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Abstract

The macroeconomic literature on belief-driven business cycles treats news

and noise as distinct representations of people’s beliefs about economic funda-

mentals. We prove that these two representations are actually observationally

equivalent. This means that the decision to use one representation or the other

must be made on theoretical, and not empirical, grounds. Our result allows us

to determine the importance of beliefs as an independent source of fluctuations.

Using three prominent models from this literature, we show that existing re-

search has understated the importance of independent shocks to beliefs. This

is because representations with anticipated and unanticipated shocks mix the

fluctuations due independently to beliefs with the fluctuations due to funda-

mentals. We also argue that the observational equivalence of news and noise

representations implies that structural vector auto-regression analysis is equally

appropriate for recovering both news and noise shocks.



1 Introduction

A large literature in macroeconomics has argued that changes in people’s beliefs about

the future can be an important cause of economic fluctuations. This idea, which dates

at least to Pigou (1927), has been more recently mathematically formalized in two

different ways. The first way, which we call a “news representation,” models people as

perfectly observing some (but not all) parts of an exogenous fundamental in advance.

By way of analogy, this is like learning for sure today that in next week’s big game

your favorite team will win the first half. You don’t know whether they will win the

game, which is ultimately what you care about, because you are still unsure how the

second half will turn out. The second way, which we call a “noise representation,”

models people as imperfectly observing some (possibly all) parts of an exogenous

fundamental in advance. This is like your friend telling you that he thinks your team

will win next week’s game. He follows the sport much more than you do, and is often

right, but sometimes he gets it wrong.

At first glance, these two different ways of representing people’s beliefs may seem

only superficially similar. In both cases, people are getting some advance information

about the future. But on a news view they have perfect information and can fully

trust whatever information they receive, while on a noise view they have imperfect

information and need to solve a signal extraction problem to determine their best

forecast. In their recent review of the literature on belief-driven business cycles,

Beaudry and Portier (2014) have this to say about the relationship between the two

formulations:

“While these two formulations may appear almost identical, they are

actually quite different...To give an idea of the difference, in the [noise]

formulation there is a shock which can be referred to as a noise or error

shock...In the [news] formulation there is no direct counterpart: there is

an anticipated shock and an unanticipated shock, but no noise shock.”

(p.998)

This paper argues that, on the contrary, it is actually more accurate to think of

news and noise representations as superficially different, but fundamentally the same.

Specifically, we prove that from the perspective of data on exogenous fundamentals

and people’s beliefs about those fundamentals, these two representations are observa-

tionally equivalent. There is nothing in the data that can discriminate between them.
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We present a constructive proof of this result using Hilbert space methods. The fact

that the proof is constructive means that it also provides an explicit method for pass-

ing from one representation to the other. We analytically derive these restrictions in

several cases of interest from the literature.

The intuition for our main result is that news shocks are linear transformations

of the Wold innovations implied by the noise representation. Just as every finite-

dimensional signal extraction model has associated with it a unique observationally

equivalent “innovations representation” (cf. Anderson and Moore, 1979, ch. 9), so ev-

ery noise model has a unique observationally equivalent news representation. Because

the Wold innovations are contained in the space spanned by the history of variables

that agents observe, the news representation is a way of writing models with noise

“as if” people have perfect information.

The equivalence between news and noise representations is the key to answering

the most basic question in the literature on belief-driven fluctuations: how important

are beliefs as an independent source of economic fluctuations? This is a question that

the existing literature, which uses models either with news or some combination of

news and noise, has not been able to answer. News shocks can change beliefs on im-

pact without any corresponding change in current fundamentals, but they are tied by

construction to changes in future fundamentals. As a result, variance decompositions

computed in terms of news shocks mix changes due to beliefs with changes due to fun-

damentals.1 By contrast, in the type of noise representation we propose, noise shocks

capture precisely those movements in beliefs that are independent of fundamentals at

all horizons. To isolate the importance of purely belief-driven fluctuations, therefore,

we need to compute variance decompositions in terms of these noise shocks.

One caveat is that an infinite number of different observationally equivalent noise

representations are associated with any news representation. This is essentially for the

same reason that state-space representations of stochastic processes are not unique.

Many different signal structures can generate the same Wold representation. The

implication is that for any news representation, it is always possible to find an ob-

servationally equivalent noise representation, but some statistics of interest, like the

impulse responses of endogenous variables to noise shocks, can only be uniquely de-

termined under additional restrictions.

1This point has been emphasized in the literature. For example, see the discussion in Section

IV.A of Barsky, Basu, and Lee (2015).
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Even though a particular news representation does not uniquely determine the

signal structure in an observationally equivalent noise representation, we prove that

it does uniquely determine the importance of noise shocks. For any signal structure,

as long as it generates dynamics that are observationally equivalent to the news

representation, the share of the variance of any endogenous variable attributable to

noise shocks is uniquely pinned down. This result is important because it means that

in order to determine the importance of beliefs in a model with news shocks, we can

look at the importance of noise shocks in any observationally equivalent noise version

of the model.

We use our equivalence result to determine the importance of beliefs as an ultimate

cause of business cycles in three different quantitative models of U.S. business cycles.

The three models come from Schmitt-Grohé and Uribe (2012), Barsky and Sims

(2012), and Blanchard, L’Huillier, and Lorenzoni (2013). These models all appear to

have very different information structures, which — combined with various differences

in the rest of the physical environment, estimation procedure, and data sample —

has made it difficult to compare results across models. By allowing us to isolate the

independent contribution of beliefs in each model, our equivalence result provides a

way of coherently comparing them. We perform the analysis using the exact models

and estimated parameters from the original studies; our contribution is to determine

what those models imply about the independent contribution of beliefs.

In all three cases, the importance of noise shocks has been understated. In the

model of Schmitt-Grohé and Uribe (2012), there is no shock labeled “noise,” but

the actual contribution of independent fluctuations to beliefs is somewhere between 3

and 11 percent depending on the variable. In the model of Barsky and Sims (2012),

noise shocks are responsible for 9 percent of the fluctuations in consumption, which

is almost an order of magnitude larger than the original estimate of 1 percent. In

the model of Blanchard, L’Huillier, and Lorenzoni (2013), the contribution of noise

to consumption is 57 percent, compared to an original estimate of 44 percent.

Our results demonstrate that there remains substantial disagreement across mod-

els regarding the importance of beliefs. We do not try to settle that disagreement in

this paper. However, a consistent result across all three models is that noise shocks

are not very important for explaining fluctuations in investment. The contribution of

noise shocks for investment never rises above 11 percent, which is the estimate from

the model of Schmitt-Grohé and Uribe (2012). This is particularly striking given the
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fact that forward-looking investment decisions often play an important role in the

motivation and discussion of belief-driven business cycles.

The observational equivalence of news and noise representations is also relevant

to the discussion of whether structural vector auto-regression (VAR) analysis is ap-

propriate for recovering noise shocks. We show that in principle, structural VARs can

be used to recover noise shocks and their associated impulse responses even though

noise representations are not invertible. This is because in both cases, the underlying

shocks are only one orthogonal transformation away from the reduced-form represen-

tation. An implication of our argument is that invertibility should not be viewed as

a necessary condition for the applicability of structural VAR analysis.

We provide one orthogonal transformation that is sufficient to uniquely determine

noise shocks (and their associated impulse response functions). This transformation

is closely related to a popular thought experiment in the literature on news shocks.

The thought experiment is as follows: at date t, agents receive advance information

concerning fundamentals at some future date T > t. But a surprise innovation at that

future date T exactly offsets the advance information agents had previously received.

So their expectations end up being incorrect after the fact. This experiment is one way

that several authors have tried to separate the effect of beliefs from fundamentals. It

turns out that under the set of restrictions we provide, noise shocks generate exactly

the combination of offsetting news shocks envisioned by this experiment.

2 Observational Equivalence

News and noise representations are two different ways of describing economic funda-

mentals and people’s beliefs about them. “Fundamentals” are stochastic processes

capturing exogenous changes in technology, preferences, endowments, or government

policy. Throughout this section, fundamentals are summarized by a single scalar pro-

cess {xt}. People’s decisions depend on expected future realizations of xt, so both

representations specify what people can observe at each date and how they use their

observations to form beliefs about the future.

The main result of the paper, which is presented in this section, is an observational

equivalence theorem relating news and noise representations. To facilitate the expo-

sition, the first subsection presents the result in a simple example with news or noise

regarding fundamentals only one period in the future while the second subsection
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presents the general equivalence result.

2.1 Simple Example

In the simplest of news representations, xt is equal to the sum of two shocks, a0,t and

a1,t−1, which are independent and identically distributed (i.i.d.) over time, and which

are independent of one another:

xt = a0,t + a1,t−1,

[
a0,t

a1,t

]
iid∼ N

(
0,

[
σ2
a,0 0

0 σ2
a,1

])
. (1)

At each date t, people observe the whole history of the two shocks up through that

date, {a0,τ , a1,τ} for all integers τ ≤ t. Their beliefs regarding fundamentals are

rational; the probabilities they assign to future outcomes are exactly those implied

by system (1). The shock a1,t is a news or anticipated shock because people see it

at date t but it doesn’t affect the fundamental until date t + 1. The shock a0,t is a

surprise or unanticipated shock.

Now consider instead a noise representation. The fundamental variable xt is i.i.d.

over time, and there is a noisy signal of the fundamental one period into the future:

st = xt+1 + vt,

[
xt

vt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
. (2)

At each date t, people observe the whole history of fundamentals and signals up

through that date, {xτ , sτ} for all integers τ ≤ t. Even though people only have

imperfect information about xt+1, their beliefs are nevertheless still rational. The

shock vt is a noise or error shock because it affects beliefs even though it is totally

independent of fundamentals.

Our main point is that these two representations are observationally equivalent.

But before making that point explicitly, it is important to be clear about what types

of things we are considering to be “observable.” To be concrete, imagine an econo-

metrician who is able to observe the entire past, present, and future history of the

fundamental process {xt}, along with the entire past, present, and future history

of people’s subjective beliefs regarding {xt}. More concisely, we will say that the

econometrician observes “fundamentals and beliefs.” All of our equivalence results

are stated from the perspective of such an econometrician, and are to be understood

with respect to those observables.
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An important feature of our concept of equivalence is that we treat beliefs, as

well as fundamentals, as observable. We take this approach for three reasons. First,

it is a stronger condition; observational equivalence with respect to a larger set of

observables implies observational equivalence with respect to any smaller set of those

observables. Second, beliefs are observable in economics, in principle. Beliefs may

be measured directly, using surveys, or indirectly, using the mapping between beliefs

and actions implied by an economic model. That actions reflect beliefs is, after

all, a basic motivation for the literature on belief-driven fluctuations. Third, in a

broad class of linear rational expectations models with unique equilibria, endogenous

processes are purely a function of current and past fundamentals and beliefs about

future fundamentals. So observational equivalence of fundamentals and beliefs implies

observational equivalence of the entire economy.

We would also like to emphasize that the observability of beliefs distinguishes

our concept of observational equivalence from the typical conception of observational

equivalence one often encounters in time series analysis. To use a familiar example

(cf. Hamilton, 1994, pp. 64-67) , consider the MA(1) process

yt = εt − θεt−1, εt
iid∼ N (0, σ2

ε ),

with |θ| < 1, and view this as a simple full-information rational expectations model for

the determination of the process {yt} in terms of the exogenous shocks {εt}. As is well-

known, if only {yt} is observable to an econometrician, this invertible representation

of the model is observationally equivalent to the non-invertible representation

yt = ut − ψut−1, ut
iid∼ N (0, σ2

u),

if and only if ψ = 1/θ and σ2
ε = θ2σ2

u. The proof relies on the fact that under

those parametric relations, the spectral density function of {yt} is the same under

both representations, fy(ω) = σ2
ε (1− θe−iω)(1− θeiω). However, under our (stronger)

conception of observational equivalence, these two representations are no longer the

same. To see why, note that the spectral density function of the one-step-ahead ratio-

nal forecast ŷt ≡ Et[yt+1] is given by fŷ(ω) = θ2σ2
ε under the invertible representation,

but fŷ(ω) = σ2
ε under the non-invertible representation.

The following proposition formally states the observational equivalence result for

the simple example of this subsection, and provides the parametric mapping from

one representation to the other. Its proof is collected together with all later proofs in

Appendix (A).
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Proposition 1. The news representation of fundamentals and beliefs in system (1)

is observationally equivalent to the noise representation of fundamentals and beliefs

in system (2) if and only if:

σ2
x = σ2

a,0 + σ2
a,1 and

σ2
v

σ2
x

=
σ2
a,0

σ2
a,1

.

The intuition behind the result comes from the fact that the noise representation

implies an observationally equivalent innovations representation (cf. Anderson and

Moore, 1979, ch.9) of the form:

xt = x̂t−1 + w0,t (3)

x̂t = κw1,t,

where κ = σ2
x/(σ

2
x + σ2

v) is a Kalman gain parameter controlling how much people

trust the noisy signal, and wt ≡ (w0,t, w1,t)
′ is the vector of Wold innovations, which

evolves over time according to

wt
iid∼ N

(
0,

[
κσ2

v 0

0 σ2
x + σ2

v

])
.

But system (3) is the same as the news representation in system (1) when a0,t = w0,t

and a1,t = κw1,t. The news shocks are linear combinations of the Wold innovations.

A direct implication of Proposition (1) is that the news representation is identified

if and only if the noise representation is identified. By observational equivalence, both

representations have the same likelihood function. Therefore, because the relations in

Proposition (1) define a bijection, it is always possible to go from one set of parameters

to the other and vice versa.

Corollary 1. The parameters of the news representation in system (1) are uniquely

identified if and only if the parameters of the noise representation in system (2) are

uniquely identified.

This corollary hints at how the observational equivalence between news and noise

representations is relevant to the question of whether structural VAR analysis can be

applied to models with noise shocks. We take up that question in Section (5).
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2.2 General Equivalence Result

This subsection generalizes the previous example to allow for news and noise at mul-

tiple future horizons, and potentially more complex time-series dynamics. To fix

notation, we use L2 to denote the space of (equivalence classes of) random variables

with finite second moments, which is a Hilbert space when equipped with the inner

product 〈a, b〉 = E[ab] for any a, b ∈ L2. Completeness of this space is with respect

to the norm ‖a‖ ≡ 〈a, a〉1/2. For any collection of random variables in L2,

{yi,t}, with i ∈ I ⊆ Z and t ∈ Z,

we let Ht(y) denote the closed subspace spanned by the variables yi,τ for all i ∈ I
and τ ∈ Z such that τ ≤ t. To simplify notation, we write H(y) ≡ H∞(y).

Fundamentals are summarized by a scalar discrete-time process {xt}. As in the

previous subsection, this process is taken to be mean-zero, stationary, and Gaussian.

The fact that fundamentals are summarized by a scalar process is not restrictive; we

can imagine a number of different scalar processes, each capturing changes in one

particular fundamental. In that case it will be possible to apply the results from this

section to each fundamental one at a time.

People’s beliefs about fundamentals are summarized by a collection of random

variables {x̂i,t}, with i, t ∈ Z, where x̂i,t represents the forecast of the fundamental

realization xt+i as of time t. Under the assumption of rational expectations, which

is maintained throughout this paper, x̂i,t is equal to the mathematical expectation of

xt+i with respect to a particular date-t information set. This, together with the fact

that fundamentals are Gaussian, implies that the collection {x̂i,t} fully characterizes

people’s entire subjective distribution over realizations of the sequence {xt}.
A “representation of fundamentals and beliefs” means a specification of the fun-

damental process {xt} and the collection of people’s conditional expectations about

that process at each point in time {x̂i,t}. A typical assumption is that people’s infor-

mation set is equal to Ht(x), so x̂i,t ∈ Ht(x) for all t ∈ Z. In this case, the process

{xt} is itself sufficient to describe both the fundamental and people’s beliefs about it.

A key departure in models of belief-driven fluctuations is that people may have more

information than what is reflected in Ht(x) alone; as a result, Ht(x) ⊂ Ht(x̂). We will

therefore maintain this assumption throughout the paper. We also work exclusively

with processes that are regular, in the sense of Rozanov (1967).
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Definition 1. In a “news representation” of fundamentals and beliefs, the process

{xt} is related to a collection of independent, stationary Gaussian processes {ai,t}
with i ∈ I ⊆ Z+ by the summation

xt =
∑
i∈I

ai,t−i for all t ∈ Z,

where people’s date-t information set is Ht(a) ⊃ Ht(x).

The idea behind this representation is that people observe parts of the fundamental

realization xt prior to date t. The variable εai,t ≡ ai,t − E[ai,t|Ht−1(a)] is called the

“news shock” associated with horizon i whenever i > 0. By convention, 0 ∈ I, and in

that case, the variable εa0,t is referred to as the “surprise shock.” An important aspect

of this definition is that all of the news shocks are correlated both with fundamentals

and people’s beliefs. This is because any increase in fundamentals that people observe

in advance must generate a one-for-one increase in fundamentals at some point in the

future.

Example 1. In the model of Schmitt-Grohé and Uribe (2012) (see their Section IV),

each fundamental process {xt} follows a law of motion of the form (in deviations from

its mean) :

xt = ρxxt−1 + εa0,t + εa4,t−4 + εa8,t−8,

 εa0,t

εa4,t

εa8,t

 iid∼ N

0,

 σ2
a,0 0 0

0 σ2
a,4 0

0 0 σ2
a,8


 .

where 0 < ρz < 1. In terms of Definition (1), this means that I ≡ {0, 4, 8} and

xt = a0,t + a4,t−4 + a8,t−8

a0,t = ρza0,t−1 + εa0,t

a4,t = ρza4,t−1 + εa4,t

a8,t = ρza8,t−1 + εa8,t.

Also, it is easy to see that Ht(x) ⊂ Ht(a). 4

Definition 2. In a “noise representation” of fundamentals and beliefs, there is a

collection of signal processes {si,t} with i ∈ I ⊆ Z+ of the form:

si,t = mi,t + vi,t, for all t ∈ Z,

where mi,t ∈ H(x), vi,t ⊥ H(x), and people’s date-t information set is Ht(s) ⊃ Ht(x),

which satisfies Ht(s) = Ht(x̂).
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The idea behind this representation is that people may receive signals about the

fundamental realization xt prior to date t, but those signals are contaminated with

noise. The variable εvi,t ≡ vi,t − E[vi,t|Ht−1(v)] is called the “noise shock” associated

with signal i. The variable εxt ≡ xt−E[xt|Ht−1(x)] is called the “fundamental shock.”

An important aspect of this definition is that all of the noise shocks are completely

independent of fundamentals, but because people cannot separately observe mi,t and

vi,t at date t, their beliefs are still affected by noise. The condition thatHt(s) = Ht(x̂)

simply rules out redundant or totally uninformative signals.

Example 2. In the numerical implementation of their baseline model, Beaudry and

Portier (2014) specify the fundamental process {xt} (in deviations from its mean)

and signal process {st} as (see their Section 2.1):

xt = ρxxt−1 + εt

st = εt+8 + v1,t,

where 0 ≤ ρz < 1 and [
εt

v1,t

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v,1

])
.

In terms of Definition (2), this means that I ≡ {0, 8} and

s0,t = xt

s1,t = (xt+8 − ρxxt+7) + v1,t

so m0,t = xt, m1,t = xt+8 − ρxxt+7, and v0,t = 0. Also, note that Ht(x) ⊂ Ht(s). 4

With these definitions in hand, we are ready to state the main result of the paper.

Theorem 1. Fundamentals and beliefs always have both a news representation and

a noise representation. Moreover, the news representation is unique.

This theorem clarifies the sense in which news and noise representations of fun-

damentals and beliefs are really just two sides of the same coin. It is possible to view

the same set of data from either perspective. This result is the basis for our claim

that it is more accurate to think of news and noise representations as superficially

different, but fundamentally the same. The proof of the theorem is constructive,
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which means that it also provides an explicit computational method for passing from

one representation to the other.

The only asymmetric aspect of the theorem involves the uniqueness of the two

representations. Any particular news representation will be compatible with several

different noise representations. This is the same sort of asymmetry present between

signal models representations and innovations representations in the literature on

state-space models. In general there exist infinitely many signal models with the

same innovations representation (cf. Anderson and Moore, 1979, pp. 224-226). We

argue in the subsequent sections, however, that despite this multiplicity of noise

representations, most interesting economic questions still have a unique answer.

An important implication of Theorem (1) is that associated with any model econ-

omy in which fundamentals and beliefs are expressed in the form of a news represen-

tation is an observationally equivalent economy in which fundamentals and beliefs are

expressed in the form of a noise representation, and vice versa. This is because the

observational equivalence of fundamentals and beliefs implies the observational equiv-

alence of any endogenous processes that are functions of fundamentals and beliefs.

To make this statement more precise, we define here what we mean by an endogenous

process, and then present this statement as a proposition.

Definition 3. Given a fundamental process {xt} and a collection of forecasts {x̂i,t}
satisfying Ht(x) ⊂ Ht(x̂), a process {ct} is “endogenous” with respect to {xt} if

ct ∈ Ht(x̂) for all t ∈ Z.

Proposition 2. If two different representations of fundamentals and beliefs are ob-

servationally equivalent, then they imply observationally equivalent dynamics for any

endogenous process.

3 The Importance of Beliefs

The most basic question in the literature on belief-driven fluctuations is: how impor-

tant are beliefs? Or more specifically, how important are beliefs relative to funda-

mentals? Perhaps surprisingly, it turns out that no existing quantitative study in this

literature has actually answered that question. Some studies report the importance

of news shocks, which combine the contribution due to fundamentals with the con-

tribution due independently to beliefs. Others include noise shocks and news shocks
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in the same model, and as a result, do not properly report the importance of either

one. In this section we argue that the observational equivalence result in Theorem

(1) is the key to determining the importance of beliefs as an independent cause of

fluctuations.

The first subsection explains the problem with using news shocks to determine

the importance of beliefs, and the second subsection clarifies the problems that arise

when attempting to include both news and noise shocks in the same model. To keep

things clear, the discussion of both of these issues is framed in terms of the simple

example from Section (2.1). The third subsection establishes an important result

regarding the uniqueness of variance decompositions.

3.1 The Problem with News Shocks

In the context of dynamic linear models, the importance of a set of exogenous shocks

can be determined by performing a variance decomposition. This entails computing

the model-implied variance of an endogenous process under the assumption that all

shocks other than those in the set of interest are counterfactually equal to zero almost

surely, and comparing that variance to the unconditional variance of the process.

More nuanced versions of this exercise include only considering variation over a certain

range of spectral frequencies, or variation in forecast errors over a certain forecast

horizon. Even in those more nuanced cases, however, the basic intuition is the same.

The problem with using news shocks to determine the importance of beliefs is

that news shocks mix changes that are due to fundamentals and changes that are

independently due to beliefs. This is because a news shock is an anticipated change

in fundamentals. Expectations change at the time the news shock is realized, but

then fundamentals change in the future when the anticipated change actually occurs.

Of course, people’s expectations may not always be fully borne out in the future

fundamental, due to other unforeseen disturbances. Nevertheless, the anticipated

shock is borne out on average, which is to say that news shocks are related to future

fundamentals on average.

A stark way to see this point is to consider the importance of beliefs for driving

fundamentals. Because fundamentals are purely exogenous, they are not driven by

beliefs at all. However, in the simple news representation from Section (2.1), for ex-

ample, news shocks can be an arbitrarily large part of fluctuations in the fundamental
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process {xt}. Recall that

xt = a0,t + a1,t−1,

[
a0,t

a1,t

]
iid∼ N

(
0,

[
σ2
a,0 0

0 σ2
a,1

])
.

Therefore, the fraction of the variation in {xt} due to news shocks, {a1,t} is given by:

var[xt|a0,t = 0]

var[xt]
=

var[a1,t]

var[xt]
=

σ2
a,1

σ2
a,0 + σ2

a,1

.

As σ2
a,1 increases relative to σ2

a,0, this fraction approaches one, in which case news

shocks would explain all the variation in {xt}.
To disentangle the importance of beliefs from fundamentals in models with news

shocks, we need to use Theorem (1). Specifically, we can write down an observa-

tionally equivalent noise representation of the news model, and then use a variance

decomposition to compute the share of variation attributable to noise shocks. Because

these shocks are unrelated to fundamentals at all horizons, they capture precisely the

independent contribution of beliefs.

Returning to the example from Section (2.1), we have already shown that in an

observationally equivalent noise representation,

st = xt+1 + vt,

[
xt

vt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
,

with σ2
x ≡ σ2

a,0 + σ2
a,1 and σ2

v ≡ σ2
xσ

2
a,0/σ

2
a,1. According to this representation, the

fraction of variation in {xt} due to noise shocks is:

var[xt|xt = 0]

var[xt]
= 0,

which is the correct answer to the question of how much beliefs contribute to the

fluctuations of fundamentals. This example illustrates the more general point that in

order to determine the importance of beliefs, one should perform variance decompo-

sitions in terms of noise shocks rather than news shocks.

The fact that variance decompositions in terms of news shocks are not appropriate

for determining the importance of beliefs has lead some researchers to conclude that

there is a fundamental problem with using variance decompositions for that purpose.

For example, Sims (2016) describes the problem of identifying the importance of

beliefs (which both he and Barsky, Basu, and Lee (2015) call “pure news”) as a

fundamental limitation of the traditional variance decomposition:
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“The distinction between pure and realized news is important because

one of the promises of the news-driven business cycle literature is to gen-

erate “boom-bust” cycles without any observable change in fundamen-

tals ex-post. For understanding whether such “boom-bust” dynamics are

quantitatively important it is critical to differentiate between effects of

news shocks driven by actual news versus movements in endogenous vari-

ables caused by realized changes in fundamentals. A traditional variance

decomposition does not make this distinction.” (p. 2)

The point we would like to make is that the problem is not with the variance de-

compositions as such; rather, the problem is with the type of shock one considers.

It is noise shocks, not news shocks, that are the appropriate shocks for isolating the

independent contribution of beliefs. Once that distinction has been made, traditional

variance decomposition methods can be employed as usual.

3.2 Mixing News and Noise Shocks

In some cases, researchers have constructed representations of fundamentals and be-

liefs that seem to include both news and noise shocks at the same time (e.g. Blan-

chard, L’Huillier, and Lorenzoni, 2013; Barsky and Sims, 2012). As a simple example,

consider the following representation:

xt = λt−1 + ηt (4)

st = λt + ξt,

where  ηt

λt

ξt

 iid∼ N

0,

 σ2
η 0 0

0 σ2
λ 0

0 0 σ2
ξ


 .

At each date t, people observe {xτ , sτ} for all integers τ ≤ t. The shock λt looks like

a news shock because it affects people’s beliefs at date t (through the signal st), but

does not affect fundamentals until the following period. Similarly, the shock ηt looks

like a surprise shock because it affects people’s beliefs and the fundamental at the

same time. Finally, the shock ξt looks like a noise shock because it affects people’s

beliefs but is not related to the fundamental at any date.
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The problem with this type of representation, at least from the perspective of

isolating the importance of beliefs, is that while ξt is unrelated to fundamentals, it

does not fully capture the contribution of beliefs. This is because λt is not purely a

function of fundamentals; it also captures changes that are due to beliefs. To see this,

notice that in the limiting case ξt = 0, we have that st = λt and this representation

collapses to a news representation with a0,t ≡ ηt and a1,t ≡ λt. We have already seen

that in such a news representation, the news shock λt mixes changes that are due to

fundamentals and beliefs. Moreover, we also know that such a news representation

has an observationally equivalent noise representation with (non-zero) noise shocks

that represent the independent contribution of beliefs (cf. Proposition (1)). Therefore

ξt = 0 does not mean that beliefs do not have an independent role to play as a driver

of fluctuations.

However, Theorem (1) implies that a representation of fundamentals and beliefs

of the type in (4), which is neither news or noise representation, still has an observa-

tionally equivalent noise representation. The noise shocks in the noise representation

properly capture the independent contribution of beliefs. The following proposition

presents the mapping from one representation to the other.

Proposition 3. The representation of fundamentals and beliefs in system (4) is ob-

servationally equivalent to the noise representation of fundamentals and beliefs in

system (2) if and only if:

σ2
x = σ2

λ + σ2
η and

σ2
v

σ2
x

=
σ2
λ(σ

2
η + σ2

ξ ) + σ2
ησ

2
ξ

σ4
λ

.

To see why the process {ξt} does not properly capture the importance of beliefs,

consider the endogenous variable x̂t = Et[xt+1]. Under representation (4),

x̂t =
σ2
λ

σ2
λ + σ2

ξ

(λt + ξt),

so the contribution of the process {ξt} is

var[x̂t|λt = ηt = 0]

var[x̂t]
=

σ2
ξ

σ2
λ + σ2

ξ

.

On the other hand, in the observationally equivalent noise representation implied by

Proposition (3),

x̂t =
σ2
x

σ2
x + σ2

v

(xt+1 + vt).
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Therefore, the contribution of the process {vt} is

var[x̂t|xt = 0]

var[x̂t]
=

σ2
v

σ2
x + σ2

v

=
σ2
λσ

2
η

σ2
λ + σ2

η

+
σ2
ξ

σ2
λ + σ2

ξ

.

The second equality uses the parameteric restrictions from Proposition (3). Because

the first term in this expression is positive, it follows that {ξt} understates the im-

portance of beliefs for explaining variations in {x̂t}. It is also easy to see how the

importance of beliefs can be strictly positive even in the limiting case when σ2
ξ = 0.

3.3 Different Noise Representations

So far we have argued that it is possible to use a noise representation to determine the

importance of beliefs as an independent driver of fluctuations. First, one can rewrite

any representation of fundamentals and beliefs as a noise representation using the con-

structive procedure from Theorem (1). Then, one can use a variance decomposition

to determine the share of variation in any endogenous variable that is attributable to

noise shocks. And this share represents the contribution of beliefs independently of

what can be attributed to fundamentals.

But is the variance decomposition in terms of noise shocks unique? As we pointed

out in the discussion of Theorem (1), any representation of fundamentals and beliefs is

compatible with infinitely many different noise representations. If different noise rep-

resentations imply different things about the variance decomposition of endogenous

variables in terms of beliefs and fundamentals, then the procedure outlined above will

not deliver a unique answer.

Fortunately, it turns out that all observationally equivalent noise representations

deliver the same answer regarding the importance of beliefs for any endogenous pro-

cess. This means that when one is interested in the importance of beliefs relative to

fundamentals, the fact that noise representations are not unique is not a problem.

Proposition 4. In any noise representation of fundamentals and beliefs, the vari-

ance decomposition of any endogenous process in terms of noise and fundamentals is

uniquely determined over any frequency range.

An immediate corollary of this proposition is that the variance decomposition of

people’s errors in forecasting an endogenous process is also uniquely determined for
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any forecast horizon. This is because the forecast errors are themselves endogenous

processes to which Proposition (4) applies.

Corollary 2. In any noise representation of fundamentals and beliefs, the forecast

error variance decomposition of any endogenous process in terms of noise and funda-

mentals is uniquely determined for any horizon, and over any frequency range.

4 Quantitative Analysis

In this section, we use Theorem (1) and Proposition (4) to empirically quantify the

independent contribution of beliefs in driving business-cycle fluctuations. Because

several models of belief-driven fluctuations have already been constructed and esti-

mated in the literature, we take something of a meta-analytic perspective. Specifi-

cally, we select three prominent theoretical models that have been estimated in the

literature and compute the importance of beliefs implied by each of those models for

different macroeconomic variables (e.g. output, investment, etc.). The three models

are: the model of news shocks from Schmitt-Grohé and Uribe (2012), the model of

news and animal spirits from Barsky and Sims (2012), and the model of noise shocks

from Blanchard, L’Huillier, and Lorenzoni (2013).

These three models are different in several respects. First, they incorporate differ-

ent physical environments, including differences in preferences, frictions and market

structure. Second, the three models are estimated on different data and with different

sample periods. Third, the authors make different assumptions about the information

structure faced by agents. While agents in all three models observe current funda-

mentals and receive advance information about future fundamentals, Schmitt-Grohé

and Uribe (2012) take a pure news perspective while the Barsky and Sims (2012) and

Blanchard, L’Huillier, and Lorenzoni (2013) offer somewhat different perspectives on

combining news and noise within a single model.

Perhaps not surprisingly given the scope of these differences, the authors above

come to very different conclusions. Schmitt-Grohé and Uribe (2012) conclude that

news shocks explain about one half of aggregate fluctuations, but do not take an

explicit stance on the importance of independent fluctuations in beliefs. Barsky and

Sims (2012) also conclude that news shocks are important, and that noise shocks ex-

plain essentially none of the variation in any variable. However, Blanchard, L’Huillier,
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and Lorenzoni (2013) conclude that noise shocks play a crucial role in business cycle

dynamics, especially for consumption.

In principle, it is possible that these different conclusions are largely a result of

the different “normalizations” the authors take with respect to noise shocks. Indeed,

our analysis indicates that all authors have (implicitly or explicitly) underestimated

the actual of role of independent shocks to beliefs in their estimated economies. For

Schmitt-Grohé and Uribe (2012) and Barsky and Sims (2012), we find that the role

of noise rises from zero to being small, but non-trivial, generally between 3 and 11

percent at the business cycle frequency. Surprisingly, even Blanchard, L’Huillier, and

Lorenzoni (2013) significantly underestimate the role of pure noise in driving their

economy, with beliefs about productivity driving endogenous variables more than pro-

ductivity itself. While our results indicate that noise shocks are more important than

previously reported, they do not fully explain the degree of disagreement regarding

the independent contribution of beliefs.

4.1 Schmitt-Grohé and Uribe (2012)

The first model we consider comes from Schmitt-Grohé and Uribe (2012), and was

constructed to determine the importance of news shocks for explaining aggregate

fluctuations in output, consumption, investment, and employment. The main result

of their paper is that news shocks account for about half of the predicted aggregate

fluctuations in those four variables. As we have seen in the previous section, however,

news shocks mix the contribution due to beliefs and fundamentals. As a result,

exactly what this model implies about the importance of beliefs is still an unanswered

question.

The model is a standard real business cycle model with six modifications: invest-

ment adjustment costs, variable capacity utilization with respect to the capital stock,

decreasing returns to scale in production, one period internal habit formation in con-

sumption, imperfect competition in labor markets, and period utility allowing for a

low wealth effect on labor supply. Fundamentals comprise seven different indepen-

dent processes, which capture exogenous variation in: stationary and non-stationary

neutral productivity, stationary and non-stationary investment-specific productivity,

government spending, wage markups, and preferences. The model is presented in

more detail in Appendix (B.1).
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Each of the seven exogenous fundamentals is described by the following law of

motion, as we saw in Example (1) and reproduced here:

xt = ρxxt−1 + εa0,t + εa4,t−4 + εa8,t−8,

 εa0,t

εa4,t

εa8,t

 iid∼ N

0,

 σ2
a,0 0 0

0 σ2
a,4 0

0 0 σ2
a,8


 . (5)

where 0 < ρz < 1. The model is estimated using likelihood-based methods on a sample

of quarterly U.S. data from 1955:Q2-2006:Q4. The time series used for estimation are:

real GDP, real consumption, real investment, real government expenditure, hours,

utilization-adjusted total factor productivity, and the relative price of investment.

A variance decomposition shows that news shocks turn out to be very important.

The first column of Table (1) shows the share of business-cycle variation in the level of

four endogenous variables that is attributable to surprise shocks {εa0,t}, and the second

column shows the share attributable to the news shocks {εa4,t} and {εa8,t} combined.

We define business cycle frequencies as the components of the endogenous process

with periods of 6 to 32 quarters, and we focus on variance decompositions over these

frequencies to facilitate comparison across the different models in this section. Our

results are consistent with the authors’ original findings (see their Table V).

However, to determine the contribution of beliefs relative to fundamentals, it is

necessary to construct a noise representation that is observationally equivalent to

representation (5). To do this, we first present a result that applies to any model

with news shocks of this type. It shows that it is always possible to find a particu-

larly simple observationally equivalent noise representation — in particular, one that

satisfies Assumption (1) — and explicitly presents the parameteric mapping from one

representation to the other.

Proposition 5. Any news representation in which each process {ai,t} is i.i.d. over

time is observationally equivalent to a noise representation with xt
iid∼ N (0, σ2

x) and

si,t = xt+i + vi,t, vi,t
iid∼ N (0, σ2

v,i),

where vi,t ⊥ xτ and vi,t ⊥ vj,τ for any i 6= j ∈ I and t, τ ∈ Z, if and only if

σ2
x =

∑
i∈I

σ2
a,i and σ2

v,i =
1

σ2
a,i

(∑
j<i

σ2
a,j

)(∑
j≤i

σ2
a,j

)
for all i ∈ I.
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Applying this proposition to the model of Schmitt-Grohé and Uribe (2012) requires

one small step, which is that Proposition (5) is stated for i.i.d. fundamentals, but the

fundamentals in system (5) are not i.i.d. However, because 0 < ρx < 1, observing the

current and past history of xt is equivalent to observing the current and past history

of the composite disturbance εxt ≡ εa0,t + εa4,t−4 + εa8,t−8, which is i.i.d. because each

of the news shocks are independent of one another. Therefore, it is possible to treat

{εxt } as the fundamental process. By doing so, we arrive at the following corollary.

Corollary 3. The representation of fundamentals and beliefs in system (5) is obser-

vationally equivalent to the noise representation

xt = ρxxt−1 + εxt

s4,t = εxt+4 + v4,t

s8,t = εxt+8 + v8,t,

with the convention that s0,t ≡ xt, and where εxt

v4,t

v8,t

 iid∼ N

0,

 σ2
x 0 0

0 σ2
v,4 0

0 0 σ2
v,8


 ,

if and only if

σ2
x = σ2

a,0 + σ2
a,4 + σ2

a,8

σ2
v,4 =

1

σ2
a,4

σ2
a,0(σ

2
a,0 + σ2

a,4)

σ2
v,8 =

1

σ2
a,8

(σ2
a,0 + σ2

a,4)(σ
2
a,0 + σ2

a,4 + σ2
a,8).

We can use the noise representation in Corollary (3) with the same parameter esti-

mates as before, and re-compute the variance decomposition of the seven observable

variables in terms of fundamental shocks and noise shocks. This decomposition is

unique by Proposition (4). There is no need to re-estimate the model because obser-

vational equivalence implies that the likelihood function is the same under both rep-

resentations. The third column of Table (1) shows the share of variation attributable

to fundamental shocks {εxt }, and the fourth column shows the share attributable to

the noise shocks {v4,t} and {v8,t} combined.
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Variable Surprise News Fundamental Noise

Output 57 43 95 5

Consumption 50 50 95 5

Investment 55 45 89 11

Hours 15 85 97 3

Table 1: Variance decomposition (%) in the model of Schmitt-Grohé and Uribe (2012)

over business cycle frequencies of 6 to 32 quarters. All variables are in levels. Esti-

mated model parameters are set to their posterior median values.

The main result is that nearly all of the variation in output, consumption, invest-

ment, and hours is due to changes in fundamentals. In terms of differences across

the endogenous variables, it is interesting that real investment growth is affected the

least by news shocks, but it is affected the most by noise shocks. At the same time,

hours worked is affected the most by news shocks and the least by noise shocks. But

based on the fact that 90% or more of the variation in every series is attributable

to fundamental changes, we conclude that beliefs are not an important independent

source of fluctuations through the lens of this model.

4.2 Barsky and Sims (2012)

The second model comes from Barsky and Sims (2012). It was constructed to de-

termine whether measures of consumer confidence change in ways that are related to

macroeconomic aggregates because of noise (i.e. “animal spirits”) or news. The main

result of the paper is that changes in consumer confidence are mostly driven by news

and not noise. They also find that that noise shocks account for negligible shares

of the variation in forecast errors of consumption and output, while news shocks ac-

count for over half of the variation in long-horizon forecast errors. However, as we

saw in Section (3.2), including both news and noise shocks in the same model can be

misleading when it comes to isolating the importance of beliefs.

The model is a standard dynamic, stochastic, general equilibrium (DSGE) model

with real and nominal frictions: one period internal habit formation in consumption,

capital adjustment costs (as opposed to investment adjustment costs, according to

which costs are expressed as a function of the growth rate of investment rather than

the level of investment relative to the existing capital stock), and monopolistic price
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setting with time-dependent price rigidity. Fundamentals comprise three different

independent processes, which capture exogenous variation in: non-stationary neutral

productivity, government spending, and monetary policy. The model is presented in

more detail in Appendix (B.2).

People only receive advance information about productivity, and not about the

other two fundamentals. So it is only beliefs about productivity that can play an

independent role in driving fluctuations. Letting xt denote the growth rate of pro-

ductivity (in deviations from its mean), and using our notation from Section (3.2),

the process {xt} is assumed to follow a law of motion of the form:

xt = λt−1 + ηt

λt = ρλt−1 + ελt (6)

st = λt + ξt,

where 0 < ρ < 1 and  ηt

ελt

ξt

 iid∼ N

0,

 σ2
η 0 0

0 σ2
λ 0

0 0 σ2
ξ


 .

Barsky and Sims (2012) refer to ελt as a news shock, ηt as a surprise shock, and ξt as

a noise (animal spirits) shock. However, these definitions of news, surprise, and noise

shocks are not consistent with the definitions in our paper. To avoid any confusion

we will use asterisks to indicate the terminology of Barsky and Sims (2012). So ελt is

a news* shock, ηt is a surprise* shock, and ξt is a noise* shock.

The model is estimated by minimizing the distance between impulse responses

generated from simulations of the model and those from estimated structural vector

auto-regressions. The vector auto-regressions are estimated on quarterly U.S. data

from 1960:Q1-2008:Q4. The time series used to estimate the vector auto-regression

are: real GDP, real consumption, CPI inflation, a measure of the real interest rate,

and a measure of consumer confidence from the Michigan Survey of Consumers (E5Y).

A variance decomposition shows that news* shocks are much more important than

noise* shocks. The first column of Table (2) shows the share of business-cycle varia-

tion in the level of four endogenous variables that is attributable to surprise* shocks

{ηt}, the second column shows the share attributable to news* shocks {ελt }, and the

third column shows the share attributable to noise* shocks {ξt}. Due to the presence

23



of government spending and monetary policy shocks, the rows do not sum to 100%;

the residual represents the combined contribution of these two additional fundamen-

tal shocks. These results are consistent with the authors’ original findings, which

are stated in terms of the variance decompositions of forecast errors over different

horizons, but across all frequency ranges (see their Table 3).

However, to properly isolate the independent contributions of beliefs, it is neces-

sary to construct a noise representation that is observationally equivalent to repre-

sentation (6). The following proposition presents one such noise representation.

Proposition 6. The representation of fundamentals and beliefs in system (6) is ob-

servationally equivalent to the noise representation

xt = γ0mt + γ1mt−1 + γ0mt−2

mt = φ1mt−1 + φ2mt−2 + εxt

st = mt + vt

vt = δvt−1 + εvt − βεvt−1,

with the convention that s0,t ≡ xt, and where[
εxt

εvt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
,

if and only if δ is equal to the root of the polynomial

P(z) = ρz2 −
(

1 + ρ2 +
σ2
λ

σ2
η

)
z + ρ

that lies inside the unit circle, β is the root of the polynomial

P(z) = ρz2 −

(
1 + ρ2 +

σ2
λ(σ

2
λ + σ2

ξ )

σ2
ησ

2
ξ

)
z + ρ

that lies inside the unit circle, and

γ0 = −ρ
σ2
η

σ2
λ

γ1 = −γ0
(

1 + δ2

δ

)
φ1 = ρ+ δ φ2 = −ρδ

σ2
x =

δσ4
λ

ρσ2
η

σ2
v =

δ

β
σ2
ξ .
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Using the noise representation in this proposition, we can re-compute the variance

decomposition of the endogenous processes in terms of fundamental shocks and noise

shocks. The fourth column of Table (2) shows the share of variation attributable

to fundamental productivity shocks {εxt }, and the fifth column shows the share at-

tributable to productivity noise shocks {εvt }. Again, the rows do not sum to 100%

due to the presence of government spending and monetary policy shocks. Conceptu-

ally, the contribution of these shocks should also be included under the heading of

fundamental shocks, but for comparison with the first three columns, we only include

fundamental productivity shocks in the fourth column.

Variable Surprise* News* Noise* Fundamental Noise

Output 0.53 0.37 0 89 1

Consumption 0.62 0.35 1 89 9

Investment 0.40 0.43 1 80 4

Hours 0.64 0.14 0 75 3

Table 2: Variance decomposition (%) in the model of Barsky and Sims (2012) over

business cycle frequencies of 6 to 32 quarters. All variables are in levels, and esti-

mated parameters are set to their point-estimated values. The rows do not sum to

100% because of other non-technology fundamental processes. Asterisks refer to the

authors’ terminology.

As in the model of Schmitt-Grohé and Uribe (2012), we find that nearly all of

the variation in output, consumption, investment, and hours is due to changes in

fundamentals. The contribution of noise shocks is larger than the contribution of

noise* shocks, for all variables. However, the bulk of the contribution of news* shocks

turns out to be due to fundamentals rather than noise.

4.3 Blanchard, L’Huillier, and Lorenzoni (2013)

The third model we consider comes from Blanchard, L’Huillier, and Lorenzoni (2013),

and was constructed “to separate fluctuations due to changes in fundamentals (news)

from those due to temporary errors in agents’ estimates (noise).”2 The main quanti-

tative result of their paper is that noise shocks explain a sizable fraction of short-run

2This quotation is taken from the article’s abstract, which can be found on the AEA’s website:

https://www.aeaweb.org/articles?id=10.1257/aer.103.7.3045.
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consumption fluctuations. However, it turns out that what the authors call “noise”

shocks do not fully isolate fluctuations due to temporary errors in agents’ estimates.

As a result, it is still an unanswered question what exactly this model implies about

the importance of beliefs.

The model is a standard DSGE model with real and nominal frictions: one-period

internal habit formation in consumption, investment adjustment costs, variable capac-

ity utilization with respect to capital, and monopolistic price and wage setting with

time-dependent price rigidities. Fundamentals comprise six different independent

processes, which capture exogenous variation in: non-stationary neutral productiv-

ity, stationary investment-specific productivity, government spending, wage markups,

final good price markups, and monetary policy. For more details, see Appendix (B.3).

People only receive advance information about productivity, and not about the

other five fundamentals. So it is only beliefs about productivity that can play an

independent role in driving fluctuations. Letting xt denote the growth rate of pro-

ductivity (in deviations from its mean), and using our notation from Section (3.2),

the process {xt} is assumed to follow a law of motion of the form:3

xt = λt + ηt − ηt−1
λt = ρλt−1 + ελt (7)

ηt = ρηt−1 + εηt

st = −ηt + ξt,

where 0 < ρ < 1 and  εηt

ελt

ξt

 iid∼ N

0,

 σ2
η 0 0

0 σ2
λ 0

0 0 σ2
ξ


 .

Blanchard, L’Huillier, and Lorenzoni (2013) refer to ελt as a permanent shock, εηt as a

transitory shock, and ξt as a noise shock. Taken together, they refer to ελt and εηt as

3The authors actually present the information structure in terms of non-stationary processes.

But because we are working in L2, we transform that system into stationary form. The variable

λt represents the growth rate of the permanent component of productivity, and ηt is the transitory

component. The signal st in system (7) is equal to their signal minus the natural logarithm of the

level of productivity.
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news shocks. Again, because these definitions are not consistent with the ones in our

paper, we will use asterisks to indicate the authors’ terminology in contrast to ours.

The model is estimated using likelihood-based methods on a sample of quarterly

U.S. data from 1954:Q3-2011:Q1. The time series used for estimation are: real GDP,

real consumption, real investment, employment, the federal funds rate, inflation as

measured by the implicit GDP deflator, and wages.

A variance decomposition reveals that noise* shocks are important, especially for

consumption. The first column of Table (3) shows the share of business-cycle variation

in the level of output, consumption, investment, and hours that is attributable to

news* shocks, {ελt } and {εηt }, and the second column shows the share attributable

to noise* shocks {ξt}. Due to the presence of the other five fundamental shocks, the

rows do not sum to 100%; the residual represents the combined contribution of these

additional fundamental shocks. These results are consistent with the authors’ original

findings, which are stated in terms of the variance decompositions of forecast errors

over different horizons (see their Table 6).

However, to properly isolate the independent contribution of beliefs, it is necessary

to construct a noise representation that is observationally equivalent to representation

(7). The following proposition presents one such noise representation.

Proposition 7. The representation of fundamentals and beliefs in system (7) is ob-

servationally equivalent to the noise representation

xt = −φmt+1 +mt

mt = φmt−1 + εxt

st = −φ(mt −mt−1) + vt

vt = φvt−1 + εvt − (β1 + β2)ε
v
t−1 + β1β2ε

v
t−2,

with the convention that s0,t ≡ xt, and where[
εxt

εvt

]
iid∼ N

(
0,

[
σ2
x 0

0 σ2
v

])
,

if and only if (β1, β2) are equal to the two roots of the polynomial

P(z) = ρ2z4 − 2ρ(1 + ρ2)z3 +

(
1 + ρ4 + 4ρ2 + ρ

σ2
λ

σ2
ξ

)
z − 2ρ(1 + ρ2)z + ρ2

that lie inside the unit circle, φ = ρ, σ2
x = σ2

η/ρ, and σ2
v = ρ2σ2

ξ/(β1β2).
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Using the noise representation in this proposition, we can re-compute the variance

decomposition of the endogenous processes in terms of fundamental shocks and noise

shocks. The fourth column of Table (3) shows the share of variation attributable

to fundamental productivity shocks {εxt }, and the fifth column shows the share at-

tributable to productivity noise shocks {εvt }. Again, the rows do not sum to 100%

due to the presence of fundamental processes other than productivity.

Variable News∗ Noise∗ Fundamental Noise

Output 34 22 26 29

Consumption 40 44 27 57

Investment 6 3 4 5

Hours 17 29 7 39

Table 3: Variance decomposition (%) in the model of Blanchard, L’Huillier, and

Lorenzoni (2013) over business cycle frequencies of 6 to 32 quarters. All variables

are in levels, and estimated parameters are set to their posterior median values. The

rows do not sum to 100% because of other non-technology fundamental processes.

In contrast to both the Schmitt-Grohé and Uribe (2012) and Barsky and Sims

(2012) models, we find that a sizable fraction of the variation in output, consump-

tion, and hours worked can be attributed to noise shocks. For example, nearly 60%

of the variation in consumption is due to noise shocks. This is over 10% larger than

the share Blanchard, L’Huillier, and Lorenzoni (2013) originally attributed to inde-

pendent fluctuations in beliefs. A result of similar magnitude is true for output and

hours worked.

5 Structural VAR Analysis

One issue that several researchers have emphasized as a difference between news and

noise representations involves the applicability of structural VAR analysis. A common

view is that news shocks can generally be recovered from data using structural VAR

analysis, while noise shocks generally cannot. The typical reason given is that news

representations are invertible (the shocks can be expressed as a function of current

and past observables), while noise representations are not.
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In this section, we prove that the observational equivalence of news and noise

representations implies that the shocks in any noise representation can be recovered

from observables up to an orthogonal transformation. Based on this result, we ar-

gue that structural VAR analysis is equally appropriate for recovering the underlying

shocks in either a news or noise representation. We also explore one particular or-

thogonalization that is related to the popular “news-reversal” thought experiment

that the existing literature has used to describe boom-bust episodes in models with

news shocks.

5.1 Recovering Shocks and Invertibility

When can the underlying shocks in news and noise representations be recovered from

the data? That is, given data on fundamentals and beliefs, when are the underlying

shocks in these representations uniquely determined? The uniqueness of the news

representation according to Theorem (1) implies that in any news representations of

fundamentals and beliefs, each underlying shock is uniquely determined.

By contrast, each underlying shock in a noise representation is not uniquely de-

termined. Proposition (4) and its associated Corollary (2) establish the uniqueness

of variance decompositions computed in terms of fundamentals and noise, but they

do not imply that it is possible to separately recover each individual shock. However,

we can prove the following result, which says that the shocks are determined up to

an orthogonal transformation.

Proposition 8. In any noise representation of fundamentals and beliefs, the space

spanned by the underlying shocks at each date is uniquely determined.

An important concept in discussions regarding the applicability of structural VAR

analysis is that of invertibility. This has to do with whether or not it is possible to

express one collection of stochastic processes as a linear combination of the current

and past history of another collection of stochastic processes.

Definition 4. A collection of stochastic processes {yi,t}, i ∈ Iy ⊆ Z+ is “invertible”

with respect to the collection of shock processes {εi,t}, i ∈ Iε ⊆ Z+, if

Ht(ε) = Ht(y) for all t ∈ Z.
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Based on this definition, we refer to a representation of the collection of {yi,t} as

an “invertible representation” if {yi,t} is invertible with respect to all the underlying

shocks in that representation.4 Also, note that we use the term “shock process” to

refer to a process that is uncorrelated over time.

Our second theoretical result of this subsection characterizes news and noise rep-

resentations in terms of invertibility.

Proposition 9. Any news representation of fundamentals and beliefs is invertible,

but any noise representation is not invertible.

This result is a generalization of the one that Blanchard, L’Huillier, and Lorenzoni

(2013) prove in the context of a simple model of consumption determination, and

the basic intuition is the same. If noise representations were invertible, then people

would be able to distinguish the informative parts of their signals from the noise. By

rationality, noise shocks could never affect people’s beliefs. But then it would not be

possible to recover those shocks from the current and past history of people’s beliefs.

Any collection of observable processes is invertible with respect to infinitely many

different collections of underlying shocks. However, these shocks have the important

property that they are all related by an orthogonal transformation. We state this

in the following proposition, which has a well-known finite-dimensional counterpart

(e.g. Rozanov, 1967, p. 57):

Proposition 10. If a collection of stochastic processes is invertible with respect to

two different collections of shock processes, then the space spanned by those shocks at

each date is the same.

5.2 Using Structural VAR Analysis

For many researchers, Proposition (9) settles the question of whether structural VAR

analysis can be used to recover shocks in news and noise representations. For example,

the central methodological argument of Blanchard, L’Huillier, and Lorenzoni (2013)

is that structural VAR analysis is not applicable for recovering noise shocks due to

non-invertibility:

4What we call invertibility is sometimes called “fundamentalness” (cf. Rozanov, 1967, ch. 2).
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“[In situations with] a partially informative signal, the reduced-form

VAR representation is non-invertible and a structural VAR approach can-

not be used.” (p. 3051)

However, in this subsection we argue that the applicability of structural VAR analysis

should not be understood solely in terms of invertibility.

Structural VAR analysis has two steps: a VAR step and a structural step. The

VAR step defines a “reduced-form” representation of the observables with residuals

that come from a projection of observables on their past history. The structural

step uniquely determines a collection of “economic shocks” from the reduced-form

representation by using theoretical restrictions to pin down a single orthogonal trans-

formation (an orthogonal matrix in the finite-dimensional case). In other words, we

can say that structural VAR analysis is applicable whenever knowledge of the reduced-

form representation is at most one orthogonal transformation away from knowledge

of the economic shocks.

To be more precise, we can define a reduced-form representation of fundamentals

and beliefs in the following way.

Definition 5. In a “reduced-form” representation of fundamentals and beliefs,

x̂i,t = x̃i,t−1 + ε̃i,t for all i, t ∈ Z,

where x̃i,t−1 ∈ Ht−1(x̂) and ε̃i,t ⊥ Ht−1(x̂).

The first step of structural VAR analysis is to treat this representation as known. The

second step is to determine whether the reduced-form shocks {ε̃i,t} uniquely determine

the space spanned by the underlying shocks in either a news or noise representation.

For a news representation, the answer is yes. Note that, by construction, {x̂i,t} is

invertible with respect to {ε̃i,t}. By Propositions (9) and (10), it follows that the space

spanned by the reduced-form shocks is equal to the space spanned by the shocks in any

news representation are the same at each date. Therefore, the reduced-form shocks

uniquely determine the space spanned by the shocks in any news representation.

Interestingly, for a noise representation, the answer is also yes. To see why, note

that Proposition (8) implies that the space spanned by the shocks in any noise rep-

resentation is uniquely determined by {x̂i,t}. But then that space must also be also

uniquely determined by the reduced-form residuals, because Ht(ε̃) = Ht(x̂) for all

t ∈ Z by invertibility.

31



But isn’t it true that in a news representation, the shocks themselves are uniquely

determined (by Theorem (1)), while in a noise representation only the space spanned

by the shocks is uniquely determined (by Theorem (1) and Proposition (8))? Yes,

but that is only because the orthogonal transformation linking the reduced-form rep-

resentation to the news representation is already embedded in the definition of a

news representation. Of course, we could just have easily have appended one partic-

ular orthogonal transformation to the definition of a noise representation in the first

place. Therefore, we can conclude that to recover the underlying shocks in both news

and noise representations from the reduced-form representation, the same theoretical

input is required: one orthogonal transformation.

One natural set of restrictions is that noise shocks are orthogonal, and that noise

shock i ∈ I has a unit impact response on the forecast x̂i,t but zero impact response on

forecasts x̂j,t for j < i. These restrictions impose a familiar lower-triangular structure

on the shocks in a noise representation. They amount to a recursive causal ordering

of the noise shocks in terms of the observable collection of forecasts {x̂i,t}.

Assumption 1. In any noise representation of fundamentals and beliefs, the follow-

ing conditions are satisfied:

(a) εvi,t ⊥ εvj,t for all i 6= j ∈ I,

(b) 〈x̂i,t, εvi,t〉/‖εvi,t‖2 = 1 for all i ∈ I, and

(c) 〈x̂j,t, εvi,t〉 = 0 for all j < i ∈ I.

Proposition 11. In any noise representation of fundamentals and beliefs that satis-

fies Assumption (1), the underlying shocks are uniquely determined.

Of course, an immediate corollary of this proposition is that under Assumption (1),

the impulse response function and variance decomposition of any endogenous process

with respect to each shock in a noise representation are also uniquely determined.

5.3 Offsetting News Shocks

The orthogonal transformation implicit in Assumption (1) is also related to a popular

thought experiment in the news-shock literature, which some researchers have used

to try to isolate the effects of a change in beliefs that does not correspond to any
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change in fundamentals (e.g. Christiano et al. (2010) Section 4.2, Schmitt-Grohé

and Uribe (2012) Section 4.2, Barsky, Basu, and Lee (2015) Section IV.A, or Sims

(2016) Section 3.3). This experiment involves computing the impulse responses of

endogenous variables in response to particular combinations of offsetting news and

surprise shocks. The following description comes from Christiano et al. (2010), with

slight modification to match the notation in this paper:

“In the first period, a signal, εan,t > 0 arrives, which creates the ex-

pectation that zt n periods later will jump. However, that expectation is

ultimately disappointed, because εa0,t = −εan,t. Thus, in fact nothing real

ever happens. The dynamics of the economy are completely driven by an

optimistic expectation about future fundamentals, an expectation that is

never realized.” (p. 116)

It turns out that in models with i.i.d. news shocks, the noise shocks in any

observationally equivalent representation generate exactly the sort of offsetting news

shocks envisioned by this thought experiment. To see this, recall the simple news

representation in system (1) from Section (2.1). In a noise representation of the type

in system (2), which satisfies Assumption (1), observational equivalence implies that

the news shocks are linear combinations of the Wold innovations:

a0,t = w0,t and a1,t = κw1,t,

where κ = σ2
x/(σ

2
x+σ2

v) is a Kalman gain parameter controlling how much people trust

the noisy signal. We can in turn express the Wold innovations in terms of observable

variables, w0,t = xt−κst and w1,t = st, so that the news shocks can be written in the

form

a0,t = xt − κst−1 and a1,t = κst.

Therefore, the responses of the news shocks a0,t and a1,t in period h to a unit impulse

in the noise shock vt at date t are given by:

IR(a1,t+h) = 1{h=0}κ and IR(a0,t+h) = −1{h=1}κ.

This means that a positive noise shock is equivalent to a positive news shock today

followed by an exactly offsetting surprise shock one period in the future.

While this discussion shows that it may be possible to find particular linear com-

binations of news shocks that mimic a noise shock, there are a number of advantages
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to working directly with noise shocks. First, we can think about how likely these sit-

uations arise, since we have an explicit probability distribution for the noise shocks:

for example, how big is a “one standard deviation impulse?” Second, we can ask how

important these types of situations are in the data sample overall; that is, we can

do a proper variance decomposition. Third, the fact that noise representations are

generally not unique helps us to remember that the dynamic response of the economy

to noise shocks is also not unique. With news shocks at multiple different horizons,

there are many ways people’s expectations can be subsequently reversed, and the

reversal may not occur only in the final period.

6 Conclusion

Models with news and noise are more intimately related than the literature has ac-

knowledged. In fact, as we have argued here, there is a precise sense in which they

are identical. The missing link is the observation that they are really just two differ-

ent ways of describing the joint dynamics of exogenous economic fundamentals and

people’s beliefs about them. This observation is formalized by Theorem (1).

Far from being a purely negative result, the observational equivalence between

news and noise representations serves an important positive purpose. Namely, it

provides a way to determine the importance of beliefs as an independent cause of

fluctuations. A number of prominent studies have constructed models to understand

how beliefs can drive fluctuations. However, none of them has fully isolated the con-

tribution of beliefs that is independent of the contribution due to fundamentals. This

is because what these studies refer to as “news” shocks actually mix the fluctuations

due fundamentals and beliefs.

In order to disentangle beliefs from fundamentals, it is necessary to first derive a

noise representation of the model, and then perform variance decompositions in terms

of noise shocks. These decompositions are always unique by Proposition (4). We

also state a set of sufficient conditions for uniquely recovering the impulse response

function of any endogenous process with respect to noise shocks. The uniqueness

result that obtains under those conditions is presented in Proposition (11).

We then apply our results to three quantitative models of the U.S. economy, from

Schmitt-Grohé and Uribe (2012), Barsky and Sims (2012), and Blanchard, L’Huillier,

and Lorenzoni (2013). We show that these studies have all understated the impor-
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tance of pure shocks to beliefs that is implied by their models. It turns that each

of the models we considered attributes a very small importance of noise shocks for

investment, but substantial disagreement remains regarding the importance of beliefs

for other variables.

The observational equivalence between news and noise shocks also implies that

structural VAR analysis is equally applicable to models with news or noise. The

shocks in both news and noise representations can be recovered from reduced-form

residuals with one orthogonal transformation. This means that, just as in the context

of the dynamic general equilibrium models from Section (4), it is also possible to

determine what estimated news-shock structural VARs of the type in Cochrane (1994)

or Beaudry and Portier (2006) imply about the importance of noise shocks.

We conclude by pointing out that our results are also relevant for fields outside the

realm of business-cycle macroeconomics. In the asset pricing literature, for example,

a large body of research starting with Bansal and Yaron (2004) has argued that

the following news representation of beliefs and fundamentals is useful for explaining

many asset-pricing phenomena:

xt = a0,t + a1,t−1

a0,t = εa0,t

a1,t = ρa1,t−1 + εa1,t,

where [
εa0,t

εa1,t

]
iid∼ N

(
0,

[
σ2
a,0 0

0 σ2
a,1

])
.

The fundamental process {xt} captures exogenous variation in payoffs (e.g. dividend

growth) and {a1,t} represents the “long-run risk” in those payoffs. How much of the

implied variation in asset prices is attributable to independent variation in people’s

beliefs? To answer this question, we can follow the same approach as in Section (4).

We leave this and other applications for future work.
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A Proofs

Proof of Proposition (1). Let x̂t ≡ Et[xt+1] denote people’s expectations of the fun-

damental at date t + 1 given their information up through date t. The observable

processes are {xt} and {x̂t}. Expectations at horizons greater than one are spanned

by these two processes.

The two representations are observationally equivalent if and only if the covariance

generating function (c.g.f.) of the data vector dt ≡ (xt, x̂t)
′ is the same under either

representation. Let gd(z) denote the c.g.f. of dt, where z is a number in the complex

plane. Then we can equate the c.g.f.’s implied by each representation:

gd(z) =

[
σ2
a,0 + σ2

a,1 σ2
a,1z

σ2
a,1z

−1 σ2
a,1

]
︸ ︷︷ ︸

news

=

 σ2
x

(
σ4
x

σ2
x+σ

2
v

)
z(

σ4
x

σ2
x+σ

2
v

)
z−1

(
σ4
x

σ2
x+σ

2
v

) 
︸ ︷︷ ︸

noise

.

This equality holds if and only if the relations in Proposition (1) are satisfied.

Proof of Corollary (1). The proof is stated in the text.

Proof of Theorem (1). To prove the first part of the theorem, note that because

Ht−1(x̂) ⊂ Ht(x̂) for all t ∈ Z, it is possible to decompose Ht(x̂) into an orthog-

onal family of subspaces

Ht(x̂) =
∞⊕
i=0

Dt−i,

where Dt ≡ Ht(x̂)	Ht−1(x̂) (cf. Rozanov, 1967, ch. 2). This means that xt ∈ Ht(x̂)

has a unique representation of the form

xt =
∞∑
i=0

wi,t−i, (8)

where the random variable wi,t−i represents the projection of xt onto Dt−i for any

i ∈ Z+. By the orthogonality of the sequence of subspaces {Dt}, the process {wi,t} is

uncorrelated over time for each i ∈ Z+.

While equation (8) looks almost like a news representation, it does not satisfy

Definition (1) because it may be that wi,t 6⊥ wj,t for some i 6= j. Therefore, we use a

version of the Gram-Schmidt orthogonalization procedure to transform these into an
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orthogonal sequence of shocks (cf. Luenberger, 1969, Theorem 3.5.1). Specifically, let

us define:

εa0,t = w0,t

εai,t = wi,t −
i−1∑
j=0

φi,jε
a
j,t for i > 0,

where φi,j ≡ 〈wi,t, εaj,t〉/‖εaj,t‖2 is a projection coefficient. Define the index set I to be

the set of indices i ∈ Z+ such that ‖εai,t‖ > 0. The collection of orthogonal shocks

εi,t with i ∈ I is uniquely determined because the collection of input shocks wi,t with

i ∈ Z+ is unique. Substituting the orthogonalized shocks into equation (8), it follows

that xt can be uniquely rewritten as:

xt =
∞∑
i=0

∑
j≤i

φi,jε
a
j,t−i =

∑
j∈I

∞∑
i=j

φi,jε
a
j,t−i =

∑
j∈I

aj,t−j.

The second equality rearranges the indexes on the double summation, and the third

equality introduces the definition aj,t−j ≡
∑∞

i=j φi,jε
a
j,t−i. The fact that the orthogo-

nalized shocks are also uncorrelated over time implies that aj,t ⊥ ak,τ for all j 6= k

and t, τ ∈ Z. Therefore, this defines a news representation when people’s date-t

information set Ht(a).

What remains is to prove that the expectations implied by this news representation

are in fact equal to {x̂i,t} for any i ∈ Z. Under rational expectations, the i-step ahead

expectation of xt at date t under the original noise representation is equal to the

orthogonal projection of xt+i onto Ht(x̂): x̂j,t = E[xt+j|Ht(x̂)]. By the uniqueness of

orthogonal projections, it must be that

wi,t = x̂i,t − x̂i+1,t−1,

where wi,t was defined in equation (8). Therefore, Ht(w) = Ht(x̂). But then because

Ht(a) = Ht(w) by construction, it follows that Ht(a) = Ht(x̂). So expectations are

indeed the same under both representations:

x̂i,t = E[xt+i|Ht(x̂)] = E[xt+i|Ht(a)],

which completes the proof of the first part of the theorem.

To prove the second part of the theorem, we start from the (unique) news repre-

sentation and define

si,t ≡ ai,t for all i ∈ I.
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BecauseH(x) ⊂ H(a), there exist unique elements mi,t ∈ H(x) and vi,t ∈ H(s)	H(x)

such that

si,t = mi,t + vi,t.

This defines a noise representation when people’s date-t information set is Ht(s).

What remains is to prove that the expectations implied by this noise representation

are the same as the ones implied by the original news representation. BecauseHt(s) =

Ht(a) by construction, and Ht(a) = Ht(x̂) by the definition of a news representation,

it follows that Ht(s) = Ht(x̂) and therefore expectations are the same:

x̂i,t = E[xt+i|Ht(x̂)] = E[xt+i|Ht(s)].

This completes the proof of the second part of the theorem.

Proof of Proposition (2). Observational equivalence requires that the dynamics of the

forecasts {x̂i,t} are the same for all i, t ∈ Z. By the endogeneity of the process {ct},
ct ∈ Ht(x̂), so the dynamics of {ct} must also be the same.

Proof of Proposition (3). As in the proof of Proposition (1), we can equate the c.g.f.

of dt ≡ (xt, x̂t)
′ that is implied by each representation:

gd(z) =

 σ2
η + σ2

λ

(
σ4
λ

σ2
λ+σ

2
ξ

)
z(

σ4
λ

σ2
λ+σ

2
ξ

)
z−1

σ4
λ

σ2
λ+σ

2
ξ


︸ ︷︷ ︸

system (4)

=

 σ2
x

(
σ4
x

σ2
x+σ

2
v

)
z(

σ4
x

σ2
x+σ

2
v

)
z−1 σ4

x

σ2
x+σ

2
v


︸ ︷︷ ︸

noise

.

This equality holds if and only if the relations in Proposition (3) are satisfied.

Proof of Proposition (4). Consider an arbitrary noise representation of fundamentals

and beliefs and an arbitrary endogenous process {ct}. Using the structure of signals

in a noise representation, H(s) = H(m) ⊕ H(v). Because vi,t ∈ H(s) 	 H(x) for

all i ∈ I, the uniqueness of orthogonal decompositions implies that H(m) = H(x).

Therefore, H(s) = H(x)⊕H(v). Furthermore, the definition of noise shocks implies

that H(εv) = H(v), so

H(s) = H(x)⊕H(εv). (9)

By the endogeneity of {ct} and the rationality of expectations, ct ∈ H(s) for all t ∈ Z.

Combining this with Equation (9), it follows that for each ct, there exist two unique

elements at ∈ H(x) and bt ∈ H(εv) such that

ct = at + bt.
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To consider variance decompositions at different frequencies, let fy(ω) denote the

spectral density function of a stochastic process {yt}. Then because at ⊥ bt for all

t ∈ Z, it follows that

fc(ω) = fa(ω) + fb(ω),

where the functions fa(ω) and fb(ω) are uniquely determined by the processes {at}
and {bt}. These functions in turn uniquely determine the share of the variance of

{ct} due to noise shocks in any frequency range ω < ω < ω, which is equal to∫ ω
ω
fb(ω)dω∫ ω

ω
fc(ω)dω

.

The share due to fundamentals is equal to one minus this expression.

Proof of Corollary (2). Consider an arbitrary noise representation of fundamentals

and beliefs, and an endogenous process {ct}. By the rationality of expectations,

people’s best forecast of ct+h as of date t is equal to

ĉh,t = E[ct+h|Ht(s)] = E[ct+h|Ht(x̂)].

Therefore, ĉh,t ∈ Ht(x̂). This means that the forecast error wht ≡ ct − ĉh,t−h also

satisfies wh,t ∈ Ht(x̂). Therefore, {wht } is an endogenous process. By Proposition

(4), the variance decomposition of this process in terms of noise and fundamentals is

uniquely determined over any frequency range. Moreover, this result is true for any

forecast horizon h ∈ Z because h was chosen arbitrarily.

Proof of Proposition (5). The proof of this result is a straightforward generalization

of the proof of Proposition (1). In a news representation with i.i.d. news processes,

the cross-c.g.f. of any two forecast processes {x̂i,t} and {x̂j,t} for i, j ∈ Z+ is equal to

gi,j(z) =
∑
k∈K

σ2
a,kz

j−i, (10)

where K is defined as the set of indices k ∈ I such that k ≥ |j − i| + i. In a news

representation of the type described in the proposition, the cross-c.g.f. of any two

forecast processes {x̂i,t} and {x̂j,t} for i, j ∈ Z+ is equal to

g0,0(z) = σ2
x (11)

gi,j(z) = σ2
x

[
1 +

1/σ2
x∑

k∈K 1/σ2
v,k

]−1
zj−i for i, j > 0.
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Equating the c.g.f.’s in (10) with those in (11), and recursively solving for the param-

eters of the noise representation delivers the relations stated in the proposition.

Proof of Corollary (3). Define the composite shock

εxt ≡ εa0,t + εa4,t−4 + εa8,t−8. (12)

The process {εxt } is i.i.d. because {εai,t} is i.i.d. for each i ∈ I ≡ {0, 4, 8}. People’s

date-t information set in representation (5) is Ht(ε
a). But based on this information

set, equation (12) defines a news representation for {εxt } with i.i.d. news processes.

Therefore, we can apply Proposition (5) to the composite shock process, which gives

the relations stated in the corollary. Finally, note that x̂i,t ∈ Ht(ε̂
x) for all t ∈ Z, which

means that each {x̂i,t} is endogenous with respect to {εxt }. Therefore, observational

equivalence in terms of {εxt } implies observational equivalence in terms of {xt}.

Proof of Proposition (6). According to representation (6), the two signals observed

by people in the economy are s0,t ≡ xt and s1,t ≡ λt + ξt. Because H(x) ⊂ H(s),

there exist two unique elements mt ∈ H(x) and vt ⊥ H(x) such that:

s1,t = mt + vt for all t ∈ Z.

Using the finite-order ARMA restrictions in system (6), it follows that mt is related

to {xt} according to (cf. Whittle, 1983, ch. 5):

mt = α(L)xt, α(z) ≡ σ2
λ

z[σ2
λ + σ2

η(1− ρz)(1− ρz−1)]
(13)

where L is the lag operator and z ∈ C. We can factor this expression for α(z) as

α(z) =
δσ2

λ

ρσ2
ηz(1− δz)(1− δz−1)

,

where δ is the root of the quadratic polynomial

P(z) = ρz2 −
(

1 + ρ2 +
σ2
λ

σ2
η

)
z + ρ

that lies inside the unit circle. Plugging the law of motion for {xt} into Equation

(13), we find that the c.g.f. of {mt} is

gm(z) =
δσ4

λ

ρσ2
η(1− ρz)(1− ρz−1)(1− δz)(1− δz−1)

,
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which is in canonical form (cf. Whittle, 1983, ch. 2). This means that {mt} has an

ARMA(2,0) representation of the form:

mt = φ1mt−1 + φ2mt−2 + εxt , εxt
iid∼ N (0, σ2

x),

where φ1 ≡ ρ+ δ, φ2 ≡ −ρδ, and σ2
x ≡ δσ4

λ/(ρσ
2
η). Inverting the relation in Equation

(13), we have that xt = α(L)−1mt. Expanding the lag polynomial, it follows that

{xt} has a representation of the form:

xt = γ0mt + γ1mt−1 + γ0mt−2,

where γ0 ≡ −ρσ2
η/σ

2
λ and γ1 ≡ −γ0(1 + δ2)/δ. Finally, using the definition of vt,

gv(z) =
σ2
λσ

2
η

σ2
λ + σ2

η(1− ρz)(1− ρz−1)
+ σ2

ξ = σ2
ξ

δ

β

(1− βz)(1− βz−1)
(1− δz)(1− δz−1)

,

where β is the root of the polynomial

P(z) = ρz2 −

(
1 + ρ2 +

σ2
λ(σ

2
λ + σ2

ξ )

σ2
ησ

2
ξ

)
z + ρ

that lies inside the unit circle. This is the canonical form for gv(z), which means that

{vt} has an ARMA(1,1) representation of the form:

vt = δvt−1 + εvt − βεvt−1, εvt
iid∼ N (0, σ2

v),

where σ2
v ≡ σ2

ξδ/β. Because Ht(s) is unchanged from representation (6) for all t ∈ Z,

it follows that x̂i,t ≡ E[xt+i|Ht(s)] is also unchanged for any i ∈ Z. Therefore

these two representations are observationally equivalent. Uniqueness follows from the

uniqueness of the processes {mt} and {vt} in the orthogonal projection of s1,t on H(x)

at each date, and the fact that the polynomials defining δ and β each have only one

root inside the unit circle.

Proof of Proposition (7). According to representation (7), the two signals observed

by people in the economy are s0,t ≡ xt and s1,t ≡ −ηt + ξt. Because H(x) ⊂ H(s),

there exist two unique elements m̃t ∈ H(x) and ṽt ⊥ H(x) such that:

s1,t = m̃t + ṽt for all t ∈ Z.

43



Using the finite-order ARMA restrictions in system (7), it follows that m̃t is related

to {xt} according to:

m̃t = α(L)xt, α(z) ≡ −
(1− z−1)σ2

η

σ2
λ + (1− z)(1− z−1)σ2

η

,

where L is the lag operator and z ∈ C. Using the parametric restriction from Blan-

chard, L’Huillier, and Lorenzoni (2013) that ρσ2
λ = (1 − ρ)2σ2

η, we can factor this

expression for α(z) as

α(z) = − (1− z−1)ρ
(1− ρz)(1− ρz−1)

.

Now define the process mt ≡ (1− ρL−1)−1xt, so we can write m̃t = ρ(1− L−1)/(1−
ρL)mt. Using the law of motion for {xt}, it follows that

mt = ρmt−1 + εxt , εxt
iid∼ N (0, σ2

x),

where σ2
x ≡ σ2

η/ρ. Defining the new signal variable st ≡ (1 − ρL)s1,t and the new

noise variable vt ≡ (1− ρL)ṽt, we have that

st = ρmt+1 − ρmt + vt.

Note that because |ρ| < 1, the signal process {st} spans the same closed subspace as

{s1,t}. Finally, using the definition of {vt},

gv(z) =
ρσ2

λ + σ2
ξ [(1− ρz)(1− ρz−1]2

(1− ρz)(1− ρz−1)

= σ2
v

ρ2

β1β2

(1− β1z)(1− β1z−1)(1− β2z)(1− β2z−1)
(1− ρz)(1− ρz−1)

,

where β1 and β2 are the two roots of the polynomial

P(z) = ρ2z4 − 2ρ(1 + ρ2)z3 +

(
1 + ρ4 + 4ρ2 + ρ

σ2
λ

σ2
ξ

)
z − 2ρ(1 + ρ2)z + ρ2

that lie inside the unit circle. This is the canonical form for gv(z), which means that

{vt} has an ARMA(1,2) representation of the form

vt = φvt−1 + εvt − (β1 + β2)ε
v
t−1 + β1β2ε

v
t−2, εvt

iid∼ N (0, σ2
v),

where σ2
v ≡ ρ2σ2

ξ/(β1β2). Because Ht(s) is the same as in representation (7) for all

t ∈ Z, it follows that x̂i,t ≡ E[xt+i|Ht(s)] is also unchanged for any i ∈ Z. Therefore,
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these two representations are observationally equivalent. Uniqueness follows from the

uniqueness of the processes {mt} and {vt} in terms of {m̃t} and {ṽt} in the orthogonal

projection of s1,t on H(x) at each date, and the fact that the polynomial defining β1

and β2 only has two roots inside the unit circle.

Proof of Proposition (8). Consider an arbitrary noise representation of fundamentals

and beliefs. Because x̂i,t ∈ H(s) and H(x)⊕H(v) (cf. the proof of Proposition (4)),

it follows that x̂i,t has a unique decomposition of the form

x̂i,t = m̂i,t + v̂i,t,

where m̂i,t ∈ H(x) and v̂i,t ⊥ H(x) for any i ∈ Z. To prove that Dt ≡ Ht(v)	Ht−1(v)

is uniquely determined for all t ∈ Z, it is sufficient to prove that Ht(v) = Ht(v̂). This

is because the uniqueness of orthogonal decompositions ensures that if Ht(v) = Ht(v̂)

then Ht(v)	Ht−1(v) = Ht(v̂)	Ht−1(v̂).

Because Ht(s) = Ht(x̂), si,t has a unique representation in terms of current and

past expectations:

si,t =
∞∑
j=0

∞∑
k=0

ψi,j,kx̂k,t−j,

where ψi,j,k ≡ 〈si,t, x̂k,t−j〉/‖x̂k,t‖2. Projecting both sides onto the subspace H(s) 	
H(x), and using the linearity of orthogonal projections, we can write

vi,t =
∞∑
j=0

∞∑
k=0

ψi,j,kv̂k,t−j,

so Ht(v) ⊆ Ht(v̂). Conversely, Ht(x̂) = Ht(s) implies that Ht(v̂) ⊆ Ht(v) because

v̂i,t =
∞∑
j=0

∑
k∈I

θi,j,kvk,t−j,

where θi,j,k ≡ 〈x̂i,t, sk,t−j〉/‖sk,t‖2. Therefore, Ht(v) = Ht(v̂). Finally, because x̂0,t =

xt by Ht(x) ⊂ Ht(s) and the rationality of expectations, it follows that the space

spanned by fundamental shocks is uniquely determined as well.

Proof of Proposition (9). Begin with an arbitrary news representation. By defini-

tion of shocks, Ht(ε
a) = Ht(a). By the rationality of expectations, Ht(x̂) = Ht(a).

Therefore, Ht(ε
a) = Ht(x̂), so this is an invertible representation.
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Now consider an arbitrary noise representation. Suppose that it is invertible.

Then εvi,t ∈ Ht(x̂) for any i ∈ I ⊆ Z+ and t ∈ Z. This implies that the noise

shocks are contained in the information set of agents. But by rationality, if εvi,t is

contained in the information set of agents at date t, because it is uncorrelated with

fundamentals, εvi,t /∈ Ht(x̂). This is a contradiction. Therefore, the representation is

not invertible.

Proof of Proposition (10). By invertibility, Ht(ε) = Ht(y) = Ht(ε̃) for all t ∈ Z.

Then by the uniqueness of orthogonal projections:

Ht(ε)	Ht−1(ε) = Ht(ε̃)	Ht−1(ε̃) for all t ∈ Z.

Proof of Proposition (11). By definition, the collection of noise shocks {εvi,t} for i ∈ I
and fixed t ∈ Z generates the subspace Dt ≡ Ht(v) 	 Ht−1(v). By Proposition

(8), Ht(v) = Ht(v̂), so Dt = Ht(v̂) 	 Ht−1(v̂). Therefore, the shock ε̂vi,t ≡ v̂i,t −
E[v̂i,t|Ht−1(v̂)] can be represented in the form:

ε̂vi,t =
∑
j∈I

γi,jε
v
j,t, (14)

where γi,j ≡ 〈ε̂vi,t, εvj,t〉/‖εvj,t‖2. By Assumption (1), the collection {εvi,t} for fixed t is

an orthogonal basis for Dt with γi,i = 1 and γi,j = 0 for all i < j ∈ I. This implies

that the noise shocks can be recovered by recursively solving system (14) at each date

t ∈ Z to obtain {εvi,t} in terms of the shocks {ε̂vi,t} for all i ∈ I:

εvi,t = ε̂vi,t −
∑
j<i

γi,jε
v
j,t, for all i ∈ I.

Finally, the fundamentals shocks {εxt } can be recovered from the history of the process

{xt}, which is observable because Ht(x) ⊂ Ht(s) for all t ∈ Z.
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B Quantitative Models

The following subsections provide a sketch of each of the three quantitative models

considered in this paper. For more details, we refer the reader to the original articles

and their supplementary material.

B.1 Model of Schmitt-Grohé and Uribe (2012)

A representative household chooses consumption {Ct}, labor supply {ht}, investment

{It}, and the utilization rate of existing capital {ut} to maximizes its lifetime utility

subject to a standard budget constraint:

max E
∞∑
t=0

βtζt
(Ct − bCt−1 − ψhθtSt)1−σ

1− σ
subject to

St = (Ct − bCt−1)γS1−γ
t−1

Ct + AtIt +Gt =
Wt

µt
ht + rtutKt + Pt

Kt+1 = (1− δ(ut))Kt + zIt It

[
1− Φ

(
It
It−1

)]
Relative to the standard real business cycle model, this model features investment

adjustment costs Φ(It/It−1); variable capacity utilization, which increases the return

on capital rtut at the cost of increasing its rate of depreciation through δ(ut); one

period internal habit formation in consumption, controlled by 0 < b < 1; a potentially

low wealth effect on labor supply, when 0 < γ < 1 approaches its lower limit; and

monopolistic labor unions, which effectively reduce the wage rate by an amount µt

each period but rebate profits lump sum to the household through Pt.

Output is produced by a representative firm, which combines capital Kt, labor ht,

and a fixed factor of production L using a (potentially) decreasing returns to scale

production function:

Yt = zt(utKt)
αk(Xtht)

αh(XtL)1−αk−αh .

Market clearing requires that the goods and labor markets clear so that the aggre-

gate resource constraint is satisfied: Ct + AtIt + Gt = Yt. The seven fundamental

processes capture exogenous variation in permanent and transitory neutral produc-

tivity {Xt, zt}, permanent and transitory investment-specific productivity {At, zIt },
government spending {Gt}, wage markups {µt}, and preferences {ζt}.
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B.2 Model of Barsky and Sims (2012)

A representative household chooses consumption {Ct}, labor supply {Nt}, and real

holdings of riskless one-period bonds {Bt} to maximize its lifetime utility subject to

a standard budget constraint:

max E
∞∑
t=0

βt

[
ln(Ct − κCt−1)−

N
1+1/η
t

1 + 1/η

]
subject to

Ct +Bt = wtNt − Tt + (1 + rt−1)Bt−1 + Πt,

where rt is the net nominally risk-free interest rate, wt is the wage, Tt denotes lump-

sum taxes, and Πt is aggregate profits.

Final goods producers are competitive and take the price of intermediate goods,

Pt(j), as given and each have a production function of the form:

Yt =

[∫ 1

0

Yt(j)
ξ−1
ξ

] ξ
ξ−1

Intermediate goods firms are monopolistically competitive and take the demands

of final goods firms as given. They each have a production function of the form

Yt(j) = AtKt(j)
αNt(j)

1−α. Each intermediate firm chooses a price for its own good,

subject to the constraint that it will only be able to re-optimize its price each period

with constant probability 1− θ.
A continuum of capital producers produce new capital (to sell to intermediate

firms) according to the production function

Y k
t (ν) = φ

(
It(ν)

Kt(ν)

)
Kt(ν),

where φ is an increasing and concave function. The aggregate capital stock evolves

according to Kt = φ(It/Kt)Kt−1 + (1 − δ)Kt−1, where 0 < δ < 1 is the depreciation

rate. The aggregate resource constraint is Yt = Ct+It+Gt (ignoring resources lost due

to inefficient price dispersion). The monetary authority sets the one-period nominally

risk-free rate of return according to a feedback rule of the (log-linear approximate)

form:

it = ρiit−1 + (1− ρi)φπ(πt − π∗) + (1− ρi)φy(∆Yt −∆Y ∗) + εi,t.

The three fundamental processes capture exogenous variation in permanent neutral

productivity {At}, government spending {Gt}, and monetary policy {εi,t}

48



B.3 Model of Blanchard, L’Huillier, and Lorenzoni (2013)

A representative household chooses consumption {Ct}, investment {It}, nominally

risk-free bond holdings {Bt}, and the rate of capital utilization {Ut} to maximize its

lifetime utility subject to a standard budget constraint:

max E
∞∑
t=0

βt
[
ln(Ct − hCt−1)−

1

1 + ζ

∫ t

0

N1+ζ
j,t dj

]
subject to

PtCt + PtIt + Tt + PtC(Ut)K̄t−1 = Rt−1Bt−1 + Υt +

∫ 1

0

WjtNjtdj +Rk
tUtK̄t−1,

K̄t = (1− δ)K̄t−1 +Dt[1− G(It/It−1)]It

where Pt is the price level, Tt is a lump sum tax, Rt is the gross nominally risk-

free rate, Υt is aggregate profits, Wjt is the wage of labor type j, Rk
t is the capital

rental rate, 0 < δ < 1 is the rate of depreciation, G(It/It−1) represents investment

adjustment costs, C(Ut) represents the marginal cost of increasing capacity utilization.

It also chooses the wage {Wjt} for each type of labor subject to the constraint that it

will only be able to re-optimize its wage each period with constant probability 1−θw.

Final goods producers are competitive and take the price of intermediate goods

as given, Pjt, and each have a production function of the form

Yt =

[∫ 1

0

Y
1

1+µpt

jt dj

]1+µpt
.

Intermediate goods firms are monopolistically competitive, each with a production

function of the form Yjt = (Kjt)
α(AtLjt)

1−α. Each intermediate firm chooses a price

for its own good, subject to a 1− θp probability of re-optimization each period.

Labor services are supplied to intermediate goods producers by competitive labor

agencies that take wages as given, Wjt, and have a production function of the form

Nt =

[∫ 1

0

N
1

1+µwt
jt dj

]1+µwt
.

Market clearing in the final goods market requires that Ct+It+C(Ut)K̄t−1 +Gt = Yt,

and in the labor market that
∫ 1

0
Ljtdj = Nt. Monetary policy follows the rule:

rt = ρrrt−1 + (1− ρr)(γππt + γyŷt) + qt.

The six fundamental processes capture exogenous variation in permanent neutral

productivity {At}, transitory investment-specific productivity {Dt}, price markups

{µpt}, wage markups {µwt}, government spending {Gt}, and monetary policy {qt}.
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