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Abstract 

 Human immunodeficiency virus-associated peripheral neuropathy (HIV-

PN) continues to be a prevalent comorbidity of HIV infection, despite virologic 

control due to effective antiretroviral therapy (ART). Symptoms include bilateral 

tingling, numbness, and pain in distal extremities. Severity of symptoms is 

associated with a loss of intraepidermal nerve fiber density (IENFD) in the feet. 

Damage to the dorsal root ganglia (DRG) has also been observed in post-

mortem tissue analysis from patients with HIV-PN. Treatment options are limited 

due to a lack of understanding of the disease pathogenesis. Chronic monocyte 

activation and accumulation of macrophages in peripheral nervous system (PNS) 

tissues has been reported but few studies have directly demonstrated the role of 

monocyte/macrophage activation and traffic in the pathogenesis of HIV-PN. The 

central hypothesis of this thesis is that monocyte activation and traffic mediates 

PNS neuronal damage. 

 We addressed this hypothesis in several ways. In chapter 2, we describe 

pathology seen in a rapid disease progression animal model of HIV-PN. We 

found that an early loss of IENFD preceded a loss of small diameter DRG 

neurons. In chapter 3, we associated DRG pathology with an accumulation of 

inflammatory macrophages surrounding DRG neurons. Increased monocyte 

traffic to the DRG was associated with severity of DRG pathology and with a loss 
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of IENFD. In chapter 4, we directly tested the impact of monocyte traffic on DRG 

pathology by blocking leukocyte traffic with an anti-VLA-4 antibody, natalizumab. 

Blocking cell traffic reduced accumulation of macrophages in the DRG and 

improved pathology. Next we treated animals with methylglyoxal-bis-

guanylhydrazone (MGBG) to specifically target myeloid cells and reduce their 

activation. MGBG treatment improved DRG pathology and reduced accumulation 

of macrophages in tissues. Having demonstrated the role of monocyte traffic and 

activation, we aimed to identify signaling proteins and inflammatory proteins 

associated with PNS pathology. We found elevated monocyte chemoattractants 

in DRG tissue and elevated markers of monocyte activation in plasma that were 

associated with a loss of IENFD. 

 Together, these studies demonstrate that systemic monocyte activation, 

macrophage accumulation in DRG tissue, and monocyte traffic plays a major role 

in SIV-PN pathogenesis. These studies provide novel insight into immune 

mechanisms that impact neuronal loss during SIV infection. Thus, modulating 

macrophage activation and reducing monocyte traffic may have therapeutic 

benefits to patients suffering from or at risk of developing HIV-PN. 



	 v	

 
TABLE OF CONTENTS 

Abstract .. .............................................................................................................. iii 

Table of Contents...................................................................................................v 

List of Figures and Tables................................................................................... viii 

List of Abbreviations..............................................................................................xi 

Acknowledgements ............................................................................................. xiii 

 
CHAPTER I: Introduction: A literature review of the factors contributing to HIV 
and SIV associated peripheral neuropathy ........................................................... 1 
 
 Literature Review ......................................................................................... 2 

I. Human Immunodeficiency Virus ........................................................... 2 
a. A brief history of the HIV epidemic............................................. 2 
b. HIV structure and life cycle ........................................................ 3 
c. An evolutionary perspective of SIV and HIV .............................. 5 
d. Clinical progression of HIV infection .......................................... 6 
e. Complications in the modern cART era ..................................... 8 

II. Peripheral Neuropathies ..................................................................... 11 
a.   Overview of the neuropathic pain and the peripheral nervous 

system ....................................................................................... 11 
b. HIV-associated peripheral neuropathies .................................. 12 
c. Animal models of HIV-peripheral neuropathy .......................... 16 

III. Immune regulation of the peripheral nervous system ......................... 18 
a. Molecular signaling of pain and inflammation .......................... 18 
b. Peripheral nerve degeneration and regeneration..................... 20 

IV. The role of monocytes and macrophages during HIV and SIV   
infection ......................................................................................... 21 
a. Viral infection of monocytes and macrophages ....................... 21 
b. Chronic monocyte activation during HIV and SIV infection...... 22 
c. Macrophage polarization.......................................................... 23 

 
 Summary ..................................................................................................... 24 
 
 References .................................................................................................. 38 
 
CHAPTER II: Pathology of the peripheral nervous system associated with  
SIV infection ........................................................................................................ 53 
 
 Abstract............................................................................................... 54 



	 vi	

 Introduction ......................................................................................... 55 
 Materials and Methods........................................................................ 57 
 Results ................................................................................................ 61 
 Discussion........................................................................................... 64 
 Tables ................................................................................................. 68 
 Figures ................................................................................................ 70 
 References.......................................................................................... 80 
 
CHAPTER III: Monocyte traffic and accumulation of macrophages in the dorsal 
root ganglia during SIV peripheral neuropathy.................................................... 83 
 
 Abstract............................................................................................... 84 
 Introduction ......................................................................................... 85 
 Materials and Methods........................................................................ 85 
 Results ................................................................................................ 90 
 Discussion........................................................................................... 94 
 Acknowledgements............................................................................. 97 
 Tables ................................................................................................. 98 
 Figures .............................................................................................. 100 
 References........................................................................................ 110 
 
CHAPTER IV: a4-integrin antibody treatment blocks monocyte/macrophage 
traffic to, VCAM-1 expression in and pathology of the dorsal root ganglia  
in a SIV macaque model of HIV-peripheral neuropathy.................................... 113 
 
 Abstract............................................................................................. 114 
 Introduction ....................................................................................... 115 
 Materials and Methods...................................................................... 116 
 Results .............................................................................................. 120 
 Discussion......................................................................................... 124 
 Acknowledgements........................................................................... 129 
 Tables ............................................................................................... 130 
 Figures .............................................................................................. 132 
 References........................................................................................ 138 
 
 
CHAPTER V: An oral form of methylglyoxal-bis-guanylhydrazone reduces 
monocyte activation and traffic to the dorsal root ganglia in a primate model of 
HIV-peripheral neuropathy ................................................................................ 141 
 
 Abstract............................................................................................. 142 
 Introduction ....................................................................................... 143 
 Materials and Methods...................................................................... 144 
 Results .............................................................................................. 147 
 Discussion......................................................................................... 150 
 Acknowledgements........................................................................... 154 



	 vii	

 Tables ............................................................................................... 155 
 Figures .............................................................................................. 156 
 References........................................................................................ 162 
 

CHAPTER VI: Loss of intraepidermal nerve fiber density during SIV peripheral 
neuropathy is mediated by monocyte activation and elevated monocyte 
chemotactic proteins ......................................................................................... 165 
 
 Abstract............................................................................................. 166 
 Introduction ....................................................................................... 168 
 Materials and Methods...................................................................... 169 
 Results .............................................................................................. 174 
 Discussion......................................................................................... 179 
 Acknowledgements........................................................................... 183 
 Tables ............................................................................................... 184 
 Figures .............................................................................................. 186 
 References........................................................................................ 194 
 
CHAPTER VII: Conclusion ............................................................................... 198 
 
 Discussion ............................................................................................ 199 
 Where does damage happen first?................................................... 200 

 What role do M1 and M2 macrophages play in SIV-PN        
pathogenesis?............................................................................... 203 

 Why do monocytes traffic to the DRG?............................................. 207 
 How to target monocyte activation and traffic to prevent and  
 treat HIV-PN?................................................................................ 208 
 
 Summary ............................................................................................... 211 
 
 Figures .................................................................................................. 212 
 
 References ............................................................................................ 214 
 
 

 



	 viii	

LIST OF TABLES 
 

Chapter II 
Table 2.1: SIV+ animals used in this study.............................................. 68 
 

Chapter III 
Table 3.1: Animals used in the study....................................................... 98 
Table 3.2: The majority of the BrdU+ cells surrounding the DRG     

neurons are MAC387+ .................................................................. 99 
 
Chapter IV 

Table 4.1: SIV-infected CD8-depleted rhesus macaques used in this   
study and brain and DRG pathology ........................................... 130 

 
Chapter V 

Table 5.1: SIV+ rhesus macaques used in this study and DRG    
pathology ..................................................................................... 155 

 
Chapter VI 

Table 6.1: Animals used in the study..................................................... 184 
 
 
 
 

 

 
  
 



	 ix	

 
LIST OF FIGURES  

 
Chapter I 

Figure 1.1: Global antiretroviral therapy coverage and number of  
AIDS-related deaths ...................................................................... 26 

Figure 1.2: Schematic overview of the HIV-1 life cycle ........................... 28 
Figure 1.3: Time course of typical HIV-1 infection................................... 30 
Figure 1.4: Schematic overview of the dorsal root ganglia (DRG)  

and peripheral nervous system ..................................................... 32 
Figure 1.5: Dorsal root ganglia pathology associated with HIV          

infection ......................................................................................... 34  
Figure 1.6: Increase in the CD16+ monocyte cell population  

during HIV infection ........................................................................36 
 

Chapter II 
Figure 2.1: Intraepidermal nerve fiber (IENF) density decreased         

post-infection ................................................................................. 70  
Figure 2.2: Dorsal root ganglia pathology ............................................... 72  
Figure 2.3: Severe DRG pathology is correlated to a greater 

loss of IENFD ............................................................................... 74 
Figure 2.4: Classification of types of DRG neurons ............................... 76 
Figure 2.5: SIV-infection results in a differential loss of small         

diameter DRG neurons.................................................................. 78 
 
Chapter III 

Figure 3.1: Productive viral replication in the macrophage in the  
dorsal nerve root and DRG of SIV-infected macaques ............... 100 

Figure 3.2: Elevated numbers of CD68+ macrophages are  
associated with SIV infection and severity of DRG pathology..... 102 

Figure 3.3: Elevated numbers of CD163+ macrophages are  
associated with SIV infection....................................................... 104 

Figure 3.4: Cell traffic from the bone marrow to the DRG  
measured by increased BrdU+ cells with SIV infection ............... 106 

Figure 3.5: Elevated numbers of MAC387+ macrophages are associated 
with SIV infection and severity of DRG pathology ....................... 108 

 
Chapter IV 
           Figure 4.1: Decreased DRG pathology with natalizumab treatment ..... 132 

Figure 4.2: Natalizumab treatment results in a decrease in  
  monocyte traffic, macrophage activation, SIV infection, 
  but not numbers of CD3+ T cells in DRGs ................................... 134 
Figure 4.3: Natalizumab treatment reduces VCAM-1  

expression on surface of blood vessels in DRGs ........................ 136 
 
Chapter V 

Figure 5.1: Overall DRG pathology is reduced in MGBG  



	 x	

-treated animals compared to controls ....................................... 156 
Figure 5.2: MGBG treatment reduces the number of              

macrophages in and cell traffic to the DRG................................. 157 
Figure 5.3: MGBG treatment does not allow for regeneration  

of peripheral nerves..................................................................... 160 
 
Chapter VI 

Figure 6.1: Correlates of plasma markers of monocyte 
 activation and monocyte chemoattractants ................................. 186 
Figure 6.2: sCD163 and RANTES in plasma negatively  
 correlated to IENFD..................................................................... 188 
Figure 6.3: RANTES, MCP-1, and sCD137 protein levels in  
 DRG tissue .................................................................................. 190 
Figure 6.4: CCR5, CCR2, and CD137 expression on DRG  
 satellite cells ................................................................................ 192 

 
Chapter VII 

Figure 7.1: Pathways involved in SIV-PN pathogenesis ....................... 212 
  
 

 
 

 
 

 
 

 

 
 

 
 

 

 

 

 

 



	 xi	

 



	 xii	

 
LIST OF ABBREVIATIONS 

AIDS acquired immunodeficiency syndrome 
ANI asymptomatic neurocognitive impairment 
ART antiretroviral therapy  
ATN antiretroviral neurotoxicity 
ATP adenosine triphosphate 
AZT azidothymidine 
BrdU bromodeoxyuridine 
CA capsid 
cART  combined antiretroviral therapy 
CCLX C-C motif ligand X  
CCRX C-C motif receptor X 
CDX cluster of differentiation marker X 
CDRG cervical dorsal root ganglia 
CGRP calcitonin gene-related protein 
CMV cytomegalovirus 
CNS central nervous system 
CVC cenicriviroc 
CVD cardiovascular disease 
CXCLX C-X-C motif chemokine ligand X 
CXCRX C-X-C motif chemokine receptor X 
d4T stavudine 
ddC zalcitabine 
ddI didanosine 
dNTP deoxynucleotide 
DPI days post-infection 
DRG dorsal root ganglia 
DSP distal symmetric polyneuropathy 
ELISA enzyme linked immunosorbent assay 
FIV feline immunodeficiency virus 
H&E hematoxlyin and eosin 
HAART  highly active antiretroviral therapy 
HAD HIV-associated dementia 
HAND HIV-associated neurocognitive disorders 
HIV  human immunodeficiency virus 
HTLV  human T-lymphotropic virus 
IB4 Isolection B4 
IENFD intraepidermal nerve fiber density 
IFN interferon 
IHC immunohistochemistry 
IL interleukin 
IN  integrase 
INs integration inhibitors 
LAV  lymphadenopathy-associated virus 



	 xiii	

LDRG lumbar dorsal root ganglia 
LTR long terminal repeats 
MA matrix  
MGBG methylglyoxal bis(guanylhydrazone) 
MIP macrophage inflammatory protein 
MND mild neurocognitive disorder 
MNGC multinucleated giant cell 
MRP-14 migratory inhibitory factor-related protein 14 
NBF neutral buffered formalin 
NC nucleocapsid  
NF neurofilament 
NGF nerve growth factor 
NgR nogo-66 receptor 
NK natural killer 
NNRTI non-nucleoside reverse transcriptase inhibitors 
NRTI nucleoside/nucleotide reverse transcriptase inhibitors 
PEP post-exposure prophylaxis 
PI protease inhibitor 
PIC pre-intregration complex 
PCR polymerase chain reaction 
PML progressive multifocal leukoencephalopathy 
PN peripheral neuropathy 
PNS peripheral nervous system 
PR protease 
PrEP  pre-exposure prophylaxis 
RANTES regulated on activation, normal T cell expressed and secreted 
RT reverse transcriptase 
SAIDS simian acquired immunodeficiency syndrome 
SAMDC S-adenosylmethionine decarboxylase 
SAMHD1 sterile alpha motif- and HD domain-containing protein 1 
SDRG sacral dorsal root ganglia 
SIV simian immunodeficiency virus 
SIVE SIV-associated encephalitis 
SN sensory neuropathy 
SP substance P 
Tat trans-activator of transcription 
TDRG thoracic dorsal root ganglia 
ThX type X T helper  
TNF tumor necrosis factor 
TNFRSF9 tumor necrosis factor receptor superfamily 9 
VCAM-1 vascular cell adhesion molecule 1 
VLA-4 very late antigen 4 
VPR viral protein R 
VPX viral protein X 
VPS vacuolar protein sorting 
WPI weeks post-infection 



	 xiv	

 



	 xv	

ACKNOWLEDGEMENTS 
 

 I feel extremely fortunate to have worked under Dr. Tricia Burdo during my 

time at Boston College. Trish is a very driven scientist and has taught me how to 

pursue scientific inquiry, work efficiently, and have fun while doing so. I 

appreciate the fact that she respected and valued my opinions and treated me as 

an equal. She always had helpful suggestions for troubleshooting experiments or 

to help interpret data. She created a wonderful working environment and knew 

when and how much to push me. On a personal level, she has also been a 

wonderful role model as a woman in science. I admire her ability to balance 

family and work, and excel at both. Going forward, I’m sure that I can always 

reach out to her for career or personal advice. The process of earning a Ph.D. 

was certainly made easier and more enjoyable due to Trish’s wonderful 

mentoring and the relationship we formed. 

 I would also like to thank Dr. Kenneth Williams. He has served as a 

second mentor to me, as well as a collaborator. He has provided great advice for 

experiments, data interpretation, and my future career. I am also grateful for his 

willingness to share lab equipment with me. I would also like to thank members 

of his lab including Dr. Josh Walker, Dr. Jamie Schaffer, and Jaclyn Mallard for 

helping out with an experiment and teaching me a new techniques. I would also 

like to thank Dr. Patrick Autissier for assisting with flow cytometry. He improved 

my flow cytometry skills greatly and has always been helpful with analyzing and 

running samples for me.  



	 xvi	

I would also like to thank all of the undergraduate students that have 

worked with me over the years. They made lab work more enjoyable, kept me on 

my toes, and helped me generate data faster than I ever could alone. Thank you 

to Ayman Bodair, Neil Shah, Jinal Ghandi, Jake Robinson, Guy Guenthner, 

Samshita Yalamanchili, and Cherry Au. 

 Thank you to the other members of my committee. Dr. Welkin Johnson 

has always been supportive and provided helpful comments during committee 

meetings. I have had the pleasure of working with Dr. Andrew Miller. He is a 

wonderful pathologist who never hesitated on answering questions. This thesis 

relied very heavily on pathology analysis, and thus this would these experiments 

would not have been possible without his help. Thank you to Dr. Thomas 

Seyfried for serving as a reader on my thesis committee. 

 I would also like to thank my friends and family. My parents have been 

very supportive of me pursuing my passion in science. They raised me to be 

inquisitive, driven, and to value education. I could not have reached this point 

without their support. Finally, I want to thank my fiancée (soon to be husband), 

Zachary Kublin. Zach has provided me with more support and encouragement 

than I thought possible could come from a single person. He pushed me to send 

out “just one more application” to Boston College and has listened to so many 

practice presentations that he has become an expert on HIV peripheral 

neuropathy, despite not being a biologist. He has been cheering me on endlessly 

and has kept me sane throughout this journey.  



	
	

1	 	

CHAPTER I 
 
Introduction: A literature review of the factors contributing to HIV and SIV associated 
peripheral neuropathy. 
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LITERATURE REVIEW 
 

I. Human Immunodeficiency Virus 

a. A brief history of the HIV epidemic 

 Since the human immunodeficiency virus (HIV) epidemic began in the 1980’s, 

almost 71 million people worldwide have been infected, resulting in 34 million deaths. 

Currently, there are estimated to be 36.7 million people infected with HIV, living across 

160 countries. Despite advances in treatment and prevention, there were 2.1 million 

new infections in 2015. Treatment compliance and availability remains problematic. 

Less than half of those infected with HIV are on antiretroviral therapy and 1.1 million 

individuals died from acquired immune deficiency syndrome (AIDS)-related illnesses in 

2015 (Figure 1.1) [4].   

 The virus was first reported in the United States in 1981 when four, young, gay 

men in Los Angeles were reported to have a rare lung infection called Pneumocytosis 

carinii pneumonia and other rare infections, suggesting a new form of cellular 

immunodeficiency [5]. By the end of 1981, 270 individuals, all in the gay population, had 

similar reports of severe immunodeficiency and 121 of those individuals died. A few 

years later, a retrovirus from a family of human T-cell leukemia viruses (HTLV) named 

Lymphadenopathy Associated Virus (LAV) by one group and human T-lymphotropic 

virus type III (HTLV-III) by another, was identified as the cause of AIDS [8, 9]. A few 

years later the virus was renamed HIV to eradicate confusion of multiple names of the 

same virus causing AIDS, as well as to better describe its biological function [10].  

 In  1987, the first HIV antiretroviral, azidothrymidine (AZT) was FDA approved for 

treatment of HIV [11]. However, it was quickly determined that AZT had many side 
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effects, and that it was ineffective in extending time to death [12]. A decade later, new 

classes of antiretroviral drugs were discovered and it was determined that combination 

therapy with multiple classes of drugs, instead of monotherapy was effective to extend 

life, reduce plasma viral load, and restore immune function [13, 14]. These new and 

effective classes of drugs ushered in the era of highly active antiretroviral therapy 

(HAART) and combined antiretroviral therapy (cART). Currently there are six classes of 

HIV antiretroviral drugs including non-nucleoside reverse transcription inhibitors 

(NNRTIs), nucleoside reverse transcriptase inhibitors (NRTIs), protease inhibitors (PIs), 

fusion inhibitors, entry inhibitors, and integrase inhibitors (INs). There are 25 HIV drugs 

on the US market, many of which are used in combination with others. Additionally, 

great strides have been made in HIV prevention including post- and pre- exposure 

prophylaxis (PEP and PrEP)	[15]. 

b. HIV structure and life cycle 

 The HIV-1 genome consists of nine open reading frames, which encode 15 

proteins. Gag, Pol, and Env polyproteins are present in all retroviruses, HIV included. 

The Gag polyprotein is cleaved into four proteins: MA (matrix), CA (capsid), NC 

(nucelocapsid), and p6. These four Gag proteins, along with two Env proteins, gp120 

and gp41, make up the core and outer membrane of the virion particle. There are three 

Pol proteins that perform essential enzymatic steps that allow HIV to replicate. These 

three proteins are PR (protease), RT (reverse transcriptase), and IN (integrase). The 

remaining six proteins are accessory proteins that aid in gene regulation and particle 

assembly. Also included in the HIV viral particle is an RNA molecule [16]. 
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 The HIV-1 envelope is covered in spikes that are composed of trimmers of 

heterodimers made of gp120 and gp41 [17]. Gp120 binds to CD4 expressed on host 

immune cells, typically T helper cells and macrophages [18]. After initial binding, there is 

a conformational change that allows for binding to a host co-receptor, either C-C 

chemokine receptor type 5 (CCR5) and sometimes CXC chemokine receptor type 4 

(CXCR4)	 [19]. Binding to the co-receptor initiates a second conformational change that 

allows for gp41’s fusion peptide to enter the host cell’s membrane [20]. 

 Once the virus has fused and entered the host cell, the inner cone-shaped shell 

made of CA must uncoat to release replication enzymes RT and IN and the genomic 

RNA [21]. Uncoating is aided by host factor TRIM5α [22]. After uncoating, reverse 

transcription takes place within the cytoplasm of the host cell, which results in a linear 

viral DNA molecule. Reverse transcription is inhibited by host restriction factor 

APOBEC3G [23], but Vif, an HIV-encoded accessory protein counteracts this inhibition 

[24].  

 The viral DNA is then transported into the nucleus of the host cell as a part of the 

pre-intergration complex (PIC)	 [25]. IN first cleaves off HIV’s long terminal repeats 

(LTRs) and then joins the 3’hydroxyl ends of the viral DNA to the cut host DNA. This 

process is completed by the host’s machinery and a stable provirus is established. 

Once integration is complete, the virus is transcribed with the help of Tat, which is 

essential for transcriptional elongation [26, 27], and Rev, which acts as an adaptor 

protein for mRNA export [28, 29]. Once the mRNA has been exported out of the 

nucleus, the mRNA is translated by the host’s machinery. 
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 Structural proteins CA, MA, and NC are cleaved from the precursor polypeptide 

Gag, which together form a viral-like particle at the plasma membrane of the host cell 

[30].  Gag and cellular E vacuolar protein sorting (VPS) proteins are responsible for viral 

budding [31, 32]. Once the viral particle has budded, it needs to mature in order to 

become infectious. Gag and Gag-Pol are cleaved into structural proteins and enzymes 

by PR [33]. The mature viral particle is now ready to infect another host cell and the 

cycle continues (Figure 1.2). 

c.  An evolutionary perspective of SIV and HIV 

HIV type 1 (HIV-1) was identified to be the cause of the AIDS epidemic soon 

after it began in 1981. Genetic analysis of clinical samples from around the world has 

identified three subgroups of HIV-1: M, N, and O. The vast majority of HIV infections 

around the world are group M, while N and O are more rare [34]. Using molecular clock 

analysis, it is estimated that HIV-1 group M first appeared in humans in the 1920s, but 

has since diversified extensively [35, 36]. Additional lentiviruses in humans and 

monkeys have been identified including HIV-2 and several species-specific strains of 

simian immunodeficiency virus (SIV). HIV-2 was first found in 1989 in an individual living 

in West Africa and is still common in the region. HIV-2 is less pathogenic and less easily 

transmitted than HIV-1 [37]. Over 40 species-specific strains of SIV have been identified 

and characterized. Each of these strains is named after the species from which it was 

isolated. 

HIV-2 is closely related to a strain of SIV isolated from sooty mangabeys 

(SIVsmm). It is believed that HIV-2 is a result of multiple cross-species transmission 

events from sooty mangabeys to humans [38]. HIV-1 is most closely related to a strain 
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of SIV isolated from chimpanzees (SIVcpz) [39, 40]. Different HIV-1 groups are 

interspersed amongst SIVcpz lineages, thus each group of HIV-1 most likely arose from 

a separate interspecies transmission event [41]. SIVcpz arose from a recombination 

event from SIVrcm (red-capped mangabeys) and SIVgsn (greater spot-nosed monkeys)	

[42, 43].  

For the most part, these SIV lentiviruses are nonpathogenic in their natural hosts, 

although simian AIDS (SAIDS) has been observed in captive monkeys as a result of 

long-term infection with SIV [44, 45]. Soon after the discovery of HIV-1, SAIDS was 

observed in captive rhesus macaques in U.S. primate research facilities [46-48]. The 

pathogenic SIV infection is believed to be a result of cross-species transmission events 

from sooty mangabeys (SIVsm) to rhesus macaques (SIVmac)	 [49, 50]. Other species 

of macaques including pigtailed and cynomolgus macaques develop disease similar to 

HIV/AIDS in humans, presumably because they are also unnatural hosts to the virus 

[51]. SIV infection in these primate species results in severe immunodeficiency, 

progressive wasting, opportunistic infection, and death, which is what is observed with 

HIV/AIDS during human disease [52]. SIV-infected primates have since been used as 

model to understand HIV disease pathogenesis and test therapeutics to treat, prevent, 

and cure HIV infection in humans. 

d. Clinical progression of HIV infection during the pre-cART era 

 There are four clinical stages of HIV infection (Figure 1.3) [2]. The earliest stage 

often begins when a single HIV virion infects an individual. Initial infection is followed by 

an eclipse phase, lasting about two weeks. During this phase, the virus is replicating 
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rapidly and spreading throughout the body, however an immune response and viremia 

are undetectable at this phase.  

 Acute infection occurs 2-4 weeks post infection (wpi). This phase is 

characterized by high viremia and sometimes results in flu-like symptoms.  During this 

phase, the body begins to mount an immune response consisting of antibodies against 

viral proteins and a CD8+ (cluster of differentiation 8) T cell response against infected 

cells. There is also a decline in the number of CD4+ T cells that will later partially 

recover. The end of acute infection is marked by a sharp decline in viral load due 

partially to control by the host’s immune system and by exhaustion of CD4+ target cells. 

 Both infected and uninfected CD4+ T cells die throughout HIV infection. 

Uninfected T cells die from apoptosis due to over expression of death ligands, direct 

cytotoxicity of HIV proteins, and activation-induced cell death due to elevated and 

persistent immune activation [53]. There are multiple ways that infected T cells can be 

killed [54]. Recently, it was found that the permissibility of the host cell dictates the 

death pathway. Quiescent T cells die via caspase-1 mediated pryoptosis due to abortive 

viral infection, while activated T cells die from caspase-3-mediated apoptosis [55]. 

 Acute infection is followed by a period of clinical latency, also known as chronic 

HIV infection. This period of latency can last an average of 10 years, during which 

patients have little or no symptoms. The virus remains active but replicates at low 

levels, maintaining a steady level, known as the viral set point. During this phase, the 

number of CD4+ T cells continues to slowly decline due to viral infection. 

 Finally, without treatment, patients can progress to AIDS, which is severe 

immunodeficiency due to a low CD4 T cell count (typically less than 200 cells/µL of 



	
	

8	 	

blood). With AIDS, plasma viral load increases, as the host’s immune system can no 

longer suppress viremia. Patients with AIDS usually succumb to opportunistic infections 

within 3 years of an AIDS diagnosis. 

 Today, cART regimens can prevent progression to AIDS. Recently, HIV-infected 

individuals have been urged to begin treatment as soon as they are diagnosed [56]. 

Previous guidelines had suggested to delay beginning cART until CD4 counts fell below 

a certain level [57]. When patients comply with their drug regimen, viral load can be 

undetectable and CD4 counts rise. 

e. Complications in the modern cART era 

 Due to advances in cART, an HIV diagnosis is no longer considered a death 

sentence. In fact, HIV+ persons have a lifespan only slightly shorter than the general 

population [58]. HIV+ patients are living longer due to suppressed or undetectable viral 

loads and higher CD4 counts	[58]. A longer time to death has resulted in a demographic 

shift in the HIV+ population. Today, more than 50% of the HIV+ population in the United 

States is over the age of 50	 [59]. Living with HIV in the modern era comes with the risk 

of many comorbidities due life-long exposure to cART, chronic immune activation that 

does not resolve after viral replication is controlled, and increased age	[60, 61]. 

 Disorders that typically appear with advanced age in uninfected individuals, 

appear in HIV+ individuals at a younger age [62]. While the cause of the increased 

prevalence of these comorbidities is not completely understood, all are linked to chronic 

immune activation and an aging immune system – both of which are observed in HIV 

patients on cART	 [60, 61].  As the average age of the HIV+ population increases, 

premature aging has become evident in the past decade. Both aging and HIV infection 
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are associated with inflammatory phenotypes due to T cell exhaustion and mucosal 

barrier dysfunction [61, 63-65]. A selection of non-AIDS related comorbidities that are 

found in HIV-infected persons are discussed in more detail below. HIV-associated 

peripheral neuropathy (HIV-PN) is discussed in section II of this chapter. 

   i.  Cardiovascular Disease 

 In developed countries, where use of cART is more prevalent, about 20% of HIV-

associated deaths are due to cardiovascular disease (CVD) [66]. HIV+ patients have an 

increased prevalence and risk of CVD and fat accumulation in cardiac tissues [67, 68]. 

Inflammatory proteins released from activated monocytes are a major source of cardiac 

tissue damage [69, 70].  

	 	 ii.  Metabolic Syndrome 

 The increased risk of metabolic syndrome is largely due to use of metabolically 

toxic cART drugs that cause hypertriglyceridemia, low levels of high-density lipoprotein, 

and insulin resistance [71]. Adipose tissue distribution is also disrupted during HIV 

infection, also due to long-term cART usage [72]. Certain classes of antiretroviral 

therapy (ART) drugs have different metabolic side effects. PI’s induce accumulation of 

lipids and free cholesterol and they also block glucose uptake in adipocytes [73, 74]. 

NRTI’s alter mitochondria function and inhibit adenosine triphosphate (ATP) production 

by binding to mitochondrial DNA-polymerase γ [75]. Many of the drugs associated with 

metabolic dysfunction are no longer prescribed in developed countries because of their 

known side effects. However, many are still widely used in poorer countries [61]. 
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  iii.  Low bone density 

 Evidence of low bone density in HIV+ patients has increased in recent years, due 

in part to an aging HIV+ population [76]. HIV+ patients are three times as likely to have 

a bone fracture than the general population [77]. The cause of low bone density in HIV+ 

patients is incompletely understood, but is likely multifactorial. Possible causes include 

traditional risk factors, increased age, nutritional deficiencies, cART regimen, and 

chronic inflammation [77]. 

  iv.  Cancer 

 In the pre-cART era, the most prevalent cancer types amongst HIV+ individuals 

were considered “AIDS-defining” and they included Kaposi sarcoma, cervical cancer, 

and non-Hodgkin’s lymphoma [78]. In the modern cART era, the prevalence of these 

cancers have decreased significantly as patients are not progressing to AIDS. However, 

about 10% of HIV-infected patients will develop non-AIDS defining cancers [79]. In 

particular HIV patients are at a much greater risk of developing anal or lung cancer and 

melanoma than the general population, but may actually be protected against other 

types such as prostate, breast, and colorectal cancers [78, 80]. The reason for this is 

not entirely understood, although increased risk factors such as tobacco and alcohol 

use and co-infections with cancer-causing viruses (such as human papillomavirus, 

hepatitis C, or Epstein-Barr virus) likely play a role [81]. 

  v.  Neurocognitive impairment 

 Before cART, more than half of HIV+ individuals suffered from severe 

neurocognitive impairment known as HIV-associated dementia (HAD)	 [82]. Today, the 

prevalence of HAD has significantly declined due to cART, but the prevalence of mild 
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neurocognitive disorder (MND) and asymptomatic neurocognitive impairment (ANI) has 

been increasing. Together, HAD, MND, and ANI, are known as HIV-associated 

neurocognitive disorders (HAND)	[83]. Because neurons cannot be infected with virus, it 

is believed that damage to neurons occurs via indirect mechanisms. The pathogenesis 

of HAND is still not completely understood, although several studies have linked chronic 

immune activation in the periphery to the severity and presence of HAND [84-89]. 

Additionally, brain macrophages (microglia) serve as a reservoir for virus [90, 91]. Many 

ART drugs have difficulty crossing the blood-brain barrier and thus are present below 

therapeutic values in the central nervous system (CNS), allowing for viral replication and 

formation of reservoirs [92-94]. 

 

II. Peripheral Neuropathies 

a. Overview of neuropathic pain and the peripheral nervous system  

 Peripheral neuropathic pain is defined as pain that is caused by a lesion or 

disease of the somatosensory nervous system [95]. It is estimated that over 20 million 

people in the United States suffer from peripheral neuropathy. Neuropathic pain varies 

in manifestation and cause. Over 100 types of peripheral neuropathies have been 

described. It can present as spontaneous and painful sensations, hyperalgesia 

(hypersensivity to a mild pain stimuli), or allodynia (pain that results from a normally 

non-painful stimuli). It is often caused by direct damage to the peripheral nerve and is 

usually a secondary effect to another condition such as diabetes or HIV infection	[7].  

 The process of sensing and perceiving pain occurs in four steps. First, 

transduction occurs at the terminals of primary afferent nociceptors. Different stimuli 
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activate the nerve endings and a chemical or electochemical signal is sent to the central 

nervous system, which is known as transmission. The message is transmitted along the 

axon of the primary afferent neuron to the neuron’s cell body located in the dorsal root 

ganglia (DRG). Primary afferent neurons are unipolar and receive sensory information 

from a long axon that terminates in the periphery, such as the skin. The DRG are 

clusters of sensory neuronal cell bodies that lie dorsal to the spinal column. In humans, 

there are 31 pairs (dorsal and ventral) of ganglia, named for the location along the 

spinal cord. In humans, there are 8 pairs of cervical nerves, 12 pairs of thoracic nerves, 

5 pairs of lumbar and sacral nerves each, and 1 pair of coccyccygeal nerves. The 

neuron extends past the ganglia to the CNS through the dorsal nerve root and joins with 

nerves in the dorsal column white matter in the spinal cord (Figure 1.4). The pain signal 

is then modulated to reduce activity in the transmission system. Finally, perception 

occurs during which the pain message is integrated and perceived by the individual	[96, 

97].  

b.  HIV-associated peripheral neuropathies 

HIV-PN continues to be the most common neurologic complication of HIV 

infection with studies reporting between one third and two thirds of the HIV population in 

the US being affected in the post-cART era [98]. The most common form of HIV-PN is 

distal symmetric polyneuropathy (DSP). Other patterns of neuropathy in HIV patients 

include inflammatory demyelinating polyneuropathy, progressive polyradiculopathy, 

mononeuropathy multiplex, autonomic neuropathy, and diffuse infiltrative lymphocytosis 

syndrome	 [99]. However, these other types of neuropathies are rare and are often 

associated with severe immunosuppression or an opportunistic infection	[100]. 
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While some patients diagnosed with HIV-DSP are asymptomatic, many present 

with bilateral pain, numbness, and tingling in the distal extremities. Before the use of 

ART, HIV-DSP was associated with a low CD4 T cell count and high viral load. 

However, in the post-ART era, HIV-DSP prevalence has increased and is no longer 

associated with these risk factors. More recent studies have shown that viral load is not 

related to HIV-DSP diagnosis in patients on ART and diagnosis may even be 

associated with high CD4 counts and advanced age [101].  

HIV-DSP is clinically indistinguishable from antiretroviral toxic neuropathy (ATN). 

ATN is caused by neurotoxicity of certain classes ART drugs. NRTIs such as d-drugs 

(ddC, zalcitabine; ddl, didanosine; and d4T, stavudine) cause mitochondrial toxicity. 

This class of drugs interferes with the γ DNA polymerase which results in disruption of 

mitochondrial DNA synthesis and overall mitochondrial function	 [102, 103]. Abnormal 

mitochondria have been observed in the axons and Schwann cells in patients on ddC. 

Today, clinicians are urged to avoid prescribing these drugs with known neurotoxicity. 

Symptoms and pathology associated with HIV-DSP are still observed in patients with no 

history of taking neurotoxic d-drugs [101]. 

There is currently no FDA-approved drug treatment of HIV-DSP. Pain 

medications used to treat neuropathic pain such as anticonvulsants, topical treatments, 

antidepressants, and analgesics are often prescribed to treat HIV-DSP. However, 

clinical trials have shown that these drugs did not perform any better than placebo 

treatment [104]. 

 Treatment of HIV-DSP is difficult partly because the pathogenesis is still poorly 

understood. Studies in humans with HIV-DSP have proven difficult because of several 



	
	

14	 	

confounding factors such as drug regimen, diabetes diagnosis, and nutritional 

deficiencies [98, 101, 105]. Importantly, very few studies have examined the 

pathogenesis of HIV-DSP in humans during the post-ART era [98, 106]. However, a 

“dying back” of axons in distal regions has been observed. Multiple types of nerve fibers 

are affected, including both small and large myelinated fibers. Notably, there is a 

reduction of small unmyelinated nerve fibers in distal regions. Reduction of 

intraepidermal nerve fiber density (IENFD) in distal regions has been associated with 

pain and can be used as an objective marker in the diagnosis of HIV-DSP [107, 108].  

In addition to changes in nerve fiber density in the extremities, there are also 

changes at the DRG including increased cellular infiltration of inflammatory cells, 

neuronophagia, and increased frequency of Nageotte nodules (Figure 1.5) [6]. 

However, few studies have examined human DRG pathology in the post-ART era, 

contributing to a lack of understanding, and thus a lack of effective treatment for HIV-

DSP. Instead, studies of HIV-DSP have relied mostly on SIV-infected macaque models 

and transgenic mouse models [109]. Currently, little is known about the 

pathophysiologic mechanisms that results in neuropathic pain during HIV infection with 

cART [107]. HIV is unable to directly infect neurons [110], and it is unclear to what 

extent HIV replication in surrounding cells has on neurodegeneration in vivo. There are 

two hypotheses regarding what is causing neuronal degeneration at the DRG; 1) 

Neuronal damage could result from direct damage from HIV viral proteins, or 2) from 

indirect damage from infected and/or activated monocytes/macrophages. 

HIV proteins can cause neurodegeneration in vitro. When gp120, the HIV 

envelope glycoprotein, was applied to DRG cultures, neurodegeneration was observed 
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consisted of decreased neurite outgrowth and mitochondrial membrane depolarization 

[111]. Tat (trans-activator of transcription) has also been shown to be neurotoxic. Tat 

can bind to neuronal cell membranes and is cytotoxic to neurons due to it’s ability to 

activate excitatory amino acid receptors [112]. Additionally, viral protein R (Vpr), an HIV 

regulatory protein, induces apoptosis in human neuronal cells [113]. However, despite 

the in vitro evidence, and in vivo evidence from transgenic mouse studies, it is unlikely 

that viral proteins are the sole cause of neurodegeneration. Central nervous system 

(CNS) and peripheral nervous system (PNS) damage occurs in patients despite 

effective ART when viral load is undetectable [101, 114]. These data suggest that viral 

proteins are not the main cause of damage to neurons. 

A hallmark of HIV infection in the post-ART era is a systemic activation of 

monocytes, which puts patients at risk of neurocognitive disorders, cardiovascular 

disease, frailty, neuropathies, and other comorbidities [115]. Inflammatory macrophages 

secrete cytokines such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-6, IL-8, 

and interferon (IFN)-α that are neurotoxic through various mechanisms [114]. Some of 

these cytokines (such as CXCL10, IL-1β, TNF-α, and IL-6) are produced in response to 

HIV proteins during early, acute infection that can exacerbate the immune response or 

be directly neurotoxic. Chemokines produced by macrophages, such as CXC 

chemokine ligand type 10 (CXCL10), can be directly neurotoxic and while others, such 

as C-C chemokine ligand type 5 and 2 (CCL5 and CCL2), can also recruit additional 

immune cells to the DRG and perpetuate the tissue-damaging inflammatory response 

[116-119]. When neurons were cultured with supernatants from HIV-activated 

macrophages, which contained these inflammatory cytokines and chemokines, there 
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was an increase in neuronal cell death compared to neurons cultured with supernatants 

from inactivated macrophages [120]. The vast majority of studies investigating 

neurotoxicity during HIV infection have focused on CNS neurons and microglia during 

HAND pathogenesis. Similar mechanisms may take place during PNS 

neurodegeneration; however, there are key differences between the PNS and CNS, 

such as the immune-privileged status of the CNS due to the blood-brain-barrier and the 

capacity of the PNS to regenerate.  

Viral proteins likely play a role in initiating early inflammatory and neurotoxic 

events during acute infection (before ART initiation). Activated monocytes that persist 

throughout infection, even after ART initiation and suppression of viral replication, are 

most likely perpetuating neuroinflammation resulting in a reduction of IENFD and DRG 

pathology. A SIV-infected macaque model of HIV-DSP demonstrated a continued loss 

of IENFD after ART [121]. Another study found macrophage-mediated damage to the 

DRG and functional damage to small nerve fibers in distal regions [122]. Thus, the 

majority of PNS neurodegeneration likely results from neurotoxic cytokines and 

chemokines that continually recruit additional inflammatory monocytes to the DRG. 

c. Animal models of HIV-peripheral neuropathy 

Animal models of HIV are a powerful tool to study the pathogenesis of HIV-DSP 

because they are easily manipulated and free of confounding factors that are 

associated with human studies. Mice are frequently used in immunologic studies of 

infection. However, there is no murine equivalent of HIV and attempts to develop one 

have yet to succeed. Transgenic mice expressing HIV proteins have provided some 
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limited insight; particularly about the neurodegenerative properties of gp120 [123, 124]. 

This has also been demonstrated using neuronal cell culture models [111-113]. 

Unlike for mice, SIV occurs naturally. SIV is genetically similar to HIV, targets the 

same cell populations (CD4+ lymphocytes, and monocytes/macrophages) and uses the 

same cell receptors as HIV [109].  One group models HIV-DSP in pigtailed macaques 

where they dual infect with a neurovirulent molecular clone SIV/17E-Fr and with an 

immunosuppressive viral swarm SIV/Delta B670. Using this model, they have observed 

an influx of CD68+ macrophages to the DRG, similar to what is observed during HIV 

infection [125]. 

Rhesus macaques are the most common animal model to study HIV disease 

progression and pathogenesis. The pathogenesis of SIV in macaques is similar to that 

of HIV in humans. Infection with SIVmac251 results in AIDS progression within one to 

two years and an incidence of SIV encephalitis (SIVE) of 18% [126], as well as mild-

moderate DRG pathology. CD8 lymphocyte depletion using a chimeric humanized 

mouse antibody of SIV infected rhesus macaques accelerates disease progression, with 

AIDS occurring at 3-4 months post-infection. Administration of this antibody during 

acute infection results in long-term depletion of CD8+ T cells and CD8+ natural killer 

(NK) cells. CD8 depleted animals also have a higher incidence of SIVE and DSP [127, 

128]. CD8 depletion also allows for development of more severe pathology in the DRG 

including satellitosis, neuronophagia, and Nageotte nodules, similar to the 

histopathological findings in the DRG associated with HIV-DSP in human studies. CD3+ 

T cells in the DRG do not seem to be associated with DRG damage in the non-depleted 

or the depleted SIV infected animals, further validating the important role of 
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monocytes/macrophages. The CD8 depleted model recapitulates histopathological 

components of HIV-DSP and SIV-DSP in non-depleted animals, but allows for rapid 

disease progression and a higher incidence of SIV-DSP [128]. 

 

III. Immune regulation of the peripheral nervous system 

a. Molecular signaling of pain and inflammation 

 Pain and inflammation are inherently linked. An appropriate pain sensation in 

response to a dangerous stimulus rightfully induces inflammation because pain is often 

associated with tissue damage (such as in the case of a burn or a cut). In such a case, 

an immune response is needed for debris removal and tissue repair. It is now widely 

accepted that cytokines and chemokines mediate both the immune response and pain 

sensation. Cytokines are a large and diverse class of small, secreted signaling proteins 

that regulate the immune response and cellular activities such as survival and 

differentiation. Neuronal cell bodies in the DRG upregulate inflammatory cytokines 

following peripheral nerve injury [129]. Additionally, DRG neurons express cytokine 

receptors on their surfaces so they can appropriately respond to cytokines in their 

environment [130, 131]. Thus, cytokines can facilitate pain signals from the periphery to 

the CNS [132, 133]. Additionally, chemokines, a sub-class of cytokines, are chemotactic 

and can recruit additional immune cells to the DRG to further exacerbate the state 

inflammation and pain sensation. 

 Damage to the peripheral nerve results in release of nerve growth factor (NGF), 

CXCL1, and other cytokines/chemokines that recruit neutrophils to the damaged nerve. 

Neutrophils release additional cytokines and chemokines, whose main role is to recruit 
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macrophages to the site of injury [134]. Large numbers of macrophages traffic to the 

site of nerve damage 24-48 hours after the initial insult to the axon. Macrophage 

chemotaxis is mainly mediated by CCL2, CCL3, and CCL5. These chemokines bind to 

CCR2 and CCR5, expressed on activated monocytes [135, 136]. The main role of 

macrophages during this stage is to phagocytose debris. First, they secrete matrix 

metalloproteases, such as MMP-9, which break down the blood-nerve barrier. 

Vasoactive mediators such as calcitonin gene-related peptide (CGRP) and substance P 

are released from injured nerves to cause vasodilation and upregulation of integrins on 

endothelial cells to recruit additional immune cells to the region [137, 138]. 

 Following peripheral nerve injury, neuronal cell bodies in the DRG react to the 

distant injury. Satellite cells are activated and macrophages and T cells traffic into the 

DRG in response to chemotactic pro-inflammatory cytokines that are released by both 

DRG neurons and satellite cells. Fractalkine	 [139] and CCL2 [140] play a large role in 

recruiting macrophages to the DRG following damage to a distant axon. Activated 

macrophages linger in the DRG for months following injury long after the distant axon 

has been healed. Additionally, there is a loss of sensory DRG neurons after injury that 

continues to decline weeks to months following the initial injury [141]. 

 Cytokine receptors such as CCR1, CCR4, CCR5, and CXCR4 are also present 

on neurons, thus cytokines that released by activated immune cells in the region may 

also act directly on neurons [142]. Additionally, during HIV infection, HIV proteins can 

interact with CCR5 and CXCR4 on DRG neurons [143]. Cytokines or HIV proteins 

interacting with receptors on neurons can result in direct neurotoxicity [111] or in 



	
	

20	 	

spontaneous nociceptor activation [144, 145]. Thus, cytokines and chemokines are 

capable of regulating both inflammation and pain sensation [141, 146, 147]. 

b. Peripheral nerve degeneration and regeneration 

 The PNS differs from the CNS in its ability to regenerate following injury. 

Following PNS axonal injury, axon segments distal from the site of injury remain intact 

for days in primates [148] and humans [149], whereas degeneration occurs much faster 

in smaller rodent models of nerve injury [150]. The process of nerve degeneration after 

injury is known as Wallerian degeneration.  

 The first step of Wallerian degeneration is granular disintegration of the 

cytoskeleton of the axon into fine debris [151, 152].  Following injury, the blood-nerve 

barrier begins to breakdown along the nerve, distal to the point of injury [153]. This 

allows for proteins in the blood and immune cells to have access to the nerve to 

facilitate degeneration, and later regeneration. 

 The first cell type to respond to PNS injury are Schwann cells, which make up 

over 90% of nucleated cells in the peripheral nerve [154]. Schwann cells form the 

myelin sheath around myelinated nerve fibers or ensheath small-diameter unmyelinated 

axons [155]. After nerve injury, Schwann cells dedifferentiate and proliferate [155, 156]. 

Dedifferentiated Schwann cells gain phagocytic ability and remove myelin debris after 

the axon has disintegrated [157]. Another major role of Schwann cells is secreting 

factors that promote axon regrowth and survival including laminins (a prevalent 

component of the extracellular matrix) and nerve growth factor [158]. The process of 

Schwann cells promoting a healthy and controlled degeneration and regeneration of 

nerves lasts only for a few weeks following injury; after which, the majority of Schwann 
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cells undergo apoptosis or atrophy [159]. However, before this occurs dedifferentiated 

Schwann cells also produce cytokines and chemokines including CCL2, IL-1β, and IL-

1α, which play a major role in recruiting monocytes to the site of injury [160]. 

 Monocytes are recruited to the site of injury in large numbers a few days after the 

initial insult [161] and macrophages follow chemotactic cues to the site of injury [156]. 

Macrophages are responsible for the majority of debris phagocytosis, further activation 

of Schwann cells, and producing factors that aid in axon regeneration [162-164]. 

Macrophages remain in the nerve for months, even after the nerve has healed. 

Eventually, macrophages are repelled against myelin by their expression of Nogo-66 

receptor (NgR)1 and 2 (receptors for myelin-associated inhibitory proteins) and they re-

enter circulation [165, 166]. Thus, functional Schwann cells and macrophages are 

required for proper Wallerian degeneration and axonal regrowth. However, over-

activation or the inability to deactivate results in failure of this process, which could lead 

to chronic pain and lack of nerve regeneration. 

 

IV. The role of monocytes and macrophages during HIV and SIV infection 

a. Viral infection of monocytes and macrophages 

 HIV and SIV are able to productively infect monocytes and macrophages even 

though they are nondividing cells [167]. Macrophages can express the HIV entry 

receptor CD4 and coreceptors CXCR4 or CCR5 [168]. Macrophages are long-lived, 

largely resistant to cytopathic effects of the virus, and are present in nearly every tissue 

type.  Therefore, macrophages serve as a vehicle for viral dissemination throughout the 

body and constitute viral reservoirs that are difficult to target with ART [169]. 
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 The viral life cycle in macrophages differs from that in T cells because of different 

host factors. The rate of reverse transcription is slower in macrophages than in T cells 

because of a smaller pool of deoxnucleotide (dNTP) molecules since macrophages are 

non-dividing cells, unlike T cells [170]. There are also macrophage-specific host 

restriction factors that interfere with viral reverse transcription. For example, sterile 

alpha motif domain and HD domain-containing protein 1  (SAMHD1) reduces the pool of 

intracellular dNTPs in macrophages [171]. However, SAMHD1 is degraded by viral 

protein x (Vpx), an HIV accessory protein [172]. Nuclear import is also different, in that it 

occurs independently of cell division in macrophages, unlike in T cells [173]. In T cells, 

viral assmebly occurs at the plasma membrane [174]. In macrophages, viral assembly 

takes place in late endosomes, although this is still a topic of debate [175]. 

 The activation state of macrophages may also influence the permissability of the 

viral infection. Early HIV infection is associated with an increase in pro-inflammatory M1 

macrophages which support a T helper type- (Th) 1 response. This activation state 

favors formation of viral reservoirs and increased viral transcription. During the later 

stages of infection, there is a shift from M1 towards M2 polarized macrophages, which 

restrict the expansion of the viral reservoir [176]. 

b. Chronic monocyte activation during HIV and SIV infection 

 Macrophages are part of the myeloid lineage, which originates in the bone 

marrow. Hematopoietic stem cells differentiate into monocytes that leave the bone 

marrow and enter blood circulation. There, they can become differentially activated. In 

healthy individuals approximately 80-90% of circulating monocytes are classical 

monocytes expressing CD14 (a receptor for bacterial LPS), but not CD16 (a receptor for 
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the Fc portion of IgG antibodies). During HIV infection, there is an increase in 

CD14+CD16+ (intermediate) and CD14-CD16+ (nonclassical) monocyte populations 

(Figure 1.6) [177]. This shift from CD16- monocytes to CD16+ monocytes is associated 

with a faster rate of disease progression to AIDS [1]. 

 Activated double positive (CD14+CD16+) monocytes have been implicated in the 

pathogenesis of HAND and other comorbidities of HIV infection, such as cardiovascular, 

renal, bone and liver dysfunction [177, 178].  The source of monocyte activation during 

chronic HIV infection is still debated [179]. One hypothesis is that during acute HIV 

infection, there is depletion of gut CD4+ T cells leading to microbial translocation out of 

the gut. LPS and sCD14 are elevated in plasma of HIV infected individuals, suggesting 

that monocytes are activated by bacterial products that escape from the gut [180]. 

Another hypothesis is that monocytes are activated by residual viremia. Immune 

activation is associated with viral blipping [181] and intermittent use of cART suggesting 

a link between viral replication and monocyte activation [182]. Another possible source 

of monocyte activation is from co-infections. Many HIV+ individuals are latently infected 

with human cytomegalovirus (CMV). CMV can infect and activate monocytes, which 

then spread the virus to other tissue types [183]. Latent viral herpes infections are also 

a source of monocyte activation in HIV+ patients on cART [179].  

c. Macrophage polarization 

 Monocytes differentiate into mature macrophages when they enter tissues. 

Chemotactic signals direct monocytes to sites of infection and injury. Macrophages can 

be classified as either M1 or M2 polarized based on phenotype and activation signals. 

While this nomenclature is useful for discussion, it should be noted that M1 and M2 
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classification is not rigid, and there is evidence that macrophages can switch between 

the two phenotypes or have a range of intermediate phenotypes [184]. M1 

macrophages are classically activated by INF-γ and secrete pro-inflammatory cytokines 

such as TNF-α, IL-1β, and IL-6 and chemokines such as CCL3, CCL4, and CCL5. M1 

activation occurs during the early, acute phase of HIV infection, when there is a 

predominant Th1 T cell response. M2 macrophages are considered to be alternatively 

activated by Th2 cytokines and are involved in anti-inflammatory processes and tissue 

repair [176]. There is a shift from a Th1 to Th2 response during disease progression to 

AIDS [185]. Therefore, it has been proposed that a shift in macrophage phenotype also 

occurs with disease progression because macrophage polarization is dependent on the 

cytokine environment that is associated with Th1/Th2 expression profiles. 

 

Summary 

 Despite advances in treatment and prevention of HIV, the AIDS still remains a 

worldwide epidemic [4]. Even though the lifespan of an HIV+ person is near that of the 

general population, they are at risk for a number of non-AIDS related comorbidities [58, 

62]. The cause of these comorbidities has been attributed to viral protein toxicity to host 

cells, toxicity of long-term exposure of ART, and chronic immune activation that 

accompanies chronic HIV infection [61, 62].  

 HIV-PN is observed both in the absence of cART (during the early stages of the 

epidemic in the 1980s and in untreated animal models) and in the absence of viral 

replication (in patients with controlled viremia due to successful cART)	 [6]. Additionally, 

inflammatory and pain pathways use similar signaling proteins and receptors [7]. Thus, 
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we hypothesized that chronic immune activation is a driving force of HIV-PN associated 

tissue pathologies. Activated monocytes in peripheral blood and increased numbers of 

tissue macrophages in PNS tissues have been observed in HIV+ individuals with PN, 

but has not been extensively studied. In the series of studies presented here, we used 

an animal model of HIV-PN to investigate the role of monocyte activation and traffic to 

the DRG in developing HIV-PN associated tissue pathologies.
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Figure 1.1 
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Figure 1.1 Global antiretroviral therapy coverage and number of AIDS-related 

deaths.  

The use of ART worldwide has increased since 2000 and there has been a 26% decline 

in AIDS-related deaths in 2015 since 2000 [4]. From reference [4]. 
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Figure 1.2 
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Figure 1.2 Schematic overview of the HIV-1 life cycle.  

The HIV-1 life cycle consists of 13 steps. 1) Viral attachment to host receptors. 2) 

Fusion of the viral particle to the host cell. 3) The viral particle is uncoated in the 

cytoplasm of the host cell. 4) Viral RNA is reverse transcribed and forms the pre-

integration complex (PIC). 5) PIC is imported into the nucleus. 6) Viral DNA is integrated 

in the host genome. 7) Viral genes are transcribed. 8) Viral mRNA is exported out of the 

nucleus. 9) Viral mRNA is translated into proteins. 10) The viral particle is assembled. 

11) A new viral particle buds from the host cell. 12) The viral particle is released to form 

an immature viral particle. 13) The viral particle matures and is now able to repeat the 

cycle. From reference [3].	

Reprinted with permission from Macmillan Publishers Ltd: Nature Reviews Microbiology 

(3) copyright 2012. 
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Figure 1.3 
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Figure 1.3 Time course of typical HIV-1 infection.  

During primary and acute infection, there is uncontrolled replication of the virus, which is 

associated with a loss of CD4+ T cells.  Acute infection ends with a decline in plasma 

viral load. A long period of clinical latency is associated with a slow decline in CD4+ T 

cells. When CD4+ T cells are below 200cells/µl of blood the patient has progressed to 

AIDS which is associated with an increase in viral replication and opportunistic 

infections.  From reference [2]. 

Copyright 2013 to Cold Spring Harbor Laboratory Press 
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Figure 1.4 
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Figure 1.4 Schematic overview of the dorsal root ganglia (DRG) and peripheral 

nervous system.  

Sensory information is transmitted from peripheral nerves to the DRG. The DRG houses 

small and large neuronal cell bodies that are surrounded by satellite cells. Sensory 

information is then sent from the DRG to the dorsal horn of the spinal cord. From 

reference [7]. 

Reprinted with permission from Macmillan Publisher Ltd: [Nature Reviews Drug 

Discovery] (7), copyright 2005. 
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Figure 1.5 
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Figure 1.5 Dorsal root ganglia pathology associated with HIV infection. 

A) Focal infiltration of macrophages and lymphocytes known as satellitosis. B) 

Infiltrating satellite cells for Nageotte nodules (arrow). C) Increased presence of CD68+ 

macrophages in the DRG of HIV+ individuals. Reprinted with permission from reference 

[6]. 

Copyright 2001 by John Wiley and Sons
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Figure 1.6 
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Figure 1.6 Increase in the CD16+ monocyte cell population during HIV infection. 

Monocyte populations were assessed by flow cytometry in HIV+ individuals and healthy 

HIV- individuals. Monocytes were divided into four distinct populations based on 

expression of CD14 and CD16. A) HIV+ patients had a smaller population of 

CD14+CD16- (classical) monocytes. B) both CD14+CD16+ and C) CD14high CD16+ and 

D) CD14-CD16+ monocyte populations were increased in HIV+ individuals compared to 

healthy controls. Reprinted with permission from reference [1]. 
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ABSTRACT 

 SIV-infected, CD8-depleted rhesus macaques rapidly progress to AIDS and 

develop pathologies that are seen in HIV-infected humans with peripheral neuropathy. 

Here, we describe histopathological changes in the dorsal root ganglia (DRG) including 

satellitosis, neuronophagia, and Nageotte nodules. Severity of DRG pathology was 

correlated to a greater loss of intraepidermal nerve fiber density (IENFD) at necropsy. 

IENFD decreased during early SIV-infection (<21 days post-infection) and failed to 

recover over the course of progression to AIDS. DRG pathology did not develop until 

late infection. We found a late decline at necropsy in tropomyosin receptor kinase A 

(TRKA)+ peptidergic DRG neurons and isolectin B4 (IB4)+ non-peptidergic DRG 

neurons (occurring between 55 and 168 dpi). Neurofilament 200 (NF200)+ myelinated, 

large-diameter neurons were not affected by SIV infection. Thus, SIV-infected, CD8-

depleted rhesus macaques develop a loss of IENFD that precedes damage, consisting 

of loss of small-diameter neurons, to the DRG. 
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INTRODUCTION 

Peripheral neuropathy (PN) is the most common neurologic complication of HIV 

infection and continues to negatively affect patient quality of life [1, 2]. Distal sensory 

polyneuropathy (DSP) is a common type of HIV-PN that persists despite the decreased 

use neurotoxic antiretroviral drugs [1-4]. HIV-DSP is identical to antiretroviral 

neurotoxicity (ATN) clinically; both result in pain, numbness, and hypersensitivity in the 

lower legs and feet, as well as sometimes in the hands [1, 4]. Despite the clinical 

similarities, the underlying pathophysiological mechanism of HIV-DSP and ATN are 

unique.  

The study of the pathology of peripheral neuropathy in HIV-infected human 

subjects is confounded by the use of antiretroviral drugs, including nucleotide reverse 

transcriptase inhibitors (NRTIs) and protease inhibitors (PI), which may cause ATN. 

HIV-PN pathology can be confounded by increased alcohol consumption [5] and vitamin 

B12 deficiency [6].  Diagnosis of PN in humans relies on a combination of autonomic 

testing, nerve biopsies, and skin biopsies [7]. However, examining intraepidermal nerve 

fiber density (IENFD) via skin biopsies is an objective pathological measure of PN 

pathogenesis.  

Animal models lend themselves to the study of viral pathogenesis and immune 

response (as reviewed in Burdo TH and Miller AD [8]). Transgenic mice expressing 

gp120 have failed to develop peripheral neuropathy after two months	[9]. However, in a 

murine immunodeficiency virus model [10]	and after perineural application of gp120 to 

the sciatic nerve in rats [11] peripheral nerve damage has been shown. Feline 

immunodeficiency virus (FIV) recapitulates PN damage with HIV infection, but the virus 
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uses a different co-receptor (CD134) [12, 13]. SIV is particularly attractive given the 

similarities between humans and nonhuman primates with simian immunodeficiency 

virus (SIV) being closely related to HIV genomically, structurally, and clinically [8, 13]. 

Both viruses target the CD4+ lymphocytes, monocytes, and macrophages through CD4 

and CCR5, resulting in immune suppression and neuropathology that includes a decline 

in IENF densities and similar pathology in the DRG [8].  

Using a neurovirulent clone and immunosuppressive SIV swarm in pigtailed 

macaques, Mankowski et. al. demonstrated that the SIV+ cells in the DRG were CD68+ 

macrophages and that damage to the DRG precedes nerve fiber functional loss [14-16]. 

We have previously demonstrated that CD8+ lymphocyte depleted SIV-infected rhesus 

macaques rapidly develop AIDS and histopathology that reproduces the hallmarks of 

human HIV infection pre-ART including SIVE encephalitis (SIVE), lymph node damage, 

the depletion of gut T cells, and peripheral neuropathy [17-19].  

Here, we sought to characterize the pathology of the peripheral nervous system 

(PNS) in SIV+ CD8-depleted macaques.  Pathology in human patients with HIV consists 

of a reduction of IENFD [20, 21] and neuronal loss in the DRG [22, 23], even in the 

cART era and in patients with no history of neurotoxic d-drugs [1, 23]. In this study, we 

sought to further investigate the neuronal loss in the DRG. There are several classes of 

DRG neurons, which perform different functions. Historically, DRG neurons have been 

classified as “small” and “large” diameter neurons, but this method of neuron 

classification is unreliable in that neuron diameter size is continuous and thus it is 

difficult to create a threshold for one size versus the other. Additionally, it has recently 

been shown by transcription analysis that there are three large clusters of DRG neurons 
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that can be identified by immunohistochemistry markers [24]. The neurofilament (NF) 

containing cluster can be identified by its expression of the NF heavy chain (NF200). 

NF200+ neurons are large diameter, myelinated neurons that are responsible for 

mechanoreceptive and proprioceptive signals that are transmitted through Αβ fibers. 

The second cluster of neurons is the peptidergic nociceptors group, which can be 

identified by expression of tropomyosin receptor kinase A (TRKA). TRKA+ neurons are 

peptidergic nociceptors. Finally, the third group is non-peptidergic nociceptors and 

express isolectin B4 glycoprotein (IB4). Both IB4+ neurons and TRKA+ neurons are 

small diameter neurons that give rise to C-fibers and Αδ fibers that transmit nociceptive, 

thermal, and mechanoreceptive signals. These three clusters consist of different 

subclasses of neurons that have been the focus of recent debate [24-26]. We chose to 

simplify our studies and focus on NF, peptidergic, and non-peptidergic neurons to gain 

insight into what classes of neurons are being lost during SIV infection. 

 

 

MATIERIALS and METHODS 
 

Ethical Statement  

All animals used in this study were handled in strict accordance with American 

Association for Accreditation of Laboratory Animal Care with the approval of the 

Institutional Animal Care and Use Committee of Harvard University and the Institutional 

Animal Care and Use Committee of Tulane University.  
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Animals, viral infection, and CD8 lymphocyte depletion 

Seventeen rhesus macaques (Macaca mulatta) were used in this study. Four 

animals were uninfected control animals. Thirteen macaques were inoculated 

intravenously with SIVmac251 (a generous gift from Dr. Ronald Desrosiers, University 

of Miami). All infected animals were administered 10 mg/kg of anti-CD8 antibody 

subcutaneously at day 6 after infection and 5 mg/kg intravenously at days 8 and 12 after 

infection in order to achieve rapid progression to AIDS. The human anti-CD8 antibody 

was provided by the NIH Non-human Primate Reagent Resource (RR016001, 

AI040101). 3/13 SIV-infected animals were timed sacrificed at 21 dpi. 10/13 SIV-

infected animals were sacrificed at the onset of terminal AIDS. The development of 

simian AIDS was determined post-mortem by the presence of: Pneumocystis carinii-

associated interstitial pneumonia, Mycobacterium avium-associated granulomatous 

enteritis, hepatitis, lymphadenitis and/or adenovirus infection of surface enterocytes in 

both small and large intestines. Animals were housed at either the New England 

Primate Research Center (NEPRC; Southborough, MA) or Tulane University’s National 

Primate Research Center (TNPRC; Covington, LA) in strict accordance with standards 

of the American Association for Accreditation of Laboratory Animal Care. 

 

Necropsy and Histopathology  

Animals were necropsied immediately following death and representative 

sections of all major organs were collected, fixed in 10% neutral buffered formalin 

(NBF), embedded in paraffin and sectioned at 5µm. After deparaffinization in xylene, the 

tissues were hydrated in graded alcohols, counterstained with Harris Hematoxylin 
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Solution (Sigma-Aldrich) for two minutes and rinsed with running water.  The slides 

were then dipped sequentially in acid alcohol (90% methanol, 5% sulfuric acid, 5% 

acetic acid; Sigma-Aldrich) and ammonia water (15-20 drops ammonium hydroxide in 

250 ml water; Sigma-Aldrich), rinsing with running water after each, followed by 80% 

alcohol for two minutes and eosin (Sigma-Aldrich) for two minutes.  Tissue sections 

were then rinsed in graded alcohols and dehydrated with xylene and mounted with 

VectaMount (Vector). 

 

Histopathologic analysis of DRG morphology 

Hematoxylin (H) and eosin (E) stained sections of DRG were evaluated blindly 

for histopathologic lesions by a board-certified veterinary anatomic pathologist and 

scored based on the presence and severity of infiltrating mononuclear cells, 

neuronophagia and Nageotte nodules as previously described [17, 27].  Overall 

pathology was scored on a previously validated [27]	scale of 0-3 at increments of 0.5 via 

the following criteria: (0) No significant findings; (1) Mild: scattered infiltrating 

mononuclear cells with rare evidence of neuronophagia and/or neuronal loss; (2) 

Moderate: Increased numbers of infiltrating mononuclear cells with occasional 

neuronophagia and/or neuronal loss; and (3) Severe: Abundant infiltrating mononuclear 

cells, frequent neuronophagia and neuronal loss were all present [16, 17, 27].  
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Skin Punch and IENFD Measurement 

Skin punch biopsy specimens with IENF were performed in SIV+ animals that 

were sacrificed with AIDS. Skin punches (3 mm) were taken serially near the sural 

innervation site just distal to the lateral malleolus. Biopsy specimens were taken for 

each animal at pre-infection, several time points during infection, and at necropsy. 

Biopsy specimens were fixed in Zamboni’s fixative and processed for dividing into 

sections. Sections (50µm thick) of serial punch skin biopsy specimens were stained with 

anti-PGP 9.5, a panaxonal marker (1:10,000 dilution; ABD Serotec). Nerve fiber 

length/volume of epidermis (IENFD) was quantified using computer software (Space 

balls program; Microbrightfield Bioscience) as previously described [27, 28]. 

 

Immunohistochemistry and quantification  

 DRG sections were deparaffinized with xylene and hydrated in a series of graded 

alcohols and stained for neuronal markers. Slides were stained with either anti-NF200 

(1:800, EMD Millipore), anti-TRKA (1:2000, Abcam), or biotinylated Lectin I Isolectin B4 

(1:50, Vector Laboratories). Sections were counterstained with hematoxylin, 

dehydrated, and mounted using VectaMount permanent mounting medium (Vector), 

visualized and photographs were taken using a Zeiss Axio Imager M1 microscope (Carl 

Zeiss MicroImaging, Inc.) using Plan-Apochromat x20/0.8 Korr objectives. 

 Neurons were identified based on morphology. The average diameter of each 

type of neuronal cell body was determined using Image J software (NIH). 100 neuronal 

cell bodies were measured in the same uninfected animal for each neuronal marker. 
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The number of positive and negative neuronal cell bodies was counted on eight non-

overlapping fields of view at 200x magnification. The percentage of positive neurons of 

all neurons in the DRG was calculated by dividing the number of positive neurons by the 

number of positive plus negative neurons and multiplying by 100. 

 

Statistical methods 

Prism version 5.0f (GraphPad Software, Inc., San Diego, CA) software was used 

for statistical analyses. Spearman correlation was used for all correlations. A Wilcoxon 

matched-pairs rank test was used to determine loss when the loss of IENFD occurred. 

Non-parametric ANOVA was used to detect difference in the number of neurons 

between different groups of animals, followed by a Dunn’s post-test. A p value less than 

0.05 was considered significant. 

 

 

RESULTS 

Animals used in this study 

 Thirteen rhesus macaques were infected intravenously with SIVmac251 and 

were administered a CD8-depletion antibody on days 6, 8, and 12 post-infection (DPI). 

3/13 infected animals were sacrificed at 21 DPI. 10/13 infected animals were sacrificed 

at the development of terminal AIDS with an average survival of 106.2 ± 11.8 DPI 

(Table 2.1)  
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Intraepidermal nerve fiber densities decreased with SIV infection 

Serial skin biopsies of the central footpad were obtained in the ten (animals A01-

A10) SIV-infected rhesus macaques used in this study at pre-infection and days 8 

(animals A01-A03 only), 21, 42, 63 post-infection, and at necropsy. The pre-infection 

biopsies had several long contiguous fibers terminating in the basement layer of the 

stratum corneum (Figure 2.1A, arrows), whereas the biopsies taken at necropsy had 

very few segmented fibers (Figure 2.1B, arrows).  IENFD decreased after SIV infection 

in all animals (Figure 2.1C).  These data were standardized where the percent change 

in fiber density from pre-infection was compared between the animals over time (Figure 

2.1D).  IENFD decreased by an average of 45.6% (S.E.M. of 7.3%) from pre-infection to 

the time of necropsy with AIDS (range of 13.0 to 82.5%) (Figure 2.1D). A significant loss 

of IENFD occurred during early infection by 21 dpi (p<0.01; Figure 2.1C-D).  

 

Dorsal root ganglia pathology 

 DRG pathology was evaluated based on the presence and severity of satellitosis, 

neuronophagia, and Nageotte nodules. Satellitosis refers to an increase in the number 

of satellite cells. In normal DRG tissue, there is a thin layer of satellite cells, which 

surround the neuronal cell bodies. These satellite cells consist of Schwann cells, 

macrophages, T cells, and other types of immune cells. During SIV infection, we have 

observed that there is an increase in the number of satellite cells (satellitosis). We have 

noted varying degrees of satellitosis ranging from mild to severe (Figure 2.2A-B). 

Neuronophagia refers to the phagocytosis of dying neurons by satellite cells (Figure 

2.2C). Neuronophagia is the precursor lesion to a Nageotte nodule. A Nageotte nodule 
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is the most severe type of lesion in the DRG. A Nageotte nodule forms when satellite 

cells have completely overtaken the foci of what was once a neuronal cell body (Figure 

2.2D). DRG pathology was ranked on a scale of zero to three at increments of 0.5. A 

score of zero indicated no pathology (normal findings). A score of 1, 2, or 3 referred to 

mild, moderate, or severe pathology, respectively. 

 DRG tissue was examined from lumbar (LDRG), sacral (SDRG), and thoracic 

(TDRG) regions. Cervical (CDRG) regions were not consistently obtained from all 

animals, and thus were excluded from future studies.  LDRG, SDRG, and TDRG had 

varying degrees of pathology both within the same animal and between animals. LDRG 

was consistently the most severe region and thus was evaluated for neuronal loss. 

Additionally, a greater percent loss of IENFD from pre-infection to necropsy was 

associated with a higher DRG pathology score (Figure 2.3; p<0.05). These data show 

that pathology of DRG and loss of IENFD are linked in severity. 

 

Differential loss of neurons with SIV infection. 

 A loss of neuronal density in the DRG during HIV and SIV infection has been 

previously reported [4, 14, 29]. DRG neurons are heterogeneous. We used common 

neuronal markers (NF200, TRKA, and IB4) to identify different populations of neurons 

(Figure 2.4A-C). All three markers labeled neurons of different sizes (p<0.0001; Figure 

2.4D). NF200+ neurons were the largest, with an average diameter 58.2µm (SEM of 

1.1). IB4 and TRKA labeled small diameter neurons, although IB4+ neurons were 

slightly larger. IB4+ neurons had an average diameter of 42.9µm (SEM of 0.82) and 

TRKA+ neurons had a diameter of 37.6µm (SEM of 0.9). 
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 Next, we examined the density of the three types of neurons in LDRG tissue from 

uninfected animals and infected animals that were sacrificed at 21 dpi or with terminal 

AIDS. The absolute densities of neurons per total area of DRG tissue and the percents 

of total DRG neurons were calculated. We found that there were no differences in the 

absolute numbers of NF200+ large diameter neurons per mm2 of tissue (223.6±19.3 

versus 176.5±8.7 cells/mm2; p=0.10; Figure 2.5A) or in the percentages of NF200+ 

neurons of all neurons (60.6±4.1 versus 53.5±2.6 %; p=0.24; Figure 2.5B) between 

uninfected and infected animals. There was a significant reduction in the absolute 

number of TRKA+ small diameter neurons (133.2±6.2 versus 96.6±4.7 cells/mm2; 

p<0.05; Figure 2.5C) and the percentage of TRKA+ neurons (42.5±3.9 versus 29.6±1.4 

%; p<0.01; Figure 2.5D). There was no significant difference in the absolute number of 

IB4+ neurons (206.8±31.0 versus 184.7±22.4 cells/mm2; p=0.43; Figure 2.5E), but the 

percentage of IB4+ neurons was reduced in SIV-infected animals that progressed to 

AIDS (62.5±3.6 versus 48.1±2.9 %; p<0.05; Figure 2.5F). There was no significant 

difference between uninfected and DPI 21 animals in absolute number or percent of 

subpopulations of neurons, suggesting that the differential loss of small-diameter 

neurons occurs during late infection. 

 

 

DISCUSSION 

In this study, we characterized the pathology associated with SIV-PN. We found 

the presence of satellitosis, neuronophagia, and Nageotte nodules in multiple DRG 

regions in infected animals, as well as a loss of IENFD; similar to what has been 
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observed during HIV infection in humans [4]. There was a link between the severity of 

DRG pathology and a greater loss of small nerve fiber density in the footpad. This 

association between pathology at different regions of the PNS, suggests a relay of 

signals from one region to the other, or perhaps systemic neuroinflammatory/neurotoxic 

proteins that facilitate damage to both regions simultaneously. Here, we observed a 

significant early loss of IENFD at 21 DPI and no loss of DRG neurons in animals 

sacrificed at 21 DPI, suggesting that damage to peripheral nerves precedes damage to 

the DRG. In fact, loss of IENFD may occur even before 21 DPI. Three animals in this 

study received skin biopsies at 8 DPI and all three animals had a decrease in IENFD 

compared to pre-infection. However, this observation was not statistically significant 

likely due to a low sample size.  

Our finding that damage to the nerve fibers in the skin occurs before damage to 

the DRG supports the findings from another study that found an early loss of IENFD, 

followed by DRG neuronal loss, and finally reduced nerve fiber conduction velocity [14]. 

This study found that IENFD and conduction velocity of C-fibers were not correlated, 

probably due to sampling locations. The data presented by Laast, et al [14] and in this 

study support the fact that long C-fibers are the most sensitive to viral or cytokine 

toxicity during SIV infection and that there is an associated loss of DRG neurons. 

Measuring nerve fiber conduction velocity and IENFD are both valid techniques to 

diagnose PNs, although recently, clinicians have favored IENFD measure because it is 

minimally invasive, easy, and strongly correlates with clinical symptoms	[7]. 

Skin biopsies are a valuable tool for clinical diagnosis of small fiber neuropathies 

and have largely replaced sural nerve biopsies for assessment of unmyelinated nerve 
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fibers in conditions such as diabetic neuropathy and HIV-associated sensory 

neuropathy. A recent report indicates that rhesus macaques (inoculated with both the 

neurovirulent molecular SIV clone SIV/17E-Fr and the immunosuppressive strain 

SIV/DeltaB670) do not develop a significant decline in IENFD [30]. In contrast, here we 

show that SIVmac251 infected, CD8 depleted rhesus macaques show a significant 

decrease in IENFD and that this decrease occurs early after infection. These 

differences may be due to the different viral swarms used in the models. The early loss 

of IENFD demonstrates that the animals developed signs of SIV-PN, early in infection, 

before AIDS-induced diarrhea could have caused a nutritional deficiency, resulting in 

metabolic neuropathy prior to sacrifice. Loss of sensory fibers and pathology of the 

sensory nerve cell bodies that reside in the DRG are hallmarks of HIV/SIV 

pathogenesis. It is interesting to note that we do not see robust evidence of axonal 

degeneration along the course of the nerve, but there is subtle damage to the IENF in 

the skin, possibly because not enough time may have passed to develop prominent 

lesions within the course of the nerve. 

We also found that small-diameter neurons were differentially lost during late SIV 

infection. Both IB4+ and TRKA+ neurons give rise to unmyelinated C-fibers. C-fibers are 

responsible for the “second pain” sensation in response to strong stimuli that results in a 

deeper and slower pain sensation. Damage to C-fibers or hyperexcitability of C-fibers 

results in neuropathic pain. We found that both peptidergic and non-peptidergic neurons 

are lost during SIV-infection. Peptidergic neurons respond to substance P (SP) and 

calcitonin gene-related peptide (CGRP)	 [24]. These neuropeptides are heavily involved 

in neuropathic pain sensation and transmission. SP has also been implicated in HIV 



	
	

67	 	

pathogenesis and inflammatory pathways [31-34]. While there have been reports of all 

different types of afferent nerve fibers being affected by HIV and SIV infection, C-fibers 

are damaged the most robustly and cause neuropathic pain [4, 14, 27].  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	

68	 	

Table 2.1: SIV+ animals used in this study. 

Treatment 
Group 

Animal 
ID 

Survival 
(days) 

Satellitosis in 
LDRG 

Neuronophagia 
in LDRG 

Nageotte 
nodules in 

LDRG 
A01 146 Severe Moderate Moderate 

A02 55 Moderate Mild Rare 

A03 174 Severe Mild Mild 

A04 168 Mild None None 

A05 77 Moderate Moderate Rare 

A06 97 Mild None None 

A07 77 Severe Mod-Severe Extensive 

A08 84 Severe Moderate Moderate 

A09 106 Moderate Mild Mild 

SIV+, CD8-
depleted 
(AIDS) 

A10 96 Mild None None 
B01 21 Moderate Moderate Rare 

B02 21 Moderate Moderate Rare 

SIV+, CD8-
depleted (DPI 

21) 

B03 21 Mild Mild None 
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Figure 2.1 
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Figure 2.1: Intraepidermal nerve fiber (IENF) density decreased post-infection.  

Pre-infection biopsy of animal A07 had several long contiguous IENFs terminating in the 

basement layer of the stratum corneum (A, arrows). Biopsy of Animal A07 taken at 

necropsy upon AIDS had very few segmented IENFs (B, arrows). (C) IENF density 

(IENFD) was serially measured. (D) Percent lost over time was calculated. Difference 

between pre-infection and 21 DPI was calculated using a Wilcoxon matching-pairs rank 

test. **p<0.01 
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Figure 2.2 

 

 

A                               B

C                               D



	
	

73	 	

 
Figure 2.2: Dorsal root ganglia pathology. 

(A) DRG with mild focal satellitosis, which is defined as increased numbers of cells 

around a neuronal cell body (arrow). (B) DRG with moderate inflammation that has 

replaced a few ganglion cells (arrow) with an increase in satellite cells (C) DRG with 

inflammation associated with a degenerate ganglion cell (arrow).  Note the cells 

encroaching around the outside of the ganglion indicative of neuronophagia, a precursor 

lesion to the development of a Nageotte nodule. (D) DRG with a Nageotte nodule, focal 

proliferation of satellite cells that completely replace foci of neuronal cell loss (arrow). 

Images were captured at 200x magnification. 
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Figure 2.3 
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Figure 2.3: Severe DRG pathology is correlated to a greater loss of IENFD.  

Lumbar DRG (LDRG) pathology was scored on a scale of 1.0 (mild) to 3.0 (severe). 

IENFD was measured at pre-infection and necropsy and the percent change was 

calculated by dividing the difference in IENFD from pre-infection to necropsy by the pre-

infection value and multiplying by 100. Percent change of IENFD was correlated to 

LDRG pathology using a Spearman correlation test. P< 0.05, r= -0.66. 
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Figure 2.4 
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Figure 2.4: Classification of types of DRG neurons. 

Lumbar DRG was stained for A) NF200, B) TRKA, and C) IB4. D) Each of these 

markers labeled neurons with different diameters. Images were captured at 200x 

magnification. A Kruskal-Wallis test, followed by a Dunn’s post-test was used to 

determine significant differences between the average diameters of each class of 

neurons. **, p<0.01; ***, p<0.001; ****, p<0.0001.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	
	

78	 	

 



	
	

79	 	

Figure 2.5
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Figure 2.5: SIV-infection results in a differential loss of small-diameter neurons 

that occurs during late infection. 

Lumbar DRG from 4 uninfected and 13 SIV-infected animals used to detect early or late 

loss of DRG neurons. 3/13 SIV-infected animals were sacrificed at 21 dpi. The 

remained SIV-infected animals (10/13) were sacrificed with AIDS. Tissues were stained 

for A-B) NF200, C-D) TrkA, or E-F) IB4. The absolute density (A, C, and E) of neurons 

(number of positive neurons per mm2 of DRG tissue) and the percentage of positive 

neurons per total DRG (B, D, and F) were calculated. Differences between the three 

groups (uninfected, DPI 21, and AIDS) were detected with a Kruskal-Wallis test, 

followed by a Dunn’s post-test. *, p<0.05; ** p<0.01.
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ABSTRACT  

Human immunodeficiency virus-associated peripheral neuropathy (HIV-PN) 

remains the most common neurologic complication of HIV infection. HIV-PN is 

characterized by dorsal root ganglia (DRG) inflammation and intraepidermal nerve fiber 

density (IENFD) loss. Chronic peripheral immune cell activation and accumulation may 

cause damage to the DRG, but has not been fully investigated to date. Using a simian 

immunodeficiency virus (SIV)-infected CD8-lymphocyte depleted rhesus macaque 

model, we sought to define immune cells surrounding DRG neurons and their role in 

DRG pathology and to measure cell traffic from the bone marrow to the DRGs using 

bromodeoxyuridine (BrdU) pulse. We found an increase in CD68+ and CD163+ 

macrophages in DRGs of SIV-infected animals. MAC387+ recently recruited 

monocyte/macrophages were increased along with BrdU+ cells in the DRGs of SIV-

infected macaques. We demonstrated 83.5% of all BrdU+ cells in DRGs were also 

MAC387+. The number of BrdU+ monocytes correlated with severe DRG 

histopathology, which included neuronophagia, neuronal loss, and Nageotte nodules. 

These data demonstrate that newly recruited MAC387+BrdU+ macrophages may play a 

significant role in DRG pathogenesis. Infected animals also had an early decline in 

IENFD, which was associated with elevated BrdU+ cells in the DRG. These data 

suggest that increased recruitment of macrophages to DRG is associated with severe 

DRG histopathology and IENFD loss. 
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INTRODUCTION 

HIV-distal sensory polyneuropathy (DSP) consists of sensory nerve fiber axonal 

degeneration in the extremities [1]. It is unclear if this axonal degeneration is a result of 

HIV’s direct damage to nerve fibers or indirect damage by activated macrophages and 

glial cells in the dorsal root ganglia (DRG) [2].  Histopathology of the DRG during HIV 

infection consists of an increased number of macrophages, decreased lymphocytes, 

fewer neurons, and increased presence of Nageotte nodules [1].  

Because HIV and simian immunodeficiency virus (SIV) are unable to productively 

infect neurons, damage at the DRG is thought to be due to infected and activated 

macrophages and glial cells, which can secrete neurotoxic products [3]. Whether 

inflammation or recruited monocyte/macrophages play a role in damage has yet to be 

defined in an experimental SIV model. Factors involved in immune cell trafficking to the 

DRG during HIV/SIV infection are poorly understood. Previous studies have used CD68 

or Iba-1 as monocyte/macrophage markers in the DRG [4-6]. However, these markers 

do not differentiate between circulating and infiltrating monocyte/macrophages and 

resident macrophages. It is likely that resident macrophages (CD68+ and CD163+) and 

infiltrating macrophages (MAC387+) play different roles during HIV-associated DRG 

damage [7] as do M1 versus M2 cells in the DRG.  

 
 
 
MATERIALS and METHODS 
	
Ethical Statement 
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All animals used in this study were handled in strict accordance with American 

Association for Accreditation of Laboratory Animal Care, the Harvard University’s 

Institutional Animal Care and Use Committee (protocol #04785) or Tulane University’s 

Institutional Animal Care and Use Committee (protocols #P0066 and #P0263), and 

these committees approved all animal work. This work was also approved by Boston 

College’s Institutional Animal Care and Use Committee (protocol #2013-002). All 

possible measures are taken to minimize discomfort of the animals.  All procedures 

were performed using chemical restraint to ensure the safety of both staff and animals 

and the choice of anesthetic includes ketamine (10-20 mg/kg, IM), telazol (4-10 mg/kg, 

IM), and/or dexdomitor (7.5-15 µg/kg, IM), depending on the procedure.  

 

BrdU administration 

A 30 mg/ml stock of solution was prepared by adding 5-bromo-2-deoxyuridine 

(BrdU) (Sigma-Aldrich, USA) to 1× PBS (without Ca2+ and Mg2+) and heated to 60°C in 

water bath as previously described [8]. BrdU was administered as a slow bolus 

intravenous injection at a dose of 60 mg BrdU/kg body weight. BrdU was administered 

at days 8, 21, 42, 62 post-infection and 24 hours prior to necropsy in animals A05-A12 

and days 42, 62 post-infection and 24 hours prior to necropsy in animals A13-A16. 

 

Necropsy and Histopathology  
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Tissue collection, preparation for immunohistochemistry, H&E staining, and 

histopathologic analysis of DRG morophology were performed as described in Chapter 

2 [4, 9]. 

 

Immunohistochemistry (IHC) 

DRG sections were deparaffinized with xylene and hydrated in a series of graded 

alcohols and stained with either anti-SIV protein p28 (Fitzgerald), the pan-macrophage 

marker anti-CD68 (Clone KP1, Dako, Carpinteria, CA), the scavenger receptor anti-

CD163 (Clone MCA1853, Serotec, Raleigh, NC), the early inflammatory marker anti-

MAC387 (Clone M0747, Dako, Carpinteria, CA), anti-BrdU (Clone M0744, Dako, 

Carpinteria, CA) or the T lymphocyte marker anti-CD3 (Clone A0452, Dako, Carpinteria, 

CA). Sections were counterstained with hematoxylin, dehydrated, and mounted using 

VectaMount permanent mounting medium (Vector), visualized and photographs taken 

using a Zeiss Axio Imager M1 microscope (Carl Zeiss MicroImaging, Inc., Thornwood, 

NY) using Plan-Apochromat x20/0.8 and x40/0.95 Korr objectives.   

 

Quantitation of monocyte/macrophages in DRGs 

For quantitation of monocyte/macrophage populations by immunohistochemical 

analyses, eight non-overlapping fields at 200x magnification were quantitated per DRG 

tissue.  Data were expressed as mean ± standard error of the mean (SEM).  The 

percentage of immune positive cells was calculated as the number of positively stained 

cells (DAB+ brown cells) divided by the total number of satellite cells (total hematoxylin 

(blue nuclei)-positive cells) surrounding the DRGs, multiplied by 100. The absolute 
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number of cells was calculated by dividing the number of positively stained cells (DAB+ 

brown cells) by the area of tissue examined (cells/mm2). Each non-overlapping field at 

200x magnification was 0.147 mm2. 

 

Immunofluorescence 

Dual immunofluorescence staining was performed on paraffinized DRG tissue 

sections as previously described [7]. DRG slides were stained with anti-BrdU (Clone 

M0744, Dako, Carpineria, CA), and anti-MAC387 (Clone MCA874G, Serotec, Raleigh, 

NC), or anti-CD68 (Clone KP1, Thermo Fisher Scientific, Waltham, MA). MAC387 and 

CD68 antibodies were biotinylated with DSB-X Biotin Protein Labeling Kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer's instructions. Endogenous 

biotin was blocked using Avidin/Biotin Blocking Kit (Vector Labs, Burlingame, CA) 

according to the manufacturer's instructions. The secondary antibodies used were goat 

anti-mouse IgG1- AlexaFluor488 (Molecular Probes, Eugene, OR) and Streptavidin - 

AlexaFluor568 (Molecular Probes, Eugene, OR), both at a 1:500 dilution. After 

immunofluorescence labeling, tissue sections were treated with 50 mmol/L Cu3SO4 

ammonium buffer for 15 minutes at room temperature to quench autofluorescence. 

Single color controls and double negative control slides were used to determine 

potential spectral overlap of fluorophores. Slides were mounted with Vectashield 

mounting media containing DAPI (Vector Labs, Burlingame, CA) and visualized under a 

microscrope (Zeiss Axio Imager.M1, Carl Zeiss Microimaging, Thornwood, NY). Blue, 

Red, and Green color channels were collected simultaneously and analyzed using 

computer software (AxioVision, version 4.6.3).  
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Quantitation of doubled labeled BrdU+MAC387+ and BrdU+CD68+ cells 

For quantitation of double labeled BrdU+MAC387+ or BrdU+CD68+ cells eight 

non-overlapping fields at 200x magnification were examined per DRG tissue. Alexa568+ 

or Alexa488+ cells only and overlapping Alexa568+ and Alexa488+ cells were 

quantified. Percent of double positive cells was calculated by dividing the number of 

double positive cells by the number of total positive cells (total of single and double 

positive), multiplied by 100. Data were expressed as mean ± standard error of the mean 

(SEM).  

 

In situ hybridization 

In situ hybridization for SIV RNA was performed using digoxigenin-labeled 

antisense riboprobes (Lofstrand Labs, Gaithersburg, MD), as previously described [10]	

[11, 12]. The probes were synthesized from five DNA templates that spanned 90% of 

the SIV genome. 

 

Skin punch and intraepidermal nerve fiber density measurement 

Skin punch biopsies with IENF were performed in 8 of the 12 SIV-infected 

animals (A09-A16). 3mm skin punches were taken serially near the sural innervation 

site just distal to the lateral malleolus. Biopsies were taken for each animal at pre-

infection and every 2 weeks starting at 8 days post-infection to necropsy, 24 hours after 

BrdU injection. Measurement of IENFD was performed as described in Chapter 2 [6, 13, 

14].  
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Statistical methods 

Prism version 5.0f (GraphPad Software, Inc., San Diego, CA) software was used 

for statistical analyses. Student t tests were used to detect variation cells number 

between uninfected and infected rhesus macaques. ANOVA was used to measure 

variation among cell populations in animals with different degrees of DRG pathology. A 

P value less than 0.05 was considered significant. If the ANOVA was significant, then 

post-hoc t-tests were performed. Non-parametric Spearman correlation was used, 

where a P value < 0.05 was considered significant. 

 

 

RESULTS 
 
 
DRG pathology  

All twelve SIV-infected CD8 depleted animals had some degree of DRG 

pathology (mild to severe). In 8 of the 12 animals multiple levels of DRGs were 

examined including DRGs from the thoracic, lumbar, and sacral regions. DRGs from 

mixed unspecified regions were examined in the remaining four infected animals. In 

these animals, we consistently detected more severe pathology in the lumbar and 

sacral DRGs compared to thoracic DRGs (Table 3.1). DRGs from all four uninfected 

animals had normal histology. Animals that had severe DRG pathology in their lumbar 

DRGs had a greater loss of intraepidermal nerve fiber density (IENFD), as previously 

reported (Chapter 2). These data point to a potential association between IENFD loss 

and severe DRG pathology.  
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Active viral replication in DRG satellite cells 

Viral infection in macrophages in the dorsal nerve root (Figure 3.1A) and the 

DRG (Figure 3.1B, 3.1C) was seen in SIV-infected CD8 depleted macaques. 

Multinucleated giant cells (MNGCs) were seen in DRGs of two CD8 depleted SIV 

infected animals. The percent and absolute number of SIV virally infected cells in the 

DRG ranged from zero to 317 infected cells/mm2 and zero to 8.2% of the total cells 

surrounding the DRG neurons were productively infected. Even in DRGs with low levels 

of productive viral infection, there was still notable pathology including infiltrating 

mononuclear cells, neuronophagia, and neuronal loss. Therefore, active viral infection is 

not necessary for DRG damage and loss of neurons. Plasma viral load from all animals 

peaked early and remained elevated throughout the study. There was no significant 

difference between plasma viral loads between animals (data not shown). 

 

Resident cell activation in the DRG with SIV infection 

Consistent with data previously reported [4], the percent and absolute number of 

CD68+ cells surrounding DRG neurons was significantly increased in SIV-infected 

animals compared to uninfected controls (P< 0.01; mean of 13.3 (SEM of 0.8) vs. 26.7 

(SEM of 1.9)% and P< 0.001; mean of 531.1 (SEM of 55.5) vs 1228.0 (SEM of 72.0) 

cells/mm2, respectively)(Figure 3.2A-C). DRGs were then divided into groups based on 

the severity of pathology: mild, moderate and severe (as described in Materials and 

Methods section). There was a statistically significant difference in the amount of 

CD68+ macrophages/mm2 of DRGs among the three groups (P< 0.01; Figure 3.2D). 
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There were greater numbers of activated resident CD68+ macrophages in the DRGs 

with severe pathology compared to both those with mild (P<�0.05) and moderate (P< 

0.05) pathology (Figure 3.2D). 

In order to further phenotype the cells surrounding the DRG neurons, we 

examined the percentage of CD163+ M2-like macrophages and the absolute number of 

these cells in DRGs. The CD163+ macrophages made up an average of 5.8% (SEM of 

2.1) (range 2.4 to 11.7%) of all cells surrounding normal uninfected DRG. This 

percentage was increased to an average of 27.4% (SEM of 1.8) (range 4.5 to 45.5%) in 

all DRGs from infected animals. The absolute number of CD163+ cells surrounding the 

DRG neurons was significantly increased in SIV-infected animals compared to 

uninfected controls (P< 0.01; mean of 262.3 (SEM of 106.7) vs 1200.0 (SEM of 105.1) 

cells/mm2)(Figure 3.3A-C). There was no significant difference in the amount of CD163+ 

cells in the DRGs with mild, moderate or severe pathology (Figure 3.3D).  

We have previously shown that the absolute number of CD3+ and CD8+ cells 

was not different between SIV-infected and uninfected DRGs [4]. CD4 IHC is not 

reliable in rhesus paraffin embedded tissue sections because of low antigenicity. In 

order to confirm the extent of T lymphocytes in DRG tissues, we used the pan T cell 

marker CD3 to quantitate percent and absolute number of T cells in the DRG. The 

mean absolute number of CD3+ T lymphocytes in DRG tissue was not significantly 

different between uninfected and SIV-infected animals (mean of 232.8 (SEM of 54.3) vs 

249.5 (SEM of 43.3) cells/mm2.  

 

Immune cell traffic to the DRG 
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To identify monocytes that recently emigrated from bone marrow, we used BrdU 

labeling in SIV-infected CD8+ T lymphocyte depleted macaques. Newly migrated 

monocyte/macrophages were identified within the DRG using both anti-BrdU and anti-

MAC387 antibodies. BrdU+ cells in DRGs were quantified in uninfected compared to 

SIV-infected macaques (Figure 3.4A-C). Less than 1% of cells were BrdU+ in the DRGs 

of uninfected animals representing a basal level of cell turnover in the DRG. The 

absolute number of BrdU+ cells trafficking to the DRG tissue trended toward an 

increase with SIV infection (mean of 40.0 (SEM of 0.5) vs. 148.5 (SEM of 26.6) 

cells/mm2) (Figure 3.4C). When DRGs were divided by severity of pathology, BrdU+ 

cells were significantly different among groups (ANOVA P< 0.01)(Figure 3.4D). BrdU+ 

cells were significantly elevated in the severe group compared to mild (P< 0.05) and the 

moderate (P< 0.05) groups (Figure 3.4D). Thus, trafficking of BrdU+ cells from the bone 

marrow to the DRG correlates with severity of DRG pathology. We also found that the 

average number of BrdU+ cells in the DRG positively and significantly correlated with 

the percent loss of IENFD at necropsy (P< 0.05, r= 0.64) (Figure 3.4E). The number of 

CD68+ and CD163+ macrophages, MAC387+ recently recruited cells and CD3+ T cells 

in the DRG did not correlate with IENFD loss (data not shown). These data suggest an 

association between monocyte recruitment from the bone marrow to DRG 

histopathology and IENFD loss. 

MAC387+ cells are early inflammatory cells that represent recent recruits to 

tissues upon inflammation and are considered to have an M1-like phenotype [7, 15, 16]. 

We found few MAC387+ cells in uninflammed tissues and in the uninfected DRGs 

accounted for an average of 1.5% (SEM of 0.6) (range 0.7 to 3.1%) of cells surrounding 
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DRG neurons. The percentage of MAC387+ cells surrounding the DRG neurons in SIV-

infected animals was increased to an average of 4.3% (SEM of 0.5). The absolute 

number of MAC387+ cells in the DRG tissue was significantly increased in SIV-infected 

animals compared to uninfected controls (P< 0.05; mean of 60.4 (SEM of 29.1) vs 187.7 

(SEM of 20.4) cells/mm2) (Figure 3.5A-C). When animals were separated by severity of 

DRG pathology (mild, moderate and severe), the absolute numbers of MAC387+ cells 

were different among groups (ANOVA P< 0.01)(Figure 3.5D). MAC387+ cells were 

most abundant in the severe group compared to mild (P< 0.01) and the moderate group 

(P< 0.01) (Figure 3.5D). Thus, the accumulation of MAC387+ cells correlated with 

severity of DRG pathology. 

In order to further characterize the BrdU+ cells that have recently emigrated to 

the tissue, we performed double immunofluorescence staining on DRG tissues for BrdU 

and MAC387 or CD68. We found that an average of 83.5% (SEM of 7.5%) (range 57.4-

96.5%) of total BrdU+ cells were also MAC387+, while only an average of 7.4% (SEM of 

1.4) (range of 3.9-12.2%) of all BrdU+ cells were also CD68+ (Table 3.2). This 

corroborates with our previously published data examining cell traffic to the brain where 

we demonstrated that 90% of all BrdU+ cells in SIV encephalitic lesions were also 

MAC387+ [7,8]. These data demonstrate that the majority of the BrdU+ cells are also 

MAC387+ and these cells are the main cell population trafficking to the DRG during SIV 

infection. 

 

 

DISCUSSION 
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HIV-DSP continues to negatively affect patient quality of life. Treatment for HIV-

DSP currently focuses on treating the symptomatic pain because the underlying cause 

is poorly understood	 [17]. Thus, there exists a need to understand the 

pathophysiological mechanisms of HIV-DSP. Here, we sought to characterize the 

immune response in the DRGs and correlate it with histopathology and IENFD loss in 

the peripheral nerves. The DRG has long been implicated in pathogenesis of HIV-DSP, 

but the mechanism(s) have not yet been fully characterized [1]. Previous research 

suggested that macrophages may traffic to the DRG and inflict damage during HIV and 

SIV infection	 [4-6], but this has not been investigated systematically within an 

appropriate animal model. 

This study was the first to investigate cell trafficking from the bone marrow to the 

DRG during SIV infection. Dividing cells were labeled using intravenous BrdU pulse [8]. 

BrdU is a thymidine analog that incorporates into all newly synthesized DNA. 

Monocytes undergo their last cell division in the bone marrow; therefore BrdU labels 

while they are in the bone marrow [18]. We found an increased number of BrdU+ 

macrophages in the DRGs with SIV infection. The amount of BrdU+ cells was increased 

with more severe DRG histopathology suggesting a potential role in DRG pathology. 

Our previous data demonstrated that 90% of BrdU+ macrophages in the SIV 

encephalitic lesions were also MAC387+ (a marker of recently recruited monocytes, M1-

type macrophage), but few were CD68+ or CD163+ [7]. Here, we have demonstrated 

that the majority (83.5%) of the BrdU+ cells in DRGs were also MAC387+ and few 

(7.4%) were CD68+. Although there have been recent papers suggesting that 

macrophages undergo division in situ	 [19, 20], we believe that these BrdU+MAC387+ 
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cells represent cells coming from the bone marrow, supported by the fact that BrdU is 

incorporated in monocytes in the bone marrow and that blood monocytes are MAC387+ 

cells. In addition, MAC387 is a marker of monocytes that have recently infiltrated tissues 

and is perhaps the earliest marker expressed on such cells as they enter tissues	[7]. We 

found significantly increased numbers of MAC387+ macrophages in DRGs of SIV-

infected animals compared to uninfected controls and as expected, increased numbers 

of MAC387+ cells also correlated with severity of DRG pathology.  These data together 

suggest that newly recruited BrdU+MAC387+ monocytes may play significant roles in 

severity of DRG pathogenesis during SIV infection. Our findings regarding cell traffic 

and the correlation to DRG pathology are consistent with previously published data that 

demonstrated a correlation between monocyte traffic and severity of SIV encephalitic 

brain lesions in the same model system [8].  

Previous studies of SIV-peripheral neuropathy (PN) examined CD68+ or Iba-1 

macrophages in the DRG [4, 6, 9]. Here, CD68 was used as a marker for resident 

macrophages and CD163+ cells represent M2-like perivascular macrophages. CD163 is 

a scavenger receptor expressed on activated mononuclear cells and is shed in its 

soluble form (sCD163) [21-23]. Elevated sCD163 in plasma has been shown to be a 

biomarker of SIV and HIV infection and correlates with severity of neurologic disease 

associated with HIV [8, 22, 24, 25]. It should be noted that these two markers are not 

expressed on exclusive cell populations. A majority of the CD163+ cells co-express 

CD68 (data not shown) [7]. Both absolute numbers of CD68+ and CD163+ 

macrophages were increased with SIV infection. Interestingly, only greater numbers of 
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CD68+, but not CD163+ macrophages correlated with severity of DRG pathology. It is 

possible that CD163+ macrophages may be exerting a protective M2-like effect.  

Macrophages are often classified as being either M1 or M2 polarized. However, 

M1 and M2 classifications are not rigid in that macrophages can switch phenotypes. 

HIV-1 proteins cause a phenotypic switch from M2 to M1 by preferentially activating M2 

macrophages	 [26]. CD163+ cells are typically considered to be M2 polarized 

macrophages that are associated with tissue repair, tumor progression, and production 

of anti-inflammatory cytokines [27, 28]. In contrast, MAC387+ macrophages are thought 

to be M1 polarized which produce pro-inflammatory cytokines and contribute to host 

protection from pathogens [27, 28].  

We have previously shown that the absolute number of CD3+ and CD8+ T 

lymphocytes was not different between SIV-infected and uninfected DRGs and have 

confirmed that data here [4]. Together, these data suggest that macrophages, but not T 

cells, are either inflicting or exacerbating damage in the DRG.  
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Table 3.1: Animals used in the study. 

Animal 
groups 

Animal 
ID 

Primate 
center 

Survival 
(days) 

Terminal 
plasma 
viral load 
(log 10) 

Brain 
Pathology DRG Pathology* 

A01 NEPRC N/A N/A normal normal 
A02 NEPRC N/A N/A normal normal 
A03 TNPRC N/A N/A normal normal 

Uninfected 
 

A04 TNPRC N/A N/A normal normal 
A05 NEPRC 77 8.69 SIVE severe 
A06 NEPRC 131 8.15 SIVE mod-severe 
A07 TNPRC 91 7.04 SIVE mod-severe 
A08 NEPRC 56 7.86 SIVE moderate 
A09 TNPRC 89 7.71 SIVE mild (T), mod-severe (L, 

S) 
A10 TNPRC 55 7.83 SIVE mild (T), mild-mod (L, S) 
A11 TNPRC 174 7.28 AIDS no E severe (T, L, S) 
A12 TNPRC 146 7.67 AIDS no E moderate (T), severe (L, 

S) 
A13 NEPRC 77 8.54 SIVE moderate (T), mod-

severe (L, S) 
A14 NEPRC 77 7.23 SIVE moderate (T, L, S) 
A15 NEPRC 168 6.79 AIDS no E mild (L, S) 

SIV-infected  
CD8 
lymphocyte 
depleted 
 

A16 NEPRC 97 7.79 SIVE mild (L, S) 
TNPRC= Tulane National Primate Research Center; NEPRC; New England 

Primate Center; SIVE= SIV encephalitis; AIDS no E= AIDS without SIVE; T= 

thoracic DRG; L= lumbar DRG; S= sacral DRG; mod= moderate pathology 

* Sections of DRGs from animals A01 through A08 contained multiple DRGs per 

block but specific anatomical location was not specified so they may have 

included thoracic, lumbar, and/or sacral DRGs. 
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Table 3.2: The majority of the BrdU+ cells surrounding the DRG neurons are 
MAC387+. 

 A05 A10 A11 A12 A14 Average 
BrdU+Mac387+ 
cells 
vs. all BrdU+ cells * 

57.4 ± 
10.9 

 
92.1 ± 3.9 
 

 
96.5 ± 1.1 
 

 
95.7 ± 1.7 
 

 
76.0 ± 5.7 
 

 
83.5 ± 7.5 
 

BrdU+CD68+ cells  
vs. all BrdU+ cells † 

8.9 ± 3.0 
 
12.2 ± 2.8 
 

 
3.9 ± 2.0 
 

 
5.9 ± 1.2 
 

 
6.2 ± 2.4 
 

 
7.4 ± 1.4 
 

BrdU+Mac387+ 
cells  
vs. all Mac387+ 
cells ‡ 

31.7 ± 8.7 
 
77.2 ± 3.7 
 

 
84.9 ± 2.6 
 

 
90.3 ± 2.8 
 

 
81.7 ± 3.0 
 

 
73.2 ± 10.6 
 

BrdU+CD68+ cells  
vs. all CD68+ cells § 1.7 ± 1.4 

 
2.4 ± 0.8 
 

 
2.5 ± 0.9 
 

 
1.3 ± 0.5 
 

 
2.2 ± 1.3 
 

 
2.0 ± 0.2 
 

	
 *Mean ± SEM of the percentage of BrdU+ cells expressing Mac387 surrounding 

DRG neurons was calculated as followed; (number of BrdU+Mac387+ cells/total 

number of BrdU+ cells) x 100. 

†Mean ± SEM of the percentage of BrdU+ cells expressing CD68 calculated as 

followed; (number of BrdU+CD68+ cells/total number of BrdU+ cells) x 100. 

‡Mean ± SEM of the percentage of Mac387+ cells expressing BrdU calculated as 

followed; (number of BrdU+Mac387+ cells/total number of Mac387+ cells) x 100. 

§Mean ± SEM of the percentage of CD68+ cells expressing BrdU calculated as 

followed; (number of BrdU+CD68+ cells/total number of CD68+ cells) x 100. 

The average of the rows was the calculated by averaging the 5 average values 

and the standard error of the mean of the 5 values is shown. 

 



	 103	

 
Figure 3.1 
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Figure 3.1: Productive viral replication in the macrophage in the dorsal 

nerve root and DRG of SIV-infected macaques.  

(A) Dorsal nerve root of animal A11 with abundant SIVp28 (brown) 

immunoreactivity and multinucleated giant cells (MNGCs) in SIV-infected rhesus 

macaque. (B) Dorsal root ganglia of animal A06 with abundant SIVp28 (brown) 

immunoreactivity and a MNGC. (C) Dorsal root ganglia of animal A05 with in situ 

hybridization identifying SIV RNA+ cells (blue). 
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Figure 3.2:  

 



	 106	

 
Figure 3.2: Elevated numbers of CD68+ macrophages are associated with 

SIV infection and severity of DRG pathology. 

(A) Dorsal root ganglia of uninfected animal A01 with scant CD68 

immunoreactivity (brown). (B) Dorsal root ganglia of animal A08 a SIV-infected 

rhesus macaque with marked increase in CD68 immunoreactivity (brown). (C) 

The box plot shows the mean +/- the standard error of the mean of the absolute 

number of CD68+ cells per mm2 in SIV- (n=4 DRGSs) and SIV+ (n=26 DRGs) 

DRGs. The absolute number of CD68+ cells per mm2 was significantly increased 

in the SIV-infected DRGs. (D) The box plot shows the mean +/- the standard 

error of the mean of the absolute number of CD68+ cells per mm2 in mild (n=8 

DRGSs), moderate (n=12 DRGs) and severe (n=6 DRGs) DRGs. Elevated 

numbers of CD68+ macrophages were associated with severity of DRG 

pathology. ANOVA (P< 0.01) was performed followed by post-hoc t tests. *P < 

0.05, ***P < 0.001. 
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Figure 3.3:  
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Figure 3.3: Elevated numbers of CD163+ macrophages are associated with 

SIV infection.  

(A) Dorsal root ganglia of uninfected animal A02 with scant CD163 

immunoreactivity (brown). (B) Dorsal root ganglia of SIV-infected animal A05 with 

marked increase in CD163 immunoreactivity (brown). (C) The box plot shows the 

mean +/- the standard error of the mean of the absolute number of CD163+ cells 

per mm2 in SIV- (n=4 DRGSs) and SIV+ (n=26 DRGs) DRGs. The absolute 

number of CD163+ cells per mm2 was significantly increased in the SIV-infected 

group. (D) The box plot shows the mean +/- the standard error of the mean of the 

absolute number of CD163+ cells per mm2 in mild (n=8 DRGSs), moderate (n=12 

DRGs) and severe (n=6 DRGs) DRGs. Elevated numbers of CD163+ 

macrophages were not associated with severity of DRG pathology. **P < 0.01. 
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Figure 3.4 
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Figure 3.4: Cell traffic from the bone marrow to the DRG measured by 

increased BrdU+ cells with SIV infection.  

Animals were serially injected with BrdU to label recently divided monocytes in 

the bone marrow and then traffic to DRG. (A) Dorsal root ganglia of uninfected 

animal A02 with scant BrdU immunoreactivity (brown). (B) Dorsal root ganglia of 

SIV-infected animal A06 with marked increase in BrdU immunoreactivity (brown). 

(C) The box plot shows the mean +/- the standard error of the mean of the 

absolute number of BrdU+ cells per mm2 in SIV- (n=4 DRGSs) and SIV+ (n=26 

DRGs) DRGs. The absolute number of BrdU+ cells per mm2 of DRG tissue was 

calculated. (D) The box plot shows the mean +/- the standard error of the mean 

of the absolute number of BrdU+ cells per mm2 in mild (n=8 DRGSs), moderate 

(n=12 DRGs) and severe (n=6 DRGs) DRGs. Higher numbers of BrdU+ cells 

correlated with the severity of DRG pathology. ANOVA (P< 0.01) was performed 

followed by post-hoc t tests. (E) The average number of BrdU+ cells in the DRGs 

per animal was calculated. Increased numbers of BrdU+ cells in the DRG 

correlates with percent loss of IENFD at necropsy Spearman correlation was 

used and *P < 0.05, r=0.64. *P < 0.05. 
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Figure 3.5 
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Figure 3.5: Elevated numbers of MAC387+ macrophages are associated 

with SIV infection and severity of DRG pathology.  

(A) Dorsal root ganglia of uninfected animal A01 with scant MAC387 

immunoreactivity (brown). (B) Dorsal root ganglia of SIV-infected animal A05 with 

marked increase in MAC387 immunoreactivity (brown). (C) The box plot shows 

the mean +/- the standard error of the mean of the absolute number of MAC387+ 

cells per mm2 in SIV- (n=4 DRGSs) and SIV+ (n=26 DRGs) DRGs. The absolute 

number of MAC387+ cells per mm2 was significantly increased in the SIV 

infected group. (D) The box plot shows the mean +/- the standard error of the 

mean of the absolute number of MAC387+ cells per mm2 in mild (n=8 DRGSs), 

moderate (n=12 DRGs) and severe (n=6 DRGs) DRGs. Elevated number of 

MAC387+ macrophages was associated with severity of DRG pathology. ANOVA 

(P< 0.01) was performed followed by post-hoc t tests. *P < 0.05, **P < 0.01. 
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ABSTRACT  

Traffic of activated monocytes into the dorsal root ganglia (DRG) is critical 

for pathology in HIV peripheral neuropathy. We have shown that accumulation of 

recently recruited (BrdU+MAC387+) monocytes is associated with severe DRG 

pathology and loss of intraepidermal nerve fibers in SIV-infected macaques 

(Chapters 2 and 3). Here, we blocked leukocyte traffic by treating animals with 

natalizumab, which binds to α4-integrins. SIV-infected CD8-depleted macaques 

treated with natalizumab either early (the day of infection) or late (28 days post 

infection (DPI)) were compared to untreated SIV-infected animals sacrificed at 

similar times. Histopathology showed diminished DRG pathology with 

natalizumab treatment including decreased inflammation, neuronophagia, and 

Nageotte nodules. Natalizumab treatment resulted in a decrease in the number 

of BrdU+ (early), MAC387+ (late), CD68+ (early and late) and SIVp28+ (late) 

macrophages in DRG tissues. The number of CD3+ T lymphocytes in DRGs was 

not affected by natalizumab treatment. Vascular cell adhesion molecule 1 

(VCAM-1), an adhesion molecule that mediates leukocyte traffic, was diminished 

in DRGs of all natalizumab-treated animals. These data show that blocking 

monocyte, but not T lymphocyte, traffic to the DRG results in decreased 

inflammation and pathology supporting a role for monocyte traffic and activation 

in HIV peripheral neuropathy.  
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INTRODUCTION 

Primary mechanisms of the human immunodeficiency virus (HIV) 

peripheral neuropathy include immune damage secondary to viral infection and 

mitochondrial toxicity from antiretrovirals. Since HIV and simian 

immunodeficiency (SIV) do not productively infect neurons or Schwann cells, 

damage to the dorsal root ganglia (DRG) in peripheral neuropathy is believed to 

be due, in part, to infected and activated macrophages. In vitro and in vivo 

studies suggest that both viral proteins and systemic inflammation secondary to 

the viral infection may damage neurons and axons (reviewed in [1]). Using a 

CD8-depleted SIV-infected rhesus macaque model of peripheral neuropathy, we 

have shown that accumulation of recruited (BrdU+MAC387+) 

monocyte/macrophages was associated with severe DRG pathology (Chapter 3) 

[2]. The number of bromodeoxyuridine (BrdU)+ monocytes correlated with DRG 

histopathology, which included neuronophagia, satellitosis, and Nageotte 

nodules (Chapter 3) [2]. Our data demonstrate that newly recruited 

MAC387+BrdU+ macrophages play a significant role in DRG pathogenesis. 

Natalizumab was approved for the treatment of relapsing-remitting 

Multiple Sclerosis and Crohn’s disease [3]. Natalizumab blocks traffic of 

leukocytes (monocyte/macrophages, T cells, and B cells) to the CNS of patients 

with relapsing-remitting Multiple Sclerosis [3] and to the gut of patients with 

Crohn’s disease [4]. We have shown that natalizumab treatment of SIV-infected 

rhesus macaques resulted in stabilization of ongoing neuronal injury (NAA/Cr by 
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1H MRS), and decreased numbers of monocytes/macrophages and productive 

SIV infection in the brain and gut [5].  We found similar numbers of CD68+ and 

MAC387+ monocyte/macrophages in lymph nodes of untreated and treated SIV-

infected animals suggesting that natalizumab did not significantly affect traffic to 

lymph nodes as previously described [5]. In a more recent study, we have also 

shown that natalizumab treatment of SIV-infected rhesus macaques blocks 

monocyte traffic to the heart resulting in decreased cardiac pathology, 

cardiovascular disease and fibrosis [6]. Here, we extend these studies to 

determine whether ongoing monocyte/macrophage traffic is required for SIV-

associated DRG damage. We found that natalizumab treatment decreased 

inflammation, monocyte traffic, SIV infection and pathology of DRGs.  

 

 

MATERIALS and METHODS 

Ethical Statement  

All animals used in this study were handled in strict accordance with 

American Association for Accreditation of Laboratory Animal Care with the 

approval of the Massachusetts General Hospital Subcommittee on Research and 

Animal Care, the Institutional Animal Care and Use Committee of Harvard 

University and Tulane University.  

 

Animals, viral infection, and CD8 lymphocyte depletion 



	 120	

Sixteen adult male rhesus macaques (Macaca mulatta) were utilized in 

this study. Animals were inoculated intravenously with SIVmac251 (5ng SIV p27) 

(a generous gift from Dr. Ronald Desrosiers, University of Miami) and were 

administered an anti-CD8 antibody subcutaneously at day 6 after infection (10 

mg/kg), and intravenously at days 8 and 12 after infection (5 mg/kg) in order to 

achieve rapid AIDS. The human anti-CD8 antibody was provided by the NIH 

Non-human Primate Reagent Resource (RR016001, AI040101) [7-12].  Eight 

macaques (n=4 late natalizumab treated, n=4 late untreated) were sacrificed 

between 49 to 77 day post infection (DPI) and eight animals (n=5 early 

natalizumab treated, n=3 early untreated) were sacrificed at 21 or 22 DPI [5]. All 

animals were anesthetized with ketamine-HCl and euthanized by an intravenous 

pentobarbital overdose and exsanguinated. Both early and late natalizumab 

treated groups and the early untreated group were timed sacrificed (days 21, 49 

and 22 post infection, respectively) (Table 4.1). Late untreated animals were 

sacrificed based on the guidelines for euthanasia of SIV-infected rhesus 

macaques. All animals were still fully CD8 depleted at the time of necropsy. 

 

Anti-α4 integrin (natalizumab) administration 

The recombinant humanized IgG4 monoclonal anti-α4 integrin mAb 

(natalizumab) was kindly provided by Biogen Idec (Cambridge, MA). The 

antibody was administered once weekly (30 mg/kg) for three weeks beginning on 

the day of infection (early, 0 DPI, n = 5) or 28 days after infection (late, 28 DPI, n

= 4) in a slow bolus. A high dose of natalizumab was given three times with one-
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week intervals between each treatment to avoid hypersensitivity responses [5]. 

This regimen maintains high serum levels of natalizumab [13]. 

BrdU administration 

BrdU was administered as a slow bolus intravenous injection at a dose of 

60 mg BrdU/kg body weight as previously described (Chapter 3) [14]. To monitor 

levels of monocyte/macrophage trafficking out of the bone marrow, in blood, and 

into the DRG, BrdU was administered prior to infection (−9 DPI), 26 DPI, and 24 

hours prior to necropsy in two macaques given natalizumab beginning on 28 DPI. 

In the other natalizumab treated animals, BrdU was administered once 

natalizumab treatment was initiated, on days 33 and 47 post infection (n = 2 late 

natalizumab) or days 6 and 20 post infection (n = 5 early natalizumab). For the 

early, untreated animals, BrdU was also given at days 6 and 20 post-infection 

(n=3 early untreated). For the late untreated animals, BrdU was administered 

prior to infection (−9 DPI), at peak infection (7 and 20 or 26 DPI), day 41 post 

infection and 24 hours prior to necropsy in two macaques and days 41, 62 and 

24 hours prior to necropsy in the other two macaques (Table 4.1). 

 

Necropsy and Histopathology  

Animals were necropsied immediately following death and representative 

sections of all major organs were collected, fixed in 10% neutral buffered formalin 

(NBF), embedded in paraffin, and sectioned at 5µm. Sections were stained with 

hematoxylin and eosin as previously described (Chapter 2) [2, 15]. 
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Histopathologic analysis of DRG morphology was analyzed and ranked on a 

scale of 0 to 3 as previously described (Chapter 2) [2, 15, 16].  

 

Immunohistochemistry 

DRG sections were stained with either anti-SIV protein p28 (Fitzgerald), 

the pan-macrophage marker anti-CD68 (Clone KP1, Dako, Carpinteria, CA), the 

scavenger receptor anti-CD163 (Clone MCA1853, Serotec, Raleigh, NC), the 

early inflammatory marker anti-MAC387 (Clone M0747, Dako, Carpinteria, CA), 

anti-BrdU (Clone M0744, Dako, Carpinteria, CA), the T lymphocyte marker anti-

CD3 (Clone A0452, Dako, Carpinteria, CA), or anti-VCAM-1 (4E8 Clone, 

Antibodies-Online) as previously described (Chapter 3) [17]. 

 

Immunohistochemistry quantification  

For quantitation of monocyte/macrophage and T cell populations by 

immunohistochemical analyses, at least eight non-overlapping fields at 200x 

magnification were quantitated per DRG tissue as previously described (Chapter 

3) [17]. Data were expressed as mean ± standard error of the mean (SEM). For 

animals that had more than one region of DRG, the means were averaged. 

DRG tissue was stained for vascular cell adhesion protein 1 (VCAM-1) as 

described above. Eight random, non-overlapping fields at 200x magnification 

were imaged and the percent of VCAM-1+ area of total DRG tissue area was 

calculated. The area of VCAM-1+ tissue was quantified using ImageJ analysis 

software (v1.45s, National Institutes of Health). Images underwent color 
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deconvolution to separate histological dyes into DAB (brown) and hematoxylin 

(purple) channels. The color threshold on the DAB channel was adjusted 

uniformly on all images to measure DAB+ area. The percent of VCAM-1+ area of 

total tissue was calculated by dividing the total DAB+ area by the total area of 

tissue and multiplying by 100.  For animals that had more than one region DRG, 

the percentages of each region were averaged. 

 

Statistical methods 

Prism version 5.0f (GraphPad Software, Inc., San Diego, CA) software 

was used for statistical analyses. Student t tests were used to detect variation in 

cell numbers between untreated and natalizumab treated rhesus macaques. A P 

value of <0.05 was considered significant.  

 

 

RESULTS 

Histopathologic analysis show diminished DRG pathology with natalizumab 

treatment 

Sixteen SIV-infected CD8-depleted rhesus macaques were included in 

this study (Table 4.1). Eight animals were sacrificed at 21 or 22 DPI. Five of 

these animals received natalizumab treatment beginning on the day of infection 

(0 DPI) and 3 animals were untreated controls. An additional eight macaques 

were sacrificed at similar time points (49 to 77 DPI). Four of these animals 

received natalizumab treatment at day 28 and 4 animals were untreated controls.  
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In two out of three early sacrificed, untreated animals there was moderate 

DRG pathology characterized by increased numbers of satellite cells and 

lymphocytic and histiocytic infiltration into the ganglia. This was associated with a 

moderate degree of neuronophagia. Nageotte nodules were either rare or absent 

in this group of animals (Figure 4.1A). In the early natalizumab treated animals, 

DRG pathology ranged from mild to moderate. In these animals, neuronophagia 

was mild and no Nageotte nodules were noted (Figure 4.1B).   

Late untreated animals had moderate to severe inflammation, satellite cell 

proliferation, and neuronophagia. Nageotte nodules were rare in three of the four 

animals and one animal had extensive Nageotte nodules (Figure 4.1C). In the 

late natalizumab treated animals, the dorsal root ganglia had a moderate degree 

of inflammation and satellite cell proliferation, milder degrees of neuronophagia, 

and no or rare Nageotte nodules (Figure 4.1D). Thus, overall there was 

diminished DRG pathology with natalizumab treatment, which included less 

inflammation, neuronophagia, neuronal loss/degeneration, and Nageotte 

nodules. 

 

Natalizumab blocks traffic of monocytes into DRGs 

To identify monocyte traffic to the DRGs, we counted the number of 

recently recruited MAC387+ monocytes and used BrdU pulse to label monocytes 

that divide in and egress from bone marrow into the circulation and traffic to 

tissues. The antibody MAC387 antibody recognizes the myeloid-related protein 

14 (MRP14) [18-20], which is expressed on recently infiltrating 
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monocytes/macrophages during early acute inflammation [21]. In the early, 

untreated animals there were 225.6 MAC387+cells/mm2 in the DRG, which 

decreased by 2.9 fold in the natalizumab-treated animals (Figure 4.2A). In the 

late untreated animals, there were 144.3 MAC387+ monocytes/mm2 in the DRG. 

The number of MAC387+ monocytes was significantly decreased by 9.1 fold to 

15.88 MAC387+ monocytes/mm2 in DRGs of natalizumab-treated animals 

(Figure 4.2A, P< 0.0001). In early, untreated animals, there were 94.40 BrdU+ 

cells/mm2, which significantly decreased by 3.5 fold to 26.93 BrdU+ cells/mm2 of 

DRG tissue in early natalizumab-treated animals (Figure 4.2B, P< 0.01). In late 

animals, there was a 1.6 fold decrease, although not statistically significant, in 

the number of BrdU+ cells with natalizumab treatment (Figure 4.2B).  Overall, 

these data suggest that treatment with natalizumab decreases monocyte traffic 

into the DRG during SIV infection. 

 

Natalizumab treatment significantly decreases the number of CD68+ 

macrophages, but not CD163+ macrophages nor CD3+ T lymphocytes in DRGs 

In early, untreated animals, there were 1101 CD68+ macrophages/mm2, 

which significantly decreased by 17.6 fold to 62.73 CD68+ macrophages/mm2 of 

DRG tissue in early natalizumab-treated animals (Figure 4.2C, P< 0.01). In late 

untreated animals, there were 1016 CD68+ macrophages/mm2, which 

significantly decreased by 9.4 fold to 107.8 CD68+ macrophages/mm2 of DRG 

tissue in late natalizumab-treated animals (Figure 4.2C, P< 0.01). Although not 

significant, there was a trend towards a decrease in number of CD163+ 



	 126	

macrophages in both early and late natalizumab-treated animals compared to 

untreated animals (Figure 4.2D). These data show that natalizumab significantly 

decreased the number of CD68+ macrophages in DRG tissues. Interestingly, 

there were no significant differences in number of CD3+ T lymphocytes between 

untreated and either early or late natalizumab-treated animals (Figure 4.2E). 

Since animals were CD8 depleted, these CD3+ T lymphocytes were most likely 

CD4+ T cells. 

 

Natalizumab treatment significantly decreases SIV infection in DRGs 

In early, untreated animals, there were 84.22 SIVp28+ cells/mm2, which 

decreased 3.2 fold to 25.92 SIVp28+ cells/mm2 of DRG tissue in early 

natalizumab-treated animals (Figure 4.2F). In late animals, there were 39.55 

SIVp28+ cells/mm2, which significantly decreased by 10.9 fold to only 3.63 

SIVp28+ cells/mm2of DRG tissue in late natalizumab-treated animals (Figure 

4.2F, P< 0.05). These data show that natalizumab significantly decreased SIV-

infected cells in DRG tissues.  

 

Natalizumab treatment decreases VCAM-1 expression on the surface of DRG 

blood vessels 

Because natalizumab blocks α4-integrin binding to VCAM-1, an adhesion 

molecule involved in mediating leukocyte traffic, DRG tissues were examined for 

VCAM-1 expression. VCAM-1 expression was detected on blood vessels in 

DRGs of early and late untreated animals, but was diminished in DRGs from 
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natalizumab-treated animals (Figure 4.3A-D).  This reduction was quantitated 

and VCAM-1 expression was significantly decreased in both early and late 

natalizumab treatment compared to untreated control animals (Figure 4.3E; P< 

0.05). Thus, reducing expression of VCAM-1 on blood vessels in DRGs by 

natalizumab may be one mechanism of inhibiting monocyte recruitment to DRGs 

during SIV infection or less cell traffic due to natalizumab treatment may have 

caused decreased VCAM-1 expression. 

 

 

DISCUSSION 

Natalizumab is a monoclonal antibody against human α4-integrin indicated 

for treatment of Multiple Sclerosis [3] and Crohn’s disease [4] that blocks the 

extravasation of leukocytes into tissues and thus, reduces inflammation. Since 

α4-integrins and their receptors are involved in immune cell trafficking, 

natalizumab interferes with these processes [22]. We have previously shown that 

monocyte traffic to the DRG is associated with severe DRG pathology, as well as 

a loss of intraepidermal nerve fiber density (IENFD) (Chapter 3) [2]. In this 

current study, we used natalizumab to determine the effect of blocking leukocyte 

traffic on DRG pathology. This is the first study that blocked monocyte traffic to 

the DRG, which resulted in diminished macrophage inflammation and reduced 

DRG pathology.  In natalizumab-treated animals there was less severe DRG 

pathology that included decreased inflammation, mild neuronophagia and none-

to-rare Nageotte nodules. All of these changes are associated with damage to 
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the structure of the ganglion and in turn will lead to functional deficits. One 

manifestation of this is the loss of IENFD, which we have shown is correlated 

with damage to the DRG (Chapter 2) [23], while others have shown it is 

correlated with pain [24].  

Natalizumab treatment resulted in decreased numbers of recently 

recruited M1-like MAC387+BrdU+ monocytes, decreased CD68+ macrophages 

and reduced the number of productively SIV-infected macrophages in DRGs 

suggesting that these all relate to DRG pathology. These results demonstrate 

that by blocking α4-integrins and thus traffic of monocytes to DRGs, subsequent 

histopathology is diminished and suggests that monocyte traffic, viral replication 

and macrophage activation have causative roles in perpetuating neuronal 

damage, and are not simply correlative. Thus, drugs that directly target monocyte 

traffic may prevent or reduce severity of HIV peripheral neuropathy.  

This study examined if stopping leukocyte traffic prevents DRG pathology 

either during early or late infection. In the late treated animals, natalizumab was 

not administered until 28 DPI, and thus damage may have already been initiated 

during early infection. However, by stopping late leukocyte traffic, animals did not 

develop severe DRG pathology as seen in untreated animals sacrificed at similar 

time points [2]. Unlike in the central nervous system (CNS), peripheral nervous 

system (PNS) neurons can regenerate over time, and thus even late treatment 

may allow for the PNS to recover fully over a longer period of time. 

The induction of integrin receptors is the limiting event in initiating 

monocyte recruitment and extravasation during inflammation. VCAM-1 is 
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expressed on vasculature and is known to mediate adhesion of mononuclear 

cells to endothelial cells via binding of very late antigen-4 (VLA-4), which is 

essential for transmigration across the endothelium. A recent study has 

demonstrated macrophage infiltration into the DRG was related to upregulation of 

VCAM-1 using an experimental model of early stage lumbar disc herniation [25]. 

It was also shown that systemic administration of a tumor necrosis factor (TNF)-α 

inhibitor prevented macrophage infiltration and upregulation of VCAM-1 [25]. 

Another study has demonstrated that administration of a TNF-α inhibitor, given 

after the onset of inflammation, prevented both macrophage invasion and VCAM-

1 upregulation in the DRG in a rat model of arthritis [26]. TNF-α and IL-1β are 

secreted by activated resident macrophages during inflammatory events and 

induce expression of VCAM-1 and other adhesion molecules on the local 

vasculature. In this study, by blocking VLA-4 (the ligand for VCAM-1), we 

prevented additional monocytes from entering the tissue, as indicated by the 

reduced number of MAC387+ and BrdU+ cells. We showed a significant 

reduction in VCAM-1 expression in DRG tissues with natalizumab treatment.  

We examined if decreased expression of VCAM-1 was due to enhanced 

shedding of VCAM-1 and thus elevated plasma soluble (s)VCAM-1 or decreased 

TNF-α, since TNF-α induces VCAM-1 expression. We found low to undetectable 

levels of TNF-α in all untreated and treated animals (data not shown). sVCAM-1 

was not significantly increased in any of the treatment groups from pre-infection 

to necropsy (data not shown). sVCAM-1 in serum has been used as a surrogate 

marker of VCAM-1 endothelial expression and studies in MS patients show that 
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sVCAM-1 is decreased with natalizumab . Here, sVCAM-1 in plasma collected at 

necropsy positively correlated to VCAM-1 expression in DRG tissue suggesting 

that reduced tissue expression is not due to increased shedding (data not 

shown). Thus, we hypothesize that the reduced VCAM-1 expression is due to a 

feedback mechanism where VCAM-1 is downregulated in natalizumab-treated 

animals due to the absence of its ligand. 

There is overlap between CD68 and CD163 cell populations, although 

CD68+CD163- and CD68-CD163+ cells have been detected both in the brain 

[27] and in the DRG (unpublished data). Here, we found that natalizumab 

treatment significantly reduced the number of CD68+ macrophages in both early 

and late groups and a trend in a reduction of CD163+ macrophage numbers, 

although not significant.  There is a reduction of CD68+ antigen expression with 

decreased activation. The kinetics and turnover of CD68+ and CD163+ 

macrophage with natalizumab are unknown but our data suggests differences in 

the populations. 

We have recently shown that natalizumab treatment in SIV+ macaques 

decreased traffic of CD3+ T cells in the brain and the gut [5], but not cardiac 

tissues [6]. In this study, we showed that CD3+ T lymphocytes numbers in DRGs 

were not decreased with natalizumab treatment. This suggests that CD3+ T 

lymphocytes may use different integrins to traffic to the DRG and cardiac tissue 

than to the brain or gut. Alternatively, we have previously shown no difference in 

CD3+ T cells in the DRG in infected and uninfected animals (Chapter 3) [2, 15], 

suggesting that T cells do not home to the DRG during SIV-induced 
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inflammation. Thus, blocking all leukocyte traffic will not modulate these numbers 

since few CD3+ T cells traffic to the DRG in untreated, SIV-infected animals. 

Other drug studies regarding the role of monocytes in HIV infection have 

focused either on reducing the infectivity of monocytes/macrophages or 

suppressing inflammation [28, 29]. For example, maraviroc, a CCR5 inhibitor, 

reduced the size of the viral reservoir in monocytes and macrophages and may 

also reduce inflammation [30]. Statins have also been under investigation for 

their anti-inflammatory properties. Rosuvastatin reduced sCD14 and tissue factor 

expression on monocytes in HIV+ patients [31]. However, natalizumab is the only 

drug known to block leukocyte traffic and reduce inflammation. 

We have recently shown that natalizumab treatment in SIV+ macaques 

reduces cell traffic to the brain and heart, thus reducing the incidence of 

encephalitis and fibrosis [5, 6]. Here, we have demonstrated that blocking 

leukocyte traffic reduced the severity of DRG pathology. Long-term natalizumab 

treatment (greater than 1 year) in HIV+ patients is not recommended due to risk 

of developing progressive multifocal leukoencephalopathy (PML) [32]. However, 

our data suggests it may be beneficial for patients to receive natalizumab for 

short periods of time to slow progression of DRG tissue damage due to 

continuous leukocyte traffic. Regardless of natalizumab’s benefit or risk in a 

clinical setting, this study has demonstrated, in a proof-of-concept manner, that 

stopping leukocyte traffic by blocking VLA-4 and down-regulation of VCAM-1 

results in less severe DRG pathology during SIV infection. 
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Figure 4.1 
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Figure 4.1: Decreased DRG pathology with Natalizumab treatment. 

During histologic examination, the following terminology was used. Satellitosis is 

defined as increased numbers of cells around a neuronal cell body. 

A Nageotte nodule is defined as focal proliferations of satellite cells that partially 

to completely replace foci of neuronal cell loss. Neuronophagia is defined as 

increased numbers of satellite cells phagocytosing a neuronal cell body. 

Neuronophagia is a precursor lesion to the development of a Nageotte nodule. 

Cells were identified by morphology and the pattern of tissue reaction detailed 

above. Neurons were not counted, but loss was examined by the presence of 

Nageotte nodule and neuronophagia, which are satellite cells that replace foci of 

neuronal cell loss. (A) A representative image of a DRG from an early untreated 

with a mild increase in satellite cells with a Nageotte nodule (arrow). (B) A 

representative image of a DRG from an early natalizumab-treated animal with 

mild increase in satellite cells with no evidence of neuronophagia or Nageotte 

nodules. (C) A representative image of a DRG from a late untreated animal with 

multifocal foci of inflammation with neuronophagia (arrows). (D) A representative 

image of a DRG from a late natalizumab-treated SIV-infected CD8-depleted 

rhesus macaques with moderate increase in satellite cells with rare 

neuronophagia (arrow).  HE, 200x. 
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Figure 4.2 
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Figure 4.2: Natalizumab treatment results in a decrease in monocyte traffic, 

macrophage activation, SIV infection, but not numbers of CD3+ T cells in 

DRGs. 

 In DRG tissues from early untreated, early natalizumab-treated, late untreated 

and late natalizumab-treated SIV-infected CD8-depleted rhesus macaques the 

absolute number of (A) MAC387+ monocytes/mm2 of DRG (B) BrdU+ cells/mm2 

of DRG (C) CD68+ macrophages/mm2 of DRG (D) CD163+ macrophages/mm2 of 

DRG (E) CD3+ T cells/mm2 of DRG and (F) SIV p28+ cells/mm2 of DRG was 

quantitated.  At least eight non-overlapping fields at 200x magnification were 

quantitated per DRG tissue. The absolute number of cells was calculated by 

dividing the number of positively stained cells (DAB+ brown cells) by the area of 

tissue examined (cells/mm2). Data were expressed as mean ± standard error of 

the mean (SEM).  Student t test was used to detect variation in cell numbers 

between untreated and natalizumab treated rhesus macaques.  *P< 0.05, **P< 

0.01, ***P< 0.001 
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Figure 4.3 

 



	 141	

 
Figure 4.3: Natalizumab treatment reduces VCAM-1 expression on surface 

of blood vessels in DRGs.  

Representative images of DRG tissues stained with anti-VCAM-1 from (A) an 

early untreated, (B) an early natalizumab-treated, (C) late untreated, (D) and late 

natalizumab-treated SIV-infected CD8-depleted rhesus macaque. Black arrows 

show VCAM-1+ blood vessels. (E) VCAM-1 expression was quantitated in DRG 

tissues from early untreated, early natalizumab-treated, late untreated and late 

natalizumab-treated SIV-infected CD8-depleted rhesus macaques.  Eight 

random, non-overlapping fields at 200x magnification were imaged and the 

percent of VCAM-1+ area of total DRG tissue area was calculated. The area of 

VCAM-1+ tissue was quantified using ImageJ analysis software (v1.45s, National 

Institutes of Health). Percent of VCAM-1+ area of total tissue was calculated by 

dividing the total DAB+ area by the total area of tissue and multiplying by 100.  

Data were expressed as mean ± standard error of the mean (SEM).  Student t 

test was used to detect variation in cell numbers between untreated and 

natalizumab treated rhesus macaques.  *P< 0.05, **P< 0.01, ***P< 0.001 
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ABSTRACT  

Peripheral neuropathy (PN) is a major comorbidity of HIV infection that is 

caused in part by chronic immune activation. HIV-PN is associated with 

infiltration of monocytes/macrophages to the dorsal root ganglia (DRG) causing 

neuronal loss and formation of Nageotte nodules. Here, we used an oral form of 

methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine biosynthesis inhibitor, 

to specifically reduce activation of myeloid cells. MGBG has been shown to be 

selectively taken up by monocyte/macrophages in vitro and inhibit HIV p24 

expression and viral integration in macrophages. MGBG was administered to 

nine SIV-infected, CD8-depleted rhesus macaques at 21 days post-infection 

(DPI). An additional nine SIV-infected, CD8-depleted rhesus macaques were 

used as untreated controls. Cell traffic to tissues was measured by in vivo BrdU-

pulse labeling. MGBG treatment significantly diminished DRG histopathology and 

reduced the number of CD68+ and CD163+ macrophages in DRG tissue. The 

number of recently trafficked BrdU+ cells in the DRG was significantly reduced 

with MGBG treatment. Despite diminished DRG pathology, intraepidermal nerve 

fiber density (IENFD) did not recover after treatment with MGBG. These data 

suggest that MGBG may be a valuable adjunctive therapy for HIV inflammatory-

mediated neuropathies. 
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INTRODUCTION 

Methyl-bis-guanylhydrazone (MGBG) is a polyamine analog that interferes 

with polyamine biosynthesis by inhibiting S-adenosine-methionine decarboxylase 

(SAMDC)	[1]. This process is required for cell differentiation and proliferation and 

thus, MGBG has been studied as an anti-tumor cell proliferation drug [2]. It was 

recently shown that MGBG is selectively taken up by monocyte/macrophages 

and decreases HIV expression in these cell types. Virally infected macrophages 

treated with MGBG in vitro displayed reduced integration of proviral DNA 

compared to control macrophages, although the levels of total intracellular DNA 

were unchanged [3]. MGBG also selectively targets and inhibits macrophage 

activation in vitro by depleting the intracellular pool of spermine and spermidine 

[4, 5]. Depletion of these intracellular polyamines results in prevention of 

alternatively-activated M2 macrophage induction and also inhibits LPS induced 

cytokine production from M1 macrophages [6]. Thus, MGBG could function to 

reduce viral replication in monocytes/macrophages through blocking viral 

integration and will reduce alternative activation of these cells through polyamine 

depletion in vivo. 

In this study, we aimed to specifically target monocytes and macrophages 

with MGBG in a primate model of HIV-peripheral neuropathy (PN) in an attempt 

to reduce DRG pathology associated with macrophage differentiation and 

trafficking [7]. Eighteen rhesus macaques were infected with SIVmac251 and 

CD8 depleted to allow for rapid disease progression. Nine animals received an 

oral form of MGBG and the remaining nine animals were untreated controls. 
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Here, we show that MGBG treatment results in less severe DRG pathology by 

reducing numbers of macrophages in tissue.  

 
 
 
MATERIALS and METHODS 

Ethical Statement  

All animals used in this study were handled in strict accordance with 

American Association for Accreditation of Laboratory Animal Care with the 

approval of the Institutional Animal Care and Use Committee of Harvard 

University (protocol number 04420) and Tulane University (protocol numbers 

P0066 and P0263). Animals were housed at the New England Primate Research 

Center (NERPC, Southborough, MA) or Tulane National Primate Research 

Center (TNPRC, Covington, LA).  

 

Animals, viral infection, and CD8 lymphocyte depletion 

 Eighteen rhesus macaques (Macaca mulatta) were utilized in this study. 

All animals were inoculated intravenously with SIVmac251 (a generous gift from 

Dr. Ronald Desrosiers, University of Miami) and administered 10 mg/kg of anti-

CD8 antibody subcutaneously at day 6 after infection, and 5 mg/kg intravenously 

at days 8 and 12 after infection in order to achieve rapid AIDS. The human anti-

CD8 antibody was provided by the NIH Non-human Primate Reagent Resource 

(RR016001, AI040101). Animals were sacrificed between 55 and 89 days post-

infection (DPI) based on progression of disease or termination of the study. They 

were anesthetized with ketamine-HCl and euthanized by an intravenous 
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pentobarbital overdose and exsanguinated. The diagnosis of simian AIDS was 

determined post-mortem by the presence of opportunistic infections. 

 

MGBG administration 

Nine animals received 30mg/kg of MGBG (provided by Pathologica, LLC; 

formulated as flavored syrup by Wedgewood Pharmacy, Swedesboro, NJ) daily 

beginning at 21 DPI. Previous experiments demonstrated that a daily dose of 

30mg/kg of MGBG was able to achieve an effective concentration of 0.7µM in 

tissue and plasma (data not shown). 

 

Bromodeoxyuridine (BrdU) administration  

BrdU was administered as a slow bolus intravenous injection at a dose of 

60mg/kg body weight as previously described (Chapter 3) [8].	 BrdU was 

administered on 7, 19, 56 DPI, and 24 hours prior to necropsy. 

 

Plasma viral load quantification 

Plasma SIV-RNA was quantified using real-time polymerase chain 

reaction (PCR) for all animals used in this study, as previously described 

(Walker, in review). EDTA plasma (500µL) was collected and SIV virions were 

pelleted by centrifugation at 20,000 g for 1 hour.  The threshold sensitivity was 

100 copy Eq/mL, with an average interassay coefficient variation of less than 

25%. 
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Intraepidermal nerve fiber density measurements 

 Skin biopsies (3mm) were taken in all SIV+ animals at 20 DPI (pre-drug) 

and at necropsy (post-drug) as previously described (Chapter 2). Quantification 

of intraepidermal nerve fiber density (IENFD) was performed as previously 

described (Chapter 2)  [7, 9]. 

 

Necropsy and Histopathology  

Animals were necropsied immediately following death and representative 

sections of all major organs were collected and preserved as previously 

described (Chapter 2).  DRG pathology was evaluated on H&E stained DRG 

slides as previously described (Chapter 2) [7, 10].  

 

Immunohistochemistry and quantification of satellite cells in DRGs 

DRG sections were stained with either the pan-macrophage marker anti-

CD68 (Clone KP1, Dako, Carpinteria, CA), the scavenger receptor anti-CD163 

(Clone MCA1853, Serotec, Raleigh, NC), the early inflammatory marker anti-

MAC387 (Clone M0747, Dako, Carpinteria, CA), anti-BrdU (Clone M0744, Dako, 

Carpinteria, CA), or the T lymphocyte marker anti-CD3 (Clone A0452, Dako, 

Carpinteria, CA) as previously described (Chapter 3) [7, 10]. For quantitation of 

monocyte/macrophage and T cell populations by immunohistochemical analyses, 

at least eight non-overlapping fields at 200x magnification were quantitated per 

DRG tissue as previously described (Chapter 3) [7, 10]. Data were expressed as 

mean ± standard error of the mean (SEM).  
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Statistical methods 

Prism version 5.0f (GraphPad Software, Inc., San Diego, CA) software 

was used for statistical analyses. Mann-Whitney t tests were used to detect 

variation in cell numbers between untreated and MGBG treated rhesus 

macaques.  Wilcoxon matched-pairs signed rank test was used to detect a 

change of IENFD within an individual over time. A P value of <0.05 was 

considered significant for all analysis performed. 

 

 

RESULTS 

MGBG treatment diminishes overall DRG pathology 

 Eighteen SIV-infected, CD8-depleted rhesus macaques were used in this 

study (Table 5.1). Nine of the animals received MGBG starting at 21 DPI. The 

remaining nine animals were untreated SIV-infected controls. All animals were 

sacrificed between 55 and 89 DPI. The viral load at necropsy in the MGBG 

treated group (7.28 ± 0.26 log copies/ml) was not significantly different from the 

viral load (7.65 ± 0.08 log copies/ml) in the control group (p= 0.66; data not 

shown). 

 Histopathology of lumbar, sacral, and thoracic dorsal root ganglia were 

assessed for the presence and degree of satellitosis, neuronophagia, and 

Nageotte nodules and are reported in Table 5.1. Overall DRG pathology was 

ranked on a scale of zero to three as previously described (Chapter 2) [7, 9] with 

a score of zero indicating no significant findings and a score of three indicating 
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severe pathology. Treatment with MGBG significantly reduced the overall DRG 

pathology from an average score of 1.4 ± 0.2 in control animals to 0.9 ± 0.1 (p< 

0.05; Figure 5.1). Notably, none of the MGBG treated animals developed 

Nageotte nodules. Additionally, the degree of satellitosis and neuronophagia 

never reached a pathology score above 1.5 (mild-moderate) in MGBG treated 

animals compared to untreated which ranged from a score of 1 (mild) to 2.5 

(moderate-severe). 

 

MGBG treatment decreases the number of macrophages in the dorsal root 

ganglia 

 We sought to determine if MGBG affected immune activation in the DRG 

and the composition of macrophages that surround the DRG. We have 

previously shown that the numbers of CD68+, CD163+, and MAC387+ 

macrophages are increased in DRG tissue of SIV-infected animals compared to 

uninfected animals (Chapter 3). Additionally, elevated numbers of CD68+ and 

MAC387+ macrophages in the tissue was associated with severe pathology 

(Chapter 3) [7]. Here, we sought to determine if MGBG treatment would affect 

resident and recently trafficked macrophages. We investigated the number of 

CD68+, CD163+, and MAC387+ macrophages in the DRG. CD163 is a 

hemoglobin-haptoglobin scavenger receptor that is associated with an M2 

(alternative-activation) phenotype and can also overlap with the CD68+ 

macrophage population, which is considered to be a marker of mature tissue 

macrophages [11]. MAC387 is expressed by recently infiltrated, inflammatory 
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M1-like (classically-activated) monocytes/macrophages and does not co-localize 

with CD68 or CD163 [12]. Here, we found that the number of CD68+ 

macrophages in the DRG decreased significantly with MGBG treatment (784.3± 

86.8 versus 473.9± 44.2 cells/mm2; p< 0.01; Figure 5.2A-C). Additionally, MGBG 

reduced the number of CD163+ macrophages in DRG (789± 107.5 versus 

369.5± 45.7 cells/mm2; p< 0.01; Figure 5.2D-F). The number of MAC387+ 

macrophages, while not statistically significant, did trend towards a decrease with 

MGBG treatment (133.0± 15.6 versus 91.9± 11.4 cells/mm2; p= 0.06; Figure 

5.2G-I). 

 Next, we assessed cell traffic to the DRG using BrdU labeling [13]. We 

have previously shown that increased monocyte traffic to the DRG was 

associated with severe pathology and a loss of IENFD (Chapter 3). The majority 

(78.1%) of BrdU+ cells in the DRGs were found to be MAC387+ macrophages 

[7]. Here, we found that MGBG significantly reduced traffic of BrdU+ cells (78.3± 

6.3 versus 41.9± 4.3 cells/mm2; p< 0.0001; Figure 5.2J-L).  

 Finally, we examined the number of CD3+ T lymphocytes in the DRG in 

both MGBG-treated and untreated groups. We have previously shown that the 

number of T cells in the DRG did not increase with SIV infection (compared to 

uninfected animals) (Chapter 3)	 [7, 10]. We found that there was no change in 

the number of CD3+ T cells with MGBG treatment (168.1±18.1 versus 

122.9±11.1 cells/mm2; p=0.08; Figure 5.2M-O), suggesting that MGBG had no 

effect on T cells. 
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There is no regeneration of IENFD with MGBG treatment.  

All animals received skin biopsy punches before MGBG treatment (20 

DPI) and at necropsy to assess if MGBG treatment would allow for or prevent 

regeneration of IENFD. We have previously reported an early decline in IENFD 

following SIV infection that never recovers to baseline levels (Chapter 2) [7]. As 

expected, IENFD in SIV-infected untreated animals did not change between 20 

DPI and necropsy (298.8± 50.9 IENFD at 20 DPI versus 304.8± 47.1 IENFD at 

necropsy; p= 0.84; Figure 5.3A). Interestingly, MGBG treated animals had a 

significant additional loss of IENFD after drug treatment was initiated at 21 DPI. 

IENFD in the MGBG treated group decreased from 551.8± 73.3 IENFD at 20 DPI 

to 387.8± 53.0 IENFD at necropsy (p< 0.05; Figure 5.3B). We suspect that this is 

because macrophages are required for peripheral nerve regeneration and MGBG 

targets these M2 repair macrophages [14, 15]. MGBG treatment in the absence 

of SIV infection did not significantly affect the IENFD (369.3± 108.0 IENFD at 

pre-drug versus 291.7± 113.3 IENFD at necropsy; p= 0.75; data not shown). This 

demonstrates that MGBG is not neurotoxic and that the drug’s effect on 

macrophages combined with SIV infection is the cause of IENFD reduction. 

 

 

DISCUSSION 

Here, we found that MGBG administration in a rhesus model of HIV-PN 

diminished DRG pathology with reduced numbers of CD68+ and CD163+ 

macrophages. We have previously shown that the number of CD68+ and 
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CD163+ macrophages in DRG tissue increases after SIV infection (Chapter 3). 

Additionally, we have shown that cell traffic to the DRG is associated with severe 

DRG pathology and a greater loss of IENFD (Chapter 3) [7]. Monocyte traffic to 

the DRG appears to be a driving force of formation of Nageotte nodules and 

neuronophagia. When cell traffic was blocked with an anti-VLA-4 antibody, 

natalizumab, on the day of infection there was a reduction in these lesions. 

However, blocking cell traffic during late infection did not completely prevent 

formation of Nageotte nodules suggesting that these lesions form during early 

infection (Chapter 4) [16]. Here, we found that MGBG treatment reduced BrdU+ 

cell traffic to the DRG and as expected, reduced tissue pathology. 

However, despite reduction of cell traffic and pathology in the DRGs, we 

did not observe regeneration of IENFD in the footpad. It has been previously 

shown that IENFD can regenerate in the setting of HIV infection [17]. 

Additionally, loss of IENFD occurs early after infection and never recovers in our 

model (Chapter 2) [7]. Because MGBG was not administered until 21 DPI, 

reversible damage to the nerve fibers had most likely already occurred. 

Macrophages also play a role in tissue remodeling and peripheral nerve 

regeneration [18]. We suspect that the diminished numbers of alternatively 

activated macrophages in MGBG-treated animals prevented peripheral nervous 

system (PNS) recovery. Polyamines, which are depleted with MGBG treatment, 

have been shown to aid in sciatic nerve regeneration in vivo and promote axonal 

regeneration in vitro [19, 20]. Additionally, macrophage accumulation around 

injured PNS nerves is an important step in regeneration. Macrophages are 
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responsible for removing myelin and axonal debris from the injury site. Depleting 

macrophages delays both Wallerian degeneration and regeneration of axons, 

demonstrating that macrophages play a multitude of roles in PNS injury and 

recovery [14, 15, 18, 21]. The lack of IENFD regeneration in MGBG-treated 

animals implies an additional impairment (secondary to SIV infection) that 

consists of a lack of tissue-regenerative macrophages, depleted polyamides, 

and/or ongoing injury due to sustained viral load and cytokines despite MGBG-

treatment. 

Few drugs specifically target monocyte and macrophage activation as 

therapy for HIV-PN. One drug that may improve PNS pathology in HIV+ patients 

is maraviroc. Maraviroc is a CCR5 inhibitor that blocks viral entry into CCR5+ 

cells [22]. RANTES (the ligand for CCR5) and CCR5+ cells in the DRG are 

elevated after SIV infection and are associated with SIV-PN pathologies [9]. 

Additionally, in vitro maraviroc treatment to DRG neurons inhibited gp120-

induced tumor necrosis factor-alpha expression and thus reduced neurotoxicity 

[23]. Cenicriviroc (CVC), which is currently in clinical trials for HIV treatment, 

targets both CCR5 and CCR2 [24, 25]. The ligand for CCR2 is CCL2 or 

monocyte chemoattractant protein-1 (MCP-1) is elevated in SIV+ DRG [9] and 

most likely plays a role in recruiting inflammatory CCR2+ monocytes to the 

tissue. Additionally, CCR2-CCL2 interaction has been implicated in models of 

neuropathic pain [26, 27]. It is unclear if CVC treatment will have a beneficial 

effect on PNS nerve pathologies. 
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 MGBG is specifically taken up by monocytes and macrophages [3]. It was 

recently shown that MGBG inhibits HIV expression and integration in 

macrophages in vitro, although the mechanism of this phenomenon is not clear 

[3]. MGBG has been well studied as a potent inhibitor of SAMDC and therefore 

depletes the intracellular polyamine pool [1, 28]. Polyamines are regulators of 

macrophage activation. They are needed for alternative macrophage (M2) 

polarization and can also inhibit M1-cytokine production [6]. In this study, we 

found that MGBG significantly reduced the number of CD163+ (M2) 

macrophages, but not the number of MAC387+ (M1) macrophages in the DRG, 

supporting the mechanism that MGBG inhibits M2-activation. 

Identifying drugs that target myeloid cells to reduce their traffic into tissues 

and over-activation during HIV and SIV disease pathogenesis is important to 

prevent these comorbidities. However, one must be careful to not completely 

block macrophage function, as they can play essential roles in innate immunity 

and tissue remodeling, as demonstrated by the lack of IENFD regeneration in 

this study. Future studies should seek to understand the diverse role of different 

macrophage phenotypes and identify drugs that specifically target destructive 

and overly inflammatory macrophages. Treatment with MGBG before PNS 

damage begins would likely have a greater preventative impact on the 

development of PN. Additionally, using MGBG in conjunction with antiretroviral 

therapy (ART) to reduce viral replication and monocyte/macrophage activation 

may also be beneficial. In this study, we did not see an effect on plasma viral 

load, only on monocyte traffic and activation. Thus, suppressing viral replication 
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with ART and reducing monocyte activation with MGBG may be a successful 

drug cocktail to control disease progression and prevent inflammation-induced 

comorbidities (experiments currently underway).  
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Table 5.1: SIV+ rhesus macaques used in this study and DRG pathology. 

 
 

Animal 
group ID Survival 

(days) 
Overall 

pathology 
Overall DRG 

pathology Satellitosis Neuronophagia Nageotte 
nodules 

C1 63 AIDS Mild Moderate Rare None 

C2 70 Severe SIVE Mild Mild Mild None 

C3 77 Severe SIVE Mild Mild-Mod Mild None 

C4 83* AIDS Mild Mild Mild None 

C5 84* AIDS Mild Mild Mild Rare 

C6 77 SIVE Mod-Severe Severe Mod-Severe Severe 

C7 77 SIVE Moderate Moderate Moderate Rare 

C8 89 SIVE Moderate Moderate Moderate Rare 

Control 
(n=9) 

C9 55 SIVE Mild-mod Moderate Mild Rare 

M1 63 SIV, no AIDS Mild Mild None None 

M2 70* SIV, no AIDS NSF Rare Rare None 

M3 70 SIV, no AIDS Mild Mild-Mod Mild None 

M4 77* SIV, no AIDS Mild Mild Mild None 

M5 83* SIV, no AIDS Mild Mild-Mod Mild None 

M6 84* SIV, no AIDS Mild Mild-Mod Mild None 

M7 63 AIDS Mild Mild None None 

M8 77 AIDS Mild Mild-Mod Mild None 

MGBG 
(n=9) 

M9 83* AIDS Mild Mild Mild None 

 

* = timed or paired sacrificed; SIVE = SIV encephalitis; Mod = Moderate. 
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Figure 5.1 
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Figure 5.1: Overall DRG pathology is reduced in MGBG-treated animals 

compared to controls. 

Overall DRG pathology was scored on a scale of zero (no significant findings) to 

three (severe pathology) at increments of 0.5 in lumbar, sacral, and thoracic 

regions and were averaged in each animal. Pathology was scored based on the 

degree and presence of satellitosis, neuronophagia, and Nageotte nodules. Bars 

represent the average overall DRG pathology mean ± SEM. Groups were 

compared with a Mann-Whitney T-test. *P<0.05. 
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Figure 5.2 
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Figure 5.2: MGBG treatment reduces the number of macrophages in and 

cell traffic to the DRG. 

The numbers of CD68+ (A-C), CD163+ (D-F), MAC387+ (G-I), BrdU+ (J-L), and 

CD3+ (M-O) cells per mm2 of tissue were counted in DRG from control animals 

and MGBG-treated animals. Representative images of DRG from control animals 

(A, D, G, J, M) and MGBG-treated animals (B, E, H, K, N) are shown. Data are 

shown as mean ± SEM (C, F, I, L, O). Groups were compared with a Mann-

Whitney T-test. *P<0.05; **P<0.01; ****P<0.0001. 
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Figure 5.3 
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Figure 5.3: MGBG treatment does not allow for regeneration of peripheral 

nerves. 

IENFD was measured at 20 dpi and at necropsy in control (A) and in MGBG-

treated (B) groups. Changes in IENFD between time points assessed with a 

Wilcoxon matched-pairs signed rank test. A p value less than 0.05 was 

considered significant. 



	 166	

	

REFERENCES: 
 
1. Williams-Ashman, H.G. and A. Schenone, Methyl glyoxal 

bis(guanylhydrazone) as a potent inhibitor of mammalian and yeast S-
adenosylmethionine decarboxylases. Biochemical and biophysical 
research communications, 1972. 46(1): p. 288-95. 

2. Janne, J., L. Alhonen-Hongisto, P. Nikula, and H. Elo, S-
adenosylmethionine decarboxylase as target of chemotherapy. Advances 
in enzyme regulation, 1985. 24: p. 125-39. 

3. Jin, X., M.S. McGrath, and H. Xu, Inhibition of HIV Expression and 
Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone. 
Journal of virology, 2015. 89(22): p. 11176-89. 

4. Messina, L., G. Spampinato, A. Arcidiacono, L. Malaguarnera, M. Pagano, 
B. Kaminska, L. Kaczmarek, and A. Messina, Polyamine involvement in 
functional activation of human macrophages. Journal of leukocyte biology, 
1992. 52(6): p. 585-7. 

5. Kaczmarek, L., B. Kaminska, L. Messina, G. Spampinato, A. Arcidiacono, 
L. Malaguarnera, and A. Messina, Inhibitors of polyamine biosynthesis 
block tumor necrosis factor-induced activation of macrophages. Cancer 
research, 1992. 52(7): p. 1891-4. 

6. Van den Bossche, J., W.H. Lamers, E.S. Koehler, J.M. Geuns, L. 
Alhonen, A. Uimari, S. Pirnes-Karhu, E. Van Overmeire, Y. Morias, L. 
Brys, L. Vereecke, P. De Baetselier, and J.A. Van Ginderachter, Pivotal 
Advance: Arginase-1-independent polyamine production stimulates the 
expression of IL-4-induced alternatively activated macrophage markers 
while inhibiting LPS-induced expression of inflammatory genes. Journal of 
leukocyte biology, 2012. 91(5): p. 685-99. 

7. Lakritz, J.R., A. Bodair, N. Shah, R. O'Donnell, M.J. Polydefkis, A.D. 
Miller, and T.H. Burdo, Monocyte Traffic, Dorsal Root Ganglion 
Histopathology, and Loss of Intraepidermal Nerve Fiber Density in SIV 
Peripheral Neuropathy. The American journal of pathology, 2015. 185(7): 
p. 1912-23. 

8. Burdo, T.H., C. Soulas, K. Orzechowski, J. Button, A. Krishnan, C. 
Sugimoto, X. Alvarez, M.J. Kuroda, and K.C. Williams, Increased 
monocyte turnover from bone marrow correlates with severity of SIV 
encephalitis and CD163 levels in plasma. PLoS pathogens, 2010. 6(4): p. 
e1000842. 

9. Lakritz, J.R., J.A. Robinson, M.J. Polydefkis, A.D. Miller, and T.H. Burdo, 
Loss of intraepidermal nerve fiber density during SIV peripheral 
neuropathy is mediated by monocyte activation and elevated monocyte 
chemotactic proteins. Journal of neuroinflammation, 2015. 12(1): p. 237. 

10. Burdo, T.H., K. Orzechowski, H.L. Knight, A.D. Miller, and K. Williams, 
Dorsal root ganglia damage in SIV-infected rhesus macaques: an animal 



	 167	

model of HIV-induced sensory neuropathy. The American journal of 
pathology, 2012. 180(4): p. 1362-9. 

11. Etzerodt, A. and S.K. Moestrup, CD163 and inflammation: biological, 
diagnostic, and therapeutic aspects. Antioxidants & redox signaling, 2013. 
18(17): p. 2352-63. 

12. Soulas, C., C. Conerly, W.K. Kim, T.H. Burdo, X. Alvarez, A.A. Lackner, 
and K.C. Williams, Recently infiltrating MAC387(+) 
monocytes/macrophages a third macrophage population involved in SIV 
and HIV encephalitic lesion formation. The American journal of pathology, 
2011. 178(5): p. 2121-35. 

13. Goto, Y., J.C. Hogg, T. Suwa, K.B. Quinlan, and S.F. van Eeden, A novel 
method to quantify the turnover and release of monocytes from the bone 
marrow using the thymidine analog 5'-bromo-2'-deoxyuridine. American 
journal of physiology. Cell physiology, 2003. 285(2): p. C253-9. 

14. Niemi, J.P., A. DeFrancesco-Lisowitz, L. Roldan-Hernandez, J.A. 
Lindborg, D. Mandell, and R.E. Zigmond, A critical role for macrophages 
near axotomized neuronal cell bodies in stimulating nerve regeneration. 
The Journal of neuroscience : the official journal of the Society for 
Neuroscience, 2013. 33(41): p. 16236-48. 

15. Barrette, B., M.A. Hebert, M. Filali, K. Lafortune, N. Vallieres, G. Gowing, 
J.P. Julien, and S. Lacroix, Requirement of myeloid cells for axon 
regeneration. The Journal of neuroscience : the official journal of the 
Society for Neuroscience, 2008. 28(38): p. 9363-76. 

16. Lakritz, J.R., D. Thibault, J.A. Robinson, J. Campbell, A.D. Miller, K. 
Williams, and T.H. Burdo, alpha4-Integrin Antibody Treatment Blocks 
Monocyte/Macrophage Traffic to, Vascular Cell Adhesion Molecule-1 
Expression in, and Pathology of the Dorsal Root Ganglia in an SIV 
Macaque Model of HIV-Peripheral Neuropathy. The American journal of 
pathology, 2016. 

17. Hahn, K., A. Triolo, P. Hauer, J.C. McArthur, and M. Polydefkis, Impaired 
reinnervation in HIV infection following experimental denervation. 
Neurology, 2007. 68(16): p. 1251-6. 

18. Gaudet, A.D., P.G. Popovich, and M.S. Ramer, Wallerian degeneration: 
gaining perspective on inflammatory events after peripheral nerve injury. 
Journal of neuroinflammation, 2011. 8: p. 110. 

19. Kauppila, T., Polyamines enhance recovery after sciatic nerve trauma in 
the rat. Brain research, 1992. 575(2): p. 299-303. 

20. Deng, K., H. He, J. Qiu, B. Lorber, J.B. Bryson, and M.T. Filbin, Increased 
synthesis of spermidine as a result of upregulation of arginase I promotes 
axonal regeneration in culture and in vivo. The Journal of neuroscience : 
the official journal of the Society for Neuroscience, 2009. 29(30): p. 9545-
52. 

21. Chen, P., X. Piao, and P. Bonaldo, Role of macrophages in Wallerian 
degeneration and axonal regeneration after peripheral nerve injury. Acta 
neuropathologica, 2015. 130(5): p. 605-18. 



	 168	

22. Piotrowska, A., K. Kwiatkowski, E. Rojewska, W. Makuch, and J. Mika, 
Maraviroc reduces neuropathic pain through polarization of microglia and 
astroglia - Evidence from in vivo and in vitro studies. Neuropharmacology, 
2016. 

23. Moss, P.J., W. Huang, J. Dawes, K. Okuse, S.B. McMahon, and A.S. 
Rice, Macrophage-sensory neuronal interaction in HIV-1 gp120-induced 
neurotoxicitydouble dagger. British journal of anaesthesia, 2015. 114(3): 
p. 499-508. 

24. Kramer, V.G., S. Hassounah, S.P. Colby-Germinario, M. Oliveira, E. 
Lefebvre, T. Mesplede, and M.A. Wainberg, The dual CCR5 and CCR2 
inhibitor cenicriviroc does not redistribute HIV into extracellular space: 
implications for plasma viral load and intracellular DNA decline. The 
Journal of antimicrobial chemotherapy, 2015. 70(3): p. 750-6. 

25. Thompson, M., M. Saag, E. DeJesus, J. Gathe, J. Lalezari, A.L. Landay, 
J. Cade, J. Enejosa, E. Lefebvre, and J. Feinberg, A 48-week randomized 
phase 2b study evaluating cenicriviroc versus efavirenz in treatment-naive 
HIV-infected adults with C-C chemokine receptor type 5-tropic virus. AIDS, 
2016. 30(6): p. 869-78. 

26. Biber, K. and E. Boddeke, Neuronal CC chemokines: the distinct roles of 
CCL21 and CCL2 in neuropathic pain. Frontiers in cellular neuroscience, 
2014. 8: p. 210. 

27. Thacker, M.A., A.K. Clark, T. Bishop, J. Grist, P.K. Yip, L.D. Moon, S.W. 
Thompson, F. Marchand, and S.B. McMahon, CCL2 is a key mediator of 
microglia activation in neuropathic pain states. European journal of pain, 
2009. 13(3): p. 263-72. 

28. Corti, A., C. Dave, H.G. Williams-Ashman, E. Mihich, and A. Schenone, 
Specific inhibition of the enzymic decarboxylation of S-
adenosylmethionine by methylglyoxal bis(guanylhydrazone) and related 
substances. The Biochemical journal, 1974. 139(2): p. 351-7. 

 
 



	 169	

 
CHAPTER VI 
 
Title: Loss of intraepidermal nerve fiber density during SIV peripheral neuropathy 
is mediated by monocyte activation and elevated monocyte chemotactic proteins 
 
Adapted from: 
“Loss of intraepidermal nerve fiber density during SIV peripheral neuropathy is 
mediated by monocyte activation and elevated monocyte chemotactic proteins”  
 

by Jessica R. Lakritz, Jake A. Robinson, Michael J. Polydefkis, Andrew D. Miller, 
and Tricia H. Burdo 
 

Journal of Neuroinflammation. 2015 Dec 18; 12:237. 
 
 
Author contributions: 

JRL and THB conceived and designed the experiments. JRL, JAR, MJP, and 

ADM performed the experiments. JRL and THB analyzed the data. JRL and THB 

wrote the paper. All authors carried out paper revisions. 



	 170	

	

ABSTRACT 
	

Increased monocyte traffic to the dorsal root ganglia (DRG) has previously 

been associated with severe DRG pathology, as well as a loss in intraepidermal 

nerve fiber density (IENFD) (Chapter 3). Here, we sought to characterize the 

molecular signals associated with monocyte activation and trafficking to the 

DRGs. 11 SIV-infected CD8 depleted rhesus macaques were compared to 4 

uninfected control animals. sCD14, sCD163, sCD137, RANTES, and MCP-1 

were measured in plasma and the latter three proteins were also quantified in 

DRG tissue lysates. All SIV-infected animals received serial skin biopsies to 

measure IENFD loss as well as bromodeoxyuridine (BrdU) inoculations to 

measure monocyte turnover during the course of infection. The number of BrdU+ 

and CD14+CD16+ peripheral blood monocytes was determined by flow 

cytometry. The number of MAC387+, CCR2+, CCR5+, and CD137+ cells in DRG 

tissue was quantified by immunohistochemistry. sCD14, sCD163, MCP-1, and 

sCD137 increased significantly in plasma from pre-infection to necropsy. Plasma 

sCD163 and RANTES inversely correlated with IENFD. Additionally, sCD137 in 

DRG tissue lysate was elevated with severe DRG pathology and associated with 

the recruitment of MAC387+ cells to DRG. Elevated numbers of CCR5+ and 

CCR2+ satellite cells in the DRG were found, suggesting a chemotactic role of 

their ligands, RANTES and MCP-1 in recruiting monocytes to the tissue. We 

characterized the role of systemic (plasma) and tissue-specific (DRG) monocyte 

activation and associated cytokines in the pathogenesis of SIV-PN. We identified 



	 171	

sCD163 and RANTES as potential biomarkers for HIV-PN, as these were 

associated with a loss of IENFD. Additionally, we identified CD137 signaling to 

play a role in MAC387+ cell traffic to DRG and possibly contribute to severe 

pathology. These studies highlight the role of monocyte activation and traffic in 

the pathogenesis of SIV-PN, while identifying specific signaling proteins for future 

pharmacological blockade. 
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INTRODUCTION 

Cytokines have a large impact on the nervous system, in addition to 

regulating the immune response. Dorsal root ganglia (DRG) neurons express 

cytokine receptors on their surfaces so they can appropriately respond to 

cytokines in their environment [1, 2]. CCR5, the receptor for RANTES (Regulated 

on Activation, Normal T cell Expressed and Secreted)/CCL5 can be expressed 

on DRG neuronal cell bodies. Gp120 can bind to CCR5 resulting in neuronal 

excitation [3]. CCR2, another chemokine receptor expressed on DRG neurons, 

can also facilitate neuronal excitation when it binds to monocyte chemoattractant 

protein-1 (MCP-1/CCL2)	 [4]. Various rodent models of neuropathic pain have 

demonstrated that blocking the MCP-1-CCR2 interaction via neutralizing 

antibodies or gene knockout can block pain sensation [5-9]. Neuronal cell bodies 

in the DRG can also upregulate inflammatory cytokines following peripheral 

nerve injury [10-12]. Thus, cytokines can transmit pain signals from the periphery 

to the central nervous system (CNS) via interactions with cytokine receptors on 

DRG neurons [8, 13]. Additionally, MCP-1 and RANTES might increase 

recruitment of monocytes to the DRG causing further neuronal damage and 

activation [1, 14, 15],  

Other signaling pathways besides CCR2 and CCR5 are likely involved in 

neuronal damage during SIV-DSP. One potential signaling protein of interest is 

CD137, which is a member of TNF superfamily that can be expressed on T cells, 

monocytes, other immune cells, as well as endothelial cells [16, 17]. CD137 

cross-linking on monocytes induces activation and production of pro-
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inflammatory cytokines [18]. CD137 expression on endothelial cells facilitates 

migration of monocytes out of blood vessels and into tissues [17, 19]. 

Additionally, CD137 reverse signaling is involved in myelopoiesis [20, 21]. 

Elevated sCD137 in plasma, a splice variant of CD137, has been associated with 

several inflammation-linked diseases [22-24], but its role in monocyte activation 

during HIV infection has not been studied. 

We used a CD8-depleted, SIV-infected macaque model to recapitulate 

HIV-DSP in humans, where animals show a loss of intraepidermal nerve fiber 

density (IENFD) and DRG pathology [25-27]. We have previously demonstrated 

an influx of activated MAC387+ macrophages to the DRG as well as an increase 

in CD163+ macrophages (Chapter 3). Importantly, we found that increased cell 

traffic was associated with severe DRG pathology and a greater loss of IENFD 

(Chapter 3)	 [28]. This study sought to investigate the role of monocyte activation 

in HIV-distal sensory polyneuropathy (DSP), as well as identify cytokines that are 

associated with monocyte activation and neuronal loss in plasma and in DRG 

tissue.  

 
 
 
 
MATERIALS and METHODS 
 
Ethical Statement  

All animals used in this study were handled in strict accordance with 

American Association for Accreditation of Laboratory Animal Care with the 

approval of the Institutional Animal Care and Use Committee of Harvard 
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University and the Institutional Animal Care and Use Committee of Tulane 

University.  

 

Animals, viral infection, and CD8 lymphocyte depletion 

Fifteen rhesus macaques (Macaca mulatta) were utilized in this study. 

Eleven animals were inoculated intravenously with SIVmac251 (a generous gift 

from Dr. Ronald Desrosiers, University of Miami).  Four uninfected rhesus 

macaques served as uninfected controls. All infected animals were administered 

10 mg/kg of anti-CD8 antibody subcutaneously at day 6 after infection and 5 

mg/kg intravenously at days 8 and 12 after infection in order to achieve rapid 

progression to AIDS. The human anti-CD8 antibody was provided by the NIH 

Non-human Primate Reagent Resource (RR016001, AI040101). SIV-infected 

animals were sacrificed at the onset of terminal AIDS. Animals were housed at 

either the New England Primate Research Center (NEPRC; Southborough, MA) 

or Tulane University’s National Primate Research Center (TNPRC; Covington, 

LA) in strict accordance with standards of the American Association for 

Accreditation of Laboratory Animal Care.  

 

Necropsy and Histopathology  

Tissue collection and preservation was performed as previously described 

(Chapter 2). DRG tissue sections were stained with hematoxylin and eosin and 

were evaluated for pathology as previously described (Chapter 2) [26, 28, 29].  
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BrdU Administration 

BrdU was administered as previously described (Chapter 3) [28, 31, 32]. 

BrdU was administered at 8 and 21 DPI in animals A01-A07. Additionally, 

animals A04-A11 received BrdU 42, 63 DPI, and 24 hours prior to necropsy. 

 

Immunohistochemistry 

 DRG sections were deparafinized with xylene and hydrated in a series of 

graded alcohols. Sections were stained with antibodies against MAC387 (clone 

M0747; Dako), CCR5 (rabbit polyclonal; Novus Biologicals) or CCR2 (clone 7A7; 

Abcam). Frozen DRG sections were used for CD137 staining (clone BBK-2). 

Sections were counterstained with hematoxylin, dehydrated, and mounted using 

VectaMount permanent mounting medium (Vector Labs). Tissues were 

visualized using a Zeiss Axio Imager M1 microscope (Carl Zeiss MicroImaging). 

Quantification of the absolute number and percent of positive satellite cells were 

performed as previously described (Chapter 3) [28]. For each animal, eight non-

overlapping fields of view at 200x magnification were quantified by manually 

counting the number of positive cells in the field and dividing by the total area of 

DRG tissue. The average number of positive cells per mm2 was used. 

 

Skin Punch and IENFD Measurement 

Skin punch biopsy and IENFD measurement was performed as previously 

described (Chapter 2) [28, 30]. 
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Flow Cytometry  

Flow cytometric analyses were performed with 100 µl aliquots of EDTA-

coagulated whole blood. Erythrocytes were lysed using ImmunoPrep Reagent 

System (Beckman Coulter), washed twice with PBS containing 2% FBS, then 

incubated for 15 minutes at room temperature with fluorochrome-conjugated 

surface antibodies including anti-HLA-DR-PerCp-Cy5.5 (clone L243), anti-CD16-

PE-Cy7 (clone 3G8), anti-CD3-APC (clone SP34-2), and CD8-APC (clone RPA-

T8), anti-CD20 (APC (clone 2H7) and anti-CD14-Pacific blue (clone M5E2). For 

intracellular staining, cells were fixed and permeabilized with BD 

Cytofix/Cytoperm™ buffer (BD Biosciences) for 30 mins at room temperature. 

Cells were again washed and incubated with BD Cytoperm Plus™ buffer for 10 

mins on ice, then washed and incubated with DNase (30mg) for 1hr at 37°C, 

washed and then stained for intracellular antigen with anti-BrdU-FITC (clone 

3D4; BD Biosciences) and anti-Ki-67-PE (clone B56; BD Biosciences) for 20 

mins at room temperature. Samples were acquired on a BD FACS Aria (BD 

Biosciences) and analyzed with Tree Star Flow Jo version 9.6. Identification and 

quantitation of BrdU+ monocytes and CD14+CD16+ monocytes was performed 

as previously described [32].  

 

Preparation of DRG lysate 

 Frozen lumbar DRG was mechanically homogenized in Tissue Extraction 

Reagent I (Invitrogen, Waltham, MA) containing 1x protease inhibitor (Sigma-

Aldrich). For every 1g of tissue, 10mL of lysis buffer was used. Lysate was 
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centrifuged and supernatant containing protein was stored at -80°C. Protein was 

quantified using a BCA protein assay kit (Thermo Scientific) according to the 

manufacturer’s instructions. 

 

Enzyme-linked immunosorbent assays (ELISAs) 

 sCD14 and RANTES were quantified in plasma (diluted 1:200 and 1:4; 

respectively) using ELISA kits (R&D Systems) . sCD163 was quantified in 

plasma (diluted 1:500) using an ELISA kit (Trillium Diagnostics). All ELISAs were 

carried out according to the manufacturer’s instructions and as previously 

described [32]. 

 

Luminex Multiplex Assays 

 RANTES, MCP-1 and sCD137 were quantified in DRG tissue lysates and 

MCP-1 and sCD137 were quantified in plasma using Multiplex Luminex 

Technology (EMD Millipore). Non-human Primate Cytokine/Chemokine Panels 1 

and 2 were used according to the manufacturer’s instructions with the following 

modifications. For DRG tissue lysate protein quantification, 10µg of protein (in 

25µl of lysis buffer) from each sample was loaded onto the plate. Tissue lysis 

buffer was used as the matrix for dilution of standards and quality control 

samples. For the plasma sample analysis, plasma samples were diluted 2-fold in 

the assay buffer provided. The provided serum matrix was used for dilution of 

standards and quality control samples. All samples were performed in duplicate 
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and plates were incubated overnight at 4°C on a rocker. Samples were analyzed 

using MAGPIX System (EMD Millipore). 

 

Statistical Analysis 

 All statistical analysis was performed using Prism Software (Version 5.0d). 

A Wilcoxon matched-pairs signed rank test was used to determine increase in 

markers from pre-infection to necropsy. A Mann-Whitney U test was used to 

detect variation between infected and uninfected samples. ANOVA was used to 

detect variance among different pathology groups followed by a Dunn’s post-test 

if the ANOVA was significant. Non-parametric Spearman correlation was used for 

all correlations. A p value of <0.05 was considered significant for all tests 

performed. 

 
 
 
 
RESULTS 

Animals used for the study 

 Eleven rhesus macaques were infected with SIVmac251 and were 

administered with a CD8-depletion antibody 6, 8, and 12 days post-infection 

(DPI) in order to rapidly progress to AIDS. All SIV-infected animals developed 

mild to severe lumbar DRG pathology, as well as a loss of IENFD (Table 6.1). 

 

 

 



	 179	

Plasma markers of monocyte egress and activation during SIV infection 

 Monocyte egress from the bone marrow was measured by BrdU pulse 

labeling [32]. We also measured CD14+CD16+ monocytes by multi-color flow 

cytometry and found that this population of activated monocytes was expanded 

during SIV infection (data not shown). We investigated soluble monocyte 

activation markers sCD14 (Figure 6.1A-C) and sCD163 (Figure 6.1D-F) in 

plasma and their correlation to the rate of peripheral monocyte turnover and the 

number of CD14+CD16+ activated peripheral monocytes. Both of these markers 

increased significantly in from pre-infection to necropsy using Wilcoxon matched-

pairs signed rank test (sCD14 p< 0.05; sCD163 p< 0.01).  sCD14 was also 

associated with the number of BrdU+ monocytes (Figure 6.1B, p< 0.05) and the 

percent of CD14+CD16+ monocytes out of the total number of circulating 

monocytes (Figure 6.1C, p< 0.05). sCD163 did not significantly correlate to the 

absolute number of BrdU+ or CD14+CD16+ monocytes (Figure 6.1E-F), in 

contrast to previously published data where percentages and not absolute 

numbers were examined [32].  

Next, we examined the correlation of RANTES (Figure 6.1G-I), MCP-1 

(Figure 6.1J-L), and sCD137 (Figure 6.1M-O) to monocyte egress and activation. 

We identified sCD137 as a novel signaling protein that may also play an 

important role in SIV-DSP pathogenesis because of its role in myelopoiesis, 

monocyte extravasation, and monocyte activation [17-21]. When we compared 

pre-infection plasma concentrations of RANTES, MCP-1, and sCD137 to 

necropsy plasma concentrations using the Wilcoxon matched-pairs signed rank 
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test, we found that MCP-1 and sCD137 both increased significantly during 

infection (MCP-1, P< 0.001; sCD137, p< 0.01). RANTES was not increased 

significantly during infection, but it correlated with the percent of activated 

CD14+CD16+ monocytes in circulation at matched time points (p< 0.05, Figure 

6.1I). Additionally, necropsy plasma concentrations of RANTES and MCP-1 were 

associated with more severe DRG pathology (p< 0.05, Figures 6.1G, 2J). MCP-1 

was also associated with monocyte egress from the bone marrow (p< 0.001, 

Figure 6.1K) and with CD14+CD16+ monocytes (p< 0.05, Figure 6.1L). sCD137 

did not significantly correlate with either BrdU+ or CD14+CD16+ blood 

monocytes (Figure 6.1N-O). These data suggest that the rate of monocyte 

activation and egress from the bone marrow is likely controlled by several soluble 

factors. Because of this complexity and likely redundancy of pathways, 

suppressing elevated rates of myelopoiesis is unlikely to be a successful 

pharmacologic target. In addition, we found that three out of five of our examined 

proteins to be correlated with the percent of CD14+CD16+ monocytes, which are 

typically considered to be the most activated monocyte population, but it is 

unclear if this population of monocytes is activated by these proteins or 

producing these signaling factors. 

 

Correlates of reduced IENFD  

 We hypothesized that monocyte activation and chemokines responsible 

for monocyte traffic to the DRG may facilitate neurodegeneration resulting in a 

reduced density of nerve fibers in the periphery. To test this, we correlated 
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sCD14 (Figure 6.2A), sCD163 (Figure 6.2B), RANTES (Figure 6.2C), MCP-1 

(Figure 6.2D), and sCD137 (Figure 6.2E) with absolute IENFD at matched time 

points. sCD163 (p< 0.0001) and RANTES (p< 0.0001) in plasma negatively 

correlated with absolute IENFD values. No significant correlation was found for 

sCD14, MCP-1, and sCD137. Thus, increased monocyte activation and possibly 

chemotaxis are involved in the dying-back of axons during SIV infection.  

 

 Elevated monocyte chemoattractants in DRG tissue during SIV infection 

 Next, we sought to investigate which chemokines are associated with 

monocyte traffic to the DRG. We have previously shown that an influx of 

mononuclear cells to the DRG during SIV infection is associated with severe 

tissue pathology [28]. Thus, we hypothesized that monocyte chemoattractants 

are elevated in DRG tissue. Whole DRG tissue, consisting of neurons, satellite 

cells, and vasculature were homogenized and proteins were extracted and 

analyzed by multiplex assay. There was no detectable difference in RANTES 

between uninfected and infected DRG tissues, but there was a trend for elevated 

RANTES in SIV+ DRG with more severe pathology, although this did not reach 

statistical significance (Figure 6.3A). MCP-1 was elevated in SIV+ DRG 

compared to uninfected control tissue (Figure 6.3B; P< 0.05). sCD137 was only 

above the detection level in the three DRG examined with severe pathology 

(Figure 6.3C; ANOVA< 0.001). 

 To determine if the levels of these chemoattractants in DRGs correlated 

with the absolute number of MAC387+ recently recruited monocytes in DRGs, we 
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correlated the protein concentrations of RANTES, MCP-1 and sCD137 with the 

number of MAC387+ monocytes in tissue determined by immunohistochemistry. 

No significant correlation was found for RANTES or MCP-1 for recruitment of 

MAC387+ cells (Figure 6.3D-E). The amount of sCD137 in DRGs positively 

correlated with the number of MAC387+ cells in matched DRG tissue (Figure 

6.3F, p< 0.05). These results point to a potential role in sCD137 recruiting 

MAC387+ monocytes to DRG tissue and facilitating severe tissue damage. 

Alternatively, MAC387+ cells could be releasing sCD137. 

 The chemotactic role of RANTES and MCP-1 is well established. 

MAC387+ cells in the brain of SIV+ macaques are CCR2 negative. Instead, 

CCR2 was expressed on perivascular macrophages [33]. Thus, we sought to 

demonstrate the likely role RANTES and MCP-1 play in recruiting monocytes to 

DRG. We found increased numbers of CCR5+ (Figure 6.4A-C) and CCR2+ 

(Figure 6.4D-F) satellite cells in infected tissue (Figure 6.4E and H) compared to 

uninfected (Figure 6.4D and G) controls. The increase of CCR5+ and CCR2+ 

with SIV infection in DRG was quantitated and found to be statistically significant 

(Figure 6.4C and F; p< 0.05 and p< 0.05). 

 sCD137 is generated by alternative splicing [24]. Membrane-bound 

CD137 is expressed on a wide range of cell types, including monocytes and 

expression of CD137 facilitates monocyte extravasation into tissue [17, 19, 34]. 

Thus, we chose to examine membrane-bound CD137 expression on satellite 

cells in DRGs of SIV- (Figure 6.4G) and SIV+ (Figure 6.4H) animals. We found 

that the number of CD137+ cells in SIV+ DRG tissue correlates to tissue 
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pathology (Figure 6.4I, ANOVA< 0.05). Because CD137 is not unique to myeloid 

cells, we performed double immunohistochemistry stains. We found that 16.1% 

of CD137+ cells were T cells (CD3+) and 33.5% of CD137+ cells expressed 

CD68, a pan-macrophage marker (data not shown). However, because 

MAC387+ macrophages do not co-express CD68, we suspect the remainder of 

the CD137+ cells in DRG tissue to be MAC387+ macrophages. However, the 

MAC387 and CD137 antibodies required different tissue preparation for 

immunohistochemistry and were incompatible with each other to perform a 

double stain. Despite this technical pitfall, the correlation of sCD137 to MAC387+ 

satellite cells in DRG and increased CD137+ satellite cells in DRG with severe 

pathology highlight a novel potential role of CD137 signaling during SIV infection 

and DSP pathogenesis. 

 

 

DISCUSSION 

To investigate the systemic inflammation that is causing neuronal 

damage, both in the DRG and in the extremities, we examined five soluble 

proteins in plasma, which are associated with monocyte activation and traffic. 

Here, we found that plasma sCD14 and MCP-1 were correlated to the number of 

BrdU+ monocytes in blood. We also found that sCD14, RANTES, and MCP-1 

were correlated to the percent of CD14+CD16+ monocytes out of total blood 

monocytes. CD14+CD16+ monocytes are an activated population of monocytes 

that highly express CCR2, the receptor for MCP-1, and CD163 [35, 36]. Elevated 
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levels of RANTES and MCP-1 in plasma were associated with moderate or 

severe DRG pathology, compared to mild pathology. These findings confirm 

these soluble factors in plasma are associated with monocyte activation and 

traffic during SIV-PN. 

Because the blood-nerve barrier is more promiscuous (or leakier) than the 

blood-brain barrier [37], we assumed that neurons were exposed to all proteins 

found in plasma. Several inflammatory cytokines have been found to be 

neurotoxic in vitro [38, 39], but this direct causation is difficult to prove in vivo. We 

found a significant inverse correlation between sCD163 and IENFD.  Thus, 

sCD163 may be useful as a plasma biomarker of IENFD loss in HIV+ patients. 

While sCD163 and sCD14 are both markers of monocyte activation, they are 

shed by different mechanisms. CD163 is highly expressed on M2- polarized 

macrophages and CD14+CD16+ monocytes, while CD14 is present on all 

populations of monocytes and is shed in the setting of non-specific activation [40] 

and CD163 is shed due to cell-surface TLR activation [41]. Plasma 

RANTES/CCL5 also correlated to a reduction in IENFD. Other studies have 

demonstrated that the supernatant of macrophages exposed to gp120, 

presumably containing proteins such as sCD163 and RANTES, is capable of 

damaging neurons in vitro [38]. Even though sCD163 and RANTES strongly 

correlated to a reduction of IENFD, the dying back of axons is likely caused by 

several signals. 

To investigate the local signals in the DRG responsible for monocyte 

traffic, we analyzed DRG tissue homogenate using a multiplex assay that 
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allowed for quantification of many proteins with a small amount of tissue 

homogenate available. The limitation of this method is that it is unknown which 

cell types are producing the proteins that were detected. Endothelial cells, 

neurons, Schwann cells, and immune cells (including macrophages and T cells) 

in the DRG are all capable of secreting cytokines and chemokines. However, this 

method still affords us the opportunity to investigate the local signals responsible 

for monocyte traffic and neuronal damage at the DRG. We found that MCP-1 in 

DRG tissue was significantly increased in DRG from SIV+ animals compared to 

uninfected control tissue. Because MCP-1 is a potent monocyte chemoattractant 

and is produced by activated macrophages, it is likely that MCP-1 is partially 

responsible for increased monocyte traffic to the DRG. 

 In addition to the proteins we reported on in detail here, we also 

investigated other known monocyte chemoattractants, both in the DRG and in 

plasma. We did not find a significant increase in macrophage inflammatory 

protein (MIP)-1α, MIP-1β, and MIP-3α in plasma, nor were these proteins 

elevated in SIV+ DRG tissue lysate. In fact, these proteins were below detection 

level for many of the DRG samples tested. However, monocyte activation and 

traffic is a complex process, likely to be controlled by several signaling molecules 

that were not included on the two cytokine/chemokine panels we utilized. 

 sCD137/CD137 (formally called 4-1BB or tumor necrosis factor receptor 

superfamily member 9 (TNFRSF9)) has not been extensively studied in the 

context of monocyte activation during HIV infection, although its known functions 

in other diseases are relevant to HIV pathogenesis. Here, CD137 was found to 
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potentially play a role in SIV-DSP pathogenesis. The soluble form of CD137 

(sCD137) is generated by alternative splicing and was found to significantly 

increase in plasma from pre-infection to terminal AIDS. Additionally, sCD137 was 

only detectable in DRG lysate with severe pathology, and it correlated with the 

number of MAC387+ cells in DRG tissue. CD137 is expressed on a wide range 

of cell types, although most of the research on this protein focuses on T cell 

activation [16-18]. However, CD137 signaling has been shown to play a role in 

myelopoiesis, monocyte activation, and monocyte extravasation into inflamed 

tissue [17, 18, 21]. The known roles of CD137 in regards to monocyte activity are 

also highly deregulated during HIV/SIV infection. Additional research needs to be 

conducted in order to further define the role of CD137 signaling in HIV/SIV 

disease progression. CD137 activation, through the use of agnostic monoclonal 

antibodies, has proven to have potential for cancer treatment by stimulating the 

immune system to target cancer cells [42]. Blocking CD137 may ameliorate 

chronic immune activation seen during HIV/SIV infection. 

Our findings presented here demonstrate the complexity of the neuro-

immune interaction that occurs during the pathogenesis of SIV-DSP. Neurons 

are capable of producing cytokines, and express cytokine receptors. Stimulation 

through these receptors has been shown to modulate pain signaling [13, 39]. 

However, targeting a single cytokine or a receptor is likely not to reverse or 

prevent nerve damage due to redundancy of immune signaling. No single protein 

that was investigated in this study was found to associate with all the factors we 

know to be important in nerve damage during SIV infection. However, sCD163 
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and RANTES were identified as potential biomarkers for loss of IENFD. 

Additionally, elevated sCD137 in DRG tissue lysate was found to be associated 

with MAC387+ cell recruitment and severe pathology. The role of CD137 

signaling during SIV-PN pathogenesis warrants further investigation. Future 

studies should focus on blockade of multiple signals, which may dampen 

monocyte activation and traffic to the DRG, and thus prevent a loss of IENFD 

and DRG damage. 
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Table 6.1: Animals used in the study. 

Animal 
Treatment 

Animal 
ID 

Survival 
(days) 

% Loss of 
IENFD at 

necropsy from 
pre-infection 

Lumbar DRG 
Pathology 

A01 84 -43.3% Severe (3) 
A02 96 -13.0% Mild (1) 
A03 106 -74.5% Moderate (2) 
A04 89 -36.8% Moderate-Severe (2.5) 
A05 55 -43.1% Mild-Moderate (1.5) 
A06 174 -82.5% Severe (3) 
A07 146 -51.5% Severe (3) 
A08 77 -57.4% Moderate-Severe (2.5) 
A09 77 -18.4% Moderate (2) 
A10 168 -20.4% Mild (1) 

 
 
 
 

SIV- 
infected  

CD8 
depleted 

 

A11 97 -51.6%* Mild (1) 
IENFD= intraepidermal nerve fiber density; * = percent change from pre-infection 
to 63 DPI.	
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Figure 6.1 
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Figure 6.1: Correlates of plasma markers of monocyte activation and 

monocyte chemoattractants. 

sCD14 (A-C), sCD163 (D-F), RANTES (G-I), MCP-1 (J-L), and sCD137 (M-O) 

were measured in plasma at multiple time points throughout infection. (A, D, G, J, 

M) Pre-infection and necropsy plasma concentrations were compared using a 

Wilcoxon matched-pairs signed rank test. Necropsy plasma concentrations were 

grouped according to lumbar DRG pathology and compared using a Kruskal-

Wallis test. The number of BrdU+ monocytes in blood (B, E, H, K, N) and the 

percent of CD14+CD16+ monocytes of the total monocyte population (C, F, I, L, 

O) was determined by flow cytometry and correlated to the plasma soluble 

protein concentrations at matched time points. A Spearman correlation test was 

used for all correlations.  P value of < 0.05 was considered significant. 
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Figure 6.2 
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Figure 6.2: sCD163 and RANTES in plasma negatively correlated to IENFD. 

IENFD was measured at multiple time points throughout infection in all SIV+ 

animals. sCD14 (A), sCD163 (B), RANTES (C), MCP-1 (D), and sCD137 (E) in 

plasma were correlated to IENFD at matched time points using a Spearman 

correlation test. P value of < 0.05 was considered significant. 
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Figure 6.3 
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Figure 6.3: RANTES, MCP-1, and sCD137 protein levels in DRG tissue. 

RANTES (A), MCP-1 (B), and sCD137 (C) were detected by Luminex multiplex 

assay in DRG tissue lysate. Differences in protein concentrations in SIV- and 

SIV+ DRG tissue were analyzed using a Mann-Whitney test. SIV+ DRGs were 

grouped according to tissue pathology. Differences between SIV+ tissue 

pathology groups were analyzed using a Kruskal-Wallis test, followed by a 

Dunn’s post-test. The amount of RANTES (D), MCP-1 (E), and sCD137 (F) in 

DRG tissue lysate were correlated to the number of MAC387+ cells/mm2 

determined by immunohistochemistry using a Spearman correlation test. P value 

of < 0.05 was considered significant. 



	 196	

 
Figure 6.4 
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Figure 6.4: CCR5, CCR2, and CD137 expression on DRG satellite cells. 

The number of CCR5 (A-C), CCR2 (D-F) and CD137 (G-I) positive satellite cells 

in DRG tissue was determined by immunohistochemistry in uninfected (A, D, G) 

and SIV-infected animals. (B, E, H). Arrows show CCR5+ cells in SIV+ DRG 

tissue. For each animal, eight non-overlapping fields of view at 200x 

magnification were quantified by manually counting the number of positive cells 

in the field and dividing by the total area of DRG tissue. The average number of 

positive cells per mm2 is plotted for each animal (C, F, I). Analysis in SIV- and 

SIV+ DRG tissue was determined using a Mann-Whitney test. SIV+ DRGs were 

grouped according to tissue pathology. Differences between pathology groups 

determined using a Kruskal-Wallis test, followed by a Dunn’s post-test. P value of 

< 0.05 was considered significant. 
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Discussion  

Great strides have been made in the treatment of HIV infection since the 

start of the worldwide epidemic over 30 years ago. Patient mortality has greatly 

decreased due to advances in antiretroviral therapy (ART) [1]. However, non-

AIDS related comorbidities in the HIV+ population remain problematic. Diseases 

and conditions that typically appear with advanced age appear at a younger age 

in HIV+ individuals due to accelerated aging of the immune system [2-5]. 

Understanding the mechanism underlying advanced aging in HIV+ individuals 

with controlled viral load is key to further closing the gap between the life span of 

the HIV+ and the general populations. 

 Neurologic complications were identified during the early years of the HIV 

epidemic. Patients had severe neuropathic pain, as well as neurocognitive 

impairments and encephalitis [6, 7]. While the severity of central nervous system 

(CNS) complications has decreased (although milder forms still remain prevalent)	

[8, 9], peripheral neuropathy (PN) continues to be the most frequent neurologic 

complication of HIV infection [10]. Rates of antiretroviral neurotoxicity (ATN) have 

decreased because of knowledge of neurotoxicity of d-drugs, but distal sensory 

polyneuropathy (DSP) persists in patients despite reductions in viral loads and 

increased CD4 counts [11]. The greatest risk factor for HIV-PN is increased age 

[10, 11]. Therefore, with an aging HIV population, it is expected that the 

prevalence of HIV-PN will only increase.  

 This thesis sought to understand the immunologic mechanisms associated 

with HIV-PN. The central hypothesis of this thesis was that monocyte traffic and 
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activation drives pathologies associated with HIV-PN, including damage to the 

dorsal root ganglia (DRG) and a loss of intraepidermal nerve fiber density 

(IENFD) (Figure 7.1). To test this hypothesis we defined pathologies of the 

peripheral nervous system (PNS) in our model, identified immune cell types and 

phenotypes associated with tissue damage, and identified signaling proteins 

associated with damage to be used as biomarkers and future drug targets. We 

also directly examined if cell traffic to tissues and monocyte/macrophage 

activation were necessary for SIV-PN using pharmacological blockade of specific 

pathways. 

 

Where does damage happen first? 

 Multiple regions of the PNS are affected during HIV-PN pathogenesis. 

Sensory information travels from peripheral nerves to the DRG and then to the 

spinal cord. Neurologic damage in any of these regions could potentially result in 

neuropathic pain. When we first began these studies, it was unknown where 

damage occurs first, or even if multiple PNS regions are linked in severity due to 

the inability to repeatedly sample different PNS regions in humans. Post-mortem 

analysis on the human DRG samples revealed a loss of neurons, formation of 

Nageotte nodules, and an increase in activated macrophages and satellite cells 

in the DRG [12-14]. Other studies have found that measuring IENFD in distal skin 

strongly correlates with pain and thus is a reliable diagnostic tool for HIV-PN [15]. 

 Using an animal model, we were able to study the order of events in the 

pathogenesis of SIV-PN by repeatedly sampling the footpad in longitudinal 
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analysis and time-sacrificing animals at 21 days post-infection (DPI) to determine 

when damage to the DRG occurs. We were also able to use bromodeoxyuridine 

(BrdU) dosing time points to determine when monocytes traffic to the DRG.  

In Chapter 2, we found that a loss of IENFD occurs during early infection 

(before 21 DPI) [16]. This is consistent with findings that Laast, et al found using 

a different primate model of SIV-PN. They found reduced IENFD at 6 and 8 

weeks post-infection (although not significant until 8 weeks post-infection, 

probably due to cross-sectional sampling instead of longitudinal sampling). 

IENFD was not measured earlier than 6 weeks post-infection in this study [17].  

They also observed that the decline in IENFD occurred before the decline in C-

fiber nerve conduction velocity. They hypothesized that this was because longer 

fibers are affected the most by SIV infection [17]. 

Laast and colleagues, and our studies found that DRG neuronal density 

declines during late infection. We found a decrease in neuronal density at 

terminal disease (Chapter 2), while Laast, et al observed a decrease in DRG 

neurons at 12 weeks post-infection, and no significant decrease at 6 weeks post-

infection. Our studies demonstrated that only small-diameter neurons are lost 

with SIV infection. Small-diameter DRG neurons give rise to unmyelinated C-

fibers [18]. Thus, long, unmyelinated C-fibers in distal tissues are probably the 

most vulnerable to viral protein and cytokine-induced neurotoxity during early 

infection. The loss of C-fibers in the epidermis may relay signals to DRG neurons 

associated with these fibers causing small diameter neuronal loss (Figure 7.1). 
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This thesis was also able to evaluate the role of cell traffic to the DRG. 

Natalizumab, an anti-VLA4 (very late antigen-4) antibody, is used to block traffic 

of leukocytes to tissues. It is used as a therapy for multiple sclerosis and Crohn’s 

disease by blocking the traffic of T cells and monocytes to the brain and the gut, 

respectively [19, 20]. In Chapter 4, we used natalizumab, in a proof-of-concept 

manner to directly investigate the impact of bone marrow-derived monocytes 

trafficking to the DRG on the development of tissue pathology [21]. Natalizumab 

treatment improved overall DRG pathologies in both early and late treated 

groups. Blocking cell traffic early (at the day of infection), completely prevented 

formation of Nageotte nodules at day 22. However, it is not known if these 

animals would have gone on to develop Nageotte nodules if they were allowed to 

continue to progress to AIDS. We predict that severe lesions in the DRG would 

not form if animals were treated with natalizumab at the day of infection, and 

treatment continued until sacrifice with AIDS. Pathology in the DRG during early 

infection is mild to moderate, compared to moderate to severe pathology seen 

with AIDS. Blocking cell traffic beginning at 28 DPI, did not completely prevent 

formation of Nageotte nodules, suggesting that damage to the DRG may be 

initiated during early infection (before loss of neurons (Chapter 2)), but disease 

progression is not completely halted by stopping cell traffic (Figure 7.1). We have 

also observed that BrdU+ monocytes traffic in the largest numbers during late 

infection (unpublished data).  

Thus, we hypothesize that a loss of IENFD is the initiating event in SIV-PN 

disease pathogenesis, likely due to viral protein toxicity or from an early 
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inflammatory response that is typical of acute infection. Because these fibers are 

unmyelinated, they may be more sensitive to neurotoxic products in plasma 

during acute infection. Monocytes likely traffic to injured axons and the DRG in 

response to stress signals and chemokines released from Schwann cells, 

activated resident macrophages, or the injured neurons. An influx of inflammatory 

monocytes/macrophages to the DRG likely perpetuates inflammation and 

neuronal damage. Chronic immune activation and an inability for inflammation to 

resolve is a hallmark of HIV infection [22]. Our natalizumab study suggested that 

monocyte traffic and macrophage activation is not the initiating factor driving 

tissue histopathology, but it does seem to exacerbate and perpetuate ongoing 

damage (Figure 7.1). 

 

What role do M1 and M2 macrophages play in SIV-PN pathogenesis? 

 Macrophages have a diverse array of functions such as pathogen sensing, 

tissue remodeling, and development [23]. In 2000, an M1-M2 macrophage 

polarization paradigm was proposed [24]. M1 macrophages are associated with 

antigen presentation and pathogen killing, along with producing pro-inflammatory 

cytokines that promote a Th1 response. In contrast M2 macrophages are highly 

phagocytic, produce anti-inflammatory cytokines and promote a Th2 response.  

Typical wound healing consists of an influx of M1 macrophages during acute 

inflammation. M2 macrophages then enter the injury site to resolve inflammation 

and remodel the tissue. However, in states of chronic inflammation, this process 

is disrupted [25]. Recently, evidence has emerged that M1 and M2 polarization 
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states represent two extremes of a continuous spectrum of transcriptional profiles 

[26]. Additionally, polarized macrophages are not terminally differentiated, but 

can be re-programmed by the cytokine milieu and other local environmental 

factors [27]. 

Increased numbers of macrophages and elevated macrophage activation 

have previously been observed in HIV+ and SIV+ DRG tissues [17, 28]. 

However, no studies had previously investigated the source of and phenotypes of 

macrophages in the DRG. In chapter 3, we used three different macrophage 

markers to identify different populations of macrophages. CD68 is expressed on 

mature tissue macrophages. CD163 is expressed on M2-polarized macrophages, 

while MAC387 is expressed on M1 macrophages. However, these macrophage 

markers are not exclusive. There is significant overlap between CD68 and 

CD163 in the CNS, which we have also observed in the PNS (data not shown)	

[29]. MAC387 is not coexpressed with CD163 or CD68. MAC387 recognizes 

recently infiltrated monocytes/macrophages [29, 30]. CD163 is a typical marker 

of M2 polarized macrophages [31]. Thus, in our studies we used CD163 and 

MAC387 to identify M2 and M1 macrophages, respectively. All three populations 

were significantly increased in the DRG of infected animals, compared to 

uninfected. Interestingly, the number of M1-like MAC387+ macrophages 

correlated to the severity of tissue pathology, while M2-like CD163+ 

macrophages were present in the same amount across different pathology 

severity groups. We would expect M1 macrophages to contribute to severe 

pathology due to their pro-inflammatory nature. Others have found that there is 
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an increase in M1 macrophages during acute infection and M2 macrophages 

dominate during chronic infection	 [32]. Because we used a rapid progression 

model, we may not have captured the phenotypic shift that occurs during late 

stages of disease in non-CD8 depleted animals or in HIV disease progression.  

We found that a majority of BrdU+ cells are MAC387+, meaning that M1-

macrophages in the DRG are bone-marrow derived and have trafficked to tissues 

[16]. Thus, when we blocked cell traffic with natalizumab treatment in Chapter 4, 

there was a decrease in MAC387+ cells in late-treated animals. There was no 

significant decrease in CD163+ M2-like macrophages in late-treated animals, 

suggesting that resident macrophages (that have not recently trafficked to the 

tissue) can become M2-activated [21]. However, there was a significant decrease 

in CD68+ macrophages when cell traffic was blocked. This may be because 

MAC387+ cells that traffic into tissues, eventually mature into CD68+ 

macrophages and no longer express MAC387. This is evidenced by a small 

percentage of CD68+BrdU+ macrophages that we observed in Chapter 3 [16]. 

Macrophage polarization and activation states are dynamic, and thus phenotypic 

shifts are likely occurring throughout infection [26]. 

In chapter 5, we reduced monocyte/macrophage activation with 

methylglyoxal-bis-guanylhydrazone (MGBG) oral administration. MGBG is a 

polyamine synthesis-inhibitor and depletes the intracellular pool of polyamines 

which are needed for M2-polarization [33, 34]. MGBG blocks S-adenosyl 

methionine decarboxlyase (SAMDC), an enzyme that converts S-adenosyl 

methionine (SAM) to dcSAM, which then feeds into the synthesis polyamines 
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(spermidine and spermine). Upstream in this synthesis pathway, Arginase-1 

(Arg-1) is needed to convert arginine to ornithine. Expression of Arg-1 is a 

hallmark of M2 activation, along with production of polyamines. Thus, when 

MGBG interrupts this pathway and depletes polyamines, M2 polarization is 

reduced [34]. In our study, MGBG (given daily on starting at 21 DPI) treatment 

reduced the number of M2 macrophages in the DRG, but not M1 macrophages. 

Treatment also reduced CD16 expression on blood monocytes (data not shown), 

which is significant because CD16+ monocytes highly express CD163, while 

CD16- monocytes do not. Interestingly, a reduction in M2 polarized macrophages 

resulted in improved DRG pathology, but a worsened outcome for a recovery of 

IENFD. MGBG-treated animals continued to have a decrease in IENFD after 

drug administration on 21 DPI, while untreated animals had no significant change 

in IENFD from 21 DPI to necropsy. This supports what others have reported that 

M2 macrophages are needed for peripheral nerve regeneration	[35, 36]. 

Based on the outcomes of these studies, we propose that M1-

macrophages secrete inflammatory cytokines and chemokines that assist in 

neuronal loss, both in the skin and in the DRG. In Chapter 6, we found increased 

MCP-1/CCL2 and CCR2+ macrophages in the DRG of SIV+ animals, both of 

which are associated with an M1 phenotype	[37]. In our rapid progression model, 

there is a failure to resolve M1 inflammation. In non-depleted animals, or during 

chronic HIV infection, a switch to M2 polarization may halt severe M1-induced 

damage. However, based on the progressive nature of HIV-PN in HIV+ patients 

on cART, we hypothesize that proper neural regeneration fails to take place in 
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the context of HIV infection	 [38]. Continued M1 activation due to microbial 

translocation, viral blipping, or co-infections most likely prevents full peripheral 

nerve regeneration in the context of chronic HIV infection [32]. 

 

Why do monocytes traffic to the DRG? 

 Increased presence of macrophages in the DRG was one of the earliest 

observations of the DRG in patients with HIV-PN [14]. Monocytes traffic to 

tissues for a multitude of reasons, which range from routine immune surveillance 

to tissue damage or presence of pathogens [39]. Monocyte traffic and 

macrophage accumulation in tissues is linked to CNS and cardiac pathologies 

during HIV infection [40]. In addition, increased monocyte egress from the bone 

marrow is correlated with a rapid progression to AIDS [41]. We therefore, 

hypothesized that BrdU+ monocyte traffic plays a role in SIV-PN pathogenesis 

(Figure 7.1). 

 In Chapter 3, we found that the number of MAC387+BrdU+ cells in the 

DRG correlated to the severity of pathology. Additionally, the number of BrdU+ 

cells in the DRG also correlated to a greater loss of IENFD. Interestingly, no 

other cell population in the DRG examined in this study was correlated to a loss 

of IENFD. This finding demonstrated the important role of ongoing monocyte 

traffic in development of pathology both in the DRG and in distal peripheral 

nerves (Figure 7.1). 

 This finding led us to ask what was causing an increase in monocyte 

traffic to the DRG. Monocytes could be recruited due to pathogen (e.g., SIV) 
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presence, to phagocytose dying neurons, or due to increased cytokines and 

chemokines secreted from activated, resident satellite cells or the neurons 

themselves. The amount of virus in the DRG did not correlate to pathology nor to 

monocyte recruitment. In addition, HIV-PN occurs in patients with undetectable 

viral loads [10]. Thus, we hypothesized that monocyte recruitment occurs in 

response to dying neurons and/or increased cytokines and chemokines in the 

region (Figure 7.1). Understanding the chemotactic signals that are responsible 

for monocyte traffic are important to both understand the cause of the pathology, 

and to identify pathways for future pharmacological targeting. 

 In Chapter 6 we performed a multiplex screen to identify cytokines and 

chemokines that are upregulated in infected DRG tissues. We found that MCP-1 

was significantly upregulated in the DRG of infected animals. Injured neurons 

have previously been shown to secrete MCP-1 [42-44]. MCP-1 is a potent 

monocyte chemoattractant and in plasma correlated to a greater egress of 

monocytes from the bone marrow and high number of activated CD14+CD16+ 

circulating monocytes. The ligand of MCP-1, CCR2, is expressed on M1 

polarized macrophages. CCR2+ macrophages were also present in greater 

numbers in DRG of SIV+ animals. Thus, CCR2 expression and MCP-1 gradient 

likely plays a role in M1 macrophage recruitment to the DRG.  

 

How to target monocyte activation and traffic to prevent and treat HIV-PN? 

 There is currently no FDA-approved treatment for HIV-PN. Attempts to 

treat HIV-PN with “off label” medications such as analgesics and treatments for 
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other types of chronic pain prove to be ineffective or have only a transient relief 

of symptoms [45]. Failure to find an effective treatment is in part due to a lack of 

understanding of the underlying mechanism of HIV-PN. In this thesis, we used 

two different drugs to target monocyte activation and traffic to attempt to 

understand pathogenesis and reduce pathologies associated with SIV-PN.  

 In Chapter 4, we used natalizumab to directly test the effect of monocyte 

traffic. We demonstrated that continuous monocyte traffic exacerbates ongoing 

pathology, but mild pathology is still present after traffic is stopped. Long-term 

use of natalizumab is not recommended in HIV patients due to risk of developing 

progressive multifocal leukoencephalopathy (PML) caused by JC virus and other 

opportunistic infections [46]. Treatment with natalizumab has been shown to be 

safe for long durations when there is no risk of PML [46]. Even short-term usage 

may be beneficial to slow inflammation-induced damage to the PNS. It is not 

known if damage would continue to progress after stopping treatment with 

natalizumab. In addition, natalizumab does not specifically target monocytes or 

differentiate between M1 and M2 polarization. Thus, beneficial effects from M2 

polarized macrophages on peripheral nerve regeneration would be thwarted by 

use of natalizumab. 

 In Chapter 5, we used MGBG to specifically target myeloid cells. MGBG 

reduced BrdU+ cell traffic and reduced the number of CD163+ and CD68+ cells 

in the DRG. Because MGBG is a polyamine synthesis inhibitor, it reduced M2 

activation. MGBG slowed the progression to AIDS and improved DRG pathology 

scores. However, reducing M2 polarization did not allow for regeneration of nerve 
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fibers in the footpad. Our study with MGBG demonstrates both the beneficial and 

potentially disadvantageous effects targeting monocyte/macrophage activation. 

While we have linked monocyte and macrophage over-activation to SIV-PN, 

these cell types still play a vital role in tissue remodeling and homeostasis. Thus, 

one must be cautious when using immunologic agents that target myeloid cells.  

 Combining therapeutics that target monocyte activation and ART will likely 

show a greater effect in our model than simply reducing monocyte activation and 

traffic alone. Our natalizumab and MGBG drug studies were done in the absence 

of ART. It is likely that even greater therapeutic benefit would be observed by 

reducing viral loads with ART and targeting monocyte activation and traffic. 

Maraviroc is a CCR5 viral entry inhibitor. Because CCR5 serves as both a viral 

entry receptor and has immune functions, blocking CCR5 has been shown to 

both block viral entry and reduce monocyte activation [47]. Maraviroc has been 

shown to reduce monocyte chemotaxis in vitro [48] and improve cardiac and 

neurologic outcomes in vivo [49, 50]. Macrophages serve as a viral reservoir that 

is difficult to target with conventional ART drugs [51].  Cenicriviroc (CVC), 

another CCR5 entry inhibitor, which is currently in clinical trials, also blocks 

CCR2 [52, 53]. Dual targeting of CCR2 and CCR5 may be a successful strategy 

to target monocytes and macrophages and block viral entry simultaneously. In 

Chapter 6, we highlighted the roles of CCR2 and CCR5 and their ligands in SIV-

PN. Treatment with CVC in conjunction with other ART drugs may be of benefit 

to patients who suffer from HIV-PN and are at risk of other monocyte activation 

induced comorbidities, such as neurocognitive disorders and atherosclerosis.  



	 215	

Summary 

 In conclusion, this thesis elucidated potential mechanisms underlying HIV 

and SIV-PN (Figure 7.1).  We described and investigated the cause of damage to 

the DRG and a loss of nerve fibers in the footpad of SIV-infected monkeys. We 

found that monocyte traffic to the DRG was linked to both a loss of IENFD and 

DRG pathology. We investigated the molecular signals associated with monocyte 

traffic to the DRG and systemic monocyte activation and highlighted the potential 

roles of MCP-1, RANTES, sCD137, sCD14, and sCD163 in monocyte traffic and 

activation, and PNS pathologies. We found that when cell traffic was blocked with 

natalizumab treatment, DRG pathology was improved. In addition, reducing 

myeloid cell activation with MGBG also improved DRG pathology. Future studies 

should aim to identify drugs to be used in conjunction with ART that specifically 

target inflammatory monocytes and macrophages. 
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Figure 7.1 
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Figure 7.1: Pathways involved in SIV-PN pathogenesis 

The initial insult to the PNS is unknown. There is an early loss of IENFD, followed 

by damage to the DRG during late infection. Both a loss of IENFD and DRG 

neuronal damage is associated monocyte activation that occurs following SIV 

infection, either with or without viremia. Monocyte traffic in the DRG is associated 

with DRG pathology and a loss of IENFD. Inflammatory monocytes that traffic to 

the DRG release cytokines and chemokines which further damage tissue and 

recruit additional monocytes to the tissue. Reducing monocyte activation with 

MGBG and blocking cell traffic with natalizumab reduces DRG pathology and cell 

traffic, but does not completely resolve PNS damage. Thus monocyte traffic and 

activation perpetuate ongoing PNS damage. 
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