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Advisor: Ethan Baxter, PhD 

 
Samarium/Neodymium (Sm-Nd) garnet geochronology of eclogites from Syros, 

Greece provides constraints on timing of peak metamorphism while thermodynamic 

modeling of the same samples allows a comparison of pressure-temperature (P-T) paths. 

Sm-Nd geochronology of four eclogite samples give ages of 48.8 ± 3.2 Ma (high 

147Sm/144Nd = 0.49, n = 6, MSWD = 0.67), 48.1 ± 2.3 Ma (high 147Sm/144Nd = 1.22, n = 

4, MSWD = 2.4), 44.7 ± 1.0 Ma (high 147Sm/144Nd = 3.9, n = 6, MSWD = 1.4), and 43.6 

± 1.6 Ma (high 147Sm/144Nd = 1.39, n = 6,MSWD = 2). These garnet growth ages span 

several million years and are younger than the only other published garnet eclogite ages 

from the island which use Lutetium/ Hafnium (Lu-Hf) garnet geochronology to place 

peak metamorphism at ~52 Ma (Lagos et al, 2007). Another eclogite sample dated less 

precisely yielded an age of 57.7 ± 6.3 Ma (high 147Sm/144Nd = 0.40, n = 10, MSWD = 

1.9), significantly older than the other garnets dated in this study. The garnet ages from 

eclogites presented here suggest that high pressure-low temperature metamorphism, and 

related garnet growth and dehydration, on Syros lasted ~9 myr, similar to what has been 

reported for nearby Sifnos Island (Dragovic et al., 2015). Thermodynamic modeling of 

three samples reveals similar prograde P-T paths despite differences in tectonic setting 

and chemistry between samples. Water loss from mineral breakdown during the span of 

subduction zone garnet growth varies between samples from 1.09 to 5.13 weight percent 

but is greatest for the most ultramafic sample due to chlorite stability permitting greater 
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capacity for water to be carried to depth. P-T paths reach greater maximum pressures (up 

to 2.42 GPa) than what is reported for Sifnos island (Dragovic et al., 2015) and greater 

than most previously published pressure estimates for Syros (ie. Okrusch and Bröcker, 

1990; Putlitz et al., 2005). 
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1.0  INTRODUCTION 

When oceanic crust plunges into the mantle at subduction zones, it undergoes a 

cascade of complex metamorphic devolatilization reactions which, though they occur at 

the scale of a crystal lattice, exert a huge influence on the planet. These metamorphic 

reactions are fundamental components of the global chemical cycling, including the water 

cycle and the carbon cycle, that makes the planet habitable (Hacker, 2008; Kelemen & 

Manning, 2015). Metamorphic devolatilization reactions have been hypothesized to 

create earthquakes (Hacker et al., 2003) and have been long understood to be the cause of 

the most explosive volcanic activity on the planet by inducing flux melting of the mantle 

(ex: Tatsumi, 1986). Subduction zone metamorphism, however, is particularly difficult to 

study. Subduction zones are dynamic, constantly evolving systems inaccessible to 

scientists working on the surface of the earth and their unique high-pressure low-

temperature geotherm is not found in any other geologic environment.  

Thermodynamic and experimental modeling of subduction zone metamorphism has 

provided geoscientists with a wealth of information (ex: Schmidt & Poli, 1998; van 

Keken et al., 2011) but accurate model parameters are difficult to determine. 

Metamorphism at subduction zones is influenced by the local geothermal gradient, the 

composition of the incoming crust, slab dip, and subduction rate. Even when these can 

approximated, the nature of modeling is to assume a closed chemical system and 
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thermodynamic equilibrium. Subduction zones, however, are sites of massive chemical 

and fluid exchange, and huge changes in temperature over short distances (ex: Abers et 

al., 2006). These factors make equilibrium a dubious assumption.  

While most of the material sent into subduction zones continues on a one-way path 

into the mantle, occasionally some of this metamorphosed oceanic crust is exhumed and 

preserved at the surface of the earth. Studies of the blueschists, eclogites, serpentinites, 

and associated high-pressure low-temperature rocks that make up fossil subduction zone 

assemblages have revealed a wealth of information including the P-T and deformation 

history of the rocks (ex, Trotet et al., 2001a, b; Davis & Whitney, 2008), the composition 

of metamorphic associated fluid (ex, Früh-Green et al., 2004; Spandler & Hermann, 

2006; Marschall et al., 2008), and the degree of fluid-rock interaction (ex, Bebout & 

Barton, 1989; Halama et al., 2011). While incredibly illuminating in their own right, such 

studies also serve as a way to ground-truth and guide thermodynamic models (ex, Davis 

& Whitney, 2006; Schumacher et al., 2008; Konrad-Schmolke et al, 2011). Yet, a 

temporal component is often missing from both modeling and field studies; while the P-T 

path a rock experienced can be modeled and inferred from petrography, the timing and 

duration of the metamorphic event (the P-T-t path) is usually overlooked or is based on 

assumptions. Geochronology of minerals from exhumed subduction-related rocks such as 

Ar-Ar in mica (Putliz et al., 2005), Rb-Sr in mica (Bröcker et al., 2013), U-Pb in zircon 

(Bröcker & Enders, 1999; Rubatto, 2002), and, in one instance, Lu-Hf in lawsonite 

(Mulcahy et al., 2014) can provide this missing time element. Garnet is a highly resistant 

prograde mineral found in many subduction zone rocks, which can preserve growth 

zoning and, critically, whose growth is associated with dehydration reactions (Baxter & 
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Caddick, 2013). Dating garnet with Sm-Nd or Lu-Hf, coupled with information about the 

distribution of these elements in garnet crystals can yield high-precision ages of 

subduction zone metamorphism. With thermodynamic modeling this growth can be tied 

to dehydration during subduction. Because garnet can preserve growth zoning, in some 

cases it is possible to micro-sample individual growth zones allowing for a highly 

nuanced and more complete picture of the metamorphic process (Pollington & Baxter, 

2010; Dragovic et al., 2012).  
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2.0  BACKGROUND 

2.1 GEOLOGIC SETTING 

Syros, Greece is a small (80 km2) island in the Cyclades, an archipelago south of 

the Grecian mainland in the Mediterranean Sea. Several of these islands, including Syros, 

have excellent exposure of well-preserved high-pressure, low-temperature metamorphic 

rocks known as the Attic-Cycladic crystalline complex (Fig. 1). The Attic-Cycladic 

crystalline complex is composed of two tectonic units: the Cycladic Blueschist Unit 

(CBU) derived from former oceanic crust and sediment and the Vari Unit of crystalline 

basement (Keiter et al., 2011).The CBU records an initial eclogite to blueschist facies 

metamorphic event (acquired during subduction) and subsequent greenschist facies 

overprint (potentially acquired during exhumation) (Trotet et al., 2001a). The blueschist 

facies event is best preserved on the islands of Sifnos, Tinos, and Syros where alternating 

bands of marble and schist dominate the lithology. Intercalated with this sedimentary 

material is a metabasic tectonic mélange comprised of blueschist and eclogite facies 

metabasalts and metagabbros (Keiter et al., 2011). Often, the metabasic tectonic mélange 

is associated with a serpentine-talc-chlorite-tremolite schist. This serpentinite schist unit 

hosts the famous “knockers” of entrained pods made of eclogite, omphacitite, 

glaucophanite, or metagabbro and  rimmed with a reaction rind “blackwall” material of 
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tourmaline-actinolite-chlorite- rutile (Marschall et al., 2006; Keiter et al., 2011). An 

extensive geologic literature, including a recent and highly detailed map (Keiter et al., 

2011), mean that much about the origin and degree of metamorphic overprint of the 

exhumed rocks is already established. This intellectual foundation makes Syros an ideal 

place to use garnet geochronology and thermodynamic modeling to refine our 

understanding of the nature of subduction zone processes and associated metamorphism. 

At the same time, questions specific to Syros still remain, such as the nature of an 

apparent HP-LT metamorphic event at ~80 Ma and the duration of the HP-LT event 

evident at ~50 Ma.  

2.2 PREVIOUS WORK AND OUTSTANDING QUESTIONS 

Extensive geochronology has been performed on the rocks of Syros, but most studies 

have dated zircon with U-Pb techniques (ex: Tomaschek et al., 2003) or mica with Ar-Ar 

(ex: Putlitz et al. 2005) or Rb-Sr (ex: Bröcker et al., 2013) isotopic methods. These 

studies have yielded protolith ages (Bröcker and Kiesling, 2006) or a wide range of ages 

from peak metamorphism (Maluski et al., 1987; Putlitz et al., 2005; Lister and Forster, 

2016) through the greenschist facies overprint (Bröcker et al., 2013). Only one 

investigation has dated prograde metamorphic garnet. Lagos et al (2007) used Lu-Hf in 

garnet to date three eclogite facies samples, and concluded that prograde metamorphism 

preserved in the rocks on Syros took place over a short time interval between 52.2±0.3 

and 50±2 Ma. A single zircon from a larger zircon study yielded ages almost directly in 

agreement with this tight time interval; Tomascheck et al. (2003) found a U-Pb zircon 
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age of 52.4 ±0.8 Ma in a plagiogranite dike. Two other zircon studies have turned up 

interesting signs of an earlier HP-LT event at ~80 Ma (Bröcker and Enders, 2001; 

Bröcker and Keisling, 2006) but no additional support for this has been found. Garnet 

geochronology on nearby Sifnos island (Fig. 1) has revealed a different picture. There, 

prograde garnet growth ages span from 53.4 ±2.6 (Dragovic et al., 2015) to 42.5±3 

(Dragovic, 2013), across a variety of lithologies (Fig. 2). Is there a difference in the 

timing of prograde metamorphism between the two islands? Is there any evidence in 

garnet for an earlier HP-LT event on Syros? This study uses 147Sm/ 144Nd garnet 

geochronology of five eclogite samples to resolve these outstanding questions.  

 Two recent studies combine zoned garnet geochronology and thermodynamic 

modeling on the island of Sifnos (Dragovic et al., 2012, 2015). The authors used identical 

methodology to tie garnet growth to H2O loss from the subducting slab using Perple_X 

thermodynamic modeling (Connolly, 1990). Fluid loss is of particular interest in 

subduction zone rocks because metamorphic fluids in this setting are widely accepted to 

be the source of water for flux melting at volcanic arcs, the transport mechanism for 

many elements, and to be an important component of the global water cycle. 

Interestingly, the two studies found two different results. Dragovic et al. (2012) found 

that garnet growth in a mafic blueschist was sudden and occurred in one single pulse at 

~46.49 +- 0.36 Ma, involving up to 7 x10-10 mol of fluid/cm3 of rock lost over only 1 

million years. The rate of growth was rapid but the amount of fluid lost from the 

lithology was on the whole rather small, ~0.3-0.4 wt % lost over the period of garnet 

growth. Dragovic et al. (2015) found that garnet growth in a quartz mica schist was 

punctuated by pulses of rapid growth at 53.4 Ma, 47.2 Ma, and 44.96 +- 0.53 Ma in 
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between longer periods of very slow or no growth. This lithology also lost a very small 

amount of water from the bulk rock; it saw only 0.52 wt % water loss during garnet 

growth. By contrast, modeling of generalized MORB predicts it is possible to lose ~ 1 

wt% water over a similar pressure temperature path during garnet growth (Baxter and 

Caddick, 2013). How does the bulk chemistry and P-T path of the rock affect the water 

lost during garnet growth? Is the water loss seen on Sifnos comparable to what occurred 

on Syros?  This study uses thermodynamic modeling of four eclogite samples to try to 

address these questions. 
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3.0  METHODS 

3.1 GARNET GEOCHRONOLOGY 

3.1.1 Bulk garnet geochronology 

Samarium (Sm) 147 decays to Neodymium (Nd) 143 by alpha decay with a half-life 

of 1.06 x 1011years.  The 147Sm –143Nd decay system can be used to date co-genetic 

minerals or rocks that fractionate Sm from Nd during crystallization (Faure and Mensing, 

2005). Garnet, though it possesses an overall low REE concentration, strongly 

fractionates Sm over Nd. While typical rocks and minerals will have a 147Sm/144Nd value 

of about 0.1 to 0.2, garnet can have a 147Sm/144Nd value up to 6 and more often in the 

range of 1 to 2 (Baxter & Scherer, 2013). Age calculation requires measurement of the 

parent isotope relative to a stable daughter (147Sm/144Nd) and the radiogenic daughter 

relative to the stable daughter (143Nd/144Nd) for at least two different co-genetic minerals 

or mineral assemblages. This information is plotted in147Sm/144Nd vs 143Nd/144Nd space 

and the age is calculated by finding the slope of the line connecting the data points. 

Minerals and rocks which are co-genetic and have not been subjected to open system 

behavior will form a line in this space called the “isochron.” The statistical rigor of the 

isochron is evaluated by calculating the mean square weighted deviation (MSWD), a 
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quantification of the probability that the values on the isochron truly form a line (Wendt 

& Carl, 1991). For this research, isochrons are constructed using isotopic ratios from 

several chemically-cleansed garnet separates and a representative piece of the bulk rock. 

Ages are calculated using “Isoplot,” free software for use in Microsoft Excel from the 

University of California at Berkeley (Ludwig, 2008).  

Metamorphic garnets often contain abundant inclusions which can make it 

impossible to physically separate pure garnet from micro-inclusions. As inclusions will 

nearly always have a greater Sm and Nd concentration than the garnet, small amount of 

micro-inclusions left in the garnet can dominate the measured Sm and Nd values and 

result in an apparently low 147Sm/144Nd ratio. This was recognized as a challenge in the 

very earliest garnet geochronology (van Breemen & Hawkesworth, 1980) and has since 

led to the misconception, still found in the community today, that Sm-Nd is an unreliable 

chronometer for metamorphic garnet growth. In fact, researchers have developed partial 

dissolution cleansing procedures to remove micro-inclusions from crushed garnet before 

the garnet is fully dissolved (Dewolf et al., 1996; Amato et al., 1999; Scherer et al., 2000; 

Baxter et al., 2002; Anczkiewicz & Thirwall., 2003; Pollington & Baxter, 2011). These 

partial dissolutions are usually modified for each sample to find the ideal method to 

remove inclusions but not dissolve too much pure garnet. A garnet is generally 

considered clean enough to avoid deleterious effects on age precision and accuracy when 

the partial dissolution yields a 147Sm/144Nd >1 and a Nd concentration <0.5 ppm (see 

Baxter and Scherer, 2013).  

The partial dissolution procedure used for bulk garnet geochronology in this 

research is based on that described in Baxter et al. (2002). Garnet is separated from the 
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rock by hand picking and magnetic separation and then crushed to between 149 and 63 

microns in size. About 100 mg of this “garnet separate” is heated and sonicated in a 

closed beaker with 2 mL dilute hydrochloric acid and 1 mL concentrated hydrofluoric 

acid for 30 to 180 minutes to dissolve inclusions. In order to dissolve secondary fluorides, 

this acid mixture is then decanted and the sample is placed in 1 mL dilute hydrochloric 

acid and 2 mL concentrated perchloric acid, sonicated and heated for one hour and then 

dried in an elbow still overnight. The solid garnet is subsequently sonicated and heated 

for 180 minutes in 2 mL concentrated nitric acid to completely dissolve any secondary 

fluorides. The nitric acid is decanted and the solid garnet inspected for remaining visible 

inclusions and handpicked as necessary. The inclusion-cleansed garnet is subsequently 

fully dissolved using a sequential hydrofluoric acid, nitric acid, hydrochloric acid 

process.  

After full dissolution, column chemistry in a clean lab is necessary to isolate the 

Sm and Nd for analysis. First, a cation exchange resin column is used to remove iron 

from the solution. Then, a Tru-spec column removes all elements except rare earth 

elements. Finally, a cation exchange column run with twice-distilled methyl lactic acid 

(MLA) isolates Sm and Nd. Samples are “spiked” with a “mixed spike” solution of 

known 147Sm/144Nd concentration after full dissolution and prior to column chemistry to 

allow the calculation of concentration from mass spectrometer data. Samarium and Nd 

are run separately on the Thermo-Finnegan TRITON Thermal Ionization Mass 

Spectrometer at Boston University. Neodymium is loaded onto single rhenium filaments 

with two µL combined H3PO4 and Ta2O5 slurry to facilitate ionization and measured as 

an oxide as in Harvey & Baxter (2009). Sm is loaded without this solution onto double 
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rhenium filaments and measured as a metal. For the duration of this study, in-house Nd 

standard solution (Ames metal) standards measured by the author give an average of 

143Nd/144Nd = 0.5121190 ± 0.0000081 (15.7 ppm, 2RSD, n = 26) (see Appendix A). 

Long-term lab-wide reproducibility of 147Sm/144Nd is better than 0.1%. On average, 

blanks run through three columns or through dissolution and three columns were 10.4 

picograms of Nd (see Appendix A). 

3.1.2 Micro-sampled garnet geochronology 

Zoned 147Sm/144Nd garnet geochronology has developed as a powerful tool to 

interrogate timescales of metamorphism. Researchers are able to place a duration on 

garnet growth by dating individual growth rings cut from a slice of a garnet, thereby 

supplying the critical time component often missing from discussions of metamorphism 

(Pollington & Baxter, 2010; Dragovic et al., 2012, 2015). Growth zones are segregated 

by micro-drilling with an automatic NewWave MicroMill drill.  For this study, the 

eclogite samples of interest were too small for zoned sampling on a single garnet crystal. 

Instead, ~12 thin (0.5mm-0.8mm) slices were cut from sample 14BSY-35D, multiple 

porphyroblasts were drilled, and then their cores and rims were combined to create an 

adequate volume of core and rim material for geochronology (Fig. 2). Combining cores 

and rims from multiple crystals for dating requires that all garnets of a given size in the 

sample grew at the same time. Microprobe transects across multiple garnets along with 

qualitative element maps reveal that major element zonation is very similar for all 

crystals which is taken as evidence for contemporaneous growth- an important criteria if 

cores and rims from different crystals are to be combined (Fig. 2). Qualitative element 
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maps of garnets from this sample were made on the Tescan Vega 3 LMU variable-

pressure scanning electron microscope with a LaB6 source at Boston College by M. 

Tappa. Garnet porphyroblasts larger than 5 mm in diameter in a given slice of rock were 

selected for drilling on the assumption that larger garnet cross sections represented a true 

cross section of garnet crystals. Each garnet was drilled to create a separate core and rim 

section. The drill trench was positioned on the crystal such that 75 % of the radius of the 

crystal was core and 25% was rim. The rim was drilled out from the matrix leaving a 

~0.5 mm sliver of matrix around the perimeter of the rim to ensure that the very 

outermost rim was preserved. Approximately 30 crystals were drilled in this manner (Fig. 

2). The sample is glued to a carbon block and drilled under water after (Pollington and 

Baxter, 2011). After drilling was completed for all crystals, the rims and cores from each 

garnet were combined and subsequently crushed and sieved to the standard grain size and 

then magnetically separated to remove matrix and inclusions. The two clean garnet 

separates were then subjected to the standard clean lab chemistry as bulk garnet 

separates. A “matrix” sample, that is, the garnet-absent bulk rock, was prepared by 

breaking off pieces of the drilled slices that had had garnets removed. The garnet-absent 

portions from several slices were collected, combined, and crushed and sieved to smaller 

than the 100 mesh. A garnet “powder” was prepared by crushing garnet to smaller than 

the 200 mesh.   

3.1.3 Laser ablation for trace element concentration 

Knowledge of the distribution of Sm and Nd in a garnet is important for the 

interpretation of Sm-Nd garnet ages. Laser ablation for trace element concentration was 
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performed on the Agilent 7500ce ICPMS coupled with a Geolas laser ablation system at 

Virginia Tech by J. Gorce. Samples were ablated with 193-nm ArF laser with a spot size 

that varied between samples from 60 to 90 microns. Analyses were standardized using an 

Fe(56) internal standard. Spot analyses contaminated by inclusions were removed. 

Because laser analysis did not provide spatial coordinates, images of laser pits with a 

scale bar were used to determine the location of measured points. The center of the garnet 

was chosen visually and laser pits were plotted as a distance from this center point. 

Concentrations of Sm and Nd were volumetrically averaged across each crystal using the 

spatial data obtained in this manner to determine a point of comparison for Sm and Nd 

concentrations measured with TIMS.   

 

3.2 THERMODYNAMIC MODELING 

The combination of minerals that is stable at a given pressure, temperature, and 

bulk composition can be calculated using thermodynamic principles. While this process 

has historically been quite laborious (e.g., Zen, 1966) computer programs have made the 

calculation of so-called pseudosections a powerful tool for even highly complex systems 

(ex: Connolly, 1990). The python-based program “Perple_X” was used to predict the 

pressure and temperature conditions of the initiation and cessation of garnet growth for 

four samples. Tracing a path between these two P-T conditions yields an approximate P-

T path for the rock during peak metamorphism. The metamorphic evolution of the rock 

across this range allows calculation of water loss from the subducting lithology during 



 14 

garnet growth. While equilibrium is never guaranteed for natural samples, eclogites from 

a mélange present the dual problem of being relatively cold metamorphic rocks in a 

highly chemically heterogeneous setting. Nevertheless, there is a large literature using 

thermodynamic modeling to investigate such rocks (ie: Trotet et al., 2001b; Davis & 

Whitney, 2006; Cheng and Cao, 2015). This study attempts merely to add to the existing 

dialogue surrounding the metamorphic history of exhumed eclogites using the tools that 

are standard in the field.  

 

3.2.1 Necessary data for Perple_X modeling 

Bulk rock major element chemistry necessary for thermodynamic modeling is 

obtained from X-ray fluorescence (XRF) data (Table 1). A representative section of each 

rock was cut at Boston University and then crushed by the XRF lab. While none of the 

samples were strongly compositionally layered, care was taken to select a representative 

slice of rock by avoiding obviously late veins, removing weathered edges, and using a 

larger slice for coarser samples (see Appendix B for images of representative sections). 

X-ray Fluorescence data was gathered from two different institutions during the course of 

the study.  Most analyses were carried out at Franklin and Marshall College on a 

Panalytical PW 2404 X-Ray Flourescence Spectrometer by S. Mertzman. Two analyses 

were performed at the University of Massachusetts at Amherst on a Siemens MRS-400 

multi-channel spectrometer by M. Vollinger.  

Microprobe analyses for garnet transects and mineral compositions were obtained 

on the Cameca SX-50 Electron Microprobe at Virginia Tech by J. Gorce (Table 2). The 
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microprobe was run at a 20nA beam current with a 15 kV acceleration voltage. Major 

element mineral compositions for each sample were averaged from several probe points 

per mineral taken on different crystals in the thin section. Because garnet is strongly 

zoned, garnets composition was determined by volumetrically averaging the probe points 

along garnet transects. Garnet end members were calculated from oxide weight percent 

data normalized to 12 oxygen atoms. In calculating garnet’s structural formula, ferric iron 

was determined to be insignificant in so four end-members -  spessartine (Mn3Al2Si3O12), 

grossular (Ca3Al2Si3O12), almandine (Fe3Al2Si3O12), and pyrope (Mg3Al2Si3O12), were 

used (Figs 3, 4, 5, 6, and 7).  

Mineral modes were determined by point-counts on thin sections but were 

adjusted slightly (within a few percent) if Mn in the bulk rock XRF was too low to 

account for garnet abundance. That is, if when the point-count garnet volume percent was 

subtracted from the bulk rock XRF, the Mn in the garnet absent composition was below 

0, the garnet volume percent was adjusted very slightly until the Mn in the XRF remained 

positive. This approach is justified because the block of rock powdered for XRF and the 

billet cut for a thin section are, even if cut from adjacent parts of the rock, still separated 

by a few cm and can have slightly different amount of given minerals, especially large 

porphyroblasts. 

3.2.2 Modeling garnet growth and water loss 

The start of garnet growth is modeled by running Perple_X with the composition 

of the bulk rock as determined by XRF. Garnet core isopleths are plotted in P-T space for 

the modeled XRF composition. The point in P-T space where these four isopleths 
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intersect is the point where predicted garnet chemistry matches garnet chemistry 

measured with the microprobe and is thus the P-T conditions for the start of garnet 

growth. Predicted mineralogy at this P-T location is not expected to match what is seen in 

the rock today but can be useful to compare to inclusions in garnet. 

When modeling the growth of a resistant porphyroblast such as garnet, 

researchers have determined it is important to adjust bulk rock chemistry as the phase 

grows and sequesters elements (ex: Marmo et al., 2002, Konrad-Schmolke et al., 2005). 

Accordingly, conditions of garnet rim growth are modeled by converting the total 

observed volume percent garnet to weight percent, subtracting this weight percent from 

the bulk rock and re-calculating the new garnet-absent oxide weight percent for each 

element. This garnet-absent composition is referred to as the “matrix.” This method 

assumes a garnet density of 4.05 g/cm3. Garnet rim isopleths are plotted in P-T space for 

the matrix composition and their intersection identifies the P-T location of the end of 

garnet growth. For two samples, garnet rim composition was either unable to be modeled 

or was not desirable for modeling (ie. was a resorption rim). In these cases, a point inside 

of the rim, towards the garnet interior, was chosen. The volumetric proportion of the 

garnet inside of this point was calculated and this volumetric amount was converted to a 

weight percent and subtracted from the whole rock. To avoid a resorption rim for sample 

14BSY-35D, a point was chosen which was 144 microns from the physical rim and 

outside of 75% of the garnet volume (Fig. 5). For sample 14BSY-37A the true rim was 

unable to be modeled so a point 28 microns inside of the rim and outside of 90% of the 

garnet volume was chosen (Fig. 6).  
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Once a P-T path for garnet growth is established, water loss over this window can 

be calculated. This study uses the method reported in Dragovic et al., (2012) to account 

for both apparently overstepped garnet-in reactions (for garnet cores) and the decision to 

model a garnet-absent matrix (for garnet rims). The garnet-forming reaction can be 

considered to be overstepped when the measured garnet core chemistry is observed in 

models at a point in P-T space past the garnet-in line. If the weight percent water 

determined by Perple_X at this point in P-T space were to be used as the starting weight 

percent water for garnet growth, the predicted volume percent garnet would make the 

starting weight percent water in the rock appear lower than if there were truly no garnet 

in the rock. To account for this, we calculate rock weight percent water at the start of 

garnet growth by taking the mineralogy predicted by modeling at the garnet core P-T 

conditions, forcing garnet to a volume percent of 0, and then re-calculating weight 

percent water in the new garnet-free mineralogy. Similarly, the weight percent water in 

the rock at the conditions of garnet rim growth must also be adjusted. Because the rim is 

modeled using a bulk rock composition calculated by removing the volume percent 

garnet observed in hand sample from the whole rock XRF data, this removed garnet must 

be added back in to the predicted mineralogy at the rim P-T conditions before weight 

percent water is calculated. This is done in the same manner as the core garnet correction; 

the modal mineralogy predicted by modeling is obtained and the garnet abundance forced 

to the amount observed in hand sample or thin section. Weight percent water is re-

calculated using this new increased-garnet modal mineralogy. If the sample was not able 

to be modeled to the completion of garnet growth, as was the case for 14BSY-35D and 

14BSY-37A, the modal abundance of garnet was forced to the percentage of garnet that 
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was able to be modeled. For 14BSY-35D, because only 75 volume percent of the garnet 

was able to be modeled, the modal abundance of garnet was adjusted to be 75% of the 

amount observed in the sample. Similarly, for 14BSY-37A, the modal abundance of 

garnet was adjusted to be 90% of the amount observed in the sample.  

The amount of water lost from core to rim of garnet growth can be expressed as 

moles of water per mole of garnet grown as in Dragovic et al. (2012). This is calculated 

by taking the predicted mineralogy and water content at conditions of core growth and 

comparing it to the adjusted predicted mineralogy and water content at the conditions of 

rim growth. The difference between the moles of each mineral at core and rim conditions 

is taken, including that for garnet and water. These numbers are then normalized to one 

mole of garnet, allowing a calculation of moles of water lost per mole of garnet grown. 

In order to compare the predicted mineralogy at rim conditions to that observed in 

hand sample, the predicted mineralogy is adjusted differently than it is for the water loss 

calculation. For the mineral mode comparison, the garnet which was removed to create 

the matrix composition is added back in. This is different than forcing the garnet to be 

what is observed in the rock and allows an assessment of how well the program modeled 

the rock.  

All samples were modeled using the same thermodynamic dataset and the same 

solution models. Perple_X version 6.6.8 (Connolly, 2009) was used with mineral end-

member thermodynamic data from Holland and Powell (1998) and updated by the 

authors in 2004 (“HP04”).  The solution models and details of run parameters are given 

in Appendix C.  All models were run in fluid saturated conditions. This fluid was a binary 

H2O-CO2 solution. Carbon dioxide in the fluid was systematically varied from 0 to 0.05 
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mole % to 0.1 mole % for each sample to find the best parameters to create accurate 

garnet isopleth intersections modal mineralogy. In several instances, CO2 in fluid had no 

effect on isopleth intersections and in these cases CO2 was added only if the rock had 

optically visible carbonate mineralogy. In the absence of CO2 in the fluid, the sample was 

run in a pure H2O solution. Major element oxide weight percent from XRF data includes 

Fe2O3 weight percent determined by titration. This reported Fe2O3 is interpreted as the 

maximum ferric iron in the bulk rock because the titration process is slightly oxidizing. 

Ferric and ferrous iron ratios were varied from no ferric iron to, in some cases, the 

maximum ferric iron ratio reported by XRF analysis. The ferric iron to total iron ratio that 

yielded garnet isopleth intersections and modal mineralogy closest to those observed in 

the sample was chosen for each sample. Optimal Fe2O3/Fetot values ranged from 0.09 to 

0.27. Samples 14BSY-38A and 14BSY-38B lack ferric iron titration data, and in these 

cases the general range of iron ratios in other samples was used as a guide.  

The amount of carbonate in the fluid and the amount of ferric iron in the system 

have a large impact on the predicted mineralogy and can change the location of garnet 

isopleth intersections. These are also the least constrained parameters for our modeling 

process. To explore the sensitivity of the modeling results to changes in these two 

parameters, the whole-rock XRF composition for sample 14BSY-37A was run with 

Fe2O3/Fetot ratio of 0, 0.20, and 0.40 and a mole percent CO2 in fluid of 0, 0.1, and 5 (Fig. 

8). The high Fe2O3/Fetot ratio of 0.40 was chosen based on the higher end of the titrated 

values provided during XRF analysis. The high of 5 mole percent CO2 in fluid was 

chosen to be slightly higher than the maximum value calculated by Schumacher et al. 

(2008) of 3 mole percent CO2 in fluid. Two trends with implications for garnet isopleths 
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are immediately apparent in Figure 8. First, with increasing CO2 in fluid, garnet stability 

is pushed to lower pressures and higher temperatures, as Mn-bearing carbonate is stable 

over a greater P-T range. The garnet-in reaction line can be seen to sweep to the right 

across the diagrams as CO2 in fluid increases. Second, as the amount of ferric iron 

increases, the almandine isopleth moves to higher pressures. With these two parameters 

for which we have minimal real-world constraints, we are able to move the garnet 

stability in temperature space and garnet composition in pressure space. While this might 

be somewhat concerning, as seen in Figure 8, models did not yield good isopleth 

intersections in very many instances. The garnet isopleth intersections and modal 

mineralogy were used as the best way to constrain Fe2O3/Fetot ratio and mole percent CO2 

in fluid. Sample 14BSY-37A is the example shown in Figure 8; here the optimal values 

were determined to be Fe2O3/Fetot = 0.09 and CO2 = 0 which is not show in Figure 8 but is 

shown in Figure 17. 
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4.0  SAMPLE DESCRIPTIONS 

The term “eclogite” here is taken to mean any rock with a primarily omphacite 

and garnet assemblage. Several of the samples studied include a substantial amount of 

white mica and several show evidence for rehydration in the form of large glaucophane 

crystals that overprint an earlier structural fabric. These eclogite samples are distinct from 

the other high pressure metamafic rocks on the island; omphacite-bearing but garnet-

absent metagabbro and the glaucophane-dominated garnet-bearing blueschists. This study 

focuses exclusively on eclogitic rocks for three reasons. First, in exploratory work on 

samples collected from Syros, eclogites were the best candidates for 147Sm/ 144Nd garnet 

geochronology. Eclogitic samples were adequately cleansed of inclusions in the lab 

process while blueschist and mica-schist samples were not (see Appendix A). Second, as 

this study is concerned with water loss from the subducting slab and eclogites are the 

most dehydrated subduction zone rocks, studying eclogites allows us to potentially see 

the greatest water loss possible from rocks of a given composition. Finally, the only other 

garnet ages on Syros were performed on eclogitic rocks (Lagos et al., 2007) so focusing 

this study on eclogites will facilitate direct comparison with this previous study.  

All samples with the exception of 06MSY-6E were taken from the Katergaki 

peninsula on the south of the island (Fig. 1). Sample 06MSY-6E was taken from the Kini 

peninsula on the west side of the island (Fig. 1). Both the area around Kini and the area 
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around Katergaki are mapped as metabasic rocks (Keiter et al., 2011). However, the Kini 

beach area also has outcrops of the serpentinite mélange with “knockers” (Fig. 1). 

Sample 06MSY-6E, therefore, represents a fundamentally different setting than the four 

other samples. Importantly, the location near Kini is the same area where Lagos et al. 

(2007) collected one of three eclogitic samples for Lu-Hf garnet geochronology. 06MSY-

6E is a coarse-grained eclogite-facies sample with the most ultramafic composition of 

any of the samples analyzed. It is dominantly composed of large ~0.5 cm garnet (40%), 

omphacite (29.3%) and glaucophane (17%) with minor amounts of rutile, chlorite, 

epidote, white mica, and carbonate (Fig. 9A). Two texturally distinct regions can be 

identified in the thin section. The first makes up about 80% of the thin section and 

contains intergrown omphacite and glaucophane with abundant garnet and large rutile 

grains (Fig. 10A). The rutile in this sample is particularly striking as it makes up about 6 

vol% of the rock and occurs as large clots rather than distinct needles. This region is 

taken to be the most texturally representative region of the bulk rock and was 

consequently used for point counting to determine composition. A second region is 

characterized by euhedral, chemically zoned omphacite surrounded by interstitial 

glaucophane and a lack of both garnet and rutile. Omphacite in this region displays 

visually striking concentric zoning increase in the jadeitic component and a decrease in 

the augitic component from core to rim. The glaucophane is chemically identical to the 

glaucophane in the first region. The first region has a later assemblage found in the 

matrix and as veins in cracks in garnet composed of chlorite-mica-epidote. Garnet 

inclusions consist of epidote- iron-oxide-chlorite-zircon-albite. Albite inclusions display 

a symplectic texture and are interpreted to result from breakdown of jadeite, indicating 
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that garnet grew while omphacite was stable. Chlorite inclusions are chemically distinct 

from later chlorite in the matrix, with inclusions having a higher iron component and 

matrix crystals having a higher magnesium component (Table 2).  

14RSY-8A is a fine-grained mica-rich eclogite. The sample is composed mainly 

of omphacite (46%) and mica (36%) which together make-up a medium-grained matrix. 

Coarser grained calcite, Mn-Fe carbonate, garnet, blue amphibole needles, rutile, and 

sphene are present as porphyroblasts (Fig. 9B). Garnet inclusions consist of blue 

amphibole-apatite-rutile-Mn-Fe-carbonate. A later growth event is seen in a calcite vein 

with minor mica that cross-cuts garnet, amphibole needles, and the matrix. This sample is 

from the Katergaki peninsula area and in outcrop appeared as a fractured pod shot 

through with carbonate veins in a marble matrix.  

14BSY-35D is a fine-grained eclogite. The matrix is dominantly omphacite (53%) 

and white mica (30%) with garnet porphyroblasts (10%) and minor glaucophane needles 

(1%) that form a lineation (Figs. 9C and 10B). Minor calcite was seen in the matrix. 

Garnet porphyroblasts vary from ~ 3mm to 5 mm in diameter. The sample was found in 

the field as float on the Katergaki peninsula.  

14BSY-37A is a fine-grained eclogite with abundant small (0.5-2mm diameter) 

garnets. The sample is mostly omphacite (65%) and garnet (15%) with some epidote 

(7%) and large glaucophane needles (7%). Quartz and rutile are minor components (Fig. 

9D). Garnet inclusions consist of large quartz-epidote-rutile- pyroxene (Fig. 10C). Calcite 

was seen as an inclusion in garnet but was not observed optically in the matrix, though in 

hand sample small later carbonate veins were visible. The omphacite, which makes up 

the majority of the sample, occurs as two optically and chemically distinct types. One has 
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a higher iron content, with more ferric iron. The other has a higher magnesium and 

aluminum content. Calcium and sodium differ very little between the two types and both 

are compositionally omphacite (Table 2).  Only one pyroxene inclusion in garnet was 

analyzed and was found to be the more Mg-rich variety (Table 2). This sample was found 

as float on the Katergaki peninsula.   

14BSY-38A has a fine-grained and homogenous matrix with a minor amount 

(3.9%) of small (~1 mm diameter) garnet porphyroblasts (Figs. 9E and 10D). The matrix 

is primarily composed of omphacite (73.6%) and mica (14.5%) with minor titanit-

epidote-feldspar. Calcite in garnet and in mica-calcite veins makes up 6% of the sample. 

The sample was found as a small boudin in a quartz-mica-glaucophane schist on the 

Katergaki peninsula. The surrounding schist was collected as sample 14BSY-38B and 

was used as a point of comparison for 14BSY-38A but no garnet was dated from sample 

14BSY-38B. 
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5.0  RESULTS 

5.1 GEOCHRONOLOGY 

Garnets were cleaned using the partial dissolution procedure describe above. An 

average of about 100 mg of crushed, picked and magnetically-separated garnet were put 

into partial dissolution. The smallest amount used was 29 mg while the largest was 150 

mg. The average sample loss following the entire partial dissolution procedure was 75% 

of the starting sample weight. The lowest loss was 21% and the highest was 99.5%. 

Garnet samples were put in HF during partial dissolution for 15 to 180 minutes. Percent 

loss and time in HF necessary to yield an acceptable 147Sm/144Nd ratio for garnet 

geochronology varied between samples (Table 3).  Isochrons for all samples were 

constructed with multiple garnet measurements of varying cleanliness and a single 

measurement of a representative piece of the whole rock (Fig. . Once sample, 14RSY-8A, 

includes two measurements of two different representative pieces of the whole rock. 

Sample 06MSY-6E includes a measurement of the leachate from the partial dissolution 

procedure. Garnet measurements were excluded from the isochron in the event of 

laboratory error resulting in an imprecise measurement (sample 14BSY-37A gts 5, 6; 

sample 14RSY-8A gts 5, 7) or inadequate cleaning resulting in a low 147Sm/144Nd value 

which falls off the isochron defined by higher 147Sm/144Nd measurements (14RSY-8A gts 
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1, 4; 14BSY-35D gt 3). All measurements, including measurements not included on 

isochrons, are reported in Table 3.  

Samples 14BSY-35D, 14BSY-37A, and 14BSY-38A resulted in robust isochrons 

(maximum 147Sm/144Nd ratio, low MSWD) (Fig. 11, Table 4). Sample 14BSY-35D gives 

an age of 48.1 ± 2.3 Ma (maximum 147Sm/144Nd = 1.22, n = 4, MSWD = 2.4). Sample 

14BSY-37A gives an age of 43.6 ± 1.6 Ma (maximum 147Sm/144Nd = 1.39, n = 6,MSWD 

= 2). Sample 14BSY-38A gives an age of 44.7 ± 1.0 Ma (maximum 147Sm/144Nd  = 3.9, n 

= 6, MSWD = 1.4). Samples 06MSY-6E and 14RSY-8A failed to yield high 147Sm/144Nd 

ratios above 1 (Fig. 11, Table 4). The reasons for this are addressed in the discussion. A 

low 147Sm/144Nd ratio results in the age reported from these samples having higher 

uncertainty. Sample 06MSY-6E gives an age of 57.7 ± 6.3 Ma (maximum147Sm/144Nd = 

0.4, n = 10, MSWD = 1.9). Sample 14RSY-8A gives an age of 48.8 ± 3.2 Ma (maximum 

147Sm/144Nd = 0.49, n = 6, MSWD = 0.67). The average age for all samples studied is 

48.5 Ma. The average age for the three successfully cleaned samples (with maximum 

147Sm/144Nd > 1.0) is 45.4 Ma.  

Sample 14BSY-35D was microdrilled for geochronology to obtain a core and rim 

age to quantify the rate of garnet growth. Thirty-nine garnet crystals were microdrilled 

from 12 slices of the sample to generate 38 rims and 31 cores (not every garnet generated 

a core and a rim as sometimes material crumbled or was lost through human error) (Fig. 

2). Raw core material initially totaled 181.4 mg. After crushing, sieving, and magnetic 

separation the 140-230 mesh fraction yielded 89.0 mg of garnet core (51% sample loss). 

Raw rim material initially totaled 847 mg. After crushing, sieving, and magnetic 

separation, the 140-230 mesh fraction weighed 203 mg (76% sample loss). Greater 



 27 

sample loss during rim processing is due to matrix material included with rims during 

drilling being lost during magnetic separation. Material smaller than the 230 mesh size 

was set aside to be measured as the “powder” fraction. This material represents the 

equivalent of garnet with inclusions still present. Unfortunately, despite using the same 

partial dissolution cleansing procedures on the these garnets as for all other samples, 

neither core nor rim yielded high 147Sm/144Nd above 1.0, resulting in less precise ages.  A 

core isochron with the whole rock, core powder, and core garnet gives an age for core 

growth of 66 ± 15 Ma (maximum 147Sm/144Nd = 0.23, n =3, MSWD = 0.76) (Fig. 12, 

Table 4). The large amount of rim material allowed two partial dissolution attempts. An 

isochron with the matrix, rim powder, and two rim garnets gives an age for rim growth of 

47.1 ± 3.0 Ma (maximum 147Sm/144Nd = 0.55, n = 4, MSWD = 1.4) (Fig. 12, Table 4). 

5.2 TRACE ELEMENT CONCENTRATIONS  

Trace element concentrations were measured in situ on a laser ICP-MS. Garnet 

transects consist of around five to 10 laser points across a crystal (Fig. 13). Sample 

14RSY-8A lacked spatial data so a volumetric average and assessment of any zonation 

was impossible for this sample. For 21 out of 61 analyses, Nd was below the detection 

limit. The small number of points per sample, the potential error inherent in determining 

spatial coordinated from an image after the fact of measurement, and the lack of a second 

garnet analysis for any sample make assessment of patterns across garnets difficult and 

decidedly suspect. However, it can be reasonably asserted that three of the four samples 

for which we have spatial data show some zonation in trace elements. Sample 06-MSY-
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6E is un-zoned in Sm or Nd but shows a marked zonation in Lu from 27 ppm at the core 

to ~0.2 ppm at the rim (Fig. 13). 14BSY-35D is un-zoned in Nd but shows a slight 

decrease in Sm concentration towards the rim from 0.89 ppm to 0.62 ppm. The change is 

so slight, however, that the volumetric Sm average (0.69 ppm) is barely higher than the 

lowest measured concentration (0.62 ppm). Lu, however, changes from 5.2 ppm at the 

core to 0.8 ppm at the rim (Fig. 13).14BSY-37A has increasing Sm, Nd, and Lu 

concentrations towards the rim, however, this pattern relies on Nd and Sm concentrations 

in the rim so high that they are greater than what was measured with TIMS, suggesting 

that these points might be compromised by inclusions. If this is the case, then this sample 

shows no evidence for trace element zonation but it also possesses only three inclusion-

free points: too few to determine any pattern (Fig. 13). 14BSY-38A shows higher Sm 

concentrations (0.8 ppm) in the core of the garnet than the rim (0.04 ppm) while only two 

of the points analyzed were above detection limits for Nd. Lutetium concentration is 

lower at the rims and core and higher in the region between (Fig. 13). This is in contrast 

to every other sample analyzed in this study which show a Lu peak in the center of the 

garnet, but non-Rayleigh determined Lu zonation is not uncommon in the literature (cf. 

Moore et al., 2013; Jedlicka et al., 2015). This increase in Lu corresponds to the first 

increase in Mn from core to rim seen in the garnet (Fig. 14). Evidence for what may have 

caused this strange zonation is seen in Na/Ti and K/Ti concentrations (Fig. 14). These 

ratios show a marked increase from core to rim from 0.4 to 7,138 (Na/Ti) and 0.03 to 37 

(K/Ti) but do not line up exactly with the Lu and Mn pulses. Because Ti is relatively 

immobile while Na and K are highly mobile, the increase in these ratios is evidence that 

the rock saw an open system as the garnet grew and mobile elements were added to the 
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system. Perhaps Lu concentrations in the infiltrating fluid changed during garnet growth 

creating elevated Lu between the core and rim (ie Moore et al. 2013). 

5.3 THERMODYNAMIC MODELING 

Garnet chemistry was determined using the microprobe at Virginia Tech and at 

the University of Massachusetts. Garnets were on-average dominantly almandine-rich but 

included up to one third mole fraction grossular. Every sample shows a smooth bell-

shaped Mn profile (Figs. 3, 4, 5, 6, and 7) with the exception of 14BSY-38A which 

shows inverse Mn zonation changing from 0.028 mol fraction spessartine in the core to 

0.160 mol fraction spessartine at the rim. When seen on an element map, the Mn increase 

is strikingly “stepped” in three discrete zones rather than increasing continuously (Fig. 7). 

Sample 06MSY-6E shows a somewhat lopsided profile which is taken to be the result of 

asymmetrical garnet growth as the same garnet was probed twice on two different 

microprobes and yielded the same results. It shows a standard chemical zonation profile 

until a stepped increase in Mn and decrease in Fe at the rim. The stepped nature of this 

transition is interpreted to mean that it does not result from resorption but is instead the 

result of a hiatus in growth or an abrupt change in bulk composition from fluid 

infiltration (Fig.7). Samples 14BSY-35D (Fig. 5) and 14RSY-8A (Fig. 4) show evidence 

for garnet resorption in the form of increased Mn at the rim. Sample 14BSY-37A has an 

irregular ring of increased Mn inside of a rim which shows the standard Mn decrease. 

The rim is interpreted to result from later growth around an earlier, partially-resorbed 

core (Fig. 6).  
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All samples with the exception of 14RSY-8A were modeled using Perple_X. 

Sample 14RSY-8A did not give robust age data, has evidence for extensive CO2 fluid 

infiltration, and preliminary modeling attempts revealed it to be unpromising for 

modeling garnet growth.   

Whole-rock XRF data for 06MSY-6E gives excellent garnet core isopleth 

intersections when models are run at water saturated conditions (as all models in this 

study are) with no CO2 in the fluid phase, and with Fe3+ /Fetot = 0.09. Garnet core 

isopleths intersect at 728 K and 2.25 GPa (Fig. 15, Table 5). The sample was modeled at 

86% garnet growth, a point chosen because it is just to the core-side of a small but abrupt 

step in Mn and Fe zonation (Fig. 3). This matrix composition was modeled with no CO2 

in the fluid phase and with Fe3+ /Fetot = 0.21(Table 5). The ferric iron amount was chosen 

by simply subtracting garnet, which contains exclusively ferrous iron, from the initial 9% 

ferric whole rock composition. Eighty-six percent garnet growth isopleths intersect at 800 

K and 2.39 GPa (Fig. 15). The spessartine fraction does not occur in the modeled space 

but is very low (0.006 mol fraction). Garnet rim composition was modeled, again with no 

CO2 in the fluid and the ferric iron resulting from further garnet removal: Fe3+ /Fetot = 

0.27. Rim intersections occur at 868 K and 1.74 GPa. Again, the measured mole fraction 

spessartine does not occur in the modeled space but is, again, very low (0.006).  

Sample 14BSY-35D yields a garnet core isopleth intersection at 775 K and 2.32 

GPa when the XRF composition is run with no CO2 in the fluid at Fe3+ /Fetot = 0.09 (Fig. 

16, Table 5). Because this sample has a resorption rim, the conditions of rim growth 

cannot be determined by the present day composition of the physical edge of the garnet. 

The microprobe point with the lowest mole fraction spessartine is considered to represent 
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the best composition to model garnet growth. This point is, unfortunately outside of only 

75% of the garnet’s volume (Fig. 5). The matrix was run with no CO2 in the fluid and at 

Fe3+ /Fetot = 0.10 (Table 5). This was the only sample for which the Fe3+ /Fetot ratio could 

not just be allowed to evolve naturally with garnet subtraction. If the system was allowed 

to become more ferric due to garnet removal, the almandine component in modeled 

garnet was far lower than what was measured with the microprobe. Artificially altering 

the Fe3+ /Fetot ratio to be lower (increase the ferrous portion) increased the almandine 

component but it still barely plotted within the modeled P-T space. Isopleths for the 75% 

rim do not intersect well in the modeled pressure-temperature space and the mole fraction 

spessartine is so low as to not occur. The best intersection occurs at ~ 803 K and 2.42 

GPa (Fig. 16) 

Sample 14BSY-37A produces good core intersections at 755 K and 2.30 GPa 

when the XRF composition is run with 0.05 percent CO2 in the fluid at Fe3+ /Fetot = 0.09 

(Fig. 17, Table 5). The pyrope isopleth does not intersect well with the other three but 

this is the lowest mole fraction at the core so its poor intersection barely influences the 

others and was considered negligible. When all garnet is removed from the system, the 

rim isopleths cannot, with any combination of ferrous iron and carbon dioxide amount, be 

modeled. Thus, the next microprobe analysis in from the rim at 90% of the total garnet 

volume was modeled by subtracting 90% of the garnet from the whole rock. 

Additionally, 50% of the small amount of quartz in the sample was subtracted. This was 

to account for the fact that about half of the quartz totaled in the point count was present 

as an inclusion inside garnet (Fig 10C). When garnet grew this quartz was presumably 

sequestered. The matrix composition was run with 0.1% CO2 in the fluid and at Fe3+ /Fetot 
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= 0.15, which is the ferric ratio produced when the garnet is removed from the whole 

rock (Table 5). Isopleths intersect well with the exception of the spessartine mole fraction 

which is not particularly far away in P-T space from the other three and, at 0.024, is the 

lowest mole fraction at the rim (Fig. 17).  

Sample 14BSY-38A was unable to be modeled with the bulk rock composition or 

the garnet-absent matrix composition (Table 5). The bulk rock composition run with 

0.1% CO2 in the fluid at a Fe3+ /Fetot = 0.09 does not produce garnet which contains any 

of the garnet end-members in the measured amounts anywhere in the modeled pressure 

temperature space with the exception of the spessartine component at the rim (Fig. 18). 

No combination of carbon dioxide in fluid and iron oxidation states resolves this 

problem. The matrix composition tried at a similar range of conditions fails to grow any 

garnet at all, even though the system still contains 0.01 wt. % MnO which in other 

modeled samples was sufficient to grow garnet. Given the extensive evidence for open 

system behavior (the sample is a small boudin in a chemically different surrounding rock, 

has stepped Mn zonation with no evidence of resorption, and has unusual trace element 

patterns), it is reasonable to conclude that the chemical make-up of the sample today is 

not representative of the composition of the sample at the start of garnet growth or even 

at the cessation of garnet growth. Garnet growth in sample 14BSY-38A cannot be 

modeled with the thermodynamic modeling techniques applied to the other samples in 

this study.  
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5.4 THERMODYNAMIC MODELING AND WATER LOSS 

 

Water loss during garnet growth is greatest for sample 06MSY-6E. Note that all 

thermodynamic modeling assumed initially water saturated conditions; thus calculated 

dehdydration fluxes are maximum amounts.  If starting compositions were not water 

saturated the actual dehydration would be lower.  These calculations thus reflect a 

maximum capacity for initial water storage and subsequent loss.  From core to rim this 

sample lost 5.13 weight percent water from the bulk rock (Table 6). The majority of this 

water loss (4 weight percent) occurred during the first 86 volume percent of garnet 

growth on an increasing-pressure and temperature path. The final 14 volume percent of 

garnet growth corresponds to the remaining 0.4 weight percent water loss and occurs on a 

decompression path. The next-greatest water loss during garnet growth is for sample 

14BSY-35D. The sample lost 2.60 weight percent water during the 75 volume percent of 

garnet growth, which we were able to model on an increasing pressure and temperature 

path (Table 6). Sample 14BSY-37A lost 1.09 weight percent water during garnet growth 

on a decompression heating path (Table 6). The loss-on-ignition measured during XRF 

analysis is consistently greater than what is calculated at the end of garnet growth (Table 

6). This can be explained by either the presence of carbonate or late rehydration. For 

example, sample 14BSY-37A presently contains ~7 vol percent glaucophane which, 

based on textural and chemical data is determined to be late (see previous sample 

description). 
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6.0  DISCUSSION 

6.1 CHALLENGES AND SUCCESSES WITH SM/ND GARNET 

GEOCHRONOLOGY 

The largest challenge with 147Sm/144Nd geochronology is to effectively remove 

contaminating inclusions from the garnet so that the Sm and Nd isotopic signature from 

the inclusions do not mask the signature from pure garnet. This study had mixed results 

with the partial dissolution method but ultimately, three of the five samples were 

successfully cleansed of inclusions. Samples 14BSY-35D, 14BSY-37A, and 14BSY-38A 

all gave Sm/Nd ratios above 1 (generally considered the minimum ratio to ensure that 

contaminating inclusions have been adequately removed) for at least two garnet separates 

(Baxter and Scherer, 2012) (Table 3). Sample 14BSY-37A has Sm and Nd concentrations 

exactly in line with the lowest concentrations measured using LA-ICMPS, confirming 

that the material being measured on the TIMS after the laboratory procedures was, in 

fact, clean garnet (Fig. 13). Samples 14BSY-35D and 14BSY-38A have Sm 

concentrations in line with the lowest concentration measured with LA-ICMPS but have 

Nd concentrations above what was measured with LA-ICPMS (Fig. 13). This suggests 

that the garnets for both samples are not entirely cleaned and the true Nd concentration is 

lower. Whatever inclusions are left in these samples, they don’t seem to be pulling the 
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garnet points off the isochron, just slightly down along the isochron. The MSWD for each 

sample indicates that the points statistically form a line, so they are not being perturbed 

off the isochron by inclusions (Fig. 11, Table 4). 

Samples 06MSY-6E and 14RSY-8A were unable to be successfully cleaned 

during the partial dissolution procedure; neither sample had a garnet separate achieve a 

147Sm/144Nd ratio above 1(Fig. 11). Laser ablation ICPMS data reveals Nd and Sm 

concentrations in pure garnet well below those measured on the TIMS for 06MSY-6E, 

indicating that higher Nd and Sm concentration inclusions were contaminating the 

sample even after partial dissolution (Fig. 13). Laser ablation ICPMS for sample 14RSY-

8A shows Nd concentrations only slightly lower than what was measured with the TIMS, 

a discrepancy similar to that seen with “clean” samples described above (Fig. 13). Given 

the low 147Sm/144Nd ratios it is surprising that concentration data is not more affected. It 

is possible that even the LA-ICPMS data is compromised by micro-inclusions smaller 

than the spot size. 

 Something about both samples makes them difficult or impossible to clean with 

the usual partial dissolution procedure. Previously, students working on garnet 

geochronology in this lab have identified epidote (Ramos, 2015), tourmaline (Stewart, 

2015) and aluminous pyroxene (M. Cahill, personal communication, 8 Apr. 2016) as 

inclusions that might dissolve more slowly than, or at the same speed as, garnet in 

hydrofluoric acid. Were an inclusion to behave this way it would not be removed during 

the partial dissolution procedure. Figures 19 and 20 shows the isochrons for the un-

cleaned samples with every garnet that was measured. Note that the age reported in this 

figure for sample 14RSY-8A differs from the age given previously for that sample 
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because garnets with low 147Sm/144Nd ratios or extremely large error bars were excluded 

from the original age calculation. Also note that for 14RSY-8A, minutes in HF during the 

partial dissolution do not correlate exactly with an increase in the 147Sm/144Nd ratio. This 

is because two different garnet grain sizes were used during sample preparation (Fig.19, 

Table 2). The finer grain size requires less time in HF to reach the same 147Sm/144Nd ratio 

as the coarser grain size. If garnets 5, 6, 8, and 9 (garnets are numbered in Fig. 19) are 

considered, it seems clear that more time in hydrofluoric acid during the partial 

dissolution is, in fact, increasing the 147Sm/144Nd ratio by removing inclusions from the 

garnet. It also seems clear, however that this sample has hit the limit of that method; 99% 

of the sample was dissolved away at the “cleanest” point. Some inclusion in this sample 

must be dissolving at only a very slightly faster rate than garnet. That it does not change 

the concentration very much but distorts the isochron suggests that it is a low 

concentration phase with a very different isotopic composition than the garnet. If the 

issue is instead tourmaline or aluminous pyroxene, then there is no known way to 

optimally prepare this sample for 147Sm/144Nd garnet geochronology and it might be 

better dated with some other method. 

Sample 06MSY-6E presents a slightly different picture. While it is true that 

garnet separates left in hydrofluoric acid for longer amounts of time lose more garnet, 

this does not always correlate with a higher 147Sm/144Nd ratio (Fig. 19). This suggests that 

some problematic inclusion is dissolving at the same rate as garnet and is present in 

different separates in different quantities by simple chance. Garnet 8 (see Fig. 20 for 

garnet numbers) was treated to a slightly different procedure than the rest. This garnet 

separate was put into hydrofluoric acid twice during the partial dissolution with a nitric 
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acid step in between. The two HF steps are greater than the sum of their parts; a 95 

minute HF step followed by a 60 minute HF step generated a cleaner garnet separate than 

a 154 minute continuous HF step. Perhaps whatever phase is a problem quickly reaches 

its saturation point in 2 mL of HF while garnet continues to dissolve. If the acid is 

refreshed, the contaminating phase is dissolved more relative to garnet.  

While bulk garnet geochronology proved successful for sample 14BSY-35D, the 

same sample preparation and partial dissolution procedure carried out on the rim and core 

separates was a failure. Garnet from the cores of crystals was not cleaned by the partial 

dissolution process while garnet from the rim was cleaned to a lesser extent than would 

be predicted by the results from the bulk garnet separate (Fig. 12). This is distinct from 

the problems described above where something intrinsic to the sample creates a problem 

for the standard inclusion cleansing procedure. Rather, something seems to have gone 

wrong during sample preparation or in the lab to make the previously-successful methods 

fail. It is intriguing, however, that when the prepared rim material was split into two parts 

and run through clean lab procedures separately and weeks apart (rim 1 and rim 2) the 

garnet separate seems to have behaved the same way in the partial dissolution. That is, a 

slightly longer time in the hydrofluoric acid step increased the 147Sm/144Nd by a small 

amount consistent with the first rim separate and inconsistent with the bulk separate. This 

suggests that whatever went wrong happened prior to clean lab work during sample 

preparation. Further, whatever went wrong affected the core more than the rim. While no 

explanation can presently be offered, it is worth noting that the rim powder plots at a 

lower 143Nd/144Nd ratio than would be expected if the rim powder was the result of 

mixing between the matrix and garnet material.  
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The three samples discussed above (06MSY-6E, 14RSY-8A, and the core from 

14BSY-35D) do not yield precise ages but it is still possible that accuracy is not affected. 

If this is true, the imprecise but accurate age may still be useful for geologic 

interpretations.  

The 147Sm/144Nd ratios for garnet points for sample 14RSY-8A are low. This, 

along with large error bars, contributes to the imprecise age. If a two-point isochron is 

made between a whole-rock point and each garnet point individually, there is a negative 

trend apparent between two-point isochron age and the 147Sm/144Nd of the garnet (Fig. 

19, lower panel). This suggests that there is a non-garnet inclusion mixing with the clean 

garnet pulling it off the isochron. This inclusion pulls the isochron to older ages because 

as the garnet gets cleaner, the age decreases.  Error bars on the two-point ages are large, 

however, and most ages overlap within error. The bulk age is, with the present data, older 

than the three best-constrained ages. Based on the trend described above, cleaner garnets 

would continue to pull the isochron to a younger age. The present age shows evidence of 

contamination from a phase not on the isochron and will not be used to interpret the 

geologic history of Syros.  

Sample 06MSY-6E is the oldest bulk sample, even if the youngest point within 

the very large error bars is considered. In a plot of two-point isochron age and 

147Sm/144Nd of the garnet measurement used to calculate the age, there is a positive trend; 

the opposite of the trend seen with 14RSY-8A (Fig. 20). The cleaner the garnets, the 

more the isochron is pulled to older ages. This suggests the presence of a contaminating 

inclusion which does not fall on the isochron and pulls the sample to younger ages, 

making the multi-point garnet age inaccurate. However, just as with sample 14RSY-8A, 
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the error bars on the two-point ages are so large as to make most the ages overlap within 

error and the positive linear trend seen in Figure 20 is defined mostly by garnet 8. 

Regardless of whether the exact age calculated with the multi-point garnet isochron is 

accurate, what can be asserted is that this age is already older than any other ages in this 

study and at least one cleaner garnet point pulls the isochron to even older ages. This 

sample can be used to interpret the geologic history of the island; it is not only the most 

mafic, implicated in the most water loss, and from a different region of the island from 

the other samples, but it seems also to have a fundamentally different garnet growth 

history.  

 Zoned work on 14BSY-35D resulted in a core which suffers from poor precision 

and a maximum 147Sm/144Nd at 0.23 (Table 4). While it is reassuring that the core is older 

than the bulk garnet separate, suggesting that any contaminating inclusion is, at worst, 

pulling the isochron to older ages, the 147Sm/144Nd is so low that the accuracy of the age 

is highly uncertain. The rim presents a slightly better picture with reasonable precision 

but a fairly low maximum 147Sm/144Nd of 0.55. The rim is younger than the bulk garnet 

separate but error bars on both the rim and the bulk garnet are so large as to make them 

essentially indistinguishable. While the rim presents less cause for concern about 

accuracy than the core, it adds nothing new to the geochronology already established by 

the bulk garnet age.  
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6.2 REGIONAL IMPLICATIONS OF GARNET GEOCHRONOLOGY 

Lagos et al. (2007) asserted on the basis of three Lu-Hf garnet ages with different 

Lu zonation from two locations on the island that Syros had seen one single high-pressure 

metamorphic event of a relatively brief (~2 Myr) duration centered at 52 Ma. In the 

present study, Sm-Nd ages refute the hypothesis that the Eocene HP-LT metamorphic 

event was short-lived and centered at 52 Ma; high-precision Sm-Nd garnet ages from this 

study span several million years and are up to 10 Ma younger than similarly robust Lu-Hf 

garnet ages from Lagos et al., (2007) (Fig. 21).   

Is the spread in ages between the two studies due to differences between 

147Sm/144Nd and 176Lu/176Hf dating or is there a geologic explanation? Differential 

diffusion rates and different closure temperatures of the isotopes used in the two dating 

methods has been argued to potentially create discrepancies between ages calculated with 

147Sm/144Nd and 176Lu/176Hf  (Bloch et al., 2015). However, modeled temperatures for the 

subduction zone rocks in this study are so low (maximum of 868 K/594 ºC) that neither 

system would have been diffusively open (Bloch et al., 2015).   

If the one older garnet age from this study (sample 06MSY-6E at 57.7 ± 6.3Ma) is 

disregarded on the basis of its low 147Sm/144Nd ratio and evidence for an off-isochron 

contaminating inclusion, then the simplest explanation for different garnet ages between 

the two studies might be the well-known preferential sequestration of Lu into garnet 

cores. However, Lagos et al., (2007) found this zonation in two of their garnets while the 

other garnet had more Lu at the rims. The differential Lu zonation between garnets giving 

overlapping ages was a large part of their argument that the metamorphic event was short 

lived. While presenting this data, they also discussed how it is difficult to accurately find 
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the middle of a garnet and mentioned that if the Lu peak were very narrow, they might 

have missed it. If this is the case, then the ~ 9 myr age span between precise ages in this 

study and precise ages in the Lagos et al., (2007) study can be attributed to sequestration 

of Lu into the core of garnets. Support for this comes from the fact that several garnets in 

this study were found to have large Lu peaks at the center of garnets, and that 

microsampled garnets on nearby Sifnos island showed ~8 myr of growth in a single 

crystal (Dragovic et al., 2012). Additionally, sample 14BSY-35D in this study gives an 

age intermediate between the old Lu-Hf ages and young 147Sm/144Nd ages (48.1 ± 

2.3Ma). This intermediate age could represent influence from an old core and a young 

rim.  

If, however, the oldest garnet age in this study is (sample 06MSY-6E at 57.7 ± 

6.3Ma), while not precise, is at least accurate, then the interpretation changes.  Now the 

spread in ages between the two studies could have a geologic interpretation. It is worth 

noting, however, that while all other samples were found in outcrop, 14BSY-37A and 

14BY-35D were collected as float on the Katergaki peninsula. There is no evidence that 

these rocks were transported from elsewhere so they are discussed below as having 

originated in the Katergaki peninsula area.  

Of the three geographic areas (Katergaki, Kini, and Grizzas) from which eclogitic 

garnets were dated in this study and the Lagos et al., (2007) study, old (>50 Ma) and 

young (<50 Ma) ages do not occur in the same location. The oldest age in this study 

(sample 06MSY-6E at 57.7 ± 6.3Ma ) is from near Kini, the same location as the Lagos 

et al. (2007) Ap21 which gave an age of 50 ± 2 Ma (Fig. 1). These ages are in agreement 

within error, and with the Lagos et al. (2007) ages for eclogites further north from near 
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Grizzas (52.2 ± 0.3 Ma and 51.4 ± 0.4 Ma) (Fig. 1). The more southern Katergaki 

peninsula hosts samples that date from nearly 50 Ma (48.1 ± 2.3 Ma) to around 44 Ma 

(14BSY-37A at 43.6±1.6 Ma and 14BSY-38A at 44.7±1.0 Ma). 

What is different structurally or lithologically between these three areas? 

Unfortunately, this depends on which map you look at. Trotet et al. (2001a,b) map both 

the Grizzas and Kini locations are primarily “eclogite-blueschists” with some pods of 

“retrogressed blueschist” while they map the Katergaki location as the inverse: primarily 

retrogressed blueschist with pods of “eclogite-blueschist.” In their interpretation, this 

means that the Katergaki location was slightly lower in the structural pile compared to the 

other two locations and therefore underwent a similar prograde metamorphic history but a 

different exhumation history. A second lithologic and structural interpretation, which 

groups the two northern sites into a separate category from the Katergaki location, is that 

of Philippon et al. (2012), which deems Grizzas and Kini to be “meta-ophiolite” from the 

Pindos Ocean while Katergaki is mapped as being marble from the sedimentary cover of 

the ancient Adria micro-continent. In their interpretation, the Pindos Ocean rocks were 

thrust on top of the Adria sedimentary rocks during prograde high pressure 

metamorphism associated with subduction. In contrast to the above interpretations, Keiter 

et al. (2011) identify both Katergaki and Kini as “metabasic rocks” in a tectonic mélange 

but map Grizzas as being composed of “metavolcanics” and “metagabbro” that are 

“highly deformed” and were metamorphosed at high pressures. They do, however, 

include serpentinite outcrops in the metabasic rocks at Kini but omit them at Katergaki, 

allowing a small lithologic distinction between the two locations. In the process of 

conducting field work on the island, it was observed that the Kini and Grizzas locations 
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both host the classic mélange blocks rimmed with blackwall mineralization while the 

Katergaki location lacks obvious examples of these blocks and instead has more marble 

and quartz-mica schists.  

If the two more northern sample locations can be both identified as an ophiolitic 

mélange from a structurally and lithologically distinct location from Katergaki, as in 

Trotet et al. (2001a, b) and Philippon et al. (2012), then this offers an explanation for the 

older ages in the northern two locations. The true tectonic mélange with a serpentinite 

matrix and eclogitic pods with blackwall rind grew prograde garnet earlier in the same 

metamorphic event than the tectonically different Katergaki location. Whether the 

Katergaki location is considered to be mostly retrogressed blueschist hosting some 

eclogite (Trotet et al., 2001a, b) or mostly marble hosting some eclogite (Philippon et al., 

2012), the area is not ultramafic mélange. Even in the Keiter et al. (2011) interpretation, 

which maps Kini and Katergaki as the same unit, the Katergaki region lacks serpentinite. 

Perhaps during subduction the rocks of Katergaki were farther from the ultramafic 

mélange zone in an area with more sediment and less mantle material. These rocks and 

sediment started growing garnet later than the mélange zone rocks, perhaps simply 

because they entered the subduction zone slightly later. The P-T paths and conditions at 

which garnet grew will help to illuminate this.  

Whether all rocks on the island experienced this metamorphism concurrently such 

that the age spans are simply related to HREE zonation or whether different lithologies in 

different structural positions experienced similar metamorphism at different times is 

unresolved. However, with either of these possibilities, the conclusion is the same: a 

conservative calculation - that is, ignoring the questionable 06MSY-6E age - is that high 
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pressure low temperature metamorphism on Syros spanned at least 52.2 ± 0.3Ma to 43.6  

± 1.6 Ma, or a minimum duration of 8.6 ± 1.6 million years.   

The possibility remains that sample 06MSY-6E is in fact much older than the age 

determined with the present low 147Sm/144Nd isochron and that cleaner garnet points 

would pull the isochron towards even older ages. In this case, the sample is not simply 

recording the earliest stages of the HP-LT metamorphic event but is instead showing 

evidence for a much earlier garnet growth event. Bröcker and Keasling (2006) dated 

jadeite blackwall material from the mélange in the northern part of the island using U-Pb 

in zircon and found ages of ~80 Ma. They argue that because jadeite is known to form 

exclusively by precipitation from high pressure fluids, this age must be a Cretaceous high 

pressure event distinct from the more broadly recognized Eocene event. Bröcker and 

Enders (1999) found the same age for zircons with inclusions of high pressure minerals 

(Fig. 22).  The age of 57.7 ± 6.3 from sample 06MSY-6E is not as old as these ages but, 

as was discussed above, the trend in the sample is towards older ages as garnet is cleaned. 

If the linear relationship between garnet 147Sm/144Nd and two-point age seen in the lower 

graph in Figure 20 is extrapolated to 78 Ma, the corresponding 147Sm/144Nd value is 

0.61which is lower than that of a typical clean garnet 147Sm/144Nd. However, as was 

mentioned above, this linear trend is defined by garnet 8; most of the other ages overlap 

within error (Fig. 20). The possibility that 06MSY-6E contains garnets that grew during a 

HP-LT event ~30 myr prior to the one during which most garnets in the study grew 

seems remote but is not ruled out by the data. 
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6.3 CHALLENGES AND SUCCESSES WITH THERMODYNAMIC 

MODELING 

While the error associated with the geochronology presented in this study is 

rigorously quantified and expressed, the error associated with the thermodynamic 

modeling is not as well constrained. It can be difficult with heterogeneous metamorphic 

rocks to choose the correct equilibrium length scale, and it is little more than a guess to 

pick the ferric iron ratio and the amount and composition of fluid. All temperatures and 

pressures calculated from garnet isopleth intersections should certainly be considered 

approximate. Of note is that the three successfully modeled samples all show garnet 

overstepping by as much as 150 K. That is, the chemical composition of the garnet core 

occurs at a few volume percent garnet rather than at the predicted absolute initiation of 

garnet growth.  This could be because we have failed to obtain perfect core transects or 

because reaction kinetics, along with thermodynamic principles, influence the growth of 

a phase and can lead to overstepped reactions (Carlson et al., 2015; Spear et al., 2014) 

One way to assess the success of modeling is to compare the predicted 

mineralogy at the conditions determined for the termination of garnet growth to that 

determined from hand sample or thin section. The three samples for which rim P-T 

conditions could be reasonably established match predicted mineralogy with actual 

mineralogy to different extents (Table 7).  

For sample 06MSY-6E, predicted mineralogy at termination of garnet growth is 

45.6 vol% garnet, 27% clinopyroxene, 21.5% amphibole, 3% rutile, 2.3% chlorite, and 

0.5% biotite (Table 6). This is broadly consistent with what is observed in hand sample 

(Fig. 9). The model slightly over-predicts garnet volume percent and amphibole while 
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under predicting clinopyroxene and rutile, but this variability is minor. Chlorite was 

measured with the microprobe and it was noted that chlorite occurring as inclusions in 

garnet had a higher Fe content than chlorite in the matrix which looked texturally late 

(Table 2). Chlorite composition predicted at core P-T conditions contains 3.3 mol FeO 

per formula unit and 1.7 mol MgO per formula unit, while that predicted at both rim 

compositions contains about 1.7 mol FeO and 3.3 mol MgO. Interestingly, magnesium-

in-amphibole (MgO = 2.3 mol per formula unit), as measured on the microprobe (Table 

2) and then plotted as an isopleth on each pseudosection, comes close to the location in P-

T space of the rim but intersects best with the 86% garnet growth P-T location (Fig. 15). 

A silica-in-mica isopleth (SiO2 = 3.3 mol per formula unit) plotted on each pseudosection 

also intersects the 86% garnet growth P-T location best (Fig 15). In fact, mica loses 

stability at higher pressure such that no mica and only biotite is predicted for the rim 

composition. No biotite is observed in hand sample. Mica and/or biotite are both 

predicted and observed to be very minor volumetric contributors to the rock so it is 

possible that minor biotite was optically overlooked. Or, as some have suggested, it is 

possible that the biotite model over-predicts the stability of biotite in these high pressure 

conditions (M. Caddick, personal communication, 26 June 2016.) and that the stability 

field of mica should be slightly larger which might make it stable at the rim conditions. 

This, however, is pure speculation. Overall, Mg in amphibole and Fe and Mg in chlorite 

support the location in P-T space of garnet rim growth. 

Predicted mineralogy at 90% of garnet growth for sample 14BSY-37A is 79.5 

volume percent clinopyroxene, 12.7% garnet, 3.3% lawsonite, 3.2 % dolomite, 1.0% 

mica, 0.2 % rutile and 0.1% amphibole (Table 7). This cannot be directly compared to the 
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mineralogy observed in thin section and hand sample because obviously that is at best the 

mineralogy at the cessation of garnet growth and at worst represents the changes in 

mineralogy after garnet growth. There are differences between the observed and 

predicted mineralogy in the lawsonite (3.3 predicted, 0 observed) and epidote (0 

predicted, 7 observed). Also the amphibole (0.1 predicted, 7.0 observed) and omphacite 

(79.5 predicted, 65.0 observed). That the hand sample does not contain any lawsonite 

means that the sample must have become hotter before exhumation and crossed the 

lawsonite-out line (Fig. 17). The pseudosection predicts that lawsonite is converted to 

zoisite at some points across this line. The epidote in the sample today could be the 

remaining evidence of this transition. Amphibole is texturally late, occurring as large 

needles, so the 7 volume % observed in the sample today could be the result of late 

breakdown of omphacite to amphibole upon rehydration. The Mg in amphibole (1.8 mol 

MgO per formula unit) isopleth does not intersect either the core or rim P-T location, but 

does exist at lower P-T in the matrix composition (Fig. 17). The models were run with 

different amounts of carbon dioxide in the fluid; 0.05 mol % for the core and 0.1 mol % 

for the rim. The amount of carbon dioxide in each model run was determined empirically 

by trying several concentrations and using the one that best reproduced garnet isopleths 

and modal mineralogy. That carbon dioxide concentrations in fluid are predicted to 

change during garnet growth is interesting and suggests a potential explanation for a 

feature of the garnet major element zonation. There is a distinct resorption texture at 

about 50 volume percent across the garnet. This area of garnet resorption could have been 

caused by a temporary period of increased carbon dioxide concentration in fluid. Models 

of this sample show that when carbon dioxide concentrations are high, the onset of garnet 
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stability is pushed to hotter temperatures as Mn carbonate is stabilized over a greater P-T 

space (Fig. 5). The garnet-in line from a model run at 1 % carbon dioxide is traced on the 

matrix pseudosection (Fig. 17). Potentially, garnet growth initiated at 0.05 percent carbon 

dioxide in the fluid, garnet breakdown occurred when the system was temporarily 

infiltrated by fluid with a higher carbon dioxide concentration, and then garnet growth 

resumed as carbon dioxide concentration in the fluid subsided, not far in P-T space from 

where it had started. Fluid composition could vary locally but as a point of reference, 

Schumacher et al (2008) determined that CO2 in fluid in equilibrium with glaucophane-

bearing marbles did not reach above 3% which is greater than the 1% CO2 in fluid needed 

to push garnet growth to higher temperatures.  

Predicted mineralogy at 75% of garnet growth for sample 14BSY-35D is 35.1 

volume % mica, 9.7% garnet, 9.5% amphibole, 9.7% lawsonite, and 5.1% quartz (Table 

7). Two immiscible clinopyroxenes are predicted at the rim location: 26.2 volume % of a 

more omphacitic (higher relative Ca and Mg) composition and 4.6 % of a more aegiritic 

version (higher relative Fe3+ and Na). It is difficult to compare the predicted mineralogy 

to the mineralogy in the sample today because the predicted mineralogy is for only 75% 

of garnet growth. The most striking differences between the predicted and observed 

mineralogy is the amount of clinopyroxene (54.0 % observed, 30.8 % predicted), the 

amount of amphibole (1.0 % observed, 9.7% predicted) and the amount of lawsonite (0.0 

% observed, 9.7% predicted). Amphibole and clinopyroxene volume percent isopleths are 

very tightly spaced at this point in P-T space; a relatively minor increase in temperature 

quickly decreases the amount of amphibole and increases the amount of omphacite. The 

lack of lawsonite observed in the rock means that the sample must have crossed the 
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lawsonite-out line by increasing temperature or decreasing pressure (Fig. 16). The matrix 

pseudosection shows that when this occurs the assemblage becomes largely what is seen 

in the rock today; mica + garnet + clinopyroxene + quartz. The Si in mica isopleth (3.44 

moles SiO per formula unit) intersects well with the core P-T conditions (Fig. 16). 

14BSY-38A was unable to be modeled successfully with the method applied to 

the other samples. The rock shows extensive evidence for open system behavior. First, 

the inverse Mn zonation in garnet occurs as steps, as if new Mn was introduced to the 

system in pulses (Fig. 7). Second, concentration ratios of K/Ti and Na/Ti increase from 

core to rim; that these mobile elements increase relative to Ti is suggestive of external 

fluid added to the system (Fig. 14). The physical setting of the sample as a small boudin, 

about ~ 30 cm by ~10 cm in a much larger volume of quartz mica glaucophane schist 

(Fig. 18) presents a conundrum. On one hand, the small boudin is surrounded by calcite 

mineralization suggesting the lithologic contact between the eclogite boudin and the 

schist provide a conduit for large-scale fluid flow similar to what is described by 

Breeding et al. (2003). On the other hand, the boudin preserved its mineralogy distinct 

from the surrounding rock and appears to lack a diffusive boundary, suggesting that 

whatever fluid flow it experienced didn’t alter its composition very much or allow 

chemical communication with the surrounding rock. 

One thing we can assert is that neither the rim nor the core garnet isopleths are 

present in the modeled P-T space, despite the overall mineral assemblage (mica-calcite- 

garnet-clinopyroxene-titanite) being generally reproduced, with the exception of minor 

amounts of epidote and feldspar which are presumed to be late (Fig. 18). One problem 

seems to be that if the bulk XRF composition is used, the model simply will not grow 
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garnet with the low mole fraction spessartine seen in the core of the garnets (Fig. 7). This 

alone suggests that Mn has been added to the system. A second problem is that the model 

drastically over-predicts the mole fraction grossular at the expense of the mole fraction 

almandine. Attempts to systematically remove MnO, CaO, and both together from the 

whole rock to try to re-create the composition of the system at core growth are similarly 

unsuccessful. It may be that if Ca and Mn were being transported by an external fluid, so 

too were other elements, making it difficult to know which to remove to try to create the 

composition at core growth. Unfortunately, the composition today is unable to model rim 

growth, with or without removing garnet from the bulk composition. This suggests that 

the open system behavior that grew garnet didn’t end when garnet growth ended. As 

removal of CaO and MnO was not successful, the composition of the surrounding quartz 

mica glacucophane schist, sample 14BYS-38B was substituted to model garnet growth. 

This composition gives good garnet rim isopleth intersections and the core isopleths are 

lacking only Mn (which, as previously discussed, is very low) (Fig. 18). A hybrid 

lithology, mixing 14BSY-38B and 14BSY-38A at a 90 to 10 ratio respectively, was 

created to investigate whether there was some kind of slight initial chemical difference 

between the present-day eclogite and surrounding schist. This hybrid lithology shows 

even better core isopleth intersections and the same mix with garnet removed from the 

14BSY-38A composition creates an excellent rim isopleth intersection.  

These models are far from conclusive yet are certainly interesting. The obvious 

field interpretation of the relationship between the eclogite boudin and the surrounding 

schist is that the eclogite represented some kind of initial heterogeneity in the protolith 

which generated a mineralogical and then rheological difference between the two rocks. 



 51 

An alternative idea suggested by this modeling is that both the boudin and the 

surrounding schist reached HP-LT conditions with very little chemical differences. Then, 

as garnet started to grow in a very Mn and Ca-poor rock, external fluid entered the 

system and was channelized along the future eclogite, maybe because of difference in 

porosity. This pulse of fluid spurred garnet and omphacite growth and as these minerals 

grew in the presence of an exotic fluid they took elements from this fluid. Even after the 

fluid left the system, the rock left behind had a different composition from the 

surrounding rock that had formerly been its chemical twin. This system may have 

initially had a diffusional contact but once the chemical difference had been established a 

rheological difference now existed. Subsequent deformation meant that the eclogitized 

region was stretched and sheared and eventually boudinaged such that the original 

contact between it and the surrounding schist was obscured. Channelized fluid flow 

causing local chemical changes is widely documented in subduction zones (Bebout and 

Barton, 1989), (Marschall et al., 2006). Spandler et al. (2011) described eclogite facies 

veins in the Monviso ophiolite 5-10 cm thick and 0.5 to 1 m long with sharp contacts 

with surrounding rock. Of course, these veins were morphologically decidedly veins – 

they had branching structures and cross cut foliation - unlike the boudinaged eclogite 

blob that is 14BSY-38A. If this sample is deemed of further interest, a first step would be 

to date and chemically analyze the small garnets in the surrounding schist to see how the 

age and chemistry compares to those in 14BSY-38B. At the moment, the interpretation 

for this sample is unclear so the P-T conditions of growth will not be discussed alongside 

the three successfully modeled samples.  
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6.4 REGIONAL IMPLICATIONS OF THERMODYNAMIC MODELING 

The three successfully modeled eclogites show fairly similar core to rim P-T paths 

(Fig. 23). This is despite the fact that the three samples record a range in ages of almost 9 

myr, and that eclogite does not generally occur as large continuous units on Syros but is 

instead present as discontinuous blobs in more voluminous schists. It is difficult to use 

the P-T paths calculated in this study to inform the difference between the three locations 

where garnet geochronology was conducted because only two of the locations (Katergaki 

and Kini) have rocks that were modeled. However, sample 06MSY-6E from the Kini 

location shows garnet growth at 50 MPa less pressure and 30 K lower temperature than 

the start of garnet growth in 14BSY-37A from the Katergaki location and 70 MPa less 

pressure and 50 K lower than 14BSY-35D also from Katergaki. Perhaps, in addition to 

different tectonic settings (one within an ultramafic mélange, the other away the mélange 

interface), the three locations modeled yield different ages because the composition of the 

rocks at Kini suggests that they start growing garnet sooner.  

The P-T paths for the three modeled rocks show samples beginning garnet growth 

along a similar P-T path but then achieving different maximum pressure (Fig. 23). 

Unfortunately, because only one sample showed garnet growth along an exhumation 

path, it is not known if the three samples followed similar exhumation paths which would 

have allowed testing of the Trotet et al. (2001b) tectonic model. The P-T path for sample 

14BSY-37A is different from the other two modeled rocks. This sample is from 

Katergaki where 14BSY-35D was also found but 14BSY-35D follows a path that looks 

much more like 06MSY-6E from Kini in that it reaches the same very high pressures 

(around 2.4 GPa). Sample 14BYS-35D, was also the oldest garnet age from Katergaki 
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(48.1 ± 2.3 Ma). The two higher-pressure rocks show older garnet growth ages than the 

lower pressure rock. This suggests that higher-pressure samples were buried earlier and 

stayed at depth longer to be exhumed at the same time as the lower pressure rocks. 

These differences add some nuance to the idea that the Kini and Grizzas regions 

experienced earlier subduction mélange metamorphism while Katergaki experienced 

garnet growth later and slightly removed from the ultramafic mélange. The eclogites 

modeled from Katergaki were both found as float. The in-place sample that was unable to 

be modeled was found as a small boudin. It seems like these small eclogite pods or 

boudins at Katergaki record different P-T histories from one another yet ended up 

entrained in the same unit, perhaps late in the exhumation process. A P-T path for sample 

14BSY-38A, which is from Katergaki, was found in outcrop, and has a young age, would 

allow more clarity on this situation but, unfortunately, that sample was unable to be 

modeled.  

The pressure-temperature paths modeled here are all notably deeper but 

comparable in temperature to the garnet growth paths modeled by Dragovic et al. (2012) 

on Sifnos (Fig. 23). In fact, the pressure temperature paths here are markedly higher than 

most other pressure estimates for Syros. The lowest P-T estimates for peak 

metamorphism come from Putlitz et al. (2005) who placed maximum conditions for a 

phengite-bearing eclogite at 1.4 GPa and 550 °C (832 K) based on thermodynamic 

modeling which predicted kyanite above 1.4 GPa when none was observed in their 

sample. Schumacher at al. (2008) placed the maximum pressure and temperature 

experienced by marbles on Syros at 1.6 GPa and 480 °C (753 K) based on the modeled 

stability of aragonite and glaucophane. However, some authors have predicted deeper 
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paths; Trotet et al. (2001b) used TWEEQ (Berman, 1991) to calculate the intersection of 

39 reaction lines for 10 end-members in an eclogite to determine that Syros and Sifnos 

reached the same maximum pressure at 1.9 GPa while Syros was slightly cooler (525 

°C/798 K to Sifnos’ 580 °C/853 K). Schmadicke and Will (2003) calculated the 

maximum pressure and temperature conditions for bluecshists from Sifnos to be 2.0 GPa 

and 550-600 °C (823-873 K) using the  garnet-clinopyroxne thermometer (from Ellis and 

Green 1979), the garnet phengite thermometer (Green and Hellman 1982), and the 

phengite barometer (Massonne and Schreyer 1989). Philippon et al. (2013) modeled 

lawsonite bearing blueschists on Syros and calculated maximum pressure temperature 

conditions of 2.0 GPa and 550 °C (823 K). Okrush and Bröcker (1990) placed a 

maximum of 2.0 GPa on eclogites from Syros and Sifnos based on the location of the 

kyanite-in line. The P-T paths calculated for this study are significantly deeper than any 

of these previous estimates. The only calculations that align with these data are those of 

Holley et al., (2004) and Gitahi (2004) who used the geothermobarometer of Ravna and 

Terry (2004) on eclogite facies knockers from Syros, obtaining conditions of 1.9-2.4 GPa 

and 500-580 °C (773-853 K). It is entirely possible that the pressures calculated in this 

study are erroneous for one reason or another but the fact that most previous studies 

finding lower pressures have not focused exclusively on eclogites, and that early work on 

the Ravna and Terry geothermobarometer seems to support these pressures for at least 

mafic and ultramafic knockers, is encouraging. Alternative thermobarometers such as the 

REE-in-garnet-clinopyroxene method developed by Sun and Liang (2015) could prove 

useful in resolving the pressure-temperature path discrepancies.  
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Schumacher at al. (2008) suggests a tectonic interpretation to reconcile the 

different pressure temperature predictions for mafic and ultramafic rocks from Holley et 

al. (2004) and Gitahi (2004) as compared to lower pressures calculated for marbles. They 

reason that all rocks on Syros from the marble and schist units to the ultramafic mélange 

experienced the same episode of deformation; thus, for a while their P-T paths had to be 

the same. However, they suggest that perhaps the mafic and ultramafic rocks were 

metamorphosed earlier and deeper and then got attached to the upper plate and began to 

be exhumed. The marbles and schists, meanwhile, began to be subducted and then got 

scraped off the down-going slab at ~1.5 GPa and caught up with the ultramafic and mafic 

material on its exhumation path. This scenario sets up the testable hypothesis that marbles 

and schists should have younger ages than the mafic and ultramafic material. If the 

tectonic interpretation discussed above is accepted, then this study combined with data 

from Lagos et al. (2007) does in fact see older ages for eclogites from the ultramafic 

mélange and younger ages for eclogites from an area with more marble. However, even 

the young eclogites modeled here (43.6 ± 1.6 Ma) show high pressures. Anything 

younger than ~40 Ma is usually attributed to the greenschist facies overprint (i.e. Bröcker 

et al. 2013).  

All modeled samples released water during garnet growth. Lawsonite is capable 

of holding 2 moles of water per formula unit (~14 weight %) The most striking 

observation from the water loss predictions is how much more water was able to be held 

and then lost during garnet growth in sample 06MSY-6E than in either of the other two 

successfully-modeled samples (Table 6). 14BSY-37A and 14BSY-35D could have 

continued to release water during garnet growth that is not recorded here because neither 
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was modeled to the completion of garnet growth. The amount of water each would have 

lost would depend strongly on the exhumation path taken; sample 06MSY-6E loses so 

much water in part because it continues to heat upon decompression and so crosses the 

lawsonite-out line However, 06MSY-6E held more water initially than either of the other 

two samples. Water loss during garnet growth for 14BSY-35D from the core to the 75 

volume percent garnet modeled rim is represented in the following net reaction 

normalized to one mole of garnet: 

 

4.51 clinopyroxene + 0.80 amphibole + 1.21 

lawsonite + = 1.00 garnet + 6.67 

clinopyroxene + 1.99 quartz + 3.17 water 

 

Water loss during 90 volume percent garnet growth for 14BSY-37A is similarly 

expressed:  

 

0.19 chlorite + 0.05 amphibole + 1.06 

clinopyroxene + 0.42 lawsonite = 1.00 

garnet + 1.44 dolomite + 1.64 water 

 

While water in 14BSY-35D and 14BSY-37A was bound dominantly in lawsonite, 

06MSY-6E held water in lawsonite and also in chlorite. Below is the net reaction for 

water loss during garnet growth normalized to one mole of garnet:  
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0.48 chlorite  + 0.61 lawsonite + 0.26 

clinopyroxene = 1.00 garnet + 0.12 

amphibole  +3.03 water 

 

Chlorite stability in 06MSY-6E is assumed to be enhanced by the very high iron content 

of the sample (~22 weight % Fetot as measured by XRF, see Table 1). Chlorite has been 

recognized as an important phase for carrying water in subduction zones in ultramafic 

rocks (VanKecken et al., 2011). Water release from all the samples modeled here was 

greater than modeling results for a blueschist and a quartz mica schist from Sifnos. The 

difference between 14BSY-37A and 14BSY-35D and the Sifnos samples lies not in the 

ability of the rock to hold water, but in the amount of water released during garnet 

growth. The eclogite samples modeled here came closer to the lawsonite-out line in P-T 

space and thus lost more water from lawsonite breakdown. A combination of P-T path 

and chemical composition determines how much water is released during garnet growth.  
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7.0  CONCLUSIONS 

 This study proves that dating eclogites with 147Sm/144Nd garnet geochronology is 

not only possible but capable of providing high precision ages (± 1.0 Ma). 

However, additional work is needed to determine why certain samples cannot be 

sufficiently cleaned of inclusions for optimal 147Sm/144Nd garnet geochronology. 

Such research would aid in identification of promising samples for future work.  

 Successfully dated garnets show, on average, younger ages than previously 

published garnet ages (using 176Lu/176Hf) on the island, suggesting that HP-LT 

metamorphism event in Syros lasted at least 8.6 ± 1.6 million years.  

 147Sm/144Nd garnet ages from eclogites do not all overlap within error meaning 

that discrete packages of rock were metamorphosed to eclogite facies at different 

times. 

 Successfully modeled eclogite samples showed similar garnet growth P-T paths to 

one another, despite differing mineralogy, bulk chemistry, garnet chemistry, 

sample location, and garnet growth ages. This suggests that the subduction 

geotherm was well established for the duration of metamorphism.  

 Peak pressures vary between samples, with the higher pressure samples showing 

older ages. Samples which reached higher pressure may have reached those 
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pressures earlier and then stayed at depth longer to be later exhumed with the 

younger, lower pressure rocks.  

 Using nearly identical modeling techniques, the P-T paths for Syros are at a 

higher pressure than those reported on Sifnos. They are at a higher pressure by at 

least 500 MPa than any other estimate for rocks from Sifnos with the exception of 

studies using a garnet-clinopyroxene geothermobarometer. Further work is 

needed to investigate the differences between pressures determined in this study 

and the more widely accepted values.  

 Similar P-T paths for garnet growth do not mean that modeled samples held or 

released similar amounts of structurally bound water during garnet growth. In 

contrast, water released by samples during garnet growth varies dramatically from 

5.13 to 1.09 weight percent. This study suggests that the carrying capacity of 

water in ultramafic samples is higher than mafic samples due to greater chlorite 

stability.  
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8.0  TABLES 

Table 1 Oxide weight percent data from XRF 
 

 
 
Next page: 
Table 2 Microprobe analyses for all samples in oxide weight percent. 
 
 If a mineral is not listed here but is reported in the text and in Figure 2, that is because no microprobe data 
was obtained for that mineral in that particular rock. Garnet oxide weight percent reported here is a 
volumetric average of microprobe spot analyses from rim to rim across up to two garnet crystals. The 
number of analyses included in a garnet average range from 42– 246 individual microprobe analyses, 
depending on the size of the garnet. An asterisk (*) after a mineral name indicates that the reported oxide 
weight percent data is from a single analysis. All other reported data (except garnet) is an average of from 2 
to 15 microprobe spot analyses. Details of microprobe parameters in text.  (mtx) = mineral in the matrix; 
(in gt) = mineral analyzed was an inclusion in garnet 
 
 
 
 

sample 06MSY-6E 14RSY-8A 14BSY-35D 14BSY-37A 14BSY-38A 14BSY-38B

SiO2 41.56 45.22 52.93 51.28 53.10 77.27

TiO2 3.44 0.84 1.02 0.29 0.56 0.19

Al2O3 15.73 14.72 19.03 13.13 13.16 11.92

MnO 0.36 0.11 0.14 0.30 0.19 0.08

MgO 4.73 4.82 3.48 5.09 5.58 0.53

CaO 7.66 13.33 5.94 12.28 11.85 2.38

Na2O 3.17 3.96 3.75 5.61 6.77 4.74

K2O 0.05 2.45 3.72 0.10 1.22 0.40

P2O5 0.04 0.77 0.42 0.05 0.03 0.01

Fe2O3 tot. 22.12 8.10 9.07 11.46 7.20 2.58

Fe2O3 from titration 10.22 3.04 2.56 5.96 no data no data

FeO if max Fe2O3 10.71 4.55 5.86 4.95 no data no data

max Fe2O3/Fetot 0.46 0.38 0.28 0.52 no data no data

LOI 1.49 6.37 2.60 0.89 2.18 0.49

total (without LOI) 98.86 94.32 99.50 99.59 99.66 100.10
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Table 2 Microprobe analyses for all samples in oxide weight percent. 

 
  

06MSY-6E SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O Total

garnet 37.13 0.12 21.57 2.56 8.19 0.36 29.31 0.00 0.04 0.00 99.27

mica* 51.70 0.25 29.26 3.28 0.03 0.04 3.59 0.00 0.26 10.50 98.91

omphacite 54.83 0.06 9.63 7.58 12.12 0.02 6.42 0.16 7.17 0.01 97.99

amphibole 55.59 0.04 10.26 10.75 1.52 0.05 9.86 0.00 6.64 0.04 94.75

epidote 38.01 0.09 24.69 0.00 23.54 0.34 0.00 12.99 0.02 0.01 99.68

chlorite (mtx) 25.04 0.03 19.48 12.68 0.03 0.38 24.90 0.90 0.05 0.00 83.48

chlorite (in gt) 22.81 0.04 20.01 3.39 0.06 1.31 41.95 0.00 0.03 0.00 89.60

rutile 0.02 92.24 0.00 0.00 0.09 0.01 0.62 0.05 0.03 0.01 93.07

14RSY-8A SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O Total

garnet 39.25 0.06 21.81 2.09 10.51 0.73 28.28 0.00 0.05 0.01 102.80

mica 50.59 0.23 26.58 3.75 0.03 0.01 2.40 0.00 0.47 10.58 94.64

omphacite 56.58 0.04 11.53 6.62 12.23 0.03 5.50 1.17 7.48 0.02 101.20

amphibole (mtx) 58.03 0.00 12.22 9.79 0.77 0.03 10.61 0.00 6.99 0.03 98.48

amphibole (in gt) 56.28 0.04 11.50 6.63 0.80 0.13 16.91 0.00 6.79 0.02 99.09

epidote 38.88 0.12 28.21 0.04 23.75 0.04 0.00 7.74 0.00 0.00 98.79

titanite 31.08 35.32 3.52 0.02 29.25 0.02 0.38 0.00 0.06 0.01 99.67

calcite in vein 0.04 0.01 0.02 0.67 64.79 0.03 0.14 0.00 0.04 0.02 65.77

14BSY-35D SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O Total

garnet 36.72 0.08 21.28 1.58 8.81 0.74 29.95 0.00 0.03 0.01 99.21

mica 52.16 0.23 27.18 2.80 0.01 0.01 2.70 0.00 0.47 10.87 96.43

omphacite 56.48 0.05 12.49 5.24 10.08 0.07 4.27 4.00 9.14 0.01 101.83

amphibole 58.68 0.01 11.47 9.15 0.28 0.07 11.54 0.56 7.19 0.01 98.96

epidote 37.77 0.08 26.51 0.00 23.52 0.13 0.00 9.83 0.01 0.01 97.86

titanite 31.14 36.64 2.50 0.00 28.71 0.03 0.34 0.00 0.05 0.11 99.53

quartz 98.32 0.01 0.00 0.00 0.01 0.00 0.09 0.00 0.01 0.00 98.45

14BSY-37A SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O Total

garnet 37.46 0.08 21.18 1.72 9.72 1.69 28.09 0.00 0.03 0.02 99.98

omphacite 1 55.99 0.06 9.85 5.17 11.67 0.11 7.75 4.06 7.55 0.01 102.22

omphacite 2 57.06 0.04 11.49 7.17 12.32 0.02 5.20 1.35 7.51 0.00 102.15

omphacite (in gt) 56.79 0.04 10.10 6.37 12.57 0.00 5.51 3.59 7.53 0.01 102.51

amphibole 59.08 0.01 11.24 8.83 0.34 0.02 12.83 0.61 7.07 0.00 100.03

epidote 39.53 0.08 28.15 0.02 24.23 0.04 0.00 8.96 0.02 0.00 101.04

quartz 99.63 0.00 0.02 0.00 0.04 0.00 0.28 0.00 0.01 0.01 100.00

14BSY-38A SiO2 TiO2 Al2O3 MgO CaO MnO FeO Fe2O3 Na2O K2O Total

garnet 38.20 0.05 22.16 1.64 11.89 4.01 23.68 0.58 0.03 0.01 102.26

mica 54.23 0.22 28.61 3.71 0.04 0.02 0.00 2.48 0.52 10.66 100.50

omphacite 57.69 0.07 10.86 6.32 11.74 0.09 4.70 3.54 7.97 0.00 102.97

feldspar 50.08 0.03 41.60 0.22 0.20 0.02 0.43 0.00 7.07 0.94 100.58

epidote* 39.03 0.11 25.26 0.00 23.38 0.46 0.00 12.37 0.00 0.02 100.63

titanite 31.53 36.82 2.53 0.00 29.01 0.03 0.25 0.00 0.02 0.00 100.19

carbonate 0.03 0.01 0.04 0.00 57.06 0.00 0.09 0.00 0.00 0.03 57.27
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Table 3: Isotope data from TIMS analysis  
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Table 3 cont. 
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Table 4: Garnet ages 
Sample          isochron components Age (Ma) 2σ uncertainty  MSWD 
06MSY-6E  1 wr+ 8 gts + 1 leacheate 57.7 6.3 1.9 

14RSY-8A  2 wr+ 4 gts 48.8 3.2 0.67 

14BSY-35D  1 wr + 3 gts 48.1 2.3 2.4 

14BSY-37A  1 wr + 5 gts 43.6 1.6 2 

14BSY-38A 1 wr + 5 gts 44.7 1 1.4 

14BSY-35D core 1 wr + 1 pwd + 1 gt 66 15 1.4 

14BSY-35D rim 1 mtx + 1 pwd + 2 gts 47.1 3 1.4 
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Table 5: Compositions used for thermodynamic modeling 
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Table 6: Water loss during garnet growth 

sample   

volume 
percent 
garnet 

weight 
percent 
water  

volume 
percent 
garnet 
adjusted 

weight 
percent 
water 
adjusted 

core to 
rim 
water 
loss* 

LOI 
from 
XRF 

06MSY-6E core 4.67 5.50 0.00 5.84 
  

middle 17.50 1.46 34.00 1.13 
  

rim 9.35 1.14 40.00 0.71 5.13 1.49 

14BSY-35D core 2.11 3.81 0.00 3.92 
  

rim’ 2.43 2.98 10.00 1.32 2.60 2.60 

14BSY-37A core 5.52 1.37 0.00 1.47 
  

rim’ 0.23 0.45 13.50 0.38 1.09 0.89 

*water loss core to modeled rim which for 14BSY-35D is 75% of garnet growth and for 
14BSY-37A is 90% of garnet growth 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 68 

 
 
Table 7 Comparison of modal mineralogy observed in samples to that predicted by 
modeling  

    

vol % 
observed 
in hand 
sample 

vol % 
predicted 
by 
modeling 

0
6

M
SY

-6
E 

Chl 6.3 2.3 

Ilm 0.0 0.0 

Bio 0.0 0.5 

Mica 0.1 0.0 

Gt 40.0 45.6 

Amph 17.0 21.5 

Cpx 29.3 27.0 

ru 6.0 3.0 

1
4

B
SY

-3
5

D
 

Mica 30.0 35.1 

Gt 10.0 9.7 

Amph 1.0 9.5 

Cpx 
54.0 

4.6 

Cpx 26.2 

law 0.0 9.7 

q 1.0 5.1 

ru 1.0 0.0 

Chl 1.0 0.0 

ep 1.0 0.0 

1
4

B
SY

-3
7

A
 

Mica 0.0 1.0 

Do 0.5 3.2 

Gt 15.0 12.7 

Amph 7.0 0.1 

Cpx 65.0 79.5 

law 0.0 3.3 

ru 0.5 0.2 

ep 7.0 0.0 
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9.0  FIGURES 
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Figure 1 | Simplified geologic map of Syros Island in the Cyclades modified from Keiter et al. (2011). 
Sample locations for this study are shown with yellow and red circles. The locations of eclogite samples 
from Lagos et al. (2007) are shown with yellow stars. All samples are from the Cycladic Blueschist Unit. 
Syros Island is circled and labeled in the inset map, as is Sifnos Island. All samples in this study come from 
Syros but studies carried out on Sifnos are referenced in the text and the tectonic and metamorphic history 
of the two islands is often compared.  
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Figure 2 | A) Example of sample preparation for microdrilling for sample 14BSY-35D. 1) Front and back 
of 0.5 mm slice cut from whole rock. 2) Front of slice after drilling. Drill trenches around cores and rims 
are visible. 3) Cores after removal from drill setup. 4) Rims after removal from drill setup. Rims were 
drilled so that a layer of matrix was left around the edge of the garnet. 12 slices were cut, 39 garnets were 
microdrilled. 
B) Photomicrograph of sample 14BSY-35D in crossed polarized light. Insets 1, 2, and 3 are maps of Mn 
concentration in garnet from an scanning electron microscope. Inset 4 is a MnO weight percent transect 
across a garnet from rim to rim from the microprobe. Inset 5 is a map of Mn concentration in garnet from 
the microprobe. The maps are qualitative but demonstrate that every garnet measured shows the same 
chemical pattern: high Mn in the core, which falls towards the rim and then increases again in what is 
interpreted as a resorption feature.  
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Figure 3 | Rim to rim garnet transect for sample 06MSY-6E. Garnet composition is calculated on the basis 
of 12 oxygen atoms from microprobe measured oxide weight %. The mole fraction of garnet end members 
at the core and rims are listed. These values are used to calculate isopleths, during thermodynamic 
modeling, to determine P-T conditions of core and rim growth. Gray area at left edge of graph is expanded 
to the right. What is labelled as Rim2 is visible in this expansion.  
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Figure 4 | Rim to rim garnet transect for sample 14RSY-8A. Core and rim values are not displayed as this 
sample was not used for thermodynamic modeling.  
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Figure 5 | Rim to rim garnet transect for sample 14BSY-35D. Manganese map of a different garnet from 
the same sample is shown to the right. The mole fraction of garnet end members at the core and rims are 
listed. Rim’ is the point chosen to be just inside the resorption rim. Core and Rim’ were used for 
thermodynamic modeling while the rim was not. 
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Figure 6 | Rim to rim garnet transect for sample 14BSY-37A. Manganese map of a different garnet from 
the same sample is shown to the right. The mole fraction of garnet end members at the core and rims are 
listed. The true rim was unable to be modelled, therefore Rim’ values were utilized instead. Core and Rim’ 
were used for thermodynamic modeling while the rim was not. 
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Figure 7| Rim to rim garnet transect for sample 14BSY-38A. Manganese map of a different garnet from the 
same sample is shown to the right. The mole fraction of garnet end members at the core and rim are listed. 
Note the unusual inverse manganese zonation and how zonation appears stepped rather than continuous. 
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Figure 8| Pseudosections for 14BSY-37A whole rock composition. Axes are the same for each 
pseudosection and are labeled on the bottom-right pseudosection. Temperature for each plot varies from 
673 K to 923 K and pressure varies from 10 to 25 kbar. Fe2O3/Fetot ratio is 0 for the bottom three 
pseudosections, 0.20 for the middle (horizontal row) three pseudosections, and 0.40 for the uppermost three 
pseudosections. Carbonate in fluid is 0 for the left-most three pseudosections, 0.1 mole percent for the 
center (vertical column) three pseudosections, and 5 mole percent for the right-most three pseudosections.  
Red, yellow, blue, and green lines are garnet core compositional isopleths. The three pseudosections with 
the highest carbonate in the fluid are missing isopleths because they did not occur in this P-T space. The 
upper-right pseudosection is missing a grossular isopleth because predicted grossular content was 
everywhere higher than 0.261 mol fraction. The middle-right pseudosection is missing a grossular isopleth 
for the same reason and is also lacking a pyrope isopleth because predicted pyrope content was everywhere 
higher than 0.021. The lower-right pseudosection is missing a spessartine isopleth because predicted 
spessartine content was everywhere lower than 0.136. Dashed lines are lawsonite out (white dash), 
carbonate phases out (purple dash) and garnet in (orange dash). Note that almandine isopleth moves 
towards higher pressures as ferric iron increases. Note that the garnet-in line moves towards higher 
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temperatures as carbonate in the fluid increases. The parameters which were determined to be best for this 
sample are Fe2O3/Fetot= 0.09 and CO2 in fluid = 0.05 mole percent and are shown in Figure 17.  
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Figure 9 | Field photographs, sample photographs, and modal mineralogy for five eclogite samples in this 
study. Sample 14BSY-35D was found as float and field photograph shown here is of the general sample 
location. Sample 14BSY-37A was found as float and field photograph shows size of float as it was found. 
All samples are dominantly made of omphacite and garnet. Most samples include white mica. 
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Figure 10 | Representative photo micrographs for the four modeled samples. Width of each image is 3.5 
mm  A) Sample 06MSY-6E. Note chlorite, garnet, and large clots of rutile. B) Sample 14BSY-35D. 
Glaucophane porphyrblasts in fine grained omphacite and mica matrix. C) Sample 14BSY-37A. Garnet in 
omphacite matrix with late glaucophane needles. Inclusions are dominated by quartz. D) Sample 14BSY-
38A. Garnet in omphacite and mica matrix 
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Figure 11 | Isochrons for five eclogites from Syros, Greece. All error bars are 2-sigma. All points not 
labeled are garnet measurements.  
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Figure 12 | Isochrons for core and rim ages for sample 14BSY-35D.  
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Figure 13 | Photo micrographs with laser ablation spots are shown at left. Concentration of Sm, Nd, and Lu 
are plotted across garnets from core to rim. Note that lutetium is plotted on a secondary y-axis (blue). 
Graphs at right show Nd and Sm concentrations for garnet separates as measured with the TIMS, plotted as 
squares. Dashed purple and green lines represent the lowest Nd and Sm concentrations measured with LA-
ICPMS. Solid purple and green lines represent the volumetric average of Nd and Sm measured with LA-
ICPMS. 
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Figure 14 | Sm, Nd, and  Lu concentrations measured with LA-ICPMS for sample 14BSY-38A are plotted 
from core to rim across the garnet. The ratio of Na concentration to Ti concentration and ratio of K 
concentration to Ti concentration are also plotted. Mn profile measured on the same garnet crystal is plotted 
without scale to show comparison of location in garnet of Mn increases.  
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Figure 15 | Pseudosections for sample 06MSY-6E in the system SiO2-TiO2-Al2O3-Fe2O3-FeO-MgO-CaO-
MnO-K2O-Na2O-H2O-CO2. Garnet end member mole fraction isopleths are plotted. Lawsonite out line is 
shown as dashed white line. Silica in white mica (purple) and magnesium in amphibole (orange) are also 
plotted. Hexagon icons are placed at core and rim P-T conditions as determined by isopleth intersections. 
Second row of diagrams shows weight % water held in rock. Note this weight % does not represent the 
adjusted value calculated in the text. Third row shows garnet volume %. Pseudosections with fully labeled 
fields are given in Appendix E. Amph=amphibole; arag=aragonite; Bio=biotite; Chl=chlorite; 
Cpx=clinopyroxene; Do=dolomite; Ep=epidote; Gt=garnet; Ilm=ilmenite; law=lawsonite; Mag=magnesite; 
Mica=whit mica; q=quartz; ru=rutile; sph=sphene; stlp=stilpnomelene; vsv=vesuvianite; zo=zoisite. 
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Figure 16 | Pseudosections for sample 14BSY-35D in the system SiO2-TiO2-Al2O3-Fe2O3-FeO-MgO-CaO-
MnO-K2O-Na2O-H2O-CO2. Garnet end member mole fraction isopleths are plotted. Lawsonite out line is 
shown as dashed white line. Silica in white mica (purple) is plotted. Hexagon icons are placed at core and 
rim P-T conditions as determined by isopleth intersections. Second row of diagrams shows weight % water 
held in rock. Note this weight % does not represent the adjusted value calculated in the text. Third row 
shows garnet volume %. Amph=amphibole; arag=aragonite; Bio=biotite; Chl=chlorite; 
Cpx=clinopyroxene; Do=dolomite; Ep=epidote; Gt=garnet; Ilm=ilmenite; law=lawsonite; Mag=magnesite; 
Mica=whit mica; q=quartz; ru=rutile; sph=sphene; stlp=stilpnomelene; vsv=vesuvianite; zo=zoisite.  
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Figure 17 | Pseudosections for sample 14BSY-37A in the system SiO2-TiO2-Al2O3-Fe2O3-FeO-MgO-CaO-
MnO-K2O-Na2O-H2O-CO2. Garnet end member mole fraction isopleths are plotted. Lawsonite out line is 
shown as dashed white line. Magnesium in amphibole (orange) is plotted. Hexagon icons are placed at core 
and rim P-T conditions as determined by isopleth intersections. Second row of diagrams shows weight % 
water held in rock. Note this weight % does not represent the adjusted value calculated in the text. Third 
row shows garnet volume %. Pseudosections with fully labeled fields are given in Appendix E. 
Amph=amphibole; arag=aragonite; Bio=biotite; Chl=chlorite; Cpx=clinopyroxene; Do=dolomite; 
Ep=epidote; Gt=garnet; Ilm=ilmenite; law=lawsonite; Mag=magnesite; Mica=whit mica; q=quartz; 
ru=rutile; sph=sphene; stlp=stilpnomelene; vsv=vesuvianite; zo=zoisite. 
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Figure 18| Pseudosections for sample 14BSY-38A, 14BSY-38A and 14BSY-38B hybrids, and 14BSY-38B 
in the system SiO2-TiO2-Al2O3-Fe2O3-FeO-MgO-CaO-MnO-K2O-Na2O-H2O-CO2. Garnet end member 
mole fraction isopleths are plotted. Lawsonite out line is shown as dashed white line. Silica in mica (purple) 
is plotted for 14BSY-38A. Sample photos are shown at right. Only the garnet end member isopleth for 
spessertine at the rim is found in P-T space for 14BSY-38A. For 14BSY-38B, garnet core isopleths are 
plotted as dashed lines. Pseudosections with fully labeled fields are given in Appendix E. 
Amph=amphibole; arag=aragonite; Bio=biotite; Chl=chlorite; Cpx=clinopyroxene; Do=dolomite; 
Ep=epidote; Gt=garnet; Ilm=ilmenite; law=lawsonite; Mag=magnesite; Mica=white mica; q=quartz; 
ru=rutile; sph=sphene; stlp=stilpnomelene; vsv=vesuvianite; zo=zoisite. 



 91 

 

           
Figure19| Top: Isochron for sample 14RSY-8A. Points are labeled with the name of the garnet separate 
(gt1, gt2, etc, which will correspond to Table 3), the amount of time the separate was kept in hydrofluoric 
acid during the partial dissolution, and the percent of the starting sample mass that was lost during the 
partial dissolution. Bottom: Plot of 147Sm/144Nd vs the age given by creating an isochron with the whole 
rock and a single garnet point. Age decreases with “cleaner” (higher 147Sm/144Nd) garnets. 
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Figure20 | Top: Isochron for sample 06MSY-6E. Points are labeled with the name of the garnet separate 
(gt1, gt2, etc), the amount of time the separate was kept in hydrofluoric acid during the partial dissolution, 
and the percent of the starting sample mass that was lost during the partial dissolution. Bottom:  Plot of 
147Sm/144Nd vs the age given by creating an isochron with the whole rock and a single garnet point. Age 
increases with “cleaner” (higher 147Sm/144Nd) garnets.  
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Figure 21 | Garnet ages from Sifnos and Syros islands, spread of ages is similar on both islands. Ages from 
this study contradict conclusions by Lagos et al., (2007) that peak metamorphism on Syros was a single 
short event. Core and rim ages for 14BSY-35D are displayed here despite large error bars for 14BSY-35D 
core. The age is considered unreliable.  



 94 

 



 95 

Figure 22 | All geochronology carried out on Syros island. Only one study had previously looked at the age 
of peak metamorphism using garnet. Core age for 14BSY-35D is not displayed because it is neither 
accurate nor precise.  
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Figure 23 | P-T conditions of garnet core and rim growth determined from thermodynamic modeling are 
plotted as closed (core) and open (rim) hexagon icons. Icons are color coded by sample. The lawsonite-out 
line for each sample is also plotted. Blue lines show water loss during garnet growth. Only sample 06MSY-
6E crosses the lawsonite out line during garnet growth. This sample also holds and releases the most water, 
though this is due largely to chlorite stability rather than lawsonite breakdown. A blueschist sample from 
Sifnos modelled by Dragovic et al. (2012) is shown as a comparison. While the age of garnet growth 
appears to be comparable between the two islands, P-T conditions of eclogites on Syros appear to be deeper 
than what has been modeled on Sifnos.  
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10.0  APPENDICES 
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10.1 APPENDIX A: TIMS STANDARDS AND BLANKS 
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Figure A1: 143Nd/144Nd UCB Ames standards through time. Standards measured by all users in the lab since 
April 2013 (red) give an average of 143Nd/144Nd = 0.5121226 ± 0.0000098 (19.3 ppm, 2RSD, n= 154). 
Standards measured only by the author for the duration of her time working in lab (blue) give an average of 
143Nd/144Nd = 0.5121203 ± 0.0000104 (20.0 ppm, 2 RSD, n=32). Standards measured by the author for the 
duration of this project (green) give an average of 143Nd/144Nd = 0.5121190 ± 0.0000081 (15.7 ppm, 2RSD, 
n = 26).  
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Figure A2: col = column; proced = procedural. Picograms of Nd in blanks through time. MLA column 
blank refers to the blank measured after running just an MLA column. Three-column blank refers to the 
blank measured after running iron columns, tru-spec columns, and MLA columns. WR procedural blank is 
the blank measured after all clean lab steps including dissolution for a whole rock sample. Garnet 
procedural blank is the blank measured after all clean lab steps for a garnet sample, including a partial 
dissolution and a full dissolution. A powder procedural blank is the blank measured after all clean lab steps 
for a garnet powder sample.  The average of 3-column and full procedural blanks for the duration of this 
study is 10.4 picograms of Nd.  
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10.2 APPENDIX B: SLICES OF ROCK SENT FOR XRF 

 
Figure A3: Images of the pieces of rock sent for XRF. No photo exists of sample 14BSY-35D. Top two 
photos have permanent marker for scale. Bottom photo shows a standard piece of paper in landscape 
orientation; the side that is visible is the 11 inch (27.94 cm) side of a piece of paper.   
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10.3 APPENDIX C: PARAMETERS FOR PERPLE_X RUNS 

Example of “my_project” file for 14BSY-37A rims 
hp04ver.dat     thermodynamic data file                                                                                                      
print    | no_print suppresses print output 
plot     | no_plot suppresses plot output 
solution_model.dat     | solution model file, blank = none                                                                                                                                                                                                       
                                                                                                                                                                                                                                                 
perplex_option.dat     | Perple_X option file                                                                                                                                                                                                                    
    5 calculation type: 0 - composition, 1 - Schreinemakers, 3 - Mixed, 4 - gwash, 5 - gridded min, 7 - 1d 
fract, 8 - gwash 9 - 2d fract, 10 - 7 w/file input 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    1 number component transformations 
   15 number of components in the data base 
FE2O3 13 component transformation 
  0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   2.00   0.00   0.00   0.00   0.50 
  0.00   0.00 
    1 component amounts, 0 - molar, 1 weight 
    0 unused place holder, post 06 
    0 unused place holder, post 06 
    0 unused place holder, post 05 
    5 ifug EoS for saturated phase 
    2 gridded minimization dimension (1 or 2) 
    0 special dependencies: 0 - P and T independent, 1 - P(T), 2 - T(P) 
 0.00000      0.00000      0.00000      0.00000      0.00000     Geothermal gradient polynomial coeffs. 
 
begin thermodynamic component list 
SIO2  1  54.127       0.00000      0.00000     weight amount 
TIO2  1  0.342       0.00000      0.00000     weight amount 
AL2O3 1  12.211       0.00000      0.00000     weight amount 
MGO   1  6.020       0.00000      0.00000     weight amount 
CAO   1  13.354       0.00000      0.00000     weight amount 
MNO   1  0.005      0.00000      0.00000     weight amount 
FEO   1  5.731       0.00000      0.00000     weight amount 
FE2O3 1  1.126       0.00000      0.00000     weight amount 
NA2O  1  6.965       0.00000      0.00000     weight amount 
K2O   1  0.120        0.00000      0.00000     weight amount 
end thermodynamic component list 
 
begin saturated component list 
end saturated component list 
 
begin saturated phase component list 
H2O   
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CO2     
end saturated phase component list 
 
begin independent potential/fugacity/activity list 
end independent potential list 
 
begin excluded phase list 
h2oL     
ts       
parg     
gl       
oilm     
dilm     
end excluded phase list 
 
begin solution phase list 
Omph(GHP2)  
cAmph(DP2)  
IlGkPy    
Ep(HP)   
Mica(CHA)  
Gt(WPPH)  
feldspar   
Chl(HP)   
Sp(WPC)  
Bio(HP)    
Ctd(HP)   
M(HP)   
oCcM(HP)   
end solution phase list 
 
 26000.      923.00     0.00100000  0.0000      0.0000     max p, t, xco2, u1, u2 
 12000.      673.00     0.00100000  0.0000      0.0000     min p, t, xco2, u1, u2 
 0.0000      0.0000     0.00000000  0.0000      0.0000     unused place holder post 06 
 
 2  1  3  4  5   indices of 1st & 2nd independent & sectioning variables 

 
Anootated Solution Models:  
Omph(GHP2)  diopside-jadeite-hedenbergite-acmite solution Green et al. (2007) model modified by 
Diener and Powell (2011) 
cAmph(DP2)  clinoamphibole  Diener et al. 2008 JMG modified by Diener et al., (2011)  
IlGkPy   Ilmenite, Geikielite, Pyrophanite ideal mixing model, no citation  
Ep(HP)   clinozoisite-Fe-epidote solution Holland & Powell (1998) 
Mica(CHA) white mica (Ca-Na) no Tschermaks sub allowed Coggon & Holland(2002), Auzanneau et 

al. (2010) 
Gt(WPPH)  margules Ca-Fe2+-Mg-Al-Fe3+ White et al. (2005)  
feldspar   ternary margules or ideal Fuhrman & Lindsley (1988)  
Chl(HP)   Chlorite Holland et al. (1998) 
Sp(WPC)  Spinel ideal or margules White et al. (2002) 
Bio(HP)   Ti-Fe-Mg-Mn Biotite  margules Powell & Holland (1999)  
Ctd(HP)   Chloritoid White et al. (2000) 
M(HP)   magnesite siderite margules Holland & Powell (1998) 
oCcM(HP)  asymmetric calcite-magnesite-dolomite solution Holland & Powell (2003)  
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Example of ‘PerpleX_Option” file for 14BSY-37A rims 
---------------------------------------------------------------------- 
        | Run-time Perple_X 6.6.8 options: 
        | Comments must be preceeded by the "|" character. 
        | Keywords and values are case sensitive! 
        | For documentation refer to: 
        |         www.perplex.ethz.ch/perplex_options.html 
|---------------------------------------------------------------------- 
1d_path                  40 150 | exploratory and autorefine (grid parameters keyword group) 
approx_alpha               T    | use approximation exp(x)~1+x to evaluate expansivity effect on volume 
Anderson-Gruneisen         F    | Anderson-Gruneisen parameter correction for polythermal Murnaghan 
and Birch-Murnaghan 
auto_refine                aut  | auto, manual, or off (auto_refine keyword group) 
auto_refine_factor_I       2    | refine factor for gridded minimization and phase fractionation 
(auto_refine keyword group) 
auto_refine_factor_II      6    | refine factor for composition and mixed variable diagrams (auto_refine 
keyword group) 
auto_refine_factor_III     2    | refine factor for Schreinemakers diagrams (auto_refine keyword group) 
auto_refine_file           F    | echo auto-refine data to my_project_auto_refine.txt 
bad_number                 NaN  | any number or NaN (not-a-number) 
bounds                     VRH  | [VRH] HS; Voigt-Reuss-Hill or Hashin-Shtrikman, see vrh/hs_averaging 
closed_c_space             T    | T[rue] or F[alse], default is T => closed composition space for gridded 
minimization  
composition_constant       F    | T[rue] or F[alse], default is F; allows constants in composition 
expressions 
composition_phase          mol  | mol or wt; phase compositions in WERAMI output 
composition_system         wt   | mol or wt; system composition in WERAMI mode 2-4 output 
console_messages           on   | on or off 
dependent_potentials       on   | on or off 
efficiency                 3    | 1->5 
explicit_bulk_modulus      T    | T[rue] or F[alse], default is F; T => use explicit function for K if 
available 
fd_expansion_factor        2    | [2], nth order finite difference increment is increased by 
fd_expansion_factor^(n-1) 
final_resolution    1e-2 2.5e-4 | >0, <1, default 1e-3; exploratory and autorefine 
finite_difference_p    1d4 1d-2 | threshold [1d4] and fraction [1d-2] for 1st order finite difference 
increment on pressure 
global_reach_increment      0   | >= 0; overridden by reach_factor specified in solution model file 
grid_levels                1 4  | exploratory and autorefine (grid parameters keyword group) 
hard_limits                off  | on or off; on => use compositional limits specified in solution model 
increment             0.1 0.025 | 0, <1; exploratory and autorefine 
initial_resolution        0.060 | >0, <1, default 1e-2 
interpolation           on   2  | value 1: on or off [on]; value 2, 1->99 [2] 
iteration                  3  4 | value 1: 2->99 [3]; value 2: 1->7 [4] 
linear_model               on   | on or off 
logarithmic_p              F    | T[rue] or F[alse], default is F 
melt_is_fluid              F    | T[rue] or F[alse], default is F 
option_list_files          T    | T[rue] or F[alse], T => echo run-time options to 
my_project_PROGRAM_options.txt 
order_check                on   | on or off, on => compare order-disorder solutions with fully ordered and 
disordered states 
pause_on_error              T   | T[rue] or F[alse], T => wait for user response after errors 
pc_perturbation           5d-3  | perturbation to pseudo-compound compositions, for Schreinemakers 
and Mixed-variable calculations 
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poisson_ratio        on   0.35  | value 1: on, off or all; value 2: 0->0.5; poisson ratio estimates for shear 
moduli 
poisson_test               F    | T[rue] or F[alse], default is F, T => use poisson ratio to check for valid 
results 
proportions               vol   | vol or wt; phase proportions 
pseudocompound_file        F    | echo static pseudocompound compositions to 
my_project_pseudocompound_list.txt 
reach_increment_switch     on   | all, on, off; default is on; all consumes more resources 
reaction_format        minimum  | minimum, full, stoich, S+V, or everything 
reaction_list             off   | on or off 
seismic_output            some  | all, some, none 
short_print                on   | on or off 
site_check                  T   | T[rue] or F[alse], T=> reject solution compositions with negative site 
fractions 
solution_names            abb   | mod[el], abb[reviation], ful[l]  
solvus_tolerance          auto  | auto or 0->1 [0.05] should be > initial_resolution/auto_refine_factor 
solvus_tolerance_II        0.3  | 0->1 [0.25] 
speciation_tolerance       1d-3 | tolerance for order-disorder speciation calculations, >0,<1 [1d-3] 
speciation_max_it          100  | max number of iterations permitted in speciation/order-disorder 
calculations 
species_output              T   | T[rue] or F[alse], T => output phase speciation in MEEMUM/WERAMI 
mode 1 output 
spreadsheet                 T   | T[rue] or F[alse], T => include independent variable values in werami tab 
output files  
stretch_factor            0.016 | >0, <1 
subdivision_override       off  | off, linear, or stretch 
T_melt                     873. | melt solution model endmember temperature (K) cut off 
T_stop                       0. | equilibration temperature (K) cut off 
variance                  1 99  | 1->99; exploratory and autorefine 
vrh/hs_weighting           0.5  | 0->1, weighting factor for the stiff average in VRH/HS averaging (see 
bounds) 
x_nodes               5 10 | exploratory and autorefine (grid parameters keyword group) 
y_nodes               5 10 | exploratory and autorefine (grid parameters keyword group) 
zero_mode                 1e-6  | 0->1 
zero_bulk                 1e-6  | 0->1 
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10.4 APPENDIX E: EXPLORATORY GEOCHRONOLOGY  

 
Seven samples not included in this study were processed during exploratory 
geochronology. Of the seven samples, five were blueschists, one was a quartz-mica 
schist, and one was an eclogite (Table A3). All samples proved to be non-ideal for 
geochronology as evidence by low 147Sm/144Nd after partial dissolution (Table A4).  
 
 
 
Table A1: Samples used in exploratory geochronology  
Sample name Description 
14BSY-2A1 Quartz mica schist with ~2cm garnet heavily retrogressed to 

chlorite 
14BSY-17A Blueschist with garnets, omphacite and lawsonite 

pseudomorphs 
14CSY-20A Pale blue blueschist with small garnets and lawsonite 

pseudomorphs 
14BSY-31B Blueschist with garnet, relict pillow structure 
14BSY-35C2 Eclogite with 1 cm garnet and blueschist needles 
14BSY-67C Blueschist with small garnets and lawsonite pseudomorphs 
Horst Blueschist with large (~5cm) garnet porphyroblast 
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Table A2: Exploratory isotopic data 
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Table A2 cont. 
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Figure A4: Isochrons for exploratory geochronology. Samples 14BSY-17A and  
14BSY-67C are not included. Whole rock (WR) and powder (pwd) points are labeled. 
Unlabeled points are garnet measurements.   
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10.5 APPENDIX D: LABELED PSEUDOSECTIONS 

 
 

 
Figure A5: 06MSU-6E pseudosection for the WR with core intersection 
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Figure A6: 06MSY-6E pseudosection for matrix with 86% garnet isopleths 
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Figure A7: 06MSY-6E pseudosection for matrix with rim isopleths 
 
  



 113 

 
Figure A8:14BSY-37A pseudosection for WR with core isopleths 
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Figure A9: 14BSY-37A pseudosection for matrix with 90% garnet isopleths  
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Figure A10: 14BSY-38A pseudosection for WR with rim isopleths. Only Si in 
mica(purple) and Mg in garnet (green) occur in this P-T-X space.  
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Figure A11: 14BSY-38A and 14BSY-38B combined pseudosection for WR with rim 
isopleths.  
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Figure A12: 14BSY-38A matrix  and 14BSY-38B WR combined pseudosection with 
core isopleths 
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Figure A13 14BSY-38B WR pseudosection with rim isopleths (solid) and core isopleths 
(dashed).  
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10.6 APPENDIX F: MICRO-SAMPLING A SINGLE LARGE GARNET 

 
A quartz-mica schist with large (~4 cm) garnet was sampled from the south of the 

island for zoned geochronology. The sample was taken from a coherent (for a subduction 

mélange) layer about 2 m wide which cropped out over the entire Katergaki peninsula. 

The Katergaki peninsula is mapped by Keiter et al., (2011) as a metabasic unit which is to 

say, this small layer of quartz mica schist was not noted on the map. 14BSY-10A is a 

carbonate bearing mica schist with exceptionally large (~4 cm) garnet porphyroblasts. 

The schist is compositionally banded into quartz-rich and mica-rich layers on the scale of 

several centimeters. Three varieties of carbonate are present; a finer, partially broken-

down calcite, a finer, partially broken-down magnesium carbonate, and a coarser, later 

calcite which has inclusions of mica and quartz. The rock is approximately 45% quartz, 

20% mica, 15% calcite, 5% magnesite, and 15% garnet. Garnet, while strikingly large, is 

characterized by a “spider web” texture meaning that ~50% of the perceived garnet is, in 

fact, quartz. The garnet has minor inclusions of mica, carbonate, and rutile which appear 

to have some slight spiraled appearance. No explanation was determined for why garnets 

in this layer grew so large and with such a distinctive texture.  

Zoned work was carried out on a slice cut from the rock which passed through the 

center of a large garnet. The slice was cut to 2.32 cm thick so as to ensure that a disk cut 

from the center of the garnet would be composed of only core material (Fig. A14). The 

~2 cm slice was polished, carbon coated, and imaged on the SEM at Boston College. A 

backscatter electron map was made of the entire garnet. Individual spot analyses (n= 485) 

were taken with the SEM at points determined by hand by the user to avoid the frequent 
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quartz inclusions. Raw data from the SEM was treated as an element weight percent and 

converted to mole percent. Mole percent calcium in the garnet and mole percent Mn in 

the garnet were plotted on the SEM map using a color scale. Calcium increased towards 

the rims and Mn decreased towards the rim, indicating that this garnet had preserved its 

growth zonation. Core and rim regions were identified by using Mn and Ca 

concentrations as a guide.  The core identified by element mapping was not at the 

geometric center of the garnet, highlighting the utility of this method but also presenting 

yet another strange aspect of this garnet’s growth (Fig A15).  

Cores and rims were drilled using the method in Dragovic (2013). Core and rim 

mass can be found in table A1. So much of the sample was, in fact, quartz, that enormous 

amounts of raw garnet annulus were needed to create enough crushed pure garnet for 

dating that the adjacent slice had to be drilled to supplement the core material from the 

original slice. A core powder and rim powder were reserved during crushing. A matrix 

was created by taking the material on either side of the drilled garnet.  

Preliminary bulk garnet geochronology on the sample was moderately successful, 

giving an age of 44 ± 13 Ma (maximum 147Sm/144Nd = 0.8, n=6, MSWD=3.6) (Table 

A4).  Core and rim garnet geochronology, performed with the same laboratory 

procedures, was a failure. Both the core and rim garnet separate seemed to be not affected 

by the partial dissolution process at all. Their Nd concentrations remained high (4.9 and 

3.7 ppm for the core and rim, respectively), suggesting that the samples were not 

cleansed of inclusions, despite losing 93% (core) and 89% (rim) of their starting mass 

during partial dissolution. The core achieved a 147Sm/144Nd of 0.18 while the rim reached 
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a 147Sm/144Nd of 0.14. Ages calculated from such low isotopic ratios are not valid. The 

reader may reference table A3 and figure A16 for these numbers.  

What went wrong is still very much unresolved. The most obvious difference 

between the way the bulk garnet separates and the microdrilled separates were treated 

was the sample preparation, and not the clean lab dissolutions or columns. The drilled 

garnet slice was first polished with an aluminum suspension and subsequently carbon 

coated. While both the aluminum and carbon should have been removed by sonicating in 

isopropyl alcohol and wiping with a lint-free paper towel, it is possible that small 

amounts of these materials remained on the sample when it was crushed and sieved. Even 

so, it is not clear that these would be contaminants for 147Sm/144Nd work. Might small 

amounts of aluminum or carbon in cracks and crevices not removed by sonicating and 

wiping have protected the garnet from dissolution in hydrofluoric acid (which acts only 

on Si-O bonds); maybe hiding inclusions from the reach of the acid? Possibly, but the 

samples lost a substantial amount of mass in the full dissolution suggesting that 

dissolution was not inhibited. Another difference is the treatment with crystal bond and 

exposure to the drill bit. Could these have contaminated the sample? Crystal bond should 

be entirely removed by an acetone rinse followed by an isopropanol rinse. The glue can 

be seen by the eye and feels tacky to a gloved hand. No crystal bond remained on the 

sample after drilling. Could the drill bit have been contaminated? The volume of the 

drilled sample relative to the area of the sample that the drill bit directly touched makes 

this unlikely. The drill bit was new and used only for this sample. It is diamond-tipped so 

any material from the drill itself should have been separated from the garnet during 

magnetic separation. Might some contamination have occurred in lab? The blank run 



 122 

with this sample was ~13 picograms of Nd, not enough to account for the 40 nanograms 

of Nd in the core separate or the 55 nanograms of Nd in the rim.  

My best guess at this juncture is that maybe this particular drilled garnet was 

somehow different from the bulk separate at a sample level. Maybe when the bulk sample 

was crushed, magnetically-separated, and sieved I was able to take only the garnet that 

had a high magnetic susceptibility whereas when I performed the same procedure on the 

drilled sections I magnetically-separated more carefully due to sample size limitations 

and so went into the partial dissolution with a fundamentally different fraction of the 

garnet than I did in the bulk work. Maybe the most magnetically susceptible portions of 

garnets in this sample lack some particularly worrisome inclusions which have high Nd 

concentrations but low 147Sm/144Nd ratios and are found in the rest of the garnet. 

Monazite fulfills the latter two criteria and monazite was seen in the matrix with 

microprobe analysis. However, because bulk geochronology had not shown any evidence 

for serious monazite contamination, and because it was not noted inside the garnet, no 

special considerations were taken to dissolve phosphate minerals during the partial 

dissolution of the drilled separates beyond the standard nitric acid dissolution. For 

monazite to somehow affect the microdrilled garnet to the extent seen here while barely 

affecting the bulk garnet is asking for fairly special conditions but it is in this author’s 

opinion the most likely scenario of a host of unlikely scenarios.  

Because of its large size, the sample has the potential to reveal the earliest stages 

of garnet growth on Syros. If this sample is deemed to be of interest in future studies, it 

should be re-run with an added step during the partial to dissolve phosphate phases such 

as what was done by Gatewood et al. (2015).  
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Table A3: sample preparation data for 14BSY-10A 

  
before crush after crush 

after 
frantz 

  
all size 

140-
230 

<230 140-230 

10A slice 
1 

core 0.3143 0.1449 0.1362 0.0671 

rim 0.8664 0.3927 
 

0.147 

10A slice 
2 

core 0.4448 0.2339 0.1758 0.1111 

    
total core 0.1782 
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Table A4: Isotope data for 14BSY-10A  
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Figure A14: Sample preparation for microdrilling sample 14BSY-10A. A. Piece of sample 14BSY-10A 
showing large, anhedral garnets and mica and quartz layers. Drilled garnet is actually from a different 
chunk of the same material. B. Slices cut from the large garnet selected for microdrilling in an attempt to 
find the middle of the crystal. Center slice was chosen for microdrilling. C. Photograph of polished garnet 
slice. D. Backscatter electron image of garnet slice. Bright color is garnet, darker inclusions are almost 
entirely quartz. Note “spider web” texture.  
  

A. B. 

C. D. 
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Figure A15: Single large garnet from sample 14BSY-10A as it was microdrilled. A. Moles Ca from spot 
analyses on the SEM overlaid on backscatter image. B. Moles Mn overlaid on backscatter image. C. Black 
lines are drill trench locations chosen based on Mn and Ca chemical data. D. Drill trenches separating core 
from rim and rim from matrix. E. Slice of garnet adjacent to primary slice. This secondary slice was not 
chemically analyzed but a core location was chosen based on the location of the core on the primary slice. 
This second core was drilled to supplement the small amount of garnet recovered from the first core after 
crushing, sieving and magnetic separation. 
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Figure A16: Isochrons for sample 14BSY-10A. Bulk garnet data gives mediocre precision. Core and rim 
isochrons do not yield interpretable age data. Core and rim garnet fractions were not cleaned during 
laboratory procedures.  
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