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Abstract

This paper analyzes the optimal partisan and bipartisan gerryman-

dering policies in a model with electoral competitions in policy positions

and transfer promises. With complete freedom in redistricting, partisan

gerrymandering policy generates the most one-sidedly biased district

profile, while bipartisan gerrymandering generates the most polarized

district profile. In contrast, with limited freedom in gerrymandering,

both partisan and bipartisan gerrymandering tend to prescribe the same

policy. Friedman and Holden (2009) find no significant empirical dif-

ference between bipartisan and partisan gerrymandering in explaining

incumbent reelection rates. Our result suggests that gerrymanderers

may not be as free in redistricting as popularly thought.
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1 Introduction

It is widely agreed that election competitiveness has decreased significantly in

recent decades. For example, the reelection rate has increased from 91.82% in

1950 to 98.25% in 2004 (Friedman and Holden 2009). Also, 74 House seats

were won by a margin less than 55% in 2000, but this number decreased to

24 in 2004 (Fiorina et al. 2011). A popular explanation for this in US politics

is gerrymandering. Thanks to the advance of computing technology and com-

prehensive datasets like TIGER/Line Shapefiles, gerrymandering has become

extremely sophisticated today.1 Famous examples, including the 4th congres-

sional district in Illinois and the 5th district of Florida, among others, have

been noticed by the public. It is argued that the gerrymandering biased to-

ward incumbents, i.e., bipartisan gerrymandering, has an effect on the decrease

in competitiveness. Fiorina et al. (2011) state that “Many (not all) observers

believe that the redistricting that occurred in 2001-2002 had a good bit to do

with this more recent decline in competitive seats—the party behaved con-

servatively, concentrating on protecting their seats rather than attempting to

capture those of the opposition.” (see Fiorina et al. pp. 214-215).

During the same period, the US Congress has become quite polarized. The

distribution of the House representatives’ political positions was more concen-

trated at the center of political spectrum with considerable overlap between

Republican and Democratic representatives’ positions in the 1960s, while it

became sharply twin-peaked without overlap in the 2000s.2 Simultaneously,

Fiorina et al. (2011) argue that US voters have not polarized so much during

1See Friedman and Holden (2009) and the references therein for details.
2It is now standard to use a one-dimensional scaling score (DW-Nominate procedure

on economic liberal-conservative, Poole and Rosenthal, 1997) to measure representatives’

political positions.
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the same time period. These conflicting observations generate an obvious puz-

zle: How could the Congress polarize if voters didn’t? They argue that this

decrease in competitiveness from gerrymandering is one of the driving forces

behind the recent political polarization in Congress (see also Gilroux, 2001).3

However, recent empirical studies show that the effects of gerrymandering

may be insignificant. Friedman and Holden (2009) investigate whether or not

the incumbent reelection rate depends on gerrymandering being partisan or

bipartisan.4 In partisan gerrymandering cases, the majority party may try to

oust the opposing party’s incumbents, and this may be reducing the incumbent

reelection rate. In contrast, in bipartisan gerrymandering cases, both parties

try to secure their incumbents’ reelections, maximizing safe seats. Fiorina et

al. (2011) illustrate how bipartisan gerrymandering can create noncompetitive

districts under complete freedom in gerrymandering by a simple example (Fio-

rina et al. pp. 214-217). Interestingly, Friedman and Holden (2009) did not

find significant differences between bipartisan and partisan gerrymandering

on the effect on the incumbent reelection rate. As they mention, this result

suggests that partisan gerrymandering may not be as effective as popularly

thought. McCarty et al. (2006, 2009) document that the political polarization

of the House of Representatives has increased in recent decades, using data

3Another possible explanation is that voters sorted out into Republican and Democratic

parties by their political positions during the period, and that the parties’ political positions

were polarized in party members’ preference aggregation. Levendusky (2009) suggests that

party elites’ polarization led voter sorting, although it is controversial how much mass

polarization actually occurred by voter sorting.
4Redistricting in the US is usually conducted by state legislatures (partisan gerryman-

dering), but in Arizona, Hawaii, Idaho, Montana, New Jersey, and Washington it is con-

ducted by bipartisan redistricting commissions. In California and Iowa, redistricting lines

are drawn by nonpartisan redistricting committees.
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on roll call votes, but they find only a minimal relation between polarization

and gerrymandering.5 Regarding the recent decline in the competitiveness of

districts, Friedman and Holden (2009) investigate whether or not gerryman-

dering caused the rising incumbent reelection rate by using data up to 2004,

finding evidence of the opposite effect, all else equal.6

Traditionally, the literature often discusses two tactics in partisan gerry-

mandering: one is to concentrate or “pack” those who support the opponent

in losing districts, and the other is to evenly distribute or “crack” support-

ers in winning districts. Packing serves to waste the opponent party’s strong

supporters’ votes, while cracking utilizes the votes of party supporters as ef-

fectively as possible. Owen and Grofman (1988) show that a pack-and-crack

policy is optimal when a partisan gerrymanderer has limited freedom in re-

districting.7 In contrast, Friedman and Holden (2008) argue that advances in

computing technologies and availability of big datasets allow gerrymanderers

higher degrees of freedom in redistricting, and they obtained a very differ-

ent optimal policy from pack-and-crack : the slice-and-mix policy, in which

districts are created by first mixing the strongest opposition group of voters

and the strongest supporter group, then mixing the second strongest opposi-

tion and supporting groups, and so on. This policy wastes opposition groups’

votes, generating the most one-sided allocation from the most extreme to the

most moderate districts.

5Krasa and Polborn (2015) argue that their answer may be incomplete if the political

positions of district candidates are mutually interdependent.
6As an early evidence, Ferejohn (1977) finds little support for gerrymandering being

the cause of declines in competitiveness of congressional districts from the mid-1960s to the

1980s.
7Owen and Grofman (1988) assume that the average of district median voter’s position

must stay constant in redistricting (a constant average constraint).
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In this paper, we consider a two-party political competition model in

which policy-motivated party leaders compete with their candidates’ (one-

dimentional) political positions and pork-barrel promises in each electoral dis-

trict. We assume that there exist minimum units of indivisible localities with

the same population, and that a gerrymanderer partitions the set of locali-

ties freely to create electoral districts. Each locality has a voter distribution,

and we say that the gerrymanderer has more freedom in redistricting if the

voter distribution is concentrated on a point in the political spectrum. We

investigate the optimal gerrymandering policies within the same political com-

petition model. With pork-barrel politics, the party leader understands that

pork-barrel policies in competitive districts are costly, and therefore she has

strong gerrymandering incentives to collect their supporters in the winning

districts in order to avoid large pork-barrel promises.

In particular, we compare the optimal policies under partisan and biparti-

san gerrymandering when the gerrymanderer(s) face different levels of freedom

in redistricting. This has never been done in the literature. We show that

the slice-and-mix policy is optimal for the party leaders in charge of gerry-

mandering when they can redistrict with complete freedom, but the resulting

outcomes in partisan and bipartisan gerrymandering are very different: bi-

partisan gerrymandering results in most polarized electoral districts without

leaving moderate and competitive ones, while partisan gerrymandering results

in an one-sided allocation, leaving some competitive districts. In contrast,

we obtain essentially the same optimal policy when they face the constraint

in redistricting imposed by Owen and Grofman (1988) and voters and party

leaders are more policy-sensitive (roughly speaking): a consecutive partition

of localities stratified by limited freedom in redistricting, since each locality

is composed of a spectrum of voters (slice-them-all). Given Friedman and
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Holden’s (2009) empirical finding on insignificant differences on the effect of

district competitiveness between bipartisan and partisan gerrymandering, the

results may suggest that despite recent advances in computing technologies

and availability of comprehensive election data, gerrymanderers’ freedom in

redistricting may still be rather limited.

An additional finding of this paper for partisan gerrymandering case is

that it matters whether a party leader in charge of redistricting is policy-

motivated or not. Without policy-motivation, “pack-and-crack” is optimal

when the freedom in redistricting is limited as Owen and Grofman (1988)

has shown. In contrast, whith policy-motivation, “slice-them-all” tends to be

optimal especially if leaders and voters are more policy-sensitive.

The rest of the paper is organized as follows. Section 2 discusses related

literature. In Section 3, we start with analyzing political-position and pork-

barrel competition and characterize the party leader’s payoff from each win-

ning district by the district median voter’s position (Lemmas 2, 3, and 4).

In Section 4, we investigate the optimal gerrymandering strategy when the

party leader has complete freedom as in Friedman and Holden (2008), and

show that their “slice-and-mix” is also an optimal strategy in partisan ger-

rymandering cases, generating the most one-sided allocation (Proposition 1).

In contrast, in bipartisan gerrymandering cases, we obtain a rule that first

partitions voters into two consecutive sets in their political positions, and

both parties apply “slice-and-mix” to their groups. This policy generates the

most polarized allocation (Proposition 2). In Section 5, we proceed to cases

where the gerrymanderer’s freedom is limited by indivisibility of localities.

We also assume that each district has normally distributed voters to justify

the constant-average constraint imposed by Owen and Grofman (1988). We

show that the gerrymanderer optimally packs the opponent’s supporters and
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slices her own supporters in order from the strongest to moderate when voters

and party leaders are policy-sensitive, in the sense that their cost functions

have positive third derivatives (Proposition 3). One of these optimal strate-

gies is the one that slices the entire localities in order: “slice-them-all.”With

bipartisan gerrymandering, the result is again “slice-them-all” under the same

conditions, since both parties want to slice their supporters and to pack their

opponents’ (Proposition 4). The two parties’ preferences totally coincide with

each other under the conditions. Although it is hard to generalize it, an ex-

ample shows that the positive third derivative conditions may not be essential

to this slice-them-all result (Example 1). Section 6 concludes the study. All

proofs are collected in Appendix A.

2 Related Literature

Our paper is related to three branches of literature. The first one is parti-

san and bipartisan gerrymandering literature. Introducing uncertainty in each

district’s median voter’s position, Owen and Grofman (1988) consider the situ-

ation where a partisan gerrymanderer redesigns districts in order to maximize

the expected number of seats. They assume that the uncertainty in the me-

dian voter’s political position is local and is independent across districts when

the objective is expected number of seats. Assuming that the average of the

positions of district median voters must stay the same after redistricting (a

constant average constraint), they show that the optimal strategy is “packing”

the opponents in losing districts, and “cracking” the rest of voters evenly across

the winning districts with substantial margins, so that the party can win dis-
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tricts even in the cases of negative shocks under both cases.8,9 Friedman and

Holden (2008), on the other hand, assume that a partisan gerrymanderer has

full freedom in allocating population over a finite number of districts, and that

she maximizes the expected number of seats when there is only valence uncer-

tainty in median voters’ utilities (thus, there is no uncertainty in the median

voter’s political position). In this idealized situation, they find that the opti-

mal strategy is “slice-and-mix”which is similar to our optimal strategy under

a different model. Thus, theoretically, the levels of freedom in gerrymandering

can affect the optimal policy.

In bipartisan gerrymandering, Gul and Pesendorfer (2010) extend Owen

and Grofman (1988) by introducing a continuum of districts, and voters’ party

affiliations. Here, bipartisan gerrymandering means that the two parties own

their territories and redistrict exclusively within each territory. They assume

that each party leader can redistrict her party’s territory (the districts with

her party’s seats) independently, maximizing the probability of winning the

majority of seats.10 They show that the optimal policy is again a version of

“pack-and-crack.” However, these papers do not compare the optimal parti-

san and bipartisan gerrymandering policies. They also do not model spatial

8They also consider the case where the partisan gerrymanderer maximizes the proba-

bility to win a working majority of seats for her party by assuming that the uncertainty is

global. They again get pack-and-crack policy as the optimal policy.
9The original “cracking” tactics create the maximum number of winning districts with

the smallest margins. In the traditional literature, some argue that gerrymandering will

increase political competition by this reason. In this paper, we use “cracking” tactics in the

sense of Owen and Grofman (1988).
10They consider two feasibility constraints. The first is the constant mean of median

voters’ positions which is the same as the one in Owen and Grofman (1988). The second

one is that the status quo needs to be a mean-preserved spread of a feasible redistricting

plan.
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competition in policy positions, and the elected representatives’ positions are

implicitly assumed to be the district median voters’ positions (Downsian com-

petition).

The second branch is the pork-barrel literature. Our model is most closely

related to Lindbeck and Weibull (1987) and Dixit and Londregan (1996). The

former introduces a two-party competition model in which (extreme) parties

use pork-barrel policies to attract agents with heterogeneous policy prefer-

ences. The latter generalizes Lindbeck and Weibull (1987) to allow that par-

ties have different abilities in practicing pork-barrel policies, and this differ-

ence determines whether the pork-barrel policy’s target is swing voters or loyal

supporters. Our model is different from theirs in that we introduce parties’

platform decisions besides pork-barrel politics, and party leaders choose these

two policies simultaneously.11 Moreover, the political competition result is de-

terministic in our model, which is different from the setup with uncertainty

in the literature. A similar political competition model has been used in the

recent vote-buying literature, e.g., Dekel, Jackson, and Wolinsky (2008).

The third branch is normative gerrymandering literature. The focus is on

how gerrymandering affects the relation between seats and the vote shares

won by a party, the so-called “seat-vote curve.”Coate and Knight (2007) iden-

tify the social welfare optimal seat-vote curve and then the conditions under

which the optimal curve can be implemented by a districting plan. With fixed

and extreme parties’ policy positions, they find that the optimal seat-vote is

11Dixit and Londregan (1998) propose a pork-barrel model with strategic ideological

policy decision based on their previous work. However, the ideology policy in their paper

is the equality-efficiency concern engendered by parties’ pork-barrel strategies. Therefore,

the ideology decision in their work is a consequence of pork-barrel politics, instead of an

independent policy dimension.
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biased toward the party with larger partisan population. However, Bracco

(2013) shows that, when parties strategically choose their policy position, the

direction of seat-vote curve bias should be the opposite. Besley and Preston

(2007) construct a model similar to Coate and Knight (2007) and show the

relation between the bias of seat-vote curve and parties’ policy choices. They

further empirically test the theory and the result shows that reducing the

electoral bias can make parties strategy more moderate.

3 The Model

We consider a two-party (L and R) multidistrict model. There are many (pos-

sibly infinite) localities in the state, each of which is considered the minimal

unit in redistricting (a locality cannot be divided into smaller groups in redis-

tricting, e.g., a street block). We assume that there are L discrete localities,

each of which has population 1
L . The state has K districts, and L is a multiple

of K. To comply with the equal population requirement, the party in power

needs to create those K districts by combining L
K

= n localities in each one.

Locality ` = 1, ...,L has a voter distribution function F` : (−∞,∞) → [0, 1],

where (−∞,∞) is the one-dimensional ideology (or political) spectrum and

F`(θ) is non-decreasing with F`(−∞) = 0 and F`(∞) = 1. Ideology θ < 0 is

regarded left, and θ > 0 is right. With a slight abuse of notation, we denote the

set of localities also by L ≡ {1, ...,L}. A redistricting plan π = {D1, ..., DK}

with |Dk| = n for all k = 1, ..., K, is a partition of L.12 The gerrymandering

party’s leader chooses the optimal district partition π from the set of all possi-

12A partition π of L is a collection of subsets of L, {D1, ..., DK}, such that ∪Kk=1D
k = L

and Dk ∩Dk′
= ∅ for any distinct pair k and k′.
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ble partitions Π.13 In each district k, the voter distribution function F k is an

average of distribution functions of n localities: F k(θ) = 1
n

∑
`∈Dk F`(θ). Dis-

trict k’s median voter is denoted by xk = xk(Dk) ∈ (−∞,∞) with F k(xk) = 1
2
.

We assume the uniqueness of xk in each districting plan. Although xk is solely

determined by Dk, we can write xk = xk(Dk(π)) = xk(π) for all k = 1, ..., K

with a slight abuse of notation. Finally, let F (θ) = 1
L
∑

` F`(θ) be the state

population distribution, and θm, the state median voter, be determined by

F (θm) = 1
2
.

We will consider two cases later: one case is with complete freedom in

redistricting as in Friedman and Holden (2008), and the other is with limited

ability in the line of Owen and Grofman (1988). Throughout the paper, we

order localities by the political positions of the median voter.

We also introduce uncertainty in the position of median voter after redis-

tricting is done. At each election time, the economic and social state at that

moment and which party is in power affect voters’ political positions in the

same direction: i.e., the voter distribution is shifted by common shocks. For-

mally, let y be a realization of the uncertain shock term. The median voter of

the actual election in district k is denoted by x̂k = xk + y.14 We assume that

13In reality, there are many restrictions on what can be done in a redistricting plan. For

example, a district is required to be connected geographically. Despite the complication

involved, our analysis can still be extended to the case with geographic restrictions by

introducing the set of admissible partitions ΠA ⊆ Π (see Puppe and Tasnadi, 2009)
14The results are not affected even if we assume that each district k has district-specific

shocks drawn from Gk, since the party leader’s payoff function is additive across districts (see

below). To be specific, our results hold for the general case in which one consider location

specific shocks (y1, ..., yk) with p.d.f. g(y1, ..., yk) and the realized district k median voter’s

position being x̂k = xk + yk. Our benchmark model describes the case that yks are prefect

correlated. Another possible case is yks being i.i.d. and g(y1, ..., yk) = g(y1)g(y2)...g(yk).
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y follows a probabilistic distribution function G : [−ȳ, ȳ]→ [0, 1], where ȳ > 0

is the largest value of relative economic shock and G(0) = 1
2
. We assume that

electoral competition occurs after y is realized: the resulting median voter’s

position after the shock realization is x̂k.

We model pork-barrel elections in a similar manner with Dixit and Lon-

dregan (1996). A type θ voter in district k evaluates party j according to

the utility function with two arguments: one is the policy position of the can-

didate representing the corresponding party, βkj ∈ R, and the other is the

party’s pork-barrel transfer tkj ∈ R+. We interpret this pork-barrel transfer as

a promise of local public good provision (measured by the amount of monetary

spending) in the case where the party’s candidate is elected. Formally, a voter

θ in district k evaluates party j’s offer by

Uθ(j) = tkj − c(|θ − βkj |) (1)

where c(d) ≥ 0 is the ideology cost function, which is increasing in the distance

between a candidate’s position and her own position. We assume that c(·) is

continuously differentiable, and satisfies c(0) = 0, c′(0) = 0, and c′(d) > 0 and

c′′(d) > 0 for all d > 0 (strictly increasing and strictly convex).

Therefore, voter θ votes for party L if and only if

Uθ(L)− Uθ(R) = [c(|θ − βkR|)− c(|θ − βkL|)] + tkL − tkR > 0 (2)

Since the (after shock) median voter’s type in district k is x̂k = xk + y,

given βkL, βkR, tkL and tkR, L wins in district k if and only if

Ux̂k(L)− Ux̂k(R) = [c(|x̂k − βkR|)− c(|x̂k − βkL|)] + tkL − tkR > 0 (3)

Each party leader in the state (composed of these K districts) cares about

(i) the influence or status within her party based on the number of winning
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districts in her state, (ii) the candidate’s policy position in each district, and

(iii) the district-specific pork-barrel spending. We assume that the party leader

prefers to win a district with a candidate’s position closer to her own ideal ide-

ological position and a less pork-barrel promise. The former is regarded as the

“policy-motivation” in the literature. By formulating the latter, we consider a

situation where the leader bears some costs when implementing the promised

local public spending, as in the example of the bargaining efforts needed to

push for federal funding. To simplify the analysis, we assume that the negative

utility by pork-barrel is measured by the amount of money promised. We de-

note the ideal political positions of the leaders of party L and R by θL and θR,

respectively, with θL < θR. Without loss of generality, we set θL = −θR, but

we will stick to notations θL and θR until the gerrymandering analysis starts

to help the reader comprehend the model more easily. Formally, by winning

in district k, party j’s leader gets utility

V k
j = Qj − tkj − C(

∣∣βkj − θj∣∣),
where Qj > 0 is the fixed payoff that party j’s leader obtains from each win-

ning district, and C(d) is a party leader’s ideology cost function with C(0) = 0,

C ′(0) = 0, C ′(d) > 0 and C ′′(d) > 0 (strictly increasing and strictly convex).

This cost function C can be different from the voter’s cost function c. If the

party leader loses in district k, she gets zero utility from the district. The na-

tional party elites are ultimately interested in the number of seats their party

gets, so the number of seats a state party leader wins is important in recog-

nizing her contribution to the national party. Also, since we are considering

a state’s gerrymandering problem, it is reasonable to assume that the benefit

from winning a district does not depend on which district is won.

We introduce a tie-breaking rule in each district based on the relative levels
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of the state party leaders’ utilities V k
L and V k

R . We assume that if two parties’

offers are tied for the median voter x̂k (Ux̂k(L) = Ux̂k(R)) while one party’s

leader gets strictly higher (indirect) utility than the other’s, the median voter

will vote for that party. That is,

Assumption 1. (Tie-Breaking) Given two parties’ offers are such that

Ux̂k(L) = Ux̂k(R), L (R) wins if V k
L > V k

R (V k
L < V k

R).

This assumption is justified by the fact that the higher utility is equivalent

to the higher ability to provide a better offer to the median voter. In particular,

consider the case in which two parties are tied and, say, V k
L > V k

R = 0, and

party L has the ability to provide ε > 0 more pork-barrel promise. Therefore,

we break the tie by assuming the median voter prefers L, which is a standard

assumption.

Our second assumption is a simple sufficient condition that assures interior

solutions for both parties.

Assumption 2. (Relatively Strong Office Motivation) For all feasible

x̂k, Qj ≥ min
β
{C(|θj − β|) + c(|β − x̂k|)} holds for j = L,R.

Notice that if the party leader gets 0 utility, she must offer pork-barrel

promise equal to Qj − C(|θj − β|). Therefore, the median voter get utility

Ux̂k = Qj−C(|θj−β|)−c(|β−x̂k|) if party j wins. This assumption means that

the payoff from winning a district, Qj, is large enough so that for any x̂k, both

parties can offer the median voter positive utility, which is a sufficient condition

for the candidate selection problem to have an interior solution. Note that the

set of feasible x̂k is not the entire real line. The model only allows bounded

finite median voters’ positions and ȳ being also finite. Therefore, must exist

a Qj to satisfy this assumption. Moreover, the implication of this assumption

is that it guarantees that in equilibrium both parties promise positive pork-
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barrel. We will see this more clearly in the next section.

The state redistricting may be decided by one or both parties. It is straight-

forward that, in the first case, one party leader chooses π. In the later one, we

assume that KL districts belong to L and the remaining KR = K−KL districts

belong to R. Without loss of generality, we assume L choosing {D1, ..., DKL}

and R choosing {DKL+1, ..., DK}. We will discuss the bipartisan case in details

later.

The timing of the game is as follows:15

1. One party, say L, or both parties jointly choose a redistricting plan

π = (Dk)Kk=1, and thus a median voter vector (x1, ..., xk, ..., xK).

2. The common shock y ∈ [−ȳ, ȳ] realizes.

3. Given the districting plan in stage 1 and the realized median voter x̂k =

xk + y in stage 2, party leaders L and R simultaneously choose local

policy positions and pork-barrel promises (βkL, t
k
L)Kk=1 and (βkR, t

k
R)Kk=1,

respectively.

4. All voters vote sincerely (with our tie-breaking rule). The winning party

is committed to its policy position and its pork-barrel promise in each

district k = 1, ..., K. All payoffs are realized.

We will employ weakly undominated subgame perfect Nash equi-

librium as the solution concept. We require that in stage 3, party leaders

15We can separate stage 3 into two substages: policy position choices followed by pork-

barrel promises. If we do so, the loser of a district k will get zero payoff in every subgame,

so it becomes indifferent among policy positions. Thus, we need equilibrium refinement to

predict the same allocation. By assuming that the loser party chooses the policy position

that minimizes the opponent party leader’s payoff, we can obtain exactly the same allocation

in SPNE.
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play weakly undominated strategies so that the losing party leader does not

make cheap promises to the district median voters.16 We will call a weakly

undominated subgame perfect Nash equilibrium simply an equilibrium.

3.1 Stage 3: Electoral Competition with Pork-Barrel

Politics

We solve the equilibria of the game by backward induction. We start with

stage 3, knowing that voters vote sincerely in stage 4. Notice that the key

player is the median voter in the voting stage. Thus, when the leader of

party L makes her policy decisions in district k, she at least needs to match

R’s offer in terms of median voter’s utility in order to win. Without loss of

generality, we consider the case that party L wins with the tie-breaking rule in

Assumption 1. In this case, the leader of party L tries to offer the same utility

to the median voter x̂k. Formally, the party leader’s problem is described by

max
βkL,t

k
L

{QL − tkL − C(
∣∣θL − βkL∣∣)}

subject to tkL − c(|x̂k − βkL|) ≥ Ūk
R, tkL ≥ 0, and (4)

QL − tkL − C(
∣∣θL − βkL∣∣) ≥ 0,

16This game is the first price auction under complete information. In general, there

is a continuum of pure strategy equilibria. The losing party does not suffer from cheap

promise, since she gets zero utility in losing districts anyway. The winning party needs

to match the offer as long as she can get a positive payoff by doing so. Demanding that

players play weakly undominated strategies, we can eliminate these unreasonable equilibria.

Another justification for this is to require mixed strategy equilibrium. There is a unique

mixed strategy equilibrium in which the winning party plays a pure strategy while the losing

party plays a mixed strategy equilibrium. The outcome of this mixed strategy equilibrium

coincides with the weakly undominated Nash equilibrium in pure strategies.
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where Ūk
R is the median voter’s utility level from R’s offer. Notice that tkL ≥ 0

and QL− tkL−C(
∣∣θL − βkL∣∣) ≥ 0 may or may not be binding while tkL− c(|x̂k−

βkL|) ≥ Ūk
R must be binding. The solution for this maximization problem is

straightforward. Define β̂j(x̂
k, θj) by the following equation

c′(|x̂k − β̂j(x̂k, θj)|) = C ′(
∣∣∣θj − β̂j(x̂k, θj)∣∣∣). (5)

Notice that (5) is simply the first-order condition of optimization problem (4)

after substituting tkL = c(|x̂k−βkL|) + Ūk
R into the objective function. Also, the

optimal policy βk
∗
L = β̂L(x̂k, θL) when −c(|x̂k − β̂L(x̂k, θL)|) ≤ Ūk

R. That is, it

is not enough for the winning party to win just by using the policy platform.

In this case, it is clear that the optimal pork barrel promise is

tk
∗

L (Ūk
R) = Ūk

R + c(|x̂k − β̂L(x̂k, θL)|) (6)

Although it seems unclear at first that −c(|x̂k − β̂L(x̂k, θL)|) ≤ Ūk
R holds

or not, it turns out this condition always holds. This is because a similar

optimization problem applies for the losing party and Assumption 2.

It is obvious that the winning party L’s pork-barrel promise is related to

what the losing party R proposes in equilibrium. In the proof of the following

lemma, we can show that in equilibrium, R proposes the policy pair (βk
∗
R , t

k∗
R ),

which is the solution of the following problem

max
βkR,t

k
R

Ux̂k(R) = tkR − c(|x̂k − βkR|) (7)

subject to tkR ≥ 0 and QR − tkR − C(
∣∣θR − βkR∣∣) ≥ 0

That is, the losing party leader offers a policy position and pork-barrel promise

that leave herself zero surplus in equilibrium. The intuition is straightforward.

If the losing party does not offer the median voter the best one, then since
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the winning party will provide the median voter the same utility level, the

losing one can always offer the median voter something better than her original

offer and win the district. This cannot happen in equilibrium. Therefore, for

the losing party R, the equilibrium strategy is βk
∗
R = β̂(x̂k, θR) and tk

∗
R =

QR − C(
∣∣θR − βk∗R ∣∣). We have the following result.

Lemma 1. In stage 3 equilibrium, we have:

1. For the losing party j, the equilibrium strategy is βk
∗
j = β̂j(x̂

k, θj) which

lies in the interval (x̂k, θj) (or (θj, x̂
k)) and tk

∗
j = Qj − C(|θj − βk

∗
j |)

2. For the winning party i, the equilibrium strategy is βk
∗
i = β̂i(x̂

k, θi),

which lies in the interval (x̂k, θi) (or (θi, x̂
k)), and tk

∗
i = Qj − C(|θj −

βk
∗
j |)− c(|x̂k − βk

∗
j |) + c(|x̂k − βk∗i |).

One thing left to decide is which party should be the winning party. We

have the following results in stages 3 and 4.

Lemma 2. In stage 3 equilibrium, we have

1. Party i’s payoff in the kth district is

Ṽ k
i (x̂k, θi, θj) ≡ max

{
(Qi −Qj)−

(
C(
∣∣θi − x̂k∣∣)− C(∣∣θj − x̂k∣∣)) , 0} ,

(8)

where C(
∣∣θi − x̂k∣∣) ≡ C(

∣∣∣θi − β̂i(x̂k, θi)∣∣∣) + c(|x̂k− β̂j(x̂k, θj)|), and party

i wins if and only if

Qi −Qj > C(
∣∣θi − x̂k∣∣)− C(∣∣θj − x̂k∣∣).

2. Irrespective of x̂k ≷ θi, we have ∂β̂i
∂x̂k

=
c′′i

C′′i +c′′i
, where c′′i = c′′(|x̂k −

βk
∗
i (x̂k, θi)|) and C ′′i = C ′′(

∣∣∣θi − β̂i(x̂k, θi)∣∣∣).
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Note that Lemma 2-1 implies that if Qi = Qj, then j wins if and only if

∣∣θi − x̂k∣∣ < ∣∣θj − x̂k∣∣ .
Now, we turn to the properties of Ṽ k

i (x̂k, θi, θj). Recalling that we assume

θL = −θR without loss of generality, we can prove the following properties.

Lemma 3. The following properties are satisfied for Ṽ k
i (x̂k, θi, θj):

1. The realized winning payoff for party L (R), Ṽ k
L ( Ṽ k

R) is decreasing

(increasing) in x̂k when Ṽ k
i (x̂k, θi, θj) > 0.

2. The realized winning payoff for party i, Ṽ k
i , is strictly convex in x̂k for

x̂k when Ṽ k
i (x̂k, θi, θj) > 0, if C ′′′(·) > 0 and c′′′(·) > 0, and QL = QR.

Using Ṽ k
i (x̂k, θi, θj), when party i wins in district k, the expected payoff

from district k for party leader i is written as:

EṼ k
i (xk, θi, θj) =

∫ ȳ

−ȳ
Ṽ k
i (xk + y, θi, θj)g(y)dy

Note that due to the additive separability of the payoff function, party leader

i’s expected payoff under partition π (district median profile
(
xk (π)

)K
k=1

) is

written as

EṼi (π, θi, θj) ≡
∫ ȳ

−ȳ

K∑
k=1

Ṽ k
i (xk(π) + y, θi, θj)g(y)dy

=
K∑
k=1

∫ ȳ

−ȳ
Ṽ k
i (xk(π) + y, θi, θj)g(y)dy

=
K∑
k=1

EṼ k
i (xk(π), θi, θj)
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The next lemma is in preparation of the Stage 1 analysis.

Lemma 4. The following properties are satisfied for EṼ k
i (xk, θi, θj) and

EṼi(x, θi, θj):

1. The expected winning payoff for party L (R) in district k, EṼ k
L (EṼ k

R)

is decreasing (increasing) in xk unless the winning probability for party

L (R) in district is zero.

2. The expected winning payoff for party i in district k, EṼ k
i is strictly

convex in xk, if C ′′′(·) > 0 and c′′′(·) > 0, and QL = QR unless the

winning probability for party i in district is zero.

3. The expected winning payoff for party L (R), EṼL (EṼR) is decreasing

(increasing) in xk if party L (R) has a nonzero chance to win in any

district.

4. The expected winning payoff for party i, EṼi is strictly convex , if C ′′′(·) >

0 and c′′′(·) > 0, and QL = QR, if party i has a nonzero chance to win

in any district.

We are now ready to discuss the setup of partisan and bipartisan gerry-

mandering problems.

3.2 The Partisan Gerrymandering Problem

Without loss of generality, we formalize the partisan gerrymandering party

leader’s optimization problem as the case where KL = K and L is in charge

of redistricting. Lemma 2 shows that xk = xk(π) is the sufficient statistic

to determine the outcome of the kth district. Notice that the indirect utility
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of L, Ṽ k
L (x̂k, θL, θR), is relevant only when party L wins in district k. The

choice of π =
(
D1, ..., DK

)
affects the party leader L’s payoff EṼL through(

x1(π), ..., xK(π)
)

represented by its indirect utility Ṽ k
L (xk(π) + y, θL, θR) con-

ditional on L winning, where xk(π) is a function of Dk only.

From now on, we suppress θL and θR in indirect utility Ṽ k
L , EṼ k

L , and EṼL.

We can rewrite the party leader L’s gerrymandering choice to be the result of

the following maximization problem

π∗ ∈ arg max
π∈Π

EṼL(π)

The SPNE of this game is (π∗, (βk
∗
L )Kk=1, (β

k∗
R )Kk=1, (t

k∗
L )Kk=1, (t

k∗
R )Kk=1).

3.3 Bipartisan Gerrymandering Problem

Since bipartisan gerrymandering requires negotiation between the two parties,

there can be many possible formulations. As mentioned before, one way is to

assume that each party has preexisting “territory” as in Gul and Pesendorfer

(2010). In our context, we can assume that, before redistricting, party L

and R rearrange localities that belong to {1, ..., KL} and {KL + 1, ..., K} by

negotiating which localities belong to their own territory.

Given the above formulation, it may be beneficial for both parties to swap

some of the localities in their territories, if the original allocation of localities

in each district is arbitrary. If localities are ordered one-dimensionally as we

assume in this paper, then there is always a chance to Pareto-improve the

welfare by swapping localities, unless territories are consecutive due to the

monotonicity in Lemma 4. In this case, leftmost nKL localities go to party L,

while rightmost n(K −KL) localities go to party R. This locality allocation

is the unique Pareto-efficient one in the negotiation before redistricting.
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For the complete freedom case we discuss in the next section, we can par-

tition voters by some point θ̄, i.e., party L can take population to the left of θ̄,

while party R can take population to the right of θ̄. It might not be the case

that KF (θ̄) is an integer. However, it is reasonable to assume that party L and

R create KL = 〈K ×F (θ̄)〉 and KR = 〈K × (1−F (θ̄))〉 districts, respectively,

where 〈•〉 denotes the nearest integer of •. Some examples of θ̄ are (a) F (θ̄)

being the vote share for L from the previous election, or (b) θ̄ = θm from the

recent census data. In both cases, the party controls a majority of districts if

the whole population is biased toward it in the available data.

4 Gerrymandering with Complete Freedom

As a limit case, let us consider the ideal situation for the gerrymanderer (Fried-

man and Holden, 2008): there is a large number of infinitesimal localities with

politically homogeneous population: for all position x ∈ (−∞,∞), there are

localities `s with F`(x − δ) = 0 and F`(x + δ) = 1 for a small δ > 0. That

is, the gerrymanderer can freely create any kind of population distributions

for K districts as long as they sum up to the total population distribution.

We ask what strategy the gerrymanderer should take. By Lemma 4, she is

better off by making the (ex ante) median voter’s allocation as far from the

other party’s leader’s position as possible. This strategy increases the winning

payoff and the probability of winning the district. Thus, the gerrymanderer

tries to create the furthest district structure from the opponent party leader’s

position.
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4.1 Partisan Gerrymandering

In partisan gerrymandering cases, the party leader in charge of gerryman-

dering will try to make district medians as far away as possible from the

other party leader’s position.17 Without loss of generality, we assume that

party L is in charge of gerrymandering. To create the most extreme district,

x1 should satisfy F (x1) = 1
2K

(x1 is the median voter of the district: the

most extreme district achievable with population 1
K

). Although the remain-

ing population to the right of x1 can be anything in district 1, wasting the

other party’s strong supporters by combining them is a good idea, since it

would make the remaining population lean more toward her position. Thus,

she will create district 1 by combining sets
{
θ ≤ θ1 : F (θ1) = 1

2K
+ ε

K

}
and{

θ ≥ θ̄1 : 1− F (θ̄1) = 1
2K
− ε

K

}
where ε > 0 is arbitrarily small. In district 1,

the (ex ante) median voter would be x∗1L defined by F (x∗1L ) = 1
2K

. Similarly, she

can create districts 2, ..., K sequentially. Let θk be such that F (θk) = k
2K

+ kε
K

for all k = 1, ..., K, and let θ̄k be such that 1 − F (θ̄k) = k
2K
− kε

K
. For small

enough ε > 0, we have

−∞ = θ0 < θ1 < ... < θK = θ̄K < ... < θ̄1 < θ̄0 =∞.

We call this redistricting plan a party-L-slice-and-mix policy, which is pro-

posed in Friedman and Holden (2008). Under the slice-and-mix policy, the

resulting district median voter allocation is x∗L ≡ (x∗1L , ..., x
∗K
L ) with x∗kL is such

that F (x∗kL ) = k
2K

for each k = 1, ..., K, with ε close to zero (limε→0(θ1, ..., θK) =

(x∗1L , ..., x
∗K
L ) = x∗L). We will show that this is the optimal policy for party

17As long as there are positive winning probabilities in all districts (if ȳ is large enough),

this is true. If not, party L’s leader may need to create unwinnable districts, but she would

be indifferent as to how to draw lines for these districts. But the slice-and-mix below is one

of the optimal strategies even in that case.
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Figure 1: Party-L-slice-and-mix when K = 4.

L leader. Symmetrically, we can define a party-R-slice-and-mix where

the resulting district median voter allocation is x∗R ≡ (x∗KR , ..., x∗1R ), with

x∗kR such that 1 − F (x∗kR ) = k
2K

for each k = 1, ..., K, with ε close to zero

(limε→0(θ̄K , ..., θ̄1) = (x∗KR , ..., x∗1R ) = x∗R). Figure 1 is an example of party-L-

slice-and-mix strategy when K = 4. District k = 1, ..., 4 is composed of two

slices numbered by k. District median voter allocation is x∗L ≡ (x∗1L , ..., x
∗4
L ).

The following result is straightforward by noticing that in order for xk to

be the median voter in district k = 1, ..., K, xk must satisfy F (xk) ≥ k
2K

and

1− F (xk) ≥ k
2K

.

Lemma 5. There is no median voter allocation x = (x1, ..., xK) with x1 ≤

x2 ≤ ... ≤ xK such that xk < x∗kL for any k = 1, ..., K. Symmetrically, there is

no median voter allocation x = (x1, ..., xK) with x1 ≥ x2 ≥ ... ≥ xK such that

xk > x∗kR for any k = 1, ..., K.

Clearly, these district median voter allocations x∗L and x∗R are the most
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biased district median voter allocations toward left and right, respectively.

Under x∗L, redistricting the first and the second districts does not make two

districts with intermediate medians. With this lemma and Lemma 4-1, we

have the following result.

Proposition 1. Suppose that the gerrymanderer can create districts with

complete freedom and that party L (R) is in charge of gerrymandering. Then

the party-L (R)-slice-and-mix policy is an optimal gerrymandering policy. The

resulting district median voter allocation in district k is approximately x∗kL

(x∗kR ).

Another interesting observation from this proposition is that even when

QL = QR, if party L is the majority party in terms of the state population

(That is θm < 0 where F (θm) = 1
2

), then it can win all seats with a prob-

ability of 50% or higher (xK < 0). Also, one can observe that the median

of xk’s is around θ 1
4

where F (θ 1
4
) = 1

4
. Therefore, complete freedom in ger-

rymandering means the minority’s impact on the election will be completely

diluted. However, one party monopolize all districts is rare in US politics,

partly because of the presence of majority-minority district requirement (see

Shotts, 2001).18 The majority-minority requirement forces the gerrymanderer

to seek the second-best districting plan as a result even when she has complete

freedom. It is worthwhile to note that the slice-and-mix strategy is identical

to the optimal policy analyzed in Friedman and Holden. Both papers share

the features that (i) the party leader prefers a more extreme median voter’s

18In fact, even though either one of the two parties must be the majority in a state, the

majority party usually does not win all districts. This can be attributed to Section 2 of

the Voting Rights Act (accompanied by other United States Supreme Court cases), which

essentially prevents the minority votes from being diluted in the voting process similar to

our slice-and-mix strategy.
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position than a moderate one, and (ii) complete freedom in gerrymandering

unlike the constrained problem in Owen and Grofman (1988) and in the basic

model of Gul and Pesendorfer (2010).19 However, there are big differences

between our paper and Friedman and Holden. Our model is based on com-

petitions with political positions as well as transfer promises, while Friedman

and Holden have neither element in their model. Nonetheless, we can say that

the above two common conditions are the keys for getting the same results.

4.2 Bipartisan Gerrymandering

Suppose the preexisting territory is KL and KR = K − KL: i.e., party L

takes localities with population in (−∞, θ̄) and party R takes localities with

population in (θ̄,∞) where F (θ̄) = KL
K

.20 By applying the same method as in

the previous section, let θ̄0
L = θ̄ and θkL be such that F (θkL) = k

2K
+ kε

K
, and let

θ̄kL be such that F (θ̄)−F (θ̄kL) = k
2K
− kε

K
for k = 1, ..., KL. However, the support

for L’s territory is now (−∞, θ̄]. Similarly, let θ0
R = θ̄ and θkR be such that

1−F (θkR) = k
2K
− kε

K
, and let θ̄kR be such that 1−F (θ̄kR) = k

2K
+ kε

K
for k = KL+

1, ..., K. Party R’s territory has support (θ̄,∞). We call this bipartisan policy

(KL, KR)-bipartisan-slice-and-mix policy, and the resulting median voter

profile is (x∗1L , ..., x
∗KL
L , x∗KL+1

R , ..., x∗KR ). By Lemma 5 again, (x∗KL+1
R , ..., x∗KR )

is the KR right-most median voter profile, and (x∗1L , ..., x
∗KL
L ) is the KL left-

most median voter profile, with small enough ε. Figure 2 is an example of

(KL, KR)-bipartisan-slice-and-mix policy when KL = KR = 2 and θ̄ = θm. In

this case, both parties use the slice-and-mix to create (x∗1L , x
∗2
L ) and (x∗3R , x

4
R).

19Gul and Pesendorfer (2010) also include aggregate uncertainty, generalizing Owen and

Grofman (1988).
20To avoid roundup, we choose θ̄ such that KF (θ̄) is an integer. However, θ̄ can be a

general one.
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Figure 2: (KL, KR)-slice-and-mix when KL = KR = 2.

Thus, this is one of the most polarized district median voter allocation, and

is very different from partisan gerrymandering median voter allocation, which

has some more competitive districts. If uncertainty ȳ is small, then there may

not be any uncertainty in district elections under bipartisan gerrymandering.

Proposition 2. Suppose that the gerrymanderer can create districts with com-

plete freedom and that bipartisan gerrymandering takes place with party line

θ̄. Then the (KL, KR)-bipartisan-slice-and-mix policy is an optimal gerryman-

dering policy. The resulting district median voter allocation is approximately

(x∗kL )KLk=1 and (x∗kR )Kk=KL+1.

5 Gerrymandering with Limited Freedom

In this section, we will explore how the“slice-and-mix” result would be mod-

ified if we drop the “complete freedom” in gerrymandering. In the spirit of
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Owen and Grofman (1988) and Gul and Pesendorfer (2010), we say a gerry-

mandering problem is subject to a constant-average-constraint if the resulting

(x1(π), ..., xK(π)) satisfying ∑K
k=1 x

k(π)

K
= µ̄ (9)

for all π ∈ Π and some fixed µ̄. Owen and Grofman (1988) analyzed the op-

timal partisan gerrymandering policy by imposing the same constraint. They

obtained the famous pack-and-crack result when the office-motivated party

leader maximizes the number of seats under this constraint.

To apply the above constraint to our locality setup, we will focus on the

case where the political position is normally distributed in all localities. With

normality, any feasibility redistricting plan satisfies exactly this constraint (8)

(the proof is obvious by noting that the median is equivalent to the mean

under normality).

Lemma 6. Suppose that the voter distribution in each locality is normally

distributed, i.e., F` ∼ N(µ`, σ`) for each ` ∈ L. Then, the median of district

k is

xk(π) =
1

n

∑
`∈Dk(π)

µ`.

Moreover, for all π ∈ Π,
∑K
k=1 x

k(π)

K
= θm = µ̄.

Therefore, under the normal distribution assumption, we focus on two

redistricting plans, say, π and π′, where the difference between two plans

is due to swapping the sets of localities S and T between districts k̂ and k̃.

Formally,

∆ = xk̂(π′)− xk̂(π) =

∑
`∈T µ` −

∑
`∈S µ`

n
= xk̃(π)− xk̃(π′),
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and xk(π) = xk(π′) for all k 6= k̃ and k̂. If |xk̃(π)− xk̂(π)| > |xk̃(π′)− xk̂(π′)|,

π′ is more centered relative to π. In this case, we say π′ is cracking supporters

relative to π. Otherwise, we say π′ is slicing supporters.

Which plan should the party leader choose between π and π′? The answer

depends on the curvature of EṼi. It is obvious that if EṼi is a convex function

in the ex ante median voter’s position xk, the party leader would prefer a

slicing strategy. As we have seen in Lemma 4-3, if the third derivatives of cost

functions are positive, we have convex expected payoff functions.

We are ready to characterize the optimal partisan gerrymandering policy

under the constant average constraint. Remember that we order localities by

their means. That is, ` < `′ means µ` ≤ µ′`. Let the median voter in the most

possible extreme right district be µT . Suppose that µT − ȳ > 0, that is, there

exists some unwinnable districts for L if R’s supporters are grouped together.

We consider a redistricting plan that “slices” ordered localities from the left to

the right. Formally, let x̄k = 1
n

∑nk
`=n(k−1)+1 µ` − ȳ < 0 for all k = 1, 2, ..., K ′,

where K ′ is such that for all districts k > K ′, there is absolutely no chance for

party L to win. When K ′ ≥ K, we call the allocation (x̄k)Kk=1 a slice-them-

all gerrymandering policy. If K ′ < K, then for those unwinnable districts

{K ′ + 1, ..., K}, L’s party leader should pack those most opposing localities

with ` ≥ K ′n+ 1 into them. The reason is that, otherwise, the winning payoff

in winnable district increases by switching those strong opposing localities

into unwinnable districts. If K ′ < K, then how L packs those strong opposing

localities does not matter, but (x̄k)Kk=1 is one of the optimal policy for party L.

This policy is optimal since the gerrymanderer always prefers a slicing swap

and all other redistricting plans can be transformed into the slice-them-all

policy by a series of slicing swaps.
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Proposition 3. Suppose that the voter distribution is normal in each locality

and QL = QR. In addition, suppose that C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 hold.

Then, the optimal partisan gerrymandering policy is slice-them-all (x̄k)K
′

k=1 with

packing in the unwinnable districts. In particular, (x̄k)Kk=1 is one of the optimal

partisan gerrymandering policy. If K ′ = K, the unique optimal policy is slice-

them-all (x̄k)Kk=1.

Thus, cracking is not necessarily a good strategy unlike in Owen and Grof-

man (1988). The difference between the current paper and theirs is that

our party leaders are also policy-motivated.21 What about the case where

C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 do not hold? Actually, we can show that Ṽ k
i is

concave if C ′′′(·) ≤ 0 and c′′′(·) ≤ 0, so it appears that pack-and-crack is the

way to go. Indeed, it is true for the deterministic case (ȳ = 0) or the cases

where ȳ is small enough. However, if ȳ is large, even if the third derivatives are

negative, Ṽ k
L can be convex as is seen in the following example (see Appendix

B).

Example 1. We introduce a convenient special ideology cost function such

that both voters’ and party leaders’ cost functions have common constant

elasticity. Let C(d) = aCdγ and c(d) = acdγ, where γ > 1, aC > 0, and ac > 0

are parameters. In this case, both party leaders and voters have the same

elasticity that is constant γ. Thus, we have the following convenient formula.

Denote A = A(aC , ac) = aC
(

α
1+α

)γ
+ ac

(
1

1+α

)γ
> 0 where α =

(
aC

ac

) 1
γ−1

. . We

can choose aC and ac to set A = 1 for each γ: then we have C(d) = Adγ = dγ.

21Without the policy motivation, the payoff function is only related to winning probabil-

ity, pack-and-crack is optimal under a mild assumption on g. See also Gul and Pesendorfer

(2010).
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In this case, Ṽ k
L is concave (convex) in x̂k if γ ≤ 2 (γ ≥ 2). Suppose that

θL = −1, θR = 1 (thus L wins if and only if x̂k < 0), and g(y) = 1
2ȳ

if and

only if y ∈ [−ȳ, ȳ] (uniform distribution). Also, suppose that all possible xk

are in [−1, 1] and
(
Q
A

) 1
γ ≥ 2 + ȳ holds to assure Assumption 2. If ȳ > 1, there

is always a chance to win the election: we have xk − ȳ < θL and xk + ȳ > 0.

In this case,

EṼ k′′
L =

γ

2ȳ

[
(1− xk + ȳ)γ−1 − ((1− xk + ȳ)− 2)γ−1 + 2

]
> 0

since γ < 2, (1−xk+ȳ)γ−1−((1−xk+ȳ)−2)γ−1 > −2 holds. Thus, the expected

utility is convex in xk, despite the fact that C ′′′(d) < 0 holds. This example

shows that even without positive third derivatives, the slice-and-mix strategy

and the slice-them-all strategy are optimal in the complete freedom case and

in the constrained case with the constant average constraint, respectively.�

How about bipartisan gerrymandering? The result is the same, since both

parties want slice-them-all anyway. If both party leaders adopt slice-them-

all, it does not matter whether the slicing is from one end (partisan gerry-

mandering) or both ends (bipartisan). This observation shows that if the

gerrymandering problem has the constant average constraint, then biparti-

san gerrymandering does not create a more polarized allocation than partisan

gerrymandering, and incumbents’ reelection rates would be the same.

Proposition 4. Suppose that the voter distribution is normal in each locality

and QL = QR. In addition, suppose that C ′′′(·) ≥ 0 and c′′′(·) ≥ 0 hold. Then,

the optimal bipartisan gerrymandering policy is slice-them-all (x̄k)Kk=1 which is

identical to the partisan policy.

The constant average constraint forbids a gerrymanderer from diluting sup-

porters of the other party by mixing in his own supporters. Notice that while
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L gerrymanderer can pull the median of district medians to θ 1
4

in the com-

plete freedom case, the median of medians has to remain as θm, the population

median, when the constant average constraint applies. Friedman and Holden

(2009) interpret their results as a possible consequence of the Voting Rights

Act of 1982, which significantly limits the gerrymanderer’s ability to dilute

votes.

6 Conclusion

In this paper, we propose a gerrymandering model with endogenous candi-

dates’ political positions, in which two parties compete in their positions and

pork-barrel politics. The model’s tractability allows us to analyze partisan

and bipartisan gerrymandering under different constraints.

We find that, under the complete freedom case (Friedman and Holden,

2008), the partisan and bipartisan gerrymandering plans are very different.

Under partisan gerrymandering, the gerrymanderer creates the most biased

district structure and completely dilutes the opponent’s supporters. On the

other hand, in the bipartisan case, gerrymanderers create the most polarized

districts.

The difference between partisan and bipartisan gerrymandering disappears

when we add the extra constraint that requires that the mean of median voters

in all districts remain constant (Owen and Grofman, 1988). The optimal plan

under positive third derivatives in cost functions becomes what we call slice-

them-all in both situations. That is, the gerrymanderers simply group their

own supporters to form districts according to the avidity of supportiveness.

This result is based on the fact that the constant average constraint forces

the party leader to choose between having one extreme supporting and one
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relatively neutral districts or having two moderate supporting ones. However,

since the party leader is policy-motivated and has to consider uncertainties,

she prefers the former, which saves her more pork-barrel and ideological costs.

Our Example 1 suggests that the positive third derivative condition may be

weakened significantly for the same result when the shock is large enough to

provide a winning chance for both parties in every district.

Another explanation for nonsignificant difference in competitiveness be-

tween partisan and bipartisan gerrymandering is the fact that redistricting

takes place every ten years based on census data, and district population pro-

files can change significantly. If there is a risk for some demographic change in

districts, then it is too risky to use extremely elaborate slice-and-mix strategy

even if the gerrymanderers have complete freedom in redistricting. This is be-

cause a district median voter profile can change dramatically by demographic

changes. Thus, the gerrymanderer may try to mix a smaller and less extreme

opponent group with a larger strong supporter group, which may make the

difference between partisan and bipartisan gerrymandering less significant.

There are some potentially interesting yet difficult extensions. First, one

may want to introduce uncertainty in election results (e.g., uncertainty in

median voter’s position after policy proposal) into our model. If uncertainty

is infinitesimal, e.g., the gerrymander can only observe that the median voter’s

position belongs to the interval [x̂k − ε, x̂k + ε] for ε being a (small) preference

perturbation, and if the gerrymanderer has complete freedom in redistricting,

the slice-and-mix strategy may still be optimal à la Friedman and Holden

(2008). However, with significant uncertainty in median voters’ positions, as

Gul and Pesendorfer (2010), we do not know what can happen.

Second, in this paper we concentrated on one type of pork-barrel politics:

candidates’ “promise” transfer contingent on their winning of the districts
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(the first price auction). These kinds of promises are different from campaign

expenditures. In the latter case, even if a candidate loses in a district, the

spent campaign expenditure will not come back (an all-pay auction). In some

circumstances, such a model may be more realistic if there is uncertainty in

election results. However, introducing uncertainty in election results is not

trivial, as we mentioned before. These issues are left for future research.

Appendix A: Proofs

Proof of Lemma 1. As we mentioned in the text, we first prove that in

equilibrium, the loser party j proposes the policy pair (βk
∗
j , t

k∗
j ), which is the

solution of the problem in equation (7). To prove this, first note that the non-

negativity constraint of tkj is not needed by Assumption 2. There are three

cases: if j loses with Qj−tk
∗
j −C(

∣∣θj − βk∗j ∣∣) > 0 and its offer gives the median

voter utility equal to Ū in equilibrium, it must be that i wins with positive

indirect utility and also provides the median voter with the utility level Ū .

However, this means that j can win the election by providing, say, ε more

pork-barrel promise. This contradicts the equilibrium condition. The second

case is that Q− tk∗j − C(
∣∣θj − βk∗j ∣∣) = 0 but Uxk(j) is not maximized. In this

case, there must exist some points (t′, β′) that satisfy Q− t′−C(|θj − β′|) = 0

but the pair provides the median voter strictly higher utility. Then any point

on the segment connecting (t′, β′) and (tk
∗
j , β

k∗
j ) is strictly better off for both

j and the median voter xk by the strict convexity of the preferences. Again,

this contradicts the equilibrium condition. Thus, βk
∗
j = β̂j(x̂k, θj) must hold.

The third case, Q− tk∗j −C(
∣∣θj − βk∗j ∣∣) < 0, cannot happen, since the strategy

that generates a negative payoff is a weakly dominated strategy for party j’s

leader. Thus, tk∗j = Qj − C(
∣∣θj − βj(x̂k, θj)∣∣) holds.
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The policy pair provides the median voter with the utility Ūk∗
R = QR −

C(
∣∣θR − βk∗R ∣∣) − c(|x̂k − βk

∗
R |). Substituting this Ūk∗

R into equation (6), we

obtain tk
∗
L = QR − C(

∣∣θR − βk∗R ∣∣)− c(|x̂k − βk∗R |) + c(|x̂k − βk∗L |).�

Proof of Lemma 2. First, we show Lemma 2-1. By Lemma 1, the losing

party always proposes the best offer by depleting all her surplus. Therefore, the

party that can potentially provide the median voter with a higher utility level

is the winner. Notice that party j’s pork-barrel promise is bounded above by

party j leader’s payoff evaluated at βk∗j (otherwise, the leader gets a negative

utility):

Qj − C(
∣∣θj − βk∗j ∣∣).

Substituting this into the median voter’s utility, we obtain

W k
j = Qj − C(

∣∣θj − βk∗j ∣∣)− c(|x̂k − βk∗j |),
and similarly, for party i,

W k
i = Qi − C(

∣∣θi − βk∗i ∣∣)− c(|x̂k − βk∗i |),
where W k

j and W k
i are the (potential) maximum utilities that the median voter

gets from the corresponding party’s offer. Therefore, party i wins in the third

stage if and only if

Qi −Qj >[
c(|x̂k − βk∗i |) + C(

∣∣θi − βk∗i ∣∣)]− [c(|x̂k − βk∗j |) + C(
∣∣θj − βk∗j ∣∣)], (10)

Now, we only need to prove Lemma 2-2. We consider two cases: (Case-1)

x̂k > θi, and (Case-2) x̂k < θi.

(Case-1): In this case, β̂i = β̂(x̂k, θi) is determined implicitly by the first-

order condition

C ′(β̂i − θi) = c′(x̂k − β̂i)

36



Totally differentiating with respect to x̂k and β̂i, we obtain

(C ′′ + c′′)dβ̂i = c′′dx̂k

(Case-2): In this case, β̂i = β̂(x̂k, θi) is determined implicitly by the first-

order condition

C ′(θi − β̂i) = c′(β̂i − x̂k)

Totally differentiating with respect to x̂k and β̂i, we obtain

(C ′′ + c′′)dβ̂i = c′′dx̂k

Thus, either way, we get the same condition. We have completed the proof.�

Proof of Lemma 3. We will focus on the case of i = L. When i = R, we

can apply the same procedure. We will first show the following claim.

Claim. C ′i = c′i when θi < x̂k, C ′i = −c′i when θi > x̂k and C ′′i =
c′′i C

′′
i

c′′i +C′′i
, where

Ci = C(
∣∣x̂k − θi∣∣), ci = c

(∣∣x̂k − β (x̂k, θi)∣∣), and Ci = C
(∣∣β (x̂k, θi)− θi∣∣).

Proof of Claim. So, there are two cases: (Case-a) θi < x̂k, and (Case-b)

θi > x̂k.

(Case-a): Taking the first derivative, we have

C ′(x̂k − θi) = C ′(β̂i − θi)
∂β̂i
∂x̂k

+ c′(x̂k − β̂i)(1−
∂β̂i
∂x̂k

) = c′(x̂k − β̂i),

Here, we used the first-order condition C ′ = c′, which must hold at the opti-

mum. Taking the second-order derivative, we have

C ′′(x̂k − θi) = c′′(x̂k − β̂i)(1−
∂β̂i
∂x̂k

)

= c′′(x̂k − β̂i)

(
1− c′′(x̂k − β̂i)

c′′(x̂k − β̂i) + C ′′(β̂i − θi)

)

=
c′′(x̂k − β̂i)C ′′(β̂i − θi)
c′′(x̂k − β̂i) + C ′′(β̂i − θi)
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(Case-b): Taking the first-order derivative, we have

C ′(θi − x̂k) = −C ′(θi − β̂i)
∂β̂i
∂x̂k

+ c′(β̂i − x̂k)(
∂β̂i
∂x̂k
− 1) = −c′(β̂i − x̂k),

Taking the second-order derivative, we have

C ′′(θi − x̂k) = −c′′(β̂i − x̂k)(
∂β̂i
∂x̂k
− 1)

= c′′(β̂i − x̂k)

(
1− c′′(x̂k − β̂i)

c′′(x̂k − β̂i) + C ′′(θi − β̂i)

)

=
c′′(β̂i − x̂k)C ′′(θi − β̂i)
c′′(β̂i − x̂k) + C ′′(θi − β̂i)

We have completed the proof of the Claim.�

We start with Lemma 3-1. First, we consider (Case-1): x̂k ∈ (θL, θR),

then Ṽ k
L = (QL −QR)−

(
C(xk + y − θL)− C(θR − xk − y)

)
. Thus, we have

dṼ k
L

dxk
= −

(
C ′(x̂k − θL) + C ′(θR − x̂k)

)
< 0.

This implies that Ṽ k
L is decreasing in x̂k. In the case of Ṽ k

R ,
dṼ kR
dxk

> 0 and Ṽ k
R is

increasing in x̂k.

There are two more cases: (Case-2) x̂k < θL, and (Case-3) x̂k > θR.

(Case-2):
dṼ kL
dxk

= C ′(θL − x̂k)− C ′(θR − x̂k) < 0, since C ′′(d) > 0. Thus, Ṽ k
L is

decreasing in x̂k.

(Case-3):
dṼ kL
dxk

= −C ′(x̂k − θL) + C ′(x̂k − θR) < 0, since C ′′(d) > 0. Thus, Ṽ k
L

is decreasing in x̂k.

For the convexity, again we have three cases: (Case-1) x̂k ∈ (θL, θR),

(Case-2) x̂k < θL, and (Case-3) x̂k > θR. In each case, we have the same

second derivatives:

(Case-1):
d2Ṽ kL
d(xk)2

= −C ′′(x̂k − θL) + C ′′(θR − x̂k).
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(Case-2):
dṼ kL
dxk

= C ′(θL− x̂k)−C ′(θR− x̂k) and
d2Ṽ kL
d(xk)2

= −C ′′(θL− x̂k)+C ′′(θR−

x̂k).

(Case-3):
dṼ kL
dxk

= −C ′(x̂k − θL) + C ′(x̂k − θR) and
d2Ṽ kL
d(xk)2

= −C ′′(x̂k − θL) +

C ′′(x̂k − θR).

Therefore, in all cases,
d2Ṽ kL
d(xk)2

= −C ′′L + C ′′R, so we have:

d2Ṽ k
L

d(xk)2
= −C ′′L + C ′′R

= − c′′LC
′′
L

c′′L + C ′′L
+

c′′RC
′′
R

c′′R + C ′′R

=
−c′′LC ′′L (c′′R + C ′′R) + c′′RC

′′
R (c′′L + C ′′L)

(c′′L + C ′′L) (c′′R + C ′′R)

=
C ′′LC

′′
R (c′′R − c′′L) + c′′Lc

′′
R (C ′′R − C ′′L)

(c′′L + C ′′L) (c′′R + C ′′R)

Thus, if c′′R ≥ c′′L and C ′′R ≥ C ′′L then
d2Ṽ kL
d(xk)2

≥ 0. Since QL = QR, if L wins,

then x̂k − θL < θR − x̂k. Thus, if c′′′ > 0 and C ′′′ > 0 then we have c′′R ≥ c′′L

and C ′′R ≥ C ′′L.�

Proof of Lemma 4. We will focus on the case of i = L. When i = R, we

can apply the same procedure. Let’s start with Lemma 4-1. Consider the case

where xk ± ȳ ∈ (θL, θR). There are two subcases: (Case 1) is the case where

L wins with certainty (Ṽ k
L (xk + ȳ, θL, θR) ≥ 0), and (Case 2) is the one where

L may lose depending on the realization of y (Ṽ k
L (xk + ȳ, θL, θR) < 0).

(Case 1): In this case, EṼ k
L =

∫ ȳ
−ȳ Ṽ

k
L (xk + y, θL, θR)g(y)dy. Thus,

dEṼ k
L

dxk
=

∫ ȳ

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy < 0

(Case 2): In this case, EṼ k
L =

∫ x̄−xk
−ȳ Ṽ k

L (xk+y, θL, θR)g(y)dy, where Ṽ k
L (x̄, θL, θR) =

0. That is, if xk + y > x̄, then party L loses. (Note that x̄ is solely determined

39



by the value of QL −QR: dx̄
d(QL−QR)

> 0. If QL = QR, then x̄ = 0 holds, since

θL = −θR.) Differentiating this with respect to xk, we have

dEṼ k
L

dxk
= Ṽ k

L (x̄, θL, θR) +

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy

=

∫ x̄−xk

−ȳ
Ṽ k
L (xk + y, θL, θR)g(y)dy < 0

Thus, we have completed the proof of Lemma 4-1.

For Lemma 4-2, we classify four cases:

(Case a: xk − ȳ ≥ θL and xk + ȳ ≤ x̄): In this case, EṼ k
L =

∫ ȳ
−ȳ Ṽ

k
L (xk +

y, θL, θR)g(y)dy. Thus,

d2EṼ k
L

d(xk)2
=

∫ ȳ

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

Case b: xk − ȳ ≥ θL and xk + ȳ > x̄): In this case, EṼ k
L =

∫ x̄−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy. That is, if xk +y > x̄ = 0, then party L loses. Differentiating

this with respect to xk, we have

dEṼ k
L

dxk
= −Ṽ k

L (0, θL, θR) +

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy

=

∫ x̄−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy

Thus, the second-order derivative is

d2EṼ k
L

d(xk)2
= −Ṽ k′

L (0, θL, θR) +

∫ −xk
−ȳ

Ṽ k′′
L (xk + y, θL, θR)g(y)dy

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk + y, θL, θR) > 0.

Thus, EṼ k
L is convex.
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(Case c: xk − ȳ < θL and xk + ȳ ≤ x̄): In this case, EṼ k
L =

∫ θL−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy +
∫ ȳ
θL−xk

Ṽ k
L (xk + y, θL, θR)g(y)dy. Differentiating this with

respect to xk, we obtain

dEṼ k
L

dxk
=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ ȳ

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

The second-order derivative is

d2EṼ k
L

d(xk)2
=

∫ θL−xk

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy+

∫ ȳ

θL−xk
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk + y, θL, θR) > 0.

Thus, EṼ k
L is convex.

(Case d: xk − ȳ < θL and xk + ȳ > x̄): In this case, EṼ k
L =

∫ θL−xk
−ȳ Ṽ k

L (xk +

y, θL, θR)g(y)dy +
∫ x̄−xk
θL−xk

Ṽ k
L (xk + y, θL, θR)g(y)dy. Differentiating this with

respect to xk, we obtain

dEṼ k
L

dxk
=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

− Ṽ k
L (0, θL, θR)g(−xk)

=

∫ θL−xk

−ȳ
Ṽ k′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′
L (xk + y, θL, θR)g(y)dy

The second-order derivative is

d2EṼ k
L

d(xk)2
=

∫ θL−xk

−ȳ
Ṽ k′′
L (xk + y, θL, θR)g(y)dy +

∫ x̄−xk

θL−xk
Ṽ k′′
L (xk + y, θL, θR)g(y)dy

−Ṽ k′
L (0, θL, θR)g(−xk)

From Lemma 3-2, we know Ṽ k′
L (0, θL, θR) < 0 and Ṽ k′′

L (xk+y, θL, θR) > 0 when

c′′(d) > 0 and C ′′(d) > 0. Thus, EṼ k
L is convex. We have completed the proof

of Lemma 4-2.

For Lemma 4-3 and Lemma 4-4, first observe that,

EṼi (π) ≡
∫ ȳ

−ȳ

K∑
k=1

Ṽ k
i (xk(π) + y, θi, θj)g(y)dy
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For any k 6= k′, ∂2EṼi
∂xk∂xk′

= 0. The Hessian matrix of EṼL has 0s on non-diagonal

parts and negative terms on the diagonal due to Lemma 4-2. Therefore, the

Hessian matrix is negative semidefinite and EṼ are convex function in (xk)Kk=1

(we cannot say ”strictly convex” since there are losing districts).

Also notice that the proof of Lemma 4-3 and 4-4 hold even when we consider

the general case x̂k = xk + yk, where yk is the district specific shock and yks

have joint distribution g(y1, ..., yk). The proof above works for the sepcial case

when yks are perfect correlated. �

Proof of Lemma 5. Note that F (x∗kL ) = k
2K

. Thus, to achieve x∗kL as the

median voter of the kth district, we need to use all voters to the left of x∗kL . This

is true for all k = 1, ..., K. Thus, x∗L is the leftmost median voter allocation

in lexicographic order. We can prove the statement for x∗R by a symmetric

argument.�

Appendix B: Constant Elasticity Example

In this appendix, we elaborate on the calculation involved in Example 1. Let

C(d) = aCdγ and c(d) = acdγ, where γ > 1, aC > 0, and ac > 0 are parameters.

In this case both party leaders and voters have the same elasticity that is

constant γ. In this case, we have the following convenient formula. Denote

A = A(aC , ac) = aC
(

α
1+α

)γ
+ ac

(
1

1+α

)γ
> 0 where α =

(
aC

ac

) 1
γ−1

. Suppose

that
(
Q
A

) 1
γ ≥ 2 + ȳ holds to assure Assumption 2. Normalizing A = 1, we have

C(d) = Adγ = dγ. In this case, Ṽ k
L is concave (convex) in x̂k if γ ≤ 2 (γ ≥ 2).
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EṼ k
L =

∫ −xk
θL−xk

(
C(θR − xk − y)− C(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
C(θR − xk − y)− C(θL − xk − y)

)
g(y)dy

EṼ k′
L =

∫ −xk
θL−xk

(
−C ′(θR − xk − y)− C ′(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
−C ′(θR − xk − y) + C ′(θL − xk − y)

)
g(y)dy

EṼ k′′
L =

∫ −xk
θL−xk

(
C ′′(θR − xk − y)− C ′′(xk + y − θL)

)
g(y)dy

+

∫ θL−xk

−ȳ

(
C ′′(θR − xk − y)− C ′′(θL − xk − y)

)
g(y)dy

+ (C ′(θR) + C ′(θL))g(−xk)

Suppose that C(d) = dγ (γ > 1), θL = −1, θR = 1 (thus x̄ = 0), and g(y) = 1
2ȳ

if and only if y ∈ [−ȳ, ȳ]. If ȳ ≥ 2 and xk ∈ [−1, 1] for all possible xk, Case-d
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in the proof of Lemma 4 applies. In this case, we have

EṼ k′′
L = γ (γ − 1)

∫ −xk
θL−xk

(
(θR − xk − y)γ−2 − (xk + y − θL)γ−2

) 1

2ȳ
dy

+ γ (γ − 1)

∫ θL−xk

−ȳ

(
(θR − xk − y)γ−2 − (θL − xk − y)γ−2

) 1

2ȳ
dy

+
1

2ȳ
× 2γθγ−1

R

=
γ

2ȳ

[
−(θR − xk − y)γ−1 − (xk + y − θL)γ−1

]−xk
θL−xk

+
γ

2ȳ

[
−(θR − xk − y)γ−1 + (θL − xk − y)γ−1

]θL−xk
−ȳ +

γ

ȳ
θγ−1
R

=
γ

2ȳ
[−(θR)γ−1 + (θR − xk + ȳ)γ−1 − (−θL)γ−1 + 0 + 0

− (θL − xk + ȳ)γ−1 + 2θγ−1
R ]

=
γ

2ȳ

[
(1− xk + ȳ)γ−1 − (−1− xk + ȳ)γ−1 + 2

]
=

γ

2ȳ

[
(1− xk + ȳ)γ−1 − ((1− xk + ȳ)− 2)γ−1 + 2

]
When γ < 2, (1 − xk + ȳ)γ−1 − ((1 − xk + ȳ) − 2)γ−1 > −2 holds. Thus,

EṼ k′′
L > 0 holds as long as Case 4 holds (ȳ ≥ 1: there is a chance to win

district k for any xk). That is, the expected utility is convex in xk, although

C ′′′(d) < 0 holds. So, even without positive third derivatives, the slice-and-mix

strategy and the slice-them-all strategy are optimal gerrymandering policies

in the constant average constraint case, respectively.�
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