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Abstract

We introduce a new matching model to mimic two-sided exchange programs such

as tuition and worker exchanges, in which export-import balances are required for

longevity of programs. These exchanges use decentralized markets, making it diffi-

cult to achieve this goal. We introduce the two-sided top-trading-cycles, the unique

mechanism that is balanced-efficient, worker-strategy-proof, acceptable, individu-

ally rational, and respecting priority bylaws regarding worker eligibility. Moreover,

it encourages exchange, because full participation is the dominant strategy for firms.

We extend it to dynamic settings permitting tolerable yearly imbalances and demon-

strate that its regular and tolerable versions perform considerably better than models

of current practice.
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1 Introduction

We introduce and model a new class of two-sided matching markets without explicit

transfers, in which there is an additional fundamental constraint.1 The eventual market

outcome is linked to an initial status-quo matching, which may give participants cer-

tain rights that constrain how future activity can play out. Since market outcome is

typically different from the status-quo, such activities loosely resemble an exchange in

which one side of the agents are changing or acquiring new partners besides the funda-

mental two-sided structure matching one side (e.g, firms/colleges) with the other (e.g.,

workers/students). In such markets, a fundamental balancedness condition needs to be

sustained with respect to the status-quo matching. The motivation for such a balanced-

ness constraint can be different depending on the features of the market. Two contrasting

examples are in labor markets and higher education markets, where workers and colleges

provide services to be compensated, respectively. In worker exchange, a worker needs to

be replaced with a new one at her home firm so that this firm can function properly, and

thus, the market needs to clear in a balanced manner. In student exchange, the college

that is matched with an “exchange” student should be able to send out a student as well

so that its education costs do not increase, and thus, the market needs to clear in a bal-

anced manner. There are several prominent examples of such exchanges, such as national

and international teacher-exchange programs, clinical-exchange programs for medical doc-

tors, worker-exchange programs within or across firms, and student-exchange programs

among colleges. This balancedness constraint induces preferences for firms/colleges not

only over whom they get matched with (i.e., import), but also over whom they send out

(i.e., export). The most basic kind of such preferences requires the firm/college to have a

preference for balanced matchings, i.e., for import and export numbers to be equal. We

analyze our model over two explicit market applications: (permanent) tuition exchange

and temporary worker exchange.2

In tuition exchange, the two sides are colleges and students. Each student (who is

a dependent of a faculty member at a college) can attend another institution for free, if

admitted as part of a tuition-exchange program. (Tuition exchange is a part of the benefit

plan of the faculty member.) Colleges have preferences over matchings. We assume only

1The theory and design of two-sided matching markets, such as entry-level labor markets for young
professionals, online-dating markets, or college admissions, have been one of the cornerstones of market
design for more than thirty years (see Gale and Shapley, 1962; Roth, 1984; Roth and Peranson, 1999;
Hitsch, Hortaçsu, and Ariely, 2010). Moreover, the theory of these markets has some important appli-
cations in allocation problems such as student placement and school choice (see Balinski and Sönmez,
1999; Abdulkadiroğlu and Sönmez, 2003).

2See Section 2 for details of these applications.
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a weak structure for these preferences. Colleges’ preferences over the incoming class is

assumed to be responsive to their strict preferences over individual students. Moreover,

their preferences over matchings are determined through their preferences over the in-

coming class and how balanced the eventual matching is.3 We start by showing, through

a simple example, that individual rationality and non-wastefulness, standard concepts

in two-sided matching markets, and balancedness are in general conflicting requirements

(Proposition 1). For this reason, we restrict our attention to the set of balanced–efficient

mechanisms. Unfortunately, there exists no balanced–efficient and individually rational

mechanism that is immune to preference manipulation for colleges (Theorem 2).

We propose a new two-sided matching mechanism that is balanced-efficient, student

group–strategy-proof, acceptable, respecting internal priorities,4 individually rational,

and immune to quota manipulation by colleges (Theorems 1, 3, and 4). We also show

that it is the unique mechanism satisfying the first four properties (Theorem 5). To our

knowledge, this is one of the first papers using axiomatic characterization in the context

of practical market design.

The outcome of this mechanism can be computed with a variant of David Gale’s

top–trading–cycles (TTC) algorithm (Shapley and Scarf, 1974). In the school choice

problem (cf. Abdulkadiroğlu and Sönmez, 2003) and the house allocation problem with

existing agents (cf. Abdulkadiroğlu and Sönmez, 1999), variants related to Gale’s TTC,

have been introduced and their properties have been extensively discussed (also see Pápai,

2000). In all of these problems, one side of the market is considered to be objects to be

consumed that are not included in the welfare analysis. Schools and houses have no

preferences but have “priorities”. Moreover, they are not strategic agents. In two-sided

matching via exchange, in contrast to school choice and house allocation, both sides of the

market are strategic agents and must be included in the welfare analysis. Based on these

variants of Gale’s TTC, we formulate our algorithm, and thus, we refer to the induced

mechanism as the two—sided top trading cycles (2S-TTC). As far as we know, this is

the first time a TTC–variant algorithm has been used to find the outcome of a two-sided

matching mechanism.5

3We do not rule out colleges having more complex preferences over which students they send out.
4A mechanism respects internal priorities if, after a college increases the number of sponsored students,

every student who was initially sponsored by that college and matched continues to be matched (although
not necessarily with the same college).

5Ma (1994) had previously characterized the core of a house exchange market, which can be found by
Gale’s TTC algorithm, when there is a single seat at each school through Pareto efficiency, individual
rationality, and strategy-proofness for students. Our characterization uses a proof technique different
not only from Ma (1994), but also subsequent simpler proofs of this prior result by Sönmez (1995) and
Svensson (1999). There are a few other TTC-related characterization results in the literature: Abdulka-
diroğlu and Che (2010); Dur (2012); Morrill (2013) characterize school choice TTC a la Abdulkadiroğlu
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Although 2S-TTC is balanced–efficient, it may not match the maximum possible num-

ber of students while maintaining balance. We show that if the maximal-balanced solution

is different from the 2S-TTC outcome even for one preference profile, it can be manipu-

lated by students (Theorem 6).

Some tuition exchange programs require keeping a balance in a moving three-year

window for their member colleges. For this reason, we extend our model to a dynamic

setting, where colleges can have tolerable yearly imbalances. We propose an extension,

two-sided tolerable top-trading-cycle (or 2S-TTTC) mechanism, which allows one to keep

the imbalance of each college between some upper and lower bounds, and these bounds

can be adjusted over the years. Once the bound-setting and adjustment processes are

externally set, we show that 2S-TTTC keeps good properties of 2S-TTC: it is student-

strategy-proof, acceptable, and respecting internal priorities; moreover, no acceptable

matching within the balance limits can Pareto dominate its outcome.6

As the last part of our analysis of tuition-exchange programs, in Appendix I, we com-

pare the performances of 2S-TTC and 2S-TTTC with that of the best-case scenario of the

current practice of tuition exchange with a wide range of simulations.7 By considering

different degrees of correlation among students’ and also colleges’ preferences, and dif-

ferent yearly imbalance tolerance levels, we show that 2S-TTC and its variant match

considerably more students to colleges and increase students’ welfare over the naive

student-proposing deferred acceptance outcome, the best case scenario for the current

market.8 This is a best-case scenario for the decentralized market as it minimizes coor-

dination failures and ignores possible college incentives to underreport their certification

quotas.9 Moreover, Combe, Tercieux, and Terrier (2016) conducted an empirical study

and Sönmez (2003); Pycia and Ünver (2016) characterize general individually rational TTC rules a la
Pápai (2000) when there are more objects than agents; and Sönmez and Ünver (2010) characterize TTC
rules a la Abdulkadiroğlu and Sönmez (1999) for house allocation with existing tenants. Kesten (2006)
provides the necessary structure on the priority order to guarantee fairness of school choice TTC. Besides
these characterizations, a related mechanism to ours was proposed by Ekici (2011) in an object allocation
problem for temporary house exchanges with unit quotas.

6The closest in the literature to 2S-TTTC’s algorithm is the top–trading–cycles–and–chains (TTCC)
algorithm proposed by Roth, Sönmez, and Ünver (2004); however, the use and facilitations of “chains”
are substantially different in this algorithm than in 2S-TTTC.

7We also develop a model of current semi-decentralized practice in tuition exchange in Appendix A. We
show that balancedness is not in general achieved through decentralized market outcomes, jeopardizing
the continuation and success of such markets. We define stability for particular externalities in college
preferences. We show that stable matchings exist when colleges have plausible preferences over matchings
(Proposition 3). Moreover, Proposition 4 implies that stability and balancedness are incompatible. Then
we show that stability discourages exchange and can prevent the market from extracting the highest
gains from exchange (see Theorems 10 and 11).

8It is the best case, since in the Appendix A, we show that under reasonable assumptions, the current
market gives incentives to decrease the quotas of agents.

9It should be noted that there could be other market structures not governed by our simulation
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using teacher assignment data from France using a model related to ours. Compared to

deferred-acceptance–based current practice, they show that a TTC-based approach dou-

bles the number of teachers moving from their initial assignment. Additionally, when the

distribution of the ranks of teachers over the schools are considered, the outcome of the

TTC-based approach stochastically dominates that of the current practice. Thus, there

exist real-life settings, in which our proposals can lead to significant welfare improvements.

We extend this model for temporary worker exchanges, such as teacher-exchange pro-

grams. We tweak our model slightly and assume that the quotas of the firms are fixed at

the number of their current employees, and, hence, firms would like to replace each agent

who leaves. We also assume that firm preferences are coarser than colleges in tuition

exchange due to the temporary nature of the exchanges. We assume they have weakly

size-monotonic preferences over workers: larger groups of acceptable workers are weakly

better than weakly smaller groups of acceptable workers when the balance of the match-

ing with larger groups of acceptable workers is zero and the balance of the matching

with smaller group of worker is non-positive.10 In this model, we prove that 2S-TTC not

only carries all of its previous properties through but also is strategy-proof for the firms,

making it a very viable candidate (Theorem 9). Our aforementioned characterization also

holds in this model.

2 Applications

2.1 Tuition Exchange

Some of the best-documented matching markets with a balancedness requirement are

tuition-exchange programs in US. These are semi-decentralized markets, and some have

failed over the years because of problems related to imbalanced matching activity.

It has been difficult for small colleges and universities to compete with bigger schools

in trying to hire the best and brightest faculty. Colleges located farther away from major

metropolitan areas face a similar challenge. Tuition-exchange programs play a prominent

role for these colleges in attracting and retaining highly qualified faculty.11

generating distributions such that the results we find do not hold. Thus, these simulations should be seen
as domains in which 2S-TTC or its variant approach dominate the best case outcomes of decentralized
markets in a vast majority of parameter values.

10Weakly size-monotonic preferences are weaker than dichotomous preferences (in absence of external-
ities), which are widely used in the matching literature, see for example Bogolomania and Moulin (2004),
Roth, Sönmez, and Ünver (2005), Roth, Sönmez, and Ünver (2007), Ekici (2011), and Sönmez and Ünver
(2014).

11“Tuition Exchange enables us to compete with the many larger institutions in our area for talented
faculty and staff. The generous awards help us attract and retain employees, especially in high-demand
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Many colleges give qualified dependents of faculty tuition waivers. Through a tuition-

exchange program, they can use these waivers at other colleges and attend these colleges

for free. The dependent must be admitted to the other college. Tuition exchange has

become a desirable benefit that adds value to an attractive employment package without

creating additional out–of–pocket expenses for colleges; that is, colleges do not transfer

money to each other for accepting their faculty’s dependents.

One of the prominent programs is “The Tuition Exchange, Inc.” (TTEI), which is also

the oldest and largest of its kind.12

Each participating college to TTEI establishes its own policies and procedures for

determining the eligibility of dependents for exchange and the number of scholarships it

will grant each year. Each member college has agreed to maintain a balance between the

number of students sponsored by that institution (“exports”) and the number of schol-

arships awarded to students sponsored by other member colleges (“imports”). Colleges

aim to maintain a one–to–one balance between the number of exports and imports. In

particular, if the number of exports exceeds the number of imports, then that college may

be suspended from the tuition-exchange program. In order not to be suspended from

TTEI, colleges often set the maximum number of sponsored students in a precautionary

manner. Many colleges explicitly mention in their application documents that in order to

guarantee their continuation in the program, they need to limit the number of sponsored

students.13 As a result, in many cases not all qualified dependents are sponsored.

A tuition-exchange program usually functions as follows: each college determines its

quotas, which are the maximum number of students it will sponsor (its “eligibility quota”)

and the maximum number it will admit (its “import quota”) through the program. Then,

the eligible students apply to colleges, and colleges make scholarship decisions based on

preferences and quotas. A student can get multiple offers. She declines all but one, and,

if possible, further scholarship offers are made in a few additional rounds. Students who

are not sponsored cannot participate in the program, and hence do not receive a tuition-

exchange scholarship. In the end, neither a student that is accepted by another college

nor the home institution of the student pays tuition. The admitting institution de facto

awards a tuition waiver to the dependent of the faculty of another college.

fields like nursing and IT.” – Frank Greco, Director of Human Resources, Chatham University, from the
home page of The Tuition Exchange, Inc., www.tuitionexchange.org, retrieved on 09/19/2012. Also see
Appendix C about the results of a survey that we conducted detailing the importance of tuition-exchange
programs in job choice for faculty members.

12See http://www.tuitionexchange.org. Through TTEI, 7,000 scholarships were awarded in 2015-2016,
with annual value of $34,000 per scholarship that is paid as a tuition reduction. Despite TTEI’s large
volume, other tuition exchange programs clear more than 50% of all exchange transactions in the US. In
Appendix C, we describe the features of prominent tuition exchange programs.

13Lafayette College, Daemen College, DePaul University, and Lewis University are just a few examples.
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2.2 Temporary Worker Exchanges

The balancedness requirement also matters in temporary worker-exchange programs (such

as those for teachers, students, academic staff, and medical doctors). The Commonwealth

Teacher Exchange Programme (CTEP), Fulbright Teacher Exchange Program, Erasmus

Student Exchange Program, and the exchange program of International Federation of

Medical Students’ Associations (IFMSA) are just a few examples.14 Some of these have

been running for decades,15 and thousands of participants benefit from these worker ex-

change programs annually. Every year more than 10,000 medical students and 200,000

college students around the world participate in IFMSA’s and Erasmus’ exchanges, re-

spectively.16 The main difference between these programs and tuition exchange is that

(1) most exchange appointments are temporary, typically lasting one year, and (2) the

workers are currently employed by their associated firms, so if they cannot be exchanged,

they will continue to work in their current jobs.

2.3 Importance of Balancedness Requirement

Although two-sided matching via exchange induces a two–sided matching market, workers

(students) cannot participate in market activity unless their home firms (colleges) sponsor

them. Hence, an import/export balance emerges as an important feature of sustainable

outcomes, as there are no monetary transfers between parties and there are costs for

colleges associated with providing students. Balance requirements are the most important

feature of these markets that distinguishes them from the previously studied matching

markets. We illustrate three cases in which the absence of a balanced exchange led to the

failure of the exchange program in different contexts.17

The Northwest Independent Colleges Tuition Exchange program was founded in 1982

and included five members. Unlike TTEI, the colleges were not able to limit their exports.

Because of sizable imbalances between imports and exports, members agreed to dissolve

the program, and it stopped accepting new applicants after Fall 2015 in its current form.18

14There are also small bilateral staff-exchange programs. See Appendix D for details.
15CTEP, which allows participants to exchange teaching positions and homes with a col-

league from the UK, Australia, or Canada, has been running for 100 years. See
http://www.cyec.org.uk/exchanges/commonwealth-teacher-exchange.

16See http://www.amsa.org/AMSA/Homepage/EducationCareerDevelopment/InternationalExchanges.aspx
and http://europa.eu/rapid/press-release_IP-13-657_en.htm.

17When we talk about balancedness in this paper, we are not strictly talking about zero-balance
conditions where imports and exports even each other out. The idea can also be relaxed in static
and dynamic manners to attain an approximate balance over time. Indeed, there could be gains for
intertemporal trades and our proposals also address these issues in Section 4.2.

18See https://www.insidehighered.com/news/2012/02/15/tuition-exchange-program-northwest-
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The Jesuit universities exchange program FACHEX is another that was adversely affected.

It included prominent universities such as Georgetown and Boston College. The program

still does not have an embedded balancedness requirement. As a result, Georgetown

abandoned the program a number of years ago.

The Erasmus student exchange program among universities in Europe is another ex-

ample of a market in which a lack of balancedness have caused some exchange relationships

to be terminated. Member colleges that want to exchange students with each other sign

bilateral contracts that set the maximum number of students to be exchanged in certain

years. The renewal decision of the contract depends on whether a reasonable balance is

maintained between the incoming and outgoing exchange students between these colleges.

In particular, if one of the colleges has more incoming students than its outgoing students,

then that college does not renew the contract.

Tuition- and worker-exchange markets are closely related to favor markets, also known

as “time banks,” where time spent doing a favor or the number of favors is used as the

currency of exchange. Holding of the transaction currency in such markets corresponds

to a positive imbalance in our model. If not enough currency is injected initially to

the system and there is too much uncertainty, agents may shy away from using their

currency. Baby sitting co-ops are a leading example of such time banks. Such banks

could be adversely affected by the lack of balanced clearing mechanisms that clear all

favors in a well-defined sufficiently long time period ahead of the time.19

3 Two–Sided Matching via Exchange: Model

We introduce our model and the desirable solution concepts.20 Let C and S be the finite

set of colleges and students, respectively. Set S is partitioned into |C| disjoint sets,

i.e. S = ∪
c∈C

Sc where Sc is the set of students who are applying to be sponsored by

c ∈ C. Let q = (qc)c∈C ∈ N
|C| be the (scholarship) admission quota vector, where

qc is the maximum number of students who will be admitted by c with tuition exchange

scholarship, and e = (ec)c∈C ∈ N
|C| be the (scholarship) eligibility quota vector, where

ec is the number of students in Sc certified eligible by c. Let ⊲C = (⊲c)c∈C be the list

colleges-coming-end.
19In the mid-1970s, at the Capitol Hill Baby-Sitting Coop in Washington, DC, negative–balance aver-

sion of families resulted in imbalances between families and decreased the number of favor exchanges be-
tween families. For details see http://www.ft.com/cms/s/2/f74da156-ba70-11e1-aa8d-00144feabdc0.html
reached on Feb 20, 2016. This fits our setting perfectly: if the matches could be done in a monthly sched-
ule using a centralized method, then balancedness requirements could be easily addressed.

20We will keep tuition exchange in mind in naming our concepts. The minor differences in the tempo-
rary worker-exchange model will be highlighted in Section 5.
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of college internal priority orders, where ⊲c is a linear order over Sc based on some

exogenous rule. We denote the set of eligible students that are certified eligible by c

by Ec where Ec = {s ∈ Sc | rc(s) ≤ ec} and rc(s) is the rank of s ∈ Sc under ⊲c. Let

E = ∪
c∈C

Ec. The unassigned option, named the null college, is denoted by c∅ and qc∅ = |S|.

A matching is a correspondence µ : C ∪ S ։ C ∪ S ∪ c∅ such that:21 (i) µ(c) ⊆ S

where |µ(c)| ≤ qc for all c ∈ C, (ii) µ(s) ⊆ C ∪ c∅ where |µ(s)| = 1 for all s ∈ S, (iii)

s ∈ µ(c) if and only if µ(s) = c for all c ∈ C and s ∈ S, and (iv) µ(s) = c∅ for all s /∈ E.22

Let M be the set of matchings. Let Xµ
c = {s ∈ Sc | µ(s) ∈ C \ c} be the set of

exports for c under µ.23 Let Mµ
c = {s ∈ S \ Sc | µ(s) = c} be the set of imports for c

under µ. Let bµc ∈ R be the net balance of c ∈ C in µ. We set bµc = |Mµ
c | − |Xµ

c |. We

say c ∈ C has a zero (negative) [positive] net balance in µ if bµc = 0 (bµc < 0) [bµc > 0].

Let %= (%S,%C) = ((%s)s∈S, (%c)c∈C) be the list of student and college preferences

over matchings, where %i is the preference relation of agent i ∈ S ∪C on M. We denote

the strict preference of agent i ∈ S ∪ C on M by ≻i and her indifference relation by ∼i.

Each s ∈ S cares only about her own match in a matching and has a strict preference

relation Ps on C ∪ c∅. Let Rs denote the at–least–as–good–as relation associated with

Ps for any student s ∈ S: cRsc
′ if cPsc

′ or c = c′ for all c, c′ ∈ C ∪ c∅. Student s’s

preferences over matchings %s is defined as follows: if µ(s)Rsµ
′(s) then µ %s µ

′.

On the other hand, each college potentially cares not only about its admitted class of

(scholarship) students but also about its net balance. Colleges do not consider all students

worth awarding a scholarship.24 To explain how colleges compare two matchings with the

same balance, we need a ranking for each college over the sets of admitted students. The

preference relation of c over matchings, %c, is defined through a linear order, denoted by

Pc, over S ∪ {∅}. Let P ∗
c be the responsive (Roth, 1985) ranking of c over the subsets

of students; that is, ∀T ⊆ S with |T | < qs and s, s′ ∈ S \ T : (1) sPc∅ =⇒ (T ∪ s) P ∗
c T

and (2) sPcs
′ =⇒ (T ∪ s) P ∗

c (T ∪ s′). Note that P ∗
c is just a ranking over the sets

of admitted students and is not the preference relation of c over matchings. Let R∗
c be

the weak ranking over the subset of students induced by P ∗
c . Throughout the paper we

assume that between any two matchings in which c has the same net balance, it prefers the

one with the higher-ranked set of admitted students according to R∗
c . Formally, for any

c ∈ C, college c’s preferences over matchings, %c, satisfies the following restriction:

for any µ, ν ∈ M, if bµc = bνc and µ(c) R∗
c ν(c) then µ %c ν.

21We may refer to singleton {x} as x with a slight abuse of notation. The only exception is {∅}.
22In tuition exchange, only the students who are certified eligible can be assigned to other institutions.

Therefore, if s is not certified eligible, i.e., if s ∈ S \ E, then she will be assigned to the null college.
23When we say s ∈ S is matched to c ∈ C, we mean s receives a tuition-exchange scholarship from c.
24We say a student s is unacceptable for college c if c does not consider s worth awarding a scholarship

and s is acceptable for c otherwise.
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We now introduce the properties of desirable matchings. A matching µ ∈ M Pareto

dominates ν ∈ M if µ %i ν for all i ∈ C ∪ S and µ ≻j ν for some j ∈ C ∪ S. A

matching µ is Pareto efficient if it is not Pareto dominated by any other ν ∈ M. A

matching µ ∈ M is acceptable if s Pc ∅ and c Ps c∅ for all c ∈ C and s ∈ µ(c).

A matching µ ∈ M is balanced if bµc = 0 for all c ∈ C.25 Balancedness is the

key property in a tuition-exchange market. For each tuition-exchange market, the set

of balanced matchings is nonempty. For instance, a matching where all students are

unassigned satisfies balancedness. Moreover, there may exist multiple balanced matchings

for a given market. We say a balanced matching µ is balanced–efficient if it is not Pareto

dominated by any other balanced matching.

We say µ is blocked by a college c ∈ C if there exists some µ′ ∈ M such that

µ′ ≻c µ, µ′(s) = µ(s) for all s ∈ S \ µ(c), and µ′(c) ⊂ µ(c). A matching µ is blocked

by a student s ∈ S if c∅ Ps µ(c). A matching µ is individually rational if it is not

blocked by any individual agent. A matching µ is nonwasteful if there does not exist a

pair (c, s) such that |µ(c)| < qs, c Ps µ(s) and µ′ ≻c µ, where µ′(s) = c and µ′(s′) = µ(s′)

for all s′ ∈ S \ s. In Appendix A, we provide an analysis of the decentralized practice of

tuition exchange and “stability”, defined there for a market with externalities.

Throughout the paper, C, S, and ⊲C are fixed; a quota vector, eligibility vector, and

a preference profile defines a tuition-exchange market – or simply, a market – as [q, e,%].

3.1 Tuition-Exchange Mechanisms

The current practice of tuition exchange is implemented through indirect semi-decentralized

market mechanisms. Although our new proposal can also be implemented indirectly, it

will be useful to discuss it as a direct mechanism to analyze its properties. A (direct)

mechanism is a systematic way of selecting a matching for each market. Let ϕ be a

mechanism; then the matching selected by ϕ in market [q, e,%] is denoted by ϕ[q, e,%],

and the assignment of agent i ∈ S ∪ C is denoted by ϕ[q, e,%](i).

In a revelation game, students and colleges report their preferences; additionally, col-

leges report their admission and eligibility quotas.26 A mechanism ϕ is immune to

preference manipulation for students (or colleges) if for all [q, e,%], there exists no

i ∈ S (or i ∈ C) and %′
i such that ϕ[q, e, (%′

i,% −i)](i) ≻i ϕ[q, e,%](i). A mechanism ϕ

is immune to preference manipulation if it is immune to preference manipulation for

both students and colleges. A mechanism ϕ is immune to quota manipulation if for

25Note that bµc ≥ 0 for all c ∈ C and bµc ≤ 0 for all c ∈ C imply bµc = 0 for all c ∈ C.
26Since the internal priority order is exogenous, the set of eligible students can be determined by the

eligibility quota.
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all [q, e,%], there exists no c ∈ C and (q′c, e
′
c) ∈ N

2 such that ϕ[(q′c, q−c), (e
′
c, e−c),%](c) ≻c

ϕ[q, e,%](c). A mechanism ϕ is strategy-proof for colleges if for all [q, e,%], there ex-

ists no c ∈ C and (q′c, e
′
c,%

′
c) such that ϕ[(q′c, q−c), (e

′
c, e−c), (%

′
c,%−c)](c) ≻c ϕ[q, e,%](c).

A mechanism is strategy-proof for students if it is immune to preference manipulation

for students. A mechanism is strategy-proof if it is strategy-proof for both colleges and

students.27

One distinctive feature of the tuition-exchange market is the existence of internal

priorities for each c ∈ C, ⊲c. In current practice, the internal priority order is used to

determine which students will be certified eligible. This priority order is usually based

on the seniority of faculty members. We incorporate this priority-based fairness objective

into our model by introducing a new property. It is desirable that whenever a student

s sponsored by c is assigned to a college in ϕ[q, e,%], she should also be assigned in

ϕ[(q̃c, q−c), (ẽc, e−c),%] where ẽc > ec and q̃c ≥ qc. That is, the addition of students with

lower internal priority should not cause s to be unassigned. Formally, a mechanism ϕ

respects internal priorities if whenever a student s ∈ Sc is assigned to a college in

market [q, e,%], then s is also assigned to a college in [(q̃c, q−c), (ẽc, e−c),%] where ẽc > ec

and q̃c ≥ qc.28 Respect for internal priorities is a fairness notion rather than efficiency.

4 Two–Sided Top Trading Cycles

In this section, we propose a mechanism that is individually rational, acceptable, bal-

anced–efficient, and strategy-proof for students. Moreover, it respects colleges’ internal

priorities. Throughout our analysis, we impose a weak restriction on college preferences.

Assumption 1 below states that a college prefers a better scholarship class with zero net

balance to an inferior scholarship class with a nonpositive net balance.

Assumption 1 For any µ, ν ∈ M and c ∈ C, if bµc = 0, bνc ≤ 0, and µ(c)P ∗
c ν(c) then

µ ≻c ν.

We start with the following proposition, which shows the incompatibility between

balancedness and individual rationality, and nonwastefulness.

Proposition 1 Under Assumption 1, there may not exist an individually rational and

nonwasteful matching that is also balanced.29

27Since students care only about the colleges they are matched with, it will be sufficient for them to
report their preferences over colleges. Under an additional assumption, our proposal in Section 4 can also
be implemented by having colleges only report individual students as “acceptable” or “unacceptable”.

28This property is used in our characterization in Section 4 where we show that this axiom does not
bring additional cost to our proposed mechanism (Theorem 6).

29All proofs are in Appendix B.
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Proposition 1 also shows that there exists no stable and balanced mechanism.30

It will be useful to denote a matching as a directed graph, as we will find the outcome

of our mechanism through an algorithm over directed graphs. In such graphs, colleges

and students are nodes; a directed edge is between a college and a student, and it points

to either the college or the student, but not both. Given a matching µ, let each s ∈ S

point to µ(s) and each c ∈ C point to all its matched sponsored students, i.e., those in

Sc\µ(c∅); moreover, let c∅ point to students in µ(c∅). In this graph, we define the following

subgraph: A trading cycle consists of an ordered list of agents (c1, s1, c2, s2, ..., ck, sk)

such that c1 points to s1, s1 points to c2,..., ck points to sk and, sk points to c1.

In the following Remark, we state that if a matching is balanced, then we can decom-

pose it into a finite number of disjoint trading cycles. We skip its proof for brevity.

Remark 1 A matching µ is balanced if and only if each student is in a trading cycle in

the graph of the matching.

We are ready to propose a new two-sided matching mechanism. We will find its out-

come using an algorithm inspired by top–trading–cycles (TTC) introduced for one–sided

resource allocation problems, such as for school choice (by Abdulkadiroğlu and Sönmez,

2003) and dormitory room allocation (by Abdulkadiroğlu and Sönmez, 1999). These TTC

algorithms were inspired by Gale’s TTC algorithm (Shapley and Scarf, 1974), which was

used to find the core allocation of a simple exchange economy, referred to as the hous-

ing market, a subclass of one-sided matching problems. Most common mechanisms in

one-sided matching problems function through algorithms that mimic agents exchanging

objects that are initially allocated to them either through individual property rights or

through the mechanism’s definition of the agents (see also Pápai, 2000; Pycia and Ünver,

2016). In contrast, in our market, college slots are not objects. Therefore our definition of

a mechanism, and the properties of matchings and mechanisms (except strategy-proofness

for students) do not have any analogous translation in such problems. However, because

we use a variant of TTC algorithm to find the outcome, we refer to our mechanism as

two–sided (student–pointing) top–trading–cycles (2S-TTC ). Its outcome is found

for any given [q, e,%] as follows:31

30A matching is stable if it is individually rational and not blocked by a college-student pair. In our
setting with externalities, it is formally defined in Appendix A.

31The converse of this process, using an algorithm originally introduced for two-sided matching markets
in one-sided matching markets, has already been utilized in market design. For certain real-life one-
sided problems regarding student placement and school choice, Balinski and Sönmez (1999) introduced
and Abdulkadiroğlu and Sönmez (2003) the student–optimal stable mechanism, whose algorithm was
originally introduced to find stable matchings in two-sided matching markets by Gale and Shapley (1962).
Later on, many school districts in the US adopted this mechanism for public school admissions (see
Abdulkadiroğlu, Pathak, Roth, and Sönmez, 2005 and Abdulkadiroğlu, Pathak, and Roth, 2005).
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The Algorithm for the Two–Sided Top–Trading–Cycles Mechanism:

Round 0: Assign two counters, for admission and eligibility, for each college c ∈ C,

and set them equal to qc and ec, respectively.

Round k ≥ 1: Each remaining student points to her favorite college among the re-

maining ones in C ∪ c∅ that considers her acceptable, and each remaining c ∈ C points

to the student in Sc among the remaining ones who has the highest priority in ⊲c. Null

college c∅ points to the students pointing to it. Due to the finiteness of the sets of the

colleges and students, there exists at least one trading cycle. Each agent can be part

of at most one cycle. Every student in each cycle is assigned a seat at the college she

is pointing to and removed. If the cycle does not contain c∅, then the counters of each

college in that cycle are reduced by one. If the cycle contains c∅, then we reduce only the

eligibility counter of the college whose student is in that cycle. If any counter of a college

reaches zero, then that college is removed and its remaining students are assigned to c∅.

The algorithm terminates when there are no remaining students in the market.

In the following theorem, we show that 2S-TTC is balanced–efficient, acceptable, and

individually rational, and it respects internal priorities.

Theorem 1 Under Assumption 1, 2S-TTC is an individually rational, balanced–efficient,

and acceptable mechanism that also respects internal priorities.

It should be noted that balanced-efficiency of 2S-TTC is not directly implied by

(Pareto) efficiency of TTC in a one–sided market. Here, colleges are players with multiple

seats. Observe that by assigning a college at least one highly preferred student and some

unacceptable ones, some acceptable, individually rational, and balanced matchings can

potentially be (weakly) improved for everyone while keeping balancedness intact (and

even the number of students who are assigned to a college can go up). In this theorem,

through an iterative approach, we show that it is not possible to improve over 2S-TTC’s

outcome in such a fashion. Also consider the following concept: For any I ⊆ S ∪ C, a

balanced matching is balanced-efficient for I if there is no other balanced matching

which makes each agent in I weakly better off and at least one agent in I strictly better

off. 2S-TTC mechanism is neither balanced-efficient for students nor balanced-efficient

for colleges. However, it is balanced-efficient overall (when all agents’ welfare is taken into

account). Thus, it is a compromise between the welfare of both sides, slightly favoring

students by construction. Since side–balanced-efficiency is not satisfied by 2S-TTC in

general (even under strict preferences), we need a new proof to prove its overall balanced-

efficiency. To illustrate that 2S-TTC is not balanced-efficient for any side, we provide a

simple example in Appendix G and further explanation regarding why previously known

results do not immediately imply our efficiency result.

13



Under a centralized mechanism, incentives for participants to truthfully reveal their

preferences are desirable. Unfortunately, we show that balanced–efficiency, individual

rationality, and immunity to preference manipulation for colleges are incompatible.

Theorem 2 There does not exist an individually rational (or acceptable) and balanced–efficient

mechanism that is also immune to preference manipulation for colleges.

We prove this theorem by constructing several small markets and showing that it is

not possible to satisfy all three properties in one of these markets.

Theorem 1 and 2 imply that the 2S-TTC mechanism is not strategy-proof for colleges.

The following theorem shows that it is group strategy-proof for students. This result

is a consequence of TTC being group strategy-proof in a housing market (cf. Pápai, 2000).

Theorem 3 2S-TTC is group strategy-proof for students.

2S-TTC can be run as an indirect mechanism where colleges report only their accept-

able incoming students. Hence, the strategy space for the colleges is very simple in using

2S-TTC in the field: their strategy is to report their admission and eligibility quotas and

their sets of acceptable students based on their preferences over the matchings, set of own

students, and internal priority order.

Moreover, if we focus on the game played by the tuition-exchange office of a college,

when admissions preferences are fixed, truthful admission quota revelation and certifica-

tion of all its own students is a (weakly) dominant strategy under 2S-TTC.32

Theorem 4 Under Assumption 1 and when true eligibility quotas satisfy ec = |Sc| for

all c ∈ C, 2S-TTC is immune to quota manipulation.

We prove the theorem with a lemma showing that as the quotas of a college increase,

the import and export sets of this college also expand under 2S-TTC.33

Theorems 3 and 4 point out that only colleges can benefit from manipulation, and

they can manipulate the 2S-TTC mechanism by misreporting their preferences. Moreover,

32On their websites, colleges explain that the sole reason for certifying a limited number of students
is maintaining a balanced exchange. 2S-TTC removes the need for this rightful caution associated with
the current market practices (see Appendix A).

33Theorem 4 is in stark contrast with similar results in the literature for stable mechanisms. The
student– and college–optimal stable mechanisms are prone to admission quota manipulation by the
colleges even under responsive preferences (see Sönmez, 1997 and Konishi and Ünver, 2006) Thus, 2S-
TTC presents a robust remedy for a common problem seen in centralized admissions that use the stu-
dent–optimal stable mechanism and also in tuition exchange in a decentralized market (see Theorems 10
and 11 in Appendix A).
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the only way to manipulate preferences is to report an acceptable student as unaccept-

able. Suppose we take all the admitted students in the regular admission procedure as

acceptable for a tuition-exchange scholarship. Then, to manipulate the 2S-TTC mecha-

nism, a college needs to reject a student who satisfies the college admission requirements.

Usually college admission decisions are made before the applicants are considered for

scholarships.34

Proposition 2 below implies that colleges do not benefit from misreporting their rank-

ing over incoming classes.

Proposition 2 Under Assumption 1, colleges are indifferent among strategies that report

preferences over matchings in which the same set of students is acceptable under the 2S-

TTC mechanism.

We have shown that 2S-TTC has appealing properties. In the following theorem, we

show that it is the unique mechanism satisfying a subset of these properties.

Theorem 5 Under Assumption 1, 2S-TTC is the unique student–strategy-proof, accept-

able, and balanced–efficient mechanism that also respects internal priorities.

In the proof of our characterization theorem, we use a different technique from what is

usually employed in elegant single quota characterization proofs such as Svensson (1999)

and Sönmez (1995) for the result of Ma (1994). Our proof relies on building a contra-

diction with the claim that another mechanism with the four properties in the theorem’s

hypothesis can exist. Suppose such a mechanism exists and finds a different matching

than 2S-TTC for some market. The 2S-TTC algorithm runs in rounds in which trad-

ing cycles are constructed and removed. Suppose S(k) is the set of students removed in

Round k, while running the 2S-TTC algorithm in such a way that in each round only

one arbitrarily chosen cycle is removed and all other cycles are kept intact. We find a

Round k and construct an auxiliary market with the following three properties: (1) El-

igibility quotas of home colleges of students in S(k) are set such that these are the last

certified students in their respective home institutions; (2) all preferences are kept intact

except those of students in S(k), whose preferences are truncated after their 2S-TTC

assignments; and (3) all students in S(k) are assigned c∅ under the alternative mecha-

nism, while all students removed in the 2S-TTC algorithm before Round k have the same

34Our proposal also prevents some other manipulation possibilities. For example, right now if a college
really likes one of its own students, then it may decrease its export quota preventing this student to be
eligible, and the student, in the end, attends to her home college through tuition remission. However,
in our proposal a college’s export quota also determines the set of its own students who are eligible for
tuition remission. Thus, no ineligible student can attend her home college through tuition remission. We
think that tuition exchange and tuition remission programs should be run together (see next subsection).

15



assignment under 2S-TTC and the alternative mechanism. This contradicts the balanced-

efficiency of the alternative mechanism: we could give the students in S(k) their 2S-TTC

assignments while keeping all other assignments intact and obtain a Pareto-dominating

balanced matching. Round k and the auxiliary market are constructed in three iterative

steps.

Among all the axioms, only the respect for internal priorities is based on exogenous

rules. One might suspect that more students will benefit from the tuition-exchange pro-

gram if we allow the violation of respect for internal priorities. However, such mechanisms

turn out to be manipulable by students:

Theorem 6 Any balanced and individually rational mechanism that does not assign fewer

students than the 2S-TTC and selects a matching in which more students are assigned

whenever such a balanced and individually rational outcome exists, is not strategy-proof

for students, even under Assumption 1.

4.1 Market Implementation: Tuition Remission and Exchange

Incorporating tuition-remission programs by all participating colleges in tuition exchange

is the best way to implement a centralized clearinghouse. If parallel remission and ex-

change programs are run, as in current practice, a student may receive multiple scholar-

ship offer, one from her home college and one from the tuition-exchange program. If the

student accepts the home college’s offer, the net balance of the college may deteriorate.

Although the current system is inflexible in accommodating this important detail,

a clearinghouse utilizing 2S-TTC can easily combine tuition exchange with remission.

Indeed, in Assumption 1, we allowed a college to deem its own sponsored students to be

acceptable. Hence, all our results in this section robust to integration.

More specifically, we propose to run an indirect version of 2S-TTC in sequential stages

in a semi-decentralized fashion: first, colleges announce their tuition-exchange scholarship

quotas and which of their students are eligible to be sponsored for both exchange and

remission; then, eligible students apply for scholarship to the colleges they find acceptable;

then colleges send out scholarship admission letters. At this stage, as students have

also learned their opportunities in the parallel-running regular college admissions market,

they can form better opinions about the relative ranking of the null college, i.e., their

options outside the tuition-exchange market. Students submit rankings over the colleges

that admitted them with a tuition-exchange scholarship and the relative ranking of their

outside option. Finally, 2S-TTC is run centrally to determine the final allocation.
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4.2 Allowing Tolerable Imbalances

Some programs care about approximate balance over a moving time window. Here, we

relax the zero-balance constraint and allow each c ∈ C to maintain a balance within an

interval [ℓc, uc] where ℓc ≤ 0 ≤ uc.35 When either ℓc or uc equals zero for all c ∈ C, the

problem turns into the case studied in Section 4. Let (ℓc, uc)c∈C be the tolerance profile.

When the colleges hold a non-zero balance, then there may exist some colleges export-

ing (importing) more than they import (export). Then, we cannot represent all allocations

by cycles. Therefore we need to consider chains in addition to the cycles. A chain is an

ordered list (c1, s1, c2, s2, ..., ck) such that c1 points to s1, s1 points to c2,..., ck−1 points to

sk−1 and sk−1 points to ck. We refer to c1 as the tail and ck as the head of the chain.

We use a mechanism similar to the 2S-TTC referred as the two-sided tolerable top-

trading-cycles. For any problem and a tolerance profile, its outcome is found as follows:

Two-Sided Tolerable Top Trading Cycles (2S-TTTC):

Step 0: Fix an exogenous priority order among colleges. Assign two counters for each

c ∈ C, oqc and oec, and set them equal to qc and ec, respectively. Let bc track the current

balance of c in the fixed portion of the matching. Initially set bc = 0 for each c ∈ C.

Assign an export and an import counter for the null college and set them equal to |S|.

All colleges are marked as importing and exporting.

Step 1a:

* If oec = 0, and either oqc = 0 or bc = uc, then remove c. If oec = 0, oqc > 0 and bc < uc,

then c becomes non-exporting.36

* If oqc = 0 and bc = ℓc, then remove c. If oqc = 0, oec > 0 and bc > ℓc then c becomes

non-importing.

Step 1b : Each student points to her favorite available importing college, which considers

her acceptable, and each available exporting college c points to the student s ∈ Sc who

has the highest internal priority among the available ones. The null college c∅ points to

the students pointing to it.

Proceed to Step 2 if there is no cycle. Otherwise locate each cycle, and assign each

student to the college that she points to. Each assigned student is removed.

* The eligible student counter, oec, of each c that is in a cycle is reduced by one.

* The import counter, oqc, of each c in a cycle is reduced by one.

* Return to Step 1a.

Step 2: If there are no students left, we are done. If not, then all chains end with

35Here, ℓc and uc are integers.
36I.e., a college is non-exporting if it has available quota to import but all its sponsored students are

removed. Therefore, a non-exporting college cannot point to a student.
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non-exporting colleges. If bc = ℓc for each available exporting college c, then remove all

non-exporting colleges and go to Step 1a.37 Otherwise, find the chain whose tail has the

highest priority among the available exporting colleges with bc > ℓc. Assign each student

in that chain to the college that she points to and remove her. Denote the tail and head

of the chain by ct and ch, respectively. Other colleges in the chain are represented by c̃:

* The eligible student, oec̃, and import, oqc̃, counters of all c̃ are reduced by one.

* Eligible student counter oect and current balance bct are reduced by one.

* Import counter oqch is reduced by one and current balance bch is increased by one.

* Return to Step 1a.

The algorithm terminates when there are no remaining eligible students left. We call

each repetition of these steps a round.

The 2S-TTTC mechanism inherits the desired features of the 2S-TTC. In Theorem

7, we show that students cannot benefit from misreporting their preferences under 2S-

TTTC and for any problem and tolerance profile (ℓc, uc)c∈C its outcome cannot be Pareto

dominated by another acceptable matching ν such that bνc ∈ [lc, uc] for all c ∈ C.

Theorem 7 2S-TTTC is strategy-proof for students and for any problem [q, e,%] and

tolerance profile (ℓc, uc)c∈C, there does not exist an acceptable matching ν that Pareto

dominates the outcome of 2S-TTTC and ℓc ≤ bνc ≤ uc for all c ∈ C.

In the 2S-TTTC mechanism, a student starts pointing to the colleges in her preference

list after all the other students with higher internal rank are assigned to a college, including

the null college. Moreover, a student points to the acceptable colleges that consider

her acceptable. As a consequence, the 2S-TTTC mechanism satisfies acceptability and

respects internal ranking.

Theorem 8 2S-TTTC is acceptable and respects internal priorities.

Theorem 7 and 8 hold without any assumption on preferences. Under a mild assump-

tion on college preferences, we can show that 2S-TTTC is individually rational and it is

a weakly dominant strategy for colleges to certify all their students.

Although 2S-TTTC is defined in a static problem, we can easily extend it to the

dynamic environment where the aggregate balance over years matters. In particular, for

each period t and c ∈ C we can set counter bc equal to c’s aggregate balance in period t−1

where the aggregate balance in period t−1, is equal to the sum of balances between period

1 and t − 1. Moreover, the exogenous priority rule used in period t can be determined

based on the aggregate balance colleges carry at the end of period t − 1 such that the

highest priority can be given to the college with the highest aggregate balance and so on.
37That is, no more chains respecting the tolerance interval can form after this point in the algorithm.
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5 Temporary Worker Exchanges

Many organizations have temporary worker-exchange programs that can be modeled

through our balanced two–sided matching framework. The first difference between such

programs and tuition exchange is that these exchanges are temporary. Each firm usually

requires a set of specific skills, e.g., a mathematics teacher to replace their own mathe-

matics teacher. Compatibility and ability to perform the task are the main preference

criterion rather than a strict preference ranking. E.g., finding a good teacher with a spe-

cific degree is the first-order requirement, rather than finer details about the rankings of

all good teachers.

The second difference is that each position and each worker should be matched, unlike

the tuition-exchange application. The workers are currently working for their home firms.

Thus, the firms find these workers necessarily acceptable. By contrast, in tuition exchange,

colleges are not required to admit all the dependents of their employees without a tuition-

exchange scholarship. In temporary worker exchanges, a worker who does not want to go

to a different firm necessarily stays employed in her home firm. Hence, we need to use

a variant of the tuition-exchange model to facilitate balanced and efficient trade in such

circumstances.

We can use the model introduced in Section 3, with slight changes. In Section 3, in the

definition of a matching, students who are not eligible are taken as assigned to c∅. How-

ever, for worker-exchange programs, the workers who are not certified as eligible continue

to work in their home firms in a matching . Formally, a matching is a correspondence

µ : C ∪ S ։ C ∪ S such that, (1) µ(c) ⊆ S, where |µ(c)| ≤ qc for all c ∈ C, (2) µ(s) ⊆ C,

where |µ(s)| = 1 for all s ∈ S, (3) s ∈ µ(c) if and only if µ(s) = c for all c ∈ C and s ∈ S,

and (4) µ(s) = c for all s ∈ Sc \ E. Let M be the set of all matchings.

To capture the features of worker-exchange programs, we make certain assumptions

about the preferences of workers and firms. Since worker s ∈ Sc is already working at

firm c, we assume that s finds c acceptable and c finds s acceptable, i.e., cPsc∅ and sPc∅

for all s ∈ Sc and c ∈ C. As discussed above, acceptable workers do not have huge

differences for the firms. The compatibility assumption and Assumption 1 together imply

that each firm weakly prefers a matching with zero net–balance to another matching with

non-positive balance as long as it gets weakly more acceptable workers under the former

one. We formally state these assumptions on preferences as follows.

Assumption 2 (1) (Weakly size-monotonic firm preferences) For any c ∈ C and µ, ν ∈

M, if bµc = 0, bνc ≤ 0 and |{s ∈ µ(c) : sPc∅}| ≥ |{s ∈ ν(c) : sPc∅}| then µ %c ν, and

(2) (Acceptability of current match) For any c ∈ C and any s ∈ Sc, cPsc∅ and sPc∅.
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Based on Assumption 2, a balanced mechanism that allows employees to get better

firms, which consider them acceptable, improves the total welfare without hurting anyone.

Hence, 2S-TTC can be applied to temporary exchange programs. In this environment, 2S-

TTC inherits its desired features, i.e., it is balanced-efficient, acceptable, and individually

rational, and it respects internal priorities. Moreover, it is strategy–proof. The uniqueness

result presented in Section 4 also holds in the worker-exchange market.

Theorem 9 Under Assumption 2, 2S-TTC is a balanced–efficient, individually rational,

acceptable, and strategy-proof mechanism that also respects internal priorities, and it is

the unique balanced–efficient, acceptable, student strategy-proof mechanism that respects

internal priorities.38

An immediate corollary of Theorem 9 is that reporting true import quota and certi-

fying all workers is a weakly dominant strategy for firms.

Corollary 1 Under Assumption 2, 2S-TTC is immune to quota manipulation.

6 Conclusions

This paper proposes a centralized market solution to overcome problems observed in

decentralized exchange markets. We used tuition exchange and temporary exchange pro-

grams as our leading examples, in which more than 300,000 people participate annually.

Our paper, besides introducing a new applied problem and proposing a solution to

it, has six main theoretical and conceptual contributions: We introduce a new two-sided

matching model that builds on the two most commonly used matching models in the

literature: discrete object allocation, including school choice, and standard many-to-one

two-sided matching models, but differs in many fronts from these. As far as we know, this

is the first time object allocation and exchange algorithms inspire the mechanism design

for a two-sided matching model. This is one of the few instances when axiomatic mech-

anism design is used in practical market design to come up with the correct mechanism.

A natural axiomatic representation is given for a TTC-based mechanism. This is one of

the rare occasions where the stable matching theory of Gale and Shapley is extended to

a setting with externalities with tractable existence, equilibrium, and comparative static

results (see Appendix A). Finally, our paper is one of the few studies that propose a

dynamic matching mechanism with good properties for a dynamic applied problem.
38Moreover, 2S-TTC is stable in this domain. This result is noteworthy, because the widely-used

worker-proposing deferred-acceptance mechanism with exogenous tie-breaking is not balanced-efficient,
although it is stable and balanced in this special environment. We also prove the stability of 2S-TTC in
the proof of this theorem.
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Appendices Intended for Online Publication

Appendix A On Current Practice of Tuition Exchange

In this appendix, we analyze the current practice of tuition exchange. As the centralized

process is loosely controlled, once each college sets its eligibility/admission quota and

eligible students are determined, the market functions more like a decentralized one rather

than a centralized one. Once colleges commit to the students they will sponsor, they lose

their control over them. A sponsored student can sometimes get multiple offers and decide

which one to accept and when to accept it. Hence, stability emerges as a relevant notion

for a benchmark market-equilibrium concept when there is no other friction. To adopt

stability in our model, we introduce blocking by a pair: We say µ′ ∈ M is obtained from

µ by the mutual deviation of c and s if s ∈ µ′(c) ⊆ µ(c) ∪ s, and µ′(s′) = µ(s′) for all

s′ ∈ S \ (µ(c) ∪ s). A matching µ ∈ M is blocked by college-student pair (c, s) if

c Ps µ(s) and µ′ ≻c µ, where µ′ ∈ M is obtained from µ by the mutual deviation of c

and s. As in any blocking condition in cooperative games with externalities, we need to

take a stance on how other players act when a pair deviates. We assume that only one

college or one student deviates at a time, and assume that the rest of the students and

colleges do not make simultaneous decisions.39 A matching µ is stable if it is individually

rational and not blocked by any college-student pair.

Tuition exchange market has some idiosyncratic properties different from those of

previously studied two-sided matching markets.

In tuition exchange — in its current implementation — an admitted class of lower-

quality students can be preferable to one with higher-quality students under two different

matchings, if the latter one deteriorates the net balance of the college. The extreme

version of this preference is a college being extremely averse towards negative net-balance

matchings, regardless of the incoming class. Maintaining a nonnegative net balance is

important for a college to continue its membership in the program. In particular, a

college with negative net balance might be suspended from the program.

We will incorporate these features as two formal assumptions in this section. Assump-

tion 3 states that a better admitted class is preferable as long as the net balance does

not decrease, admission of unacceptable students deteriorates the rankings of matchings

regardless of their net balances, and a college deems its own students unacceptable in

tuition exchange. Assumption 4 introduces negative net-balance averse preferences. In

39See Pycia and Yenmez (2015) for more discussion of this stability concept under matching problems
with externalities.
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all results in this section we will use Assumption 3, while Assumption 4 will be used in

only one result. We start by stating Assumption 3.

Assumption 3 For any c ∈ C and µ, ν ∈ M,

(1) (Preference increases with a better admitted class and a non-deteriorating balance)

if bµc ≥ bνc and µ(c)P ∗
c ν(c), then µ ≻c ν,

(2) (Awarding unacceptable students exchange scholarships is not preferable) if there

exists s ∈ ν(c) \ µ(c), ∅Pcs and ν(s′) = µ(s′) for all s′ ∈ S \ s, then µ ≻c ν, and

(3) (Unacceptability of the college’s own students for exchange scholarships) ∅Pcs for

all s ∈ Sc.

Assumption 3 implies that, if there exists s ∈ µ(c) such that ∅Pcs, then µ is blocked

by c. Moreover, if sPc∅ for all s ∈ µ(c), then µ is not blocked by c. Hence, individual

rationality and acceptability are equivalent under Assumption 3. Moreover, Assumption 3

implies that if cPsµ(s), sPc∅, and |µ(c)| < qc, then (c, s) is a blocking pair for µ. Similarly,

if sPcs
′, sPc∅, s′ ∈ µ(c), and s /∈ µ(c), then (c, s) is a blocking pair for µ.

The existence of stable matchings has been widely studied in two–sided matching

problems without externalities. For instance, in the college admission market, when the

college preferences are responsive, then the set of stable matching is nonempty (cf. Gale

and Shapley, 1962; Roth, 1985).40 We prove a similar result for our environment.

Proposition 3 Under Assumption 3, there exists at least one stable matching in any

tuition-exchange market.

We prove this proposition by constructing an associated Gale–Shapley college-admissions

market in which the set of Gale–Shapley–stable matchings is identical to the set of stable

tuition–exchange matchings.

40In the earlier two–sided matching literature, stability a la Gale and Shapley (1962) has been the
central solution concept. Technically, our model is similar to a two-sided matching model with external-
ities, i.e., agents have preferences over allocations rather than their matches. Sasaki and Toda (1996)
introduced externalities in two-sided matching markets and various stability definitions. Pycia (2010)
explores existence in two-sided matching when agents have preferences over peers and matches. The
first model is quite general; however, their stability notion, which guarantees existence, requires a very
conservative definition of blocking. The second model, on the other hand, does not cover externalities
regarding the balancedness requirement. Pycia and Yenmez (2015) also focus on the existence of stable
matching in a two-sided matching problem with externalities such that preferences satisfy a substitutes
condition.

However, our model has major differences from standard externality models, which generally inspect
peer effects or induce different stability definitions as a solution for the decentralized market.We introduce
a new stability notion for the current model.
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In Section 4, we show the incompatibility between individual rationality, nonwaste-

fulness, and balancedness under Assumption 1. Although Assumption 3 is stronger than

Assumption 1, the incompatibility result still holds under Assumption 3.

Proposition 4 Under Assumption 3, there may not exist an individually rational and

nonwasteful matching that is also balanced.

Proposition 4 also shows that there exists no stable and balanced mechanism un-

der Assumption 3. One can then wonder whether there exists a stable mechanism that

performs better than all other stable mechanisms in terms of balancedness. We prove

otherwise.41

Proposition 5 Under Assumption 3, each college has the same net balance in all stable

matchings of a given market.

We also investigate what kinds of strategic decisions a tuition-exchange office in a

college would face in a quota-determination game if a stable outcome emerges in the mar-

ket. Here we explicitly make the aforementioned additional assumption about negative

net-balance aversion on college preferences:42

Assumption 4 (Negative Net-Balance Aversion) College c prefers µ ∈ M, such that

bµc = 0 and all s ∈ µ(c) are acceptable, to all ν ∈ M with bνc < 0.

In the quota-determination game, we fix C, S, ⊲C , and %. Colleges are the players

of the game and each college’s strategy is setting its admission and eligibility quotas

under a simultaneous move, complete information setting. Without loss of generality, we

constrain the strategy space such that a reported admission quota is not less than the

reported eligibility quota. Given a true quota profile, denote the action set for c with

Ac; then, it is Ac = {(q̂c, êc) ∈ N
2|q̂c ≥ êc ≥ 0}. The outcome of the game is determined

by a stable mechanism (solution). In Theorem 10, by using the results of Proposition 6

below, we show that in any stable solution, if a college holds a negative net balance, then

the best response is only to decrease the eligibility quota. Proposition 6 also gives us a

comparative result regarding how the net balances of colleges change when they certify

one additional student and do not decrease their admission quotas.43

41We also inspect the structure of stable matchings, as our stability concept is novel, in Appendix F.
We show that there always exist college- and student-optimal stable matchings.

42This assumption is used only in Theorem 10.
43Weber (1997); Engelbrecht-Wiggans and Kahn (1998); Ausubel, Cramton, Pycia, Rostek, and

Weretka (2014) study demand reduction in auctions.
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Proposition 6 Under Assumption 3, for fixed preferences % and for any reported quota

profiles q̂ and ê, let π̂ and π̃ be stable matchings for the induced markets [q̂, ê,%] and

[(q̃c, q̂−c), (ẽc, ê−c),%], respectively, where q̂c ≥ êc, q̃c ≥ q̂c and ẽc = êc + 1. Then bπ̃c ∈

{bπ̂c − 1, bπ̂c } if bπ̂c < 0; and bπ̃c ∈ {bπ̂c − 1, bπ̂c , ..., b
π̂
c + q̃c − q̂c} if bπ̂c ≥ 0.

The proposition concludes that, when a college increases its eligibility quota by one

without decreasing its admission quota, its overall net balance will decrease at most by

one under any stable solution. Its net balance may increase only if it is a nonnegative net

balance college to start with.44

Theorem 10 Under Assumptions 3 and 4, for fixed preferences % and for any reported

quota profiles q̂ and ê, if c has a negative net balance in a stable matching for market

[q̂, ê,%] where q̂c ≥ êc, then its best response in any stable solution is to set only lower êc,

but not higher; and in particular, there exist ẽc ≤ êc such that college c has a zero–balance

in every stable matching of the market [q̂, (ẽc, ê−c),%].

Theorem 10 shows that if c has a negative net balance then it certifies fewer students,

which will eventually increase its balance.45 When c certifies fewer students it may cause

another college c′ to have a negative net balance. Then c′ will have a negative net balance

and will certify fewer students, too. In Theorem 11 below, we show this result.

Theorem 11 Under Assumption 3, for fixed preferences % and for any reported quota

profiles q̂ and ê, if a college c is holding a negative net balance in a stable matching µ for

market [q̂, ê,%] where q̂c ≥ êc then bµ−c ≥ bµ
′

−c where µ′ is any stable matching of market

[(q′c, q̂−c), (e
′
c, ê−c),%], q̂c ≥ q′c ≥ e′c and êc > e′c.

Theorems 10 and 11 do not conduct an equilibrium analysis in a quota-determination

game. But they do point out that in a frictionless market, the colleges that will be likely

to have a negative-balance will be conservative and will decrease their eligibility quotas

for exports, which will further deteriorate the balances of other colleges.

Typically, no college fully withdraws in practice, as there is often a minimum quota of

participation in place. This is instituted most likely because of the reasons outlined above.

44This is possible only if q̃c > q̂c.
45This result is in a similar vein as the results on college admissions where the DA mechanism is shown

to be prone to admission quota manipulation of the colleges under responsive preferences, regardless of
imbalance aversion (cf. Sönmez, 1997). However, Konishi and Ünver (2006) show that the DA mechanism
would be immune to quota manipulation, if preferences of colleges over incoming students were responsive
and monotonic in number. On the other hand, even under this restriction of preferences over the incoming
class, our result would imply all stable mechanisms are manipulable with quota reports for colleges with
negative net balances if colleges have negative net-balance averse preferences. (See also Kojima and
Pathak, 2009.)
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Given that continued membership is an attractive benefit, often times, smaller colleges

will announce that they will import and export at this minimum quota requirement (for

example, it is 1 for TTEI), and will continue to be a member of the program without

fully withdrawing from the system.

We conclude that under a new design for the tuition exchange market, there should be

no room for quota underreporting by the colleges due to negative net-balance aversion, if

possible. A fully centralized solution disregarding decentralized market stability seems to

be inevitable, as stability is at odds with balancedness and has various other shortcomings

regarding other incentives.

Moreover, we deem such a stability concept inappropriate for our purpose as the rights

of students to participate in market activity depends on the permission of their colleges.

Thus, we claim that balanced–efficiency and individual rationality are the most important

features of a tuition–exchange outcome.

Appendix B Proofs

Proof of Propositions 1 and 4. Consider the following market. Let C = {a, b} and

for each c ∈ C set qc = ec = 1. The set of students in each college is: Sa = {1} and

Sb = {2}. The associated strict preference relations of students over colleges are given as

P1 : b P1 c∅ and P2 : a P2 c∅. Student 1 is not acceptable to b, i.e., ∅ Pb 1, and b prefers

any matching in which 1 is not assigned to itself over the ones in which 1 is assigned to

itself. Student 2 is acceptable to a and a prefers any matching with positive balance to

the ones in which no student is assigned to itself. There is one nonwasteful matching that

is not individually blocked: µ(1) = c∅ and µ(2) = a. This matching is not balanced, as

college b has negative net balances under µ.

Proof of Theorem 1. Consider an arbitrary market [q, e,%]. Let π be the matching

selected by 2S-TTC in [q, e,%].

Individual Rationality: Since each s ∈ S is assigned to a college better than c∅, s

does not individually block π. Since all students in π(c) are ranked above ∅ in Pc for each

c ∈ C, π(c) R∗
c S̃ for any S̃ ⊆ π(c). In any matching µ ∈ M such that µ(s) = π(s) for

all s ∈ S \ π(c) and µ(c) ⊂ π(c), c ∈ C has a nonpositive net balance. Hence, π is not

individually blocked by c.

Acceptability: Students will be assigned to the null college, c∅, whenever they point

to it, and, hence, they will never need to point to an unacceptable college. Moreover, a

student cannot point to a college that considers her unacceptable. Therefore, the students

ranked below ∅ in Pc cannot be assigned to c. Thus, the 2S-TTC is acceptable.
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Respect for Internal Priorities: Suppose, contrary to the claim, that 2S-TTC

does not respect internal priorities. Then, there exists s ∈ Sc who is assigned to a college

by 2S-TTC in [q, e,%], but not in [(q̃c, q−c), (ẽc, e−c),%] where q̃c ≥ qc and ẽc > ec. Note

that ec > 0 and qc > 0, since s is assigned to a college in C by 2S-TTC in [q, e,%]. We use

a variation of the 2S-TTC in which only the students with the highest internal priority

at their home colleges point to a college in C each round. Since only the top-priority

students and students pointing to c∅ can form a cycle in each round under both versions

of 2S-TTC, they will select the same outcome. Let S(k) and S̃(k) be the set of students

assigned in Round k of 2S-TTC applied to the problems [q, e,%] and [(q̃c, q−c), (ẽc, e−c),%],

respectively. In both problems, the same set of agents will be active in the first round.

Since we consider the same preference profile, S(1) = S̃(1). Then, if s ∈ S(1), we are

done. If not, consider the second round. Since the same set of students is removed with

their assignments and s /∈ S(1), the set of active students and the remaining colleges

in the second round of 2S-TTC applied to the problems will be the same. Moreover,

students will be pointing to the same colleges in both problems. Hence, S(2) = S̃(2).

Then, if s ∈ S(2), we are done. If not, we can repeat the same steps and show that s will

be assigned in the matching selected by the 2S-TTC in market [(q̃c, q−c), (ẽc, e−c),%].

Balanced–efficiency: Since the matching selected by the 2S-TTC consists of trading

cycles in which students and their assignments form unique cycles, its outcome is balanced

by Remark 1. Since 2S-TTC is acceptable, π is also acceptable. Let S(k) be the set of

students assigned in Round k of 2S-TTC. We will prove that π is balanced-efficient in

two parts.

Part I: We first prove that π cannot be Pareto dominated by another acceptable

balanced matching. If s ∈ S(1), then π(s) ∈ C ∪ c∅ is the highest ranked college in her

preference list that considers her acceptable. That is, no agent s ∈ S(1) can be assigned

to a better college considering her acceptable. If there exists ν ∈ M such that ν ≻s π,

then ν(s) considers s unacceptable. That is, π cannot be Pareto dominated by another ν

in which at least one student in S(1) is better off under ν, and all students are assigned

to a college that considers them acceptable.

If a student s ∈ S(2) is not assigned to a more preferred c ∈ C that considers her

acceptable, then c should either fill its quota in Round 1 by another s′ ∈ S, or ec = 1 and

the only eligible student s̃ ∈ Ec is assigned to c∅. For the first case, because s′ is assigned

in Round 1, π(s′) = c is her favorite college among the ones considering her acceptable.

That is, in any acceptable matching ν ∈ M in which s is assigned to π(s′), s′ will be

made worse off. For the second case, s̃ needs to be assigned to a college in order for s to

be assigned to c. Otherwise, balancedness will be violated. This will violate acceptability,
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since s̃ considers all colleges considering her acceptable as unacceptable. Hence, π cannot

be Pareto dominated by another balanced and acceptable matching ν in which at least

one student in S(2) is better off under ν.

We similarly show the same for all other rounds of the 2S-TTC. Thus, in a balanced

matching no student can be assigned to a better college without harming any other student

among the colleges that consider her acceptable. Hence, no college can be made better

off without harming another college either, if we focus on matchings that are acceptable

and balanced.

Part II: Next we show that there does not exist an unacceptable balanced matching

that Pareto dominates π. To the contrary of the claim, suppose there exists an unaccept-

able balanced matching ν that Pareto dominates π. Then each i ∈ C ∪ S weakly prefers

ν to π, and at least one agent j ∈ C ∪ S strictly prefers ν to π. Due to the acceptability

of the 2S-TTC, every student weakly prefers her assignment in π to c∅. Therefore, every

assigned student in π is also assigned to an acceptable college under ν. Thus, due to the

balancedness of both π and ν, |ν(c)| ≥ |π(c)| for all c ∈ C. As ν is unacceptable, there

exists some c0 ∈ C such that s0 ∈ ν(c0) is unacceptable for c0. As ν %c0 π, there should

be at least one student s1 ∈ ν(c0) \ π(c0) such that s1 is acceptable for c0 by Assumption

1. We consider two cases regarding π(s1):

1. First, suppose π(s1) = c∅. Denote the home college of s1 by c1. Hence, |ν(c1)| >

|π(c1)| by balancedness of ν and π. By Assumption 1, ν(c1)P ∗
c1
π(c1), and there exists a

student s2 ∈ ν(c1) \ π(c1) such that s2 is acceptable for c1 and ν(s2)Ps2π(s2).

2. Next, suppose π(s1) ∈ C. Denote π(s1) by c1. As |ν(c1)| ≥ |π(c1)|, there exists

s2 ∈ ν(c1)\π(c1), and s2 is acceptable for c1 by Assumption 1. We also have ν(s2)Ps2π(s2).

We continue with s2 and π(s2), similarly construct c2, and then s3. As we continue,

by finiteness, we should encounter the same student sk = sℓ for some k > ℓ ≥ 1, that is,

we’ve encountered her before in the construction. Consider the students sℓ+1, sℓ+2, ..., sk.

Let sk′ be the student who is assigned in the earliest round of the 2S-TTC in this list.

By definition, she points to π(sk′). However, she prefers ck′−1 to her assignment, and she

is acceptable for ck′−1. Moreover, we know that ck′−1 has not been removed yet from the

algorithm, because if ck′−1 was constructed in Case 1 above, then qck′−1
> |π(ck′−1)| and

sk′−1 ∈ Sck′−1
is still not removed, and if ck′−1 was constructed in Case 2 above, then

sk′−1 ∈ π(ck′−1) is still not removed. Therefore, sk′ should have pointed to ck′−1 in the

2S-TTC in that round. This is a contradiction to ν Pareto dominating π.

Proof of Theorem 2. Suppose that there does exist such a mechanism. Denote it

by ψ. We use different problems to show our result.

Case 1: Let C = {a, b, c} and Sa = {1, 2}, Sb = {3}, and Sc = {4}. Let q =
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e = (2, 1, 1). Let %S be the student preference profile with associated rankings over

colleges P1 : bP1cP1c∅, P2 : cP2c∅, P3 : aP3c∅, and P4 : aP4c∅. Let %C be the college

preference profile with associated rankings over students Pa : 3Pa4Pa∅, Pb : 1Pb∅, and Pc :

1Pc2Pc∅. We assume that %C satisfies Assumption 1. There are two balanced–efficient

and individually rational matchings: µ1 =
( a b c

4 ∅ 1

)

and µ2 =
( a b c

{3, 4} 1 2

)

.

If ψ selects µ1, then a can manipulate ψ by submitting %1
a where P 1

a : 3P 1
a ∅ and any

acceptable matching is preferred to µ1. Note that, %1
a satisfies Assumption 1. Then the

only individually rational and balanced–efficient matching is µ3 =
( a b c

3 1 ∅

)

. Therefore,

ψ[q, e,%] = µ2.

Case 2: We consider the same example with a slight change in a’s preferences. Let %2
a

be a’ s preferences over the matchings with associated ranking P 2
a : 4P 2

a3P
2
a ∅. We assume

that %2
a satisfies Assumption 1. In this case, µ1 and µ2 are the only two balanced–efficient

and individually rational matchings.

If ψ selects µ1, then a can manipulate ψ by submitting %a. Then we will be in Case

1 and µ2 will be selected, which makes a better off. Therefore, ψ[q, e, (%2
a,%−a)] = µ2.

Case 3: Now consider the case where colleges report the preferences %3 where %3
a=%2

a,

%3
b=%b, P 3

c : 1P 3
c ∅ is the associated ranking with %3

c and any acceptable matching is

preferred to µ2 under %3
c . Note that, %3

c satisfies Assumption 1. Then there are two

individually rational and balanced–efficient matchings : µ4 =
( a b c

4 ∅ 1

)

and µ5 =

( a b c

3 1 ∅

)

.

If ψ selects µ4, then in Case 2 c can manipulate ψ by reporting %3
c . Therefore,

ψ[q, e,%3] = µ5.

Case 4: Now consider the case where colleges report the following preferences %4

where %4
b=%b, %4

c=%3
c , P

4
a : 4P 4

a ∅ is the associated ranking with %4
a and any acceptable

matching is preferred to µ5 under %4
a. Note that, %4

a satisfies Assumption 1. There is

a unique balanced-efficient and individually rational matching: µ4. In Case 3, a can

manipulate ψ by reporting %4
a; then we will be in Case 4 and a will be better off with

respect to Case 3 preferences.

Therefore, there does not exist a balanced–efficient, individually rational mechanism

that is immune to preference manipulation by colleges.

Proof of Theorem 3. Consider the preference relations of each student who ranks

as acceptable only those colleges that find her acceptable. If we consider only these

preferences as possible preferences to choose from for each student, we see that the 2S-
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TTC is group strategy-proof for students, as Pápai (cf. 2000) showed that the TTC

is group strategy-proof. In the 2S-TTC, observe that students are indifferent among

reporting preference relations that rank the colleges finding themselves as acceptable in

the same relative order. Thus, the 2S-TTC is group strategy-proof for students.

The following Lemma is used in proving Theorem 4:

Lemma 1 Let π and π̃ be the outcome of 2S-TTC in [q, e,%] and [(q̃c, q−c), (ẽc, e−c),%]

where q̃c ≤ qc and ẽc ≤ ec for some c ∈ C, respectively. Then, M π̃
c ⊆Mπ

c , π̃−1(c) ⊆ π−1(c)

and X π̃
c ⊆ Xπ

c .

Proof. If q̃c = qc and ẽc = ec, then π̃ = π. Hence, we have three remaining cases to

consider:

Case 1: q̃c = qc and ẽc < ec. We consider the case in which one more student is

certified by c, i.e., ẽc + 1 = ec. Denote the student added to the eligible set by s. Let

s′ ∈ Sc and rc(s′) = rc(s)−1. Consider the execution of the 2S-TTC for this new market.

If q̃c students are assigned to c before s’s turn, then c will be removed, and certifying one

more student will not affect the set of students exported and imported by c. Now consider

the case in which less than q̃c students are assigned to c before s’s turn. Denote the

intermediate matching that we have just after s′ is processed by ν. Since c is removed just

after s′ is processed in [(q̃c, q−c), (ẽc, e−c),%], M π̃
c = Mν

c , π̃−1(c) = ν−1(c), and X π̃
c = Xν

c .

If s is assigned to a college c′ ∈ C \ c, c will import one more acceptable student. Denote

that matching by µ. Then, we have M π̃
c = Mν

c ⊂ Mµ
c , π̃−1(c) = ν−1(c) ⊂ µ−1(c), and

X π̃
c = Xν

c ⊂ Xµ
c . If s is assigned to the c∅ or c, then c will have the same import and

export set and for the latter case we have π̃−1(c) = ν−1(c) ⊂ µ−1(c). If we keep certifying

all ec− ẽc students one at a time, we will have M π̃
c ⊆Mπ

c , π̃−1(c) ⊆ µ−1(c) and X π̃
c ⊆ Xπ

c ,

where π is the outcome of the 2S-TTC in [q, e,%].

Case 2: q̃c < qc and ẽc = ec. Let π and ν be the outcomes of the 2S-TTC in [q, e,%]

and [(q̃c, q−c), e,%], respectively. If |ν−1(c)| < q̃c then the 2S-TTC will select ν when c

reports either q̃c or qc. That is, π = ν. If |ν−1(c)| = q̃c and all eligible students of c are

considered in [(q̃c, q−c), e,%] when it is removed, then it will not make a difference if c

reports either q̃c or qc. If |ν−1(c)| = q̃c and c is removed before all its eligible students are

considered, then one more student s ∈ Sc might be considered when c reports qc. As in

the previous case, c may import and export at least one more student. At the end, we

get Mν
c ⊆Mπ

c , ν−1(c) ⊆ π−1(c) and Xν
c ⊆ Xπ

c .

Case 3: q̃c < qc and ẽc < ec. Let µ be the outcome of the 2S-TTC in [q, (ẽc, e−c),%].

Then, we have M π̃
c ⊆ Mµ

c ⊆ Mπ
c , π̃−1(c) ⊆ µ−1(c) ⊆ π−1(c) and X π̃

c ⊆ Xµ
c ⊆ Xπ

c , where

the first and second subset relations come from invoking Case 1 and Case 2, respectively.
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Proof of Theorem 4. We prove a stronger version of Theorem 4: Under the 2S-

TTC, suppose that preference profiles are fixed for colleges such that no college reports

an unacceptable student as acceptable in its preference report. In the induced quota-

reporting game, under Assumption 1, it is a weakly dominant strategy for any c ∈ C to

certify all its students and to reveal its true admission quota.

Take a market [q, e,%] and a college c. Suppose that preference reports are fixed such

that c does not report any unacceptable students as acceptable in these reports. We have

two cases to consider for possible quota manipulations by c:

Case 1: c reports (q̃c, ẽc) where q̃c ≤ qc and ẽc ≤ |Sc|: In Lemma 1 we have shown that

when c reports its admission and eligibility quotas as higher, the set of students imported

by c (weakly) expands. By Assumption 1, reporting (q̃c, ẽc) is weakly dominated by

reporting the true admission quota and certifying all students.

Case 2: c reports q̃c where q̃c > qc: This strategy is weakly dominated by reporting

its true admission quota qc. We prove this as follows: Let ν and µ be the matchings that

the 2S-TTC mechanism selects when c reports q̃c and qc, respectively. If |ν−1(c)| ≤ qc,

then Mν
c = Mµ

c , ν−1(c) = µ−1(c), and Xν
c = Xµ

c ; thus, it is indifferent between the two

matchings. However, if |ν−1(c)| > qc, among the balanced matchings by Assumption

1, colleges’ preferences depend on the preferences on admitted students, which are only

responsive up to the true admission quota, and µ is individually rational, so it prefers µ

to ν.

Proof of Proposition 2. The 2S-TTC mechanism takes into account only the set

of acceptable students based on the submitted preferences of colleges over the matchings.

Hence, for any two different preference profiles with the same set of acceptable students,

the 2S-TTC selects the same outcome.

Proof of Theorem 5. We use a variant of the 2S-TTC in which we select only one

cycle in one round. If there is more than one cycle, then the selection is done randomly.

Let S(k) be the set of students removed in Round k. Suppose the theorem does not hold.

Let ψ be the mechanism satisfying all four axioms, and select a different matching for

some problem [q, e,%]. Denote the outcome of 2S-TTC for [q, e,%] by µ. In the rest of

the proof, we work on students’ preferences over colleges, PS, instead of matchings, %S .

We first prove the following claim:

Claim: If there exists a student in S(k) who prefers her assignment in ψ[q, e,%] to

the one in µ, then there exists another student in ∪k−1
k′=1S(k

′) who prefers her assignment

in µ to the one in ψ[q, e,%].46

Proof of Claim: We use induction in our proof. Consider the students in S(1).

46We take ∪0

k′=1
S(k′) = ∅.
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First consider the case in which S(1) is a singleton and the student in S(1) is assigned

to c∅. Any college that she prefers to c∅ considers her unacceptable. If she prefers her

assignment under ψ to c∅, then she is assigned to a college that considers her unacceptable

by ψ. Therefore, ψ is not acceptable. If she prefers c∅ to her assignment under ψ, then ψ

is not acceptable. Then any acceptable mechanism will assign her to c∅. If S(1) is not a

singleton or S(1) is singleton and the student in S(1) is assigned to her own college, then

each student in S(1) is assigned to the best college that considers her as acceptable, and

she prefers her assignment in µ to c∅. If s ∈ S(1) prefers her assignment in ψ[q, e,%] to

µ(s), then ψ is not acceptable. Hence, each student in S(1) weakly prefers her assignment

in µ.

In the inductive step, assume that for all Rounds 1, ..., k − 1, for some k > 1, the

claim is correct. Consider Round k. If there exists a student s ∈ S(k) such that c =

ψ[q, e,%](s)Psµ(s), then either c considers s acceptable and its seats are filled in Rounds

1, ..., k − 1 of 2S-TTC, or s is unacceptable for c. In the latter case, ψ is not acceptable.

Consider the former case. First, note that c 6= c∅ since qc∅ = |S|. Let s′ be assigned to

c under µ in Round k′ ≤ k − 1 but not under ψ[q, e,%], as s is assigned instead of her.

If she prefers c to ψ[q, e,%](s′), then we are done. If she does not, k′ > 1, and by the

inductive step, there exists a student s′′ ∈ S(k′′) for some k′′ < k′ ≤ k − 1 who prefers

µ(s′′) to ψ[q, e,%](s′′). ⋄

Now we are ready to prove the theorem. By the Claim and the observation above, as

µ 6= ψ[q, e %], there exists a student s and some round k > 1 such that s ∈ S(k) prefers

µ(s) to ψ[q, e,%](s), and µ(s′) = ψ[q, e,%](s′) for all s′ ∈ ∪k−1
k′=1S(k

′).

We will construct our proof in three steps. Assign to each round of the 2S-TTC

mechanism a counter and set it as Counter(k′) = |S(k′)| − 1 for all rounds k′.

Step 1: Construct a preference profile %̃ with associated ranking P̃ as follows: Let

student s ∈ Sc rank only µ(s) as acceptable in P̃s and %̃j =%j for all j ∈ [(C ∪ S) \ s].

The 2S-TTC will select µ for [q, e, %̃]. Since ψ is student strategy-proof and acceptable,

ψ[q, e, %̃](s) = c∅.

Then, we check whether the assignments of students in ∪k−1
k′=1S(k

′) are the same in

ψ[q, e, %̃] and µ. If not, then for some k̃ < k, there exists a student s̃ ∈ S(k̃) preferring µ(s̃)

to ψ[q, e, %̃](s̃) and each student in ∪k̃−1
k′=1S(k

′) gets the same college in µ and ψ[q, e, %̃].

Then we repeat Step 1 by taking %:= %̃, s := s̃, and k := k̃.

This repetition will end by the finiteness of rounds and the fact that ∪0
k′=1S(k

′) = ∅.

When all students in ∪k−1
k′=1S(k

′) get the same college in µ and ψ[q, e, %̃], then we proceed

to Step 2.

Step 2: In Step 1, we have shown that s prefers µ(s) to ψ[q, e, %̃](s) = c∅. Suppose
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c is the home college of s. Set a new eligibility quota ẽc equal to the rank of student

s in c’s internal priority order, that is, ẽc = rc(s), and let ẽ−c = e−c. In [q, ẽ, %̃], the

2S-TTC assigns all students in ∪k
k′=1S(k

′) to the same college as in µ. ψ[q, ẽ, %̃](s) = c∅

since ψ respects internal priorities and we weakly decreased c’s eligibility quota. We check

whether the assignments of students in ∪k−1
k′=1S(k

′) are the same in both ψ[q, ẽ, %̃] and µ.

If not, then by the Claim, there should exist s̃ ∈ S(k̃) preferring µ(s̃) to ψ[q, ẽ, %̃](s̃), and

each student in ∪k̃−1
k′=1S(k

′) gets the same college in µ and ψ[q, ẽ, %̃] where k̃ < k; then we

restart from Step 1 by taking %:= %̃, s := s̃, k := k̃, and e := ẽ.

Eventually, by the finiteness of the rounds of the 2S-TTC and as we reduce the round

k in each iteration, we reach the point in our proof such that students in ∪k−1
k′=1S(k

′) get

the same college in µ and ψ[q, ẽ, %̃].

Observe that s is the last remaining eligible student of c in Round k of 2S-TTC

for [q, ẽ, %̃] by the choice of ẽc = rc(s). If S(k) is singleton, then µ(s) is the home

college of s. Suppose |S(k)| > 1. Since for all s′′ ∈ ∪k−1
k′=1S(k

′), µ(s′′) = ψ[q, ẽ, %̃](s′′) and

µ(s)P̃sψ[q, ẽ, %̃](s) = c∅, s′ ∈ S(k)∩µ(c) will be assigned to a different college in ψ[q, ẽ, %̃]

than c. Otherwise, ψ is not balanced. As for all s′′ ∈ ∪k−1
k′=1S(k

′), µ(s′′) = ψ[q, ẽ, %̃](s′′),

and s′ points to the best available college that finds her acceptable in Round k, c =

µ(s′)P̃s′ψ[q, ẽ, %̃](s′). We decrease Counter(k) by 1. If Counter(k) > 0 then we turn back

to Step 1 by taking %:= %̃ and s := s′; otherwise we continue with Step 3. Note that

eventually we will find a Step K such that Counter(K)=0, because we weakly decrease

all counters and decrease one counter by 1 in each iteration of Step 2.

Step 3: By the construction above, each s̃ ∈ S(k) ranks only µ(s̃) as acceptable in

P̃s and she is the last certified student by her home college in [q, ẽ, %̃]. If |S(k)| = 1,

then µ(s) is the home college of s and ψ[q, ẽ, %̃] is Pareto dominated by the matching

in which each student other than s is assigned her assignment under ψ[q, ẽ, %̃] and s is

assigned to µ(s). Therefore, if |S(k)| = 1, then ψ[q, ẽ, %̃] cannot be balanced efficient.

Now, suppose |S(k)| > 1. In Step 2, we showed that there exist at least 2 students

s1(=s in Step 2) , s2(=s′ in Step 2) in S(k) who are not assigned to µ(s1) and µ(s2) = c1

(= c in Step 2), respectively, in ψ[q, ẽ, %̃], where c1 is the home college of s1. Then, they

are assigned to c∅ in ψ[q, ẽ, %̃], by the acceptability of ψ. Recall that in the 2S-TTC for

[q, ẽ, %̃], each student certified by the home colleges of s1 and s2 – colleges c1 and c2,

respectively – other than s1 and s2 is removed in a round earlier than k. Suppose for

s3 ∈ S(k), µ(s3) = c2. Since ψ[q, ẽ, %̃](s2) = c∅, for all s̃ ∈ ∪k−1
k′=1S(k

′), ψ[q, ẽ, %̃](s̃) = µ(s̃)

(by Step 2), and ψ is balanced, s3 cannot be assigned to c2 in ψ[q, ẽ, %̃], and hence,

ψ[q, ẽ, %̃](s3) = c∅. We continue similarly with s3 and the home college of s3, say college

c3, eventually showing that for all s̃ ∈ S(k), ψ[q, ẽ, %̃](s̃) = c∅. Recall that students in
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S(k) had formed a trading cycle in which each agent in the cycle was assigned in µ the

home college of the next student in the cycle. Thus, ψ[q, ẽ, %̃] is Pareto dominated by the

balanced matching ν obtained as ν(s̃) = ψ[q, ẽ, %̃](s̃) for all s̃ ∈ S \ S(k) and ν(s̃) = µ(s̃)

for all s̃ ∈ S(k); that is, ν is obtained from ψ[q, ẽ, %̃] by students in S(k) trading their

assignments with each other to get their assignments in µ. This is because each college in

the cycle of Round k gets one acceptable student more and each student weakly prefers

µ to ψ[q, ẽ, %̃]. This contradicts the balanced–efficiency of ψ. Hence, ψ[q, e,%] = µ, i.e.,

ψ is equivalent to 2S-TTC.

Proof of Theorem 6. Let ψ satisfy all conditions and be strategy-proof for students.

Then, consider the following example. There are 3 colleges C = {a, b, c} with q = e =

(2, 1, 1). Let Sa = {1, 2}, Sb = {3}, Sc = {4}, and each student be acceptable to each

college and the college preference profile satisfy Assumption 1. The internal priority order

of a and student preference profiles are given as: 1 ⊲a 2, bP1c∅, cP2c∅, aP3c∅, bP4aP4c∅.

The 2S-TTC selects µ =
( a b c

{3, 4} 1 2

)

. ψ will also select µ, since any other

matching in which all students are assigned is individually irrational (and unacceptable).

If student 4 reports %′
4

with associated ranking P ′
4
: bP ′

4
c∅P

′
4
a then 2S-TTC will select

µ′ =
( a b c

3 1 ∅

)

. The only balanced and individually rational (acceptable) matching in

which more than two students are assigned is µ′′ =
( a b c

3 4 2

)

. Therefore, the outcome

of ψ when 4 reports %′
4 is µ′′. Hence, 4 can manipulate ψ.

Proof of Theorem 7. We first prove the strategy-proofness of 2S-TTTC for students.

Consider a tuition exchange problem [q, e,%] and tolerance profile t = (ℓc, uc)c∈C . We

use a variation of 2S-TTTC in which only the student with the highest internal priority

among the remaining students at some college points to a college other than c∅ in each

round. Let µ be the matching selected by 2S-TTTC under truth-telling. Let k > 0 be

the first round that we cannot locate a cycle. Note that in Round k either there exists a

chain, which may or not respect tolerance interval, or the mechanism terminates. Student

s assigned in Round k′ < k (under truth-telling) cannot affect the assignments done in

earlier rounds. Before Round k′, all the colleges considering s acceptable that s prefers

to µ(s) should have been removed since each student, who is allowed to point, points to

the most preferred college among the remaining ones. If s forms a cycle by misreporting

in Round k′′ < k′, then she should have pointed to a worse college than µ(s). Therefore,

student s cannot get a better college by misreporting.

Now consider Round k. If Round k is the termination round, then we are done.

Otherwise, firstly assume that we have a chain respecting tolerance interval. As we

36



mentioned above, any active student in Round k cannot affect the assignments done in

earlier rounds. Then consider the student pointed to by the tail college of the chain. This

student will be assigned in this round no matter which college she points to. Therefore she

will point to the most preferred college considering her acceptable among the remaining

ones. The next students in the chain will do so as well. The other active students in this

round cannot affect the assignment of students in the chain without hurting themselves.

Now consider the case where we don’t have a chain respecting tolerance interval. That

is, each exporting college c has a balance of ℓc. Then we will remove all the non-exporting

colleges and 2S-TTTC reduces to the 2S-TTC mechanism. It is easy to see that we will

not have chains in the future rounds also.

Let k′′ > k be the first round after Round k that we cannot locate a cycle. Note that

such a round might not exist if k is the termination round. Then we can apply the same

reasoning that we used for rounds before k and show that all agents assigned in Round k̃

such that k < k̃ < k′′ cannot be better off by misreporting. This is also true for Round

k′′.

Next we prove 2S-TTTC’s outcome cannot be Pareto dominated by an acceptable

matching ν satisfying tolerable balance. Denote the outcome of the 2S-TTTC mechanism

with µ. Let k ≥ 1 be the first round that we cannot locate a cycle. We consider the

variant that we described above. As described above, either k is the termination round

or there exist chain in Round k. Note that, whenever S 6= ∅ 2S-TTTC cannot terminate

in Round 1. In the first round, each student is pointing to her most preferred college

among the ones considering her acceptable. If a student is assigned in this round, then

she should get the same college under ν. Now consider students assigned in Round k′ < k

when k > 1. All the colleges that a student preferred to her assignment that consider

her acceptable should have been removed in an earlier round, and we cannot make that

student better off without hurting another student assigned in an earlier round. Note that

all colleges removed in Round k′ < k fulfill either certification or the admission quota.

If k is the termination round, we are done. Otherwise, we consider the students

assigned in Round k. First, consider the case where there exists a chain not violating the

tolerance interval. All of the students in that chain are assigned to a college that they

prefer most among the remaining ones that consider them acceptable. They cannot be

made better off without making some students assigned in the earlier rounds worse off. If

there does not exist a chain respecting tolerance interval, then 2S-TTTC reduces to the

2S-TTC mechanism. If college c is removed because of either bµc = uc or bµc = ℓc, then we

cannot assign more students to c in ν.

Let k′′ > k be the first round after Round k that we cannot locate a cycle. Note that
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such a round might not exist if k is the termination round. Then we can apply the same

reasoning that we have used for rounds before k and show that all agents assigned in

Round k̃ such that k < k̃ < k′′ cannot be better off by misreporting. This is also true for

Round k′′.

Every student assigned to a college should be assigned the same college in ν. If we

assign fewer students, then at least one student would be better off under µ compared to

ν. If we assign more students in ν then either feasibility or the tolerance conditions are

violated.

Proof of Theorem 8. We refer to the proof of Theorem 1.

Proof of Theorem 9. Recall that the 2S-TTC mechanism in the general domain

can be run by using the set of colleges’ acceptable students, and that while proving the

properties of 2S-TTC we consider only these sets of acceptable students. Hence, we can

use the same proofs for the 2S-TTC in the general domain here. We refer to the proof

of Theorem 1 and Theorem 3 for balance–efficiency, acceptability, individual rationality,

strategy-proofness for students, and respecting internal priorities. We refer to the proof

of Theorem 5 for uniqueness.

Immunity to Preference Manipulation by Colleges: Under Assumption 2, firms

are indifferent between any balanced and acceptable matching that fills their quota. Since

the 2S-TTC mechanism selects a balanced and acceptable matching that fills all firms’

quotas, firms cannot be better off by manipulating their preferences over the matchings

and reporting quotas different from their true quotas and not certifying all its students.

Stability: Denote the outcome of the 2S-TTC by µ. Recall that qc = |Sc| for all

c ∈ C, all workers consider their current jobs acceptable, all firms consider their current

workers acceptable, and workers who are not certified remain at their current jobs. Hence,

|µ(c)| = qc for all c ∈ C. Since under µ all firms’ quotas are filled, µ is nonwasteful. Since

all employees in µ(c) are acceptable, replacing one of the employees in µ(c) with another

one in S\µ(c) cannot make c better off. Hence, µ cannot be blocked by a worker-firm pair.

Moreover, µ is individually rational since each agent is matched with acceptable agents

and whenever a college blocks a subset of assignees it ends up with negative balance with

a worse incoming set of students.

Appendix C Tuition-Exchange Programs

We first explain why tuition-exchange programs exist in the first place because some other

colleges choose to subsidize faculty directly instead of participating in tuition-exchange

programs. Although this may create flexibility for the students, any direct compensation
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over $5,250 is taxable income, whereas a tuition-exchange scholarship is not. Tuition

exchange is not considered to be an income transfer.47Moreover, colleges may not want

to switch to such direct-compensation programs from a cost-saving perspective, regard-

less of the tax benefit to the faculty member. We present a simple back-of-the envelope

calculation to demonstrate these cost savings. There are more than 1800 4-year colleges

in the US and at most half of them have membership to at least one tuition exchange

program. Suppose n students are given tuition exchange/remission scholarships a year.

Instead, if a college finances the tuition of a faculty member’s child through direct cash

compensation, then all tuition exchange colleges will have to pay $nT̄ , where T is the

average full tuition cost of colleges. However, assuming that average qualities and sizes

of colleges with and without tuition scholarship are the same, only half of these students

will attend a tuition exchange college in return; so the colleges will only get back $nT
2

.

The remaining n
2

slots will be filled with regular students. Regular students on average

pay about half of the tuition thanks to other financial aid programs. For example, 2012

Tuition Discounting Study of the National Association of College and University Business

Officers report that incoming freshmen pay on average 56% of full tuition at a private

university. Thus, they will only pay $nT
4

to tuition exchange colleges. As tuition ex-

change scholarships constitute a very small portion of college admissions, this calculation

assumes that average tuition payment would not change by establishment of direct cash

compensation instead of tuition exchange. Thus, as a result, the colleges will lose in total

about $nT
4

, which corresponds to one fourth of average full tuition per student. Thus,

the total per-student-savings for the faculty member and the college is more than half of

tuition payment - assuming one third of the direct compensation is paid in income tax at

the margin by the parent.

The Tuition Exchange Inc (TTEI): In addition to information provided in the

Section 2, here we give more detail. TTEI is a reciprocal scholarship program for children

(and other family members) of faculty and staff employed at more than 600 colleges.

Member colleges are spread over 47 states and the District of Columbia. Both research

universities and liberal arts colleges are members. US News and World Report lists 38

member colleges in the best 200 research universities and 46 member colleges in the best

100 liberal arts colleges.

In TTEI, every participating institution determines the number of outgoing students

it can certify, as well as how many TTEI awards it will grant to incoming students each

year. Then each faculty member submits the TTEI application to the registration office

47In particular, it is considered a scholarship, and it is not taxable. See
http://www.irs.gov/publications/p970/ch11.html and http://www.irs.gov/publications/p970/ch01.html
reached on Feb 20, 2016.
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of their college. If the number of applicants is greater than the number of students that

the college is willing to certify, then the college decides whom to certify based on years

of service or some other criterion (internal priority order).

Each student who is certified eligible submits a list of colleges to the liaison office of her

home institution. Each liaison office sends a copy of the TTEI “Certificate of Eligibility” to

the TTEI liaison officer at the participating colleges and universities listed by the eligible

dependents. Certification only means that the student is eligible for a TTEI award; it

is not a guarantee of an award. The eligible student must apply for admission to the

college(s) in which she is interested, following each institution’s application procedures

and deadlines. After admission decisions have been made, the admissions offices or TTEI

liaisons at her listed institutions inform her whether she will be offered a TTEI award.

TTEI scholarships are competitive, and some eligible applicants may not receive them.

That is, the sponsoring institution cannot guarantee that an “export” candidate, regardless

of qualifications, will receive a TTEI scholarship. Institutions choose their scholarship

recipients (“imports”) based on the applicants’ academic profiles.

To collect anecdotal evidence on how much faculty members value the tuition-exchange

benefit, we also conducted an IRB-approved e-mail–delivered online survey in 21 tuition-

exchange colleges (all TTEI members and possibly members of other tuition exchange

programs) using Qualtrics e-mail survey software. Our respondent pool is composed of

150 faculty members (with a 7.5% to 15% response rate). In this pool, there are 48,

56, and 46 assistant, associate, and full professors, respectively. 17% of the respondents

have no child. In order to understand whether tuition-exchange benefits attract faculty

members, we ask how important of a role their college’s membership in a tuition-exchange

program played their acceptance of their offer. According to 19%/60% of the respondents,

the tuition-exchange benefit was extremely important/important in their acceptance de-

cision, respectively. Moreover, according to 23%/73% of the respondents with children,

the tuition-exchange benefit played an extremely important/important role in their ac-

ceptance decision, respectively. In order to understand the value of the tuition-exchange

benefit for faculty, we asked how much annual income they would give up in order to keep

their tuition-exchange benefit. When we consider all respondents, the average annual

value of the tuition-exchange benefit is $7,314 each year in today’s dollars per faculty

member (for the ones with one or more child currently, it is only slightly higher, $8,243).

The Council of Independent Colleges Tuition Exchange Program (CIC-TEP):

CIC-TEP is composed of almost 500 colleges. Most of the member colleges are from

the Midwest or on the East Coast. All full–time employees of the member colleges and

their dependents can benefit from this program. Each college certifies its own employees
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eligible based on its own rules. Each member college is required to accept at least three

exchange students per year. There is no limitation on the number of exported students.

Each certified student also applies for admission directly to the member colleges of her

choice. Certified students must be admitted by the host college in order to be considered

for the tuition exchange scholarship. Each year more than 1500 students benefit from

this program.

Catholic College Cooperative Tuition Exchange (CCCTE): CCCTE is composed

of 70 member colleges. Each member college certifies its employees as eligible based on

its own rules. Dependents must be admitted by the host college before applying for

the tuition exchange scholarship. Admission to the host college does not guarantee the

scholarship. Each member college can have at most five more import students than its

exports. There is no limitation on the number of students it exports in a given academic

year.

Great Lakes Colleges’ Association (GLCA): GLCA is composed of thirteen liberal

arts colleges in Pennsylvania, Michigan, Ohio, and Indiana. Each member college de-

termines the eligibility of its employees based on its own rules. All other policies are

determined by the host colleges. Each accepted student pays a fee equal to 15% of the

GLCA mean tuition. The remaining tuition is paid by the home college.

Associated Colleges of the Midwest (ACM): ACM is composed of fourteen lib-

eral arts colleges in Wisconsin, Minnesota, Iowa, Illinois, and Colorado. Eligibility is

determined based on the home college rules. If a certified student is eligible for the host

college’s tuition remission program, then she is considered eligible for the tuition exchange

scholarship. Each host college compensates 50% tuition to all imported students. The

remaining portion of the tuition is paid by the home college and the student. The share

of the student cannot be more than 20% of tuition.

Faculty and Staff Children Exchange Program (FACHEX): FACHEX is composed

of 28 Jesuit colleges. Each student first applies to be admitted by the host college.

Admission to the host college does not guarantee receiving tuition exchange scholarship.

For each college, the number of import cannot exceed the number of its export by three.

Council for Christian Colleges and Universities Tuition-Waiver Exchange Pro-

gram (CCCU-TWEP): CCCU-TWEP is composed of 100 colleges. Each member col-

lege must accept at least one exchange student. In order to receive tuition exchange

scholarship, each student needs to be admitted by the host college.
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Appendix D Temporary Worker-Exchange Programs

D.1 Teacher Exchange

The Fulbright Teacher Exchange Program, established by an act of the US Congress

in 1946, provides opportunities to school teachers in US to participate in a direct exchange

of positions with teachers from countries, including the Greece, Finland, Netherlands,

India, Mexico, and the United Kingdom. Matching procedure is arranged by the Fulbright

program staff, and each candidate and each school must be approved before the matchings

are finalized.

The Commonwealth Teacher Exchange Programme (CTEP) was founded by the

League for the Exchange of Commonwealth Teachers more than 100 years ago. Participant

teachers exchange their jobs and homes with each other usually for a year, and they stay

employed by their own school. Countries participating to this program are Australia,

Canada, and the UK. More than 40,000 teachers have benefited from the CTEP. Principals

have the right to veto any proposed exchange they think will not be appropriate for their

school.

The Educator Exchange Program is organized by the Canadian Education Exchange

Foundation. The program includes reciprocal interprovincial and international exchanges.

Destinations for international teacher exchanges are Australia, Denmark, France, Ger-

many, Switzerland, the UK, and Colorado, US. Matches are determined based on the

preferences, family needs, accommodations offered, and accommodations needed.

The Manitoba Teacher Exchange enables teachers in Manitoba to exchange their

positions with teachers in Australia, the UK, the US, Germany, and other Canadian

provinces. Once a potential match is found, the incoming teacher’s information is sent

to the Manitoba applicant, the principal of the school, and the employing authority.

Acceptance of all these agents is required for the completion of the exchange.

In the Saskatchewan Teacher Exchange, public school teachers with at least five

years of experience can apply for exchange positions with teachers in the UK, the US,

and Germany. Potential exchange candidates are determined based on similar teaching

assignments and personal and professional interests and they are sent to applicant’s di-

rector of education. If the potential exchange candidates are considered acceptable by

the the applicant’s director and principals, then the applicant will consider the candidate.

The exchange is finalized once the applicant accepts it.

The Northern Territory Teacher Exchange Program is a reciprocal program in

which teachers in Northern Territory exchange positions with teachers from the UK,

Canada, the US, New Zealand, and the Australian States of New South Wales, Queens-
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land, South Australia, and Western Australia. When a potential match is found for an

applicant, the applicant and her school principal decide whether to accept or reject the

proposal. The match is finalized when both sides accept it.

The Western Australian Teacher Exchange is a reciprocal program. The exchanges

can be done with teachers from school systems in different states, territories, or countries.

The match is finalized after the approval of the principals of both sides.

The Rural Teacher Exchange (TRTE) is a reciprocal program which gives opportu-

nity to teachers in more than 800 rural and remote schools in New South Wales to ex-

change their positions. Exchanges are selected via centralized mechanism which considers

submitted preference list. However, if a teacher can find a possible exchange counterpart,

then they can exchange their positions before entering the central mechanism.

D.2 Clinical Exchange

In the International Clinical Exchange Program, medical students exchange po-

sitions with other medical students from other countries. The program is run by the

International Federation of Medical Students’ Association . Every year, approximately

13,000 students exchange their positions. The exchanges are done bilaterally: for every

student who goes to a certain country, one student from that country can come to the

student’s home country. In a county, the exact number of available positions available for

another country is determined by the number of contracts signed between both countries.

The MICEFA Medical Program has enabled medical students in France and US to

exchange their positions for one to two months for 30 years. Students are exchanged on a

one-to-one basis and each exchange students pays tuition to her home institute. Faculty

members can also benefit from this exchange program. Each faculty member receives

salary from the host institute.

D.3 Student Exchange

The National Student Exchange (NSE), established in 1968, is composed of nearly

200 colleges from the United States, Canada, Guam, Puerto Rico, and the US Virgin

Islands. More than 105,000 undergraduate students have exchanged their colleges through

NSE. Exchange students pay either the in-state tuition of their host institution or the

normal tuition of their home campus.

The University of California Reciprocal Exchange program (UCREP) enables

the students of the University of California system to study in more than 120 universities

from 33 countries. Around 4,000 students benefit from this program annually. Exchange
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students are selected by the home university. This is a reciprocal exchange program and

it aims to balance the costs and benefits of import and export students for each university.

The University Mobility in Asia and the Pacific Exchange Program (UMAPEP),

established in 1993, is a student exchange program between 500 universities in 34 Asia-

Pacific countries. UMAPEP involves two programs: a bilateral exchange program and a

multilateral exchange program. In the bilateral exchange program, home colleges select

the exchange students and exchanges are done through bilateral agreements signed be-

tween the member colleges. In the multilateral exchange program, host universities select

the incoming exchange students.

The International Student Exchange (ISE), founded in 1979, is a reciprocal program.

Around 40,000 students from 45 countries have benefited from ISE. Each exchange student

pays tuition to her home college. Reciprocity is based on the number of incoming and

outgoing students.

The Erasmus Student Exchange Program is a leading exchange program between

the universities in Europe. Close to 3 million students have participated since it started

in 1987. The number of students benefiting from the program is increasing each year;

in 2011, more than 231,408 students attended a college in another member country as

an exchange student. The number of member colleges is more than 4,000. Each college

needs to sign bilateral agreements with the other member institutions. In particular, the

student exchanges are done between the member universities that have signed a bilateral

contract with each other. The bilateral agreement includes information about the number

of students who will be exchanged between the two universities in a given period. The

selection process of the exchange students is mostly done as follows. The maximum

number of students that can be exported to a partner university is determined based on

the bilateral agreement with that partner and the number of students who have been

exported since the agreement was signed. The students submit their list of preferences

over the partner universities to their home university. Each university ranks its own

students based on predetermined criteria, e.g., GPA and seniority. Based on the ranking,

a serial dictatorship mechanism is applied to place students in the available slots. Finally,

the list of students who received slots at the partner universities is sent to the partners.

The partner universities typically accept all the students on the list. An exchange student

pays her tuition to her own college, not the one importing her.

There are huge imbalances between the number of students exported and imported

by each country. Moreover, countries with high positive balances are not often willing

to match the quota requests of the net-exporter countries. This precautionary behavior

may lead to inefficiencies as in tuition-exchange markets.
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D.4 Scientific Exchange

The Mevlana Exchange Program aims to exchange academic staff between Turkish

universities and universities in other countries. Turkish public universities are governed

by the Turkish Higher Education Council and professors are public servants. Therefore,

the part of the exchange that is among public universities can be seen as a staff-exchange

program, while the exchange among public and private Turkish universities and foreign

universities can be seen as a worker-exchange program. Any country can join this pro-

gram. In 2013, around 1,000 faculty members benefited from this program.

Appendix E Proofs of Appendix A

Proof of Proposition 3. We prove existence by showing that for any tuition-exchange

market there exists an associated college admission market and the set of stable matchings

are the same under both markets. Under Assumption 3, we fix a tuition exchange market

[q, e,%]. We first introduce an associated college admissions market, i.e., a Gale-Shapley

(1962) two-sided many-to-one matching market, [S, C, q, PS, PC ], where the set of students

is S; the set of colleges is C; the quota vector of colleges for admissions is q; the preference

profile of students over colleges is PS, which are all the same entities imported from the

tuition exchange market; and the preference profile of colleges over the set of students

is PC , which we construct as follows: for all T ⊂ E (i.e., the set of eligible students)

such that |T | < qc and i, j ∈ E \ T , (i) i Pc j =⇒ (T ∪ i) P c (T ∪ j), (ii)

i Pc ∅ =⇒ (T ∪ i) P c T , and (iii) T P c (T ∪ k) for all k ∈ S \ E. We fix C and S

and represent such a college admission market as [q, PS, PC ]. In this college admissions

market, a matching µ is a correspondence µ : C ∪ S ։ C ∪ S ∪ c∅ such that (1) µ(c) ⊆ S

where |µ(c)| ≤ qc for all c ∈ C, (2) µ(s) ∈ {C ∪ c∅} where |µ(s)| = 1 for all s ∈ S, and

(3) s ∈ µ(c) ⇐⇒ µ(s) = c for all c ∈ C and s ∈ S. A matching µ is individually rational

if µ(s) Rs c∅ for all s ∈ S, and, for all i ∈ µ(c), we have iP c∅ for all c ∈ C. A matching

µ is nonwasteful if there does not exist any (c, s) ∈ C × S such that (1) c Ps µ(s), (2)

|µ(c)| < qc, and (3) sP c∅. A matching µ is blocked by a pair (c, s) ∈ C × S if c Ps µ(s),

and there exists s′ ∈ µ(c) such that s P c s
′. A matching µ is stable in a college admission

market if it is individually rational, nonwasteful, and not blocked by any pair.

By our construction PC is responsive; hence there exists at least one stable matching

in [q, PS, PC ] (cf. Gale and Shapley, 1962; Roth, 1985). Let µ be a stable matching in

[q, PS, PC ]. We first show that µ is also a matching in [q, e,%]. By the definition of

a matching in a college admission market, the first three bullets of the definition of a

matching in a tuition exchange market hold. Due to individual rationality, µ(s) = c∅ for
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all s /∈ E. Hence, µ is a matching in [q, e,%].

Now, we show that µ is stable in [q, e,%]. Due to individually rationality of µ in the

college admission market, µ(s)Rsc∅ and sPc∅ for all s ∈ µ(c) and c ∈ C. By Assumption

3 and the definition of individual rationality in the tuition-exchange market, µ is indi-

vidually rational in [q, e,%]. Whenever there exists s ∈ S such that cPsµ(s), then either

s ∈ S \ E or µ ≻c µ
′ for all µ′ ∈ M, where s ∈ µ′(c) ⊂ µ(c) ∪ s and µ(s′) = µ′(s′) for all

s′ ∈ S \ (µ(c) ∪ s′). This follows from the definition of stability and construction of the

college preferences in the associated college admission market and Assumption 3. Hence,

µ is stable in [q, e,%].

Finally, we show that if a matching is not stable in [q, PS, PC ], then it is either not a

matching or unstable in [q, e,%]. Note that any matching in [q, e,%] is also a well-defined

matching in [q, PS, PC ]. Hence, it suffices to show that any matching µ in [q, e,%] that

is not stable in [q, PS, PC ] fails to be stable in [q, e,%]. If µ is blocked by an agent in

[q, PS, PC ], then by our assumption on the preferences it is also blocked by the same

agent in [q, e,%]. If µ is wasteful in [q, PS, PC ], then there exists a college-student pair

(c, s) such that her addition to the set of students admitted by c in µ is both preferred

by c and herself in [q, e,%]. Similarly, if (c, s) is a blocking pair in [q, PS, PC ] then by our

preference construction and stability definition (c, s) is a blocking pair in [q, e,%]. Thus,

if µ is a stable matching in [q, e,%], it is also stable in [q, PS, PC ].

Hence, the set of stable matchings under [q, e,%] and the set of stable matchings in

[q, PS, PC ] are the same.

Proof of Proposition 5. Under Assumption 3, we fix a market [q, e,%]. The case

in which we have a unique stable matching in [q, e,%] is trivial. Hence, we consider the

case in which there are at least two stable matchings. Let ν and µ be any two stable

matchings of [q, e,%]. By the proof of Proposition 3, ν and µ are also stable under the

associated college admission market [q, PS, PC ]. Let Sν and Sµ be the set of students

assigned to a college in ν and µ, respectively. Due to Assumption 3 Part 3 and individual

rationality, Mµ
c = µ(c), Mν

c = ν(c) for all c ∈ C. In the rural hospital theorem (Roth,

1986) it is shown that the number of students assigned to a college is the same in all stable

matchings, |ν(c)| = |µ(c)| for each c ∈ C. Moreover, the set of students assigned to a real

college is the same in all stable matchings, i.e., Sν = Sµ. SinceXµ
c = Sµ∩Sc, Xν

c = Sν∩Sc,

and Sν = Sµ, we have Xµ
c = Xν

c . Then, bµc = |µ(c)| − |Sµ ∩ Sc| = |ν(c)| − |Sν ∩ Sc| = bνc
for all c ∈ C.

We first state and prove the following Lemma, which is used in proving Proposition 6

and Theorem 11:

Lemma 2 Under Assumption 3, let π̂ be a stable matching of [q̂, ê,%] and π̃ be a stable

46



matching of [(q̃c, q̂−c), (ẽc, ê−c),%] where ẽc = ec+1, and q̃c = q̂c if |π̂(c)| = q̂c and q̃c ≥ q̂c

otherwise. Then we have bπ̃c ∈ {bπ̂c − 1, bπ̂c } and bπ̃c′ ∈ {bπ̂c′, b
π̂
c′ + 1} for all c′ ∈ C \ c.

Proof. Denote the newly certified student of c by i in [(q̃c, q̂−c), (ẽc, ê−c),%]. The

number of positions filled by each college is the same at every stable matching by Propo-

sition 5. Moreover, π̂ is stable in the associated college admissions market [q̂, PS, PC ]

by the proof of Proposition 3. Thus, without loss of generality, we assume π̂ to be the

outcome of the (student-proposing) DA algorithm in [q̂, PS, PC ].

First, consider the market [(q̃c, q̂−c), êc,%]. Let [(q̃c, q̂−c), PS, PC ] be the associated

college admissions market. If |π̂(c)| < q̂c, then adding new seats to an underdemanded

college will not change the set of students assigned to c, and the DA selects the same

outcome in [q̂, PS, PC ] and [(q̃c, q̂−c), PS, PC ]. If |π̂(c)| = q̂c , q̃c = q̂c by assumption.

Hence, the DA selects the same outcome in [(q̃c, q̂−c), PS, PC ] and [q̂, PS, PC ].

Denote the associated college admissions market of [(q̃c, q̂−c), (ẽc, ê−c),%] by [(q̃c, q̂−c), PS, P
′

C ].

We will apply the sequential DA algorithm introduced by McVitie and Wilson (1971) in

[(q̃c, q̂−c), PS, P
′

C ], where the newly certified agent i will be considered at the end. Let π̃

be the outcome of the DA for [(q̃c, q̂−c), PS, P
′

C ].

Let C< be the set of colleges that could not fill all their seats, and C= be the set

of colleges that did, in π̂. Formally, C< = {c ∈ C : |π̂(c)| < q̂c} and C= = {c ∈

C : |π̂(c)| = q̂c}. Now, when it is the turn of i to apply in the sequential version of

the student-proposing DA, the current tentative matching is π̂. After i starts making

applications in the algorithm, let c̃ be the first college that does not reject i. Since ∅Pci,

c 6= c̃.

In the rest of the proof, as we run the sequential DA, we run the following cases

iteratively, starting with student i:

1. If c̃ = c∅, then the algorithm terminates; bπ̃ = bπ̂.

2. If c̃ ∈ C<, then i will be assigned to c̃ and the algorithm terminates; bπ̃c = bπ̂c − 1,

bπ̃c̃ = bπ̂c̃ + 1, and bπ̃c′ = bπ̂c′ for all c′ ∈ C \ {c, c̃}.

3. If c̃ ∈ C=, then student ĩ who has the lowest priority among the students in π̂(c̃)

is rejected in favor of i. We consider two cases:

3.a. Case ĩ ∈ Sc: The net balance of no college will change from the beginning, and

we continue from the beginning above, again using student ĩ instead of i.

3.b. Case ĩ /∈ Sc: The instantaneous balance of c will deteriorate by 1 as i is tentatively

accepted. Now, it is ĩ’s turn in the sequential DA to make offers. In this series of offers,

suppose the first college that does not reject student ĩ is ˜̃c. Denote the home college of ĩ

by c′ (note that c′ 6= c).
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3.b.i. If ˜̃c ∈ c∅ ∪ (C<), then the algorithm will terminate, and bπ̃c ∈ {bπ̂c − 1, bπ̂c },b
π̃
c̄ ∈

{bπ̂c̄ , b
π̂
c̄ + 1} for all c̄ ∈ C \ c.

3.b.ii. If ˜̃c ∈ C=, then the lowest-priority student held by ˜̃c will be rejected in favor

of ĩ. Let this student be ˜̃i. There are two further cases:

3.b.ii.A. Case ˜̃i ∈ Sc: Then, ˜̃c 6= c. The instantaneous balance of c will increase by

1, and we will start from the beginning again with ˜̃i instead of i. The total change in c’s

balance since the beginning will be 0. Also, no other college’s balance has changed since

the beginning.

3.b.ii.B. Case ˜̃i /∈ Sc: We start from Step 3.b above with student ˜̃i instead of ĩ.

Thus, whenever we continue from the beginning, the instantaneous balance of c is bπ̂c ,

and whenever we continue from Step 3.b, the instantaneous balance of c is bπ̂c − 1 or bπ̂c
and the instantaneous balances of all other colleges either increase by one or stay the

same. Due to finiteness, the algorithm will terminate at some point at Steps 1 or 2, or

Steps 3.b.i or 3.b.ii; and the net balance of c at the new DA outcome will be bπ̂c or bπ̂c − 1.

Moreover, whenever the algorithm terminates, the net balance of any other college has

gone up by one or stayed the same.

We are ready to prove the results stated in the Appendix A:

Proof of Proposition 6. Let [q̂, PS, PC ] and [(q̃c, q̂−c), PS, P
′

C ] be the associated

college admissions problems of [q̂, ê,%] and [(q̃c, q̂−c), (êc + 1, ê−c),%], respectively. Let π̂

and π̃ be the outcome of the DA in [q̂, PS, PC ] and [(q̃c, q̂−c), PS, P
′

C ], respectively. By

Propositions 3 and 5, it is sufficient to prove the proposition for π̂ and π̃. Note that

M π̂
c = π̂(c) by Assumption 3 Part 3, and π̂ is stable.

Two cases are possible:

Case 1: bπ̂c < 0: We have |π̂(c)| = |M π̂
c | < |X π̂

c | ≤ êc ≤ q̂c. Then, by Lemma 2,

bπ̃c ∈ {bπ̂c − 1, bπ̂c }.

Case 2: bπ̂c ≥ 0: We have two cases again:

2.a. |π̂(c)| < q̂c or q̃c = q̂c: By Lemma 2, bπ̃c ∈ {bπ̂c − 1, bπ̂c }.

2.b. |π̂(c)| = q̂c and q̃c = q̂c + k for k > 0: Denote the newly certified student of

c by i in market [(q̃c, q̂−c), (ẽc, ê−c),%]. We first consider the outcome of the DA in the

associated college admissions market of [(q̃c, q̂−c), ê,%], which we denote by π′′. We first

show that the number of students imported by c in π′′ cannot be less than the one in π̂.

Let C< = {c̃ ∈ C : |π̂(c̃)| < q̂c̃}. By our construction, in any stable matching of the

associated college admissions market all students in S \E are assigned to c∅. Due to the

nonwastefulness of π̂, π̂(s)Psc̃ for all s ∈ E \ π̂(c̃) and c̃ ∈ C<. We know that the DA is

resource monotonic: when the number of seats (weakly) increases at each college, then

every student will be weakly better off (cf. Kesten, 2006). That is, π′′(s)Rsπ̂(s) for all
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s ∈ E. By combining the resource monotonicity and individual rationality of the DA, we

can say that if a student is assigned to a college in π̂, then she will also be assigned to a

college in π′′. Hence, we can write:

∑

c′∈C

|π′′(c′)| ≥
∑

c′∈C

|π̂(c′)|. (1)

Note that the difference between the left–hand side and the right–hand side of the equation

can be at most k. This follows from the fact that in π′′ no new student will be assigned

to a college in C<, the number of students assigned to other colleges can increase only for

c, and the maximum increment is k.

By combining nonwastefulness and resource monotonicity we can write:

∑

c̃∈C<

|π′′(c̃)| ≤
∑

c̃∈C<

|π̂(c̃)|. (2)

Then, if we subtract the left–hand side of Equation 2 from the left–hand side of Equation

1 and the right–hand side of Equation 2 from the right–hand side of Equation 1, we get

the following inequality:

∑

c′∈C\C<

|π′′(c′)| ≥
∑

c′∈C\C<

|π̂(c′)|. (3)

Given that each college in C \C< fills its seats in π̂, when we subtract
∑

c′∈C\(C<∪c)

q̂c′ from

both sides of Equation 3, we get the following inequality:

|π′′(c)|+
∑

c′∈C\(C<∪c)

(|π′′(c′)| − q̂c′) ≥ |π̂(c)|. (4)

The term
∑

c′∈C\(C<∪c)

(|π′′(c′)|−q̂c′) is nonnegative since |π′′(c′)| ≤ q̂c′ for all c′ ∈ C\(C<∪c).

Therefore, |π′′(c)| ≥ |π̂(c)|.

If |π′′(c)| = |π̂(c)| then |π′′(c′)| = |π̂(c′)| for all c′ ∈ C. This follows from Equation 4,

Equation 2, and the fact that |π′′(c′)| ≤ |π̂(c′)| for all c′ ∈ C \ {c}. Therefore, c cannot

export and import more students, and bπ
′′

c = bπ̂c . If |π′′(c)| > |π̂(c)|, then at most k more

students can be assigned to a college in π′′ among the eligible students who were not

assigned to a college in π̂. It is possible that some of the students belong to Sc. Thus,

bπ
′′

c ∈ {bπ̂c , ..., b
π̂
c + k}.

Thus, by Lemma 2, as we increase the eligibility quota of college c by 1 and keep the

admission quota at q̃c, we have bπ̃c ∈ {bπ
′′

c − 1, bπ
′′

c }, and hence, bπ̃c ∈ {bπ̂c − 1, bπ̂c , ..., b
π̂
c + k}.
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Proof of Theorem 10. Given Proposition 6, when c decreases its certification quota

by one and keeps its admission quota the same, its balance in any stable outcome of the

new market will either be the same or increase by one. Since c will have a nonnegative

balance in any stable outcome of the market [q̂, (ēc = 0, ê−c),%], there exists 0 ≤ ẽc ≤ êc

such that c has a zero–balance in every stable matching of the market [q̂, (ẽc, ê−c),%].

Proof of Theorem 11. We consider two problems: [q̂, ê,%] and [(q′c, q̂−c), (êc −

1, ê−c),%] with q̂c ≥ êc and q̂c ≥ q′c ≥ êc − 1 such that for c, bµc < 0 for a stable matching

µ of the first market. Let µ′ be an arbitrary stable matching of the second market. We

want to show that bµ−c ≥ bµ
′

−c. From Proposition 6, we know that bµ
′

c < 0 or bµ
′

c = 0.

By Proposition 5, without loss of generality we assume that µ and µ′ are the outcome of

the sequential DA algorithm for the associated college admissions market of [q̂, ê,%] and

[(q′c, q̂−c), (êc − 1, ê−c),%], respectively. We have two cases:

Case 1: bµ
′

c < 0. We have |µ′(c)| = |Mµ′

c | < |Xµ′

c | ≤ ec − 1 ≤ min{q̂c, q
′
c}. Hence, as c

did not fill its admission quota at µ′ under both q̂c and q′c, in market [q̂, (êc − 1, ê−c),%]

µ′ will still be the outcome of DA for the associated college admissions market. When we

add a new student i from c to the set of eligible students, we obtain [q̂, ê,%]. By Lemma

2, we have bµc′ ∈ {bµ
′

c′ , b
µ′

c′ + 1} for all c′ ∈ C \ c.

Case 2: bµ
′

c = 0. There are two possibilities: (a) |µ′(c)| < q′c and (b) |µ′(c)| = q′c.

2.a. If |µ′(c)| < q′c, then by Lemma 2, we have bµc′ ∈ {bµ
′

c′ , b
µ′

c′ + 1} for all c′ ∈ C \ c.

2.b. If |µ′(c)| = q′c, then |µ′(c)| = êc − 1 = q′c. We first increase the admission quota

of c from q′c to q̂c and keep its eligibility quota at êc − 1. Suppose the number of students

assigned to c increases at the outcome of the DA under the associated college admissions

market of [q̂, (êc−1, ê−c),%], which we denote by µ′′, i.e., |µ′′(c)| > |µ′(c)| = êc−1. Thus,

bµ
′′

c > 0. When we also increase the eligibility quota of c from êc−1 to êc, then by Lemma

2, bµc ∈ {bµ
′′

c − 1, bµ
′′

c }, and hence, bµc ≥ 0. However, this contradicts the fact that bµc < 0.

Therefore, |µ′′(c)| = |µ′(c)| = q′c ≤ q̂c. Hence, under both associated college admissions

problems of [(q′c, q̂−c), (êc − 1, ê−c),%] and [q̂, (êc − 1, ê−c),%], the DA chooses the same

matching, i.e., µ′′ = µ′. When we increase the eligibility quota of c from êc − 1 to êc and

keep the admission quota at q̂c, the DA outcome changes from µ′′ = µ′ to µ under the

associated college admissions market. By Lemma 2, we have bµc′ ∈ {bµ
′

c′ , b
µ′

c′ + 1} for all

c′ ∈ C \ c.

In either case, bµ
′

−c ≤ bµ−c.
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Appendix F Structure of Stable Matchings

In this Appendix, we inspect the structure of stable matchings, as our stability con-

cept is novel. In the college admissions market, there always exist student–optimal

and college–optimal Gale–Shapley–stable matchings (cf. Gale and Shapley, 1962; Roth,

1985).48 Under Assumption 3, we can guarantee the existence of college– and stu-

dent–optimal stable tuition–exchange matchings. This result’s proof also uses the as-

sociated Gale–Shapley college admissions market for each tuition–exchange market and

the properties of Gale–Shapley stable matchings in these markets.49

Proposition 7 Under Assumption 3, there exist college– and student–optimal matchings

in any tuition-exchange market.

Proof of Proposition 7. By the proof of Proposition 3, Gale and Shapley (1962),

and Roth (1985), there exists a student-optimal stable matching for each tuition-exchange

market. By Assumption 3 Part 1 and Proposition 5, colleges compare only the stable

matchings through the admitted set of students. By Gale and Shapley (1962) and Roth

(1985), there exists a college-optimal stable matching for each tuition-exchange market.

Appendix G Further Discussion on 2S-TTC Mechanism

We illustrate the dynamics of the 2S-TTC mechanism with an example below:

Example 1 Let C = {a, b, c, d, e}, Sa = {1, 2}, Sb = {3, 4}, Sc = {5, 6}, Sd = {7, 8},

and Se = {9}. Let each college certify all its students as eligible and q = (2, 2, 2, 1, 1).

The internal priorities and the rankings of agents associated with their preferences over

48A matching is student–(or college–)optimal stable if it is preferred to all the other stable matchings
by all students (or colleges).

49The lattice property of Gale–Shapley–stable college–admissions matchings can also be used to prove
an analogous lattice property for stable matchings in tuition–exchange markets under Assumption 3. We
skip it for brevity.
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matchings are given as:

⊲a ⊲b ⊲c ⊲d ⊲e

1 3 6 7 9

2 4 5 8

Pa Pb Pc Pd Pe

3 5 2 2 2

4 1 3 3 3

5 6 4 4 8

9 2 9 9 7

7 7 7 5 5

∅ ∅ ∅ ∅ ∅

P1 P2 P3 P4 P5 P6 P7 P8 P9

b b a c b a c e c

c c c a a b a c d

c∅ c∅ c∅ c∅ c∅ c∅ c∅ c∅ c∅

Let oe and oa be the vectors representing the eligibility and admission counters of

colleges, respectively. Then we set oe = (2, 2, 2, 2, 1) and oa = (2, 2, 2, 1, 1).

Round 1: The only cycle formed is (b, 3, a, 1). Therefore, 1 is assigned to b and 3

is assigned to a. Observe that although college a is the most-preferred college of student

6, she is not acceptable to a, and hence, she points to college b instead. The updated

counters are oe = (1, 1, 2, 2, 1) and oa = (1, 1, 2, 1, 1).

Round 2: The only cycle formed in Round 2 is (c, 6, b, 4). Therefore, 6 is assigned to

b and 4 is assigned to c. The updated counters are oe = (1, 0, 1, 2, 1) and oa = (1, 0, 1, 1, 1).

College b is removed.

Round 3: The only cycle formed in Round 3 is (a, 2, c, 5). Therefore, 5 is assigned to

a and 2 is assigned to c. The updated counters are oe = (0, 0, 0, 2, 1) and oa = (0, 0, 0, 1, 1).
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Colleges a and c are removed.

Round 4: The only cycle formed in Round 4 is (c∅, 7). Therefore, 7 is assigned to

c∅. Given that we have a trivial cycle, we only update oe. The updated counters are

oe = (0, 0, 0, 1, 1) and oa = (0, 0, 0, 1, 1).

Round 5: The only cycle formed at this round is (e, 9, d, 8). Therefore, 8 is as-

signed to e and 9 is assigned to d. The updated counters are oe = (0, 0, 0, 0, 0) and

oa = (0, 0, 0, 0, 0).

All agents are assigned, so the algorithm terminates and its outcome is given by

matching

µ =
( a b c d e

{3, 5} {1, 6} {2, 4} 9 8

)

.

⋄

It would be good to point out a few simple observations regarding regular TTC and

2S-TTC. Since students may not be able to point to their top available choices during

the algorithm (as such colleges may find them unacceptable), 2S-TTC is not balanced-

efficient for students in general. Since colleges cannot necessarily choose among their

acceptable choices, 2S-TTC is not balanced-efficient for colleges in general, either.50 As

this is a two-sided matching market, we could also propose the college-pointing version of

the 2S-TTC mechanism in which colleges point to their most preferred students among

the ones considering them acceptable and each student points to her home college in

each round. This variant takes college preference intensity more seriously. However, it

gives incentives to both students and colleges for manipulation. On the other hand, the

2S-TTC is group strategy-proof for students, as we state in Theorem 3.

On the other hand, regular TTC mechanism that ignores colleges’ preferences all to-

gether is balanced-efficient for students (observe that during the TTC algorithm, students

always point to their top available college). Its Pareto efficiency in a one-sided market

directly implies this result, while this does not provide any immediate efficiency implica-

tion for 2S-TTC (other than that among acceptable balanced matchings, its outcome is

Pareto undominated). Hence, regular TTC is also balanced-efficient for all agents since

student preferences are strict. But in general, regular TTC is individually irrational un-

like 2S-TTC, as college preferences are ignored altogether. Thus, regular TTC is not

a good mechanism for our purposes. We illustrate with an example that 2S-TTC is

not balanced-efficient for students and not balanced-efficient for colleges. However, it is

50This is in vein similar to the well-known fact that a stable matching is neither efficient for students
nor efficient for colleges, in general. But under strict preferences, all stable matchings are Pareto efficient
for all agents.
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balanced efficient overall as proven in Theorem 1.

Example 2 Suppose C = {a, b, c} such that Sa = {1}, Sb = {2}, and Sc = {3}. Each

college has quota 1 and certifies all their students. The preferences of students and colleges

over incoming students are given as follows:

Pa Pb Pc

3 2 1

2 3 3

1 ∅ 2

P1 P2 P3

b c a

a a b

c b c

If we apply the regular TTC mechanism to this problem without taking colleges’ pref-

erences into account, the outcome is

(

a b c

3 1 2

)

. However, this is not individually

rational for colleges: college b gets an unacceptable student, 1. Our 2S-TTC mecha-

nism does not select this outcome. In fact, its outcome is

(

a b c

1 3 2

)

. Observe

that although this matching is not balanced-efficient for students (the above TTC outcome

Pareto-dominates it for students) and not balanced-efficient for colleges (since the match-

ing

(

a b c

3 2 1

)

Pareto-dominates it for colleges), it is balanced-efficient overall for

all agents. ⋄

Appendix H Independence of Axioms

• A student–strategy-proof, acceptable but not balanced–efficient mechanism that also

respects internal priorities: A mechanism that always selects the null matching for

any market.

• A student–strategy-proof, balanced–efficient, acceptable mechanism that does not re-

spect internal priorities: Consider a variant of the 2S-TTC mechanism in which

each college points to the certified student who has the lowest priority among the

certified ones. This mechanism is strategy-proof for students, balanced–efficient,

and individually rational, but it fails to respect internal priorities.

• A balanced–efficient, acceptable, but not student–strategy-proof mechanism that re-

spects internal priorities: Consider the following market. There are three colleges
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C = {a, b, c} and four students Sa = {1, 2}, Sb = {3}, and Sc = {4}. Let 1 ⊲a 2.

The ranking P associated with preference preference profile %S is given as

P1 P2 P3 P4

b b a a

c c c∅ c∅

c∅ c∅

Let mechanism ψ select the same matching as the 2S-TTC for each market except

the market [q = (2, 1, 1), e = (2, 1, 1),%], and for this market it assigns 1 to c,

2 to b, 3 to a, and 4 to a. This mechanism is balanced-efficient, acceptable, and

respecting internal priorities. However, it is not student–strategy-proof, because

when 1 reports c unacceptable, ψ will assign 1 to b.

• A balanced–efficient, student–strategy-proof, but not acceptable mechanism that re-

spects internal priorities: Consider a variant of the 2S-TTC in which students are

not restricted to point to those that colleges consider them acceptable. This mech-

anism is balanced–efficient, strategy-proof, and respecting internal priorities, but it

is not acceptable since an unacceptable student can be assigned to a college.

Appendix I Simulations

Theoretically, 2S-TTC and the current decentralized market procedure modeled in Ap-

pendix A cannot be Pareto ranked. Moreover, when we consider the number of unassigned

students, neither 2S-TTC nor the decentralized market procedure performs better than

the other in every problem. In order to compare the performances of 2S-TTC and the

current decentralized market procedure, we run computer simulations under various sce-

narios. We consider environments with 10 and 20 colleges and 5 and 10 available seats.

Each student is linked to a college, and the number of students linked to a college is equal

to its capacity. We construct the preference profile of each student s ∈ Sc by incorporat-

ing the possible correlation among students’ preferences. In particular, we calculate s’s

utility from being assigned to college c′ ∈ C \ {c} as follows:

U(s, c′) = βZ(c′) + (1− β)X(s, c′).

Here, Z(c′) ∈ (0, 1) is an i.i.d. standard uniformly distributed random variable and it

represents the common tastes of students on c′. X(s, c′) ∈ (0, 1) is also an i.i.d. standard

uniformly distributed random variable and it represents the individual taste of s on c′.
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The correlation in the students’ preferences is captured by β ∈ [0, 1]. As β increases,

the students’ preferences over the colleges become more similar. For each student s we

randomly choose a threshold utility value T (s) in order to determine the set of acceptable

colleges where T (s) ∈ (0, 0.25) is an i.i.d. standard uniformly distributed random variable.

We say c′ is acceptable for s if T (s) ≤ U(s, c′). By using the utilities students get from

each college and the threshold value, we construct the ordinal preferences of students over

colleges.

In order to construct college preferences over students, we follow a similar method as

in the student preference profile construction. In particular, we calculate c’s utility from

s′ ∈ S \ Sc as follows:

V (c, s′) = αW (s′) + (1− α)Y (c, s′).

Here, W (s′) ∈ (0, 1) is an i.i.d. standard uniformly distributed random variable and it

represents the common tastes of colleges on s′. Y (c, s′) ∈ (0, 1) is also an i.i.d standard

uniformly distributed random variable and it represents the individual taste of c on s. The

correlation in the college preferences is captured by α ∈ [0, 1]. Like β, as α increases the

colleges’ preferences over the students become more similar. For each c ∈ C we randomly

choose a threshold value T (c) in order to determine the set of acceptable students for c

where T (c) ∈ (0, 0.5) is an i.i.d. standard uniformly distributed random variable. We

say s′ is acceptable for c if T (c) ≤ V (c, s′). By using the utilities colleges get from each

student and the threshold value, we construct the ordinal preferences of colleges over

students.

Under each case, we consider a time horizon of 25 periods. In order to mimic the decen-

tralized procedure, we use student proposing DA mechanism in each period. We consider

two different strategies colleges play. Under the first strategy, each college certifies its all

students as eligible in period 1. Observe that this is a naive behavior, and in a sense the

best-case scenario if colleges are negative-balance averse. Under this assumption, colleges

have incentives to certify fewer students than their quota (see Theorems 10 and 11 in

Appendix A). For further periods, if a college c carries an aggregate negative balance of

x, then it certifies only qc − x students, otherwise it certifies all its students. Under the

second strategy, in each period we rerun the DA mechanism until the outcome in that

period satisfies zero balance and in each run a college with negative balance excludes one

student from its certified list. On the other hand, under 2S-TTC, since colleges run a

zero balance, each college certifies all of its students in each period. Under each scenario,

we run the DA and TTC 1,000 times by using different random draws for X, Y , W , Z,

and T and calculate the number of students unassigned under DA and 2S-TTC, and the
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Figure 1: Student welfare under simulations with 20 colleges each with 10 seats

number of students preferring 2S-TTC over DA and vice versa. For each run, we use the

same draw of Z for all 25 periods.

We also relax the zero-balance constraint and allow each college to run a negative

balance of not more than 20% of its quota. Under the first strategy for a decentralized

market, each college certifies all its students as eligible in period 1. For further periods,

if a college carries an aggregate negative balance of x > 0.2qc, then it certifies only

1.2qc − x students, otherwise it certifies all its students. Under the second strategy, we

exclude students from each college’s certification set only if they run a negative balance

more than 20% of their quota. Similarly, since each college can run a certain amount of

negative balance, we use 2S-TTTC instead of 2S-TTC with a tolerable balance interval

of [−0.2qc,∞).

In Figure 1, we illustrate the simulation results for 20 colleges and 10 seats case. The

horizontal axis refers to changing levels of α and β, the preference correlation parameters.

Different values of β are grouped together (shown in the right-bottom graph’s legend)

while α is used as the main horizontal axis variable. The vertical axis variables in top 4

graphs demonstrate the difference of the percentage of unassigned students between the

DA mechanism under the two alternative strategies of the colleges (In each row, the 1st

and 3rd graphs are for straightforward behavior of DA and the 2nd and 4th graphs are

for the equilibrium behavior of DA explained above) and the 2S-TTC and 2S-TTTC. In

bottom 4 graphs, the vertical axes demonstrate the difference between the percentage
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of the students preferring the versions of 2S-TTC and the percentage of the students

preferring the DA mechanism under two alternative strategies of the colleges.51

Under all scenarios, when we compare the percentage of students preferring the ver-

sions of the 2S-TTC and the DA mechanism under two alternative strategies of the

colleges, we observe that 2S-TTC and 2S-TTTC outperform both alternative strategic

behaviors under DA. All results are significant at level 5%. For example, when α = 0.5

and β = 0.5, for yearly tolerance level 0, 9.6% more of all students (i.e., the percentage

of students who prefer 2S-TTC to DA minus the percentage who prefer DA to 2S-TTC)

prefer 2S-TTC outcome to DA straightforward behavior outcome (while this difference

increases to 22.9% for DA equilibrium simulations), as seen in the middle of the graph of

the 1st (and 2nd, respectively) graph of the bottom row of Figure 1.52

Except for very low correlation in both college and student preferences, we observe

that the percentage of unassigned students is less under the versions of the 2S-TTC

compared to the one under both alternative strategic behaviors under DA. For example,

when α = 0.5 and β = 0.5, for the yearly tolerance level 0, 2S-TTC matches 5% of all

students more over the percentage matched by DA under straightforward behavior (while

this difference increases to 23% over the percentage matched by DA under equilibrium

behavior) as seen in the middle of the 1st graph (and 2nd graph, respectively) in the top

row of Figure 1, respectively.53

In general, as α, the colleges’ preference correlation parameter, increases, both welfare

measures favor 2S-TTC over DA increasingly more under both tolerance level and both

DA behavior scenarios. On the other hand, as β, the students’ preference correlation

parameter, increases, the 2S-TTC’s dominance measures display mostly a unimodal pat-

tern (peaking for moderate β) for any fixed α. We conclude that 2S-TTC and 2S-TTTC

approaches outperform DA methods in almost all cases.

The colleges might have negative balance over the tolerance level under the straight-

forward behavior of DA. We calculate the percentage of students with excess negative

51The results of the other cases are illustrated in Figures 4-6.
52We do not give a separate figure for the absolute percentage of students who prefer 2S-TTC over

DA. For the considered tolerance 0 scenarios of Figure 1, the absolute percentage of students who prefer
2S-TTC over DA-straightforward treatment changes between 22% to 43.5% for different levels of α and
β – minimized at α = 1 and β = 0, while maximized at α = 0 and β = 0.5 (and 23%− 58% of students
prefer 2S-TTC to DA-equilibrium treatment – minimized at α = 0.5 and β = 0, while maximized at
α = 1 and β = 0.5).

53Although, we do not give a separate figure, it is noteworthy to mention that the absolute percentage
of students unmatched under DA straightforward scenario increases from 1.4% to 40.4% of all students
in both α and β per period, under tolerance 0 scenario of 1. The corresponding percentages are 1.1% to
80.5% under the DA equilibrium scenario, increasing again in both α and β. Other treatments, including
the ones reported at the end of this section, display similar pattern although percentage change interval
is slightly different.

58



Figure 2: Excess balance under DA straightforward behavior simulations with 20 colleges
each with 10 seats

balance in each period and the magnitude of the excess relative to the number of avail-

able seats in each college. The case for 20 colleges and 10 seats is given in Figure 2. The

average negative balance of colleges varies between 1% and 20% of the available seats at

colleges and increases with α and β. Similarly, as α and β increase the percentage of

colleges with excess negative balance increases and it varies between 1% and 40%.54

Finally, we consider the case in which the number of students applying to be certified

by each college varies in each period. In particular, we run simulations for 10 colleges

and each college has 10 available seats. Different from the previous cases, the number of

students applying to be certified may vary and it is selected from interval [6, 10] accord-

ing to i.i.d. uniform distribution. Preference profiles of the students and the colleges are

constructed as described above. We measure the performances of 2S-TTC and 2S-TTTC

compared to the DA mechanism under two strategic behaviors. The results are illustrated

in Figure 3. All the results except the comparison of the fraction of students preferring

their assignment under DA with straightforward behavior and 2S-TTC are consistent

with the cases in which the number of students in each college equals to the number of

available seats. Although at tolerance level 0, 2S-TTC outperforms DA with straightfor-

ward behavior when the percentage of the unassigned students is considered, we observe

that more students prefer their assignment under DA to their assignment under 2S-TTC.

54The results of all other cases are illustrated in Figures 7-8.
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Figure 3: Student welfare in unbalanced market under simulations with 10 colleges each
with 10 seats.

This is a consequence of the decreased level of competition among the eligible students

under DA mechanism. However, since we are restricted to zero balance under 2S-TTC,

the level of competition does not change under 2S-TTC. Also note that, at tolerance level

2, 2S-TTTC assigns students to their better choices compared to the DA mechanism with

either strategic behavior.
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Figure 4: Student welfare under simulations with 20 colleges each with 5 seats.

Figure 5: Student welfare under simulations with 10 colleges each with 10 seats.
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Figure 6: Student welfare under simulations with 10 colleges each with 5 seats.

Figure 7: Excess balance under DA straightforward behavior simulations with 20 colleges
each with 5 seats.
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Figure 8: Excess balance under DA straightforward behavior simulations with 10 colleges
each with 5 seats.
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