

(A[AC][CG][ACG]A) to search our data for sequences that have these k-mers. Sequences

containing a combination of these k-mers were tested for binding to the G. kaustophilus

S15 (Table 3.7). The number of appearances of the k-mers does not impact the binding

affinity (4 appearances - 99.43 nM, 2 appearances - 123.74 nM, and 5 appearances - 77.5

nM) (Table 3.7). K-mers outside the variable regions were not counted because it is

unlikely that the binding motifs are constant and already found in the initial sequence

thus common to the entire sequence pool.

Table 3.7: Summary of experimentally tested sequences and their binding affinity.
Sequences were chosen based on over-representation of k-mers of length 5.

Seq. Id Cluster Id Kd (nM) Reason

46474 63331 99.43 4 appearances of motif
355069 1307 123.74 2 appearances of motif
279047 70316 77.5 5 appearances of motif

In order to determine if the structure context was important to the motif, we also calcu-

lated any k-contexts for enrichment relative to round 4. We obtain the structure context

by sampling 1000 suboptimal structures and determining the most probable sequence of

paired (p), unpaired (u), or loop (l) for a given k length subsequence. This technique

readily identifies k-mers located in single stranded regions of the RNA structure. We use

k-mers of length 4 because tetramers form stable loops in RNA secondary structure. The

top 10 enriched k-contexts show very high enrichment when comparing SELEX round

11 to round 4 (Table 3.8). The high enrichment value is likely due to the sparsity of

the k-context vector as k-mer enrichment alone on the data set only shows ≈ 2 fold

enrichment (Table 3.9). We also established that the k-mer was not likely to be located

in a single stranded region of the RNA (Table 3.10). Applying k-mer analysis with or

without structure context did not reveal a specific k-mers above background (uniform

and round 4), which suggests the protein is not interacting with the RNA in a sequence

specific or loop region.
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Table 3.8: Top 10 enriched K-context using k=4 comparing the variable regions of
sampled sequences from rounds 11 and 4

K-context (kmer/context) Enrichment

CTGC/uupp 41.684
ACTG/uuuu 30.512
TGCT/uuuu 25.634
CTGC/ulpp 25.095
TTCT/uuul 22.164
CGAC/plpl 22.062
TGCT/upuu 21.540
CTGC/uuuu 21.364
TGCT/uppu 20.916
CTGC/uupu 20.808

u=unpaired, p=paired, l=loop

Table 3.9: Top 10 enriched K-mers using k=4 comparing the variable regions of
sampled sequences from rounds 11 and 4

K-context (kmer) Enrichment

TGGA 2.275
TTTG 2.237
GGTG 2.187
TTGG 2.099
TGCT 2.005
GTTT 1.975
TGGT 1.836
ATGG 1.814
GGTT 1.779
TATG 1.778

Table 3.10: Top 10 enriched K-mers using k=4, using joint probability of the k-mer
being in an upaired region comparing the variable regions of sampled sequences from
rounds 11 and 4

K-context (k-mer) Enrichment

TTCG 2.731
GTAT 2.503
TTTG 2.495
GAAG 2.218
GTAC 2.133
TTAG 2.108
TTGG 2.108
TTGA 2.067
TGCT 2.065
CGCA 2.040
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Figure 3.8: NCM enrichment as calculated using the minimum free energy (MFE)
or the centroid structure. The calculated enrichment values show moderate
correlation (r2=0.771).

The lack of enriched sequence motifs and global secondary structure conservation indi-

cates the binding occurs in a substructure of the selected RNA sequences. The existence

of a substructure is further supported by data showing motifs identified by existing motif

finders only account for a small fraction of the sequence pool. To identify potentially im-

portant substructures, we developed a novel approach that differs from existing methods

by specifically focusing on stacking base-pairs. We represent stacked base-pairs as nu-

cleotide cyclic motifs (NCM) [170]. This representation is advantageous because NCMs

discretize the secondary structure into smaller components and they have been used to

great effect in improving RNA tertiary structure predictions.

Since our approach depends on structure predictions, we calculate NCM enrichment using

both the minimum free energy (MFE) and the centroid structure, which better represents

the ensemble of structures. Both representations capture trends such increasing stability

in later rounds. The NCM enrichment values derived from using the MFE structure

or the centroid structure are moderately correlated (Figure 3.8). Using the centroid

structure reduces the NCM frequency, but the reduced frequency has small impact on

enrichment. Therefore, we carried out the remaining enrichment analysis using the MFE

structure.

NCM enrichment is calculated by taking the ratio of the mean NCM frequency per round.

To overcome the large number of sequences and differences in round size, we calculate the
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mean enrichment by repeatedly sampling 105 sequences from each round. This sample

size represents approximately 20% of rounds 9, 10, and 11, but only 2.5% of round 4.

Despite the lower percentage of round 4 sequences sampled, the enrichment analysis is

robust to the sampling and identifies similar enriched, depleted, and unchanged NCMs

relative to round 4 (Figure 3.9A). GU/GU and UG/GU appear to be highly enriched

and have larger error bars. However, these NCMs are not significantly greater than

background, and the high variability is due to low frequency, thus these are considered

spuriously enriched NCMs.

To identify significantly enriched NCMs, we also calculated the expected enrichment

by comparing the NCM frequencies of the sampled sequences to background sequences,

either created using uniform base frequencies (BGuni) or base frequencies based on our

total sequence pool (BGsamp) (See Methods: Background set construction). Our criteria

for enrichment is that the NCM ratio of round 11 to round 4 must be significantly

greater than the ratio of round 11 to background. Many NCMs are significantly enriched

(AU/GU, AU/UG, CG/GC, CG/GU, GC/GU, GU/AU, GU/CG, GU/UA, UG/CG,

UG/GC, UG/UG), while some are depleted (AU/UA, GC/GC, GC/UA) when compared

against BGsamp (Figure 3.9B). There is significant overlap of enriched and depleted NCMs

when comparing against BGuni (Figure 3.10). Interestingly, many of the enriched motifs

contain a GU wobble pair, which could be a potential recapitulation of the natural

binding site.

The NCM enrichment in later rounds suggests selection for particular motifs. By treating

clusters as “sequence families,” we used LASSO logistic regression to identify NCMs

associated with cluster enrichment. Since the analysis depends the clustering, we re-

clustered our sequence pool multiple times and found the clustering is relatively stable

(Figure 3.11). For each repeated clustering, we carried out LASSO regression and reduced

our NCM predictors to those that appeared in majority of the models with p-value <

0.01. Using this method on both round 4 to round 11, and round 4 to round 10, we

identified positive predictors CG/GU and GU/GC as well as negative predictors AU/GC

and CG/UA that are found in both models (Table 3.11). CG/GU was identified by

enrichment analysis as well, further indicating its importance.
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Figure 3.9: A) Log2 fold change of NCMs averaged over 11 re-samplings. The
round 11 enrichment trends are consistent with the round 9 and round 10 enrichment.
B) Log2 fold change of NCMs averaged over 11 re-samplings comparing the
enrichment of round 11 vs. round 4 and round 11 vs. background created with
sampled base frequency (BGsamp). Error bars represent standard error.
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Figure 3.10: Log2 fold change of NCMs averaged over 11 re-samplings comparing
the enrichment of round 11 vs. round 4 and round 11 vs. BGuni. Error bars represent
standard error.
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Figure 3.11: The CD-HIT clusters for high frequency sequences are relatively stable
and many sequences often appear together despite multiple clustering runs. We show
the distribution of the average the Jacard distance over 5 clustering runs.
Occasionally, sequences are put into a different cluster, represented by high Jacard
distance, but it is rare compared to being put into a similar cluster.

64



Chapter 3 Recognizing RNA structural motifs in HT-SELEX data

Table 3.11: Representative NCMs that are significantly associated with cluster
enrichment from first clustering

Rounds compared NCM Log odds (95% CI) P-value

11 to 4 AU/GC -3.39 (-4.95 - -1.85) 1.87e-5
CG/GU 8.04 (3.07 - 13.16) 1.75e-3
CG/UA -5.53 (-7.75 - -3.37) 6.86e-7
GU/GC 4.66 (2.08 - 7.27) 4.36e-4

10 to 4 AU/GC -1.89 (-3.37 - -0.44) 0.0112
CG/GC 3.11 (0.523 - 5.74) 0.0194
CG/GU 9.45 (4.08 - 15.00) 6.78e-4
CG/UA -3.18 (-5.36 - -1.13) 2.47e-3
GU/GC 4.51 (1.98 - 7.10) 5.61e-4
UA/UA -5.96 ( -8.67 - -3.31) 1.31e-5

Figure 3.12: Receiver operator characteristic (ROC) curves showing the model
performance on classifying clusters as enriched for later round sequences. The LASSO
logistic regression model applied to each CD-HIT clustering run shows similar
classifier performance across all runs. The mean area under the curve (AUC) is 0.651.

Given the overlap of predictors, we tested whether the logistic regression model for round

10 enrichment could predict future cluster enrichment (i.e. round 11 enrichment). Ideally,

the same NCMs are selected throughout the SELEX process. After training on round

10 enrichment data, we tested the model by using cluster enrichment from each of the

re-clustered data sets. However, this model offers a limited prediction accuracy (mean

AUC=0.651), indicating some predictors are not readily identified (Figure 3.12).
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Figure 3.13: A)Spearman correlation matrix between all 2_2 NCMs with greater
than 10k counts per round. The matrix is symmetrical around the diagonal. The
larger and darker squares indicate stronger correlation. Positive correlation indicates
the NCM pair could be combined as part of a larger binding motif. The correlation
between GTTA and CGGT is 0.647. The correlation between TATA and CGTA is
0.522. B) The enrichment/depletion of 3_3 NCMs as compared to round 4 or
BGsamp. These NCMs are composed of 2_2 NCMs that often appear together
suggesting a potentially larger motif. The ratio suggests these larger motifs are more
depleted in later rounds than expected.
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In order to ensure the 2_2 NCM was not part of a larger base-pair stack, we used

Spearman correlation to identify any NCMs that often appear with each other. There

is moderate correlation between some NCMs (ρ > 0.6) (Figure 3.13A). However, this

correlation is most likely spurious because repeated analysis with 3_3 NCMs does not

show higher enrichment of these NCMs relative to BGsamp (Figure 3.13B).

Experimental assessment of S15 binding affinity

Table 3.12: Summary of experimentally tested sequences and their binding affinity

Seq. Id Cluster Id Kd (nM) Reason

A 98 52739 85 High freq.; High mean pairwise identity
(> 90%)

B 101 6062 42 Most freq.; High mean pairwise identity
(> 90%)

C 575 2903 62 High freq.; High mean pairwise identity
(> 90%)

D 669 1792 25 High freq.; High mean pairwise identity
(> 90%)

E 4778 851 19 High freq.; High mean pairwise identity
(> 90%)

F 27773 517 2.8 High freq.; High mean pairwise identity
(> 90%)

G 46474 63331 99 Singleton; Small cluster (≤ 100 seqs.)
H 355069 1307 123 Singleton; Small cluster (≤ 100 seqs.)
I 244064 4454 62 Singleton; Medium cluster

(100 < seqs. < 1000)
J 158254 91212 31 Singleton; Singleton cluster (= 1 seq.)
K 279047 70316 77 Singleton; Singleton cluster (= 1 seq.)
L 4077 68 9.8 Singleton; Large cluster (≥ 1000 seqs.);

Low mean pairwise identity cluster (<
90%)

M 170365 2293 Non-
specific

Singleton; Low mean pairwise identity
cluster (< 90%)

N 192209 3606 Non-
specific

Singleton; Low mean pairwise identity
cluster (< 90%)

O 4650 3969 38 Depleted; Medium cluster
(100 < seqs. < 1000); low pairwise
identity cluster (< 90%)

P 315173 5799 28 Depleted; Previously identified regulator
[167]
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In order to ensure our SELEX data provided an accurate reflection of binding sequences,

we assayed a variety of sequences for binding affinity for S15 (Summarized in Table 3.12).

We find many high frequency sequences had moderate affinity for S15 ranging from 19-

85.6 nM (Table 3.12 A-F). Given the high diversity of the sequence pool, we also tested

singleton sequences for binding, which revealed 6 of 8 singleton sequences also bind

S15 (Table 3.12 G-N). Previous literature suggests that enrichment is a better predictor

or binding affinity [136]. We find that there is no correlation between the degree of

enrichment and binding affinity (Figure 3.14). Both depleted sequences bind S15 with

moderate affinity (Table 3.12 O-P).
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Figure 3.14: Linear regression showed that the sequence enrichment did not predict
the Kd. The regression line has an R2 value of 0.0846.

We also tested sequences from clusters that are centered on high frequency sequences.

When a sequence represents a large fraction of the cluster, we hypothesize that this

sequence binds while the remaining sequences “explore” the local sequence space. Fitting

with our hypothesis, many high frequency sequences specifically bind S15 and are found

in high mean pairwise identity cluster (Table 3.12 A-F). As a control, sequences from

clusters with low mean pairwise identity not centered on high frequency sequences were

also examined (Table 3.12 L-O). We find half of these sequences bind specifically, which

suggests high identity clusters are more likely to contain S15 binders.

We use the enriched/depleted NCMs with our experimental data to build a model to

identify potential binders (See Methods: Classifying S15 binders using the NCM model).
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Figure 3.15: The logistic regression model using significantly enriched/depleted
NCMs as predictors is applied to multiple re-sampled data sets. Each data set is
composed of the experimentally tested sequences and non-binder sequences from
BGsamp. Receiver operator characteristic (ROC) curves showing the model
performance on classifying sequences as either “binders” or “non-specific binders”. The
mean area under the curve (AUC) is 0.921.

Due to the limited number of negative test cases, we use additional sequences from our

background set to build a logistic regression model. The model suggests using enriched

and depleted NCMs are good predictors of binding (mean AUC = 0.921) (Figure 3.15)

3.3 DISCUSSION

The RNA binding sites of many proteins are complex in terms of both sequence and

structure. In this work we sought to understand the pool of potential RNA-binding sites

for G. kaustophilus ribosomal protein S15 using in vitro selection coupled with high-

throughput sequencing (HT-SELEX). To our surprise, the high-throughput sequencing

revealed an extraordinarily large pool of potential binding sites with over 95.3% of our

sequences appearing only once in the population. We were able to cluster our data using

a number of different methods. However, the large number of unique clusters did not

share any obvious global structure, or sequence characteristics. Existing strategies that

have been applied to the analysis of other RBPs were unsuccessful at identifying any
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features that would explain a significant portion of our data. Many programs are not

designed for the number or diversity of our sequence data.

We developed a novel approach to analyzing HT-SELEX data for motifs that incorpo-

rate RNA structures. Our approach borrows from three-dimensional structure prediction

[170], by considering all potential substructures or nucleotide cyclic motifs (NCMs) of

a certain length. This approach is further necessitated by the complexity of the known

RNA binding sites for S15 [160, 163, 164]. We repeatedly sampled sequences from each

round to carry out our analysis. There are many enriched or depleted 2_2 NCMs relative

to earlier rounds, with many of the enriched NCMs containing a GU wobble base-pair,

which could be a potential recapitulation of the natural binding motif. By using LASSO

regression, we effectively reduced the number of NCMs to potential predictors of enrich-

ment.

Our algorithm is easily parallelized and the run time is increased proportionally to the

number of secondary structure predictions. The run time falls on the shorter end of the

spectrum compared to existing software, which can sometimes take a week to finish. We

have demonstrated that the algorithm is robust to structure representation. Additionally,

the NCM data is easily integrated into models to predict potential binders. Despite a

limited number of validated binders and non-binders, the model accurately distinguish

binders from background sequences. Surprisingly, our limited model classifies only 15.7%

of the total sequence pool as potential S15 binders, suggesting many potential non-

binders. Considering the proportion of binders found within our limited population of

verified binder sequences, it appears that only a subpopulation of binding sequences can

be identified using NCMs alone and that S15 likely can recognize additional features that

are not captured by this data.

3.4 CONCLUSION

Our analysis of the HT-SELEX data for theG. kaustophilus S15 suggests that this protein

can bind a large diversity of sequences in vitro and our previous work demonstrated

that half of the RNAs examined allowed regulation [167]. The analysis also suggests
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that the recognition motif is located in a combination of structure elements with little

requirement on the sequence itself. This finding also illuminates a possible reason for the

large sequence and structure diversity in natural S15 mRNA secondary structures. The

approach we developed to analyze our data is broadly applicable to many other RBPs

that have complex noncontiguous recognition motifs. By considering RNA secondary

structure elements as building blocks (NCMs), we bring a novel approach to analyzing

in vitro selection data for RNA-protein interactions that may primarily rely on specific

local features in the context of a larger secondary structure.

3.5 Material and Methods

High-throughput sequencing

We previously identified S15 binders using 11 rounds of SELEX [167]. Expecting less

diversity, we initially sequenced cDNA pools resulting from reverse transcription of the

selected sequence pools after rounds 4 and 9. But after a brief data analysis, we further

sequenced rounds 10, and 11 as they were the final rounds of selection. The sequence

pools were sequenced using Illumina short read 100 nucleotide (nt) paired-end sequencing

(Otogenetics Corporation). The expected length of the aptamer was 87 nt, composed of

30 nt PCR primers, 30 nt variable region, and 27 nt non-constant region.

Sequences were filtered by having the correct primers, standard nucleotides (A,C,G,T),

forward strand, and every nucleotide’s PHRED quality score of greater than or equal to

20. Any sequences shorter than 79 nt or containing duplicated T7 promoter sequence

were removed. These sequences are considered rapid amplifier sequences because they

only contain T7, 5’, and 3’ sequences (See Methods: Rapid amplifiers).

The libraries are stored in separate FASTQ files for each round. The remaining sequences

were stored in a MySQL database for speed and ease of access. For subsequent analysis,

only the sequence contained between and including perfect primers was used. When

calculating enrichment, the sequence counts were normalized to the total number of

usable reads in that round.
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Rapid amplifier

We remove short sequences of 79 nt that are only composed of the T7 promoter, 5’

primer, and 3’ primer. These sequences do not contain a variable region and appear

to rapidly amplify during the PCR amplification step. Experimental results show these

sequences do not specifically bind to the G. kaustophilus S15; therefore, we remove them

from our sequence pool during analysis.

Clustering

Sequence

In order to determine a cluster threshold, sequences from rounds 10 and 11 with > 100

total counts were used as initial cluster centroids to compare to the remaining sequences.

The distance metric (Levenshtein distance) was normalized to the length of the longer

sequence. As an optimization, the primer regions were removed for the purposes of

sequence comparison.

CD-HIT-est [168] was used for nucleotide clustering with the following options: compare

positive strand only (-r 0), mismatch penalty -1, gap penalty -1, gap extension 0 and

cluster threshold of 85% (-c 0.85). The mismatch penalty and gap open penalty are both

the same value to minimize the effect of single base variation or deletions in the variable

region. The gap extension is set to 0 because it heavily penalized short stretches of

base differences in the variable region thus creating many more singleton clusters. Only

the non-primer regions were compared. The output from CD-HIT was imported into a

MySQL database for speed and ease of access.

Structure

RNAclust.pl + LocARNA will cluster sequences based on sequence and structure. We

used the default parameters, 8 CPU threads and “–sparse” for the LocARNA option.
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Intra/inter-cluster ensemble distance

The clusters used for analysis were selected from the CD-HIT clusters using the follow-

ing criteria: > 100 sequences and > 90% mean identity to the CD-HIT cluster seed.

Secondary structure prediction was done using the Vienna RNAfold package [31]. The

ensemble distance was calculated by first predicting the secondary structure ensemble

using ‘RNAfold -p’. The ensemble distance is the mean base-pair distance between all

possible structures of two input sequences [101]:

1

|A|
∑

(i,j)∈A∪B

(PA
ij − PB

ij )2 (3.1)

where i < j and Pij is the probability of a nucleotide at position i paired to a nucleotide

at position j and |A| is the length of structure A. Structures A and B must be the same

length.

Intra-cluster distance was calculated by taking 1,000 (or fewer) distinct sequences from

each of the clusters meeting our criteria. Then ensemble distance was calculated in a

pairwise fashion.

Inter-cluster distance was calculated using the top 100 most frequent sequences from each

cluster. Structures in each cluster were compared in a pairwise manner to structures in

the other cluster.

Calculating belief for structure distances

Since only structures of the same length are comparable using ensemble distance, To

identify cluster pairs impacted by this artifact, we calculated the ratio of actual com-

parisons versus the number of possible comparisons (Figure 3.6). If the ratio was less

than 0.01, the ensemble distance was ignored because it was likely calculated using only

one sequence per cluster. This additional screen removed all clusters that appear to be

similar.
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belief = log
count

min(10000, (cid1size ∗ cid2size))
(3.2)

where count is the number of pairwise comparisons between 2 clusters (cid1, cid2) and

cid1size is the size of cluster1 and cid2size is the size of cluster2.

Sequence motif identification

We applied a variety of existing motif finder programs to our sequence pool: DREME,

GLAM2, AptaNI, and AptaTrace. For all programs, we used the same sample, which

is created by sampling 105 sequences from each round of selection. The parameters for

DREME were motifs of length k such that 3 ≤ k ≤ 8, no reverse complement, and stop

after the top 10 motifs are identified. GLAM2 parameters: motifs of length k such that

3 ≤ k ≤ 8, and 50000 iterations. AptaNI was run with the default parameters. Apta-

Trace was run with default parameters, using SFold [110] as the RNA folding program.

K-mer and k-context

K-mers represent all possible subsequences of length k. Given a sequence set, k-mers

counts are normalized to the sequence length - 1 and the size of the sequence set. The

k-mer counts from the primer regions are excluded.

The k-contexts represent all possible tuples of subsequence and substructure of length k.

To minimize the effects of inaccurate base-pairs, we sample 1000 suboptimal structures to

estimate the probability the nucleotide’s context is paired, unpaired, or in a loop. Using

the context probability, the resulting k length substructure is the most likely sequence

of contexts.

We also calculate the k-mer enrichment of k-contexts only located in unpaired or loop

positions. This calculation differs slightly from the k-context in that the nucleotide

context of a position i is not independent of its neighbors. Therefore, the joint probability

of k nucleotides being unpaired is calculated using “RNAplfold”. K-mers are counted only

if every position in the context is likely to be unpaired (i.e Pr(unpaired) > 0.5).
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Identifying enriched/depleted secondary structure motifs

The structural motifs we identify are derived from the 2_2 and 3_3 nucleotide cyclic

motifs (NCM) [170]. We modified the naming convention to be more base-pair centric

— N1_N2 <sequence> such that the N1 and N2 designate the length of the 5’ and

3’ strands, respectively. The <sequence> represents the order of stacking base-pairs

starting at the 5’ end.

To detect NCM enrichment, NCMs are counted by sampling 105 distinct sequences with-

out replacement from each round. For each sequence, the MFE or centroid structure

is predicted using Vienna RNAfold [31] and each possible 2_2 or 3_3 NCM stack is

counted. Similar to calculating k-mer frequency, NCM frequency is calculated by nor-

malizing the NCM count to the total number of NCMs per sequence and number of

sequences sampled. NCM enrichment/depletion is calculated by the ratio of the average

NCM frequency between rounds.

In order to identify enriched NCMs, we repeatedly calculate NCM enrichment relative

to both round 4 and a background set. The NCM enrichment relative to background

provides an “expected” baseline enrichment value. NCMs are considered significantly

enriched when the average NCM enrichment relative to round 4 is higher than average

expected NCM enrichment (p-value < 0.001). Significance is calculated using a one-sided

T-test [171].

Background set construction

The background sequence set variable region was created using either a uniform (BGuni)

or a sampled base distribution (BGsamp). The sampled base frequency is determined

using the variable regions from the sequence pool. The variable region was identified by

minimizing the Levenshtein distance between our known non-constant region sequence

(TCATTCTATATACTTTGGAGTTTTAAA) and a sliding window of length 20 along

the given input sequence.
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Table 3.13: Number of enriched clusters from each clustering run.

Cluster run Depleted Enriched Total
1 1140 2079 3219
2 1151 2073 3224
3 1140 2083 3223
4 1152 2051 3203
5 1162 2062 3224

Any mutations to non-variable and non-primer regions were simulated using the “muta-

tion rate” derived from the non-constant region of round 11 sequences. The mutations

were categorized as point mutation, insertion, or deletion. The synthetic constant region

was simulated by choosing the site(s), which is governed by the Poisson distribution, and

type(s) of mutation in a sequence based on the overall mutation frequency. Then the

resulting mutation is selected based on the observed mutational frequency. The synthetic

sequence was generated by concatenating the primers, a simulated variable region (30

bases chosen with uniform or observed probability) and a simulated non-constant region

in the proper order.

LASSO Logistic regression models

Logistic regressions and LASSO were done in the R project [171]. Only clusters with >

100 sequences were used, as these clusters are likely to contain sequences from different

rounds. Clusters are considered enriched if the ratio of sequence frequency from later

to earlier rounds were real numbers and exceeded a certain threshold. This threshold is

determined by calculating ratio of total round counts (i.e. round 4 size
round 11 size). For round 11

(r11) sequences to be considered enriched, the ratios r11:r4 > 7.61 or r11:r9 > 0.7468.

For round 10 (r10) sequences to be considered enriched, the ratios r10:r4 > 8.61 or r10:r9

> 0.8451. For the training set, a 1:1 ratio of enriched vs depleted clusters were used.

The number of enriched and depleted clusters for each re-clustering is summarized in

Table 3.13.

We re-cluster multiple times using CD-HIT. For each CD-HIT re-clustering, NCM pre-

dictors are selected automatically by LASSO logistic regression. Predictors are retained

if they appear in 3 out of 5 re-clusters with a significant p-value < 0.01.
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Classifying S15 binders using the NCM model

When predicting potential binders, we use our experimentally validated sequences as

positives (14 positive, 2 negatives) and 16 sampled sequences from BGsamp as negatives.

For each sequence, we calculated the NCM frequency. The model uses the established

enriched/depleted NCMs as predictors (AU/GU, AU/UG, CG/GC, CG/GU, GU/AU,

GU/CG, GU/UA, UG/CG, UG/GC, GC/GC, GC/UA). Some NCMs are removed be-

cause of singularities. Since our data set is small, we re-sampled background sequences

and average the performance over multiple samples.

RNA/Protein preparation

The aptamer sequence was synthesized using assembly PCR from overlapping oligos

(from IDT) with the T7-promoter sequence added within the forward primer sequence.

T7 RNA polymerase [172] was used to transcribe RNA and transcription reactions were

purified by 6% denaturing PAGE. Bands were visualized using UV shadow, excised, and

the RNA eluted (in 200 mM NaCl, 1 mM EDTA ph 8, 10 mM Tris-HCl pH 7.5) and

ethanol precipitated. Purified RNA (10 pmol) was 5’-labeled with 32P-ATP and purified

as previously described [173]. Protein expression and purification was conducted as

described previously [161].

Filter binding assay

As done in Slinger et. al 2015, a fixed amount of 5’32P-labeled RNA (1000 cpm, <1

nM) was renatured for 15 minutes at 42°C, then incubated with serial dilution of G.

kaustophilus S15 in Buffer A (50 mM-Tris/Acetate, pH 7.5, 20 mM Mg-acetate, 270 mM

KCl, 5 mM dithiothreitol, 0.02% bovine serum albumin[63]) for 30 minutes at 25°C.

Nitrocellulose membrane (GE Healthcare) was used to collect RNA-S15 complexes and

positively charged nylon membrane (GE Healthcare) was used to collect unbound RNA

under suction in a filter binding apparatus. Membranes were air-dried 5 minutes and

the fraction bound quantified by imaging membranes on a phosphorimager screen. Ra-

dioactivity counts per sample on each membrane were measured using GE Healthcare
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STORM 820 phosphorimager and ImageQuant. For each sample the fraction bound (Fb)

corresponds to

Fb =
counts nitrocellulose

counts nitrocellulose + counts nylon
(3.3)

Since Fb is known, to determine the Kd and the Hill coefficient (n), the resulting values

were fit to the equation:

Fb = Min% +
Max%−Min%

1 + ( Kd
[S15])

n
(3.4)

where [S15] corresponds to the concentration of S15 in the reaction and Min% and

Max% correspond to the minimum and maximum fraction bound, respectively. The

residuals were minimized using the nonlinear least squares estimate (nls) in R to find

both the Hill coefficient and the Kd.

Availability of data and materials

The code for the analysis is publicly available on github https://github.com/ship561/hts-

exploration. The HT-SELEX data is publicly available on the SRA with the ID:

SRP077756.
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Discussion

Identifying de novo RNA structures in sequence data is an ongoing challenge. The diffi-

culties center around poor alignment quality and our inability to distinguish functional

elements within the global structure. The structure conservation that is the hallmark

of many conserved ncRNAs is non-trivial to identify. Aligning based on sequence alone

causes base-pairing information to be lost, and aligning based on structure alone requires

a very high degree of structural similarity. Therefore, poor alignment quality directly

limits our ability to distinguish the functional local structure from the global structure.

For example, a functional minimal structure could be difficult to align to its homolo-

gous ncRNA because it can have low global structure similarity but high local structure

similarity. This problem highlights the difficulty of determining conserved structure and

thus novel ncRNA structure from limited data.

This thesis approaches the challenge of identifying functional RNA structures from op-

posite sides: de novo detection of natural RNAs, and comparison of synthetic RNAs

from HTS of in vitro selected populations. Despite the difference in sequence source, a

common theme to my projects is the development of novel methods to emphasize the

functional portions of the structure. In chapter 2, we develop a novel measure of neu-

trality that emphasizes maintaining the existing structure determined from alignments of

known ncRNA structures. Here, the hypothesis is driven by the evolutionary theory that

suggests evolved ncRNAs maintain their structure in the face of genomic change thus
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making them mutationally robust. In chapter 3, we develop a method for identifying

enriched substructures found in an in vitro selected sequence pool. Our data contain

high structural diversity of binders. Therefore, we hypothesize that the RNA-protein

interaction occurs in a substructure or subsequence, and there can be multiple conserved

motifs that contribute to binding.

Described in chapter 2, the SEN project focuses on using neutrality as a novel feature

in RNA classifiers. As a solo feature, SEN has similar performance to existing RNA

classifiers. Surprisingly, inclusion of SEN into the feature set only marginally improved

performance. Our model performance data indicate that neutrality is a generalization of

the existing feature set where features such as structure stability or co-varying mutations

are specific properties of structures selected for during RNA evolution. Additionally, we

determined that many naturally occurring structured RNAs are mutationally robust.

There are limitations to using SEN calculated neutrality as a feature. A fundamental

assumption made in the neutrality calculation is that changes to the structure are dele-

terious. This assumption leads SEN to underestimate some mutations to loops. This

limitation can be problematic because there are many structured RNAs that interact with

their ligand in loops and any mutation to the motif render the RNA non-functional. De-

spite the importance of loop interactions, we found that mutations in loop regions are

generally more neutral than mutations found in base-pairs. Another limitation is the

runtime for calculating SEN is proportional to sequence length and the number of sam-

pled structures. The increase in the number of structure comparisons makes neutrality

much slower than calculating features such as MFE and mutual information of stems.

Described in chapter 3, the SELEX analysis project focuses on elucidating potential RNA

binding motifs responsible for the RNA-S15 interaction. Our analysis of the HTS-SELEX

data showed high sequence and structure diversity leading us to search for common sub-

sequence and substructure. This data analysis highlights the diversity of RNA-protein

interactions and that not all RNA-protein interactions occur in loop regions. We de-

signed an algorithm that treats a structure as a set of small building blocks that may

be treated analogously to k-mers for sequence analysis. Our approach considers both
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sequence and structure components in the binding motif. Identifying enriched substruc-

tures showed there were common, positively selected motifs, possibly involved in RNA-

protein interaction. Because the algorithm considers base-pairs, it also considers long

range non-contiguous interactions that are not normally considered in sequence motif

identification algorithms.

The limitations of using our NCM approach are similar to the limitations of k-mer

analysis. In order to determine enrichment, we need a proper background sequence set

to compare our sequence pool against. Determining the size of the motif is done through

trial and error. In addition to the k-mer limitations, our algorithm has a slower runtime

because we must fold the RNA sequences.
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