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Abstract

Efficiency in the Pareto sense and strategy-proofness have been the central design
desiderata in market design for allocation of discrete resources, such as dorm allocation,
school choice, and kidney exchange. However, more precise efficiency objectives, such
as welfare maximization, have been neglected. In a setting where heterogeneous indi-
visible goods are being allocated without monetary transfers and each agent has a unit
demand, we use Arrovian efficiency as the notion of welfare optimization and show that
a mechanism is individually strategy-proof and Arrovian efficient, i.e., it always selects
the best outcome with respect to some Arrovian social welfare function, if and only
if the mechanism is group strategy-proof and Pareto efficient. If the Arrovian social
welfare function completely ranks all matchings, then the individually strategy-proof
and Arrovian-efficient mechanisms are almost sequential dictatorships.
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1 Introduction

Microeconomic theory has informed the design of many markets and other institutions.
Recently, many new mechanisms have been proposed to allocate resources in environments
in which agents have single-unit demands and transfers are not used or are prohibited. These
environments recently found applications in the allocation and exchange of transplant organs,
such as kidneys (cf. Roth, Sönmez, and Ünver, 2004); the allocation of school seats in Boston,
New York City, Chicago, etc. (cf. Abdulkadiroğlu and Sönmez, 2003); and the allocation of
dormitory rooms at US colleges (cf. Abdulkadiroğlu and Sönmez, 1999).

The central concerns in the development of allocation mechanisms are incentives and
efficiency.1 Many of these mechanisms function by elicitation of ordinal information about
preferences, because this approach is more practical. Moreover, cardinal information about
preferences does not theoretically have much meaning in environments without monetary
transfers as strategy-proofness makes cardinal information irrelevant. Therefore, Pareto
efficiency or its constrained versions has been the main goal of design, along with incentive
compatibility. A matching is Pareto efficient if there exists no other matching that makes
everybody weakly better off and at least one agent better off.

However, Pareto efficiency is a weak efficiency concept. While interpersonal utility com-
parisons are not needed for Pareto efficiency, it only gives a lower bound for what can be
achieved through desirable mechanisms. One way of strengthening Pareto efficiency is requir-
ing an efficient matching to be the maximum of a social ranking of matchings, in line with
Bergson (1938), Samuelson (1947), and Arrow’s (1963) reformulation of welfare economics.2

To formulate this more demanding efficiency criterion, we define a social welfare function
(SWF) to be a mapping from profiles of agents’ preferences over matchings to partial strict
orderings of matchings. We allow partial orderings — such as Pareto dominance — and
also derive results for complete orderings.3 We require that each SWF satisfies the standard

1For instance, Bogolomania and Moulin (2004) discuss “a recent flurry of papers on the deterministic
assignment of indivisible goods” and state that “the central question of that literature is to characterize the
set of efficient and incentive compatible (strategy-proof) assignment mechanisms.” The prior theoretical
literature on single-unit-demand allocation without transfers has focused on characterizing mechanisms that
are strategy-proof and efficient alongside other properties (see below for examples of such characterizations).
In contrast, our characterization of strategy-proofness and efficiency does not rely on additional assumptions.

2Pareto efficiency is, on one hand, the baseline efficiency requirement, and on the other hand, it does not
indicate which of the possibly many Pareto-efficient matchings to choose. For instance, Arrow (1963), pp.
36-37, discusses the partial ordering of outcomes given by Pareto dominance, and observes: “But though
the study of maximal alternatives is possibly a useful preliminary to the analysis of particular social welfare
functions, it is hard to see how any policy recommendations can be based merely on a knowledge of maximal
alternatives. There is no way of deciding which maximal alternative to decide on.”

3See e.g., Sen (1970,1999) and Weymark (1984) for analysis of welfare with partial orderings. Our main
results would remain unchanged if we formulated the efficiency requirement in terms of social choice functions
satisfying the Pareto condition and the irrelevance of independent alternatives.
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Pareto and independence-of-irrelevant-alternatives postulates (Arrow, 1963): (i) a SWF is
Pareto if it ranks any matching below any other matching that Pareto dominates it, and
(ii) a SWF satisfies the independence of irrelevant alternatives if, given any two profiles of
preferences and any two matchings that are socially comparable under both profiles, if all
agents rank the two matchings in the same way under both profiles, then the social ranking
of the two matchings is the same under both profiles. We call a mechanism Arrovian efficient
with respect to a SWF if, for all preference profiles, the resulting matching is the unique
maximum of the SWF.4 For shortness, we say that a mechanism is Arrovian efficient if it is
Arrovian efficient with respect to some SWF.

Our model setup is standard. In each economy, there are finite numbers of agents and
indivisible objects, dubbed as “houses” (Shapley and Scarf, 1974). Each agent has a strict
preference relation over houses. A matching is the outcome of an economy: each agent is
matched with a house and no house is matched with two different agents.

Our first result, Theorem 1, shows that a mechanism is individually strategy-proof and
Arrovian efficient if and only if it is Pareto-efficient and group strategy-proof. A mechanism
is individually strategy-proof if there does not exist any economy (i.e., problem) such that
at least one agent can improve above his assignment if he reports an untruthful preference
relation. A mechanism is group strategy-proof if there does not exist any economy such that
there exists a subset of agents (i.e., a group) who can jointly report some preferences such
that every agent in this group receives a weakly better outcome and at least one agent in
the group receives a better outcome than the case when all in the group reported their true
preferences. Pycia and Ünver (2015) showed that group-strategy-proof and Pareto-efficient
mechanisms in this environment are precisely the trading-cycles mechanisms they introduced,
and in light of our Theorem 1, so are the individually strategy-proof and Arrovian-efficient
mechanisms.

We furthermore show that almost sequential dictatorships are the only mechanisms that
are individually strategy-proof and Arrovian efficient with respect to a SWF that ranks all
matchings. A sequential dictatorship is a mechanism defined through a sequential algorithm
and a tree graph with agents as vertices and houses as edges. In each round of the algorithm,
an agent chooses the best house he likes among the remaining ones. Who will choose in each
round is determined by the tree: The root agent is the first agent to pick, and who will
pick next is determined according to the house that the first agent chose (branch from the
root) and so on. The tree can be alternatively represented as a mapping that designates for

4There is a rich social choice literature on the correspondence between choice and the maximum of the
SWF ranking in the context of social choice (see below). This literature is interested in rationalizing social
choice rather than the efficiency of allocation mechanisms, and hence it says that a mechanism, or social
choice, is “rationalized by a SWF” rather than “efficient with respect to a SWF.”
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each round the person who will choose as a function of who chose what before him. If there
are more houses than agents, then this class is exactly the class of sequential dictatorships
(Theorem 2).5 However, if the number of houses is equal to the number of agents, then there
are other mechanisms that are slightly different from a sequential dictatorship. Consider
a problem in which there are 2 agents and 2 houses and a top-trading-cycles mechanism
(TTC) of Pápai (2000) in which one agent owns a house and the other agent owns the other
house. This mechanism picks the unique Pareto efficient matching as long as the top choices
of the agents disagree and otherwise gives the house ranked first by its owner to its owner
and the other house to the other agent. Such TTCs turn out to be also individually strategy-
proof and Arrovian efficient with respect to complete orderings. For larger sets of agents,
such TTC mechanisms can be appended to the sequential dictatorship trees. Combining
these two mechanism classes defined for house and agent sets of different and equal sizes,
respectively, we show that the full class of strategy-proof and Arrovian-efficient (for complete
rankings) mechanisms is given by, what we call, almost sequential dictatorships (Theorem
3).6

5Sequential dictatorships have not been studied extensively with unit demand for goods, although their
special cases have been. In a serial dictatorship (also known as a priority mechanism), the same agent chooses
next regardless of which house the current agent picks. Svensson (1994) formally introduced and studied
serial dictatorships first; Abdulkadiroğlu and Sönmez (1998) studied a probabilistic version of them where the
order of agents is determined uniformly randomly; Svensson (1999) and Ergin (2000) characterized them using
plausible axioms. Recently, under the existence of outside options, Pycia and Ünver (2007) characterized a
subclass of sequential dictatorships different from serial dictatorships. With multiple-house demand under
responsive preferences, Hatfield (2009) showed that sequential dictatorships are the only strategy-proof, non-
bossy, and Pareto-efficient mechanisms. Pápai (2001) characterized the sequential dictatorships in a similar
domain through the properties of strategy-proofness, non-bossiness, and citizen sovereignty. See also Klaus
and Miyagawa (2002) for a study of serial dictatorships in a similar domain. In a general model without
transfers, Pycia (2016) showed that all mechanisms that are obviously strategy-proof in the sense of Li (2015)
resemble sequential dictatorships.

6Ehlers, Klaus, and Pápai (2002) and Ehlers and Klaus (2003) characterized strategy-proof mechanisms
with population and resource monotonicity properties, respectively, as TTC mechanisms in which potentially
at most two agents simultaneously own houses in every round of the algorithm. The main difference of almost
sequential dictatorships from these classes is that this type of bi-ownership can only happen when there is
an equal number of agents and houses and only in the last round of the TTC algorithm.
There are other papers that study strategy-proof and efficient mechanisms in the literature: Ehlers (2002)

characterizes group-strategy-proof and Pareto-efficient mechanisms in the weak preference domain, whenever
possible; Pápai (2000) characterizes the same properties with an additional auxiliary axiom in the strict
preference domain as the class of TTC mechanisms.
TTC-type mechanisms were first introduced in Shapley and Scarf (1974) through David Gale’s TTC algo-

rithm that finds the strict core in a strict preference domain with private unit endowments and unit demands.
It was characterized as the unique strategy-proof, individually rational, and Pareto-efficient mechanism by
Ma (1994). A mixed ownership economy in a similar domain was studied by Abdulkadiroğlu and Sönmez
(1999), which introduced an extension of Gale’s TTC and serial dictatorships, and Sönmez and Ünver (2010),
which characterized this mechanism. An extension is available when agents have multiple endowments but
still have unit demands (cf. Pycia and Ünver, 2015). Jaramillo and Manjunath (2012) introduced an extension
of TTC to the weak-preference domain, keeping strategy-proofness and Pareto efficiency properties intact in
this domain. In the school-choice domain with strict preferences (cf. Abdulkadiroğlu and Sönmez, 2003),
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Dictatorships are the benchmark strategy-proof and efficient mechanisms in many areas
of economics. For instance, Gibbard (1973) and Satterthwaite (1975) have shown that all
strategy-proof and unanimous voting rules are dictatorial. Moreover, for this result to hold
we need more than two alternatives. With two alternatives there are other mechanisms that
are strategy-proof and unanimous, very much like our class of almost sequential dictator-
ships.7 Still, we find it surprising that this theorem is true in our environment because — in
contrast to the environments where this question was previously studied — ours allows many
individually strategy-proof (and even group strategy-proof) and Pareto efficient mechanisms
that are not dictatorial.

Overall this paper falls between literature on Arrovian preference aggregation (initi-
ated by Arrow, 1963, Arrow’s Theorem) and literatures on strategy-proof and Pareto-
efficient mechanism design (initiated by Gibbard, 1973 and Satterthwaite, 1975, Gibbard-
Satterthwaite Theorem) in different restricted preference and economic domains. Each
strand has an extensive literature accumulation of its own. However, as far as we know,
this is the first paper that combines mechanism design with Arrovian preference aggrega-
tion.

Moreover, the present paper is the first to connect the literature on allocation and ex-
change of discrete resources and the literature on Arrovian preference aggregation. In par-
ticular, we seem to be the first to recognize the equivalence of Theorem 1. However, stronger
equivalence results — which do not hold true in our setting — are familiar from studies
of voting. In voting — unlike in our problem — all agents have strict preferences among
all outcomes. In the class of Pareto-efficient mechanisms, individual strategy-proofness is
then equivalent to group strategy-proofness (Gibbard, 1973, and Satterthwaite, 1975).8 This

i.e., when objects have multiple copies, characterization results were obtained recently by Abdulkadiroğlu
and Che (2010) and Morrill (2013) for Abdulkadiroğlu and Sönmez (2003)’s school-choice TTC mechanism
(see also Pápai (2000) for a similar mechanism for goods with single copies). The school-choice TTC has
been extended by Hakimov and Kesten (2014) and Morrill (2015) to make it more equitable. On the other
hand, the core mechanism in more complex exchange markets that resemble hedonic coalition-formation
problems was characterized by Pápai (2007) in a special domain.

7Dasgupta, Hammond, and Maskin (1979) extended this result to more general social choice models,
Satterthwaite and Sonnenschein (1981) extended it to public goods economies with production, Zhou (1991)
extended it to pure public goods economies. In exchange economies, Barberà and Jackson (1995) showed
that strategy-proof mechanisms are Pareto inefficient.

8The equivalence of Theorem 1 also has counterparts in the social choice literature on restricted preference
domains—such as single-peaked preferences—in which there are non-dictatorial strategy-proof and Arrow
efficient rules. For instance, Moulin (1988) extends a result by Blair and Muller (1983) and shows that in
environments such as single-peaked voting, if an Arrovian SWF is monotonic, then the mechanism picking
its unique maximal element is group strategy-proof. In particular, this implies that in single-peaked voting
individual strategy-proofness and group strategy-proofness are equivalent, with no need to restrict attention
to efficient mechanisms. In contrast, in allocation environments the equivalence results from the conjunction
of incentive and efficiency assumptions, and the equivalence of incentive assumptions alone is not true.
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stronger equivalence fails in our setting, as it admits individually strategy-proof and Pareto-
efficient mechanisms that fail group strategy-proofness.

2 Model

2.1 House Allocation Problems

Let I be a set of agents and H be a set of objects that we often refer to as houses,
following the standard terminology of the literature. We use letters i, j, k to refer to agents
and h, g, e to refer to houses. Each agent i has a strict preference relation over H,
denoted by �i.9 Let Pi be the set of strict preference relations for agent i, and let PJ denote
the Cartesian product ×i∈JPi for any J ⊆ I. Any profile �= (�i)i∈I from P ≡ PI is called a
preference profile. For all �∈ P and all J ⊆ I, let �J= (�i)i∈J ∈ PJ be the restriction of
� to J . A house allocation problem is the triple 〈I,H,�〉 (cf. Hylland and Zeckhauser,
1979).

Throughout the paper, we fix I andH, and thus a problem is identified with its preference
profile. We follow the tradition adopted by many papers in the literature (cf. Svensson, 1999)
and assume that |H| ≥ |I| so that each agent is allocated a house.

An outcome of a house allocation problem is a matching. To define a matching, let
us start with a more general concept that we will use frequently. A submatching is an
allocation of a subset of houses to a subset of agents, such that no two different agents get
the same house. Formally, a submatching is a one-to-one function σ : J → H; where for
J ⊆ I, using the standard function notation, we denote by σ(i) the assignment of agent
i ∈ J under σ, and by σ−1(h) the agent that got house h ∈ σ(J) under σ. Let S be the
set of submatchings. For each σ ∈ S, let Iσ denote the set of agents matched by σ and
Hσ ⊆ H denote the set of houses matched by σ. For all h ∈ H, let S−h ⊂ S be the set of
submatchings σ ∈ S such that h ∈ H −Hσ, i.e., the set of submatchings at which house h is
unmatched. By virtue of the set-theoretic interpretation of functions, submatchings are sets
of agent-house pairs and are ordered by inclusion. A matching is a maximal submatching;
that is, µ ∈ S is a matching if Iµ = I. LetM ⊂ S be the set of matchings. We will write
Iσ for I − Iσ and Hσ for H −Hσ for short. We will also writeM for S −M.

A mechanism is a mapping ϕ : P −→ M that assigns a matching for each preference
profile (or, equivalently, for each allocation problem).10

9By �i, we denote the induced weak-preference relation; that is, for any g, h ∈ H, g �i h ⇐⇒ g = h or
g �i h.

10We study direct mechanisms.
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2.2 Strategy-Proofness and Efficiency

A mechanism is individually strategy-proof if truthful revelation of preferences is a weakly
dominant strategy for any agent: a mechanism ϕ is individually strategy-proof if for all
�∈ P, there is no i ∈ I and �′i∈ Pi such that

ϕ[�′i,�−i](i) �i ϕ[�](i).

A mechanism is group strategy-proof if there is no group of agents that can misstate their
preferences in a way such that each one in the group gets a weakly better house and at
least one agent in the group gets a better house, irrespective of the preference ranking of
the agents not in the group. Formally, a mechanism ϕ is group strategy-proof if for all
�∈ P, there exists no J ⊆ I and �′J∈ PJ such that

ϕ[�′J ,�−J ](i) �i ϕ[�](i) for all i ∈ J,

and
ϕ[�′J ,�−J ](j) �j ϕ[�](j) for at least one j ∈ J.

A matching is Pareto efficient if no other matching would make everybody weakly better
off and at least one agent better off. That is, a matching µ ∈ M is Pareto efficient if
there exists no matching ν ∈ M such that for all i ∈ I, ν(i) �i µ(i), and for some i ∈ I,
ν(i) �i µ(i). A mechanism is Pareto efficient if it finds a Pareto-efficient matching for
every problem.

Pareto efficiency is a weak efficiency requirement.11 In order to define the stronger concept
of Arrovian efficiency with respect to a social welfare function, denote by PM the set of strict
partial orderings over matchings; we refer to elements of PM as social rankings. A social
welfare function (SWF) Φ : P→ PM maps agents’ preference profiles to social rankings.
If a matching µ is ranked higher than some other matching ν under Φ(�), we denote this as
µ Φ(�) ν. A SWF Φ is Pareto (or unanimous) if: for every preference profile � and any
two matchings µ, ν ∈M, if µ(i) �i ν(i) for all i ∈ I, with at least one strict preference, then
µ Φ(�) ν. A SWF Φ satisfies the independence of irrelevant alternatives (IIA) if: for
all �,�′∈ P and all µ, ν ∈ M, if all agents rank µ and ν in the same way and both Φ (�)

and Φ (�′) rank µ and µ′, then µ Φ(�′) ν ⇐⇒ µ Φ(�) ν. We restrict attention to SWFs
that satisfy the Pareto and independence-of-irrelevant-alternatives postulates. Notice that

11In particular, when imposed on group strategy-proof mechanisms, Pareto efficiency is equivalent to
assuming that the mechanism maps P onto the entire set of matchings M. This surjectivity property is
known as citizen sovereignty, or full range.
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Pareto dominance is a standard example of a SWF.
A matching µ isArrovian efficient with respect to a social ranking Φ (�) if it maximizes

the social welfare, that is µΦ(�)ν for all ν ∈M\{µ}. A mechanism φ isArrovian efficient
with respect to a SWF Φ if for any profile of agents’ preferences �, the matching φ (�) is
Arrovian efficient with respect to Φ (�). If φ is Arrovian efficient with respect to some SWF,
we simply say that it is Arrovian efficient. The next section offers two examples illustrating
the concept of Arrovian efficiency.

3 Equivalence

In Theorem 1, we establish the equivalence between two concepts. In addition, Example 1
below demonstrates that the class of individually strategy-proof and Pareto efficient mech-
anisms is a strict superset of the mechanisms satisfying any of the equivalent conditions of
the theorem.

Theorem 1. A mechanism is individually strategy-proof and Arrovian efficient if and only
if it is group strategy-proof and Pareto efficient.

To illustrate this equivalence and our concepts, let us look at the setting with three agents
1, 2, and 3, three houses A, B, and C, and no outside options. Consider the following two
examples of mechanisms.

Example 1. The serial dictatorship in which 1 chooses first and 2 chooses second is well-
known to be group strategy-proof and Pareto efficient. It is straightforward to see that this
serial dictatorship is Arrovian efficient with respect to the following SWF: µ is ranked above
ν if and only if (a) 1 prefers µ to ν, or (b) 1 is indifferent and 2 prefers µ to ν.

Example 2. Let us now modify the serial dictatorship of the previous example and consider
mechanisms ψ in which 1 chooses first; then 2 chooses second if 1 prefers B over C, else 3

chooses second. This mechanism is an example of a ranking-dependent sequential dictator-
ship, and is also individually strategy-proof and Pareto efficient. However, mechanism ψ is
neither Arrovian efficient nor group strategy-proof. To see the latter point, let us look at
the following two preference profiles:

�=

1 2 3

A A A

B B B

C C C

�′=

1 2 3

A A A

C B B

B C C

.
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Notice that

ψ[�] = {(1, A) , (2, B) , (3, C)} ,

ψ[�′] = {(1, A) , (2, C) , (3, B)} .

The mechanism ψ fails group strategy-proofness. For instance, when the true preference
profile is �, then agents 1 and 3 have a profitable manipulation {�′}{1,3}. The mechanism
ψ also fails Arrovian efficiency. Indeed, by way of contradiction assume that ψ is Arrovian
efficient with respect to some SWF Ψ. Then Ψ (�) ranks allocation ψ[�] above ψ[�′],
and Ψ (�′) ranks ψ[�′] above ψ[�]. But, this violates the independence of the irrelevant
alternatives, a contradiction that shows that ψ is not Arrovian efficient.

The proof of Theorem 1 builds on Example 1. As preparation for the proof, let us
notice three properties of group strategy-proofness. First, in the environment we study,
group strategy-proofness is equivalent to the conjunction of two non-cooperative properties:
individual strategy-proofness and non-bossiness.12 Non-bossiness (Satterthwaite and Son-
nenschein, 1981) means that no agent can misreport his preferences in such a way that his
allocation is not changed but the allocation of some other agent is changed: a mechanism ϕ

is non-bossy if for all �∈ P, there is no i ∈ I and �′i∈ Pi such that

ϕ[�′i,�−i](i) = ϕ[�](i) and ϕ[�′i,�−i] 6= ϕ[�].

The following lemma is due to Pápai (2000):

Lemma 1. Pápai (2000) A mechanism is group strategy-proof if and only if it is individually
strategy-proof and non-bossy.

Second, in the environment we study group strategy-proofness is equivalent to Maskin
monotonicity (Maskin, 1999). A mechanism ϕ is Maskin monotonic if ϕ[�′] = ϕ[�]

whenever �′∈ P is a ϕ-monotonic transformation of �∈ P. A preference profile �′∈ P is a
ϕ-monotonic transformation of �∈ P if

{h ∈ H : h �i ϕ[�](i)} ⊇ {h ∈ H : h �′i ϕ[�](i)} for all i ∈ I.

Thus, for each agent, the set of houses better than the base-profile allocation weakly shrinks
when we go from the base profile to its monotonic transformation. The following lemma was

12Both of these properties are non-cooperative in the sense that they relate a mechanism’s outcomes under
two scenarios when a single agent makes unilateral preference-revelation deviations.
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proven by Takamiya (2001) for a subset of the problems we study; his proof can be extended
to our more general setting.

Lemma 2. A mechanism is group strategy-proof if and only if it is Maskin monotonic.

Finally, let us notice the following:

Lemma 3. If a mechanism φ is group strategy-proof, then no agent can change the outcome
of φ by changing the ranking of houses worse than the house he obtains; that is, if �′ differs
from � only in how some agent i ranks houses below φ[�](i), then φ[�′] = φ[�].

We skip the straightforward proof of this sequential dictatorship lemma because we later
prove, without reliance on this lemma or Theorem 1, a substantially stronger result, Theorem
2.

Proof of Theorem 1. First, consider an individually strategy-proof mechanism φ that
is Arrovian efficient with respect to some SWF Φ. In light of Lemma 1, to establish the first
implication it is enough to show that φ is Pareto efficient and non-bossy.

To show that φ is Pareto efficient, suppose that for some �∈ P, φ[�] is not Pareto
efficient. Then there exists some µ ∈ M \ {φ[�]} such that µ(i) �i φ[�](i) for all i, with
a strict preference for at least one agent. Because Φ satisfies the Pareto postulate, we have
µ Φ(�) φ[�], which contradicts the assumption that φ is Arrovian efficient with respect to
Φ.

To show that φ is non-bossy, let �∈ P and �′i∈ Pi be such that

φ[�](i) = φ[�′i,�−i](i).

Denote �′= (�′i,�−i). Because φ is Arrovian efficient with respect to Φ, the matching φ[�]

is ranked as the unique first by Φ (�) and the matching φ[�′] is ranked as the unique first by
Φ (�′). Thus, φ[�] and φ[�′] are comparable under both Φ (�) and Φ (�′), and IIA implies
that φ[�] and φ [�′] are ranked in the same way by Φ (�) and Φ (�′). We, thus, conclude
that φ [�] = φ [�′]. This establishes that φ is non-bossy.

Second, consider a group strategy-proof and Pareto efficient mechanism φ. We define
the SWF Φ as follows: for any profile of preferences � and any matchings µ and µ′ 6= µ,
matching µ is ranked by Φ (�) above µ′ iff either (i) we have µ = φ[�] or (ii) for all agents
i, we have µ (i) �i µ′ (i). Note that Pareto efficiency of φ implies that conditions (i) and (ii)
are consistent with each other, and hence, that the SWF Φ is well-defined.

By definition, Φ satisfies the Pareto postulate. Furthermore, Φ is transitive: if Φ (�)

ranks µ1 above µ2 and it ranks µ2 above µ3 , then it ranks µ1 above µ3. Indeed, if one of
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the s (for ` = 1, 2, 3) equals φ[�], then it must be that µ1 = φ[�], and the claim is proven.
If none of the µi equals φ[�], then agents unanimously rank µ1 above µ2 and unanimously
rank µ2 above µ3; we can conclude that the agents unanimously rank µ1 above µ3, and thus,
Φ (�) ranks µ1 above µ3.

It remains to check that Φ satisfies IIA. Take two preference profiles �1 and �2 such that
each agent ranks two matchings, say µ and µ′, in the same way under the two preference
profiles. If the two matchings are comparable under both Φ (�1) and Φ (�2), then one of
the following cases obtains:

Case 1: One of the matchings is unanimously preferred to the other under �1; then the
same unanimous preference obtains under �2 and the claim is true.

Case 2: There is no unanimous ranking of the two matchings under �1; then unanimity
cannot obtain under �2 either. As the matchings are ranked, it must be that φ[�1] and
φ[�2] take value in {µ, µ′}. Say, φ[�1] = µ; then we need to check that φ[�2] = µ as well.
By Lemma 2, we can assume that each agent i ranks µ (i) and µ′ (i) at the top of his ranking
under both �1 and �2. Furthermore, by Lemma 3, only rankings of houses above agents’
allocations (and including their allocations) affect the outcome of a group strategy-proof
mechanism; we can thus conclude that φ[�1] = φ[�2]. QED

For our next section when we consider complete SWFs, we need to introduce the full
class of group-strategy-proof and Pareto-efficient mechanisms, as characterized by Pycia and
Ünver (2015). This is the class of trading-cycles mechanisms. This mechanism class is defined
through an iterative algorithm, which matches some agents in every round. Depending on
who is matched with which house in preceding rounds, the remaining houses are controlled
by the remaining agents in a round of the algorithm. We define a control-rights structure as
a function of the submatching that is fixed:

Definition 1. A structure of control rights is a collection of mappings

(c, b) =
{

(cσ, bσ) : Hσ → Iσ × {ownership,brokerage}
}
σ∈M .

The functions cσ of the control-rights structure tell us which unmatched agent controls
any particular unmatched house at a submatching σ, where at σ is the terminology we use
when some agents and houses are already matched with respect to σ. Agent i controls house
h ∈ Hσ at submatching σ when cσ(h) = i. The type of control is determined by functions
bσ. We say that the agent cσ(h) owns h at σ if bσ(h) =ownership, and that the agent cσ(h)

brokers h at σ if bσ(h) =brokerage. In the former case, we call the agent an owner and
the controlled house an owned house. In the latter case, we use the terms broker and
brokered house. Notice that each controlled (owned or brokered) house is unmatched at
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σ, and any unmatched house is controlled by some uniquely determined unmatched agent.
We need to impose certain conditions on the control-rights structures to guarantee that the
induced mechanisms are group strategy-proof and Pareto efficient.

Definition 2. A structure of control rights (c, b) is consistent if the following within-round
and across-round requirements are satisfied for all σ ∈M :

Within-Round Requirements:

(R1) There is at most one brokered house at σ, or |Hσ| = 3 and all remaining
houses are brokered.

(R2) If i is the only unmatched agent at σ, then i owns all unmatched houses at
σ.

(R3) If agent i brokers a house at σ, then i does not control any other houses at
σ.

Across-Round Requirements: Consider submatching σ′ such that σ ⊂ σ′ ∈ M, and an
agent i ∈ Iσ′ that owns a house h ∈ Hσ′ at σ. Then:

(R4) Agent i owns h at σ′.

(R5) If i′ brokers house h′ at σ, and i′ ∈ Iσ′, h′ ∈ Hσ′ , then either i′ brokers h′

at σ′, or i owns h′ at σ′. (Notice that the latter case can only happen if i is the
only agent in Iσ′ who owns a house at σ.)

(R6) If agent i′ ∈ Iσ′ controls h′ ∈ Hσ′ at σ, then i′ owns h at σ ∪ {(i, h′)}.

Each consistent control-rights structure (c, b) induces a trading-cycles (TC)mechanism
ψc,b, and given a problem �∈ P, the outcome matching ψc,b[�] is found as follows:

The TC algorithm. The algorithm starts with empty submatching σ0 = ∅
and in each round r = 1, 2, ... it matches some agents with houses. By σr−1, we
denote the submatching of agents matched before round r. If σr−1 ∈ M, then
the algorithm proceeds with the following three steps of round r:

Step 1. Pointing. Each house h ∈ Hσr−1 points to the agent who controls it at
σr−1. Each agent i ∈ Iσr−1 points to his most preferred outcome in Hσr−1 .

Step 2(a). Matching Simple Trading Cycles. A cycle

h1 → i1 → h2 → ...hn → in → h1,
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in which n ∈ {1, 2, ...} and agents i` ∈ Iσr−1 point to houses h`+1 ∈ Hσr−1 and
houses h` point to agents i` (here ` = 1, ..., n and superscripts are added modulo
n), is simple when one of the agents is an owner. Each agent in each simple
trading cycle is matched with the house he is pointing to.

Step 2(b). Forcing Brokers to Downgrade Their Pointing. If there are no simple
trading cycles in the preceding Step 2(a), and only then we proceed as follows
(otherwise we proceed to step 3).

• If there is a cycle in which a broker i points to a brokered house, and there
is another broker or owner that points to this house, then we force broker i
to point to his next choice and we return to Step 2(a).13

• Otherwise, we clear all trading cycles by matching each agent in each cycle
with the house he is pointing to.

Step 3. Submatching σr is defined as the union of σr−1 and the set of newly
matched agent-house pairs. When all agents or all houses are matched under σr,
then the algorithm terminates and gives matching σr as its outcome.

One important feature of the TC mechanisms is that we can, without loss of generality, rule
out the existence of brokers at some submatching σ if there is a single owner at σ. We
formalize this property as a remark:

Remark 1. Pycia and Ünver (2015) For each TC mechanism such that for some σ there is
only one owner and one broker, there is an equivalent TC mechanism such that at σ there
are no brokers and the same owner owns all houses.

Using Theorem 1 and Pycia and Ünver (2015)’s characterization we obtain the following
corollary:

Corollary 1. A mechanism is individually strategy-proof and Arrovian efficient if and only
if it is a TC mechanism.

4 Complete Social Welfare Functions

Our first main result shows that the class of individually strategy-proof and Arrovian-efficient
mechanisms is exactly the class of group strategy-proof and Pareto efficient mechanisms. In

13Importantly, broker i is unique by R1.
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this result, we allowed welfare functions to incompletely rank social outcomes. We now show
that a class that we refer to as almost sequential dictatorships is exactly the mechanisms
that are strategy-proof and Arrovian efficient with respect to complete SWF, that is SWF
that always rank all outcomes.

First we define the following class: a top-trading-cycles (TTC) (or hierarchical ex-
change) mechanism is a TC mechanism with a control-rights structure in which no house
is ever brokered at any submatching (Pápai, 2000). A TTC mechanism ψc,b will be denoted
by dropping b from its notation as ψc.

TTC mechanisms form a strict subclass of TC mechanisms. Let us start with an example
showing that not all TTC are efficient with respect to a complete SWF.

Example 3. When |H| > |I| = 2, an agent cannot own two houses while a second
agent owns a house: Consider allocating three houses to two agents. Let φ be a TTC
mechanism in which agent 1 owns house A and agent 2 owns houses B and C. We will show
that there is no complete SWF such that φ is efficient.

Consider the preference profile

�=

1 2

B A

A B

C C

.

Consider also the following four additional preference profiles

�1=

1 2

B C

A
...

...

, �2=

1 2

B B

C C
...

...

, �3=

1 2

C A
... B

...

, �4=

1 2

A A

C C
...

...

.

Denote

µ1 = φ[�1] = {(1, B) , (2, C)} ,

µ2 = φ[�2] = {(1, C) , (2, B)} ,

µ3 = φ[�3] = {(1, C) , (2, A)} ,

µ4 = φ[�4] = {(1, A) , (2, C)} .

Now, if there is a complete SWF Φ such that φ is Arrovian efficient, then Φ (�1) ranks µ1

above µ4, and by IIA, this implies that Φ (�) ranks µ1 above µ4. Similarly, Φ (�2) ranks
µ2 above µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, and again
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similarly, Φ (�3) ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2.
Finally, Φ (�4) ranks µ4 above µ3, and by IIA, this implies that Φ (�) ranks µ4 above µ3.
But then Φ (�) fails transitivity, showing that there does not exist a complete SWF with
respect to which φ is efficient.

Observe that this example relies on the existence of more houses than agents. We will
use this example to prove a theorem for the case with |H| > |I|, and we will consider
the case |H| = |I| later. To do this, we introduce sequential dictatorships formally. A
sequential dictatorship is a TTC mechanism ψc such that for all σ ∈M and h, h′ ∈ Hσ,
ch(σ) = ch′(σ), i.e., an unmatched agent owns all unmatched houses at σ. For notational
convenience, we will represent each ch(·) as c(·). Sequential dictatorships turn out to be the
class of Arrovian-efficient and individually strategy-proof mechanisms for this case:

Theorem 2. Suppose |H| > |I|. A mechanism is individually strategy-proof and Arrovian
efficient with respect to a complete SWF if and only if it is a sequential dictatorship.

Proof of Theorem 2. If |I| = 1, the theorem is trivially true. Suppose |I| ≥ 2.
( =⇒ ) Consider a mechanism φ that is individually strategy-proof and efficient with

respect to a complete Arrovian welfare function. By Theorem 1 and Corollary 1, φ is a TC
mechanism ψc,b.

Fix an arbitrary preference profile �∈ P. We claim that at any round r of the algorithm
ψc,b, there is exactly one agent who controls all houses. We prove it in two steps. First,
let us show that there cannot be two (or more) agents who each own a house. By way of
contradiction, suppose that some agent 1 controls house A and some other agent 2 controls
house B in round r.

Suppose σ is the submatching created by the TC algorithm for ψc,b before round r at
�. Fix house C ∈ {A,B} as an unmatched house at σ. Consider four auxiliary preference
profiles �` that all share the following properties: (i) each agent matched under σ ranks
houses under �`, ` = 1, ..., 4, in the same way they rank them under �, (ii) each agent
i unmatched at σ and different from agents 1 and 2 ranks a unique σ-unmatched house
hi 6∈ {A,B,C} ∪ Hσ as his first choice (such a unique house exists as |H| > |I|), and (iii)
agents 1 and 2 each rank all houses other than A,B,C lower than A,B,C. In particular, the
four profiles differ only in how agents 1 and 2 rank houses A,B,C: the ranking of A,B,C
is the same as in the four preference profiles of Example 3 above. Notice that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2},

where µ`s are defined as in Example 3 above. Furthermore, the same argument we used
in the example shows that there can be no SWF that ranks all four µ`s, is transitive, and
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satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction that
implies that there cannot be two agents who own houses in a round of the algorithm.

As ψc,b never allows two owners in a round of the algorithm, by Corollary 1 and Remark
1, there are no brokers in any round, either. Hence, in each round of the algorithm there
is a single agent who controls (and owns) all houses. That means that ψc,b is a sequential
dictatorship.

(⇐=) Consider a sequential dictatorship ψc. We construct a complete SWF Φ such that
ψc is efficient with respect to Φ. Under Φ any two matchings are ranked according to prefer-
ences of the first-round dictator; if he is indifferent , then the matchings are ranked according
to the preferences of the second-round dictator, etc. Formally, for any �∈ P and any two dis-
tinct µ, ν ∈M, let µΦ(�)ν if and only if there exists k ∈ {1, ..., |I|} such that µ (i1) = ν (i1),
... and µ (ik−1) = ν (ik−1), and agent ik prefers µ (ik) over ν (ik), where agents i1, ..., ik are
defined recursively: i1 = c (∅), and in general i` = c ({(i1, µ (i1)) , ..., (i`−1, µ (i`−1))}) for
` = 1, ..., k. It is straightforward to verify that Φ is a complete SWF and that ψc is efficient
with respect to Φ. QED

Next we turn our attention to what happens when |H| = |I|. The above argument relies
on the fact that there exists one extra house that can be used to regulate the ownership
of all houses in any round of the algorithm. Suppose |H| = |I|. Then we can modify the
argument in the proof an obtain a slightly different result. For this purpose we introduce a
new class of mechanisms slightly larger than sequential dictatorships.

An almost sequential dictatorship is a TTC mechanism ψc such that for all σ ∈ M
such that |Hσ| 6= 2 we have ch(σ) = ch′(σ) for all h, h′ ∈ Hσ.

Therefore, the only mechanisms that are not sequential dictatorships in this class are
mechanisms that assign to different owners each of the houses when only two houses (and
hence, two agents) are left, but otherwise a single agent owns all houses.

Our third result is as follows:

Theorem 3. A mechanism is individually strategy-proof and Arrovian efficient with respect
to a complete SWF if and only if it is an almost sequential dictatorship.

First, we modify Example 3 and show that an agent cannot own multiple houses while
one other agent owns a house, and then we show in two examples that three agents each
cannot simultaneously control a house under a TC mechanism that is efficient with respect
to a complete SWF. We will use these three examples in proving Theorem 3.

Example 4. When |H| = |I| = 3, an agent cannot own two houses while another
agent owns the third house: Let φ be a TTC mechanism in which agent 1 owns house
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A, agent 2 owns houses B and C, and hence, agent 3 does not control any house. Consider
5 preference profiles �,�1,�2,�3,�4, as in Example 3. Suppose the preferences of agents 1

and 2 are exactly the same as in Example 3 under the respective profiles, while agent 3 has
the same arbitrarily fixed preference relation �3=�1

3= ... =�4
3. Denote

µ1 = φ[�1] = {(1, B) , (2, C) , (3, A)} ,

µ2 = φ[�2] = {(1, C) , (2, B) , (3, A)} ,

µ3 = φ[�3] = {(1, C) , (2, A) , (3, B)} ,

µ4 = φ[�4] = {(1, A) , (2, C) , (3, B)} .

Using the exact same argument as in Example 3, we establish that Φ (�) fails transitivity,
showing that there does not exist a complete SWF with respect to which φ is efficient.

Example 5. When |H| = |I| = 3, one agent cannot control a house while the others
each own a house: Let φ be a TTC mechanism in which agent 1 owns house A, agent 2

owns house B, and agent 3 controls house C. We will show that there is no complete SWF
such that φ is Arrovian efficient.

Consider the preference profile

�=

1 2 3

B C A

C A B

A B C

.

Consider also the following three additional preference profiles

�1=

1 2 3

B C B

C
...

...
A

, �2=

1 2 3

C C A
... A

...
B

, �3=

1 2 3

B A A
...

... B

C

.

Regardless of whether agent 3 owns or brokers house C, we have

µ1 = φ[�1] = {(1, A) , (2, C) , (3, B)} ;

µ2 = φ[�2] = {(1, C) , (2, B) , (3, A)} ;

µ3 = φ[�3] = {(1, B) , (2, A) , (3, C)} .
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If there is a complete SWF Φ such that φ is Arrovian efficient, then Φ (�1) ranks µ1 above
µ3, and by IIA, this implies that Φ (�) ranks µ1 above µ3. Similarly, Φ (�2) ranks µ2 above
µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, and again similarly,
Φ (�3) ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2. Then
Φ (�) fails transitivity, showing that there does not exist a complete SWF with respect to
which φ is efficient.

Example 6. When |H| = |I| = 3, there cannot be three brokers: Let φ be a TTC
mechanism in which agent 1 brokers house A, agent 2 brokers house B, and agent 3 brokers
house C. We will show that there is no complete SWF such that φ is Arrovian efficient.

�=

1 2 3

B B C

A A B

C C A

.

Consider also the following three additional preference profiles

�1=

1 2 3

A B C

C A B
...

...
...

, �2=

1 2 3

B B C

A C A
...

...
...

, �3=

1 2 3

B A B

C C A
...

...
...

.

Denote

µ1 = φ[�1] = {(1, A) , (2, B) , (3, C)} ;

µ2 = φ[�2] = {(1, B) , (2, C) , (3, A)} ;

µ3 = φ[�3] = {(1, C) , (2, A) , (3, B)} .

If there is a complete SWF Φ such that φ is Arrovian efficient, then Φ (�1) ranks µ1 above
µ3, and by IIA, this implies that Φ (�) ranks µ1 above µ3. Similarly, Φ (�2) ranks µ2 above
µ1, and by IIA, this implies that Φ (�) ranks µ2 above µ1. Further, again similarly, Φ (�3)

ranks µ3 above µ2, and by IIA, this implies that Φ (�) ranks µ3 above µ2. Then Φ (�) fails
transitivity, showing that there does not exist a complete SWF with respect to which φ is
efficient.

Proof of Theorem 3. If |H| > |I|, it follows from Theorem 2. So suppose |H| = |I|. If
|I| = 1, the theorem is trivially true. So suppose |I| > 1:

( =⇒ ) Consider a mechanism φ that is individually strategy-proof and efficient with
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respect to a complete Arrovian welfare function. By Theorem 1 and Corollary 1, φ is a TC
mechanism ψc,b.

Fix �∈ P. We claim that at any round r of the algorithm for ψc,b, there is exactly one
agent who controls all houses whenever |Iσ| > 2. We prove it in three steps (in accordance
with Examples 4-6). Let σ be the submatching created by the algorithm ψc,b before round
r for �.

• First, we show that an agent cannot own two houses while another agent owns a third
house: By way of contradiction, suppose that some agent 1 owns house A and agent 2

owns houses B and C in round r. Then there exists an agent 3 who does not control
any house at round r as |H| = |I|. Consider four auxiliary preference profiles �`

that all share the following properties: (i) each agent matched under σ ranks houses
under �`, ` = 1, ..., 4, in the same way they rank them under �, (ii) each agent i
unmatched at σ and different from agents 1, 2, 3 ranks a unique σ-unmatched house
hi 6∈ {A,B,C} ∪Hσ as his first choice (such a unique house exists as |H| = |I|), (iii)
agents 1 and 2 each rank all houses other than A,B,C lower than A,B,C, and (iv)
agent 3’s preferences are the same as �i under all four profiles. In particular, the four
profiles differ only in how agents 1 and 2 rank houses A,B,C: the ranking of A,B,C
is the same as in the four preference profiles of Example 4 above. Notice that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2,3},

where µ`s are defined as in Example 4 above. Furthermore, the same argument we used
in Example 4 shows that there can be no SWF that ranks all four µ`s, is transitive, and
satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

• Next, we show that one agent cannot control a house while at least two others each
own a house in round r: Suppose, to the contrary, agent 1 owns house A, agent 2 owns
house B, and agent 3 controls house C in round r. Consider three auxiliary preference
profiles �` that all share the following properties: (i) each agent matched under σ
ranks houses under �`, ` = 1, 2, 3, in the same way they rank them under �, (ii) each
agent i unmatched at σ and different from agents 1, 2, 3 ranks a unique σ-unmatched
house hi 6∈ {A,B,C} ∪Hσ as his first choice (such a unique house exists as |H| = |I|),
and (iii) agents 1,2, 3 each rank all houses other than A,B,C lower than A,B,C, and
the ranking of A,B,C is the same as in the three preference profiles of Example 5
above. Observe that

ψc,b[�`] = σ ∪ µ` ∪ {(i, hi)}i∈Iσ−{1,2,3},

19



where µ`s are defined as in Example 5 above. Furthermore, the same argument we used
in Example 5 shows that there can be no SWF that ranks all three µ`s, is transitive, and
satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

• Finally, using a variant of Example 6, we show that there cannot be multiple brokers
at round r (as multiple brokers can only occur with 3 agents and 3 houses, where
each agent brokers a distinct house): Suppose not. Then consider three auxiliary
preference profiles �` that all share the following properties: (i) each agent matched
under σ ranks houses under �`, ` = 1, 2, 3, in the same way they rank them under �,
(ii) agents 1,2, 3, who are the only remaining unmatched agents, each rank all houses
other than A,B,C lower than A,B,C, and (iii) the ranking of A,B,C is the same as
in the three preference profiles of Example 6 above. Notice that

ψc,b[�`] = σ ∪ µ`,

where µ`s are defined as in Example 6 above. Furthermore, the same argument we used
in Example 6 shows that there can be no SWF that ranks all three µ`s, is transitive, and
satisfies IIA. Hence, there is no complete SWF that makes ψc,b efficient, a contradiction.

Thus, a single agent owns all houses at round r when σ is fixed for |Iσ| > 2 (by Corollary 1
and Remark 1).

This means that ψc,b is an almost sequential dictatorship, as all TC mechanisms restricted
to only two agents are almost sequential dictatorships.

(⇐=) Consider an almost sequential dictatorship ψc. If ψc is a sequential dictatorship,
then the proof of Theorem 2 works. So suppose it is not a sequential dictatorship. Hence,
|H| = |I|. We construct a complete SWF Φ such that ψc is efficient with respect to Φ. Under
Φ any two matchings are ranked according to preferences of the first-round dictator; if he is
indifferent , then the matchings are ranked according to the preferences of the second-round
dictator, etc., until only two agents remain unmatched. At this round let 1 and 2 be the two
agents and A and B be the two houses remaining unmatched. Observe that there are only
two matchings, µ and ν, in which all agents’ assignments are the same but the last two: in
one 1 gets A and 2 gets B, and in the other vice versa. Then one of these two matchings
is equal to ψc[�′], where �′ ranks the assignment of any agent other than 1 and 2 in µ (or
equivalently ν) as his first choice, and for 1 and 2, the new preferences are the same as the
original ones under �. We rank ψc[�′] ∈ {µ, ν} before the other one under Φ(�).

Formally, for all µ ∈ M, let sequential dictators i1, . . . ., i|I|−2 be defined as i1 = ch (∅)
for all h ∈ H, and in general, i` = ch ({(i1, µ (i1)) , ..., (i`−1, µ (i`−1))}) for all h ∈ H −
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{µ(i1), ...µ(i`−1)} and ` = 1, ..., k; then for all ν ∈ M− {µ}, we say µ Φ(�) ν if one of the
following two conditions holds:

1. there exists k ∈ {1, ..., |I| − 2} such that µ (i1) = ν (i1), ..., µ (ik−1) = ν (ik−1), and
µ(ik) �ik ν(ik);

or

2. for all ` ∈ {1, ..., |I| − 2}, µ (i`) = ν (i`), and for �′∈ P where each i` ranks µ(i`) first
while the remaining two agents have the same preferences as in � , we have ψc[�′] = µ.

By construction, Φ is complete, antisymmetric, and transitive. Moreover, it satisfies Pareto.
To see that it also satisfies IIA, consider two distinct matchings, µ and ν ∈ M, and �∈ P

such that µ Φ(�) ν. Also consider another profile �̂ ∈ P such that each agent i’s preference
over the two matching assignments is the same in �̂i as in �i. If µ Φ(�) ν because of
condition 1 above, then condition 1 continues to hold for �̂ and thus µ Φ(�̂) ν. On the
other hand, if µ Φ(�) ν because of condition 2 above, then µ and ν only differ in how the
last two agents are assigned the remaining two houses. Hence, the profile constructed to
check condition 2 for µ Φ(�̂) ν, which we refer to as �̂′, would lead to ψc[�̂′] = µ because:

1. the first |I| − 2 dictators would still get their µ assignments in the first |I ` 2 rounds
of the TC algorithm for ψc[�̂′], and

2. thus, the assignment of remaining two agents under ψc[�̂′] would be identical with that
under µ as the relative ranking of their assignments under µ and ν are identical both
in � and �̂, and the ranking of the other houses do not matter for finding the outcome
of the almost serial dictatorship.

Thus, µ Φ(�̂) ν, showing Φ satisfies IIA. QED
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