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Advisor: Stephen D. Wilson, Ph.D.

Iridium-based members of the Ruddlesden-Popper family of oxide compounds are

characterized by a unique combination of energetically comparable effects: crystal-

field splitting, spin-orbit coupling, and electron-electron interactions are all present,

and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of

this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+

spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet

with an ordered moment of 0.36 µB.

In this work, this Mott state is destabilized by electron doping via La3+ sub-

stitution on the Sr-site to produce (Sr1−xLax)3Ir2O7. The introduction of carriers

initially causes nano-scale phase-separated regions to develop before driving a global

insulator-to-metal transition at x = 0.04. Coinciding with this transition is the disap-

pearance of evidence of magnetic order in the system in either bulk magnetization or

magnetic scattering experiments. The doping also enhances a structural order param-

eter observed in the parent compound at forbidden reciprocal lattice vectors. A more

complete structural solution is proposed to account for this previously unresolved

distortion, and also offers an explanation as to the anomalous net ferromagnetism

seen prior in bulk measurements.

Finally, spin dynamics are probed via a resonant x-ray technique to reveal evi-

dence of spin-dimer-like behavior dominated by inter-plane interactions. This result

supports a bond-operator treatment of the interaction Hamiltonian, and also explains

the doping dependence of high temperature magnetic susceptibility.



iv



Acknowledgments

Here, at the start of things, is a good place to express my gratitude to the people
who helped make it possible to complete the work which follows. First, I want to
thank my parents, Mary Kay and Jim Hogan, whose love and support has carried me
though these last 28 years. I’ve been incredibly fortunate to have them and my sister
Erin by my side throughout the trials and tribulations of not just higher education,
but those inherent to the business of living as well.

Mention should also be made of the close friends who have been with me through-
out the gamut of educational experiences leading to my graduate work, beginning
with fellow Bishop Miege High School survivor Ethan Struby, as well as my close
Truman State University physics compatriots Ian Noble and Joey Palmer.

There are too many Boston College graduate physics students to list who have
made the past six years more enriching with their company, so it must suffice to say
that you all know who you are! Specifically, I do want to thank senior grad students
(at the time) Steve Disseler, Kevin Lukas, and Ryan Johnson for their sage wisdom,
and my incoming classmate Claire Watts for her enduring patience and humor.

On a professional note, I want to express appreciation for all of the instructors
who helped me to learn something over my two-plus decades of education- that a
student such as myself could complete a doctoral degree is a testament to your skill
as educators. In a similar vein, I am also thankful to the support and administrative
personnel at Boston College, the University of California Santa Barbara, and the
numerous user facilities where we conducted experiments for their help. In particular
Zahra Yamani (CNBC), Xiaoping Wang (ORNL), and Amanda Strom (UCSB) have
gone above and beyond many times over in their respective roles to help me do the
best possible work that I could.

Certainly this dissertation would also not be possible without the countless hours
of general assistance from all my fellow members of Wilson Group, specifically Chetan
Dhital who was an excellent senior lab mentor. The conversations and good company

v



of Xiang Chen, Rebecca Dally, Ryan Need, and Julian Schmehr have also made my
time with the lab thoroughly enjoyable, and their insights, inquiries, and advice have
certainly made me a better research scientist.

Of no one are these sentiments more applicable than to my adviser, Stephen Wil-
son, however. In working with Stephen for the past five years I’ve come to know a
consummate professional whose commanding intellect is matched only by his dedi-
cation to his students. The myriad of valuable professional opportunities our collab-
oration has afforded me is something I will always be very grateful for. In addition
to being a fantastic adviser, Stephen has also been a good friend whose candor and
sense of humor throughout this process has been very much appreciated.

Finally, I want to thank my wife, Laura. Our relationship started just a few
weeks before my graduate studies commenced, and in my pursuit of this degree I
have dragged her from one side of this country to the other. She has endured count-
less ‘quick’ trips to campus to check on equipment late at night, dozens of week-long
experiments where I was largely off-grid, and even a few defeatist rants where I con-
fessed wanting to give up altogether. Her commitment has never wavered, and her
inexhaustible confidence and positivity has truly given me the strength to see this
thing through. It is my greatest joy to come home after a good day of science to my
little family of Laura and our two cats Boxer and Violet.

To those individuals unnamed and named: I sincerely thank all of you. I did not
do this alone and you have my gratitude,

-Tom Hogan

November 29, 2016
Santa Barbara, California

vi



Make tiny changes to Earth.

– F.R.

vii



viii



Table of Contents

Abstract iii

Acknowledgments v

List of Tables xiii

List of Figures xv

List of Symbols and Acronyms xvii

1 Ruddlesden-Popper Iridates 1
1.1 The Ruddlesden-Popper Series . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Spin Orbit Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Origin of the Jeff = 1/2 State . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Bulk Magnetism and Static Spin Structure . . . . . . . . . . . . . . . 14
1.5 Spin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Relationship to the Cuprates . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Measurement Techniques 31
2.1 Electrical Resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 SQUID Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Neutron Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Introduction to Neutron Scattering . . . . . . . . . . . . . . . 35
2.3.2 Nuclear Bragg Scattering . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Magnetic Bragg Scattering . . . . . . . . . . . . . . . . . . . . 42
2.3.4 Triple-Axis Geometry . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.5 Time-of-Flight Technique . . . . . . . . . . . . . . . . . . . . . 48
2.3.6 Neutron Source Generation Methods . . . . . . . . . . . . . . 51

2.4 X-Ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Resonant Elastic X-Ray Scattering (REXS) . . . . . . . . . . 55

ix



2.4.2 Resonant Inelastic X-Ray Scattering (RIXS) . . . . . . . . . . 59

2.4.3 Powder Diffraction and Reitveld Refinement . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3 Synthesis and Characterization 69

3.1 Flux Growth of Single-Crystal Sr3Ir2O7 . . . . . . . . . . . . . . . . . 70

3.2 Doping The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Confirming Phase Purity . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Evaluating Chemical Composition . . . . . . . . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Crystal Structure of Sr3Ir2O7 81

4.1 Previous Structural Reports . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Experimental and Computational Details . . . . . . . . . . . . . . . . 85

4.3 Neutron Diffraction Results . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Point Group Measurement . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Proposed Structural Solution to Sr3Ir2O7 . . . . . . . . . . . . . . . . 90

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Phase Diagram of (Sr1−xLax)3Ir2O7 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Details of Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Bulk Probe Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Neutron and X-Ray Scattering . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Surface Probe and Thermodynamic Results . . . . . . . . . . . . . . 111

5.6 La-doping Phase Diagram . . . . . . . . . . . . . . . . . . . . . . . . 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6 Magnetic Excitations in (Sr1−xLax)3Ir2O7 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Details of Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Dispersion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Fitting the Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.5 REXS Investigation of Short Range Order . . . . . . . . . . . . . . . 139

6.6 Bulk Magnetization Evidence of Dimer Pairs . . . . . . . . . . . . . . 143

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

x



A Hund’s Rules 149
A.1 General Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2 Ir4+ in Sr3Ir2O7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B Deriving Fine-Structure Corrections 155
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

C Evaluating the Wilson ratio RW 159
C.1 Evaluation with SI units . . . . . . . . . . . . . . . . . . . . . . . . . 159
C.2 Evaluation with CGS units . . . . . . . . . . . . . . . . . . . . . . . . 162
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xi



xii



List of Tables

1.1 d orbital wavefunctions expressed as spherical harmonics Y ml
l . . . . . 11

3.1 Standard furnace heating profile. . . . . . . . . . . . . . . . . . . . . 71

4.1 Lattice parameters for Sr3Ir2O7 at 100 K, 300 K. . . . . . . . . . . . . 91
4.2 Atomic positions and ADP for Sr3Ir2O7 at T = 300 K . . . . . . . . . 93
4.3 Atomic positions and ADP for Sr3Ir2O7 at T = 100 K . . . . . . . . . 94

6.1 Summary of refined magnetic exchange parameters for the parent and
doped systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Spectroscopic notation for the quantum number l. . . . . . . . . . . . 150

xiii



xiv



List of Figures

1.1 Unit cells of the strontium-iridate RP series. . . . . . . . . . . . . . . 3
1.2 Octahedrally coordinated Ir4+ ion; d orbitals. . . . . . . . . . . . . . 7
1.3 Energy level splittings resulting in the Jeff = 1

2
state. . . . . . . . . . 12

1.4 Electrical transport and susceptibility of bulk Sr3Ir2O7. . . . . . . . . 13
1.5 The spin structure of Sr3Ir2O7. . . . . . . . . . . . . . . . . . . . . . 17
1.6 Magnetic exchange coupling J ’s nomenclature from J. Kim, et al. . . 19
1.7 Generic phase diagram for the cuprates. . . . . . . . . . . . . . . . . 23

2.1 A four-probe lead configuration. . . . . . . . . . . . . . . . . . . . . . 33
2.2 Real-space Scattering geometry illustrating the Bragg condition. . . . 40
2.3 Example triple-axis spectrometer geometry. . . . . . . . . . . . . . . . 47
2.4 The scattering geometry of the time-of-flight Laue method. . . . . . . 49
2.5 X-ray optics configuration at APS Sector 27. . . . . . . . . . . . . . . 62
2.6 X-ray diffraction data from a crushed Sr3Ir2O7 single crystal. . . . . . 64

3.1 Schematic heating profile for flux growth . . . . . . . . . . . . . . . . 70
3.2 Typical layered powder charge for flux growth. . . . . . . . . . . . . . 72
3.3 θ − 2θ XRD scan of a single crystal. . . . . . . . . . . . . . . . . . . . 75
3.4 Sample EDS Spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Radial Q scan through the (1 0 3) reflection. . . . . . . . . . . . . . . 84
4.2 Unit cell of Sr3Ir2O7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 RA-SHG patterns measured from Sr3Ir2O7. . . . . . . . . . . . . . . . 89
4.4 Local geometry of the IrO6 octahedra. . . . . . . . . . . . . . . . . . 92

5.1 La-doping dependence of electronic transport and magnetization. . . 106
5.2 Lattice parameter dependence on doping and temperature. . . . . . . 107
5.3 Neutron scattering results tracking the evolution of TAF with varying x.109
5.4 Neutron scattering results tracking the evolution of TS with varying x. 110
5.5 STM topography and associated dI

dV
spectra of (Sr1−xLax)3Ir2O7. . . . 112

5.6 Heat capacity and magnetic susceptibility measurements for x = 0.058
(Sr1−xLax)3Ir2O7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

xv



5.7 Electronic phase diagram of (Sr1−xLax)3Ir2O7. . . . . . . . . . . . . . 116

6.1 Magnon dispersion of Sr3Ir2O7 and modeling fits. . . . . . . . . . . . 125
6.2 Elastic line fits used to determine energy resolution in RIXS measure-

ments at APS beamline 27-ID-B. . . . . . . . . . . . . . . . . . . . . 126
6.3 RIXS energy scans at (π, π) and (π, 0). . . . . . . . . . . . . . . . . . 129
6.4 RIXS energy scans at (π/2, π/2) and (0, 0). . . . . . . . . . . . . . . 131
6.5 Dispersion of M and M∗ features in (Sr1−xLax)3Ir2O7 for samples with

x = 0.02 and x = 0.07. . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.6 Out-of-plane (L) dependence of RIXS spectra with Q = (0 0L). . . . 134
6.7 Momentum dependence of M -peak widths associated with the inverse

lifetime of magnetic excitations in (Sr1−xLax)3Ir2O7. . . . . . . . . . . 135
6.8 Depiction of magnon gap value inequivalence at (π, π) and (0, 0). . . . 136
6.9 RIXS spectral weight of M peaks across the AF zone; REXS data

showing the absence of AF correlations for an x = 0.05 sample. . . . . 139
6.10 REXS scans demonstrating the absence of AF order for an x = 0.05

sample; comparison of weak structural and magnetic reflections ob-
served in an x = 0.023 sample. . . . . . . . . . . . . . . . . . . . . . . 141

6.11 Curie-Weiss fits to high temperature susceptibility in various concen-
trations of (Sr1−xLax)3Ir2O7. . . . . . . . . . . . . . . . . . . . . . . . 144

xvi



List of Symbols and Acronyms

2θ scattering angle, page 36

α fine structure constant ∼ 1/137, page 157

χ dynamical structure factor (RIXS), page 60

κ momentum exchange vector, page 40

τ reciprocal lattice vector, page 40

M(κ) magnetic structure factor, page 45

M(r) magnetization density, page 44

χ magnetic susceptibility, page 34

∆ crystal field splitting magnitude, page 8

ε x-ray polarization, page 53

λ wavelength, page 36

↔
σ conductivity tensor, page 56

ρ(r) atomic electron density, page 53

b scattering length, page 38

d lattice plane spacing, page 36

f atomic scattering factor (x-rays), page 53

f flux ratio, page 71

fmag magnetic form factor (x-rays), page 55

fj magnetic form factor (neutrons), page 44

xvii



FN nuclear unit-cell structure factor (neutrons), page 41

Fhkl structure factor (x-rays), page 54

k wavenumber, page 42

l azimuthal quantum number, page 157

M magnetization, page 34

n Ruddlesden-Popper layer classification, page 2

n principal quantum number, page 8

P atomic percentage, page 78

P integrated peak intensity, page 47

vλ neutron velocity, page 50

x dopant concentration, page 73

AF antiferromagnetic, page 15

BO bond-operator, page 125

CEF crystal electric field, page 8

CW Curie-Weiss, page 111

DFT density functional theory, page 82

EDS energy-dispersive x-ray spectroscopy, page 77

FWHM full width at half maximum, page 128

ICP inductively coupled plasma, page 77

INS inelastic neutron scattering, page 18

LSW linear spin wave, page 20

MIT metal-insulator transition, page 107

RA-SHG rotational anisotropy second harmonic generation, page 83

REXS resonant elastic x-ray scattering, page 55

xviii



RIXS resonant inelastic x-ray scattering, page 59

RP Ruddlesden-Popper, page 2

SEM scanning electron microscope/microscopy, page 77

SOC spin-orbit coupling, page 5

SOM spin-orbit Mott state, page 12

SQUID superconducting quantum interference device, page 34

STS scanning tunneling spectroscopy, page 103

TEM transmission electron microscopy, page 83

XRD x-ray diffraction, page 52

Z atomic number of an atom, page 4

xix



xx



Chapter 1

Ruddlesden-Popper Iridates

At the outset of this work, a discussion of the larger backdrop upon which this re-

search was conducted is warranted. The bulk of the topic is concerned with the

effect of doping a known system to perturb it into less well-known regions of a larger,

more general phase diagram. The results of such work are only fully understood to

the extent that they reveal some underlying commonality with the original system.

Thus, a full understanding of the unperturbed physics becomes essential context.

This chapter will discuss the larger class of materials Sr3Ir2O7 belongs to, what at-

tributes account for its unique electronic and magnetic properties, and the consensus

understanding of this compound provided by published reports up until this point.

1



2 CHAPTER 1. RUDDLESDEN-POPPER IRIDATES

1.1 The Ruddlesden-Popper Series

The Ruddlesden-Popper (RP) series of compounds, named for the researchers who

reported the first examples [1, 2] of this class of structures, describes a family of

crystal structures which have been realized in a vast array of different compositions.

The RP series can be thought of as a group of ‘layered perovskites’, referring to the

hallmark pattern of perovskite-structure layers being stacked between ‘rock salt’-like

layers. Generally, the chemical form is given as An−1A
′
2BnX3n+1, where the A and

B-sites are cations and the X-sites are anions [3]. Here, n refers to the number of

consecutive perovskite layers in the system, which serves to distinguish one member

of a given RP series from another. Figure 1.1 shows the corresponding unit cells

of the first three members of the series, as well as the n → ∞ endpoint of a full

perovskite structure.

Depending on the species of cations and anions populating the structures, a whole

host of interesting electronic states can be realized, ranging from high-performance

cathode materials (La2NiO4) [4] to unconventional chiral p-wave superconductivity

(Sr2RuO4) [5–7], and even high-temperature superconductivity (La2CuO4) [8]. A

myriad of diverse magnetic states can also emerge, including canted antiferromag-

netism (Sr2IrO4) [9] and the giant magnetoresistance effect (Sr3Fe2−xCoxO7) [10].

Material properties can also evolve as a function of dimensionality- that is, even for

fixed cation/anion types the perovskite layer thickness n can drive the evolution of

material properties [11–15], such as a spin-flop transition observed when comparing

Sr2IrO4 (n = 1) with Sr3Ir2O7 (n = 2) [16]. Furthermore, there is a well-established

relationship between phase transitions in perovskite-based materials and the asso-
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Figure 1.1: Unit cells of the strontium-iridate RP series1 Srn+1IrnO3n+1 showing
n = 1, 2 and 3 as well as the n → ∞ limit. A-site Sr atoms shown in green, X-site
O atoms in red, and B-site Ir atoms in tan at the center of the visualized octahedra.

ciated combinations of rotations of the constituent BX6 octahedral cages, implying

that the structure can play a dominant role in determining the electronic, thermody-

namic, and magnetic properties of these systems [17–20].

Given the rich variety of physics manifest in these compounds, as well as the

extent to which such systems are susceptible to chemical and structural tuning, it

is clear the Ruddlesden-Popper family of compounds represent an ideal platform for

1Two types of A-site cations are specified in the general definition: A atoms, which reside
within the perovskite layers’ interstitial sites, and A′ atoms, which are the cations in the ‘rock-salt’-
type interface between perovskite layers. Such a distinction turns out to be unnecessary: both A
and A′-sites are occupied by Sr atoms in this particular RP series (though these sites do remain
crystalographically distinct; see Chapter 4).



4 CHAPTER 1. RUDDLESDEN-POPPER IRIDATES

investigating new frontiers of condensed matter physics.

1.2 Spin Orbit Coupling

With so many exotic RP-based compounds to choose from, investigating the iridates

(B → Ir, X → O) specifically should be motivated. The reason is relatively straight-

forward: the unique physics of iridium-based complex oxides is chiefly defined by the

presence of appreciable spin-orbit interactions. In such a system, the Schrödinger

equation treatment of a simple central potential fails to accurately capture the cor-

rect energy landscape of the Ir 5d electron levels. The resulting ‘fine-structure’ of

the energy levels emerges as a result of not only the spin-orbit interaction, but also

relativistic corrections to the kinetic energy.2

To understand why these corrections are particularly relevant for an element like

iridium, its helpful to understand their origin. Consider the situation of an electron

in a circular orbit around some hydrogen-like nucleus with atomic number Z, but

from the non-inertial frame of the electron. In that frame, it appears that the nucleus

orbits the electron; from the Biot-Savart the ‘current’ of the rotating charged nucleus

generates a magnetic field:

B =
µ0I

2r
=
µ0

2r

Ze

T
⇒ B =

Zeµ0

4πm

1

r3
L (1.1)

Where the substitutions I = Ze/T and |L| = r
(
m2πr

T

)
have been leveraged (where

T is the period of rotation) to define the magnetic field in terms of the (orbital) an-

2A simultaneous derivation of both contributions to the fine structure (spin-orbit and relativistic
corrections) using the Dirac equation can be found in Appendix B.
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gular momentum of the electron. If we take as known the classical magnetic moment

of the electron to be µe = − e
2m

S we can substitute these values into the Hamiltonian

for the interaction between a magnetic moment and a magnetic field:3

H ′ = −µe ·B = − Ze2µ0

8πm2r3
S · L (1.2)

Eq. 1.2 is perhaps the clearest explanation for the moniker ‘spin-orbit coupling’

(SOC): it arises from the scalar product of S, derrived from the intrinsic (spin) an-

gular momentum, and L, from the orbital angular momentum. Following through, if

this is treated as a time-independent perturbation to the nominal central-potential

hydrogen-like atom problem, it can be shown [21–23] that the resulting energy cor-

rections are given by

Eso = −mc2

(
α2Z2

2n2

)2(
n(j(j + 1)− l(l + 1)− 3/4)

l(l + 1/2)(l + 1)

)
(1.3)

The salient feature to take away from Eq. 1.3 is that Eso ∝ Z4. This form finally

lays bare in some crude way the cause for spin-orbit coupling’s important role in

iridate physics: the energy of such an interaction scales to the fourth power in atomic

number Z. Recalling that ZIr = 77, heavy transition metals like Ir clearly represent

an ideal regime for spin-orbit effects to potentially play a role. It is worth noting here

that the expression given in Eq. 1.3 is only valid strictly in the case of a hydrogen-

like atom (a single valence electron directly above a filled shell). Since Ir4+ has the

3To avoid unnecessary digressions into subtleties of electromagnetism here, we omit the modifi-
cations to the g-factor and the correction for our use of a non-inertial frame (Thomas precession).
More detailed discussions of these effects can be found elsewhere [21, 22], and in Appendix B.
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electronic structure [Xe] 4f 14 5d5, this is clearly not the case and some degree of

screening of the full Z by core electrons must be considered. Estimating the degree

of this screening to arrive an an effective atomic charge Zeff can be accomplished by

applying the so-called ‘Slater rules’ [24]. If Zeff is taken to be a simple step function,

a crude application of the Bohr treatment shows that for multi-electron atoms the

energy splitting dependence is approximately Eso ∝ Z2 [25]. The absolute value of

Eso in the RP-iridate systems is estimated to be ≈ 0.4 eV [26].

1.3 Origin of the Jeff = 1
2 State

Having established that the spin-orbit interaction is of a relevant energy scale in this

system, a full evaluation of the other effects which define the electronic ground state

in Sr3Ir2O7 is in order. This begins with a basic question of the expected ground state

of members of the strontium iridate RP-series. Given the strong oxidation states of

Sr (+2) and O (-2), it is expected that Ir would exist in the +4 state. This results

in an electronic configuration for Ir4+ of [Xe] 4f 14 5d5. Here, a simple band-based

interpretation which assumes a free electron model would predict this compound to

be a metal, with the odd number of electrons per unit cell resulting in a half-filled

valence band [27]. The relatively large spatial extent of the 5d orbitals seems to

qualitatively bolster such an argument as well.

The reader will then be shocked to find, however, that this is not the case! Both

the n =1 and 2 compounds are electrical insulators with resistivity values on the

order of 10’s of Ω cm at T ≈ 10 K [29, 30]. The previous section already presents the

case that SOC could be a likely culprit, but now too the validity of a free electron

picture must also be called into question. A careful accounting of the effects such
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Figure 1.2: At left, a schematic representation of the octahedral coordination of
(blue) Ir4+ at the center of a ‘cage’ of (red) O2− ions. At right, probability isosurfaces
associated with the five 5d orbitals, from [28].

considerations have on the 5d energy levels is now made.

In a free Ir ion, the five 5d energy levels (meaning the energies of an electron

occupying one of the associated orbitals: dz2 , dx2−y2 , dxy, dxz, dyz) are nominally

degenerate. When the ion is evaluated in some non-spherically symmetric potential

though, this is no longer necessarily the case. As the outermost electron shells, these

d-orbitals are also the ones most readily affected by the surrounding electrostatic

environment created by the neighboring ligands [31] as illustrated in Fig. 1.2. In

the case of (dxy, dxz, dyz), the lobes corresponding to where an electron in this state

would be most probably localized are positioned between the O2− ions. Contrast this

with (dz2 , dx2−y2) where these lobes directly overlap the O2− sites.

From here, even a very coarse electrostatics argument is sufficient to explain the

lifting of the degeneracy between these two groups of orbitals: electrons occupying the

first group pay a lower energy cost, having minimized their Coulomb repulsion with
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the ligands, at least relative to the other pair [32]. For ease of reference, these two

groupings are assigned the labels t2g (dxy, dxz, dyz) and eg (dz2 , dx2−y2), a convention

which originates from a group theory treatment describing irreducible representa-

tions.4 The degree of splitting is typically described relative to the energy of the

berycenter - a hypothetical configuration in which the total charge of the ligands is

distributed uniformly in a shell with a radius matching the average length of the

metal-ligand bond. This provides a baseline scale for the energy increase from an

average isotropic potential wherein the d states remain degenerate [34].

The impact of the octahedral coordination, with respect to the berycenter, is

calculated to be energy shifts of +(3/5)∆ for the eg orbitals and −(2/5)∆ for the

t2g set [35]. The absolute magnitude of ∆ is based on the degree of orbital overlap

and the atom type of the participating ion and ligands, but this splitting increases

with increasing principal quantum number n when moving downward through the

transition metal block of the periodic table (due to the increasing spatial extent of

the d orbitals). This crystal electric field (CEF) splitting, measured to be about

∆ = 3.6 eV in Sr3Ir2O7 [36], is sufficiently large (compared to the SOC ≈ 0.4 eV) to

drive the electron configuration into the low-spin state,5 and will prove crucial to the

formation of the Jeff = 1
2

state.

To summarize, the effect of strong crystal field splitting is that the lower-energy

t2g orbitals are partially occupied with S = 1/2 and the eg band remains empty.

4These labels are collectively referred to as Mulliken symbols. The first letter describes the degree
of degeneracy (e → ×2; t → ×3), while the g indicates an wave function that is symmetric with
respect to the inversion center (all d orbitals satisfy this condition). The 2 subscript indicates a wave
function that is anti-symmetric with respect to a C2 axis normal to the principle axis associated
with the symmetry of the coordination, Oh, which is C4 [33].

5So-called because the total intrinsic angular momentum S is reduced to S = 1/2 due to the CEF
placing the eg orbitals energetically ‘out of reach’ [37]. This is a direct result of the first Hund’s
Rule; see Appendix A for further discussion.
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Before taking spin-orbit related effects into account, it is helpful to first simplify

the orbital angular momentum picture: consider the generalized expression for an

arbitrary matrix element of one of the three components of the orbital angular mo-

mentum operator L̂ as shown in Eq. 1.4. Indices i, j specify one of the d orbital

wavefunctions, listed in Table 1.1 [38], and k denotes the component (x, y, z) of L

operating on the orbital state j.

αi,j,k = 〈di|Lk |dj〉 (1.4)

Because there are five d orbitals, each of the Lx, Ly, and Lz matrices will have

dimensions of 5× 5. Recalling that Lz |Y ml
l 〉 = mh̄ |Y ml

l 〉 and that the orthogonality

of the spherical harmonics ensures 〈Y m′l
l′ |Y

ml
l 〉 = δl′,l δm′l,ml

, the elements of the Lz

matrix are populated with relative ease. The remaining two, Lx and Ly are most easily

described using the raising and lowering operators L± = Lx±iLy6 and their associated

eigenvalues of L± |Y ml
l 〉 = h̄

√
l(l + 1)−ml(ml ± 1) |Y ml±1

l 〉. Taken together, this

information is summarized in Eq. 1.5.

Lz = h̄



0 0 0 0 0

0 0 −2i 0 0

0 2i 0 0 0

0 0 0 0 i

0 0 0 −i 0


(1.5a)

6Thus, Lx = 1
2 (L+ + L−) and Ly = 1

2i (L+ − L−).
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Lx = h̄



0 0 0 0 −i
√

3

0 0 0 i 0

0 0 0 0 −i

0 −i 0 0 0

i
√

3 0 i 0 0


Ly = h̄



0 0 0 i
√

3 0

0 0 0 0 i

0 0 0 −i 0

−i
√

3 0 i 0 0

0 −i 0 0 0


(1.5b)

There are two features of note in the preceding matrices: first, the elements of the

submatrix spanning i, j = 1, 2 are zero for all k. Recall that these indices correspond

to the unoccupied dz2 and dx2−y2 orbitals, which can now be safely ignored. The

second notable feature is the submatrix associated with the t2g states for Lz:

L′z = h̄


0 0 0

0 0 i

0 −i 0

 (1.6)

Solving the eigenvalue problem for such a matrix yields ε = 0,±1h̄, the expected

result for l = 1. Thus, there is an effective angular momentum of l̃ = 1. Since

ml = ±2h̄ is not a solution, the orbital angular momentum is said to have been

partially quenched. The spin-orbit calculation now involves an interaction with the

form HLS = λ̃(l̃ ·S) and in turn an associated effective total angular momentum given

as J̃ = l̃ + S ≡ J eff. Solving the spin Hamiltonian for this configuration results in

the t2g triplet splitting into a Jeff = 3
2

doublet and a Jeff = 1
2

singlet, with an energy

gap of 3
2
λ̃ [37, 39, 40]. The associated eigenvectors for the Jeff = 1

2
state are given in

Eq. 1.7 [41].
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Table 1.1: d orbital wavefunctions in the basis of the spherical harmonics Y ml
l

index label Y ml
l basis expression

1 dz2 Y 0
2

2 dx2−y2
i√
2

(
Y 2̄

2 − Y 2
2

)
3 dxy

1√
2

(
Y 2̄

2 + Y 2
2

)
4 dxz

1√
2

(
Y 1̄

2 − Y 1
2

)
5 dyz

i√
2

(
Y 1̄

2 + Y 1
2

)

|Jeff =
1

2
, mJeff

= ±1

2
〉 =

1√
3

(± |xy〉 |±〉+ |yz〉 |∓〉 ± i |xz〉 |∓〉) (1.7)

Now, the Jeff = 3
2

states are completely filled (4 e−), and the problem is reduced to

a single Jeff = 1
2

band, which is half filled by the last electron. In spite of all the

corrections from crystal fields and spin-orbit interactions, such a configuration still

suggests a conductor, and so a final energy scale must be accounted for. Because

only the single Jeff = 1
2

band need be considered, the Hubbard model is applicable to

treat electron-electron interactions. For purposes of illustration the one-dimensional

Hubbard Hamiltonian in reproduced in Eq. 1.8 [42]:

H = Ht +HU

H = −t
∑
〈ij〉

c†i,acj,a + U
∑
i

ni↑ni↓
(1.8)

From this expression the key feature of the Hubbard model can be inferred quite

easily: namely, the competition between the band-like hopping term t (favoring a

conducting state) and a correlation term scaled by U (favoring an insulating state).

A rigorous application of the full Hubbard Hamiltonian to the Jeff = 1
2

state is beyond
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Figure 1.3: Energy level schematic demonstrating the various splittings of the 5d
energy levels leading to the Jeff = 1

2
state. Levels are populated with electrons in the

final (farthest right) configuration.

the scope of this section, but it is the case [11, 26] that the Jeff = 1
2

band is sufficiently

narrowed (as a result of spin-orbit effects) that even quite modest U is enough to form

an upper and lower Hubbard band. With the lower Hubbard band completely filled,

and the upper Hubbard band empty, an insulating state is finally attained.

These various interactions and splittings are summarized schematically in Fig. 1.3.

This model of a spin-orbit Mott (SOM) state, first proposed by Kim, et al. in their

seminal work detailing the argument for this novel quantum state in Sr2IrO4 [26], has

proven to be quite robust. In the years since, it has been employed as a theoretical

framework for describing a number of iridates such as Sr3Ir2O7 and CaIrO3 [11, 43]

as well as non-iridium-based compounds like α-RuCl3 and Rb2RhF6 [44, 45].

Bulk electronic transport measurements, mentioned earlier [29, 30], reveal an
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Figure 1.4: (a) Temperature dependence of the electrical resistivity and (b) ir-
reversibility of magnetic susceptibility in Sr3Ir2O7. Data in (b) collected under
H = 800 Oe. (c) Magnetic molar susceptibility of Sr3Ir2O7 showing a weak linear
dependence above TN. Data was collected while cooling under an applied H = 20 kOe.

insulating ground state in Sr3Ir2O7 on the order of 102 Ω m at low temperature (≈

10 K), an example of which can be found in Fig. 1.4 (a). There are two inflection

points in resistivity, one near the onset of magnetic order at TN = 280 K, and a

second at T ∗ = 70 K. This second transition, seen in both conventional zero-field

transport as well as magnetotransport under 9 T is consistent with a field-coupled

order parameter freezing out below T ∗ [46].
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1.4 Bulk Magnetism and Static Spin Structure

With the electronic configuration established, the question of magnetic properties in

Sr3Ir2O7 is next to be considered. Initial bulk magnetization reports describe the

onset of some net ferromagnetic moment near T = 280 K, indicated by an increase

from zero of the irreversibility (FC-ZFC) [30] as shown in a representative plot dataset

in Fig. 1.4 (b). A second feature, a sharp change in the slope of magnetization, was

observed near ≈ 220 K [46, 47]. The low temperature behavior (a positive slope in

the irreversibility below 50 K) suggests diamagnetic behavior of some sort, but the

slope in this regime can be made to change sign by the application of an ≈ 0.5 T

magnetic field, indicating this behavior is only metastable. At the other extreme,

magnetic susceptibility above TN surprisingly does not show any Curie-like behavior,

but instead a linear response with very small slope persists up to 400 K [48], and

shown in Fig. 1.4 (c) (an explanation of which is offered in Chapter 6). There is also

a strong anisotropy of the magnetization- when H is parallel to the basal plane the

signal is 2 to 3 times larger than when H is oriented parallel to the long axis of the

unit cell. An explanation for this anisotropy is posited in Chapter 4.

Under high field (7 T) though, a Curie-Weiss fitting of the susceptibility is possi-

ble and indicates an effective moment of 0.69µB Ir−1 [30], well short of the expected

1.73µB Ir−1 value for an S = 1
2

system.7 A similar discrepancy is found in the mea-

sured ordered moment value of 0.037µB Ir−1 [47], a far cry from the 1µB Ir−1 for a

single unpaired electron. These two observations are reminiscent of a canted anti-

7This expectation, expressed as µeff = gJ
√

(J(J + 1))µB, derives from the Curie law [49] and
yields 1.73 µB for gJ=2, J = 1

2 . That this is not the observed value is hardly surprising though- in
reality the calculation should reflect the ‘effective’ nature of the total angular momentum by using
a modified g-factor, namely gJ̃ , discussed elsewhere [37].
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ferromagnet, wherein much of the local moment is reduced due to antiferromagnetic

(AF) ordering, but coordinated rotations of the moments result in a net moment.

This is the case for Sr2IrO4, where the direction of the Ir4+ moments are locked to

the orientation of the oxygen octahedra in the limit of cubic symmetry [50, 51].

Scattering studies were undertaken to begin to identify the spin structure respon-

sible for the bulk effects. Initial resonant elastic x-ray work and group theoretical

treatments modeled a canted AF ordering with an in-plane moment (as is the case

for Sr2IrO4) [47], but subsequent efforts revealed Sr3Ir2O7 possesses a fundamentally

different static spin structure. The additional application of polarization analysis to

resonant x-ray scattering has yielded a wealth of information regarding the magnetic

structure [16]. A number of crystallographically forbidden peaks, of the forms8 (1 0 l)

for even l and (0 1 l) for odd l, were shown be temperature dependent order param-

eters with onsets corresponding to TN, suggesting they are magnetic Bragg peaks.

By constraining the azimuthal angle such that the in-plane axis (1 0 0) is within the

scattering plane and showing that all of the scattered intensity resides in ‘flipped’

polarization channel for a (1 0 l) reflection, the magnetic moment is constrained to

lie in the ac-plane. If instead the azimuthal angle constrains (0 1 0) to be in the scat-

tering plane, a similar measurement of (0 1 l) demands that the moment lie entirely

in the bc-plane. Taken together, the only configuration which satisfies both of these

conditions results in the Ir4+ moments pointing along the c-axis. The exact character

of the magnetic coupling is implied by the nature of the observed bilayer structure

8Discussing scattering experiments performed on Sr3Ir2O7 presents something of a challenge
with regard to indexing, as the system has been described using tetragonal, orthorhombic, and
monoclinic unit cells (see Chapter 4). Every effort will be made to specify which structure pertains
to a given set of indices, though when in doubt the reader is encouraged to consult the referenced
original work. For this section, indices correspond to the orthorhombic structural solution using
Bbcb (space group No. 68).
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factor in this system.

I = A|FIr(Q)|2 sin2

(
πld

c
+ φ

)
(1.9)

Eq. 1.9 indicates that the intensity of a magnetic Bragg peak is weighted by an

overall amplitude A, the magnetic form factor of iridium FIr at the corresponding Q,

and the bilayer structure factor [52, 53]. This factor modulates the intensity of mag-

netic peaks with a periodicity of ld/c, where c is the length of the c-axis (c ≈ 20.9�A),

and d is the distance between neighboring iridum atoms within a bilayer, along the

c-axis (d ≈ 4.1�A). The additional phase φ takes only two values and determines the

character of the interaction: φ = 0 if the interaction between the constituent layers of

the bilayer is antiferromagnetic, and φ = π/2 if this interaction is ferromagnetic. A

plot of magnetic Bragg peak intensities, measured by REXS, strongly aligns with the

φ = 0 version of Eq. 1.9, providing an unambiguous measure of the antiferromagnetic

nature of Sr3Ir2O7; specifically- a G-type antiferromagnet [16].

Further evidence of this spin structure is also observed via elastic neutron diffrac-

tion [46]. A survey of the magnetic Bragg peaks found signal at (1 0 l) reflections for

l =even and l =odd, the latter of which is crystallographically forbidden in Bbcb.

Previous studies suggested the likely presence of multiple magnetic domains [16, 47],

but such an picture fails to explain the temperature dependence observed by Dhital,

et al. in which intensity at forbidden reflections persists above the Néel temperature

TN. Polarized neutron diffraction was used in a separate work to show representative

members of this group of forbidden peaks to be structural in their origin [54], and

are in fact allowed under a more complete structural solution [55] detailed in Chap-

ter 4. Nonetheless, if the difference in integrated intensities for the (1 0 l) peaks at

T = 315 K and T = 100 K is considered, the contribution purely from the magnetic
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Figure 1.5: Diagram indicating the spin structure of G-type antiferromagnetic or-
dering of Ir4+ sites in Sr3Ir2O7, adapted from [46].
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ordering can be evaluated. These data were successfully fit using a two-domain model

in which the Ir4+ moments were oriented along the c-axis, offering further evidence

that such a spin structure, depicted in Fig. 1.5, is correct.

1.5 Spin Dynamics

Attempting to probe magnetic excitations in the iridates presents several challenges,

since the typical avenue for such pursuits has historically been inelastic neutron scat-

tering. Sr3Ir2O7 synthesis methods (detailed in Chapter 3) limit potential sample

masses to just a few milligrams per crystal, while unfortunately INS can typically

require several grams of material. Beyond this, neutron scattering with Ir samples is

already especially challenging due to the element being one of the strongest absorbers

of neutrons on the periodic table [56]. Even if sufficient material could be obtained,

the energy scales of magnetic interactions in Sr3Ir2O7 (∼ 100 meV) are kinematically

difficult to access given the neutron cross-section [57] and the nature of the Ir 5d

form factor [58], as well as the small moment size further reducing absolute magnetic

signal intensity.

Given this, recent advances in resonant inelastic x-ray scattering (RIXS) offer an

attractive alternative (more details on the technique can be found in section 2.4.2).

The first work on the RP iridates using RIXS was done for Sr2IrO4 to map the dis-

persion of magnons as well characterizing in further detail a more exotic so-called

‘spin-orbit exciton’ ascribed to excitations of holes between the Jeff = 1
2

and Jeff = 3
2

bands of a single Ir-site [59, 60]. Magnetic excitations in this system are quite

well described by a pure Heisenberg model with coupling constants J = 60 meV,

J ′ = −20 meV, J ′′ = 15 meV corresponding to the nearest, next-nearest, and next-
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Figure 1.6: Diagram depicting magnetic exchange coupling J ’s included in the the
Hamiltonian terms of Eq. 1.10. Figure adapted from [61].

next-nearest neighboring Ir-sites respectively. Similar measurements on Sr3Ir2O7 are

notable for their incompatibility with a Heisenberg description- here a significant

magnon gap (≈ 92 meV) is found despite the large magnon bandwidth (≈ 70 meV).

The gap is also notable in comparison to the energy scale of the bulk antiferro-

magnetic transition (kBTN ≈ 25 meV), suggesting that thermal fluctuations of the

Ir4+ moments alone at this temperature would not be sufficient to completely dis-

rupt the AF order [61]. The dispersion was modeled using a Hamiltonian which

includes isotropic magnetic exchange terms associated with nearest neighbor cou-

plings (see Fig. 1.6) as well as accounting for anisotropic superexchange interactions.

The anisotropic superexchange interaction can be expressed as two terms, one sym-

metric and the other anitsymmetric. The symmetric contribution (Γ) is referred to
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as the pseudodipolar coupling,9 while the antisymmetric term (D) is known as the

Dzyaloshinsky-Moriya interaction. Excitations in this model are characterized as a

superposition of linear spin wave (LSW) modes. Due to the bilayer nature of the

system terms weighting the strength of these interactions were included for both in-

and out-of-plane directions such that H = Hab+Hc, the details of which are found in

Eq. 1.10. The order of the brackets containing ij indicates a summation over nearest

〈ij〉, next-nearest 〈〈ij〉〉, or next-next-nearest neighbors 〈〈〈ij〉〉〉, as seen in Fig. 1.6.

Hab =
∑
〈ij〉

[
J ~Si ~Sj + ΓSzi S

z
j +D(Sxi S

y
j − S

y
i S

x
j )
]

+
∑
〈〈ij〉〉

[
J2
~Si ~Sj

]
+
∑
〈〈〈ij〉〉〉

[
J3
~Si ~Sj

]
Hc =

∑
i

[
Jc~Si~Si+z + ΓcS

z
i S

z
i+z +Dc(S

x
i S

y
i+z − S

y
i S

x
i+z)
]

+
∑
〈ij〉

[
J2c

~Si~Sj+z

]
(1.10)

The model successfully captures the general features of the magnon dispersion10

with magnetic exchange constants of J = 93 meV, J2 = 11.9 meV, J3 = 14.6 meV,

and Jc = 25.2 meV, while θ = 37°. The relative strengths of extracted values for the

pseudodipolar terms (Γ = 4.4 meV, Γc = 34.3 meV) are offered both as the driving

mechanism of c-axis magnetic anisotropy and the source of the anomalously large

magnon gap in the system.

Nonetheless, several questions remain as to the validity of such a model. With

nine free parameters (five J ’s, two Γ’s, and two D’s, none of which are restrained by

any applied theoretical limits in fitting) describing the general shape of the dispersion

9This nomenclature refers to the term’s mathematical form being ∝ (cos2 φ + 1
3 ), just as in a

typical dipole-dipole interaction. In the case of the true antisymmetric superexchange interaction
though, the scaling constant is between 100 and 1000 times stronger than the standard interaction
between two magnetic dipoles, albeit with substantially shorter range [62].

10Dispersion data from [61] and a fit using the proposed model are both reproduced in Fig. 6.1
on page 125.
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is to be expected, but a model of linear spin waves additionally enforces a symmetry

of the dispersion about the in-plane momentum transfer q = (π/2, π/2) 11 which is

incongruous with measurement. Of further concern is that the model predicts two

(optical and acoustic) magnon modes, yet only a single feature is observed in the

spectra and is not well-matched by some supposed convolution of the two branches.

A successive investigation also notes that at face value a dominant magnon mode in

a bilayer-type structure has previously been ascribed to a system of weakly coupled

spin dimers [63–66].

After separately calculating the RIXS scattering cross-section for different man-

ifestations of the Jeff = 1
2

state, Moretti Sala, et al. next applied a bond-operator

mean-field theory approach to the problem of magnetic interactions in Sr3Ir2O7 [63,

67]. The Hamiltonian is reproduced in Eq. 1.11, with the labeling convention of the

isotropic J ’s remaining the same (Fig. 1.6), where indices are such that the first (l)

designates which half of the bilayer the spin resides in, and the second (i, j) indexes

a spin within a layer. The pseudodipolar and Dzyaloshinsky-Moriya terms are also

included (the second and third terms in the J-weighted summation), and are indi-

rectly scaled by θ, a parametrization of the relative strength of these anisotropic

interactions.

H = J
∑
〈ij〉,l

[
cos (2θ) ~Sli · ~Slj + 2 sin2 (θ)SzliS

z
lj − εiεl sin (2θ)

(
~Sli × ~Slj

)
· êz
]

+J2

∑
〈〈ij〉〉,l

[
~Sli · ~Slj

]
+ J3

∑
〈〈〈ij〉〉〉,l

[
~Sli · ~Slj

]
+ Jc

∑
i

[
~S1i · ~S2i

] (1.11)

11For discussion of RIXS analysis, positions in momentum-space are indexed to a tetragonal
setting scaled by π (for convenient comparison with cuprate RP compounds). Indices here are
related to the previous orthorhombic setting by Ht = π(Ho +Ko), Kt = π(−Ho +Ko).
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This treatment yields three (two degenerate transverse, one longitudinal) magnon

modes whose shapes are not constrained to be symmetric about (π/2, π/2). The

researchers were able to successfully resolve both magnon branches and fits to the

model12 gave coupling constants of J = 26 meV, J2 = −15 meV, J3 = 6 meV, and

Jc = 90 meV. This is somewhat striking in a simplistic comparision between the

dominant in- and out-of plane terms J/Jc. This ratio favors the inter-layer coupling

here, yet surprisingly the prior work of Kim found that the intra-layer coupling was

the primary driver of the large spin-gap and anisotropy.

With two different treatments of datasets derived from nearly identical chemical

compounds, this proves a rather unsatisfying situation. The work comprising Chap-

ter 6 represents an attempt to resolve this discrepancy by testing which model proves

more descriptive of RIXS spectra collected from doped samples.

1.6 Relationship to the Cuprates

A common criticism of ‘pure’ research is that there is no terminal goal- no useful ap-

plication resulting from the work. Often, unfortunately, knowledge for knowledge’s

own sake is insufficient justification for an enterprise. Following in this (somewhat

cynical!) vein, one might level the question: “What tangible benefit would be de-

rived from a complete understating of the RP iridates?” Aside from proving a rich

and challenging intellectual pursuit, the RP iridates are very small, very costly to

produce,13 and only exhibit their most interesting properties at liquid-He tempera-

12Again, dispersion data from [63] and a fit using the bond-operator model are both reproduced
in Fig. 6.1 on page 125.

13Given the commercial price of IrO2 at the time of press, it is estimated that each batch of
Sr3Ir2O7 crystals contains more than $225 worth of materials and produces only 30-40 ≈ 1 mg
crystals.
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Figure 1.7: Generic phase diagram of doping dependence in the cuprate family
compounds. Figure reproduced directly from [70].

tures. Thus, such materials do not lend themselves well to any obvious engineering

applications.

Study of the iridates is partially justified then, by virtue of their relationship to

the cuprates. They are also members of the Ruddlesden-Popper class of materials,

and ergo isostructural (to varying extents) to the iridates discussed in this work [68].

The un-doped parent compounds of the cuprates are also antiferromagnetic Mott-

driven insulators and their electronic properties also derive from d orbitals. For the

n = 1 case they are even well-described by the Heisenberg model, as is Sr2IrO4 [69].

A generic phase diagram for the cuprates is reproduced in Fig. 1.7, showing that

upon chemical doping a host of interesting phases can be accessed, not least among

them high-Tc superconductivity.

It follows then, at least in a hand-waving sense, that perhaps there may be
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similarly exotic (perhaps even useful!) phases lurking somewhere within the dop-

ing/temperature phase diagram of the RP iridates. This is predicted more rigorously

by a mapping of the Jeff = 1
2

pseudospin space onto a variant of the Hubbard model

used to describe the Cu-based family of high Tc materials [66]. The authors describe

an analogy to be drawn between hole-doping in the cuprates and electron-doping in

the iridates. It is the disappointing duty of this author to relate that at time of press

no report of a bulk manifestation of superconductivity, be it resistance-free electrical

transport or the Meissner effect, has yet emerged.

A complicating factor has been the RP iridates’ resistance to electron doping

via La3+ substitution. Sr2IrO4 has been synthesized with concentrations as high

as x = 0.06, while Sr3Ir2O7 has been pushed in this work as high as x = 0.08 [71,

72] with no evidence of superconductivity. This is in contrast to compounds like

La2−xSrxCuO4 where superconductivity has been observed with doping as low as

x ≈ 0.025 [73]. Even at the dopant levels already achieved in iridates however, the

analogy between the two systems appears to hold strong. La-doped Sr3Ir2O7 samples

have been shown to exhibit characteristic photoemission spectra (Fermi-arcs) often

associated with the pseudogap phase in the cuprates [74, 75]. Similar arcs have

also been observed in surface doped Sr2IrO4, and when driven to the highest doping

concentrations using this technique, collapse into a d-wave point gap [76, 77].

The experimental realization of this d-wave gap has been met with much excitement-

its emergence is the spectroscopic signifier in the cuprates of the transition from the

pseudogap phase (see Fig. 1.7) into the so-called ‘superconducting dome’. It pro-

vides the strongest evidence yet that the high-Tc phenomenology may actually be

realized in the iridate family. Obviously, a true thermodynamic measurement (resis-

tivity, magnetization, heat capacity) would be preferable, but these techniques are
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inaccessible due to the nature of the doping mechanism. The surface-doping can only

survive under ultra-high vacuum and low temperatures, and is easily destroyed by

ambient temperatures, somewhat nullifying one of the key material properties of the

oxides.

Considering this, pushing the boundaries of chemical doping and rigorously char-

acterizing their effects still appear highly relevant pursuits. With a complete un-

derstanding of the true mechanism of high-Tc still outstanding, realizing this phase

in a number of different systems will help to further narrow the list of explanatory

variables.
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One-Dimensional Hubbard Model, 1st (Cambridge University Press, 2005).

[43] M. M. Sala, K. Ohgushi, A. Al-Zein, Y. Hirata, G. Monaco, and M. Krisch,

Phys. Rev. Lett. 112, 176402 (2014).

[44] K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar, Y. F. Hu, K. S.

Burch, H.-Y. Kee, and Y.-J. Kim, Phys. Rev. B 90, 041112 (2014).

[45] T. Birol and K. Haule, Phys. Rev. Lett. 114, 096403 (2015).

[46] C. Dhital, S. Khadka, Z. Yamani, C. de la Cruz, T. C. Hogan, S. M. Disseler,

M. Pokharel, K. C. Lukas, W. Tian, C. P. Opeil, Z. Wang, and S. D. Wilson,

Phys. Rev. B 86, 100401 (2012).

[47] S. Boseggia, R. Springell, H. C. Walker, A. T. Boothroyd, D. Prabhakaran, D.

Wermeille, L. Bouchenoire, S. P. Collins, and D. F. McMorrow, Phys. Rev. B

85, 184432 (2012).

[48] I. Nagai, Y. Yoshida, S. I. Ikeda, H. Matsuhata, H. Kito, and M. Kosaka, J.

Phys. Condens. Mat. 19, 136214 (2007).

[49] S. Blundell, Magnetism in Condensed Matter, 1st (Oxford University Press,

2001).

[50] M. A. Subramanian, M. K. Crawford, R. L. Harlow, T. Ami, J. A. Fernandez-

Baca, Z. R. Wang, and D. C. Johnston, Physica C: Superconductivity and its

applications 235-240, 743 (1994).

[51] G. Jackeli and G. Khaliullin, Physical Review Letters 102, 017205 (2009).



REFERENCES 29

[52] M. B. Stone, M. D. Lumsden, R. Jin, B. C. Sales, D. Mandrus, S. E. Nagler,

and Y. Qiu, Physical Review B - Condensed Matter and Materials Physics 73,

1 (2006).

[53] L. Capogna, E. M. Forgan, S. M. Hayden, A. Wildes, J. A. Duffy, A. P. Macken-

zie, R. S. Perry, S. Ikeda, Y. Maeno, and S. P. Brown, Physical Review B 67,

012504 (2003).

[54] C. Dhital, T. Hogan, Z. Yamani, C. de la Cruz, X. Chen, S. Khadka, Z. Ren,

and S. D. Wilson, Phys. Rev. B 87, 144405 (2013).

[55] T. Hogan, L. Bjaalie, L. Zhao, C. Belvin, X. Wang, C. G. Van de Walle, D.

Hsieh, and S. D. Wilson, Physical Review B 94, 134110 (2016).

[56] V. F. Sears, Neutron News 3, 26 (1992).

[57] M. van Veenendaal, Theory of Inelastic Scattering and Absorption of X-rays

(Cambridge University Press, 2015).

[58] K. Kobayashi, T. Nagao, and M. Ito, Acta crystallographica. Section A, Foun-

dations of crystallography 67, 473 (2011).

[59] J. Kim, D. Casa, M. H. Upton, T. Gog, Y.-J. Kim, J. F. Mitchell, M. van

Veenendaal, M. Daghofer, J. van den Brink, G. Khaliullin, and B. J. Kim,

Phys. Rev. Lett. 108, 177003 (2012).

[60] J. Kim, M. Daghofer, a. H. Said, T. Gog, J. van den Brink, G. Khaliullin, and

B. J. Kim, Nature Communications 5, 4453 (2014).

[61] J. Kim, A. H. Said, D. Casa, M. H. Upton, T. Gog, M. Daghofer, G. Jackeli,

J. van den Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 109, 157402

(2012).

[62] S. Chikazumi, Physics of Ferromagnetism, 1st (Oxford University Press, 2009).

[63] M. Moretti Sala, V. Schnells, S. Boseggia, L. Simonelli, A. Al-Zein, J. G. Vale,

L. Paolasini, E. C. Hunter, R. S. Perry, D. Prabhakaran, A. T. Boothroyd, M.

Krisch, G. Monaco, H. M. Rønnow, D. F. McMorrow, and F. Mila, Phys. Rev.

B 92, 024405 (2015).

[64] R. Eder, Y. Ohta, and S. Maekawa, Phys. Rev. B 52, 7708 (1995).



30 CHAPTER 1. RUDDLESDEN-POPPER IRIDATES

[65] M. Vojta and K. W. Becker, Phys. Rev. B 60, 15201 (1999).

[66] F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).

[67] M. Moretti Sala, S. Boseggia, D. F. McMorrow, and G. Monaco, Physical Review

Letters 026403, 1 (2014).

[68] A. Saleem and S. T. Hussain, Journal of Surfaces and Interfaces of Materials 1,

97 (2013).

[69] N. Plakida, High-Temperature Cuprate Superconductors, 1st (Springer, 2010).

[70] C. Varma, Nature 468, 184 (2010).

[71] X. Chen, T. Hogan, D. Walkup, W. Zhou, M. Pokharel, M. Yao, W. Tian, T. Z.

Ward, Y. Zhao, D. Parshall, C. Opeil, J. W. Lynn, V. Madhavan, and S. D.

Wilson, Phys. Rev. B 92, 075125 (2015).

[72] T. Hogan, Z. Yamani, D. Walkup, X. Chen, R. Dally, T. Z. Ward, M. P. M.

Dean, J. Hill, Z. Islam, V. Madhavan, and S. D. Wilson, Physical Review Letters

114, Supplementary Information, 257203 (2015).

[73] T. Fujita, J. Hori, T. Goko, N. Kikugawa, and S. Iwata, RIKEN Review 27, 75

(2000).

[74] J. He, H. Hafiz, T. R. Mion, T. Hogan, C. Dhital, X. Chen, Q. Lin, M. Hashimoto,

D. H. Lu, Y. Zhang, R. S. Markiewicz, A. Bansil, S. D. Wilson, and R.-H. He,

Scientific reports 5, 8533 (2015).

[75] J. F. Mitchell, APL Mater. 3, 062404 (2015) http://dx.doi.org/10.1063/1.

4921953.

[76] Y. K. Kim, O. Krupin, J. D. Denlinger, a. Bostwick, E. Rotenberg, Q. Zhao,

J. F. Mitchell, J. W. Allen, and B. J. Kim, Science 345, 187 (2014).

[77] Y. K. Kim, N. H. Sung, J. D. Denlinger, and B. J. Kim, Nature Physics 12, 1

(2015).



Chapter 2

Measurement Techniques

A wide array of experimental techniques and methods were employed to obtain the

data presented in this work. Several are quite common in most experimental con-

densed matter physics laboratories and will be treated only very briefly here. The

scattering techniques and motivating theory, however, will be described in greater

detail as they are particularly powerful probes whose application is nontrivial, and

the results of which provided crucial support to the conclusions of this work.

31
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2.1 Electrical Resistivity

The humble electronic transport measurement is mentioned in passing here: a known

excitation source of current I is applied to the sample, and the potential drop V

across the sample is measured. Ohm’s eponymous law is then leveraged to extract

the resistance, R. Of more interest typically is the intrinsic quantity resistivity ρ,

related to absolute resistance as shown in Eq. 2.1 by a geometric factor comprised

of the length L of sample across which the voltage drop is measured, and the cross-

sectional area A through which the current flows.

V = IR ρ =
RA

L
(2.1)

Most often, the dependence of ρ on some external parameter is the true objective

in such a measurement, such as the temperature dependence ρ(T ) or the magnetore-

sistance ρT (B). Unlike a quick measurement with a multimeter, however, a precise

measurement of resistivity requires a slightly more involved setup. A multimeter

uses the same conductor to supply the excitation current and to measure the drop in

potential. A quick application of Kirchhoff’s circuit laws reveals such a measurement

returns not only the resistivity of the sample in question, but also the wires used in

series with the sample to perform the measurement. In the case that Rsamp � Rwire,

this is perfectly acceptable, but generally it is preferred to avoid this, as such a

condition is not true generally.

A so-called ‘four-probe’ resistance measurement (schematic depicted in Fig. 2.1)

neatly solves this problem by supplying the excitation current via separate terminals

from the voltage drop measurement [1]. An adroit placement of the voltage leads
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Figure 2.1: A four-probe lead configuration; for a known current source I, the
resistance R can be determined by measuring the potential difference V across the
distance L. The resistivity is computed as in Eq. 2.1 using L and the cross-sectional
area A = w · t as depicted above.

directly onto the sample itself means no contribution to the drop from the resistance

of the wires is measured- though care must be taken to correctly note the geometric

factors L and A for the measurement to be accurate. For samples with ill-defined

or arbitrary geometry, a van der Pauw measurement, detailed elsewhere [2], may be

required.

2.2 SQUID Magnetometry

To gain insight into the behavior of the magnetic moments in a system, bulk magne-

tometry is often the first measurement attempted: sample preparation is relatively

straightforward, the measurement is non-destructive, and many mature commercial

magnetometry solutions are available. The principle of operation is basic enough—
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reproduced below are Faraday’s law and the magnetic field produced by an ideal

dipole moment m [3]:

∇×E = −∂B
∂t

Bdip(r) =
µ0

4π

1

r3
[3(m · r̂)r̂ −m] (2.2)

The magnetometer translates a sample through a fixed loop which induces voltage

in said loop resulting from the change in magnetic flux as the field from the sample

dipole moment m varies (at the site of the loop) in time. Measuring how the voltage

changes and fitting the response curve allows the net ferromagnetic moment of the

sample to be determined [4].

In the case of materials measured in this work, the net moment is quite small-

on the order of 10−6 emu to 10−7 emu. The small induced voltages from such tiny

moments are difficult to detect, and thus necessitate the sensitivity of a SQUID

(Superconducting QUantum Interference Device)-based measurement loop to prop-

erly resolve.

A full-featured commercial system will not only automatically translate the sam-

ple and fit the response, but also provide environmental control of both applied

magnetic field and temperature. Magnetometry measurements generally consist of

collecting net-moment m(T ) or m(H) curves and reconstructing quantities such as

magnetization M or susceptibility χ.

Despite the ease with which such data is collected, the interpretation is often

nontrivial. While relatively simple magnetic systems such as ferromagnets, antifer-

romagnets, paramagnets have well-defined signatures in the temperature dependence

of their bulk susceptibility or M(H) curves, they are the exception. For systems that

are not well-characterized, bulk susceptibility on its own can present something of a
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mystery since it only relates the behavior of the net moment. Systems like canted an-

tiferromagnets with (seemingly!) anomalously low net moments, or disordered glassy

systems for example are difficult to identify by bulk magnetometry alone.

In such cases, additional measurements can be necessary. Often a local probe

such as µSR (where the data correspond to the magnitude and direction of the local

magnetic field at a particular muon stopping site within the crystal structure) can

be a helpful compliment to magnetometry in order to construct a more complete

description of a magnetic state. Conversely, other bulk probes can serve this function

as well, as will be discussed in subsequent sections on x-ray and neutron scattering.

2.3 Neutron Scattering

2.3.1 Introduction to Neutron Scattering

The discovery of the neutron in 1932 opened the door to a vast array of invaluable

experimental techniques capable of probing the structure and dynamics of matter

across a wide range of length scales. Some words are spent here discussing how

such an unassuming particle ends up proving so useful. As an uncharged particle,

neutrons can penetrate deep into materials because there is no Coulomb repulsion

from either the protons or electrons- thus, the scattering mechanism is due instead

to nuclear forces. On the other hand, the neutron does possess a spin (s = 1
2
), and

thus interacts with magnetic materials possessing unpaired electrons [5].

Because the energy of a neutron is given by E = h̄2k2/2m, thermal neutrons

(where En ≈ kB · 300 K) have wavelengths on the order of just a few Angstrom

(�A) [6]. Recall that Bragg’s Law relates the scattering angle θ and the spacing d
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between regular planes of atoms to the wavelength λ of the incident radiation by

nλ = 2d sin(θ), for comparable λ and d. Since the typical length-scale of inter-atomic

distances in most condensed matter systems is on the order of a few �A, thermal

neutrons clearly are an ideal probe to leverage scattering techniques to study such

systems.1

2.3.2 Nuclear Bragg Scattering

A neutron scattering experiment, at its most simplistic, consists of placing a sample

within a neutron beam, and counting how many neutrons are scattered from the

sample. For a given incident beam flux density of Φ,2 we can already define the total

scattering cross-section σtotal as

σtotal =
total no. of neutrons scattered per 1 s

Φ
(2.3)

This counting is accomplished by various types of detectors, but most detectors

can not simultaneously measure the full solid angle Ω, so it falls to the experimenter

to decide where (in space) to place the detector and commence counting. Taking

the sample as the origin, such a detector position can be defined in standard polar

coordinates r, θ, and φ. For sufficiently large r, the coverage area of the detector is

just dΩ, some fraction of the full solid angle. Now the differential cross-section can

be defined:

dσ

dΩ
=

no. of neutrons scattered into dΩ per 1 s

Φ dΩ
(2.4)

1The discussion which follows roughly tracks the first few chapters of Ref. [5] and to a lesser
extent Ref. [6] to quickly build up the fundamental theory of neutron scattering.

2Neutron flux density Φ has units of [‘number of neutrons’ / (area · time)], thus all the cross-
sections presented here have units of area.
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If the detector has some means of energy discrimination, a final cross-section called

the partial differential cross-section is given as

dσ2

dΩ dE ′
=

no. of neutrons scattered into dΩ per 1 s having E ′ < E < E ′ + dE ′

Φ dΩ dE ′

(2.5)

Clearly these quantities are related to one another- integrating Eq. 2.5 with respect

to energy recovers Eq. 2.4, where all energies contribute:

∫ ∞
0

(
dσ2

dΩ dE ′

)
dE ′ =

dσ

dΩ
(2.6)

...and integrating Eq. 2.4 over the full solid angle Ω yields Eq. 2.3.

∫
all space

(
dσ

dΩ

)
dΩ = σtotal (2.7)

The cross-sections are defined here to connect the somewhat involved mathematics

which follow to the real quantities measured in a laboratory setting. Efforts will

be made to periodically draw attention to important features as the cross-sections

are now developed. An application of Fermi’s Golden rule [5], which provides an

expression for the probability of an incident neutron with wave vector k′ scattering

into a state with wave vector k, gives the differential cross-section the form

dσ

dΩ
=
∣∣∣〈k′| V̂ |k〉∣∣∣2 (2.8)

It is known empirically that scattering of neutrons from nuclei is an isotropic pro-

cess [6]. The form of V̂ which satisfies this condition for a single neutron-nucleus

scattering event is a scaled delta-function, referred to as the Fermi pseudo-potential:
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V̂ ∝ b δ(r−R), where R is the position of the nucleus and b is a complex constant,

independent of energy, called the scattering length.

The expression given in Eq. 2.8 can now be evaluated for scattering from a single,

fixed nucleus at R = 0. The incoming neutron beam, directed along the z-axis, is

treated as a plane wave with wavenumber k, such that ψinc. = eik
′·r and similarly,

ψscat. = eik·r. This then yields,

dσ

dΩ
=

∣∣∣∣∫
all space

(
e−ik

′·r (b δ(r)) eik·r
)
dr

∣∣∣∣2 = |b|2 (2.9)

It follows then from Eq. 2.7 that the total cross section in this simple case is just

σtotal = 4π|b|2 (2.10)

The complex component of b is relevant for absorption processes, but for the

treatment here, this is assumed to be small. It should be noted that b is not easily

calculated for a given nucleus from first principles- it varies somewhat randomly as a

function of atomic number and even between various isotopes of the same element.3

Given the abundance of natural occurring isotopes, a reasonable question would be

to ask how a distribution of bi’s within a sample would impact the cross-section.

In this case, the Fermi pseudo-potential is simply modified to be a summation

3While a somewhat unsatisfying situation from the prospective of a complete nuclear forces
theory, the ‘random’ variance of scattering lengths is that gives neutron scattering such a high
degree of elemental and isotropic contrast, a very useful experimental result.
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over all the nuclei (indexed by l) in the in the sample

V̂ ∝
∑
l

bl δ(r −Rl)

⇓

〈k′| V̂ |k〉 =
∑
l

bl e
iκ·Rl

(2.11)

Where κ = k−k′. The resulting differential cross-section for such a pseudo-potential

can be reduced to the following

dσ

dΩ
=
∑
l,l′

eiκ·(Rl−Rl′ )b∗l′bl (2.12)

A careful consideration of the last term in the expression, the average product of

two arbitrary scattering lengths, finds b∗l′bl =
∣∣b∣∣2 + δl,l′

(
|b|2 −

∣∣b∣∣2), which in turn

gives the differential cross-section the form-

dσ

dΩ
=
∑
l,l′

eiκ·(Rl−Rl′ )
∣∣b∣∣2 +

∑
l,l′

eiκ·(Rl−Rl′ )δl,l′
(
|b|2 −

∣∣b∣∣2) (2.13)

The term associated with
∣∣b∣∣2 is the scattering expected from a uniform system of

nuclei each with the same bl = b, and is referred to as coherent scattering. The second

term is the incoherent contribution to the cross-section which arises as a result of

the random distribution of bl’s within a sample. Since the b’s are constants and

their various averages not dependent on any index of the summation, total scattering

cross-sections can be defined for each (via Eq. 2.10) as

σcoh = 4π
(
b
)2

σincoh = 4π
(

(b)2 − (b)2
)

(2.14)
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Figure 2.2: The scattering geometry for a generic reciprocal lattice illustrating the
Bragg condition between incident and scattered wave vectors k′, k and the reciprocal
lattice vector τ .

Skipping forward, the differential cross section for coherent, elastic (Ei = Ef )

scattering from a crystal lattice (comprised of N unit cells, each with volume v0) at

a given reciprocal lattice vector τ is given by

(
dσ

dΩ

)
coh, elst

= N
(2π)3

v0

∑
τ

δ(κ− τ )|FN(κ)|2 (2.15)

First, it is clear from Eq. 2.15 that the only terms which contribute to this cross-

section are those for which κ = τ . That is, only momentum exchanges κ =

k − k′ matching a reciprocal lattice vector τ produce a non-zero cross-section. For

elastic scattering, the constraint k = k′ sets up a simple geometric equality that

τ = 2k sin(θ) (see Fig. 2.2). The absolute length of τ is defined in terms of the

associated real-space distance d between lattice planes by τ = n2π
d

[7], and the wave

number k is related to the wavelength λ by k = 2π
λ

. Substituting these in for the
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previous expression of τ ...

τ = 2k sin(θ)

n
2π

d
= 2

(
2π

λ

)
sin(θ)

⇒ nλ = 2d sin(θ)

(2.16)

...recovers the familiar form of Bragg’s law.

The other notable feature from Eq. 2.15 is the function FN(κ), known as the

nuclear unit-cell structure factor; it is defined as

FN(κ) =
∑
l

bl exp{iκ · l} exp{−Wl} (2.17)

where l denotes the real-space position of an atom, and l indexes all the atoms in the

unit cell (the other exponential term, the Debye-Waller factor, accounts for thermal

oscillations of the atoms at finite temperatures). It is worth noting that despite the

fact that any κ which is equivalent to some τ will satisfy the Bragg condition and

produce a non-zero cross-section (that is, non-zero counts registered by a detector

oriented in the appropriate geometry), this contribution is scaled by the nuclear

structure factor, which is generally not the same for every valid κ. Thus, the rate

of counts expected to be observed for any valid scattering geometry depends on the

specific choice of τ used to satisfy the delta function. This mechanism of scattering

from atomic nuclei is how neutrons are used to probe a crystal lattice in order to

determine a structural solution for a system of interest.
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2.3.3 Magnetic Bragg Scattering

As mentioned previously, the neutron’s spin also means it participates in magnetic

interactions with unpaired electrons in a sample placed in a neutron beam. A sketch of

how this mechanism functions now follows:4 The potential of a neutron experiencing

the magnetic field from an unpaired electron in the scattering system can be written

as the sum of two different components, owing to the intrinsic (spin) and orbital

contributions to the total angular momentum of the electron:

Vm = −µn ·B ∝ σ · (W S +W L) (2.18)

A general form of the partial differential cross-section (Eq. 2.5) can be written in

terms of neutron state (denoted by spin state σ and wavenumber k), as well as the

energy state of the scattering system (λ):

(
d2σ

dΩ dE ′

)
σλ→σ′λ′

=
k′

k

(
m

2πh̄2

)2

|〈k′, σ′, λ′|Vm |k, σ, λ〉|
2
δ(Eλ − Eλ′ + h̄ω) (2.19)

Treating just the integration of the spatial coordinate, it can be shown that the

contribution from all unpaired electrons in the scattering system (indexed by i) is

given by

∑
i

〈k′|W S +W L |k〉 = (4π)
∑
i

exp{iκ · ri}
[
κ̂× (si × κ̂) +

i

h̄κ
(pi × κ̂)

]
= (4π)Q⊥

(2.20)

4Again, this line of inquiry is sourced from Refs. [5], [8], and [9]- specifically in this case the
chapters discussing elastic magnetic scattering.
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⇒
(

d2σ

dΩ dE ′

)
σλ→σ′λ′

= (γr0)2 k
′

k
|〈σ′, λ′|σ ·Q⊥ |σ, λ〉|

2
δ(Eλ − Eλ′ + h̄ω) (2.21)

Where γ = 1.913, and r0 is the classical radius of the electron, and Q⊥ is the

component of the magnetic interaction operator normal to κ. To continue evaluating

this expression the sum over the final (σ′, λ′) states is taken, and this result is averaged

over the initial states (σ, λ), which yields

(
d2σ

dΩ dE ′

)
= (γr0)2 k

′

k

∑
αβ

(δαβ − κ̂ακ̂β)

×
∑
λλ′

pλ 〈λ|Q+
α |λ′〉 〈λ′|Qβ |λ〉 δ(Eλ − Eλ′ + h̄ω)

(2.22)

Here, α, β refer to components of σ and pλ represents the probability associated

with the system initially being in state λ. If the assumption of unpolarized neutrons

scattering from spin-only unpaired moments in a scattering system is made, the

elastic differential cross-section, obtained by taking the thermal average (t→∞), is

(
dσ

dΩ

)
elastic

= (γr0)2
∑
αβ

(δαβ − κ̂ακ̂β) 〈Qα(−κ)〉 〈Qβ(κ)〉 (2.23)

A moment is now taken to consider the operator Q. It is related to the quantity

appearing in Eq. 2.21, Q⊥, by

Q⊥ = κ̂× (Q× κ̂) (2.24)

Q-proper is of general interest because it is essentially a Fourier transform (to within
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a constant) of the magnetization density M (r) as see in Eq. 2.25.

Q = − 1

2µB

M (κ) = − 1

2µB

∫
M (r) exp{iκ · r}dr (2.25)

Since the spins themselves are assumed here to be only from localized electrons, the

magnetization density can be represented as a simple summation over the contribu-

tion from atomic sites indexed by j located at positions Rj:

M(R) =
∑
j

M (Rj + rj) (2.26)

Combining this with Eq. 2.25,

2µBQ =
∑
j

exp{iκ ·Rj}
∫
M (Rj + rj) exp{iκ · rj}drj (2.27)

If the magnetism at a given site arises purely from spin, the total magnetic moment

M j is proportional to the spin operator Sj, and equal to the integration over all

space of the magnetization density,

M j = 2µBSj =

∫
M (Rj + rj)drj (2.28)

Now a quantity, labeled the magnetic form factor, at the jth site, can be defined

simply as the Fourier transform of the magnetization density:

fj(κ) =

∫
M(Rj + rj) exp{iκ · rj}drj∫

M(Rj + rj)drj
(2.29)
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...which allows the M (κ) to be written in the form,

M(κ) = 2µB

∑
j

Sjfj(κ) exp{ik ·Rj} (2.30)

This is a generalized form of the magnetic structure factor [10], analogous to the

nuclear structure factor shown in Eq. 2.17. Consider, finally, and alternative form of

the differential cross-section Eq. 2.23, obtained via Eqs. 2.25, 2.24, and 2.21:

(
dσ

dΩ

)
elastic

=

(
γr0

2µB

)2

|κ̂× (M (κ)× κ̂)|2 (2.31)

The notation of Eq. 2.31 explicitly demonstrates two important results: first, in an

elastic neutron scattering experiment, the contribution to the differential cross-section

due to magnetic scattering alone is proportional to the component of magnetization

which is normal to κ̂, squared. It is this mechanism which permits the determination

of spin structures, which describe the position and orientation of magnetic moments in

the sample and their associated symmetry with respect to the crystal lattice. Second,

due to the composition of the magnetic structure factor, namely that it contains the

magnetic form factor, the intensity of a given magnetic reflection falls off sharply

with an increasing scattering vector. Typically, magnetic Bragg scattering is weaker

(by between two to three orders of magnitude) in intensity as compared with nuclear

scattering.

A final note: the discussion above treated scatting from moments resulting only

from the intrinsic angular momentum of unpaired electrons in the scattering system.

As discussed in Chapter 1 however, the RP iridate system is not so simply described.

Here, both spin and angular momentum contribute to the Jeff = 1
2

state. In this case,
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the elastic differential cross-section, generalized to include scattering from both spin

and orbital angular momentum contributions to the total angular momentum, can

be written as,

(
dσ

dΩ

)
elastic

= (γr0)2 N

∣∣∣∣12gF (κ)

∣∣∣∣2 exp{−2W}
∑
αβ

(δαβ−κ̂ακ̂β)
∑
l

exp{iκ · l} 〈Sα0 〉 〈S
β
l 〉

(2.32)

The magnetic form factor, here as F (κ), is now defined as

1

2
g F (κ) =

1

2
gSJ0 +

1

2
gL(J0 + J2) (2.33)

The spin and orbitals contributions to the Landé splitting factor are listed below,

as is the definition for Jn in terms of the spherical Bessel functions jn(κ, r) and the

previously mentioned magnetic density function M (r).

g = gS + gL

gS = 1 +
S(S + 1)− L(L+ 1)

J(J + 1)

gL =
1

2
+
L(L+ 1)− S(S + 1)

2J(J + 1)

Jn = 4π

∫
jn(κ, r) M(r)r2 dr

(2.34)

2.3.4 Triple-Axis Geometry

The functional form of the nuclear (2.17) and magnetic (2.30) structure factors is

belabored in the previous section because of the critical role they play in the ability

of an experimenter to resolve a Bragg peak during a scattering experiment.

For the ‘rotating crystal’ method, the experimental setup is designed to rotate the
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Figure 2.3: Example triple-axis spectrometer geometry. Arrow indicates the direc-
tion of source beam from the source. Monochromator and analyzer crystals shown in
black, research sample in blue, and the detector in red. Base image sourced from the
Canadian Neutron Beam Centre [11], which depicts the N5 instrument where much
of the work presented in subsequent chapters was conducted.

crystal in a monochromatic beam about an axis ψ̂ ‖ k̂′× k̂, with the scattering angle

2θ satisfying the Bragg condition (2.16) while the detector is fixed. Adding up all

the counts seen by the detector during this rocking curve is equivalent to integrating

the differential cross-section over the bounds of the rotation and produces

P = N
V

v2
0

Φ|F (τ )|2 λ3

sin θ
(2.35)

Where the subscript of F is intentionally omitted, as this applies to either typical

nuclear or magnetic scattering processes, and one need only drop in the appropriate

structure factor as required.

A common setup to conduct such a measurement is a triple-axis spectrometer.
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To meet the monochromatic beam requirement, a highly ordered crystalline material

which the full white-beam (so-called because it contains neutrons of many wave-

lengths) encounters first is employed (the monochromator). Leveraging the Bragg

condition for the lattice spacing of the monochromating crystal, a scattered beam

with a narrow distribution of energies can be directed at the sample. This beam

scatters from the sample then, as previously described.

An experimenter could now choose to measure the flux directly from the sample

with their detector, but interpreting such data would be difficult: various inelastic

processes (excitation of phonons, magnons, etc.) can also produce scattered neutrons

in addition to the elastic ones (and recall that all forms employed for the differential

cross-section previously assumed elastic scattering). Thus, it is necessary to exclude

neutrons with energies not matching those of the incident beam. This is accom-

plished with a similar setup to the monochromator, but is labeled as the analyzer

to avoid confusion. This experimental design is depicted schematically in Fig. 2.3;

the term ‘triple-axis’ is derived from the three separate scattering configurations re-

quired by the measurement. Other neutron optics (such as collimators, filters, and

beam-forming slits) are included between the sample and monochromator/analyzer

to reduce noise and optimize scattering signal.

2.3.5 Time-of-Flight Technique

Another common scattering technique is the ‘Laue method’, in which the scattering

crystal is stationary but the incident neutrons (originating from a fixed direction)

arriving at the sample are of a large continuum of wavelengths. There is a Bragg

condition for each family of planes within the sample associated the incident k̂ that is
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Figure 2.4: Scattering geometry in a time-of-flight Laue implementation. Neutrons
represented as colored circles where the shade gives a relative sense of neutron wave-
length. The detector is depicted as a point detector, but in a true Laue setup, area
detectors covering a significant portion of the full solid angle are employed.

not met in general for a given neutron of wavelength λ. In Laue scattering however,

the continuous distribution of incident λ’s containing wavelengths which do satisfy

many of these Bragg conditions. The scattered radiation is typically measured by

an area-based method of detection (rather than a ‘point’ detector as is typical in

the previously described triple-axis geometry) in order to capture many of the Bragg

spots simultaneously; a greater number of diffraction spots permit structural deter-

minations to be executed with greater certainty.

With a polychromatic incident beam however, a problem quickly arises: how to

determine which reflection condition to associate with a given Bragg spot on the area

detector? One solution to this problem employs time-of-flight neutron scattering. A

short, well-defined (in time) pulse of polychromatic neutrons is formed by a ‘chopper’

at time t = t0 and continues down a known flight path (chopper-to-sample) of length

L. Recall that the velocity of an individual neutron within this pulse is related to its
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de Broglie wavelength [5] by

vλ =

√
2Eλ
mn

=

√
2

mn

h2

2mnλ2
=

h

mnλ
(2.36)

As the neutron pulse travels down the path, the spatial separation between two

neutrons of wavelengths λ and λ′ after some time t is given by

∆Lλ,λ′ = vλ′t− vλt = t
h

mn

(
1

λ′
− 1

λ

)
(2.37)

Since the ‘cooler’ neutrons move more quickly, those with the shortest wavelengths

remain at the leading edge of the bunch as it becomes more extended in space while

traveling along the flight path. This simple result actually grants energy resolution

to the experiment if care is taken to note the time t1 that the neutron arrives at the

detector, and the sample-to-detector distance L1. An elastically scattered neutron

detected at time t1 had to travel a distance of L+L1 in time t1−t0, which determines

its velocity as v1 = (L+L1)/(t1−t0). Eq. 2.36 can be used to back out the wavelength.

This information, along with the known geometry (depicted in Fig. 2.4) for a given

position on an area detector, allows the lattice spacing d associated with this reflection

to be determined via Eq. 2.16.

If enough of these reflections are collected, they can be systematically processed

and the unit cell parameters algorithmically determined. Such a dataset is well-suited

for a full structural refinement, particularly in oxides due to the appreciable scattering

length of oxygen in neutron scattering. Magnetic scattering is more challenging given

the generally weaker intensity of most magnetic peaks (due to the magnetic form

factor suppressing peaks with larger scattering vectors) and the resolution limits
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inherent to the Laue geometry (set by the physical pixel size of the area detectors

used). This technique is employed for the analysis discussed in Chapter 4.

2.3.6 Neutron Source Generation Methods

With the reader hopefully now convinced of the utility of the neutron as a scientific

tool of investigation into condensed matter systems, a brief moment is taken to discuss

the practical matter of how a source of neutrons is obtained. The earliest sources of

neutrons were reactor-based due to the excess produced in common fission reactions

such as

235
92U + 1

0n
139
56Ba + 94

36Kr + 3 1
0n (2.38)

If the fission reactor vessel has some aperture in it, this would allow some portion

of these liberated neutrons (E ≈ 2 MeV / neutron) [12] to escape. This raw source

can be further conditioned using moderators (to shift the energy distribution of the

neutrons) and optics to create a well-defined beam. Absolute beam flux at such

facilities is on the order of 1014 to 1015 (neut. cm−2 s−1) [12]. For a number of obvious

safety reasons, as well as more subtle political ones, nuclear fission reactors are not the

most ideal neutron sources. The currently emerging generation of sources is instead

based on proton accelerators.

These accelerator-based sources, often referred to as spallation sources, produce

neutrons via a completely different mechanism. Despite the complex infrastructure

required to achieve the result, the concept is simple enough to explain: protons are

accelerated to high energies (GeV) and collided with a target composed of some

material with heavy nuclei.5 The resulting nuclear reactions cause tens of neutrons

5For the work discussed in Chapter 4 the source target was composed of mercury atoms.
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per incident proton to be ejected.6 As before, this raw source can then be optimized

for any number of experiments.

The spallation technique has several advantages, chief among them that the same

time-averaged flux of the reactor sources can be achieved while requiring an order of

magnitude less energy to be dissipated as heat [12]. The pulsed nature of the method

also allows the target time to dissipate heat between pulses, and lends itself well

to time-of-flight implementations discussed earlier. Despite persisting engineering

challenges (particularly with regard to target failure) accelerator-based spallation

sources represent a promising next-generation neutron source technology.

2.4 X-Ray Scattering

The motivation for employing x-ray diffraction (XRD) in the study of condensed

matter systems stems partially from the difficulty encountered in generating neutrons,

described briefly in the previous section. The absolute flux of even the most prolific

neutron sources pales in comparison to that of synchrotron x-ray sources. Synchrotron

x-ray generation is also a very mature technology, with the newest facilities coming

online designated as ‘fourth generation light sources’ [13]. Synchrotrons leverage

the fact that as charged particles experience an acceleration, radiation is emitted.

Electrons are given energy via a linear accelerator, and then contained in a storage

ring. Bending magnets needed to steer the electrons in a circular path are one means

of accelerating the electron bunches to produce radiation, but the more extreme

the acceleration, the greater the number of photons emitted. A variety of insertion

6These liberated neutrons are referred to as ‘spall’, after the geological term which referrs to
flakes of material chipped off from a larger chunk of a mineral.
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devices (undulators, wigglers) are employed to create complex magnetic fields for the

electron bunches to traverse, such that they experience rapid oscillations thus and

produce even more photon flux.

Fundamentally, x-ray scattering differs from its neutron counter-part by virtue

of the scattering mechanism. Whereas neutrons interact with the nuclei via nuclear

forces, x-rays interact with the electric fields resulting from the charge distributions

of valence electrons in solids. For coherent, elastic scattering of x-rays a quantity

called the atomic scattering factor given by f can be defined as

f =
amplitude of photons scattered by an atom

amplitude of photons scattered by a single electron
(2.39)

This expression is calculated by summing the contribution to the amplitude of scat-

tered radiation from all Z electrons of the in question, expressed mathematically, the

(non-resonant) atomic scattering factor associated with classical Thompson scatter-

ing [14] is given in Eq. 2.40

f0(κ) = ε∗s · εi
∫

all space

ρ(r) exp{i(κ · r)}dr (2.40)

Here, ρ(r) is the atomic electron density summed over all occupied electrons states for

the atom, and εi, εs denote the polarization of the incident and scattered radiation. It

is notable that for charge-scattering f is maximized when the incident and scattered

polarizations are parallel, as well as that f ’s absolute magnitude is expected to be

proportional to Z in some monotonic fashion based on the contribution of ρ(r).7

This is in marked contrast to the seemingly random variance of the atomic scattering

7An exact linear proportionality is found in the limit of only forward scattering: f0 = ε∗s · εiZ.
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length b seen in neutron scattering. The atomic scattering factor’s dependence in

this way on atomic number is what makes x-ray scattering more sensitive to atoms of

higher Z. The steepness with which f falls off with scattering angle depends on the

size of the ion- spatially larger ions induce more destructive interference, and thus

decrease more precipitously [15].

Just as for neutrons (Eq. 2.17), there is an analogous structure factor for x-ray

scattering:

Fhkl =
amplitude scattered by atoms in a unit cell

amplitude scattered by a single electron
(2.41)

Which can be defined in terms of the atomic scattering factors of Eq. 2.40, the Miller

indices h, k, and l, of the reflection in question, and the fractional coordinates within

the unit cell of the atom contributing to the sum, as follows

Fhkl =
n=N∑
n=1

fn(κ) exp{2πi(hxn + kyn + lzn)} (2.42)

Again, it is the case that scattered beam intensity is proportional to the magnitude

of the structure factor squared

Ihkl ∝ |Fhkl|2 (2.43)

...thus the utility of classical x-ray scattering for probing the atomic structure of

a unit cell (for atoms of appreciable Z, recall) is now apparent. With neutrons

however, scattering processes are also sensitive to the total angular momentum of

unpaired electrons in magnetic species of atoms; the form of Eq. 2.40 seems to imply

that x-ray scattering has no such sensitivity. As it turns out, x-rays can in fact be

used to probe magnetism in a materials. At sufficiently high energies a magnetic

x-ray form factor, arising from the interaction between the magnetic field of the
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incoming radiation and the spin and angular momentum of the electrons comprising

the scattering system, is given by [16]:

fmag(κ, h̄ω) = (ir0)
h̄ω

mc2

(
1

2
L(κ) · a+ S(κ) · b

)
(2.44)

Here, S(κ) is a familiar quantity: the Fourier transform of the spin density (2.29)

which appeared in the neutron magnetic structure factor. L(κ) is an analogous term

related to the Fourier transform of the angular momentum density. a, b are vectors

whose direction depends on the incident and scattered wave vectors as well as the

corresponding polarizations of the radiation and are described elsewhere [14, 17]. Un-

fortunately, the magnetic scattering due to this mechanism alone is extremely weak,

and not an ideal probe. There are other methods by which the incident radiation

can couple to unpaired spins in a sample, though. To accomplish this, experiments

must be conducted using a particular incident energy, said to be ‘on-resonance’. The

theory of resonant elastic x-ray scattering is outlined next.

2.4.1 Resonant Elastic X-Ray Scattering (REXS)

In the context of scattering, resonance refers to the capture of some particle in a

bound, metastable state which eventually decays, and releases the particle. Obviously

in this case the capture is of a photon: when the incident photon’s energy matches

that of the ∆E between a ground and excited state of some electron in the scattering

system, the photon is absorbed and the electron raised to the excited state. Such

a configuration is unstable though, and eventually the electron decays back to its

ground state, and the photon is emitted. The Hamiltonian associated with this
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process [18] is given by

H =
−e
mc
p ·A+

−eh̄
mc

S · (∇×A) (2.45)

To properly derive the full resonant elastic x-ray scattering cross-section from Eq. 2.45

is unfortunately beyond the scope of this chapter. Instead, some important results

are presented8 as motivation for the use of the technique.

First, it must be stated explicitly that the atomic scattering factor presented

previously (2.40) is actually but one component of a more general expression [19]:

f full(κ, h̄ω) = f0(κ) + f ′(h̄ω) + if ′′(h̄ω) + fmag(κ, h̄ω) (2.46)

The first term is that associated with classical Thompson scattering from Eq. 2.40; the

second accounts for the varying responses of electrons with different binding energies

throughout the occupied shells, and the imaginary term encapsulates the effects of

these binding energies dampening the otherwise free electron density; the contribution

from Eq. 2.44 is also included for completeness. The sum of the two middle terms

is proportional to the conductivity tensor
↔
σ (and the factors themselves related to

each other by the Kramers-Kronig relations). The importance of these terms is best

understood in the context of the intensity of diffracted radiation measured via REXS:

IREXS(h̄ω) ∝
∣∣∣ε̂∗s · ↔σ · ε̂i∣∣∣2 (2.47)

Eq. 2.47 motivates the experimenter to calculate the matrix elements of
↔
σ . These

can be expressed, for a resonance condition exciting a bound electron from state |i〉

8This section roughly follows the proper derivation and discussion of Ref. [18].
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to state |j〉 with energy difference ω0, as

σi,j =
e

2πm2

(
1

ω + ω0 + iΓ/2
+

1

ω − ω0 + iΓ/2

)
(2.48)

...where Γ is a width parameter,9 and the expression in parentheses is sometimes

called the resonant prefactor [20]. From this functional form of σi,j, the role of the

incident energy becomes clear: this matrix element diverges in the limit ω → ω0. This

has striking implications in the context of Eq. 2.47, since the square of the diverging

σi,j is what is measured in an experiment. Thus far, these results are generically true

of all scattering on-resonance: what is the impact on magnetic scattering10 of this

enhancement effect?

This is answered by solving for the form of the scattering tensor in the presence

of a moment m ‖ ẑ, notated as
↔
Fm
ẑ , and generalizing this for any orientation of the

moment (
↔
Fm). It can be shown [19] that this generalized scattering tensor takes the

form
↔
Fm =

↔
F 0 (ε̂∗s · ε̂i) +

↔
F 1 (ε̂i × ε̂∗s) · m̂+

↔
F 2 (ε̂∗s · m̂) (ε̂i · m̂) (2.49)

The proportionality factors
↔
F n are defined elsewhere [17]; the most important features

of Eq. 2.49 can be found in the polarization dependence of the terms which comprise

it. The first expression has no dependence on the direction of the moment, and the

factor (ε̂∗s · ε̂i), as in Eq. 2.50, indicates this is only contributes to charge scattering.

The second term, however, finally shows the conditions necessary to discriminate a

magnetic Bragg peak from charge scattering via resonant elastic x-ray scattering: the

9This lifetime broadening is attributed to the many non-radiative effects which make the inter-
mediate excited state unstable. Mathematically, it arises from the substitution of a Dirac-delta with
a Lorentzian to accommodate the realities of a physical system [20].

10Recall that the enhancement only applies to the contribution from f ′+ if ′′ in Eq. 2.46, and not
the explicitly magnetic fmag.
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term is maximal when ε̂i ⊥ ε̂∗s. Thus, for a known incident polarization, the character

of a reflection (charge or magnetic in origin) can be determined by analyzing the

polarization of scattered radiation to see if it has been rotated into the opposite

channel. This, combined with the vector nature of (ε̂i × ε̂∗s) with respect to the

moment direction, indicates magnetic REXS is also a viable tool for the determining

spin structures.

The final term, quadratic in its dependence on m̂, is also sensitive to magnetism,

but less helpful since it would not be sensitive to an antiferromagnetic system (where

(−) signs from each would cancel). Eq. 2.47 is modified now, with
↔
Fm playing a role

similar to the magnetic structure factor, to give

Imag
REXS(h̄ω) =

∣∣∣∣∣∑
i

exp{iκ · ri} ε̂∗s ·
↔
Fm · ε̂i

∣∣∣∣∣
2

(2.50)

It is clear now that resonant elastic x-ray scattering- leveraging the inherent flux

advantage of a synchrotron source, along with the resonant enhancement to magnetic

peaks resolved using polarization analysis, is a powerful tool for magnetic studies of

condensed matter materials. Thus far, however, both this and the previous section

have limited the discussion to the case of elastic scattering- when an analyzer is used

to exclude all scattered intensity where Es 6= Ei. This restriction is necessary for

a tractable approach to solving static nuclear and spin structures, but if the data

collection is expanded to include any Es, information regarding the dynamics of the

system can also be revealed. Just this type of analysis is treated next, when the

resonant condition is applied to an inelastic x-ray study.
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2.4.2 Resonant Inelastic X-Ray Scattering (RIXS)

Given the discussion in previous sections, it should come as no surprise that the

scattered intensity in a resonant inelastic x-ray scattering process, exciting an electron

from a ground state Eg to the higher energy state Ef , can be represented in the general

form

IRIXS(ω,ki,ks, εi, εs) =
∑
f

|Ff,g(ωk,ki,ks, εi, εs)|2 δ(Ef + h̄ωks − Eg − ωki) (2.51)

...where the summation runs over all possible excited states. The factor Ff,g contains

information with regard to which excitations contribute to the scattering amplitude

at a given energy and momentum exchange, as well as the dependence on polariza-

tion [20].11

For the purposes of this discussion, direct RIXS is assumed, as it is the dominant

process in the study detailed subseqeuntly in Chapter 6. In this process, a core

electron is initially excited to the empty valence state, and a different electron from

the valence band decays to fill the hole, leaving behind an electron-hole excitation

in the valence band. Such an excitation carries momentum h̄κ and energy ω(κ),

and can propagate throughout the system.12 In the case of direct RIXS, Ff,g can be

expressed as the expectation value of the operator shown in Eq. 2.52 [22], for given

final and initial states, |f〉, |i〉,

Ff,g = 〈f | Ô |i〉 = 〈f | (W c
ερκ +W s

ε · Sκ) |i〉 (2.52)

11This sectional generally follows the discussion from relevant sections of a review of the RIXS
technique, found in Ref. [20]. The use of any additional references is notated explicitly.

12This very excitation has, in fact, been experimentally observed in the RP iridates [21].
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Two familiar quantities comprise this operator: the charge (ρκ) and spin (Sκ) density

operators for the conduction electrons in the system; the relative weighting by the

RIXS form factors (Wε) depend on the species of atom, the geometry of the exper-

iment, and the incident/scattered polarization directions. Thus, the intensity from

Eq. 2.51 can be represented as

IRIXS = |W c
ε |

2χc(κ, ω) + |W s
ε|

2χs(κ, ω) (2.53)

...where the χ’s are termed the dynamical structure factors associated with charge

and spin. The exact form and evaluation of these functions is the subject of consid-

erable interest [22–24], but is not treated here.

Instead, satisfied with a general sense of what comprises the RIXS cross-section,

the application of this technique to magnetism is discussed. Leveraging resonant

x-rays to probe magnetic excitations is a somewhat recent trend- the first reports fo-

cused on magnon dispersions in the cuprates [25–27] were published only about five

years prior to the work discussed later in Chapter 6. As was the case for elastic reso-

nant x-ray scattering, the theoretical treatment of the effective magnetic interaction

in the case of RIXS is similarly non-trivial. The optical dipole transition inherent

to the technique does not induce spin-flip excitations- these are instead the result of

core-hole spin-orbit coupling occurring in the intermediate state [28].

Rεi,εs
ωi,j

=
↔
σ

(0)
(εi · ε∗s) +

↔
σ

(1)

s
(ε∗s × εi) · Sj + · · · (2.54)

An expression is defined by Haverkort [28] in Eq. 2.54 to provide an exact form

of the RIXS transition operator for magnetic excitations truncated to single site
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transitions (an unwieldy third term is omitted as it does not contribute at all in the

case of s = 1/2). It is related to the conductivity tensor introduced in Eq. 2.47 by

ε∗s ·
↔
σ · εi = 〈i|Rεi,εs

ωi,j
|j〉. This expression bears some resemblance to the result found

in the elastic case (Eq. 2.49), and provides a tractable, effective description for the

magnetic interaction for transitions associated with spin flips. It thus allows magnon

excitations to be resolved with RIXS in a similar fashion to how magnetic Bragg

peaks were analyzed with REXS.

In addition to magnetic excitations, predicted to have significant intensity at the

Ir-L3 edge, direct RIXS spectra reveal quasiparticle modes associated with various

other phenomena as well. Among these are orbitons, in which optically forbidden

dd transitions are accessed by coupling to the lattice, as well as the observation of

spectral lines associated with transitions between the crystal-field-split t2g and eg

levels have been reported [20, 21].

A final comment on the experimental geometry of the scattering experiment: even

in lieu of the high flux provided by synchrotron sources, magnetic excitations probed

in small sample volumes, themselves characterized by small magnetic moments, ne-

cessitate an efficient collection of photons during energy scans to construct a series of

spectra.13 The analyzer of the MERIX spectrometer at the Advanced Photon Source

employed in this study uses a unique geometry to aid in the timely collection of these

data. Instead of rotating a single analyzing crystal to isolate a given scattered energy

Es as is used for the elastic case and iterating this one step in energy at a time, a

unique diced spherical analyzer is utilized.

This analyzer is composed of several hundred independent segments of a highly

13To give the reader a sense of the timescale involved: even in the optimized configuration de-
scribed here, collection of a single RIXS spectrum for (Sr1−xLax)3Ir2O7 as seen in Figs. 6.3 and 6.4
takes on the order of 3-4 hours. The dispersions shown in Chapter 6 each include ≈ 30 such scans.
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Figure 2.5: Top: X-ray optics configuration at APS Sector 27; figure sourced
from [20]. Bottom: Detail of the optical paths for scattered x-rays of various en-
ergies incident on the diced spherical analyzer (A); figure from [29]. The detector
(Det) and sample (S) positions are also indicated.
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crystalline material of known orientation, all positioned with faces tangent to some

sphere with radius RA as depicted in the lower detail of Fig. 2.5. The result is that

energies within an appreciable span ∆E can be simultaneous collected in batches;

further, since the geometry of the diced spherical analyzer spatially separates x-rays of

different energies on the strip detector, energy resolution is simultaneously achieved.

Depending on the incident energy, different materials comprising the analyzer are

required to permit the required energy resolution- most edges are adequately covered

by Si or Ge analyzer crystals [29].

2.4.3 Powder Diffraction and Reitveld Refinement

A few brief comments are made here regarding laboratory applications of x-ray scat-

tering techniques (in contrast to synchrotron sources). As mentioned in Section 2.3.5,

a Laue scattering geometry permits the collection of many peaks by using an area

detector and a polychromatic source to meet the various Bragg conditions of a fixed

sample. To some extent, the triple-axis method (2.3.4) represents the inverse, in

which a monochromatic beam scatters from a sample with variable orientations, cho-

sen to satisfy a single Bragg condition. In the case of the latter, an effort to collect

peak positions and intensities en masse for a structural study clearly represents a

time-consuming endeavor.

Consider instead, if the crystal in question is ground into a fine ‘powder’ of micro-

scale crystallites. In this case, assuming there is no strong preferred orientation, the

powder consists of a (huge!) collection of randomly oriented crystallites. For a

given scattering angle 2θ associated with plane-spacing dhkl there is a reasonable

expectation that some non-zero fraction of the population of crystallites are oriented
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Figure 2.6: X-ray diffraction data from a crushed Sr3Ir2O7 single crystal using a
Cu-Kα laboratory radiation source. Selected reflections indexed in the Bbcb (space
group No. 68) structural solution are also shown.

relative to ki such that the resulting kf is scattered into the detector. There are

geometric arguments [15], as well as the Ewald formalism [30] which show this more

rigorously, but the eventual outcome is the same: that all possible reflections can be

accessed by varying a single parameter, the scattering angle 2θ. An example dataset

is shown in Fig. 2.6. The raw data reveals peak positions and in turn provides some

indication of the relevant d-spacings, but to generate a complete indexing of the peaks,

the structure must be solved. That is, the size of the unit cell and the position and

types of atoms comprising it must be known to reconstruct the diffraction pattern.

In practice, arriving at a full structural solution from powder XRD alone, for a

previously unknown structure, is non-trivial and not described here (guides can be

found elsewhere [30, 31]). If the researcher has a reasonable guess as to the sample

content though, the data can be easily compared to a known structure.

A technique called Rietveld refinement takes this known structure (comprising the
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space group, lattice parameters, and unit cell contents) and attempts to reconcile it

with the observed data by varying atom positions, displacement factors, peak shape

parameters, and a number of other factors by means of a least-squares algorithm.

The quantity to be minimized is given by R

R =
∑
i

wi(Yio − Yic)2 (2.55)

...where the summation is over the discrete data points in 2θ, and the Y ’s correspond

to the observed and calculated intensities at that particular point. wi is a weight-

ing factor, which accounts for the reduced counting error the greater the observed

intensity [30]. The Rietveld method alone will not solve a structure, but it provides

a quantitative measure of the extent to which observed data is described by a given

structural model of one or several phases present in the measured powder. Often,

the precise manner in which a refinement fails is the best indicator of how to im-

prove a model: additional peaks can suggest the presence of an impurity phase, peak

splittings can imply a reduction in symmetry, etc.

The Rietveld method alongside other techniques such as Le Bail fitting (which can

extract unit cell parameters independent of any information regarding the contents)

are indispensable analysis tools for preliminary sample characterization. Using labo-

ratory x-ray sources to ensure sample quality is critical for efficient use of more scarce

resources such as allotted time at user facilities which is competitively awarded.
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Chapter 3

Synthesis and Characterization

Before any serious investigation can be made into a given material of interest, high

quality samples must first be grown. Here, the procedure used to grow single crystals

of Sr3Ir2O7 is discussed. Single crystals, as apposed to polycrystalline or amorphous

compounds, have a number of key advantages, such as preserving details of anisotropic

properties, largely avoiding problems associated with grain boundaries, and requiring

smaller total amounts of material for scattering experiments, to name a few. The

utility of measurements performed on the newly synthesized compound and the ease

of analytical treatment are both directly linked to how well the sample was grown,

and so a series of metrics to evaluate crystal quality is also delineated in this chapter.

69
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Figure 3.1: Schematic heating profile for a generic crystal growth utilizing the flux
method as implemented here.

3.1 Flux Growth of Single-Crystal Sr3Ir2O7

Crystal growth of Sr3Ir2O7 for this work was accomplished exclusively via the flux

growth technique, first reported to be viable for this system by Subramanian, et al.

in 1994 [1]. This synthesis method is particularly useful for reactions where the con-

stituent materials melt incongruously due to the flux aiding reaction by functioning as

a solvent as well as lowering the overall melting temperature [2]. The compounds are

placed inside a container and heated until all the material has completely dissolved

into a molten solution. The entire system is then cooled slowly- as the temperature

falls below the saturation point, a precipitate of the reactants begins to form. Crys-

tals spontaneously nucleate from defects on the container walls and their growth is

fed by further precipitation as the temperature slowly ramps down (a representative

heating profile is shown schematically in Fig. 3.1). Care is taken not to exhaust

the flux during this process to ensure maximum yield of the reaction and size of the

crystals.
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Segment No. Start Temp. (◦C) End Temp. (◦C) Ramp Time (h)
1 25 1000 4
2 1000 1300 3
3 1300 1300 5
4 1300 850 125
5 850 25 3

Table 3.1: Details of the standard furnace heating profile used to grow the single
crystals for this work.

To synthesize Sr3Ir2O7, the reactants employed are strontium carbonate (SrCO3)1

and iridium oxide (IrO2)2, and a strontium chloride salt (SrCl2)3 is utilized as a

flux. As a precaution, the powders are all dried initially to minimize the presence of

moisture during the reaction: SrCl2 and SrCO3 at 300 ◦C, IrO2 at 900 ◦C, both for a

minimum of 12 h. Once dried, stoichiometric amounts (using the chemical reaction

depicted in Eq. 3.1) of the reactants are weighed out along with a known molar ratio

f of flux material. A typical flux ratio for Sr3Ir2O7 growth was f = 15, implying

15 mol of SrCl2 per mole of Sr3Ir2O7.

3 SrCO3 + 2 IrO2

f SrCl2
Sr3Ir2O7 + 3 CO2 (3.1)

These powders are placed within a container whose chemical composition is care-

fully chosen so as to not participate in the reaction; for this work 10 ml Pt crucibles4

were used. Materials are layered from the bottom up in order of decreasing melting

point, as indicated in Fig. 3.2 and a Pt lid is placed on top to act as a partial seal

during reaction. This entire container is then placed inside an alumina (Al2O3) cru-

1Alfa Aesar SrCO3, 99.99% (Metals Basis).
2Alfa Aesar IrO2, Premion 99.99% (Metals Basis).
3Alfa Aesar SrCl2, 99.5% (Metals Basis)
4Heraues Group
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Figure 3.2: Typical layered powder charge for flux growth.

cible/lid which is itself in turn placed in a high-temperature furnace.5 The alumina

crucible serves to protect the internal surfaces of the furnace and elements from the

flux and reactants. The details of a ‘standard’ heating profile for growth of Sr3Ir2O7

are outlined in Table 3.1.

Once the heating sequence is complete the grown crystals at the bottom of the

Pt crucible remain encased in the remainder of the now-solid SrCl2 flux. They are

extracted by soaking the crucible in water, which dissolves the SrCl2 over time with

repeated flushings. With the flux removed, the material can be extracted most easily

with the aid of a stereo-microscope to avoid damaging the delicate, larger single crys-

tals. Typical crystal sizes can be as large a 1 mm × 1 mm × 0.25 mm, with masses

usually between 0.5 mg to 2 mg. The crystal habit is that of a thin platelet; in the

vast majority of samples, the direction normal to the plate coincides with the long

axis of the unit cell, and the stright edges with the two shorter dimensions (a detailed

treatment of the structure can be found in Chapter 4). Often a residual layer of flux

5SentroTech ST-1600C Box Furnace
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is retained on the surface- this is removed by again soaking in water, or with the use

of adhesive office tape to cleave this dirty top layer off to obtain a relatively pristine

interface for surface-based probes.

3.2 Doping The System

Much of this work focuses on the role played by dopants- where an atom of a differ-

ent type is substituted on a given site of the lattice. Sr3Ir2O7 will be referred to as

the ‘parent’ compound to distinguish it from doped systems which have a chemical

formula appearing as (Sr1−xLax)3Ir2O7. In the case of doped compounds, these are

identified by the concentration of the dopant, that is, the value of x in the previous

formula, for example. Despite the wide array of physical states observed in doped

samples however, their synthesis is essentially the same as that of the parent.

When doping the system on the A-site (referencing the generic chemical formula

for members of the Ruddlesden-Popper series given by An+1BnO3n+1) with La, lan-

thanum oxide (La2O3)6 is also dried at 300 ◦C for a minimum of 12 h along with the

SrCl2 and SrCO3. Again stoichiometric amounts are massed out, now in order to

balance the chemical equation given by Eq. 3.2. Before layering in the Pt crucible,

the two compounds contributing atomic species that will share a site, here SrCO3

and La2O3, are mixed thoroughly (15 min) using an agate mortar and pestle.

6Alfa Aesar La2O3, REacton 99.99% (REO)
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3(1− x) SrCO3 +
3x

2
La2O3 + 2 IrO2

f SrCl2
Sr3(1–x)La3xIr2O7 + . . . (3.2)

To optimize parameters for La-doped sample growth sequences, it was often nec-

essary to modify the standard heating profile as listed in Table 3.1. Specifically,

increasing the ramp time in segment 4 to as high as 158 h was found to be more

advantageous for growing crystals in the highest doping ranges (x > 0.04). Attempts

to modify the flux ratio were made, but f = 15 was still found to remain the most

ideal.

3.3 Confirming Phase Purity

With crystals now in hand the task moves to characterizing the quality of the samples

to determine their suitability for further measurements. Upon recovery of crystals

from a flux growth, the first and most obvious question is if the crystals grown are

of the intended phase, or if the possesses some known or unknown impurity phase as

well. The crystal habit is a decent first clue- Sr3Ir2O7 proper grows as small platelets,

whereas the n→∞ member of the Ruddlesden-Popper series SrIrO3 grows with an

octahedral habit. Unfortunately though, the most common impurity phase, Sr2IrO4,

also grows as small platelets, so no cursory visual examination of a given sample can

discriminate between one or the other, or as it more common- a crystal containing

both. Thus, a more thorough accounting of crystal phase must be made.
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Figure 3.3: θ − 2θ scan of a single crystal oriented to probe (0 0 l)-type refelctions.
Indexing is correct for an assignment of space group Bbcb (No. 68). Schematic of the
radiation (yellow) scattering from a crystal (black) is shown as an inset.

As discussed in Section 2.4.3, x-ray diffraction is a powerful tool for probing

crystal structure and could reveal key information with respect to a given crystal’s

phase purity. Unfortunately, this requires the crushing of the single crystal to collect

a full dataset upon which to execute a proper refinement, and thus even if the crystal

was phase-pure, it was destroyed in the process of confirming that fact. While this

initially appears as a frustrating catch-22 [3], a rather simple solution exists. Since

the long axis of the unit cell (assigned the label c here, for argument’s sake) points

normal to the plate-like surface of the crystal, a typical θ−2θ scan in a powder XRD

instrument of the crystal sitting on a flat surface will reveal reflections of the type

(0 0 l) as shown in Fig. 3.3.

Consider the nature of the impurity phase Sr2IrO4: as the single-layer (n = 1)

member of the Ruddlesden-Popper series it is ‘compatible’ with the same stacking se-
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quence that defines the bilayer compound, and hence intergrowths of the two phases

are relatively common. Necessarily though, this means any impurity volume is ori-

ented such that our x-ray scan will also reveal (0 0 l)-type reflections of the of Sr2IrO4

phase. In particular, a simulated diffraction pattern (for Cu-Kα radiation) generated

using the reported Sr2IrO4 structure[4] reveals a primary peak near 13.5°.

Empirically, such a feature has been seen in many of these ‘single-crystal powder

scans’, and a full refinement of such a sample (once ground up and properly mea-

sured) in fact reveals the presence of Sr2IrO4. Thus, the presence or absence of this

signature peak at 13.5° (provided, of course, that the standard Sr3Ir2O7 peaks are

accounted for) serves as a reliable proxy for the most common impurity phase. To

preclude the possibility of mixed-phase samples as an explanatory factor in subse-

quent results, each crystal used for these measurements was measured in this way to

confirm relative phase purity.

3.4 Evaluating Chemical Composition

Since the presence of dopants in the small concentrations treated here does not dras-

tically alter the structure of Sr3Ir2O7 the above technique remains a valuable tool

for assessing phase purity. With a doped sample though, there is an additional de-

gree of information required: how to determine x, the dopant concentration. Many

mature quantitative techniques, for example inductively coupled plasma atomic emis-

sion spectroscopy (ICP-AES), offer this functionality, but require the destruction of

the material to be analyzed. This is perfectly acceptable if the variation of dopant
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concentration within a batch is always small: characterizing a few representative

samples would sufficient to describe the batch as a whole, in that case. Alternatively,

if individual crystals are very large, a small piece can be sacrificed as a metric of the

remainder.

In the case of Sr3Ir2O7, however, neither use-case is acceptable. The distribution

of dopant levels from crystal to crystal within a batch is quite wide- on the order of

several percent in x. Thus, the concentration of any measured representatives is a

poor predictor of the actual concentration of another crystal within the batch. Fur-

thermore, single crystals are of such small mass that they would need to be sacrificed

in their entirety to characterize chemical content via ICP.

Thus, it is necessary to obtain a measure of the elemental composition with a

non-destructive probe for every crystal to be used in further measurements. The

probe of choice in this case is energy-dispersive x-ray spectroscopy (EDS), measured

within a scanning electron microscope (SEM). In the process of generating an image

of the sample, the SEM bombards the crystal with high-energy (20 keV) electrons.

Incoming ‘beam’ electrons can eject electrons from the core of given species of atom

in the sample to create a hole; when an electron from a higher energy level in that

same atom decays to fill the hole radiation is emitted. The frequency of this radiation

is determined by the spacing between the high and low energy levels in the atom.

Since these level spacings are characteristic of a given type of atom, the frequency of

observed radiation indicates the atomic species of the material being probed.

With a beam incident on a sample comprised of multiple types of atoms, a spec-

trum is produced with peaks corresponding to energy-level-transitions of the con-

stituent elements (as shown in Fig. 3.4). Software can be used to fit this spectrum,
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Figure 3.4: A portion of an EDS spectrum for a (Sr1−xLax)3Ir2O7 sample. The
blue curve is a rough fit of the background signal, with the teal curve the fit of the
complete spectrum. Data is presented as a counts historgram with very fine energy
binning (units of keV) in dull gray-green. Families of peaks are labeled with their
respective element symbols.

and the atomic percentage P of each atom comprising the probed volume can be cal-

culated from the peak intensities. For a given crystal, 5 to 10 spectra with a typical

area of ≈ 50 µm2 were collected and analyzed. Dopant concentration is defined as

shown in Eq. 3.3. The standard deviation of this (admittedly small) population of

measurements gives a rough sense of the homogeneityty of the crystal, and the mean

provides a center value. Given that EDS is a surface probe, the best results (narrow

distribution of x across a sample, absence of signal from Cl due to remnant flux) are

achieved when the surface is cleaved before measurement.

x =

(
PDopant

PDopant + PHost

)
× 100 (3.3)
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Chapter 4

Crystal Structure of Sr3Ir2O7

As mentioned in Chapter 1, several outstanding questions regarding observed bulk

and scattering results in Sr3Ir2O7 remain. Among them- what is the origin of the net

ferromagnetic signal observed in susceptibility? The solution of the spin structure, in

which moments point parallel to the long axis, precludes the known in-plane rotation

of IrO6 octahedra as a solution, as is the case for Sr2IrO4. Also unexplained is the

weak structural reflection seen in both neutron and x-ray scattering which violates

the orthorhombic structural solution. Both of these questions may potentially be

answered by a more complete structural solution, the construction of which is detailed

in this chapter.

81
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4.1 Previous Structural Reports

The spin-orbit Mott state as realized in the Ruddlesden-Popper (RP) strontium iri-

dates (Srn+1IrnO3n+1) remains of considerable interest due to the unique physics

arising from the confluence of comparable strong spin-orbit coupling and electron-

electron interactions in the presence of a strong cubic crystal field [1–3]. Subtleties in

the lattice structures of these systems are of critical importance in determining both

the spin-orbital content of the ground state wave function [3], the resulting magnetic

ground state [4], and details within the electronic band structure [5]. In particular,

for the n = 2 member of the RP series (Sr3Ir2O7) both density functional theory

(DFT) [6–8] and models of magnetic order [9] and dynamics [10, 11] are sensitive to

subtleties in the local crystal fields at Ir sites.

The structure of Sr3Ir2O7 was originally reported as a distorted bilayer perovskite

variant described by the tetragonal space group I4/mmm (No. 139) with unit cell

dimensions a = 3.896�A, c = 20.879�A [12]. In initial studies, evidence of an in-plane

rotation (along the unique tetragonal c axis) of the octahedral cages surrounding

the Ir atoms was observed via x-ray scattering; however this was refined within a

disordered I4/mmm model, where the phasing of the octahedral rotations from site to

site is random. Other subsequent x-ray investigations have also observed incoherent

rotations among the oxygen octahedra [13]—potentially arising from compositional

disorder.

A separate x-ray study put forward an orthorhombic unit cell (a = 5.522�A,

b = 5.521�A, c = 20.917�A) indexed with an improper Hermann-Mauguin sym-

bol Bbca [14] (space group No. 68) and modeled using coherent intralayer counter-



4.1. PREVIOUS STRUCTURAL REPORTS 83

rotations of neighboring octahedra along the c-axis. Additional support for this

orthorhombic model with coherent octahedral rotations was provided by a transmis-

sion electron microscopy (TEM) study of the reflection conditions observed in electron

diffraction patterns [15]. Here the reciprocal lattices of both Bbcb- and Acaa-type

structures, each an alternate setting of the Ccce space group (No. 68), were super-

imposed to match the observed patterns—demonstrating that this system is prone

to twinning. This TEM-derived structural solution parallels that of the analogous

ruthenate compound Sr3Ru2O7 [16], where all modes of octahedral rotation about

their symmetry axes were considered as candidate structures.

Even when accounting for the coherent phasing of octahedral rotations, Ccce still

fails to completely describe some subtle aspects of Sr3Ir2O7’s lattice structure. Neu-

tron diffraction measurements [17] have observed peaks in the [H 0L] zone (Bbcb set-

ting) that violate the reflection condition H, L = 2n imposed by the space group [18].

One such reflection at Q = (1 0 3) is shown in Fig. 4.1. These weak violations were

later confirmed to be of structural origin via a polarized neutron scattering study [19]

and are reminiscent of those observed within the n = 1 system Sr2IrO4 (also via

neutron diffraction) [20, 21]. While in Sr2IrO4 two unique Ir environments were ul-

timately refined [22, 23], the origin of the Bragg violations in Sr3Ir2O7 and their

implication for the lattice structure remains an open question.

Single crystal neutron scattering and rotational anisotropy second harmonic gen-

eration (RA-SHG) measurements are utilized here to resolve the structure of Sr3Ir2O7.

The point group for the lattice is constrained via RA-SHG measurements to be either

4/m or 2/m or one of even lower symmetry, which when combined with single crystal

neutron data identifies the monoclinic space group C2/c as the correct structural

symmetry. Density functional theory calculations were used to guide the space group
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Figure 4.1: Radial Q scan at T = 315 K through the (1, 0, 3) reflection demon-
strating a violation of the general reflection condition H,L = 2n for the orthorhombic
Bbcb space group. Data reproduced from Ref. [17]

search and identify the most energetically favored mode of lattice distortion. In ad-

dition to in-plane rotations, oxygen octahedra in this new lower symmetry can tilt

off-axis, suggesting that the anomalous, weak in-plane ferromagnetism of Sr3Ir2O7

originates from these tilts combined with strong spin-lattice coupling. Using probes

sensitive to both oxygen sites as well as point group symmetry, our measurements

ultimately provide a foundation for understanding the further structural distortions

observed in this system during metallization via pressure [24] and electron substitu-

tion [25].
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4.2 Experimental and Computational Details

The method for growing the Sr3Ir2O7 single crystals used in our study is reported

elsewhere [25] (also see Chapter 3). Neutron scattering measurements were conducted

by measuring a small single crystal (mass 5.6 mg, dimensions 1.25 mm × 1.13 mm ×

0.1 mm) in the time-of-flight single crystal Laue diffractometer TOPAZ at Oak Ridge

National Laboratory. Sample orientations were optimized with the crystalplan

software [26] for an estimated coverage of 99.8% of equivalent reflections for the

nominal orthorhombic cell for this system. Reduction of the raw data, including ac-

counting for Lorentz corrections, absorption, the time-of-flight spectrum, and detector

efficiency were carried out with anvred3 [27]. The raw peaks were integrated using

a 3-D ellipsoidal routine [28], and the reduced dataset was refined using shelxl [29].

To guide the search for the correct space group, density functional theory was

employed to compare several potential solutions.1 Of the resulting relaxed structural

geometries, those that did not display the correct antiferromagnetic ordering of the

Ir 5d moments in the simulated structures could be discarded. Structures which

remained served as initial conditions for refinement to the neutron diffraction dataset.

The calculations were performed using the projector augmented-wave method [31] in

the Vienna Ab initio Simulation Package (VASP) [32, 33]. The PBE functional [34]

was used with a screened on-site Coulomb repulsion parameter U of 2 eV on the

Ir d orbitals, with spin-orbit coupling taken into account. Taken together, the +U

interaction and SOC open up a Mott-Hubbard gap within the Ir 5d band. Since the

material is layered, Van der Waals interactions are accounted for via Becke-Johnson

damping [35], as implemented in VASP. For the 48-atom unit cell, a plane-wave cutoff

1DFT calculations were conducted by L. Bjaalie and C. G. Van de Walle [30].
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of 500 eV and 4× 4× 1 Γ-centered k-point mesh were used.

Determining the point group of Sr3Ir2O7 was accomplished through the use of

RA-SHG techniques.2 These data were acquired using the rotating scattering plane

based technique (described in Ref. [36]) from cleaved surfaces of Sr3Ir2O7 with the

long cell axis parallel to the surface normal. Incident light was provided by a Ti:sapph

regenerative amplifier (800 nm center wavelength, 60 fs pulse duration, 10 kHz repeti-

tion rate) and focused to a spot size less than 100 µm on the crystal with a fluence less

than 1 mJ cm−2. The linear polarization of the incident (in) and reflected (out) light

was selected to be either in (P) or out of (S) the scattering plane. The orientation of

the two in-plane crystallographic axes were determined independently by x-ray Laue

diffraction.

4.3 Neutron Diffraction Results

The refined results from single crystal diffraction data collected from Sr3Ir2O7 are

discussed first. Diffraction data were collected and patterns refined both at 100 K

and 300 K. As a starting procedure for refinement, the undistorted tetragonal parent

I4/mmm structure was transformed into candidate lower-symmetry space groups [37–

40] corresponding to pure rotations about axes of high symmetry [16]. Distortions of

the octahedra were introduced using the relaxed structures from DFT calculations

as initial positions. These structures were then refined to the single crystal neutron

diffraction data at T = 300 K to evaluate which set of octahedral rotations most

faithfully reproduced the observed pattern. Neutron scattering as a probe is par-

ticularly well-suited to this task as, compared to synchrotron radiation, it is more

2RA-SHG measurements were conducted by L. Zhao, C. Belvin, and D. Hsieh [30].
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a) 

b) 

c) 

Figure 4.2: Refined lattice structure of Sr3Ir2O7. Red atoms denote oxygen sites,
blue atoms within octahedra denote iridium sites, and green atoms denote strontium
sites. (a) The in-plane oxygen octahedral rotations as viewed along the a-axis. (b)
Out-of plane oxygen octahedral tilt mode, viewed along the b-axis. c) Off-axis view
of the chemical unit cell. Atom positions are those of the T = 300 K refinement to
the C2/c space group.
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sensitive to the oxygen comprising the octahedra. Similar to Sr3Ir2O7’s ruthenate

analog, all tetragonal subgroups rendered poor fits and the two best models which

emerged were refined within space groups No. 68 (Ccce) and No. 15 (C2/c).

The former group Ccce is consistent with the previously reported structure [14,

15], and represents the coordinated rotation of in-plane octahedra with the rotational

sense about the long (here, b) axis for intralayer neighboring cages being opposite.

However this structure fails to account for the weak Bragg violations (> 103 times

weaker than primary peaks) known to exist in this system, implying that there may be

a further distortion into a lower symmetry. Alternatively, the latter C2/c monoclinic

group, related to Ccce by the transformation matrix -b+1
4
, a+1

4
, c, can account for

these violations and represents a combination of the previous in-plane octahedral

rotation with an additional octahedral tilt mode [16], as seen projected separately in

panels (a) and (b) of Fig. 4.2. Taken blindly however, the R1 values resulting from

refinement of the time-of-flight data alone were comparable for each candidate group,

mandating further constraints to determine the correct solution.

4.4 Point Group Measurement

To further distinguish between the two possible solutions, rotational anisotropy sec-

ond harmonic generation measurements were taken. RA-SHG is a technique capable

of directly determining the crystallographic point group symmetry of a material. In

these experiments, light of frequency ω is obliquely incident on the surface of a crystal

and the intensity of light reflected at 2ω is measured as a function of the angle (φ)

between the scattering plane and some in-plane crystalline axis [36]. By performing

these measurements using different combinations of incident and outgoing light po-
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Figure 4.3: RA-SHG patterns (open circles) from Sr3Ir2O7 acquired under (a) Sin-
Pout, (b) Pin-Pout, (c) Sin-Sout and (d) Pin-Sout polarization geometries at T = 295 K.
The intensities of all patterns are normalized against the PP trace. Red lines overlaid
on the data are best fits to bulk electric quadrupole induced RA-SHG calculated using
either of the centrosymmetric 4/m or 2/m point groups. The bottom row (e)–(h)
shows the corresponding best fits to bulk electric-quadrupole induced RA-SHG from
the centrosymmetric 4/mmm (green) and mmm (blue) point groups as well as to bulk
electric-dipole induced RA-SHG from the non-centrosymmetric 2mm point group
(orange). Responses that are absent in the plots are forbidden by symmetry.

larization, the entire nonlinear optical susceptibility tensor can be determined, which

embeds all the point group symmetries of the material. This technique has recently

been used to help identify subtle structural distortions in Sr2IrO4 that lower the point

group symmetry from 4/mmm to 4/m [22, 41].

Fig. 4.3 shows RA-SHG patterns from Sr3Ir2O7 acquired under all four linear po-

larization geometries at room temperature (> TN). The bottom row shows best fits to

calculations based on the three crystallographic point groups that have been proposed
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for Sr3Ir2O7: tetragonal 4/mmm (I4/mmm) [12], orthorhombic mmm (Bbcb) [14,

15], and orthorhombic 2mm (Bb21m) [19]. For the non-centrosymmetric 2mm point

group, it is assumed that the dominant contribution to SHG to be of bulk electric-

dipole origin. For the centrosymmetric 4/mmm and mmm point groups on the other

hand, bulk electric-dipole SHG is forbidden, and instead the dominant contribution

is presumed to be of bulk electric-quadrupole origin, consistent with the case for

Sr2IrO4 [22, 41]. It is clear from Figs. 4.3 (e)–(h) that none of these three proposed

point groups can describe the RA-SHG data. On the other hand, by assuming bulk-

electric quadrupole induced SHG from a centrosymmetric 4/m point group, excellent

agreement with the data is obtained, as shown in Figs. 4.3 (a)–(d) (Note that bulk

magnetic dipole induced SHG from a 4/m point group does not qualitatively match

the data). Any sub-group of 4/m (such as 2/m) fits the data equally well since it

naturally contains all elements of the 4/m electric-quadrupole susceptibility tensor.

Taken together with the diffraction data presented in Section III, these results suggest

that Sr3Ir2O7 crystallizes in a 2/m point group but is very close to being 4/m.

4.5 Proposed Structural Solution to Sr3Ir2O7

With the RA-SHG analysis unambiguously ruling out the orthorhombic point group

mmm associated with Ccce, we exclude space group No. 68 as a possible solution and

focus exclusively on No. 15 (C2/c). Tables 4.2 and 4.3 list the complete refinement

results obtained at T = 300 K and T = 100 K respectively. The relative atomic

positions reported correspond to the standard setting of space group C2/c (No. 15),

wherein the unique axis (associated with the single oblique angle β) is b, and the long

axis is a. Atomic displacement factors were also refined with all Uij matrices passing
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T = 300 K T = 100 K

a 20.935(4)�A 20.917(3)�A

b 5.5185(13)�A 5.5080(10)�A

c 5.5099(9)�A 5.4995(7)�A

β 90.045(18)° 90.069(15)°

V 636.6(2)�A
3

633.60(17)�A
3

Table 4.1: Refined lattice parameters and unit cell volumes for Sr3Ir2O7 at measured
temperatures using space group C2/c (No. 15), Z = 4.

a check for positive definiteness. Each atomic site within the cell refined to be fully

occupied within error. Associated unit cell parameters are listed in Table 4.1.

To converge, fits require refining the structure as a twin and obtain final R1

values of 5.7% (300 K) and 5.9% (100 K). Our choice of twin law is informed by the

‘accidental’ pseudosymmetry of the unit cell. Previously, the unit cell parameters

comprising the basal plane (b and c for C2/c) have been consistently reported as

identical to within experimental precision; furthermore, no measurable obliquity of

the cell has been previously reported. As no tetragonal space groups produce a

satisfactory solution the conditions b ≈ c, β ≈ 90° instead represent an effective

tetragonal metric of the system. The twin law which permits the refinement to

converge is a symmetry operator of the tetragonal point group 4/mmm: a two-

fold rotation about the [0 1 1] direction (basal plane diagonal). In real space, for a

small deviation from the condition β = 90°, this is tantamount to an altering of the

rotational phasing of the octahedra (along the long axis) at the twin boundary. The

twin scale factor was refined to 0.497, very near the ideal ‘perfect twin’ value of 0.5.

We note that because the twin law is not a symmetry operator of the point group of

the individual’s lattice (2/m), this is classified as twinning by pseudo-merohedry [42].
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Figure 4.4: Refined T = 300 K geometry of the IrO6 octahedra in Sr3Ir2O7 showing
relevant bond lengths and their uncertainties. Oxygen atoms are depicted in red, with
the central iridium atom in blue.

A representative oxygen octahedral cage surrounding each Ir site is depicted in

Fig. 4.4. The full refinement reveals only a slight tetragonal distortion in the apical

direction (â, for the standard setting used here), with a distortion parameter [43] of

only ∆d = 1.10× 10−4. In comparing this new model at 300 K with previous reports,

two distinguishing attributes should be highlighted: first, the in-plane rotation angle

of 11.5° closely matches previous measurements [14]. Next, in contrast to Ccce, the

out-of-plane tilt (now permitted) refines to a value of 0.23°. At 100 K, the in-plane

rotation angle increases to 11.8° and the tilt to 0.33°. Representative projections of

both features, alongside the full unit cell, are seen in Fig. 4.2. The presence of a

tilt angle representing only a ≈ 0.3% deviation from the orthorhombic model with
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Table 4.2: Results of refinement of T = 300 K neutron diffraction data to the C2/c
model. Wyckoff site labels, relative atomic coordinates and anisotropic displacement
factor matrices Uij are included. R1 = 0.057

Atom Wyckoff Site x y z

Ir 8f 0.59755(4) 0.7495(5) 0.7500(4)

Sr(1) 4e 0.500000 0.2489(11) 0.750000

Sr(2) 8f 0.68747(7) 0.7507(9) 0.2494(5)

O(1) 4e 0.500000 0.7480(14) 0.750000

O(2) 8f 0.69414(8) 0.7487(9) 0.7496(7)

O(3) 8f 0.09674(14) 0.4499(9) 0.4490(5)

O(4) 8f 0.09610(14) 0.9488(9) 0.5507(5)

Atom U11 U22 U33 U12 U13 U23

Ir 0.00670 0.00800 0.00210 -0.00030 -0.00170 -0.00040

Sr(1) 0.01010 0.00700 0.01200 0.00000 -0.00100 0.00000

Sr(2) 0.00930 0.01200 0.01100 0.00190 -0.00190 -0.00170

O(1) 0.00460 0.02100 0.02200 0.00000 -0.00230 0.00000

O(2) 0.00400 0.00700 0.02100 0.00130 -0.00180 -0.00050

O(3) 0.01450 0.01120 0.00700 -0.00010 -0.00040 0.00290

O(4) 0.01650 0.01040 0.00840 0.00060 -0.00100 -0.00270

a nearly identical in-plane rotation at these temperatures is consistent with the fact

that, by merit of diffraction data refinement alone, C2/c and Ccce describe the single

crystal diffraction data equally well.

4.6 Discussion

As a separate metric aiding in the differentiation among possible space groups for

Sr3Ir2O7, density functional theory calculations were employed. Atom positions in the

two models for C2/c and Ccce were allowed to relax, subject to symmetry constraints,

and the total energies of the resulting configurations were compared. The energy
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Table 4.3: Results of refinement of T = 100 K neutron diffraction data to the C2/c
model. Wyckoff site labels, relative atomic coordinates and anisotropic displacement
factor matrices Uij are included. R1 = 0.059

Atom Wyckoff Site x y z

Ir 8f 0.59754(4) 0.7502(11) 0.7504(2)

Sr(1) 4e 0.500000 0.2490(2) 0.750000

Sr(2) 8f 0.68756(7) 0.7491(16) 0.2505(4)

O(1) 4e 0.500000 0.7481(16) 0.750000

O(2) 8f 0.69432(8) 0.7490(10) 0.7502(5)

O(3) 8f 0.09592(14) 0.4460(9) 0.4465(5)

O(4) 8f 0.09688(16) 0.9476(10) 0.5525(7)

Atom U11 U22 U33 U12 U13 U23

Ir 0.00720 0.00930 0.00240 0.00140 0.00060 -0.00060

Sr(1) 0.00890 0.00300 0.00800 0.00000 0.00310 0.00000

Sr(2) 0.01070 0.00300 0.01100 0.00000 0.00610 -0.00260

O(1) 0.00700 0.00400 0.01900 0.00000 0.00800 0.00000

O(2) 0.00510 0.00700 0.01000 0.00100 0.00180 0.00320

O(3) 0.01130 0.00620 0.00390 0.00020 -0.00080 -0.00040

O(4) 0.01140 0.01160 0.00790 0.00000 -0.00060 -0.00460

associated with the monoclinic group C2/c was calculated to be 26 meV lower than

that of Ccce, supporting the notion that the activation of the octahedral tilt mode

permits a slight reduction of the overall energetics.

Based on the combination of neutron diffraction, RA-SHG data, and DFT analy-

sis, the C2/c model is a more complete structural solution as it also resolves previous

anomalies in reported neutron diffraction data. General reflection conditions for space

group No. 15 (in the standard C2/c setting) impose the condition H + L = 2n [18];

now the weak ‘violations’ of the orthorhombic solution observed previously [19] are

allowed reflections in C2/c. Structure factors corresponding to these reflections, cal-

culated from the refined atomic positions in the monoclinic cell reported here, predict
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relative intensities of the order matching those observed in earlier triple-axis neutron

studies [17, 19].

The C2/c model also offers a microscopic explanation of the anomalous presence

of a net ferromagnetic moment in the basal plane of Sr3Ir2O7 as seen in prior bulk

susceptibility measurements [14, 25]. The solution of the magnetic structure depicts

antiferromagneticaly ordered moments aligned out-of-plane, along the â-direction [13,

17, 44]; however scattering would be unable to resolve small (< 1°) projections of the

moment away from this axis. Assuming a mechanism of spin-locking to octahedral

orientation [4] similar to that observed in Sr2IrO4 [23, 45], the ordered moment in the

C2/c setting would project a small component into the b-c plane below TN = 280 K,

resulting in a net ferromagnetic moment. To quantify this, the tilt angle observed

at 100 K in conjunction with the reported ordered moment size of 0.36µB Ir−1 [17,

25] would imply an in-plane ferromagnetic moment of ≈ 1× 10−3 µB Ir−1, in rela-

tively good agreement with b-c plane magnetization data previously reported in this

system [14, 46].

4.7 Conclusions

The measurements outlined here provide a comprehensive, multi-probe study arriv-

ing at the structural solution of the bilayer iridate system Sr3Ir2O7. The assignment

of the monoclinic space group C2/c (No. 15) readily accounts for previously reported

rotations of the in-plane octahedra while at the same time enabling a subtle octa-

hedral tilt mode distortion not resolved in previous studies of this system. This tilt

breaks the nominal orthorhombic symmetry, lowering the point group from mmm

to 2/m as seen in the RA-SHG data, and permits scattering at previously observed
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Bragg violations of Ccce. Including this further distortion in the structural model

is supported by DFT calculations, which demonstrate that such a tilt represents a

lowering of the overall lattice energy. Our data provide the needed foundation for

understanding how the lattice distorts and its subsequent role as this spin-orbit Mott

system is driven toward the metallic state via doping or pressure.
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Chapter 5

Phase Diagram of (Sr1−xLax)3Ir2O7

With the basic electronic, magnetic, and structural properties of Sr3Ir2O7 established,

it is of interest to attempt to destabilize the spin-orbit aided Mott state by means

of carrier doping (electrons, in this case). A systematic mapping of the evolution

of magnetic and transport properties as a function of doping concentration allows

a preliminary phase diagram to be constructed. The phase diagram is a helpful

tool in evaluating the strength of competing interactions in (Sr1−xLax)3Ir2O7, and

provides context within which subsequent doping-dependence studies leveraging al-

ternate probes might be understood. It also serves to contrast alternate methods of

carrier insertion, such as chemical substitution of holes or surface doping of ions.

101
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5.1 Introduction

As outlined in Chapter 1, the seminal examples of the spin-orbit Mott state were

reported in the n = 1 and n = 2 members of the Srn+1IrnO3n+1 Ruddlesden-Popper

series [1, 2], where Ir4+ cations, in the limit of a cubic crystal field, realize a Jeff = 1/2

antiferromagnetic ground state [3, 4]. Realizing new electronic phases in close prox-

imity to this SOM state is a subject of considerable theoretical work [5], and re-

cent experiments have begun to suggest exotic properties present in nearby metallic

states [6, 7]. However, the central task of understanding the mechanism of the Mott

state’s collapse in these 5d-electron Mott systems remains an open question, where,

for instance, the roles of competing phases and additional modes of symmetry break-

ing remain unaddressed. This chapter outlines a rigorous investigation of the phases

accessed by doping elections (via La3+) into Sr3Ir2O7.

The bilayer (n = 2) material Sr3Ir2O7 is an excellent test system for exploring

carrier substitution in a spin-orbit Mott material [8, 9]. The reduced short-range

Coulomb interaction, U , attributable to its 5d valence states and the increased band-

width inherent to Sr3Ir2O7’s bilayer structure lead to a marginally stable insulating

state [10]. As a result, the Mott insulating state manifests in the weak limit where the

charge gap is of the same order as the nearest neighbor Heisenberg exchange coupling

J [11, 12]. This provides a unique platform for exploring the collapse of the Mott

phase, where relatively small perturbations (e.g. changes in carrier concentration)

can affect dramatic changes in the stability of the insulating state, and one where the

mechanism of the gap’s collapse can be explored in the limit of dilute substitution.

Consistent with the idea of a delicate Mott state, Sr3Ir2O7 has recently been
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shown to manifest metallic behavior under small levels of La-substitution (electron-

doping) [13]. However, little remains understood regarding the nature of the metallic

state realized upon carrier substitution and the means through which the parent Jeff =

1
2

Mott state collapses. For instance, once the Mott state is destabilized, conflicting

reports have suggested both an unusual metallic state with a negative electronic

compressibility [7] as well as a surprisingly conventional, weakly correlated metal [14].

Notably lacking is a detailed understanding of the structural and electronic responses

of this prototypical weak SOM system as electrons are introduced. This remains

an essential first step toward developing a deeper understanding of the interactions

remaining after the parent SOM state is quenched.

Here the results of bulk transport/magnetization, neutron/x-ray scattering, and

scanning tunneling spectroscopy (STS) measurements are presented in order to map

the evolution of the antiferromagnetic SOM state in (Sr1−xLax)3Ir2O7 upon electron

substitution. Light electron doping initially drives the weak SOM state to fragment

into nanoscale regions of mixed metallic and insulating character that eventually

collapse into a uniform metallic regime beyond x = 0.04. The addition of donors to

the system causes a swelling of the unit cell volume, and a parallel suppression of

magnetostriction effects associated with the onset of Ising-like magnetic order [15].

Once in the globally metallic phase, the long-range G-type Néel state remnant from

the parent Mott phase vanishes, and a metallic state with an enhanced susceptibility

and Wilson ratio emerges. Our aggregate data demonstrate the doping-driven, first-

order, melting of a weak spin-orbit Mott phase into a correlated metal.
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5.2 Details of Methodology

Single-crystal samples of (Sr1−xLax)3Ir2O7 were grown via techniques similar to ear-

lier reports [9, 16], with complete details provided in Chapter 3. Electronic transport

measurements were carried out using a four-probe contact configuration and mea-

sured with a Lakeshore 370 AC Resistance Bridge. Measurements were performed

in a Janis Research Company CCR with a base temperature of 3 K. Magnetization

measurements were collected with Quantum Design Magnetic Property Measurement

System (MPMS) 5XL SQUID and MPMS3 SQUID-VSM magnetometers. Heat ca-

pacity measurements were collected within a Quantum Design Physical Property

Measurement System (PPMS).1

Structural determination was carried out on crystals previously characterized for

dopant concentration via EDS which were ground to a fine powder and measured in

Bruker D2 Phaser and PANalytical Empyrean XRD machines at room temperature.

No impurity phases were observed within instrument resolution. Lattice parameters

and unit cell volumes were refined within the Bbcb space group (No. 68), shown in

Fig. 5.2 (a). Data below x = 0.045 was binned into 0.01 wide bins centered at integer

concentrations. Error bars about the refined lattice parameter value correspond to the

estimated standard deviation output of the PANalytrical HighScore software package

(errors were propagated for points representing bins of more than one measurement).

Neutron experiments were performed at the N5 triple-axis spectrometer at the

Canadian Neutron Beam Centre, Chalk River Laboratories. Samples were mounted

to thin (0.4 mm) Al plates with a drop of CYTOP fluoropolymer, cured at 100 ◦C

for one hour. Sample orientation is known to have the c-axis perpendicular to the

1Additional information regarding each of the probes listed here can be found in Chapter 2.
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face of these small platelets, and the a-axis is often found parallel to a long, regular

edge of the sample. Samples were aligned within a CCR in the (H 0L) plane using

the orthorhombic Bbcb structural solution. Experiments were performed with PG

monochrometer and analyzer using the Q = (0 0 2) reflection. The incident wave-

length was 14.58 meV (2.370 51�A) and collimations of 0′ - 36′ - 33′ - 144′ were used

before the monochromator, sample, analyzer, and detector, respectively.

Resonant x-ray measurements were performed on beam line 6-ID-B at the Ad-

vanced Photon Source at Argonne National Lab and X22C at the NSLS at Brookhaven

National Lab. The radiation source was an undulator insertion device at 6-ID-B and

a bending magnet at X22C. Samples were mounted using a small spot of GE varnish

to a small copper mount. This mount was connected to the cold head of a CCR

using Be domes for the radiation shield and vacuum shroud. Samples were aligned in

the (H 0L) plane on (0 0 20) and (2 0 10) Bragg reflections (again, indexed in Bbcb).

Data was collected with incident energy tuned to the resonant peak corresponding

to the Ir L3 edge (11.22 keV). Experiments on X22C utilized a Si(1 1 1) analyzer.

6-ID-B utilized a PG-008 crystal for polarization analysis.

Scanning tunneling microscopy/spectroscopy (STM/S) measurements2 were per-

formed at 4 K using etched W tips, on samples cleaved at ≈ 77 K in UHV. Cleavage

was found to occur between SrO layers and, consistent with earlier reports [12], the

atoms imaged in STM topographies belong to the Sr sublattice of the exposed SrO

plane. dI/dV spectra were taken by the usual lock-in technique with tip height

fixed in constant-current mode at +330 mV and -300 mV for maps shown later in

Figs. 5.5 (c) and (d) respectively. Individual La dopants appear as squares in the

topography (Figs. 5.5 (a) and (b)). In electronically phase-separated samples den-

2STM/S measurements were conducted by D. Walkup and V. Madhavan [17].
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Figure 5.1: (a) Resistivity as a function of temperature ρ(T ) for (Sr1−xAx)3Ir2O7,
A=La and Ca. (b) Magnetization data for (Sr1−xLax)3Ir2O7. Data plotted is field-
cooled (FC) minus zero-field cooled (ZFC) data under 800 Oe applied parallel to the
c-axis.

sity fluctuations of La-dopants were not strongly correlated with the metal/insulator

nature of the dI/dV spectra- that is, the spatial location of La-dopants was not cor-

related with the location of metallic puddles. The evolution of this effect and the

role of surface and subsurface La dopants in destroying the insulating state locally is

discussed elsewhere [18].

5.3 Bulk Probe Results

Immediately upon introducing La into Sr3Ir2O7 a dramatic drop in the low temper-

ature resistivity ρ(T ) is observed for concentrations as low as x = 0.01, as shown in

Fig. 5.1 (a). Using the näıve metric of ∂ρ
∂T

< 0 as T → 0 to define an “insulating”

phase, the system is found to remain in an insulating state until xMIT ≈ 0.04 is
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Figure 5.2: (a) Powder x-ray data showing the a-axis and unit cell volume as a
function of La- and Ca-substitution in Sr3Ir2O7. (b) Neutron scattering data showing
relative shifts in lattice constants for (Sr1−xLax)3Ir2O7. Values are the fractional
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)

reached. Upon further doping, a change in the sign of the low temperature ∂ρ
∂T

oc-

curs, which is hereafter denote for simplicity as the metal-insulator transition (MIT).

Doping beyond this level results in the vanishing of the irreversibility in the static

spin susceptibility, emblematic of AF ordering in Sr3Ir2O7, as shown in Fig. 5.1 (b).

This rapid quenching of the parent system’s weak net ferromagnetism is coincident

with the onset of the metallic phase and suggests the suppression of the Néel state

in the metallic regime.

As electrons are introduced into the system, the in-plane lattice parameters ex-

pand (Fig. 5.2 (a)) while the c-axis remains unchanged within resolution. This results

in a swelling of the lattice volume that continues with increased La-concentration,

reminiscent of the lattice swelling observed in La-doped SrTiO3 [19] where corre-

lation effects enhance the destabilization/expansion of the lattice driven by adding



108 CHAPTER 5. PHASE DIAGRAM OF (Sr1−xLax)3Ir2O7

conduction electrons into antibonding orbitals. This combined effect competes with

steric effects and, if correlation effects are strong enough, can drive lattice expan-

sion even at small doping levels. The relative magnitude of the volumetric ex-

pansion ∆V/V ≈ 0.03% per percentage of La-dopant is nearly identical for both

(Sr1−xLax)3Ir2O7 and La-doped SrTiO3—suggesting a comparable role played by cor-

relations. The magnitude of this effect can be demonstrated by alloying comparably-

sized, isovalent Ca2+ (180 pm)3 instead of La3+ (195 pm) into the system, where

purely steric effects instead drive a lattice contraction (Fig. 5.2 (a)).

An additional structural response to the MIT is shown in Fig. 5.2 (b), which

reveals that the anisotropic thermal contraction of the parent system upon cooling

vanishes as it is doped into the metallic phase. Namely, both parent and lightly La-

doped Sr3Ir2O7 samples possess a c-axis lattice constant that expands upon cooling

while the basal plane lattice constants contract. The magnitude of this effect gradu-

ally switches to a conventional, uniform, thermal contraction as the MIT is traversed,

and the doping-driven switch in behavior tracks the disappearance of irreversibility in

the static spin susceptibility. This suggests that the expansion of the c-axis upon cool-

ing for x ≤ xMIT is driven by strong magnetoelastic coupling where magnetostriction

between the Ising-like, c-axis oriented, moments and their local lattice environment

drive an anisotropic distortion of the lattice.

5.4 Neutron and X-Ray Scattering

The disappearance of irreversibility in magnetization measurements, however, is not

a rigorous metric for determining the doping evolution of the magnetic order in a

3Radii taken from [20]. For reference, the radius of Sr is 200 pm.
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Figure 5.3: (a) Background subtracted magnetic order parameter measurements
for (Sr1−xLax)3Ir2O7. Data was collected at the Q=(1 0 2) position and normalized
to a sample-dependent scale factor. (b) AF-ordered moment and relative weight of
forbidden structural peak (1 0 9), representative of TS for (Sr1−xLax)3Ir2O7. Data for
x=0 is taken from [16].

canted AF. To further investigate the evolution of AF order as the metallic state

is approached, neutron scattering measurements were performed. For samples with

x ≤ xMIT, magnetic scattering remained consistent with the G-type spin structure

of the parent material [15, 16]. Scattering results plotted in Figs. 5.3 (a) and (b)

show that the ordered AF moment rapidly collapses as xMIT is approached, yet the

ordering temperature remains only weakly affected. This contrasts the percolative

MIT realized in Ru-doped Sr3Ir2O7, where AF order survives into the metallic regime

and remains coherent across electronically phase separated patches [21]. Instead, La-

substitution rapidly quenches spin order associated with Sr3Ir2O7’s G-type structure,

which vanishes with the stabilization of the low temperature metallic state.

An additional order parameter also develops as a function of La-doping below a

characteristic temperature TS. This distortion appears in the form of a weak, tem-
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Figure 5.4: (a) Background subtracted neutron scattering data showing select TS

order parameters at the (1 0 9) wave vector. Intensity of the scattering has been
normalized via a sample dependent scale factor. (b) Radial scans through the (1 0 7)
reflection in both σ−σ and σ−π scattering channels for (Sr1−xLax)3Ir2O7 x = 0.058
showing significant signal only from charge scattering.

perature dependent, superlattice at Bbcb forbidden Q=(odd 0 odd) positions. Despite

being a crystallographically forbidden position, polarization analysis for an x = 0.058

(Sr1−xLax)3Ir2O7 sample at 6 K shows the superlattice to be nonmagnetic in origin.

Fig. 5.4 (b) shows scans through (1 0 7) in the σ − σ (charge) and σ − π (magnetic)

channels reveal a σ − π peak intensity of just ≈ 2.4% of the σ − σ peak. This signal

arises simply from bleed-through from σ − σ due to inherent limits of the polariza-

tion analysis, and confirms the origin of the reflection to be via charge scattering.

Figs. 5.3 (b) and 5.4 (a) show the evolution of this structural distortion as a function

of increasing La-content. The relative weights of Bragg reflections associated with

this distortion are plotted in Fig. 5.3 (b), and the corresponding temperature evolu-

tion of the order parameters are plotted in Fig. 5.4 (a). As La content is increased,

both TS and its relative scattering weight increase, seemingly saturating across xMIT.
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5.5 Surface Probe and Thermodynamic Results

One explanation for the trade-off in scattering weight between this new structural

order parameter and AF order, along with the relatively weak doping dependence of

TS and TAF away from the critical regime, is that light electron-doping generates a

phase separated ground state. To test this notion, STS measurements were performed

on samples residing on both sides of the MIT. The resulting spectra of samples in

the insulating x = 0.035 and metallic x = 0.048 regimes are plotted in Fig. 5.5 where

electron-doping with x ≤ xMIT results in a nanoscale phase separated ground state

with distinct insulating and gapless regions. Upon continued doping to x = 0.048,

a homogenous, globally gapless, ground state is observed and is consistent with the

metallic transport observed for x > xMIT.

Beyond xMIT, static spin susceptibility data for a metallic sample with x = 0.058

are plotted in the Fig. 5.6 inset. The data, fit to a Curie-Weiss (CW) model

with an additional temperature independent Pauli term, give Θ = −69 ± 9 K and

µeff = 0.51 ± 0.02 µB. This Curie-Weiss behavior can be shown to originate from

metallic (electronically gapless) regions of the sample, and not from rare-region spin

clusters with a spectral gap, by comparing the static spin susceptibility data with

spectroscopic results. These two scenarios can be discriminated as follows: first, con-

sider the requisite volume fraction of hypothetical clusters of local moments within

the sample that would produce the effective Curie-Weiss observed in the inset of

Fig. 5.6, recalling that the parent Sr3Ir2O7 material does not show high-temperature

CW behavior above TN ≈ 280 [22] (as depicted in Fig. 1.4; see Chapter 6 for further

discussion of this behavior). In hypothesizing what the local moments of Ir4+ ions
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Figure 5.5: STM topography of (Sr1−xLax)3Ir2O7 at 300 mV bias for (a) insulating
x=0.035 and (b) metallic x=0.048 samples. dI

dV
spectra obtained on a grid in each

topograph are plotted in panels (c) for x=0.035 and (d) for x=0.048. Representative
numbered points are highlighted in each map and the corresponding dI

dV
spectra are

emphasized as solid lines in spectral histograms. Fully gapped and gapless spectra
are observed in the x=0.035 sample while a homogenous, gapless state appears across
spectra in x=0.048.
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in the clusters could be, the strictest scenario is considered by using the full S=1/2

local moment µlocal = 1.73 µB as the nominal Ir local moment. This local impurity

moment can only generate the observed/apparent CW behavior of 0.51µB Ir−1 if full

1.73 µB moments occupied ≈9% of the sample volume.

It can be shown that the STM data preclude this possibility. Fig. 5.5 (b) shows a

15 nm x 15 nm topographic map of the sample, whose spectral histogram is plotted

in Fig. 5.5 (d). Within this map, no gapped regions were observed. This corresponds

to a 22 500�A
2

area map and a survey of 1480 unit cells (with a = b = 3.897�A). The

tetragonal unit cell has 3.897�A as the nearest neighbor Ir-Ir distance, and there is

one Ir-cation per 3.897�A × 3.897�A square. The positional binning of the spectral

histogram is 2.4�A × 2.4�A. That no gapped regions were observed within the STS

spectra therefore means that the upper limit for the volume fraction of gapped re-

gions (presumably with clustered magnetic moments) is 0.07%. This is two orders

of magnitude smaller than what is necessary to account for the local moment cluster

explanation of susceptibility data. Hence, rare, gapped regions with local moments

cannot account for the observed susceptibility.

Similarly, if a second scenario is considered where clusters of ferromagnetic spins

saturate under the applied H-field and, via disorder, mimic a CW response. If once

again the strictest case where full moments of 1µB Ir−1 occupy the polarized clusters

is assumed, the volume fraction of the sample needed to host these polarized clus-

ters (again presumably with an accompanying spectral gap) can be calculated. The

measured χ(T ) and applied field given in Fig. 5.6 imply a lower limit on the volume

fraction of such clustered regions of 0.36% of the sample volume. This worst-case

estimate is excluded by the gapless sample volume fraction surveyed in Figs. 5.5 (b)

and (d) as detailed above. Additionally, larger STS maps surveying 562 500�A
2

were
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Figure 5.6: Heat capacity cv(T ) data for x = 0.058 La. Dashed line is a fit to the
form cv(T ) = γT +βT 3 with γ = 19.88±0.30 [mJ mole−1 K−2] and β = 0.409±0.007
[mJ mole−1 K−4]. Inset shows χ(T ) for this same sample with H = 20kOe ‖ ab-plane
with dotted line denoting the Curie-Weiss fit discussed in the text.

also collected and spectral histograms analyzed on this same sample [18]. These also

revealed no gapped spectra, which further reduces the possible volume fraction of

gapped regions to be smaller than 0.003% of the sample volume. Assuming that the

surface electronic states probed by STS data are reflective of the bulk, the combined

analysis of the susceptibility and STS data mandates the survival of a local moment

response within gapless regions of the sample.

Heat capacity data from this same x = 0.058 concentration (Fig. 5.6) obtain a
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Sommerfeld coefficient γ = 19.88±0.30 [mJ mol−1 K−2] (γ = 9.94 [mJ mol-Ir−1 K−2]),

also reflecting a metal with enhanced correlation effects. Low temperature χ(T ) from

this same sample shows χ = 0.0229 [J T−2 mol−1] at T = 2 K, leading to a Wilson

ratio4 of RW =
π2k2

Bχ

3µ2
Bγ
≈ 8.4. This enhanced RW is consistent with a system near an

instability [23] and suggests that the state realized for x > xMIT is a correlated metal

with an enhanced spin susceptibility that retains remnant correlations from the SOM

parent phase.

5.6 La-doping Phase Diagram

The electronic phase diagram summarizing the evolution of the SOM phase upon

electron-doping is plotted in Fig. 5.7. Immediately upon doping electrons into the

parent Sr3Ir2O7, a regime of phase separation appears—one where nanoscale AF

ordered insulating regions segregate from gapless metallic regions that stabilize a

global structural distortion below TS. For x < xMIT, TS increases in parallel to the

growth of the volume fraction of the sample hosting the metallic phase. Similarly, the

combined neutron/STM data of Figs. 5.3, 5.4 and 5.5 demonstrate that the apparent

reduction in the AF moment under light electron doping largely arises from electronic

phase separation of the sample into AF ordered insulating and paramagnetic metallic

regions. Upon doping beyond the critical concentration of x ≈ 0.04, a first-order line

appears where AF order collapses and the system becomes globally metallic.

Earlier reports of persistent AF order in metallic concentrations of (Sr1−xLax)3Ir2O7

were unable to discern whether this coexistence was intrinsic to the physics of a doped

SOM insulator or extrinsic due to macroscopic sample inhomogeneity [13]. Our ob-

4For details concerning the evaluating the Wilson ratio see Appendix C, page 159.
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servation of an abrupt, first-order, collapse of the Sr3Ir2O7 parent material’s Néel

state upon entering the metallic regime resolves this open question and demonstrates

the instability of long-range AF order once the weak SOM state inherent to Sr3Ir2O7

is tuned beyond half-filling. Since strong in-plane AF superexchange masks the local

moment behavior above TAF in undoped Sr3Ir2O7 [11, 22], the doping-induced col-

lapse of AF beyond the MIT ultimately allows for the Ir local moments to be observed

in the correlated metallic regime.

Our measurements depict the destruction of the parent state’s Néel order upon

entering the metallic regime and are consistent with recent theoretical work demon-

strating the filling-tuned, first-order MIT of a weak Mott state in the intermediate

coupling regime [24, 25]. The first order nature of the MIT is demonstrated explicitly

by the phase coexistence for x ≤ xMIT plotted in Fig. 5.5. As the system is driven

across the MIT phase boundary, the development of a structural symmetry breaking

transition suggests a multicritical point driven by a competing energy scale, TS, near

the parent SOM phase.

As one test of whether TS is endemic to the metallic state, additional neutron scat-

tering measurements were performed on isovalent-substituted (Sr0.93Ca0.07)3Ir2O7.

This system remains an insulator (Fig. 5.1 (a)) and bulk irreversibility measure-

ments show TN ≈ 270 K, close to that of the unalloyed parent material. Still, the

reduced cation size drives a low temperature structural distortion along the iden-

tical (odd, 0, odd) wave vectors as in La-substituted Sr3Ir2O7 (Fig. 5.4 (a)). TS for

this Ca-doped sample, however, occurs at a reduced energy scale relative to its La-

doped counterpart. This reduced TS at a comparatively higher Ca-dopant concen-

tration (larger steric perturbation) suggests that the electronic contribution to the

lattice deformation enhances TS and drives the metallic state. This is also consistent
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with reports of a structural distortion appearing near the pressure-driven MIT of

Sr3Ir2O7 [13, 26].

In summary, our data demonstrate the carrier-driven first-order melting of the

SOM phase in (Sr1−xLax)3Ir2O7, consistent with the predictions of an electronically

phase separated state intermediate to the complete collapse of the Mott phase in the

weak limit. Beyond the critical xMIT = 0.04 concentration, the SOM state collapses

into a metallic state with enhanced spin susceptibility and local moment behavior.

Ascertaining whether the lattice distortion emergent at the onset of the metallic state

is purely a structural effect or a secondary consequence of a competing electronic

instability is an interesting avenue for future exploration.

Publication

This chapter is based largely on a publication titled First-Order Melting of a Weak

Spin-Orbit Mott Insulator into a Correlated Metal which appeared in Physical Review

Letters [17]. Acknowledgments and funding sources contributing to this research are

reproduced below.5

5S.D.W. thanks L. Balents, R. Seshadri, and Z. Wang for helpful discussions. This work was
supported in part by NSF CAREER award DMR-1056625 (S.D.W.). T. Hogan and magnetization
measurements were partially supported by DMR-1121053. Partial support given by the US Depart-
ment of Energy (DOE), Office of Basic Energy Sciences (BES), Materials Sciences and Engineering
Division, (T.Z.W.). STM work (V.M. and D.W.) was supported by a grant from the National
Science Foundation, NSF DMR-1305647. The work at the Advanced Photon Source of Argonne
National Laboratory was supported by the U.S. Department of Energy Basic Energy Sciences under
Contract No. NE-AC02-06CH11357. Work at Brookhaven National Laboratory and the National
Synchrotron Light Source was supported by the U.S. Department of Energy, Office of Science, Office
of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.



REFERENCES 119

References

[1] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem, J. Yu, T. W.

Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G. Cao, and E. Rotenberg,

Phys. Rev. Lett. 101, 076402 (2008).

[2] S. Boseggia, R. Springell, H. C. Walker, A. T. Boothroyd, D. Prabhakaran, D.

Wermeille, L. Bouchenoire, S. P. Collins, and D. F. McMorrow, Phys. Rev. B

85, 184432 (2012).

[3] M. Moretti Sala, S. Boseggia, D. F. McMorrow, and G. Monaco, Physical Review

Letters 026403, 1 (2014).

[4] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T.

Arima, Science 323, 1329 (2009).

[5] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents, Annual Review of

Condensed Matter Physics 5, 57 (2014).

[6] Y. K. Kim, O. Krupin, J. D. Denlinger, a. Bostwick, E. Rotenberg, Q. Zhao,

J. F. Mitchell, J. W. Allen, and B. J. Kim, Science 345, 187 (2014).

[7] J. He, T. Hogan, T. R. Mion, H. Hafiz, Y. He, J. D. Denlinger, S.-K. Mo, C.

Dhital, X. Chen, Q. Lin, Y. Zhang, M. Hashimoto, H. Pan, D. H. Lu, M. Arita,

K. Shimada, R. S. Markiewicz, Z. Wang, K. Kempa, M. J. Naughton, a. Bansil,

S. D. Wilson, and R.-H. He, Nature Materials 14, 577 (2015).

[8] G. Cao, Y. Xin, C. Alexander, J. Crow, P. Schlottmann, M. Crawford, R. Har-

low, and W. Marshall, Phys. Rev. B 66, 214412 (2002).

[9] M. A. Subramanian, M. K. Crawford, and R. L. Harlow, Mater. Res. Bull. 29,

645 (1994).

[10] S. J. Moon, H. Jin, K. W. Kim, W. S. Choi, Y. S. Lee, J. Yu, G. Cao, A. Sumi, H.

Funakubo, C. Bernhard, and T. W. Noh, Phys. Rev. Lett. 101, 226402 (2008).

[11] J. Kim, A. H. Said, D. Casa, M. H. Upton, T. Gog, M. Daghofer, G. Jackeli,

J. van den Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 109, 157402

(2012).



120 CHAPTER 5. PHASE DIAGRAM OF (Sr1−xLax)3Ir2O7

[12] Y. Okada, D. Walkup, H. Lin, C. Dhital, T.-R. Chang, S. Khadka, W. Zhou,

H.-T. Jeng, M. Paranjape, A. Bansil, Z. Wang, S. D. Wilson, and V. Madhavan,

Nat Mater 12, 707 (2013).

[13] L. Li, P. P. Kong, T. F. Qi, C. Q. Jin, S. J. Yuan, L. E. DeLong, P. Schlottmann,

and G. Cao, Phys. Rev. B 87, 235127 (2013).

[14] A. de la Torre, E. C. Hunter, A. Subedi, S. McKeown Walker, A. Tamai, T. K.

Kim, M. Hoesch, R. S. Perry, A. Georges, and F. Baumberger, Phys. Rev. Lett.

113, 256402 (2014).

[15] J. W. Kim, Y. Choi, J. Kim, J. F. Mitchell, G. Jackeli, M. Daghofer, J. van den

Brink, G. Khaliullin, and B. J. Kim, Phys. Rev. Lett. 109, 037204 (2012).

[16] C. Dhital, S. Khadka, Z. Yamani, C. de la Cruz, T. C. Hogan, S. M. Disseler,

M. Pokharel, K. C. Lukas, W. Tian, C. P. Opeil, Z. Wang, and S. D. Wilson,

Phys. Rev. B 86, 100401 (2012).

[17] T. Hogan, Z. Yamani, D. Walkup, X. Chen, R. Dally, T. Z. Ward, M. P. M.

Dean, J. Hill, Z. Islam, V. Madhavan, and S. D. Wilson, Physical Review Letters

114, Supplementary Information, 257203 (2015).

[18] D. Walkup, “Doping and strain effects in strongly spin-orbit coupled systems”,

PhD thesis (Boston College, 2016).

[19] A. Janotti, B. Jalan, S. Stemmer, and C. G. Van de Walle, Applied Physics

Letters 100, 262104 (2012) http://dx.doi.org/10.1063/1.4730998.

[20] J. C. Slater, The Journal of Chemical Physics 41, 3199 (1964).

[21] C. Dhital, T. Hogan, W. Zhou, X. Chen, Z. Ren, M. Pokharel, Y. Okada, M.

Heine, W. Tian, Z. Yamani, C. Opeil, J. S. Helton, J. W. Lynn, Z. Wang, V.

Madhavan, and S. D. Wilson, Nat. Commun. 5, 1 (2014).

[22] I. Nagai, Y. Yoshida, S. I. Ikeda, H. Matsuhata, H. Kito, and M. Kosaka, J.

Phys. Condens. Mat. 19, 136214 (2007).

[23] S.-I. Ikeda, Y. Maeno, S. Nakatsuji, M. Kosaka, and Y. Uwatoko, Phys. Rev. B

62, R6089 (2000).

[24] C.-H. Yee and L. Balents, Phys. Rev. X 5, 021007 (2015).



REFERENCES 121

[25] M. Balzer, B. Kyung, D. Sénéchal, A.-M. S. Tremblay, and M. Potthoff, EPL

(Europhysics Letters) 85, 17002 (2009).

[26] Z. Zhao, S. Wang, T. F. Qi, Q. Zeng, S. Hirai, P. P. Kong, L. Li, C. Park,

S. J. Yuan, C. Q. Jin, G. Cao, and W. L. Mao, Journal of Physics: Condensed

Matter 26, 215402 (2014).



122 CHAPTER 5. PHASE DIAGRAM OF (Sr1−xLax)3Ir2O7



Chapter 6

Mapping the Evolution of

Magnetic Excitations in

(Sr1−xLax)3Ir2O7

Now that the rudimentary phase diagram for (Sr1−xLax)3Ir2O7 has been established,

the impact of this carrier doping on spin dynamics is evaluated. Mentioned previously,

two prior studies of the parent compound Sr3Ir2O7 arrived at somewhat conflicting

conclusions regarding the strength of the magnetic exchange constants. These two

models are evaluated via RIXS in the context of doping levels above and below xMIT

and complemented with additional bulk magnetization work in an effort to determine

which more accurately describes the observed excitation spectra.

123
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6.1 Introduction

Models of Heisenberg antiferromagnets on a bilayer square lattice have generated

sustained theoretical and experimental interest due to their rich variety of ground

states [1–5]. In zero field, an instability occurs above a critical ratio of interlayer to

intralayer magnetic exchange that transitions spins from conventional antiferromag-

netism into a dimer state comprised of spin singlets [1, 6]. These singlets may interact

and form the basis for numerous unconventional ground states such as valence bond

solids [7, 8], quantum spin liquids [4], Bose-glasses [9], and other quantum disor-

dered states [8]. Realizations of bilayer systems inherently near the critical ratio of

interlayer to intralayer coupling however are rare, primarily due to orbital/exchange

anisotropies strongly favoring either interplane or intraplane exchange pathways in

accessible compounds [10–12].

Jeff = 1
2

moments are arranged onto a bilayer square lattice within the n = 2

member of the Srn+1IrnO3n+1 Ruddlesden-Popper series, Sr3Ir2O7 [13]. The strong

spin-orbit coupling inherent to the Ir4+ cations in cubic ligand fields renders a largely

three dimensional spin-orbit entangled wave function [14, 15]. This combined with

the extended nature of its 5d valence electrons presents Sr3Ir2O7 as an interesting

manifestation of the bilayer square lattice—one where appreciable interlayer cou-

pling potentially coexists with strong intralayer exchange inherent to the single layer

analogue Sr2IrO4 [16].

While its ground state is antiferromagnetic [19–21], measurements of magnetic ex-

citations in Sr3Ir2O7 observe anomalous spectra with large spin gaps (∆E ≈ 90 meV)

whose values exceed that of the single magnon bandwidth [17, 18]. This has led to
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models shown in Figs. 6.1 (a) and (b) that cast the underlying exchange into two ex-

tremes: A linear spin wave approach with a large anisotropy gap and predominantly

intraplane exchange [17] versus a bond operator (BO) mean field approach [22] with a

dominant interplane, dimer-like, exchange [18, 23]. Recently, an additional excitation

attributed to a longitudinal mode associated with triplon excitations was observed

supporting the latter approach [24].

The comparable ability of both LSW and BO approaches to capture major fea-
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Figure 6.2: Pseudo-Voight fits of incoherent elastic scattering after spectrometer
alignment at the start of experiments measuring the x = 0.07 (left panel) x = 0.02
(right panel) samples. The shape parameter is denoted as µ, the center as xc, and
the width of the peaks by Γ.

tures of the magnetic spectra of Sr3Ir2O7 invites further study. In particular, consid-

erable insight can be gained by probing the evolution of spin dynamics as static AF or-

der is suppressed. Recent work has shown that, unlike Sr2IrO4, Sr3Ir2O7 can be driven

into a homogenous metallic state with no static spin order via La-substitution [25,

26]. Local moment behavior, notably absent in parent Sr3Ir2O7 [27], appears in these

electron-doped samples and hints at an unconventional metallic state [25].

Here resonant inelastic x-ray scattering (RIXS) is utilized to explore the spin

dynamics of (Sr1−xLax)3Ir2O7 as it transitions from an AF insulator into a param-

agnetic metal. Beyond x = 0.04 (6% electrons/Ir), AF order vanishes, yet robust

magnetic excitations persist deep into the metallic regime. Excitations become over-

damped as carriers are introduced, yet the large spin gap inherent to the AF parent

state survives into the disordered regime. The spectral weight of magnons in the

metallic state becomes nearly momentum independent and exhibits a dispersion best

described using the BO representation appropriate for a dimer state [18]. Supporting

this, static spin susceptibility measurements resolve the emergence of local moments
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which grow with increasing La-content and are consistent with a picture where each

electron doped breaks a dimer and creates an uncompensated moment. Our aggre-

gate data are best understood in the framework of a disordered dimer state emergent

upon electron substitution in La-doped Sr3Ir2O7.

6.2 Details of Methodology

Resonant elastic x-ray scattering (REXS) data were collected on the bending magnet

beamline C1 at the Cornell High Energy Synchrotron Source (CHESS) at Cornell

University. The sample was mounted to a copper post with a small amount of GE

varnish, which was then connected to a 4 K CCR employing Be domes for the ra-

diation shield and vacuum shroud. Scattering measurements were conducted in the

(H H L) scattering plane, and samples aligned using the (0 0 10) and (1 1 10) Bragg

reflections.1 Elastic data reported here was collected at the Ir L3 edge (11.218 keV)

utilizing a PG-006 crystal for polarization analysis and a NaI detector.

Resonant inelastic x-ray scattering (RIXS) measurements were performed at 27-

ID-B at the Advanced Photon Source at Argonne National Laboratory. Samples

were mounted to an aluminum fixture with a small amount of GE varnish, which

was then connected to a closed cycle refrigerator (CCR). In order to maximize signal

intensity a radiation shield was not used. Instead, only a Be-domed vacuum shroud

was used which limited the base temperature to 40 K. Scattering measurements were

conducted primarily within the (HK 26.5) plane, with the crystal aligned via the

Q = (0 0 20) and Q = (1 1 20) Bragg reflections.2

1Reflections here are indexed in the I4/mmm tetragonal space group (No. 139).
2See Footnote 1.
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A double crystal diamond-111 monochromator was positioned before a channel

cut Si-448 monochromator, with Ei set to the Ir L3 edge value (11.215 keV). Ef

was measured with a diced spherical Si-448 analyzer and a DECTRIS MYTHEN

detector. After alignment of the incident optical components, the sample scattering

angle 2θ was set to 20° (vertical), and an energy scan was taken to measure the elastic

line from two pieces of scotch tape. The full width at half maximum (FWHM) of

the resulting peak provides a metric for the energy resolution of the measurement

(∆Eres = 32 meV). Fits of the elastic line with a pseudo-Voight function are shown

in Fig. 6.2.

RIXS spectra were collected at T = 40 K for two La-doped Sr-327 concentra-

tions: x = 0.02, an AF insulator (TAF ≈ 240 K) and x = 0.07, a paramagnetic

metal [25]. Momentum positions are denoted using the in-plane (H,K) wave vectors

in the approximate tetragonal unit cell (a ≈ b ≈ 3.90�A) and, unless stated otherwise,

momentum scans were collected at L = 26.5 [r.l.u.]. Representative spectra for both

x = 0.02 and x = 0.07 samples are shown in Fig. 6.3. Cuts taken at zone center

Q = (π, π) and zone boundary Q = (π, 0) positions3 are shown with the elastic

line (E), single magnon (M), proposed multimagnon (M∗), and d − d excitations

(D) shaded. Individual excitations were fit to as a Lorenztian LQ(E) multiplied by

the Bose population factor BT (E) (Eq. 6.1). The inverse lifetime values ΓQ for all

excitations were substantially greater than the instrumental resolution.

IQ(E) = LQ(E) ·BT (E) =

(
2A

π

ΓQ
4(E − EQ)2 + Γ2

Q

)(
1− e

−E
kBT

)
(6.1)

3In discussing the dispersion, tetragonally indexed momenta coordinates are scaled by an addi-
tional factor of π, in the fashion of notation used in similar studies on cuprate materials.
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Figure 6.3: Representative energy scans collected at 40 K at fixed Q for samples
with x = 0.02 and x = 0.07. Panels (a) and (b) show scans performed at the AF
zone center (π, π) and zone boundary (π, 0) for AF insulating x = 0.02 respectively
while panels (c) and (d) show the same scans for paramagnetic, metallic x = 0.07.
Features labeled E, M , M∗, and D denote scattering from the elastic line, single
magnon, multimagnon, and d− d excitations respectively.
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Full energy spectra were fit using the following components: an overall constant

background term, an elastic line fit to a pseudo-Voigt function, a small linear back-

ground on the x-ray energy loss side typically associated with a particle-hole con-

tinuum, and a series of four peaks associated with magnetic (M , M∗) and d − d

excitations (D) modeled as shown in Eq. 6.1. These peaks were symmetrized to

the energy gain side of the spectrum using detailed balance, however their contri-

butions are drastically suppressed due to weighting by the Boltzmann factor (where

Tmeas. = 40 K� ∆Eres/kB = 371 K).

The fitting routine was executed in four steps, the first three of which identified

a workable set of starting parameters for a full fit to the data. These steps were:

1. The energy gain side of the spectrum was fit to a pure pseudo-Voight function

and constant background term to extract the elastic line’s profile.

2. Parameters associated with features in the region−1500 meV < ∆E < −500 meV

were then added to the refinement. This consisted of d−d excitations (D-peaks)

as well as a small linear background term.

3. These high energy and elastic peak parameters were then fixed, and the low

energy M and M∗ peaks −500 meV < ∆E < 0 meV were added and allowed

to refine.

4. Having identified these parameters as a starting point, as a final step, all param-

eters are then refined simultaneously for the final spectra fits shown throughout.

Fits assumed that the M∗ peak was present in all spectra, that its amplitude

should be less than that of the M peak, and that its width should be of the same

order of the M peak. Besides the examples of spectra fits shown in Fig. 6.3, fits
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Figure 6.4: Additional energy scans collected at 40 K at fixed Q for samples with
x = 0.02 and x = 0.07. Panels (a) and (b) show scans performed at (π/2, π/2) and
(0, 0) for AF insulating x = 0.02 respectively while panels (c) and (d) show the same
scans for paramagnetic, metallic x = 0.07. Features labeled E, M , M∗, and D denote
scattering from the elastic line, single magnon, multimagnon, and d − d excitations
respectively.
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at the remaining high symmetry points are shown in Fig. 6.4 to show the routine is

robust across the dispersion.

6.3 Dispersion Analysis

The dispersions of the M and M∗ peaks along the high symmetry directions illus-

trated in Fig. 6.1 (d) are plotted for both samples in Fig. 6.5. Energies of M (squares)

and M∗ (circles) peaks are shown with the ΓQ associated with M peaks illustrated via

the larger shaded regions. Only one feature associated with a single magnon excita-

tion could be identified, and no additional acoustic/optical branches associated with

spin waves from a bilayer or longitudinal modes associated with triplon excitations

were isolated.

In order to investigate the out-of-plane (L-dependent) dispersion of the magnon

feature, a series of spectra were collected for various L values at a fixed in-plane

momentum transfer of Q = (0, 0). This in-plane position also corresponds to the

wave vector where the longitudinal mode in the parent material had dispersed far

away from the principal magnetic peak, representing the most ideal conditions under

which to resolve the reported longitudinal mode [18]. Spectra collected atQ = (0 0L)

positions for various L in the x = 0.07 sample are shown in Fig. 6.6 (a).

Aside from the increase in the elastic peak (ascribed to an increase in Thompson

scattering caused by the scattering angle deviating from the near-90° condition at

L = 26.5) it should be noted there is no additional feature resolved that may be

attributed to a longitudinal branch. Subsequent fitting of these spectra (Fig. 6.6 (a))

demonstrate that the data are fully reproduced by fits employing only the E, M , M∗

and D features described previously. The resulting fit peak areas and energies of the
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Figure 6.6: (a) Raw data and fits of energy scans collected at various L values along
fixed Q = (0 0L) for the x = 0.07 sample at 40 K. (b) Calculated L-dependence for
intensities of the transverse (red) and longitudinal (blue) modes at fixed momentum
transfer Q = (0 0L). Dashed lines indicate calculation for the parent using param-
eters reported in [18]; solid lines were calculated using exchange constants derived
from fits to the M -dispersion of the x = 0.07 sample shown in Fig. 6.5. Black squares
are the spectral weight of the M feature in (a), normalized to the model curve at
L=26.5 for clarity. Green squares, corresponding to the right axis, indicate the center
of the M peak.

M peaks are plotted in Fig. 6.7 (b). Both are L-independent within error for the

zones explored, as in the parent compound [17].

Any weak additional modes are obscured due to the overdamping of the M ex-

citations as carriers are introduced—an effect which partially convolves the M and

M∗ features. The rapid decrease in excitation lifetimes (shown in Fig. 6.7) with in-

creasing La-content precludes any subtle features from being conclusively extracted

from the data. The predicted intensity of the longitudinal mode relative to transverse

modes [18] is illustrated in Fig. 6.6 (b). The lifetime broadening of the M peaks as
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a weak momentum dependence and increase from an average value of Γavg = 75 meV
for x = 0.02 to Γavg = 124 meV for x = 0.07.

La content is increased from the insulating x=0.02 sample to the metallic x=0.07

sample (Fig. 6.7).

Despite the absence of this second mode, tests can still be made using the col-

lected RIXS spectra regarding the suitability of the LSW and BO approaches to the

bilayer square lattice Heisenberg Hamiltonian, described by in-plane exchange con-

stants J1, J2, J3, interplane exchange Jc, and an anisotropy term θ as illustrated in

Fig. 6.1 (c) [17, 18]. Specifically, the data show that the gap energies of M -peaks

at the (π, π) and (0, 0) positions become increasingly inequivalent upon doping. For

the x = 0.07 sample, the AF zone center (π, π) gap value decreases to Eπ,π = 73± 4

meV whereas the Γ-point (0, 0) gap remains nearly unchanged from the parent sys-

tem at E0,0 = 89 ± 4 meV as shown in Fig. 6.8. The differing energies of the M
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Figure 6.8: Zoom in of raw RIXS data collected at Q = (π, π) (blue squares) and
Q = (0, 0) (red squares). Solid lines are full spectra fits described previously. Dashed
vertical lines denote the energy centers for M peaks in each scan.

peaks at these two points suggest that a simple LSW model cannot account for the

dispersion [17]. In a naive LSW approach, the combined optical plus acoustic spec-

tral weight should remain degenerate at the (π, π) and (0, 0) positions, which for the

x = 0.07 sample would violate the assumption that both an acoustic and optical

mode are convolved within the largely L-independent M excitations [17]. The BO

approach however allows for nondegenerate spectral weight at these positions through

inequivalent transverse mode Eπ,π and E0,0 gap values whose ratio is governed by the

anisotropy term cot(θ) = E0,0/Eπ,π. Therefore, to parameterize the dispersion in

electron-doped Sr3Ir2O7 samples, the BO model was utilized [18, 23].



6.4. FITTING THE DISPERSION 137

6.4 Fitting the Dispersion

For completeness, we reproduce the spin Hamiltonian and bond operator derived

dispersion relation from Moretti Sala et al. [18]:

H = J
∑
〈ij〉,l

[
cos (2θ) ~Sli · ~Slj + 2 sin2 (θ)SzliS

z
lj − εiεl sin (2θ)

(
~Sli × ~Slj

)
· êz
]

+J2

∑
〈〈ij〉〉,l

[
~Sli · ~Slj

]
+ J3

∑
〈〈〈ij〉〉〉,l

[
~Sli · ~Slj

]
+ Jc

∑
i

[
~S1i · ~S2i

] (6.2)

The exchange constants J1, J2, J3, and Jc are depicted in Fig. 6.1 (c). The sec-

ond and third terms in the J-weighted summation are contributions resulting from

anisotropic superexchange interactions (pseudodipolar and Dzyaloshinsky-Moriya terms,

respectively); the parameter θ governs the degree of anisotropy characterizing the in-

teractions (θ → 0⇒ fully isotropic). The dispersion relation associated with the BO

treatment of the above Hamiltonian is given by:

ωq,α =
√
A2
q,α + |Bq,α|2 (6.3)

Where α indicates the longitudinal (z) and degenerate transverse (τ = x, y)

modes. The functions A and B are defined for the longitudinal mode (α = z) as,

Aq,z = 4J1

[
sin2(2χ)

(
1− J2

J1

− J3

J1

)
+

Jc
4J1

cos(2χ)

]
+
J1

2

[
cos2(2χ)γq +

J2

J1
δq +

J3

J1

φq

]
Bq,z =

J1

2

[
cos2(2χ)γq +

J2

J1
δq +

J3

J1

φq

] (6.4)
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...and for the transverse modes (α = τ) by Eq. 6.5:

Aq,τ = 2J1

[
Jc
2J1

cos2(χ) + sin2(2χ)

(
1− J2

J1

− J3

J1

)]
+
J1

2
[cos(2θ) cos(2χ)] γq +

J2

2
δq +

J3

2
φq

Bq,τ =
J1

2
[cos(2θ)− i sin(2θ) sin(2χ)] γq +

J2

2
cos(2χ)δq +

J3

2
cos(2χ)φq

(6.5)

Further parametrizations of these functions are as follows:

γq = 2 [cos(qx) + cos(qy)]

δq = 2 [cos(qx + qy) + cos(qx − qy)]

φq = 2 [cos(2qx) + cos(2qy)]

χ =
1

2
cos−1

(
Jc

4(J1 − J2 − J3)

)
(6.6)

Fits using the BO generated dispersion relations along the pathways illustrated

in Fig. 6.1 (d) are shown as solid lines in Figs. 6.5 (a) and (b). Due to the suppressed

spectral weight expected for the longitudinal mode [18] and the broadened Γ values

inherent to doped samples, the predicted longitudinal branches lie convolved either

within the FWHM of the M mode or M∗ feature. Fits were therefore performed only

to the transverse modes’ dispersion, and the predictions for the accompanying lon-

gitudinal modes are plotted for reference. Using this parameterization, the coupling

constants are found to evolve with La-content as indicated in Table 6.1.

While electron-doping drives a subtle shift in the M dispersion, the bandwidth is

largely unaffected upon transitioning from the AF insulating regime (x = 0.02) into

the paramagnetic, metallic state (x = 0.07). This is striking, in particular due to

the reported absence of magnetic order in the x = 0.07 sample [25]. The distribution
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Figure 6.9: (a) Energy integrated spectral weight of M peaks across the AF zone.
Data for x = 0.02 (blue circles) show a maximum at the zone center consistent
with its AF ordered ground state. Data for x = 0.07 (red circles) show a nearly
Q-independent response. (b) REXS data showing the absence of AF correlations in
the x = 0.05 sample. Black circles denote H-scans through the AF position (1

2
1
2

18)
in the σ − π channel. Red circles denote the structural reflection at (1

2
1
2

19) in the
σ − σ channel scaled by 1/50 for clarity. Background has been removed from the
data.

of the spectral weights of M peaks in both samples further reflect this fact and are

plotted in Fig. 6.9 (a). In the AF x = 0.02 sample, the energy integrated weight

is maximal at the magnetic zone center (π, π) as expected [28]; however this zone

center enhancement vanishes with the loss of AF order in the x = 0.07 sample.

6.5 REXS Investigation of Short Range Order

In order to further search for signatures of remnant short-range order in the metallic

regime, REXS measurements were collected at 7 K on an x = 0.05 crystal. Data

collected at the Ir L3 edge are plotted in Fig. 6.9 (b) showing H-scans through the
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Ref. [18] This Work This Work
x = 0 x = 0.022 x = 0.071 Units

J1 26 37.7± 0.4 29.1± 0.7 meV
J2 −15 −14.0± 0.3 −17.0± 0.6 meV
J3 6 4.8± 0.3 5.2± 0.6 meV
Jc 90 87.6± 1.1 80.1± 2.3 meV
θ 37 41.2± 0.7 37.2± 1.7 degrees (°)

Table 6.1: Summary of refined magnetic exchange parameters for x = 0.02 and
x = 0.07 samples compared with the parent x = 0 system as reported in Ref. [18].
Note that errors are extracted from the non-linear least squares fitting routine and
are artificially low; an alternate empirical uncertainty bound is ≈ 5% of the exchange
constant.

magnetic (1
2

1
2

18) and structural (1
2

1
2

19) reflections in the σ − π and σ − σ channels

respectively. No signal was found in the σ − π channel at the nominal magnetic

wave vector Q = (1
2

1
2

18), and so additional wider scans along high-symmetry di-

rections were made in an attempt to perform a broader search of alternate positions

in reciprocal space. In Fig. 6.10 (a) these scans have been normalized to a monitor,

background subtracted, and offset from zero for clarity in order to demonstrate that

no magnetic correlations were observed. Despite the lack of any magnetic signal, a

weak, non-resonant (Fig. 6.10 (b)) structural reflection was observed in the σ − σ

channel at (1
2

1
2

19); shown at (1/50) scale in Fig. 6.9 (b).

These same reflections (Q = (1
2

1
2

18) and Q = (1
2

1
2

19) in the σ − π and σ − σ

scattering channels respectively) were also measured via REXS in an AF ordered

x = 0.023 sample at 7 K. Data were normalized to a common monitor, and con-

stant background terms were subtracted; see Fig. 6.10 (c). For x = 0.023, both

the antiferromagnetic Bragg reflection at (1
2

1
2

18) and the weak structural peak at

(1
2

1
2

19) are apparent. These data give a relative measure of the intensities of the

(1
2

1
2

19) and (1
2

1
2

18) peaks in a control sample whose ordered moment is known to
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Figure 6.10: (a) Scans along high symmetry directions of the magnetic zone. Curve
colors correspond to the direction of the cut shown in the inset map of reciprocal space
using the dispersion momentum notation. Data points represent count times of at
least three minutes per point. (b) Energy scan in the σ − σ channel at the Q =
(0.5 0.5 19) peak position showing a signature of the Ir-L3 (11.215 keV) absorption
edge and no resonant enhancement. (c) θ−2θ scans of the (0.5 0.5 18) and (0.5 0.5 19)
features in their respective scattering channels for a doped sample where both are
present (x = 0.023). Solid lines depict Lorentzian fits of the peaks.
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be mAF ≈ 0.31 µB [25].

The corresponding scans performed on an x = 0.05 sample (plotted in Fig. 6.9 (b))

can be compared with this x = 0.023 data to generate an estimate of the measure-

ment’s sensitivity. To give an initial sense of scale, the scattering volumes of the two

samples were comparable and the x = 0.023 sample’s magnetic peak at (1
2

1
2

18) in

Fig. 6.10 (c) was collected at count times of 10 s per point whereas the flat data for

the x = 0.05 sample in Fig. 6.9 (b) was collected at 270 s per point. Using the nor-

malized peak intensities and assuming the same theoretical spin structure for both

x = 0.023 and x = 0.05, the upper bound for the AF ordered moment in the x = 0.05

sample becomes mAF < 0.06 µB. This number also accounts for the changes in the

relative intensities of the weak (1
2

1
2
odd) structural peaks induced via La-substitution

(a factor of ≈ 3.4× enhancement for x = 0.05).

The absence of static antiferromagnetism in samples with x > 0.04 is consistent

with earlier neutron diffraction measurements [25] and render it distinct from its sin-

gle layer analogue, Sr2IrO4. In electron-doped Sr2IrO4, short-range AF order survives

to the highest doping levels explored ≈ 12% electrons/Ir [26, 29] and can account

for a magnon dispersion with slightly renormalized magnetic exchange [30]. In con-

trast, electron-doping Sr3Ir2O7 reveals gapped spin excitations that persist beyond

the disappearance of AF order. While a slight increase in Jc/J1 from 2.32 to 2.75

accompanies the disappearance of AF order and is naively consistent with predic-

tions for the formation of a dimer state beyond a critical ratio of Jc/J1 ≈ 2.5 [1,

6], the extended in-plane exchange and anisotropy terms used in the BO approach

of Ref. [18] as well as the presence of doped carriers necessarily modify this critical

threshold [31].
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6.6 Bulk Magnetization Evidence of Dimer Pairs

Although doping complicates models of dimer excitations, it also provides a further

test for a hidden dimer state in Sr3Ir2O7. In the simplest picture, adding an electron

to the IrO2 planes creates a nonmagnetic Ir3+ site within a sea of J = 1
2

moments.

For a ground state composed of uncorrelated dimers, this nonmagnetic site should

break a dimer and leave an uncompensated J = 1
2

moment behind. Hence, doping

the dimer state with electrons should simultaneously seed nonmagnetic Ir3+ sites and

an increasing fraction of weakly coupled, uncompensated spins within the sample.

An order by disorder transition should eventually follow among these unfrustrated

local moments in the T = 0 limit [32–34].

Intriguingly, previous magnetization measurements reported an unusual Curie-

Weiss (CW) response in electron-doped Sr3Ir2O7 [25]. This fact combined with

the absence of CW behavior in the high temperature susceptibility of the parent

system (see Fig. 1.4, page 13) suggests a dopant induced local moment behavior.

To explore this further, magnetization measurements were performed on a series of

(Sr1−xLax)3Ir2O7 samples with varying levels of La-content. The high temperature

CW susceptibilities for each sample are plotted in Fig. 6.11 (a) and the local param-

agnetic moments (µeff) are plotted as a function of La-concentration in Fig. 6.11 (b).

The µeff extracted from CW fits grows with increasing doping, and the µeff induced

per La-dopant approaches that of uncompensated J = 1
2

local moments. The absence

of static AF order combined with the growth of local moments in the presence of sig-

nificant AF exchange supports the notion of an underlying disordered dimer state in

metallic Sr3Ir2O7.
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Figure 6.11: (a) Curie-Weiss fits to high temperature susceptibility with a tem-
perature independent χ0 term removed and collected under H = 5 kOe. (b) Local
moments µeff/La extracted from fits in panel (a).

The nearly Q-independent energy-integrated spectral weight of the M -excitations

in the metallic regime is also consistent with a dimer state where the intradimer

coupling (Jc) approaches the excitation bandwidth. The small increase in the Jc/J1

ratio as doping is increased from x = 0.02 and x = 0.07 samples is however not the

likely driver for the dimer state’s stabilization, in particular given that Jc/J1 ≈ 3.5

reported for the AF ordered parent system [18] exceeds the ratios for both of the

doped compounds. Additionally, structural changes driven by electron doping in

Sr3Ir2O7 are relatively small, and the nearly cubic ligand field of Sr3Ir2O7 (∆d =

1.10× 10−4 [35]) does not change appreciably with electron doping [25]. Rather, a

dimer state is likely stabilized by the critical threshold for dimer formation being

driven downward via electron-doping similar to t−J models of hole-doping in bilayer

cuprates [31, 36, 37].

In summary, RIXS data reveal spin excitations in (Sr1−xLax)3Ir2O7 that persist
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across the AF insulator to paramagnetic metal transition. Across the insulator-metal

transition, static AF correlations vanish and extended LSW models fail to describe

the surviving spin spectra with nondegenerate excitations at the two-dimensional AF

zone center and Γ points. Instead, a BO-based mean field approach, reflective of

strong interplane dimer interactions, captures the observed dispersion and suggests a

disordered dimer state in the metallic regime. The presence of a hidden, disordered

dimer state is supported by bulk magnetization data which reveal the emergence

of anomalous local moments in (Sr1−xLax)3Ir2O7 and are consistent with dopant-

induced creation of uncompensated spins from broken dimer pairs. Our results point

toward an unconventional metallic state realized beyond the collapse of spin-orbit

Mott state in Sr3Ir2O7.
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Appendix A

Hund’s Rules

A.1 General Application

Hund’s rules provide an algorithm which minimizes the relevant interaction energies

(Coulomb and spin-orbit) in a given electronic structure to provide an estimate as

to the ground state configuration of a given free ion. In the case of L-S spin-orbit

interaction (Russell-Saunders coupling [1]), the ion’s Hamiltonian commutes with L

and S, and thus J as well. Therefore, L, Lz, S, Sz, J , and Jz are all good quantum

numbers and Hund’s rules typically apply [2].

An example is first considered for an Ir2+ ion,1 and the quantum numbers de-

scribing the state of the electrons in the unfilled d shell are identified. The structure

of this ion is given by [Xe] 4f 14 5d7, so the principal quantum number n = 5 can be

read explicitly. Using Table A.1, the angular momentum quantum number l is easily

discerned from the spectroscopic shell labeling convention.

Thus for a free Ir4+ ion l = 2. The (2l + 1) allowed ml states are spanned by

1Note that this first example is not the 4+ oxidation state of Ir in Sr3Ir2O7.
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orbital s p d f g h i k l
l = 0 1 2 3 4 5 6 7 8

Table A.1: Spectroscopic labeling scheme for the azimuthal quantum number l.

±l, and so the allowed ml are 2, 1, 0, −1, −2. Since these are electrons, ms = 1/2.

Hund’s rules are now applied in order of decreasing priority- that is, satisfying the

condition of Rule 1 takes precedence over Rule 2, and likewise Rule 2 over Rule 3.

Rule 1: Maximize S

The total intrinsic angular momentum S is given by the summation

S =
∑

ms =
1

2
(Nup −Ndown) (A.1)

This total spin angular momentum is just the number of unpaired electrons multiplied

by ms. To maximize S is essentially to minimize the Coulomb potential by partially

filling all the orbitals with a single electron first, and only then adding a second

electron of opposite spin (in keeping with the Pauli exclusion principle) to assign the

remainder. The five different d orbitals are represented schematically below, where

the arrows represent electrons whose spin is indicated by the arrow direction:

↑ ↑ ↓ ↑ ↑ ↑ ↓

The choice of which orbitals to double-occupy is ‘random’ above to emphasize that

without considering angular momentum, they are all degenerate, and so any choice is

valid with regard to the first Hund’s rule of maximizing S. In this example, applying

Eq. A.1 to the above gives S = (5− 2)/2 = 3/2.
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Rule 2: Maximize L

As just mentioned, however, the orbitals are not strictly degenerate in the presence

of spin-orbit coupling. Instead, they should be distinguished using the associated ml

value:

2 1 0 −1 −2

But now the choice of which orbitals to doubly occupy is non-trivial. It is Hund’s

second rule which guides this decision- the configuration is chosen such that the

orbital angular momentum is maximized, where L is given by

L =
∑

ml (A.2)

Clearly L is maximized when the band is near quarter-filling (L = l+ l− 1 + · · ·+ 0),

and at half-filling it is zero (L = l + · · · + −l = 0). Beyond half-filling, the highest

ml orbital is doubly occupied first, and then ml − 1 and so on. In the Ir2+ example,

this looks like

↑ ↓
2

↑ ↓
1

↑
0

↑
−1

↑
−2

Where a maximal value of L = 2(2) + 2(1) + 1(0) + 1(−1) + 1(−2) = 3 is obtained.

Rule 3: Minimize J

The final rule aids in determining the value of J = |L± S|, which is to be minimized.

In the case that the shell is less than half-filled, J = |L− S|. In the case that it is

greater than half-filled, J = |L+ S| (one can verify easily that for the case of exactly

half-filling J = S, and represents the absolute maximum for either choice of sign).

For the example, J = |3 + 3/2| = 9/2.
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A.2 Ir4+ in Sr3Ir2O7

Consider now the case of Ir4+ ([Xe] 4f 14 5d5), the actual oxidation state present in

Sr3Ir2O7. Applying Hund’s rules yields the half-filling configuration just described:

↑
2

↑
1

↑
0

↑
−1

↑
−2

Where S = 5/2, L = 0, and J = 5/2. This high-spin state (wherein S is maximal)

clearly does not match the final result of Section 1.3. The reason for this is two-fold:

first, recalling at the outset of this appendix the statement that Hund’s rules apply

to free ions. This simplified analysis ignores the ligand-derived crystal electric field

in which the Ir4+ ion resides in the Sr3Ir2O7 system. The effect of that crystal field,

shown by an explicit calculation of the matrix elements of the angular momentum

operator L̂, is to map the system to an effective l̃ = 1 state. Demonstrating this

schematically,

2 −2

↑

∆CFS

↓

1 0 −1

The crystal field splits the relative energies of the nominally degenerate d orbitals

to such an extent (∆CFS, in fact) that it becomes energetically preferable to violate

Hund’s first rule and populate the lower t2g orbitals first. Following through with the

second Hund’s rule though yields the low-spin state where the total intrinsic angular
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momentum is now only S = 1/2.

↑ ↓
1

↑ ↓
0

↑
−1

The second caveat which prevents a direct application of Hund’s rules to Ir4+

in Sr3Ir2O7 is the presence of strong spin-orbit coupling (not well described by the

L-S coupling formalism, which treats the spin-orbit interaction as a perturbation).

In this case, the depicted low spin configuration of the t2g manifold (näıvely with

all electrons having J = |1 + 1/2| = 3/2, as per the third Hund’s rule) is further

energetically split into a Jeff = 3
2

doublet and the Jeff = 1
2

singlet, themselves linear

superpositions of the |ml〉 states.

Only when treating the spin-orbit interaction as the dominant effect (j-j coupling)

is the correct ground state derived theoretically. Unfortunately, there is no similarly

simple set of rules a la Hund’s which accomplish this for elements with high Z,

because L and S are no longer good quantum numbers [1]. Despite this, the problem

is well defined and can be treated in a general way, albeit at the cost of some notational

complexity [3].

References

[1] S. Blundell, Magnetism in Condensed Matter, 1st (Oxford University Press,

2001).

[2] N. W. Ashcroft and N. D. Mermin, Solid State Physics, 1st (Brooks/Cole, 1976).

[3] A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition

Ions, 1st (Oxford University Press, 1970).



154 APPENDIX A. HUND’S RULES



Appendix B

Deriving Fine-Structure

Corrections via the Dirac Equation

Consider first the relativistic correction to the kinetic energy, derived using time-

independent perturbation theory for a hydrogenic atom.1 This energy term arises

from the inclusion of an associated perturbative term in the Hamiltonian, both of

which are are given by

Hr =
−p4

8m3c2
⇒ Er =

E2
n

2mc2

(
4n

l + 1
2

− 3

)
Z4 (B.1)

Further, consider a second correction which comes about from the spin-orbit inter-

actionHso. Here, the perturbation arises from the interaction of the electron magnetic

moment µ with the apparent magnetic field it observes as the nucleus ‘orbits’ around

it, as introduced in Section 1.2 (Eq. 1.1). If the correct relativistic expression for the

1The details to arrive at Eqs. B.1 are worked out in many graduate texts on quantum mechan-
ics [1–3] and not reproduced here for the sake of brevity.
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magnetic moment is used, this interaction term H ′so can be written as

H ′so = −µ ·B = −g
( e

2m

)
S ·
(
Zeµ0

4πm

)
1

r3
L (B.2)

...but this is not rigorously correct. The frame of the electron (from which the B

of Eq. 1.1 was derived) is non-inertial. The cost associated with working in an

accelerating frame comes in the form of a kinematic correction called the Thomas

precession, whose effect is to amend the gyromagnetic ratio [4] such that g → g − 1,

so the correct interaction Hamiltonian now reads

H ′so = −(g − 1)

(
Ze2µ0

8πm2

)
1

r3
S ·L (B.3)

This perturbation results2 in an energy correction of the form

Eso =
E2
n

mc2

(
n(j(j + 1)− l(l + 1)− 3

4
)

l(l + 1
2
)(l + 1)

)
Z4 (B.4)

Immediately, it is somewhat striking that both Er and Eso are scaled by the same

factor (E2
nZ

4)/(mc2). If sum Er + Eso is evaluated a more compact expression for

these two comparable energy corrections is given by,

Eso + Er =
E2
nZ

4

2mc2

(
3− 4n

j + 1
2

)
(B.5)

That these two corrections reduce to the result in Eq. B.5 is satisfying on its own mer-

its, but this same expression can be arrived at by leveraging an inherently relativistic

treatment of quantum mechanics instead of perturbation theory.

2See Footnote 1, re: Eq. B.3. Note also that for the electron, g ≈ 2.
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The Dirac equation is exactly solvable for a particle interacting with a hydrogen-

like atom having Coulomb potential V = −Ze2/r [1], and has an energy spectrum as

shown in Eq. B.6:

En,j = mc2

[
1 +

(
Zα

n− (j + 1
2
) + [(j + 1

2
)2 − (Zα)2]1/2

)2
]−1/2

(B.6)

Here, m is the reduced mass of the electron, c is the speed of light, n is the princi-

pal quantum number, j is the azimuthal quantum number (associated with angular

momentum), Z is the atomic number of the nucleus in question, and α is the fine-

structure constant. It is a very revealing exercise to perform a power series expansion

of this expression in (Zα) which yields:

En,j = mc2(Zα)0 +−mc
2

2n2
(Zα)2 +

mc2

8n4

(
3− 4n

j + 1
2

)
(Zα)4 +O[Zα]6 + . . . (B.7)

Immediately, some familiar expressions can be identified. The first term mc2

is just the rest-mass energy of the electron, and the following term is the energy

dependence of the so-called ‘gross structure’:

−mc
2

2n2
(Zα)2 = − me4

2h̄2n2
Z2 = EnZ

2 (B.8)

The third term, which quantifies the lifting of degeneracy between states possessing

different j values, gives rise to the ‘fine-structure’ and can be represented as:

Efs =
E2
n

2mc2

(
3− 4n

j + 1
2

)
Z4 (B.9)

...which is actually an identical expression to Eq. B.5. This treatment is advantageous
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because there was no need for the ad hoc insertion of the correction due to Thomas

precession to arrive at an exactly correct result. That said, it is impossible to separate

back out in any intuitive fashion the independent terms for the relativistic and spin-

orbit corrections; but that is perhaps that is the point: in a fully relativistic treatment,

both effects should be treated on equal footing.
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Appendix C

Evaluating the Wilson ratio RW

The Wilson ratio, briefly discussed in Section 5.5, provides a rough metric for the

importance of electron-electron interactions [1]. In particular, it is expected to take

the value of RW = 1 in a non-interacting system, and for the Kondo model RW =

2 [2]. Thus, as an easily calculated value potentially signifying the importance of

correlations in a system, it is of general interest. Evaluating the expression can prove

somewhat treacherous though, being a scaled ratio between Sommerfeld’s γ (more

commonly measured in SI units) and magnetic susceptibility (typically measured in

CGS/EMU). The details of the numeric value reported in the main text are outlined

here with annotations to draw the reader’s attention to important details.

C.1 Evaluation with SI units

The Wilson ratio can be expressed as:

RW =
4π2k2

Bχm

3(gµB)2γm

(C.1)
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If the g-factor is taken to be 2, the expression can be slightly simplified,

RW =
π2k2

Bχm

3µB
2γm

(C.2)

Choosing to work in SI units, the fundamental constants are given as

µB = 9.274× 10−24 J T−1

kB = 1.380× 10−23 J K−1

Thus Eq. C.2 can be further simplified to just

RW = 7.29
[T2]

[K2]

χm

γm

(C.3)

The final step is to insert the measured values for molar susceptibility and the

Sommerfeld coefficient (taken from Fig. 5.6). The latter takes units of heat-capacity-

over-temperature since it represents the slope of the linear contribution to low tem-

perature specific heat cV(T ) [3]. This quantity was measured in SI [J K−2] and thus

needs only be scaled by the moles of sample (n).

γm =
γ

n
=

0.011 68× 10−6 J K−2

6.248× 10−7 mol
= 0.0187

[J]

[K2 mol]
(C.4)

Treating the susceptibility, however, requires a little more care. Starting with the

fundamental definition of molar magnetic susceptibility

χm =
m

H · n
(C.5)

Where m is the total magnetic moment, H is the applied magnetic field, and n is

the number of moles of material in question. In the MPMS m is measured in the non-
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unit of [emu] [4]. This can be converted to the correct expression for magnetization

in the SI system with the relation 10−3 J T−1 ≡ 1 emu.

m = 2.865× 10−5 emu = 2.865× 10−5 emu

(
10−3 J T−1

emu

)
(C.6)

Similarly, the applied magnetic fieldH is often measured in the CGS unit [Oe]. We

must leverage the fact that in CGS both H and B actually have the same dimensions-

G ≡
√

g

cm
· 1

s
≡ Oe (C.7)

-to arrive at the following conversion:1

H = 20 000 Oe→ 20 000 G = 20 000 G ·
(

10−4 T

G

)
(C.8)

Which can be substituted back into Eq. C.5 along with Eq. C.6 to yield

χm =
m

H · n
=

2.865× 10−5 emu
(

10−3 J T−1

emu

)
20 000 G ·

(
10−4 T

G

)
· n

χm = 0.0229
[J]

[T2] · [mol]

(C.9)

If this is substituted back into the expression for RW (Eq. C.3) along with γm

(Eq. C.4), the final value is found to be

RW = 7.29
[T2]

[K2]

χm

γm

= 7.29
[T2]

[K2]

0.0229 [J]

[T2]·[mol]

0.0187 [J]

[K2]·[mol]

RW = 8.93

(C.10)

1The rationale for this is tied up in the differences of how the two unit systems are defined. A
more exhaustive discussion on the pitfalls of magnetic units can be found in Appendix A of [5].
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While little quantitative meaning can be culled from the numeric expression it-

self, the point is to illustrate another measure which suggests that electron-electron

interactions are significant for highly-doped (Sr1−xLax)3Ir2O7.

C.2 Evaluation with CGS units

For the satisfaction of both the reader and the author, an alternate evaluation is

presented here using the CGS system of units. Since the Wilson ratio is unitless,

correct application of both unit systems should yield the same result. In CGS, the

values of the fundamental constants are given by

µB = 9.274× 10−21 erg G−1

kB = 1.380× 10−16 erg K−1

The effect of which is to converts Eq. C.3 into CGS

RW = 7.29× 108 [G2]

[K2]

χm

γm

(C.11)

Most of the remaining work now comes in converting the measured SI units of γm

into CGS using 1 erg ≡ 10−7 J,

γm =
γ

n
=

0.011 68× 10−6 J K−2 ·
(

1 erg
10−7 J

)
6.248× 10−7 mol

γm = 1.87× 105 [erg]

[K2] · [mol]

(C.12)
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All of our magnetic units were already in CGS, so χm need not be modified

χm =
m

H · n
=

2.865× 10−5 emu

20 000 G · 6.248× 10−7 mol
= 0.002 29

[emu]

[G] · [mol]
(C.13)

Substituting Eqs. C.12 and C.13 into Eq. C.11 for the final evaluation,

RW = 7.29× 108 [G2]

[K2]

χm

γm

= 7.29× 108 [G2]

[K2]

0.002 29 [emu]
[G]·[mol]

1.87× 105 [erg]

[K2]·[mol]

RW = 8.93
[G] · [emu]

[erg]

(C.14)

The final piece of the puzzle is the definition of 1 emu ≡ 1 erg G−1, making this

expression unitless as well. That the ratios match regardless of the unit system is a

trivial result, but given the potential confusion with the units of magnetic properties

involved it is worth showing explicitly.
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When we have found all the mysteries and lost all the meaning

we will be alone, on an empty shore

– T. Stoppard, Arcadia
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