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CRETACEOUS PARTIAL MELTING, DEFORMATION, AND EXHUMATION OF THE POTTERS
POND MIGMATITE DOMAIN, WEST-CENTRAL IDAHO

William J. Montz
Adpvisor: Seth C. Kruckenberg, Ph.D.

The Potters Pond migmatite domain (PPMD) is a heterogeneous zone of migmatites
located ~10 km southwest of Cascade, Idaho within the western Idaho shear zone
(WISZ). The PPMD is the only known exposure of migmatites within the WISZ over its
~300 km length, occurring where the shear zone orientation changes from 020° south to
000° north of the migmatite domain. Structural mapping within the PPMD has identified
multiple generations of migmatite with varied structural fabrics. Leucosome layers were
sampled from distinct migmatite localities and morphologies (e.g., metatexite, diatexite)
to determine the timing and duration of partial melting in the PPMD. U-Pb age
determinations of zircon by means of LA-ICP-MS document two periods of protracted
migmatite crystallization during the Early and Late Cretaceous. Early Cretaceous (ca. 145
to 128 Ma) migmatite crystallization ages are coeval with the collision and suturing of
oceanic terranes of the Blue Mountains province with North America, and the formation
of the Salmon River suture zone (SRSZ). Migmatite crystallization ages from ca. 104 to
90 Ma are associated with Late Cretaceous dextral transpression in the WISZ. Field
observations and geochronology of cross cutting leucosome relationships are interpreted
to record deep crustal deformation and anatexis associated with formation of the SRSZ,
subsequently overprinted by solid-state deformation and renewed anatexis during the
evolution of the WISZ. These data are the first direct evidence of the synmetamorphic
fabric related to the SRSZ east of the initial Sr 0.706 isopleth, and that the WISZ is a

temporally distinct overprinting structure.



TABLE OF CONTENTS

TABLE OF CONTENTS ...ttt ettt i
LIST OF FIGURES ......oiititieteteee ettt sttt st il
LIST OF TABLES ...ttt sttt st v
ACKNOWLEDGEMENTS ...ttt sttt s v
FORWARD ...ttt sttt sttt ettt vi
INTRODUCTION ..ottt sttt sttt sbe et s naeene 1
GEOLOGIC BACKGROUND ....ciiiiiiiiiiieieitcenteseeeeeeet ettt s 3
COMPOSITION AND STRUCTURE OF THE PPMD MIGMATITES .........cccccovieennen. 6
GEOCHRONOLOGY ..ottt ettt ettt sttt ettt saee e 9
Analytical MEthOAS .......eoiiiiiiiiie et e 10
Results of U-Pb Zircon ANAlySes ........coceveiriiriinienieniinieeeesecie et 10
Boudinaged leucosome within melanocratic diatexite (14WM39a)..............c........... 10
Schlieren-textured granodiorite diatexite (13WM25) ..........cccccevoiiiiiiniiaiiancaen. 11
Schlieren-textured granodiorite diatexite (13WM30) ..........cccccevviiioiiniiaiianeaen. 12
Agmatic migmatite (14WMILS5) .......ccccooioiiiiiiiiiiiiiieee et 13
Nebulitic diatexite (14WMSE) .......c.oooeiiiiiiiiiiee e 13
Discordant leucosome in stromatic metatexite (14WM37@) ............cccoeeveveevcueeanne.. 14
Leucosome in stromatic metatexite (13WM24) .........cccccoivieioeioiaiiiiiieiieieeeee 15
Results of U-Pb Monazite ANalySes........cccceeeeiirieniiriiniinienienieeieeicsiece e 15
DISCUSSION ...ttt ettt sttt ettt ettt st sae et bt e sbeeae e 17
Interpretation of the Geochronology Results ...........ccceviiviniininiiniiniiiccceeee, 17
Tectonic SIZNTIICANCE .......eouiiriiiiiiieiecteee ettt 21
SUMIMATY ...ttt ettt et e st sae e et esan e eateesaeeeeneesanesaneens 23
CONCLUSIONS ..ttt ettt sttt sttt ettt ettt ettt sbe e bt esaesaeeees 25
MANUSCRIPT ACKNOWLEDGEMENTS......ccciiiiiiiiintieeteeceneeseee et 27
REFERENCES CITED ....coiiiiiiiiiiiiiiteeteteeetese ettt 28
FIGURES ..ottt ettt sttt sbe et 36
TABLES ..ottt et b ettt 80
APPENDIX A: ANALYTICAL METHODS .....c.oooiiiiiiiieececeesteeeee e 93
U-Pb geochronologic analysis of zircon (Element2 HR ICPMS) .......cccccceviiniinennenn. 93
U-Pb/Th-Pb geochronologic analysis of monazite (Nu Instruments HR-MC-ICPMS) 94
Data REAUCHION ......eoiuiiiiiiiiiiieeee et 95



Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure S:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Figure 11:

Figure 12:

LIST OF FIGURES

Location of the western Idaho shear zone and the Potters Pond
migmatite domain in the North American Cordillera.................... 36

Map of the Potters Pond migmatite domain...........ccccceeveeeueennenne 38

Representative field photographs of the Potters Pond migmatite
domain MIZMALILES ........cceeriiierieiiieiie et 40

Summary of structural measurements from the Potters Pond
mMigmatite dOMAIN ......cecueeiiieiieiie et 42

Field photographs of melt-present deformation structures............ 44

Summary of zircon geochronology results from sample 14WM39a
(leucosome in melanocratic diateXite)........cccevvveervueeerveeenieeennneenns 46

Summary of zircon geochronology results from sample 13WM25
(schlieren-textured granodiorite diateXite) ..........cceevueevveriieeueennen. 48

Summary of zircon geochronology results from sample 13WM30
(schlieren-textured granodiorite diateXite) ..........cceeceeeveerieerueennen. 50

Summary of zircon geochronology results from sample 14WM115
(agMAticC MIZMALITE)....veeeieeiieriieetieiie ettt 52

Summary of zircon geochronology results from sample 14WMS58
(nebulitic diateXite).......eeevrreriieeeiieeeiie e e e e 54

Summary of zircon geochronology results from sample 14WM37a
(discordant leucosome in stromatic metatexite) .........c.ceeeuveeennnnnne 56

Summary of zircon geochronology results from sample 13WM24
(leucosome in stromatic MEtAtEXite).......ccvveeerreeerveeerreeerireeenneenns 58

ii



Figure 13:

Figure 14:

Figure 15:

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20:

Figure 21:

Figure 22:

Summary of monazite geochronology results from sample
13WM24 (leucosome in stromatic metateXite) ........c.ceeecveeeruvennnee. 60

Summary of monazite geochronology results from sample
13WM25 (schlieren-textured granodiorite diatexite).................... 62

Summary of monazite geochronology results from sample
13WM30 (schlieren-textured granodiorite diatexite).................... 64

Summary of monazite geochronology results from sample
14WM37a (discordant leucosome in stromatic metatexite).......... 66

Summary of monazite geochronology results from sample
13WM39a (boudinaged leucosome in melanocratic diatexite).....68

Summary of monazite geochronology results from sample

14WMS58 (nebulitic diateXite) ........cccvvveevveeeiiieeeieeeiee e 70
Summary of monazite geochronology results from sample
14WMI115 (agmatic diateXite).......eeveerurriieerieeiienieeieesie e 72
Schematic drawing of leucosome relationships observed in the
Potters Pond migmatite domain...........coecueeveeeiieniieiiieniieieeee 74
Compiled results of all zircon and monazite analyses................... 76

Summary figure detailing interpretations made from results of this
study and previous geochronologic work in the Western Idaho
SHEAT ZONE .....eiiiiiiiieici e 78

iii



Table 1:

Table 2:

LIST OF TABLES

Analytical LA-ICP-MS U-Pb zircon data from migmatitic rocks
in the Potters Pond migmatite domain .........coeeveeneeereereeneerseeseeeneens 80

Analytical LA-ICP-MS U-Pb monazite data from migmatitic
rocks in the Potters Pond migmatite domain........coneeneereeeneens 89

iv



ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Seth Kruckenberg for his guidance and direction
throughout the completion of my MS degree. Without your academic and financial

support, none of this would have been possible.

Special thanks Basil Tikoff for providing the initial spark that lit my interest in structural
geology all those years ago, and for providing the means and motivation to pursue

geologic research. Thank you for taking me under your wing and fueling my love of

geology.

I would like to express my gratitude to Kate Johnson for keeping me sane during stressful
times, and Babs Wortham for looking out for my health and wellbeing when I forgot to

do so myself. I may have become a crazy, malnourished geologist without your support.

Thanks also to Shaina Cohen, Martha Parsons, and Jamie Kendall for your willingness to
discuss solid earth geoscience. It was comforting to know you were always available to

talk about structure, metamorphism, or mineralogy.

I am truly grateful for the support of my family in every aspect of my life. I definitely
would not be where I am today without the love and guidance of my parents and

unwavering friendship of my brother.



FORWARD

To the reader:

This thesis has been written in manuscript form. As a result, it must be noted that this
thesis is a product of scientific collaboration. While the results and interpretations
presented herein are a product of my own research and writing, but I must give credit to
those with whom I have collaborated. Their respective contributions are acknowledged

accompanying the manuscript.

vi



INTRODUCTION

The western margin of Laurentia is marked by the accretion of multiple oceanic
terranes. The broad zone of arc-continent collision in western Idaho is known as the
Salmon River suture zone (SRSZ), which juxtaposes the island arc terranes of the Blue
Mountains on the west with the North American craton to the east (e.g., Hamilton, 1963;
Lund and Snee, 1988). Estimates on the timing of this accretion vary from Early
Cretaceous (Getty et al., 1993) to Late Jurassic (Lamaskin et al., 2015). Sometime after
accretion of the island arc terranes to this margin, the Salmon River suture zone was
affected by the western Idaho shear zone (WISZ) (Lund and Snee, 1988; Manduca et al.,
1993; McClelland et al., 2000; Giorgis et. al., 2005). The western Idaho shear zone
records dextral, transpressional deformation (e.g., Giorgis and Tikoff, 2004; Giorgis et.
al., 2008; Giorgis et al., in review). Current estimates for timing indicate that deformation
ceased at ~90 Ma (Giorgis et al., 2008).

A major debate has centered on the timing relation between the Salmon River suture
zone and the western Idaho shear zone: There are two main interpretations. The first
option is that there is temporal continuity between suturing and the transpressional
deformation. This interpretation is implicit in the work of Selverstone et al. (1992) and
Snee et al. (1995), and is explicit in Gray et al. (2012). The second option is that the
western Idaho shear zone is a distinctly younger feature that overprints the Salmon River
suture zone. This interpretation of spatially overlapping structures was initially proposed
for both the western Idaho shear zone and the Coast shear zone of British Columbia and
Alaska by McClelland et al. (2000), and subsequently supported by Tikoff et al. (2001),

Giorgis et al. (2008), and Blake et al. (2009).At present, the data supports either option,



depending on the interpretation of fabrics to U-Pb zircon ages in specific plutonic units
(e.g., Gray et al., 2012; Braudy et al., in review).

We studied a newly mapped migmatite domain associated with the western Idaho
shear zone on West Mountain (Braudy, 2013; Braudy et al., in review). Migmatites,
representing former partially molten rocks and magmas (e.g., Sawyer, 2008;
Vanderhaeghe, 2009), have been shown by numerous studies to provide critical
constraints on tectonic evolution. Partial melt migration is intrinsically linked to
deformation (e.g., Brown and Solar, 1998; Weinberg and Mark, 2008), and as such
migmatites — particularly in shear zones — inform on the timescales and interaction of
crustal melting and deformation processes. Our study leverages combined structural
mapping and U-Pb geochronology in this newly recognized migmatite domain - herein
referred to as the Potters Pond migmatite domain (PPMD) - to determine the timing and
duration of partial melting and the deformation history recorded in the PPMD
migmatites. We demonstrate that migmatites comprising the PPMD record two protracted
periods of migmatite crystallization in the Early Cretaceous (ca. 145 to 128 Ma) and Late
Cretaceous (ca. 104 to 90 Ma). We interpret these ages to record deep crustal deformation
and anatexis during formation of the SRSZ and WISZ, respectively. These data show that
the SRSZ and WISZ occurred as two distinct events separated by a deformational hiatus,
and offer the first direct evidence that Late Cretaceous mylonites of the WISZ have
overprinted Early Cretaceous synmetamorphic structures associated with the SRSZ. The
U-Pb zircon age distribution also indicates partial melting of both Blue Mountain and
North American sources. As such, a sliver of Blue Mountain terrain must exist east of the

western Idaho shear zone at this location, consistent with the interpretation of Braudy et



al. (in review). Further, our U-Pb geochronology results are the first clear evidence from
south of the Orofino area (e.g., Woodrat Mountain shear zone; Lewis et al., 2007, 2014;
Schmidt et al., in review) that deformation associated with suturing affected the North

American side of the western Idaho shear zone.

GEOLOGIC BACKGROUND

The western Idaho shear zone is a steeply dipping, roughly north-south striking high
strain zone that follows the initial Sr 0.706 isopleth (Armstrong et al., 1977) for over 300
km along the western margin of the Idaho batholith (Manduca et al., 1993; McClelland et
al., 2000; Tikoff et al., 2001; Giorgis et al., in review) (Figure 1). The shear zone lies at
one of the many sub-vertical plate boundaries within the North American Cordillera.
Although this subvertical boundary was originally thought to reflect the accretion of
oceanic terranes with continental North America (e.g., Selverstone et al., 1992), it is
potentially better considered as a transpressional modification of that accretionary
boundary (e.g., McClelland et al., 2000). Giorgis et al. (2008), in an attempt to build
consensus about regional nomenclature, separated the accretionary SRSZ from the
shearing modification of that boundary by the WISZ.

In western Idaho, the tectonic history begins with the Late Jurassic-Early Cretaceous
collision of the oceanic terranes of the Blue Mountains province with the North American
craton (Avé Lallemant, 1995; Vallier, 1995; Gray and Oldow, 2005). Initial collision and
suturing began ca. 144 Ma and was active through ca. 128 Ma (Selverstone et al., 1992;
Getty et al., 1993), forming the SRSZ in west-central Idaho (Lund and Snee, 1988).

Following suturing, intrusive suites were intruded in western Idaho, with ages that



generally decrease from west to east. In the McCall region, these are the Hazard Creek
complex, Little Goose Creek complex, and Payette River tonalite. Rocks of the
westernmost unit, the Hazard Creek complex, have two main compositions: an older
generation of tonalitic to quartz dioritic orthogneiss, and a younger generation of less
deformed tonalite and trondhjemite (Manduca et al., 1993). U-Pb zircon ages indicate
emplacement and deformation of the Hazard Creek complex was ongoing by ca. 118 +5
Ma and concluded by ca. 114.4 + 2.2 Ma (Manduca et al., 1993; Unruh et al., 2008). East
of the Hazard Creek complex lies the Little Goose Creek complex, an intrusion composed
primarily of porphyritic granodiorite and granite orthogneiss. The Little Goose Creek
complex was emplaced between ca. 105 + 1.5 and 110 +£ 5 Ma (Manduca et al. 1993;
Giorgis et al, 2008; Unruh et al., 2008). The youngest intrusion is the Payette River
tonalite and was emplaced between 91.5 + 1.1 and 89.7+ 1.2 Ma (Giorgis et al., 2008).
The Payette River tonalite is characterized by coarse-grained hornblende and the
presence of mafic enclaves.

The WISZ is located within the SRSZ, and is the present day boundary between
accreted oceanic arc terranes and cratonic North America. Deformation is best
characterized in the McCall region, where it affects the easternmost portion of the Hazard
Creek unit and all of the Little Goose Creek complex. The Payette River tonalite is
interpreted as a syn-tectonic, steeply dipping sill associated with the western Idaho shear
zone (e.g., Manduca et al., 1993). The shear zone has been described as far south as the
Owyhee Mountains (Bendford et al., 2010) and extends north through McCall and
Riggins (Giorgis et al., 2008; Blake et al., 2009; Giorgis et al., in review) before stopping

at a younger shear zone near Orofino (McClelland and Oldow, 2007).



Characteristic fabric observed throughout the western Idaho shear zone is a steeply
dipping, N- to NNE-trending foliation (e.g., Giorgis et al., 2008, McClelland et al., 2000;
Benford et al., 2010). Tikoff et al. (2001) noted that WISZ fabrics restore to a vertical
orientation, when Miocene-present faulting is removed. Thus, dextral transpression is
thought to be responsible for the deformation associated with the western Idaho shear
zone (e.g., McClelland et al., 2000; Giorgis et al., in review). Lund and Snee (1988)
interpret regional structures to indicate a component of dextral motion, agreeing with the
results of fabric analyses of mylonitic zone within the western Idaho shear zone (e.g.,
Giorgis and Tikoff, 2004; Giorgis et al., in review). U-Pb zircon ages constrain
deformation along the WISZ to have ceased by 90 Ma (e.g., Giorgis et al., 2008).

West Mountain, immediately south of McCall, also contains the WISZ (Bonnichsen,
1987; Giorgis et al., 2008; Braudy, 2013; Braudy et al., in review). West Mountain is
more vegetated, lacks pervasive glaciated outcrops, and the bedrock geology is more
significantly covered by Columbia River basalt flows. A series of intrusive suites —
similar in both age and composition to those in the McCall area — are found on West
Mountain, including the syntectonic Payette River tonalite (Braudy et al., in review).
Geochemical analyses, however, indicate major differences from intrusions in the McCall
area (Braudy et al., in review). First, and most important, geochemistry on zircon centers
indicate that a component of Blue Mountain terrane rocks occurs E of the WISZ.
Second, unlike the Hazard Creek complex, the westernmost exposed orthogneiss units in
West Mountain are dominantly derived from continental material. Braudy (2013)
documented a change in foliation orientation in the orthogneisses on West Mountain,

from 005° to 024°, and interpreted this pattern to reflect a primary along-strike variation



in the WISZ. Her mapping also recognized the presence of a migmatite complex near
Snowbank Mountain, originally noted by reconnaissance geological mapping (1° x 2° of
Baker Quadrangle; Mitchell and Bennett, 1979). Two Lu-Hf dates on garnets, 110.0 + 1.0
Ma and 99.5 + 1.4 Ma, were analyzed from this migmatite complex and were interpreted
to reflect different generations of garnet growth (Wilford, 2012; Braudy et al., in review).
A third Lu-Hf date on garnet from within the WISZ indicated a garnet grown during

deformation at 97.1 + 0.8 Ma (Braudy et al., in review).

COMPOSITION AND STRUCTURE OF THE PPMD MIGMATITES

Migmatites are classified based on increasing granitic fraction and continuity of the
former solid framework, and are subdivided into metatexites (former partially molten
rocks) and diatexites (former magmas) (Mehnert, 1968; Brown, 1973; Wickham, 1987;
Sawyer, 1994; Vanderhaeghe, 2001, 2009). Metatexites comprise gneisses and schists
with a continuous foliation enclosing leucosome (i.e. segregated melt), whereas diatexites
are dominated by granite enclosing enclaves, selvages, and/or crystals in suspension (e.g.,
Sawyer, 2008; Vanderhaeghe, 2009). Migmatites within the Potters Pond migmatite
domain are structurally and compositionally heterogeneous, consisting primarily of
stromatic and folded metatexite, interlayered or intruded by heterogeneous diatexite
(Figure 2).

Metatexite is volumetrically minor in the PPMD, consisting of planar and folded
domains of stromatic metatexite and entrained blocks of transposed amphibolite and
foliated granodioritic to tonalitic gneisses. Paleosome layers are locally boudinaged and

enveloped by leucosome, which are in turn folded by tight to open folds on the cm- to m-



scale (Figure 3F,G). A solid-state foliation is observed in stromatic metatexites, defined
by domains of stretched quartz aligned parallel to a variably developed transposition
foliation. Throughout the PPMD, stromatic metatexite forms anastomosing domains and
regions that are invariably cut by discordant layers of cm- to m-scale magmatic-textured
leucosome, or deformed and intruded by voluminous bodies of heterogeneous diatexite
(Figure 2).

Heterogeneous diatexite is the dominant migmatitic variety exposed throughout the
Potters Pond migmatite domain (Figure 2). This melt-rich diatexite is characterized by a
well-developed synmigmatitic (i.e. magmatic) layering defined by biotite schlieren and/or
schollen of amphibolite, tonalite, and, rarely, granulite, enveloped by granitic to
granodioritic neosome (Figure 3A,B). Diatexite within the PPMD is further subdivided
into schlieren-textured, melanocratic, and nebulitic varieties. Schlieren-texture diatexite
is distinguishable by a “wispy” synmigmatitic foliation and abundant layers of segregated
leucosome (Figure 3B). This texture contrasts melanocratic varieties, which are
characterized by a higher modal abundance of biotite, planar synmigmatitic layering, and
locally boudinaged leucosome oriented parallel to a magmatic to subsolidus foliation
(Figure 3E). Garnet is abundant in diatexite, though not observed everywhere. In
melanocratic diatexite, garnet is typically fine grained and dispersed throughout the
neosome. In both schlieren-textured and melanocratic diatexite, course grained garnets
are concentrated along leucosome—melanosome margins. Leucocratic nebulite is
distinguished by voluminous, granitic to granodioritic neosome with a swirly to cryptic
synmigmatitic foliation, and faint leucosomes commonly containing clusters of large

garnets up to 2 cm in diameter (Figure 3C). Schlieren-textured and nebulitic diatexite



tend to form large intrusive bodies on the m- to km-scale throughout the PPMD, whereas
melanocratic planar diatexite bodies are primarily found in the southwestern portion of
the migmatite domain (Figure 2).

We distinguish the previously described migmatite units from agmatic migmatite that
occurs within a band along the western edge of the PPMD. This unit is characterized by
blocks of fine-grained biotite-rich tonalitic paleosome cut by leucosome containing
abundant hornblende and biotite, and lacking garnet (Figure 3D). These layers form
discontinuous lenses within schlieren-textured diatexite (Figure 2), which become more
elongate in the northern parts of the PPMD.

The dominant orientation of synmigmatitic layering and leucosome orientation within
the Potters Pond migmatite domain varies from 000° to 020° (Figure 4). This pattern is
the expected fabric orientation within the WISZ based on mapping by Braudy et al. (in
review) who documented a solid-state fabric orientation of 005° north of the PPMD and
024° south of the PPMD. A second population of leucosome orientations trends 050°. The
relationship between 000°-020° and 050° fabrics varies spatially. In some localities, the
050° fabric is cross cut by the 020° fabric, where elsewhere they merge into each other.
Lineations, where present, either pitch down dip or pitch steeply to the north.

Evidence for melt-present deformation is abundant within the Potters Pond migmatite
domain; in all migmatite varieties melt accumulation is associated with dilatant structural
sites (Figure 5). For example, asymmetric blocks of paleosome within diatexite preserve
melt in pressure shadows associated with rotation during dextral shearing (Figure 5A).
Similarly, accumulated melt is preserved in boudin necks (Figure 5B,C), flanking

structures associated with folded migmatite layers (Figure 5D), and in the hinge zones of



rootless folds in diatexite (Figure S5E). These structural relationships attest to the role of
melt-present deformation in the PPMD (e.g., McLellan, 1988; Brown, 1994; Brown and
Solar, 1998; Marchildon and Brown, 2002, 2003; Sawyer, 2001; Holness, 2008). We
note, however, that the deformation within the migmatite domain was variable through
time as evidenced by multiple periods of migmatite formation and changes in
deformation conditions (e.g., melt-present versus solid-state). More explicitly, based on
structural relationships, the PPMD migmatites record a poly-phase melting history.
Migmatization and melt-present deformation recorded in stromatic metatexite and
melanocratic diatexite domains show evidence of overprinting subsolidus deformation, as
described previously. These early-formed structural features are, in turn, cut and
deformed by subsequent partial melts forming the volumetrically distinct regions of

magmatically deformed heterogeneous diatexite that characterizes much of the PPMD.

GEOCHRONOLOGY

Lu-Hf ages of ca. 110-99 Ma are interpreted to reflect multiple generations of garnet
growth during migmatite formation in the PPMD (Wilford, 2012; Braudy et al., in
review). This interpretation is in agreement with the structural record of polyphase partial
melting in the PPMD, as described previously. However, the timing and duration of
migmatite crystallization remains unknown. We present new U-Pb data from structurally
and compositionally distinct migmatites in the PPMD in order to characterize the timing
and duration of partial melting and its relationship to different stages of the tectonic

evolution of western Idaho.



Analytical methods

Seven samples were selected for U-Pb isotopic analysis from leucosomes within
structurally and compositionally distinct migmatite localities, focused on structural
settings in which the crystallization ages of leucosome would provided further constraints
on the relationships between melt-present and solid-state deformation histories. Zircon
and monazite grains were isolated using standard crushing and mineral separation
procedures, and were dated by laser ablation-inductively coupled plasma-mass
spectrometer (LA-ICP-MS) U-Pb methods. All analyses were conducted at the Arizona
LaserChron Center (Tucson, Arizona), where zircon analyses were conducted on a
Thermo Element2 single-collector ICP-MS, and monazite analyses were conducted on a
Nu Plasma multicollector ICP-MS. Crystallization ages from rim overgrowths and new
zircon growth attributed to migmatite crystallization were calculated using the weighted
mean “**Pb/***U ages of clustered populations of data. Analyses with a large uncertainties
(>10%) and excessive discordance (>20%) or reverse discordance (>5%) were discarded.
Additional details of the analytical method and data tables containing analytical results

are provided in the supplementary material.

Results of U-Pb Zircon Analyses
Boudinaged leucosome within melanocratic diatexite (14WM39a)

Sample 14WM39a is sourced from granodioritic leucosome within a domain of
melanocratic diatexite northwest of Blue Lake (Figure 2). At this locality, the host
melanocratic diatexite is characterized by planar synmigmatitic layering and a strong

mineral lineation. The sampled leucosome is boudinaged forming rough dextral

10



sigmoidal shapes that pinch and swell parallel to synmigmatitic layering. Garnets are
crowded at the contact of the leucosome with the surrounding melanocratic diatexite. A
strong solid-state fabric that conforms to the shape of the boudins is observed for a few
centimeters in the surrounding rock. Zircon grains in sample 14WM39a are euhedral to
subhedral, and range in size from 150 to 300 pm (Figure 6). Oscillatory-zoned cores are
commonly resorbed. Five- to 20 um wide rim overgrowths surround core domains. Fifty
locations on 32 zircon grains were analyzed in sample 14WM39a, yielding **°Pb/>*U
ages from ca. 103 to 153 Ma. Thirty-nine of these analyses yield a statistical age of 136.8
+ (.09 Ma (MSWD = 1.4). Three younger grains have *°Pb/>**U ages as young as ca.

103.1 Ma.

Schlieren-textured granodiorite diatexite (13WM25)

Sample 13WM2S5 is from a diatexite pavement north of, and adjacent to, Blue Lake
with intermittent zones of metatexite a few meters thick. The sample was taken from a
schlieren-textured, biotite granodiorite diatexite with a strong magmatic foliation
(243/79°W with a lineation pitching 80° from the N), and well-defined centimeter-scale
leucosomes that alternate with thinner melanosome. Garnet is abundant in both
leucosome and melanosome. The zircon population in this sample consists of subhedral
to anhedral grains that form elongate to equant crystals 100 to 200 um long (Figure 7).
The morphology of core domains exhibits large variability, with anhedral to euhedral
cores that are homogeneous or irregularly zoned. Rarely, cores display oscillatory zoning.
Rim overgrowths are 10 to 70 pum wide and exhibit convoluted zoning. Fifty spots on 30

zircon grains were analyzed in sample 13WM25. Sixteen analyses yield concordant ages.
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Eleven of the core analyses and 3 of the rim analyses yield Precambrian **°Pb/>**U ages.
The remaining 20 rim analyses exhibit extreme variability in ***Pb/***U ages, ranging
from ca. 96 to 384 Ma. The three youngest analyses yield a mean **°Pb/>**U age of 96.8 +
5.5 Ma (MSWD = 2.3). The next youngest group of 3 ages yields a mean age of 109.7 +

1.9 Ma (MSWD = 0.36).

Schlieren-textured granodiorite diatexite (13WM30)

Sample 13WM30 is from a large body of granodioritic diatexite located near the
southern margin of the PPMD west of Blue Lake (Figure 2). Biotite schlieren and
tonalitic blocks are scattered throughout the outcrop, which has a pervasive magmatic
foliation. The outcrop from which this sample is sourced is >100 m?, forming a large
concordant intrusive body of diatexites surrounded on three sides by stromatic metatexite.
The surrounding metatexite is partially deformed in the solid-state as evidenced by
stretched quartz and feldspar porphyroclasts, and locally has a near-mylonitic fabric. The
solid-state foliation conforms to the boundary of the granodioritic diatexite, striking
parallel to the contact. The zircon population consists of euhedral to subhedral grains 200
to 300 um long. Internal structure is uniform throughout the population, with light cores
displaying indistinct oscillatory zoning (Figure 8). Light rim overgrowths are separated
from the core domains by dark, oscillatory-zoned mantles of variable thickness. We
analyzed both core and rim domains of 30 grains for a total of 50 analyses in sample
13WM30. The majority of analyses (N=47) have Cretaceous “**Pb/***U ages ranging
from ca. 91 to 142 Ma. While 34 of the analyses yield *°Pb/***U ages ranging from ca.

91 to 108 Ma, 23 analyses define a statistical age of 100.3 + 0.92 Ma (MSWD = 1.8).
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Agmatic migmatite (14WM115)

Sample 14WM115 was collected near the northwestern margin of the PPMD from a
large lens-shaped outcrop of agmatic migmatite. Zircon crystals from this sample are
typically 300 to 400 um long, and have length to width ratios of <5:1 (Figure 9). Internal
structure is variable, with core domains displaying a range of zoning patterns including
unzoned, sector-zoned, and oscillatory-zoned cores. Rim overgrowths display wavy
subhedral overgrowths and commonly lack distinct zoning. We analyzed 28 zircon grains
with 38 individual spot analyses from sample 14WM115. All 38 analyses give
Cretaceous “*°Pb/>**U ages ranging from ca. 93 to 109 Ma. Twenty-nine analyses yield a

mean “*°Pb/**U age of 98.6 + 0.56 Ma (MSWD = 0.87).

Nebulitic diatexite (14WM58)

Sample 14WM358 is from a large, homogeneous body of massive to nebulitic
diatexite. This melt-rich outcrop is nearly anatectic granite, containing no remnants of
paleosome and only small (2 cm long) pervasive wisps of biotite. Variably sized garnet (2
mm to 2 cm in diameter) is distributed densely throughout the diatexite body. Zircon
crystals in this sample are characterized by euhedral to subhedral elongate crystals,
ranging from 200 to 500 um in length (Figure 10). Core domains commonly display
oscillatory zoning. Rim overgrowths also exhibit oscillatory zoning, and are separated
from the cores by a thin CL dark band. A total of 50 analyses on 30 grains were analyzed
in this sample. The zircon population in sample 14WM58 yielded ***Pb/***U ages ranging
from ca. 93 to 146 Ma, with two prominent age populations. Thirty analyses have Early

Cretaceous “*°Pb/***U ages for both rim and core domains, with 21 of these yielding a
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mean “**Pb/**U age of 132.3 + 0.89 Ma (MSWD = 1.3). A younger population consisting

of 9 rim analyses has a mean **°Pb/>**U age of 95.3 + 0.94 Ma (MSWD = 1.6).

Discordant leucosome in stromatic metatexite (14WM37a)

Sample 14WM37a is from a discordant leucosome that cross cuts an outcrop of
folded and stromatic metatexite. The sampled leucosome cuts the metatexite layering at a
high angle, and merges with a layer-parallel leucosome 1 meter to the north, before
cutting across a larger diatexite body of granodioritic composition. This diatexite contains
delicate magmatic structures (e.g., rootless folds) and has a weak and pervasive solid-
state fabric. Equant to elongate zircon grains in this sample are 100 to 300 pm long and
range from euhedral to anhedral crystals (Figure 11). Internal structure is variable, but
grains typically exhibit sector and oscillatory-zoned euhedral to subhedral cores. Some
grains display an oscillatory-zoned mantle surrounded by a light rim overgrowth. A few
of the sector-zoned grains lack overgrowths that are distinguishable from the core
domains. We analyzed 50 individual spots on 30 zircon grains in sample 14WM37a.
Forty of these analyses give Late Cretaceous “**Pb/***U ages ranging from ca. 84 to 100
Ma, with the remaining 10 analyses extending into the Early Cretaceous as far back as ca.
116 Ma. Twenty-three of the Late Cretaceous analyses yield a statistically relevant age of
93.3 +0.7 Ma (MSWD = 1.4). Five younger grains have ***Pb/***U ages as young as ca.

84 Ma.
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Leucosome in stromatic metatexite (13WM24)

Sample 13WM24 was collected from an outcrop in the metatexite domain in the
northeastern part of the PPMD. This sample is from a granitic leucosome that parallels
both synmigmatitic layering and amphibolite blocks present in stromatic metatexite. The
leucosome merges seamlessly with melt that has accumulated in boudin necks, and
anastomoses around amphibolite blocks that vary strain intensity perpendicular to strike.
Zircon crystals in this sample are characterized by euhedral to subhedral grains, typically
200 to 300 pm long with variable length to width ratios ranging from 2:1 to >4:1. Under
cathodoluminescence, grains typically exhibit oscillatory and sector-zoned core domains
(Figure 12). Overgrowths range from wide rims that display oscillatory and sector zoning
to thin rims with homogeneous and sector-zoned tips. A few grains exhibit portions of
their core domain that have been resorbed and replaced by younger homogenous growth.
We analyzed 30 zircon grains with 50 individual spot analyses in sample 13WM24.
Forty-seven of the 50 analyses have Cretaceous “*°Pb/***U ages ranging from ca. 89 to
136 Ma. The youngest 31 analyses from the Late Cretaceous yield a mean **°Pb/>**U age
0f 93.5 + 1.0 Ma (mean square of weighted deviates [MSWD] = 3.3). Eliminating 9
analyses that are slightly older results in a weighted mean age of 92.4 + 0.7 Ma and a

lower MSWD of 1.5.

Results of U-Pb Monazite Analyses
Fourteen monazite grains from sample 13WM24 were analyzed for a total of 19
analyses (Figure 13). The majority of the grains yield either discordant ages or negative

2%8pp/232Th ages, and have therefore been discarded. Eight analyses on 5 grains yield
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acceptable results with *°°Pb/>**U ages ranging from ca. 90 to 105 Ma. The grains from
which these analyses were taken do not appear zoned, and ages show no correlation to
their location in the monazite grains. The 8 analyses yield a mean **°Pb/***U age of 97.7
+2.3 Ma (MSWD = 1.3).

Twenty-four monazite grains from sample 13WM25 were analyzed for a total of 30
analyses (Figure 14). Almost all of the analyses (N= 29) give Late Cretaceous “*°Pb/***U
ages ranging from ca. 85 to 99 Ma, and show no correlation to spot location in monazite
grains. A single analysis yields an Early Cretaceous age of ca. 106 Ma. The young cluster
of 29 analyses gives a mean “**Pb/***U age of 91.5 + 1.2 Ma (MSWD = 1.7).

Twenty-seven individual spots were analyzed on monazite grains in sample 13WM30
(Figure 15). All 27 analyses yield Late Cretaceous “"°Pb/***U ages ranging from ca. 85 to
100 Ma, and have a weighted mean **°Pb/**U age of 90.3 + 1.6 Ma (MSWD = 2.2).

Twenty-three monazite grains were analyzed with 33 individual spots in sample
14WM37a (Figure 16). Seven of these exhibited excessive discordance. The remaining
26 analyses give Late Cretaceous *"°Pb/***U ages ranging from ca. 87 to 98 Ma, and yield
a weighted mean age of 92.1 = 1.1 Ma (MSWD = 1.1). No correlation is observed
between spot location on a rim or core and its resulting age.

Twenty-four spots on 17 monazite grains were analyzed from sample 14WM39a
(Figure 17). Twenty-three of these analyses are concordant, yielding **°Pb/***U ages
ranging from ca. 87 to 98 Ma, showing no correlation to location within the monazite
grains. All 23 concordant analyses give a weighted mean age of 91.4 + 1.2 Ma (MSWD =

1.4).
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Thirty-four individual spots on 21 monazite grains were analyzed in sample
14WMS58, yielding **°Pb/***U ages ranging from ca. 89 to 101 Ma (Figure 18). There is
no observed correlation between the analysis age and whether the spot was located in a
core or rim domain. Thirty-two of these analyses display concordance, and give a mean
29pp/2¥ age 0f 92.9 + 1.4 Ma (MSWD = 1.4).

Two sector zoned monazite grains were recovered from sample 14WM115. Eight
spots on each grain for a total of 16 analyses yield *’°Pb/***U ages ranging from ca. 89 to
94 Ma (Figure 19). There is no correlation between the age acquired from a spot and the
zone in which the spot is located. All 16 analyses yield a mean *°Pb/***U age of 92.7 +

1.4 Ma (MSWD = 0.3).

DISCUSSION
Interpretation of the Geochronology Results

Schematic leucosome relationships of sampled migmatite units from the PPMD are
shown in Figure 20. Field observations suggest that the melanocratic diatexite
(14WM39a) formed during one of the oldest periods of partial melting. It is commonly
cross-cut by folded metatexite, discordant leucosome (e.g., 14WM37a), and boudins of
agmatic migmatite (e.g., [14WM115). Geochronology of this unit confirms it to be the
oldest migmatization episode (ca. 137 Ma), with nearly all zircons analyzed crystallizing
during the Early Cretaceous SRSZ event. Sample 14WMS58 also has a population of
200pp/2y ages correlative with the SRSZ (ca. 132 Ma).

Field observations indicate that the stromatic metatexite is one of the older

generations of migmatite in the PPMD. Four samples collected for this study (13WM24,
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13WM25, 13WM30, and 14WM37a) cross cut the metatexite, so we are able to provide a
minimum estimate of its formation. Sample 13WM2S5 is the oldest of the four cross-
cutting samples, with the 6 youngest analyses composing two peaks at ca. 97 and 110
Ma. Another 6 analyses yield a continuum of ages ranging from ca. 117 to 131 Ma,
pushing the probable crystallization age of the stromatic metatexite into the Early
Cretaceous. The 100.3 + 0.92 Ma age obtained from sample 13WM30, and structural
observations indicating that the body of schlieren-textured diatexite deforms stromatic
metatexites along its margins, further supports this interpretation. The 93.3 + 0.7 Ma age
obtained for 14WM37a is logical based on structural overprinting relationships; this
discordant leucosome clearly crosscuts structural fabrics within the stromatic metatexite,
and correlative compositional fabrics in adjacent melanocratic diatexite layers. Sample
13WM?24 yields the youngest migmatite crystallization age of leucosome within the
stromatic metatexite. However, given that the sample was sourced from layer-parallel
leucosome that merges seamlessly with melt accumulated in boudin necks, we interpret
the 92.4 £ 0.7 Ma age to correspond to the last phases of migmatite crystallization in the
PPMD.

The structural story of the agmatic diatexite (14WM115) is less clear. Lenses of
agmatic diatexite share the same structural relationship with both the melanocratic
diatexite and the schlieren-textured diatexite, which suggests its hornblende-bearing
leucosomes could be either older (i.e., represent large blocks of older migmatite that have
been included in younger diatexite) or younger (i.e., represent a formerly tabular
migmatite body that has been boudinaged) than both of these units. Both of these

interpretations suggest the PPMD experienced an episode of flux melting, either early in
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the PPMD’s history before switching to dehydration melting, or as a short episode in
between periods of dehydration melting. However, results of geochronologic analysis
place the age of crystallization at ca. 99 Ma, suggesting hornblende-bearing leucosomes
are of intermediate age between the melanocratic diatexite and the schlieren-textured
diatexite. This allows for a third interpretation: the formation of the hornblende and
absence of garnet are related to composition of the protolith rather than an episode of flux
melting. This interpretation is supported by the spatial distribution of the agmatic
diatexite along the western margin of the PPMD, where there may have been a
compositional layer that favored the formation of hornblende during anatexis and
migmatite crystallization.

Sample 14WMS58, the nebulitic diatexite in the northern part of the PPMD, shares
structural relationships similar to sample 13WM30 — it forms a large intrusive body of
magmatically deformed melt-rich diatexite enveloped by stromatic metatexite. It is worth
noting that the 95.3 + 0.94 Ma age obtained from sample 14WMS58 is approximately 5
million years younger than that obtained from sample 13WM30. However, based on their
structural and morphological similarities, it is likely that these large migmatite bodies
formed coevally during a protracted period of migmatite crystallization.

U-PDb ages obtained from all zircon grains analyzed range from ca. 160 to 84 Ma, with
analyses from two samples extending into the Paleozoic and Precambrian. ***Pb/***U ages
obtained from rim overgrowths and new zircon growth attributed to migmatite
crystallization are dominantly concentrated within two age populations ranging from ca.
145 to 128 Ma and ca. 104 to 90 Ma (Figure 21A). These data are interpreted to suggest

that the PPMD records two protracted periods of migmatite crystallization. The older age
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population is correlative to the accretion of ocean arc terranes of the Blue Mountains
province with Laurentia and the formation of the SRSZ (e.g., Selverstone et al., 1992;
Getty et al., 1993). The second, younger population of ages coincides with the timing of
dextral transpressional deformation along the WISZ (e.g., Manduca et al., 1993; Giorgis
et al., 2008; Braudy et al., in review). Mean 206pp, 238y ages from six of the seven
monazite-bearing samples fall in a narrow range from ca. 93-90 Ma. The entire suite of
monazite analyses (N=153) yields a mean age of 92.0 + 0.4 Ma (MSWD = 1.0) (Figure
21B,C). This well-defined age is interpreted to record the initiation of exhumation of the
PPMD, and therefore at least the local section of the western Idaho shear zone, at ca. 92
Ma.

The source of partial melt may have varied during the two protracted periods of
crystallization. The majority of core and some rim analyses from sample 13WM25
extend into the Precambrian. While seven inherited Mesozoic ages ranging from ca. 246
to 149 Ma offer the possibility of inheritance from oceanic terranes, the remaining
analyses all yielded Paleozoic or Precambrian ages. We interpret the bulk of Paleozoic
and Precambrian ages as inherited ages from the North American continental crust.
However, aside from two cores in sample 13WM?24 and two Late Permian cores in
sample 13WM30, all other inherited cores are Mesozoic and lack a North American
signature. Mesozoic ages have commonly been identified in the Wallowa terrane of the
Blue Mountains province (Schwartz et al., 2010, 2011; Kurz et al., 2011), suggesting the
PPMD migmatites may be derived from a protolith related to oceanic terranes.
Consequently, we interpret that there is likely both a Blue Mountain province and

cratonic North America protolith for the migmatites comprising the PPMD. This
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interpretation is consistent with that of Braudy et al. (in review) suggesting an eastward

extension of the Salmon River suture zone on the cratonic side of the WISZ.

Tectonic Significance

Evidence of the timing and duration of western Idaho shear zone deformation is well
established (Figure 22). The initiation of shearing is difficult to constrain. Nearly all of
the plutonic rocks of the Little Goose Creek complex (LGCC) have been deformed by the
WISZ (Manduca et al., 1993). While this observation does not require the age of the
LGCC to correspond to the initiation of WISZ deformation, an examination of the strain
recorded in the LGCC determined that the strain likely accumulated entirely after its
intrusion, setting the lower age limit for WISZ deformation at ca. 105 Ma (Giorgis et al.,
2005; Giorgis et al., 2008). Slightly younger metaplutonic rocks may indicate that ductile
deformation began a few million years later. The ca. 104 Ma Crevice pluton — a
correlative of the LGCC (Grey et al., 2012), and the ca. 101 Ma Four Bit Creek tonalite —
a lightly deformed tonalite body within the westernmost WISZ suggest deformation may
have started as late as 101 Ma (Braudy et al., in review).

Many studies have analyzed zircons from the Payette River tonalite (and correlatives)
to determine cessation of ductile deformation in the WISZ. Weak solid-state fabric has
been observed in western portions of the Payette River tonalite while eastern portions
exhibit a magmatic foliation parallel to the solid state fabric of the WISZ (Manduca et al.,
1993; Benford et al., 2010; Braudy et al., in review). These observations suggest WISZ
deformation was waning during the emplacement of the Payette River tonalite. Recent U-

Pb analysis of zircon from the Payette River tonalite yields ages of 91.5 + 1.1 Ma and
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89.7 + 1.2 Ma (Giorgis et al., 2008), which agree with previous results (90 + 5 Ma,
Manduca et al., 1993; 89 + 5 Ma, Lund and Snee, 1988) in other parts and correlatives of
the Payette River tonalite (e.g., Whisky Ridge tonalite; Benford et al., 2010). Combined
with a 90.0 + 1.4 Ma undeformed pegmatite that cuts WISZ fabric (Giorgis et al., 2008),
these data suggest the end of movement on the WISZ occurred ca. 90 Ma. New Lu-Hf
garnet ages from Braudy et al. (in review) suggest peak metamorphism during WISZ
deformation occurred ca. 98 Ma.

Migmatites in the Potters Pond migmatite domain provide an additional record of the
timing and duration of WISZ deformation. The preservation of melt-present deformation
structures throughout the PPMD allows us to conclude that deformation was ongoing
during migmatization. The younger population of zircon ages therefore constrains the
timing of migmatite crystallization in the PPMD, and also brackets the timing of WISZ
deformation to between ca. 104 to 90 Ma, agreeing with previous studies.

Geochronologic studies that attempt to constrain the timing and duration of suturing
focus on rocks from accreted Blue Mountain terranes and the Salmon River belt. Walker
(1989) analyzed zircon from calc-alkaline plutons that cross-cut folded rocks of the Blue
Mountains province. Emplacement ages of these plutons range from ca. 145 to 120 Ma,
giving an early estimate on the initiation of collision. Sm-Nd dating of garnets in
amphibolites from the Salmon River belt by Getty et al. (1993) revealed two stages of
garnet growth: 1) ~144 Ma cores are interpreted to represent the initial collision of
oceanic arc terranes with North America, and 2) ~128 Ma rim overgrowths record peak
metamorphic conditions during underthrusting and burial of the Wallowa terrane (Getty

et al., 1993). LaMaskin et al. (2015) recently suggested that the Wallowa terrane must
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have accreted significantly earlier (by ~ 160 Ma), based on the presence of detrital North
American zircons in sedimentary rocks overlying the Wallowa terrane.

The significance of the older population of **°Pb/***U zircon ages from the PPMD
(ca. 145 to 128 Ma) is twofold. First, the melt-present deformation structures of the
PPMD record a period of high temperature deformation that predates WISZ deformation.
This range of ages correlates well with the proposed timing and duration of suturing
presented in previous studies (e.g., Selverstone et al., 1992; Getty et al., 1993), and
strengthens the constraints on the timing of deformation related to the SRSZ. Second, it
has been commonly suggested that the WISZ is a temporally distinct event that has
overprinted synmetamorphic fabric of the SRSZ (e.g., McClelland et al., 2000; Giorgis et
al., 2005; Giorgis et al., 2008). However, no studies have identified direct evidence of
overprinting within the WISZ, and some studies argue that the SRSZ and WISZ are both
parts of a progressive deformation history associated with suturing (e.g., Grey et al.,
2012). The PPMD records two periods of high temperature deformation with a ~25 m.y.
gap in the deformational history. These data clearly show that WISZ and SRSZ structures
are a result of two distinct events separated by a deformational hiatus, and offer the first
direct evidence that Late Cretaceous mylonites of the WISZ have overprinted Early

Cretaceous synmetamorphic structures associated with the SRSZ.

Summary
In summary, our data reveal two periods of partial melt crystallization within the
PPMD (Figure 21A,22). The first period spans from ca. 145 to 128 Ma and records high

temperature deformation associated with the collision, underthrusting, and suturing of
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ocean arc terranes of the Blue Mountains province with North America. This timing
agrees with metamorphic events dated by Sm-Nd garnet geochronology by Getty et al.
(1993). The detrital zircon data reported in Lamaskin et al. (2015) suggests that the
Wallowa terrane was adjacent to cratonic North America by the Late Jurassic. There are
three complementary ways of explaining this apparent discrepancy. First, the Wallowa
terrane may have been sufficiently adjacent to North America to receive sedimentation,
but not yet colliding with western North America. Second, the collision of North America
may have occurred by ca. 160 Ma, but the peak of migmatite crystallization did not begin
within the collisional zone until ca. 10 m.y. later. The third option is that the initial
collision of the Wallowa terrane was significantly south of its current location (e.g.,
Gaschnig et al., in review). Some northward movement of the accreted terranes is
required by the subsequent activation of the right-lateral, transpressional western Idaho
shear zone. This scenario, however, requires more translation than is implied by the
minimum estimates of Giorgis et al. (2005). If significant right-lateral translation did
occur, the timing of collision in Idaho is better recorded by our data and that of Getty et
al. (1993), while the Lamaskin et al. (2015) data constrains collision to the south. We
cannot evaluate between these possibilities with the present data.

The second period of melting spans from ca. 104 to 90 Ma, and records high
temperature deformation associated with dextral transpression of the WISZ. Peak
296pp/ 28U zircon ages for this period occur between ca. 98 and 94 Ma, agreeing with the
timing of peak WISZ metamorphism evidenced by Lu-Hf garnet ages of ca. 98 Ma
(Braudy et al., in review). Cross-cutting structural relationships in the PPMD provide

evidence that melt-present deformational structures associated with the SRSZ were
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overprinted by solid-state deformation associated with the first period of deformation.
The planar diatexite of the PPMD contains boudinaged leucosomes of SRSZ age (e.g.,
sample 14WM39a; Figure 3E), and exhibits strong solid-state fabric. This fabric is cross-
cut by leucosomes and diatexite of WISZ age that are not deformed in the solid-state. A
narrow range of monazite ages from ca. 90 to 93 Ma indicates exhumation of the PPMD

began by ca. 92 Ma, which agrees with the cessation of WISZ deformation by 90 Ma.

CONCLUSIONS

Structural and geochronologic data from the Potters Pond migmatite domain (PPMD)
provide additional constraints to timing of deformation in western Idaho, and offer new
insights into the deformation conditions of the deep crust during Cretaceous deformation.
Migmatites from the PPMD preserve high temperature deformation structures which
indicates deformation occurred in the presence of melt. Geochronology of leucosomes
from the PPMD confirms that there have been two episodes of melting which record two
protracted periods of high temperature deformation. The older period of migmatite
crystallization corresponds to melting and deformation associated with the Salmon River
suture zone (ca. 145-128 Ma; SRSZ); the younger period of migmatite crystallization
corresponds to melting and deformation associated with the formation of the western
Idaho shear zone (ca. 104-90 Ma; WISZ). Various cross-cutting relationships observed in
the field indicate the PPMD experienced varying deformation conditions during the
Cretaceous. The melt-present structures associated with the SRSZ were overprinted by
solid-state fabric attributed to deformation during contraction in the SRSZ. During WISZ

deformation, the PPMD experienced melt-present deformation in the deep crust while the
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rest of the WISZ experienced solid-state deformation. The changes in deformation
conditions experienced by the PPMD during SRSZ contraction and WISZ transpression,
and the gap in migmatization recorded by U-Pb geochronology of zircons from PPMD
leucosomes, provide the first structural evidence that the SRSZ is distinct from — and has
been overprinted by — the WISZ. Exhumation of the PPMD began by 92 Ma, and WISZ

deformation had ceased by the time the PPMD cooled and reached mid-crustal levels.
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Figure 1. Location of the western Idaho shear zone and the Potters Pond migmatite
domain (PPMD) in the North American cordillera. (A) Trace of the initial 87Sr/86Sr
0.706 isopleth in the North American cordillera marks the extent of accreted oceanic
terranes against the North American craton. (B) The western Idaho shear zone (WISZ) is
a ~5 km wide high strain zone that follows the initial 87Sr/86Sr 0.706 isopleth in western
Idaho (modified from Tikoff et al., 2001). C. The PPMD is located southwest of Cascade,
Idaho. Its location coincides with the primary bend in the orientation of WISZ fabric.

(Modified from Braudy et al., in review).
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Figure 2. Map of the Potters Pond migmatite domain showing distribution of migmatite
morphologies, trend of synmigmatitic foliation, and locations of samples collected for U-
Pb geochronology. Hexagons represent the locations of samples collected for Lu-Hf
garnet geochronology (1: sample 11NB377; 2: sample 11NB379) (Braudy et al., in

review).
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Figure 3. Representative field photographs of migmatites in the Potters Pond migmatite
domain (PPMD). (A) Diatexite with gneissic and amphibolite schollen parallel to and
defining synmigmatitic layering. (B) Wispy biotite schlieren characteristic of diatexite in
the PPMD. (C) Leucocratic nebulite with garnet clusters concentrated in faint
leucosomes. (D) Agmatic migmatite. Note that the biotite- and hornblende-bearing
leucosomes lack garnet. (E) Boudinaged leucosome within melanocratic diatexite. (F)

Planar stromatic metatexite. (G) Folded stromatic metatexite.
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Figure 4. Lower-hemisphere equal-area net plots of (A) poles to synmigmatitic layering,
(B) poles to solid state foliation, (C) lineation, and (D) fold hinges measured from
migmatites in the PPMD. Both synmigmatitic layering and solid-state foliation trend
dominantly towards ~015°, and lineation is typically down dip. Orientation of fold hinges

generally corresponds to lineation orientation.
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Figure 5. Evidence of melt-present deformation is recorded by migmatites in the PPMD.
During deformation, migrating melt preferentially accumulates in dilatant structural sites:
(A) Melt accumulation preserved in the pressure shadow of block of paleosome rotated
during shearing. (B) Accumulation of melt preserved in boudin necks of paleosome
within the stromatic metatexite. (C) Melt preserved in boudin necks and shear bands
within boudins. (D) Flanking structures in folded migmatites. (D) Melt accumulation in
the hinge region of rootless fold in schlieren-textured diatexite. (E) Small shear zone

within the PPMD with melt accumulation preserved in dilatant structural sites.
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Figure 6. Cathodoluminescence images of representative zircon grains dated using the
laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 14WM39a (boudinaged leucosome within melanocratic diatexite). Small numbers
refer spot number in Table DR1. Larger numbers are 206Pb/238U ages in Ma for
individual spot analyses (see Table DR1 for corresponding error on spot analyses). (B)
Probability density plots with stacked histogram of 206Pb/238U ages from zircon in
sample 14WM39a. Light gray bars represent rim analyses and dark gray bars represent
core analyses. (C) Weighted mean 206Pb/238U age calculation and uncertainty is given
at 95% confidence limits. Light and dark gray bars represent rim and core analyses,

respectively. Plots and calculations based on Isoplot of Ludwig (2012).
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Figure 7. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 13WM25 (schlieren-textured granodiorite diatexite). Small numbers refer spot
number in Table DR1. Larger numbers are 206Pb/238U ages in Ma for individual spot
analyses (see Table DR1 for corresponding error on spot analyses). (B) Probability
density plots with stacked histogram of 206Pb/238U ages from zircon in sample
13WM25. Light gray bars represent rim analyses and dark gray bars represent core
analyses. (C) Weighted mean 206Pb/238U age calculation and uncertainty is given at
95% confidence limits. Light and dark gray bars represent rim and core analyses,

respectively. Plots and calculations based on Isoplot of Ludwig (2012).
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Figure 8. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 13WM30 (Schlieren-textured granodiorite diatexite). Small numbers refer spot
number in Table DR1. Larger numbers are 206Pb/238U ages in Ma for individual spot
analyses (see Table DR1 for corresponding error on spot analyses). (B) Probability
density plots with stacked histogram of 206Pb/238U ages from zircon in sample
13WM30. Light gray bars represent rim analyses and dark gray bars represent core
analyses. (C) Weighted mean 206Pb/238U age calculation and uncertainty is given at
95% confidence limits. Light and dark gray bars represent rim and core analyses,

respectively. Plots and calculations based on Isoplot of Ludwig (2012).
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Figure 9. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 14WM115 (agmatic migmatite). Small numbers refer spot number in Table DR1.
Larger numbers are 206Pb/238U ages in Ma for individual spot analyses (see Table DR1
for corresponding error on spot analyses). (B) Probability density plots with stacked
histogram of 206Pb/238U ages from zircon in sample 14WM115. Light gray bars
represent rim analyses and dark gray bars represent core analyses. (C) Weighted mean
206Pb/238U age calculation and uncertainty is given at 95% confidence limits. Light and
dark gray bars represent rim and core analyses, respectively. Plots and calculations based

on Isoplot of Ludwig (2012).
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Figure 10. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 14WMS58 (Nebulitic diatexite). Small numbers refer spot number in Table DRI1.
Larger numbers are 206Pb/238U ages in Ma for individual spot analyses (see Table DR1
for corresponding error on spot analyses). (B) Probability density plots with stacked
histogram of 206Pb/238U ages from zircon in sample 14WMS58. Light gray bars
represent rim analyses and dark gray bars represent core analyses. (C) Weighted mean
206Pb/238U age calculation and uncertainty is given at 95% confidence limits. Light and
dark gray bars represent rim and core analyses, respectively. Plots and calculations based

on Isoplot of (2012).
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Figure 11. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 14WM37a (discordant leucosome in stromatic metatexite). Small numbers refer
spot number in Table 1. Larger numbers are 206Pb/238U ages in Ma for individual spot
analyses (see Table 1 for corresponding error on spot analyses). (B) Probability density
plots with stacked histogram of 206Pb/238U ages from zircon in sample 14WM37a.
Light gray bars represent rim analyses and dark gray bars represent core analyses. (C)
Weighted mean 206Pb/238U age calculation and uncertainty is given at 95% confidence
limits. Light and dark gray bars represent rim and core analyses, respectively. Plots and

calculations based on Isoplot of Ludwig (2012).
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Figure 12. (A) Cathodoluminescence images of representative zircon grains dated using
the laser ablation — inductively coupled plasma — mass spectrometer (LA-ICP-MS) for
sample 13WM24 (leucosome in stromatic metatexite). Small numbers refer spot number
in Table 1. Larger numbers are 206Pb/238U ages in Ma for individual spot analyses (see
Table 1 for corresponding error on spot analyses). (B) Probability density plots with
stacked histogram of 206Pb/238U ages from zircon in sample 13WM?24. Light gray bars
represent rim analyses and dark gray bars represent core analyses. (C) Weighted mean
206Pb/238U age calculation and uncertainty is given at 95% confidence limits. Light and
dark gray bars represent rim and core analyses, respectively. Plots and calculations based

on Isoplot of Ludwig (2012).
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Figure 13. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 13WM24 (leucosome in stromatic metatexite). Small numbers refer
to grain number designations in Table 2. Larger numbers are 206Pb/238U ages in Ma for
individual spot analyses (see Table 2 for corresponding error on spot analyses). (B)
Probability density plot with stacked histogram of 206Pb/238U ages from monazite in
sample 13WM24. Light gray bars represent rim analyses and dark gray bars represent
core analyses. (C) Weighted average age plot of monazite from sample 13WM24; the
weighted mean 206Pb/238U age calculation and uncertainty is given at 95% confidence
limits. Light and dark gray bars represent rim and core analyses, respectively. Plots and

calculations based on Isoplot of Ludwig (2012).
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Figure 14. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 13WM25 (leucosome in stromatic metatexite). Small numbers refer
to grain number designations in Table 2. Larger numbers are 206Pb/238U ages in Ma for
individual spot analyses (see Table 2 for corresponding error on spot analyses). (B)
Probability density plot with stacked histogram of 206Pb/238U ages from monazite in
sample 13WM25. Light gray bars represent rim analyses and dark gray bars represent
core analyses. (C) Weighted average age plot of monazite from sample 13WM25; the
weighted mean 206Pb/238U age calculation and uncertainty is given at 95% confidence
limits. Light and dark gray bars represent rim and core analyses, respectively. Plots and

calculations based on Isoplot of Ludwig (2012).
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Figure 15. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 13WM30 (schlieren-textured granodiorite diatexite). Small numbers
refer to spot number designations in Table 2. Larger numbers are 206Pb/238U ages in Ma
for individual spot analyses (see Table 2 for corresponding error on spot analyses). (B)
Probability density plot with stacked histogram of 206Pb/238U ages from monazite in
sample 13WM30. Light gray bars represent rim analyses and dark gray bars represent
core analyses. (C) Weighted average age plot of monazite from sample 13WM30; the
weighted mean 206Pb/238U age calculation and uncertainty is given at 95% confidence
limits. Light and dark gray bars represent rim and core analyses, respectively. Plots and

calculations based on Isoplot of Ludwig (2012).
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Figure 16. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 14WM37a (discordant leucosome in stromatic metatexite). Small
numbers refer to grain number designations in Table 2. Larger numbers are 206Pb/238U
ages in Ma for individual spot analyses (see Table 2 for corresponding error on spot
analyses). (B) Probability density plot with stacked histogram of 206Pb/238U ages from
monazite in sample 14WM37a. Light gray bars represent rim analyses and dark gray bars
represent core analyses. (C) Weighted average age plot of monazite from sample
14WM37a; the weighted mean 206Pb/238U age calculation and uncertainty is given at
95% confidence limits. Light and dark gray bars represent rim and core analyses,

respectively. Plots and calculations based on Isoplot of Ludwig (2012).
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Figure 17. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 14WM39a (boudinaged leucosome within melanocratic diatexite).
Small numbers refer to grain number designations in Table 2. Larger numbers are
206Pb/238U ages in Ma for individual spot analyses (see Table 2 for corresponding error
on spot analyses). (B) Probability density plot with stacked histogram of 206Pb/238U
ages from monazite in sample 14WM39a. Light gray bars represent rim analyses and
dark gray bars represent core analyses. (C) Weighted average age plot of monazite from
sample 14WM39a; the weighted mean 206Pb/238U age calculation and uncertainty is
given at 95% confidence limits. Light and dark gray bars represent rim and core analyses,

respectively. Plots and calculations based on Isoplot of Ludwig (2012).
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Figure 18. (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 14WM358 (nebulitic diatexite). Small numbers refer to grain number
designations in Table 2. Larger numbers are 206Pb/238U ages in Ma for individual spot
analyses (see Table 2 for corresponding error on spot analyses). (B) Probability density
plot with stacked histogram of 206Pb/238U ages from monazite in sample 14WMS58.
Light gray bars represent rim analyses and dark gray bars represent core analyses. (C)
Weighted average age plot of monazite from sample 14WMS5S; the weighted mean
206Pb/238U age calculation and uncertainty is given at 95% confidence limits. Light and
dark gray bars represent rim and core analyses, respectively. Plots and calculations based

on Isoplot of Ludwig (2012).
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Figure 19 (A) Back-scattered electron (BSE) images of represented monazite grains
dated using the laser ablation — inductively coupled plasma — mass spectrometer (LA-
ICP-MS) for sample 14WM115 (agmatic migmatite). Small numbers refer to spot
number designations in Table 2. Larger numbers are 206Pb/238U ages in Ma for
individual spot analyses (see Table 2 for corresponding error on spot analyses). (B)
Probability density plot with stacked histogram of 206Pb/238U ages from monazite in
sample 14WM115. Light gray bars represent rim analyses and dark gray bars represent
core analyses. (C) Weighted average age plot of monazite from sample 14WM115; the
weighted mean 206Pb/238U age calculation and uncertainty is given at 95% confidence
limits. Light and dark gray bars represent rim and core analyses, respectively. Plots and

calculations based on Isoplot of Ludwig (2012).
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Figure 20. Schematic drawing synthesizing leucosome relationships of sampled
migmatite units in the PPMD and summary of acquired LA-ICP-MS zircon and monazite

ages. Figure combines structural relationships observed over the entire PPMD.
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Figure 21. (A) Probability density plot with stacked histogram of 206Pb/238U ages from
all zircon analyses from the seven sampled migmatite units. Note the two dominant
populations of ages (ca. 145-128 Ma and ca. 104-90 Ma). (B) Probability density plot
with stacked histogram of 206Pb/238U ages from all monazite analyses, and (C)
weighted mean 206Pb/238U age calculated from all monazite analyses. Weighted mean
206Pb/238U age calculation and uncertainty is given at 95% confidence limits. Light and

dark gray bars represent rim and core analyses, respectively.
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Figure 22. Summary of 206Pb/238U ages of zircon and monazite samples from this
study, and visualization of geochronologic data collected from other work in the western
Idaho shear zone and Salmon River suture zone. Interpretations made from
geochronologic data in this figure as well as structural data presented in this paper.
Further discussion of these interpretations is included in the text. References for data are
as follows: 1) Lund and Snee, 1988; 2) Walker 1989; 3) Getty et al., 1993; 4) Manduca et
al., 1993; 5) Snee et al, 1995; 6) Snee et al., 2005; 7) McClelland and Oldow, 2007; 8)
Giorgis et al., 2008; 9) Benford et al., 2010; 10) Grey et al., 2012; 11) Braudy et al., in

review; 12) Mckay, 2011; 13) LaMaskin et al., 2015.
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APPENDIX A: ANALYTICAL METHODS

U-Pb geochronologic analysis of zircon (Element2 HR ICPMS)

Zircon crystals are extracted from samples by traditional methods of crushing and
grinding, followed by separation with a Wilfley table, heavy liquids, and a Frantz
magnetic separator. Samples are processed such that all zircons are retained in the final
heavy mineral fraction. Approximately 50 high-quality grains are selected and mounted
into 17 expoxy mounts with fragments or loose grains of Sri Lanka, FC-1, and R33 zircon
crystals that are used as primary standards. The mounts were sanded down to a depth of
~20 microns, polished, imaged, and cleaned prior to isotopic analysis.

Pre-acquisition cathodoluminescence imaging of zircon was conducted at
University of Arizona using a Hitachi 3400N SEM and a Gatan CL2 detector system
(www.geoarizonasem.org) to provide a guide for locating analysis pits in textural
domains (e.g., core and rim overgrowths).

U-Pb geochronology of zircons was conducted by laser ablation inductively
coupled plasma mass spectrometry (LA-ICPMS) at the Arizona LaserChron Center
(Gehrels et al., 2006, 2008; Gehrels and Pecha, 2014). The analyses involve ablation of
zircon with a Photon Machines Analyte G2 excimer laser equipped with HelEx ablation
cell using a spot diameter of 20 microns. The ablated material is carried in helium into
the plasma source of an Element2 HR ICPMS, which sequences rapidly through U, Th,
and Pb isotopes. Signal intensities are measured with an SEM that operates in pulse
counting mode for signals less than 50K cps, in both pulse-counting and analog mode for
signals between 50K and 4M cps, and in analog mode above 4M cps. The calibration
between pulse-counting and analog signals is determined line-by-line for signals between
50K and 4M cps, and is applied to 4M cps signals. Four intensities are determined and
averaged for each isotope, with dwell times of 0.0052 sec for 202, 0.0075 sec for 204,
0.0202 sec for 206, 0.0284 sec for 207, 0.0026 sec for 208, 0.0026 sec for 232, and
0.0104 sec for 238.

With the laser set an energy density of ~5 J/cm2, a repetition rate of 8 hz, and an

ablation time of 10 seconds, ablation pits are ~12 microns in depth. Sensitivity with these
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settings is approximately ~5,000 cps/ppm. Each analysis consists of 5 sec on peaks with
the laser off (for backgrounds), 10 sec with the laser firing (for peak intensities), and a 20

second delay to purge the previous sample and save files.

U-Pb/Th-Pb geochronologic analysis of monazite (Nu Instruments HR-MC-ICPMS)

U-Pb/Th-Pb geochronology of individual monazite crystals was conducted by
laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICPMS) at
the Arizona LaserChron Center (Gehrels et al., 2006, 2008). The isotopic analyses
involved ablation of monazite using a Photon Machines Analyte G2 excimer laser (A =
193 nm) coupled to a Nu Instruments HR-MC-ICPMS. Helium carries the ablated
material into the plasma source of the ICPMS, which is equipped with a flight tube of
sufficient width such that U, Th, and Pb isotopes are measured simultaneously. Analyses
were conducted with a 6 micron laser spot diameter using an acquisition routine
consisting of one 9 second integration on peaks with the laser off (for backgrounds), 9
one-second integrations with the laser firing, and a 30 second delay to ensure the
previous sample is purged from the collector block. Operating parameters for the excimer
laser were maintained at ~10 J/cm® at 5 Hz in constant energy mode for 65 laser bursts
per analysis, producing an ablation depth of ~ 6 microns. Faraday detectors with 3x10"'

238y 7 232 . . 208-204
U, ““Th, and discrete dynode ion counters measure Pb, all

ohm resistors measure
in static mode.

The errors in determining the **Pb/***U and **°Pb/***Pb result in a final
measurement error of ~1-2% (at 2-sigma level) in the **°Pb/***U age for each analysis.
The errors in determining **°Pb/*"’Pb and ***Pb/***Pb also result in ~1-2% (at 2-sigma
level) uncertainty in age for grains that are older than 900 Ma; however, they are
substantially larger for younger grains due to the low intensity of the **’Pb signal. The
errors in determining the **Pb/**Th and 2**Pb/***Pb result in a final measurement of ~1-
2% (at 2-sigma level) in the ***Pb/***Th age for each analysis.

The common Pb correction is accomplished by using the Hg-corrected ***Pb and

assuming an initial Pb composition from Stacey and Kramers (1975). Uncertainties of

1.5 for 2*°Pb/***Pb and 0.3 for **’Pb/***Pb are applied to these compositional values based

94



on the variation in Pb isotopic composition in modern crystalline rocks. Interference of

204 294pp is accounted for measurement of ***Hg during laser ablation and

Hg with
subtraction of ***Hg according to the natural **Hg/***Hg of 4.35.

The 6 micron spot diameter in conjunction with the 9 second analysis routine (65
bursts at a SHz repetition) was used to minimize both spatial and at-depth mixing of
multiple age domains. Grain selection and spot placements were based on the high

resolution BSE images, for grains where there was a large difference in compositional

domains multiple analyses were performed.

Data Reduction

Following analysis, data reduction was performed using an in-house Python

decoding routine and an Excel spreadsheet (E2agecalc) that:

1. Decodes .dat files from the Thermo software such individual intensities for

measurement are available (routine written by John Hartman, University of Arizona)
2. Imports intensities and a sample name for each analysis

3. Calculates average intensities for each isotope (based on the sum of all counts while

the laser is firing)

204 204

4. Subtracts ***Hg from the 204 signal to yield ***Pb intensity (using natural **Hg/***Hg
of 4.3). This Hg correction is not significant for most analyses because our Hg

backgrounds are low (generally ~150 cps at mass 204).

5. Performs a common Pb correction based on the measured °°Pb/***Pb and the assumed

composition of common Pb based on Stacey and Kramers (1975)
6. Calculates measured 206/238, 206/207, and 208/232 ratios

7. Compares measured and known ratios for the three standards to determine
fractionation factors for 206/238, 206/207, and 208/232. These correction factors are
generally <5% for 206/238, <2% for 206/207, and <20% for 208/232.
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8. Determines an overdispersion factor if the standard analyses show greater dispersion

than expected from measurement uncertainties

9. Uses a sliding-window average to apply fractionation factors to unknowns (generally

averaging 8 standard analyses)

10. Calculates fractionation-corrected 206/238, 206/207, and 208/232 ratios and ages for

unknowns

11. Propagates measurement uncertainties for 206/238 and 208/232 that are based on the
scatter about a regression of measured values. Uncertainties for 206/207 and 206/204 are
based on the standard deviation of measured values since these ratios generally do not
change during an analysis. The sum of this uncertainty and any overdispersion factor is
reported as the internal (or measurement) uncertainty for each analysis. These

uncertainties are reported at the 1-sigma level.

12. Calculates the down-hole slope of 206/238 to highlight analyses in which 206/238 is
compromised due to heterogeneity in age (e.g., crossing an age boundary) or intersection

of a fracture or inclusion.

13. Calculates concentrations of U and Th for unknowns based on the measured intensity

and known concentrations of FC-1.

14. Calculates the external (systematic) uncertainties for 206/238, 206/207, and 208/232,
which include contributions from (a) the scatter of standard analyses, (b) uncertainties in
the ages of the standards, (c) uncertainties in the composition of common Pb, and (4)

uncertainties in the decay constants for **°U and ***U.

15. Determines a “Best Age” for each analysis, which is generally the 206/238 age for
<900 Ma ages and the 206/207 age for >900 Ma ages

16. Provides preliminary filters that highlight analyses with >20% discordance, >5%

reverse discordance, or >10% internal (measurement) uncertainty.

17. Creates a publication-ready datatable with concentrations, isotope ratios, and ages for

unknowns.
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